Science.gov

Sample records for er membrane anchor

  1. Characterization of the C-terminal ER membrane anchor of PTP1B

    SciTech Connect

    Anderie, Ines Schulz, Irene; Schmid, Andreas

    2007-09-10

    The tyrosine phosphatase PTP1B is an important regulator of cell function. In living cells PTP1B activity is restricted to the vicinity of the endoplasmic reticulum (ER) by post-translational C-terminal attachment of PTP1B to the ER membrane network. In our study we investigated the membrane anchor of PTP1B by use of EGFP fusion proteins. We demonstrate that the membrane anchor of PTP1B cannot be narrowed down to a unique amino acid sequence with a defined start and stop point but rather is moveable within several amino acids. Removal of up to seven amino acids from the C-terminus, as well as exchange of single amino acids in the putative transmembrane sequence did not influence subcellular localization of PTP1B. With the method of bimolecular fluorescence complementation we could demonstrate dimerization of PTP1B in vivo. Homodimerization was, in contrast to other tail-anchored proteins, not dependent on the membrane anchor. Our data demonstrate that the C-terminal membrane anchor of PTP1B is formed by a combination of a single stretch transmembrane domain (TMD) followed by a tail. TMD and tail length are variable and there are no sequence-specific features. Our data for PTP1B are consistent with a concept that explains the ER membrane anchor of tail-anchored proteins as a physicochemical structure.

  2. Rhomboid intramembrane protease RHBDL4 triggers ER-export and non-canonical secretion of membrane-anchored TGFα

    PubMed Central

    Wunderle, Lina; Knopf, Julia D.; Kühnle, Nathalie; Morlé, Aymeric; Hehn, Beate; Adrain, Colin; Strisovsky, Kvido; Freeman, Matthew; Lemberg, Marius K.

    2016-01-01

    Rhomboid intramembrane proteases are the enzymes that release active epidermal growth factor receptor (EGFR) ligands in Drosophila and C. elegans, but little is known about their functions in mammals. Here we show that the mammalian rhomboid protease RHBDL4 (also known as Rhbdd1) promotes trafficking of several membrane proteins, including the EGFR ligand TGFα, from the endoplasmic reticulum (ER) to the Golgi apparatus, thereby triggering their secretion by extracellular microvesicles. Our data also demonstrate that RHBDL4-dependent trafficking control is regulated by G-protein coupled receptors, suggesting a role for this rhomboid protease in pathological conditions, including EGFR signaling. We propose that RHBDL4 reorganizes trafficking events within the early secretory pathway in response to GPCR signaling. Our work identifies RHBDL4 as a rheostat that tunes secretion dynamics and abundance of specific membrane protein cargoes. PMID:27264103

  3. Bat3 promotes the membrane integration of tail-anchored proteins.

    PubMed

    Leznicki, Pawel; Clancy, Anne; Schwappach, Blanche; High, Stephen

    2010-07-01

    The membrane integration of tail-anchored proteins at the endoplasmic reticulum (ER) is post-translational, with different tail-anchored proteins exploiting distinct cytosolic factors. For example, mammalian TRC40 has a well-defined role during delivery of tail-anchored proteins to the ER. Although its Saccharomyces cerevisiae equivalent, Get3, is known to function in concert with at least four other components, Get1, Get2, Get4 and Get5 (Mdy2), the role of additional mammalian proteins during tail-anchored protein biogenesis is unclear. To this end, we analysed the cytosolic binding partners of Sec61beta, a well-defined substrate of TRC40, and identified Bat3 as a previously unknown interacting partner. Depletion of Bat3 inhibits the membrane integration of Sec61beta, but not of a second, TRC40-independent, tail-anchored protein, cytochrome b5. Thus, Bat3 influences the in vitro membrane integration of tail-anchored proteins using the TRC40 pathway. When expressed in Saccharomyces cerevisiae lacking a functional GET pathway for tail-anchored protein biogenesis, Bat3 associates with the resulting cytosolic pool of non-targeted chains and diverts it to the nucleus. This Bat3-mediated mislocalisation is not dependent upon Sgt2, a recently identified component of the yeast GET pathway, and we propose that Bat3 either modulates the TRC40 pathway in higher eukaryotes or provides an alternative fate for newly synthesised tail-anchored proteins.

  4. Facilitative plasma membrane transporters function during ER transit

    PubMed Central

    Takanaga, Hitomi; Frommer, Wolf B.

    2010-01-01

    Although biochemical studies suggested a high permeability of the endoplasmic reticulum (ER) membrane for small molecules, proteomics identified few specialized ER transporters. To test functionality of transporters during ER passage, we tested whether glucose transporters (GLUTs, SGLTs) destined for the plasma membrane are active during ER transit. HepG2 cells were characterized by low-affinity ER transport activity, suggesting that ER uptake is protein mediated. The much-reduced capacity of HEK293T cells to take up glucose across the plasma membrane correlated with low ER transport. Ectopic expression of GLUT1, -2, -4, or -9 induced GLUT isoform-specific ER transport activity in HEK293T cells. In contrast, the Na+-glucose cotransporter SGLT1 mediated efficient plasma membrane glucose transport but no detectable ER uptake, probably because of lack of a sufficient sodium gradient across the ER membrane. In conclusion, we demonstrate that GLUTs are sufficient for mediating ER glucose transport en route to the plasma membrane. Because of the low volume of the ER, trace amounts of these uniporters contribute to ER solute import during ER transit, while uniporters and cation-coupled transporters carry out export from the ER, together potentially explaining the low selectivity of ER transport. Expression levels and residence time of transporters in the ER, as well as their coupling mechanisms, could be key determinants of ER permeability.—Takanaga, H., Frommer, W. B. Facilitative plasma membrane transporters function during ER transit. PMID:20354141

  5. Mechanisms of insertion of tail-anchored proteins into the membrane of the endoplasmic reticulum.

    PubMed

    Colombo, Sara F; Fasana, Elisa

    2011-12-01

    Tail-anchored proteins (TAPs) are a subclass of type II integral membrane proteins that carry out important and diverse functions within cells. Structurally, TAPs present an N-terminal domain exposed to the cytosol and a single transmembrane domain (TMD) close to the C-terminus, the latter is responsible for the targeting and insertion into the proper intracellular membrane (endoplasmic reticulum (ER), mitochondria, peroxisomes). Due to this particular topology, TAPs insert obligatorily into membranes by post-translational pathways and are excluded from the classical SRP dependent co-translational ER insertion. ER-targeted TAPs can follow two distinct ways of insertion according to the hydrophobicity of their TMD. In the "assisted" pathway, TAPs with more hydrophobic TMDs insert in the ER membrane with the requirement of energy and the involvement of proteinaceous component(s). By contrast neither energy, nor membrane or cytosolic proteins are necessary and do not even improve the "unassisted" insertion of TAPs with moderately hydrophobic TMDs. In this review, we discuss the most relevant recent data regarding the molecular mechanism that underlies these processes.

  6. MCD4 Encodes a Conserved Endoplasmic Reticulum Membrane Protein Essential for Glycosylphosphatidylinositol Anchor Synthesis in Yeast

    PubMed Central

    Gaynor, Erin C.; Mondésert, Guillaume; Grimme, Stephen J.; Reed, Steve I.; Orlean, Peter; Emr, Scott D.

