Science.gov

Sample records for er membrane anchor

  1. Characterization of the C-terminal ER membrane anchor of PTP1B

    SciTech Connect

    Anderie, Ines Schulz, Irene; Schmid, Andreas

    2007-09-10

    The tyrosine phosphatase PTP1B is an important regulator of cell function. In living cells PTP1B activity is restricted to the vicinity of the endoplasmic reticulum (ER) by post-translational C-terminal attachment of PTP1B to the ER membrane network. In our study we investigated the membrane anchor of PTP1B by use of EGFP fusion proteins. We demonstrate that the membrane anchor of PTP1B cannot be narrowed down to a unique amino acid sequence with a defined start and stop point but rather is moveable within several amino acids. Removal of up to seven amino acids from the C-terminus, as well as exchange of single amino acids in the putative transmembrane sequence did not influence subcellular localization of PTP1B. With the method of bimolecular fluorescence complementation we could demonstrate dimerization of PTP1B in vivo. Homodimerization was, in contrast to other tail-anchored proteins, not dependent on the membrane anchor. Our data demonstrate that the C-terminal membrane anchor of PTP1B is formed by a combination of a single stretch transmembrane domain (TMD) followed by a tail. TMD and tail length are variable and there are no sequence-specific features. Our data for PTP1B are consistent with a concept that explains the ER membrane anchor of tail-anchored proteins as a physicochemical structure.

  2. Rhomboid intramembrane protease RHBDL4 triggers ER-export and non-canonical secretion of membrane-anchored TGFα

    PubMed Central

    Wunderle, Lina; Knopf, Julia D.; Kühnle, Nathalie; Morlé, Aymeric; Hehn, Beate; Adrain, Colin; Strisovsky, Kvido; Freeman, Matthew; Lemberg, Marius K.

    2016-01-01

    Rhomboid intramembrane proteases are the enzymes that release active epidermal growth factor receptor (EGFR) ligands in Drosophila and C. elegans, but little is known about their functions in mammals. Here we show that the mammalian rhomboid protease RHBDL4 (also known as Rhbdd1) promotes trafficking of several membrane proteins, including the EGFR ligand TGFα, from the endoplasmic reticulum (ER) to the Golgi apparatus, thereby triggering their secretion by extracellular microvesicles. Our data also demonstrate that RHBDL4-dependent trafficking control is regulated by G-protein coupled receptors, suggesting a role for this rhomboid protease in pathological conditions, including EGFR signaling. We propose that RHBDL4 reorganizes trafficking events within the early secretory pathway in response to GPCR signaling. Our work identifies RHBDL4 as a rheostat that tunes secretion dynamics and abundance of specific membrane protein cargoes. PMID:27264103

  3. SYP73 Anchors the ER to the Actin Cytoskeleton for Maintenance of ER Integrity and Streaming in Arabidopsis.

    PubMed

    Cao, Pengfei; Renna, Luciana; Stefano, Giovanni; Brandizzi, Federica

    2016-12-05

    The endoplasmic reticulum (ER) is an essential organelle that spreads throughout the cytoplasm as one interconnected network of narrow tubules and dilated cisternae that enclose a single lumen. The ER network undergoes extensive remodeling, which critically depends on membrane-cytoskeleton interactions [1]. In plants, the ER is also highly mobile, and its streaming contributes significantly to the movement of other organelles [2, 3]. The remodeling and motility of the plant ER rely mainly on actin [4] and to a minor extent on microtubules [5]. Although a three-way interaction between the ER, cytosolic myosin-XI, and F-actin mediates the plant ER streaming [6], the mechanisms underlying stable interaction of the ER membrane with actin are unknown. Early electron microscopy studies suggested a direct attachment of the plant ER with actin filaments [7, 8], but it is plausible that yet-unknown proteins facilitate anchoring of the ER membrane with the cytoskeleton. We demonstrate here that SYP73, a member of the plant Syp7 subgroup of SNARE proteins [9] containing actin-binding domains, is a novel ER membrane-associated actin-binding protein. We show that overexpression of SYP73 causes a striking rearrangement of the ER over actin and that, similar to mutations of myosin-XI [4, 10, 11], loss of SYP73 reduces ER streaming and affects overall ER network morphology and plant growth. We propose a model for plant ER remodeling whereby the dynamic rearrangement and streaming of the ER network depend on the propelling action of myosin-XI over actin coupled with a SYP73-mediated bridging, which dynamically anchors the ER membrane with actin filaments.

  4. A mutant cytochrome b5 with a lengthened membrane anchor escapes from the endoplasmic reticulum and reaches the plasma membrane.

    PubMed Central

    Pedrazzini, E; Villa, A; Borgese, N

    1996-01-01

    Many resident membrane proteins of the endoplasmic reticulum (ER) do not have known retrieval sequences. Among these are the so-called tail-anchored proteins, which are bound to membranes by a hydrophobic tail close to the C terminus and have most of their sequence as a cytosolically exposed N-terminal domain. Because ER tail-anchored proteins generally have short (< or = 17 residues) hydrophobic domains, we tested whether this feature is important for localization, using cytochrome b5 as a model. The hydrophobic domain of cytochrome b5 was lengthened by insertion of five amino acids (ILAAV), and the localization of the mutant was analyzed by immunofluorescence in transiently transfected mammalian cells. While the wild-type cytochrome was localized to the ER, the mutant was relocated to the surface. This relocation was not due to the specific sequence introduced, as demonstrated by the ER localization of a second mutant, in which the original length of the membrane anchor was restored, while maintaining the inserted ILAAV sequence. Experiments with brefeldin A and with cycloheximide demonstrated that the extended anchor mutant reached the plasma membrane by transport along the secretory pathway. We conclude that the short membrane anchor of cytochrome b5 is important for its ER residency, and we discuss the relevance of this finding for other ER tail-anchored proteins. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8633042

  5. Rigid rod anchored to infinite membrane.

    PubMed

    Guo, Kunkun; Qiu, Feng; Zhang, Hongdong; Yang, Yuliang

    2005-08-15

    We investigate the shape deformation of an infinite membrane anchored by a rigid rod. The density profile of the rod is calculated by the self-consistent-field theory and the shape of the membrane is predicted by the Helfrich membrane elasticity theory [W. Helfrich, Z. Naturforsch. 28c, 693 (1973)]. It is found that the membrane bends away from the rigid rod when the interaction between the rod and the membrane is repulsive or weakly attractive (adsorption). However, the pulled height of the membrane at first increases and then decreases with the increase of the adsorption strength. Compared to a Gaussian chain with the same length, the rigid rod covers much larger area of the membrane, whereas exerts less local entropic pressure on the membrane. An evident gap is found between the membrane and the rigid rod because the membrane's curvature has to be continuous. These behaviors are compared with that of the flexible-polymer-anchored membranes studied by previous Monte Carlo simulations and theoretical analysis. It is straightforward to extend this method to more complicated and real biological systems, such as infinite membrane/multiple chains, protein inclusion, or systems with phase separation.

  6. The GET System Inserts the Tail-Anchored Protein, SYP72, into Endoplasmic Reticulum Membranes.

    PubMed

    Srivastava, Renu; Zalisko, Benjamin E; Keenan, Robert J; Howell, Stephen H

    2017-02-01

    The Arabidopsis (Arabidopsis thaliana) genome encodes homologs of the Guided Entry of Tail (GET)-anchored protein system for the posttranslational insertion of tail-anchored (TA) proteins into endoplasmic reticulum (ER) membranes. In yeast, TA proteins are loaded onto the cytosolic targeting factor Get3 and are then delivered to the membrane-associated Get1/2 complex for insertion into ER membranes. The role of the GET system in Arabidopsis was investigated by monitoring the membrane insertion of a tail-anchored protein, SYP72, a syntaxin. SYP72 bound to yeast Get3 in vitro, forming a Get3-SYP72 fusion complex that could be inserted into yeast GET1/2-containing proteoliposomes. The Arabidopsis GET system functioned in vivo to insert TA proteins into ER membranes as demonstrated by the fact that the YFP-tagged SYP72 localized to the ER in wild-type plants but accumulated as cytoplasmic inclusions in get1, get3, or get4 mutants. The GET mutants get1 and get3 were less tolerant of ER stress agents and showed symptoms of ER stress even under unstressed conditions. Hence, the GET system is responsible for the insertion of TA proteins into the ER in Arabidopsis, and mutants with GET dysfunctions are more susceptible to ER stress. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Mitochondria-Associated Membranes and ER Stress.

    PubMed

    van Vliet, Alexander R; Agostinis, Patrizia

    2017-03-28

    The endoplasmic reticulum (ER) is a crucial organelle for coordinating cellular Ca(2+) signaling and protein synthesis and folding. Moreover, the dynamic and complex membranous structures constituting the ER allow the formation of contact sites with other organelles and structures, including among others the mitochondria and the plasma membrane (PM). The contact sites that the ER form with mitochondria is a hot topic in research, and the nature of the so-called mitochondria-associated membranes (MAMs) is continuously evolving. The MAMs consist of a proteinaceous tether that physically connects the ER with mitochondria. The MAMs harness the main functions of both organelles to form a specialized subcompartment at the interface of the ER and mitochondria. Under homeostatic conditions, MAMs are crucial for the efficient transfer of Ca(2+) from the ER to mitochondria, and for proper mitochondria bioenergetics and lipid synthesis. MAMs are also believed to be the master regulators of mitochondrial shape and motility, and to form a crucial site for autophagosome assembly. Not surprisingly, MAMs have been shown to be a hot spot for the transfer of stress signals from the ER to mitochondria, most notably under the conditions of loss of ER proteostasis, by engaging the unfolded protein response (UPR). In this chapter after an introduction on ER biology and ER stress, we will review the emerging and key signaling roles of the MAMs, which have a root in cellular processes and signaling cascades coordinated by the ER.

  8. Endoplasmic reticulum targeting and insertion of tail-anchored membrane proteins by the GET pathway.

    PubMed

    Denic, Vladimir; Dötsch, Volker; Sinning, Irmgard

    2013-08-01

    Hundreds of eukaryotic membrane proteins are anchored to membranes by a single transmembrane domain at their carboxyl terminus. Many of these tail-anchored (TA) proteins are posttranslationally targeted to the endoplasmic reticulum (ER) membrane for insertion by the guided-entry of TA protein insertion (GET) pathway. In recent years, most of the components of this conserved pathway have been biochemically and structurally characterized. Get3 is the pathway-targeting factor that uses nucleotide-linked conformational changes to mediate the delivery of TA proteins between the GET pretargeting machinery in the cytosol and the transmembrane pathway components in the ER. Here we focus on the mechanism of the yeast GET pathway and make a speculative analogy between its membrane insertion step and the ATPase-driven cycle of ABC transporters.

  9. Endoplasmic Reticulum Targeting and Insertion of Tail-Anchored Membrane Proteins by the GET Pathway

    PubMed Central

    Denic, Vladimir; Dötsch, Volker; Sinning, Irmgard

    2013-01-01

    Hundreds of eukaryotic membrane proteins are anchored to membranes by a single transmembrane domain at their carboxyl terminus. Many of these tail-anchored (TA) proteins are posttranslationally targeted to the endoplasmic reticulum (ER) membrane for insertion by the guided-entry of TA protein insertion (GET) pathway. In recent years, most of the components of this conserved pathway have been biochemically and structurally characterized. Get3 is the pathway-targeting factor that uses nucleotide-linked conformational changes to mediate the delivery of TA proteins between the GET pretargeting machinery in the cytosol and the transmembrane pathway components in the ER. Here we focus on the mechanism of the yeast GET pathway and make a speculative analogy between its membrane insertion step and the ATPase-driven cycle of ABC transporters. PMID:23906715

  10. The GET System Inserts the Tail-Anchored Protein, SYP72, into Endoplasmic Reticulum Membranes1[OPEN

    PubMed Central

    Zalisko, Benjamin E.; Keenan, Robert J.

    2017-01-01

    The Arabidopsis (Arabidopsis thaliana) genome encodes homologs of the Guided Entry of Tail (GET)-anchored protein system for the posttranslational insertion of tail-anchored (TA) proteins into endoplasmic reticulum (ER) membranes. In yeast, TA proteins are loaded onto the cytosolic targeting factor Get3 and are then delivered to the membrane-associated Get1/2 complex for insertion into ER membranes. The role of the GET system in Arabidopsis was investigated by monitoring the membrane insertion of a tail-anchored protein, SYP72, a syntaxin. SYP72 bound to yeast Get3 in vitro, forming a Get3-SYP72 fusion complex that could be inserted into yeast GET1/2-containing proteoliposomes. The Arabidopsis GET system functioned in vivo to insert TA proteins into ER membranes as demonstrated by the fact that the YFP-tagged SYP72 localized to the ER in wild-type plants but accumulated as cytoplasmic inclusions in get1, get3, or get4 mutants. The GET mutants get1 and get3 were less tolerant of ER stress agents and showed symptoms of ER stress even under unstressed conditions. Hence, the GET system is responsible for the insertion of TA proteins into the ER in Arabidopsis, and mutants with GET dysfunctions are more susceptible to ER stress. PMID:27923985

  11. Num1 anchors mitochondria to the plasma membrane via two domains with different lipid binding specificities

    PubMed Central

    Ping, Holly A.; Kraft, Lauren M.; Chen, WeiTing; Nilles, Amy E.

    2016-01-01

    The mitochondria–ER cortex anchor (MECA) is required for proper mitochondrial distribution and functions by tethering mitochondria to the plasma membrane. The core component of MECA is the multidomain protein Num1, which assembles into clusters at the cell cortex. We show Num1 adopts an extended, polarized conformation. Its N-terminal coiled-coil domain (Num1CC) is proximal to mitochondria, and the C-terminal pleckstrin homology domain is associated with the plasma membrane. We find that Num1CC interacts directly with phospholipid membranes and displays a strong preference for the mitochondria-specific phospholipid cardiolipin. This direct membrane interaction is critical for MECA function. Thus, mitochondrial anchoring is mediated by a protein that interacts directly with two different membranes through lipid-specific binding domains, suggesting a general mechanism for interorganelle tethering. PMID:27241910

  12. Num1 anchors mitochondria to the plasma membrane via two domains with different lipid binding specificities.

    PubMed

    Ping, Holly A; Kraft, Lauren M; Chen, WeiTing; Nilles, Amy E; Lackner, Laura L

    2016-06-06

    The mitochondria-ER cortex anchor (MECA) is required for proper mitochondrial distribution and functions by tethering mitochondria to the plasma membrane. The core component of MECA is the multidomain protein Num1, which assembles into clusters at the cell cortex. We show Num1 adopts an extended, polarized conformation. Its N-terminal coiled-coil domain (Num1CC) is proximal to mitochondria, and the C-terminal pleckstrin homology domain is associated with the plasma membrane. We find that Num1CC interacts directly with phospholipid membranes and displays a strong preference for the mitochondria-specific phospholipid cardiolipin. This direct membrane interaction is critical for MECA function. Thus, mitochondrial anchoring is mediated by a protein that interacts directly with two different membranes through lipid-specific binding domains, suggesting a general mechanism for interorganelle tethering. © 2016 Ping et al.

  13. Facilitative plasma membrane transporters function during ER transit

    PubMed Central

    Takanaga, Hitomi; Frommer, Wolf B.

    2010-01-01

    Although biochemical studies suggested a high permeability of the endoplasmic reticulum (ER) membrane for small molecules, proteomics identified few specialized ER transporters. To test functionality of transporters during ER passage, we tested whether glucose transporters (GLUTs, SGLTs) destined for the plasma membrane are active during ER transit. HepG2 cells were characterized by low-affinity ER transport activity, suggesting that ER uptake is protein mediated. The much-reduced capacity of HEK293T cells to take up glucose across the plasma membrane correlated with low ER transport. Ectopic expression of GLUT1, -2, -4, or -9 induced GLUT isoform-specific ER transport activity in HEK293T cells. In contrast, the Na+-glucose cotransporter SGLT1 mediated efficient plasma membrane glucose transport but no detectable ER uptake, probably because of lack of a sufficient sodium gradient across the ER membrane. In conclusion, we demonstrate that GLUTs are sufficient for mediating ER glucose transport en route to the plasma membrane. Because of the low volume of the ER, trace amounts of these uniporters contribute to ER solute import during ER transit, while uniporters and cation-coupled transporters carry out export from the ER, together potentially explaining the low selectivity of ER transport. Expression levels and residence time of transporters in the ER, as well as their coupling mechanisms, could be key determinants of ER permeability.—Takanaga, H., Frommer, W. B. Facilitative plasma membrane transporters function during ER transit. PMID:20354141

  14. Protein Targeting to Exosomes/Microvesicles by Plasma Membrane Anchors*

    PubMed Central

    Shen, Beiyi; Wu, Ning; Yang, Jr-Ming; Gould, Stephen J.

    2011-01-01

    Animal cells secrete small vesicles, otherwise known as exosomes and microvesicles (EMVs). A short, N-terminal acylation tag can target a highly oligomeric cytoplasmic protein, TyA, into secreted vesicles (Fang, Y., Wu, N., Gan, X., Yan, W., Morell, J. C., and Gould, S. J. (2007) PLoS Biol. 5, 1267–1283). However, it is not clear whether this is true for other membrane anchors or other highly oligomeric, cytoplasmic proteins. We show here that a variety of plasma membrane anchors can target TyA-GFP to sites of vesicle budding and into EMVs, including: (i) a myristoylation tag; (ii) a phosphatidylinositol-(4,5)-bisphosphate (PIP2)-binding domain; (iii), a phosphatidylinositol-(3,4,5)-trisphosphate-binding domain; (iv) a prenylation/palmitoylation tag, and (v) a type-1 plasma membrane protein, CD43. However, the relative budding efficiency induced by these plasma membrane anchors varied over a 10-fold range, from 100% of control (AcylTyA-GFP) for the myristoylation tag and PIP2-binding domain, to one-third or less for the others, respectively. Targeting TyA-GFP to endosome membranes by fusion to a phosphatidylinositol 3-phosphate-binding domain induced only a slight budding of TyA-GFP, ∼2% of control, and no budding was observed when TyA-GFP was targeted to Golgi membranes via a phosphatidylinositol 4-phosphate-binding domain. We also found that a plasma membrane anchor can target two other highly oligomeric, cytoplasmic proteins to EMVs. These observations support the hypothesis that plasma membrane anchors can target highly oligomeric, cytoplasmic proteins to EMVs. Our data also provide additional parallels between EMV biogenesis and retrovirus budding, as the anchors that induced the greatest budding of TyA-GFP are the same as those that mediate retrovirus budding. PMID:21300796

  15. The luminal N-terminus of yeast Nvj1 is an inner nuclear membrane anchor

    PubMed Central

    Millen, Jonathan I.; Pierson, Jason; Kvam, Erik; Olsen, Lars J.; Goldfarb, David S.

    2010-01-01

    The endoplasmic reticulum (ER) in S. cerevisae is largely divided between perinuclear and cortical compartments. Yeast Nvj1 localizes exclusively to small patches on the perinuclear ER, where it interacts with Vac8 in the vacuole membrane to form nucleus-vacuole (NV) junctions. Three regions of Nvj1 mediate the biogenesis of NV junctions. A membrane-spanning domain targets the protein to the ER. The C-terminus binds Vac8 in the vacuole membrane, which induces the clustering of both proteins into NV junctions. The luminal N-terminus is required for strict perinuclear localization. 3D cryo-electron tomography reveals that Nvj1 clamps the separation between the two nuclear membranes to half the width of bulk nuclear envelope. The N-terminus contains a hydrophobic sequence bracketed by basic residues that resembles outer mitochondrial membrane signal-anchors. The hydrophobic sequence can be scrambled or reversed without affecting function. Mutations that reduce the hydrophobicity of the core sequence, or affect the distribution of basic residues, cause mislocalization to the cortical ER. We conclude that the N-terminus of Nvj1 is a retention sequence that bridges the perinuclear lumen and inserts into the inner nuclear membrane. PMID:18694438

  16. Facilitative plasma membrane transporters function during ER transit.

    PubMed

    Takanaga, Hitomi; Frommer, Wolf B

    2010-08-01

    Although biochemical studies suggested a high permeability of the endoplasmic reticulum (ER) membrane for small molecules, proteomics identified few specialized ER transporters. To test functionality of transporters during ER passage, we tested whether glucose transporters (GLUTs, SGLTs) destined for the plasma membrane are active during ER transit. HepG2 cells were characterized by low-affinity ER transport activity, suggesting that ER uptake is protein mediated. The much-reduced capacity of HEK293T cells to take up glucose across the plasma membrane correlated with low ER transport. Ectopic expression of GLUT1, -2, -4, or -9 induced GLUT isoform-specific ER transport activity in HEK293T cells. In contrast, the Na(+)-glucose cotransporter SGLT1 mediated efficient plasma membrane glucose transport but no detectable ER uptake, probably because of lack of a sufficient sodium gradient across the ER membrane. In conclusion, we demonstrate that GLUTs are sufficient for mediating ER glucose transport en route to the plasma membrane. Because of the low volume of the ER, trace amounts of these uniporters contribute to ER solute import during ER transit, while uniporters and cation-coupled transporters carry out export from the ER, together potentially explaining the low selectivity of ER transport. Expression levels and residence time of transporters in the ER, as well as their coupling mechanisms, could be key determinants of ER permeability.

  17. Ergosterol content specifies targeting of tail-anchored proteins to mitochondrial outer membranes

    PubMed Central

    Krumpe, Katrin; Frumkin, Idan; Herzig, Yonatan; Rimon, Nitzan; Özbalci, Cagakan; Brügger, Britta; Rapaport, Doron; Schuldiner, Maya

    2012-01-01

    Tail-anchored (TA) proteins have a single C-terminal transmembrane domain, making their biogenesis dependent on posttranslational translocation. Despite their importance, no dedicated insertion machinery has been uncovered for mitochondrial outer membrane (MOM) TA proteins. To decipher the molecular mechanisms guiding MOM TA protein insertion, we performed two independent systematic microscopic screens in which we visualized the localization of model MOM TA proteins on the background of mutants in all yeast genes. We could find no mutant in which insertion was completely blocked. However, both screens demonstrated that MOM TA proteins were partially localized to the endoplasmic reticulum (ER) in ∆spf1 cells. Spf1, an ER ATPase with unknown function, is the first protein shown to affect MOM TA protein insertion. We found that ER membranes in ∆spf1 cells become similar in their ergosterol content to mitochondrial membranes. Indeed, when we visualized MOM TA protein distribution in yeast strains with reduced ergosterol content, they phenocopied the loss of Spf1. We therefore suggest that the inherent differences in membrane composition between organelle membranes are sufficient to determine membrane integration specificity in a eukaryotic cell. PMID:22918956

  18. Membrane-anchored serine proteases in health and disease

    PubMed Central

    Bugge, Thomas; Wu, Qingyu

    2013-01-01

    Serine proteases of the trypsin-like family have long been recognized to be critical effectors of biological processes as diverse as digestion, blood coagulation, fibrinolysis, and immunity. In recent years, a subgroup of these enzymes has been identified that are anchored directly to plasma membranes, either by a carboxy-terminal transmembrane domain (Type I), an amino-terminal transmembrane domain with a cytoplasmic extension (Type II or TTSP), or through a glycosyl-phosphatidylinositol (GPI) linkage. Recent biochemical, cellular, and in vivo analyses have now established that membrane-anchored serine proteases are key pericellular contributors to processes vital for development and the maintenance of homeostasis. This chapter will review our current knowledge of the biological and physiological functions of these proteases, their molecular substrates, and their contributions to disease. PMID:21238933

  19. Chemically programmed cell adhesion with membrane-anchored oligonucleotides

    PubMed Central

    Selden, Nicholas S.; Todhunter, Michael E.; Jee, Noel Y.; Liu, Jennifer S.; Broaders, Kyle E.; Gartner, Zev J.

    2012-01-01

    Cell adhesion organizes the structures of tissues and mediates their mechanical, chemical, and electrical integration with their surroundings. Here, we describe a strategy for chemically controlling cell adhesion using membrane anchored single-stranded DNA oligonucleotides. The reagents are pure chemical species prepared from phosphoramidites synthesized in a single chemical step from commercially available starting materials. The approach enables rapid, efficient, tunable cell adhesion, independent of proteins or glycans, by facilitating interactions with complementary labeled surfaces or other cells. We demonstrate the utility of this approach by imaging drug-induced changes in the membrane dynamics of non-adherent human cells while chemically immobilized on a passivated glass surface. PMID:22176556

  20. Membrane-anchored prolyl hydroxylase with an export signal from the endoplasmic reticulum.

    PubMed

    Yuasa, Koji; Toyooka, Kiminori; Fukuda, Hiroo; Matsuoka, Ken

    2005-01-01

    We cloned a novel prolyl 4-hydroxylase (PH; EC 1.14.11.2) homolog cDNA from tobacco (Nicotiana tabacum) BY-2 cells based on expression sequence tag information. Like other PHs, this tobacco PH polypeptide has two conserved histidine residues, and it comprises 286 amino acids with a calculated molecular mass of 32 kDa. Interestingly, this protein and homologs in Arabidopsis and rice have predicted transmembrane sequences in their N-terminal regions. This PH homolog was expressed in BY-2 cells as a His-tagged protein, and the expressed protein showed PH activity. Incubation of membranes with high salt, urea, and protease with or without detergents indicated that this protein is an integral membrane protein with a type II configuration. Its membrane-anchored nature is specific for plants because no integral membrane PH has been found in animals. A membrane fractionation study and immunocytochemical studies indicate that this protein localizes in both the endoplasmic reticulum (ER) and Golgi apparatus. Analysis of this protein fused to green fluorescent protein indicated that basic amino acids in the cytoplasmic, N-terminal region of the PH play a role in its export from the ER.

  1. A nascent membrane protein is located adjacent to ER membrane proteins throughout its integration and translation

    PubMed Central

    1991-01-01

    The immediate environment of nascent membrane proteins undergoing integration into the ER membrane was investigated by photocrosslinking. Nascent polypeptides of different lengths, each containing a single IgM transmembrane sequence that functions either as a stop-transfer or a signal-anchor sequence, were synthesized by in vitro translation of truncated mRNAs in the presence of N epsilon-(5-azido-2-nitrobenzoyl)- Lys-tRNA, signal recognition particle, and microsomal membranes. This yielded nascent chains with photoreactive probes at one end of the transmembrane sequence where two lysine residues are located. When irradiated, these nascent chains reacted covalently with several ER proteins. One prominent crosslinking target was a glycoprotein similar in size to a protein termed mp39, shown previously to be situated adjacent to a secretory protein during its translocation across the ER membrane (Krieg, U. C., A. E. Johnson, and P. Walter. 1989. J. Cell Biol. 109:2033-2043; Wiedmann, M., D. Goerlich, E. Hartmann, T. V. Kurzchalia, and T. A. Rapoport. 1989. FEBS (Fed. Eur. Biochem. Soc.) Lett. 257:263-268) and likely to be identical to a protein previously designated the signal sequence receptor (Wiedmann, M., T. V. Kurzchalia, E. Hartmann, and T. A. Rapoport. 1987. Nature (Lond.). 328:830-833). Changing the orientation of the transmembrane domain in the bilayer, or making the transmembrane domain the first topogenic sequence in the nascent chain instead of the second, did not significantly alter the identities of the ER proteins that were the primary crosslinking targets. Furthermore, the nascent chains crosslinked to the mp39-like glycoprotein and other microsomal proteins even after the cytoplasmic tail of the nascent chain had been lengthened by nearly 100 amino acids beyond the stop-transfer sequence. Yet when the nascent chain was allowed to terminate normally, the major photocrosslinks were no longer observed, including in particular that to the mp39-like

  2. Binding constants of membrane-anchored receptors and ligands depend strongly on the nanoscale roughness of membranes.

    PubMed

    Hu, Jinglei; Lipowsky, Reinhard; Weikl, Thomas R

    2013-09-17

    Cell adhesion and the adhesion of vesicles to the membranes of cells or organelles are pivotal for immune responses, tissue formation, and cell signaling. The adhesion processes depend sensitively on the binding constant of the membrane-anchored receptor and ligand proteins that mediate adhesion, but this constant is difficult to measure in experiments. We have investigated the binding of membrane-anchored receptor and ligand proteins with molecular dynamics simulations. We find that the binding constant of the anchored proteins strongly decreases with the membrane roughness caused by thermally excited membrane shape fluctuations on nanoscales. We present a theory that explains the roughness dependence of the binding constant for the anchored proteins from membrane confinement and that relates this constant to the binding constant of soluble proteins without membrane anchors. Because the binding constant of soluble proteins is readily accessible in experiments, our results provide a useful route to compute the binding constant of membrane-anchored receptor and ligand proteins.

  3. Dynamic structure of membrane-anchored Arf•GTP

    PubMed Central

    Liu, Yizhou; Kahn, Richard A.; Prestegard, James H.

    2010-01-01

    Arfs (ADP ribosylation factors) are N-myristoylated GTP/GDP switch proteins playing key regulatory roles in vesicle transport in eukaryotic cells. ARFs execute their roles by anchoring to membrane surfaces where they interact with other proteins to initiate budding and maturation of transport vesicles. However, existing structures of Arf•GTP are limited to non-myristoylated and truncated forms with impaired membrane binding. We report a high resolution NMR structure for full-length myristoylated yeast (Saccharomyces cerevisiae) Arf1 in complex with a membrane mimic. The two domain structure, in which the myristoylated N-terminal helix is separated from the C-terminal domain by a flexible linker, suggests a level of adaptability in binding modes for the myriad of proteins with which Arf interacts, and allows predictions of specific lipid binding sites on some of these proteins. PMID:20601958

  4. Structural Basis for Membrane Anchoring of HIV-1 Envelope Spike

    PubMed Central

    Fu, Qingshan; Chen, Jia; Ha, Heather Jiwon; Ghantous, Fadi; Herrmann, Tobias; Chang, Weiting; Liu, Zhijun; Frey, Gary; Seaman, Michael S.; Chen, Bing; Chou, James J.

    2016-01-01

    HIV-1 envelope spike (Env) is a type I membrane protein that mediates viral entry. We use NMR to determine an atomic structure of the transmembrane (TM) domain of HIV-1 Env reconstituted in bicelles that mimic a lipid bilayer. The TM forms a well-ordered trimer that protects a conserved membrane-embedded arginine. An N-terminal coiled-coil and a C-terminal hydrophilic core stabilize the trimer. Individual mutations of conserved residues did not disrupt the TM trimer and minimally affected membrane fusion and infectivity. Major changes in the hydrophilic core, however, altered the antibody sensitivity of Env. These results show how a TM domain anchors, stabilizes and modulates a viral envelope spike and suggest that its influence on Env conformation is an important consideration for HIV-1 immunogen design. PMID:27338706

  5. Lipid transport by TMEM24 at ER-plasma membrane contacts regulates pulsatile insulin secretion.

    PubMed

    Lees, Joshua A; Messa, Mirko; Sun, Elizabeth Wen; Wheeler, Heather; Torta, Federico; Wenk, Markus R; De Camilli, Pietro; Reinisch, Karin M

    2017-02-17

    Insulin is released by β cells in pulses regulated by calcium and phosphoinositide signaling. Here, we describe how transmembrane protein 24 (TMEM24) helps coordinate these signaling events. We showed that TMEM24 is an endoplasmic reticulum (ER)-anchored membrane protein whose reversible localization to ER-plasma membrane (PM) contacts is governed by phosphorylation and dephosphorylation in response to oscillations in cytosolic calcium. A lipid-binding module in TMEM24 transports the phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] precursor phosphatidylinositol between bilayers, allowing replenishment of PI(4,5)P2 hydrolyzed during signaling. In the absence of TMEM24, calcium oscillations are abolished, leading to a defect in triggered insulin release. Our findings implicate direct lipid transport between the ER and the PM in the control of insulin secretion, a process impaired in patients with type II diabetes.

  6. Bacterial tail anchors can target to the mitochondrial outer membrane.

    PubMed

    Lutfullahoğlu-Bal, Güleycan; Keskin, Abdurrahman; Seferoğlu, Ayşe Bengisu; Dunn, Cory D

    2017-07-24

    During the generation and evolution of the eukaryotic cell, a proteobacterial endosymbiont was re-fashioned into the mitochondrion, an organelle that appears to have been present in the ancestor of all present-day eukaryotes. Mitochondria harbor proteomes derived from coding information located both inside and outside the organelle, and the rate-limiting step toward the formation of eukaryotic cells may have been development of an import apparatus allowing protein entry to mitochondria. Currently, a widely conserved translocon allows proteins to pass from the cytosol into mitochondria, but how proteins encoded outside of mitochondria were first directed to these organelles at the dawn of eukaryogenesis is not clear. Because several proteins targeted by a carboxyl-terminal tail anchor (TA) appear to have the ability to insert spontaneously into the mitochondrial outer membrane (OM), it is possible that self-inserting, tail-anchored polypeptides obtained from bacteria might have formed the first gate allowing proteins to access mitochondria from the cytosol. Here, we tested whether bacterial TAs are capable of targeting to mitochondria. In a survey of proteins encoded by the proteobacterium Escherichia coli, predicted TA sequences were directed to specific subcellular locations within the yeast Saccharomyces cerevisiae. Importantly, TAs obtained from DUF883 family members ElaB and YqjD were abundantly localized to and inserted at the mitochondrial OM. Our results support the notion that eukaryotic cells are able to utilize membrane-targeting signals present in bacterial proteins obtained by lateral gene transfer, and our findings make plausible a model in which mitochondrial protein translocation was first driven by tail-anchored proteins. This article was reviewed by Michael Ryan and Thomas Simmen.

  7. The ER in 3D: a multifunctional dynamic membrane network.

    PubMed

    Friedman, Jonathan R; Voeltz, Gia K

    2011-12-01

    The endoplasmic reticulum (ER) is a large, singular, membrane-bound organelle that has an elaborate 3D structure with a diversity of structural domains. It contains regions that are flat and cisternal, ones that are highly curved and tubular, and others adapted to form contacts with nearly every other organelle and with the plasma membrane. The 3D structure of the ER is determined by both integral ER membrane proteins and by interactions with the cytoskeleton. In this review, we describe some of the factors that are known to regulate ER structure and discuss how this structural organization and the dynamic nature of the ER membrane network allow it to perform its many different functions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    SciTech Connect

    Wang, Jimin Li, Yue; Modis, Yorgo

    2014-04-15

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. - Highlights: • Structures of pestivirus E2 proteins impose constraints on E1, E2 membrane anchors. • Atomic models of the E1 and E2 membrane anchors were generated in silico. • A “snorkeling” arginine completes the short helical hairpin in the E2 membrane anchor. • Roles in pH sensing and E1–E2 disulfide bond formation are proposed for E1 residues. • Implications for E1 ectodomain structure and disulfide bonding pattern are discussed.

  9. Electrostatic anchoring precedes stable membrane attachment of SNAP25/SNAP23 to the plasma membrane

    PubMed Central

    Weber, Pascal; Batoulis, Helena; Rink, Kerstin M; Dahlhoff, Stefan; Pinkwart, Kerstin; Söllner, Thomas H; Lang, Thorsten

    2017-01-01

    The SNAREs SNAP25 and SNAP23 are proteins that are initially cytosolic after translation, but then become stably attached to the cell membrane through palmitoylation of cysteine residues. For palmitoylation to occur, membrane association is a prerequisite, but it is unclear which motif may increase the affinities of the proteins for the target membrane. In experiments with rat neuroendocrine cells, we find that a few basic amino acids in the cysteine-rich region of SNAP25 and SNAP23 are essential for plasma membrane targeting. Reconstitution of membrane-protein binding in a liposome assay shows that the mechanism involves protein electrostatics between basic amino acid residues and acidic lipids such as phosphoinositides that play a primary role in these interactions. Hence, we identify an electrostatic anchoring mechanism underlying initial plasma membrane contact by SNARE proteins, which subsequently become palmitoylated at the plasma membrane. DOI: http://dx.doi.org/10.7554/eLife.19394.001 PMID:28240595

  10. Binding kinetics of membrane-anchored receptors and ligands: Molecular dynamics simulations and theory.

    PubMed

    Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard; Weikl, Thomas R

    2015-12-28

    The adhesion of biological membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. Central questions are how the binding kinetics of these proteins is affected by the membranes and by the membrane anchoring of the proteins. In this article, we (i) present detailed data for the binding of membrane-anchored proteins from coarse-grained molecular dynamics simulations and (ii) provide a theory that describes how the binding kinetics depends on the average separation and thermal roughness of the adhering membranes and on the anchoring, lengths, and length variations of the proteins. An important element of our theory is the tilt of bound receptor-ligand complexes and transition-state complexes relative to the membrane normals. This tilt results from an interplay of the anchoring energy and rotational entropy of the complexes and facilitates the formation of receptor-ligand bonds at membrane separations smaller than the preferred separation for binding. In our simulations, we have considered both lipid-anchored and transmembrane receptor and ligand proteins. We find that the binding equilibrium constant and binding on-rate constant of lipid-anchored proteins are considerably smaller than the binding constant and on-rate constant of rigid transmembrane proteins with identical binding domains.

  11. Balancing ER dynamics: shaping, bending, severing, and mending membranes

    PubMed Central

    Pendin, Diana; McNew, James A.; Daga, Andrea

    2011-01-01

    The endoplasmic reticulum is a multifunctional organelle composed of functionally and morphologically distinct domains. These include the relatively planar nuclear envelope and the peripheral ER, a network of sheet-like cisternae interconnected with tubules that spread throughout the cytoplasm. The ER is highly dynamic and the shape of its domains as well as their relative content are in constant flux. The multiple forces driving these morphological changes depend on the interaction between the ER and microtubules, membrane fusion and fission events and the action of proteins capable of actively shaping membranes. The interplay between these forces is ultimately responsible for the dynamic morphology of the ER, which in turn is crucial for properly executing the varied functions of this organelle. PMID:21641197

  12. Direct visualization of membrane architecture of myelinating cells in transgenic mice expressing membrane-anchored EGFP.

    PubMed

    Deng, Yaqi; Kim, BongWoo; He, Xuelian; Kim, Sunja; Lu, Changqing; Wang, Haibo; Cho, Ssang-Goo; Hou, Yiping; Li, Jianrong; Zhao, Xianghui; Lu, Q Richard

    2014-04-01

    Myelinogenesis is a complex process that involves substantial and dynamic changes in plasma membrane architecture and myelin interaction with axons. Highly ramified processes of oligodendrocytes in the central nervous system (CNS) make axonal contact and then extrapolate to wrap around axons and form multilayer compact myelin sheathes. Currently, the mechanisms governing myelin sheath assembly and axon selection by myelinating cells are not fully understood. Here, we generated a transgenic mouse line expressing the membrane-anchored green fluorescent protein (mEGFP) in myelinating cells, which allow live imaging of details of myelinogenesis and cellular behaviors in the nervous systems. mEGFP expression is driven by the promoter of 2'-3'-cyclic nucleotide 3'-phosphodiesterase (CNP) that is expressed in the myelinating cell lineage. Robust mEGFP signals appear in the membrane processes of oligodendrocytes in the CNS and Schwann cells in the peripheral nervous system (PNS), wherein mEGFP expression defines the inner layers of myelin sheaths and Schmidt-Lanterman incisures in adult sciatic nerves. In addition, mEGFP expression can be used to track the extent of remyelination after demyelinating injury in a toxin-induced demyelination animal model. Taken together, the membrane-anchored mEGFP expression in the new transgenic line would facilitate direct visualization of dynamic myelin membrane formation and assembly during development and process remodeling during remyelination after various demyelinating injuries.

  13. A role for N-myristoylation in protein targeting: NADH-cytochrome b5 reductase requires myristic acid for association with outer mitochondrial but not ER membranes

    PubMed Central

    1996-01-01

    N-myristoylation is a cotranslational modification involved in protein- protein interactions as well as in anchoring polypeptides to phospholipid bilayers; however, its role in targeting proteins to specific subcellular compartments has not been clearly defined. The mammalian myristoylated flavoenzyme NADH-cytochrome b5 reductase is integrated into ER and mitochondrial outer membranes via an anchor containing a stretch of 14 uncharged amino acids downstream to the NH2- terminal myristoylate glycine. Since previous studies suggested that the anchoring function could be adequately carried out by the 14 uncharged residues, we investigated a possible role for myristic acid in reductase targeting. The wild type (wt) and a nonmyristoylatable reductase mutant (gly2-->ala) were stably expressed in MDCK cells, and their localization was investigated by immunofluorescence, immuno-EM, and cell fractionation. By all three techniques, the wt protein localized to ER and mitochondria, while the nonmyristoylated mutant was found only on ER membranes. Pulse-chase experiments indicated that this altered steady state distribution was due to the mutant's inability to target to mitochondria, and not to its enhanced instability in that location. Both wt and mutant reductase were resistant to Na2CO3 extraction and partitioned into the detergent phase after treatment of a membrane fraction with Triton X-114, demonstrating that myristic acid is not required for tight anchoring of reductase to membranes. Our results indicate that myristoylated reductase localizes to ER and mitochondria by different mechanisms, and reveal a novel role for myristic acid in protein targeting. PMID:8978818

  14. Monitoring lipid anchor organization in cell membranes by PIE-FCCS.

    PubMed

    Triffo, Sara B; Huang, Hector H; Smith, Adam W; Chou, Eldon T; Groves, Jay T

    2012-07-04

    This study examines the dynamic co-localization of lipid-anchored fluorescent proteins in living cells using pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS) and fluorescence lifetime analysis. Specifically, we look at the pairwise co-localization of anchors from lymphocyte cell kinase (LCK: myristoyl, palmitoyl, palmitoyl), RhoA (geranylgeranyl), and K-Ras (farnesyl) proteins in different cell types. In Jurkat cells, a density-dependent increase in cross-correlation among RhoA anchors is observed, while LCK anchors exhibit a more moderate increase and broader distribution. No correlation was detected among K-Ras anchors or between any of the different anchor types studied. Fluorescence lifetime data reveal no significant Förster resonance energy transfer in any of the data. In COS 7 cells, minimal correlation was detected among LCK or RhoA anchors. Taken together, these observations suggest that some lipid anchors take part in anchor-specific co-clustering with other existing clusters of native proteins and lipids in the membrane. Importantly, these observations do not support a simple interpretation of lipid anchor-mediated organization driven by partitioning based on binary lipid phase separation.

  15. Effects of GPI-anchored TNAP on the dynamic structure of model membranes

    PubMed Central

    Garcia, A. F.; Simão, A. M. S.; Bolean, M; Hoylaerts, M. F.; Millán, J. L.; Ciancaglini, P; Costa-Filho, A. J.

    2017-01-01

    Tissue-nonspecific alkaline phosphatase (TNAP) plays a crucial role during skeletal mineralization, and TNAP deficiency leads to the soft bone disease hypophosphatasia. TNAP is anchored to the external surface of the plasma membranes by means of a GPI (glycosylphosphatidylinositol) anchor. Membrane-anchored and solubilized TNAP displays different kinetic properties against physiological substrates, indicating that membrane anchoring influences the enzyme function. Here, we used Electron Spin Resonance (ESR) measurements along with spin labeled phospholipids to probe the possible dynamic changes prompted by the interaction of GPI-anchored TNAP with model membranes. The goal was to systematically analyze the ESR data in terms of line shape changes and of alterations in parameters such as rotational diffusion rates and order parameters obtained from non-linear least-squares simulations of the ESR spectra of probes incorporated into DPPC liposomes and proteoliposomes. Overall, the presence of TNAP increased the dynamics and decreased the ordering in the three distinct regions probed by the spin labeled lipids DOPTC (headgroup), and 5- and 16-PCSL (acyl chains). The largest change was observed for 16-PCSL, thus suggesting that GPI-anchored TNAP can give rise to long reaching modifications that could influence membrane processes halfway through the bilayer. PMID:26389140

  16. A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins.

    PubMed

    Bhatia, Vikram Kjøller; Hatzakis, Nikos S; Stamou, Dimitrios

    2010-06-01

    The discovery of proteins that recognize membrane curvature created a paradigm shift by suggesting that membrane shape may act as a cue for protein localization that is independent of lipid or protein composition. Here we review recent data on membrane curvature sensing by three structurally unrelated motifs: BAR domains, amphipathic helices and membrane-anchored proteins. We discuss the conclusion that the curvature of the BAR dimer is not responsible for sensing and that the sensing properties of all three motifs can be rationalized by the physicochemical properties of the curved membrane itself. We thus anticipate that membrane curvature will promote the redistribution of proteins that are anchored in membranes through any type of hydrophobic moiety, a thesis that broadens tremendously the implications of membrane curvature for protein sorting, trafficking and signaling in cell biology.

  17. Anchoring a Leviathan: How the Nuclear Membrane Tethers the Genome.

    PubMed

    Czapiewski, Rafal; Robson, Michael I; Schirmer, Eric C

    2016-01-01

    It is well established that the nuclear envelope has many distinct direct connections to chromatin that contribute to genome organization. The functional consequences of genome organization on gene regulation are less clear. Even less understood is how interactions of lamins and nuclear envelope transmembrane proteins (NETs) with chromatin can produce anchoring tethers that can withstand the physical forces of and on the genome. Chromosomes are the largest molecules in the cell, making megadalton protein structures like the nuclear pore complexes and ribosomes seem small by comparison. Thus to withstand strong forces from chromosome dynamics an anchoring tether is likely to be much more complex than a single protein-protein or protein-DNA interaction. Here we will briefly review known NE-genome interactions that likely contribute to spatial genome organization, postulate in the context of experimental data how these anchoring tethers contribute to gene regulation, and posit several hypotheses for the physical nature of these tethers that need to be investigated experimentally. Significantly, disruption of these anchoring tethers and the subsequent consequences for gene regulation could explain how mutations in nuclear envelope proteins cause diseases ranging from muscular dystrophy to lipodystrophy to premature aging progeroid syndromes. The two favored hypotheses for nuclear envelope protein involvement in disease are (1) weakening nuclear and cellular mechanical stability, and (2) disrupting genome organization and gene regulation. Considerable experimental support has been obtained for both. The integration of both mechanical and gene expression defects in the disruption of anchoring tethers could provide a unifying hypothesis consistent with both.

  18. Anchoring a Leviathan: How the Nuclear Membrane Tethers the Genome

    PubMed Central

    Czapiewski, Rafal; Robson, Michael I.; Schirmer, Eric C.

    2016-01-01

    It is well established that the nuclear envelope has many distinct direct connections to chromatin that contribute to genome organization. The functional consequences of genome organization on gene regulation are less clear. Even less understood is how interactions of lamins and nuclear envelope transmembrane proteins (NETs) with chromatin can produce anchoring tethers that can withstand the physical forces of and on the genome. Chromosomes are the largest molecules in the cell, making megadalton protein structures like the nuclear pore complexes and ribosomes seem small by comparison. Thus to withstand strong forces from chromosome dynamics an anchoring tether is likely to be much more complex than a single protein-protein or protein-DNA interaction. Here we will briefly review known NE-genome interactions that likely contribute to spatial genome organization, postulate in the context of experimental data how these anchoring tethers contribute to gene regulation, and posit several hypotheses for the physical nature of these tethers that need to be investigated experimentally. Significantly, disruption of these anchoring tethers and the subsequent consequences for gene regulation could explain how mutations in nuclear envelope proteins cause diseases ranging from muscular dystrophy to lipodystrophy to premature aging progeroid syndromes. The two favored hypotheses for nuclear envelope protein involvement in disease are (1) weakening nuclear and cellular mechanical stability, and (2) disrupting genome organization and gene regulation. Considerable experimental support has been obtained for both. The integration of both mechanical and gene expression defects in the disruption of anchoring tethers could provide a unifying hypothesis consistent with both. PMID:27200088

  19. The N-terminal anchor sequences of 11beta-hydroxysteroid dehydrogenases determine their orientation in the endoplasmic reticulum membrane.

    PubMed

    Odermatt, A; Arnold, P; Stauffer, A; Frey, B M; Frey, F J

    1999-10-01

    11beta-Hydroxysteroid dehydrogenase enzymes (11beta- HSD) regulate the ratio of active endogenous glucocorticoids to their inactive keto-metabolites, thereby controlling the access of glucocorticoids to their cognate receptors. In this study, the topology and intracellular localization of 11beta-HSD1 and 11beta-HSD2 have been analyzed by immunohistochemistry and protease protection assays of in vitro transcription/translation products. 11beta-HSD constructs, tagged with the FLAG epitope, were transiently expressed in HEK-293 cells. The enzymatic characteristics of tagged and native enzymes were indistinguishable. Fluorescence microscopy demonstrated the localization of both 11beta-HSD1 and 11beta-HSD2 exclusively to the endoplasmic reticulum (ER) membrane. To examine the orientation of tagged 11beta-HSD enzymes within the ER membrane, we stained selectively permeabilized HEK-293 cells with anti-FLAG antibody. Immunohistochemistry revealed that the N terminus of 11beta-HSD1 is cytoplasmic, and the catalytic domain containing the C terminus is protruding into the ER lumen. In contrast, the N terminus of 11beta-HSD2 is lumenal, and the catalytic domain is facing the cytoplasm. Chimeric proteins where the N-terminal anchor sequences of 11beta-HSD1 and 11beta-HSD2 were exchanged adopted inverted orientation in the ER membrane. However, both chimeric proteins were not catalytically active. Furthermore, mutation of a tyrosine motif to alanine in the transmembrane segment of 11beta-HSD1 significantly reduced V(max). The subcellular localization of 11beta-HSD1 was not affected by mutations of the tyrosine motif or of a di-lysine motif in the N terminus. However, residue Lys(5), but not Lys(6), turned out to be critical for the topology of 11beta-HSD1. Mutation of Lys(5) to Ser inverted the orientation of 11beta-HSD1 in the ER membrane without loss of catalytic activity. Our results emphasize the importance of the N-terminal transmembrane segments of 11beta-HSD enzymes for

  20. The Crystal Structures of Yeast Get3 Suggest a Mechanism for Tail-Anchored Protein Membrane Insertion

    SciTech Connect

    Hu, Junbin; Li, Jingzhi; Qian, Xinguo; Denic, Vlad; Sha, Bingdong

    2010-08-16

    Tail-anchored (TA) proteins represent a unique class of membrane proteins that contain a single C-terminal transmembrane helix. The post-translational insertion of the yeast TA proteins into the ER membrane requires the Golgi ER trafficking (GET) complex which contains Get1, Get2 and Get3. Get3 is an ATPase that recognizes and binds the C-terminal transmembrane domain (TMD) of the TA proteins. We have determined the crystal structures of Get3 from two yeast species, S. cerevisiae and D. hansenii, respectively. These high resolution crystal structures show that Get3 contains a nucleotide-binding domain and a 'finger' domain for binding the TA protein TMD. A large hydrophobic groove on the finger domain of S. cerevisiae Get3 structure might represent the binding site for TMD of TA proteins. A hydrophobic helix from a symmetry-related Get3 molecule sits in the TMD-binding groove and mimics the TA binding scenario. Interestingly, the crystal structures of the Get3 dimers from S. cerevisiae and D. hansenii exhibit distinct conformations. The S. cerevisiae Get3 dimer structure does not contain nucleotides and maintains an 'open' conformation, while the D. hansenii Get3 dimer structure binds ADP and stays in a 'closed' conformation. We propose that the conformational changes to switch the Get3 between the open and closed conformations may facilitate the membrane insertions for TA proteins.

  1. The tale of tail-anchored proteins: coming from the cytosol and looking for a membrane.

    PubMed

    Borgese, Nica; Colombo, Sara; Pedrazzini, Emanuela

    2003-06-23

    A group of integral membrane proteins, known as C-tail anchored, is defined by the presence of a cytosolic NH2-terminal domain that is anchored to the phospholipid bilayer by a single segment of hydrophobic amino acids close to the COOH terminus. The mode of insertion into membranes of these proteins, many of which play key roles in fundamental intracellular processes, is obligatorily posttranslational, is highly specific, and may be subject to regulatory processes that modulate the protein's function. Although recent work has elucidated structural features in the tail region that determine selection of the correct target membrane, the molecular machinery involved in interpreting this information, and in modulating tail-anchored protein localization, has not been identified yet.

  2. Tritium labelling of a cholesterol amphiphile designed for cell membrane anchoring of proteins.

    PubMed

    Schäfer, Balázs; Orbán, Erika; Kele, Zoltán; Tömböly, Csaba

    2015-01-01

    Cell membrane association of proteins can be achieved by the addition of lipid moieties to the polypeptide chain, and such lipid-modified proteins have important biological functions. A class of cell surface proteins contains a complex glycosylphosphatidylinositol (GPI) glycolipid at the C-terminus, and they are accumulated in cholesterol-rich membrane microdomains, that is, lipid rafts. Semisynthetic lipoproteins prepared from recombinant proteins and designed lipids are valuable probes and model systems of the membrane-associated proteins. Because GPI-anchored proteins can be reinserted into the cell membrane with the retention of the biological function, they are appropriate candidates for preparing models via reduction of the structural complexity. A synthetic headgroup was added to the 3β-hydroxyl group of cholesterol, an essential lipid component of rafts, and the resulting cholesterol derivative was used as a simplified GPI mimetic. In order to quantitate the membrane integrated GPI mimetic after the exogenous addition to live cells, a tritium labelled cholesterol anchor was prepared. The radioactive label was introduced into the headgroup, and the radiolabelled GPI mimetic anchor was obtained with a specific activity of 1.37 TBq/mmol. The headgroup labelled cholesterol derivative was applied to demonstrate the sensitive detection of the cell membrane association of the anchor under in vivo conditions.

  3. Structural and Functional Characterization of Ybr137wp Implicates Its Involvement in the Targeting of Tail-Anchored Proteins to Membranes

    PubMed Central

    Yeh, Yi-Hung; Lin, Tai-Wen; Li, Yi-Chuan; Tung, Jung-Yu; Lin, Cheng-Yuan

    2014-01-01

    Nearly 5% of membrane proteins are guided to nuclear, endoplasmic reticulum (ER), mitochondrial, Golgi, or peroxisome membranes by their C-terminal transmembrane domain and are classified as tail-anchored (TA) membrane proteins. In Saccharomyces cerevisiae, the guided entry of TA protein (GET) pathway has been shown to function in the delivery of TA proteins to the ER. The sorting complex for this pathway is comprised of Sgt2, Get4, and Get5 and facilitates the loading of nascent tail-anchored proteins onto the Get3 ATPase. Multiple pulldown assays also indicated that Ybr137wp associates with this complex in vivo. Here, we report a 2.8-Å-resolution crystal structure for Ybr137wp from Saccharomyces cerevisiae. The protein is a decamer in the crystal and also in solution, as observed by size exclusion chromatography and analytical ultracentrifugation. In addition, isothermal titration calorimetry indicated that the C-terminal acidic motif of Ybr137wp interacts with the tetratricopeptide repeat (TPR) domain of Sgt2. Moreover, an in vivo study demonstrated that Ybr137wp is induced in yeast exiting the log phase and ameliorates the defect of TA protein delivery and cell viability derived by the impaired GET system under starvation conditions. Therefore, this study suggests a possible role for Ybr137wp related to targeting of tail-anchored proteins. PMID:25288638

  4. Delivery of a secreted soluble protein to the vacuole via a membrane anchor

    SciTech Connect

    Barrieu, F.; Chrispeels, M.J.

    1999-08-01

    To further understand how membrane proteins are sorted in the secretory system, the authors devised a strategy that involves the expression of a membrane-anchored yeast invertase in transgenic plants. The construct consisted of a signal peptide followed by the coding region of yeast invertase and the transmembrane domain and cytoplasmic tail of calnexin. The substitution of a lysine near the C terminus of calnexin with a glutamic acid residue ensured progression through the secretory system rather than retention in or return to the endoplasmic reticulum. In the transformed plants, invertase activity and a 70-kD cross-reacting protein were found in the vacuoles. This yeast invertase had plant-specific complex glycans, indicating that transport to the vacuole was mediated by the Golgi apparatus. The microsomal fraction contained a membrane-anchored 90-kD cross-reacting polypeptide, but was devoid of invertase activity. Their results indicate that this membrane-anchored protein proceeds in the secretory system beyond the point where soluble proteins are sorted for secretion, and is detached from its membrane anchor either just before or just after delivery to the vacuole.

  5. Lipid-Sorting Specificity Encoded in K-Ras Membrane Anchor Regulates Signal Output.

    PubMed

    Zhou, Yong; Prakash, Priyanka; Liang, Hong; Cho, Kwang-Jin; Gorfe, Alemayehu A; Hancock, John F

    2017-01-12

    K-Ras is targeted to the plasma membrane by a C-terminal membrane anchor that comprises a farnesyl-cysteine-methyl-ester and a polybasic domain. We used quantitative spatial imaging and atomistic molecular dynamics simulations to examine molecular details of K-Ras plasma membrane binding. We found that the K-Ras anchor binds selected plasma membrane anionic lipids with defined head groups and lipid side chains. The precise amino acid sequence and prenyl group define a combinatorial code for lipid binding that extends beyond simple electrostatics; within this code lysine and arginine residues are non-equivalent and prenyl chain length modifies nascent polybasic domain lipid preferences. The code is realized by distinct dynamic tertiary structures of the anchor on the plasma membrane that govern amino acid side-chain-lipid interactions. An important consequence of this specificity is the ability of such anchors when aggregated to sort subsets of phospholipids into nanoclusters with defined lipid compositions that determine K-Ras signaling output.

  6. Mitochondria-associated ER membranes and Alzheimer Disease

    PubMed Central

    Area-Gomez, Estela; Schon, Eric A.

    2016-01-01

    The series of events underlying the pathogenesis of Alzheimer disease (AD) in unknown. The most widely-accepted hypothesis is called the amyloid cascade, based on the observation that the brains of AD patients contain high levels of extracellular plaques, composed mainly of β-amyloid (Aβ), and intracellular tangles, composed of hyperphosphorylated forms of the microtubule-associated protein tau. However, AD is also characterized by other features, including aberrant cholesterol, phospholipid, and calcium metabolism, and mitochondrial dysfunction, all ostensibly unrelated to plaque and tangle formation. Notably, these “other” aspects of AD pathology are functions related to mitochondria-associated ER membranes (MAM), a subdomain of the endoplasmic reticulum (ER) that is apposed to, and communicates with, mitochondria. Given the potential relationship between MAM and AD, we explored the possibility that perturbed MAM function might play a role in AD pathogenesis. We found that γ-secretase activity, which processes the amyloid precursor protein to generate Aβ, is located predominantly in the MAM, and that ER-mitochondrial apposition and MAM function are increased significantly in cells from AD patients. These observations may help explain not only the aberrant Aβ production, but also many of the “other” biochemical and morphological features of the disease. Based on these, and other, data we propose that AD is fundamentally a disorder of ER-mitochondrial hyperconnectivity. PMID:27235807

  7. Distinct Pathways Mediate the Sorting of Tail-anchored Mitochondrial Outer Membrane Proteins

    USDA-ARS?s Scientific Manuscript database

    Little is known about the biogenesis of tail-anchored (TA) proteins localized to the mitochondrial outer membrane in plant cells. To address this issue, we screened all of the (>500) known and predicted TA proteins in Arabidopsis for those annotated, based on Gene Ontology, to possess mitochondrial...

  8. Distinct Pathways Mediate the Sorting of Tail-anchored Mitochondrial Outer Membrane Proteins

    USDA-ARS?s Scientific Manuscript database

    Little is known about the biogenesis of tail-anchored (TA) proteins localized to the mitochondrial outer membrane in plant cells. To address this issue, we screened all of the (>600) known and predicted TA proteins in Arabidopsis thaliana for those annotated, based on Gene Ontology, to possess mitoc...

  9. Solution structure and topology of the N-terminal membrane anchor domain of a microsomal cytochrome P450: prostaglandin I2 synthase.

    PubMed Central

    Ruan, Ke-He; So, Shui-Ping; Zheng, Weida; Wu, Jiaxin; Li, Dawei; Kung, Jennifer

    2002-01-01

    The three-dimensional structure of a synthetic peptide corresponding to the N-terminal membrane anchor domain (residues 1-25) of prostaglandin I(2) synthase (also known as cytochrome P450 8A1), an eicosanoid-synthesizing microsomal cytochrome P450, has been determined by two-dimensional (1)H NMR spectroscopy in trifluoroethanol and dodecylphosphocholine which mimic the hydrophobic membrane environment. A combination of two-dimensional NMR experiments, including NOESY, TOCSY and double-quantum-filtered COSY, was used to obtain complete (1)H NMR assignments for the peptide. Using the NOE data obtained from the assignments and simulated annealing calculations, the N-terminal membrane domain reveals a bent-shaped structure comprised of an initial helix (residues 3-11), followed by a turn (residues 12-16) and a further atypical helix (residues 17-23). The hydrophobic side chains of the helix and turn segments (residues 1-20) are proposed to interact with the hydrocarbon interior of the phospholipid bilayer of the endoplasmic reticulum (ER) membrane. The hydrophilic side chains of residues 21-25 (Arg-Arg-Arg-Thr-Arg) point away from the hydrophobic residues 1-20 and are expected to be exposed to the aqueous environment on the cytoplasmic side of the ER membrane. The distance between residues 1 and 20 is approx. 20 A (1 A=0.1 nm), less than the thickness of a lipid bilayer. This indicates that the N-terminal membrane anchor domain of prostaglandin I(2) synthase does not penetrate the ER membrane. PMID:12193162

  10. Pearling instabilities of membrane tubes with anchored polymers.

    PubMed

    Tsafrir, I; Sagi, D; Arzi, T; Guedeau-Boudeville, M A; Frette, V; Kandel, D; Stavans, J

    2001-02-05

    We have studied the pearling instability induced on hollow tubular lipid vesicles by hydrophilic polymers with hydrophobic side groups along the backbone. The results show that the polymer concentration is coupled to local membrane curvature. The relaxation of a pearled tube is characterized by two different well-separated time scales, indicating two physical mechanisms. We present a model, which explains the observed phenomena and predicts polymer segregation according to local membrane curvature at late stages.

  11. Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation

    PubMed Central

    Hung, Victoria; Lam, Stephanie S; Udeshi, Namrata D; Svinkina, Tanya; Guzman, Gaelen; Mootha, Vamsi K; Carr, Steven A; Ting, Alice Y

    2017-01-01

    The cytosol-facing membranes of cellular organelles contain proteins that enable signal transduction, regulation of morphology and trafficking, protein import and export, and other specialized processes. Discovery of these proteins by traditional biochemical fractionation can be plagued with contaminants and loss of key components. Using peroxidase-mediated proximity biotinylation, we captured and identified endogenous proteins on the outer mitochondrial membrane (OMM) and endoplasmic reticulum membrane (ERM) of living human fibroblasts. The proteomes of 137 and 634 proteins, respectively, are highly specific and highlight 94 potentially novel mitochondrial or ER proteins. Dataset intersection identified protein candidates potentially localized to mitochondria-ER contact sites. We found that one candidate, the tail-anchored, PDZ-domain-containing OMM protein SYNJ2BP, dramatically increases mitochondrial contacts with rough ER when overexpressed. Immunoprecipitation-mass spectrometry identified ribosome-binding protein 1 (RRBP1) as SYNJ2BP’s ERM binding partner. Our results highlight the power of proximity biotinylation to yield insights into the molecular composition and function of intracellular membranes. DOI: http://dx.doi.org/10.7554/eLife.24463.001 PMID:28441135

  12. Solution structure of the glycosylphosphatidylinositol membrane anchor glycan of Trypanosoma brucei variant surface glycoprotein

    SciTech Connect

    Homans, S.W.; Edge, C.J.; Ferguson, M.A.J.; Dwek, R.A.; Rademacher, T.W. )

    1989-04-04

    The average solution conformation of the glycosylphosphatidylinositol (GPI) membrane anchor of Trypanosoma brucei variant surface glycoprotein (VSG) has been determined by using a combination of two-dimensional {sup 1}H-{sup 1}H NMR methods together with molecular orbital calculations and restrained molecular dynamics simulations. This allows the generation of a model to describe the orientation of the glycan with respect to the membrane. This shows that the glycan exists in an extended configuration along the plane of the membrane and spans an area of 600 {angstrom}{sup 2}, which is similar to the cross-sectional area of a monomeric N-terminal VSG domain. Taken together, these observations suggest a possible space-filling role for the GPI anchor that may maintain the integrity of the VSG coat. The potential importance of the GPI glycan as a chemotherapeutic target is discussed in light of these observations.

  13. Transport efficiency of membrane-anchored kinesin-1 motors depends on motor density and diffusivity.

    PubMed

    Grover, Rahul; Fischer, Janine; Schwarz, Friedrich W; Walter, Wilhelm J; Schwille, Petra; Diez, Stefan

    2016-11-15

    In eukaryotic cells, membranous vesicles and organelles are transported by ensembles of motor proteins. These motors, such as kinesin-1, have been well characterized in vitro as single molecules or as ensembles rigidly attached to nonbiological substrates. However, the collective transport by membrane-anchored motors, that is, motors attached to a fluid lipid bilayer, is poorly understood. Here, we investigate the influence of motors' anchorage to a lipid bilayer on the collective transport characteristics. We reconstituted "membrane-anchored" gliding motility assays using truncated kinesin-1 motors with a streptavidin-binding peptide tag that can attach to streptavidin-loaded, supported lipid bilayers. We found that the diffusing kinesin-1 motors propelled the microtubules in the presence of ATP. Notably, we found the gliding velocity of the microtubules to be strongly dependent on the number of motors and their diffusivity in the lipid bilayer. The microtubule gliding velocity increased with increasing motor density and membrane viscosity, reaching up to the stepping velocity of single motors. This finding is in contrast to conventional gliding motility assays where the density of surface-immobilized kinesin-1 motors does not influence the microtubule velocity over a wide range. We reason that the transport efficiency of membrane-anchored motors is reduced because of their slippage in the lipid bilayer, an effect that we directly observed using single-molecule fluorescence microscopy. Our results illustrate the importance of motor-cargo coupling, which potentially provides cells with an additional means of regulating the efficiency of cargo transport.

  14. Lipid Binding of the Amphipathic Helix Serving as Membrane Anchor of Pestivirus Glycoprotein Erns

    PubMed Central

    Aberle, Daniel; Oetter, Kay-Marcus; Meyers, Gregor

    2015-01-01

    Pestiviruses express a peculiar protein named Erns representing envelope glycoprotein and RNase, which is important for control of the innate immune response and persistent infection. The latter functions are connected with secretion of a certain amount of Erns from the infected cell. Retention/secretion of Erns is most likely controlled by its unusual membrane anchor, a long amphipathic helix attached in plane to the membrane. Here we present results of experiments conducted with a lipid vesicle sedimentation assay able to separate lipid-bound from unbound protein dissolved in the water phase. Using this technique we show that a protein composed of tag sequences and the carboxyterminal 65 residues of Erns binds specifically to membrane vesicles with a clear preference for compositions containing negatively charged lipids. Mutations disturbing the helical folding and/or amphipathic character of the anchor as well as diverse truncations and exchange of amino acids important for intracellular retention of Erns had no or only small effects on the proteins membrane binding. This result contrasts the dramatically increased secretion rates observed for Erns proteins with equivalent mutations within cells. Accordingly, the ratio of secreted versus cell retained Erns is not determined by the lipid affinity of the membrane anchor. PMID:26270479

  15. Lipid Binding of the Amphipathic Helix Serving as Membrane Anchor of Pestivirus Glycoprotein Erns.

    PubMed

    Aberle, Daniel; Oetter, Kay-Marcus; Meyers, Gregor

    2015-01-01

    Pestiviruses express a peculiar protein named Erns representing envelope glycoprotein and RNase, which is important for control of the innate immune response and persistent infection. The latter functions are connected with secretion of a certain amount of Erns from the infected cell. Retention/secretion of Erns is most likely controlled by its unusual membrane anchor, a long amphipathic helix attached in plane to the membrane. Here we present results of experiments conducted with a lipid vesicle sedimentation assay able to separate lipid-bound from unbound protein dissolved in the water phase. Using this technique we show that a protein composed of tag sequences and the carboxyterminal 65 residues of Erns binds specifically to membrane vesicles with a clear preference for compositions containing negatively charged lipids. Mutations disturbing the helical folding and/or amphipathic character of the anchor as well as diverse truncations and exchange of amino acids important for intracellular retention of Erns had no or only small effects on the proteins membrane binding. This result contrasts the dramatically increased secretion rates observed for Erns proteins with equivalent mutations within cells. Accordingly, the ratio of secreted versus cell retained Erns is not determined by the lipid affinity of the membrane anchor.

  16. Quality control of nonstop membrane proteins at the ER membrane and in the cytosol

    PubMed Central

    Arakawa, Shunsuke; Yunoki, Kaori; Izawa, Toshiaki; Tamura, Yasushi; Nishikawa, Shuh-ichi; Endo, Toshiya

    2016-01-01

    Since messenger RNAs without a stop codon (nonstop mRNAs) for organelle-targeted proteins and their translation products (nonstop proteins) generate clogged translocon channels as well as stalled ribosomes, cells have mechanisms to degrade nonstop mRNAs and nonstop proteins and to clear the translocons (e.g. the Sec61 complex) by release of nonstop proteins into the organellar lumen. Here we followed the fate of nonstop endoplasmic reticulum (ER) membrane proteins with different membrane topologies in yeast to evaluate the importance of the Ltn1-dependent cytosolic degradation and the Dom34-dependent release of the nonstop membrane proteins. Ltn1-dependent degradation differed for membrane proteins with different topologies and its failure did not affect ER protein import or cell growth. On the other hand, failure in the Dom34-dependent release of the nascent polypeptide from the ribosome led to the block of the Sec61 channel and resultant inhibition of other protein import into the ER caused cell growth defects. Therefore, the nascent chain release from the translation apparatus is more instrumental in clearance of the clogged ER translocon channel and thus maintenance of normal cellular functions. PMID:27481473

  17. Quality control of nonstop membrane proteins at the ER membrane and in the cytosol.

    PubMed

    Arakawa, Shunsuke; Yunoki, Kaori; Izawa, Toshiaki; Tamura, Yasushi; Nishikawa, Shuh-Ichi; Endo, Toshiya

    2016-08-02

    Since messenger RNAs without a stop codon (nonstop mRNAs) for organelle-targeted proteins and their translation products (nonstop proteins) generate clogged translocon channels as well as stalled ribosomes, cells have mechanisms to degrade nonstop mRNAs and nonstop proteins and to clear the translocons (e.g. the Sec61 complex) by release of nonstop proteins into the organellar lumen. Here we followed the fate of nonstop endoplasmic reticulum (ER) membrane proteins with different membrane topologies in yeast to evaluate the importance of the Ltn1-dependent cytosolic degradation and the Dom34-dependent release of the nonstop membrane proteins. Ltn1-dependent degradation differed for membrane proteins with different topologies and its failure did not affect ER protein import or cell growth. On the other hand, failure in the Dom34-dependent release of the nascent polypeptide from the ribosome led to the block of the Sec61 channel and resultant inhibition of other protein import into the ER caused cell growth defects. Therefore, the nascent chain release from the translation apparatus is more instrumental in clearance of the clogged ER translocon channel and thus maintenance of normal cellular functions.

  18. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane.

    PubMed

    Sevcsik, Eva; Brameshuber, Mario; Fölser, Martin; Weghuber, Julian; Honigmann, Alf; Schütz, Gerhard J

    2015-04-21

    The organization of proteins and lipids in the plasma membrane has been the subject of a long-lasting debate. Membrane rafts of higher lipid chain order were proposed to mediate protein interactions, but have thus far not been directly observed. Here we use protein micropatterning combined with single-molecule tracking to put current models to the test: we rearranged lipid-anchored raft proteins (glycosylphosphatidylinositol(GPI)-anchored-mGFP) directly in the live cell plasma membrane and measured the effect on the local membrane environment. Intriguingly, this treatment does neither nucleate the formation of an ordered membrane phase nor result in any enrichment of nanoscopic-ordered domains within the micropatterned regions. In contrast, we find that immobilized mGFP-GPIs behave as inert obstacles to the diffusion of other membrane constituents without influencing their membrane environment over distances beyond their physical size. Our results indicate that phase partitioning is not a fundamental element of protein organization in the plasma membrane.

  19. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane

    NASA Astrophysics Data System (ADS)

    Sevcsik, Eva; Brameshuber, Mario; Fölser, Martin; Weghuber, Julian; Honigmann, Alf; Schütz, Gerhard J.

    2015-04-01

    The organization of proteins and lipids in the plasma membrane has been the subject of a long-lasting debate. Membrane rafts of higher lipid chain order were proposed to mediate protein interactions, but have thus far not been directly observed. Here we use protein micropatterning combined with single-molecule tracking to put current models to the test: we rearranged lipid-anchored raft proteins (glycosylphosphatidylinositol(GPI)-anchored-mGFP) directly in the live cell plasma membrane and measured the effect on the local membrane environment. Intriguingly, this treatment does neither nucleate the formation of an ordered membrane phase nor result in any enrichment of nanoscopic-ordered domains within the micropatterned regions. In contrast, we find that immobilized mGFP-GPIs behave as inert obstacles to the diffusion of other membrane constituents without influencing their membrane environment over distances beyond their physical size. Our results indicate that phase partitioning is not a fundamental element of protein organization in the plasma membrane.

  20. Crucial role for prion protein membrane anchoring in the neuroinvasion and neural spread of prion infection.

    PubMed

    Klingeborn, Mikael; Race, Brent; Meade-White, Kimberly D; Rosenke, Rebecca; Striebel, James F; Chesebro, Bruce

    2011-02-01

    In nature prion diseases are usually transmitted by extracerebral prion infection, but clinical disease results only after invasion of the central nervous system (CNS). Prion protein (PrP), a host-encoded glycosylphosphatidylinositol (GPI)-anchored membrane glycoprotein, is necessary for prion infection and disease. Here, we investigated the role of the anchoring of PrP on prion neuroinvasion by studying various inoculation routes in mice expressing either anchored or anchorless PrP. In control mice with anchored PrP, intracerebral or sciatic nerve inoculation resulted in rapid CNS neuroinvasion and clinical disease (154 to 156 days), and after tongue, ocular, intravenous, or intraperitoneal inoculation, CNS neuroinvasion was only slightly slower (193 to 231 days). In contrast, in anchorless PrP mice, these routes resulted in slow and infrequent CNS neuroinvasion. Only intracerebral inoculation caused brain PrPres, a protease-resistant isoform of PrP, and disease in both types of mice. Thus, anchored PrP was an essential component for the rapid neural spread and CNS neuroinvasion of prion infection.

  1. Controlled release process to recover heterologous glycosylphosphatidylinositol membrane anchored proteins from CHO cells.

    PubMed

    Kennard, M L; Food, M R; Jefferies, W A; Piret, J M

    1993-08-05

    A semicontinuous process has been developed to recover heterologous proteins at increased concentrations and purities. Proteins attached to mammalian cell membranes by glycosylphosphatidylinositol (GPI) anchors can be selectively released into the supernatant by the enzyme phosphatidylinositol-phospholipase C (PI-PLC). Chinese hamster ovary (CHO) cells, genetically engineered to express the GPI anchored, human melanoma antigen (p97), were used as a model system. These cells were grown in protein containing growth medium. During a brief harvesting phase the medium was replaced by phosphate buffered saline (PBS) containing 10 mU/mL of PI-PLC and the GPI anchored protein was cleaved from the cell surface and recovered in soluble form at up to 30% purity. After harvesting, the cells were returned to growth medium where the protein was re-expressed within 40 h. The growth rate, viability, and protein production of cells, repeatedly harvested over a 44-day period, were not adversely affected. This continuous cyclic harvesting process allowed recovery of a heterologous protein at high purity and concentrations and could be applied to the recovery of other GPI anchored proteins and genetically engineered GPI anchored fusion proteins. (c) 1993 John Wiley & Sons, Inc.

  2. Membrane anchoring of diacylglycerol lactones substituted with rigid hydrophobic acyl domains correlates with biological activities.