    1999-01-01

    Glycosylphosphatidylinositol (GPI)-anchored proteins are cell surface-localized proteins that serve many important cellular functions. The pathway mediating synthesis and attachment of the GPI anchor to these proteins in eukaryotic cells is complex, highly conserved, and plays a critical role in the proper targeting, transport, and function of all GPI-anchored protein family members. In this article, we demonstrate that MCD4, an essential gene that was initially identified in a genetic screen to isolate Saccharomyces cerevisiae mutants defective for bud emergence, encodes a previously unidentified component of the GPI anchor synthesis pathway. Mcd4p is a multimembrane-spanning protein that localizes to the endoplasmic reticulum (ER) and contains a large NH2-terminal ER lumenal domain. We have also cloned the human MCD4 gene and found that Mcd4p is both highly conserved throughout eukaryotes and has two yeast homologues. Mcd4p’s lumenal domain contains three conserved motifs found in mammalian phosphodiesterases and nucleotide pyrophosphases; notably, the temperature-conditional MCD4 allele used for our studies (mcd4–174) harbors a single amino acid change in motif 2. The mcd4–174 mutant (1) is defective in ER-to-Golgi transport of GPI-anchored proteins (i.e., Gas1p) while other proteins (i.e., CPY) are unaffected; (2) secretes and releases (potentially up-regulated cell wall) proteins into the medium, suggesting a defect in cell wall integrity; and (3) exhibits marked morphological defects, most notably the accumulation of distorted, ER- and vesicle-like membranes. mcd4–174 cells synthesize all classes of inositolphosphoceramides, indicating that the GPI protein transport block is not due to deficient ceramide synthesis. However, mcd4–174 cells have a severe defect in incorporation of [3H]inositol into proteins and accumulate several previously uncharacterized [3H]inositol-labeled lipids whose properties are consistent with their being GPI precursors

  7. ER Stress-Induced Clearance of Misfolded GPI-Anchored Proteins via the Secretory Pathway

    PubMed Central

    Satpute-Krishnan, Prasanna; Ajinkya, Monica; Bhat, Savithri; Itakura, Eisuke; Hegde, Ramanujan S.; Lippincott-Schwartz, Jennifer

    2014-01-01

    Summary Proteins destined for the cell surface are first assessed in the endoplasmic reticulum (ER) for proper folding before release into the secretory pathway. This ensures that defective proteins are normally prevented from entering the extracellular environment, where they could be disruptive. Here, we report that, when ER folding capacity is saturated during stress, misfolded glycosylphosphatidylinositol-anchored proteins dissociate from resident ER chaperones, engage export receptors, and quantitatively leave the ER via vesicular transport to the Golgi. Clearance from the ER commences within minutes of acute ER stress, before the transcriptional component of the unfolded protein response is activated. These aberrant proteins then access the cell surface transiently before destruction in lysosomes. Inhibiting this stress-induced pathway by depleting the ER-export receptors leads to aggregation of the ER-retained misfolded protein. Thus, this rapid response alleviates the elevated burden of misfolded proteins in the ER at the onset of ER stress, promoting protein homeostasis in the ER. PMID:25083867

  8. Membrane-anchored serine proteases in health and disease

    PubMed Central

    Bugge, Thomas; Wu, Qingyu

    2013-01-01

    Serine proteases of the trypsin-like family have long been recognized to be critical effectors of biological processes as diverse as digestion, blood coagulation, fibrinolysis, and immunity. In recent years, a subgroup of these enzymes has been identified that are anchored directly to plasma membranes, either by a carboxy-terminal transmembrane domain (Type I), an amino-terminal transmembrane domain with a cytoplasmic extension (Type II or TTSP), or through a glycosyl-phosphatidylinositol (GPI) linkage. Recent biochemical, cellular, and in vivo analyses have now established that membrane-anchored serine proteases are key pericellular contributors to processes vital for development and the maintenance of homeostasis. This chapter will review our current knowledge of the biological and physiological functions of these proteases, their molecular substrates, and their contributions to disease. PMID:21238933

  9. Binding constants of membrane-anchored receptors and ligands depend strongly on the nanoscale roughness of membranes.

    PubMed

    Hu, Jinglei; Lipowsky, Reinhard; Weikl, Thomas R

    2013-09-17

    Cell adhesion and the adhesion of vesicles to the membranes of cells or organelles are pivotal for immune responses, tissue formation, and cell signaling. The adhesion processes depend sensitively on the binding constant of the membrane-anchored receptor and ligand proteins that mediate adhesion, but this constant is difficult to measure in experiments. We have investigated the binding of membrane-anchored receptor and ligand proteins with molecular dynamics simulations. We find that the binding constant of the anchored proteins strongly decreases with the membrane roughness caused by thermally excited membrane shape fluctuations on nanoscales. We present a theory that explains the roughness dependence of the binding constant for the anchored proteins from membrane confinement and that relates this constant to the binding constant of soluble proteins without membrane anchors. Because the binding constant of soluble proteins is readily accessible in experiments, our results provide a useful route to compute the binding constant of membrane-anchored receptor and ligand proteins.

  10. Structural basis for membrane anchoring of HIV-1 envelope spike.

    PubMed

    Dev, Jyoti; Park, Donghyun; Fu, Qingshan; Chen, Jia; Ha, Heather Jiwon; Ghantous, Fadi; Herrmann, Tobias; Chang, Weiting; Liu, Zhijun; Frey, Gary; Seaman, Michael S; Chen, Bing; Chou, James J

    2016-07-01

    HIV-1 envelope spike (Env) is a type I membrane protein that mediates viral entry. We used nuclear magnetic resonance to determine an atomic structure of the transmembrane (TM) domain of HIV-1 Env reconstituted in bicelles that mimic a lipid bilayer. The TM forms a well-ordered trimer that protects a conserved membrane-embedded arginine. An amino-terminal coiled-coil and a carboxyl-terminal hydrophilic core stabilize the trimer. Individual mutations of conserved residues did not disrupt the TM trimer and minimally affected membrane fusion and infectivity. Major changes in the hydrophilic core, however, altered the antibody sensitivity of Env. These results show how a TM domain anchors, stabilizes, and modulates a viral envelope spike and suggest that its influence on Env conformation is an important consideration for HIV-1 immunogen design. PMID:27338706

  11. A C-terminal Membrane Anchor Affects the Interactions of Prion Proteins with Lipid Membranes*

    PubMed Central

    Chu, Nam K.; Shabbir, Waheed; Bove-Fenderson, Erin; Araman, Can; Lemmens-Gruber, Rosa; Harris, David A.; Becker, Christian F. W.

    2014-01-01

    Membrane attachment via a C-terminal glycosylphosphatidylinositol anchor is critical for conversion of PrPC into pathogenic PrPSc. Therefore the effects of the anchor on PrP structure and function need to be deciphered. Three PrP variants, including full-length PrP (residues 23–231, FL_PrP), N-terminally truncated PrP (residues 90–231, T_PrP), and PrP missing its central hydrophobic region (Δ105–125, ΔCR_PrP), were equipped with a C-terminal membrane anchor via a semisynthesis strategy. Analyses of the interactions of lipidated PrPs with phospholipid membranes demonstrated that C-terminal membrane attachment induces a different binding mode of PrP to membranes, distinct from that of non-lipidated PrPs, and influences the biochemical and conformational properties of PrPs. Additionally, fluorescence-based assays indicated pore formation by lipidated ΔCR_PrP, a variant that is known to be highly neurotoxic in transgenic mice. This finding was supported by using patch clamp electrophysiological measurements of cultured cells. These results provide new evidence for the role of the membrane anchor in PrP-lipid interactions, highlighting the importance of the N-terminal and the central hydrophobic domain in these interactions. PMID:25217642

  12. A C-terminal membrane anchor affects the interactions of prion proteins with lipid membranes.

    PubMed

    Chu, Nam K; Shabbir, Waheed; Bove-Fenderson, Erin; Araman, Can; Lemmens-Gruber, Rosa; Harris, David A; Becker, Christian F W

    2014-10-24

    Membrane attachment via a C-terminal glycosylphosphatidylinositol anchor is critical for conversion of PrP(C) into pathogenic PrP(Sc). Therefore the effects of the anchor on PrP structure and function need to be deciphered. Three PrP variants, including full-length PrP (residues 23-231, FL_PrP), N-terminally truncated PrP (residues 90-231, T_PrP), and PrP missing its central hydrophobic region (Δ105-125, ΔCR_PrP), were equipped with a C-terminal membrane anchor via a semisynthesis strategy. Analyses of the interactions of lipidated PrPs with phospholipid membranes demonstrated that C-terminal membrane attachment induces a different binding mode of PrP to membranes, distinct from that of non-lipidated PrPs, and influences the biochemical and conformational properties of PrPs. Additionally, fluorescence-based assays indicated pore formation by lipidated ΔCR_PrP, a variant that is known to be highly neurotoxic in transgenic mice. This finding was supported by using patch clamp electrophysiological measurements of cultured cells. These results provide new evidence for the role of the membrane anchor in PrP-lipid interactions, highlighting the importance of the N-terminal and the central hydrophobic domain in these interactions.

  13. Structural features of the extracellular portion of membrane-anchoring peptides on membrane-bound immunoglobulins.

    PubMed

    Major, J G; Davis, F M; Liou, R S; Chang, T W

    1996-02-01

    Membrane-bound immunoglobulins, mIgs, are displayed as transmembrane proteins on the surface of B cells, where they serve as antigen receptors. The mIgs are anchored to the membrane through a carboxy-terminal extension of the immunoglobulin heavy chain. Three distinct structural regions of these membrane-anchor peptides, of mouse and human mIgs, have been delineated: (1) a central conserved stretch of 25 hydrophobic, unchanged amino acid residues, which spans the membrane lipid bilayer; (2) a C-terminal hydrophilic region of 3-28 amino acids, which is intracytoplasmic; and (3) an N-terminal extracellular hydrophilic region of 13-67 amino acids, which is isotype-specific. Here we report predicted secondary and tertiary structures of the third structural region of the membrane anchoring peptide along with corroborating experimental evidence. The predictions of secondary and tertiary structure indicate that most of these regions can assume an chi-helical conformation. Circular dichroism spectroscopy of corresponding synthetic peptide confirms this essential feature. The choice of solvent and pH have dramatic effects on peptide helicity; solvent conditions consistent with a membrane-proximal environment promote helicity. Additional studies suggest that the two adjacent extracellular peptides may be stabilized through coiled-coil interactions similar to those described for some other transmembrane proteins.

  14. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    SciTech Connect

    Wang, Jimin Li, Yue; Modis, Yorgo

    2014-04-15

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. - Highlights: • Structures of pestivirus E2 proteins impose constraints on E1, E2 membrane anchors. • Atomic models of the E1 and E2 membrane anchors were generated in silico. • A “snorkeling” arginine completes the short helical hairpin in the E2 membrane anchor. • Roles in pH sensing and E1–E2 disulfide bond formation are proposed for E1 residues. • Implications for E1 ectodomain structure and disulfide bonding pattern are discussed.

  15. Binding kinetics of membrane-anchored receptors and ligands: Molecular dynamics simulations and theory

    NASA Astrophysics Data System (ADS)

    Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard; Weikl, Thomas R.

    2015-12-01

    The adhesion of biological membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. Central questions are how the binding kinetics of these proteins is affected by the membranes and by the membrane anchoring of the proteins. In this article, we (i) present detailed data for the binding of membrane-anchored proteins from coarse-grained molecular dynamics simulations and (ii) provide a theory that describes how the binding kinetics depends on the average separation and thermal roughness of the adhering membranes and on the anchoring, lengths, and length variations of the proteins. An important element of our theory is the tilt of bound receptor-ligand complexes and transition-state complexes relative to the membrane normals. This tilt results from an interplay of the anchoring energy and rotational entropy of the complexes and facilitates the formation of receptor-ligand bonds at membrane separations smaller than the preferred separation for binding. In our simulations, we have considered both lipid-anchored and transmembrane receptor and ligand proteins. We find that the binding equilibrium constant and binding on-rate constant of lipid-anchored proteins are considerably smaller than the binding constant and on-rate constant of rigid transmembrane proteins with identical binding domains.

  16. Binding kinetics of membrane-anchored receptors and ligands: Molecular dynamics simulations and theory.

    PubMed

    Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard; Weikl, Thomas R

    2015-12-28

    The adhesion of biological membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. Central questions are how the binding kinetics of these proteins is affected by the membranes and by the membrane anchoring of the proteins. In this article, we (i) present detailed data for the binding of membrane-anchored proteins from coarse-grained molecular dynamics simulations and (ii) provide a theory that describes how the binding kinetics depends on the average separation and thermal roughness of the adhering membranes and on the anchoring, lengths, and length variations of the proteins. An important element of our theory is the tilt of bound receptor-ligand complexes and transition-state complexes relative to the membrane normals. This tilt results from an interplay of the anchoring energy and rotational entropy of the complexes and facilitates the formation of receptor-ligand bonds at membrane separations smaller than the preferred separation for binding. In our simulations, we have considered both lipid-anchored and transmembrane receptor and ligand proteins. We find that the binding equilibrium constant and binding on-rate constant of lipid-anchored proteins are considerably smaller than the binding constant and on-rate constant of rigid transmembrane proteins with identical binding domains.

  17. Sorting of GPI-anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI

    PubMed Central

    Fujita, Morihisa; Watanabe, Reika; Jaensch, Nina; Romanova-Michaelides, Maria; Satoh, Tadashi; Kato, Masaki; Riezman, Howard; Yamaguchi, Yoshiki; Maeda, Yusuke

    2011-01-01

    Glycosylphosphatidylinositol (GPI) anchoring of proteins is a posttranslational modification occurring in the endoplasmic reticulum (ER). After GPI attachment, proteins are transported by coat protein complex II (COPII)-coated vesicles from the ER. Because GPI-anchored proteins (GPI-APs) are localized in the lumen, they cannot interact with cytosolic COPII components directly. Receptors that link GPI-APs to COPII are thought to be involved in efficient packaging of GPI-APs into vesicles; however, mechanisms of GPI-AP sorting are not well understood. Here we describe two remodeling reactions for GPI anchors, mediated by PGAP1 and PGAP5, which were required for sorting of GPI-APs to ER exit sites. The p24 family of proteins recognized the remodeled GPI-APs and sorted them into COPII vesicles. Association of p24 proteins with GPI-APs was pH dependent, which suggests that they bind in the ER and dissociate in post-ER acidic compartments. Our results indicate that p24 complexes act as cargo receptors for correctly remodeled GPI-APs to be sorted into COPII vesicles. PMID:21727194

  18. Inhibitors of Protein Translocation Across the ER Membrane.

    PubMed

    Kalies, Kai-Uwe; Römisch, Karin

    2015-10-01

    Protein translocation into the endoplasmic reticulum (ER) constitutes the first step of protein secretion. ER protein import is essential in all eukaryotic cells and is particularly critical in fast-growing tumour cells. Thus, the process can serve as target both for potential cancer drugs and for bacterial virulence factors. Inhibitors of protein transport across the ER membrane range from broad-spectrum to highly substrate-specific and can interfere with virtually any stage of this multistep process, and even with transport of endocytosed antigens into the cytosol for cross-presentation. PMID:26122014

  19. Distinct requirements for intra-ER sorting and budding of peroxisomal membrane proteins from the ER.

    PubMed

    Agrawal, Gaurav; Fassas, Scott N; Xia, Zhi-Jie; Subramani, Suresh

    2016-02-01

    During de novo peroxisome biogenesis, importomer complex proteins sort via two preperoxisomal vesicles (ppVs). However, the sorting mechanisms segregating peroxisomal membrane proteins to the preperoxisomal endoplasmic reticulum (pER) and into ppVs are unknown. We report novel roles for Pex3 and Pex19 in intra-endoplasmic reticulum (ER) sorting and budding of the RING-domain peroxins (Pex2, Pex10, and Pex12). Pex19 bridged the interaction at the ER between Pex3 and RING-domain proteins, resulting in a ternary complex that was critical for the intra-ER sorting and subsequent budding of the RING-domain peroxins. Although the docking subcomplex proteins (Pex13, Pex14, and Pex17) also required Pex19 for budding from the ER, they sorted to the pER independently of Pex3 and Pex19 and were spatially segregated from the RING-domain proteins. We also discovered a unique role for Pex3 in sorting Pex10 and Pex12, but with the docking subcomplex. Our study describes an intra-ER sorting process that regulates segregation, packaging, and budding of peroxisomal importomer subcomplexes, thereby preventing their premature assembly at the ER. PMID:26833788

  20. Arv1 regulates PM and ER membrane structure and homeostasis but is dispensable for intracellular sterol transport

    PubMed Central

    Georgiev, Alexander G.; Johansen, Jesper; Ramanathan, Vidhya D.; Sere, Yves Y.; Beh, Christopher T.; Menon, Anant K.