    PubMed

    Raifman, Or; Kolusheva, Sofiya; Comin, Maria J; Kedei, Noemi; Lewin, Nancy E; Blumberg, Peter M; Marquez, Victor E; Jelinek, Raz

    2010-01-01

    Synthetic diacylglycerol lactones (DAG lactones) are effective modulators of critical cellular signaling pathways downstream of the lipophilic second messenger diacylglycerol that activate a host of protein kinase C (PKC) isozymes as well as other non-kinase proteins that share with PKC similar C1 membrane-targeting domains. A fundamental determinant of the biological activity of these amphiphilic molecules is the nature of their interactions with cellular membranes. This study characterizes the membrane interactions and bilayer anchoring of a series of DAG lactones in which the hydrophobic moiety is a 'molecular rod', namely a rigid 4-[2-(R-phenyl)ethynyl]benzoate moiety in the acyl position. Use of assays employing chromatic biomimetic vesicles and biophysical techniques revealed that the mode of membrane anchoring of the DAG lactone derivatives was markedly affected by the presence of the hydrophobic diphenyl rod and by the size of the functional unit at the terminus of the rod. Two primary mechanisms of interaction were observed: surface binding of the DAG lactones at the lipid/water interface and deep insertion of the ligands into the alkyl core of the lipid bilayer. These membrane-insertion properties could explain the different patterns of the PKC translocation from the cytosol to membranes that is induced by the molecular-rod DAG lactones. This investigation emphasizes that the side residues of DAG lactones, rather than simply conferring hydrophobicity, profoundly influence membrane interactions, and thus may further contribute to the diversity of biological actions of these synthetic biomimetic ligands.

  3. A novel membrane anchor for FtsZ is linked to cell wall hydrolysis in Caulobacter crescentus.

    PubMed

    Meier, Elizabeth L; Razavi, Shiva; Inoue, Takanari; Goley, Erin D

    2016-07-01

    In most bacteria, the tubulin-like GTPase FtsZ forms an annulus at midcell (the Z-ring) which recruits the division machinery and regulates cell wall remodeling. Although both activities require membrane attachment of FtsZ, few membrane anchors have been characterized. FtsA is considered to be the primary membrane tether for FtsZ in bacteria, however in Caulobacter crescentus, FtsA arrives at midcell after stable Z-ring assembly and early FtsZ-directed cell wall synthesis. We hypothesized that additional proteins tether FtsZ to the membrane and demonstrate that in C. crescentus, FzlC is one such membrane anchor. FzlC associates with membranes directly in vivo and in vitro and recruits FtsZ to membranes in vitro. As for most known membrane anchors, the C-terminal peptide of FtsZ is required for its recruitment to membranes by FzlC in vitro and midcell recruitment of FzlC in cells. In vivo, overproduction of FzlC causes cytokinesis defects whereas deletion of fzlC causes synthetic defects with dipM, ftsE and amiC mutants, implicating FzlC in cell wall hydrolysis. Our characterization of FzlC as a novel membrane anchor for FtsZ expands our understanding of FtsZ regulators and establishes a role for membrane-anchored FtsZ in the regulation of cell wall hydrolysis.

  4. β-Carotene as a membrane antioxidant probed by cholesterol-anchored daidzein.

    PubMed

    Hu, Feng; Jia, Zhi-Yu; Liang, Ran; Wang, Peng; Ai, Xi-Cheng; Zhang, Jian-Ping; Skibsted, Leif H

    2014-09-01

    β-Carotene is found to be more effective as an antioxidant in phosphatidylcholine (PC) liposomes when protecting against hydrophilic radicals compared to lipophilic radicals, as measured by the rate of formation of conjugated dienes. Daidzein alone is without effect, but decreases the antioxidative effect of β-carotene for hydrophilic initiation and increases the effect for lipophilic initiation. The newly synthesized 7-cholesterylglycol daidzein has the opposite effect for β-carotene as antioxidant, with a strong enhancement for hydrophilic initiation and a slight decrease for lipophilic initiation. Redistributing β-carotene to membrane surfaces by cholesterol-anchoring of daidzein enhances protection against aqueous radicals significantly at the expense of protection against lipid-derived radicals. Anchoring of daidzein to cholesterol is concluded to be useful as a mechanistic tool for controlling antioxidant distribution in membranes sensitive to radical damage, as supported by quantum mechanical calculation within the density function theory and further supported by fluorescence probes and fluorescence polarization probes.

  5. Trafficking of glycosylphosphatidylinositol anchored proteins from the endoplasmic reticulum to the cell surface

    PubMed Central

    Muñiz, Manuel; Riezman, Howard

    2016-01-01

    In eukaryotes, many cell surface proteins are attached to the plasma membrane via a glycolipid glycosylphosphatidylinositol (GPI) anchor. GPI-anchored proteins (GPI-APs) receive the GPI anchor as a conserved posttranslational modification in the lumen of the endoplasmic reticulum (ER). After anchor attachment, the GPI anchor is structurally remodeled to function as a transport signal that actively triggers the delivery of GPI-APs from the ER to the plasma membrane, via the Golgi apparatus. The structure and composition of the GPI anchor confer a special mode of interaction with membranes of GPI-APs within the lumen of secretory organelles that lead them to be differentially trafficked from other secretory membrane proteins. In this review, we examine the mechanisms by which GPI-APs are selectively transported through the secretory pathway, with special focus on the recent progress made in their actively regulated export from the ER and the trans-Golgi network. PMID:26450970

  6. Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres

    NASA Astrophysics Data System (ADS)

    Kyoungjin An, Alicia; Lee, Eui-Jong; Guo, Jiaxin; Jeong, Sanghyun; Lee, Jung-Gil; Ghaffour, Noreddine

    2017-01-01

    To ascertain membrane distillation (MD) as an emerging desalination technology to meet the global water challenge, development of membranes with ideal material properties is crucial. Functionalized carbon nanotubes (CNTs) were anchored to nanofibres of electrospun membranes. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer membrane, resulting in well-aligned CNTs inside crystalline fibres with superhydrophobicity. Consideration for the chemical/physical properties of the CNT composite membranes and calculation of their theoretical fluxes revealed the mechanism of MD: CNTs facilitated the repulsive force for Knudsen and molecular diffusions, reduced the boundary-layer effect in viscous flow, and assisted surface diffusion, allowing for fast vapor transport with anti-wetting. This study shows that the role of CNTs and an optimal composite ratio can be used to reduce the gap between theoretical and experimental approaches to desalination.

  7. Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres.

    PubMed

    Kyoungjin An, Alicia; Lee, Eui-Jong; Guo, Jiaxin; Jeong, Sanghyun; Lee, Jung-Gil; Ghaffour, Noreddine

    2017-01-30

    To ascertain membrane distillation (MD) as an emerging desalination technology to meet the global water challenge, development of membranes with ideal material properties is crucial. Functionalized carbon nanotubes (CNTs) were anchored to nanofibres of electrospun membranes. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer membrane, resulting in well-aligned CNTs inside crystalline fibres with superhydrophobicity. Consideration for the chemical/physical properties of the CNT composite membranes and calculation of their theoretical fluxes revealed the mechanism of MD: CNTs facilitated the repulsive force for Knudsen and molecular diffusions, reduced the boundary-layer effect in viscous flow, and assisted surface diffusion, allowing for fast vapor transport with anti-wetting. This study shows that the role of CNTs and an optimal composite ratio can be used to reduce the gap between theoretical and experimental approaches to desalination.

  8. Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres

    PubMed Central

    Kyoungjin An, Alicia; Lee, Eui-Jong; Guo, Jiaxin; Jeong, Sanghyun; Lee, Jung-Gil; Ghaffour, Noreddine

    2017-01-01

    To ascertain membrane distillation (MD) as an emerging desalination technology to meet the global water challenge, development of membranes with ideal material properties is crucial. Functionalized carbon nanotubes (CNTs) were anchored to nanofibres of electrospun membranes. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer membrane, resulting in well-aligned CNTs inside crystalline fibres with superhydrophobicity. Consideration for the chemical/physical properties of the CNT composite membranes and calculation of their theoretical fluxes revealed the mechanism of MD: CNTs facilitated the repulsive force for Knudsen and molecular diffusions, reduced the boundary-layer effect in viscous flow, and assisted surface diffusion, allowing for fast vapor transport with anti-wetting. This study shows that the role of CNTs and an optimal composite ratio can be used to reduce the gap between theoretical and experimental approaches to desalination. PMID:28134288

  9. Cell Labeling via Membrane-Anchored Lipophilic MR Contrast Agents

    PubMed Central

    2015-01-01

    Cell tracking in vivo with MR imaging requires the development of contrast agents with increased sensitivity that effectively label and are retained by cells. Most clinically approved Gd(III)-based contrast agents require high incubation concentrations and prolonged incubation times for cellular internalization. Strategies to increase contrast agent permeability have included conjugating Gd(III) complexes to cell penetrating peptides, nanoparticles, and small molecules which have greatly improved cell labeling but have not resulted in improved cellular retention. To overcome these challenges, we have synthesized a series of lipophilic Gd(III)-based MR contrast agents that label cell membranes in vitro. Two of the agents were synthesized with a multiplexing strategy to contain three Gd(III) chelates (1 and 2) while the third contains a single Gd(III) chelate (3). These new agents exhibit significantly enhanced labeling and retention in HeLa and MDA-MB-231-mcherry cells compared to agents that are internalized by cells (4 and Prohance). PMID:24787689

  10. The Membrane-anchoring Domain of Epidermal Growth Factor Receptor Ligands Dictates Their Ability to Operate in Juxtacrine Mode

    SciTech Connect

    Dong, Jianying; Opresko, Lee; Chrisler, William B.; Orr, Galya; Quesenberry, Ryan D.; Lauffenburger, Douglas A.; Wiley, H S.

    2005-06-01

    All ligands of the epidermal growth factor receptor (EGFR) are synthesized as membrane-anchored precursors. Previous work has suggested that some ligands, such as EGF, must be proteolytically released to be active, whereas others, such as heparin binding EGF-like growth factor (HB-EGF) can function while still anchored to the membrane (i.e., juxtacrine signaling). To explore the structural basis for these differences in ligand activity, we engineered a series of membrane-anchored ligands in which the core, receptor-binding domain of EGF was combined with different domains of both EGF and HB-EGF. We found that ligands having the N-terminal extension of EGF could not bind to the EGFR, even when released from the membrane. Ligands lacking an N-terminal extension, but possessing the membrane-anchoring domain of EGF still required proteolytic release for activity, whereas ligands with the membrane anchoring domain of HB-EGF could elicit full biological activity while still membrane anchored. Ligands containing the HB-EGF membrane anchor, but lacking an N-terminal extension, activated EGFR during their transit through the Golgi apparatus . However, cell-mixing experiments and fluorescence resonance energy transfer (FRET) studies showed that juxtacrine signaling typically occurred in trans at the cell surface, at points of cell-cell contact. Our data suggest that the membrane-anchoring domain of ligands selectively controls their ability to participate in juxtacrine signaling and thus, only a subclass of EGFR ligands can act in a juxtacrine mode.

  11. EFFECTS OF MEMBRANE CHOLESTEROL DEPLETION AND GPI-ANCHORED PROTEIN REDUCTION ON OSTEOBLASTIC MECHANOTRANSDUCTION

    PubMed Central

    Xing, Yanghui; Gu, Yan; Xu, Li-Chong; Siedlecki, Christopher A.; Donahue, Henry J.; You, Jun

    2010-01-01

    We previously demonstrated that oscillatory fluid flow activates MC3T3-E1 osteoblastic cell calcium signaling pathways via a mechanism involving ATP releases and P2Y2 puringeric receptors. However, the molecular mechanisms by which fluid flow initiates cellular responses are still unclear. Accumulating evidence suggests that lipid rafts, one of the important membrane structural components, may play an important role in transducing extracellular fluid shear stress to intracellular responses. Due to the limitations of current techniques, there is no direct approach to study the role of lipid rafts in transmitting fluid shear stress. In this study, we targeted two important membrane components associated with lipid rafts, cholesterol and glycosylphosphatidylinositol-anchored proteins, to disrupt the integrity of cell membrane structures. We first demonstrated that membrane cholesterol depletion with the treatment of methyl-β-cyclodextrin inhibits oscillatory fluid flow induced intracellular calcium mobilization and ERK1/2 phosphorylation in MC3T3-E1 osteoblastic cells. Secondly, we used a novel approach to decrease the levels of glycosylphosphatidylinositol-anchored proteins on cell membranes by overexpressing glycosylphosphatidylinositol specific phospholipase D in MC3T3-E1 osteoblastic cells. This resulted in significant inhibition of intracellular calcium mobilization and ERK1/2 phosphorylation in response to oscillatory fluid flow. Finally, we demonstrated that cholesterol depletion inhibited oscillatory fluid flow induced ATP releases, which were responsible for the activation of calcium signaling pathways in MC3T3-E1 osteoblastic cells. Our findings suggest that cholesterol and GPI-anchored proteins, two membrane structural components related to lipid rafts, may play an important role in osteoblastic cell mechanotransduction. PMID:21660958

  12. Cell membrane-anchored biosensors for real-time monitoring of the cellular microenvironment.

    PubMed

    Qiu, Liping; Zhang, Tao; Jiang, Jianhui; Wu, Cuichen; Zhu, Guizhi; You, Mingxu; Chen, Xigao; Zhang, Liqin; Cui, Cheng; Yu, Ruqin; Tan, Weihong

    2014-09-24

    Cell membrane-anchored biochemical sensors that allow real-time monitoring of the interactions of cells with their microenvironment would be powerful tools for studying the mechanisms underlying various biological processes, such as cell metabolism and signaling. Despite the significance of these techniques, unfortunately, their development has lagged far behind due to the lack of a desirable membrane engineering method. Here, we propose a simple, efficient, biocompatible, and universal strategy for one-step self-construction of cell-surface sensors using diacyllipid-DNA conjugates as the building and sensing elements. The sensors exploit the high membrane-insertion capacity of a diacyllipid tail and good sensing performance of the DNA probes. Based on this strategy, we have engineered specific DNAzymes on the cell membrane for metal ion assay in the extracellular microspace. The immobilized DNAzyme showed excellent performance for reporting and semiquantifying both exogenous and cell-extruded target metal ions in real time. This membrane-anchored sensor could also be used for multiple target detection by having different DNA probes inserted, providing potentially useful tools for versatile applications in cell biology, biomedical research, drug discovery, and tissue engineering.

  13. Cell Membrane-Anchored Biosensors for Real-Time Monitoring of the Cellular Microenvironment

    PubMed Central

    2015-01-01

    Cell membrane-anchored biochemical sensors that allow real-time monitoring of the interactions of cells with their microenvironment would be powerful tools for studying the mechanisms underlying various biological processes, such as cell metabolism and signaling. Despite the significance of these techniques, unfortunately, their development has lagged far behind due to the lack of a desirable membrane engineering method. Here, we propose a simple, efficient, biocompatible, and universal strategy for one-step self-construction of cell-surface sensors using diacyllipid-DNA conjugates as the building and sensing elements. The sensors exploit the high membrane-insertion capacity of a diacyllipid tail and good sensing performance of the DNA probes. Based on this strategy, we have engineered specific DNAzymes on the cell membrane for metal ion assay in the extracellular microspace. The immobilized DNAzyme showed excellent performance for reporting and semiquantifying both exogenous and cell-extruded target metal ions in real time. This membrane-anchored sensor could also be used for multiple target detection by having different DNA probes inserted, providing potentially useful tools for versatile applications in cell biology, biomedical research, drug discovery, and tissue engineering. PMID:25188419

  14. Membrane-Anchoring, Comb-Like Pseudopeptides for Efficient, pH-Mediated Membrane Destabilization and Intracellular Delivery.

    PubMed

    Chen, Siyuan; Wang, Shiqi; Kopytynski, Michal; Bachelet, Marie; Chen, Rongjun

    2017-03-08

    Endosomal release has been identified as a rate-limiting step for intracellular delivery of therapeutic agents, in particular macromolecular drugs. Herein, we report a series of synthetic pH-responsive, membrane-anchoring polymers exhibiting dramatic endosomolytic activity for efficient intracellular delivery. The comb-like pseudopeptidic polymers were synthesized by grafting different amounts of decylamine (NDA), which act as hydrophobic membrane anchors, onto the pendant carboxylic acid groups of a pseudopeptide, poly(l-lysine iso-phthalamide). The effects of the hydrophobic relatively long alkyl side chains on aqueous solution properties, cell membrane destabilization activity, and in-vitro cytotoxicity were investigated. The optimal polymer containing 18 mol % NDA exhibited limited hemolysis at pH 7.4 but induced nearly complete membrane destabilization at endosomal pH within only 20 min. The mechanistic investigation of membrane destabilization suggests the polymer-mediated pore formation. It has been demonstrated that the polymer with hydrophobic side chains displayed a considerable endosomolytic ability to release endocytosed materials into the cytoplasm of various cell lines, which is of critical importance for intracellular drug delivery applications.

  15. Binding constants of membrane-anchored receptors and ligands: A general theory corroborated by Monte Carlo simulations.

    PubMed

    Xu, Guang-Kui; Hu, Jinglei; Lipowsky, Reinhard; Weikl, Thomas R

    2015-12-28

    Adhesion processes of biological membranes that enclose cells and cellular organelles are essential for immune responses, tissue formation, and signaling. These processes depend sensitively on the binding constant K2D of the membrane-anchored receptor and ligand proteins that mediate adhesion, which is difficult to measure in the "two-dimensional" (2D) membrane environment of the proteins. An important problem therefore is to relate K2D to the binding constant K3D of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in three dimensions (3D). In this article, we present a general theory for the binding constants K2D and K3D of rather stiff proteins whose main degrees of freedom are translation and rotation, along membranes and around anchor points "in 2D," or unconstrained "in 3D." The theory generalizes previous results by describing how K2D depends both on the average separation and thermal nanoscale roughness of the apposing membranes, and on the length and anchoring flexibility of the receptors and ligands. Our theoretical results for the ratio K2D/K3D of the binding constants agree with detailed results from Monte Carlo simulations without any data fitting, which indicates that the theory captures the essential features of the "dimensionality reduction" due to membrane anchoring. In our Monte Carlo simulations, we consider a novel coarse-grained model of biomembrane adhesion in which the membranes are represented as discretized elastic surfaces, and the receptors and ligands as anchored molecules that diffuse continuously along the membranes and rotate at their anchor points.

  16. TRAM1 is involved in disposal of ER membrane degradation substrates.

    PubMed

    Ng, Caroline L; Oresic, Kristina; Tortorella, Domenico

    2010-08-01

    ER quality control consists of monitoring protein folding and targeting misfolded proteins for proteasomal degradation. ER stress results in an unfolded protein response (UPR) that selectively upregulates proteins involved in protein degradation, ER expansion, and protein folding. Given the efficiency in which misfolded proteins are degraded, there likely exist cellular factors that enhance the export of proteins across the ER membrane. We have reported that translocating chain-associated membrane protein 1 (TRAM1), an ER-resident membrane protein, participates in HCMV US2- and US11-mediated dislocation of MHC class I heavy chains (Oresic, K., Ng, C.L., and Tortorella, D. 2009). Consistent with the hypothesis that TRAM1 is involved in the disposal of misfolded ER proteins, cells lacking TRAM1 experienced a heightened UPR upon acute ER stress, as evidenced by increased activation of unfolded protein response elements (UPRE) and elevated levels of NF-kappaB activity. We have also extended the involvement of TRAM1 in the selective degradation of misfolded ER membrane proteins Cln6(M241T) and US2, but not the soluble degradation substrate alpha(1)-antitrypsin null(HK). These degradation model systems support the paradigm that TRAM1 is a selective factor that can enhance the dislocation of ER membrane proteins. Copyright 2010 Elsevier Inc. All rights reserved.

  17. High lateral mobility of endogenous and transfected alkaline phosphatase: a phosphatidylinositol-anchored membrane protein

    PubMed Central

    1987-01-01

    The lateral mobility of alkaline phosphatase (AP) in the plasma membrane of osteoblastic and nonosteoblastic cells was estimated by fluorescence redistribution after photobleaching in embryonic and in tumor cells, in cells that express AP naturally, and in cells transfected with an expression vector containing AP cDNA. The diffusion coefficient (D) and the mobile fraction, estimated from the percent recovery (%R), were found to be cell-type dependent ranging from (0.58 +/- 0.16) X 10(-9) cm2s-1 and 73.3 +/- 10.5 in rat osteosarcoma cells ROS 17/2.8 to (1.77 +/- 0.51) X 10(-9) cm2s-1 and 82.8 +/- 2.5 in rat osteosarcoma cells UMR106. Similar values of D greater than or equal to 10(-9) cm2s-1 with approximately 80% recovery were also found in fetal rat calvaria cells, transfected skin fibroblasts, and transfected AP- negative osteosarcoma cells ROS 25/1. These values of D are many times greater than "typical" values for membrane proteins, coming close to those of membrane lipid in fetal rat calvaria and ROS 17/2.8 cells (D = [4(-5)] X 10(-9) cm2s-1 with 75-80% recovery), estimated with the hexadecanoyl aminofluorescein probe. In all cell types, phosphatidylinositol (PI)-specific phospholipase C released 60-90% of native and transfection-expressed AP, demonstrating that, as in other tissue types, AP in these cells is anchored in the membrane via a linkage to PI. These results indicate that the transfected cells used in this study possess the machinery for AP insertion into the membrane and its binding to PI. The fast AP mobility appears to be an intrinsic property of the way the protein is anchored in the membrane, a conclusion with general implications for the understanding of the slow diffusion of other membrane proteins. PMID:2889741

  18. Membrane anchoring of diacylglycerol-lactones substituted with rigid hydrophobic acyl domains correlates with biological activities

    PubMed Central

    Raifman, Or; Kolusheva, Sofiya; Comin, Maria J.; Kedei, Noemi; Lewin, Nancy E.; Blumberg, Peter M.; Marquez, Victor E.; Jelinek, Raz

    2009-01-01

    Summary Synthetic diacylglycerol lactones (DAG-lactones) are effective modulators of critical cellular signaling pathways, downstream of the lipophilic second messenger diacylglycerol, that activate a host of protein kinase C (PKC) isozymes as well as other non-kinase proteins that share with PKC similar C1 membrane-targeting domains. A fundamental determinant of the biological activity of these amphiphilic molecules is the nature of their interactions with cellular membranes. This study characterizes the membrane interactions and bilayer anchoring of a series of DAG-lactones in which the hydrophobic moiety is a “molecular rod”, namely a rigid 4-[2-(R-phenyl)ethynyl]benzoate moiety in the acyl position. Application of assays employing chromatic biomimetic vesicles and biophysical techniques reveals that the mode of membrane anchoring of the DAG-lactone derivatives was markedly affected by the presence of the hydrophobic diphenyl rod and by the size of the functional unit displayed at the terminus of the rod. Two primary mechanisms of interaction were observed: surface binding of the DAG-lactones at the lipid/water interface and deep insertion of the ligands into the alkyl core of the lipid bilayer. These membrane-insertion properties could explain the different patterns of PKC translocation from cytosol to membranes induced by the molecular-rod DAG-lactones. This investigation emphasizes that the side-residues of DAG-lactones, rather than simply conferring hydrophobicity, profoundly influence membrane interactions and in that fashion may further contribute to the diversity of biological actions of these synthetic biomimetic ligands. PMID:19961537

  19. An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER.

    PubMed

    Markgraf, Daniel F; Klemm, Robin W; Junker, Mirco; Hannibal-Bach, Hans K; Ejsing, Christer S; Rapoport, Tom A

    2014-01-16

    Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Segregation of negatively charged phospholipids by the polycationic and farnesylated membrane anchor of Kras.

    PubMed

    Janosi, Lorant; Gorfe, Alemayehu A

    2010-12-01

    The Kras protein, a member of the Ras family of bio-switches that are frequently mutated in cancer and developmental disorders, becomes functional when anchored to the inner surface of the plasma membrane. It is well known that membrane attachment involves the farnesylated and poylcationic C-terminus of the protein. However, little is known about the structure of the complex and the specific protein-lipid interactions that are responsible for the binding. On the basis of data from extensive (>0.55 μs) molecular dynamics simulations of multiple Kras anchors in bilayers of POPC/POPG lipids (4:1 ratio), we show that, as expected, Kras is tethered to the bilayer surface by specific lysine-POPG salt bridges and by nonspecific farnesyl-phospholipid van der Waals interactions. Unexpectedly, however, only the C-terminal five of the eight Kras Lys side chains were found to directly interact with the bilayer, with the N-terminal ones staying in water. Furthermore, the positively charged Kras anchors pull the negatively charged POPG lipids together, leading to the clustering of the POPG lipids around the proteins. This selective Kras-POPG interaction is directly related to the specific geometry of the backbone, which exists in two major conformational states: 1), a stable native-like ensemble of structures characterized by an extended geometry with a pseudohelical turn; and 2), less stable nonnative ensembles of conformers characterized by severely bent geometries. Finally, although the interface-bound anchor has little effect on the overall structure of the bilayer, it induces local thinning within a persistence length of ∼12 Å. Our results thus go beyond documenting how Kras attaches to a mixed bilayer of charged and neutral lipids; they highlight a fascinating process of protein-induced lipid sorting coupled with the (re)shaping of a surface-bound protein by the host lipids. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Solution structure of a membrane-anchored ubiquitin-fold (MUB) protein from Homo sapiens.

    PubMed

    de la Cruz, Norberto B; Peterson, Francis C; Lytle, Betsy L; Volkman, Brian F

    2007-07-01

    The protein Bc059385, whose solution structure is reported here, is the human representative of a recently identified family of membrane-anchored ubiquitin-fold (MUB) proteins. Analysis of their similarity to ubiquitin indicates that homologous amino acid residues in MUBs form a hydrophobic surface very similar to the recognition patch surrounding Ile-44 in ubiquitin. This suggests that MUBs may interact with proteins containing an alpha-helical motif similar to those of some ubiquitin binding domains. A disordered loop common to MUBs may also provide a second protein interaction site. From the available data, it is probable that this protein is prenylated and associated with the membrane. With <20% identity to ubiquitin, the MUB family further expands the sequence space that maps to the beta-grasp fold, and adds membrane localization to its list of functional roles.

  2. Tethered bilayer lipid membranes on mixed self-assembled monolayers of a novel anchoring thiol: impact of the anchoring thiol density on bilayer formation.

    PubMed

    Basit, Hajra; Van der Heyden, Angéline; Gondran, Chantal; Nysten, Bernard; Dumy, Pascal; Labbé, Pierre

    2011-12-06

    Tethered bilayer lipid membranes (tBLMs) are designed on mixed self-assembled monolayers (SAMs) of a novel synthetic anchoring thiol, 2,3-di-o-palmitoylglycerol-1-tetraethylene glycol mercaptopropanoic acid ester (TEG-DP), and a new short dilution thiol molecule, tetraethylene glycol mercaptopropanoic acid ester (TEG). tBLM formation was accomplished by self-directed fusion of small unilamellar vesicles of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. The influence of the dilution of the anchoring thiol molecule in the SAM on the vesicle fusion process and on the properties of the resulting tBLMs is studied. It is observed by quartz crystal microbalance that vesicle fusion is a one-step process for a pure TEG-DP SAM as well as for mixed SAMs containing a high concentration of the anchoring thiol. However, upon dilution of the anchoring thiol to moderate concentrations, this process is decelerated and possibly follows a pathway different from that observed on a pure TEG-DP SAM. Electrochemical impedance spectroscopy is used to qualitatively correlate the composition of the SAM to the electrical properties of the tBLM. In this paper we also delineate the necessity of a critical concentration of this anchoring TEG-DP thiol as a requisite for inducing the fusion of vesicles to form a tBLM. © 2011 American Chemical Society

  3. SMN affects membrane remodelling and anchoring of the protein synthesis machinery.

    PubMed

    Gabanella, Francesca; Pisani, Cinzia; Borreca, Antonella; Farioli-Vecchioli, Stefano; Ciotti, Maria Teresa; Ingegnere, Tiziano; Onori, Annalisa; Ammassari-Teule, Martine; Corbi, Nicoletta; Canu, Nadia; Monaco, Lucia; Passananti, Claudio; Di Certo, Maria Grazia

    2016-02-15

    Disconnection between membrane signalling and actin networks can have catastrophic effects depending on cell size and polarity. The survival motor neuron (SMN) protein is ubiquitously involved in assembly of spliceosomal small nuclear ribonucleoprotein particles. Other SMN functions could, however, affect cellular activities driving asymmetrical cell surface expansions. Genes able to mitigate SMN deficiency operate within pathways in which SMN can act, such as mRNA translation, actin network and endocytosis. Here, we found that SMN accumulates at membrane protrusions during the dynamic rearrangement of the actin filaments. In addition to localization data, we show that SMN interacts with caveolin-1, which mediates anchoring of translation machinery components. Importantly, SMN deficiency depletes the plasma membrane of ribosomes, and this correlates with the failure of fibroblasts to extend membrane protrusions. These findings strongly support a relationship between SMN and membrane dynamics. We propose that SMN could assembly translational platforms associated with and governed by the plasma membrane. This activity could be crucial in cells that have an exacerbated interdependence of membrane remodelling and local protein synthesis. © 2016. Published by The Company of Biologists Ltd.

  4. Membrane-anchoring stabilizes and favors secretion of New Delhi Metallo-β-lactamase

    PubMed Central

    González, Lisandro J.; Bahr, Guillermo; Nakashige, Toshiki G.; Nolan, Elizabeth M.; Bonomo, Robert A.; Vila, Alejandro J.

    2016-01-01

    Carbapenems, “last resort” β-lactam antibiotics, are inactivated by zinc-dependent metallo-β-lactamases (MBLs). The host innate immune response withholds nutrient metal ions from microbial pathogens by releasing metal-chelating proteins such as calprotectin. We show that metal sequestration is detrimental for the accumulation of MBLs in the bacterial periplasm, since these enzymes are readily degraded in their non-metallated form. However, the New Delhi Metallo-β-lactamase (NDM-1) is able to persist under conditions of metal depletion. NDM-1 is a lipidated protein anchored to the outer membrane of Gram-negative bacteria. Membrane-anchoring contributes to the unusual stability of NDM-1 and favors secretion of this enzyme in outer membrane vesicles (OMVs). OMVs containing NDM-1 can protect nearby populations of bacteria from otherwise lethal antibiotic levels, and OMVs from clinical pathogens expressing NDM-1 can carry this MBL and the blaNDM gene. We show that protein export into OMVs can be targeted, providing possibilities of new antibacterial therapeutic strategies. PMID:27182662

  5. Tension-compression asymmetry in the binding affinity of membrane-anchored receptors and ligands

    NASA Astrophysics Data System (ADS)

    Xu, Guang-Kui; Liu, Zishun; Feng, Xi-Qiao; Gao, Huajian

    2016-03-01

    Cell adhesion plays a crucial role in many biological processes of cells, e.g., immune responses, tissue morphogenesis, and stem cell differentiation. An essential problem in the molecular mechanism of cell adhesion is to characterize the binding affinity of membrane-anchored receptors and ligands under different physiological conditions. In this paper, a theoretical model is presented to study the binding affinity between a large number of anchored receptors and ligands under both tensile and compressive stresses, and corroborated by demonstrating excellent agreement with Monte Carlo simulations. It is shown that the binding affinity becomes lower as the magnitude of the applied stress increases, and drops to zero at a critical tensile or compressive stress. Interestingly, the critical compressive stress is found to be substantially smaller than the critical tensile stress for relatively long and flexible receptor-ligand complexes. This counterintuitive finding is explained by using the Euler instability theory of slender columns under compression. The tension-compression asymmetry in the binding affinity of anchored receptors and ligands depends subtly on the competition between the breaking and instability of their complexes. This study helps in understanding the role of mechanical forces in cell adhesion mediated by specific binding molecules.

  6. Two Membrane-Anchored Aspartic Proteases Contribute to Pollen and Ovule Development1[OPEN

    PubMed Central

    Gao, Hui; Zhang, Yinghui; Wang, Wanlei; Zhao, Keke; Liu, Chunmei; Bai, Lin; Li, Rui

    2017-01-01

    Aspartic proteases are a class of proteolytic enzymes with conserved aspartate residues, which are implicated in protein processing, maturation, and degradation. Compared with yeast and animals, plants possess a larger aspartic protease family. However, little is known about most of these enzymes. Here, we characterized two Arabidopsis (Arabidopsis thaliana) putative glycosylphosphatidylinositol (GPI)-anchored aspartic protease genes, A36 and A39, which are highly expressed in pollen and pollen tubes. a36 and a36 a39 mutants display significantly reduced pollen activity. Transmission electron microscopy and terminal-deoxynucleotidyl transferase-mediated nick end labeling assays further revealed that the unviable pollen in a36 a39 may undergo unanticipated apoptosis-like programmed cell death. The degeneration of female gametes also occurred in a36 a39. Aniline Blue staining, scanning electron microscopy, and semi in vitro guidance assays indicated that the micropylar guidance of pollen tubes is significantly compromised in a36 a39. A36 and A39 that were fused with green fluorescent protein are localized to the plasma membrane and display punctate cytosolic localization and colocalize with the GPI-anchored protein COBRA-LIKE10. Furthermore, in a36 a39, the abundance of highly methylesterified homogalacturonans and xyloglucans was increased significantly in the apical pollen tube wall. These results indicate that A36 and A39, two putative GPI-anchored aspartic proteases, play important roles in plant reproduction in Arabidopsis. PMID:27872247

  7. Tension-compression asymmetry in the binding affinity of membrane-anchored receptors and ligands.

    PubMed

    Xu, Guang-Kui; Liu, Zishun; Feng, Xi-Qiao; Gao, Huajian

    2016-03-01

    Cell adhesion plays a crucial role in many biological processes of cells, e.g., immune responses, tissue morphogenesis, and stem cell differentiation. An essential problem in the molecular mechanism of cell adhesion is to characterize the binding affinity of membrane-anchored receptors and ligands under different physiological conditions. In this paper, a theoretical model is presented to study the binding affinity between a large number of anchored receptors and ligands under both tensile and compressive stresses, and corroborated by demonstrating excellent agreement with Monte Carlo simulations. It is shown that the binding affinity becomes lower as the magnitude of the applied stress increases, and drops to zero at a critical tensile or compressive stress. Interestingly, the critical compressive stress is found to be substantially smaller than the critical tensile stress for relatively long and flexible receptor-ligand complexes. This counterintuitive finding is explained by using the Euler instability theory of slender columns under compression. The tension-compression asymmetry in the binding affinity of anchored receptors and ligands depends subtly on the competition between the breaking and instability of their complexes. This study helps in understanding the role of mechanical forces in cell adhesion mediated by specific binding molecules.

  8. New insights into the targeting of a sub-set of tail-anchored proteins to the outer mitochondrial membrane

    USDA-ARS?s Scientific Manuscript database

    Tail-anchored (TA) proteins are a unique class of functionally diverse membrane proteins that are defined by their single C-terminal membrane-spanning domain and their ability to insert post-translationally into specific organelles with an Nout-Cin orientation. The molecular mechanisms by which TA p...

  9. Transport efficiency of membrane-anchored kinesin-1 motors depends on motor density and diffusivity

    PubMed Central

    Grover, Rahul; Fischer, Janine; Schwarz, Friedrich W.; Walter, Wilhelm J.; Schwille, Petra; Diez, Stefan

    2016-01-01

    In eukaryotic cells, membranous vesicles and organelles are transported by ensembles of motor proteins. These motors, such as kinesin-1, have been well characterized in vitro as single molecules or as ensembles rigidly attached to nonbiological substrates. However, the collective transport by membrane-anchored motors, that is, motors attached to a fluid lipid bilayer, is poorly understood. Here, we investigate the influence of motors’ anchorage to a lipid bilayer on the collective transport characteristics. We reconstituted “membrane-anchored” gliding motility assays using truncated kinesin-1 motors with a streptavidin-binding peptide tag that can attach to streptavidin-loaded, supported lipid bilayers. We found that the diffusing kinesin-1 motors propelled the microtubules in the presence of ATP. Notably, we found the gliding velocity of the microtubules to be strongly dependent on the number of motors and their diffusivity in the lipid bilayer. The microtubule gliding velocity increased with increasing motor density and membrane viscosity, reaching up to the stepping velocity of single motors. This finding is in contrast to conventional gliding motility assays where the density of surface-immobilized kinesin-1 motors does not influence the microtubule velocity over a wide range. We reason that the transport efficiency of membrane-anchored motors is reduced because of their slippage in the lipid bilayer, an effect that we directly observed using single-molecule fluorescence microscopy. Our results illustrate the importance of motor–cargo coupling, which potentially provides cells with an additional means of regulating the efficiency of cargo transport. PMID:27803325

  10. Multiple selection filters ensure accurate tail-anchored membrane protein targeting

    PubMed Central

    Rao, Meera; Okreglak, Voytek; Chio, Un Seng; Cho, Hyunju; Walter, Peter; Shan, Shu-ou

    2016-01-01

    Accurate protein localization is crucial to generate and maintain organization in all cells. Achieving accuracy is challenging, as the molecular signals that dictate a protein’s cellular destination are often promiscuous. A salient example is the targeting of an essential class of tail-anchored (TA) proteins, whose sole defining feature is a transmembrane domain near their C-terminus. Here we show that the Guided Entry of Tail-anchored protein (GET) pathway selects TA proteins destined to the endoplasmic reticulum (ER) utilizing distinct molecular steps, including differential binding by the co-chaperone Sgt2 and kinetic proofreading after ATP hydrolysis by the targeting factor Get3. Further, the different steps select for distinct physicochemical features of the TA substrate. The use of multiple selection filters may be general to protein biogenesis pathways that must distinguish correct and incorrect substrates based on minor differences. DOI: http://dx.doi.org/10.7554/eLife.21301.001 PMID:27925580

  11. Single-mode and single-polarization photonics with anchored-membrane waveguides.

    PubMed

    Chiles, Jeff; Fathpour, Sasan

    2016-08-22

    An integrated photonic platform with "anchored-membrane" structures, the T-Guide, is proposed, numerically investigated, fabricated and characterized. These compact air-clad structures have high index contrast and are much more stable than prior membrane-type structures. Their semi-infinite geometry enables single-mode and single-polarization (SMSP) operation over unprecedented bandwidths. Modal simulations quantify this behavior, showing that an SMSP window of 2.75 octaves (1.2-8.1 μm) is feasible for silicon T-Guides, spanning almost the entire transparency range of silicon. Dispersion engineering for T-Guides yields broad regions of anomalous group velocity dispersion, rendering them a promising platform for nonlinear applications such as wideband frequency conversion. Cut-back measurements of fabricated silicon T-guides at λ = 3.64 μm show low propagation losses of 1.75 ± 0.3 dB/cm.

  12. Anchoring PEG-oleate to cell membranes stimulates reactive oxygen species production.

    PubMed

    Sakai, Shinji; Nomura, Koujiro; Mochizuki, Kei; Taya, Masahito

    2016-11-01

    Polyethylene glycol (PEG) derivatives possessing oleyl and reactive groups for conjugating functional substrates, such as proteins and quantum dots, are useful materials for cell-surface engineering and cell immobilization onto substrates. The reagent is known as a biocompatible anchor for cell membranes (BAM). Here, BAM-anchoring on cell membranes is reported to stimulate reactive oxygen species (ROS) production in those cells. Significant increases in ROS production and release to the surrounding environment were detected in mouse fibroblast cell line 10T1/2 when soaked in a solution containing BAM conjugated with 1/10mol/mol bovine serum albumin at 1.5μM-protein. ROS production stimulation was confirmed to be independent of the protein crosslinked with BAM and of cell type. Similar stimulation was detected for BAMs conjugated with ovalbumin and casein, in human hepatoma cell line HepG2, and human umbilical vein endothelial cells. Considering the effects of ROS on a variety of cellular processes, these results demonstrated the necessity for focusing attention on the effects of generated and released ROS on the behaviors of cells in the studies applying BAM to cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Loss of Dfg5 glycosylphosphatidylinositol-anchored membrane protein confers enhanced heat tolerance in Saccharomyces cerevisiae.

    PubMed

    Nasution, Olviyani; Lee, Jaok; Srinivasa, Kavitha; Choi, In-Geol; Lee, Young Mi; Kim, Eunjung; Choi, Wonja; Kim, Wankee

    2015-08-01

    The protein product of Saccharomyces cerevisiae DFG5 gene is a glycosylphosphatidylinositol (GPI)-anchored plasma membrane protein and a putative glycosidase/glycosyltransferase that links other GPI-anchored proteins to β-glucans in the cell wall. Upon exposure to heat (41°C), DFG5 deletion mutant dfg5Δ displayed significantly enhanced heat tolerance as well as lowered level of reactive oxygen species and decreased membrane permeability compared with those in the control (BY4741). Comparative transcriptome profiles of BY4741 and dfg5Δ revealed that 38 and 23 genes were up- and down-regulated in dfg5Δ respectively. Of the 23 down-regulated genes, 11 of 13 viable deletion mutants were identified to be tolerant to heat, suggesting that the down-regulation of those genes might have contributed to the enhanced heat tolerance in dfg5Δ. Deletion of DFG5 caused slight activation of mitogen-activated protein kinases Hog1 in the high-osmolarity glycerol pathway and Slt2 in the cell wall integrity pathway. Therefore, a model is proposed on the signal transduction pathways associated with deletion of DFG5 upon heat stress.

  14. V H+-ATPase along the yeast secretory pathway: energization of the ER and Golgi membranes.

    PubMed

    Samarão, Solange S; Teodoro, Carlos E S; Silva, Flavia E; Ribeiro, Camila C; Granato, Thais M; Bernardes, Natalia R; Retamal, Cláudio A; Façanha, Arnoldo R; Okorokova-Façanha, Anna L; Okorokov, Lev A

    2009-02-01

    H+ transport driven by V H+-ATPase was found in membrane fractions enriched with ER/PM and Golgi/Golgi-like membranes of Saccharomyces cerevisiae efficiently purified in sucrose density gradient from the vacuolar membranes according to the determination of the respective markers including vacuolar Ca2+-ATPase, Pmc1::HA. Purification of ER from PM by a removal of PM modified with concanavalin A reduced H+ transport activity of P H+-ATPase by more than 75% while that of V H+-ATPase remained unchanged. ER H+ ATPase exhibits higher resistance to bafilomycin (I50=38.4 nM) than Golgi and vacuole pumps (I50=0.18 nM). The ratio between a coupling efficiency of the pumps in ER, membranes heavier than ER, vacuoles and Golgi is 1.0, 2.1, 8.5 and 14 with the highest coupling in the Golgi. The comparative analysis of the initial velocities of H+ transport mediated by V H+-ATPases in the ER, Golgi and vacuole membrane vesicles, and immunoreactivity of the catalytic subunit A and regulatory subunit B further supported the conclusion that V H+-ATPase is the intrinsic enzyme of the yeast ER and Golgi and likely presented by distinct forms and/or selectively regulated.

  15. Megadalton-node assembly by binding of Skb1 to the membrane anchor Slf1.

    PubMed

    Deng, Lin; Kabeche, Ruth; Wang, Ning; Wu, Jian-Qiu; Moseley, James B

    2014-09-01

    The plasma membrane contains both dynamic and static microdomains. Given the growing appreciation of cortical microdomains in cell biology, it is important to determine the organizational principles that underlie assembly of compartmentalized structures at the plasma membrane. The fission yeast plasma membrane is highly compartmentalized by distinct sets of cortical nodes, which control signaling for cell cycle progression and cytokinesis. The mitotic inhibitor Skb1 localizes to a set of cortical nodes that provide spatial control over signaling for entry into mitosis. However, it has been unclear whether these nodes contain other proteins and how they might be organized and tethered to the plasma membrane. Here we show that Skb1 forms nodes by interacting with the novel protein Slf1, which is a limiting factor for node formation in cells. Using quantitative fluorescence microscopy and in vitro assays, we demonstrate that Skb1-Slf1 nodes are megadalton structures that are anchored to the membrane by a lipid-binding region in the Slf1 C-terminus. We propose a mechanism for higher-order node formation by Skb1 and Slf1, with implications for macromolecular assemblies in diverse cell types.

  16. Anchor-lipid monolayers at the air-water interface; prearranging of model membrane systems.

    PubMed

    Atanasova, Petia P; Atanasov, Vladimir; Köper, Ingo

    2007-07-03

    Model membrane systems are gaining more and more interest both for basic studies of membrane-related processes as well as for biotechnological applications. Several different model systems have been reported among which the tethered bilayer lipid membranes (tBLMs) form a very attractive and powerful architecture. In all the proposed architectures, a control of the lateral organization of the structures at a molecular level is of great importance for an optimized preparation. For tBLMs, a homogeneous and not too dense monolayer is required to allow for the functional incorporation of complex membrane proteins. We present here an alternative approach to the commonly used self-assembly preparation. Lipids are spread on the air-water interface of a Langmuir film balance and form a monomolecular film. This allows for a better control of the lateral pressure and distribution for subsequent transfer to solid substrates. In this paper, we describe the properties of the surface monolayer, in terms of surface pressure, structure of the lipid molecule, content of lipid mixtures, temperature, and relaxations features. It is shown that a complete mixing of anchor-lipids and free lipids can be achieved. Furthermore, an increase of the spacer lengths and a decrease of the temperature lead to more compact films. This approach is a first step toward the fully controlled assembly of a model membrane system.

  17. Binding of the Munc13-1 MUN domain to membrane-anchored SNARE complexes.

    PubMed

    Guan, Rong; Dai, Han; Rizo, Josep

    2008-02-12

    The core of the membrane fusion machinery that governs neurotransmitter release includes the SNARE proteins syntaxin-1, SNAP-25 and synaptobrevin, which form a tight "SNARE complex", and Munc18-1, which binds to the SNARE complex and to syntaxin-1 folded into a closed conformation. Release is also controlled by specialized proteins such as complexins, which also bind to the SNARE complex, and unc13/Munc13s, which are crucial for synaptic vesicle priming and were proposed to open syntaxin-1, promoting SNARE complex assembly. However, the biochemical basis for unc13/Munc13 function and its relationship to other SNARE interactions are unclear. To address this question, we have analyzed interactions of the MUN domain of Munc13-1, which is key for this priming function, using solution binding assays and cofloatation experiments with SNARE-containing proteoliposomes. Our results indicate that the Munc13-1 MUN domain binds to membrane-anchored SNARE complexes, even though binding is barely detectable in solution. The MUN domain appears to compete with Munc18-1 but not with complexin-1 for SNARE complex binding, although more quantitative assays will be required to verify these conclusions. Moreover, our data also uncover interactions of membrane-anchored syntaxin-1/SNAP-25 heterodimers with the MUN domain, Munc18-1 and complexin-1. The interaction with complexin-1 is surprising, as it was not observed in previous solution studies. Our results emphasize the importance of studying interactions within the neurotransmitter release machinery in a native membrane environment, and suggest that unc13/Munc13s may provide a template to assemble syntaxin-1/SNAP-25 heterodimers, leading to an acceptor complex for synaptobrevin.

  18. Construction of an artificial cell membrane anchor using DARC as a fitting for artificial extracellular functionalities of eukaryotic cells.

    PubMed

    von Nickisch-Rosenegk, Markus; Teschke, Till; Bier, Frank F

    2012-01-05

    The need to functionalize cell membranes in a directed way for specific applications as single cell arrays or to force close cell-to-cell contact for artificial intercellular interaction and/or induction concerning stem cell manipulation or in general to have a tool for membrane and cell surface-associated processes, we envisaged a neutral inactive membrane anchor for extracellular entities to facillitate the above mentioned functionalities. The silent Duffy antigen/receptor for chemokines (DARC) is a receptor-like membrane protein of erythrocytes and mediates no cell transduction not at least regarding a missing or truncated G-loop and therefore it seemed to be the candidate for our cell membrane anchor. We isolated the genetic information of DARC from human genomic DNA and cloned it in a mammalian cell line as a fusion protein via a suitable plasmid vector. In this report we demonstrate that the human plasma membrane protein DARC can be used as an artificial anchor molecule in cell surface engineering applications. We constructed the fusion protein SNAP-tag-DARC, consisting of DARC and the self-labeling protein tag SNAP-tag® (Covalys). The SNAP-tag® served as an example for a molecular-technological developed protein that is artificially attached to the extracellular side of the plasma membrane through our DARC-anchor. SnapTag should serve as an example for any extracellular entity and was easy to detect by a commercial detection system. The synthesis of SNAP-tag-DARC, its correct incorporation into the cell membrane and the functionality of the SNAP-tag® were verified by RT-PCR, Western blotting and confocal fluorescence microscopy and showed the desired functionality as an membrane anchor for an extracellular application entity.

  19. Secretion of endothelin converting enzyme-1a: the hydrophobic signal anchor domain alone is not sufficient to promote membrane localization.

    PubMed

    Brooks, S C; Fernandez, L; Ergul, A

    2000-05-01

    Endothelin converting enzyme-1 (ECE-1) is a type II membrane protein that is important for the proteolytic activation of big endothelin-1 to endothelin-1. Although the highly conserved zinc-binding motif is known to be located in the extracellular domain, the role(s) of the N-terminal and membrane-spanning signal anchor domains in the biosynthesis and function of ECE-1 isoforms, ECE-1a, ECE-1b, and ECE-1c, remain undetermined. In this study, we provide evidence that the deletion of the cytoplasmic N-terminal tail (residues 1-55) of ECE-1a results in the cleavage of a potential signal peptide located in the signal anchor domain leading to the partial secretion of the recombinant enzyme into the media. However, the truncation of N-terminal and/or signal anchor domain does not affect the activity of ECE-1a. Therefore, our results demonstrate that the hydrophobic signal anchor domain alone is not sufficient for the membrane anchoring of ECE-1a and that the N-terminal domain of ECE-1a is important for membrane targeting as well as the intracellular localization of the enzyme.

  20. Structure and function of ER membrane contact sites with other organelles.

    PubMed

    Phillips, Melissa J; Voeltz, Gia K

    2016-02-01

    The endoplasmic reticulum (ER) is the largest organelle in the cell, and its functions have been studied for decades. The past several years have provided novel insights into the existence of distinct domains between the ER and other organelles, known as membrane contact sites (MCSs). At these contact sites, organelle membranes are closely apposed and tethered, but do not fuse. Here, various protein complexes can work in concert to perform specialized functions such as binding, sensing and transferring molecules, as well as engaging in organelle biogenesis and dynamics. This Review describes the structure and functions of MCSs, primarily focusing on contacts of the ER with mitochondria and endosomes.

  1. Structure and function of ER membrane contact sites with other organelles

    PubMed Central

    Phillips, Melissa J.; Voeltz, Gia K.

    2016-01-01

    The endoplasmic reticulum (ER) is the largest organelle in the cell, and its functions have been studied for decades. The past several years have provided novel insights into the existence of distinct domains between the ER and other organelles, known as membrane contact sites (MCSs). At these contact sites, organelle membranes are closely apposed and tethered, but do not fuse. Here, various protein complexes can work in concert to perform specialized functions such as binding, sensing and transferring molecules, as well as engaging in organelle biogenesis and dynamics. This Review describes the structure and functions of MCSs, primarily focusing on contacts of the ER with mitochondria and endosomes. PMID:26627931

  2. New Method for Measuring the Anchoring Energy of Strongly-Bound Membrane-Associated Proteins [Method for measuring the anchoring energy of strongly-bound membrane-associated proteins].

    SciTech Connect

    Kent, Michael S.; La Bauve, Elisa; Vernon, Briana C.; Ye, Dongmei; Rogers, David M.; Siegrist, Cathryn M.; Carson, Bryan; Rempe, Susan L.; Zheng, Aihua; Kielian, Margaret; Schreve, Andrew P.

    2016-02-01

    Here, we describe a new method to measure the activation energy required to remove a strongly-bound membrane-associated protein from a lipid membrane (anchoring energy). It is based on measuring the rate of release of a liposome-bound protein during centrifugation on a sucrose gradient as a function of time and temperature. The method was used to determine anchoring energy for the soluble dengue virus envelope protein (sE) strongly bound to 80:20 POPC:POPG liposomes at pH 5.5. We also measured the binding energy of sE at the same pH for the initial, predominantly reversible, phase of binding to a 70:30 PC:PG lipid bilayer. The anchoring energy (37 +/- 1.7 kcal/mol, 20% PG) was found to be much larger than the binding energy (7.8 +/- 0.3 kcal/mol for 30% PG, or est. 7.0 kcal/mol for 20% PG). This is consistent with data showing that free sE is a monomer at pH 5.5, but assembles into trimers after associating with membranes. But, trimerization alone is insufficient to account for the observed difference in energies, and we conclude that some energy dissipation occurs during the release process. This new method to determine anchoring energy should be useful to understand the complex interactions of integral monotopic proteins and strongly-bound peripheral membrane proteins with lipid membranes.

  3. ACBD5 and VAPB mediate membrane associations between peroxisomes and the ER

    PubMed Central

    Costello, Joseph L.; Hacker, Christian; Schrader, Tina A.; Zeuschner, Dagmar; Findeisen, Peter

    2017-01-01

    Peroxisomes (POs) and the endoplasmic reticulum (ER) cooperate in cellular lipid metabolism and form tight structural associations, which were first observed in ultrastructural studies decades ago. PO–ER associations have been suggested to impact on a diverse number of physiological processes, including lipid metabolism, phospholipid exchange, metabolite transport, signaling, and PO biogenesis. Despite their fundamental importance to cell metabolism, the mechanisms by which regions of the ER become tethered to POs are unknown, in particular in mammalian cells. Here, we identify the PO membrane protein acyl-coenzyme A–binding domain protein 5 (ACBD5) as a binding partner for the resident ER protein vesicle-associated membrane protein-associated protein B (VAPB). We show that ACBD5–VAPB interaction regulates PO–ER associations. Moreover, we demonstrate that loss of PO–ER association perturbs PO membrane expansion and increases PO movement. Our findings reveal the first molecular mechanism for establishing PO–ER associations in mammalian cells and report a new function for ACBD5 in PO–ER tethering. PMID:28108524

  4. ACBD5 and VAPB mediate membrane associations between peroxisomes and the ER.

    PubMed

    Costello, Joseph L; Castro, Inês G; Hacker, Christian; Schrader, Tina A; Metz, Jeremy; Zeuschner, Dagmar; Azadi, Afsoon S; Godinho, Luis F; Costina, Victor; Findeisen, Peter; Manner, Andreas; Islinger, Markus; Schrader, Michael

    2017-02-01

    Peroxisomes (POs) and the endoplasmic reticulum (ER) cooperate in cellular lipid metabolism and form tight structural associations, which were first observed in ultrastructural studies decades ago. PO-ER associations have been suggested to impact on a diverse number of physiological processes, including lipid metabolism, phospholipid exchange, metabolite transport, signaling, and PO biogenesis. Despite their fundamental importance to cell metabolism, the mechanisms by which regions of the ER become tethered to POs are unknown, in particular in mammalian cells. Here, we identify the PO membrane protein acyl-coenzyme A-binding domain protein 5 (ACBD5) as a binding partner for the resident ER protein vesicle-associated membrane protein-associated protein B (VAPB). We show that ACBD5-VAPB interaction regulates PO-ER associations. Moreover, we demonstrate that loss of PO-ER association perturbs PO membrane expansion and increases PO movement. Our findings reveal the first molecular mechanism for establishing PO-ER associations in mammalian cells and report a new function for ACBD5 in PO-ER tethering. © 2017 Costello et al.

  5. The mechanism of membrane-associated steps in tail-anchored protein insertion

    SciTech Connect

    Mariappan, Malaiyalam; Mateja, Agnieszka; Dobosz, Malgorzata; Bove, Elia; Hegde, Ramanujan S.; Keenan, Robert J.

    2012-06-19

    Tail-anchored (TA) membrane proteins destined for the endoplasmic reticulum are chaperoned by cytosolic targeting factors that deliver them to a membrane receptor for insertion. Although a basic framework for TA protein recognition is now emerging, the decisive targeting and membrane insertion steps are not understood. Here we reconstitute the TA protein insertion cycle with purified components, present crystal structures of key complexes between these components and perform mutational analyses based on the structures. We show that a committed targeting complex, formed by a TA protein bound to the chaperone ATPase Get3, is initially recruited to the membrane through an interaction with Get2. Once the targeting complex has been recruited, Get1 interacts with Get3 to drive TA protein release in an ATPase-dependent reaction. After releasing its TA protein cargo, the now-vacant Get3 recycles back to the cytosol concomitant with ATP binding. This work provides a detailed structural and mechanistic framework for the minimal TA protein insertion cycle.

  6. Structure of the Membrane Anchor of Pestivirus Glycoprotein Erns, a Long Tilted Amphipathic Helix

    PubMed Central

    Aberle, Daniel; Muhle-Goll, Claudia; Bürck, Jochen; Wolf, Moritz; Reißer, Sabine; Luy, Burkhard; Wenzel, Wolfgang; Ulrich, Anne S.; Meyers, Gregor

    2014-01-01

    Erns is an essential virion glycoprotein with RNase activity that suppresses host cellular innate immune responses upon being partially secreted from the infected cells. Its unusual C-terminus plays multiple roles, as the amphiphilic helix acts as a membrane anchor, as a signal peptidase cleavage site, and as a retention/secretion signal. We analyzed the structure and membrane binding properties of this sequence to gain a better understanding of the underlying mechanisms. CD spectroscopy in different setups, as well as Monte Carlo and molecular dynamics simulations confirmed the helical folding and showed that the helix is accommodated in the amphiphilic region of the lipid bilayer with a slight tilt rather than lying parallel to the surface. This model was confirmed by NMR analyses that also identified a central stretch of 15 residues within the helix that is fully shielded from the aqueous layer, which is C-terminally followed by a putative hairpin structure. These findings explain the strong membrane binding of the protein and provide clues to establishing the Erns membrane contact, processing and secretion. PMID:24586172

  7. Msp1 Is a Membrane Protein Dislocase for Tail-Anchored Proteins.

    PubMed

    Wohlever, Matthew L; Mateja, Agnieszka; McGilvray, Philip T; Day, Kasey J; Keenan, Robert J

    2017-07-20

    Mislocalized tail-anchored (TA) proteins of the outer mitochondrial membrane are cleared by a newly identified quality control pathway involving the conserved eukaryotic protein Msp1 (ATAD1 in humans). Msp1 is a transmembrane AAA-ATPase, but its role in TA protein clearance is not known. Here, using purified components reconstituted into proteoliposomes, we show that Msp1 is both necessary and sufficient to drive the ATP-dependent extraction of TA proteins from the membrane. A crystal structure of the Msp1 cytosolic region modeled into a ring hexamer suggests that active Msp1 contains a conserved membrane-facing surface adjacent to a central pore. Structure-guided mutagenesis of the pore residues shows that they are critical for TA protein extraction in vitro and for functional complementation of an msp1 deletion in yeast. Together, these data provide a molecular framework for Msp1-dependent extraction of mislocalized TA proteins from the outer mitochondrial membrane. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Signal transduction across cellular membranes can be mediated by coupling of the clustering of anchored proteins in both leaflets

    NASA Astrophysics Data System (ADS)

    Yue, Tongtao; Zhang, Xianren

    2012-01-01

    One key question in signal transduction is how the signal is relayed from the outer leaflet of a cellular membrane to the inner leaflet. Using a simulation model, a mechanism for the mediation of signal transduction is proposed here in which the coupling between membrane proteins in different leaflets can be achieved by the clustering of anchored proteins, without recruiting transmembrane proteins. Depending on the hydrophobic length of the anchored proteins, three coupling patterns, including face-to-face clustering, interdigitated clustering, and weak-coupled clustering, are observed in this work. This observation provides a possible explanation of how a particular downstream signaling pathway is selected.

  9. Phospholipase C from two bacterial strains acts differently on pure phospholipids and membrane bound glycosylphosphatidylinositol (GPI) anchors.

    PubMed

    Rastogi, Arshi; Hutchinson, Tarun E; Pereira, Ben M J

    2005-04-01

    Phospholipase C (PLC) was purified to homogeneity from the culture filtrate of Bacillus cereus (65-fold, 540 U/mg protein) and B. thuringiensis (76-fold, 306 U/mg protein) by conventional techniques of enzyme purification. The purified enzymes have the molecular mass of 34 kDa and 38 kDa respectively, as determined by SDS-PAGE. Both the PLCs exhibited identical sensitivity to pH, temperature, cations, anions and inhibitors like glutathione and p-chloromercuribenzoate. PLC-Bc showed a preference for phosphatidylinositol, while PLC-Bt favoured phosphatidylcholine as the substrate. Although both the enzymes were able to hydrolyze pure phosphatidylinositol, distinct differences were observed in their activity on phosphatidylinositol-anchored membrane proteins. PLC-Bc cleaved and released alkaline phosphatase, a GPI-anchored marker enzyme from microsomal membranes to a greater extent, than PLC-Bt. Experiments with sperm membranes, followed by SDS-PAGE revealed that the pattern of proteins released from their GPI-anchors by PLC-Bc and PLC-Bt were dissimilar. Although some proteins were cleaved in common by both PLCs, some others including a prominent 57 kDa protein were resistant to PLC-Bt, but sensitive to cleavage by PLC-Bc. The type of modification in the GPI anchor, special environment on membranes, and relative charge of host plasma membrane to the charge of PLC may be the factors that are responsible for the differential action of two enzymes.

  10. Probing the Huntingtin 1-17 membrane anchor on a phospholipid bilayer by using all-atom simulations.

    PubMed

    Côté, Sébastien; Binette, Vincent; Salnikov, Evgeniy S; Bechinger, Burkhard; Mousseau, Normand

    2015-03-10

    Mislocalization and aggregation of the huntingtin protein are related to Huntington's disease. Its first exon-more specifically the first 17 amino acids (Htt17)-is crucial for the physiological and pathological functions of huntingtin. It regulates huntingtin's activity through posttranslational modifications and serves as an anchor to membrane-containing organelles of the cell. Recently, structure and orientation of the Htt17 membrane anchor were determined using a combined solution and solid-state NMR approach. This prompted us to refine this model by investigating the dynamics and thermodynamics of this membrane anchor on a POPC bilayer using all-atom, explicit solvent molecular dynamics and Hamiltonian replica exchange. Our simulations are combined with various experimental measurements to generate a high-resolution atomistic model for the huntingtin Htt17 membrane anchor on a POPC bilayer. More precisely, we observe that the single α-helix structure is more stable in the phospholipid membrane than the NMR model obtained in the presence of dodecylphosphocholine detergent micelles. The resulting Htt17 monomer has its hydrophobic plane oriented parallel to the bilayer surface. Our results further unveil the key residues interacting with the membrane in terms of hydrogen bonds, salt-bridges, and nonpolar contributions. We also observe that Htt17 equilibrates at a well-defined insertion depth and that it perturbs the physical properties-order parameter, thickness, and area per lipid-of the bilayer in a manner that could favor its dimerization. Overall, our observations reinforce and refine the NMR measurements on the Htt17 membrane anchor segment of huntingtin that is of fundamental importance to its biological functions.

  11. Probing the Huntingtin 1-17 Membrane Anchor on a Phospholipid Bilayer by Using All-Atom Simulations

    PubMed Central

    Côté, Sébastien; Binette, Vincent; Salnikov, Evgeniy S.; Bechinger, Burkhard; Mousseau, Normand

    2015-01-01

    Mislocalization and aggregation of the huntingtin protein are related to Huntington’s disease. Its first exon—more specifically the first 17 amino acids (Htt17)—is crucial for the physiological and pathological functions of huntingtin. It regulates huntingtin’s activity through posttranslational modifications and serves as an anchor to membrane-containing organelles of the cell. Recently, structure and orientation of the Htt17 membrane anchor were determined using a combined solution and solid-state NMR approach. This prompted us to refine this model by investigating the dynamics and thermodynamics of this membrane anchor on a POPC bilayer using all-atom, explicit solvent molecular dynamics and Hamiltonian replica exchange. Our simulations are combined with various experimental measurements to generate a high-resolution atomistic model for the huntingtin Htt17 membrane anchor on a POPC bilayer. More precisely, we observe that the single α-helix structure is more stable in the phospholipid membrane than the NMR model obtained in the presence of dodecylphosphocholine detergent micelles. The resulting Htt17 monomer has its hydrophobic plane oriented parallel to the bilayer surface. Our results further unveil the key residues interacting with the membrane in terms of hydrogen bonds, salt-bridges, and nonpolar contributions. We also observe that Htt17 equilibrates at a well-defined insertion depth and that it perturbs the physical properties—order parameter, thickness, and area per lipid—of the bilayer in a manner that could favor its dimerization. Overall, our observations reinforce and refine the NMR measurements on the Htt17 membrane anchor segment of huntingtin that is of fundamental importance to its biological functions. PMID:25762330

  12. Insertion stability of poly(ethylene glycol)-cholesteryl-based lipid anchors in liposome membranes.

    PubMed

    Molnar, Daniel; Linders, Jürgen; Mayer, Christian; Schubert, Rolf

    2016-06-01

    Liposomes consist of a hydrophilic core surrounded by a phospholipid (PL) bilayer. In human blood, the half-life of such artificial vesicles is limited. To prolong their stability in the circulation, liposomal bilayers can be modified by inserting poly(ethylene glycol) (PEG) molecules using either PL or sterols as membrane anchors. This establishes a hydrophilic steric barrier, reducing the adsorption of serum proteins, recognition and elimination by cells of the immune system. In addition, targeting ligands (such as antibodies) are frequently coupled to the distal end of the PEG chains to direct the vesicles (then called 'immuno-liposomes') to specific cell types, such as tumor cells. To our knowledge, experiments on the stability of ligand anchoring have so far only been conducted with PL-based PEGs and not with sterol-based PEGs after insertion via the sterol-based post-insertion technique (SPIT). Therefore, our study examines the insertion stability of PEG-cholesteryl ester (Chol-PEG) molecules with PEG chains of 1000, 1500 and 2000Da molecular mass which have been inserted into the membranes of liposomes using SPIT. For this study we used different acceptor media and multiple analytical techniques, including pulsed-field-gradient nuclear magnetic resonance (PFG-NMR), free-flow electrophoresis, size exclusion chromatography and ultracentrifugation. The obtained data consistently showed that a higher molar mass of PEG chains positively correlates with higher release from the liposome membranes. Furthermore, we could detect and quantify the migration of Chol-PEG molecules from radioactively double-labeled surface-modified liposomes to negatively charged acceptor liposomes via free-flow electrophoresis. Insertion of Chol-PEG molecules into the membrane of preformed liposomes using SPIT is an essential step for the functionalization of liposomes with the aim of specific targeting. For the first time, we present a kinetic analysis of this insertion process using PFG

  13. Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini.

    PubMed

    McCartney, Andrew W; Dyer, John M; Dhanoa, Preetinder K; Kim, Peter K; Andrews, David W; McNew, James A; Mullen, Robert T

    2004-01-01

    Fatty acid desaturases (FADs) play a prominent role in plant lipid metabolism and are located in various subcellular compartments, including the endoplasmic reticulum (ER). To investigate the biogenesis of ER-localized membrane-bound FADs, we characterized the mechanisms responsible for insertion of Arabidopsis FAD2 and Brassica FAD3 into ER membranes and determined the molecular signals that maintain their ER residency. Using in vitro transcription/translation reactions with ER-derived microsomes, we show that both FAD2 and FAD3 are efficiently integrated into membranes by a co-translational, translocon-mediated pathway. We also demonstrate that while the C-terminus of FAD3 (-KSKIN) contains a functional prototypic dilysine ER retrieval motif, FAD2 contains a novel C-terminal aromatic amino acid-containing sequence (-YNNKL) that is both necessary and sufficient for maintaining localization in the ER. Co-expression of a membrane-bound reporter protein containing the FAD2 C-terminus with a dominant-negative mutant of ADP-ribosylation factor (Arf)1 abolished transient localization of the reporter protein in the Golgi, indicating that the FAD2 peptide signal acts as an ER retrieval motif. Mutational analysis of the FAD2 ER retrieval signal revealed a sequence-specific motif consisting of Phi-X-X-K/R/D/E-Phi-COOH, where -Phi- are large hydrophobic amino acid residues. Interestingly, this aromatic motif was present in a variety of other known and putative ER membrane proteins, including cytochrome P450 and the peroxisomal biogenesis factor Pex10p. Taken together, these data describe the insertion and retrieval mechanisms of FADs and define a new ER localization signal in plants that is responsible for the retrieval of escaped membrane proteins back to the ER.

  14. Cell invasion through basement membrane: the anchor cell breaches the barrier.

    PubMed

    Hagedorn, Elliott J; Sherwood, David R

    2011-10-01

    Cell invasion through basement membrane (BM) is a specialized cellular behavior critical to many normal developmental events, immune surveillance, and cancer metastasis. A highly dynamic process, cell invasion involves a complex interplay between cell-intrinsic elements that promote the invasive phenotype, and cell-cell and cell-BM interactions that regulate the timing and targeting of BM transmigration. The intricate nature of these interactions has made it challenging to study cell invasion in vivo and model in vitro. Anchor cell invasion in Caenorhabditis elegans is emerging as an important experimental paradigm for comprehensive analysis of BM invasion, revealing the gene networks that specify invasive behavior and the interactions that occur at the cell-BM interface.

  15. Structural and genetic analyses reveal the protein SepF as a new membrane anchor for the Z ring

    PubMed Central

    Duman, Ramona; Ishikawa, Shu; Celik, Ilkay; Strahl, Henrik; Ogasawara, Naotake; Troc, Paulina; Löwe, Jan; Hamoen, Leendert W.

    2013-01-01

    A key step in bacterial cell division is the polymerization of the tubulin homolog FtsZ at midcell. FtsZ polymers are anchored to the cell membrane by FtsA and are required for the assembly of all other cell division proteins. In Gram-positive and cyanobacteria, FtsZ filaments are aligned by the protein SepF, which in vitro polymerizes into large rings that bundle FtsZ filaments. Here we describe the crystal structure of the only globular domain of SepF, located within the C-terminal region. Two-hybrid data revealed that this domain comprises the FtsZ binding site, and EM analyses showed that it is sufficient for ring formation, which is explained by the filaments in the crystals of SepF. Site-directed mutagenesis, gel filtration, and analytical ultracentrifugation indicated that dimers form the basic units of SepF filaments. High-resolution structured illumination microscopy suggested that SepF is membrane associated, and it turned out that purified SepF not only binds to lipid membranes, but also recruits FtsZ. Further genetic and biochemical analyses showed that an amphipathic helix at the N terminus functions as the membrane-binding domain, making SepF a unique membrane anchor for the FtsZ ring. This clarifies why Bacillus subtilis grows without FtsA or the putative membrane anchor EzrA and why bacteria lacking FtsA contain SepF homologs. Both FtsA and SepF use an amphipathic helix for membrane binding. These helices prefer positively curved membranes due to relaxed lipid density; therefore this type of membrane anchor may assist in keeping the Z ring positioned at the strongly curved leading edge of the developing septum. PMID:24218584

  16. A Conserved Endoplasmic Reticulum Membrane Protein Complex (EMC) Facilitates Phospholipid Transfer from the ER to Mitochondria

    PubMed Central

    Tavassoli, Shabnam; Wong, Andrew K. O.; Choudhary, Vineet; Young, Barry P.; Loewen, Christopher J. R.; Prinz, William A.

    2014-01-01

    Mitochondrial membrane biogenesis and lipid metabolism require phospholipid transfer from the endoplasmic reticulum (ER) to mitochondria. Transfer is thought to occur at regions of close contact of these organelles and to be nonvesicular, but the mechanism is not known. Here we used a novel genetic screen in S. cerevisiae to identify mutants with defects in lipid exchange between the ER and mitochondria. We show that a strain missing multiple components of the conserved ER membrane protein complex (EMC) has decreased phosphatidylserine (PS) transfer from the ER to mitochondria. Mitochondria from this strain have significantly reduced levels of PS and its derivative phosphatidylethanolamine (PE). Cells lacking EMC proteins and the ER–mitochondria tethering complex called ERMES (the ER–mitochondria encounter structure) are inviable, suggesting that the EMC also functions as a tether. These defects are corrected by expression of an engineered ER–mitochondrial tethering protein that artificially tethers the ER to mitochondria. EMC mutants have a significant reduction in the amount of ER tethered to mitochondria even though ERMES remained intact in these mutants, suggesting that the EMC performs an additional tethering function to ERMES. We find that all Emc proteins interact with the mitochondrial translocase of the outer membrane (TOM) complex protein Tom5 and this interaction is important for PS transfer and cell growth, suggesting that the EMC forms a tether by associating with the TOM complex. Together, our findings support that the EMC tethers ER to mitochondria, which is required for phospholipid synthesis and cell growth. PMID:25313861

  17. C-edge loops of arrestin function as a membrane anchor

    PubMed Central

    Lally, Ciara C M.; Bauer, Brian; Selent, Jana; Sommer, Martha E

    2017-01-01

    G-protein-coupled receptors are membrane proteins that are regulated by a small family of arrestin proteins. During formation of the arrestin–receptor complex, arrestin first interacts with the phosphorylated receptor C terminus in a pre-complex, which activates arrestin for tight receptor binding. Currently, little is known about the structure of the pre-complex and its transition to a high-affinity complex. Here we present molecular dynamics simulations and site-directed fluorescence experiments on arrestin-1 interactions with rhodopsin, showing that loops within the C-edge of arrestin function as a membrane anchor. Activation of arrestin by receptor-attached phosphates is necessary for C-edge engagement of the membrane, and we show that these interactions are distinct in the pre-complex and high-affinity complex in regard to their conformation and orientation. Our results expand current knowledge of C-edge structure and further illuminate the conformational transitions that occur in arrestin along the pathway to tight receptor binding. PMID:28220785

  18. Inhibition of Oncogenic functionality of STAT3 Protein by Membrane Anchoring

    NASA Astrophysics Data System (ADS)

    Liu, Baoxu; Fletcher, Steven; Gunning, Patrick; Gradinaru, Claudiu

    2009-03-01

    Signal Transducer and Activator of Transcription 3 (STAT3) protein plays an important role in oncogenic processes. A novel molecular therapeutic approach to inhibit the oncogenic functionality of STAT3 is to design a prenylated small peptide sequence which could sequester STAT3 to the plasma membrane. We have also developed a novel fluorescein derivative label (F-NAc), which is much more photostable compared to the popular fluorescein label FITC. Remarkably, the new dye shows fluorescent properties that are invariant over a wide pH range, which is advantageous for our application. We have shown that F-NAc is suitable for single-molecule measurements and its properties are not affected by ligation to biomolecules. The membrane localization via high-affinity prenylated small-molecule binding agents is studied by encapsulating FNAc-labeled STAT3 and inhibitors within a liposome model cell system. The dynamics of the interaction between the protein and the prenylated ligands is investigated at single molecule level. The efficiency and stability of the STAT3 anchoring in lipid membranes are addressed via quantitative confocal imaging and single-molecule spectroscopy using a custom-built multiparameter fluorescence microscope.

  19. Phosphatidylkojibiosyl Diglyceride: metabolism and function as an anchor in bacterial cell membrane.

    PubMed

    Pieringer, R A

    1975-07-01

    The recently discovered phosphoglycolipid, phosphatidylkojibiosyl diglyceride (PKD), was first observed as a biosynthetic by-product of glycosyl diglyceride metabolism in Streptococcus faecalis (faecium) ATCC 9790. Its structure is 1, 2-diacyl-3-O-alpha-Dglucopyranosyl-6'-O-phosphoryl- [1'', 2''-diacyl-3''-O-sn-glycerol]-alpha-D-glucopyranosyl)-sn-glycerol. The biosynthesis of phosphatidyl-kojibiosyl diglyceride occurs by a novel transphosphatidylation reaction in which a phosphatidyl glycerol to the primary alcohol function at the 6 position of the internal glucose of kojibiosyl diglyceride. The reaction is catalyzed by a membrane-derived enzyme. Phosphatidyl-kojibiosyl diglyceride is bound covalently through a phosphodiester bond to the polyglycerol phosphate moiety of membrane lipoteichoic acid from S. faecalis. Phosphatidylkojibiosyl diglyceride has four nonpolar long chain fatty acyl groups and appears to have the necessary physico-chemical properties to anchor the long hydrophilic glycerol phosphate polymer of lipoteichoic acid to the hydrophobic enviroment of the membrane of S. faecalis and probably other gram-positive bacteria as well.