    2013-01-01

    The pan-eukaryotic endoplasmic reticulum (ER) membrane protein Arv1 has been suggested to play a role in intracellular sterol transport. We tested this proposal by comparing sterol traffic in wild-type and Arv1-deficient Saccharomyces cerevisiae. We used fluorescence microscopy to track the retrograde movement of exogenously supplied dehydroergosterol (DHE) from the plasma membrane (PM) to the ER and lipid droplets and high performance liquid chromatography to quantify, in parallel, the transport-coupled formation of DHE esters. Metabolic labeling and subcellular fractionation were used to assay anterograde transport of ergosterol from the ER to the PM. We report that sterol transport between the ER and PM is unaffected by Arv1 deficiency. Instead, our results indicate differences in ER morphology and the organization of the PM lipid bilayer between wild-type and arv1Δ cells suggesting a distinct role for Arv1 in membrane homeostasis. In arv1Δ cells, specific defects affecting single C-terminal transmembrane domain proteins suggest that Arv1 might regulate membrane insertion of tail-anchored proteins involved in membrane homoeostasis. PMID:23668914

  1. Arv1 regulates PM and ER membrane structure and homeostasis but is dispensable for intracellular sterol transport.

    PubMed

    Georgiev, Alexander G; Johansen, Jesper; Ramanathan, Vidhya D; Sere, Yves Y; Beh, Christopher T; Menon, Anant K

    2013-08-01

    The pan-eukaryotic endoplasmic reticulum (ER) membrane protein Arv1 has been suggested to play a role in intracellular sterol transport. We tested this proposal by comparing sterol traffic in wild-type and Arv1-deficient Saccharomyces cerevisiae. We used fluorescence microscopy to track the retrograde movement of exogenously supplied dehydroergosterol (DHE) from the plasma membrane (PM) to the ER and lipid droplets and high performance liquid chromatography to quantify, in parallel, the transport-coupled formation of DHE esters. Metabolic labeling and subcellular fractionation were used to assay anterograde transport of ergosterol from the ER to the PM. We report that sterol transport between the ER and PM is unaffected by Arv1 deficiency. Instead, our results indicate differences in ER morphology and the organization of the PM lipid bilayer between wild-type and arv1Δ cells suggesting a distinct role for Arv1 in membrane homeostasis. In arv1Δ cells, specific defects affecting single C-terminal transmembrane domain proteins suggest that Arv1 might regulate membrane insertion of tail-anchored proteins involved in membrane homoeostasis.

  2. Anchoring a Leviathan: How the Nuclear Membrane Tethers the Genome.

    PubMed

    Czapiewski, Rafal; Robson, Michael I; Schirmer, Eric C

    2016-01-01

    It is well established that the nuclear envelope has many distinct direct connections to chromatin that contribute to genome organization. The functional consequences of genome organization on gene regulation are less clear. Even less understood is how interactions of lamins and nuclear envelope transmembrane proteins (NETs) with chromatin can produce anchoring tethers that can withstand the physical forces of and on the genome. Chromosomes are the largest molecules in the cell, making megadalton protein structures like the nuclear pore complexes and ribosomes seem small by comparison. Thus to withstand strong forces from chromosome dynamics an anchoring tether is likely to be much more complex than a single protein-protein or protein-DNA interaction. Here we will briefly review known NE-genome interactions that likely contribute to spatial genome organization, postulate in the context of experimental data how these anchoring tethers contribute to gene regulation, and posit several hypotheses for the physical nature of these tethers that need to be investigated experimentally. Significantly, disruption of these anchoring tethers and the subsequent consequences for gene regulation could explain how mutations in nuclear envelope proteins cause diseases ranging from muscular dystrophy to lipodystrophy to premature aging progeroid syndromes. The two favored hypotheses for nuclear envelope protein involvement in disease are (1) weakening nuclear and cellular mechanical stability, and (2) disrupting genome organization and gene regulation. Considerable experimental support has been obtained for both. The integration of both mechanical and gene expression defects in the disruption of anchoring tethers could provide a unifying hypothesis consistent with both.

  3. Glycosyl-phosphatidylinositol-anchored membrane proteins can be distinguished from transmembrane polypeptide-anchored proteins by differential solubilization and temperature-induced phase separation in Triton X-114.

    PubMed

    Hooper, N M; Bashir, A

    1991-12-15

    Treatment of kidney microvillar membranes with the non-ionic detergent Triton X-114 at 0 degrees C, followed by low-speed centrifugation, generated a detergent-insoluble pellet and a detergent-soluble supernatant. The supernatant was further fractionated by phase separation at 30 degrees C into a detergent-rich phase and a detergent-depleted or aqueous phase. Those ectoenzymes with a covalently attached glycosyl-phosphatidylinositol (G-PI) membrane anchor were recovered predominantly (greater than 73%) in the detergent-insoluble pellet. In contrast, those ectoenzymes anchored by a single membrane-spanning polypeptide were recovered predominantly (greater than 62%) in the detergent-rich phase. Removal of the hydrophobic membrane-anchoring domain from either class of ectoenzyme resulted in the proteins being recovered predominantly (greater than 70%) in the aqueous phase. This technique was also applied to other membrane types, including pig and human erythrocyte ghosts, where, in both cases, the G-PI-anchored acetylcholinesterase partitioned predominantly (greater than 69%) into the detergent-insoluble pellet. When the microvillar membranes were subjected only to differential solubilization with Triton X-114 at 0 degrees C, the G-PI-anchored ectoenzymes were recovered predominantly (greater than 63%) in the detergent-insoluble pellet, whereas the transmembrane-polypeptide-anchored ectoenzymes were recovered predominantly (greater than 95%) in the detergent-solubilized supernatant. Thus differential solubilization and temperature-induced phase separation in Triton X-114 distinguished between G-PI-anchored membrane proteins, transmembrane-polypeptide-anchored proteins and soluble, hydrophilic proteins. This technique may be more useful and reliable than susceptibility to release by phospholipases as a means of identifying a G-PI anchor on an unpurified membrane protein.

  4. Glycosyl-phosphatidylinositol-anchored membrane proteins can be distinguished from transmembrane polypeptide-anchored proteins by differential solubilization and temperature-induced phase separation in Triton X-114.

    PubMed Central

    Hooper, N M; Bashir, A

    1991-01-01

    Treatment of kidney microvillar membranes with the non-ionic detergent Triton X-114 at 0 degrees C, followed by low-speed centrifugation, generated a detergent-insoluble pellet and a detergent-soluble supernatant. The supernatant was further fractionated by phase separation at 30 degrees C into a detergent-rich phase and a detergent-depleted or aqueous phase. Those ectoenzymes with a covalently attached glycosyl-phosphatidylinositol (G-PI) membrane anchor were recovered predominantly (greater than 73%) in the detergent-insoluble pellet. In contrast, those ectoenzymes anchored by a single membrane-spanning polypeptide were recovered predominantly (greater than 62%) in the detergent-rich phase. Removal of the hydrophobic membrane-anchoring domain from either class of ectoenzyme resulted in the proteins being recovered predominantly (greater than 70%) in the aqueous phase. This technique was also applied to other membrane types, including pig and human erythrocyte ghosts, where, in both cases, the G-PI-anchored acetylcholinesterase partitioned predominantly (greater than 69%) into the detergent-insoluble pellet. When the microvillar membranes were subjected only to differential solubilization with Triton X-114 at 0 degrees C, the G-PI-anchored ectoenzymes were recovered predominantly (greater than 63%) in the detergent-insoluble pellet, whereas the transmembrane-polypeptide-anchored ectoenzymes were recovered predominantly (greater than 95%) in the detergent-solubilized supernatant. Thus differential solubilization and temperature-induced phase separation in Triton X-114 distinguished between G-PI-anchored membrane proteins, transmembrane-polypeptide-anchored proteins and soluble, hydrophilic proteins. This technique may be more useful and reliable than susceptibility to release by phospholipases as a means of identifying a G-PI anchor on an unpurified membrane protein. PMID:1837216

  5. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    PubMed Central

    Wang, Jimin; Li, Yue; Modis, Yorgo

    2014-01-01

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. PMID:24725935

  6. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses.

    PubMed

    Wang, Jimin; Li, Yue; Modis, Yorgo

    2014-04-01

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1-E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain.

  7. Vacuolar SNARE Protein Transmembrane Domains Serve as Nonspecific Membrane Anchors with Unequal Roles in Lipid Mixing*

    PubMed Central

    Pieren, Michel; Desfougères, Yann; Michaillat, Lydie; Schmidt, Andrea; Mayer, Andreas

    2015-01-01

    Membrane fusion is induced by SNARE complexes that are anchored in both fusion partners. SNAREs zipper up from the N to C terminus bringing the two membranes into close apposition. Their transmembrane domains (TMDs) might be mere anchoring devices, deforming bilayers by mechanical force. Structural studies suggested that TMDs might also perturb lipid structure by undergoing conformational transitions or by zipping up into the bilayer. Here, we tested this latter hypothesis, which predicts that the activity of SNAREs should depend on the primary sequence of their TMDs. We replaced the TMDs of all vacuolar SNAREs (Nyv1, Vam3, and Vti1) by a lipid anchor, by a TMD from a protein unrelated to the membrane fusion machinery, or by artificial leucine-valine sequences. Individual exchange of the native SNARE TMDs against an unrelated transmembrane anchor or an artificial leucine-valine sequence yielded normal fusion activities. Fusion activity was also preserved upon pairwise exchange of the TMDs against unrelated peptides, which eliminates the possibility for specific TMD-TMD interactions. Thus, a specific primary sequence or zippering beyond the SNARE domains is not a prerequisite for fusion. Lipid-anchored Vti1 was fully active, and lipid-anchored Nyv1 permitted the reaction to proceed up to hemifusion, and lipid-anchored Vam3 interfered already before hemifusion. The unequal contribution of proteinaceous TMDs on Vam3 and Nyv1 suggests that Q- and R-SNAREs might make different contributions to the hemifusion intermediate and the opening of the fusion pore. Furthermore, our data support the view that SNARE TMDs serve as nonspecific membrane anchors in vacuole fusion. PMID:25817997

  8. Anchoring a Leviathan: How the Nuclear Membrane Tethers the Genome

    PubMed Central

    Czapiewski, Rafal; Robson, Michael I.; Schirmer, Eric C.

    2016-01-01

    It is well established that the nuclear envelope has many distinct direct connections to chromatin that contribute to genome organization. The functional consequences of genome organization on gene regulation are less clear. Even less understood is how interactions of lamins and nuclear envelope transmembrane proteins (NETs) with chromatin can produce anchoring tethers that can withstand the physical forces of and on the genome. Chromosomes are the largest molecules in the cell, making megadalton protein structures like the nuclear pore complexes and ribosomes seem small by comparison. Thus to withstand strong forces from chromosome dynamics an anchoring tether is likely to be much more complex than a single protein-protein or protein-DNA interaction. Here we will briefly review known NE-genome interactions that likely contribute to spatial genome organization, postulate in the context of experimental data how these anchoring tethers contribute to gene regulation, and posit several hypotheses for the physical nature of these tethers that need to be investigated experimentally. Significantly, disruption of these anchoring tethers and the subsequent consequences for gene regulation could explain how mutations in nuclear envelope proteins cause diseases ranging from muscular dystrophy to lipodystrophy to premature aging progeroid syndromes. The two favored hypotheses for nuclear envelope protein involvement in disease are (1) weakening nuclear and cellular mechanical stability, and (2) disrupting genome organization and gene regulation. Considerable experimental support has been obtained for both. The integration of both mechanical and gene expression defects in the disruption of anchoring tethers could provide a unifying hypothesis consistent with both. PMID:27200088

  9. The Crystal Structures of Yeast Get3 Suggest a Mechanism for Tail-Anchored Protein Membrane Insertion

    SciTech Connect

    Hu, Junbin; Li, Jingzhi; Qian, Xinguo; Denic, Vlad; Sha, Bingdong

    2010-08-16

    Tail-anchored (TA) proteins represent a unique class of membrane proteins that contain a single C-terminal transmembrane helix. The post-translational insertion of the yeast TA proteins into the ER membrane requires the Golgi ER trafficking (GET) complex which contains Get1, Get2 and Get3. Get3 is an ATPase that recognizes and binds the C-terminal transmembrane domain (TMD) of the TA proteins. We have determined the crystal structures of Get3 from two yeast species, S. cerevisiae and D. hansenii, respectively. These high resolution crystal structures show that Get3 contains a nucleotide-binding domain and a 'finger' domain for binding the TA protein TMD. A large hydrophobic groove on the finger domain of S. cerevisiae Get3 structure might represent the binding site for TMD of TA proteins. A hydrophobic helix from a symmetry-related Get3 molecule sits in the TMD-binding groove and mimics the TA binding scenario. Interestingly, the crystal structures of the Get3 dimers from S. cerevisiae and D. hansenii exhibit distinct conformations. The S. cerevisiae Get3 dimer structure does not contain nucleotides and maintains an 'open' conformation, while the D. hansenii Get3 dimer structure binds ADP and stays in a 'closed' conformation. We propose that the conformational changes to switch the Get3 between the open and closed conformations may facilitate the membrane insertions for TA proteins.

  10. The structural basis of tail-anchored membrane protein recognition by Get3

    SciTech Connect

    Mateja, Agnieszka; Szlachcic, Anna; Downing, Maureen E.; Dobosz, Malgorzata; Mariappan, Malaiyalam; Hegde, Ramanujan S.; Keenan, Robert J.

    2009-10-05

    Targeting of newly synthesized membrane proteins to the endoplasmic reticulum is an essential cellular process. Most membrane proteins are recognized and targeted co-translationally by the signal recognition particle. However, nearly 5% of membrane proteins are 'tail-anchored' by a single carboxy-terminal transmembrane domain that cannot access the co-translational pathway. Instead, tail-anchored proteins are targeted post-translationally by a conserved ATPase termed Get3. The mechanistic basis for tail-anchored protein recognition or targeting by Get3 is not known. Here we present crystal structures of yeast Get3 in 'open' (nucleotide-free) and 'closed' (ADP {center_dot} AlF{sub 4}{sup -}-bound) dimer states. In the closed state, the dimer interface of Get3 contains an enormous hydrophobic groove implicated by mutational analyses in tail-anchored protein binding. In the open state, Get3 undergoes a striking rearrangement that disrupts the groove and shields its hydrophobic surfaces. These data provide a molecular mechanism for nucleotide-regulated binding and release of tail-anchored proteins during their membrane targeting by Get3.

  11. ER-Bound Protein Tyrosine Phosphatase PTP1B Interacts with Src at the Plasma Membrane/Substrate Interface

    PubMed Central

    Burdisso, Juan E.; Conde, Cecilia; Cáceres, Alfredo; Arregui, Carlos O.