  20. Effect of anchor positioning on binding and diffusion of elongated 3D DNA nanostructures on lipid membranes

    NASA Astrophysics Data System (ADS)

    Khmelinskaia, Alena; Franquelim, Henri G.; Petrov, Eugene P.; Schwille, Petra

    2016-05-01

    DNA origami is a state-of-the-art technology that enables the fabrication of nano-objects with defined shapes, to which functional moieties, such as lipophilic anchors, can be attached with a nanometre scale precision. Although binding of DNA origami to lipid membranes has been extensively demonstrated, the specific requirements necessary for membrane attachment are greatly overlooked. Here, we designed a set of amphipathic rectangular-shaped DNA origami structures with varying placement and number of chol-TEG anchors used for membrane attachment. Single- and multiple-cholesteryl-modified origami nanostructures were produced and studied in terms of their membrane localization, density and dynamics. We show that the positioning of at least two chol-TEG moieties near the corners is essential to ensure efficient membrane binding of large DNA nanostructures. Quantitative fluorescence correlation spectroscopy data further confirm that increasing the number of corner-positioned chol-TEG anchors lowers the dynamics of flat DNA origami structures on freestanding membranes. Taken together, our approach provides the first evidence of the importance of the location in addition to the number of hydrophobic moieties when rationally designing minimal DNA nanostructures with controlled membrane binding.

  1. Molecular Determinants of the N-Terminal Acetyltransferase Naa60 Anchoring to the Golgi Membrane.

    PubMed

    Aksnes, Henriette; Goris, Marianne; Strømland, Øyvind; Drazic, Adrian; Waheed, Qaiser; Reuter, Nathalie; Arnesen, Thomas

    2017-02-14

    Nα-acetyltransferase 60 (Naa60 or NatF) was recently identified as an unconventional N-terminal acetyltransferase (NAT) since it localizes to organelles, in particular the Golgi apparatus, and has a preference for acetylating N-termini of transmembrane proteins. This knowledge challenged the prevailing view of N-terminal acetylation as a co-translational ribosome-associated process and suggested a new mechanistic functioning for the enzymes responsible for this increasingly recognized protein modification. Crystallography studies on Naa60 were unable to resolve the C-terminal tail of Naa60, which is responsible for the organellar localization. Here, we combined modeling, in vitro assays, and cellular localization studies to study secondary structure and membrane interacting capacity of Naa60. The results show that Naa60 is a peripheral membrane protein. Two amphipathic helices within the Naa60 C-terminus bind the membrane directly in a parallel position relative to the lipid bilayer via hydrophobic and electrostatic interactions. A peptide corresponding to the C-terminus is unstructured in solution and only folds into an α-helical conformation in the presence of liposomes. Computational modeling and cellular mutational analysis revealed the hydrophobic face of two α-helices to be critical for membranous localization. Furthermore, we found a strong and specific binding preference of Naa60 towards membranes containing the phosphatidylinositol PI4P, thus possibly explaining the primary residency of Naa60 at the PI4P-rich Golgi. In conclusion, we have defined the mode of cytosolic Naa60 anchoring to the Golgi apparatus, most likely occurring post-translationally and specifically facilitating post-translational N-terminal acetylation of many transmembrane proteins.

  2. Unimpeded permeation of water through biocidal graphene oxide sheets anchored on to 3D porous polyolefinic membranes

    NASA Astrophysics Data System (ADS)

    Mural, Prasanna Kumar S.; Jain, Shubham; Kumar, Sachin; Madras, Giridhar; Bose, Suryasarathi

    2016-04-01

    3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification.3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and

  3. Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: Insights from computational model systems and theory.

    PubMed

    Weikl, Thomas R; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard

    2016-09-02

    The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant [Formula: see text] and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between [Formula: see text] and the binding constant [Formula: see text] of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D).

  4. Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: Insights from computational model systems and theory

    PubMed Central

    Weikl, Thomas R.; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard

    2016-01-01

    ABSTRACT The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant K2D and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between K2D and the binding constant K3D of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D). PMID:27294442

  5. Membrane permeability transition and dysfunction of rice mitochondria effected by Er(III).

    PubMed

    Gao, Jia-ling; Wu, Man; Wang, Xuan; Zhang, Ye-zhong; Jiang, Feng-lei; Liu, Yi; Dai, Jie

    2015-02-01

    Herein, the biological effects of heavy rare earth ion Er(III) on rice mitochondria were comprehensively investigated mainly by spectroscopic methods. The experimental results demonstrated that Er(III) could lead to the swelling of rice mitochondria, collapse of mitochondrial transmembrane potential, decrease of membrane fluidity, promotion of H(+) permeability and suppression of K(+) permeability. These further indicated that Er(III) could induce the mitochondrial permeability transition (MPT) and the dysfunction of rice mitochondria. The ultra-structure change of mitochondria observed by transmission electron microscopy (TEM) also proved that Er(III) induced MPT. Moreover, the testing results of the protective effect of four different agents on mitochondrial swelling implied that the thiol chelation on the mitochondrial inner membrane was the main reason that caused the MPT.

  6. Binding of plasma membrane lipids recruits the yeast integral membrane protein Ist2 to the cortical ER.

    PubMed

    Fischer, Marcel André; Temmerman, Koen; Ercan, Ebru; Nickel, Walter; Seedorf, Matthias

    2009-08-01

    Recruitment of cytosolic proteins to individual membranes is governed by a combination of protein-protein and protein-membrane interactions. Many proteins recognize phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] at the cytosolic surface of the plasma membrane (PM). Here, we show that a protein-lipid interaction can also serve as a dominant signal for the sorting of integral membrane proteins. Interaction with phosphatidly-inositolphosphates (PIPs) at the PM is involved in the targeting of the polytopic yeast protein Ist2 to PM-associated domains of the cortical endoplasmic reticulum (ER). Moreover, binding of PI(4,5)P(2) at the PM functions as a dominant mechanism that targets other integral membrane proteins to PM-associated domains of the cortical ER. This sorting to a subdomain of the ER abolishes proteasomal degradation and trafficking along the classical secretory (sec) pathway. In combination with the localization of IST2 mRNA to the bud tip and other redundant signals in Ist2, binding of PIPs leads to efficient accumulation of Ist2 at domains of the cortical ER from where the protein may reach the PM independently of the function of the sec-pathway.

  7. SNAP-Tag-Reactive Lipid Anchors Enable Targeted and Spatiotemporally Controlled Localization of Proteins to Phospholipid Membranes.

    PubMed

    Rudd, Andrew K; Valls Cuevas, Joan M; Devaraj, Neal K

    2015-04-22

    The natural mechanisms that direct proteins to membranes are typically complex, requiring multiple steps and accessory components. It would be advantageous to develop simplified methods to direct proteins of interest to phospholipid membranes in a single step. Here we report a modular method for membrane localization of proteins by using chemically modified phospholipid anchors capable of covalent attachment to O(6)-methylguanine DNA methyltransferase (SNAP-tag) fusion proteins. To our knowledge, this is the first use of SNAP-tag reactions to modify benzylguanine-functionalized lipid membranes. We demonstrate that photocaged lipid precursors enable light-triggered spatial and temporal control over protein localization. The anchoring system is compatible with cell-free expression, allowing for genetic targeting of proteins to lipid membranes of giant unilamellar vesicles. This technique can be used to control membrane curvature effects, similar to what has been previously observed with certain membrane-bound proteins. This work addresses a current need in synthetic biology for simplified and robust methods to control membrane localization of expressed proteins and shows promise as a general tool for protein targeting to lipid vesicles and cellular membranes.

  8. Peroxin-Dependent Targeting of a Lipid Droplet-Destined Membrane Protein to ER-subdomains

    PubMed Central

    Schrul, Bianca; Kopito, Ron R.

    2016-01-01

    SUMMARY Lipid droplets (LDs) are endoplasmic reticulum (ER)-derived lipid storage organelles uniquely encapsulated by phospholipid monolayers. LD membrane proteins are embedded into the monolayer in a monotopic hairpin-topology and therefore likely have requirements for their biogenesis distinct from those inserting as bitopic and polytopic proteins into phospholipid bilayers. UBXD8 belongs to a subfamily of hairpin-proteins that localize to both the ER and LDs, and are initially inserted into the cytoplasmic leaflet of the ER bilayer before partitioning to the LD monolayer. The molecular machinery responsible for inserting hairpin-proteins into membranes, however, is unknown. Here, we report that newly synthesized UBXD8 is posttranslationally inserted into discrete ER-subdomains by a mechanism requiring cytosolic PEX19 and membrane-integrated PEX3, proteins hitherto exclusively implicated in peroxisome biogenesis. Farnesylation of PEX19 uncouples ER/LD- and peroxisome targeting, expanding the function of this peroxin to an ER targeting pathway and suggesting a coordinated biogenesis of LDs and peroxisomes. PMID:27295553

  9. ER arrival sites for COPI vesicles localize to hotspots of membrane trafficking.

    PubMed

    Schröter, Saskia; Beckmann, Sabrina; Schmitt, Hans Dieter

    2016-09-01

    COPI-coated vesicles mediate retrograde membrane traffic from the cis-Golgi to the endoplasmic reticulum (ER) in all eukaryotic cells. However, it is still unknown whether COPI vesicles fuse everywhere or at specific sites with the ER membrane. Taking advantage of the circumstance that the vesicles still carry their coat when they arrive at the ER, we have visualized active ER arrival sites (ERAS) by monitoring contact between COPI coat components and the ER-resident Dsl tethering complex using bimolecular fluorescence complementation (BiFC). ERAS form punctate structures near Golgi compartments, clearly distinct from ER exit sites. Furthermore, ERAS are highly polarized in an actin and myosin V-dependent manner and are localized near hotspots of plasma membrane expansion. Genetic experiments suggest that the COPI•Dsl BiFC complexes recapitulate the physiological interaction between COPI and the Dsl complex and that COPI vesicles are mistargeted in dsl1 mutants. We conclude that the Dsl complex functions in confining COPI vesicle fusion sites. © 2016 The Authors.

  10. Membrane Anchors of the Structural Flavivirus Proteins and Their Role in Virus Assembly

    PubMed Central

    Blazevic, Janja; Rouha, Harald; Bradt, Victoria; Heinz, Franz X.

    2016-01-01

    ABSTRACT The structural proteins of flaviviruses carry a unique set of transmembrane domains (TMDs) at their C termini that are derived from the mode of viral polyprotein processing. They function as internal signal and stop-transfer sequences during protein translation, but possible additional roles in protein interactions required during assembly and maturation of viral particles are ill defined. To shed light on the role of TMDs in these processes, we engineered a set of tick-borne encephalitis virus mutants in which these structural elements were replaced in different combinations by the homologous sequences of a distantly related flavivirus (Japanese encephalitis virus). The effects of these modifications were analyzed with respect to protein synthesis, viral particle secretion, specific infectivity, and acidic-pH-induced maturation processes. We provide evidence that interactions involving the double-membrane anchor of the envelope protein E (a unique feature compared to other viral fusion proteins) contribute substantially to particle assembly, stability, and maturation. Disturbances of the inter- and intra-TMD interactions of E resulted in the secretion of a larger proportion of capsidless subviral particles at the expense of whole virions, suggesting a possible role in the still incompletely understood mechanism of capsid integration during virus budding. In contrast, the TMD initially anchoring the C protein to the endoplasmic reticulum membrane does not appear to take part in envelope protein interactions. We also show that E TMDs are involved in the envelope protein rearrangements that are triggered by acidic pH in the trans-Golgi network and represent a hallmark of virus maturation. IMPORTANCE The assembly of flaviviruses occurs in the endoplasmic reticulum and leads to the formation of immature, noninfectious particles composed of an RNA-containing capsid surrounded by a lipid membrane, with the two integrated envelope proteins, prM and E, arranged in

  11. Loss of the membrane anchor of the target receptor is a mechanism of bioinsecticide resistance.

    PubMed

    Darboux, Isabelle; Pauchet, Yannick; Castella, Claude; Silva-Filha, Maria Helena; Nielsen-LeRoux, Christina; Charles, Jean-François; Pauron, David

    2002-04-30

    The mosquitocidal activity of Bacillus sphaericus is because of a binary toxin (Bin), which binds to Culex pipiens maltase 1 (Cpm1), an alpha-glucosidase present in the midgut of Culex pipiens larvae. In this work, we studied the molecular basis of the resistance to Bin developed by a strain (GEO) of C. pipiens. Immunohistochemical and in situ hybridization experiments showed that Cpm1 was undetectable in the midgut of GEO larvae, although the gene was correctly transcribed. The sequence of the cpm1(GEO) cDNA differs from the sequence we previously reported for a susceptible strain (cpm1(IP)) by seven mutations: six missense mutations and a mutation leading to the premature termination of translation. When produced in insect cells, Cpm1(IP) was attached to the membrane by a glycosylphosphatidylinositol (GPI). In contrast, the premature termination of translation of Cpm1(GEO) resulted in the targeting of the protein to the extracellular compartment because of truncation of the GPI-anchoring site. The interaction between Bin and Cpm1(GEO) and the enzyme activity of the receptor were not affected. Thus, Bin is not toxic to GEO larvae because it cannot interact with the midgut cell membrane, even though its receptor site is unaffected. This mechanism contrasts with other known resistance mechanisms in which point mutations decrease the affinity of binding between the receptor and the toxin.

  12. Loss of the membrane anchor of the target receptor is a mechanism of bioinsecticide resistance

    PubMed Central

    Darboux, Isabelle; Pauchet, Yannick; Castella, Claude; Silva-Filha, Maria Helena; Nielsen-LeRoux, Christina; Charles, Jean-François; Pauron, David

    2002-01-01

    The mosquitocidal activity of Bacillus sphaericus is because of a binary toxin (Bin), which binds to Culex pipiens maltase 1 (Cpm1), an α-glucosidase present in the midgut of Culex pipiens larvae. In this work, we studied the molecular basis of the resistance to Bin developed by a strain (GEO) of C. pipiens. Immunohistochemical and in situ hybridization experiments showed that Cpm1 was undetectable in the midgut of GEO larvae, although the gene was correctly transcribed. The sequence of the cpm1GEO cDNA differs from the sequence we previously reported for a susceptible strain (cpm1IP) by seven mutations: six missense mutations and a mutation leading to the premature termination of translation. When produced in insect cells, Cpm1IP was attached to the membrane by a glycosylphosphatidylinositol (GPI). In contrast, the premature termination of translation of Cpm1GEO resulted in the targeting of the protein to the extracellular compartment because of truncation of the GPI-anchoring site. The interaction between Bin and Cpm1GEO and the enzyme activity of the receptor were not affected. Thus, Bin is not toxic to GEO larvae because it cannot interact with the midgut cell membrane, even though its receptor site is unaffected. This mechanism contrasts with other known resistance mechanisms in which point mutations decrease the affinity of binding between the receptor and the toxin. PMID:11983886

  13. Initiation and Synthesis of the Streptococcus pneumoniae Type 3 Capsule on a Phosphatidylglycerol Membrane Anchor

    PubMed Central

    Cartee, Robert T.; Forsee, W. Thomas; Yother, Janet

    2005-01-01

    The type 3 synthase from Streptococcus pneumoniae is a processive β-glycosyltransferase that assembles the type 3 polysaccharide [3)-β-d-GlcUA-(1→4)-β-d-Glc-(1→] by a multicatalytic process. Polymer synthesis occurs via alternate additions of Glc and GlcUA onto the nonreducing end of the growing polysaccharide chain. In the presence of a single nucleotide sugar substrate, the type 3 synthase ejects its nascent polymer and also adds a single sugar onto a lipid acceptor. Following single sugar incorporation from either UDP-[14C]Glc or UDP-[14C]GlcUA, we found that phospholipase D digestion of the Glc-labeled lipid yielded a product larger than a monosaccharide, while digestion of the GlcUA-labeled lipid resulted in a product larger than a disaccharide. These data indicated that the lipid acceptor contained a headgroup and that the order of addition to the lipid acceptor was Glc followed by GlcUA. Higher-molecular-weight product synthesized in vitro was also sensitive to phospholipase D digestion, suggesting that the same lipid acceptor was being used for single sugar additions and for polymer formation. Mass spectral analysis of the anionic lipids of a type 3 S. pneumoniae strain demonstrated the presence of glycosylated phosphatidylglycerol. This lipid was also observed in Escherichia coli strains expressing the recombinant type 3 synthase. The presence of the lipid primer in S. pneumoniae membranes explained both the ability of the synthase to reinitiate polysaccharide synthesis following ejection of its nascent chain and the association of newly synthesized polymer with the membrane. Unlike most S. pneumoniae capsular polysaccharides, the type 3 capsule is not covalently linked to the cell wall. The present data indicate that phosphatidylglycerol may anchor the type 3 polysaccharide to the cell membrane. PMID:15968057

  14. New Method for Measuring the Anchoring Energy of Strongly-Bound Membrane-Associated Proteins [Method for measuring the anchoring energy of strongly-bound membrane-associated proteins].

    DOE PAGES

    Kent, Michael S.; La Bauve, Elisa; Vernon, Briana C.; ...

    2016-02-01

    Here, we describe a new method to measure the activation energy required to remove a strongly-bound membrane-associated protein from a lipid membrane (anchoring energy). It is based on measuring the rate of release of a liposome-bound protein during centrifugation on a sucrose gradient as a function of time and temperature. The method was used to determine anchoring energy for the soluble dengue virus envelope protein (sE) strongly bound to 80:20 POPC:POPG liposomes at pH 5.5. We also measured the binding energy of sE at the same pH for the initial, predominantly reversible, phase of binding to a 70:30 PC:PG lipidmore » bilayer. The anchoring energy (37 +/- 1.7 kcal/mol, 20% PG) was found to be much larger than the binding energy (7.8 +/- 0.3 kcal/mol for 30% PG, or est. 7.0 kcal/mol for 20% PG). This is consistent with data showing that free sE is a monomer at pH 5.5, but assembles into trimers after associating with membranes. But, trimerization alone is insufficient to account for the observed difference in energies, and we conclude that some energy dissipation occurs during the release process. This new method to determine anchoring energy should be useful to understand the complex interactions of integral monotopic proteins and strongly-bound peripheral membrane proteins with lipid membranes.« less

  15. Polyelectrolyte multilayers on PTMSP as asymmetric membranes for gas separations: Langmuir-Blodgett versus self-assembly methods of anchoring.

    PubMed

    Lin, Cen; Chen, Qibin; Yi, Song; Wang, Minghui; Regen, Steven L

    2014-01-28

    Polyelectrolyte multilayers derived from poly(diallyldimethylamonium chloride) and poly(sodium 4-styrenesulfonate) have been deposited onto poly[1-(trimethylsilyl)-1-propyne] (PTMSP) with anchoring layers formed by Langmuir-Blodgett and self-assembly methods. Using gas permeation selectivity as a basis for judging the efficacy of each anchoring method, we have found that similar CO2/N2 selectivities (ranging from 110 to 140) could be achieved by both methods and that their permeances were also similar. Although LB anchors require fewer layers of polyelectrolyte to reach this level of selectivity, the greater ease associated with self-assembly and its applicability to curved, high-surface-area supports (e.g., PTMSP-coated hollow fibers) encourage its use with PTMSP in creating new membrane materials for the practical separation of gases.

  16. Triggered Ca2+ influx is required for extended synaptotagmin 1-induced ER-plasma membrane tethering

    PubMed Central

    Idevall-Hagren, Olof; Lü, Alice; Xie, Beichen; De Camilli, Pietro

    2015-01-01

    The extended synaptotagmins (E-Syts) are ER proteins that act as Ca2+-regulated tethers between the ER and the plasma membrane (PM) and have a putative role in lipid transport between the two membranes. Ca2+ regulation of their tethering function, as well as the interplay of their different domains in such function, remains poorly understood. By exposing semi-intact cells to buffers of variable Ca2+ concentrations, we found that binding of E-Syt1 to the PI(4,5)P2-rich PM critically requires its C2C and C2E domains and that the EC50 of such binding is in the low micromolar Ca2+ range. Accordingly, E-Syt1 accumulation at ER-PM contact sites occurred only upon experimental manipulations known to achieve these levels of Ca2+ via its influx from the extracellular medium, such as store-operated Ca2+ entry in fibroblasts and membrane depolarization in β-cells. We also show that in spite of their very different physiological functions, membrane tethering by E-Syt1 (ER to PM) and by synaptotagmin (secretory vesicles to PM) undergo a similar regulation by plasma membrane lipids and cytosolic Ca2+. PMID:26202220

  17. Triggered Ca2+ influx is required for extended synaptotagmin 1-induced ER-plasma membrane tethering.

    PubMed

    Idevall-Hagren, Olof; Lü, Alice; Xie, Beichen; De Camilli, Pietro

    2015-09-02

    The extended synaptotagmins (E-Syts) are ER proteins that act as Ca(2+)-regulated tethers between the ER and the plasma membrane (PM) and have a putative role in lipid transport between the two membranes. Ca(2+) regulation of their tethering function, as well as the interplay of their different domains in such function, remains poorly understood. By exposing semi-intact cells to buffers of variable Ca(2+) concentrations, we found that binding of E-Syt1 to the PI(4,5)P2-rich PM critically requires its C2C and C2E domains and that the EC50 of such binding is in the low micromolar Ca(2+) range. Accordingly, E-Syt1 accumulation at ER-PM contact sites occurred only upon experimental manipulations known to achieve these levels of Ca(2+) via its influx from the extracellular medium, such as store-operated Ca(2+) entry in fibroblasts and membrane depolarization in β-cells. We also show that in spite of their very different physiological functions, membrane tethering by E-Syt1 (ER to PM) and by synaptotagmin (secretory vesicles to PM) undergo a similar regulation by plasma membrane lipids and cytosolic Ca(2+). © 2015 The Authors.

  18. A Tenebrio molitor GPI-anchored alkaline phosphatase is involved in binding of Bacillus thuringiensis Cry3Aa to brush border membrane vesicles.

    PubMed

    Zúñiga-Navarrete, Fernando; Gómez, Isabel; Peña, Guadalupe; Bravo, Alejandra; Soberón, Mario

    2013-03-01

    Bacillus thuringiensis Cry toxins recognizes their target cells in part by the binding to glycosyl-phosphatidyl-inositol (GPI) anchored proteins such as aminopeptidase-N (APN) or alkaline phosphatases (ALP). Treatment of Tenebrio molitor brush border membrane vesicles (BBMV) with phospholipase C that cleaves out GPI-anchored proteins from the membranes, showed that GPI-anchored proteins are involved in binding of Cry3Aa toxin to BBMV. A 68 kDa GPI-anchored ALP was shown to bind Cry3Aa by toxin overlay assays. The 68 kDa GPI-anchored ALP was preferentially expressed in early instar larvae in comparison to late instar larvae. Our work shows for the first time that GPI-anchored ALP is important for Cry3Aa binding to T. molitor BBMV suggesting that the mode of action of Cry toxins is conserved in different insect orders. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. VMP1 Establishes ER-Microdomains that Regulate Membrane Contact Sites and Autophagy

    PubMed Central

    Tábara, Luis-Carlos

    2016-01-01

    The endoplasmic reticulum (ER) regulates organelle dynamics through the formation of membrane contact sites (MCS). Here we describe that VMP1, a multispanning ER-resident protein involved in autophagy, is enriched in ER micro-domains that are in close proximity to diverse organelles in HeLa and Cos-7 cells. These VMP1 puncta are highly dynamic, moving in concert with lipid droplets, mitochondria and endosomes. Some of these micro-domains are associated with ER sliding events and also with fission events of mitochondria and endosomes. VMP1-depleted cells display increased ER-mitochondria MCS and altered mitochondria morphology demonstrating a role in the regulation of MCS. Additional defects in ER structure and lipid droplets size and distribution are consistent with a more general function of VMP1 in membrane remodeling and organelle function. We hypothesize that in autophagy VMP1 is required for the correct morphogenesis of the omegasome by regulating MCS at the site of autophagosome formation. PMID:27861594

  20. Er:YAG delamination of immersed biological membranes using sealed flexible hollow waveguides

    NASA Astrophysics Data System (ADS)

    Sagi-Dolev, A. M.; Dror, Jacob; Inberg, Alexandra; Ferencz, J. R.; Croitoru, Nathan I.

    1996-04-01

    The radiation of Er-YAG laser ((lambda) equals 2.94 micrometer) gives selective interaction with tissues. The extinction in soft tissues is only a few micrometers and in hard tissues is of the order of hundreds of micrometers. This makes this type of laser very suitable for treatments in dentistry, orthopedy, or ophthalmology. Because the usual silica fibers are not transmitting the radiation at lambda equals 2.94 micrometer of this laser, many applications cannot be presently performed. Fused silica hollow fibers for Er-YAG radiation were developed in our laboratory and several possible applications in dentistry, orthopedy and ophthalmology were indicated. Hole opening and implantation preparation of teeth were experimented, using Er-YAG laser and hollow plastic waveguide delivery systems. Hole drilling in cow bones was demonstrated for applications in orthopedy. A new procedure of delivering Er-YAG radiation on fibrotic membranes of inner eggshell as a model of the membranes in eyes was developed employing silica hollow waveguides of 0.5 and 0.7 mm ID or a plastic waveguide of 1.0 mm ID. For this purpose waveguides with sealed distal tip were employed to enable us to approach the delivery system through liquid media near to the membrane. This experiment demonstrates the possibility of surgical applications in vitectomy in ophthalmology using Er-YAG laser and silica hollow waveguides.

  1. Rafting with cholera toxin: endocytosis and trafficking from plasma membrane to ER.

    PubMed

    Chinnapen, Daniel J-F; Chinnapen, Himani; Saslowsky, David; Lencer, Wayne I

    2007-01-01

    Cholera toxin (CT), and members of the AB(5) family of toxins enter host cells and hijack the cell's endogenous pathways to induce toxicity. CT binds to a lipid receptor on the plasma membrane (PM), ganglioside GM1, which has the ability to associate with lipid rafts. The toxin can then enter the cell by various modes of receptor-mediated endocytosis and traffic in a retrograde manner from the PM to the Golgi and the endoplasmic reticulum (ER). Once in the ER, a portion of the toxin is unfolded and retro-translocated to the cytosol so as to induce disease. GM1 is the vehicle that carries CT from PM to ER. Thus, the toxin pathway from PM to ER is a lipid-based sorting pathway, which is potentially meditated by the determinants of the GM1 ganglioside structure itself.

  2. Phosphatidylserine synthesis at membrane contact sites promotes its transport out of the ER.

    PubMed

    Kannan, Muthukumar; Lahiri, Sujoy; Liu, Li-Ka; Choudhary, Vineet; Prinz, William A

    2017-03-01

    Close contacts between organelles, often called membrane contact sites (MCSs), are regions where lipids are exchanged between organelles. Here, we identify a novel mechanism by which cells promote phospholipid exchange at MCSs. Previous studies have shown that phosphatidylserine (PS) synthase activity is highly enriched in portions of the endoplasmic reticulum (ER) in contact with mitochondria. The objective of this study was to determine whether this enrichment promotes PS transport out of the ER. We found that PS transport to mitochondria was more efficient when PS synthase was fused to a protein in the ER at ER-mitochondria contacts than when it was fused to a protein in all portions of the ER. Inefficient PS transport to mitochondria was corrected by increasing tethering between these organelles. PS transport to endosomes was similarly enhanced by PS production in regions of the ER in contact with endosomes. Together, these findings indicate that PS production at MCSs promotes PS transport out of the ER and suggest that phospholipid production at MCSs may be a general mechanism of channeling lipids to specific cellular compartments.

  3. Membrane Anchoring and Interaction between Transmembrane Domains are Crucial for K+ Channel Function*

    PubMed Central

    Gebhardt, Manuela; Hoffgaard, Franziska; Hamacher, Kay; Kast, Stefan M.; Moroni, Anna; Thiel, Gerhard

    2011-01-01

    The small viral channel Kcv is a Kir-like K+ channel of only 94 amino acids. With this simple structure, the tetramer of Kcv represents the pore module of all complex K+ channels. To examine the structural contribution of the transmembrane domains (TMDs) to channel function, we performed Ala scanning mutagenesis of the two domains and tested the functionality of the mutants in a yeast complementation assay. The data reveal, in combination with computational models, that the upper halves of both TMDs, which face toward the external medium, are rather rigid, whereas the inner parts are more flexible. The rigidity of the outer TMD is conferred by a number of essential aromatic amino acids that face the membrane and probably anchor this domain in the bilayer. The inner TMD is intimately connected with the rigid part of the outer TMD via π···π interactions between a pair of aromatic amino acids. This structural principle is conserved within the viral K+ channels and also present in Kir2.2, implying a general importance of this architecture for K+ channel function. PMID:21310959

  4. Membrane-Anchored Inhibitory Peptides Capture Human Immunodeficiency Virus Type 1 gp41 Conformations That Engage the Target Membrane prior to Fusion

    PubMed Central

    Melikyan, Gregory B.; Egelhofer, Marc; von Laer, Dorothee

    2006-01-01

    Soluble peptides derived from the C-terminal heptad repeat domain of human immunodeficiency virus type 1 (HIV-1) gp41 are potent inhibitors of HIV-1 entry and gp41-induced fusion. Target membrane-anchored variants of these peptides have been shown to retain inhibitory activity. Both soluble and membrane-anchored C peptides (MACs) are thought to block fusion by binding to the N-terminal coiled coil domain of gp41 and preventing formation of the final six-helix bundle structure. However, interactions of target MACs with gp41 must be restricted to a subset of trimers that have their hydrophobic fusion peptides inserted into the target membrane. This unique feature of MACs was used to identify the intermediate step of fusion at which gp41 engaged the target membrane. Fusion between HIV envelope-expressing effector cells and target cells was measured by fluorescence microscopy. Expression of MACs in target cells led to less than twofold reduction in the extent of fusion. However, when reaction was first arrested by adding lysolipids that disfavored membrane merger, and the lipids were subsequently removed by washing, control cells supported fusion, whereas those that expressed MACs did not. The drastically improved potency of MACs implies that, at lipid-arrested stage, gp41 bridges the viral and target cell membranes and therefore more optimally binds the membrane-anchored peptides. Experimental demonstration of this intermediate shows that, similar to fusion induced by many other viral glycoproteins, engaging the target membrane by HIV-1 gp41 permits coupling between six-helix bundle formation and membrane merger. PMID:16537592

  5. Construction and expression of bivalent membrane-anchored DNA vaccine encoding Sjl4FABP and Sj26GST genes.

    PubMed

    Guo, Ping; Dai, Wuxing; Liu, Shuojie; Yang, Ping; Cheng, Jizhong; Liang, Liang; Chen, Zhihao; Gao, Hong

    2006-01-01

    In order to construct a eukaryotic co-expression plasmid containing membrane-anchored Sjcl4FABP and Sjc26GST genes and identify their expression in vitro, Sj14 and Sj26 genes were obtained by RT-PCR with total RNA of Schistosoma japonicum adult worms as the template and cloned into eukaryotic expression plasmid pVAC to construct recombinant plasmids pVAC-Sj14 and pVAC-Sj26. Then a 23 amino-acid signal peptide of human interleukin-2 (IL-2) upstream Sj14 or Sj26 gene and a membrane-anchored sequence containing 32 amino-acids of carboxyl-terminal of human placental alkaline phosphatase (PLAP) downstream were amplified by PCR as the template of plasmid pVAC-Sj14 or pVAC-Sj26 only to get two gene fragments including Sj14 gene and Sj26 gene. The two modified genes were altogether cloned into a eukaryotic co-expression plasmid pIRES, resulting in another new recombinant plasmid pIRES-Sj26-Sj14. The expression of Sj14 and Sj26 genes was detected by RT-PCR and indirect immunofluorescent assays (IFA) when the plasmid pIRES-Sj26-Sj14 was transfected into eukaryotic Hela cells. Restriction enzyme analysis, PCR and sequencing results revealed that the recombinant plasmids pVAC-Sj14, pVAC-Sj26 and plRES-Sj26-Sj14 were successfully constructed and the expression of modified Sj14 and Sj26 genes could be detected by RT-PCR and IFA. A bivalent membrane-anchored DNA vaccine encoding Sj14 and Sj26 genes was acquired and expressed proteins were proved to be mostly anchored in cellular membranes.

  6. Display of Polyhistidine Peptides on the Escherichia coli Cell Surface by Using Outer Membrane Protein C as an Anchoring Motif

    PubMed Central

    Xu, Zhaohui; Lee, Sang Yup

    1999-01-01

    A novel cell surface display system was developed by employing Escherichia coli outer membrane protein C (OmpC) as an anchoring motif. Polyhistidine peptides consisting of up to 162 amino acids could be successfully displayed on the seventh exposed loop of OmpC. Recombinant cells displaying polyhistidine could adsorb up to 32.0 μmol of Cd2+ per g (dry weight) of cells. PMID:10543834

  7. Specificity of the lipase-specific foldases of gram-negative bacteria and the role of the membrane anchor.

    PubMed

    El Khattabi, M; Ockhuijsen, C; Bitter, W; Jaeger, K E; Tommassen, J

    1999-06-01

    Folding of lipases that are secreted by Pseudomonads and other gram-negative bacteria via the type II secretion pathway is facilitated by dedicated chaperones, called lipase-specific foldases (Lifs). Lifs are membrane-anchored proteins with a large periplasmic domain. The functional interaction between the Lif and its cognate lipase is specific, since the Pseudomonas aeruginosa Lif was found not to substitute for Lifs from Burkholderia glumae or Acinetobacter calcoaceticus. However, the P. aeruginosa Lif was able to activate the lipase from the closely related species P. alcaligenes. Hybrid proteins constructed from parts of the P. aeruginosa and B. glumae Lifs revealed that the C-terminal 138 amino acids of the B. glumae Lif determine the specificity of the interaction with the cognate lipase. Furthermore, the periplasmic domain of the B. glumae Lif was functional when cloned in frame with a cleavable signal sequence, which demonstrates that the membrane anchor is not essential for Lif function in vivo. However, the recombinant Lif was released into the medium, indicating that the function of the membrane anchor is to prevent secretion of the Lif together with the lipase.

  8. Efficient Glycosylphosphatidylinositol (GPI) Modification of Membrane Proteins Requires a C-terminal Anchoring Signal of Marginal Hydrophobicity*

    PubMed Central

    Galian, Carmen; Björkholm, Patrik; Bulleid, Neil; von Heijne, Gunnar

    2012-01-01

    Many plasma membrane proteins are anchored to the membrane via a C-terminal glycosylphosphatidylinositol (GPI) moiety. The GPI anchor is attached to the protein in the endoplasmic reticulum by transamidation, a reaction in which a C-terminal GPI-attachment signal is cleaved off concomitantly with addition of the GPI moiety. GPI-attachment signals are poorly conserved on the sequence level but are all composed of a polar segment that includes the GPI-attachment site followed by a hydrophobic segment located at the very C terminus of the protein. Here, we show that efficient GPI modification requires that the hydrophobicity of the C-terminal segment is “marginal”: less hydrophobic than type II transmembrane anchors and more hydrophobic than the most hydrophobic segments found in secreted proteins. We further show that the GPI-attachment signal can be modified by the transamidase irrespective of whether it is first released into the lumen of the endoplasmic reticulum or is retained in the endoplasmic reticulum membrane. PMID:22431723

  9. Selectivity of the cleavage/attachment site of phosphatidylinositol-glycan-anchored membrane proteins determined by site-specific mutagenesis at Asp-484 of placental alkaline phosphatase.

    PubMed Central

    Micanovic, R; Gerber, L D; Berger, J; Kodukula, K; Udenfriend, S

    1990-01-01

    Many proteins are now known to be anchored to the plasma membrane by a phosphatidylinositol-glycan (PI-G) moiety that is attached to their COOH termini. Placental alkaline phosphatase (PLAP) has been used as a model for investigating mechanisms involved in the COOH-terminal processing of PI-G-tailed proteins. The COOH-terminal domain of pre-pro-PLAP provides a signal for processing during which a largely hydrophobic 29-residue COOH-terminal peptide is removed, and the PI-G moiety is added to the newly exposed Asp-484 terminus. This cleavage/attachment site was subjected to an almost saturation mutagenesis, and the enzymatic activities, COOH-terminal processing, and cellular localizations of the various mutant PLAP forms were determined. Substitution of Asp-484 by glycine, alanine, cysteine, asparagine, or serine (category I) resulted in PI-G-tailed and enzymatically active proteins. However, not all category I mutant proteins were PI-G tailed to the same extent. Pre-pro-PLAP with other substituents at position 484 (threonine, proline, methionine, valine, leucine, tyrosine, tryptophan, lysine, glutamic acid, and glutamine; category II) were expressed, as well as the category I amino acids, but there was little or no processing to the PI-G-tailed form, and this latter group exhibited very low enzyme activity. The bulk of the PLAP protein produced by category II mutants and some produced by category I mutants were sequestered within the cell, apparently in the endoplasmic reticulum (ER). Most likely, certain amino acids at residue 484 are preferred because they yield better substrates for the putative "transamidating" enzyme. In transfected COS cells, at least, posttranslational PI-G-tail processing does not go to completion even for preferred substrates. Apparently PI-G tailing is a requisite for transport from the ER and for PLAP enzyme activity. Proteins that are not transamidated are apparently retained in the ER in an inactive conformation. Images PMID:2153284

  10. Optimisation of BACE1 inhibition of tripartite structures by modification of membrane anchors, spacers and pharmacophores - development of potential agents for the treatment of Alzheimer's disease.

    PubMed

    Linning, Philipp; Haussmann, Ute; Beyer, Isaak; Weidlich, Sebastian; Schieb, Heinke; Wiltfang, Jens; Klafki, Hans-Wolfgang; Knölker, Hans-Joachim

    2012-10-03

    Systematic variation of membrane anchor, spacer and pharmacophore building blocks leads to an optimisation of the inhibitory effect of tripartite structures towards BACE1-induced cleavage of the amyloid precursor protein (APP).

  11. Modulation of non steroidal anti-inflammatory drug induced membrane fusion by copper coordination of these drugs: anchoring effect.

    PubMed

    Majumdar, Anupa; Chakraborty, Sreeja; Sarkar, Munna

    2014-12-04

    Membrane fusion, an integral event in several biological processes, is characterized by several intermediate steps guided by specific energy barriers. Hence, it requires the aid of fusogens to complete the process. Common fusogens, such as proteins/peptides, have the ability to overcome theses barriers by their conformational reorganization, an advantage not shared by small drug molecules. Hence, drug induced fusion at physiologically relevant drug concentrations is rare and occurs only in the case of the oxicam group of non steroidal anti-inflammatory drugs (NSAIDs). To use drugs to induce and control membrane fusion in various biochemical processes requires the understanding of how different parameters modulate fusion. Also, fusion efficacy needs to be enhanced. Here we have synthesized and used Cu(II) complexes of fusogenic oxicam NSAIDs, Meloxicam and Piroxicam, to induce fusion in model membranes monitored by using DSC, TEM, steady-state, and time-resolved spectroscopy. The ability of the complexes to anchor apposing model membranes to initiate/facilitate fusion has been demonstrated. This results in better fusion efficacy compared to the bare drugs. These complexes can take the fusion to its final step. Unlike other designed membrane anchors, the role of molecular recognition and strength of interaction between molecular partners is obliterated for these preformed Cu(II)-NSAIDs.

  12. Membrane-anchored Serine Protease Matriptase Is a Trigger of Pulmonary Fibrogenesis

    PubMed Central

    Bardou, Olivier; Menou, Awen; François, Charlène; Duitman, Jan Willem; von der Thüsen, Jan H.; Borie, Raphaël; Sales, Katiuchia Uzzun; Mutze, Kathrin; Castier, Yves; Sage, Edouard; Liu, Ligong; Bugge, Thomas H.; Fairlie, David P.; Königshoff, Mélanie; Crestani, Bruno

    2016-01-01

    Rationale: Idiopathic pulmonary fibrosis (IPF) is a devastating disease that remains refractory to current therapies. Objectives: To characterize the expression and activity of the membrane-anchored serine protease matriptase in IPF in humans and unravel its potential role in human and experimental pulmonary fibrogenesis. Methods: Matriptase expression was assessed in tissue specimens from patients with IPF versus control subjects using quantitative reverse transcriptase–polymerase chain reaction, immunohistochemistry, and Western blotting, while matriptase activity was monitored by fluorogenic substrate cleavage. Matriptase-induced fibroproliferative responses and the receptor involved were characterized in human primary pulmonary fibroblasts by Western blot, viability, and migration assays. In the murine model of bleomycin-induced pulmonary fibrosis, the consequences of matriptase depletion, either by using the pharmacological inhibitor camostat mesilate (CM), or by genetic down-regulation using matriptase hypomorphic mice, were characterized by quantification of secreted collagen and immunostainings. Measurements and Main Results: Matriptase expression and activity were up-regulated in IPF and bleomycin-induced pulmonary fibrosis. In cultured human pulmonary fibroblasts, matriptase expression was significantly induced by transforming growth factor-β. Furthermore, matriptase elicited signaling via protease-activated receptor-2 (PAR-2), and promoted fibroblast activation, proliferation, and migration. In the experimental bleomycin model, matriptase depletion, by the pharmacological inhibitor CM or by genetic down-regulation, diminished lung injury, collagen production, and transforming growth factor-β expression and signaling. Conclusions: These results implicate increased matriptase expression and activity in the pathogenesis of pulmonary fibrosis in human IPF and in an experimental mouse model. Overall, targeting matriptase, or treatment by CM, which is

  13. Selective anchoring in the specific plasma membrane domain: a role in epithelial cell polarity

    PubMed Central

    1988-01-01

    We have studied the role of restrictions to lateral mobility in the segregation of proteins to apical and basolateral domains of MDCK epithelial cells. Radioimmunoassay and semiquantitative video analysis of immunofluorescence on frozen sections showed that one apical and three basolateral glycoproteins, defined by monoclonal antibodies and binding of beta-2-microglobulin, were incompletely extracted with 0.5% Triton X-100 in a buffer that preserves the cortical cytoskeleton (Fey, E. G., K. M. Wan, and S. Penman. 1984. J. Cell Biol. 98:1973-1984; Nelson, W. T. and P. J. Veshnock. 1986. J. Cell Biol. 103:1751-1766). The marker proteins were preferentially extracted from the "incorrect" domain (i.e., the apical domain for a basolateral marker), indicating that the cytoskeletal anchoring was most effective on the "correct" domain. The two basolateral markers were unpolarized and almost completely extractable in cells prevented from establishing cell-cell contacts by incubation in low Ca++ medium, while an apical marker was only extracted from the basal surface under the same conditions. Procedures were developed to apply fluorescent probes to either the apical or the basolateral surface of live cells grown on native collagen gels. Fluorescence recovery after photobleaching of predominantly basolateral antigens showed a large percent of cells (28- 52%) with no recoverable fluorescence on the basal domain but normal fluorescence recovery on the apical surface of most cells (92-100%). Diffusion coefficients in cells with normal fluorescence recovery were in the order of 1.1 x 10(-9) cm2/s in the apical domain and 0.6-0.9 x 10(-9) cm2/s in the basal surface, but the difference was not significant. The data from both techniques indicate (a) the existence of mobile and immobile protein fractions in both plasma membrane domains, and (b) that linkage to a domain specific submembrane cytoskeleton plays an important role in the maintenance of epithelial cell surface polarity

  14. Removal of the Membrane-anchoring Domain of Epidermal Growth Factor Leads to Intracrine Signaling and Disruption of Mammary Epithelial Cell Organization

    PubMed Central

    Wiley, H. Steven; Woolf, Margaret F.; Opresko, Lee K.; Burke, Patrick M.; Will, Birgit; Morgan, Jeffrey R.; Lauffenburger, Douglas A.

    1998-01-01

    Autocrine EGF-receptor (EGFR) ligands are normally made as membrane-anchored precursors that are proteolytically processed to yield mature, soluble peptides. To explore the function of the membrane-anchoring domain of EGF, we expressed artificial EGF genes either with or without this structure in human mammary epithelial cells (HMEC). These cells require activation of the EGFR for cell proliferation. We found that HMEC expressing high levels of membrane- anchored EGF grew at a maximal rate that was not increased by exogenous EGF, but could be inhibited by anti–EGFR antibodies. In contrast, when cells expressed EGF lacking the membrane-anchoring domain (sEGF), their proliferation rate, growth at clonal densities, and receptor substrate phosphorylation were not affected by anti–EGFR antibodies. The sEGF was found to be colocalized with the EGFR within small cytoplasmic vesicles. It thus appears that removal of the membrane-anchoring domain converts autocrine to intracrine signaling. Significantly, sEGF inhibited the organization of HMEC on Matrigel, suggesting that spatial restriction of EGF access to its receptor is necessary for organization. Our results indicate that an important role of the membrane-anchoring domain of EGFR ligands is to restrict the cellular compartments in which the receptor is activated. PMID:9832559

  15. Soluble variants of Rhodobacter capsulatus membrane-anchored cytochrome cy are efficient photosynthetic electron carriers.

    PubMed

    Oztürk, Yavuz; Lee, Dong-Woo; Mandaci, Sevnur; Osyczka, Artur; Prince, Roger C; Daldal, Fevzi

    2008-05-16

    Photosynthetic (Ps) electron transport pathways often contain multiple electron carriers with overlapping functions. Here we focus on two c-type cytochromes (cyt) in facultative phototrophic bacteria of the Rhodobacter genus: the diffusible cyt c2 and the membrane-anchored cyt c(y). In species like R. capsulatus, cyt c(y) functions in both Ps and respiratory electron transport chains, whereas in other species like R. sphaeroides, it does so only in respiration. The molecular bases of this difference was investigated by producing a soluble variant of cyt c(y) (S-c(y)), by fusing genetically the cyt c2 signal sequence to the cyt c domain of cyt c(y). This novel electron carrier was unable to support the Ps growth of R. capsulatus. However, strains harboring cyt S-c(y) regained Ps growth ability by acquiring mutations in its cyt c domain. They produced cyt S-c(y) variants at amounts comparable with that of cyt c2, and conferred Ps growth. Chemical titration indicated that the redox midpoint potential of cyt S-c(y) was about 340 mV, similar to that of cyts c2 or c(y). Remarkably, electron transfer kinetics from the cyt bc1 complex to the photochemical reaction center (RC) mediated by cyt S-c(y) was distinct from those seen with the cyt c2 or cyt c(y). The kinetics exhibited a pronounced slow phase, suggesting that cyt S-c(y) interacted with the RC less tightly than cyt c2. Comparison of structural models of cyts c2 and S-c(y) revealed that several of the amino acid residues implicated in long-range electrostatic interactions promoting binding of cyt c2 to the RC are not conserved in cyt c(y), whereas those supporting short-range hydrophobic interactions are conserved. These findings indicated that attaching electron carrier cytochromes to the membrane allowed them to weaken their interactions with their partners so that they could accommodate more rapid multiple turnovers.

  16. Dynamin-related Protein 1 Oligomerization in Solution Impairs Functional Interactions with Membrane-anchored Mitochondrial Fission Factor*

    PubMed Central

    Clinton, Ryan W.; Francy, Christopher A.; Ramachandran, Rajesh; Qi, Xin; Mears, Jason A.

    2016-01-01

    Mitochondrial fission is a crucial cellular process mediated by the mechanoenzymatic GTPase, dynamin-related protein 1 (Drp1). During mitochondrial division, Drp1 is recruited from the cytosol to the outer mitochondrial membrane by one, or several, integral membrane proteins. One such Drp1 partner protein, mitochondrial fission factor (Mff), is essential for mitochondrial division, but its mechanism of action remains unexplored. Previous studies have been limited by a weak interaction between Drp1 and Mff in vitro. Through refined in vitro reconstitution approaches and multiple independent assays, we show that removal of the regulatory variable domain (VD) in Drp1 enhances formation of a functional Drp1-Mff copolymer. This protein assembly exhibits greatly stimulated cooperative GTPase activity in solution. Moreover, when Mff was anchored to a lipid template, to mimic a more physiologic environment, significant stimulation of GTPase activity was observed with both WT and ΔVD Drp1. Contrary to recent findings, we show that premature Drp1 self-assembly in solution impairs functional interactions with membrane-anchored Mff. Instead, dimeric Drp1 species are selectively recruited by Mff to initiate assembly of a functional fission complex. Correspondingly, we also found that the coiled-coil motif in Mff is not essential for Drp1 interactions, but rather serves to augment cooperative self-assembly of Drp1 proximal to the membrane. Taken together, our findings provide a mechanism wherein the multimeric states of both Mff and Drp1 regulate their collaborative interaction. PMID:26578514

  17. Expression of TWISTED DWARF1 lacking its in-plane membrane anchor leads to increased cell elongation and hypermorphic growth.

    PubMed

    Bailly, Aurélien; Wang, Bangjun; Zwiewka, Marta; Pollmann, Stephan; Schenck, Daniel; Lüthen, Hartwig; Schulz, Alexander; Friml, Jiri; Geisler, Markus

    2014-01-01

    Plant growth is achieved predominantly by cellular elongation, which is thought to be controlled on several levels by apoplastic auxin. Auxin export into the apoplast is achieved by plasma membrane efflux catalysts of the PIN-FORMED (PIN) and ATP-binding cassette protein subfamily B/phosphor-glycoprotein (ABCB/PGP) classes; the latter were shown to depend on interaction with the FKBP42, TWISTED DWARF1 (TWD1). Here by using a transgenic approach in combination with phenotypical, biochemical and cell biological analyses we demonstrate the importance of a putative C-terminal in-plane membrane anchor of TWD1 in the regulation of ABCB-mediated auxin transport. In contrast with dwarfed twd1 loss-of-function alleles, TWD1 gain-of-function lines that lack a putative in-plane membrane anchor (HA-TWD1-Ct ) show hypermorphic plant architecture, characterized by enhanced stem length and leaf surface but reduced shoot branching. Greater hypocotyl length is the result of enhanced cell elongation that correlates with reduced polar auxin transport capacity for HA-TWD1-Ct . As a consequence, HA-TWD1-Ct displays higher hypocotyl auxin accumulation, which is shown to result in elevated auxin-induced cell elongation rates. Our data highlight the importance of C-terminal membrane anchoring for TWD1 action, which is required for specific regulation of ABCB-mediated auxin transport. These data support a model in which TWD1 controls lateral ABCB1-mediated export into the apoplast, which is required for auxin-mediated cell elongation.

  18. Targeting and insertion of peroxisomal membrane proteins: ER trafficking versus direct delivery to peroxisomes.

    PubMed

    Mayerhofer, Peter U

    2016-05-01

    The importance of peroxisomes is highlighted by severe inherited human disorders linked to impaired peroxisomal biogenesis. Besides the simple architecture of these ubiquitous and dynamic organelles, their biogenesis is surprisingly complex and involves specialized proteins, termed peroxins, which mediate targeting and insertion of peroxisomal membrane proteins (PMPs) into the peroxisomal bilayer, and the import of soluble proteins into the protein-dense matrix of the organelle. The long-standing paradigm that all peroxisomal proteins are imported directly into preexisting peroxisomes has been challenged by the detection of PMPs inside the endoplasmic reticulum (ER). New models propose that the ER originates peroxisomal biogenesis by mediating PMP trafficking to the peroxisomes via budding vesicles. However, the relative contribution of this ER-derived pathway to the total peroxisome population in vivo, and the detailed mechanisms of ER entry and exit of PMPs are controversially discussed. This review aims to summarize present knowledge about how PMPs are targeted to the ER, instead of being inserted directly into preexisting peroxisomes. Moreover, molecular mechanisms that facilitate bilayer insertion of PMPs among different species are discussed.

  19. Subcellular Fractionation Analysis of the Extraction of Ubiquitinated Polytopic Membrane Substrate during ER-Associated Degradation.

    PubMed

    Nakatsukasa, Kunio; Kamura, Takumi

    2016-01-01

    During ER-associated degradation (ERAD), misfolded polytopic membrane proteins are ubiquitinated and retrotranslocated to the cytosol for proteasomal degradation. However, our understanding as to how polytopic membrane proteins are extracted from the ER to the cytosol remains largely unclear. To better define the localization and physical properties of ubiquitinated polytopic membrane substrates in vivo, we performed subcellular fractionation analysis of Ste6*, a twelve transmembrane protein that is ubiquitinated primarily by Doa10 E3 ligase in yeast. Consistent with previous in vitro studies, ubiquitinated Ste6* was extracted from P20 (20,000 g pellet) fraction to S20 (20,000 g supernatant) fraction in a Cdc48/p97-dependent manner. Similarly, Ubx2p, which recruits Cdc48/p97 to the ER, facilitated the extraction of Ste6*. By contrast, lipid droplet formation, which was suggested to be dispensable for the degradation of Hrd1-substrates in yeast, was not required for the degradation of Ste6*. Intriguingly, we found that ubiquitinated Ste6* in the S20 fraction could be enriched by further centrifugation at 100,000 g. Although it is currently uncertain whether ubiquitinated Ste6* in P100 fraction is completely free from any lipids, membrane flotation analysis suggested the existence of two distinct populations of ubiquitinated Ste6* with different states of membrane association. Together, these results imply that ubiquitinated Ste6* may be sequestered into a putative quality control sub-structure by Cdc48/p97. Fractionation assays developed in the present study provide a means to further dissect the ill-defined post-ubiquitination step during ERAD of polytopic membrane substrates.

  20. A 39-kD plasma membrane protein (IP39) is an anchor for the unusual membrane skeleton of Euglena gracilis

    SciTech Connect

    Rosiere, T.K.; Marrs, J.A.; Bouck, G.B. )

    1990-04-01

    The major integral plasma membrane protein (IP39) of Euglena gracilis was radiolabeled, peptide mapped, and dissected with proteases to identify cytoplasmic domains that bind and anchor proteins of the cell surface. When plasma membranes were radioiodinated and extracted with octyl glucoside, 98% of the extracted label was found in IP39 or the 68- and 110-kD oligomers of IP39. The octyl glucoside extracts were incubated with unlabeled cell surface proteins immobilized on nitrocellulose (overlays). Radiolabel from the membrane extract bound one (80 kD) of the two (80 and 86 kD) major membrane skeletal protein bands. Resolubilization of the bound label yielded a radiolabeled polypeptide identical in Mr to IP39. Intact plasma membranes were also digested with papain before or after radioiodination, thereby producing a cytoplasmically truncated IP39. The octyl glucoside extract of truncated IP39 no longer bound to the 80-kD membrane skeletal protein in the nitrocellulose overlays. EM of intact or trypsin digested plasma membranes incubated with membrane skeletal proteins under stringent conditions similar to those used in the nitrocellulose overlays revealed a partially reformed membrane skeletal layer. Little evidence of a membrane skeletal layer was found, however, when plasma membranes were predigested with papain before reassociation. A candidate 80-kD binding domain of IP39 has been tentatively identified as a peptide fragment that was present after trypsin digestion of plasma membranes, but was absent after papain digestion in two-dimensional peptide maps of IP39. Together, these data suggest that the unique peripheral membrane skeleton of Euglena binds to the plasma membrane through noncovalent interactions between the major 80-kD membrane skeletal protein and a small, papain sensitive cytoplasmic domain of IP39.

  1. SurA Is Involved in the Targeting to the Outer Membrane of a Tat Signal Sequence-Anchored Protein

    PubMed Central

    Rondelet, Arnaud

    2012-01-01

    The twin arginine translocation (Tat) pathway exports folded proteins from the cytoplasm to the periplasm of bacteria. The targeting of the exported proteins to the Tat pathway relies on a specific amino-terminal signal sequence, which is cleaved after exportation. In the phytopathogen Dickeya dadantii, the pectin lyase homologue PnlH is exported by the Tat pathway without cleavage of its signal sequence, which anchors PnlH into the outer membrane. In proteobacteria, the vast majority of outer membrane proteins consists of β-barrel proteins and lipoproteins. Thus, PnlH represents a new kind of outer membrane protein. In Escherichia coli, periplasmic chaperones SurA, Skp, and DegP work together with the β-barrel assembly machinery (Bam) to target and insert β-barrel proteins into the outer membrane. In this work, we showed that SurA is required for an efficient targeting of PnlH to the outer membrane. Moreover, we were able to detect an in vitro interaction between SurA and the PnlH signal sequence. Since the PnlH signal sequence contains a highly hydrophobic region, we propose that SurA protects it from the hydrophobic periplasm during targeting of PnlH to the outer membrane. We also studied the nature of the information carried by the PnlH signal sequence responsible for its targeting to the outer membrane after exportation by the Tat system. PMID:22961852

  2. The molecular size of the extra-membrane domain influences the diffusion of the GPI-anchored VSG on the trypanosome plasma membrane.

    PubMed

    Hartel, Andreas J W; Glogger, Marius; Guigas, Gernot; Jones, Nicola G; Fenz, Susanne F; Weiss, Matthias; Engstler, Markus

    2015-06-11

    A plethora of proteins undergo random and passive diffusion in biological membranes. While the contribution of the membrane-embedded domain to diffusion is well established, the potential impact of the extra-membrane protein part has been largely neglected. Here, we show that the molecular length influences the diffusion coefficient of GPI-anchored proteins: smaller proteins diffuse faster than larger ones. The distinct diffusion properties of differently sized membrane proteins are biologically relevant. The variant surface glycoprotein (VSG) of African trypanosomes, for example, is sized for an effective diffusion-driven randomization on the cell surface, a process that is essential for parasite virulence. We propose that the molecular sizes of proteins dominating the cell surfaces of other eukaryotic pathogens may also be related to diffusion-limited functions.

  3. The Bradyrhizobium japonicum cycM gene encodes a membrane-anchored homolog of mitochondrial cytochrome c.

    PubMed Central

    Bott, M; Ritz, D; Hennecke, H

    1991-01-01

    Mitochondrial cytochrome c is a water-soluble protein in the intermembrane space which catalyzes electron transfer from the cytochrome bc1 complex to the terminal oxidase cytochrome aa3. In Bradyrhizobium japonicum, a gene (cycM) which apparently encodes a membrane-anchored homolog of mitochondrial cytochrome c was discovered. The apoprotein deduced from the nucleotide sequence of the cycM gene consists of 184 amino acids with a calculated Mr of 19,098 and an isoelectric point of 8.35. At the N-terminal end (positions 9 to 31), there was a strongly hydrophobic domain which, by forming a transmembrane helix, could serve first as a transport signal and then as a membrane anchor. The rest of the protein was hydrophilic and, starting at position 72, shared about 50% sequence identity with mitochondrial cytochrome c. The heme-binding-site motif Cys-Gly-Ala-Cys-His was located at positions 84 to 88. A B. japonicum cycM insertion mutant (COX122) exhibited an oxidase-negative phenotype and apparently lacked cytochrome aa3 in addition to the CycM protein. The wild-type phenotype with respect to all characteristics tested was restored by providing the cycM gene in trans. The data supported the conclusion that the assembly of cytochrome aa3 depended on the prior incorporation of the CycM protein in the cytoplasmic membrane. Images FIG. 3 PMID:1657867

  4. ADAM12 is expressed in the tumour vasculature and mediates ectodomain shedding of several membrane-anchored endothelial proteins.

    PubMed

    Fröhlich, Camilla; Klitgaard, Marie; Noer, Julie B; Kotzsch, Alexander; Nehammer, Camilla; Kronqvist, Pauliina; Berthelsen, Jens; Blobel, Carl; Kveiborg, Marie; Albrechtsen, Reidar; Wewer, Ulla M

    2013-05-15

    ADAM (a disintegrin and metalloproteinase) 12 is a metalloprotease implicated in cancer progression. ADAM12 can activate membrane-anchored proteins, such as sonic hedgehog, Delta-like 1 and certain epidermal growth factor receptor ligands, through a process called ectodomain shedding. We screened several membrane-anchored proteins to further dissect the substrate profile of ADAM12-mediated ectodomain shedding, and found shedding of five previously unreported substrates [Kitl1, VE-cadherin (vascular endothelial cadherin), Flk-1 (fetal liver kinase 1), Tie-2, and VCAM-1 (vascular cell adhesion molecule 1)], of which the latter four are specifically expressed by endothelial cells. We also observed that ADAM12 expression was increased in the tumour vasculature of infiltrating ductal carcinoma of the human breast as compared with little to no expression in normal breast tissue vasculature, suggesting a role for ADAM12 in tumour vessels. These results prompted us to further evaluate ADAM12-mediated shedding of two endothelial cell proteins, VE-cadherin and Tie-2. Endogenous ADAM12 expression was very low in cultured endothelial cells, but was significantly increased by cytokine stimulation. In parallel, the shed form of VE-cadherin was elevated in such cytokine-stimulated endothelial cells, and ADAM12 siRNA (small interfering RNA) knockdown reduced cytokine-induced shedding of VE-cadherin. In conclusion, the results of the present study demonstrate a role for ADAM12 in ectodomain shedding of several membrane-anchored endothelial proteins. We speculate that this process may have importance in tumour neovascularization or/and tumour cell extravasation.

  5. Activation Mechanism and Cellular Localization of Membrane-Anchored Alginate Polymerase in Pseudomonas aeruginosa.

    PubMed

    Moradali, M Fata; Ghods, Shirin; Rehm, Bernd H A

    2017-03-03

    The exopolysaccharide, alginate, produced by the opportunistic human pathogen Pseudomonas aeruginosa represents a survival advantage by contributing to formation of characteristic biofilms during infection. Membrane anchored proteins Alg8 (catalytic subunit) and Alg44 (co-polymerase) constitute the alginate polymerase which is being activated by the second messenger molecule c-di-GMP, but the mechanism of activation remains elusive. To shed light on the c-di-GMP mediated activation of alginate polymerization in vivo, an in silico structural model of Alg8 fused to the c-di-GMP binding PilZ domain informed by the structure of cellulose synthase, BcsA, was developed. This structural model was probed by site-specific mutagenesis and different cellular levels of c-di-GMP. Results suggested that c-di-GMP-mediated activation of alginate polymerization involves amino acids residing at two loops including H323 (loop A), T457 and E460 (loop B) surrounding the catalytic site in the predicted model. Activity of respective Alg8 variants suggested that c-di-GMP-mediated control of substrate access to the catalytic site of Alg8 is dissimilar to the known activation mechanism of BcsA. Alg8 variants responded differently to various c-di-GMP levels while MucR imparted c-di-GMP for activation of alginate polymerase. Furthermore, we showed that Alg44 co-polymerase constituted a stable dimer, with its periplasmic domains required for protein localization, alginate polymerization and modification. Superfolder GFP fusions of Alg8 and Alg44 showed a non-uniform, punctuate and patchy arrangement of both proteins surrounding the cell. Overall, this study provides insights into the c-di-GMP mediated activation of alginate polymerization while assigning functional roles to Alg8 and Alg44 including their subcellular localization and distribution.IMPORTANCE The exopolysaccharide, alginate, is an important biofilm component of the opportunistic human pathogen P. aeruginosa and the principle

  6. Stability and Function of the Sec61 Translocation Complex Depends on the Sss1p Tail-Anchor Sequence

    PubMed Central

    Falcone, Domina; Henderson, Matthew P.; Nieuwland, Hendrik; Coughlan, Christine M.; Brodsky, Jeffrey L.; Andrews, David W.

    2011-01-01

    SYNOPSIS Sss1p, an essential component of the heterotrimeric Sec61 complex in the endoplasmic reticulum (ER) #, is a tail-anchored protein whose precise mechanism of action is largely unknown. Tail-anchored proteins are involved in many cellular processes and are characterized by a single transmembrane sequence (TMS) at or near the carboxyl-terminus. The Sec61 complex is the molecular machine through which secretory and membrane proteins translocate into and across the ER membrane. To understand the function of the tail-anchor of Sss1p, we introduced mutations into the tail-anchor sequence and analyzed the resulting yeast phenotypes. Point mutations in the C-terminal hydrophobic core of the tail-anchor of Sss1p were identified that allowed Sss1p assembly into Sec61 complexes but resulted in diminished growth, defects in co- and post-translational translocation, diminished ribosome binding to Sec61 complexes, reduced stability of both heterotrimeric Sec61 and heptameric Sec complexes, and a complete breakdown of ER structure. The underlying defect caused by the mutations involves loss of a stabilizing function of the Sss1p tail-anchor sequence for both the heterotrimeric Sec61 and the heptameric Sec complexes. These data indicate that by stabilizing multiprotein membrane complexes, the hydrophobic core of a tail-anchor sequence can be more than a simple membrane anchor. PMID:21355855

  7. The grape aquaporin VvSIP1 transports water across the ER membrane.

    PubMed

    Noronha, Henrique; Agasse, Alice; Martins, Ana Paula; Berny, Marie C; Gomes, Dulceneia; Zarrouk, Olfa; Thiebaud, Pierre; Delrot, Serge; Soveral, Graça; Chaumont, François; Gerós, Hernâni

    2014-03-01

    Water diffusion through biological membranes is facilitated by aquaporins, members of the widespread major intrinsic proteins (MIPs). In the present study, the localization, expression, and functional characterization of a small basic intrinsic protein (SIP) from the grapevine were assessed. VvSIP1 was expressed in leaves and berries from field-grown vines, and in leaves and stems from in vitro plantlets, but not in roots. When expressed in tobacco mesophyll cells and in Saccharomyces cerevisiae, fluorescent-tagged VvSIP1 was localized at the endoplasmic reticulum (ER). Stopped-flow spectroscopy showed that VvSIP1-enriched ER membrane vesicles from yeast exhibited higher water permeability and lower activation energy for water transport than control vesicles, indicating the involvement of protein-mediated water diffusion. This aquaporin was able to transport water but not glycerol, urea, sorbitol, glucose, or inositol. VvSIP1 expression in Xenopus oocytes failed to increase the water permeability of the plasma membrane. VvSIP1-His-tag was solubilized and purified to homogeneity from yeast ER membranes and the reconstitution of the purified protein in phosphatidylethanolamine liposomes confirmed its water channel activity. To provide further insights into gene function, the expression of VvSIP1 in mature grapes was studied when vines were cultivated in different field conditions, but its transcript levels did not increase significantly in water-stressed plants and western-exposed berries. However, the expression of the aquaporin genes VvSIP1, VvPIP2;2, and VvTIP1;1 was up-regulated by heat in cultured cells.

  8. Mobile ER-to-Golgi but not post-Golgi membrane transport carriers disappear during the terminal myogenic differentiation.

    PubMed

    Nevalainen, Mika; Kaisto, Tuula; Metsikkö, Kalervo

    2010-10-01

    The organelles of the exocytic pathway undergo a profound reorganization during the myogenic differentiation. Here, we have investigated the dynamics of the membrane trafficking at various stages of the differentiation process by using the green fluorescent protein-tagged, temperature-sensitive vesicular stomatitis virus G protein (tsG-GFP) as a marker. At the restrictive temperature of 39°C, the tsG-GFP located to the endoplasmic reticulum (ER) at each stage of differentiation. Mobile membrane containers moving from the ER to the Golgi elements were seen in myoblasts and myotubes upon shifting the temperature to 20°C. In adult myofibers, in contrast, such containers were not seen although the tsG-GFP rapidly shifted from the ER to the Golgi elements. The mobility of tsG-GFP in the myofiber ER was restricted, suggesting localization in an ER sub-compartment. Contrasting with the ER-to-Golgi trafficking, transport from the Golgi elements to the plasma membrane involved mobile transport containers in all differentiation stages. These findings indicate that ER-to-Golgi trafficking in adult skeletal myofibers does not involve long-distance moving membrane carriers as occurs in other mammalian cell types.

  9. Biosynthesis of trypanosoma brucei variant surface glycoproteins: N-glycosylation and addition of a phosphatidylinositol membrane anchor

    SciTech Connect

    Not Available

    1986-01-05

    The variant surface glycoproteins (VSGs) of Trypanosoma brucei are synthesized with a hydrophobic COOH-terminal peptide that is cleaved and replaced by a glycophospholipid, which anchors VSG to the surface membrane. The kinetics of VSG processing were studied by metabolic labeling with (/sup 35/S)methionine and (/sup 3/H)myristic acid. The COOH-terminal oligosaccharide-containing structure remaining after phospholipase removal of dimyristyl glycerol from membrane-form VSG could be detected serologically within 1 min of polypeptide synthesis in two T. brucei variants studied. Addition of the oligosaccharide-containing structure was resistant to tunicamycin. VSGs synthesized in the presence of tunicamycin displayed lower apparent molecular weights, consistent with the complete inhibition of N-glycosylation at one (variant 117), two (variant 221), or at least three (variant 118) internal asparagine sites. In dual-labeling studies, cycloheximide caused rapid inhibition of both (/sup 35/S)methionine and (/sup 3/H)myristic acid incorporation.

  10. Anchoring tick salivary anti-complement proteins IRAC I and IRAC II to membrane increases their immunogenicity.

    PubMed

    Gillet, Laurent; Schroeder, Hélène; Mast, Jan; Thirion, Muriel; Renauld, Jean-Christophe; Dewals, Benjamin; Vanderplasschen, Alain

    2009-01-01

    Tick salivary proteins are promising targets for the development of anti-tick vaccines. Recently, we described two paralogous anti-complement proteins, called Ixodes ricinus anti-complement (IRAC) proteins I and II, that are co-expressed in tick I. ricinus salivary glands. However, our previous attempts to immunize rabbits against IRAC via infection with recombinant Bovine herpesvirus 4 (BoHV-4) vectors invariably failed although both recombinants expressed high levels of functional IRAC proteins in vitro. As IRAC are soluble monovalent antigens, one of the possible explanations is that monovalent ligation of the B-cell receptor induces receptor activation but fails to promote antigen presentation, a phenomenon that is thought to induce a state of B-cell tolerance. In the present study, we tried to increase IRAC immunogenicity by expressing them as oligovalent antigens. To this end, IRAC were fused to membrane anchors and BoHV-4 vectors expressing these recombinant forms were produced. The immunization potentials of recombinant viruses expressing either secreted or transmembrane IRAC proteins were then compared. While the former did not induce a detectable immune response against IRAC, the latter led to high titres of anti-IRAC antibodies that only marginally affected tick blood feeding. All together, the data presented in this study demonstrate that the immunogenicity of a soluble antigen can be greatly improved by anchoring it in membrane.

  11. Two distinct trimeric conformations of natively membrane-anchored full-length herpes simplex virus 1 glycoprotein B

    PubMed Central

    Zeev-Ben-Mordehai, Tzviya; Vasishtan, Daven; Hernández Durán, Anna; Vollmer, Benjamin; White, Paul; Prasad Pandurangan, Arun; Siebert, C. Alistair; Topf, Maya

    2016-01-01

    Many viruses are enveloped by a lipid bilayer acquired during assembly, which is typically studded with one or two types of glycoproteins. These viral surface proteins act as the primary interface between the virus and the host. Entry of enveloped viruses relies on specialized fusogen proteins to help merge the virus membrane with the host membrane. In the multicomponent herpesvirus fusion machinery, glycoprotein B (gB) acts as this fusogen. Although the structure of the gB ectodomain postfusion conformation has been determined, any other conformations (e.g., prefusion, intermediate conformations) have so far remained elusive, thus restricting efforts to develop antiviral treatments and prophylactic vaccines. Here, we have characterized the full-length herpes simplex virus 1 gB in a native membrane by displaying it on cell-derived vesicles and using electron cryotomography. Alongside the known postfusion conformation, a novel one was identified. Its structure, in the context of the membrane, was determined by subvolume averaging and found to be trimeric like the postfusion conformation, but appeared more condensed. Hierarchical constrained density-fitting of domains unexpectedly revealed the fusion loops in this conformation to be apart and pointing away from the anchoring membrane. This vital observation is a substantial step forward in understanding the complex herpesvirus fusion mechanism, and opens up new opportunities for more targeted intervention of herpesvirus entry. PMID:27035968

  12. Dynamin-related Protein 1 Oligomerization in Solution Impairs Functional Interactions with Membrane-anchored Mitochondrial Fission Factor.

    PubMed

    Clinton, Ryan W; Francy, Christopher A; Ramachandran, Rajesh; Qi, Xin; Mears, Jason A

    2016-01-01

    Mitochondrial fission is a crucial cellular process mediated by the mechanoenzymatic GTPase, dynamin-related protein 1 (Drp1). During mitochondrial division, Drp1 is recruited from the cytosol to the outer mitochondrial membrane by one, or several, integral membrane proteins. One such Drp1 partner protein, mitochondrial fission factor (Mff), is essential for mitochondrial division, but its mechanism of action remains unexplored. Previous studies have been limited by a weak interaction between Drp1 and Mff in vitro. Through refined in vitro reconstitution approaches and multiple independent assays, we show that removal of the regulatory variable domain (VD) in Drp1 enhances formation of a functional Drp1-Mff copolymer. This protein assembly exhibits greatly stimulated cooperative GTPase activity in solution. Moreover, when Mff was anchored to a lipid template, to mimic a more physiologic environment, significant stimulation of GTPase activity was observed with both WT and ΔVD Drp1. Contrary to recent findings, we show that premature Drp1 self-assembly in solution impairs functional interactions with membrane-anchored Mff. Instead, dimeric Drp1 species are selectively recruited by Mff to initiate assembly of a functional fission complex. Correspondingly, we also found that the coiled-coil motif in Mff is not essential for Drp1 interactions, but rather serves to augment cooperative self-assembly of Drp1 proximal to the membrane. Taken together, our findings provide a mechanism wherein the multimeric states of both Mff and Drp1 regulate their collaborative interaction. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. An endoplasmic reticulum (ER) membrane complex composed of SPFH1 and SPFH2 mediates the ER-associated degradation of inositol 1,4,5-trisphosphate receptors.

    PubMed

    Pearce, Margaret M P; Wormer, Duncan B; Wilkens, Stephan; Wojcikiewicz, Richard J H

    2009-04-17

    How endoplasmic reticulum (ER) proteins that are substrates for the ER-associated degradation (ERAD) pathway are recognized for polyubiquitination and proteasomal degradation is largely unresolved. Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) form tetrameric calcium channels in ER membranes, whose primary role is to control the release of ER calcium stores, but whose levels are also regulated, in an activation-dependent manner, by the ERAD pathway. Here we report that the ER membrane protein SPFH1 and its homolog SPFH2 form a heteromeric approximately 2 MDa complex that binds to IP(3)R tetramers immediately after their activation and is required for their processing. The complex is ring-shaped (diameter approximately 250A(),) and RNA interference-mediated depletion of SPFH1 and SPFH2 blocks IP(3)R polyubiquitination and degradation. We propose that this novel SPFH1/2 complex is a recognition factor that targets IP(3)Rs and perhaps other substrates for ERAD.

  14. Male meiotic cytokinesis requires ceramide synthase 3-dependent sphingolipids with unique membrane anchors.

    PubMed

    Rabionet, Mariona; Bayerle, Aline; Jennemann, Richard; Heid, Hans; Fuchser, Jens; Marsching, Christian; Porubsky, Stefan; Bolenz, Christian; Guillou, Florian; Gröne, Hermann-Josef; Gorgas, Karin; Sandhoff, Roger

    2015-09-01

    Somatic cell cytokinesis was shown to involve the insertion of sphingolipids (SLs) to midbodies prior to abscission. Spermatogenic midbodies transform into stable intercellular bridges (ICBs) connecting clonal daughter cells in a syncytium. This process requires specialized SL structures. (1) Using high resolution-mass spectrometric imaging, we show in situ a biphasic pattern of SL synthesis with testis-specific anchors. This pattern correlates with and depends on ceramide synthase 3 (CerS3) localization in both, pachytene spermatocytes until completion of meiosis and elongating spermatids. (2) Blocking the pathways to germ cell-specific ceramides (CerS3-KO) and further to glycosphingolipids (glucosylceramide synthase-KO) in mice highlights the need for special SLs for spermatid ICB stability. In contrast to somatic mitosis these SLs require ultra-long polyunsaturated anchors with unique physico-chemical properties, which can only be provided by CerS3. Loss of these anchors causes enhanced apoptosis during meiosis, formation of multinuclear giant cells and spermatogenic arrest. Hence, testis-specific SLs, which we also link to CerS3 in human testis, are quintessential for male fertility. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Dimannosyldiacylglycerol serves as a lipid anchor precursor in the assembly of the membrane-associated lipomannan in Micrococcus luteus.

    PubMed

    Pakkiri, Leroy S; Waechter, Charles J

    2005-03-01

    Based on recent analytical and enzymological studies, a topological model for the role of alpha-D-mannosyl-(1-->3)-alpha-D-mannosyl-(1-->3)-diacylglycerol (Man(2)-DAG) as a lipid anchor precursor and mannosylphosphorylundecaprenol (Man-P-Und) as a mannosyl donor in the assembly of a membrane-associated lipomannan (LM) in Micrococcus luteus has been proposed. In this study, a [(3)H]mannose-suicide selection procedure has been used to identify temperature-sensitive (ts) mutants defective in LM assembly. Two micrococcal mutants with abnormal levels of Man(2)-DAG and LM at the nonpermissive temperature (37 degrees C), mms1 and mms2, have been isolated and characterized. In vivo and in vitro biochemical assays indicate that mms1 cells have a defect in the mannosyltransferase catalyzing the conversion of Man-DAG to Man(2)-DAG, and mms2 has a temperature-sensitive defect in the synthesis of Man-P-Und. Because mms1 cells are depleted of endogenous Man(2)-DAG, membranes from this mutant efficiently converted purified, exogenous [(3)H]Man(2)-DAG to [(3)H]LM by a Man-P-Und-dependent process. An obligatory role for Man-P-Und as a mannosyl donor in the elongation process was also demonstrated by showing that the conversion of exogenous [(3)H]Man(2)-DAG to [(3)H]LM by membranes from mms1 cells in the presence of GDP-Man was inhibited by amphomycin. In addition, consistent with Man(2)-DAG serving as a lipid anchor precursor for LM assembly, endogenous, prelabeled [(3)H]Man(2)-DAG was converted to [(3)H]LM when membranes from mms2 cells were incubated with purified, exogenous Man-P-Und. These studies provide the first direct proof for the role of Man(2)-DAG as the lipid anchor precursor for LM, and suggest that Man(2)-DAG may be essential for the normal growth of M. luteus cells.

  16. Comparative Analysis of the Glycosylation Profiles of Membrane-Anchored HIV-1 Envelope Glycoprotein Trimers and Soluble gp140

    PubMed Central

    Go, Eden P.; Herschhorn, Alon; Gu, Christopher; Castillo-Menendez, Luis; Zhang, Shijian; Mao, Youdong; Chen, Haiyan; Ding, Haitao; Wakefield, John K.; Hua, David; Liao, Hua-Xin; Kappes, John C.; Sodroski, Joseph

    2015-01-01

    ABSTRACT The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer, which consists of the gp120 and gp41 subunits, is the focus of multiple strategies for vaccine development. Extensive Env glycosylation provides HIV-1 with protection from the immune system, yet the glycans are also essential components of binding epitopes for numerous broadly neutralizing antibodies. Recent studies have shown that when Env is isolated from virions, its glycosylation profile differs significantly from that of soluble forms of Env (gp120 or gp140) predominantly used in vaccine discovery research. Here we show that exogenous membrane-anchored Envs, which can be produced in large quantities in mammalian cells, also display a virion-like glycan profile, where the glycoprotein is extensively decorated with high-mannose glycans. Additionally, because we characterized the glycosylation with a high-fidelity profiling method, glycopeptide analysis, an unprecedented level of molecular detail regarding membrane Env glycosylation and its heterogeneity is presented. Each glycosylation site was characterized individually, with about 500 glycoforms characterized per Env protein. While many of the sites contain exclusively high-mannose glycans, others retain complex glycans, resulting in a glycan profile that cannot currently be mimicked on soluble gp120 or gp140 preparations. These site-level studies are important for understanding antibody-glycan interactions on native Env trimers. Additionally, we report a newly observed O-linked glycosylation site, T606, and we show that the full O-linked glycosylation profile of membrane-associated Env is similar to that of soluble gp140. These findings provide new insight into Env glycosylation and clarify key molecular-level differences between membrane-anchored Env and soluble gp140. IMPORTANCE A vaccine that protects against human immunodeficiency virus type 1 (HIV-1) infection should elicit antibodies that bind to the surface

  17. Membrane anchoring of the autoantigen GAD65 to microvesicles in pancreatic beta-cells by palmitoylation in the NH2-terminal domain

    PubMed Central

    1992-01-01

    Pancreatic beta-cells and gamma-aminobutyric acid (GABA)-secreting neurons both express the enzyme glutamic acid decarboxylase (GAD) which is a major target of autoantibodies associated with beta-cell destruction and impairment of GABA-ergic neurotransmitter pathways. The predominant form of GAD in pancreatic beta-cells, GAD65, is synthesized as a soluble hydrophilic molecule, which is modified to become firmly membrane anchored. Here we show by immunogold electron microscopy that GAD65 is localized to the membrane of small vesicles which are identical in size to small synaptic-like microvesicles in pancreatic beta-cells. The NH2-terminal domain of GAD65 is the site of a two-step modification, the last of which results in a firm membrane anchoring that involves posttranslational hydroxylamine sensitive palmitoylation. GAD65 can be released from the membrane by an apparent enzyme activity in islets, suggesting that the membrane anchoring step is reversible and potentially regulated. The hydrophobic modifications and consequent membrane anchoring of GAD65 to microvesicles that store its product GABA may be of functional importance and, moreover, significant for its selective role as an autoantigen. PMID:1321158

  18. Identification of the carboxyl-terminal membrane-anchoring region of HPC-1/syntaxin 1A with the substituted-cysteine-accessibility method and monoclonal antibodies.

    PubMed

    Suga, Kei; Yamamori, Tetsuo; Akagawa, Kimio

    2003-03-01

    HPC-1/syntaxin 1A is a member of the syntaxin family, and functions at the plasma membrane during membrane fusion as the target-soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (t-SNARE). We identified the membrane-anchoring region of HPC-1/syntaxin 1A, and examined its role in anchoring of a protein to the plasma membrane. A series of mutants was created from a cysteine-less mutant of HPC-1/syntaxin 1A by substitution of each residue at the C-terminus with cysteine. The accessibility of the thiol-groups in each mutant was analyzed in vivo. The cysteine (C145) within the N-terminal cytosolic segment was labeled, but not that at C271 or C272, or any of those introduced at the C-terminus. The addition of additional residues to the C-terminal tail of HPC-1/syntaxin 1A allowed labeling by thiol-specific reagents. A monoclonal antibody directed against the C-terminal tail peptide did not react with the protein located at the plasma membrane. In addition, subcellular fractionation and immunocytochemical analyses with various transmembrane mutants showed that the C-terminal tail comprising eight amino acids is essential for anchoring of HPC-1/syntaxin 1A to the plasma membrane. These results indicate that the C-terminal membrane-anchoring region, which comprises 23 amino acids, does not traverse the lipid-bilayer and that the C-terminal tail is essential for anchoring of HPC-1/syntaxin 1A to the plasma membrane.

  19. Characterization of the catalytic activity of the membrane-anchored metalloproteinase ADAM15 in cell-based assays.

    PubMed

    Maretzky, Thorsten; Yang, Guangli; Ouerfelli, Ouathek; Overall, Christopher M; Worpenberg, Susanne; Hassiepen, Ulrich; Eder, Joerg; Blobel, Carl P

    2009-04-28

    ADAM15 (a disintegrin and metalloproteinase 15) is a membrane-anchored metalloproteinase, which is overexpressed in several human cancers and has been implicated in pathological neovascularization and prostate cancer metastasis. Yet, little is known about the catalytic properties of ADAM15. Here, we purified soluble recombinant ADAM15 to test for its ability to cleave a library of peptide substrates. However, we found no processing of any of the peptide substrates tested here, and therefore turned to cell-based assays to characterize the catalytic properties of ADAM15. Overexpression of full-length membrane-anchored ADAM15 or the catalytically inactive ADAM15E-->A together with various membrane proteins resulted in increased release of the extracellular domain of the fibroblast growth factor receptor 2iiib (FGFR2iiib) by ADAM15, but not ADAM15E-->A. This provided a robust assay for a characterization of the catalytic properties of ADAM15 in intact cells. We found that increased expression of ADAM15 resulted in increased FGFR2iiib shedding, but that ADAM15 was not stimulated by phorbol esters or calcium ionophores, two commonly used activators of ectodomain shedding. Moreover, ADAM15-dependent processing of FGFR2iiib was inhibited by the hydroxamate-based metalloproteinase inhibitors marimastat, TAPI-2 and GM6001, and by 50 nM TIMP-3 (tissue inhibitor of metalloproteinases 3), but not by 100 nM TIMP-1, and only weakly by 100 nM TIMP-2. These results define key catalytic properties of ADAM15 in cells and its response to stimulators and inhibitors of ectodomain shedding. A cell-based assay for the catalytic activity of ADAM15 could aid in identifying compounds, which could be used to block the function of ADAM15 in pathological neovascularization and cancer.

  20. Novel Bacterial Surface Display Systems Based on Outer Membrane Anchoring Elements from the Marine Bacterium Vibrio anguillarum▿ †

    PubMed Central

    Yang, Zhao; Liu, Qin; Wang, Qiyao; Zhang, Yuanxing

    2008-01-01

    Surface display of heterologous peptides and proteins such as receptors, antigens, and enzymes on live bacterial cells is of considerable value for various biotechnological and industrial applications. In this study, a series of novel cell surface display systems were examined by using Vibrio anguillarum outer membrane protein and outer membrane lipoprotein as anchoring motifs. These display systems consist of (i) the signal sequence and first 11 N-terminal amino acids of V. anguillarum outer membrane lipoprotein Wza, or the signal sequence and first 9 N-terminal amino acids of the mature major Escherichia coli lipoprotein Lpp, and (ii) transmembrane domains of V. anguillarum outer membrane proteins Omporf1, OmpU, or Omp26La. In order to assay the translocation efficiency of constructed display systems in bacteria, green fluorescent protein (GFP) was inserted to the systems and the results of GFP surface localization confirmed that four of the six surface display systems could successfully display GFP on the E. coli surface. For assaying its potential application in live bacteria carrier vaccines, an excellent display system Wza-Omporf1 was fused with the major capsid protein (MCP) of large yellow croaker iridovirus and introduced into attenuated V. anguillarum strain MVAV6203, and subsequent analysis of MCP surface localization proved that the novel display system Wza-Omporf1 could function as a strong tool in V. anguillarum carrier vaccine development. PMID:18487403

  1. Synaptotagmin SYTA forms ER-plasma membrane junctions that are recruited to plasmodesmata for plant virus movement.

    PubMed

    Levy, Amit; Zheng, Judy Y; Lazarowitz, Sondra G

    2015-08-03

    Metazoan synaptotagmins are Ca(2+) sensors that regulate exocytosis and endocytosis in various cell types, notably in nerve and neuroendocrine cells [1, 2]. Recently, the structurally related extended synaptotagmins were shown to tether the cortical ER to the plasma membrane in human and yeast cells to maintain ER morphology and stabilize ER-plasma membrane (ER-PM) contact sites for intracellular lipid and Ca(2+) signaling [3, 4]. The Arabidopsis synaptotagmin SYTA regulates endocytosis and the ability of plant virus movement proteins (MPs) to alter plasmodesmata to promote virus cell-to-cell transport [5, 6]. Yet how MPs modify plasmodesmata, the cellular functions of SYTA and how these aid MP activity, and the proteins essential to form plant cell ER-PM contact sites remain unknown. We addressed these questions using an Arabidopsis SYTA knockdown line syta-1 and a Tobamovirus movement protein MP(TVCV) [5, 7]. We report here that SYTA localized to ER-PM contact sites. These sites were depleted and the ER network collapsed in syta-1, and both reformed upon rescue with SYTA. MP(TVCV) accumulation in plasmodesmata, but not secretory trafficking, was also inhibited in syta-1. During infection, MP(TVCV) recruited SYTA to plasmodesmata, and SYTA and the cortical ER were subsequently remodeled to form viral replication sites adjacent to plasmodesmata in which MP(TVCV) and SYTA directly interacted caged within ER membrane. SYTA also accumulated in plasmodesmata active in MP(TVCV) transport. Our findings show that SYTA is essential to form ER-PM contact sites and suggest that MPs interact with SYTA to recruit these sites to alter plasmodesmata for virus cell-to-cell movement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Glucan synthesis in membranes from Zea mays and Glycine max: Interaction of ER and Golgi membranes

    SciTech Connect

    Gibeaut, D.M.; Carpita, N.C. )

    1993-05-01

    Membranes of the Golgi apparatus from maize (Zea mays L.) were used to synthesize in vitro the (1[yields]3),(1[yields]4)-[beta]-D-glucan that is unique to the cell wall of the Poaceae. Activated charcoal added during homogenization reduced the synthesis of callose and enhanced synthesis of (1[yields]3),(1[yields]4)-[beta]-D-glucan. Charcoal was also effective on stimulating the synthesis of xyloglucan using Golgi apparatus from soybean (Glycine max) hypocotyls. In both cases, a crude membrane fraction containing both endoplasmic synthesis than a purified fraction of Golgi apparatus. The interaction of endoplasmic reticulum and Golgi apparatus is being investigated.

  3. ER Membrane Phospholipids and Surface Tension Control Cellular Lipid Droplet Formation.

    PubMed

    Ben M'barek, Kalthoum; Ajjaji, Dalila; Chorlay, Aymeric; Vanni, Stefano; Forêt, Lionel; Thiam, Abdou Rachid

    2017-06-19

    Cells convert excess energy into neutral lipids that are made in the endoplasmic reticulum (ER) bilayer. The lipids are then packaged into spherical or budded lipid droplets (LDs) covered by a phospholipid monolayer containing proteins. LDs play a key role in cellular energy metabolism and homeostasis. A key unanswered question in the life of LDs is how they bud off from the ER. Here, we tackle this question by studying the budding of artificial LDs from model membranes. We find that the bilayer phospholipid composition and surface tension are key parameters of LD budding. Phospholipids have differential LD budding aptitudes, and those inducing budding decrease the bilayer tension. We observe that decreasing tension favors the egress of neutral lipids from the bilayer and LD budding. In cells, budding conditions favor the formation of small LDs. Our discovery reveals the importance of altering ER physical chemistry for controlled cellular LD formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A membrane-anchored E-type endo-1,4-β-glucanase is localized on Golgi and plasma membranes of higher plants

    PubMed Central

    Brummell, David A.; Catala, Carmen; Lashbrook, Coralie C.; Bennett, Alan B.

    1997-01-01

    Endo-1,4-β-d-glucanases (EGases, EC 3.2.1.4) are enzymes produced in bacteria, fungi, and plants that hydrolyze polysaccharides possessing a 1,4-β-d-glucan backbone. All previously identified plant EGases are E-type endoglucanases that possess signal sequences for endoplasmic reticulum entry and are secreted to the cell wall. Here we report the characterization of a novel E-type plant EGase (tomato Cel3) with a hydrophobic transmembrane domain and structure typical of type II integral membrane proteins. The predicted protein is composed of 617 amino acids and possesses seven potential sites for N-glycosylation. Cel3 mRNA accumulates in young vegetative tissues with highest abundance during periods of rapid cell expansion, but is not hormonally regulated. Antibodies raised to a recombinant Cel3 protein specifically recognized three proteins, with apparent molecular masses of 93, 88, and 53 kDa, in tomato root microsomal membranes separated by sucrose density centrifugation. The 53-kDa protein comigrated in the gradient with plasma membrane markers, the 88-kDa protein with Golgi membrane markers, and the 93-kDa protein with markers for both Golgi and plasma membranes. EGase enzyme activity was also found in regions of the density gradient corresponding to both Golgi and plasma membranes, suggesting that Cel3 EGase resides in both membrane systems, the sites of cell wall polymer biosynthesis. The in vivo function of Cel3 is not known, but the only other known membrane-anchored EGase is present in Agrobacterium tumefaciens where it is required for cellulose biosynthesis. PMID:9114071

  5. BAR domains, amphipathic helices and membrane-anchored proteins use the same mechanism to sense membrane curvature.

    PubMed

    Madsen, K L; Bhatia, V K; Gether, U; Stamou, D

    2010-05-03

    The internal membranes of eukaryotic cells are all twists and bends characterized by high curvature. During recent years it has become clear that specific proteins sustain these curvatures while others simply recognize membrane shape and use it as "molecular information" to organize cellular processes in space and time. Here we discuss this new important recognition process termed membrane curvature sensing (MCS). First, we review a new fluorescence-based experimental method that allows characterization of MCS using measurements on single vesicles and compare it to sensing assays that use bulk/ensemble liposome samples of different mean diameter. Next, we describe two different MCS protein motifs (amphipathic helices and BAR domains) and suggest that in both cases curvature sensitive membrane binding results from asymmetric insertion of hydrophobic amino acids in the lipid membrane. This mechanism can be extended to include the insertion of alkyl chain in the lipid membrane and consequently palmitoylated and myristoylated proteins are predicted to display similar curvature sensitive binding. Surprisingly, in all the aforementioned cases, MCS is predominantly mediated by a higher density of binding sites on curved membranes instead of higher affinity as assumed so far. Finally, we integrate these new insights into the debate about which motifs are involved in sensing versus induction of membrane curvature and what role MCS proteins may play in biology.

  6. Regulation of Postsynaptic Structure and Function by an A-Kinase Anchoring Protein-Membrane Associated Guanylate Kinase Scaffolding Complex

    PubMed Central

    Robertson, Holly R.; Gibson, Emily S.; Benke, Timothy A.; Dell'Acqua, Mark L.

    2009-01-01

    A-kinase anchoring protein (AKAP) 79/150 is a scaffold protein found in dendritic spines that recruits the cAMP-dependent protein kinase (PKA) and protein phosphatase 2B-calcineurin (CaN) to membrane-associated guanylate kinase (MAGUK)-linked AMPA receptors (AMPAR) to control receptor phosphorylation and synaptic plasticity. However, AKAP79/150 may also coordinate regulation of AMPAR activity with spine structure directly through MAGUK binding and membrane-cytoskeletal interactions of its N-terminal targeting domain. In cultured hippocampal neurons, we observed that rat AKAP150 expression was low early in development but then increased coincident with spine formation and maturation. Overexpression of human AKAP79 in immature or mature neurons increased the number of dendritic filopodia and spines and enlarged spine area. However, RNAi knockdown of AKAP150 decreased dendritic spine area only in mature neurons. Importantly, AKAP79 overexpression in immature neurons increased AMPAR postsynaptic localization and activity. Neither the AKAP79 PKA nor CaN anchoring domain was required for increasing dendritic protrusion numbers, spine area or AMPAR synaptic localization; however, an internal region identified as the MAGUK binding domain was found to be essential as shown by expression of a MAGUK binding mutant that formed mainly filopodia and decreased AMPAR synaptic localization and activity. Expression of the AKAP79 N-terminal targeting domain alone also increased filopodia numbers but not spine area. Overall, these results demonstrate a novel structural role for AKAP79/150 where the N-terminal targeting domain induces dendritic filopodia and binding to MAGUKs promotes spine enlargement and AMPAR recruitment. PMID:19535604

  7. Chimeric Rabies Virus-Like Particles Containing Membrane-Anchored GM-CSF Enhances the Immune Response against Rabies Virus

    PubMed Central

    Kang, Hongtao; Qi, Yinglin; Wang, Hualei; Zheng, Xuexing; Gao, Yuwei; Li, Nan; Yang, Songtao; Xia, Xianzhu

    2015-01-01

    Rabies remains an important public health threat in most developing countries. To develop a more effective and safe vaccine against rabies, we have constructed a chimeric rabies virus-like particle (VLP), which containing glycoprotein (G) and matrix protein (M) of rabies virus (RABV) Evelyn-Rokitnicki-Abelseth (ERA) strain, and membrane-anchored granulocyte-macrophage colony-stimulating factor (GM-CSF), and it was named of EVLP-G. The immunogenicity and protective efficacy of EVLP-G against RABV were evaluated by intramuscular administration in a mouse model. The EVLP-G was successfully produced in insect cells by coinfection with three recombinant baculoviruses expressing G, M, and GM-CSF, respectively. The membrane-anchored GM-CSF possesses a strong adjuvant activity. More B cells and dendritic cells (DCs) were recruited and/or activated in inguinal lymph nodes in mice immunized with EVLP-G. EVLP-G was found to induce a significantly increased RABV-specific virus-neutralizing antibody and elicit a larger and broader antibody subclass responses compared with the standard rabies VLP (sRVLP, consisting of G and M). The EVLP-G also elicited significantly more IFN-γ- or IL-4-secreting CD4+ and CD8+ T cells than the sRVLP. Moreover, the immune responses induced by EVLP-G protect all vaccinated mice from lethal challenge with RABV. These results suggest that EVLP-G has the potential to be developed as a novel vaccine candidate for the prevention and control of animal rabies. PMID:25768031

  8. BH3-only proteins are tail-anchored in the outer mitochondrial membrane and can initiate the activation of Bax.

    PubMed

    Wilfling, F; Weber, A; Potthoff, S; Vögtle, F-N; Meisinger, C; Paschen, S A; Häcker, G

    2012-08-01

    During mitochondrial apoptosis, pro-apoptotic BH3-only proteins cause the translocation of cytosolic Bcl-2-associated X protein (Bax) to the outer mitochondrial membrane (OMM) where it is activated to release cytochrome c from the mitochondrial intermembrane space, but the mechanism is under dispute. We show that most BH3-only proteins are mitochondrial proteins that are imported into the OMM via a C-terminal tail-anchor domain in isolated yeast mitochondria, independently of binding to anti-apoptotic Bcl-2 proteins. This C-terminal domain acted as a classical mitochondrial targeting signal and was sufficient to direct green fluorescent protein to mitochondria in human cells. When expressed in mouse fibroblasts, these BH3-only proteins localised to mitochondria and were inserted in the OMM. The BH3-only proteins Bcl-2-interacting mediator of cell death (Bim), tBid and p53-upregulated modulator of apoptosis sensitised isolated mitochondria from Bax/Bcl-2 homologous antagonist/killer-deficient fibroblasts to cytochrome c-release by recombinant, extramitochondrial Bax. For Bim, this activity is shown to require the C-terminal-targeting signal and to be independent of binding capacity to and presence of anti-apoptotic Bcl-2 proteins. Bim further enhanced Bax-dependent killing in yeast. A model is proposed where OMM-tail-anchored BH3-only proteins permit passive 'recruitment' and catalysis-like activation of extra-mitochondrial Bax. The recognition of C-terminal membrane-insertion of BH3-only proteins will permit the development of a more detailed concept of the initiation of mitochondrial apoptosis.

  9. Anchoring of a monotopic membrane protein: the binding of prostaglandin H2 synthase-1 to the surface of a phospholipid bilayer.

    PubMed

    Nina, M; Bernèche, S; Roux, B

    2000-01-01

    Prostaglandin H2 synthases (PGHS-1 and -2) are monotopic peripheral membrane proteins that catalyse the synthesis of prostaglandins in the arachidonate cascade. Picot et al. (1994) proposed that the enzyme is anchored to one leaflet of the bilayer by a membrane anchoring domain consisting of a right-handed spiral of amphipathic helices (residues 73-116) forming a planar motif. Two different computational approaches are used to examine the association of the PGHS-1 membrane anchoring domain with a membrane via the proposed mechanism. The electrostatic contribution to the free energy of solvation is obtained by solving numerically the finite-difference Poisson equation for the protein attached to a membrane represented as a planar slab of low dielectric. The nonpolar cavity formation and van der Waals contributions to the solvation free energy are assumed to be proportional to the water accessible surface area. Based on the optimum position determined from the continuum solvent model, two atomic models of the PGHS-1 anchoring domain associated with an explicit dimyristoylphosphatidylcholine (DMPC) bilayer differing by the thickness of the membrane bilayer were constructed. A total of 2 ns molecular dynamics simulation were performed to study the details of lipid-protein interactions at the microscopic level. In the simulations the lipid hydrocarbon chains interacting with the anchoring domain assume various shapes, suggesting that the plasticity of the membrane is significant. The hydrophobic residues in the membrane side of the helices interact with the hydrophobic membrane core, while the positively charged residues interact with the lipid polar headgroups to stabilize the anchoring of the membrane domain to the upper half of the bilayer. The phosphate headgroup of one DMPC molecule disposed at the center of the spiral formed by helices A, B, C and D interacts strongly with Arg120, a residue on helix D that has previously been identified as being important in the

  10. Probing the spontaneous membrane insertion of a tail-anchored membrane protein by sum frequency generation spectroscopy.

    PubMed

    Nguyen, Khoi Tan; Soong, Ronald; Lm, Sang-Choul; Waskell, Lucy; Ramamoorthy, Ayyalusamy; Chen, Zhan

    2010-11-03

    In addition to providing a semipermeable barrier that protects a cell from harmful stimuli, lipid membranes occupy a central role in hosting a variety of biological processes, including cellular communications and membrane protein functions. Most importantly, protein-membrane interactions are implicated in a variety of diseases and therefore many analytical techniques were developed to study the basis of these interactions and their influence on the molecular architecture of the cell membrane. In this study, sum frequency generation (SFG) vibrational spectroscopy is used to investigate the spontaneous membrane insertion process of cytochrome b(5) and its mutants. Experimental results show a significant difference in the membrane insertion and orientation properties of these proteins, which can be correlated with their functional differences. In particular, our results correlate the nonfunctional property of a mutant cytochrome b(5) with its inability to insert into the lipid bilayer. The approach reported in this study could be used as a potential rapid screening tool in measuring the topology of membrane proteins as well as interactions of biomolecules with lipid bilayers in situ.

  11. The membrane anchor of the transcriptional activator SREBP is characterized by intrinsic conformational flexibility

    PubMed Central

    Linser, Rasmus; Salvi, Nicola; Briones, Rodolfo; Rovó, Petra; de Groot, Bert L.; Wagner, Gerhard

    2015-01-01

    Regulated intramembrane proteolysis (RIP) is a conserved mechanism crucial for numerous cellular processes, including signaling, transcriptional regulation, axon guidance, cell adhesion, cellular stress responses, and transmembrane protein fragment degradation. Importantly, it is relevant in various diseases including Alzheimer’s disease, cardiovascular diseases, and cancers. Even though a number of structures of different intramembrane proteases have been solved recently, fundamental questions concerning mechanistic underpinnings of RIP and therapeutic interventions remain. In particular, this includes substrate recognition, what properties render a given substrate amenable for RIP, and how the lipid environment affects the substrate cleavage. Members of the sterol regulatory element-binding protein (SREBP) family of transcription factors are critical regulators of genes involved in cholesterol/lipid homeostasis. After site-1 protease cleavage of the inactive SREBP transmembrane precursor protein, RIP of the anchor intermediate by site-2 protease generates the mature transcription factor. In this work, we have investigated the labile anchor intermediate of SREBP-1 using NMR spectroscopy. Surprisingly, NMR chemical shifts, site-resolved solvent exposure, and relaxation studies show that the cleavage site of the lipid-signaling protein intermediate bears rigid α-helical topology. An evolutionary conserved motif, by contrast, interrupts the secondary structure ∼9–10 residues C-terminal of the scissile bond and acts as an inducer of conformational flexibility within the carboxyl-terminal transmembrane region. These results are consistent with molecular dynamics simulations. Topology, stability, and site-resolved dynamics data suggest that the cleavage of the α-helical substrate in the case of RIP may be associated with a hinge motion triggered by the molecular environment. PMID:26392539

  12. New insights into the targeting of a subset of tail-anchored proteins to the outer mitochondrial membrane

    PubMed Central

    Marty, Naomi J.; Teresinski, Howard J.; Hwang, Yeen Ting; Clendening, Eric A.; Gidda, Satinder K.; Sliwinska, Elwira; Zhang, Daiyuan; Miernyk, Ján A.; Brito, Glauber C.; Andrews, David W.; Dyer, John M.; Mullen, Robert T.

    2014-01-01

    Tail-anchored (TA) proteins are a unique class of functionally diverse membrane proteins defined by their single C-terminal membrane-spanning domain and their ability to insert post-translationally into specific organelles with an Ncytoplasm-Corganelle interior orientation. The molecular mechanisms by which TA proteins are sorted to the proper organelles are not well-understood. Herein we present results indicating that a dibasic targeting motif (i.e., -R-R/K/H-X{X≠E}) identified previously in the C terminus of the mitochondrial isoform of the TA protein cytochrome b5, also exists in many other A. thaliana outer mitochondrial membrane (OMM)-TA proteins. This motif is conspicuously absent, however, in all but one of the TA protein subunits of the translocon at the outer membrane of mitochondria (TOM), suggesting that these two groups of proteins utilize distinct biogenetic pathways. Consistent with this premise, we show that the TA sequences of the dibasic-containing proteins are both necessary and sufficient for targeting to mitochondria, and are interchangeable, while the TA regions of TOM proteins lacking a dibasic motif are necessary, but not sufficient for localization, and cannot be functionally exchanged. We also present results from a comprehensive mutational analysis of the dibasic motif and surrounding sequences that not only greatly expands the functional definition and context-dependent properties of this targeting signal, but also led to the identification of other novel putative OMM-TA proteins. Collectively, these results provide important insight to the complexity of the targeting pathways involved in the biogenesis of OMM-TA proteins and help define a consensus targeting motif that is utilized by at least a subset of these proteins. PMID:25237314

  13. Upregulated function of mitochondria-associated ER membranes in Alzheimer disease

    PubMed Central

    Area-Gomez, Estela; del Carmen Lara Castillo, Maria; Tambini, Marc D; Guardia-Laguarta, Cristina; de Groof, Ad J C; Madra, Moneek; Ikenouchi, Junichi; Umeda, Masato; Bird, Thomas D; Sturley, Stephen L; Schon, Eric A

    2012-01-01

    Alzheimer disease (AD) is associated with aberrant processing of the amyloid precursor protein (APP) by γ-secretase, via an unknown mechanism. We recently showed that presenilin-1 and -2, the catalytic components of γ-secretase, and γ-secretase activity itself, are highly enriched in a subcompartment of the endoplasmic reticulum (ER) that is physically and biochemically connected to mitochondria, called mitochondria-associated ER membranes (MAMs). We now show that MAM function and ER–mitochondrial communication—as measured by cholesteryl ester and phospholipid synthesis, respectively—are increased significantly in presenilin-mutant cells and in fibroblasts from patients with both the familial and sporadic forms of AD. We also show that MAM is an intracellular detergent-resistant lipid raft (LR)-like domain, consistent with the known presence of presenilins and γ-secretase activity in rafts. These findings may help explain not only the aberrant APP processing but also a number of other biochemical features of AD, including altered lipid metabolism and calcium homeostasis. We propose that upregulated MAM function at the ER–mitochondrial interface, and increased cross-talk between these two organelles, may play a hitherto unrecognized role in the pathogenesis of AD. PMID:22892566

  14. Characterization of the catalytic properties of the membrane-anchored metalloproteinase ADAM9 in cell-based assays.

    PubMed

    Maretzky, Thorsten; Swendeman, Steven; Mogollon, Elin; Weskamp, Gisela; Sahin, Umut; Reiss, Karina; Blobel, Carl P

    2017-04-13

    ADAM9 (A Disintegrin And Metalloprotease 9) is a membrane-anchored metalloproteinase that has been implicated in pathological retinal neovascularization and in tumor progression. ADAM9 has constitutive catalytic activity in both biochemical and cell-based assays and can cleave several membrane proteins, including epidermal growth factor and Ephrin receptor B4; yet little is currently known about the catalytic properties of ADAM9 and its post-translational regulation and inhibitor profile in cell-based assays. To address this question, we monitored processing of the membrane-anchored Ephrin receptor B4 (EphB4) by co-expressing ADAM9, with the catalytically inactive ADAM9 E > A mutant serving as a negative control. We found that ADAM9-dependent shedding of EphB4 was not stimulated by three commonly employed activators of ADAM-dependent ectodomain shedding: phorbol esters, pervanadate or calcium ionophores. With respect to the inhibitor profile, we found that ADAM9 was inhibited by the hydroxamate-based metalloprotease inhibitors marimastat, TAPI-2, BB94, GM6001 and GW280264X, and by 10 nM of the tissue inhibitor of metalloproteinases (TIMP)-3, but not by up to 20 nM of TIMP-1 or -2. Additionally, we screened a non-hydroxamate small-molecule library for novel ADAM9 inhibitors and identified four compounds that selectively inhibited ADAM9-dependent proteolysis over ADAM10- or ADAM17-dependent processing. Taken together, the present study provides new information about the molecular fingerprint of ADAM9 in cell-based assays by showing that it is not stimulated by strong activators of ectodomain shedding and by defining a characteristic inhibitor profile. The identification of novel non-hydroxamate inhibitors of ADAM9 could provide the basis for designing more selective compounds that block the contribution of ADAM9 to pathological neovascularization and cancer. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  15. RhVI1 is a membrane-anchored vacuolar invertase highly expressed in Rosa hybrida L. petals

    PubMed Central

    Farci, Domenica; Collu, Gabriella; Kirkpatrick, Joanna; Esposito, Francesca; Piano, Dario

    2016-01-01

    Invertases are a widespread group of enzymes that catalyse the conversion of sucrose into fructose and glucose. Plants invertases and their substrates are essential factors that play an active role in primary metabolism and in cellular differentiation and by these activities they sustain development and growth. Being naturally present in multiple isoforms, invertases are known to be highly differentiated and tissue specific in such a way that every isoform is characteristic of a specific part of the plant. In this work, we report the identification of the invertase RhVI1 that was found to be highly expressed in rose petals. A characterization of this protein revealed that RhVI1 is a glycosylated membrane-anchored protein associated with the cytosolic side of the vacuolar membrane which occurs in vivo in a monomeric form. Purification yields have shown that the levels of expression decreased during the passage of petals from buds to mature and pre-senescent flowers. Moreover, the activity assay indicates RhVI1 to be an acidic vacuolar invertase. The physiological implications of these findings are discussed, suggesting a possible role of this protein during anthesis. PMID:27083698

  16. RhVI1 is a membrane-anchored vacuolar invertase highly expressed in Rosa hybrida L. petals.

    PubMed

    Farci, Domenica; Collu, Gabriella; Kirkpatrick, Joanna; Esposito, Francesca; Piano, Dario

    2016-05-01

    Invertases are a widespread group of enzymes that catalyse the conversion of sucrose into fructose and glucose. Plants invertases and their substrates are essential factors that play an active role in primary metabolism and in cellular differentiation and by these activities they sustain development and growth. Being naturally present in multiple isoforms, invertases are known to be highly differentiated and tissue specific in such a way that every isoform is characteristic of a specific part of the plant. In this work, we report the identification of the invertase RhVI1 that was found to be highly expressed in rose petals. A characterization of this protein revealed that RhVI1 is a glycosylated membrane-anchored protein associated with the cytosolic side of the vacuolar membrane which occurs in vivo in a monomeric form. Purification yields have shown that the levels of expression decreased during the passage of petals from buds to mature and pre-senescent flowers. Moreover, the activity assay indicates RhVI1 to be an acidic vacuolar invertase. The physiological implications of these findings are discussed, suggesting a possible role of this protein during anthesis.

  17. The AAA protein Msp1 mediates clearance of excess tail-anchored proteins from the peroxisomal membrane.

    PubMed

    Weir, Nicholas R; Kamber, Roarke A; Martenson, James S; Denic, Vladimir

    2017-09-14

    Msp1 is a conserved AAA ATPase in budding yeast localized to mitochondria where it prevents accumulation of mistargeted tail-anchored (TA) proteins, including the peroxisomal TA protein Pex15. Msp1 also resides on peroxisomes but it remains unknown how native TA proteins on mitochondria and peroxisomes evade Msp1 surveillance. We used live-cell quantitative cell microscopy tools and drug-inducible gene expression to dissect Msp1 function. We found that a small fraction of peroxisomal Pex15, exaggerated by overexpression, is turned over by Msp1. Kinetic measurements guided by theoretical modeling revealed that Pex15 molecules at mitochondria display age-independent Msp1 sensitivity. By contrast, Pex15 molecules at peroxisomes are rapidly converted from an initial Msp1-sensitive to an Msp1-resistant state. Lastly, we show that Pex15 interacts with the peroxisomal membrane protein Pex3, which shields Pex15 from Msp1-dependent turnover. In sum, our work argues that Msp1 selects its substrates on the basis of their solitary membrane existence.

  18. Membrane-surface anchoring of charged diacylglycerol-lactones correlates with biological activities

    PubMed Central

    Raifman, Or; Kolusheva, Sofiya; Kazzouli, Said El; Sigano, Dina M.; Kedei, Noemi; Lewin, Nancy E.; Lopez-Nicolas, Ruben; Ortiz-Espin, Ana; Gomez-Fernandez, Juan C.; Blumberg, Peter M.; Marquez, Victor E.; Corbalan, Senena; Jelinek, Raz

    2013-01-01

    Synthetic diacylglycerol lactones (DAG-lactones) are effective modulators of critical cellular signaling pathways, downstream of the lipophilic second messenger diacylglycerol, that activate a host of protein kinase C (PKC) isozymes and other non-kinase proteins that share with PKC similar C1 membrane-targeting domains. A fundamental determinant of the biological activity of these amphiphilic molecules is the nature of their interactions with cellular membranes. This study examines the biological properties of charged DAG-lactones exhibiting different alkyl groups attached to the heterocyclic nitrogen of an α–pyridylalkylidene chain, and particularly the relationship between membrane interactions of the substituted DAG-lactones and their respective biological activities. Our results suggest that bilayer interface localization of the N-alkyl chain in the R2 position of the DAG-lactones inhibits translocation of PKC isoenzymes onto the cellular membrane. However, the orientation of a branched alkyl chain at the bilayer surface facilitates PKC binding and translocation. This investigation emphasizes that bilayer localization of the aromatic side residues of positively-charged DAG lactone derivatives play a central role in determining biological activity and that this factor contributes to the diversity of biological actions of these synthetic biomimetic ligands. PMID:20715268

  19. Lipid Phase Control and Secondary Structure of Viral Fusion Peptides Anchored in Monoolein Membranes.

    PubMed

    Levin, Artem; Jeworrek, Christoph; Winter, Roland; Weise, Katrin; Czeslik, Claus

    2017-09-14

    The fusion of lipid membranes involves major changes of the membrane curvatures and is mediated by fusion proteins that bind to the lipid membranes. For a better understanding of the way fusion proteins steer this process, we have studied the interaction of two different viral fusion peptides, HA2-FP and TBEV-FP, with monoolein mesophases as a function of temperature and pressure at limited hydration. The fusion peptides are derived from the influenza virus hemagglutinin fusion protein (HA2-FP) and from the tick-borne encephalitis virus envelope glycoprotein E (TBEV-FP). By using synchrotron X-ray diffraction, the changes of the monoolein phase behavior upon binding the peptides have been determined and the concomitant secondary structures of the peptides have been analyzed by FTIR spectroscopy. As main results we have found that the fusion peptides interact differently with monoolein and change the pressure and temperature dependent lipid phase behavior to different extents. However, they both destabilize the fluid lamellar phase and favor phases with negative curvature, i.e. inverse bicontinuous cubic and inverse hexagonal phases. These peptide-induced phase changes can partially be reversed by the application of high pressure, demonstrating that the promotion of negative curvature is achieved by a less dense packing of the monoolein membranes by the fusion peptides. Pressure jumps across the cubic-lamellar phase transition reveal that HA2-FP has a negligible effect on the rates of the cubic and the lamellar phase formation. Interestingly, the secondary structures of the fusion peptides appear unaffected by monoolein fluid-fluid phase transitions, suggesting that the fusion peptides are the structure dominant species in the fusion process of lipid membranes.

  20. Dual targeting of a virus movement protein to ER and plasma membrane subdomains is essential for plasmodesmata localization.

    PubMed

    Ishikawa, Kazuya; Hashimoto, Masayoshi; Yusa, Akira; Koinuma, Hiroaki; Kitazawa, Yugo; Netsu, Osamu; Yamaji, Yasuyuki; Namba, Shigetou

    2017-06-01

    Plant virus movement proteins (MPs) localize to plasmodesmata (PD) to facilitate virus cell-to-cell movement. Numerous studies have suggested that MPs use a pathway either through the ER or through the plasma membrane (PM). Furthermore, recent studies reported that ER-PM contact sites and PM microdomains, which are subdomains found in the ER and PM, are involved in virus cell-to-cell movement. However, functional relationship of these subdomains in MP traffic to PD has not been described previously. We demonstrate here the intracellular trafficking of fig mosaic virus MP (MPFMV) using live cell imaging, focusing on its ER-directing signal peptide (SPFMV). Transiently expressed MPFMV was distributed predominantly in PD and patchy microdomains of the PM. Investigation of ER translocation efficiency revealed that SPFMV has quite low efficiency compared with SPs of well-characterized plant proteins, calreticulin and CLAVATA3. An MPFMV mutant lacking SPFMV localized exclusively to the PM microdomains, whereas SP chimeras, in which the SP of MPFMV was replaced by an SP of calreticulin or CLAVATA3, localized exclusively to the nodes of the ER, which was labeled with Arabidopsis synaptotagmin 1, a major component of ER-PM contact sites. From these results, we speculated that the low translocation efficiency of SPFMV contributes to the generation of ER-translocated and the microdomain-localized populations, both of which are necessary for PD localization. Consistent with this hypothesis, SP-deficient MPFMV became localized to PD when co-expressed with an SP chimera. Here we propose a new model for the intracellular trafficking of a viral MP. A substantial portion of MPFMV that fails to be translocated is transferred to the microdomains, whereas the remainder of MPFMV that is successfully translocated into the ER subsequently localizes to ER-PM contact sites and plays an important role in the entry of the microdomain-localized MPFMV into PD.

  1. Dual targeting of a virus movement protein to ER and plasma membrane subdomains is essential for plasmodesmata localization

    PubMed Central

    Ishikawa, Kazuya; Hashimoto, Masayoshi; Yusa, Akira; Koinuma, Hiroaki; Kitazawa, Yugo; Netsu, Osamu; Yamaji, Yasuyuki; Namba, Shigetou

    2017-01-01

    Plant virus movement proteins (MPs) localize to plasmodesmata (PD) to facilitate virus cell-to-cell movement. Numerous studies have suggested that MPs use a pathway either through the ER or through the plasma membrane (PM). Furthermore, recent studies reported that ER-PM contact sites and PM microdomains, which are subdomains found in the ER and PM, are involved in virus cell-to-cell movement. However, functional relationship of these subdomains in MP traffic to PD has not been described previously. We demonstrate here the intracellular trafficking of fig mosaic virus MP (MPFMV) using live cell imaging, focusing on its ER-directing signal peptide (SPFMV). Transiently expressed MPFMV was distributed predominantly in PD and patchy microdomains of the PM. Investigation of ER translocation efficiency revealed that SPFMV has quite low efficiency compared with SPs of well-characterized plant proteins, calreticulin and CLAVATA3. An MPFMV mutant lacking SPFMV localized exclusively to the PM microdomains, whereas SP chimeras, in which the SP of MPFMV was replaced by an SP of calreticulin or CLAVATA3, localized exclusively to the nodes of the ER, which was labeled with Arabidopsis synaptotagmin 1, a major component of ER-PM contact sites. From these results, we speculated that the low translocation efficiency of SPFMV contributes to the generation of ER-translocated and the microdomain-localized populations, both of which are necessary for PD localization. Consistent with this hypothesis, SP-deficient MPFMV became localized to PD when co-expressed with an SP chimera. Here we propose a new model for the intracellular trafficking of a viral MP. A substantial portion of MPFMV that fails to be translocated is transferred to the microdomains, whereas the remainder of MPFMV that is successfully translocated into the ER subsequently localizes to ER-PM contact sites and plays an important role in the entry of the microdomain-localized MPFMV into PD. PMID:28640879

  2. Disruption of calcium transfer from ER to mitochondria links alterations of mitochondria-associated ER membrane integrity to hepatic insulin resistance.

    PubMed

    Rieusset, Jennifer; Fauconnier, Jeremy; Paillard, Melanie; Belaidi, Elise; Tubbs, Emily; Chauvin, Marie-Agnès; Durand, Annie; Bravard, Amélie; Teixeira, Geoffrey; Bartosch, Birke; Michelet, Maud; Theurey, Pierre; Vial, Guillaume; Demion, Marie; Blond, Emilie; Zoulim, Fabien; Gomez, Ludovic; Vidal, Hubert; Lacampagne, Alain; Ovize, Michel

    2016-03-01

    Mitochondria-associated endoplasmic reticulum membranes (MAMs) are regions of the endoplasmic reticulum (ER) tethered to mitochondria and controlling calcium (Ca(2+)) transfer between both organelles through the complex formed between the voltage-dependent anion channel, glucose-regulated protein 75 and inositol 1,4,5-triphosphate receptor (IP3R). We recently identified cyclophilin D (CYPD) as a new partner of this complex and demonstrated a new role for MAMs in the control of insulin's action in the liver. Here, we report on the mechanisms by which disruption of MAM integrity induces hepatic insulin resistance in CypD (also known as Ppif)-knockout (KO) mice. We used either in vitro pharmacological and genetic inhibition of CYPD in HuH7 cells or in vivo loss of CYPD in mice to investigate ER-mitochondria interactions, inter-organelle Ca(2+) exchange, organelle homeostasis and insulin action. Pharmacological and genetic inhibition of CYPD concomitantly reduced ER-mitochondria interactions, inhibited inter-organelle Ca(2+) exchange, induced ER stress and altered insulin signalling in HuH7 cells. In addition, histamine-stimulated Ca(2+) transfer from ER to mitochondria was blunted in isolated hepatocytes of CypD-KO mice and this was associated with an increase in ER calcium store. Interestingly, disruption of inter-organelle Ca(2+) transfer was associated with ER stress, mitochondrial dysfunction, lipid accumulation, activation of c-Jun N-terminal kinase (JNK) and protein kinase C (PKC)ε and insulin resistance in liver of CypD-KO mice. Finally, CYPD-related alterations of insulin signalling were mediated by activation of PKCε rather than JNK in HuH7 cells. Disruption of IP3R-mediated Ca(2+) signalling in the liver of CypD-KO mice leads to hepatic insulin resistance through disruption of organelle interaction and function, increase in lipid accumulation and activation of PKCε. Modulation of ER-mitochondria Ca(2+) exchange may thus provide an exciting new avenue for

  3. Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction.

    PubMed

    Eden, Emily R; White, Ian J; Tsapara, Anna; Futter, Clare E

    2010-03-01

    The epidermal growth factor receptor (EGFR) is a critical determinator of cell fate. Signalling from this receptor tyrosine kinase is spatially regulated by progression through the endocytic pathway, governing receptor half-life and accessibility to signalling proteins and phosphatases. Endocytosis of EGFR is required for interaction with the protein tyrosine phosphatase PTP1B (ref. 1), which localizes to the cytoplasmic face of the endoplasmic reticulum (ER), raising the question of how PTP1B comes into contact with endosomal EGFR. We show that EGFR-PTP1B interaction occurs by means of direct membrane contacts between the perimeter membrane of multivesicular bodies (MVBs) and the ER. The population of EGFR interacting with PTP1B is the same population that undergo ESCRT-mediated (endosomal sorting complex required for transport) sorting within MVBs, and PTP1B activity promotes the sequestration of EGFR on to MVB internal vesicles. Membrane contacts between endosomes and the ER form in both the presence and absence of stimulation by EGF. Thus membrane contacts between endosomes and the ER may represent a global mechanism for direct interaction between proteins on these two organelles.

  4. Distinct mechanisms regulating mechanical force-induced Ca2+ signals at the plasma membrane and the ER in human MSCs

    PubMed Central

    Kim, Tae-Jin; Joo, Chirlmin; Seong, Jihye; Vafabakhsh, Reza; Botvinick, Elliot L; Berns, Michael W; Palmer, Amy E; Wang, Ning; Ha, Taekjip; Jakobsson, Eric; Sun, Jie; Wang, Yingxiao

    2015-01-01

    It is unclear that how subcellular organelles respond to external mechanical stimuli. Here, we investigated the molecular mechanisms by which mechanical force regulates Ca2+ signaling at endoplasmic reticulum (ER) in human mesenchymal stem cells. Without extracellular Ca2+, ER Ca2+ release is the source of intracellular Ca2+ oscillations induced by laser-tweezer-traction at the plasma membrane, providing a model to study how mechanical stimuli can be transmitted deep inside the cell body. This ER Ca2+ release upon mechanical stimulation is mediated not only by the mechanical support of cytoskeleton and actomyosin contractility, but also by mechanosensitive Ca2+ permeable channels on the plasma membrane, specifically TRPM7. However, Ca2+ influx at the plasma membrane via mechanosensitive Ca2+ permeable channels is only mediated by the passive cytoskeletal structure but not active actomyosin contractility. Thus, active actomyosin contractility is essential for the response of ER to the external mechanical stimuli, distinct from the mechanical regulation at the plasma membrane. DOI: http://dx.doi.org/10.7554/eLife.04876.001 PMID:25667984

  5. Biodegradable, Tethered Lipid Bilayer-Microsphere Systems with Membrane-Integrated α-Helical Peptide Anchors.

    PubMed

    Fried, Eric S; Luchan, Joshua; Gilchrist, M Lane

    2016-04-12

    Supported lipid bilayers (SLBs) are ideally suited for the study of biomembrane-biomembrane interactions and for the biomimicry of cell-to-cell communication, allowing for surface ligand displays that contain laterally mobile elements. However, the SLB paradigm does not include three-dimensionality and biocompatibility. As a way to bypass these limitations, we have developed a biodegradable form of microsphere SLBs, also known as proteolipobeads (PLBs), using PLGA microspheres. Microspheres were synthesized using solvent evaporation and size selected with fluorescence activated cell sorting (FACS). Biomembranes were covalently tethered upon fusion to microsphere supports via short-chain PEG spacers connecting membrane-integrated α-helical peptides and the microsphere surface, affecting membrane diffusivity and mobility as indicated by confocal FRAP analysis. Membrane heterogeneities, which are attributed to PLGA hydrophobicity and rough surface topography, are curtailed by the addition of PEG tethers. This method allows for the presentation of tethered, laterally mobile biomembranes in three dimensions with functionally embedded attachment peptides for mobile ligand displays.

  6. Crystal structure of GAP50, the anchor of the invasion machinery in the inner membrane complex of Plasmodium falciparum.

    PubMed

    Bosch, Jürgen; Paige, Matthew H; Vaidya, Akhil B; Bergman, Lawrence W; Hol, Wim G J

    2012-04-01

    The glideosome associated protein GAP50 is an essential protein in apicomplexan parasites such as Plasmodium, Toxoplasma and Cryptosporidium, several species of which are important human pathogens. The 44.6kDa protein is part of a multi-protein complex known as the invasion machinery or glideosome, which is required for cell invasion and substrate gliding motility empowered by an actin-myosin motor. GAP50 is anchored through its C-terminal transmembrane helix into the inner membrane complex and interacts via a short six residue C-terminal tail with other proteins of the invasion machinery in the pellicle of the parasite. In this paper we describe the 1.7Å resolution crystal structure of the soluble GAP50 domain from the malaria parasite Plasmodium falciparum. The structure shows an αßßα fold with overall similarity to purple acid phosphatases with, however, little homology regarding the nature of the residues in the active site region of the latter enzyme. While purple acid phosphatases contain a phosphate bridged binuclear Fe-site coordinated by seven side chains with the Fe-ions 3.2Å apart, GAP50 in our crystals contains two cobalt ions each with one protein ligand and a distance between the Co(2+) ions of 18Å. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Mechanical anchoring strength of L-selectin, beta2 integrins, and CD45 to neutrophil cytoskeleton and membrane.

    PubMed Central

    Shao, J Y; Hochmuth, R M

    1999-01-01

    The strength of anchoring of transmembrane receptors to cytoskeleton and membrane is important in cell adhesion and cell migration. With micropipette suction, we applied pulling forces to human neutrophils adhering to latex beads that were coated with antibodies to CD62L (L-selectin), CD18 (beta2 integrins), or CD45. In each case, the adhesion frequency between the neutrophil and bead was low, and our Monte Carlo simulation indicates that only a single bond was probably involved in every adhesion event. When the adhesion between the neutrophil and bead was ruptured, it was very likely that receptors were extracted from neutrophil surfaces. We found that it took 1-2 s to extract an L-selectin at a force range of 25-45 pN, 1-4 s to extract a beta2 integrin at a force range of 60-130 pN, and 1-11 s to extract a CD45 at a force range of 35-85 pN. Our results strongly support the conclusion that, during neutrophil rolling, L-selectin is unbound from its ligand when the adhesion between neutrophils and endothelium is ruptured. PMID:10388783

  8. SDH6 and SDH7 Contribute to Anchoring Succinate Dehydrogenase to the Inner Mitochondrial Membrane in Arabidopsis thaliana1[OPEN

    PubMed Central

    Schikowsky, Christine

    2017-01-01

    The succinate dehydrogenase complex (complex II) is a highly conserved protein complex composed of the SDH1 to SDH4 subunits in bacteria and in the mitochondria of animals and fungi. The reason for the occurrence of up to four additional subunits in complex II of plants, termed SDH5 to SDH8, so far is a mystery. Here, we present a biochemical approach to investigate the internal subunit arrangement of Arabidopsis (Arabidopsis thaliana) complex II. Using low-concentration detergent treatments, the holo complex is dissected into subcomplexes that are analyzed by a three-dimensional gel electrophoresis system. Protein identifications by mass spectrometry revealed that the largest subcomplex (IIa) represents the succinate dehydrogenase domain composed of SDH1 and SDH2. Another subcomplex (IIb) is composed of the SDH3, SDH4, SDH6, and SDH7 subunits. All four proteins include transmembrane helices and together form the membrane anchor of complex II. Sequence analysis revealed that SDH3 and SDH4 lack helices conserved in other organisms. Using homology modeling and phylogenetic analyses, we present evidence that SDH6 and SDH7 substitute missing sequence stretches of SDH3 and SDH4 in plants. Together with SDH5, which is liberated upon dissection of complex II into subcomplexes, SDH6 and SDH7 also add some hydrophilic mass to plant complex II, which possibly inserts further functions into this smallest protein complex of the oxidative phosphorylation system (which is not so small in plants). PMID:28039307

  9. The bifunctional effector AvrXccC of Xanthomonas campestris pv. campestris requires plasma membrane-anchoring for host recognition.

    PubMed

    Wang, Lifeng; Tang, Xiaoyan; He, Chaozu

    2007-07-01

    Bacterial pathogens use type III secretion systems (TTSS) to deliver effector proteins into eukaryotic cells for pathogenesis. In bacterial-plant interactions, one effector may function as an avirulence factor to betray the pathogen to the plant surveillance system and induce the hypersensitive response (HR) in the resistant host carrying a corresponding resistance (R) gene. However, the same effector can also sustain the growth of the pathogen by acting as a virulence factor to modulate plant physiology in the susceptible host lacking the corresponding R gene. Here, we identified and characterized a bifunctional TTSS effector AvrXccC belonging to the AvrB effector family in Xanthomonas campestris pv. campestris 8004. This effector is required for full bacterial virulence in the susceptible host cabbage (Brassica oleracea) and avirulence in the resistant host mustard (Brassica napiformis L.H. Baily). Expressing avrXccC in mustard-virulent strain Xcc HRI 3849A converts its virulence to avirulence. The effector AvrXccC is anchored to the plant plasma membrane, and the N-terminal myristoylation site (amino acids 2-7: GLcaSK) is essential for its localization. In addition, the avirulence function of AvrXccC for host recognition depends on its plasma membrane localization. Promoter activity assays showed that the expression of avrXccC is hrpG/hrpX-dependent. Moreover, the secretion of AvrXccC displayed hrp-dependency and the core sequence for AvrXccC translocation was defined to the N-terminal 40 amino acids.

  10. Disruption of the mitochondria-associated ER membrane (MAM) plays a central role in palmitic acid-induced insulin resistance.

    PubMed

    Shinjo, Satoko; Jiang, Shuying; Nameta, Masaaki; Suzuki, Tomohiro; Kanai, Mai; Nomura, Yuta; Goda, Nobuhito

    2017-10-01

    The mitochondria-associated ER membrane (MAM) is a specialized subdomain of ER that physically connects with mitochondria. Although disruption of inter-organellar crosstalk via the MAM impairs cellular homeostasis, its pathological significance in insulin resistance in type 2 diabetes mellitus remains unclear. Here, we reveal the importance of reduced MAM formation in the induction of fatty acid-evoked insulin resistance in hepatocytes. Palmitic acid (PA) repressed insulin-stimulated Akt phosphorylation in HepG2 cells within 12h. Treatment with an inhibitor of the ER stress response failed to restore PA-mediated suppression of Akt activation. Mitochondrial reactive oxygen species (ROS) production did not increase in PA-treated cells. Even short-term exposure (3h) to PA reduced the calcium flux from ER to mitochondria, followed by a significant decrease in MAM contact area, suggesting that PA suppressed the functional interaction between ER and mitochondria. Forced expression of mitofusin-2, a critical component of the MAM, partially restored MAM contact area and ameliorated the PA-elicited suppression of insulin sensitivity with Ser473 phosphorylation of Akt selectively improved. These results suggest that loss of proximity between ER and mitochondria, but not perturbation of homeostasis in the two organelles individually, plays crucial roles in PA-evoked Akt inactivation in hepatic insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Phosphorylation of the C Terminus of RHD3 Has a Critical Role in Homotypic ER Membrane Fusion in Arabidopsis1[OPEN

    PubMed Central

    Ueda, Haruko; Yokota, Etsuo; Kuwata, Keiko; Kutsuna, Natsumaro; Mano, Shoji; Shimada, Tomoo; Tamura, Kentaro; Fukao, Yoichiro; Brandizzi, Federica; Shimmen, Teruo; Nishimura, Mikio

    2016-01-01

    The endoplasmic reticulum (ER) consists of dynamically changing tubules and cisternae. In animals and yeast, homotypic ER membrane fusion is mediated by fusogens (atlastin and Sey1p, respectively) that are membrane-associated dynamin-like GTPases. In Arabidopsis (Arabidopsis thaliana), another dynamin-like GTPase, ROOT HAIR DEFECTIVE3 (RHD3), has been proposed as an ER membrane fusogen, but direct evidence is lacking. Here, we show that RHD3 has an ER membrane fusion activity that is enhanced by phosphorylation of its C terminus. The ER network was RHD3-dependently reconstituted from the cytosol and microsome fraction of tobacco (Nicotiana tabacum) cultured cells by exogenously adding GTP, ATP, and F-actin. We next established an in vitro assay system of ER tubule formation with Arabidopsis ER vesicles, in which addition of GTP caused ER sac formation from the ER vesicles. Subsequent application of a shearing force to this system triggered the formation of tubules from the ER sacs in an RHD-dependent manner. Unexpectedly, in the absence of a shearing force, Ser/Thr kinase treatment triggered RHD3-dependent tubule formation. Mass spectrometry showed that RHD3 was phosphorylated at multiple Ser and Thr residues in the C terminus. An antibody against the RHD3 C-terminal peptide abolished kinase-triggered tubule formation. When the Ser cluster was deleted or when the Ser residues were replaced with Ala residues, kinase treatment had no effect on tubule formation. Kinase treatment induced the oligomerization of RHD3. Neither phosphorylation-dependent modulation of membrane fusion nor oligomerization has been reported for atlastin or Sey1p. Taken together, we propose that phosphorylation-stimulated oligomerization of RHD3 enhances ER membrane fusion to form the ER network. PMID:26684656

  12. A Plasma Membrane-Anchored Fluorescent Protein Fusion Illuminates Sieve Element Plasma Membranes in Arabidopsis and Tobacco1[W][OA

    PubMed Central

    Thompson, Matthew V.; Wolniak, Stephen M.

    2008-01-01

    Rapid acquisition of quantitative anatomical data from the sieve tubes of angiosperm phloem has been confounded by their small size, their distance from organ surfaces, and the time-consuming nature of traditional methods, such as transmission electron microscopy. To improve access to these cells, for which good anatomical data are critical, a monomeric yellow fluorescent protein (mCitrine) was N-terminally fused to a small (approximately 6 kD) membrane protein (AtRCI2A) and stably expressed in Arabidopsis thaliana (Columbia-0 ecotype) and Nicotiana tabacum (‘Samsun’) under the control of a companion cell-specific promoter (AtSUC2p). The construct, called by its abbreviation SUmCR, yielded stable sieve element (SE) plasma membrane fluorescence labeling, even after plastic (methacrylate) embedding. In conjunction with wide-field fluorescence measurements of sieve pore number and position using aniline blue-stained callose, mCitrine-labeled material was used to calculate rough estimates of sieve tube-specific conductivity for both species. The SUmCR construct also revealed a hitherto unknown expression domain of the AtSUC2 Suc-H+ symporter in the epidermis of the cell division zone of developing root tips. The success of this construct in targeting plasma membrane-anchored fluorescent proteins to SEs could be attributable to the small size of AtRCI2A or to the presence of other signals innate to AtRCI2A that permit the protein to be trafficked to SEs. The construct provides a hitherto unique entrée into companion cell-to-SE protein targeting, as well as a new tool for studying whole-plant phloem anatomy and architecture. PMID:18223149

  13. Hydrophilic TiO2 porous spheres anchored on hydrophobic polypropylene membrane for wettability induced high photodegrading activities

    NASA Astrophysics Data System (ADS)

    Niu, Fang; Zhang, Le-Sheng; Chen, Chao-Qiu; Li, Wei; Li, Lin; Song, Wei-Guo; Jiang, Lei

    2010-08-01

    TiO2 porous nanospheres on polypropylene (PP) films (TiO2/PP composite) are produced at ambient temperature. Particle/pore size match up is the key anchoring point to overcome the low affinity between hydrophilic materials and hydrophobic materials. With the hydrophilic TiO2 catalyst evenly dispersed on a hydrophobic surface, the aqueous solution will selectively skip the substrate and wet the catalysts. Such a wettability-induced smart system maximizes the degrading activity of the TiO2 catalyst. In photodegrading reactions, the resulting TiO2/PP composite film exhibits a 10 times higher activity in flow-type setup than the same TiO2 catalyst in a traditional batch-type setup.TiO2 porous nanospheres on polypropylene (PP) films (TiO2/PP composite) are produced at ambient temperature. Particle/pore size match up is the key anchoring point to overcome the low affinity between hydrophilic materials and hydrophobic materials. With the hydrophilic TiO2 catalyst evenly dispersed on a hydrophobic surface, the aqueous solution will selectively skip the substrate and wet the catalysts. Such a wettability-induced smart system maximizes the degrading activity of the TiO2 catalyst. In photodegrading reactions, the resulting TiO2/PP composite film exhibits a 10 times higher activity in flow-type setup than the same TiO2 catalyst in a traditional batch-type setup. Electronic supplementary information (ESI) available: XRD results for TiO2 porous nanospheres; photos of Methylene Blue, and Rhodamine B (100 mg L-1) aqueous solution degraded by TiO2/PP composite film under UV irradiation in the flow-type setup; quantitative plots of concentration profiles; contact angle of water droplets on TiO2 porous spheres and on PP membrane; SEM image of used TiO2/PP composite. See DOI: 10.1039/c0nr00182a

  14. Protective Effects of Membrane-Anchored and Secreted DNA Vaccines Encoding Fatty Acid-Binding Protein and Glutathione S-Transferase against Schistosoma japonicum

    PubMed Central

    Tu, Yaqin; Hu, Yang; Fan, Guorun; Chen, Zhihao; Liu, Lin; Man, Dandan; Liu, Shuojie; Tang, Chengwu; Zhang, Yin; Dai, Wuxing

    2014-01-01

    In order to explore the high performance bivalent DNA-based vaccine against schistosomes, SjFABP and Sj26GST were selected and used to construct a vaccine. Two strategies were used to construct the bivalent DNA vaccine. In the first strategy, a plasmid encoding antigen in the secreted form was used, while in the other, a plasmid encoding a truncated form of SjFABP and Sj26GST targeted to the cell surface was used. Various parameters, including antibody and cytokine response, proliferation, histopathological examination, and characterization of T cell subsets were used to evaluate the type of immune response and the level of protection against challenge infection. Injection with secreted pIRES-sjFABP-sj26GST significantly increased the levels of antibody, splenocyte proliferation, and production of IFN-γ, compared with membrane-anchored groups. Analysis of splenic T cell subsets showed that the secreted vaccine significantly increased the percentage of CD3+CD4+ and CD3+CD8+ T cells. Liver immunopathology (size of liver granulomas) was significantly reduced in the secreted group compared with the membrane-anchored groups. Moreover, challenge experiments showed that the worm and egg burdens were significantly reduced in animals immunized with recombinant vaccines. Most importantly, secreted Sj26GST-SjFABP markedly enhanced protection, by reducing worm and egg burdens by 31.8% and 24.78%, respectively, while the membrane-anchored group decreased worm and egg burdens by 24.80% and 18.80%, respectively. Taken together, these findings suggest that the secretory vaccine is more promising than the membrane-anchored vaccine, and provides support for the development and application of this vaccine. PMID:24466157

  15. A weakly pathogenic Rauscher spleen focus-forming virus mutant that lacks the carboxyl-terminal membrane anchor of its envelope glycoprotein.

    PubMed Central

    Machida, C A; Bestwick, R K; Kabat, D

    1985-01-01

    A mutant Rauscher spleen focus-forming virus (mutant 4-3) that causes mild splenic erythroblastosis in mice has a 44-base-pair deletion in the 3' region of its envelope glycoprotein (env) gene. The encoded glycoprotein terminates prematurely, lacks a hydrophobic membrane anchor, and has a shortened intracellular lifespan. An active site for causing erythroblast proliferation may occur in the undamaged amino-terminal domain of the env glycoprotein. Images PMID:3973973

  16. DRAGON, a GPI-anchored membrane protein, inhibits BMP signaling in C2C12 myoblasts.

    PubMed

    Kanomata, Kazuhiro; Kokabu, Shoichiro; Nojima, Junya; Fukuda, Toru; Katagiri, Takenobu

    2009-06-01

    Bone morphogenetic proteins (BMPs) induce osteoblastic differentiation of myoblasts via binding to cell surface receptors. Repulsive guidance molecules (RGMs) have been identified as BMP co-receptors. We report here that DRAGON/RGMb, a member of the RGM family, suppressed BMP signaling in C2C12 myoblasts via a novel mechanism. All RGMs were expressed in C2C12 cells that were differentiated into myocytes and osteoblastic cells, but RGMc was not detected in immature cells. In C2C12 cells, only DRAGON suppressed ALP and Id1 promoter activities induced by BMP-4 or by constitutively activated BMP type I receptors. This inhibition by DRAGON was dependent on the secretory form of the von Willbrand factor type D domain. DRAGON even suppressed BMP signaling induced by constitutively activated Smad1. Over-expression of neogenin did not alter the inhibitory capacity of DRAGON. Taken together, these findings indicate that DRAGON may be an inhibitor of BMP signaling in C2C12 myoblasts. We also suggest that a novel molecule(s) expressed on the cell membrane may mediate the signal transduction of DRAGON in order to suppress BMP signaling in C2C12 myoblasts.

  17. Cytosolic N-terminal arginine-based signals together with a luminal signal target a type II membrane protein to the plant ER

    PubMed Central

    2009-01-01

    Background In eukaryotic cells, the membrane compartments that constitute the exocytic pathway are traversed by a constant flow of lipids and proteins. This is particularly true for the endoplasmic reticulum (ER), the main "gateway of the secretory pathway", where biosynthesis of sterols, lipids, membrane-bound and soluble proteins, and glycoproteins occurs. Maintenance of the resident proteins in this compartment implies they have to be distinguished from the secretory cargo. To this end, they must possess specific ER localization determinants to prevent their exit from the ER, and/or to interact with receptors responsible for their retrieval from the Golgi apparatus. Very few information is available about the signal(s) involved in the retention of membrane type II protein in the ER but it is generally accepted that sorting of ER type II cargo membrane proteins depends on motifs mainly located in their cytosolic tails. Results Here, using Arabidopsis glucosidase I as a model, we have identified two types of signals sufficient for the location of a type II membrane protein in the ER. A first signal is located in the luminal domain, while a second signal corresponds to a short amino acid sequence located in the cytosolic tail of the membrane protein. The cytosolic tail contains at its N-terminal end four arginine residues constitutive of three di-arginine motifs (RR, RXR or RXXR) independently sufficient to confer ER localization. Interestingly, when only one di-arginine motif is present, fusion proteins are located both in the ER and in mobile punctate structures, distinct but close to Golgi bodies. Soluble and membrane ER protein markers are excluded from these punctate structures, which also do not colocalize with an ER-exit-site marker. It is hypothesized they correspond to sites involved in Golgi to ER retrotransport. Conclusion Altogether, these results clearly show that cytosolic and luminal signals responsible for ER retention could coexist in a same type

  18. An efficient bacterial surface display system based on a novel outer membrane anchoring element from the Escherichia coli protein YiaT.

    PubMed

    Han, Mee-Jung; Lee, Seung Hwan

    2015-01-01

    In a bacterial surface display system, the display of a successful recombinant protein is highly dependent on the choice of anchoring motif. In this study, we developed an efficient Escherichia coli display system using novel anchoring motifs derived from the protein YiaT. To determine the best surface-anchoring motif, full-length YiaT and two of its C-terminal truncated forms, cut at the R181 and R232 sites, were evaluated. Two industrial enzymes, a lipase from Pseudomonas fluorescens SIK W1 and an α-amylase from Bacillus subtilis, were used as the target proteins for display. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blot, immunofluorescence microscopy and whole-cell enzyme activity measurements confirmed the expression of the fusion proteins on the E. coli surface. Using YiaTR181 or YiaTR232 as the anchoring motif, the fusion proteins showed very high enzyme activities and did not exert any adverse effects on either cell growth or the outer membrane integrity. Additionally, these fusion proteins were suitable for displaying proteins of large molecular size in an active form. Compared with the previous anchoring motifs FadL and OprF, YiaTR181 and YiaTR232 had approximately 10-fold and 20-fold higher enzyme activities, respectively. These results suggest that YiaT can be used as an E. coli anchoring motif to efficiently display various enzymes; hence, this system could be employed in a variety of biotechnological and industrial applications.

  19. Coupling acidic organelles with the ER through Ca²⁺ microdomains at membrane contact sites.

    PubMed

    Penny, Christopher J; Kilpatrick, Bethan S; Eden, Emily R; Patel, Sandip

    2015-10-01

    Acidic organelles such as lysosomes serve as non-canonical Ca(2+) stores. The Ca(2+) mobilising messenger NAADP is thought to trigger local Ca(2+) release from such stores. These events are then amplified by Ca(2+) channels on canonical ER Ca(2+) stores to generate physiologically relevant global Ca(2+) signals. Coupling likely occurs at microdomains formed at membrane contact sites between acidic organelles and the ER. Molecular analyses and computational modelling suggest heterogeneity in the composition of these contacts and predicted Ca(2+) microdomain behaviour. Conversely, acidic organelles might also locally amplify and temper ER-evoked Ca(2+) signals. Ca(2+) microdomains between distinct Ca(2+) stores are thus likely to be integral to the genesis of complex Ca(2+) signals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Influence of the Lipid Anchor Motif of N-Ras on the Interaction with Lipid Membranes: A Surface Plasmon Resonance Study

    PubMed Central

    Gohlke, Andrea; Triola, Gemma; Waldmann, Herbert; Winter, Roland

    2010-01-01

    Abstract Ras GTPases play a crucial role in signal transduction cascades involved in cell differentiation and proliferation, and membrane binding is essential for their proper function. To determine the influence of the nature of the lipid anchor motif and the difference between the active (GTP) and inactive (GDP) forms of N-Ras on partitioning and localization in the lipid membrane, five different N-Ras constructs with different lipid anchors and nucleotide loading (Far/Far (GDP), HD/Far (GDP), HD/HD (GDP), Far (GDP), and HD/Far (GppNHp)) were synthesized. Using the surface plasmon resonance technique, we were able to follow the insertion and dissociation process of the lipidated proteins into and out of model membranes consisting of pure liquid-ordered (lo) or liquid-disordered (ld) phase and a heterogeneous two-phase mixture, i.e., a raft mixture with lo + ld phase coexistence. In addition, we examined the influence of negatively charged headgroups and stored curvature elastic stress on the binding properties of the lipidated N-Ras proteins. In most cases, significant differences were found for the various anchor motifs. In general, N-Ras proteins insert preferentially into a fluidlike, rather than a rigid, ordered lipid bilayer environment. Electrostatic interactions with lipid headgroups or stored curvature elastic stress of the membrane seem to have no drastic effect on the binding and dissociation processes of the lipidated proteins. The monofarnesylated N-Ras exhibits generally the highest association rate and fastest dissociation process in fluidlike membranes. Double lipidation, especially including farnesylation, of the protein leads to drastically reduced initial binding rates but strong final association. The change in the nucleotide loading of the natural N-Ras HD/Far induces a slightly different binding and dissociation kinetics, as well as stability of association, and seems to influence the tendency to segregate laterally in the membrane plane

  1. Roles of the Protruding Loop of Factor B Essential for the Localization of Lipoproteins (LolB) in the Anchoring of Bacterial Triacylated Proteins to the Outer Membrane*

    PubMed Central

    Hayashi, Yumi; Tsurumizu, Ryoji; Tsukahara, Jun; Takeda, Kazuki; Narita, Shin-ichiro; Mori, Makiko; Miki, Kunio; Tokuda, Hajime

    2014-01-01

    The Lol system comprising five Lol proteins, LolA through LolE, sorts Escherichia coli lipoproteins to outer membranes. The LolCDE complex, an ATP binding cassette transporter in inner membranes, releases outer membrane-specific lipoproteins in an ATP-dependent manner, causing formation of the LolA-lipoprotein complex in the periplasm. LolA transports lipoproteins through the periplasm to LolB on outer membranes. LolB is itself a lipoprotein anchored to outer membranes, although the membrane anchor is functionally dispensable. LolB then localizes lipoproteins to outer membranes through largely unknown mechanisms. The crystal structure of LolB is similar to that of LolA, and it possesses a hydrophobic cavity that accommodates acyl chains of lipoproteins. To elucidate the molecular function of LolB, a periplasmic version of LolB, mLolB, was mutagenized at various conserved residues. Despite the lack of acyl chains, most defective mutants were insoluble. However, a derivative with glutamate in place of leucine 68 was soluble and unable to localize lipoproteins to outer membranes. This leucine is present in a loop protruding from mLolB into an aqueous environment, and no analogous loop is present in LolA. Thus, leucine 68 was replaced with other residues. Replacement by acidic, but not hydrophobic, residues generated for the first time mLolB derivatives that can accept but cannot localize lipoproteins to outer membranes. Moreover, deletion of the leucine with neighboring residues impaired the lipoprotein receptor activity. Based on these observations, the roles of the protruding loop of LolB in the last step of lipoprotein sorting are discussed. PMID:24569999

  2. Surface self-assembled PEGylation of fluoro-based PVDF membranes via hydrophobic-driven copolymer anchoring for ultra-stable biofouling resistance.

    PubMed

    Lin, Nien-Jung; Yang, Hui-Shan; Chang, Yung; Tung, Kuo-Lun; Chen, Wei-Hao; Cheng, Hui-Wen; Hsiao, Sheng-Wen; Aimar, Pierre; Yamamoto, Kazuo; Lai, Juin-Yih

    2013-08-13

    Stable biofouling resistance is significant for general filtration requirements, especially for the improvement of membrane lifetime. A systematic group of hyper-brush PEGylated diblock copolymers containing poly(ethylene glycol) methacrylate (PEGMA) and polystyrene (PS) was synthesized using an atom transfer radical polymerization (ATRP) method and varying PEGMA lengths. This study demonstrates the antibiofouling membrane surfaces by self-assembled anchoring PEGylated diblock copolymers of PS-b-PEGMA on the microporous poly(vinylidene fluoride) (PVDF) membrane. Two types of copolymers are used to modify the PVDF surface, one with different PS/PEGMA molar ratios in a range from 0.3 to 2.7 but the same PS molecular weights (MWs, ∼5.7 kDa), the other with different copolymer MWs (∼11.4, 19.9, and 34.1 kDa) but the similar PS/PEGMA ratio (∼1.7 ± 0.2). It was found that the adsorption capacities of diblock copolymers on PVDF membranes decreased as molar mass ratios of PS/PEGMA ratio reduced or molecular weights of PS-b-PEGMA increased because of steric hindrance. The increase in styrene content in copolymer enhanced the stability of polymer anchoring on the membrane, and the increase in PEGMA content enhanced the protein resistance of membranes. The optimum PS/PEGMA ratio was found to be in the range between 1.5 and 2.0 with copolymer MWs above 20.0 kDa for the ultrastable resistance of protein adsorption on the PEGylated PVDF membranes. The PVDF membrane coated with such a diblock copolymer owned excellent biofouling resistance to proteins of BSA and lysozyme as well as bacterium of Escherichia coli and Staphylococcus epidermidis and high stable microfiltration operated with domestic wastewater solution in a membrane bioreactor.