    2012-01-01

    PTP1B is an endoplasmic reticulum (ER) anchored enzyme whose access to substrates is partly dependent on the ER distribution and dynamics. One of these substrates, the protein tyrosine kinase Src, has been found in the cytosol, endosomes, and plasma membrane. Here we analyzed where PTP1B and Src physically interact in intact cells, by bimolecular fluorescence complementation (BiFC) in combination with temporal and high resolution microscopy. We also determined the structural basis of this interaction. We found that BiFC signal is displayed as puncta scattered throughout the ER network, a feature that was enhanced when the substrate trapping mutant PTP1B-D181A was used. Time-lapse and co-localization analyses revealed that BiFC puncta did not correspond to vesicular carriers; instead they localized at the tip of dynamic ER tubules. BiFC puncta were retained in ventral membrane preparations after cell unroofing and were also detected within the evanescent field of total internal reflection fluorescent microscopy (TIRFM) associated to the ventral membranes of whole cells. Furthermore, BiFC puncta often colocalized with dark spots seen by surface reflection interference contrast (SRIC). Removal of Src myristoylation and polybasic motifs abolished BiFC. In addition, PTP1B active site and negative regulatory tyrosine 529 on Src were primary determinants of BiFC occurrence, although the SH3 binding motif on PTP1B also played a role. Our results suggest that ER-bound PTP1B dynamically interacts with the negative regulatory site at the C-terminus of Src at random puncta in the plasma membrane/substrate interface, likely leading to Src activation and recruitment to adhesion complexes. We postulate that this functional ER/plasma membrane crosstalk could apply to a wide array of protein partners, opening an exciting field of research. PMID:22701734

  12. Delivery of a secreted soluble protein to the vacuole via a membrane anchor

    SciTech Connect

    Barrieu, F.; Chrispeels, M.J.

    1999-08-01

    To further understand how membrane proteins are sorted in the secretory system, the authors devised a strategy that involves the expression of a membrane-anchored yeast invertase in transgenic plants. The construct consisted of a signal peptide followed by the coding region of yeast invertase and the transmembrane domain and cytoplasmic tail of calnexin. The substitution of a lysine near the C terminus of calnexin with a glutamic acid residue ensured progression through the secretory system rather than retention in or return to the endoplasmic reticulum. In the transformed plants, invertase activity and a 70-kD cross-reacting protein were found in the vacuoles. This yeast invertase had plant-specific complex glycans, indicating that transport to the vacuole was mediated by the Golgi apparatus. The microsomal fraction contained a membrane-anchored 90-kD cross-reacting polypeptide, but was devoid of invertase activity. Their results indicate that this membrane-anchored protein proceeds in the secretory system beyond the point where soluble proteins are sorted for secretion, and is detached from its membrane anchor either just before or just after delivery to the vacuole.

  13. The Taz1p transacylase is imported and sorted into the outer mitochondrial membrane via a membrane anchor domain.

    PubMed

    Herndon, Jenny D; Claypool, Steven M; Koehler, Carla M

    2013-12-01

    Mutations in the mitochondrial transacylase tafazzin, Taz1p, in Saccharomyces cerevisiae cause Barth syndrome, a disease of defective cardiolipin remodeling. Taz1p is an interfacial membrane protein that localizes to both the outer and inner membranes, lining the intermembrane space. Pathogenic point mutations in Taz1p that alter import and membrane insertion result in accumulation of monolysocardiolipin. In this study, we used yeast as a model to investigate the biogenesis of Taz1p. We show that to achieve this unique topology in mitochondria, Taz1p follows a novel import pathway in which it crosses the outer membrane via the translocase of the outer membrane and then uses the Tim9p-Tim10p complex of the intermembrane space to insert into the mitochondrial outer membrane. Taz1p is then transported to membranes of an intermediate density to reach a location in the inner membrane. Moreover, a pathogenic mutation within the membrane anchor (V224R) alters Taz1p import so that it bypasses the Tim9p-Tim10p complex and interacts with the translocase of the inner membrane, TIM23, to reach the matrix. Critical targeting information for Taz1p resides in the membrane anchor and flanking sequences, which are often mutated in Barth syndrome patients. These studies suggest that altering the mitochondrial import pathway of Taz1p may be important in understanding the molecular basis of Barth syndrome.

  14. Distinct Pathways Mediate the Sorting of Tail-anchored Mitochondrial Outer Membrane Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about the biogenesis of tail-anchored (TA) proteins localized to the mitochondrial outer membrane in plant cells. To address this issue, we screened all of the (>500) known and predicted TA proteins in Arabidopsis for those annotated, based on Gene Ontology, to possess mitochondrial...

  15. Support studies for installing the phosphodiester residues of the Thy-1 glycoprotein membrane anchor.

    PubMed

    Campbell, A S; Fraser-Reid, B

    1994-11-01

    Support studies for late-stage installation of the three different types of phosphodiesters found in the rat brain Thy-1 glycoprotein membrane anchor are described. The strategy is geared towards optimizing convergency and the development of chemoselective procedures including deprotection, phosphorylation, esterification and cysteinylation has been investigated. Some of these procedures are being designed for oligosaccharides containing several unprotected hydroxy groups.

  16. Distinct Pathways Mediate the Sorting of Tail-anchored Mitochondrial Outer Membrane Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about the biogenesis of tail-anchored (TA) proteins localized to the mitochondrial outer membrane in plant cells. To address this issue, we screened all of the (>600) known and predicted TA proteins in Arabidopsis thaliana for those annotated, based on Gene Ontology, to possess mitoc...

  17. Activation of the glycosyl-phosphatidylinositol-anchored membrane dipeptidase upon release from pig kidney membranes by phospholipase C.

    PubMed

    Brewis, I A; Turner, A J; Hooper, N M

    1994-10-15

    Incubation of pig kidney microvillar membranes with Bacillus thuringiensis or Staphylococcus aureus phosphatidylinositol-specific phospholipase C (PI-PLC) resulted in the release of a number of glycosyl-phosphatidylinositol (GPI)-anchored hydrolases, including alkaline phosphatase (EC 3.1.3.1), amino-peptidase P (EC 3.4.11.9), membrane dipeptidase (EC 3.4.13.19), 5'-nucleotidase (EC 3.1.3.5) and trehalase (EC 3.2.1.28). Of these five ectoenzymes only for membrane dipeptidase was there a significant (approx. 100%) increase in enzymic activity upon release from the membrane. Maximal activation occurred at a PI-PLC concentration 10-fold less than that required for maximal release. In contrast solubilization of the membranes with n-octyl beta-D-glucopyranoside had no effect on the enzymic activity of membrane dipeptidase. A competitive e.l.i.s.a. with a polyclonal antiserum to membrane dipeptidase indicated that the increase in enzymic activity was not due to an increase in the amount of membrane dipeptidase protein. Although PI-PLC cleaved the GPI anchor of the affinity-purified amphipathic form of pig membrane dipeptidase there was no concurrent increase in enzymic activity. In the absence of PI-PLC, membrane dipeptidase in the microvillar membranes hydrolysed Gly-D-Phe with a Km of 0.77 mM and a Vmax. of 602 nmol/min per mg of protein. However, in the presence of a concentration of PI-PLC which caused maximal release from the membrane and maximal activation of membrane dipeptidase the Km was decreased to 0.07 mM while the Vmax. remained essentially unchanged at 624 nmol/min per mg of protein. Overall these results suggest that cleavage by PI-PLC of the GPI anchor on membrane dipeptidase may relax conformational constraints on the active site of the enzyme which exist when it is anchored in the lipid bilayer, thus resulting in an increase in the affinity of the active site for substrate.

  18. Lipid Binding of the Amphipathic Helix Serving as Membrane Anchor of Pestivirus Glycoprotein Erns

    PubMed Central

    Aberle, Daniel; Oetter, Kay-Marcus; Meyers, Gregor

    2015-01-01

    Pestiviruses express a peculiar protein named Erns representing envelope glycoprotein and RNase, which is important for control of the innate immune response and persistent infection. The latter functions are connected with secretion of a certain amount of Erns from the infected cell. Retention/secretion of Erns is most likely controlled by its unusual membrane anchor, a long amphipathic helix attached in plane to the membrane. Here we present results of experiments conducted with a lipid vesicle sedimentation assay able to separate lipid-bound from unbound protein dissolved in the water phase. Using this technique we show that a protein composed of tag sequences and the carboxyterminal 65 residues of Erns binds specifically to membrane vesicles with a clear preference for compositions containing negatively charged lipids. Mutations disturbing the helical folding and/or amphipathic character of the anchor as well as diverse truncations and exchange of amino acids important for intracellular retention of Erns had no or only small effects on the proteins membrane binding. This result contrasts the dramatically increased secretion rates observed for Erns proteins with equivalent mutations within cells. Accordingly, the ratio of secreted versus cell retained Erns is not determined by the lipid affinity of the membrane anchor. PMID:26270479

  19. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane

    PubMed Central

    Sevcsik, Eva; Brameshuber, Mario; Fölser, Martin; Weghuber, Julian; Honigmann, Alf; Schütz, Gerhard J.

    2015-01-01

    The organization of proteins and lipids in the plasma membrane has been subject of a long-lasting debate. Membrane rafts of higher lipid chain order were proposed to mediate protein interactions, but have thus far not been directly observed. Here, we use protein micropatterning combined with single-molecule tracking to put current models to the test: we rearranged lipid-anchored raft proteins (glycosylphosphatidylinositol(GPI)-anchored mGFP) directly in the live cell plasma membrane and measured the effect on the local membrane environment. Intriguingly, this treatment does neither nucleate the formation of an ordered membrane phase, nor result in any enrichment of nanoscopic ordered domains within the micropatterned regions. In contrast, we find that immobilized mGFP-GPIs behave as inert obstacles to the diffusion of other membrane constituents without influencing their membrane environment over distances beyond their physical size. Our results indicate that phase partitioning is not a fundamental element of protein organization in the plasma membrane. PMID:25897971

  20. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane

    NASA Astrophysics Data System (ADS)

    Sevcsik, Eva; Brameshuber, Mario; Fölser, Martin; Weghuber, Julian; Honigmann, Alf; Schütz, Gerhard J.

    2015-04-01

    The organization of proteins and lipids in the plasma membrane has been the subject of a long-lasting debate. Membrane rafts of higher lipid chain order were proposed to mediate protein interactions, but have thus far not been directly observed. Here we use protein micropatterning combined with single-molecule tracking to put current models to the test: we rearranged lipid-anchored raft proteins (glycosylphosphatidylinositol(GPI)-anchored-mGFP) directly in the live cell plasma membrane and measured the effect on the local membrane environment. Intriguingly, this treatment does neither nucleate the formation of an ordered membrane phase nor result in any enrichment of nanoscopic-ordered domains within the micropatterned regions. In contrast, we find that immobilized mGFP-GPIs behave as inert obstacles to the diffusion of other membrane constituents without influencing their membrane environment over distances beyond their physical size. Our results indicate that phase partitioning is not a fundamental element of protein organization in the plasma membrane.

  1. Quality control of nonstop membrane proteins at the ER membrane and in the cytosol

    PubMed Central

    Arakawa, Shunsuke; Yunoki, Kaori; Izawa, Toshiaki; Tamura, Yasushi; Nishikawa, Shuh-ichi; Endo, Toshiya

    2016-01-01

    Since messenger RNAs without a stop codon (nonstop mRNAs) for organelle-targeted proteins and their translation products (nonstop proteins) generate clogged translocon channels as well as stalled ribosomes, cells have mechanisms to degrade nonstop mRNAs and nonstop proteins and to clear the translocons (e.g. the Sec61 complex) by release of nonstop proteins into the organellar lumen. Here we followed the fate of nonstop endoplasmic reticulum (ER) membrane proteins with different membrane topologies in yeast to evaluate the importance of the Ltn1-dependent cytosolic degradation and the Dom34-dependent release of the nonstop membrane proteins. Ltn1-dependent degradation differed for membrane proteins with different topologies and its failure did not affect ER protein import or cell growth. On the other hand, failure in the Dom34-dependent release of the nascent polypeptide from the ribosome led to the block of the Sec61 channel and resultant inhibition of other protein import into the ER caused cell growth defects. Therefore, the nascent chain release from the translation apparatus is more instrumental in clearance of the clogged ER translocon channel and thus maintenance of normal cellular functions. PMID:27481473

  2. Quality control of nonstop membrane proteins at the ER membrane and in the cytosol.

    PubMed

    Arakawa, Shunsuke; Yunoki, Kaori; Izawa, Toshiaki; Tamura, Yasushi; Nishikawa, Shuh-Ichi; Endo, Toshiya

    2016-01-01

    Since messenger RNAs without a stop codon (nonstop mRNAs) for organelle-targeted proteins and their translation products (nonstop proteins) generate clogged translocon channels as well as stalled ribosomes, cells have mechanisms to degrade nonstop mRNAs and nonstop proteins and to clear the translocons (e.g. the Sec61 complex) by release of nonstop proteins into the organellar lumen. Here we followed the fate of nonstop endoplasmic reticulum (ER) membrane proteins with different membrane topologies in yeast to evaluate the importance of the Ltn1-dependent cytosolic degradation and the Dom34-dependent release of the nonstop membrane proteins. Ltn1-dependent degradation differed for membrane proteins with different topologies and its failure did not affect ER protein import or cell growth. On the other hand, failure in the Dom34-dependent release of the nascent polypeptide from the ribosome led to the block of the Sec61 channel and resultant inhibition of other protein import into the ER caused cell growth defects. Therefore, the nascent chain release from the translation apparatus is more instrumental in clearance of the clogged ER translocon channel and thus maintenance of normal cellular functions. PMID:27481473

  3. Isolation, purification, characterization and antigenic evaluation of GPI-anchored membrane proteins from Leishmania (Viannia) braziliensis.

    PubMed

    Rojas, Agustina; García-Lugo, Pablo; Crisante, Gladys; Añez-Rojas, Néstor; Añez, Néstor

    2008-02-01

    GPI-anchored proteins from the plasma membrane of Leishmania (Viannia) braziliensis promastigotes were isolated, characterized and their migration pattern compared with those from other Leishmania species. In all cases the SDS-PAGE migration patterns were obtained under reducing and non-reducing conditions, using DL-dithiothreitol (DTT) as a reducer agent. Our results reveal that under reducing conditions the SDS-PAGE migration pattern is modified as a consequence of the disruption of disulphur-bonds and protein transformation. This is demonstrated when in non-reducing conditions the L. (V.) braziliensis-GPI-anchored proteins pattern showed a group of bands over the 100kDa, and two more bands of 52kDa and 50kDa in four different isolates, whereas under reducing conditions the major GPI-anchored protein fractions were detected as bands of 63kDa, 50kDa and an increase of peptides between 34kDa and 22kDa. Similar modifications were detected in the SDS-PAGE migration patterns of GPI-anchored protein fractions from L. (Leishmania) donovani, L. (L.) mexicana and L. (L.) amazonensis run under the same reducing conditions. Antigenic evaluation carried out by Western blot revealed the presence of two very specific L. (V.) braziliensis-GPI-anchored protein bands of 50kDa and 28kDa. These bands were specifically recognized by anti-L. (V.) braziliensis-GPI-anchored protein serum from experimentally immunized animals. These two peptides were not detected when GPI-anchored protein fractions from L. (L.) donovani, L. (L.) mexicana and L. (L.) amazonensis, were challenged with the same anti-serum. The present results lead us to suggest the use of these two peptides as biochemical markers to identify and differentiate leishmaniasis caused by L. (V.) braziliensis. The lack of immunogenicity observed here with the peptide gp63, a very common protein detected in Leishmania species, is considered.