  3. Roles of the protruding loop of factor B essential for the localization of lipoproteins (LolB) in the anchoring of bacterial triacylated proteins to the outer membrane.

    PubMed

    Hayashi, Yumi; Tsurumizu, Ryoji; Tsukahara, Jun; Takeda, Kazuki; Narita, Shin-ichiro; Mori, Makiko; Miki, Kunio; Tokuda, Hajime

    2014-04-11

    The Lol system comprising five Lol proteins, LolA through LolE, sorts Escherichia coli lipoproteins to outer membranes. The LolCDE complex, an ATP binding cassette transporter in inner membranes, releases outer membrane-specific lipoproteins in an ATP-dependent manner, causing formation of the LolA-lipoprotein complex in the periplasm. LolA transports lipoproteins through the periplasm to LolB on outer membranes. LolB is itself a lipoprotein anchored to outer membranes, although the membrane anchor is functionally dispensable. LolB then localizes lipoproteins to outer membranes through largely unknown mechanisms. The crystal structure of LolB is similar to that of LolA, and it possesses a hydrophobic cavity that accommodates acyl chains of lipoproteins. To elucidate the molecular function of LolB, a periplasmic version of LolB, mLolB, was mutagenized at various conserved residues. Despite the lack of acyl chains, most defective mutants were insoluble. However, a derivative with glutamate in place of leucine 68 was soluble and unable to localize lipoproteins to outer membranes. This leucine is present in a loop protruding from mLolB into an aqueous environment, and no analogous loop is present in LolA. Thus, leucine 68 was replaced with other residues. Replacement by acidic, but not hydrophobic, residues generated for the first time mLolB derivatives that can accept but cannot localize lipoproteins to outer membranes. Moreover, deletion of the leucine with neighboring residues impaired the lipoprotein receptor activity. Based on these observations, the roles of the protruding loop of LolB in the last step of lipoprotein sorting are discussed.

  4. Cooperation of the ER-shaping proteins atlastin, lunapark, and reticulons to generate a tubular membrane network

    PubMed Central

    Wang, Songyu; Tukachinsky, Hanna; Romano, Fabian B; Rapoport, Tom A

    2016-01-01

    In higher eukaryotes, the endoplasmic reticulum (ER) contains a network of membrane tubules, which transitions into sheets during mitosis. Network formation involves curvature-stabilizing proteins, including the reticulons (Rtns), as well as the membrane-fusing GTPase atlastin (ATL) and the lunapark protein (Lnp). Here, we have analyzed how these proteins cooperate. ATL is needed to not only form, but also maintain, the ER network. Maintenance requires a balance between ATL and Rtn, as too little ATL activity or too high Rtn4a concentrations cause ER fragmentation. Lnp only affects the abundance of three-way junctions and tubules. We suggest a model in which ATL-mediated fusion counteracts the instability of free tubule ends. ATL tethers and fuses tubules stabilized by the Rtns, and transiently sits in newly formed three-way junctions. Lnp subsequently moves into the junctional sheets and forms oligomers. Lnp is inactivated by mitotic phosphorylation, which contributes to the tubule-to-sheet conversion of the ER. DOI: http://dx.doi.org/10.7554/eLife.18605.001 PMID:27619977

  5. Mechanism of anchoring of OmpA protein to the cell wall peptidoglycan of the gram-negative bacterial outer membrane

    PubMed Central

    Park, Jeong Soon; Lee, Woo Cheol; Yeo, Kwon Joo; Ryu, Kyoung-Seok; Kumarasiri, Malika; Hesek, Dusan; Lee, Mijoon; Mobashery, Shahriar; Song, Jung Hyun; Kim, Seung Il; Lee, Je Chul; Cheong, Chaejoon; Jeon, Young Ho; Kim, Hye-Yeon

    2012-01-01

    The outer membrane protein A (OmpA) plays important roles in anchoring of the outer membrane to the bacterial cell wall. The C-terminal periplasmic domain of OmpA (OmpA-like domain) associates with the peptidoglycan (PGN) layer noncovalently. However, there is a paucity of information on the structural aspects of the mechanism of PGN recognition by OmpA-like domains. To elucidate this molecular recognition process, we solved the high-resolution crystal structure of an OmpA-like domain from Acinetobacter baumannii bound to diaminopimelate (DAP), a unique bacterial amino acid from the PGN. The structure clearly illustrates that two absolutely conserved Asp271 and Arg286 residues are the key to the binding to DAP of PGN. Identification of DAP as the central anchoring site of PGN to OmpA is further supported by isothermal titration calorimetry and a pulldown assay with PGN. An NMR-based computational model for complexation between the PGN and OmpA emerged, and this model is validated by determining the crystal structure in complex with a synthetic PGN fragment. These structural data provide a detailed glimpse of how the anchoring of OmpA to the cell wall of gram-negative bacteria takes place in a DAP-dependent manner.—Park, J. S., Lee, W. C., Yeo, K. J., Ryu, K.-S., Kumarasiri, M., Hesek, D., Lee, M., Mobashery, S., Song, J. H., Lim, S. I., Lee, J. C., Cheong, C., Jeon, Y. H., Kim, H.-Y. Mechanism of anchoring of OmpA protein to the cell wall peptidoglycan of the gram-negative bacterial outer membrane. PMID:21965596

  6. Phosphatidylinositol and phosphatidic acid transport between the ER and plasma membrane during PLC activation requires the Nir2 protein.

    PubMed

    Kim, Yeun Ju; Guzman-Hernandez, Maria Luisa; Wisniewski, Eva; Echeverria, Nicolas; Balla, Tamas

    2016-02-01

    Phospholipase C (PLC)-mediated hydrolysis of the limited pool of plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] requires replenishment from a larger pool of phosphatidylinositol (PtdIns) via sequential phosphorylation by PtdIns 4-kinases and phosphatidylinositol 4-phosphate (PtdIns4P) 5-kinases. Since PtdIns is synthesized in the endoplasmic reticulum (ER) and PtdIns(4,5)P2 is generated in the PM, it has been postulated that PtdIns transfer proteins (PITPs) provide the means for this lipid transfer function. Recent studies identified the large PITP protein, Nir2 as important for PtdIns transfer from the ER to the PM. It was also found that Nir2 was required for the transfer of phosphatidic acid (PtdOH) from the PM to the ER. In Nir2-depleted cells, activation of PLC leads to PtdOH accumulation in the PM and PtdIns synthesis becomes severely impaired. In quiescent cells, Nir2 is localized to the ER via interaction of its FFAT domain with ER-bound VAMP-associated proteins VAP-A and-B. After PLC activation, Nir2 also binds to the PM via interaction of its C-terminal domains with diacylglycerol (DAG) and PtdOH. Through these interactions, Nir2 functions in ER-PM contact zones. Mutations in VAP-B that have been identified in familial forms of amyotrophic lateral sclerosis (ALS or Lou-Gehrig's disease) cause aggregation of the VAP-B protein, which then impairs its binding to several proteins, including Nir2. These findings have shed new lights on the importance of non-vesicular lipid transfer of PtdIns and PtdOH in ER-PM contact zones with a possible link to a devastating human disease.

  7. Dislocation of Type I Membrane Proteins from the ER to the Cytosol Is Sensitive to Changes in Redox Potential

    PubMed Central

    Tortorella, Domenico; Story, Craig M.; Huppa, Johannes B.; Wiertz, Emmanuel J.H.J.; Jones, Thomas R.; Ploegh, Hidde L.

    1998-01-01

    The human cytomegalovirus (HCMV) gene products US2 and US11 dislocate major histocompatibility class I heavy chains from the ER and target them for proteasomal degradation in the cytosol. The dislocation reaction is inhibited by agents that affect intracellular redox potential and/or free thiol status, such as diamide and N-ethylmaleimide. Subcellular fractionation experiments indicate that this inhibition occurs at the stage of discharge from the ER into the cytosol. The T cell receptor α (TCR α) chain is also degraded by a similar set of reactions, yet in a manner independent of virally encoded gene products. Diamide and N-ethylmaleimide likewise inhibit the dislocation of the full-length TCR α chain from the ER, as well as a truncated, mutant version of TCR α chain that lacks cysteine residues. Cytosolic destruction of glycosylated, ER-resident type I membrane proteins, therefore, requires maintenance of a proper redox potential for the initial step of removal of the substrate from the ER environment. PMID:9679137

  8. Molecular mapping of signals in the Qa-2 antigen required for attachment of the phosphatidylinositol membrane anchor.

    PubMed Central

    Waneck, G L; Sherman, D H; Kincade, P W; Low, M G; Flavell, R A

    1988-01-01

    Proteins anchored in the membrane by covalent linkage to phosphatidylinositol (PtdIns) can be released by treatment with purified PtdIns-specific phospholipase C (Ptd-Ins-PLC). A recent survey of leukocyte antigens using flow cytometry has shown that staining of certain Qa antigens was diminished after PtdIns-PLC treatment, but staining of structurally related H-2 antigens was not affected. Therefore, in this study, the sensitivity of cell-surface Qa-2, H-2Kb, and H-2Db to hydrolysis by PtdIns-PLC was investigated biochemically by immunoprecipitation of radioiodinated molecules from cell lysates or supernatants. Qa-2, but not H-2Kb, was released from the surface of PtdIns-PLC-treated C57BL/10 mouse spleen cells and recovered in the cell supernatants. Similar analysis of thymoma cells transfected with cloned C57BL/10 genes showed that cell-surface Qa-2 molecules encoded by a Q7b cDNA and the Q7b or Q9b gene were sensitive to hydrolysis by PtdIns-PLC, whereas the H-2Kb and H-2Db gene products were resistant. Using thymoma cells transfected with hybrid genes constructed by exchanging exons between Q7b and H-2Db, the signals for PtdIns modification were localized to a defined region of Qa-2. This region differs from H-2Db most significantly by the presence of a central aspartate residue in the transmembrane segment and in the length of the cytoplasmic portion. Images PMID:3422441

  9. Hydrophobic domains of mouse polyomavirus minor capsid proteins promote membrane association and virus exit from the ER.

    PubMed

    Huérfano, Sandra; Ryabchenko, Boris; Španielová, Hana; Forstová, Jitka

    2017-03-01

    The minor structural protein VP2 and its shorter variant, VP3, of mouse polyomavirus (MPyV) are essential for virus exit from the endoplasmic reticulum (ER) during viral trafficking to the nucleus. Here, we followed the role of putative hydrophobic domains (HD) of the minor proteins in membrane affinity and viral infectivity. We prepared variants of VP2, each mutated to decrease hydrophobicity of one of three predicted hydrophobic domains: VP2-mHD1, VP2-mHD2 or VP2-mHD3 mutated in HD1 (amino acids (aa) 60-101), HD2 (aa 125-165) or HD3 (aa 287-307), respectively. Transient production of the mutated proteins revealed that only VP2-mHD2 lost the affinity for intracellular membranes. Cytotoxicity connected with the ability of VP2/VP3 to perforate membranes decreased markedly for VP2-mHD2, but only slightly for VP2-mHD1. The mutant VP2-mHD3 exhibited properties similar to the wild-type protein. MPyV genomes, each carrying one of the mutations, were prepared for virus production. MPyV-mHD1 and MPyV-mHD2 viruses could be isolated, while the HD3 mutation in VP2/VP3 prevented virus assembly. We found that both MPyV-mHD1 and MPyV-mHD2 viruses arrived at the ER without delay and were processed by ER residential enzymes. However, the ability to associate with ER membranes was decreased in the case of MPyV-mHD1 and practically abolished in the case of MPyV-mHD2. Interestingly, while MPyV-mHD2 was not infectious, infection of MPyV-mHD1 virus was delayed. These findings reveal that HD2, common to both VP2 and VP3, is responsible for the membrane binding properties of the minor proteins, while HD1 of VP2 is likely required to stabilize VP2-membrane association and to enhance viral exit from the ER. © 2017 Federation of European Biochemical Societies.

  10. The novel ER membrane protein PRO41 is essential for sexual development in the filamentous fungus Sordaria macrospora

    PubMed Central

    Nowrousian, Minou; Frank, Sandra; Koers, Sandra; Strauch, Peter; Weitner, Thomas; Ringelberg, Carol; Dunlap, Jay C.; Loros, Jennifer J.; Kück, Ulrich

    2013-01-01

    Summary The filamentous fungus Sordaria macrospora develops complex fruiting bodies (perithecia) to propagate its sexual spores. Here, we present an analysis of the sterile mutant pro41 that is unable to produce mature fruiting bodies. The mutant carries a deletion of 4 kb and is complemented by the pro41 open reading frame that is contained within the region deleted in the mutant. In silico analyses predict PRO41 to be an endoplasmic reticulum (ER) membrane protein, and a PRO41–EGFP fusion protein colocalizes with ER-targeted DsRED. Furthermore, Western blot analysis shows that the PRO41–EGFP fusion protein is present in the membrane fraction. A fusion of the predicted N-terminal signal sequence of PRO41 with EGFP is secreted out of the cell, indicating that the signal sequence is functional. pro41 transcript levels are upregulated during sexual development. This increase in transcript levels was not observed in the sterile mutant pro1 that lacks a transcription factor gene. Moreover, microarray analysis of gene expression in the mutants pro1, pro41 and the pro1/41 double mutant showed that pro41 is partly epistatic to pro1. Taken together, these data show that PRO41 is a novel ER membrane protein essential for fruiting body formation in filamentous fungi. PMID:17501918

  11. The novel ER membrane protein PRO41 is essential for sexual development in the filamentous fungus Sordaria macrospora.

    PubMed

    Nowrousian, Minou; Frank, Sandra; Koers, Sandra; Strauch, Peter; Weitner, Thomas; Ringelberg, Carol; Dunlap, Jay C; Loros, Jennifer J; Kück, Ulrich

    2007-05-01

    The filamentous fungus Sordaria macrospora develops complex fruiting bodies (perithecia) to propagate its sexual spores. Here, we present an analysis of the sterile mutant pro41 that is unable to produce mature fruiting bodies. The mutant carries a deletion of 4 kb and is complemented by the pro41 open reading frame that is contained within the region deleted in the mutant. In silico analyses predict PRO41 to be an endoplasmic reticulum (ER) membrane protein, and a PRO41-EGFP fusion protein colocalizes with ER-targeted DsRED. Furthermore, Western blot analysis shows that the PRO41-EGFP fusion protein is present in the membrane fraction. A fusion of the predicted N-terminal signal sequence of PRO41 with EGFP is secreted out of the cell, indicating that the signal sequence is functional. pro41 transcript levels are upregulated during sexual development. This increase in transcript levels was not observed in the sterile mutant pro1 that lacks a transcription factor gene. Moreover, microarray analysis of gene expression in the mutants pro1, pro41 and the pro1/41 double mutant showed that pro41 is partly epistatic to pro1. Taken together, these data show that PRO41 is a novel ER membrane protein essential for fruiting body formation in filamentous fungi.

  12. Different sets of ER-resident J-proteins regulate distinct polar nuclear-membrane fusion events in Arabidopsis thaliana.

    PubMed

    Maruyama, Daisuke; Yamamoto, Masaya; Endo, Toshiya; Nishikawa, Shuh-ichi

    2014-11-01

    Angiosperm female gametophytes contain a central cell with two polar nuclei. In many species, including Arabidopsis thaliana, the polar nuclei fuse during female gametogenesis. We previously showed that BiP, an Hsp70 in the endoplasmic reticulum (ER), was essential for membrane fusion during female gametogenesis. Hsp70 function requires partner proteins for full activity. J-domain containing proteins (J-proteins) are the major Hsp70 functional partners. A. thaliana ER contains three soluble J-proteins, AtERdj3A, AtERdj3B, and AtP58(IPK). Here, we analyzed mutants of these proteins and determined that double-mutant ovules lacking AtP58(IPK) and AtERdj3A or AtERdj3B were defective in polar nuclear fusion. Electron microscopy analysis identified that polar nuclei were in close contact, but no membrane fusion occurred in mutant ovules lacking AtP58(IPK) and AtERdj3A. The polar nuclear outer membrane appeared to be connected via the ER remaining at the inner unfused membrane in mutant ovules lacking AtP58(IPK) and AtERdj3B. These results indicate that ER-resident J-proteins, AtP58(IPK)/AtERdj3A and AtP58(IPK)/AtERdj3B, function at distinct steps of polar nuclear-membrane fusion. Similar to the bip1 bip2 double mutant female gametophytes, the aterdj3a atp58(ipk) double mutant female gametophytes defective in fusion of the outer polar nuclear membrane displayed aberrant endosperm proliferation after fertilization with wild-type pollen. However, endosperm proliferated normally after fertilization of the aterdj3b atp58(ipk) double mutant female gametophytes defective in fusion of the inner membrane. Our results indicate that the polar nuclear fusion defect itself does not cause an endosperm proliferation defect. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Biochemical analysis of potential sites for protein 4.1-mediated anchoring of the spectrin-actin skeleton to the erythrocyte membrane.

    PubMed

    Workman, R F; Low, P S

    1998-03-13

    Erythrocyte protein 4.1 has been hypothesized to link the spectrin-actin junctional complex directly to the cytoplasmic domain of glycophorin C, but this bridging function has never been directly demonstrated. Because an alternative protein-mediated bridge between the junctional complex and the cytoplasmic domain of band 3 is also plausible, we have undertaken to characterize the membrane sites to which protein 4.1 can anchor the spectrin and actin skeleton. We demonstrate that proteolytic removal of the cytoplasmic domain of band 3 has minimal effect on the ability of protein 4.1 to promote 125I-labeled spectrin and actin binding to KI-stripped erythrocyte membrane vesicles. We also show that quantitative blockade of all band 3 sites with either monoclonal or polyclonal antibodies to band 3 is equally ineffective in preventing protein 4.1-mediated association of spectrin and actin with the membrane. In contrast, obstruction of protein 4.1 binding to its docking site on the cytoplasmic pole of glycophorin C is demonstrated to reduce the same protein 4.1 bridging function by approximately 85%. We conclude from these data that (i) glycophorin C contributes the primary anchoring site of the protein 4.1-mediated bridge to the spectrin-actin skeleton; (ii) band 3 is incapable of serving the same function; and (iii) additional minor protein 4.1 bridging sites may exist on the human erythrocyte membrane.

  14. Reduction of collagen VII anchoring fibrils in the airway basement membrane zone of infant rhesus monkeys exposed to house dust mite

    PubMed Central

    Fanucchi, Michelle V.; Miller, Lisa A.; Carlson, Melinda A.; Nishio, Susan J.; Hyde, Dallas M.

    2010-01-01

    Collagen VII anchoring fibrils in the basement membrane zone (BMZ) are part of a supracellular anchoring network that attaches the epithelium to the BMZ. Sloughing of airway epithelium in asthmatics (creola bodies) is a pathology associated with the supracellular anchoring network. In a rhesus monkey model of house dust mite (HDM)-induced allergic asthma, we found increased deposition of collagen I in the BMZ. In this study, we determine whether HDM also affected deposition of collagen VII in the BMZ. In the developing airway of rhesus monkeys, the width of collagen VII anchoring fibrils in the BMZ was 0.02 ± 0.04 μm at 1 mo of age. At 6 mo the width had increased to 1.28 ± 0.34 μm and at 12 mo 2.15 ± 0.13 μm. In animals treated with HDM, we found a 42.2% reduction in the width of collagen VII layer in the BMZ at 6 mo (0.74 ± 0.15 μm; P < 0.05). During recovery, the rate of collagen VII deposition returned to normal. However, the amount of collagen VII lost was not recovered after 6 mo. We concluded that normal development of the collagen VII attachment between the epithelium and BMZ occurs in coordination with development of the BMZ. However, in HDM-treated animals, the collagen VII attachment with the epithelium was significantly reduced. Such a reduction in collagen VII may weaken the supracellular anchoring network and be associated with sloughing of the epithelium and formation of creola bodies in asthmatics. PMID:20139177

  15. Rice black-streaked dwarf virus P10 induces membranous structures at the ER and elicits the unfolded protein response in Nicotiana benthamiana.

    PubMed

    Sun, Zongtao; Yang, Di; Xie, Li; Sun, Liying; Zhang, Shanglin; Zhu, Qisong; Li, Junmin; Wang, Xu; Chen, Jianping

    2013-12-01

    Endoplasmic reticular (ER) membrane modifications play an important role in viral RNA replication and virion assembly but little is known about the involvement of ER-membrane remodeling in the infection cycle of fijiviruses in plant cells. The subcellular localization of Rice black-streaked dwarf virus outer capsid P10 was therefore examined using live-cell imaging. P10 fused to eGFP formed vesicular structures associated with ER membranes in Nicotiana benthamiana epidermal cells and in rice protoplasts. Subcellular fractionation experiments confirmed that P10 is an integral membrane protein. Three predicted transmembrane domains and two less-well-defined domains were each able to target eGFP to the ER. Disruption of the actin cytoskeleton with LatB, indicated that the maintenance of P10-induced membrane structures required the intact actin cytoskeleton. P10 induced the expression of ER stress marker genes, including ER stress-related chaperones and transcription factor, indicating that RBSDV P10 triggers ER stress and the unfolded protein response. © 2013 Published by Elsevier Inc.

  16. Aberrant Accumulation of the Diabetes Autoantigen GAD65 in Golgi Membranes in Conditions of ER Stress and Autoimmunity.

    PubMed

    Phelps, Edward A; Cianciaruso, Chiara; Michael, Iacovos P; Pasquier, Miriella; Kanaani, Jamil; Nano, Rita; Lavallard, Vanessa; Billestrup, Nils; Hubbell, Jeffrey A; Baekkeskov, Steinunn

    2016-09-01

    Pancreatic islet β-cells are particularly susceptible to endoplasmic reticulum (ER) stress, which is implicated in β-cell dysfunction and loss during the pathogenesis of type 1 diabetes (T1D). The peripheral membrane protein GAD65 is an autoantigen in human T1D. GAD65 synthesizes γ-aminobutyric acid, an important autocrine and paracrine signaling molecule and a survival factor in islets. We show that ER stress in primary β-cells perturbs the palmitoylation cycle controlling GAD65 endomembrane distribution, resulting in aberrant accumulation of the palmitoylated form in trans-Golgi membranes. The palmitoylated form has heightened immunogenicity, exhibiting increased uptake by antigen-presenting cells and T-cell stimulation compared with the nonpalmitoylated form. Similar accumulation of GAD65 in Golgi membranes is observed in human β-cells in pancreatic sections from GAD65 autoantibody-positive individuals who have not yet progressed to clinical onset of T1D and from patients with T1D with residual β-cell mass and ongoing T-cell infiltration of islets. We propose that aberrant accumulation of immunogenic GAD65 in Golgi membranes facilitates inappropriate presentation to the immune system after release from stressed and/or damaged β-cells, triggering autoimmunity.

  17. The ER-Membrane Transport System Is Critical for Intercellular Trafficking of the NSm Movement Protein and Tomato Spotted Wilt Tospovirus

    PubMed Central

    Feng, Zhike; Xue, Fan; Xu, Min; Chen, Xiaojiao; Zhao, Wenyang; Garcia-Murria, Maria J.; Mingarro, Ismael; Liu, Yong; Huang, Ying; Jiang, Lei; Zhu, Min; Tao, Xiaorong

    2016-01-01

    Plant viruses move through plasmodesmata to infect new cells. The plant endoplasmic reticulum (ER) is interconnected among cells via the ER desmotubule in the plasmodesma across the cell wall, forming a continuous ER network throughout the entire plant. This ER continuity is unique to plants and has been postulated to serve as a platform for the intercellular trafficking of macromolecules. In the present study, the contribution of the plant ER membrane transport system to the intercellular trafficking of the NSm movement protein and Tomato spotted wilt tospovirus (TSWV) is investigated. We showed that TSWV NSm is physically associated with the ER membrane in Nicotiana benthamiana plants. An NSm-GFP fusion protein transiently expressed in single leaf cells was trafficked into neighboring cells. Mutations in NSm that impaired its association with the ER or caused its mis-localization to other subcellular sites inhibited cell-to-cell trafficking. Pharmacological disruption of the ER network severely inhibited NSm-GFP trafficking but not GFP diffusion. In the Arabidopsis thaliana mutant rhd3 with an impaired ER network, NSm-GFP trafficking was significantly reduced, whereas GFP diffusion was not affected. We also showed that the ER-to-Golgi secretion pathway and the cytoskeleton transport systems were not involved in the intercellular trafficking of TSWV NSm. Importantly, TSWV cell-to-cell spread was delayed in the ER-defective rhd3 mutant, and this reduced viral infection was not due to reduced replication. On the basis of robust biochemical, cellular and genetic analysis, we established that the ER membrane transport system serves as an important direct route for intercellular trafficking of NSm and TSWV. PMID:26863622

  18. Evidence for the involvement of lipid rafts localized at the ER-mitochondria associated membranes in autophagosome formation.

    PubMed

    Garofalo, Tina; Matarrese, Paola; Manganelli, Valeria; Marconi, Matteo; Tinari, Antonella; Gambardella, Lucrezia; Faggioni, Alberto; Misasi, Roberta; Sorice, Maurizio; Malorni, Walter

    2016-06-02

    Mitochondria-associated membranes (MAMs) are subdomains of the endoplasmic reticulum (ER) that interact with mitochondria. This membrane scrambling between ER and mitochondria appears to play a critical role in the earliest steps of autophagy. Recently, lipid microdomains, i.e. lipid rafts, have been identified as further actors of the autophagic process. In the present work, a series of biochemical and molecular analyses has been carried out in human fibroblasts with the specific aim of characterizing lipid rafts in MAMs and to decipher their possible implication in the autophagosome formation. In fact, the presence of lipid microdomains in MAMs has been detected and, in these structures, a molecular interaction of the ganglioside GD3, a paradigmatic "brick" of lipid rafts, with core-initiator proteins of autophagy, such as AMBRA1 and WIPI1, was revealed. This association seems thus to take place in the early phases of autophagic process in which MAMs have been hypothesized to play a key role. The functional activity of GD3 was suggested by the experiments carried out by knocking down ST8SIA1 gene expression, i.e., the synthase that leads to the ganglioside formation. This experimental condition results in fact in the impairment of the ER-mitochondria crosstalk and the subsequent hindering of autophagosome nucleation. We thus hypothesize that MAM raft-like microdomains could be pivotal in the initial organelle scrambling activity that finally leads to the formation of autophagosome.

  19. A small novel A-kinase anchoring protein (AKAP) that localizes specifically protein kinase A-regulatory subunit I (PKA-RI) to the plasma membrane.

    PubMed

    Burgers, Pepijn P; Ma, Yuliang; Margarucci, Luigi; Mackey, Mason; van der Heyden, Marcel A G; Ellisman, Mark; Scholten, Arjen; Taylor, Susan S; Heck, Albert J R

    2012-12-21

    Protein kinase A-anchoring proteins (AKAPs) provide spatio-temporal specificity for the omnipotent cAMP-dependent protein kinase (PKA) via high affinity interactions with PKA regulatory subunits (PKA-RI, RII). Many PKA-RII-AKAP complexes are heavily tethered to cellular substructures, whereas PKA-RI-AKAP complexes have remained largely undiscovered. Here, using a cAMP affinity-based chemical proteomics strategy in human heart and platelets, we uncovered a novel, ubiquitously expressed AKAP, termed small membrane (sm)AKAP due to its specific localization at the plasma membrane via potential myristoylation/palmitoylation anchors. In vitro binding studies revealed specificity of smAKAP for PKA-RI (K(d) = 7 nM) over PKA-RII (K(d) = 53 nM) subunits, co-expression of smAKAP with the four PKA R subunits revealed an even more exclusive specificity of smAKAP for PKA-RIα/β in the cellular context. Applying the singlet oxygen-generating electron microscopy probe miniSOG indicated that smAKAP is tethered to the plasma membrane and is particularly dense at cell-cell junctions and within filopodia. Our preliminary functional characterization of smAKAP provides evidence that, like PKA-RII, PKA-RI can be tightly tethered by a novel repertoire of AKAPs, providing a new perspective on spatio-temporal control of cAMP signaling.

  20. Enhancement of tendon–bone healing via the combination of biodegradable collagen-loaded nanofibrous membranes and a three-dimensional printed bone-anchoring bolt

    PubMed Central

    Chou, Ying-Chao; Yeh, Wen-Lin; Chao, Chien-Lin; Hsu, Yung-Heng; Yu, Yi-Hsun; Chen, Jan-Kan; Liu, Shih-Jung

    2016-01-01

    A composite biodegradable polymeric model was developed to enhance tendon graft healing. This model included a biodegradable polylactide (PLA) bolt as the bone anchor and a poly(D,L-lactide-co-glycolide) (PLGA) nanofibrous membrane embedded with collagen as a biomimic patch to promote tendon–bone interface integration. Degradation rate and compressive strength of the PLA bolt were measured after immersion in a buffer solution for 3 months. In vitro biochemical characteristics and the nanofibrous matrix were assessed using a water contact angle analyzer, pH meter, and tetrazolium reduction assay. In vivo efficacies of PLGA/collagen nanofibers and PLA bolts for tendon–bone healing were investigated on a rabbit bone tunnel model with histological and tendon pullout tests. The PLGA/collagen-blended nanofibrous membrane was a hydrophilic, stable, and biocompatible scaffold. The PLA bolt was durable for tendon–bone anchoring. Histology showed adequate biocompatibility of the PLA bolt on a medial cortex with progressive bone ingrowth and without tissue overreaction. PLGA nanofibers within the bone tunnel also decreased the tunnel enlargement phenomenon and enhanced tendon–bone integration. Composite polymers of the PLA bolt and PLGA/collagen nanofibrous membrane can effectively promote outcomes of tendon reconstruction in a rabbit model. The composite biodegradable polymeric system may be useful in humans for tendon reconstruction. PMID:27601901

  1. Mutations in the membrane anchor of yeast cytochrome c1 compensate for the absence of Oxa1p and generate carbonate-extractable forms of cytochrome c1.

    PubMed Central

    Hamel, P; Lemaire, C; Bonnefoy, N; Brivet-Chevillotte, P; Dujardin, G

    1998-01-01

    Oxa1p is a mitochondrial inner membrane protein that is mainly required for the insertion/assembly of complex IV and ATP synthase and is functionally conserved in yeasts, humans, and plants. We have isolated several independent suppressors that compensate for the absence of Oxa1p. Molecular cloning and sequencing reveal that the suppressor mutations (CYT1-1 to -6) correspond to amino acid substitutions that are all located in the membrane anchor of cytochrome c1 and decrease the hydrophobicity of this anchor. Cytochrome c1 is a catalytic subunit of complex III, but the CYT1-1 mutation does not seem to affect the electron transfer activity. The double-mutant cyt1-1,164, which has a drastically reduced electron transfer activity, still retains the suppressor activity. Altogether, these results suggest that the suppressor function of cytochrome c1 is independent of its electron transfer activity. In addition to the membrane-bound cytochrome c1, carbonate-extractable forms accumulate in all the suppressor strains. We propose that these carbonate-extractable forms of cytochrome c1 are responsible for the suppressor function by preventing the degradation of the respiratory complex subunits that occur in the absence of Oxa1p. PMID:9755193

  2. An Endosomal NAADP-Sensitive Two-Pore Ca(2+) Channel Regulates ER-Endosome Membrane Contact Sites to Control Growth Factor Signaling.

    PubMed

    Kilpatrick, Bethan S; Eden, Emily R; Hockey, Leanne N; Yates, Elizabeth; Futter, Clare E; Patel, Sandip

    2017-02-14

    Membrane contact sites are regions of close apposition between organelles that facilitate information transfer. Here, we reveal an essential role for Ca(2+) derived from the endo-lysosomal system in maintaining contact between endosomes and the endoplasmic reticulum (ER). Antagonizing action of the Ca(2+)-mobilizing messenger NAADP, inhibiting its target endo-lysosomal ion channel, TPC1, and buffering local Ca(2+) fluxes all clustered and enlarged late endosomes/lysosomes. We show that TPC1 localizes to ER-endosome contact sites and is required for their formation. Reducing NAADP-dependent contacts delayed EGF receptor de-phosphorylation consistent with close apposition of endocytosed receptors with the ER-localized phosphatase PTP1B. In accord, downstream MAP kinase activation and mobilization of ER Ca(2+) stores by EGF were exaggerated upon NAADP blockade. Membrane contact sites between endosomes and the ER thus emerge as Ca(2+)-dependent hubs for signaling.

  3. Regulated Erlin-dependent release of the B12 transmembrane J-protein promotes ER membrane penetration of a non-enveloped virus

    PubMed Central

    2017-01-01

    The molecular mechanism by which non-enveloped viruses penetrate biological membranes remains enigmatic. The non-enveloped polyomavirus SV40 penetrates the endoplasmic reticulum (ER) membrane to reach the cytosol and cause infection. We previously demonstrated that SV40 creates its own membrane penetration structure by mobilizing select transmembrane proteins to distinct puncta in the ER membrane called foci that likely function as the cytosol entry sites. How these ER membrane proteins reorganize into the foci is unknown. B12 is a transmembrane J-protein that mobilizes into the foci to promote cytosol entry of SV40. Here we identify two closely related ER membrane proteins Erlin1 and Erlin2 (Erlin1/2) as B12-interaction partners. Strikingly, SV40 recruits B12 to the foci by inducing release of this J-protein from Erlin1/2. Our data thus reveal how a non-enveloped virus promotes its own membrane translocation by triggering the release and recruitment of a critical transport factor to the membrane penetration site. PMID:28614383

  4. The ER Stress Sensor PERK Coordinates ER-Plasma Membrane Contact Site Formation through Interaction with Filamin-A and F-Actin Remodeling.

    PubMed

    van Vliet, Alexander R; Giordano, Francesca; Gerlo, Sarah; Segura, Inmaculada; Van Eygen, Sofie; Molenberghs, Geert; Rocha, Susana; Houcine, Audrey; Derua, Rita; Verfaillie, Tom; Vangindertael, Jeroen; De Keersmaecker, Herlinde; Waelkens, Etienne; Tavernier, Jan; Hofkens, Johan; Annaert, Wim; Carmeliet, Peter; Samali, Afshin; Mizuno, Hideaki; Agostinis, Patrizia

    2017-03-02

    Loss of ER Ca(2+) homeostasis triggers endoplasmic reticulum (ER) stress and drives ER-PM contact sites formation in order to refill ER-luminal Ca(2+). Recent studies suggest that the ER stress sensor and mediator of the unfolded protein response (UPR) PERK regulates intracellular Ca(2+) fluxes, but the mechanisms remain elusive. Here, using proximity-dependent biotin identification (BioID), we identified the actin-binding protein Filamin A (FLNA) as a key PERK interactor. Cells lacking PERK accumulate F-actin at the cell edges and display reduced ER-PM contacts. Following ER-Ca(2+) store depletion, the PERK-FLNA interaction drives the expansion of ER-PM juxtapositions by regulating F-actin-assisted relocation of the ER-associated tethering proteins Stromal Interaction Molecule 1 (STIM1) and Extended Synaptotagmin-1 (E-Syt1) to the PM. Cytosolic Ca(2+) elevation elicits rapid and UPR-independent PERK dimerization, which enforces PERK-FLNA-mediated ER-PM juxtapositions. Collectively, our data unravel an unprecedented role of PERK in the regulation of ER-PM appositions through the modulation of the actin cytoskeleton.

  5. Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts

    SciTech Connect

    Du, Yijun; Pattnaik, Asit K.; Song, Cheng; Yoo, Dongwan; Li, Gang

    2012-03-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) glycoprotein 4 (GP4) resembles a typical type I membrane protein in its structure but lacks a hydrophilic tail at the C-terminus, suggesting that GP4 may be a lipid-anchored membrane protein. Using the human decay-accelerating factor (DAF; CD55), a known glycosyl-phosphatidylinositol (GPI) lipid-anchored protein, chimeric constructs were made to substitute the GPI-anchor domain of DAF with the putative lipid-anchor domain of GP4, and their membrane association and lipase cleavage were determined in cells. The DAF-GP4 fusion protein was transported to the plasma membrane and was cleaved by phosphatidylinositol-specific phospholipase C (PI-PLC), indicating that the C-terminal domain of GP4 functions as a GPI anchor. Mutational studies for residues adjacent to the GPI modification site and characterization of respective mutant viruses generated from infectious cDNA clones show that the ability of GP4 for membrane association corresponded to virus viability and growth characteristics. The residues T158 ({omega} - 2, where {omega} is the GPI moiety at E160), P159 ({omega} - 1), and M162 ({omega} + 2) of GP4 were determined to be important for virus replication, with M162 being of particular importance for virus infectivity. The complete removal of the peptide-anchor domain in GP4 resulted in a complete loss of virus infectivity. The depletion of cholesterol from the plasma membrane of cells reduced the virus production, suggesting a role of lipid rafts in PRRSV infection. Remarkably, GP4 was found to co-localize with CD163 in the lipid rafts on the plasma membrane. Since CD163 has been reported as a cellular receptor for PRRSV and GP4 has been shown to interact with this receptor, our data implicates an important role of lipid rafts during entry of the virus.

  6. Mitochondria-driven assembly of a cortical anchor for mitochondria and dynein.

    PubMed

    Kraft, Lauren M; Lackner, Laura L

    2017-10-02

    Interorganelle contacts facilitate communication between organelles and impact fundamental cellular functions. In this study, we examine the assembly of the MECA (mitochondria-endoplasmic reticulum [ER]-cortex anchor), which tethers mitochondria to the ER and plasma membrane. We find that the assembly of Num1, the core component of MECA, requires mitochondria. Once assembled, Num1 clusters persistently anchor mitochondria to the cell cortex. Num1 clusters also function to anchor dynein to the plasma membrane, where dynein captures and walks along astral microtubules to help orient the mitotic spindle. We find that dynein is anchored by Num1 clusters that have been assembled by mitochondria. When mitochondrial inheritance is inhibited, Num1 clusters are not assembled in the bud, and defects in dynein-mediated spindle positioning are observed. The mitochondria-dependent assembly of a dual-function cortical anchor provides a mechanism to integrate the positioning and inheritance of the two essential organelles and expands the function of organelle contact sites. © 2017 Kraft and Lackner.

  7. Multiple GTP-binding proteins regulate vesicular transport from the ER to Golgi membranes

    PubMed Central

    1992-01-01

    Using indirect immunofluorescence we have examined the effects of reagents which inhibit the function of ras-related rab small GTP- binding proteins and heterotrimeric G alpha beta gamma proteins in ER to Golgi transport. Export from the ER was inhibited by an antibody towards rab1B and an NH2-terminal peptide which inhibits ARF function (Balch, W. E., R. A. Kahn, and R. Schwaninger. 1992. J. Biol. Chem. 267:13053-13061), suggesting that both of these small GTP-binding proteins are essential for the transport vesicle formation. Export from the ER was also potently inhibited by mastoparan, a peptide which mimics G protein binding regions of seven transmembrane spanning receptors activating and uncoupling heterotrimeric G proteins from their cognate receptors. Consistent with this result, purified beta gamma subunits inhibited the export of VSV-G from the ER suggesting an initial event in transport vesicle assembly was regulated by a heterotrimeric G protein. In contrast, incubation in the presence of GTP gamma S or AIF(3-5) resulted in the accumulation of transported protein in different populations of punctate pre-Golgi intermediates distributed throughout the cytoplasm of the cell. Finally, a peptide which is believed to antagonize the interaction of rab proteins with putative downstream effector molecules inhibited transport at a later step preceding delivery to the cis Golgi compartment, similar to the site of accumulation of transported protein in the absence of NSF or calcium (Plutner, H., H. W. Davidson, J. Saraste, and W. E. Balch. 1992. J. Cell Biol. 119:1097-1116). These results are consistent with the hypothesis that multiple GTP-binding proteins including a heterotrimeric G protein(s), ARF and rab1 differentially regulate steps in the transport of protein between early compartments of the secretory pathway. The concept that G protein-coupled receptors gate the export of protein from the ER is discussed. PMID:1447289

  8. Osh proteins regulate membrane sterol organization but are not required for sterol movement between the ER and PM

    PubMed Central

    Georgiev, Alexander; Sullivan, David P.; Kersting, Michael C.; Dittman, Jeremy S.; Beh, Christopher T.; Menon, Anant K.

    2011-01-01

    Sterol transport between the endoplasmic reticulum (ER) and plasma membrane (PM) occurs by an ATP-dependent, non-vesicular mechanism that is presumed to require sterol transport proteins (STPs). In Saccharomyces cerevisiae, homologues of the mammalian oxysterol-binding protein (Osh1–7) have been proposed to function as STPs. To evaluate this proposal we took two approaches. First we used dehydroergosterol (DHE) to visualize sterol movement in living cells by fluorescence microscopy. DHE was introduced into the PM under hypoxic conditions and observed to redistribute to lipid droplets on growing the cells aerobically. Redistribution required ATP and the sterol acyltransferase Are2, but did not require PM-derived transport vesicles. DHE redistribution occurred robustly in a conditional yeast mutant (oshΔ osh4-1ts) that lacks all functional Osh proteins at 37°C. In a second approach we used a pulse-chase protocol to analyze the movement of metabolically radiolabeled ergosterol from the ER to the PM. Arrival of radiolabeled ergosterol at the PM was assessed in isolated PM-enriched fractions as well by extracting sterols from intact cells with methyl-β-cyclodextrin. These experiments revealed that whereas ergosterol is transported effectively from the ER to the PM in Osh-deficient cells, the rate at which it moves within the PM to equilibrate with the methyl-β-cyclodextrin extractable sterol pool is slowed. We conclude (i) that the role of Osh proteins in nonvesicular sterol transport between the PM, ER and lipid droplets is either minimal, or subsumed by other mechanisms and (ii) that Osh proteins regulate the organization of sterols at the PM. PMID:21689253

  9. Cell lysis induces redistribution of the GPI-anchored variant surface glycoprotein on both faces of the plasma membrane of Trypanosoma brucei.

    PubMed

    Cardoso De Almeida, M L; Geuskens, M; Pays, E

    1999-12-01

    African trypanosomes are coated by 10 million copies of a single variant specific glycoprotein (VSG) which are anchored in the plasma membrane by glycosylphosphatidylinositol (GPI). A GPI-specific phospholipase C (GPI-PLC) triggers fast VSG release upon cell lysis but in vivo it is safely controlled and topologically concealed from its substrate by being intracellular. One enigmatic aspect of GPI-PLC action therefore consists of how it could gain access to the VSG in the exoplasmic leaflet of the membrane. The data presented herewith disclose an unexpected possible solution for this puzzle: upon cell rupture the VSG invades the cytoplasmic face of the plasma membrane which thus becomes double coated. This unusual VSG rearrangement was stable in ruptured plasma membrane from GPI-PLC null mutant trypanosomes but transiently preceded VSG release in wild-type parasites. The formation of double coat membrane (DCM) was independent of the presence or activation of GPI-PLC, occurred both at 4 degrees C and 30 degrees C and was unaffected by the classical inhibitor of VSG release, p-choromercuryphenylsulfonic acid (PCM). DCMs conserved the same coat thickness and association with subpellicular microtubules as in intact cells and were prone to form vesicles following gradual detachment of the latter. Our data also demonstrate that: (i) GPI-PLC expressed by one trypanosome only targets its own plasma membrane, being unable to release VSG of another parasite; (ii) DCMs concomitantly formed from trypanosomes expressing different VSGs do not intermix, an indication that DCM might be refractory to membrane fusion.

  10. A new family of StART domain proteins at membrane contact sites has a role in ER-PM sterol transport

    PubMed Central

    Gatta, Alberto T; Wong, Louise H; Sere, Yves Y; Calderón-Noreña, Diana M; Cockcroft, Shamshad; Menon, Anant K; Levine, Tim P

    2015-01-01

    Sterol traffic between the endoplasmic reticulum (ER) and plasma membrane (PM) is a fundamental cellular process that occurs by a poorly understood non-vesicular mechanism. We identified a novel, evolutionarily diverse family of ER membrane proteins with StART-like lipid transfer domains and studied them in yeast. StART-like domains from Ysp2p and its paralog Lam4p specifically bind sterols, and Ysp2p, Lam4p and their homologs Ysp1p and Sip3p target punctate ER-PM contact sites distinct from those occupied by known ER-PM tethers. The activity of Ysp2p, reflected in amphotericin-sensitivity assays, requires its second StART-like domain to be positioned so that it can reach across ER-PM contacts. Absence of Ysp2p, Ysp1p or Sip3p reduces the rate at which exogenously supplied sterols traffic from the PM to the ER. Our data suggest that these StART-like proteins act in trans to mediate a step in sterol exchange between the PM and ER. DOI: http://dx.doi.org/10.7554/eLife.07253.001 PMID:26001273

  11. Er:YAG laser ablation of epiretinal membranes in perfluorocarbon fluid-filled eyeballs: a preliminary report

    NASA Astrophysics Data System (ADS)

    Frenz, Martin; Ith, Michael; Weber, Heinz P.; Wesendahl, Th.; Janknecht, P.

    1998-06-01

    Purpose: The Er:YAG laser emitting radiation at a wavelength of 2.94 micrometer has been shown to produce precise tissue ablation because of the high water absorption at this wavelength. These studies evaluated the effects of the Er:YAG laser on pig retina utilizing a perfluoro-carbon/retina interphase with the goal to precisely ablate epiretinal membranes. Method: Various laser pulse energies were applied to the surface of pig retinas in perfluorocarbon filled enucleated eyes using a specially designed rotating sample holder. Free running ((tau) equals 250 microseconds) Er:YAG laser pulses were transmitted through a zirconium fluoride (ZrF4) fiber guarded by a low OH-quartz fiber at its distal tip. The tip diameters measured 400 micrometers and 1 mm. The fiber probe was elevated 1 mm above the retinal surface. The laser energy was applied in a systematic fashion while alternating energy settings and probe diameters. Radiant exposures were set to 1 J/cm2, 3 J/cm2, 5 J/cm2, and 10 J/cm2. Results: Eight of ten eyes were treated with concentric circles of 3.5 mm, 6.5 mm, and 9.5 mm radius. The remaining two eyes were treated with a hand held probe. Tissue ablation increased with radiant exposure in a linear fashion. At a radiant exposure of 1 J/cm2, tissue ablation was minimal with a maximum tissue ablation depth of 10 micrometers and minimal thermal damage to adjacent tissue. A radiant exposure of 10 J/cm2 produced an ablation depth of 30 - 50 micrometers. As the ablation was performed under perfluorcarbon fluid, used as transmitting medium, no laser- induced pressure transients have been measured. Conclusion: The Er:YAG laser in combination with perfluorocarbon fluid produced precise and homogeneous tissue ablation of the pig retina. Such precise tissue ablation needs to be achieved in order to safely ablate epiretinal membranes in close proximity to the retina surface. Further in-vivo experiments will be done to examine the functionality of the retina after laser

  12. Enhancement of fuel cell performance with less-water dependent composite membranes having polyoxometalate anchored nanofibrous interlayer

    NASA Astrophysics Data System (ADS)

    Abouzari-lotf, Ebrahim; Jacob, Mohan V.; Ghassemi, Hossein; Ahmad, Arshad; Nasef, Mohamed Mahmoud; Zakeri, Masoumeh; Mehdipour-Ataei, Shahram

    2016-09-01

    Polyoxometalate immobilized nanofiber was used to fabricate low gas permeable layer for composite membranes designed for proton exchange membrane fuel cell (PEMFC) operating at low relative humidity (RH). The composite membranes revealed enhanced proton conductivity in dry conditions compared with state-of-the-art pristine membrane (Nafion 112, N112). This was coupled with a low fuel crossover inheriting the composite membranes about 100 mV higher OCV than N112 when tested in PEMFC at 60 °C and 40% RH. A maximum power density of up to 930 mW cm-2 was also achieved which is substantially higher than the N112 under similar conditions (577 mW cm-2). Such remarkable performance enhancement along with undetectable leaching of immobilized polyoxometalate, high dimensional stability and low water uptake of the composite membranes suggest a strong potential for PEMFC under low RH operation.

  13. Spin-label studies on the anchoring and lipid-protein interactions of avidin with N-biotinylphosphatidylethanolamines in lipid bilayer membranes.

    PubMed

    Swamy, M J; Marsh, D

    1997-06-17

    The specific binding of hen egg white avidin to phosphatidylcholine lipid membranes containing spin-labeled N-biotinylphosphatidylethanolamines (biotin-PESLs) was investigated by using ESR spectroscopy. Spin-labeled biotin-PEs were prepared with the nitroxide group at position C-5, C-8, C-10, C-12, or C-14 of the sn-2 chain and were incorporated at 1 mol % in lipid bilayer membranes of dimyristoylphosphatidylcholine. Binding of avidin produced a strong and selective restriction of the biotin-PE lipid mobility at all positions of chain labeling, as shown by the ESR spectra recorded in the fluid lipid phase. The spectral components of the fraction of the biotin-PESLs that were not complexed by avidin indicated that the mobility of the bulk membrane lipids was unperturbed by binding avidin, as demonstrated by difference spectroscopy. Comparison of the positional profiles and temperature dependences of the outer hyperfine splittings from the biotin-PESLs suggests that the C-12 and C-14 positions of the avidin-bound biotin-PEs are in register with the C-5 and C-7/C-6 positions, respectively, of the chains of the bulk membrane lipids. This indicates that the biotin-PEs are partially withdrawn from the membrane, with a vertical displacement of ca. 7-8 A, on complexation with avidin. In addition, the specific lipid-protein interaction with avidin results in a selective reduction in the rates of lipid chain motion, as shown by the increased ESR line widths. These data define the way in which avidin is anchored to lipid membranes containing biotin-PEs.

  14. Cytosol-dependent membrane fusion in ER, nuclear envelope and nuclear pore assembly: biological implications.

    PubMed

    Rafikova, Elvira R; Melikov, Kamran; Chernomordik, Leonid V

    2010-01-01

    Endoplasmic reticulum and nuclear envelope rearrangements after mitosis are often studied in the reconstitution system based on Xenopus egg extract. In our recent work we partially replaced the membrane vesicles in the reconstitution mix with protein-free liposomes to explore the relative contributions of cytosolic and transmembrane proteins. Here we discuss our finding that cytosolic proteins mediate fusion between membranes lacking functional transmembrane proteins and the role of membrane fusion in endoplasmic reticulum and nuclear envelope reorganization. Cytosol-dependent liposome fusion has allowed us to restore, without adding transmembrane nucleoporins, functionality of nuclear pores, their spatial distribution and chromatin decondensation in nuclei formed at insufficient amounts of membrane material and characterized by only partial decondensation of chromatin and lack of nuclear transport. Both the mechanisms and the biological implications of the discovered coupling between spatial distribution of nuclear pores, chromatin decondensation and nuclear transport are discussed.

  15. Fluorescence Correlation Spectroscopy and Photon Counting Histogram on membrane proteins: Functional dynamics of the GPI-anchored Urokinase Plasminogen Activator Receptor

    PubMed Central

    Malengo, Gabriele; Andolfo, Annapaola; Sidenius, Nicolai; Gratton, Enrico; Zamai, Moreno; Caiolfa, Valeria R

    2009-01-01

    The oligomerization of GPI-anchored proteins is thought to regulate their association with membrane microdomains, sub-cellular sorting and activity. However, these mechanisms need to be comprehensively explored in living, unperturbed cells, without artificial clustering agents, and using fluorescent protein-tagged chimeras that are fully biologically active. We expressed in HEK293 cells a biologically active chimera of the urokinase plasminogen activator receptor (uPAR), the uPAR-mEGFP-GPI. We also produced HEK293/D2D3-mEGFP-GPI cells expressing the truncated form of the receptor, lacking biological activity. We studied the dynamics and oligomerization of the two proteins, combining FCS and PCH analyses, and using subclones with homogenously low expression levels. Overall, the mobile fractions of the two proteins, constituted by monomers and dimers, had comparable diffusion coefficients. However, only for the active receptor the diffusion coefficient decreased in monomer-enriched fractions, suggesting that uPAR monomers might be preferentially engaged in multi-protein transmembrane signaling complexes. Our approach helps in limiting the alteration of the data due to out-of-focus, and minimizing the overestimation of the molecular brightness. Joint to a careful design of the cellular model, it gives reliable estimates of diffusion coefficients and oligomerization of GPI-anchored proteins, in steady state conditions, at low expression levels, and in live, unperturbed cells. PMID:18601539

  16. Fluorescence correlation spectroscopy and photon counting histogram on membrane proteins: functional dynamics of the glycosylphosphatidylinositol-anchored urokinase plasminogen activator receptor.

    PubMed

    Malengo, Gabriele; Andolfo, Annapaola; Sidenius, Nicolai; Gratton, Enrico; Zamai, Moreno; Caiolfa, Valeria R

    2008-01-01

    The oligomerization of glycosylphosphatidylinositol-anchored proteins is thought to regulate their association with membrane microdomains, subcellular sorting, and activity. However, these mechanisms need to be comprehensively explored in living, unperturbed cells, without artificial clustering agents, and using fluorescent protein-tagged chimeras that are fully biologically active. We expressed in human embryo kidnay 293 (HEK293) cells a biologically active chimera of the urokinase plasminogen activator receptor (uPAR), the uPAR-mEGFP-GPI. We also produced HEK293/D2D3-mEGFP-GPI cells expressing the truncated form of the receptor, lacking biological activity. We studied the dynamics and oligomerization of the two proteins, combining fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analyses, and using subclones with homogenously low expression levels. Overall, the mobile fractions of the two proteins, constituted by monomers and dimers, had comparable diffusion coefficients. However, the diffusion coefficient decreased in monomer-enriched fractions only for the active receptor, suggesting that uPAR monomers might be preferentially engaged in multiprotein transmembrane signaling complexes. Our approach helps in limiting the alteration of the data due to out-of-focus effects and in minimizing the overestimation of the molecular brightness. In addition to a careful design of the cellular model, it gives reliable estimates of diffusion coefficients and oligomerization of GPI-anchored proteins, in steady-state conditions, at low expression levels, and in live, unperturbed cells.

  17. ER stress increases StarD5 expression by stabilizing its mRNA and leads to relocalization of its protein from the nucleus to the membranes

    PubMed Central

    Rodriguez-Agudo, Daniel; Calderon-Dominguez, Maria; Medina, Miguel Angel; Ren, Shunlin; Gil, Gregorio; Pandak, William M.

    2012-01-01

    StarD5 belongs to the StarD4 subfamily of steroidogenic acute regulatory lipid transfer (START) domain proteins. In macrophages, StarD5 is found in the cytosol and maintains a loose association with the Golgi. Like StarD1 and StarD4, StarD5 is known to bind cholesterol. However, its function and regulation remain poorly defined. Recently, it has been shown that its mRNA expression is induced in response to different inducers of endoplasmic reticulum (ER) stress. However, the molecular mechanism(s) involved in the induction of StarD5 expression during ER stress is not known. Here we show that in 3T3-L1 cells, the ER stressor thapsigargin increases intracellular free cholesterol due to an increase in HMG-CoA reductase expression. Activation of StarD5 expression is mediated by the transcriptional ER stress factor XBP-1. Additionally, the induction of ER stress stabilizes the StarD5 mRNA. Furthermore, StarD5 protein is mainly localized in the nucleus, and upon ER stress, it redistributes away from the nucleus, localizing prominently to the cytosol and membranes. These results reveal the increase in StarD5 expression and protein redistribution during the cell protective phase of the ER stress, suggesting a role for StarD5 in cholesterol metabolism during the ER stress response. PMID:23053693

  18. An ER-resident membrane protein complex regulates nicotinic acetylcholine receptor subunit composition at the synapse

    PubMed Central

    Almedom, Ruta B; Liewald, Jana F; Hernando, Guillermina; Schultheis, Christian; Rayes, Diego; Pan, Jie; Schedletzky, Thorsten; Hutter, Harald; Bouzat, Cecilia; Gottschalk, Alexander

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are homo- or heteropentameric ligand-gated ion channels mediating excitatory neurotransmission and muscle activation. Regulation of nAChR subunit assembly and transfer of correctly assembled pentamers to the cell surface is only partially understood. Here, we characterize an ER transmembrane (TM) protein complex that influences nAChR cell-surface expression and functional properties in Caenorhabditis elegans muscle. Loss of either type I TM protein, NRA-2 or NRA-4 (nicotinic receptor associated), affects two different types of muscle nAChRs and causes in vivo resistance to cholinergic agonists. Sensitivity to subtype-specific agonists of these nAChRs is altered differently, as demonstrated by whole-cell voltage-clamp of dissected adult muscle, when applying exogenous agonists or after photo-evoked, channelrhodopsin-2 (ChR2) mediated acetylcholine (ACh) release, as well as in single-channel recordings in cultured embryonic muscle. These data suggest that nAChRs desensitize faster in nra-2 mutants. Cell-surface expression of different subunits of the ‘levamisole-sensitive' nAChR (L-AChR) is differentially affected in the absence of NRA-2 or NRA-4, suggesting that they control nAChR subunit composition or allow only certain receptor assemblies to leave the ER. PMID:19609303

  19. Sub-Cellular Localization and Complex Formation by Aminoacyl-tRNA Synthetases in Cyanobacteria: Evidence for Interaction of Membrane-Anchored ValRS with ATP Synthase.

    PubMed

    Santamaría-Gómez, Javier; Ochoa de Alda, Jesús A G; Olmedo-Verd, Elvira; Bru-Martínez, Roque; Luque, Ignacio

    2016-01-01

    tRNAs are charged with cognate amino acids by aminoacyl-tRNA synthetases (aaRSs) and subsequently delivered to the ribosome to be used as substrates for gene translation. Whether aminoacyl-tRNAs are channeled to the ribosome by transit within translational complexes that avoid their diffusion in the cytoplasm is a matter of intense investigation in organisms of the three domains of life. In the cyanobacterium Anabaena sp. PCC 7120, the valyl-tRNA synthetase (ValRS) is anchored to thylakoid membranes by means of the CAAD domain. We have investigated whether in this organism ValRS could act as a hub for the nucleation of a translational complex by attracting other aaRSs to the membranes. Out of the 20 aaRSs, only ValRS was found to localize in thylakoid membranes whereas the other enzymes occupied the soluble portion of the cytoplasm. To investigate the basis for this asymmetric distribution of aaRSs, a global search for proteins interacting with the 20 aaRSs was conducted. The interaction between ValRS and the FoF1 ATP synthase complex here reported is of utmost interest and suggests a functional link between elements of the gene translation and energy production machineries.

  20. Sub-Cellular Localization and Complex Formation by Aminoacyl-tRNA Synthetases in Cyanobacteria: Evidence for Interaction of Membrane-Anchored ValRS with ATP Synthase

    PubMed Central

    Santamaría-Gómez, Javier; Ochoa de Alda, Jesús A. G.; Olmedo-Verd, Elvira; Bru-Martínez, Roque; Luque, Ignacio

    2016-01-01

    tRNAs are charged with cognate amino acids by aminoacyl-tRNA synthetases (aaRSs) and subsequently delivered to the ribosome to be used as substrates for gene translation. Whether aminoacyl-tRNAs are channeled to the ribosome by transit within translational complexes that avoid their diffusion in the cytoplasm is a matter of intense investigation in organisms of the three domains of life. In the cyanobacterium Anabaena sp. PCC 7120, the valyl-tRNA synthetase (ValRS) is anchored to thylakoid membranes by means of the CAAD domain. We have investigated whether in this organism ValRS could act as a hub for the nucleation of a translational complex by attracting other aaRSs to the membranes. Out of the 20 aaRSs, only ValRS was found to localize in thylakoid membranes whereas the other enzymes occupied the soluble portion of the cytoplasm. To investigate the basis for this asymmetric distribution of aaRSs, a global search for proteins interacting with the 20 aaRSs was conducted. The interaction between ValRS and the FoF1 ATP synthase complex here reported is of utmost interest and suggests a functional link between elements of the gene translation and energy production machineries. PMID:27375579

  1. Live-cell confocal microscopy and quantitative 4D image analysis of anchor-cell invasion through the basement membrane in Caenorhabditis elegans.

    PubMed

    Kelley, Laura C; Wang, Zheng; Hagedorn, Elliott J; Wang, Lin; Shen, Wanqing; Lei, Shijun; Johnson, Sam A; Sherwood, David R

    2017-10-01

    Cell invasion through basement membrane (BM) barriers is crucial in development, leukocyte trafficking and the spread of cancer. The mechanisms that direct invasion, despite their importance in normal and disease states, are poorly understood, largely because of the inability to visualize dynamic cell-BM interactions in vivo. This protocol describes multichannel time-lapse confocal imaging of anchor-cell invasion in live Caenorhabditis elegans. Methods presented include outline-slide preparation and worm growth synchronization (15 min), mounting (20 min), image acquisition (20-180 min), image processing (20 min) and quantitative analysis (variable timing). The acquired images enable direct measurement of invasive dynamics including formation of invadopodia and cell-membrane protrusions, and removal of BM. This protocol can be combined with genetic analysis, molecular-activity probes and optogenetic approaches to uncover the molecular mechanisms underlying cell invasion. These methods can also be readily adapted by any worm laboratory for real-time analysis of cell migration, BM turnover and cell-membrane dynamics.

  2. Physalis floridana Cell Number Regulator1 encodes a cell membrane-anchored modulator of cell cycle and negatively controls fruit size

    PubMed Central

    Li, Zhichao; He, Chaoying

    2015-01-01

    Physalis species show a significant variation in berry size; however, the underlying molecular basis is unknown. In this work, we showed that cell division difference in the ovaries might contribute to the ultimate berry size variation within Physalis species, and that mRNA abundance of Physalis floridana Cell Number Regulator1 (PfCNR1), the putative orthologue of the tomato fruit weight 2.2 (FW2.2), was negatively correlated with cell division in the ovaries. Moreover, heterochronic expression variation of the PfCNR1 genes in the ovaries concomitantly correlated with berry weight variation within Physalis species. In transgenic Physalis, multiple organ sizes could be negatively controlled by altering PfCNR1 levels, and cell division instead of cell expansion was primarily affected. PfCNR1 was shown to be anchored in the plasma membrane and to interact with PfAG2 (an AGAMOUS-like protein determining ovary identity). The expression of PfCYCD2;1, a putative orthologue of the mitosis-specific gene CyclinD2;1 in the cell cycle was negatively correlated with the PfCNR1 mRNA levels. PfAG2 was found to selectively bind to the CArG-box in the PfCYCD2;1 promoter and to repress PfCYCD2;1 expression, thus suggesting a PfAG2-mediated pathway for PfCNR1 to regulate cell division. The interaction of PfCNR1 with PfAG2 enhanced the repression of PfCYCD2;1 expression. The nuclear import of PfAG2 was essential in the proposed pathway. Our data provide new insights into the developmental pathways of a cell membrane-anchored protein that modulates cell division and governs organ size determination. This study also sheds light on the link between organ identity and organ growth in plants. PMID:25305759

  3. Evidence for Amino Acid Snorkeling from a High-Resolution, In Vivo Analysis of Fis1 Tail-Anchor Insertion at the Mitochondrial Outer Membrane.

    PubMed

    Keskin, Abdurrahman; Akdoğan, Emel; Dunn, Cory D

    2017-02-01

    Proteins localized to mitochondria by a carboxyl-terminal tail anchor (TA) play roles in apoptosis, mitochondrial dynamics, and mitochondrial protein import. To reveal characteristics of TAs that may be important for mitochondrial targeting, we focused our attention upon the TA of the Saccharomyces cerevisiae Fis1 protein. Specifically, we generated a library of Fis1p TA variants fused to the Gal4 transcription factor, then, using next-generation sequencing, revealed which Fis1p TA mutations inhibited membrane insertion and allowed Gal4p activity in the nucleus. Prompted by our global analysis, we subsequently analyzed the ability of individual Fis1p TA mutants to localize to mitochondria. Our findings suggest that the membrane-associated domain of the Fis1p TA may be bipartite in nature, and we encountered evidence that the positively charged patch at the carboxyl terminus of Fis1p is required for both membrane insertion and organelle specificity. Furthermore, lengthening or shortening of the Fis1p TA by up to three amino acids did not inhibit mitochondrial targeting, arguing against a model in which TA length directs insertion of TAs to distinct organelles. Most importantly, positively charged residues were more acceptable at several positions within the membrane-associated domain of the Fis1p TA than negatively charged residues. These findings, emerging from the first high-resolution analysis of an organelle targeting sequence by deep mutational scanning, provide strong, in vivo evidence that lysine and arginine can "snorkel," or become stably incorporated within a lipid bilayer by placing terminal charges of their side chains at the membrane interface. Copyright © 2017 by the Genetics Society of America.

  4. Evidence for Amino Acid Snorkeling from a High-Resolution, In Vivo Analysis of Fis1 Tail-Anchor Insertion at the Mitochondrial Outer Membrane

    PubMed Central

    Keskin, Abdurrahman; Akdoğan, Emel; Dunn, Cory D.

    2017-01-01

    Proteins localized to mitochondria by a carboxyl-terminal tail anchor (TA) play roles in apoptosis, mitochondrial dynamics, and mitochondrial protein import. To reveal characteristics of TAs that may be important for mitochondrial targeting, we focused our attention upon the TA of the Saccharomyces cerevisiae Fis1 protein. Specifically, we generated a library of Fis1p TA variants fused to the Gal4 transcription factor, then, using next-generation sequencing, revealed which Fis1p TA mutations inhibited membrane insertion and allowed Gal4p activity in the nucleus. Prompted by our global analysis, we subsequently analyzed the ability of individual Fis1p TA mutants to localize to mitochondria. Our findings suggest that the membrane-associated domain of the Fis1p TA may be bipartite in nature, and we encountered evidence that the positively charged patch at the carboxyl terminus of Fis1p is required for both membrane insertion and organelle specificity. Furthermore, lengthening or shortening of the Fis1p TA by up to three amino acids did not inhibit mitochondrial targeting, arguing against a model in which TA length directs insertion of TAs to distinct organelles. Most importantly, positively charged residues were more acceptable at several positions within the membrane-associated domain of the Fis1p TA than negatively charged residues. These findings, emerging from the first high-resolution analysis of an organelle targeting sequence by deep mutational scanning, provide strong, in vivo evidence that lysine and arginine can “snorkel,” or become stably incorporated within a lipid bilayer by placing terminal charges of their side chains at the membrane interface. PMID:28007883

  5. The gene encoding the GPI-anchored membrane protein p137{sup GPI} (M11S1) maps to human chromosome 11p13 and is highly conserved in the mouse

    SciTech Connect

    Gessler, M.; Klamt, B.; Tsaoussidou, S.

    1996-02-15

    This article reports on the mapping of the gene encoding the GPI-anchored membrane protein p137{sup GPI} (M11S1) to human chromosome 11p13. Genomic clones will help to discern the structure-activity relationships of the gene encoding this protein. 6 refs., 1 fig.

  6. CHEMICAL SYNTHESIS OF GLYCOSYLPHOSPHATIDYLINOSITOL ANCHORS

    PubMed Central

    Swarts, Benjamin M.; Guo, Zhongwu

    2013-01-01

    Many eukaryotic cell-surface proteins and glycoproteins are anchored to the plasma membrane by glycosylphosphatidylinositols (GPIs), a family of glycolipids that are post-translationally attached to proteins at their C-termini. GPIs and GPI-anchored proteins play important roles in many biological and pathological events, such as cell recognition and adhesion, signal transduction, host defense, and acting as receptors for viruses and toxins. Chemical synthesis of structurally defined GPI anchors and GPI derivatives is a necessary step toward understanding the properties and functions of these molecules in biological systems and exploring their potential therapeutic applications. In the first part of this comprehensive article on the chemical synthesis of GPIs, classic syntheses of naturally occurring GPI anchors from protozoan parasites, yeast, and mammals are covered. The second part of the article focuses on recent diversity-oriented strategies for the synthesis of GPI anchors containing unsaturated lipids, “click chemistry” tags, and highly branched and modified structures. PMID:22794184

  7. The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites.

    PubMed

    Derré, Isabelle; Swiss, Rachel; Agaisse, Hervé

    2011-06-01

    Bacterial pathogens that reside in membrane bound compartment manipulate the host cell machinery to establish and maintain their intracellular niche. The hijacking of inter-organelle vesicular trafficking through the targeting of small GTPases or SNARE proteins has been well established. Here, we show that intracellular pathogens also establish direct membrane contact sites with organelles and exploit non-vesicular transport machinery. We identified the ER-to-Golgi ceramide transfer protein CERT as a host cell factor specifically recruited to the inclusion, a membrane-bound compartment harboring the obligate intracellular pathogen Chlamydia trachomatis. We further showed that CERT recruitment to the inclusion correlated with the recruitment of VAPA/B-positive tubules in close proximity of the inclusion membrane, suggesting that ER-Inclusion membrane contact sites are formed upon C. trachomatis infection. Moreover, we identified the C. trachomatis effector protein IncD as a specific binding partner for CERT. Finally we showed that depletion of either CERT or the VAP proteins impaired bacterial development. We propose that the presence of IncD, CERT, VAPA/B, and potentially additional host and/or bacterial factors, at points of contact between the ER and the inclusion membrane provides a specialized metabolic and/or signaling microenvironment favorable to bacterial development.

  8. Quantitative determination of the lateral density and intermolecular correlation between proteins anchored on the membrane surfaces using grazing incidence small-angle X-ray scattering and grazing incidence X-ray fluorescence.

    PubMed

    Abuillan, Wasim; Vorobiev, Alexei; Hartel, Andreas; Jones, Nicola G; Engstler, Markus; Tanaka, Motomu

    2012-11-28

    As a physical model of the surface of cells coated with densely packed, non-crystalline proteins coupled to lipid anchors, we functionalized the surface of phospholipid membranes by coupling of neutravidin to biotinylated lipid anchors. After the characterization of fine structures perpendicular to the plane of membrane using specular X-ray reflectivity, the same membrane was characterized by grazing incidence small angle X-ray scattering (GISAXS). Within the framework of distorted wave Born approximation and two-dimensional Percus-Yevick function, we can analyze the form and structure factors of the non-crystalline, membrane-anchored proteins for the first time. As a new experimental technique to quantify the surface density of proteins on the membrane surface, we utilized grazing incidence X-ray fluorescence (GIXF). Here, the mean intermolecular distance between proteins from the sulfur peak intensities can be calculated by applying Abelé's matrix formalism. The characteristic correlation distance between non-crystalline neutravidin obtained by the GISAXS analysis agrees well with the intermolecular distance calculated by GIXF, suggesting a large potential of the combination of GISAXS and GIXF in probing the lateral density and correlation of non-crystalline proteins displayed on the membrane surface.

  9. Quantitative determination of the lateral density and intermolecular correlation between proteins anchored on the membrane surfaces using grazing incidence small-angle X-ray scattering and grazing incidence X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Abuillan, Wasim; Vorobiev, Alexei; Hartel, Andreas; Jones, Nicola G.; Engstler, Markus; Tanaka, Motomu

    2012-11-01

    As a physical model of the surface of cells coated with densely packed, non-crystalline proteins coupled to lipid anchors, we functionalized the surface of phospholipid membranes by coupling of neutravidin to biotinylated lipid anchors. After the characterization of fine structures perpendicular to the plane of membrane using specular X-ray reflectivity, the same membrane was characterized by grazing incidence small angle X-ray scattering (GISAXS). Within the framework of distorted wave Born approximation and two-dimensional Percus-Yevick function, we can analyze the form and structure factors of the non-crystalline, membrane-anchored proteins for the first time. As a new experimental technique to quantify the surface density of proteins on the membrane surface, we utilized grazing incidence X-ray fluorescence (GIXF). Here, the mean intermolecular distance between proteins from the sulfur peak intensities can be calculated by applying Abelé's matrix formalism. The characteristic correlation distance between non-crystalline neutravidin obtained by the GISAXS analysis agrees well with the intermolecular distance calculated by GIXF, suggesting a large potential of the combination of GISAXS and GIXF in probing the lateral density and correlation of non-crystalline proteins displayed on the membrane surface.

  10. Distinct mechanisms regulating mechanical force-induced Ca²⁺ signals at the plasma membrane and the ER in human MSCs.

    PubMed

    Kim, Tae-Jin; Joo, Chirlmin; Seong, Jihye; Vafabakhsh, Reza; Botvinick, Elliot L; Berns, Michael W; Palmer, Amy E; Wang, Ning; Ha, Taekjip; Jakobsson, Eric; Sun, Jie; Wang, Yingxiao

    2015-02-10

    It is unclear that how subcellular organelles respond to external mechanical stimuli. Here, we investigated the molecular mechanisms by which mechanical force regulates Ca(2+) signaling at endoplasmic reticulum (ER) in human mesenchymal stem cells. Without extracellular Ca(2+), ER Ca(2+) release is the source of intracellular Ca(2+) oscillations induced by laser-tweezer-traction at the plasma membrane, providing a model to study how mechanical stimuli can be transmitted deep inside the cell body. This ER Ca(2+) release upon mechanical stimulation is mediated not only by the mechanical support of cytoskeleton and actomyosin contractility, but also by mechanosensitive Ca(2+) permeable channels on the plasma membrane, specifically TRPM7. However, Ca(2+) influx at the plasma membrane via mechanosensitive Ca(2+) permeable channels is only mediated by the passive cytoskeletal structure but not active actomyosin contractility. Thus, active actomyosin contractility is essential for the response of ER to the external mechanical stimuli, distinct from the mechanical regulation at the plasma membrane.

  11. Integrative Structure–Function Mapping of the Nucleoporin Nup133 Suggests a Conserved Mechanism for Membrane Anchoring of the Nuclear Pore Complex*

    PubMed Central

    Kim, Seung Joong; Fernandez-Martinez, Javier; Sampathkumar, Parthasarathy; Martel, Anne; Matsui, Tsutomu; Tsuruta, Hiro; Weiss, Thomas M.; Shi, Yi; Markina-Inarrairaegui, Ane; Bonanno, Jeffery B.; Sauder, J. Michael; Burley, Stephen K.; Chait, Brian T.; Almo, Steven C.; Rout, Michael P.; Sali, Andrej

    2014-01-01

    The nuclear pore complex (NPC) is the sole passageway for the transport of macromolecules across the nuclear envelope. Nup133, a major component in the essential Y-shaped Nup84 complex, is a large scaffold protein of the NPC's outer ring structure. Here, we describe an integrative modeling approach that produces atomic models for multiple states of Saccharomyces cerevisiae (Sc) Nup133, based on the crystal structures of the sequence segments and their homologs, including the related Vanderwaltozyma polyspora (Vp) Nup133 residues 55 to 502 (VpNup13355–502) determined in this study, small angle X-ray scattering profiles for 18 constructs of ScNup133 and one construct of VpNup133, and 23 negative-stain electron microscopy class averages of ScNup1332–1157. Using our integrative approach, we then computed a multi-state structural model of the full-length ScNup133 and validated it with mutational studies and 45 chemical cross-links determined via mass spectrometry. Finally, the model of ScNup133 allowed us to annotate a potential ArfGAP1 lipid packing sensor (ALPS) motif in Sc and VpNup133 and discuss its potential significance in the context of the whole NPC; we suggest that ALPS motifs are scattered throughout the NPC's scaffold in all eukaryotes and play a major role in the assembly and membrane anchoring of the NPC in the nuclear envelope. Our results are consistent with a common evolutionary origin of Nup133 with membrane coating complexes (the protocoatomer hypothesis); the presence of the ALPS motifs in coatomer-like nucleoporins suggests an ancestral mechanism for membrane recognition present in early membrane coating complexes. PMID:25139911

  12. Integrative Structure–Function Mapping of the Nucleoporin Nup133 Suggests a Conserved Mechanism for Membrane Anchoring of the Nuclear Pore Complex

    SciTech Connect

    Kim, Seung Joong; Fernandez-Martinez, Javier; Sampathkumar, Parthasarathy; Martel, Anne; Matsui, Tsutomu; Tsuruta, Hiro; Weiss, Thomas M.; Shi, Yi; Markina-Inarrairaegui, Ane; Bonanno, Jeffery B.; Sauder, J. Michael; Burley, Stephen K.; Chait, Brian T.; Almo, Steven C.; Rout, Michael P.; Sali, Andrej

    2014-08-19

    The nuclear pore complex (NPC) is the sole passageway for the transport of macromolecules across the nuclear envelope. Nup133, a major component in the essential Y-shaped Nup84 complex, is a large scaffold protein of the NPC's outer ring structure. Here, we describe an integrative modeling approach that produces atomic models for multiple states of Saccharomyces cerevisiae (Sc) Nup133, based on the crystal structures of the sequence segments and their homologs, including the related Vanderwaltozyma polyspora (Vp) Nup133 residues 55 to 502 (VpNup13355–502) determined in this study, small angle X-ray scattering profiles for 18 constructs of ScNup133 and one construct of VpNup133, and 23 negative-stain electron microscopy class averages of ScNup1332–1157. Using our integrative approach, we then computed a multi-state structural model of the full-length ScNup133 and validated it with mutational studies and 45 chemical cross-links determined via mass spectrometry. Finally, the model of ScNup133 allowed us to annotate a potential ArfGAP1 lipid packing sensor (ALPS) motif in Sc and VpNup133 and discuss its potential significance in the context of the whole NPC; we suggest that ALPS motifs are scattered throughout the NPC's scaffold in all eukaryotes and play a major role in the assembly and membrane anchoring of the NPC in the nuclear envelope. Our results are consistent with a common evolutionary origin of Nup133 with membrane coating complexes (the protocoatomer hypothesis); the presence of the ALPS motifs in coatomer-like nucleoporins suggests an ancestral mechanism for membrane recognition present in early membrane coating complexes.

  13. Palmitoylation regulates plasma membrane–nuclear shuttling of R7BP, a novel membrane anchor for the RGS7 family

    PubMed Central

    Drenan, Ryan M.; Doupnik, Craig A.; Boyle, Maureen P.; Muglia, Louis J.; Huettner, James E.; Linder, Maurine E.; Blumer, Kendall J.

    2005-01-01

    The RGS7 (R7) family of RGS proteins bound to the divergent Gβ subunit Gβ5 is a crucial regulator of G protein–coupled receptor (GPCR) signaling in the visual and nervous systems. Here, we identify R7BP, a novel neuronally expressed protein that binds R7–Gβ5 complexes and shuttles them between the plasma membrane and nucleus. Regional expression of R7BP, Gβ5, and R7 isoforms in brain is highly coincident. R7BP is palmitoylated near its COOH terminus, which targets the protein to the plasma membrane. Depalmitoylation of R7BP translocates R7BP–R7–Gβ5 complexes from the plasma membrane to the nucleus. Compared with nonpalmitoylated R7BP, palmitoylated R7BP greatly augments the ability of RGS7 to attenuate GPCR-mediated G protein–regulated inward rectifying potassium channel activation. Thus, by controlling plasma membrane nuclear–shuttling of R7BP–R7–Gβ5 complexes, reversible palmitoylation of R7BP provides a novel mechanism that regulates GPCR signaling and potentially transduces signals directly from the plasma membrane to the nucleus. PMID:15897264

  14. Reticulons Regulate the ER Inheritance Block during ER Stress.

    PubMed

    Piña, Francisco Javier; Fleming, Tinya; Pogliano, Kit; Niwa, Maho

    2016-05-09

    Segregation of functional organelles during the cell cycle is crucial to generate healthy daughter cells. In Saccharomyces cerevisiae, ER stress causes an ER inheritance block to ensure cells inherit a functional ER. Here, we report that formation of tubular ER in the mother cell, the first step in ER inheritance, depends on functional symmetry between the cortical ER (cER) and perinuclear ER (pnER). ER stress induces functional asymmetry, blocking tubular ER formation and ER inheritance. Using fluorescence recovery after photobleaching, we show that the ER chaperone Kar2/BiP fused to GFP and an ER membrane reporter, Hmg1-GFP, behave differently in the cER and pnER. The functional asymmetry and tubular ER formation depend on Reticulons/Yop1, which maintain ER structure. LUNAPARK1 deletion in rtn1Δrtn2Δyop1Δ cells restores the pnER/cER functional asymmetry, tubular ER generation, and ER inheritance blocks. Thus, Reticulon/Yop1-dependent changes in ER structure are linked to ER inheritance during the yeast cell cycle.

  15. A membrane-anchored Theileria parva cyclophilin with a non-cleaved amino-terminal signal peptide for entry into the endoplasmic reticulum.

    PubMed

    Ebel, Thomas; Pellé, Roger; Janoo, Rozmin; Lipp, Joachim; Bishop, Richard

    2004-05-07

    Recent studies suggest that peptidyl-prolyl isomerases of the cyclophilin family, that access the secretory pathway, can be involved in the interaction of parasitic protozoa with mammalian host cells. The amino acid sequence of a cDNA encoding a cyclophilin family member of the intracellular protozoan parasite of cattle Theileria parva contains a conserved C-terminal domain that exhibits 70% amino acid identity to cyclophilin proteins from other organisms, and a unique 60 amino acid novel N-terminal extension. Cell-free expression of the cDNA revealed a 26kDa amino translation product, indicating expression of the N-terminal domain. The protein-coding region contains three short introns, less than 100 base pairs in length and Northern blot analysis demonstrates expression of a single 0.9 kb transcript in the piroplasm and schizont stages. The transcript is present in high abundance in the intra-lymphocytic schizont stage. The recombinant protein binds to immobilized cyclosporin A, a finding consistent with peptidyl-prolyl cis-trans isomerase function in vivo. A predicted N-terminal signal peptide was functional for entry into the eukaryotic secretory transport pathway in a cell-free in vitro transcription/translation system. The C-terminal cyclophilin domain was translocated across the membrane of the endoplasmic reticulum and the uncleaved signal peptide functioned as a membrane anchor. Copyright 2004 Elsevier B.V.

  16. Membrane-Surface Anchoring of Charged Diacylglycerol-Lactones Correlates with Biological Activities | Center for Cancer Research

    Cancer.gov

    The inside cover picture shows the molecular structure of a DAG lactone derivative on top of the inner leaflet of a DMPC bilayer. The confocal microscopy image illustrates DAG-lactone-stimulated membrane localization of PKCδ-ECFP in living cells, while the space-filling model shows the surface of the C1B domain of PKCδ, the target of the lactone.

  17. Efficient Trafficking of MDR1/P-Glycoprotein to Apical Canalicular Plasma Membranes in HepG2 Cells Requires PKA-RIIα Anchoring and Glucosylceramide

    PubMed Central

    Wojtal, Kacper A.; de Vries, Erik; Hoekstra, Dick

    2006-01-01

    In hepatocytes, cAMP/PKA activity stimulates the exocytic insertion of apical proteins and lipids and the biogenesis of bile canalicular plasma membranes. Here, we show that the displacement of PKA-RIIα from the Golgi apparatus severely delays the trafficking of the bile canalicular protein MDR1 (P-glycoprotein), but not that of MRP2 (cMOAT), DPP IV and 5′NT, to newly formed apical surfaces. In addition, the direct trafficking of de novo synthesized glycosphingolipid analogues from the Golgi apparatus to the apical surface is inhibited. Instead, newly synthesized glucosylceramide analogues are rerouted to the basolateral surface via a vesicular pathway, from where they are subsequently endocytosed and delivered to the apical surface via transcytosis. Treatment of HepG2 cells with the glucosylceramide synthase inhibitor PDMP delays the appearance of MDR1, but not MRP2, DPP IV, and 5′NT at newly formed apical surfaces, implicating glucosylceramide synthesis as an important parameter for the efficient Golgi-to-apical surface transport of MDR1. Neither PKA-RIIα displacement nor PDMP inhibited (cAMP-stimulated) apical plasma membrane biogenesis per se, suggesting that other cAMP effectors may play a role in canalicular development. Taken together, our data implicate the involvement of PKA-RIIα anchoring in the efficient direct apical targeting of distinct proteins and glycosphingolipids to newly formed apical plasma membrane domains and suggest that rerouting of Golgi-derived glycosphingolipids may underlie the delayed Golgi-to-apical surface transport of MDR1. PMID:16723498

  18. Anchor Modeling

    NASA Astrophysics Data System (ADS)

    Regardt, Olle; Rönnbäck, Lars; Bergholtz, Maria; Johannesson, Paul; Wohed, Petia

    Maintaining and evolving data warehouses is a complex, error prone, and time consuming activity. The main reason for this state of affairs is that the environment of a data warehouse is in constant change, while the warehouse itself needs to provide a stable and consistent interface to information spanning extended periods of time. In this paper, we propose a modeling technique for data warehousing, called anchor modeling, that offers non-destructive extensibility mechanisms, thereby enabling robust and flexible management of changes in source systems. A key benefit of anchor modeling is that changes in a data warehouse environment only require extensions, not modifications, to the data warehouse. This ensures that existing data warehouse applications will remain unaffected by the evolution of the data warehouse, i.e. existing views and functions will not have to be modified as a result of changes in the warehouse model.

  19. SED5 encodes a 39-kD integral membrane protein required for vesicular transport between the ER and the Golgi complex

    PubMed Central

    1992-01-01

    The ERD2 gene, which encodes the yeast HDEL (His-Asp-Glu-Leu) receptor, is essential for growth (Semenza, J. C., K. G. Hardwick, N. Dean, and H. R. B. Pelham. 1990. Cell. 61:1349-1357; Lewis, M. J., D. J. Sweet, and H. R. B. Pelham. 1990. Cell. 61:1359-1363). SED5, when present in multiple copies, enables cells to grow in the absence of Erd2p. Sequence analysis of SED5 reveals no significant homology with ERD2 or other known genes. We have raised antibodies to Sed5p which specifically recognize a 39-kD integral membrane protein. A stretch of hydrophobic residues at the COOH terminus is predicted to hold Sed5p on the cytoplasmic face of intracellular membranes. Cells that are depleted of Sed5p are unable to transport carboxypeptidase Y to the Golgi complex, and stop growing after a dramatic accumulation of ER membranes and vesicles. We conclude that the SED5 gene is essential for growth and that Sed5p is required for ER to Golgi transport. When Sed5p is overexpressed the efficiency of ER to Golgi transport is reduced, vesicles accumulate, and cellular morphology is perturbed. Immunofluorescence studies reveal that the bulk of Sed5p is not found on ER membranes but on punctate structures throughout the cytoplasm, the number of which increases upon SED5 overexpression. We suggest that Sed5p has an essential role in vesicular transport between ER and Golgi compartments and that it may itself cycle between these organelles. PMID:1400588

  20. Physalis floridana Cell Number Regulator1 encodes a cell membrane-anchored modulator of cell cycle and negatively controls fruit size.

    PubMed

    Li, Zhichao; He, Chaoying

    2015-01-01

    Physalis species show a significant variation in berry size; however, the underlying molecular basis is unknown. In this work, we showed that cell division difference in the ovaries might contribute to the ultimate berry size variation within Physalis species, and that mRNA abundance of Physalis floridana Cell Number Regulator1 (PfCNR1), the putative orthologue of the tomato fruit weight 2.2 (FW2.2), was negatively correlated with cell division in the ovaries. Moreover, heterochronic expression variation of the PfCNR1 genes in the ovaries concomitantly correlated with berry weight variation within Physalis species. In transgenic Physalis, multiple organ sizes could be negatively controlled by altering PfCNR1 levels, and cell division instead of cell expansion was primarily affected. PfCNR1 was shown to be anchored in the plasma membrane and to interact with PfAG2 (an AGAMOUS-like protein determining ovary identity). The expression of PfCYCD2;1, a putative orthologue of the mitosis-specific gene CyclinD2;1 in the cell cycle was negatively correlated with the PfCNR1 mRNA levels. PfAG2 was found to selectively bind to the CArG-box in the PfCYCD2;1 promoter and to repress PfCYCD2;1 expression, thus suggesting a PfAG2-mediated pathway for PfCNR1 to regulate cell division. The interaction of PfCNR1 with PfAG2 enhanced the repression of PfCYCD2;1 expression. The nuclear import of PfAG2 was essential in the proposed pathway. Our data provide new insights into the developmental pathways of a cell membrane-anchored protein that modulates cell division and governs organ size determination. This study also sheds light on the link between organ identity and organ growth in plants. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Alteration of Ceramide Synthase 6/C16-Ceramide Induces Activating Transcription Factor 6-mediated Endoplasmic Reticulum (ER) Stress and Apoptosis via Perturbation of Cellular Ca2+ and ER/Golgi Membrane Network*

    PubMed Central

    Senkal, Can E.; Ponnusamy, Suriyan; Manevich, Yefim; Meyers-Needham, Marisa; Saddoughi, Sahar A.; Mukhopadyay, Archana; Dent, Paul; Bielawski, Jacek; Ogretmen, Besim

    2011-01-01

    Mechanisms that regulate endoplasmic reticulum (ER) stress-induced apoptosis in cancer cells remain enigmatic. Recent data suggest that ceramide synthase1–6 (CerS1–6)-generated ceramides, containing different fatty acid chain lengths, might exhibit distinct and opposing functions, such as apoptosis versus survival in a context-dependent manner. Here, we investigated the mechanisms involved in the activation of one of the major ER stress response proteins, ATF-6, and subsequent apoptosis by alterations of CerS6/C16-ceramide. Induction of wild type (WT), but not the catalytically inactive mutant CerS6, increased tumor growth in SCID mice, whereas siRNA-mediated knockdown of CerS6 induced ATF-6 activation and apoptosis in multiple human cancer cells. Down-regulation of CerS6/C16-ceramide, and not its further metabolism to glucosylceramide or sphingomyelin, activated ATF-6 upon treatment with ER stress inducers tunicamycin or SAHA (suberoylanilide hydroxamic acid). Induction of WT-CerS6 expression, but not its mutant, or ectopic expression of the dominant-negative mutant form of ATF-6 protected cells from apoptosis in response to CerS6 knockdown and tunicamycin or SAHA treatment. Mechanistically, ATF-6 activation was regulated by a concerted two-step process involving the release of Ca2+ from the ER stores ([Ca2+]ER), which resulted in the fragmentation of Golgi membranes in response to CerS6/C16-ceramide alteration. This resulted in the accumulation of pro-ATF-6 in the disrupted ER/Golgi membrane network, where pro-ATF6 is activated. Accordingly, ectopic expression of a Ca2+ chelator calbindin prevented the Golgi fragmentation, ATF-6 activation, and apoptosis in response to CerS6/C16-ceramide down-regulation. Overall, these data suggest a novel mechanism of how CerS6/C16-ceramide alteration activates ATF6 and induces ER-stress-mediated apoptosis in squamous cell carcinomas. PMID:22013072

  2. Alteration of ceramide synthase 6/C16-ceramide induces activating transcription factor 6-mediated endoplasmic reticulum (ER) stress and apoptosis via perturbation of cellular Ca2+ and ER/Golgi membrane network.

    PubMed

    Senkal, Can E; Ponnusamy, Suriyan; Manevich, Yefim; Meyers-Needham, Marisa; Saddoughi, Sahar A; Mukhopadyay, Archana; Dent, Paul; Bielawski, Jacek; Ogretmen, Besim

    2011-12-09

    Mechanisms that regulate endoplasmic reticulum (ER) stress-induced apoptosis in cancer cells remain enigmatic. Recent data suggest that ceramide synthase1-6 (CerS1-6)-generated ceramides, containing different fatty acid chain lengths, might exhibit distinct and opposing functions, such as apoptosis versus survival in a context-dependent manner. Here, we investigated the mechanisms involved in the activation of one of the major ER stress response proteins, ATF-6, and subsequent apoptosis by alterations of CerS6/C(16)-ceramide. Induction of wild type (WT), but not the catalytically inactive mutant CerS6, increased tumor growth in SCID mice, whereas siRNA-mediated knockdown of CerS6 induced ATF-6 activation and apoptosis in multiple human cancer cells. Down-regulation of CerS6/C(16)-ceramide, and not its further metabolism to glucosylceramide or sphingomyelin, activated ATF-6 upon treatment with ER stress inducers tunicamycin or SAHA (suberoylanilide hydroxamic acid). Induction of WT-CerS6 expression, but not its mutant, or ectopic expression of the dominant-negative mutant form of ATF-6 protected cells from apoptosis in response to CerS6 knockdown and tunicamycin or SAHA treatment. Mechanistically, ATF-6 activation was regulated by a concerted two-step process involving the release of Ca(2+) from the ER stores ([Ca(2+)](ER)), which resulted in the fragmentation of Golgi membranes in response to CerS6/C(16)-ceramide alteration. This resulted in the accumulation of pro-ATF-6 in the disrupted ER/Golgi membrane network, where pro-ATF6 is activated. Accordingly, ectopic expression of a Ca(2+) chelator calbindin prevented the Golgi fragmentation, ATF-6 activation, and apoptosis in response to CerS6/C(16)-ceramide down-regulation. Overall, these data suggest a novel mechanism of how CerS6/C(16)-ceramide alteration activates ATF6 and induces ER-stress-mediated apoptosis in squamous cell carcinomas.

  3. Surface expression of influenza virus neuraminidase, an amino-terminally anchored viral membrane glycoprotein, in polarized epithelial cells.

    PubMed Central

    Jones, L V; Compans, R W; Davis, A R; Bos, T J; Nayak, D P

    1985-01-01

    We have investigated the site of surface expression of the neuraminidase (NA) glycoprotein of influenza A virus, which, in contrast to the hemagglutinin, is bound to membranes by hydrophobic residues near the NH2-terminus. Madin-Darby canine kidney or primary African green monkey kidney cells infected with influenza A/WSN/33 virus and subsequently labeled with monoclonal antibody to the NA and then with a colloidal gold- or ferritin-conjugated second antibody exhibited specific labeling of apical surfaces. Using simian virus 40 late expression vectors, we also studied the surface expression of the complete NA gene (SNC) and a truncated NA gene (SN10) in either primary or a polarized continuous line (MA104) of African green monkey kidney cells. The polypeptides encoded by the cloned NA cDNAs were expressed on the surface of both cell types. Analysis of [3H]mannose-labeled polypeptides from recombinant virus-infected MA104 cells showed that the products of cloned NA cDNA comigrated with glycosylated NA from influenza virus-infected cells. Both the complete and the truncated glycoproteins were found to be preferentially expressed on apical plasma membranes, as detected by immunogold labeling. These results indicate that the NA polypeptide contains structural features capable of directing the transport of the protein to apical cell surfaces and the first 10 amino-terminal residues of the NA polypeptide are not involved in this process. Images PMID:3016520

  4. Scanning electron microscopy study of neutrophil membrane tubulovesicular extensions (cytonemes) and their role in anchoring, aggregation and phagocytosis. The effect of nitric oxide

    SciTech Connect

    Galkina, Svetlana I. . E-mail: galkina@genebee.msu.ru; Molotkovsky, Julian G.; Ullrich, Volker; Sud'ina, Galina F.

    2005-04-01

    We have shown that human neutrophils develop dynamic thin and very long tubulovesicular extensions (cytonemes) upon adhesion to fibronectin, if cell spreading was blocked by Na{sup +}-free medium or by 4-bromophenacyl bromide, N-ethylmaleimide, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole and cytochalasin D (S. I. Galkina, G. F. Sud'ina and V. Ullrich (2001). Exp. Cell Res. 266, 222-228). In the present work we found that similar in size and behavior tubulovesicular extensions were formed on the neutrophil cell bodies upon adhesion to fibronectin-coated substrata in the presence of the nitric oxide donor diethylamine NONOate. In the presence of the nitric oxide synthase inhibitor N-{omega}-nitro-L-arginine methyl ester, neutrophils were well spread and had no microextensions. Using scanning electron microscopy, we demonstrated that tubulovesicular extensions of neutrophils executed long-range adhesion and binding objects for phagocytosis, such as serum-opsonized zymosan particles and erythrocytes. Tubulovesicular extensions anchored neutrophils to substrata in a {beta}1 and {beta}2 integrin-independent, but L-selectin-dependent manner. BODIPY-sphingomyelin impaired development of tubulovesicular extension, and heparitinase 1 played a role in their destruction. Membrane tubulovesicular extensions are supposed to represent protrusions of an intracellular exocytotic traffic and serve as cellular sensory and adhesive organelles. Nitric oxide seems to play a role in regulation of tubulovesicular extensions formation, thus affecting neutrophil adhesive interactions and phagocytosis.

  5. Structure of the Sgt2/Get5 complex provides insights into GET-mediated targeting of tail-anchored membrane proteins.

    PubMed

    Simon, Aline C; Simpson, Peter J; Goldstone, Rachael M; Krysztofinska, Ewelina M; Murray, James W; High, Stephen; Isaacson, Rivka L

    2013-01-22

    Small, glutamine-rich, tetratricopeptide repeat protein 2 (Sgt2) is the first known port of call for many newly synthesized tail-anchored (TA) proteins released from the ribosome and destined for the GET (Guided Entry of TA proteins) pathway. This leads them to the residential membrane of the endoplasmic reticulum via an alternative to the cotranslational, signal recognition particle-dependent mechanism that their topology denies them. In yeast, the first stage of the GET pathway involves Sgt2 passing TA proteins on to the Get4/Get5 complex through a direct interaction between the N-terminal (NT) domain of Sgt2 and the ubiquitin-like (UBL) domain of Get5. Here we characterize this interaction at a molecular level by solving both a solution structure of Sgt2_NT, which adopts a unique helical fold, and a crystal structure of the Get5_UBL. Furthermore, using reciprocal chemical shift perturbation data and experimental restraints, we solve a structure of the Sgt2_NT/Get5_UBL complex, validate it via site-directed mutagenesis, and empirically determine its stoichiometry using relaxation experiments and isothermal titration calorimetry. Taken together, these data provide detailed structural information about the interaction between two key players in the coordinated delivery of TA protein substrates into the GET pathway.

  6. TssK Is a Trimeric Cytoplasmic Protein Interacting with Components of Both Phage-like and Membrane Anchoring Complexes of the Type VI Secretion System*

    PubMed Central

    Zoued, Abdelrahim; Durand, Eric; Bebeacua, Cecilia; Brunet, Yannick R.; Douzi, Badreddine; Cambillau, Christian; Cascales, Eric; Journet, Laure

    2013-01-01

    The Type VI secretion system (T6SS) is a macromolecular machine that mediates bacteria-host or bacteria-bacteria interactions. The T6SS core apparatus assembles from 13 proteins that form two sub-assemblies: a phage-like complex and a trans-envelope complex. The Hcp, VgrG, TssE, and TssB/C subunits are structurally and functionally related to components of the tail of contractile bacteriophages. This phage-like structure is thought to be anchored to the membrane by a trans-envelope complex composed of the TssJ, TssL, and TssM proteins. However, how the two sub-complexes are connected remains unknown. Here we identify TssK, a protein that establishes contacts with the two T6SS sub-complexes through direct interactions with TssL, Hcp, and TssC. TssK is a cytoplasmic protein assembling trimers that display a three-armed shape, as revealed by TEM and SAXS analyses. Fluorescence microscopy experiments further demonstrate the requirement of TssK for sheath assembly. Our results suggest a central role for TssK by linking both complexes during T6SS assembly. PMID:23921384

  7. AtPAP2 is a tail-anchored protein in the outer membrane of chloroplasts and mitochondria.

    PubMed

    Sun, Feng; Carrie, Chris; Law, Simon; Murcha, Monika W; Zhang, Renshan; Law, Yee Song; Suen, Pui Kit; Whelan, James; Lim, Boon Leong

    2012-08-01

    To date, Arabidopsis purple acid phosphatase 2 (AtPAP2) is the only known plant protein that is dual-targeted to chloroplasts and mitochondria by a C-terminal targeting signal. Using in vitro organelle import and green fluorescence protein (GFP) localization assays, we showed that AtPAP2 is located on, but not imported across the outer membrane (OM) of chloroplasts and mitochondria and exposed its N-terminal enzymatic domain to the cytosol. It was also found that a short stretch of 30 amino acids (a.a.) at the C-terminal region (a.a. 615-644) that contains a stretch of 18 hydrophobic residues, a WYAK motif and 8 hydrophilic residues is sufficient for dual-targeting. Mutation of WYAK to WYAE had no effect on dual-targeting ability suggesting that the charge within this flanking region alone is not an important determinant for dual-targeting.   

  8. Anchoring plant metallothioneins to the inner face of the plasma membrane of Saccharomyces cerevisiae cells leads to heavy metal accumulation

    PubMed Central

    Kissen, Ralph; Nicolau, Ioana; Neagoe, Aurora Daniela; Ghenea, Simona; Bones, Atle M.

    2017-01-01

    In this study we engineered yeast cells armed for heavy metal accumulation by targeting plant metallothioneins to the inner face of the yeast plasma membrane. Metallothioneins (MTs) are cysteine-rich proteins involved in the buffering of excess metal ions, especially Cu(I), Zn(II) or Cd(II). The cDNAs of seven Arabidopsis thaliana MTs (AtMT1a, AtMT1c, AtMT2a, AtMT2b, AtMT3, AtMT4a and AtMT4b) and four Noccaea caerulescens MTs (NcMT1, NcMT2a, NcMT2b and NcMT3) were each translationally fused to the C-terminus of a myristoylation green fluorescent protein variant (myrGFP) and expressed in Saccharomyces cerevisiae cells. The myrGFP cassette introduced a yeast myristoylation sequence which allowed directional targeting to the cytosolic face of the plasma membrane along with direct monitoring of the intracellular localization of the recombinant protein by fluorescence microscopy. The yeast strains expressing plant MTs were investigated against an array of heavy metals in order to identify strains which exhibit the (hyper)accumulation phenotype without developing toxicity symptoms. Among the transgenic strains which could accumulate Cu(II), Zn(II) or Cd(II), but also non-canonical metal ions, such as Co(II), Mn(II) or Ni(II), myrGFP-NcMT3 qualified as the best candidate for bioremediation applications, thanks to the robust growth accompanied by significant accumulative capacity. PMID:28562640

  9. The Biosynthesis of d-Galacturonate in Plants. Functional Cloning and Characterization of a Membrane-Anchored UDP-d-Glucuronate 4-Epimerase from Arabidopsis1

    PubMed Central

    Mølhøj, Michael; Verma, Rajeev; Reiter, Wolf-Dieter

    2004-01-01

    Pectic cell wall polysaccharides owe their high negative charge to the presence of d-galacturonate, a monosaccharide that appears to be present only in plants and some prokaryotes. UDP-d-galacturonate, the activated form of this sugar, is known to be formed by the 4-epimerization of UDP-d-glucuronate; however, no coding regions for the epimerase catalyzing this reaction have previously been described in plants. To better understand the mechanisms by which precursors for pectin synthesis are produced, we used a bioinformatics approach to identify and functionally express a UDP-d-glucuronate 4-epimerase (GAE1) from Arabidopsis. GAE1 is predicted to be a type II membrane protein that belongs to the family of short-chain dehydrogenases/reductases. The recombinant enzyme expressed in Pichia pastoris established a 1.3:1 equilibrium between UDP-d-galacturonate and UDP-d-glucuronate but did not epimerize UDP-d-Glc or UDP-d-Xyl. Enzyme assays on cell extracts localized total UDP-d-glucuronate 4-epimerase and recombinant GAE1 activity exclusively to the microsomal fractions of Arabidopsis and Pichia, respectively. GAE1 had a pH optimum of 7.6 and an apparent Km of 0.19 mm. The recombinant enzyme was strongly inhibited by UDP-d-Xyl but not by UDP, UDP-d-Glc, or UDP-d-Gal. Analysis of Arabidopsis plants transformed with a GAE1:GUS construct showed expression in all tissues. The Arabidopsis genome contains five GAE1 paralogs, all of which are transcribed and predicted to contain a membrane anchor. This suggests that all of these enzymes are targeted to an endomembrane system such as the Golgi where they may provide UDP-d-galacturonate to glycosyltransferases in pectin synthesis. PMID:15247385

  10. Freely turning over palmitate in erythrocyte membrane proteins is not responsible for the anchoring of lipid rafts to the spectrin skeleton: a study with bio-orthogonal chemical probes.

    PubMed

    Ciana, Annarita; Achilli, Cesare; Hannoush, Rami N; Risso, Angela; Balduini, Cesare; Minetti, Giampaolo

    2013-03-01

    Erythrocyte lipid rafts are anchored to the underlying spectrin membrane skeleton [A. Ciana, C. Achilli, C. Balduini, G. Minetti, On the association of lipid rafts to the spectrin skeleton in human erythrocytes, Biochim. Biophys. Acta 1808 (2011) 183-190]. The nature of this linkage and the molecules involved are poorly understood. The interaction is sensitive to the increase in pH and ionic strength induced by carbonate. Given the role of palmitoylation in modulating the partitioning of certain proteins between various sub-cellular compartments and the plasma membrane, we asked whether palmitoylation of p55, a peripheral protein located at the junctional complex between spectrin-actin-protein 4.1 that anchors the membrane skeleton to the lipid bilayer via the transmembrane protein glycophorin C, could contribute to the anchoring of lipid rafts to the membrane skeleton. We adopted a new, non-radioactive method for studying protein palmitoylation, based on bio-orthogonal chemical analogues of fatty acids, containing an omega-alkynyl group, to metabolically label cell proteins, which are then revealed by a "click chemistry" reaction of the alkynyl moiety with an azide-containing reporter tag. We show that the membrane localization and palmitoylation levels of p55 did not change after carbonate treatment. 2-bromopalmitate and cerulenin, two known palmitoylation inhibitors, completely inhibited p55 palmitoylation, and protein palmitoyl thioesterase-1 (PPT1) reduced it, without affecting the association between lipid rafts and membrane-skeleton, indicating, on the one hand, that p55 palmitoylation is enzymatic, and, on the other, that it is not involved in the modulation of the linkage of lipid rafts to the membrane-skeleton.

  11. Subcellular Partitioning of Protein Tyrosine Phosphatase 1B to the Endoplasmic Reticulum and Mitochondria Depends Sensitively on the Composition of Its Tail Anchor

    PubMed Central

    Fueller, Julia; Egorov, Mikhail V.; Walther, Kirstin A.; Sabet, Ola; Mallah, Jana; Grabenbauer, Markus; Kinkhabwala, Ali

    2015-01-01

    The canonical protein tyrosine phosphatase PTP1B is an important regulator of diverse cellular signaling networks. PTP1B has long been thought to exert its influence solely from its perch on the endoplasmic reticulum (ER); however, an additional subpopulation of PTP1B has recently been detected in mitochondria extracted from rat brain tissue. Here, we show that PTP1B’s mitochondrial localization is general (observed across diverse mammalian cell lines) and sensitively dependent on the transmembrane domain length, C-terminal charge and hydropathy of its short (≤35 amino acid) tail anchor. Our electron microscopy of specific DAB precipitation revealed that PTP1B localizes via its tail anchor to the outer mitochondrial membrane (OMM), with fluorescence lifetime imaging microscopy establishing that this OMM pool contributes to the previously reported cytoplasmic interaction of PTP1B with endocytosed epidermal growth factor receptor. We additionally examined the mechanism of PTP1B’s insertion into the ER membrane through heterologous expression of PTP1B’s tail anchor in wild-type yeast and yeast mutants of major conserved ER insertion pathways: In none of these yeast strains was ER targeting significantly impeded, providing in vivo support for the hypothesis of spontaneous membrane insertion (as previously demonstrated in vitro). Further functional elucidation of the newly recognized mitochondrial pool of PTP1B will likely be important for understanding its complex roles in cellular responses to external stimuli, cell proliferation and diseased states. PMID:26431424

  12. Interaction between repressor Opi1p and ER membrane protein Scs2p facilitates transit of phosphatidic acid from the ER to mitochondria and is essential for INO1 gene expression in the presence of choline.

    PubMed

    Gaspar, Maria L; Chang, Yu-Fang; Jesch, Stephen A; Aregullin, Manuel; Henry, Susan A

    2017-09-18

    In the yeast Saccharomyces cerevisiae, the Opi1p repressor controls the expression of INO1 via the Opi1p/Ino2p-Ino4p regulatory circuit. Inositol depletion favors Opi1p interaction with both Scs2p and phosphatidic acid at the ER membrane. Inositol supplementation, however, favors the translocation of Opi1p from the ER into the nucleus where it interacts with the Ino2p-Ino4p complex, attenuating transcription of INO1. A strain devoid of Scs2p (scs2) and a mutant, OPI1FFAT, lacking the ability to interact with Scs2p were utilized to examine the specific role(s) of the Opi1p-Scs2p interaction in the regulation of INO1 expression and overall lipid metabolism. Loss of the Opi1p-Scs2p interaction reduced INO1 expression, and conferred inositol auxotrophy. Moreover, inositol depletion in strains lacking this interaction resulted in Opi1p being localized to sites of lipid droplet formation, coincident with increased synthesis of triacylglycerol. Supplementation of choline to inositol-depleted growth medium led to decreased TAG synthesis in all three strains. However, in strains lacking the Opi1p-Scs2p interaction, Opi1p remained in the nucleus, preventing expression of INO1. These data support the conclusion that a specific pool of phosphatidic acid, associated with lipid droplet formation in the perinuclear ER, is responsible for the initial rapid exit of Opi1p from the nucleus to the ER and is required for INO1 expression in the presence of choline. Moreover, the mitochondrial-specific phospholipid, cardiolipin, was significantly reduced in both strains compromised for Opi1p-Scs2p interaction, indicating that this interaction is required for the transfer of phosphatidic acid from the ER to the mitochondria for cardiolipin synthesis. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  13. Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic [published errata appear in J Cell Biol 1995 Mar;128(5):following 988 and 1995 May;129(3):893

    PubMed Central

    1995-01-01

    The distribution and dynamics of both the ER and Golgi complex in animal cells are known to be dependent on microtubules; in many cell types the ER extends toward the plus ends of microtubules at the cell periphery and the Golgi clusters at the minus ends of microtubules near the centrosome. In this study we provide evidence that the microtubule motor, kinesin, is present on membranes cycling between the ER and Golgi and powers peripherally directed movements of membrane within this system. Immunolocalization of kinesin at both the light and electron microscopy levels in NRK cells using the H1 monoclonal antibody to kinesin heavy chain, revealed kinesin to be associated with all membranes of the ER/Golgi system. At steady-state at 37 degrees C, however, kinesin was most concentrated on peripherally distributed, pre- Golgi structures containing beta COP and vesicular stomatitis virus glycoprotein newly released from the ER. Upon temperature reduction or nocodazole treatment, kinesin's distribution shifted onto the Golgi, while with brefeldin A (BFA)-treatment, kinesin could be found in both Golgi-derived tubules and in the ER. This suggested that kinesin associates with membranes that constitutively cycle between the ER and Golgi. Kinesin's role on these membranes was examined by microinjecting kinesin antibody. Golgi-to-ER but not ER-to-Golgi membrane transport was found to be inhibited by the microinjected anti-kinesin, suggesting kinesin powers the microtubule plus end-directed recycling of membrane to the ER, and remains inactive on pre-Golgi intermediates that move toward the Golgi complex. PMID:7844144

  14. Life Stage-Specific Cargo Receptors Facilitate Glycosylphosphatidylinositol-Anchored Surface Coat Protein Transport in Trypanosoma brucei.

    PubMed

    Kruzel, Emilia K; Zimmett, George P; Bangs, James D

    2017-01-01

    The critical virulence factor of bloodstream-form Trypanosoma brucei is the glycosylphosphatidylinositol (GPI)-anchored variant surface glycoprotein (VSG). Endoplasmic reticulum (ER) exit of VSG is GPI dependent and relies on a discrete subset of COPII machinery (TbSec23.2/TbSec24.1). In other systems, p24 transmembrane adaptor proteins selectively recruit GPI-anchored cargo into nascent COPII vesicles. Trypanosomes have eight putative p24s (TbERP1 to TbERP8) that are constitutively expressed at the mRNA level. However, only four TbERP proteins (TbERP1, -2, -3, and -8) are detectable in bloodstream-form parasites. All four colocalize to ER exit sites, are required for efficient GPI-dependent ER exit, and are interdependent for steady-state stability. These results suggest shared function as an oligomeric ER GPI-cargo receptor. This cohort also mediates rapid forward trafficking of the soluble lysosomal hydrolase TbCatL. Procyclic insect-stage trypanosomes have a distinct surface protein, procyclin, bearing a different GPI anchor structure. A separate cohort of TbERP proteins (TbERP1, -2, -4, and -8) are expressed in procyclic parasites and also function in GPI-dependent ER exit. Collectively, these results suggest developmentally regulated TbERP cohorts, likely in obligate assemblies, that may recognize stage-specific GPI anchors to facilitate GPI-cargo trafficking throughout the parasite life cycle. IMPORTANCE African trypanosomes are protozoan parasites that cause African sleeping sickness. Critical to the success of the parasite is the variant surface glycoprotein (VSG), which covers the parasite cell surface and which is essential for evasion of the host immune system. VSG is membrane bound by a glycolipid (GPI) anchor that is attached in the earliest compartment of the secretory pathway, the endoplasmic reticulum (ER). We have previously shown that the anchor acts as a positive forward trafficking signal for ER exit, implying a cognate receptor mechanism for

  15. Lipid dependence of membrane anchoring properties and snorkeling behavior of aromatic and charged residues in transmembrane peptides.

    PubMed

    Strandberg, Erik; Morein, Sven; Rijkers, Dirk T S; Liskamp, Rob M J; van der Wel, Patrick C A; Killian, J Antoinette

    2002-06-11

    31P NMR spectroscopy was used to investigate the effects of transmembrane alpha-helical peptides with different flanking residues on the phase behavior of phosphatidylethanolamine and phosphatidylethanolamine/phosphatidylglycerol (molar ratio 7:3) model membranes. It was found that tryptophan-flanked (WALP) peptides and lysine-flanked (KALP) peptides both promote formation of nonlamellar phases in these lipid systems in a mismatch-dependent manner. Based on this mismatch dependence, it was concluded that the effective hydrophobic length of KALP peptides is considerably shorter than that of the corresponding WALP peptides. Peptides with other positively charged residues showed very similar effects as KALP. The results suggest that the peptides have a well-defined effective hydrophobic length, which is different for charged and aromatic flanking residues, but which is independent of the precise chemical nature of the side chain. Strikingly, the effective length of KALP peptides in the lipid systems investigated here is much smaller than that previously found for the same peptides in phosphatidylcholine. This suggests that snorkeling of lysine side chains, as proposed to occur in phosphatidylcholine, does not occur in lipid systems that are prone to form nonlamellar phases by themselves. This suggestion was supported by using peptides with shortened lysine side chains and by investigating the effects of mixtures of WALP and KALP peptides. The lipid dependency of the snorkeling behavior is explained by considering the free energy cost of snorkeling in relation to the free energy cost of the formation of nonlamellar phases.

  16. GPI anchor attachment is required for Gas1p transport from the endoplasmic reticulum in COP II vesicles.

    PubMed Central

    Doering, T L; Schekman, R

    1996-01-01

    Inositol starvation of auxotrophic yeast interrupts glycolipid biosynthesis and prevents lipid modification of a normally glycosyl phosphatidylinositol (GPI)-linked protein, Gas1p. The unanchored Gas1p precursor undergoes progressive modification in the endoplasmic reticulum (ER), but is not modified by Golgi-specific glycosylation. Starvation-induced defects in anchor assembly and protein processing are rapid, and occur without altered maturation of other proteins. Cells remain competent to manufacture anchor components and to process Gas1p efficiently once inositol is restored. Newly synthesized Gas1p is packaged into vesicles formed in vitro from perforated yeast spheroplasts incubated with either yeast cytosol or the purified Sec proteins (COP II) required for vesicle budding from the ER. In vitro synthesized vesicles produced by inositol-starved membranes do not contain detectable Gas1p. These studies demonstrate that COP II components fulfill the soluble protein requirements for packaging a GPI-anchored protein into ER-derived transport vesicles. However, GPI anchor attachment is required for this packaging to occur. Images PMID:8598201

  17. Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus

    PubMed Central

    Ji, Xianliang; Ren, Zhiguang; Xu, Na; Meng, Lingnan; Yu, Zhijun; Feng, Na; Sang, Xiaoyu; Li, Shengnan; Li, Yuanguo; Wang, Tiecheng; Zhao, Yongkun; Wang, Hualei; Zheng, Xuexing; Jin, Hongli; Li, Nan; Yang, Songtao; Cao, Jinshan; Liu, Wensen; Gao, Yuwei; Xia, Xianzhu

    2016-01-01

    Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs) composed of the hemagglutinin (HA), neuraminidase (NA) and matrix protein (M1) of A/Changchun/01/2009 (H1N1) with or without either membrane-anchored cholera toxin B (CTB) or ricin toxin B (RTB) as molecular adjuvants. The intranasal immunization of mice with VLPs containing membrane-anchored CTB or RTB elicited stronger humoral and cellular immune responses when compared to mice immunized with VLPs alone. Administration of VLPs containing CTB or RTB significantly enhanced virus-specific systemic and mucosal antibody responses, hemagglutination inhibiting antibody titers, virus neutralizing antibody titers, and the frequency of virus-specific IFN-γ and IL-4 secreting splenocytes. VLPs with and without CTB or RTB conferred complete protection against lethal challenge with a mouse-adapted homologous virus. When challenged with an antigenically distinct H1N1 virus, all mice immunized with VLPs containing CTB or RTB survived whereas mice immunized with VLPs alone showed only partial protection (80% survival). Our results suggest that membrane-anchored CTB and RTB possess strong adjuvant properties when incorporated into an intranasally-delivered influenza VLP vaccine. Chimeric influenza VLPs containing CTB or RTB may represent promising vaccine candidates for improved immunological protection against homologous and antigenically distinct influenza viruses. PMID:27110810

  18. Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus.

    PubMed

    Ji, Xianliang; Ren, Zhiguang; Xu, Na; Meng, Lingnan; Yu, Zhijun; Feng, Na; Sang, Xiaoyu; Li, Shengnan; Li, Yuanguo; Wang, Tiecheng; Zhao, Yongkun; Wang, Hualei; Zheng, Xuexing; Jin, Hongli; Li, Nan; Yang, Songtao; Cao, Jinshan; Liu, Wensen; Gao, Yuwei; Xia, Xianzhu

    2016-04-21

    Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs) composed of the hemagglutinin (HA), neuraminidase (NA) and matrix protein (M1) of A/Changchun/01/2009 (H1N1) with or without either membrane-anchored cholera toxin B (CTB) or ricin toxin B (RTB) as molecular adjuvants. The intranasal immunization of mice with VLPs containing membrane-anchored CTB or RTB elicited stronger humoral and cellular immune responses when compared to mice immunized with VLPs alone. Administration of VLPs containing CTB or RTB significantly enhanced virus-specific systemic and mucosal antibody responses, hemagglutination inhibiting antibody titers, virus neutralizing antibody titers, and the frequency of virus-specific IFN-γ and IL-4 secreting splenocytes. VLPs with and without CTB or RTB conferred complete protection against lethal challenge with a mouse-adapted homologous virus. When challenged with an antigenically distinct H1N1 virus, all mice immunized with VLPs containing CTB or RTB survived whereas mice immunized with VLPs alone showed only partial protection (80% survival). Our results suggest that membrane-anchored CTB and RTB possess strong adjuvant properties when incorporated into an intranasally-delivered influenza VLP vaccine. Chimeric influenza VLPs containing CTB or RTB may represent promising vaccine candidates for improved immunological protection against homologous and antigenically distinct influenza viruses.

  19. Membrane-anchored MucR mediates nitrate-dependent regulation of alginate production in Pseudomonas aeruginosa.

    PubMed

    Wang, Yajie; Hay, Iain D; Rehman, Zahid U; Rehm, Bernd H A

    2015-09-01

    Alginates exhibit unique material properties suitable for medical and industrial applications. However, if produced by Pseudomonas aeruginosa, it is an important virulence factor in infection of cystic fibrosis patients. The alginate biosynthesis machinery is activated by c-di-GMP imparted by the inner membrane protein, MucR. Here, it was shown that MucR impairs alginate production in response to nitrate in P. aeruginosa. Subsequent site-specific mutagenesis of MucR revealed that the second MHYT sensor motif (MHYT II, amino acids 121-124) of MucR sensor domain was involved in nitrate sensing. We also showed that both c-di-GMP synthesizing and degrading active sites of MucR were important for alginate production. Although nitrate and deletion of MucR impaired alginate promoter activity and global c-di-GMP levels, alginate yields were not directly correlated with alginate promoter activity or c-di-GMP levels, suggesting that nitrate and MucR modulate alginate production at a post-translational level through a localized pool of c-di-GMP. Nitrate increased pel promoter activity in the mucR mutant while in the same mutant the psl promoter activity was independent of nitrate. Nitrate and deletion of mucR did not impact on swarming motility but impaired attachment to solid surfaces. Nitrate and deletion of mucR promoted the formation of biofilms with increased thickness, cell density, and survival. Overall, this study provided insight into the functional role of MucR with respect to nitrate-mediated regulation of alginate biosynthesis.

  20. Fast endocytic recycling determines TRPC1-STIM1 clustering in ER-PM junctions and plasma membrane function of the channel.

    PubMed

    de Souza, Lorena Brito; Ong, Hwei Ling; Liu, Xibao; Ambudkar, Indu S

    2015-10-01

    Stromal interaction molecule 1 (STIM1) senses depletion of ER-Ca2+ store and clusters in ER-PM junctions where it associates with and gates Ca2+ influx channels, Orai1 and TRPC1. Clustering of TRPC1 with STIM1 and Orai1 in these junctions is critical since Orai1-mediated Ca2+ entry triggers surface expression of TRPC1 while STIM1 gates the channel. Thus, plasma membrane function of TRPC1 depends on the delivery of the channel to the sites where STIM1 puncta are formed. This study examines intracellular trafficking mechanism(s) that determine plasma membrane expression and function of TRPC1 in cells where Orai1 and TRPC1 are endogenously expressed and contribute to Ca2+ entry. We report that TRPC1 is internalized by Arf6-dependent pathway, sorted to Rab5-containing early endosomes, and trafficked to ER-PM junctions by Rab4-dependent fast recycling. Overexpression of Arf6, or Rab5, but not the respective dominant negative mutants, induced retention of TRPC1 in early endosomes and suppressed TRPC1 function. Notably, cells expressing Arf6 or Rab5 displayed an inwardly rectifying ICRAC current that is mediated by Orai1 instead of TRPC1-associated ISOC, demonstrating that Orai1 function was not altered. Importantly, expression of Rab4, but not STIM1, with Rab5 rescued surface expression and function of TRPC1, restoring generation of ISOC. Together, these data demonstrate that trafficking via fast recycling endosomes determines TRPC1-STIM1 clustering within ER-PM junctions following ER-Ca2+ store depletion which is critical for the surface expression and function of the channel. Ca2+ influx mediated by TRPC1 modifies Ca2+-dependent physiological response of cells. Published by Elsevier B.V.

  1. The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins.

    PubMed

    Okreglak, Voytek; Walter, Peter

    2014-06-03

    The accuracy of tail-anchored (TA) protein targeting to the endoplasmic reticulum (ER) depends on the Guided Entry of Tail-Anchored (Get) protein targeting machinery. The fate of TA proteins that become inappropriately inserted into other organelles, such as mitochondria, is unknown. Here, we identify Msp1, a conserved, membrane-anchored AAA-ATPase (ATPase associated with a variety of cellular activities) that localizes to mitochondria and peroxisomes, as a critical factor in a quality control pathway that senses and degrades TA proteins mistargeted to the outer mitochondrial membrane (OMM). Pex15 is normally targeted by the Get pathway to the ER, from where it travels to peroxisomes. Loss of Msp1 or loss of the Get pathway results in the redistribution of Pex15 to mitochondria. Cells lacking both a functional Get pathway and Msp1 accumulate increased amounts of Pex15 on the OMM and display severely dysfunctional mitochondrial morphology. In addition, Msp1 binds and promotes the turnover of a Pex15 mutant that is misdirected to the OMM. Our data suggest that Msp1 functions in local organelle surveillance by extracting mistargeted proteins, ensuring the fidelity of organelle specific-localization of TA proteins.

  2. ER stress and basement membrane defects combine to cause glomerular and tubular renal disease resulting from Col4a1 mutations in mice

    PubMed Central

    Jones, Frances E.; Bailey, Matthew A.; Murray, Lydia S.; Lu, Yinhui; McNeilly, Sarah; Schlötzer-Schrehardt, Ursula; Lennon, Rachel; Sado, Yoshikazu; Brownstein, David G.; Mullins, John J.; Kadler, Karl E.; Van Agtmael, Tom

    2016-01-01

    ABSTRACT Collagen IV is a major component of basement membranes, and mutations in COL4A1, which encodes collagen IV alpha chain 1, cause a multisystemic disease encompassing cerebrovascular, eye and kidney defects. However, COL4A1 renal disease remains poorly characterized and its pathomolecular mechanisms are unknown. We show that Col4a1 mutations in mice cause hypotension and renal disease, including proteinuria and defects in Bowman's capsule and the glomerular basement membrane, indicating a role for Col4a1 in glomerular filtration. Impaired sodium reabsorption in the loop of Henle and distal nephron despite elevated aldosterone levels indicates that tubular defects contribute to the hypotension, highlighting a novel role for the basement membrane in vascular homeostasis by modulation of the tubular response to aldosterone. Col4a1 mutations also cause diabetes insipidus, whereby the tubular defects lead to polyuria associated with medullary atrophy and a subsequent reduction in the ability to upregulate aquaporin 2 and concentrate urine. Moreover, haematuria, haemorrhage and vascular basement membrane defects confirm an important vascular component. Interestingly, although structural and compositional basement membrane defects occurred in the glomerulus and Bowman's capsule, no tubular basement membrane defects were detected. By contrast, medullary atrophy was associated with chronic ER stress, providing evidence for cell-type-dependent molecular mechanisms of Col4a1 mutations. These data show that both basement membrane defects and ER stress contribute to Col4a1 renal disease, which has important implications for the development of treatment strategies for collagenopathies. PMID:26839400

  3. Membrane-anchoring and charge effects in the interaction of myelin basic protein with lipid bilayers studied by site-directed spin labeling.

    PubMed

    Bates, Ian R; Boggs, Joan M; Feix, Jimmy B; Harauz, George

    2003-08-01

    Myelin basic protein (MBP) maintains the compaction of the myelin sheath in the central nervous system by anchoring the cytoplasmic face of the two apposing bilayers and may also play a role in signal transduction. Site-directed spin labeling was done at eight matching sites in each of two recombinant murine MBPs, qC1 (charge +19) and qC8 charge (+13), which, respectively, emulate the native form of the protein (C1) and a post-translationally modified form (C8) that is increased in multiple sclerosis. When interacting with large unilamellar vesicles, most spin-labeled sites in qC8 were more mobile than those in qC1. Depth measurement via continuous wave power saturation indicated that the N-terminal and C-terminal sites in qC1 were located below the plane of the phospholipid headgroups. In qC8, the C-terminal domain dissociated from the membrane, suggesting a means by which the exposure of natural C8 to cytosolic enzymes and ligands might increase in vivo in multiple sclerosis. The importance of two Phe-Phe pairs in MBP to its interactions with lipids was investigated by separately mutating each pair to Ala-Ala. The mobility at F42A/F43A and especially F86A/F87A increased significantly. Depth measurements and helical wheel analysis indicated that the Phe-86/Phe-87 region could form a surface-seeking amphipathic alpha-helix.

  4. Pathogen and Circadian Controlled 1 (PCC1) Protein Is Anchored to the Plasma Membrane and Interacts with Subunit 5 of COP9 Signalosome in Arabidopsis

    PubMed Central

    Mir, Ricardo; León, José

    2014-01-01

    The Pathogen and Circadian Controlled 1 (PCC1) gene, previously identified and further characterized as involved in defense to pathogens and stress-induced flowering, codes for an 81-amino acid protein with a cysteine-rich C-terminal domain. This domain is essential for homodimerization and anchoring to the plasma membrane. Transgenic plants with the ß-glucuronidase (GUS) reporter gene under the control of 1.1 kb promoter sequence of PCC1 gene display a dual pattern of expression. At early post-germination, PCC1 is expressed only in the root vasculature and in the stomata guard cells of cotyledons. During the transition from vegetative to reproductive development, PCC1 is strongly expressed in the vascular tissue of petioles and basal part of the leaf, and it further spreads to the whole limb in fully expanded leaves. This developmental pattern of expression together with the late flowering phenotype of long-day grown RNA interference (iPCC1) plants with reduced PCC1 expression pointed to a regulatory role of PCC1 in the photoperiod-dependent flowering pathway. iPCC1 plants are defective in light perception and signaling but are not impaired in the function of the core CO-FT module of the photoperiod-dependent pathway. The regulatory effect exerted by PCC1 on the transition to flowering as well as on other reported phenotypes might be explained by a mechanism involving the interaction with the subunit 5 of the COP9 signalosome (CSN). PMID:24475254

  5. Compartmentalization of ER-Bound Chaperone Confines Protein Deposit Formation to the Aging Yeast Cell.

    PubMed

    Saarikangas, Juha; Caudron, Fabrice; Prasad, Rupali; Moreno, David F; Bolognesi, Alessio; Aldea, Martí; Barral, Yves

    2017-03-20

    In order to produce rejuvenated daughters, dividing budding yeast cells confine aging factors, including protein aggregates, to the aging mother cell. The asymmetric inheritance of these protein deposits is mediated by organelle and cytoskeletal attachment and by cell geometry. Yet it remains unclear how deposit formation is restricted to the aging lineage. Here, we show that selective membrane anchoring and the compartmentalization of the endoplasmic reticulum (ER) membrane confine protein deposit formation to aging cells during division. Supporting the idea that the age-dependent deposit forms through coalescence of smaller aggregates, two deposits rapidly merged when placed in the same cell by cell-cell fusion. The deposits localized to the ER membrane, primarily to the nuclear envelope (NE). Strikingly, weakening the diffusion barriers that separate the ER membrane into mother and bud compartments caused premature formation of deposits in the daughter cells. Detachment of the Hsp40 protein Ydj1 from the ER membrane elicited a similar phenotype, suggesting that the diffusion barriers and farnesylated Ydj1 functioned together to confine protein deposit formation to mother cells during division. Accordingly, fluorescence correlation spectroscopy measurements in dividing cells indicated that a slow-diffusing, possibly client-bound Ydj1 fraction was asymmetrically enriched in the mother compartment. This asymmetric distribution depended on Ydj1 farnesylation and intact diffusion barriers. Taking these findings together, we propose that ER-anchored Ydj1 binds deposit precursors and prevents them from spreading into daughter cells during division by subjecting them to the ER diffusion barriers. This ensures that the coalescence of precursors into a single deposit is restricted to the aging lineage.

  6. Morphological analysis of protein transport from the ER to Golgi membranes in digitonin-permeabilized cells: role of the P58 containing compartment

    PubMed Central

    1992-01-01

    The glycoside digitonin was used to selectively permeabilize the plasma membrane exposing functionally and morphologically intact ER and Golgi compartments. Permeabilized cells efficiently transported vesicular stomatitis virus glycoprotein (VSV-G) through sealed, membrane-bound compartments in an ATP and cytosol dependent fashion. Transport was vectorial. VSV-G protein was first transported to punctate structures which colocalized with p58 (a putative marker for peripheral punctate pre-Golgi intermediates and the cis-Golgi network) before delivery to the medial Golgi compartments containing alpha-1,2-mannosidase II and processing of VSV-G to endoglycosidase H resistant forms. Exit from the ER was inhibited by an antibody recognizing the carboxyl-terminus of VSV-G. In contrast, VSV-G protein colocalized with p58 in the absence of Ca2+ or the presence of an antibody which inhibits the transport component NSF (SEC18). These studies demonstrate that digitonin permeabilized cells can be used to efficiently reconstitute the early secretory pathway in vitro, allowing a direct comparison of the morphological and biochemical events involved in vesicular tafficking, and identifying a key role for the p58 containing compartment in ER to Golgi transport. PMID:1447290

  7. A bacterial toxin and a non-enveloped virus hijack ER-to-cytosol membrane translocation pathways to cause disease

    PubMed Central

    He, Kaiyu; Ravindran, Madhu Sudhan; Tsai, Billy

    2016-01-01

    A dedicated network of cellular factors ensures that proteins translocated into the endoplasmic reticulum (ER) are folded correctly before they exit this compartment en route to other cellular destinations or for secretion. When proteins misfold, selective ER-resident enzymes and chaperones are recruited to rectify the protein-misfolding problem in order to maintain cellular proteostasis. However, when a protein becomes terminally misfolded, it is ejected into the cytosol and degraded by the proteasome via a pathway called ER-associated degradation (ERAD). Strikingly, toxins and viruses can hijack elements of the ERAD pathway to access the host cytosol and cause infection. This review focuses on emerging data illuminating the molecular mechanisms by which these toxic agents co-opt the ER-to-cytosol translocation process to cause disease. PMID:26362261

  8. Hypomorphic Mutations in PGAP2, Encoding a GPI-Anchor-Remodeling Protein, Cause Autosomal-Recessive Intellectual Disability

    PubMed Central

    Hansen, Lars; Tawamie, Hasan; Murakami, Yoshiko; Mang, Yuan; ur Rehman, Shoaib; Buchert, Rebecca; Schaffer, Stefanie; Muhammad, Safia; Bak, Mads; Nöthen, Markus M.; Bennett, Eric P.; Maeda, Yusuke; Aigner, Michael; Reis, André; Kinoshita, Taroh; Tommerup, Niels; Baig, Shahid Mahmood; Abou Jamra, Rami

    2013-01-01

    PGAP2 encodes a protein involved in remodeling the glycosylphosphatidylinositol (GPI) anchor in the Golgi apparatus. After synthesis in the endoplasmic reticulum (ER), GPI anchors are transferred to the proteins and are remodeled while transported through the Golgi to the cell membrane. Germline mutations in six genes (PIGA, PIGL, PIGM, PIGV, PIGN, and PIGO) in the ER-located part of the GPI-anchor-biosynthesis pathway have been reported, and all are associated with phenotypes extending from malformation and lethality to severe intellectual disability, epilepsy, minor dysmorphisms, and elevated alkaline phosphatase (ALP). We performed autozygosity mapping and ultra-deep sequencing followed by stringent filtering and identified two homozygous PGAP2 alterations, p.Tyr99Cys and p.Arg177Pro, in seven offspring with nonspecific autosomal-recessive intellectual disability from two consanguineous families. Rescue experiments with the altered proteins in PGAP2-deficient Chinese hamster ovary cell lines showed less expression of cell-surface GPI-anchored proteins DAF and CD59 than of the wild-type protein, substantiating the pathogenicity of the identified alterations. Furthermore, we observed a full rescue when we used strong promoters before the mutant cDNAs, suggesting a hypomorphic effect of the mutations. We report on alterations in the Golgi-located part of the GPI-anchor-biosynthesis pathway and extend the phenotypic spectrum of the GPI-anchor deficiencies to isolated intellectual disability with elevated ALP. GPI-anchor deficiencies can be interpreted within the concept of a disease family, and we propose that the severity of the phenotype is dependent on the location of the altered protein in the biosynthesis chain. PMID:23561846

  9. STARD3 or STARD3NL and VAP form a novel molecular tether between late endosomes and the ER.

    PubMed

    Alpy, Fabien; Rousseau, Adrien; Schwab, Yannick; Legueux, François; Stoll, Isabelle; Wendling, Corinne; Spiegelhalter, Coralie; Kessler, Pascal; Mathelin, Carole; Rio, Marie-Christine; Levine, Timothy P; Tomasetto, Catherine

    2013-12-01

    Inter-organelle membrane contacts sites (MCSs) are specific subcellular regions favoring the exchange of metabolites and information. We investigated the potential role of the late-endosomal membrane-anchored proteins StAR related lipid transfer domain-3 (STARD3) and STARD3 N-terminal like (STARD3NL) in the formation of MCSs involving late-endosomes (LEs). We demonstrate that both STARD3 and STARD3NL create MCSs between LEs and the endoplasmic reticulum (ER). STARD3 and STARD3NL use a conserved two phenylalanines in an acidic tract (FFAT)-motif to interact with ER-anchored VAP proteins. Together, they form an LE-ER tethering complex allowing heterologous membrane apposition. This LE-ER tethering complex affects organelle dynamics by altering the formation of endosomal tubules. An in situ proximity ligation assay between STARD3, STARD3NL and VAP proteins identified endogenous LE-ER MCS. Thus, we report here the identification of proteins involved in inter-organellar interaction.

  10. Ultrasonic/Sonic Anchor

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart

    2009-01-01

    The ultrasonic/sonic anchor (U/S anchor) is an anchoring device that drills a hole for itself in rock, concrete, or other similar material. The U/S anchor is a recent addition to a series of related devices, the first of which were reported in "Ultrasonic/Sonic Drill/Corers With Integrated Sensors"

  11. Plasma membrane localization of Solanum tuberosum remorin from group 1, homolog 3 is mediated by conformational changes in a novel C-terminal anchor and required for the restriction of potato virus X movement].

    PubMed

    Perraki, Artemis; Cacas, Jean-Luc; Crowet, Jean-Marc; Lins, Laurence; Castroviejo, Michel; German-Retana, Sylvie; Mongrand, Sébastien; Raffaele, Sylvain

    2012-10-01

    The formation of plasma membrane (PM) microdomains plays a crucial role in the regulation of membrane signaling and trafficking. Remorins are a plant-specific family of proteins organized in six phylogenetic groups, and Remorins of group 1 are among the few plant proteins known to specifically associate with membrane rafts. As such, they are valuable to understand the molecular bases for PM lateral organization in plants. However, little is known about the structural determinants underlying the specific association of group 1 Remorins with membrane rafts. We used a structure-function approach to identify a short C-terminal anchor (RemCA) indispensable and sufficient for tight direct binding of potato (Solanum tuberosum) REMORIN 1.3 (StREM1.3) to the PM. RemCA switches from unordered to α-helical structure in a nonpolar environment. Protein structure modeling indicates that RemCA folds into a tight hairpin of amphipathic helices. Consistently, mutations reducing RemCA amphipathy abolished StREM1.3 PM localization. Furthermore, RemCA directly binds to biological membranes in vitro, shows higher affinity for Detergent-Insoluble Membranes lipids, and targets yellow fluorescent protein to Detergent-Insoluble Membranes in vivo. Mutations in RemCA resulting in cytoplasmic StREM1.3 localization abolish StREM1.3 function in restricting potato virus X movement. The mechanisms described here provide new insights on the control and function of lateral segregation of plant PM.

  12. Plasma Membrane Localization of Solanum tuberosum Remorin from Group 1, Homolog 3 Is Mediated by Conformational Changes in a Novel C-Terminal Anchor and Required for the Restriction of Potato Virus X Movement1[C][W

    PubMed Central

    Perraki, Artemis; Cacas, Jean-Luc; Crowet, Jean-Marc; Lins, Laurence; Castroviejo, Michel; German-Retana, Sylvie; Mongrand, Sébastien; Raffaele, Sylvain

    2012-01-01

    The formation of plasma membrane (PM) microdomains plays a crucial role in the regulation of membrane signaling and trafficking. Remorins are a plant-specific family of proteins organized in six phylogenetic groups, and Remorins of group 1 are among the few plant proteins known to specifically associate with membrane rafts. As such, they are valuable to understand the molecular bases for PM lateral organization in plants. However, little is known about the structural determinants underlying the specific association of group 1 Remorins with membrane rafts. We used a structure-function approach to identify a short C-terminal anchor (RemCA) indispensable and sufficient for tight direct binding of potato (Solanum tuberosum) REMORIN 1.3 (StREM1.3) to the PM. RemCA switches from unordered to α-helical structure in a nonpolar environment. Protein structure modeling indicates that RemCA folds into a tight hairpin of amphipathic helices. Consistently, mutations reducing RemCA amphipathy abolished StREM1.3 PM localization. Furthermore, RemCA directly binds to biological membranes in vitro, shows higher affinity for Detergent-Insoluble Membranes lipids, and targets yellow fluorescent protein to Detergent-Insoluble Membranes in vivo. Mutations in RemCA resulting in cytoplasmic StREM1.3 localization abolish StREM1.3 function in restricting potato virus X movement. The mechanisms described here provide new insights on the control and function of lateral segregation of plant PM. PMID:22855937

  13. A short C-terminal tail prevents mis-targeting of hydrophobic mitochondrial membrane proteins to the ER.

    PubMed

    Reithinger, Johannes H; Yim, Chewon; Park, Kwangjin; Björkholm, Patrik; von Heijne, Gunnar; Kim, Hyun

    2013-11-01

    Sdh3/Shh3, a subunit of mitochondrial succinate dehydrogenase, contains transmembrane domains with a hydrophobicity comparable to that of endoplasmic reticulum (ER) proteins. Here, we show that a C-terminal reporter fusion to Sdh3/Shh3 results in partial mis-targeting of the protein to the ER. This mis-targeting is mediated by the signal recognition particle (SRP) and depends on the length of the C-terminal tail. These results imply that if nuclear-encoded mitochondrial proteins contain strongly hydrophobic transmembrane domains and a long C-terminal tail, they have the potential to be recognized by SRP and mis-targeted to the ER. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. How anchoring proteins shape pain.

    PubMed

    Fischer, Michael J M; McNaughton, Peter A

    2014-09-01

    Cellular responsiveness to external stimuli can be altered by extracellular mediators which activate membrane receptors, in turn signalling to the intracellular space via calcium, cyclic nucleotides, membrane lipids or enzyme activity. These signalling events trigger a cascade leading to an effector which can be a channel, an enzyme or a transcription factor. The effectiveness of these intracellular events is enhanced when they are maintained in close proximity by anchoring proteins, which assemble complexes of signalling molecules such as kinases together with their targets, and in this way enhance both the speed and the precision of intracellular signalling. The A kinase anchoring protein (AKAP) family are adaptor proteins originally named for their ability to associate Protein Kinase A and its targets, but several other enzymes bound by AKAPs have now been found and a wide variety of target structures has been described. This review provides an overview of anchoring proteins involved in pain signalling. The key anchoring proteins and their ion channel targets in primary sensory neurons responding to painful stimuli (nociceptors) are discussed.

  15. PDMP Blocks Brefeldin A–induced Retrograde Membrane Transport from Golgi to ER: Evidence for Involvement of Calcium Homeostasis and Dissociation from Sphingolipid Metabolism

    PubMed Central

    Kok, Jan Willem; Babia, Teresa; Filipeanu, Catalin M.; Nelemans, Adriaan; Egea, Gustavo; Hoekstra, Dick

    1998-01-01

    In this study, we show that an inhibitor of sphingolipid biosynthesis, d,l-threo-1-phenyl-2- decanoylamino-3-morpholino-1-propanol (PDMP), inhibits brefeldin A (BFA)-induced retrograde membrane transport from Golgi to endoplasmic reticulum (ER). If BFA treatment was combined with or preceded by PDMP administration to cells, disappearance of discrete Golgi structures did not occur. However, when BFA was allowed to exert its effect before PDMP addition, PDMP could not “rescue” the Golgi compartment. Evidence is presented showing that this action of PDMP is indirect, which means that the direct target is not sphingolipid metabolism at the Golgi apparatus. A fluorescent analogue of PDMP, 6-(N-[7-nitro-2,1,3-benzoxadiazol-4-yl]amino)hexanoyl-PDMP (C6-NBD-PDMP), did not localize in the Golgi apparatus. Moreover, the effect of PDMP on membrane flow did not correlate with impaired C6-NBD-sphingomyelin biosynthesis and was not mimicked by exogenous C6-ceramide addition or counteracted by exogenous C6-glucosylceramide addition. On the other hand, the PDMP effect was mimicked by the multidrug resistance protein inhibitor MK571. The effect of PDMP on membrane transport correlated with modulation of calcium homeostasis, which occurred in a similar concentration range. PDMP released calcium from at least two independent calcium stores and blocked calcium influx induced by either extracellular ATP or thapsigargin. Thus, the biological effects of PDMP revealed a relation between three important physiological processes of multidrug resistance, calcium homeostasis, and membrane flow in the ER/ Golgi system. PMID:9660860

  16. PAQR3 modulates cholesterol homeostasis by anchoring Scap/SREBP complex to the Golgi apparatus.

    PubMed

    Xu, Daqian; Wang, Zheng; Zhang, Yuxue; Jiang, Wei; Pan, Yi; Song, Bao-Liang; Chen, Yan

    2015-08-27

    Cholesterol biosynthesis is regulated by transcription factors SREBPs and their escort protein Scap. On sterol depletion, Scap/SREBP complex is transported from endoplasmic reticulum (ER) to the Golgi apparatus where SREBP is activated. Under cholesterol sufficient condition, Insigs act as anchor proteins to retain Scap/SREBP in the ER. However, the anchor protein of Scap/SREBP in the Golgi is unknown. Here we report that a Golgi-localized membrane protein progestin and adipoQ receptors 3 (PAQR3) interacts with Scap and SREBP and tethers them to the Golgi. PAQR3 promotes Scap/SREBP complex formation, potentiates SREBP processing and enhances lipid synthesis. The mutually exclusive interaction between Scap and PAQR3 or Insig-1 is regulated by cholesterol level. PAQR3 knockdown in liver blunts SREBP pathway and decreases hepatic cholesterol content. Disrupting the interaction of PAQR3 with Scap/SREBP by a synthetic peptide inhibits SREBP processing and activation. Thus, PAQR3 regulates cholesterol homeostasis by anchoring Scap/SREBP to the Golgi and disruption of such function reduces cholesterol biosynthesis.

  17. PAQR3 modulates cholesterol homeostasis by anchoring Scap/SREBP complex to the Golgi apparatus

    PubMed Central

    Xu, Daqian; Wang, Zheng; Zhang, Yuxue; Jiang, Wei; Pan, Yi; Song, Bao-Liang; Chen, Yan

    2015-01-01

    Cholesterol biosynthesis is regulated by transcription factors SREBPs and their escort protein Scap. On sterol depletion, Scap/SREBP complex is transported from endoplasmic reticulum (ER) to the Golgi apparatus where SREBP is activated. Under cholesterol sufficient condition, Insigs act as anchor proteins to retain Scap/SREBP in the ER. However, the anchor protein of Scap/SREBP in the Golgi is unknown. Here we report that a Golgi-localized membrane protein progestin and adipoQ receptors 3 (PAQR3) interacts with Scap and SREBP and tethers them to the Golgi. PAQR3 promotes Scap/SREBP complex formation, potentiates SREBP processing and enhances lipid synthesis. The mutually exclusive interaction between Scap and PAQR3 or Insig-1 is regulated by cholesterol level. PAQR3 knockdown in liver blunts SREBP pathway and decreases hepatic cholesterol content. Disrupting the interaction of PAQR3 with Scap/SREBP by a synthetic peptide inhibits SREBP processing and activation. Thus, PAQR3 regulates cholesterol homeostasis by anchoring Scap/SREBP to the Golgi and disruption of such function reduces cholesterol biosynthesis. PMID:26311497

  18. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis.

    PubMed

    Ju, Chuanli; Yoon, Gyeong Mee; Shemansky, Jennifer Marie; Lin, David Y; Ying, Z Irene; Chang, Jianhong; Garrett, Wesley M; Kessenbrock, Mareike; Groth, Georg; Tucker, Mark L; Cooper, Bret; Kieber, Joseph J; Chang, Caren

    2012-11-20

    The gaseous phytohormone ethylene C(2)H(4) mediates numerous aspects of growth and development. Genetic analysis has identified a number of critical elements in ethylene signaling, but how these elements interact biochemically to transduce the signal from the ethylene receptor complex at the endoplasmic reticulum (ER) membrane to transcription factors in the nucleus is unknown. To close this gap in our understanding of the ethylene signaling pathway, the challenge has been to identify the target of the CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) Raf-like protein kinase, as well as the molecular events surrounding ETHYLENE-INSENSITIVE2 (EIN2), an ER membrane-localized Nramp homolog that positively regulates ethylene responses. Here we demonstrate that CTR1 interacts with and directly phosphorylates the cytosolic C-terminal domain of EIN2. Mutations that block the EIN2 phosphorylation sites result in constitutive nuclear localization of the EIN2 C terminus, concomitant with constitutive activation of ethylene responses in Arabidopsis. Our results suggest that phosphorylation of EIN2 by CTR1 prevents EIN2 from signaling in the absence of ethylene, whereas inhibition of CTR1 upon ethylene perception is a signal for cleavage and nuclear localization of the EIN2 C terminus, allowing the ethylene signal to reach the downstream transcription factors. These findings significantly advance our understanding of the mechanisms underlying ethylene signal transduction.

  19. Biomedical applications of glycosylphosphatidylinositol-anchored proteins

    PubMed Central

    Heider, Susanne; Dangerfield, John A.

    2016-01-01

    Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) use a unique posttranslational modification to link proteins to lipid bilayer membranes. The anchoring structure consists of both a lipid and carbohydrate portion and is highly conserved in eukaryotic organisms regarding its basic characteristics, yet highly variable in its molecular details. The strong membrane targeting property has made the anchors an interesting tool for biotechnological modification of lipid membrane-covered entities from cells through extracellular vesicles to enveloped virus particles. In this review, we will take a closer look at the mechanisms and fields of application for GPI-APs in lipid bilayer membrane engineering and discuss their advantages and disadvantages for biomedicine. PMID:27542385

  20. Targeting sequences of UBXD8 and AAM-B reveal that the ER has a direct role in the emergence and regression of lipid droplets.

    PubMed

    Zehmer, John K; Bartz, René; Bisel, Blaine; Liu, Pingsheng; Seemann, Joachim; Anderson, Richard G W

    2009-10-15

    Lipid droplets are sites of neutral lipid storage thought to be actively involved in lipid homeostasis. A popular model proposes that droplets are formed in the endoplasmic reticulum (ER) by a process that begins with the deposition of neutral lipids between the membrane bilayer. As the droplet grows, it becomes surrounded by a monolayer of phospholipid derived from the outer half of the ER membrane, which contains integral membrane proteins anchored by hydrophobic regions. This model predicts that for an integral droplet protein inserted into the outer half of the ER membrane to reach the forming droplet, it must migrate in the plane of the membrane to sites of lipid accumulation. Here, we report the results of experiments that directly test this hypothesis. Using two integral droplet proteins that contain unique hydrophobic targeting sequences (AAM-B and UBXD8), we present evidence that both proteins migrate from their site of insertion in the ER to droplets that are forming in response to fatty acid supplementation. Migration to droplets occurs even when further protein synthesis is inhibited or dominant-negative Sar1 blocks transport to the Golgi complex. Surprisingly, when droplets are induced to disappear from the cell, both proteins return to the ER as the level of neutral lipid declines. These data suggest that integral droplet proteins form from and regress to the ER as part of a cyclic process that does not involve traffic through the secretory pathway.

  1. Targeting sequences of UBXD8 and AAM-B reveal that the ER has a direct role in the emergence and regression of lipid droplets

    PubMed Central

    Zehmer, John K.; Bartz, René; Bisel, Blaine; Liu, Pingsheng; Seemann, Joachim; Anderson, Richard G. W.

    2009-01-01

    Summary Lipid droplets are sites of neutral lipid storage thought to be actively involved in lipid homeostasis. A popular model proposes that droplets are formed in the endoplasmic reticulum (ER) by a process that begins with the deposition of neutral lipids between the membrane bilayer. As the droplet grows, it becomes surrounded by a monolayer of phospholipid derived from the outer half of the ER membrane, which contains integral membrane proteins anchored by hydrophobic regions. This model predicts that for an integral droplet protein inserted into the outer half of the ER membrane to reach the forming droplet, it must migrate in the plane of the membrane to sites of lipid accumulation. Here, we report the results of experiments that directly test this hypothesis. Using two integral droplet proteins that contain unique hydrophobic targeting sequences (AAM-B and UBXD8), we present evidence that both proteins migrate from their site of insertion in the ER to droplets that are forming in response to fatty acid supplementation. Migration to droplets occurs even when further protein synthesis is inhibited or dominant-negative Sar1 blocks transport to the Golgi complex. Surprisingly, when droplets are induced to disappear from the cell, both proteins return to the ER as the level of neutral lipid declines. These data suggest that integral droplet proteins form from and regress to the ER as part of a cyclic process that does not involve traffic through the secretory pathway. PMID:19773358

  2. Oxygen permeation properties of dense Bi{sub 1.5}Er{sub 0.5}O{sub 3}-Ag cermet membranes

    SciTech Connect

    Elshof, J.E. ten; Nguyen, N.Q.; Otter, M.W. den; Bouwmeester, H.J.M.

    1997-12-01

    Oxygen permeation experiments were performed on dense mixed-conducting ceramic-metal composite membranes (thickness 0.2 to 2 mm) Bi{sub 1.5}Er{sub 0.5}O{sub 3}-Ag with 10.0, 27.8, and 40.0 volume percent (v/o) silver, respectively, in the temperature range 873 to 993 K and oxygen partial pressure range 10{sup {minus}3.5} to 1 bar O{sub 2}. The oxygen fluxes increased with increasing silver content. In the cermets with a nonpercolative silver phase (10.0 and 27.8 v/o), the increased oxygen flux relative to that of pure Bi{sub 1.5}Er{sub 0.5}O{sub 3} was attributed to faster kinetics of surface oxygen exchange in the presence of silver. Percolativity of the silver phase in the 40 v/o Ag composition enhances the ambipolar diffusion of oxygen ions and electrons. High oxygen fluxes ({approximately} 0.25 mmol/m{sup 2}s at 873 K) were observed with the latter composition, which were shown to be fully limited by the surface exchange kinetics. The activation energy for oxygen permeation in the temperature range 848 to 1,003 K is about 85 to 95 kJ/mol for the compositions without percolativity of silver and 115 kJ/mol for the composite with 40 v/o Ag, which reflects a change of the rate-limiting step upon passing the percolation threshold. Results from both permeation and isotopic exchange measurements on the composition with Ag percolativity indicated the kinetic order of the surface process in oxygen to be 1/4, indicating a process fundamentally different from that on pure Bi{sub 1.5}Er{sub 0.5}O{sub 3}.

  3. Superresolution Imaging Identifies That Conventional Trafficking Pathways Are Not Essential for Endoplasmic Reticulum to Outer Mitochondrial Membrane Protein Transport.

    PubMed

    Salka, Kyle; Bhuvanendran, Shivaprasad; Wilson, Kassandra; Bozidis, Petros; Mehta, Mansi; Rainey, Kristin; Sesaki, Hiromi; Patterson, George H; Jaiswal, Jyoti K; Colberg-Poley, Anamaris M

    2017-12-01

    Most nuclear-encoded mitochondrial proteins traffic from the cytosol to mitochondria. Some of these proteins localize at mitochondria-associated membranes (MAM), where mitochondria are closely apposed with the endoplasmic reticulum (ER). We have previously shown that the human cytomegalovirus signal-anchored protein known as viral mitochondria-localized inhibitor of apoptosis (vMIA) traffics from the ER to mitochondria and clusters at the outer mitochondrial membrane (OMM). Here, we have examined the host pathways by which vMIA traffics from the ER to mitochondria and clusters at the OMM. By disruption of phosphofurin acidic cluster sorting protein 2 (PACS-2), mitofusins (Mfn1/2), and dynamin related protein 1 (Drp1), we find these conventional pathways for ER to the mitochondria trafficking are dispensable for vMIA trafficking to OMM. Instead, mutations in vMIA that change its hydrophobicity alter its trafficking to mitochondria. Superresolution imaging showed that PACS-2- and Mfn-mediated membrane apposition or hydrophobic interactions alter vMIA's ability to organize in nanoscale clusters at the OMM. This shows that signal-anchored MAM proteins can make use of hydrophobic interactions independently of conventional ER-mitochondria pathways to traffic from the ER to mitochondria. Further, vMIA hydrophobic interactions and ER-mitochondria contacts facilitate proper organization of vMIA on the OMM.

  4. αS1-casein, which is essential for efficient ER-to-Golgi casein transport, is also present in a tightly membrane-associated form

    PubMed Central

    2010-01-01

    Background Caseins, the main milk proteins, aggregate in the secretory pathway of mammary epithelial cells into large supramolecular structures, casein micelles. The role of individual caseins in this process and the mesostructure of the casein micelle are poorly known. Results In this study, we investigate primary steps of casein micelle formation in rough endoplasmic reticulum-derived vesicles prepared from rat or goat mammary tissues. The majority of both αS1- and β-casein which are cysteine-containing casein was dimeric in the endoplasmic reticulum. Saponin permeabilisation of microsomal membranes in physico-chemical conditions believed to conserve casein interactions demonstrated that rat immature β-casein is weakly aggregated in the endoplasmic reticulum. In striking contrast, a large proportion of immature αS1-casein was recovered in permeabilised microsomes when incubated in conservative conditions. Furthermore, a substantial amount of αS1-casein remained associated with microsomal or post-ER membranes after saponin permeabilisation in non-conservative conditions or carbonate extraction at pH11, all in the presence of DTT. Finally, we show that protein dimerisation via disulfide bond is involved in the interaction of αS1-casein with membranes. Conclusions These experiments reveal for the first time the existence of a membrane-associated form of αS1-casein in the endoplasmic reticulum and in more distal compartments of the secretory pathway of mammary epithelial cells. Our data suggest that αS1-casein, which is required for efficient export of the other caseins from the endoplasmic reticulum, plays a key role in early steps of casein micelle biogenesis and casein transport in the secretory pathway. PMID:20704729

  5. Phytoplasma infection in tomato is associated with re-organization of plasma membrane, ER stacks, and actin filaments in sieve elements.

    PubMed

    Buxa, Stefanie V; Degola, Francesca; Polizzotto, Rachele; De Marco, Federica; Loschi, Alberto; Kogel, Karl-Heinz; di Toppi, Luigi Sanità; van Bel, Aart J E; Musetti, Rita

    2015-01-01

    Phytoplasmas, biotrophic wall-less prokaryotes, only reside in sieve elements of their host plants. The essentials of the intimate interaction between phytoplasmas and their hosts are poorly understood, which calls for research on potential ultrastructural modifications. We investigated modifications of the sieve-element ultrastructure induced in tomato plants by 'Candidatus Phytoplasma solani,' the pathogen associated with the stolbur disease. Phytoplasma infection induces a drastic re-organization of sieve-element substructures including changes in plasma membrane surface and distortion of the sieve-element reticulum. Observations of healthy and stolbur-diseased plants provided evidence for the emergence of structural links between sieve-element plasma membrane and phytoplasmas. One-sided actin aggregates on the phytoplasma surface also inferred a connection between phytoplasma and sieve-element cytoskeleton. Actin filaments displaced from the sieve-element mictoplasm to the surface of the phytoplasmas in infected sieve elements. Western blot analysis revealed a decrease of actin and an increase of ER-resident chaperone luminal binding protein (BiP) in midribs of phytoplasma-infected plants. Collectively, the studies provided novel insights into ultrastructural responses of host sieve elements to phloem-restricted prokaryotes.

  6. Phytoplasma infection in tomato is associated with re-organization of plasma membrane, ER stacks, and actin filaments in sieve elements

    PubMed Central

    Buxa, Stefanie V.; Degola, Francesca; Polizzotto, Rachele; De Marco, Federica; Loschi, Alberto; Kogel, Karl-Heinz; di Toppi, Luigi Sanità; van Bel, Aart J. E.; Musetti, Rita

    2015-01-01

    Phytoplasmas, biotrophic wall-less prokaryotes, only reside in sieve elements of their host plants. The essentials of the intimate interaction between phytoplasmas and their hosts are poorly understood, which calls for research on potential ultrastructural modifications. We investigated modifications of the sieve-element ultrastructure induced in tomato plants by ‘Candidatus Phytoplasma solani,’ the pathogen associated with the stolbur disease. Phytoplasma infection induces a drastic re-organization of sieve-element substructures including changes in plasma membrane surface and distortion of the sieve-element reticulum. Observations of healthy and stolbur-diseased plants provided evidence for the emergence of structural links between sieve-element plasma membrane and phytoplasmas. One-sided actin aggregates on the phytoplasma surface also inferred a connection between phytoplasma and sieve-element cytoskeleton. Actin filaments displaced from the sieve-element mictoplasm to the surface of the phytoplasmas in infected sieve elements. Western blot analysis revealed a decrease of actin and an increase of ER-resident chaperone luminal binding protein (BiP) in midribs of phytoplasma-infected plants. Collectively, the studies provided novel insights into ultrastructural responses of host sieve elements to phloem-restricted prokaryotes. PMID:26347766

  7. Role of the C-terminal basic amino acids and the lipid anchor of the Gγ2 protein in membrane interactions and cell localization.

    PubMed

    Noguera-Salvà, Maria A; Guardiola-Serrano, Francisca; Martin, M Laura; Marcilla-Etxenike, Amaia; Bergo, Martin O; Busquets, Xavier; Escribá, Pablo V

    2017-02-21

    Heterotrimeric G proteins are peripheral membrane proteins that frequently localize to the plasma membrane where their presence in molar excess over G protein coupled receptors permits signal amplification. Their distribution is regulated by protein-lipid interactions, which has a clear influence on their activity. Gβγ dimer drives the interaction between G protein heterotrimers with cell membranes. We focused our study on the role of the C-terminal region of the Gγ2 protein in G protein interactions with cell membranes. The Gγ2 subunit is modified at cysteine (Cys) 68 by the addition of an isoprenyl lipid, which is followed by the proteolytic removal of the last three residues that leaves an isoprenylated and carboxyl methylated Cys-68 as the terminal amino acid. The role of Cys isoprenylation of the CAAX box has been defined for other proteins, yet the importance of proteolysis and carboxyl methylation of isoprenylated proteins is less clear. Here, we showed that not only geranylgeranylation but also proteolysis and carboxyl methylation are essential for the correct localization of Gγ2 in the plasma membrane. Moreover, we showed the importance of electrostatic interactions between the inner leaflet of the plasma membrane and the positively charged C-terminal domain of the Gγ2 subunit (amino acids Arg-62, Lys-64 and Lys-65) as a second signal to reach the plasma membrane. Indeed, single or multiple point mutations at Gγ2 C-terminal amino acids have a significant effect on Gγ2 protein-plasma membrane interactions and its localization to charged Ld (liquid disordered) membrane microdomains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo Escríba-Ruíz.

  8. Reticulomics: Protein-Protein Interaction Studies with Two Plasmodesmata-Localized Reticulon Family Proteins Identify Binding Partners Enriched at Plasmodesmata, Endoplasmic Reticulum, and the Plasma Membrane1

    PubMed Central

    Kriechbaumer, Verena; Botchway, Stanley W.; Slade, Susan E.; Knox, Kirsten; Frigerio, Lorenzo; Oparka, Karl; Hawes, Chris

    2015-01-01

    The endoplasmic reticulum (ER) is a ubiquitous organelle that plays roles in secretory protein production, folding, quality control, and lipid biosynthesis. The cortical ER in plants is pleomorphic and structured as a tubular network capable of morphing into flat cisternae, mainly at three-way junctions, and back to tubules. Plant reticulon family proteins (RTNLB) tubulate the ER by dimerization and oligomerization, creating localized ER membrane tensions that result in membrane curvature. Some RTNLB ER-shaping proteins are present in the plasmodesmata (PD) proteome and may contribute to the formation of the desmotubule, the axial ER-derived structure that traverses primary PD. Here, we investigate the binding partners of two PD-resident reticulon proteins, RTNLB3 and RTNLB6, that are located in primary PD at cytokinesis in tobacco (Nicotiana tabacum). Coimmunoprecipitation of green fluorescent protein-tagged RTNLB3 and RTNLB6 followed by mass spectrometry detected a high percentage of known PD-localized proteins as well as plasma membrane proteins with putative membrane-anchoring roles. Förster resonance energy transfer by fluorescence lifetime imaging microscopy assays revealed a highly significant interaction of the detected PD proteins with the bait RTNLB proteins. Our data suggest that RTNLB proteins, in addition to a role in ER modeling, may play important roles in linking the cortical ER to the plasma membrane. PMID:26353761

  9. Anchors for Education Reforms

    ERIC Educational Resources Information Center

    Alok, Kumar

    2012-01-01

    Education reforms, considering their significance, deserve better methods than mere "trial and error." This article conceptualizes a network of six anchors for education reforms: education policy, education system, curriculum, pedagogy, assessment, and teacher education. It establishes the futility to reform anchors in isolation and…

  10. Anchors for Education Reforms

    ERIC Educational Resources Information Center

    Alok, Kumar

    2012-01-01

    Education reforms, considering their significance, deserve better methods than mere "trial and error." This article conceptualizes a network of six anchors for education reforms: education policy, education system, curriculum, pedagogy, assessment, and teacher education. It establishes the futility to reform anchors in isolation and…

  11. Defective lipid remodeling of GPI anchors in peroxisomal disorders, Zellweger syndrome, and rhizomelic chondrodysplasia punctata.

    PubMed

    Kanzawa, Noriyuki; Shimozawa, Nobuyuki; Wanders, Ronald J A; Ikeda, Kazutaka; Murakami, Yoshiko; Waterham, Hans R; Mukai, Satoru; Fujita, Morihisa; Maeda, Yusuke; Taguchi, Ryo; Fujiki, Yukio; Kinoshita, Taroh

    2012-04-01

    Many cell surface proteins in mammalian cells are anchored to the plasma membrane via glycosylphosphatidylinositol (GPI). The predominant form of mammalian GPI contains 1-alkyl-2-acyl phosphatidylinositol (PI), which is generated by lipid remodeling from diacyl PI. The conversion of diacyl PI to 1-alkyl-2-acyl PI occurs in the ER at the third intermediate in the GPI biosynthetic pathway. This lipid remodeling requires the alkyl-phospholipid biosynthetic pathway in peroxisome. Indeed, cells defective in dihydroxyacetone phosphate acyltransferase (DHAP-AT) or alkyl-DHAP synthase express only the diacyl form of GPI-anchored proteins. A defect in the alkyl-phospholipid biosynthetic pathway causes a peroxisomal disorder, rhizomelic chondrodysplasia punctata (RCDP), and defective biogenesis of peroxisomes causes Zellweger syndrome, both of which are lethal genetic diseases with multiple clinical phenotypes such as psychomotor defects, mental retardation, and skeletal abnormalities. Here, we report that GPI lipid remodeling is defective in cells from patients with Zellweger syndrome having mutations in the peroxisomal biogenesis factors PEX5, PEX16, and PEX19 and in cells from patients with RCDP types 1, 2, and 3 caused by mutations in PEX7, DHAP-AT, and alkyl-DHAP synthase, respectively. Absence of the 1-alkyl-2-acyl form of GPI-anchored proteins might account for some of the complex phenotypes of these two major peroxisomal disorders.

  12. PEA-15 facilitates EGFR dephosphorylation via ERK sequestration at increased ER-PM contacts in TNBC cells.

    PubMed

    Shin, Miyoung; Lee, Kyung-Eun; Yang, Eun Gyeong; Jeon, Hyesung; Song, Hyun Kyu

    2015-04-13

    Phosphoprotein enriched in astrocytes of 15 kDa (PEA-15) is known to sequester extracellular signal-regulated kinase (ERK) in the cytoplasm, inhibiting tumorigenesis of human breast cancer cells. Here, we describe how PEA-15 expression affects the dephosphorylation of epidermal growth factor receptor (EGFR) through endoplasmic reticulum (ER)-plasma membrane (PM) contacts in MDA-MB-468, triple-negative breast cancer (TNBC) cells. The increased intracellular calcium concentration resulting from increased cytoplasmic phosphorylated ERK facilitates movement of ER-anchored calcium sensors to the PM. The driving force of trans-localization of calcium-dependent proteins enhances the contact between the activated EGFR and ER-localized phosphatase, PTP1B. Consequently, our findings suggest a mechanism underneath the facilitation of EGFR dephosphorylation by cytoplasmic PEA-15 expression inside TNBC cells, which may be one of the dynamic mechanisms for down-regulation of activated EGFR in cancer cells.

  13. Targeting of RGS7/Gbeta5 to the dendritic tips of ON-bipolar cells is independent of its association with membrane anchor R7BP.

    PubMed

    Cao, Yan; Song, Hongman; Okawa, Haruhisa; Sampath, Alapakkam P; Sokolov, Maxim; Martemyanov, Kirill A

    2008-10-08

    Complexes of regulator of G-protein signaling (RGS) proteins with G-protein beta5 (Gbeta5) subunits are essential components of signaling pathways that regulate the temporal characteristics of light-evoked responses in vertebrate retinal photoreceptors and ON-bipolar cells. Recent studies have found that RGS/Gbeta5 complexes bind to a new family of adapter proteins, R9AP (RGS9 anchor protein) and R7 family binding protein (R7BP), that in case of the RGS9/Gbeta5 complex were shown to determine its precise subcellular targeting to either the outer segment of photoreceptors or postsynaptic structures of striatal neurons, respectively. In this study, we establish that another trimeric complex consisting of RGS7, Gbeta5, and R7BP subunits is specifically targeted to the dendritic tips of retinal bipolar cells. However, examination of the mechanisms of complex targeting in vivo surprisingly revealed that the delivery of RGS7/Gbeta5 to the dendrites of ON-bipolar cells occurs independently of its association with R7BP. These findings provide a new mechanism for adapter-independent targeting of RGS/Gbeta5 complexes.

  14. Structural design, solid-phase synthesis and activity of membrane-anchored β-secretase inhibitors on Aβ generation from wild-type and Swedish-mutant APP.

    PubMed

    Schieb, Heinke; Weidlich, Sebastian; Schlechtingen, Georg; Linning, Philipp; Jennings, Gary; Gruner, Margit; Wiltfang, Jens; Klafki, Hans-Wolfgang; Knölker, Hans-Joachim

    2010-12-27

    Covalent coupling of β-secretase inhibitors to a raftophilic lipid anchor via a suitable spacer by using solid-phase peptide synthesis leads to tripartite structures displaying substantially improved inhibition of cellular secretion of the β-amyloid peptide (Aβ). Herein, we describe a series of novel tripartite structures, their full characterization by NMR spectroscopy and mass spectrometry, and the analysis of their biological activity in cell-based assays. The tripartite structure concept is applicable to different pharmacophores, and the potency in terms of β-secretase inhibition can be optimized by adjusting the spacer length to achieve an optimal distance of the inhibitor from the lipid bilayer. A tripartite structure containing a transition-state mimic inhibitor was found to be less potent on Aβ generation from Swedish-mutant amyloid precursor protein (APP) than from the wild-type protein. Moreover, our observations suggest that specific variants of Aβ are generated from wild-type APP but not from Swedish-mutant APP and are resistant to β-secretase inhibition. Efficient inhibition of Aβ secretion by tripartite structures in the absence of appreciable neurotoxicity was confirmed in a primary neuronal cell culture, thus further supporting the concept.

  15. Proliferation and Morphogenesis of the Endoplasmic Reticulum Driven by the Membrane Domain of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase in Plant Cells1[OPEN

    PubMed Central

    Ferrero, Sergi; Grados-Torrez, Ricardo Enrique; Antolín-Llovera, Meritxell; López-Iglesias, Carmen; Cortadellas, Nuria; Ferrer, Joan Carles

    2015-01-01

    The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) has a key regulatory role in the mevalonate pathway for isoprenoid biosynthesis and is composed of an endoplasmic reticulum (ER)-anchoring membrane domain with low sequence similarity among eukaryotic kingdoms and a conserved cytosolic catalytic domain. Organized smooth endoplasmic reticulum (OSER) structures are common formations of hypertrophied tightly packed ER membranes devoted to specific biosynthetic and secretory functions, the biogenesis of which remains largely unexplored. We show that the membrane domain of plant HMGR suffices to trigger ER proliferation and OSER biogenesis. The proliferating membranes become highly enriched in HMGR protein, but they do not accumulate sterols, indicating a morphogenetic rather than a metabolic role for HMGR. The N-terminal MDVRRRPP motif present in most plant HMGR isoforms is not required for retention in the ER, which was previously proposed, but functions as an ER morphogenic signal. Plant OSER structures are morphologically similar to those of animal cells, emerge from tripartite ER junctions, and mainly build up beside the nuclear envelope, indicating conserved OSER biogenesis in high eukaryotes. Factors other than the OSER-inducing HMGR construct mediate the tight apposition of the proliferating membranes, implying separate ER proliferation and membrane association steps. Overexpression of the membrane domain of Arabidopsis (Arabidopsis thaliana) HMGR leads to ER hypertrophy in every tested cell type and plant species, whereas the knockout of the HMG1 gene from Arabidopsis, encoding its major HMGR isoform, causes ER aggregation at the nuclear envelope. Our results show that the membrane domain of HMGR contributes to ER morphogenesis in plant cells. PMID:26015445

  16. Proliferation and Morphogenesis of the Endoplasmic Reticulum Driven by the Membrane Domain of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase in Plant Cells.

    PubMed

    Ferrero, Sergi; Grados-Torrez, Ricardo Enrique; Leivar, Pablo; Antolín-Llovera, Meritxell; López-Iglesias, Carmen; Cortadellas, Nuria; Ferrer, Joan Carles; Campos, Narciso

    2015-07-01

    The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) has a key regulatory role in the mevalonate pathway for isoprenoid biosynthesis and is composed of an endoplasmic reticulum (ER)-anchoring membrane domain with low sequence similarity among eukaryotic kingdoms and a conserved cytosolic catalytic domain. Organized smooth endoplasmic reticulum (OSER) structures are common formations of hypertrophied tightly packed ER membranes devoted to specific biosynthetic and secretory functions, the biogenesis of which remains largely unexplored. We show that the membrane domain of plant HMGR suffices to trigger ER proliferation and OSER biogenesis. The proliferating membranes become highly enriched in HMGR protein, but they do not accumulate sterols, indicating a morphogenetic rather than a metabolic role for HMGR. The N-terminal MDVRRRPP motif present in most plant HMGR isoforms is not required for retention in the ER, which was previously proposed, but functions as an ER morphogenic signal. Plant OSER structures are morphologically similar to those of animal cells, emerge from tripartite ER junctions, and mainly build up beside the nuclear envelope, indicating conserved OSER biogenesis in high eukaryotes. Factors other than the OSER-inducing HMGR construct mediate the tight apposition of the proliferating membranes, implying separate ER proliferation and membrane association steps. Overexpression of the membrane domain of Arabidopsis (Arabidopsis thaliana) HMGR leads to ER hypertrophy in every tested cell type and plant species, whereas the knockout of the HMG1 gene from Arabidopsis, encoding its major HMGR isoform, causes ER aggregation at the nuclear envelope. Our results show that the membrane domain of HMGR contributes to ER morphogenesis in plant cells. © 2015 American Society of Plant Biologists. All Rights Reserved.

  17. Membrane anchoring of the AgrD N-terminal amphipathic region is required for its processing to produce a quorum-sensing pheromone in Staphylococcus aureus.

    PubMed

    Zhang, Linsheng; Lin, Jianqun; Ji, Guangyong

    2004-05-07

    Quorum-sensing pheromones are signal molecules that are secreted from Gram-positive bacteria and utilized by these bacteria to communicate among individual cells to regulate their activities as a group through a cell density-sensing mechanism. Typically, these pheromones are processed from precursor polypeptides. The mechanisms of trafficking, processing, and modification of the precursor to generate a mature pheromone are unclear. In Staphylococcus aureus, AgrD is the propeptide for an autoinducing peptide (AIP) pheromone that triggers the Agr cell density-sensing system upon reaching a threshold and subsequently regulates expression of virulence factor genes. The transmembrane protein AgrB, encoded in the agr locus, is necessary for the processing of AgrD to produce mature AIP; however, it is not clear how AgrD interacts with AgrB and how this interaction results in the generation of mature AIP. In this study, we found that the AgrD propeptide was integrated into the cytoplasmic membrane by a conserved alpha-helical amphipathic motif in its N-terminal region. We demonstrated that membrane targeting of AgrD by this motif was required for the stabilization of AgrD and the production of mature AIP, although this region was not specifically involved in the interaction with AgrB. An artificial amphipathic peptide replacing the N-terminal amphipathic motif of AgrD directed the protein to the cytoplasmic membrane and enabled the production of AIP. Analysis of Bacillus ComX precursor protein sequences suggested that the amphipathic membrane-targeting motif might also exist in pheromone precursors of other Gram-positive bacteria.

  18. Heterotrimeric Galphaq11 co-immunoprecipitates with surface-anchored GRP78 from plasma membranes of alpha2M*-stimulated macrophages.

    PubMed

    Misra, Uma Kant; Pizzo, Salvatore Vincent

    2008-05-01

    We have previously shown that a fraction of newly expressed GRP78 is translocated to the cell surface in association with the co-chaperone MTJ-1. Proteinase and methylamine-activated alpha(2)M (alpha(2)M*) bind to cell surface-associated GRP78 activating phosphoinositide-specific phospholipase C coupled to a pertussis toxin-insensitive heterotrimeric G protein, generating IP(3)/calcium signaling. We have now studied the association of pertussis toxin-insensitive Galphaq11, with GRP78/MTJ-1 complexes in the plasma membranes of alpha(2)M*-stimulated macrophages. When GRP78 was immunoprecipitated from plasma membranes of macrophages stimulated with alpha(2)M*, Galphaq11, and MTJ-1 were co-precipitated. Likewise Galphaq11 and GRP78 co-immunoprecipitated with MTJ-1 while GRP78 and MTJ-1 co-immunoprecipitated with Galphaq11. Silencing GRP78 expression with GRP78 dsRNA or MTJ-1 with MTJ-1 dsRNA greatly reduced the levels of Galphaq11 co-precipitated with GRP78 or MTJ-1. In conclusion, we show here that plasma membrane-associated GRP78 is coupled to pertussis toxin-insensitive Galphaq11 and forms a ternary signaling complex with MTJ-1.

  19. Anchor Trial Launch

    Cancer.gov

    NCI has launched a multicenter phase III clinical trial called the ANCHOR Study -- Anal Cancer HSIL (High-grade Squamous Intraepithelial Lesion) Outcomes Research Study -- to determine if treatment of HSIL in HIV-infected individuals can prevent anal canc

  20. Anchored but not internalized: shape dependent endocytosis of nanodiamond

    NASA Astrophysics Data System (ADS)

    Zhang, Bokai; Feng, Xi; Yin, Hang; Ge, Zhenpeng; Wang, Yanhuan; Chu, Zhiqin; Raabova, Helena; Vavra, Jan; Cigler, Petr; Liu, Renbao; Wang, Yi; Li, Quan

    2017-04-01

    Nanoparticle-cell interactions begin with the cellular uptake of the nanoparticles, a process that eventually determines their cellular fate. In the present work, we show that the morphological features of nanodiamonds (NDs) affect both the anchoring and internalization stages of their endocytosis. While a prickly ND (with sharp edges/corners) has no trouble of anchoring onto the plasma membrane, it suffers from difficult internalization afterwards. In comparison, the internalization of a round ND (obtained by selective etching of the prickly ND) is not limited by its lower anchoring amount and presents a much higher endocytosis amount. Molecular dynamics simulation and continuum modelling results suggest that the observed difference in the anchoring of round and prickly NDs likely results from the reduced contact surface area with the cell membrane of the former, while the energy penalty associated with membrane curvature generation, which is lower for a round ND, may explain its higher probability of the subsequent internalization.

  1. The Saccharomyces cerevisiae YLL012/YEH1, YLR020/YEH2, and TGL1 genes encode a novel family of membrane-anchored lipases that are required for steryl ester hydrolysis.

    PubMed

    Köffel, René; Tiwari, Rashi; Falquet, Laurent; Schneiter, Roger

    2005-03-01

    Sterol homeostasis in eukaryotic cells relies on the reciprocal interconversion of free sterols and steryl esters. The formation of steryl esters is well characterized, but the mechanisms that control steryl ester mobilization upon cellular demand are less well understood. We have identified a family of three lipases of Saccharomyces cerevisiae that are required for efficient steryl ester mobilization. These lipases, encoded by YLL012/YEH1, YLR020/YEH2, and TGL1, are paralogues of the mammalian acid lipase family, which is composed of the lysosomal acid lipase, the gastric lipase, and four novel as yet uncharacterized human open reading frames. Lipase triple-mutant yeast cells are completely blocked in steryl ester hydrolysis but do not affect the mobilization of triacylglycerols, indicating that the three lipases are required for steryl ester mobilization in vivo. Lipase single mutants mobilize steryl esters to various degrees, indicating partial functional redundancy of the three gene products. Lipase double-mutant cells in which the third lipase is expressed from the inducible GAL1 promoter have greatly reduced steady-state levels of steryl esters, indicating that overexpression of any of the three lipases is sufficient for steryl ester mobilization in vivo. The three yeast enzymes constitute a novel class of membrane-anchored lipases that differ in topology and subcellular localization.

  2. The Membrane Bound LRR Lipoprotein Slr, and the Cell Wall-Anchored M1 Protein from Streptococcus pyogenes Both Interact with Type I Collagen

    PubMed Central

    Bober, Marta; Mörgelin, Matthias; Olin, Anders I.; von Pawel-Rammingen, Ulrich; Collin, Mattias

    2011-01-01

    Streptococcus pyogenes is an important human pathogen and surface structures allow it to adhere to, colonize and invade the human host. Proteins containing leucine rich repeats (LRR) have been indentified in mammals, viruses, archaea and several bacterial species. The LRRs are often involved in protein-protein interaction, are typically 20–30 amino acids long and the defining feature of the LRR motif is an 11-residue sequence LxxLxLxxNxL (x being any amino acid). The streptococcal leucine rich (Slr) protein is a hypothetical lipoprotein that has been shown to be involved in virulence, but at present no ligands for Slr have been identified. We could establish that Slr is a membrane attached horseshoe shaped lipoprotein by homology modeling, signal peptidase II inhibition, electron microscopy (of bacteria and purified protein) and immunoblotting. Based on our previous knowledge of LRR proteins we hypothesized that Slr could mediate binding to collagen. We could show by surface plasmon resonance that recombinant Slr and purified M1 protein bind with high affinity to collagen I. Isogenic slr mutant strain (MB1) and emm1 mutant strain (MC25) had reduced binding to collagen type I as shown by slot blot and surface plasmon resonance. Electron microscopy using gold labeled Slr showed multiple binding sites to collagen I, both to the monomeric and the fibrillar structure, and most binding occurred in the overlap region of the collagen I fibril. In conclusion, we show that Slr is an abundant membrane bound lipoprotein that is co-expressed on the surface with M1, and that both these proteins are involved in recruiting collagen type I to the bacterial surface. This underlines the importance of S. pyogenes interaction with extracellular matrix molecules, especially since both Slr and M1 have been shown to be virulence factors. PMID:21655249

  3. The anchor integration model: A descriptive model of anchoring effects.

    PubMed

    Turner, Brandon M; Schley, Dan R

    2016-11-01

    Few experimental effects in the psychology of judgment and decision making have been studied as meticulously as the anchoring effect. Although the existing literature provides considerable insight into the psychological processes underlying anchoring effects, extant theories up to this point have only generated qualitative predictions. While these theories have been productive in advancing our understanding of the underlying anchoring process, they leave much to be desired in the interpretation of specific anchoring effects. In this article, we introduce the Anchor Integration Model (AIM) as a descriptive tool for the measurement and quantification of anchoring effects. We develop two versions the model: one suitable for assessing between-participant anchoring effects, and another for assessing individual differences in anchoring effects. We then fit each model to data from two experiments, and demonstrate the model's utility in describing anchoring effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Tail-anchored Protein Insertion in Mammals

    PubMed Central

    Cardani, Silvia; Maroli, Annalisa; Vitiello, Adriana; Soffientini, Paolo; Crespi, Arianna; Bram, Richard F.

    2016-01-01

    The GET (guided entry of tail-anchored proteins)/TRC (transmembrane recognition complex) pathway for tail-anchored protein targeting to the endoplasmic reticulum (ER) has been characterized in detail in yeast and is thought to function similarly in mammals, where the orthologue of the central ATPase, Get3, is known as TRC40 or Asna1. Get3/TRC40 function requires an ER receptor, which in yeast consists of the Get1/Get2 heterotetramer and in mammals of the WRB protein (tryptophan-rich basic protein), homologous to yeast Get1, in combination with CAML (calcium-modulating cyclophilin ligand), which is not homologous to Get2. To better characterize the mammalian receptor, we investigated the role of endogenous WRB and CAML in tail-anchored protein insertion as well as their association, concentration, and stoichiometry in rat liver microsomes and cultured cells. Functional proteoliposomes, reconstituted from a microsomal detergent extract, lost their activity when made with an extract depleted of TRC40-associated proteins or of CAML itself, whereas in vitro synthesized CAML and WRB together were sufficient to confer insertion competence to liposomes. CAML was found to be in ∼5-fold excess over WRB, and alteration of this ratio did not inhibit insertion. Depletion of each subunit affected the levels of the other one; in the case of CAML silencing, this effect was attributable to destabilization of the WRB transcript and not of WRB protein itself. These results reveal unanticipated complexity in the mutual regulation of the TRC40 receptor subunits and raise the question as to the role of the excess CAML in the mammalian ER. PMID:27226539

  5. The Arabidopsis Synaptotagmin1 Is Enriched in Endoplasmic Reticulum-Plasma Membrane Contact Sites and Confers Cellular Resistance to Mechanical Stresses1[OPEN

    PubMed Central

    Pérez-Sancho, Jessica; Vanneste, Steffen; Lee, Eunkyoung; McFarlane, Heather E.; Esteban del Valle, Alicia; Valpuesta, Victoriano; Friml, Jiří

    2015-01-01

    Eukaryotic endoplasmic reticulum (ER)-plasma membrane (PM) contact sites are evolutionarily conserved microdomains that have important roles in specialized metabolic functions such as ER-PM communication, lipid homeostasis, and Ca2+ influx. Despite recent advances in knowledge about ER-PM contact site components and functions in yeast (Saccharomyces cerevisiae) and mammals, relatively little is known about the functional significance of these structures in plants. In this report, we characterize the Arabidopsis (Arabidopsis thaliana) phospholipid binding Synaptotagmin1 (SYT1) as a plant ortholog of the mammal extended synaptotagmins and yeast tricalbins families of ER-PM anchors. We propose that SYT1 functions at ER-PM contact sites because it displays a dual ER-PM localization, it is enriched in microtubule-depleted regions at the cell cortex, and it colocalizes with Vesicle-Associated Protein27-1, a known ER-PM marker. Furthermore, biochemical and physiological analyses indicate that SYT1 might function as an electrostatic phospholipid anchor conferring mechanical stability in plant cells. Together, the subcellular localization and functional characterization of SYT1 highlights a putative role of plant ER-PM contact site components in the cellular adaptation to environmental stresses. PMID:25792253

  6. The Arabidopsis synaptotagmin1 is enriched in endoplasmic reticulum-plasma membrane contact sites and confers cellular resistance to mechanical stresses.

    PubMed

    Pérez-Sancho, Jessica; Vanneste, Steffen; Lee, Eunkyoung; McFarlane, Heather E; Esteban Del Valle, Alicia; Valpuesta, Victoriano; Friml, Jiří; Botella, Miguel A; Rosado, Abel

    2015-05-01

    Eukaryotic endoplasmic reticulum (ER)-plasma membrane (PM) contact sites are evolutionarily conserved microdomains that have important roles in specialized metabolic functions such as ER-PM communication, lipid homeostasis, and Ca(2+) influx. Despite recent advances in knowledge about ER-PM contact site components and functions in yeast (Saccharomyces cerevisiae) and mammals, relatively little is known about the functional significance of these structures in plants. In this report, we characterize the Arabidopsis (Arabidopsis thaliana) phospholipid binding Synaptotagmin1 (SYT1) as a plant ortholog of the mammal extended synaptotagmins and yeast tricalbins families of ER-PM anchors. We propose that SYT1 functions at ER-PM contact sites because it displays a dual ER-PM localization, it is enriched in microtubule-depleted regions at the cell cortex, and it colocalizes with Vesicle-Associated Protein27-1, a known ER-PM marker. Furthermore, biochemical and physiological analyses indicate that SYT1 might function as an electrostatic phospholipid anchor conferring mechanical stability in plant cells. Together, the subcellular localization and functional characterization of SYT1 highlights a putative role of plant ER-PM contact site components in the cellular adaptation to environmental stresses. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum-plasma membrane contact sites.

    PubMed

    Fernández-Busnadiego, Rubén; Saheki, Yasunori; De Camilli, Pietro

    2015-04-21

    The close apposition between the endoplasmic reticulum (ER) and the plasma membrane (PM) plays important roles in Ca(2+) homeostasis, signaling, and lipid metabolism. The extended synaptotagmins (E-Syts; tricalbins in yeast) are ER-anchored proteins that mediate the tethering of the ER to the PM and are thought to mediate lipid transfer between the two membranes. E-Syt cytoplasmic domains comprise a synaptotagmin-like mitochondrial-lipid-binding protein (SMP) domain followed by five C2 domains in E-Syt1 and three C2 domains in E-Syt2/3. Here, we used cryo-electron tomography to study the 3D architecture of E-Syt-mediated ER-PM contacts at molecular resolution. In vitrified frozen-hydrated mammalian cells overexpressing individual E-Syts, in which E-Syt-dependent contacts were by far the predominant contacts, ER-PM distance (19-22 nm) correlated with the amino acid length of the cytosolic region of E-Syts (i.e., the number of C2 domains). Elevation of cytosolic Ca(2+) shortened the ER-PM distance at E-Syt1-dependent contacts sites. E-Syt-mediated contacts displayed a characteristic electron-dense layer between the ER and the PM. These features were strikingly different from those observed in cells exposed to conditions that induce contacts mediated by the stromal interaction molecule 1 (STIM1) and the Ca(2+) channel Orai1 as well as store operated Ca(2+) entry. In these cells the gap between the ER and the PM was spanned by filamentous structures perpendicular to the membranes. Our results define specific ultrastructural features of E-Syt-dependent ER-PM contacts and reveal their structural plasticity, which may impact on the cross-talk between the ER and the PM and the functions of E-Syts in lipid transport between the two bilayers.

  8. Endoplasmic Reticulum (ER) Stress and Endocrine Disorders.

    PubMed

    Ariyasu, Daisuke; Yoshida, Hiderou; Hasegawa, Yukihiro

    2017-02-11

    The endoplasmic reticulum (ER) is the organelle where secretory and membrane proteins are synthesized and folded. Unfolded proteins that are retained within the ER can cause ER stress. Eukaryotic cells have a defense system called the "unfolded protein response" (UPR), which protects cells from ER stress. Cells undergo apoptosis when ER stress exceeds the capacity of the UPR, which has been revealed to cause human diseases. Although neurodegenerative diseases are well-known ER stress-related diseases, it has been discovered that endocrine diseases are also related to ER stress. In this review, we focus on ER stress-related human endocrine disorders. In addition to diabetes mellitus, which is well characterized, several relatively rare genetic disorders such as familial neurohypophyseal diabetes insipidus (FNDI), Wolfram syndrome, and isolated growth hormone deficiency type II (IGHD2) are discussed in this article.

  9. Endoplasmic Reticulum (ER) Stress and Endocrine Disorders

    PubMed Central

    Ariyasu, Daisuke; Yoshida, Hiderou; Hasegawa, Yukihiro

    2017-01-01

    The endoplasmic reticulum (ER) is the organelle where secretory and membrane proteins are synthesized and folded. Unfolded proteins that are retained within the ER can cause ER stress. Eukaryotic cells have a defense system called the “unfolded protein response” (UPR), which protects cells from ER stress. Cells undergo apoptosis when ER stress exceeds the capacity of the UPR, which has been revealed to cause human diseases. Although neurodegenerative diseases are well-known ER stress-related diseases, it has been discovered that endocrine diseases are also related to ER stress. In this review, we focus on ER stress-related human endocrine disorders. In addition to diabetes mellitus, which is well characterized, several relatively rare genetic disorders such as familial neurohypophyseal diabetes insipidus (FNDI), Wolfram syndrome, and isolated growth hormone deficiency type II (IGHD2) are discussed in this article. PMID:28208663

  10. The Glycosylphosphatidylinositol Anchor Biosynthesis Genes GPI12, GAA1, and GPI8 Are Essential for Cell-Wall Integrity and Pathogenicity of the Maize Anthracnose Fungus Colletotrichum graminicola.

    PubMed

    Oliveira-Garcia, Ely; Deising, Holger B

    2016-11-01

    Glycosylphosphatidylinositol (GPI) anchoring of proteins is one of the most common posttranslational modifications of proteins in eukaryotic cells and is important for associating proteins with the cell surface. In fungi, GPI-anchored proteins play essential roles in cross-linking of β-glucan cell-wall polymers and cell-wall rigidity. GPI-anchor synthesis is successively performed at the cytoplasmic and the luminal face of the ER membrane and involves approximately 25 proteins. While mutagenesis of auxiliary genes of this pathway suggested roles of GPI-anchored proteins in hyphal growth and virulence, essential genes of this pathway have not been characterized. Taking advantage of RNA interference (RNAi) we analyzed the function of the three essential genes GPI12, GAA1 and GPI8, encoding a cytoplasmic N-acetylglucosaminylphosphatidylinositol deacetylase, a metallo-peptide-synthetase and a cystein protease, the latter two representing catalytic components of the GPI transamidase complex. RNAi strains showed drastic cell-wall defects, resulting in exploding infection cells on the plant surface and severe distortion of in planta-differentiated infection hyphae, including formation of intrahyphal hyphae. Reduction of transcript abundance of the genes analyzed resulted in nonpathogenicity. We show here for the first time that the GPI synthesis genes GPI12, GAA1, and GPI8 are indispensable for vegetative development and pathogenicity of the causal agent of maize anthracnose, Colletotrichum graminicola.

  11. Anchoring the Deficit of the Anchor Deficit: Dyslexia or Attention?

    ERIC Educational Resources Information Center

    Willburger, Edith; Landerl, Karin

    2010-01-01

    In the anchoring deficit hypothesis of dyslexia ("Trends Cogn. Sci.", 2007; 11: 458-465), it is proposed that perceptual problems arise from the lack of forming a perceptual anchor for repeatedly presented stimuli. A study designed to explicitly test the specificity of the anchoring deficit for dyslexia is presented. Four groups, representing all…

  12. Endosome-ER Contacts Control Actin Nucleation and Retromer Function through VAP-Dependent Regulation of PI4P.

    PubMed

    Dong, Rui; Saheki, Yasunori; Swarup, Sharan; Lucast, Louise; Harper, J Wade; De Camilli, Pietro

    2016-07-14

    VAP (VAPA and VAPB) is an evolutionarily conserved endoplasmic reticulum (ER)-anchored protein that helps generate tethers between the ER and other membranes through which lipids are exchanged across adjacent bilayers. Here, we report that by regulating PI4P levels on endosomes, VAP affects WASH-dependent actin nucleation on these organelles and the function of the retromer, a protein coat responsible for endosome-to-Golgi traffic. VAP is recruited to retromer budding sites on endosomes via an interaction with the retromer SNX2 subunit. Cells lacking VAP accumulate high levels of PI4P, actin comets, and trans-Golgi proteins on endosomes. Such defects are mimicked by downregulation of OSBP, a VAP interactor and PI4P transporter that participates in VAP-dependent ER-endosomes tethers. These results reveal a role of PI4P in retromer-/WASH-dependent budding from endosomes. Collectively, our data show how the ER can control budding dynamics and association with the cytoskeleton of another membrane by direct contacts leading to bilayer lipid modifications.

  13. Cis and trans interactions between atlastin molecules during membrane fusion

    PubMed Central

    Liu, Tina Y.; Bian, Xin; Romano, Fabian B.; Shemesh, Tom; Rapoport, Tom A.; Hu, Junjie

    2015-01-01

    Atlastin (ATL), a membrane-anchored GTPase that mediates homotypic fusion of endoplasmic reticulum (ER) membranes, is required for formation of the tubular network of the peripheral ER. How exactly ATL mediates membrane fusion is only poorly understood. Here we show that fusion is preceded by the transient tethering of ATL-containing vesicles caused by the dimerization of ATL molecules in opposing membranes. Tethering requires GTP hydrolysis, not just GTP binding, because the two ATL molecules are pulled together most strongly in the transition state of GTP hydrolysis. Most tethering events are futile, so that multiple rounds of GTP hydrolysis are required for successful fusion. Supported lipid bilayer experiments show that ATL molecules sitting on the same (cis) membrane can also undergo nucleotide-dependent dimerization. These results suggest that GTP hydrolysis is required to dissociate cis dimers, generating a pool of ATL monomers that can dimerize with molecules on a different (trans) membrane. In addition, tethering and fusion require the cooperation of multiple ATL molecules in each membrane. We propose a comprehensive model for ATL-mediated fusion that takes into account futile tethering and competition between cis and trans interactions. PMID:25825753

  14. The floating anchored craniotomy.

    PubMed

    Gutman, Matthew J; How, Elena; Withers, Teresa

    2017-01-01

    The "floating anchored" craniotomy is a technique utilized at our tertiary neurosurgery institution in which a traditional decompressive craniectomy has been substituted for a floating craniotomy. The hypothesized advantages of this technique include adequate decompression, reduction in the intracranial pressure, obviating the need for a secondary cranioplasty, maintained bone protection, preventing the syndrome of the trephined, and a potential reduction in axonal stretching. The bone plate is re-attached via multiple loosely affixed vicryl sutures, enabling decompression, but then ensuring the bone returns to its anatomical position once cerebral edema has subsided. From the analysis of 57 consecutive patients analyzed at our institution, we have found that the floating anchored craniotomy is comparable to decompressive craniectomy for intracranial pressure reduction and has some significant theoretical advantages. Despite the potential advantages of techniques that avoid the need for a second cranioplasty, they have not been widely adopted and have been omitted from trials examining the utility of decompressive surgery. This retrospective analysis of prospectively collected data suggests that the floating anchored craniotomy may be applicable instead of decompressive craniectomy.

  15. Anchored paired comparisons

    NASA Astrophysics Data System (ADS)

    Dalal, E. N.; Handley, J. C.; Wu, W.; Wang, J.

    2008-01-01

    The method of paired comparisons is often used in image quality evaluations. Psychometric scale values for quality judgments are modeled using Thurstone's Law of Comparative Judgment in which distance in a psychometric scale space is a function of the probability of preference. The transformation from psychometric space to probability is a cumulative probability distribution. The major drawback of a complete paired comparison experiment is that every treatment is compared to every other, thus the number of comparisons grows quadratically. We ameliorate this difficulty by performing paired comparisons in two stages, by precisely estimating anchors in the psychometric scale space which are spaced apart to cover the range of scale values and comparing treatments against those anchors. In this model, we employ a generalized linear model where the regression equation has a constant offset vector determined by the anchors. The result of this formulation is a straightforward statistical model easily analyzed using any modern statistics package. This enables model fitting and diagnostics. This method was applied to overall preference evaluations of color pictorial hardcopy images. The results were found to be compatible with complete paired comparison experiments, but with significantly less effort.

  16. Transport route for synaptobrevin via a novel pathway of insertion into the endoplasmic reticulum membrane.

    PubMed Central

    Kutay, U; Ahnert-Hilger, G; Hartmann, E; Wiedenmann, B; Rapoport, T A

    1995-01-01

    Synaptobrevin/vesicle-associated membrane protein is one of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is proposed to provide specificity for the targeting and fusion of vesicles with the plasma membrane. It belongs to a class of membrane proteins which lack a signal sequence and contain a single hydrophobic segment close to their C-terminus, leaving most of the polypeptide chain in the cytoplasm (tail-anchored). We show that in neuroendocrine PC12 cells, synaptobrevin is not directly incorporated into the target organelle, synaptic-like vesicles. Rather, it is first inserted into the endoplasmic reticulum (ER) membrane and is then transported via the Golgi apparatus. Its insertion into the ER membrane in vitro occurs post-translationally, is dependent on ATP and results in a trans-membrane orientation of the hydrophobic tail. Membrane integration requires ER protein(s) different from the translocation components needed for proteins with signal sequences, thus suggesting a novel mechanism of insertion. Images PMID:7835332

  17. Binding of FUNDC1 with Inositol 1,4,5-Trisphosphate Receptor in Mitochondria-Associated Endoplasmic Reticulum (ER) Membranes Maintains Mitochondrial Dynamics and Function in Hearts In Vivo.

    PubMed

    Wu, Shengnan; Lu, Qiulun; Wang, Qilong; Ding, Ye; Ma, Zejun; Mao, Xiaoxiang; Huang, Kai; Xie, Zhonglin; Zou, Ming-Hui

    2017-09-23

    Background -FUN14 domain containing 1 (FUNDC1) is a highly conserved outer mitochondrial membrane protein. The aim of this study is to examine if FUNDC1 modulates the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), mitochondrial morphology, and function in cardiomyocytes and in intact hearts. Methods -The impacts of FUNDC1 on MAMs formation and cardiac functions were studied in mouse neonatal cardiomyocytes, in mice with cardiomyocyte-specific Fundc1 gene knockout (Fundc1(f/Y)/Cre(αMyHC+/-) ), and in the cardiac tissues of the patients with heart failure. Results -In mouse neonatal cardiomyocytes and intact hearts, FUNDC1 was localized in MAMs by binding to ER-resided inositol 1,4,5-trisphosphate type 2 receptor (IP3R2). Fundc1 ablation disrupted MAMs, reduced the levels of IP3R2 and Ca(2+) in both mitochondria and cytosol whereas overexpression of Fundc1 increased the levels of IP3R2 and Ca(2+) in both mitochondria and cytosol. Consistently, Fundc1 ablation increased Ca(2+) levels in ER whereas Fundc1 overexpression lowered ER Ca(2+) levels. Further, Fundc1 ablation in cardiomyocytes elongated mitochondria, and compromised mitochondrial functions. Mechanistically, we found that Fundc1 ablation-induced reduction of intracellular Ca(2+) levels suppressed mitochondrial fission 1 protein (Fis1) expression and mitochondrial fission by reducing the binding of the cAMP response element binding protein (CREB) in the Fis1 promoter. Fundc1(f/Y)/Cre(αMyHC+/-) mice but not their littermate control mice (Fundc1(wt/Y)/Cre(αMyHC+/-)) exhibited cardiac dysfunction. The ligation of the left ventricle artery of Fundc1(f/Y)/Cre(αMyHC+/-) mice caused more severe cardiac dysfunction than those in sham-treated Fundc1(f/Y)/Cre(αMyHC+/-) mice. Finally, we found that the FUNDC1/MAMs/CREB/Fis1 signaling axis was significantly suppressed in the patients with heart failure. Conclusions -We conclude that FUNDC1 binds to IP3R2 to modulate ER Ca(2+) release into

  18. The calmodulin-like proteins AtCML4 and AtCML5 are single-pass membrane proteins targeted to the endomembrane system by an N-terminal signal anchor sequence

    PubMed Central

    Ruge, Henning; Flosdorff, Sandra; Ebersberger, Ingo; Chigri, Fatima; Vothknecht, Ute C.

    2016-01-01

    Calmodulins (CaMs) are important mediators of Ca2+ signals that are found ubiquitously in all eukaryotic organisms. Plants contain a unique family of calmodulin-like proteins (CMLs) that exhibit greater sequence variance compared to canonical CaMs. The Arabidopsis thaliana proteins AtCML4 and AtCML5 are members of CML subfamily VII and possess a CaM domain comprising the characteristic double pair of EF-hands, but they are distinguished from other members of this subfamily and from canonical CaMs by an N-terminal extension of their amino acid sequence. Transient expression of yellow fluorescent protein-tagged AtCML4 and AtCML5 under a 35S-promoter in Nicotiana benthamiana leaf cells revealed a spherical fluorescence pattern. This pattern was confirmed by transient expression in Arabidopsis protoplasts under the native promoter. Co-localization analyses with various endomembrane marker proteins suggest that AtCML4 and AtCML5 are localized to vesicular structures in the interphase between Golgi and the endosomal system. Further studies revealed AtCML5 to be a single-pass membrane protein that is targeted into the endomembrane system by an N-terminal signal anchor sequence. Self-assembly green fluorescent protein and protease protection assays support a topology with the CaM domain exposed to the cytosolic surface and not the lumen of the vesicles, indicating that AtCML5 could sense Ca2+ signals in the cytosol. Phylogenetic analysis suggests that AtCML4 and AtCML5 are closely related paralogues originating from a duplication event within the Brassicaceae family. CML4/5-like proteins seem to be universally present in eudicots but are absent in some monocots. Together these results show that CML4/5-like proteins represent a flowering plant-specific subfamily of CMLs with a potential function in vesicle transport within the plant endomembrane system. PMID:27029353

  19. VAP-B binds to Rab3GAP1 at the ER: its implication in nuclear envelope formation through the ER-Golgi intermediate compartment.

    PubMed

    Hantan, Degejirihu; Yamamoto, Yasunori; Sakisaka, Toshiaki

    2014-10-01

    The vesicle-associated membrane protein-associated protein B (VAP-B) is a tail-anchored protein in the endoplasmic reticulum (ER). VAP-B functions as an adaptor protein to recruit target proteins to the ER and execute various cellular functions, lipid transport, membrane traffic, ER stress etc. Recently, VAP-B has been shown to regulate the nuclear envelope protein transport through the ER-Golgi intermediate compartment (ERGIC). We showed here that VAP-B directly binds to Rab3 GTPase activating protein 1 (Rab3GAP1), the catalytic subunit of Rab3GAP, through the two phenylalanines (FF) in an acidic tract (FFAT)-like motif of Rab3GAP1. Rab3GAP consists of two subunits, the catalytic subunit Rab3GAP1 and the non-catalytic subunit Rab3GAP2. VAP-B binds to Rab3GAP1 even in the Rab3GAP1/2 heterodimer complex. A single amino acid substitution of the FFAT-like motif reduces the binding activity of Rab3GAP1 to VAP-B. On the other hand, the FFAT-like motif mutation increases the binding activity of Rab3GAP1 to ERGIC-53, the ERGIC marker protein. Overexpression of Rab3GAP1 affects nuclear envelope formation more potently than that of Rab3GAP1 FFAT-like motif mutant. These results suggest that the binding of VAP-B to Rab3GAP1 is implicated in the regulation of nuclear envelope formation through ERGIC.

  20. Bellow seal and anchor

    DOEpatents

    Mansure, Arthur J.

    2001-01-01

    An annular seal is made of a collapsible bellows. The bellows can function as an anchor or a seal and is easily set into position using relative component movement. The bellows folds can be slanted and their outer sealing edges can have different profiles to meet expected conditions. The bellows is expanded for insertion to reduce its outer dimension and sets by compaction as a result of relative movement. The bellows can be straight or tapered and is settable with a minimal axial force.

  1. Career anchors of dentist leaders.

    PubMed

    Tuononen, Tiina; Lammintakanen, Johanna; Suominen, Anna Liisa

    2016-08-01

    The work of a health care leader is demanding; in order to cope, leaders need motivation and support. The occurrence of intrinsic factors called career anchors (combination of one's competence, motives and values) could be a contributing factor in dentist leaders' career decisions. The aim of our study was to identify dentist leaders' career anchors and their association to dentist leaders' retention or turnover of the leadership position. Materials were gathered in 2014 via an electronic questionnaire from 156 current (Leaders) or former (Leavers) Finnish dentist leaders. Career anchor evaluation was conducted by the questionnaire and scoring-table taken from Edgar Schein's Career Anchors Self-Assessment. Both the most and the least important career anchors were detected by the highest and lowest scores and their occurrence reported as percentages. Associations between career anchor scores and tendency to stay were analyzed with logistic regression. 'Technical/Functional Competence' and 'Lifestyle' were most frequently reported as the most important and 'Entrepreneurial Creativity' and 'General Managerial Competence' as the least important career anchors. However, a higher level of 'General Managerial Competence' anchor was most significantly associated with staying in a leadership position. Instead, 'Pure Challenge' and 'Lifestyle' decreased the odds to stay. The knowledge of the important and essential career anchors of dentist leaders' and individuals' could perform crucial part in career choices and also in planning education, work opportunities and human resource policies promoting retention of dentist leaders and probably also other health care leaders.

  2. Fusing a lasting relationship between ER tubules

    PubMed Central

    Moss, Tyler J.; Daga, Andrea; McNew, James A.

    2011-01-01

    Atlastin is an integral membrane GTPase localized to the endoplasmic reticulum (ER). In vitro and in vivo analyses indicate that atlastin is a membrane fusogen capable of driving membrane fusion, suggesting a role in ER structure and maintenance. Interestingly, mutations in the human atlastin-1 gene, SPG3A, cause a form of autosomal dominant hereditary spastic paraplegia (HSP). The etiology of HSP is unclear but two predominant forms of the disorder are caused by mutant proteins that affect ER structure, formation, and maintenance in motor neurons. In this review, we describe what is known about the molecular mechanism of atlastin function and its potential role in HSP. Greater understanding of the function of atlastin and associated proteins should lend significant insight into normal ER biogenesis and maintenance, as well as the pathology of disease. PMID:21550242

  3. The effect on external rotation of an anchor placed anterior to the biceps in type 2 SLAP repairs in a cadaveric throwing model.

    PubMed

    McCulloch, Patrick C; Andrews, Wade J; Alexander, Jerry; Brekke, Adam; Duwani, Salim; Noble, Philip

    2013-01-01

    This study examined whether there is a difference in external rotation (ER) between type 2 SLAP repairs consisting of anchors placed only posterior to the biceps insertion compared with repairs with an additional anchor placed anterior to the biceps. Seven cadaveric shoulders from donors with a mean age of 39.4 years were tested. Type 2 SLAP lesions were created, followed by a 3-anchor repair: a standard repair with 2 anchors posterior to the biceps plus an additional anchor anterior to the biceps. The specimens were placed on a material testing system machine and rotation was measured under a constant torque. The sutures were then removed sequentially from anterior to posterior during testing. The average ER of the intact shoulder was 115.7° ± 2.6°. After SLAP tear creation and cyclic loading, the ER was 118.5° ± 2.6°, which decreased to 116.5° ± 2.6° after repair. This corresponds to a reduction of 2.0° of ER (P < .0001) with the repair. After release of the anterior anchor, the ER increased to 117.9° ± 2.6°, which corresponds to an increase in shoulder motion of 1.4° of ER (P = .0011). Additional release of the middle anchor, leaving only the posterior anchor intact, resulted in 118.0° ± 2.7° of ER, which corresponds to an increase of only 0.1° of ER (P = .7667). Following type 2 SLAP repair in the cadaveric shoulder, removing the effect of the anchor anterior to the biceps resulted in a small but statistically significant increase in ER. The anterior anchor had the greatest effect on ER. The presence of 1 or 2 anchors posterior to the biceps did not have a significant effect on rotation. When performing SLAP repairs on those in whom even a small loss of ER would be detrimental, such as baseball pitchers, avoidance of the use of an anchor anterior to the biceps should be considered. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  4. An ER-peroxisome tether exerts peroxisome population control in yeast.

    PubMed

    Knoblach, Barbara; Sun, Xuejun; Coquelle, Nicolas; Fagarasanu, Andrei; Poirier, Richard L; Rachubinski, Richard A

    2013-09-11

    Eukaryotic cells compartmentalize biochemical reactions into membrane-enclosed organelles that must be faithfully propagated from one cell generation to the next. Transport and retention processes balance the partitioning of organelles between mother and daughter cells. Here we report the identification of an ER-peroxisome tether that links peroxisomes to the ER and ensures peroxisome population control in the yeast Saccharomyces cerevisiae. The tether consists of the peroxisome biogenic protein, Pex3p, and the peroxisome inheritance factor, Inp1p. Inp1p bridges the two compartments by acting as a molecular hinge between ER-bound Pex3p and peroxisomal Pex3p. Asymmetric peroxisome division leads to the formation of Inp1p-containing anchored peroxisomes and Inp1p-deficient mobile peroxisomes that segregate to the bud. While peroxisomes in mother cells are not released from tethering, de novo formation of tethers in the bud assists in the directionality of peroxisome transfer. Peroxisomes are thus stably maintained over generations of cells through their continued interaction with tethers.

  5. An ER-peroxisome tether exerts peroxisome population control in yeast

    PubMed Central

    Knoblach, Barbara; Sun, Xuejun; Coquelle, Nicolas; Fagarasanu, Andrei; Poirier, Richard L; Rachubinski, Richard A

    2013-01-01

    Eukaryotic cells compartmentalize biochemical reactions into membrane-enclosed organelles that must be faithfully propagated from one cell generation to the next. Transport and retention processes balance the partitioning of organelles between mother and daughter cells. Here we report the identification of an ER-peroxisome tether that links peroxisomes to the ER and ensures peroxisome population control in the yeast Saccharomyces cerevisiae. The tether consists of the peroxisome biogenic protein, Pex3p, and the peroxisome inheritance factor, Inp1p. Inp1p bridges the two compartments by acting as a molecular hinge between ER-bound Pex3p and peroxisomal Pex3p. Asymmetric peroxisome division leads to the formation of Inp1p-containing anchored peroxisomes and Inp1p-deficient mobile peroxisomes that segregate to the bud. While peroxisomes in mother cells are not released from tethering, de novo formation of tethers in the bud assists in the directionality of peroxisome transfer. Peroxisomes are thus stably maintained over generations of cells through their continued interaction with tethers. PMID:23900285

  6. A Cell-Free Translocation System Using Extracts of Cultured Insect Cells to Yield Functional Membrane Proteins

    PubMed Central

    Ezure, Toru; Nanatani, Kei; Sato, Yoko; Suzuki, Satomi; Aizawa, Keishi; Souma, Satoshi; Ito, Masaaki; Hohsaka, Takahiro; von Heijine, Gunnar; Utsumi, Toshihiko; Abe, Keietsu; Ando, Eiji; Uozumi, Nobuyuki

    2014-01-01

    Cell-free protein synthesis is a powerful method to explore the structure and function of membrane proteins and to analyze the targeting and translocation of proteins across the ER membrane. Developing a cell-free system based on cultured cells for the synthesis of membrane proteins could provide a highly reproducible alternative to the use of tissues from living animals. We isolated Sf21 microsomes from cultured insect cells by a simplified isolation procedure and evaluated the performance of the translocation system in combination with a cell-free translation system originating from the same source. The isolated microsomes contained the basic translocation machinery for polytopic membrane proteins including SRP-dependent targeting components, translocation channel (translocon)-dependent translocation, and the apparatus for signal peptide cleavage and N-linked glycosylation. A transporter protein synthesized with the cell-free system could be functionally reconstituted into a lipid bilayer. In addition, single and double labeling with non-natural amino acids could be achieved at both the lumen side and the cytosolic side in this system. Moreover, tail-anchored proteins, which are post-translationally integrated by the guided entry of tail-anchored proteins (GET) machinery, were inserted correctly into the microsomes. These results showed that the newly developed cell-free translocation system derived from cultured insect cells is a practical tool for the biogenesis of properly folded polytopic membrane proteins as well as tail-anchored proteins. PMID:25486605

  7. An investigation of the effect of membrane curvature on transmembrane-domain dependent protein sorting in lipid bilayers

    PubMed Central

    Fossati, Matteo; Goud, Bruno; Borgese, Nica; Manneville, Jean-Baptiste

    2014-01-01

    Sorting of membrane proteins within the secretory pathway of eukaryotic cells is a complex process involving discrete sorting signals as well as physico-chemical properties of the transmembrane domain (TMD). Previous work demonstrated that tail-anchored (TA) protein sorting at the interface between the Endoplasmic Reticulum (ER) and the Golgi complex is exquisitely dependent on the length and hydrophobicity of the transmembrane domain, and suggested that an imbalance between TMD length and bilayer thickness (hydrophobic mismatch) could drive long TMD-containing proteins into curved membrane domains, including ER exit sites, with consequent export of the mismatched protein out of the ER. Here, we tested a possible role of curvature in TMD-dependent sorting in a model system consisting of Giant Unilamellar Vesicles (GUVs) from which narrow membrane tubes were pulled by micromanipulation. Fluorescent TA proteins differing in TMD length were incorporated into GUVs of uniform lipid composition or made of total ER lipids, and TMD-dependent sorting and diffusion, as well as the bending rigidity of bilayers made of microsomal lipids, were investigated. Long and short TMD-containing constructs were inserted with similar orientation, diffused equally rapidly in GUVs and in tubes pulled from GUVs, and no difference in their final distribution between planar and curved regions was detected. These results indicate that curvature alone is not sufficient to drive TMD-dependent sorting at the ER-Golgi interface, and set the basis for the investigation of the additional factors that must be required. PMID:25210649

  8. An investigation of the effect of membrane curvature on transmembrane-domain dependent protein sorting in lipid bilayers.

    PubMed

    Fossati, Matteo; Goud, Bruno; Borgese, Nica; Manneville, Jean-Baptiste

    2014-01-01

    Sorting of membrane proteins within the secretory pathway of eukaryotic cells is a complex process involving discrete sorting signals as well as physico-chemical properties of the transmembrane domain (TMD). Previous work demonstrated that tail-anchored (TA) protein sorting at the interface between the Endoplasmic Reticulum (ER) and the Golgi complex is exquisitely dependent on the length and hydrophobicity of the transmembrane domain, and suggested that an imbalance between TMD length and bilayer thickness (hydrophobic mismatch) could drive long TMD-containing proteins into curved membrane domains, including ER exit sites, with consequent export of the mismatched protein out of the ER. Here, we tested a possible role of curvature in TMD-dependent sorting in a model system consisting of Giant Unilamellar Vesicles (GUVs) from which narrow membrane tubes were pulled by micromanipulation. Fluorescent TA proteins differing in TMD length were incorporated into GUVs of uniform lipid composition or made of total ER lipids, and TMD-dependent sorting and diffusion, as well as the bending rigidity of bilayers made of microsomal lipids, were investigated. Long and short TMD-containing constructs were inserted with similar orientation, diffused equally rapidly in GUVs and in tubes pulled from GUVs, and no difference in their final distribution between planar and curved regions was detected. These results indicate that curvature alone is not sufficient to drive TMD-dependent sorting at the ER-Golgi interface, and set the basis for the investigation of the additional factors that must be required.

  9. A Role for Macro-ER-Phagy in ER Quality Control.

    PubMed

    Lipatova, Zhanna; Segev, Nava

    2015-07-01

    The endoplasmic-reticulum quality-control (ERQC) system shuttles misfolded proteins for degradation by the proteasome through the well-defined ER-associated degradation (ERAD) pathway. In contrast, very little is known about the role of autophagy in ERQC. Macro-autophagy, a collection of pathways that deliver proteins through autophagosomes (APs) for degradation in the lysosome (vacuole in yeast), is mediated by autophagy-specific proteins, Atgs, and regulated by Ypt/Rab GTPases. Until recently, the term ER-phagy was used to describe degradation of ER membrane and proteins in the lysosome under stress: either ER stress induced by drugs or whole-cell stress induced by starvation. These two types of stresses induce micro-ER-phagy, which does not use autophagic organelles and machinery, and non-selective autophagy. Here, we characterize the macro-ER-phagy pathway and uncover its role in ERQC. This pathway delivers 20-50% of certain ER-resident membrane proteins to the vacuole and is further induced to >90% by overexpression of a single integral-membrane protein. Even though such overexpression in cells defective in macro-ER-phagy induces the unfolded-protein response (UPR), UPR is not needed for macro-ER-phagy. We show that macro-ER-phagy is dependent on Atgs and Ypt GTPases and its cargo passes through APs. Moreover, for the first time the role of Atg9, the only integral-membrane core Atg, is uncoupled from that of other core Atgs. Finally, three sequential steps of this pathway are delineated: Atg9-dependent exit from the ER en route to autophagy, Ypt1- and core Atgs-mediated pre-autophagsomal-structure organization, and Ypt51-mediated delivery of APs to the vacuole.

  10. A Role for Macro-ER-Phagy in ER Quality Control

    PubMed Central

    Lipatova, Zhanna; Segev, Nava

    2015-01-01

    The endoplasmic-reticulum quality-control (ERQC) system shuttles misfolded proteins for degradation by the proteasome through the well-defined ER-associated degradation (ERAD) pathway. In contrast, very little is known about the role of autophagy in ERQC. Macro-autophagy, a collection of pathways that deliver proteins through autophagosomes (APs) for degradation in the lysosome (vacuole in yeast), is mediated by autophagy-specific proteins, Atgs, and regulated by Ypt/Rab GTPases. Until recently, the term ER-phagy was used to describe degradation of ER membrane and proteins in the lysosome under stress: either ER stress induced by drugs or whole-cell stress induced by starvation. These two types of stresses induce micro-ER-phagy, which does not use autophagic organelles and machinery, and non-selective autophagy. Here, we characterize the macro-ER-phagy pathway and uncover its role in ERQC. This pathway delivers 20–50% of certain ER-resident membrane proteins to the vacuole and is further induced to >90% by overexpression of a single integral-membrane protein. Even though such overexpression in cells defective in macro-ER-phagy induces the unfolded-protein response (UPR), UPR is not needed for macro-ER-phagy. We show that macro-ER-phagy is dependent on Atgs and Ypt GTPases and its cargo passes through APs. Moreover, for the first time the role of Atg9, the only integral-membrane core Atg, is uncoupled from that of other core Atgs. Finally, three sequential steps of this pathway are delineated: Atg9-dependent exit from the ER en route to autophagy, Ypt1- and core Atgs-mediated pre-autophagsomal-structure organization, and Ypt51-mediated delivery of APs to the vacuole. PMID:26181331

  11. Granular Simulation of NEO Anchoring

    NASA Technical Reports Server (NTRS)

    Mazhar, Hammad

    2011-01-01

    NASA is interested in designing a spacecraft capable of visiting a Near Earth Object (NEO), performing experiments, and then returning safely. Certain periods of this mission will require the spacecraft to remain stationary relative to the NEO. Such situations require an anchoring mechanism that is compact, easy to deploy and upon mission completion, easily removed. The design philosophy used in the project relies on the simulation capability of a multibody dynamics physics engine. On Earth it is difficult to create low gravity conditions and testing in low gravity environments, whether artificial or in space is costly and therefore not feasible. Through simulation, gravity can be controlled with great accuracy, making it ideally suited to analyze the problem at hand. Using Chrono::Engine [1], a simulation package capable of utilizing massively parallel GPU hardware, several validation experiments will be performed. Once there is sufficient confidence, modeling of the NEO regolith interaction will begin after which the anchor tests will be performed and analyzed. The outcome of this task is a study with an analysis of several different anchor designs, along with a recommendation on which anchor is better suited to the task of anchoring. With the anchors tested against a range of parameters relating to soil, environment and anchor penetration angles/velocities on a NEO.

  12. Granular Simulation of NEO Anchoring

    NASA Technical Reports Server (NTRS)

    Mazhar, Hammad

    2011-01-01

    NASA is interested in designing a spacecraft capable of visiting a Near Earth Object (NEO), performing experiments, and then returning safely. Certain periods of this mission will require the spacecraft to remain stationary relative to the NEO. Such situations require an anchoring mechanism that is compact, easy to deploy and upon mission completion, easily removed. The design philosophy used in the project relies on the simulation capability of a multibody dynamics physics engine. On Earth it is difficult to create low gravity conditions and testing in low gravity environments, whether artificial or in space is costly and therefore not feasible. Through simulation, gravity can be controlled with great accuracy, making it ideally suited to analyze the problem at hand. Using Chrono::Engine [1], a simulation package capable of utilizing massively parallel GPU hardware, several validation experiments will be performed. Once there is sufficient confidence, modeling of the NEO regolith interaction will begin after which the anchor tests will be performed and analyzed. The outcome of this task is a study with an analysis of several different anchor designs, along with a recommendation on which anchor is better suited to the task of anchoring. With the anchors tested against a range of parameters relating to soil, environment and anchor penetration angles/velocities on a NEO.

  13. Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail-anchored proteins

    PubMed Central

    Chen, Yu-Chan; Umanah, George K E; Dephoure, Noah; Andrabi, Shaida A; Gygi, Steven P; Dawson, Ted M; Dawson, Valina L; Rutter, Jared

    2014-01-01

    The majority of ER-targeted tail-anchored (TA) proteins are inserted into membranes by the Guided Entry of Tail-anchored protein (GET) system. Disruption of this system causes a subset of TA proteins to mislocalize to mitochondria. We show that the AAA+ ATPase Msp1 limits the accumulation of mislocalized TA proteins on mitochondria. Deletion of MSP1 causes the Pex15 and Gos1 TA proteins to accumulate on mitochondria when the GET system is impaired. Likely as a result of failing to extract mislocalized TA proteins, yeast with combined mutation of the MSP1 gene and the GET system exhibit strong synergistic growth defects and severe mitochondrial damage, including loss of mitochondrial DNA and protein and aberrant mitochondrial morphology. Like yeast Msp1, human ATAD1 limits the mitochondrial mislocalization of PEX26 and GOS28, orthologs of Pex15 and Gos1, respectively. GOS28 protein level is also increased in ATAD1−/− mouse tissues. Therefore, we propose that yeast Msp1 and mammalian ATAD1 are conserved members of the mitochondrial protein quality control system that might promote the extraction and degradation of mislocalized TA proteins to maintain mitochondrial integrity. PMID:24843043

  14. Seals, Concrete Anchors, and Connections

    DTIC Science & Technology

    1989-02-01

    Plastic Anchors, Topline Nylon Nailins, and Topline Iamnmer Drive Anchors. Similar anchors are made by Rawl (Rawl Nylon Nailin, Rawl Zamac Nailin...Toggle Bolt GSA Specification FF-B-588C, • • • lype 1, Class A. Style 1. . Zamac Nailin GSA Specification FF-S-325. I K ,Group V Type;’ U. Clss3. Tested...instal[ No hole spotting, 3- Tpor’ block, brick fastener needed `1eAt X" 6" removable. 2 head styles. 30 sizes. Zamac Concrete, block. No other Zinc alloy

  15. Microtubules Contribute to Tubule Elongation and Anchoring of Endoplasmic Reticulum, Resulting in High Network Complexity in Arabidopsis1[W][OPEN

    PubMed Central

    Hamada, Takahiro; Ueda, Haruko; Kawase, Takashi; Hara-Nishimura, Ikuko

    2014-01-01

    The endoplasmic reticulum (ER) is a network of tubules and sheet-like structures in eukaryotic cells. Some ER tubules dynamically change their morphology, and others form stable structures. In plants, it has been thought that the ER tubule extension is driven by the actin-myosin machinery. Here, we show that microtubules also contribute to the ER tubule extension with an almost 20-fold slower rate than the actin filament-based ER extension. Treatment with the actin-depolymerizing drug Latrunculin B made it possible to visualize the slow extension of the ER tubules in transgenic Arabidopsis (Arabidopsis thaliana) plants expressing ER-targeted green fluorescent protein. The ER tubules elongated along microtubules in both directions of microtubules, which have a distinct polarity. This feature is similar to the kinesin- or dynein-driven ER tubule extension in animal cells. In contrast to the animal case, ER tubules elongating with the growing microtubule ends were not observed in Arabidopsis. We also found the spots where microtubules are stably colocalized with the ER subdomains during long observations of 1,040 s, suggesting that cortical microtubules contribute to provide ER anchoring points. The anchoring points acted as the branching points of the ER tubules, resulting in the formation of multiway junctions. The density of the ER tubule junction positively correlated with the microtubule density in both elongating cells and mature cells of leaf epidermis, showing the requirement of microtubules for formation of the complex ER network. Taken together, our findings show that plants use microtubules for ER anchoring and ER tubule extension, which establish fine network structures of the ER within the cell. PMID:25367857

  16. Solid-state NMR spectra of lipid-anchored proteins under magic angle spinning.

    PubMed

    Nomura, Kaoru; Harada, Erisa; Sugase, Kenji; Shimamoto, Keiko

    2014-03-06

    Solid-state NMR is a promising tool for elucidating membrane-related biological phenomena. We achieved the measurement of high-resolution solid-state NMR spectra for a lipid-anchored protein embedded in lipid bilayers under magic angle spinning (MAS). To date, solid-state NMR measurements of lipid-anchored proteins have not been accomplished due to the difficulty in supplying sufficient amount of stable isotope labeled samples in the overexpression of lipid-anchored proteins requiring complex posttranslational modification. We designed a pseudo lipid-anchored protein in which the protein component was expressed in E. coli and attached to a chemically synthesized lipid-anchor mimic. Using two types of membranes, liposomes and bicelles, we demonstrated different types of insertion procedures for lipid-anchored protein into membranes. In the liposome sample, we were able to observe the cross-polarization and the (13)C-(13)C chemical shift correlation spectra under MAS, indicating that the liposome sample can be used to analyze molecular interactions using dipolar-based NMR experiments. In contrast, the bicelle sample showed sufficient quality of spectra through scalar-based experiments. The relaxation times and protein-membrane interaction were capable of being analyzed in the bicelle sample. These results demonstrated the applicability of two types of sample system to elucidate the roles of lipid-anchors in regulating diverse biological phenomena.

  17. Novel Citronellyl-Based Photoprobes Designed to Identify ER Proteins Interacting with Dolichyl Phosphate in Yeast and Mammalian Cells

    PubMed Central

    Rush, Jeffrey S.; Subramanian, Thangaiah; Subramanian, Karunai Leela; Onono, Fredrick O.; Waechter, Charles J.; Spielmann, H. Peter

    2016-01-01

    Background Dolichyl phosphate-linked mono- and oligosaccharides (DLO) are essential intermediates in protein N-glycosylation, C- and O-mannosylation and GPI anchor biosynthesis. While many membrane proteins in the endoplasmic reticulum (ER) involved in the assembly of DLOs are known, essential proteins believed to be required for the transbilayer movement (flip-flopping) and proteins potentially involved in the regulation of DLO synthesis remain to be identified. Methods The synthesis of a series of Dol-P derivatives composed of citronellyl-based photoprobes with benzophenone groups equipped with alkyne moieties for Huisgen “click” chemistry is now described to utilize as tools for identifying ER proteins involved in regulating the biosynthesis and transbilayer movement of lipid intermediates. In vitro enzymatic assays were used to establish that the photoprobes contain the critical structural features recognized by pertinent enzymes in the dolichol pathway. ER proteins that photoreacted with the novel probes were identified by MS. Results The potential of the newly designed photoprobes, m-PAL-Cit-P and p-PAL-Cit-P, for identifying previously unidentified Dol-P-interacting proteins is supported by the observation that they are enzymatically mannosylated by Man-P-Dol synthase (MPDS) from Chinese Hamster Ovary (CHO) cells at an enzymatic rate similar to that for Dol-P. MS analyses reveal that DPM1, ALG14 and several other yeast ER proteins involved in DLO biosynthesis and lipid-mediated protein O-mannosylation photoreacted with the novel probes. Conclusion The newly-designed photoprobes described in this paper provide promising new tools for the identification of yet to be identified Dol-P interacting ER proteins in yeast and mammalian cells, including the Dol-P flippase required for the “re-cycling” of the glycosyl carrier lipid from the lumenal monolayer of the ER to the cytoplasmic leaflet for new rounds of DLO synthesis. PMID:27099830

  18. STARD3 mediates endoplasmic reticulum-to-endosome cholesterol transport at membrane contact sites.

    PubMed

    Wilhelm, Léa P; Wendling, Corinne; Védie, Benoît; Kobayashi, Toshihide; Chenard, Marie-Pierre; Tomasetto, Catherine; Drin, Guillaume; Alpy, Fabien

    2017-05-15

    StAR-related lipid transfer domain-3 (STARD3) is a sterol-binding protein that creates endoplasmic reticulum (ER)-endosome contact sites. How this protein, at the crossroad between sterol uptake and synthesis pathways, impacts the intracellular distribution of this lipid was ill-defined. Here, by using in situ cholesterol labeling and quantification, we demonstrated that STARD3 induces cholesterol accumulation in endosomes at the expense of the plasma membrane. STARD3-mediated cholesterol routing depends both on its lipid transfer activity and its ability to create ER-endosome contacts. Corroborating this, in vitro reconstitution assays indicated that STARD3 and its ER-anchored partner, Vesicle-associated membrane protein-associated protein (VAP), assemble into a machine that allows a highly efficient transport of cholesterol within membrane contacts. Thus, STARD3 is a cholesterol transporter scaffolding ER-endosome contacts and modulating cellular cholesterol repartition by delivering cholesterol to endosomes. © 2017 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  19. Intramolecular shielding maintains the ER Ca²⁺ sensor STIM1 in an inactive conformation.

    PubMed

    Yu, Fang; Sun, Lu; Hubrack, Satanay; Selvaraj, Senthil; Machaca, Khaled

    2013-06-01

    Store-operated calcium entry (SOCE) represents a major calcium influx pathway in non-excitable cells and is central to many physiological processes such as T cell activation and mast cell degranulation. SOCE is activated through intricate coordination between the Ca(2+) sensor on the ER membrane (stromal interaction molecule 1, STIM1) and the plasma membrane channel Orai1. When Ca(2+) stores are depleted, STIM1 oligomerizes and physically interacts with Orai1 through its SOAR/CAD domain, resulting in Orai1 gating and Ca(2+) influx. Here, we describe novel inter- and intramolecular FRET sensors in the context of the full-length membrane-anchored STIM1, and show that STIM1 undergoes a conformational change in response to store depletion to adopt a stretched 'open' conformation that exposes SOAR/CAD and allows it to interact with Orai1. Mutational analyses reveal that electrostatic interactions between the predicted first and third coiled-coil domains of STIM1 are not involved in maintaining the 'closed' inactive conformation. In addition, the results argue that an amphipathic α-helix between residues 317 and 336 in the so-called inhibitory domain is important to maintain STIM1 in a closed conformation at rest. Indeed, mutations that alter the amphipathic properties of this helix result in a STIM1 variant that is unable to respond to store depletion in terms of forming puncta, translocation to the cortical ER or activating Orai1.

  20. Transcription factor Nrf1 is topologically repartitioned across membranes to enable target gene transactivation through its acidic glucose-responsive domains.

    PubMed

    Zhang, Yiguo; Ren, Yonggang; Li, Shaojun; Hayes, John D

    2014-01-01

    The membrane-bound Nrf1 transcription factor regulates critical homeostatic and developmental genes. The conserved N-terminal homology box 1 (NHB1) sequence in Nrf1 targets the cap'n'collar (CNC) basic basic-region leucine zipper (bZIP) factor to the endoplasmic reticulum (ER), but it is unknown how its activity is controlled topologically within membranes. Herein, we report a hitherto unknown mechanism by which the transactivation activity of Nrf1 is controlled through its membrane-topology. Thus after Nrf1 is anchored within ER membranes, its acidic transactivation domains (TADs), including the Asn/Ser/Thr-rich (NST) glycodomain situated between acidic domain 1 (AD1) and AD2, are transiently translocated into the lumen of the ER, where NST is glycosylated in the presence of glucose to yield an inactive 120-kDa Nrf1 glycoprotein. Subsequently, portions of the TADs partially repartition across membranes into the cyto/nucleoplasmic compartments, whereupon an active 95-kDa form of Nrf1 accumulates, a process that is more obvious in glucose-deprived cells and may involve deglycosylation. The repartitioning of Nrf1 out of membranes is monitored within this protein by its acidic-hydrophobic amphipathic glucose-responsive domains, particularly the Neh5L subdomain within AD1. Therefore, the membrane-topological organization of Nrf1 dictates its post-translational modifications (i.e. glycosylation, the putative deglycosylation and selective proteolysis), which together control its ability to transactivate target genes.

  1. Expression of DNAJB12 or DNAJB14 Causes Coordinate Invasion of the Nucleus by Membranes Associated with a Novel Nuclear Pore Structure

    PubMed Central

    Goodwin, Edward C.; Motamedi, Nasim; Lipovsky, Alex; Fernández-Busnadiego, Rubén; DiMaio, Daniel

    2014-01-01

    DNAJB12 and DNAJB14 are transmembrane proteins in the endoplasmic reticulum (ER) that serve as co-chaperones for Hsc70/Hsp70 heat shock proteins. We demonstrate that over-expression of DNAJB12 or DNAJB14 causes the formation of elaborate membranous structures within cell nuclei, which we designate DJANGOS for DNAJ-associated nuclear globular structures. DJANGOS contain DNAJB12, DNAJB14, Hsc70 and markers of the ER lumen and ER and nuclear membranes. Strikingly, they are evenly distributed underneath the nuclear envelope and are of uniform size in any one nucleus. DJANGOS are composed primarily of single-walled membrane tubes and sheets that connect to the nuclear envelope via a unique configuration of membranes, in which the nuclear pore complex appears anchored exclusively to the outer nuclear membrane, allowing both the inner and outer nuclear membranes to flow past the circumference of the nuclear pore complex into the nucleus. DJANGOS break down rapidly during cell division and reform synchronously in the daughter cell nuclei, demonstrating that they are dynamic structures that undergo coordinate formation and dissolution. Genetic studies showed that the chaperone activity of DNAJ/Hsc70 is required for the formation of DJANGOS. Further analysis of these structures will provide insight into nuclear pore formation and function, activities of molecular chaperones, and mechanisms that maintain membrane identity. PMID:24732912

  2. Model anchor tests in cohesionless soil

    SciTech Connect

    Walker, G.R.; Taylor, R.J.

    1983-05-01

    Tandem (piggyback), parallel, and single model anchor tests have been performed in cohesionless soil. Tandem anchor arrangements have been found that result in a tandem system capacity that exceeds twice the capacity of a single anchor. These methods are operationally feasible and offer the potential for anchor weight savings.

  3. Structural remodeling, trafficking and functions of glycosylphosphatidylinositol-anchored proteins.

    PubMed

    Maeda, Yusuke; Kinoshita, Taroh

    2011-10-01

    Glycosylphosphatidylinositol (GPI) is a glycolipid that is covalently attached to proteins as a post-translational modification. Such modification leads to the anchoring of the protein to the outer leaflet of the plasma membrane. Proteins that are decorated with GPIs have unique properties in terms of their physical nature. In particular, these proteins tend to accumulate in lipid rafts, which are critical for the functions and trafficking of GPI-anchored proteins (GPI-APs). Recent studies mainly using mutant cells revealed that various structural remodeling reactions occur to GPIs present in GPI-APs as they are transported from the endoplasmic reticulum to the cell surface. This review examines the recent progress describing the mechanisms of structural remodeling of mammalian GPI-anchors, such as inositol deacylation, glycan remodeling and fatty acid remodeling, with particular focus on their trafficking and functions, as well as the pathogenesis involving GPI-APs and their deficiency.

  4. Poxvirus membrane biogenesis.

    PubMed

    Moss, Bernard

    2015-05-01

    Poxviruses differ from most DNA viruses by replicating entirely within the cytoplasm. The first discernible viral structures are crescents and spherical immature virions containing a single lipoprotein membrane bilayer with an external honeycomb lattice. Because this viral membrane displays no obvious continuity with a cellular organelle, a de novo origin was suggested. Nevertheless, transient connections between viral and cellular membranes could be difficult to resolve. Despite the absence of direct evidence, the intermediate compartment (ERGIC) between the endoplasmic reticulum (ER) and Golgi apparatus and the ER itself were considered possible sources of crescent membranes. A break-through in understanding poxvirus membrane biogenesis has come from recent studies of the abortive replication of several vaccinia virus null mutants. Novel images showing continuity between viral crescents and the ER and the accumulation of immature virions in the expanded ER lumen provide the first direct evidence for a cellular origin of this poxvirus membrane.

  5. Analyzing paleomagnetic data: To anchor or not to anchor?

    NASA Astrophysics Data System (ADS)

    Heslop, David; Roberts, Andrew P.

    2016-11-01

    Paleomagnetic directions provide the basis for use of paleomagnetism in chronological and tectonic reconstructions and for constraining past geomagnetic field behavior over a variety of timescales. Crucial to paleomagnetic analysis is the separation and quantification of a characteristic remanent magnetization (ChRM), which relates to a process of interest, from other remanence components. Principal component analysis (PCA) of stepwise demagnetization data is employed routinely in these situations to estimate magnetic remanence directions and their uncertainties. A given ChRM is often assumed to trend toward the origin of a vector demagnetization diagram and prevailing data analysis frameworks allow remanence directions to be estimated based on PCA fits that are forced to pass through the origin of such diagrams, a process referred to as "anchoring." While this approach is adopted commonly, little attention has been paid to the effects of anchoring and the influence it has on both estimated remanence directions and their associated uncertainties. In almost all cases, anchoring produces an artificially low uncertainty estimation compared to an unanchored fit. Bayesian model selection demonstrates that the effects of anchoring cannot typically be justified from a statistical standpoint. We present an alternative to anchoring that constrains the best fit remanence direction to pass through the origin of a vector demagnetization diagram without unreasonably distorting the representation of the demagnetization data.

  6. Mutation of wrb, a Component of the Guided Entry of Tail-Anchored Protein Pathway, Disrupts Photoreceptor Synapse Structure and Function

    PubMed Central

    Daniele, Lauren L.; Emran, Farida; Lobo, Glenn P.; Gaivin, Robert J.; Perkins, Brian D.

    2016-01-01

    Purpose Tail-anchored (TA) proteins contain a single hydrophobic domain at the C-terminus and are posttranslationally inserted into the ER membrane via the GET (guided entry of tail-anchored proteins) pathway. The role of the GET pathway in photoreceptors is unexplored. The goal of this study was to characterize the zebrafish pinball wizard mutant, which disrupts Wrb, a core component of the GET pathway. Methods Electroretinography, optokinetic response measurements (OKR), immunohistochemistry, and electron microscopy analyses were employed to assess ribbon synapse function, protein expression, and ultrastructure in 5-day-old zebrafish larvae. Expression of wrb was investigated with real-time qRT-PCR and in situ hybridization. Results Mutation of wrb abolished the OKR and greatly diminished the ERG b-wave, but not the a-wave. Ribeye and SV2 were partially mislocalized in both photoreceptors and hair cells of wrb mutants. Fewer contacts were seen between photoreceptors and bipolar cells in wrb−/− mutants. Expression of wrb was observed throughout the nervous system and Wrb localized to the ER and synaptic region of photoreceptors. Morpholino knockdown of the cytosolic ATPase trc40, which targets TA proteins to the ER, also diminished the OKR. Overexpression of wrb fully restored contrast sensitivity in mutants, while overexpression of mutant wrbR73A, which cannot bind Trc40, did not. Conclusions Proteins Wrb and Trc40 are required for synaptic transmission between photoreceptors and bipolar cells, indicating that TA protein insertion by the TRC pathway is a critical step in ribbon synapse assembly and function. PMID:27273592

  7. ER-α36, a novel variant of ERα, is involved in the regulation of Tamoxifen-sensitivity of glioblastoma cells.

    PubMed

    Liu, Yang; Huang, Liang; Guan, Xin; Li, Hongyan; Zhang, Qi-Qi; Han, Chao; Wang, Ya-Jun; Wang, Cui; Zhang, Yejun; Qu, Chao; Liu, Jing; Zou, Wei

    2016-07-01

    Although accumulating evidence has confirmed that adjuvant Tamoxifen (TAM) treatment is able to sensitize glioblastoma cells to radiotherapy and inhibit their proliferation, TAM is not a suitable treatment for all types of glioblastoma cells; furthermore, long-term TAM usage may lead to TAM resistance. Therefore, understanding the underlying molecular mechanism of TAM resistance is necessary in order to improve TAM clinical therapy and the quality of life of patients suffering from glioblastomas. In this study, the significance of ER-α36 to TAM resistance in glioblastoma cells was examined. First, an analysis of ER-α36 expression in two glioblastoma cell lines U87-MG and U251, showed that ER-α36 was anchored to the cytoplasmic membrane of these cells via Caveolin-1. Subsequent experiments investigating the mechanism of TAM-induced inhibition of U87-MG cell growth showed that TAM exerts its effect by inducing apoptosis via a down-regulation of Survivin expression and an up-regulation of Caspase-3 expression. Furthermore, TAM also arrested the cell cycle at S-phase. However, when U87-MG cells were preconditioned with an ER-α36-specific agonist, IC162, this neutralized TAM-induced inhibition of cell growth. This contrasted with the effect of ER-α36 depletion by RNAi, which enhanced TAM-induced inhibition of cell growth. These findings suggest that resistance to TAM involves ER-α36, which probably acts as a negative regulator of TAM-induced inhibition of glioblastoma cell growth. These findings provide a novel insight into the basis of TAM resistance during glioblastoma therapy and a further study is underway to reveal more about the specific molecular mechanisms associated with ER-α36-mediated TAM resistance. Copyright © 2016. Published by Elsevier Inc.

  8. The Autocrine Mitogenic Loop of the Ciliate Euplotes raikovi: The Pheromone Membrane-bound Forms Are the Cell Binding Sites and Potential Signaling Receptors of Soluble Pheromones

    PubMed Central

    Ortenzi, Claudio; Alimenti, Claudio; Vallesi, Adriana; Di Pretoro, Barbara; Terza, Antonietta La; Luporini, Pierangelo

    2000-01-01

    Homologous proteins, denoted pheromones, promote cell mitotic proliferation and mating pair formation in the ciliate Euplotes raikovi, according to whether they bind to cells in an autocrine- or paracrine-like manner. The primary transcripts of the genes encoding these proteins undergo alternate splicing, which generates at least two distinct mRNAs. One is specific for the soluble pheromone, the other for a pheromone isoform that remains anchored to the cell surface as a type II protein, whose extracellular C-terminal region is structurally equivalent to the secreted form. The 15-kDa membrane-bound isoform of pheromone Er-1, denoted Er-1mem and synthesized by the same E. raikovi cells that secrete Er-1, has been purified from cell membranes by affinity chromatography prepared with matrix-bound Er-1, and its extracellular and cytoplasmic regions have been expressed as recombinant proteins. Using the purified material and these recombinant proteins, it has been shown that Er-1mem has the property of binding pheromones competitively through its extracellular pheromone-like domain and associating reversibly and specifically with a guanine nucleotide-binding protein through its intracellular domain. It has been concluded that the membrane-bound pheromone isoforms of E. raikovi represent the cell effective pheromone binding sites and are functionally equipped for transducing the signal generated by this binding. PMID:10749941

  9. ER-stress in Alzheimer’s disease: turning the scale?

    PubMed Central

    Endres, Kristina; Reinhardt, Sven

    2013-01-01

    Pathogenic mechanisms of Alzheimer’s disease (AD) are intensely investigated as it is the most common form of dementia and burdens society by its costs and social demands. While key molecules such as A-beta peptides and tau have been identified decades ago, it is still enigmatic what drives the disease in its sporadic manifestation. Synthesis of A-beta peptides as well as phosphorylation of tau proteins comprise normal cellular functions and occur in principle in the healthy as well as in dementia-affected persons. Dyshomeostasis of Amyloid Precursor Protein (APP) cleavage, energy metabolism or kinase/phosphatase activity due to stressors has been suggested as a trigger of the disease. One way for cells to escape stress based on dysfunction of ER is the unfolded protein response - the UPR. This pathway is composed out of three different routes that differ in proteins involved, targets and consequences for cell fate: activation of transmembrane ER resident kinases IRE1-alpha and PERK or monomerization of membrane-anchored activating transcription factor 6 (ATF6) induce activation of versatile transcription factors (XBP-1, eIF2-alpha/ATF4 and ATF6 P50). These bind to specific DNA sequences on target gene promoters and on one hand attenuate general ER-prone protein synthesis and on the other equip the cell with tools to de-stress. If cells fail in stress compensation, this signaling also is able to evoke apoptosis. In this review we summarized knowledge on how APP processing and phosphorylation of tau might be influenced by ER-stress signaling. In addition, we depicted the effects UPR itself seems to have on molecules closely related to AD and describe what is known about UPR in AD animal models as well as in human patients. PMID:24319643

  10. Asymmetric Requirements for a Rab Gtpase and Snare Proteins in Fusion of Copii Vesicles with Acceptor Membranes

    PubMed Central

    Cao, Xiaochun; Barlowe, Charles

    2000-01-01

    Soluble NSF attachment protein receptor (SNARE) proteins are essential for membrane fusion in transport between the yeast ER and Golgi compartments. Subcellular fractionation experiments demonstrate that the ER/Golgi SNAREs Bos1p, Sec22p, Bet1p, Sed5p, and the Rab protein, Ypt1p, are distributed similarly but localize primarily with Golgi membranes. All of these SNARE proteins are efficiently packaged into COPII vesicles and suggest a dynamic cycling of SNARE machinery between ER and Golgi compartments. Ypt1p is not efficiently packaged into vesicles under these conditions. To determine in which membranes protein function is required, temperature-sensitive alleles of BOS1, BET1, SED5, SLY1, and YPT1 that prevent ER/Golgi transport in vitro at restrictive temperatures were used to selectively inactivate these gene products on vesicles or on Golgi membranes. Vesicles bearing mutations in Bet1p or Bos1p inhibit fusion with wild-type acceptor membranes, but acceptor membranes containing these mutations are fully functional. In contrast, vesicles bearing mutations in Sed5p, Sly1p, or Ypt1p are functional, whereas acceptor membranes containing these mutations block fusion. Thus, this set of SNARE proteins is symmetrically distributed between vesicle and acceptor compartments, but they function asymmetrically such that Bet1p and Bos1p are required on vesicles and Sed5p activity is required on acceptor membranes. We propose the asymmetry in SNARE protein function is maintained by an asymmetric distribution and requirement for the Ypt1p GTPase in this fusion event. When a transmembrane-anchored form of Ypt1p is used to restrict this GTPase to the acceptor compartment, vesicles depleted of Ypt1p remain competent for fusion. PMID:10747087

  11. Effects of suture site or penetration depth on anchor location in all-inside meniscal repair.

    PubMed

    Uchida, Ryohei; Mae, Tatsuo; Hiramatsu, Kunihiko; Iuchi, Ryo; Kinugasa, Kazutaka; Shino, Konsei; Yoshikawa, Hideki; Nakata, Ken

    2016-12-01

    To evaluate the effects of suture site or penetration depth on anchor location in all-inside meniscal repair. Eight fresh-frozen cadaveric knees were evaluated after meniscal repair using eight FasT-Fix360 (FF360) devices (Smith & Nephew Endoscopy, Andover, MA) (16 anchors) for each knee. The penetration depth was 14mm, the distance same from the periphery to insertion point, in four knees (Group A) and that in the remaining four knees (Group B) was 18mm. The anchor location in two groups was evaluated after attentive dissection. Of 32 anchors for the medial meniscus, 94% were on the capsule, including the superficial medial collateral ligament (sMCL) in both groups. For the lateral meniscus, 47% anchors in Group A and 44% anchors in Group B were on the capsule. Total three anchors were over the lateral collateral ligament (LCL), whereas 15 anchors were behind the popliteus tendon (POP). Although all three anchors settled in the subcutaneous fat were in Group B, no significant difference was observed in anchor location between two groups. Secure fixation to thin membranous tissue can be achieved for the medial meniscal repair using FF360, while some were located in/on bunchy LCL or POP in lateral meniscal repair. Only anchors with additional four-millimeter penetration depth were in the subcutaneous fat, although there was no effect of the penetration depth to anchor location. Clinically, for lateral meniscal repair, penetrating toward POP/LCL should be avoided and four-millimeter deeper penetration depth might be a risk for the subcutaneous irritation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Arabidopsis chloroplast lipid transport protein TGD2 disrupts membranes and is part of a large complex.

    PubMed

    Roston, Rebecca; Gao, Jinpeng; Xu, Changcheng; Benning, Christoph

    2011-06-01

    In most plants the assembly of the photosynthetic thylakoid membrane requires lipid precursors synthesized at the endoplasmic reticulum (ER). Thus, the transport of lipids from the ER to the chloroplast is essential for biogenesis of the thylakoids. TGD2 is one of four proteins in Arabidopsis required for lipid import into the chloroplast, and was found to bind phosphatidic acid in vitro. However, the significance of phosphatidic acid binding for the function of TGD2 in vivo and TGD2 interaction with membranes remained unclear. Developing three functional assays probing how TGD2 affects lipid bilayers in vitro, we show that it perturbs membranes to the point of fusion, causes liposome leakage and redistributes lipids in the bilayer. By identifying and characterizing five new mutant alleles, we demonstrate that these functions are impaired in specific mutants with lipid phenotypes in vivo. At the structural level, we show that TGD2 is part of a protein complex larger than 500 kDa, the formation of which is disrupted in two mutant alleles, indicative of the biological relevance of this TGD2-containing complex. Based on the data presented, we propose that TGD2, as part of a larger complex, forms a lipid transport conduit between the inner and outer chloroplast envelope membranes, with its N terminus anchored in the inner membrane and its C terminus binding phosphatidic acid in the outer membrane.

  13. Final Report for DE-FG02-04ER15626: P-type ATPases in Plants – Role of Lipid Flippases in Membrane Biogenesis

    SciTech Connect

    Harper, Jeffrey F.

    2015-02-24

    The long-range goal of the research is to understand the structure and biological functions of different P-type ATPases (ion pumps) in plant cells, and to use that knowledge to enhance the production of bioenergy from plants, or plant-research inspired technologies. Ptype ATPases include ion pumps that specifically transport H+, Ca2+, Zn2+, Cu2+, K+, or Na+, as well as at least one unusual subfamily that appears to function as lipid flippases, flipping specific lipids from one side of a membrane bilayer to the other. As a group, P-type ATPases are thought to consume more than 1/3 of the cellular ATP in typical eukaryotic cells. Recent research in the Harper lab focused on understanding the biochemical and biological functions of P-type ATPases that flip lipids. These flippases belong to the P4 subfamily of P-type ATPases. The activity of lipid flippases is thought to induce membrane curvature and/or create an asymmetry in which certain lipid head groups are preferential exposed to one surface or the other. In Arabidopsis thaliana there are 12 members of this family referred to as Aminophospholipid ATPase (ALA) 1 to ALA12. Using genetic knockouts, the Harper lab has established that this unusual subfamily of P-type ATPases are critical for plants to cope with even modest changes in temperature (e.g., down to 15°C, or up to 30°C). In addition, members of one subclade are critical for cell expansion, and loss of function mutants result in severe dwarfism. Other members of this same sub-clade are critical for pollen tube growth, and loss of function mutants are sterile under conditions of hot days and cold nights. While the cellular processes that depend on lipid flippases are still unclear, the genetic analysis of loss of function mutants clearly show they are of fundamental importance to plant growth and response to the environment.

  14. Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum–plasma membrane contact sites

    PubMed Central

    Fernández-Busnadiego, Rubén; Saheki, Yasunori; De Camilli, Pietro

    2015-01-01

    The close apposition between the endoplasmic reticulum (ER) and the plasma membrane (PM) plays important roles in Ca2+ homeostasis, signaling, and lipid metabolism. The extended synaptotagmins (E-Syts; tricalbins in yeast) are ER-anchored proteins that mediate the tethering of the ER to the PM and are thought to mediate lipid transfer between the two membranes. E-Syt cytoplasmic domains comprise a synaptotagmin-like mitochondrial-lipid–binding protein (SMP) domain followed by five C2 domains in E-Syt1 and three C2 domains in E-Syt2/3. Here, we used cryo-electron tomography to study the 3D architecture of E-Syt–mediated ER–PM contacts at molecular resolution. In vitrified frozen-hydrated mammalian cells overexpressing individual E-Syts, in which E-Syt–dependent contacts were by far the predominant contacts, ER–PM distance (19–22 nm) correlated with the amino acid length of the cytosolic region of E-Syts (i.e., the number of C2 domains). Elevation of cytosolic Ca2+ shortened the ER–PM distance at E-Syt1–dependent contacts sites. E-Syt–mediated contacts displayed a characteristic electron-dense layer between the ER and the PM. These features were strikingly different from those observed in cells exposed to conditions that induce contacts mediated by the stromal interaction molecule 1 (STIM1) and the Ca2+ channel Orai1 as well as store operated Ca2+ entry. In these cells the gap between the ER and the PM was spanned by filamentous structures perpendicular to the membranes. Our results define specific ultrastructural features of E-Syt–dependent ER–PM contacts and reveal their structural plasticity, which may impact on the cross-talk between the ER and the PM and the functions of E-Syts in lipid transport between the two bilayers. PMID:25787254

  15. Identification of novel protein-protein interactions at the cytosolic surface of the Sec63 complex in the yeast ER membrane.

    PubMed

    Willer, Martin; Jermy, Andrew J; Young, Barry P; Stirling, Colin J

    2003-01-30

    Precursors of secretory proteins are targeted to the membrane of the endoplasmic reticulum by specific protein complexes that recognize their signal sequence. All eukaryotic cells investigated so far have been found to possess the signal recognition particle (SRP) that targets the majority of precursors to the translocation machinery. In Saccharomyces cerevisiae a number of proteins are translocated independently of SRP. These precursors rely on a different signal sequence-binding complex, which includes Sec62p, Sec63p, Sec71p and Sec72p. Identifying interactions between individual components of this tetrameric protein complex is important in the understanding of its function. We demonstrate a specific interaction between the only two essential proteins in this complex, Sec62p and Sec63p. Second, we show evidence of homodimerization of Sec72p molecules and further identify the YLR301w gene product as a novel in vivo interacting partner of Sec72p. Finally, we determine the authentic N-terminus of Sec62p and describe interacting subdomains of both Sec62p and Sec63p.

  16. Increased expression of progesterone receptor membrane component 1 is associated with aggressive phenotype and poor prognosis in ER-positive and negative breast cancer.

    PubMed

    Ruan, Xiangyan; Zhang, Ying; Mueck, Alfred O; Willibald, Marina; Seeger, Harald; Fehm, Tanja; Brucker, Sara; Neubauer, Hans

    2017-02-01

    Expression of progesterone receptor membrane component 1 (PGRMC1) has been shown to be higher in breast cancer than normal tissue. We have previously shown that certain progestogens strongly stimulate proliferation of breast cancer cells overexpressing PGRMC1, and therefore hypothesize that PGRMC1 may play a critical role in breast cancer progression. Because little information is available if expression of PGRMC1 is also associated with worse prognosis for breast cancer patients, in this study we investigated the clinicopathologic significance of PGRMC1 expression in breast cancer tissue. Expression of PGRMC1 was analyzed by immunohistochemical staining of primary tumor tissues obtained from 69 breast cancer patients. A labeling score was developed, and results were correlated with tumor size, lymph node metastasis, and clinical outcome. Overexpression of PGRMC1 is correlating with larger tumor size and lymph node metastasis. Kaplan-Meier survival curves indicate that patients with PGRMC1 tumors have poorer disease-free and overall survival independent from the estrogen receptor status than breast cancer patients with PGRMC1 tumors. Our findings suggest that the expression of PGRMC1 might be useful for predicting prognosis in patients with breast cancer.

  17. Microgravity Drill and Anchor System

    NASA Technical Reports Server (NTRS)

    Parness, Aaron; Frost, Matthew A.; King, Jonathan P.

    2013-01-01

    This work is a method to drill into a rock surface regardless of the gravitational field or orientation. The required weight-on-bit (WOB) is supplied by a self-contained anchoring mechanism. The system includes a rotary percussive coring drill, forming a complete sampling instrument usable by robot or human. This method of in situ sample acquisition using micro - spine anchoring technology enables several NASA mission concepts not currently possible with existing technology, including sampling from consolidated rock on asteroids, providing a bolt network for astronauts visiting a near-Earth asteroid, and sampling from the ceilings or vertical walls of lava tubes and cliff faces on Mars. One of the most fundamental parameters of drilling is the WOB; essentially, the load applied to the bit that allows it to cut, creating a reaction force normal to the surface. In every drilling application, there is a minimum WOB that must be maintained for the system to function properly. In microgravity (asteroids and comets), even a small WOB could not be supported conventionally by the weight of the robot or astronaut. An anchoring mechanism would be needed to resist the reactions, or the robot or astronaut would push themselves off the surface and into space. The ability of the system to anchor itself to a surface creates potential applications that reach beyond use in low gravity. The use of these anchoring mechanisms as end effectors on climbing robots has the potential of vastly expanding the scope of what is considered accessible terrain. Further, because the drill is supported by its own anchor rather than by a robotic arm, the workspace is not constrained by the reach of such an arm. Yet, if the drill is on a robotic arm, it has the benefit of not reflecting the forces of drilling back to the arm s joints. Combining the drill with the anchoring feet will create a highly mobile, highly stable, and highly reliable system. The drilling system s anchor uses hundreds of

  18. CAML mediates survival of Myc-induced lymphoma cells independent of tail-anchored protein insertion.

    PubMed

    Shing, Jennifer C; Lindquist, Lonn D; Borgese, Nica; Bram, Richard J

    2017-01-01

    Calcium-modulating cyclophilin ligand (CAML) is an endoplasmic reticulum (ER) protein that functions, along with WRB and TRC40, to mediate tail-anchored (TA) protein insertion into the ER membrane. Physiologic roles for CAML include endocytic trafficking, intracellular calcium signaling, and the survival and proliferation of specialized immune cells, recently attributed to its requirement for TA protein insertion. To identify a possible role for CAML in cancer cells, we generated Eμ-Myc transgenic mice that carry a tamoxifen-inducible deletion allele of Caml. In multiple B-cell lymphoma cell lines derived from these mice, homozygous loss of Caml activated apoptosis. Cell death was blocked by Bcl-2/Bcl-xL overexpression; however, rescue from apoptosis was insufficient to restore proliferation. Tumors established from an Eμ-Myc lymphoma cell line completely regressed after tamoxifen administration, suggesting that CAML is also required for these cancer cells to survive and grow in vivo. Cell cycle analyses of Caml-deleted lymphoma cells revealed an arrest in G2/M, accompanied by low expression of the mitotic marker, phospho-histone H3 (Ser10). Surprisingly, lymphoma cell viability did not depend on the domain of CAML required for its interaction with TRC40. Furthermore, a small protein fragment consisting of the C-terminal 111 amino acid residues of CAML, encompassing the WRB-binding domain, was sufficient to rescue growth and survival of Caml-deleted lymphoma cells. Critically, this minimal region of CAML did not restore TA protein insertion in knockout cells. Taken together, these data reveal an essential role for CAML in supporting survival and mitotic progression in Myc-driven lymphomas that is independent of its TA protein insertion function.

  19. CAML mediates survival of Myc-induced lymphoma cells independent of tail-anchored protein insertion

    PubMed Central

    Shing, Jennifer C; Lindquist, Lonn D; Borgese, Nica; Bram, Richard J

    2017-01-01

    Calcium-modulating cyclophilin ligand (CAML) is an endoplasmic reticulum (ER) protein that functions, along with WRB and TRC40, to mediate tail-anchored (TA) protein insertion into the ER membrane. Physiologic roles for CAML include endocytic trafficking, intracellular calcium signaling, and the survival and proliferation of specialized immune cells, recently attributed to its requirement for TA protein insertion. To identify a possible role for CAML in cancer cells, we generated Eμ-Myc transgenic mice that carry a tamoxifen-inducible deletion allele of Caml. In multiple B-cell lymphoma cell lines derived from these mice, homozygous loss of Caml activated apoptosis. Cell death was blocked by Bcl-2/Bcl-xL overexpression; however, rescue from apoptosis was insufficient to restore proliferation. Tumors established from an Eμ-Myc lymphoma cell line completely regressed after tamoxifen administration, suggesting that CAML is also required for these cancer cells to survive and grow in vivo. Cell cycle analyses of Caml-deleted lymphoma cells revealed an arrest in G2/M, accompanied by low expression of the mitotic marker, phospho-histone H3 (Ser10). Surprisingly, lymphoma cell viability did not depend on the domain of CAML required for its interaction with TRC40. Furthermore, a small protein fragment consisting of the C-terminal 111 amino acid residues of CAML, encompassing the WRB-binding domain, was sufficient to rescue growth and survival of Caml-deleted lymphoma cells. Critically, this minimal region of CAML did not restore TA protein insertion in knockout cells. Taken together, these data reveal an essential role for CAML in supporting survival and mitotic progression in Myc-driven lymphomas that is independent of its TA protein insertion function. PMID:28580168

  20. The pathogenic mechanism of the Mycobacterium ulcerans virulence factor, mycolactone, depends on blockade of protein translocation into the ER.

    PubMed

    Hall, Belinda S; Hill, Kirsti; McKenna, Michael; Ogbechi, Joy; High, Stephen; Willis, Anne E; Simmonds, Rachel E

    2014-04-01

    Infection with Mycobacterium ulcerans is characterised by tissue necrosis and immunosuppression due to mycolactone, the necessary and sufficient virulence factor for Buruli ulcer disease pathology. Many of its effects are known to involve down-regulation of specific proteins implicated in important cellular processes, such as immune responses and cell adhesion. We have previously shown mycolactone completely blocks the production of LPS-dependent proinflammatory mediators post-transcriptionally. Using polysome profiling we now demonstrate conclusively that mycolactone does not prevent translation of TNF, IL-6 and Cox-2 mRNAs in macrophages. Instead, it inhibits the production of these, along with nearly all other (induced and constitutive) proteins that transit through the ER. This is due to a blockade of protein translocation and subsequent degradation of aberrantly located protein. Several lines of evidence support this transformative explanation of mycolactone function. First, cellular TNF and Cox-2 can be once more detected if the action of the 26S proteasome is inhibited concurrently. Second, restored protein is found in the cytosol, indicating an inability to translocate. Third, in vitro translation assays show mycolactone prevents the translocation of TNF and other proteins into the ER. This is specific as the insertion of tail-anchored proteins into the ER is unaffected showing that the ER remains structurally intact. Fourth, metabolic labelling reveals a near-complete loss of glycosylated and secreted proteins from treated cells, whereas cytosolic proteins are unaffected. Notably, the profound lack of glycosylated and secreted protein production is apparent in a range of different disease-relevant cell types. These studies provide a new mechanism underlying mycolactone's observed pathological activities both in vitro and in vivo. Mycolactone-dependent inhibition of protein translocation into the ER not only explains the deficit of innate cytokines, but

  1. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress.

    PubMed

    Verfaillie, T; Rubio, N; Garg, A D; Bultynck, G; Rizzuto, R; Decuypere, J-P; Piette, J; Linehan, C; Gupta, S; Samali, A; Agostinis, P

    2012-11-01

    Endoplasmic reticulum stress is emerging as an important modulator of different pathologies and as a mechanism contributing to cancer cell death in response to therapeutic agents. In several instances, oxidative stress and the onset of endoplasmic reticulum (ER) stress occur together; yet, the molecular events linking reactive oxygen species (ROS) to ER stress-mediated apoptosis are currently unknown. Here, we show that PERK (RNA-dependent protein kinase (PKR)-like ER kinase), a key ER stress sensor of the unfolded protein response, is uniquely enriched at the mitochondria-associated ER membranes (MAMs). PERK(-/-) cells display disturbed ER morphology and Ca(2+) signaling as well as significantly weaker ER-mitochondria contact sites. Re-expression of a kinase-dead PERK mutant but not the cytoplasmic deletion mutant of PERK in PERK(-/-) cells re-establishes ER-mitochondria juxtapositions and mitochondrial sensitization to ROS-mediated stress. In contrast to the canonical ER stressor thapsigargin, during ROS-mediated ER stress, PERK contributes to apoptosis twofold by sustaining the levels of pro-apoptotic C/EBP homologous protein (CHOP) and by facilitating the propagation of ROS signals between the ER and mitochondria through its tethering function. Hence, this study reveals an unprecedented role of PERK as a MAMs component required to maintain the ER-mitochondria juxtapositions and propel ROS-mediated mitochondrial apoptosis. Furthermore, it suggests that loss of PERK may cause defects in cell death sensitivity in pathological conditions linked to ROS-mediated ER stress.

  2. The Aspergillus nidulans peripheral ER: disorganization by ER stress and persistence during mitosis.

    PubMed

    Markina-Iñarrairaegui, Ane; Pantazopoulou, Areti; Espeso, Eduardo A; Peñalva, Miguel A

    2013-01-01

    The genetically amenable fungus Aspergillus nidulans is well suited for cell biology studies involving the secretory pathway and its relationship with hyphal tip growth by apical extension. We exploited live-cell epifluorescence microscopy of the ER labeled with the translocon component Sec63, endogenously tagged with GFP, to study the organization of 'secretory' ER domains. The Sec63 A. nidulans ER network includes brightly fluorescent peripheral strands and more faintly labeled nuclear envelopes. In hyphae, the most abundant peripheral ER structures correspond to plasma membrane-associated strands that are polarized, but do not invade the hyphal tip dome, at least in part because the subapical collar of endocytic actin patches constrict the cortical strands in this region. Thus the subapical endocytic ring might provide an attachment for ER strands, thereby ensuring that the growing tip remains 'loaded' with secretory ER. Acute disruption of secretory ER function by reductive stress-mediated induction of the unfolded protein response results in the reversible aggregation of ER strands, cessation of exocytosis and swelling of the hyphal tips. The secretory ER is insensitive to brefeldin A treatment and does not undergo changes during mitosis, in agreement with the reports that apical extension continues at normal rates during this period.

  3. Lipid-anchored Synaptobrevin Provides Little or No Support for Exocytosis or Liposome Fusion*

    PubMed Central

    Chang, Che-Wei; Chiang, Chung-Wei; Gaffaney, Jon D.; Chapman, Edwin R.; Jackson, Meyer B.

    2016-01-01

    SNARE proteins catalyze many forms of biological membrane fusion, including Ca2+-triggered exocytosis. Although fusion mediated by SNAREs generally involves proteins anchored to each fusing membrane by a transmembrane domain (TMD), the role of TMDs remains unclear, and previous studies diverge on whether SNAREs can drive fusion without a TMD. This issue is important because it relates to the question of the structure and composition of the initial fusion pore, as well as the question of whether SNAREs mediate fusion solely by creating close proximity between two membranes versus a more active role in transmitting force to the membrane to deform and reorganize lipid bilayer structure. To test the role of membrane attachment, we generated four variants of the synaptic v-SNARE synaptobrevin-2 (syb2) anchored to the membrane by lipid instead of protein. These constructs were tested for functional efficacy in three different systems as follows: Ca2+-triggered dense core vesicle exocytosis, spontaneous synaptic vesicle exocytosis, and Ca2+-synaptotagmin-enhanced SNARE-mediated liposome fusion. Lipid-anchoring motifs harboring one or two lipid acylation sites completely failed to support fusion in any of these assays. Only the lipid-anchoring motif from cysteine string protein-α, which harbors many lipid acylation sites, provided support for fusion but at levels well below that achieved with wild type syb2. Thus, lipid-anchored syb2 provides little or no support for exocytosis, and anchoring syb2 to a membrane by a TMD greatly improves its function. The low activity seen with syb2-cysteine string protein-α may reflect a slower alternative mode of SNARE-mediated membrane fusion. PMID:26663078

  4. Cellular aspects of M protein and SfbI anchoring to Streptococcus pyogenes wall

    PubMed Central

    Raz, Assaf; Talay, Susanne; Fischetti, Vincent

    2012-01-01

    Summary Wall-anchored surface proteins are critical for the in vivo survival of Streptococcus pyogenes. Cues in the signal sequence direct the membrane translocation of surface proteins: M protein to the septum, and SfbI to the poles. Both proteins are subsequently anchored to the wall by the membrane bound enzyme sortase A. However, the cellular features of these pathways are not fully understood. Here we show that M protein and SfbI are anchored simultaneously throughout the cell cycle. M protein is rapidly anchored at the septum, and in part of the cell cycle, is anchored simultaneously at the mother and daughter septa. Conversely, SfbI accumulates gradually on peripheral peptidoglycan, resulting in a polar distribution. Sortase is not required for translocation of M protein or SfbI at their respective locations. Methicillin-induced unbalanced peptidoglycan synthesis diminishes surface M protein but not SfbI. Furthermore, overexpression of the division regulator DivIVA also diminishes surface M protein but increases SfbI. These results demonstrate a close connection between the regulation of cell division and protein anchoring. Better understanding of the spatial regulation of surface anchoring may lead to the identification of novel targets for the development of anti-infective agents, given the importance of surface molecules for pathogenesis. PMID:22512736

  5. Analysis of glycosyl phosphatidylinositol-anchored proteins by two-dimensional gel electrophoresis.

    PubMed

    Fivaz, M; Vilbois, F; Pasquali, C; van der Goot, F G

    2000-10-01

    The aim of this study was to characterize mammalian glycosyl phosphatidylinositol (GPI)-anchored proteins y two-dimensional gel electrophoresis using immobilized pH gradients. Analysis was performed on detergent-resistant membrane fractions of baby hamster kidney (BHK) cells, since such fractions have previously been shown to be highly enriched in GPI-anchored proteins. Although the GPI-anchored proteins were readily separated by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), these proteins were undetectable on two-dimensional (2-D) gels, even though these gels unambiguously revealed high enrichment of known hydrophobic proteins of detergent-resistant membranes such as caveolin-1 and flotillin-1 (identified by Western blotting and tandem mass spectrometry, respectively). Proper separation of GPI-anchored proteins required cleavage of the lipid tail with phosphatidylinositol-specific phospholipase C, presumably to avoid interference of the hydrophobic phospholipid moiety of GPI-anchors during isoelectric focusing. Using this strategy, BHK cells were observed to contain at least six GPI-anchored proteins. Each protein was also present as multiple isoforms with different isoelectric points and apparent molecular weights, consistent with extensive but differential N-glycosylation. Pretreatment with N-glycosidase F indeed caused the different isoforms of each protein to collapse into a single spot. In addition, quantitative removal of N-linked sugars greatly facilitated the detection of heavily glycosylated proteins and enabled sequencing by nanoelectrospray-tandem mass spectrometry as illustrated for the GPI-anchored protein, Thy-1.

  6. Protozoan parasites glycosylphosphatidylinositol anchors: structures, functions and trends for drug discovery.

    PubMed

    Morotti, Ana Luísa Malaco; Martins-Teixeira, Maristela Braga; Carvalho, Ivone

    2017-07-27

    Glycosylphosphatidylinositol (GPI) anchors are complex molecules that support certain proteins in the outer leaflet of the cell membrane. The GPI anchor scaffold is comprised of a glycan core which contains a phosphoethanolamine linker and a phospholipid chain. GPI-anchored proteins are structurally and functionally diverse and play essential roles in several biological processes, in particular cell-cell interaction. Although all eukaryotes possess GPI anchors in their cell membrane, protozoan parasites use this anchorage much more frequently than higher eukaryotes. There is extensive evidence that parasites' GPI anchors are important for virulence and interaction with host cells, as well as their own survival and viability. Structural and biosynthetic pathway differences between many parasites and mammalian cells have been explored for further understanding about functions and importance of these molecules. Some GPI biosynthesis enzymes have been proposed as alternative targets for therapy against parasitic diseases. This review discusses concisely the main differences between parasitic and mammalian GPI anchor biosynthesis, and highlights the implications of structural variation. Moreover, advances in drug discovery based on GPI anchor structures and biosynthetic pathway are outlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. ATHLETE : Double Auger Anchoring Mechanism

    NASA Technical Reports Server (NTRS)

    Shin, Joseph

    2011-01-01

    The All-Terrain Hex-Legged Extra-Terrestrial Explorer (ATHLETE) is a six-limbed robot designed to support surface explorations on Near Earth Objects, the Moon and Mars. ATHLETE can carry large payloads on its top deck and can carry a fully equipped pressurized habitat in low gravity. The robot has wheels on each of its six articulated limbs, allowing it to actively conform to terrain while driving and to walk when driving is impractical. With the use of a tool adapter, ATHLETE limbs can be equipped with end effectors to support various mission objectives. For work on Near Earth Objects and other microgravity environments, an anchoring mechanism is needed to keep the ATHLETE from floating off the surface. My goal for this spring session at JPL was to design and build a counter rotating, double auger, anchoring mechanism. The mechanism mates to the tool adapter and is driven off the wheel motor. The double auger anchoring mechanism will be tested in a regolith simulant that will determine the uplift capacity of the anchoring mechanism.

  8. ATHLETE : Double Auger Anchoring Mechanism

    NASA Technical Reports Server (NTRS)

    Shin, Joseph

    2011-01-01

    The All-Terrain Hex-Legged Extra-Terrestrial Explorer (ATHLETE) is a six-limbed robot designed to support surface explorations on Near Earth Objects, the Moon and Mars. ATHLETE can carry large payloads on its top deck and can carry a fully equipped pressurized habitat in low gravity. The robot has wheels on each of its six articulated limbs, allowing it to actively conform to terrain while driving and to walk when driving is impractical. With the use of a tool adapter, ATHLETE limbs can be equipped with end effectors to support various mission objectives. For work on Near Earth Objects and other microgravity environments, an anchoring mechanism is needed to keep the ATHLETE from floating off the surface. My goal for this spring session at JPL was to design and build a counter rotating, double auger, anchoring mechanism. The mechanism mates to the tool adapter and is driven off the wheel motor. The double auger anchoring mechanism will be tested in a regolith simulant that will determine the uplift capacity of the anchoring mechanism.

  9. High Velocity Implanting of Anchors

    DTIC Science & Technology

    1984-07-01

    easily by a direct rocket. The sponsors had suggested a water jet approach using cold high pressure gas to supply the energy, instead of propellant gas...development promises to be expensive and lengthy. Fortunately, the water jet does not share this problem. Its development should be timely, and costs should be reasonable. Keyword: Anchors (Marine).

  10. OTEC Anchors: Selection and Plan for Development.

    DTIC Science & Technology

    1977-12-01

    Anchor systems capable of maintaining the Ocean Thermal Energy Conversion ( OTEC ) power plants on station were identified and compared. Deadweight...for OTEC , however, is probably not necessary because it is expected that such hard seafloor anchor sites are best avoided by OTEC plants. A plan for...structural analysis and design technique for the anchor, and finally a demonstration of a near prototype size OTEC free-fall deadweight anchor in early 1980. (Author)

  11. The glycosyl phosphatidylinositol anchor is critical for Ly-6A/E- mediated T cell activation

    PubMed Central

    1991-01-01

    Ly-6E, a glycosyl phosphatidylinositol (GPI)-anchored murine alloantigen that can activate T cells upon antibody cross-linking, has been converted into an integral membrane protein by gene fusion. This fusion product, designated Ly-6EDb, was characterized in transiently transfected COS cells and demonstrated to be an integral cell surface membrane protein. Furthermore, the fusion antigen can be expressed on the surface of the BW5147 class "E" mutant cell line, which only expresses integral membrane proteins but not GPI-anchored proteins. The capability of this fusion antigen to activate T cells was examined by gene transfer studies in D10G4.1, a type 2 T cell helper clones. When transfected into D10 cells, the GPI-anchored Ly-6E antigen, as well as the endogenous GPI-anchored Ly-6A antigen, can initiate T cell activation upon antibody cross-linking. In contrast, the transmembrane anchored Ly-6EDb antigen was unable to mediate T cell activation. Our results demonstrate that the GPI-anchor is critical to Ly-6A/E-mediated T cell activation. PMID:1825084

  12. Steric and not structure-specific factors dictate the endocytic mechanism of glycosylphosphatidylinositol-anchored proteins

    PubMed Central

    Bhagatji, Pinkesh; Leventis, Rania; Comeau, Jonathan; Refaei, Mohammad

    2009-01-01

    Diverse glycosylphosphatidylinositol (GPI)-anchored proteins enter mammalian cells via the clathrin- and dynamin-independent, Arf1-regulated GPI-enriched early endosomal compartment/clathrin-independent carrier endocytic pathway. To characterize the determinants of GPI protein targeting to this pathway, we have used fluorescence microscopic analyses to compare the internalization of artificial lipid-anchored proteins, endogenous membrane proteins, and membrane lipid markers in Chinese hamster ovary cells. Soluble proteins, anchored to cell-inserted saturated or unsaturated phosphatidylethanolamine (PE)-polyethyleneglycols (PEGs), closely resemble the GPI-anchored folate receptor but differ markedly from the transferrin receptor, membrane lipid markers, and even protein-free PE-PEGs, both in their distribution in peripheral endocytic vesicles and in the manner in which their endocytic uptake responds to manipulations of cellular Arf1 or dynamin activity. These findings suggest that the distinctive endocytic targeting of GPI proteins requires neither biospecific recognition of their GPI anchors nor affinity for ordered-lipid microdomains but is determined by a more fundamental property, the steric bulk of the lipid-anchored protein. PMID:19687251

  13. Anchors Aweigh: A Demonstration of Cross-Modality Anchoring and Magnitude Priming

    ERIC Educational Resources Information Center

    Oppenheimer, Daniel M.; LeBoeuf, Robyn A.; Brewer, Noel T.

    2008-01-01

    Research has shown that judgments tend to assimilate to irrelevant "anchors." We extend anchoring effects to show that anchors can even operate across modalities by, apparently, priming a general sense of magnitude that is not moored to any unit or scale. An initial study showed that participants drawing long "anchor" lines made higher numerical…

  14. 30 CFR 57.19002 - Anchoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Anchoring. 57.19002 Section 57.19002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND....19002 Anchoring. Hoists shall be anchored securely. ...

  15. 30 CFR 57.19002 - Anchoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Anchoring. 57.19002 Section 57.19002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND....19002 Anchoring. Hoists shall be anchored securely. ...

  16. 30 CFR 57.7032 - Anchoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Anchoring. 57.7032 Section 57.7032 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Drilling-Underground Only § 57.7032 Anchoring. Columns and the drills mounted on them shall be anchored...

  17. 30 CFR 57.19002 - Anchoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Anchoring. 57.19002 Section 57.19002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND....19002 Anchoring. Hoists shall be anchored securely. ...

  18. 30 CFR 56.19002 - Anchoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Anchoring. 56.19002 Section 56.19002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Anchoring. Hoists shall be anchored securely. ...

  19. 30 CFR 56.19002 - Anchoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Anchoring. 56.19002 Section 56.19002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Anchoring. Hoists shall be anchored securely. ...

  20. 30 CFR 57.7032 - Anchoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Anchoring. 57.7032 Section 57.7032 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Drilling-Underground Only § 57.7032 Anchoring. Columns and the drills mounted on them shall be anchored...

  1. 30 CFR 57.7032 - Anchoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Anchoring. 57.7032 Section 57.7032 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Drilling-Underground Only § 57.7032 Anchoring. Columns and the drills mounted on them shall be anchored...

  2. 30 CFR 57.19002 - Anchoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Anchoring. 57.19002 Section 57.19002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND....19002 Anchoring. Hoists shall be anchored securely. ...

  3. 30 CFR 56.19002 - Anchoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Anchoring. 56.19002 Section 56.19002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Anchoring. Hoists shall be anchored securely. ...

  4. 30 CFR 57.7032 - Anchoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Anchoring. 57.7032 Section 57.7032 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Drilling-Underground Only § 57.7032 Anchoring. Columns and the drills mounted on them shall be anchored...

  5. 30 CFR 56.19002 - Anchoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Anchoring. 56.19002 Section 56.19002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Anchoring. Hoists shall be anchored securely. ...

  6. 30 CFR 57.19002 - Anchoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Anchoring. 57.19002 Section 57.19002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND....19002 Anchoring. Hoists shall be anchored securely. ...

  7. 30 CFR 56.19002 - Anchoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Anchoring. 56.19002 Section 56.19002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Anchoring. Hoists shall be anchored securely. ...

  8. 33 CFR 401.15 - Stern anchors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Stern anchors. 401.15 Section 401... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Condition of Vessels § 401.15 Stern anchors. (a) Every... equipped with a stern anchor. (b) Every integrated tug and barge or articulated tug and barge unit greater...

  9. 24 CFR 3285.401 - Anchoring instructions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... wind by use of anchor assembly type installations or by connecting the home to an alternative foundation system. See § 3285.301. (b) For anchor assembly type installations, the installation instructions... instructions and design for anchor type assemblies must be prepared by a registered professional engineer or...

  10. Modular assembly of synthetic proteins that span the plasma membrane in mammalian cells.

    PubMed

    Qudrat, Anam; Truong, Kevin

    2016-12-09

    To achieve synthetic control over how a cell responds to other cells or the extracellular environment, it is important to reliably engineer proteins that can traffic and span the plasma membrane. Using a modular approach to assemble proteins, we identified the minimum necessary components required to engineer such membrane-spanning proteins with predictable orientation in mammalian cells. While a transmembrane domain (TM) fused to the N-terminus of a protein is sufficient to traffic it to the endoplasmic reticulum (ER), an additional signal peptidase cleavage site downstream of this TM enhanced sorting out of the ER. Next, a second TM in the synthetic protein helped anchor and accumulate the membrane-spanning protein on the plasma membrane. The orientation of the components of the synthetic protein were determined through measuring intracellular Ca(2+) signaling using the R-GECO biosensor and through measuring extracellular quenching of yellow fluorescent protein variants by saturating acidic and salt conditions. This work forms the basis of engineering novel proteins that span the plasma membrane to potentially control intracellular responses to extracellular conditions.

  11. The Charcot Marie Tooth disease protein LITAF is a zinc-binding monotopic membrane protein

    PubMed Central

    Qin, Wenxia; Wunderley, Lydia; Barrett, Anne L.; High, Stephen; Woodman, Philip G.

    2016-01-01

    LITAF (LPS-induced TNF-activating factor) is an endosome-associated integral membrane protein important for multivesicular body sorting. Several mutations in LITAF cause autosomal-dominant Charcot Marie Tooth disease type 1C. These mutations map to a highly conserved C-terminal region, termed the LITAF domain, which includes a 22 residue hydrophobic sequence and flanking cysteine-rich regions that contain peptide motifs found in zinc fingers. Although the LITAF domain is thought to be responsible for membrane integration, the membrane topology of LITAF has not been established. Here, we have investigated whether LITAF is a tail-anchored (TA) membrane-spanning protein or monotopic membrane protein. When translated in vitro, LITAF integrates poorly into ER-derived microsomes compared with Sec61β, a bona fide TA protein. Furthermore, introduction of N-linked glycosylation reporters shows that neither the N-terminal nor C-terminal domains of LITAF translocate into the ER lumen. Expression in cells of an LITAF construct containing C-terminal glycosylation sites confirms that LITAF is not a TA protein in cells. Finally, an immunofluorescence-based latency assay showed that both the N- and C-termini of LITAF are exposed to the cytoplasm. Recombinant LITAF contains 1 mol/mol zinc, while mutation of predicted zinc-binding residues disrupts LITAF membrane association. Hence, we conclude that LITAF is a monotopic membrane protein whose membrane integration is stabilised by a zinc finger. The related human protein, CDIP1 (cell death involved p53 target 1), displays identical membrane topology, suggesting that this mode of membrane integration is conserved in LITAF family proteins. PMID:27582497

  12. Molecular cloning of a glycosylphosphatidylinositol-anchored molecule CDw108.

    PubMed

    Yamada, A; Kubo, K; Takeshita, T; Harashima, N; Kawano, K; Mine, T; Sagawa, K; Sugamura, K; Itoh, K

    1999-04-01

    CDw108, also known as the John-Milton-Hagen human blood group Ag, is an 80-kDa glycosylphosphatidylinositol (GPI)-anchored membrane glycoprotein that is preferentially expressed on activated lymphocytes and E. The molecular characteristics and biological function of the CDw108 were not clarified previously. In this manuscript, we identify the cDNA clone containing the entire coding sequence of the CDw108 gene and report its molecular characteristics. The 1998-base pairs of the open reading frame of the cloned cDNA encoded a protein of 666 amino acids (aa), including the 46 aa of the signal peptide and the 19 aa of the GPI-anchor motif. Thus, the membrane-anchoring form of CDw108 was the 602 aa, and the estimated molecular mass of the unglycosylated form was 68 kDa. The RGD (Arg-Gly-Asp) cell attachment sequence and the five potential N-linked glycosylation sites were located on the membrane-anchoring form. Flow cytometric and immunoprecipitation analyses of the CDw108 cDNA transfectants confirmed that the cloned cDNA encoded the native form of CDw108. The CDw108 mRNA was expressed in activated PBMCs as well as in the spleen, thymus, testis, placenta, and brain, but was not expressed in any other tissues tested. Radiation hybrid mapping indicated that the CDw108 gene was located in the middle of the long arm of chromosome 15 (15q23-24). This molecular information will be critical for understanding the biological function of the CDw108 Ag.

  13. The ROSETTA Lander anchoring system

    NASA Astrophysics Data System (ADS)

    Thiel, Markus; Stöcker, Jakob; Rohe, Christian; Kömle, Norbert I.; Kargl, Günter; Hillenmaier, Olaf; Lell, Peter

    2003-09-01

    A major goal of the ESA cornerstone mission ROSETTA is to land a package of scientific instruments known as the ROSETTA Lander on the nucleus of a comet. Due to the low gravity a highly reliable fixation of the ROSETTA Lander to the target comet 67P/Churyumov-Gerasimenko (3rd) is essential. For that purpose a redundant Anchoring System, consisting of two pyrotechnically actuated Anchoring Harpoons and a redundant Control Electronics has been developed, built and qualified at the Max-Planck-Institut für extraterrestrische Physik (MPE), Garching. The pyrotechnical gas generator has been developed jointly by Pyroglobe GmbH and MPE, the procurement of the control electronics has been sub-contracted to Magson GmbH, Berlin. A study to obtain a suitable lubrication method for the commutator of a brushed DC motor has been conducted at the European Space Tribology Laboratory (ESTL; S. D. Lewis et al., 2003).

  14. Anchoring bias in online voting

    NASA Astrophysics Data System (ADS)

    Yang, Zimo; Zhang, Zi-Ke; Zhou, Tao

    2012-12-01

    Voting online with explicit ratings could largely reflect people's preferences and objects' qualities, but ratings are always irrational, because they may be affected by many unpredictable factors like mood, weather and other people's votes. By analyzing two real systems, this paper reveals a systematic bias embedding in the individual decision-making processes, namely people tend to give a low rating after a low rating, as well as a high rating following a high rating. This so-called anchoring bias is validated via extensive comparisons with null models, and numerically speaking, the extent of bias decays with voting interval in a logarithmic form. Our findings could be applied in the design of recommender systems and considered as important complementary materials to previous knowledge about anchoring effects on financial trades, performance judgments, auctions, and so on.

  15. Anchoring in Numeric Judgments of Visual Stimuli

    PubMed Central

    Langeborg, Linda; Eriksson, Mårten

    2016-01-01

    This article investigates effects of anchoring in age estimation and estimation of quantities, two tasks which to different extents are based on visual stimuli. The results are compared to anchoring in answers to classic general knowledge questions that rely on semantic knowledge. Cognitive load was manipulated to explore possible differences between domains. Effects of source credibility, manipulated by differing instructions regarding the selection of anchor values (no information regarding anchor selection, information that the anchors are randomly generated or information that the anchors are answers from an expert) on anchoring were also investigated. Effects of anchoring were large for all types of judgments but were not affected by cognitive load or by source credibility in either one of the researched domains. A main effect of cognitive load on quantity estimations and main effects of source credibility in the two visually based domains indicate that the manipulations were efficient. Implications for theoretical explanations of anchoring are discussed. In particular, because anchoring did not interact with cognitive load, the results imply that the process behind anchoring in visual tasks is predominantly automatic and unconscious. PMID:26941684

  16. Anchoring in Numeric Judgments of Visual Stimuli.

    PubMed

    Langeborg, Linda; Eriksson, Mårten

    2016-01-01

    This article investigates effects of anchoring in age estimation and estimation of quantities, two tasks which to different extents are based on visual stimuli. The results are compared to anchoring in answers to classic general knowledge questions that rely on semantic knowledge. Cognitive load was manipulated to explore possible differences between domains. Effects of source credibility, manipulated by differing instructions regarding the selection of anchor values (no information regarding anchor selection, information that the anchors are randomly generated or information that the anchors are answers from an expert) on anchoring were also investigated. Effects of anchoring were large for all types of judgments but were not affected by cognitive load or by source credibility in either one of the researched domains. A main effect of cognitive load on quantity estimations and main effects of source credibility in the two visually based domains indicate that the manipulations were efficient. Implications for theoretical explanations of anchoring are discussed. In particular, because anchoring did not interact with cognitive load, the results imply that the process behind anchoring in visual tasks is predominantly automatic and unconscious.

  17. Anchor for Fiberglas Guy Rod

    NASA Technical Reports Server (NTRS)

    Wilson, A. H.

    1982-01-01

    Solution to problem of anchoring fiberglas guy rods to install nut with threads on outer circumference, followed by aluminum sleeve. Sleeve has opening oval at upper and round at bottom end. End of rod is split so fiberglas wedge can be inserted to form V-shaped end. Spread end of rod fits into tapered hole in sleeve and threaded aluminum coupling is put over rod and sleeve.

  18. Holding Capacity of Plate Anchors

    DTIC Science & Technology

    1980-10-01

    Engineering Laboratory, Technical Note N-1545. Port Hueneme, Calif., Jan 1979. 4 safe arm device gun barrel reaction vessel Figure 1-2. CEL 20K propell...anchors in cohesive soils, Civil Engineering Laboratory, Technical Note N-1545. Port Hueneme, Calif., Jan 1979. Berger, W. H., and E. L. Winterer...NORTHWESTERN UNIV Z.P. Bazant Evanston IL NY CITY COMMUNITY COLLEGE BROOKLYN, NY (LIBRARY) NYS ENERGY OFFICE Library, Albany NY OREGON STATE UNIVERSITY (CE

  19. Independent control of polar and azimuthal anchoring.

    PubMed

    Anquetil-Deck, C; Cleaver, D J; Bramble, J P; Atherton, T J

    2013-07-01

    Monte Carlo simulation, experiment, and continuum theory are used to examine the anchoring exhibited by a nematic liquid crystal at a patterned substrate comprising a periodic array of rectangles that, respectively, promote vertical and planar alignment. It is shown that the easy axis and effective anchoring energy promoted by such surfaces can be readily controlled by adjusting the design of the pattern. The calculations reveal rich behavior: for strong anchoring, as exhibited by the simulated system, for rectangle ratios ≥2 the nematic aligns in the direction of the long edge of the rectangles, the azimuthal anchoring coefficient changing with pattern shape. In weak anchoring scenarios, however, including our experimental systems, preferential anchoring is degenerate between the two rectangle diagonals. Bistability between diagonally aligned and edge-aligned arrangement is predicted for intermediate combinations of anchoring coefficient and system length scale.

  20. Mutational analysis of the variant surface glycoprotein GPI-anchor signal sequence in Trypanosoma brucei.

    PubMed

    Böhme, Ulrike; Cross, George A M

    2002-02-15

    The variant surface glycoproteins (VSG) of Trypanosoma brucei are anchored to the cell surface via a glycosylphosphatidylinositol (GPI) anchor. All GPI-anchored proteins are synthesized with a C-terminal signal sequence, which is replaced by a GPI-anchor in a rapid post-translational transamidation reaction. VSG GPI signal sequences are extraordinarily conserved. They contain either 23 or 17 amino acids, a difference that distinguishes the two major VSG classes, and consist of a spacer sequence followed by a more hydrophobic region. The omega amino acid, to which GPI is transferred, is either Ser, Asp or Asn, the omega+2 amino acid is always Ser, and the omega+7 amino acid is almost always Lys. In order to determine whether this high conservation is necessary for GPI anchoring, we introduced several mutations into the signal peptide. Surprisingly, changing the most conserved amino acids, at positions omega+1, omega+2 and omega+7, had no detectable effect on the efficiency of GPI-anchoring or on protein abundance. Several more extensive changes also had no discernable impact on GPI-anchoring. Deleting the entire 23 amino-acid signal sequence or the 15 amino-acid hydrophobic region generated proteins that were not anchored. Instead of being secreted, these truncated proteins accumulated in the endoplasmic reticulum prior to lysosomal degradation. Replacing the GPI signal sequence with a proven cell-surface membrane-spanning domain reduced expression by about 99% and resulted not in cell surface expression but in accumulation close to the flagellar pocket and in non-lysosomal compartments. These results indicate that the high conservation of the VSG GPI signal sequence is not necessary for efficient expression and GPI attachment. Instead, the GPI anchor is essential for surface expression of VSG. However, because the VSG is a major virulence factor, it is possible that small changes in the efficiency of GPI anchoring, undetectable in our experiments, might have

  1. Polymers at membranes

    NASA Astrophysics Data System (ADS)

    Breidenich, Markus

    2000-11-01

    The surface of biological cells consists of a lipid membrane and a large amount of various proteins and polymers, which are embedded in the membrane or attached to it. We investigate how membranes are influenced by polymers, which are anchored to the membrane by one end. The entropic pressure exerted by the polymer induces a curvature, which bends the membrane away from the polymer. The resulting membrane shape profile is a cone in the vicinity of the anchor segment and a catenoid far away from it. The perturbative calculations are confirmed by Monte-Carlo simulations. An additional attractive interaction between polymer and membrane reduces the entropically induced curvature. In the limit of strong adsorption, the polymer is localized directly on the membrane surface and does not induce any pressure, i.e. the membrane curvature vanishes. If the polymer is not anchored directly on the membrane surface, but in a non-vanishing anchoring distance, the membrane bends towards the polymer for strong adsorption. In the last part of the thesis, we study membranes under the influence of non-anchored polymers in solution. In the limit of pure steric interactions between the membrane and free polymers, the membrane curves towards the polymers (in contrast to the case of anchored polymers). In the limit of strong adsorption the membrane bends away from the polymers. Die Oberfläche biologischer Zellen besteht aus einer Lipidmembran und einer Vielzahl von Proteinen und Polymeren, die in die Membran eingebaut sind. Die Beeinflussung der Membran durch Polymere, die mit einem Ende an der Membran verankert sind, wird im Rahmen dieser Arbeit anhand eines vereinfachten biomimetischen Systems studiert. Der entropische Druck, den das Polymer durch Stöße auf die Membran ausübt, führt dazu, dass sich die Membran vom Polymer weg krümmt. Die resultierende Membranform ist ein Kegel in der Nähe des Ankers und ein Katenoid in grossem Abstand vom Ankerpunkt. Monte Carlo-Simulationen best

  2. Membrane trafficking: ER export encounters dualism.

    PubMed

    Barlowe, Charles

    2015-02-16

    Cytoplasmic coat protein complexes perform central roles in sorting protein constituents within the endomembrane system. A new study reveals that the COPII coat operates through dual recognition of signals in a sorting receptor and its bound cargo to promote efficient export from the endoplasmic reticulum. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Phosphoinositide kinase signaling controls ER-PM cross-talk

    PubMed Central

    Omnus, Deike J.; Manford, Andrew G.; Bader, Jakob M.; Emr, Scott D.; Stefan, Christopher J.

    2016-01-01

    Membrane lipid dynamics must be precisely regulated for normal cellular function, and disruptions in lipid homeostasis are linked to the progression of several diseases. However, little is known about the sensory mechanisms for detecting membrane composition and how lipid metabolism is regulated in response to membrane stress. We find that phosphoinositide (PI) kinase signaling controls a conserved PDK-TORC2-Akt signaling cascade as part of a homeostasis network that allows the endoplasmic reticulum (ER) to modulate essential responses, including Ca2+-regulated lipid biogenesis, upon plasma membrane (PM) stress. Furthermore, loss of ER-PM junctions impairs this protective response, leading to PM integrity defects upon heat stress. Thus PI kinase–mediated ER-PM cross-talk comprises a regulatory system that ensures cellular integrity under membrane stress conditions. PMID:26864629

  4. An apparent association between glycosylphosphatidylinositol-anchored proteins and a sphingolipid in Tetrahymena mimbres.

    PubMed Central

    Zhang, X; Thompson, G A

    1997-01-01

    Sphingolipids are thought to stabilize glycosylphosphatidylinositol (GPI)-anchored protein-rich membrane domains of yeast and polarized higher animal cells during the processing and targeting of these proteins to the plasma membrane. A widely used criterion for identifying the stable sphingolipid- and GPI-anchored protein-enriched membrane domains is the resistance of these lipid-modified proteins to solubilization by the detergent Triton X-100 (TX-100) at low temperature. Surprisingly, there have been no reports of sphingolipid/GPI-anchored protein association in protozoans, despite the fact that these cells contain considerably higher levels of GPI-anchored proteins than does any other organism. We report here the presence in Tetrahymena mimbres of a significant pool of GPI-anchored proteins which resisted extraction by 1% TX-100 at 4 degrees C but not at 37 degrees C. Of the total cellular complement of GPI-anchored proteins, which together accounted for more than 2% of whole-cell protein and were especially enriched in surface membranes, 10% of the major 63kDa component (gpi63) and 23% of a somewhat less abundant component (gpi23) were insoluble in TX-100 at 4 degrees C. A substantial proportion of the cell's only abundant sphingolipid, ceramideaminoethylphosphonate (CAEP), was also insoluble in 1% TX-100 at 4 degrees C. Radiolabelling studies involving [3H]leucine incorporation into proteins and [3H]palmitic acid incorporation into lipids revealed that the TX-100-resistant gpi63, gpi23 and CAEP molecules were all metabolically distinct from their TX-100-soluble counterparts in other compartments of the cell. The presence of detergent-resistant sphingolipid/GPI-anchored protein domains in non-polarized ciliate and trypanosomatid cells was probably obscured in previous studies by the profusion of accompanying detergent-soluble molecules. PMID:9173882

  5. New anchoring method for tarsal tendon transfers in myelomeningocele patients.

    PubMed

    Tomonori, Kenmoku; Makoto, Kamegaya; Takashi, Saisu

    2007-12-01

    We describe a new anchoring method for tarsal tendon transfers in myelomeningocele patients to protect the sole of the foot from pressure sores and skin necrosis and to loosen the tension of the transferred tendon.Tendon transfer procedures were performed in 51 feet (33 patients) with myelomeningocele. We transferred tibialis anterior tendons to the second or third cuneiform in 19 with equinovarus deformities, and transferred tibialis anterior tendons to the calcaneus through the interosseous membrane in 32 with talipes calcaneus. Clinical results were evaluated with the muscle power of transferred tendons using manual muscle testing 6 months after surgery. The muscle test result was classified as good, fair, and poor.After passing the tendon through the bony hole, a 2.0-mm Kirschner wire was inserted from the sole to the tibia through the ankle joint at neutral. (It extended from the sole through the posterior cortex of the tibia.) The remaining part of the wire was bent and formed into a loop shaped like the Greek letter "zeta" (zeta). The thread was then tied to the loop of the wire as tightly as possible. In this way, there was no contact with the sole during anchoring, thus avoiding ulcers. In addition, the transferred tendon could be kept stable because the patient's ankle was fixed by the Kirschner wire.No cases of wound infection or skin necrosis of the sole occurred. In 49 of the 51 cases, transferred tendons were firmly anchored to tarsal bones. Muscle strength was good for 83%, fair for 13%, and poor for 4%. Consequently, 45 feet could obtain plantigrade pattern during their walking with shoe inserts or occasional use of ankle-foot orthoses.Our anchoring method has the advantage of protecting the sole of the foot from pressure sores and skin necrosis, as well as maintaining tension on the transferred tendon until it settles down in an anchor hole.

  6. Accessorizing and anchoring the LINC complex for multifunctionality

    PubMed Central

    Chang, Wakam; Worman, Howard J.

    2015-01-01

    The linker of nucleoskeleton and cytoskeleton (LINC) complex, composed of outer and inner nuclear membrane Klarsicht, ANC-1, and Syne homology (KASH) and Sad1 and UNC-84 (SUN) proteins, respectively, connects the nucleus to cytoskeletal filaments and performs diverse functions including nuclear positioning, mechanotransduction, and meiotic chromosome movements. Recent studies have shed light on the source of this diversity by identifying factors associated with the complex that endow specific functions as well as those that differentially anchor the complex within the nucleus. Additional diversity may be provided by accessory factors that reorganize the complex into higher-ordered arrays. As core components of the LINC complex are associated with several diseases, understanding the role of accessory and anchoring proteins could provide insights into pathogenic mechanisms. PMID:25559183

  7. Key role of heparan sulfate chains in assembly of anchoring complex at the dermal-epidermal junction.

    PubMed

    Iriyama, Shunsuke; Tsunenaga, Makoto; Amano, Satoshi; Adachi, Eijiro

    2011-11-01

    Epidermal basement membrane forms anchoring complex composed of hemidesmosomes, anchoring filaments, lamina densa and anchoring fibrils to link epidermis to dermis. However, the anchoring complex is rarely formed in skin equivalent models, probably because of degradation of extracellular matrix (ECM) proteins and heparan sulfate chains by matrix metalloproteinases (MMPs) and heparanase, respectively. To explore the roles of ECM proteins and heparan sulfate in anchoring complex assembly, we used specific inhibitors of MMPs and heparanase, and the formation of anchoring complex was analysed in terms of polarized deposition of collagen VII, BP180 and β4 integrin at the dermal-epidermal junction (DEJ) by means of immunohistochemistry and transmission electron microscopy (TEM). The deposition of collagen VII was polarized to the basal side by the addition of MMP inhibitor, and the staining intensity was increased by combined treatment with MMP inhibitor and heparanase inhibitor, which enhanced anchoring fibril formation as observed by TEM. BP180 was polarized to the basal side by heparanase inhibitor, which protects HS chains, but not by MMP inhibitor. MMP inhibitor improved the polarization of β4 integrin. Hemidesmosomes were formed in the presence of each inhibitor, as observed by TEM, and formation was greatly enhanced by the combined treatment. These findings suggest that heparan sulfate chains, in addition to E