  4. A novel membrane anchor for FtsZ is linked to cell wall hydrolysis in Caulobacter crescentus.

    PubMed

    Meier, Elizabeth L; Razavi, Shiva; Inoue, Takanari; Goley, Erin D

    2016-07-01

    In most bacteria, the tubulin-like GTPase FtsZ forms an annulus at midcell (the Z-ring) which recruits the division machinery and regulates cell wall remodeling. Although both activities require membrane attachment of FtsZ, few membrane anchors have been characterized. FtsA is considered to be the primary membrane tether for FtsZ in bacteria, however in Caulobacter crescentus, FtsA arrives at midcell after stable Z-ring assembly and early FtsZ-directed cell wall synthesis. We hypothesized that additional proteins tether FtsZ to the membrane and demonstrate that in C. crescentus, FzlC is one such membrane anchor. FzlC associates with membranes directly in vivo and in vitro and recruits FtsZ to membranes in vitro. As for most known membrane anchors, the C-terminal peptide of FtsZ is required for its recruitment to membranes by FzlC in vitro and midcell recruitment of FzlC in cells. In vivo, overproduction of FzlC causes cytokinesis defects whereas deletion of fzlC causes synthetic defects with dipM, ftsE and amiC mutants, implicating FzlC in cell wall hydrolysis. Our characterization of FzlC as a novel membrane anchor for FtsZ expands our understanding of FtsZ regulators and establishes a role for membrane-anchored FtsZ in the regulation of cell wall hydrolysis.

  5. BODIPY-Coumarin Conjugate as an Endoplasmic Reticulum Membrane Fluidity Sensor and Its Application to ER Stress Models.

    PubMed

    Lee, Hoyeon; Yang, Zhigang; Wi, Youngjin; Kim, Tae Woo; Verwilst, Peter; Lee, Yun Hak; Han, Ga-In; Kang, Chulhun; Kim, Jong Seung

    2015-12-16

    An endoplasmic reticulum (ER) membrane-selective chemosensor composed of BODIPY and coumarin moieties and a long alkyl chain (n-C18) was synthesized. The emission ratio of BODIPY to coumarin depends on the solution viscosity. The probe is localized to the ER membrane and was applied to reveal the reduced ER membrane fluidity under ER stress conditions.

  6. Differences in the glycolipid membrane anchors of bovine and human erythrocyte acetylcholinesterases.

    PubMed

    Roberts, W L; Kim, B H; Rosenberry, T L

    1987-11-01

    Acetylcholinesterases (AcChoEases; EC 3.1.1.7) from bovine (Ebo) and human (Ehu) erythrocytes were purified to apparent homogeneity by affinity chromatography. The hydrophobic portion of the glycolipid membrane anchor of each enzyme was radiolabeled with the photoactivated reagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine. Several cleavage procedures demonstrated that this radiolabel was highly selective for the fatty acid portion of the anchor in both enzymes. The labeled enzymes were digested with phosphatidylinositol (PtdIns)-specific phospholipase C (EC 3.1.4.10), and label release was assessed by polyacrylamide gel electrophoresis. About 85% of the radiolabel was cleaved from Ebo AcChoEase, whereas only 5% was released from Ehu AcChoEase. This finding agrees with a report that Ebo AcChoEase was quantitatively released from intact erythrocytes by PtdIns-specific phospholipase C but Ehu AcChoEase was not [Low, M. G. & Finean, J. B. (1977) FEBS Lett. 82, 143-146]. The two AcChoEases contained comparable amounts of the anchor components ethanolamine, glucosamine, and myo-inositol, but qualitative and quantitative differences were found in the fatty acids. Thin-layer chromatography of radiolabeled fragments generated from Ebo and Ehu AcChoEases by nitrous acid deamination revealed a major difference in the membrane anchors of the two enzymes. The fragment released from Ebo AcChoEase by this procedure comigrated with PtdIns, whereas the corresponding fragment from Ehu AcChoEase had a mobility much greater than that of PtdIns even though it contained myo-inositol and fatty acids. These studies show that 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine is useful for analysis of lipid-containing compounds and indicate that, whereas Ebo AcChoEase contains PtdIns in its glycolipid anchor, Ehu AcChoEase has a different anchor structure, which is resistant to PtdIns-specific phospholipase C. This observation suggests the existence of a class of glycolipid-anchored

  7. Differences in the glycolipid membrane anchors of bovine and human erythrocyte acetylcholinesterases.

    PubMed Central

    Roberts, W L; Kim, B H; Rosenberry, T L

    1987-01-01

    Acetylcholinesterases (AcChoEases; EC 3.1.1.7) from bovine (Ebo) and human (Ehu) erythrocytes were purified to apparent homogeneity by affinity chromatography. The hydrophobic portion of the glycolipid membrane anchor of each enzyme was radiolabeled with the photoactivated reagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine. Several cleavage procedures demonstrated that this radiolabel was highly selective for the fatty acid portion of the anchor in both enzymes. The labeled enzymes were digested with phosphatidylinositol (PtdIns)-specific phospholipase C (EC 3.1.4.10), and label release was assessed by polyacrylamide gel electrophoresis. About 85% of the radiolabel was cleaved from Ebo AcChoEase, whereas only 5% was released from Ehu AcChoEase. This finding agrees with a report that Ebo AcChoEase was quantitatively released from intact erythrocytes by PtdIns-specific phospholipase C but Ehu AcChoEase was not [Low, M. G. & Finean, J. B. (1977) FEBS Lett. 82, 143-146]. The two AcChoEases contained comparable amounts of the anchor components ethanolamine, glucosamine, and myo-inositol, but qualitative and quantitative differences were found in the fatty acids. Thin-layer chromatography of radiolabeled fragments generated from Ebo and Ehu AcChoEases by nitrous acid deamination revealed a major difference in the membrane anchors of the two enzymes. The fragment released from Ebo AcChoEase by this procedure comigrated with PtdIns, whereas the corresponding fragment from Ehu AcChoEase had a mobility much greater than that of PtdIns even though it contained myo-inositol and fatty acids. These studies show that 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine is useful for analysis of lipid-containing compounds and indicate that, whereas Ebo AcChoEase contains PtdIns in its glycolipid anchor, Ehu AcChoEase has a different anchor structure, which is resistant to PtdIns-specific phospholipase C. This observation suggests the existence of a class of glycolipid-anchored

  8. Kalinin: an epithelium-specific basement membrane adhesion molecule that is a component of anchoring filaments

    PubMed Central

    1991-01-01

    Basal keratinocytes attach to the underlying dermal stroma through an ultrastructurally unique and complex basement membrane zone. Electron- dense plaques along the basal surface plasma membrane, termed hemidesmosomes, appear to attach directly to the lamina densa of the basement membrane through fine strands, called anchoring filaments. The lamina densa is secured to the stroma through a complex of type VII collagen containing anchoring fibrils and anchoring plaques. We have identified what we believe is a novel antigen unique to this tissue region. The mAbs to this antigen localize to the anchoring filaments, just below the basal-dense plate of the hemidesmosomes. In cell culture, the antigen is deposited upon the culture substate by growing and migrating human keratinocytes. Addition of mAb to the cultures causes the cells to round and detach, but does not impair them metabolically. Skin fragments incubated with antibody extensively de- epithelialize. These findings strongly suggest that this antigen is intimately involved in attachment of keratinocytes to the basement membrane. This antigen was isolated from keratinocyte cultures by immunoaffinity chromatography. Two molecules are observed. The most intact species contains three nonidentical chains, 165, 155, and 140 kD linked by interchain disulfide bonds. The second and more abundant species contains the 165- and 140-kD chains, but the 155-kD chain has been proteolytically cleaved to 105 kD. Likewise, two rotary-shadowed images are observed. The larger of the two, presumably corresponding to the most intact form, appears as an asymmetric 107-nm-long rod, with a single globule at one end and two smaller globules at the other. The more abundant species, presumably the proteolytically cleaved form, lacks the distal small globule. We propose the name "kalinin" for this new molecule. PMID:1860885

  9. The Membrane-anchoring Domain of Epidermal Growth Factor Receptor Ligands Dictates Their Ability to Operate in Juxtacrine Mode

    SciTech Connect

    Dong, Jianying; Opresko, Lee; Chrisler, William B.; Orr, Galya; Quesenberry, Ryan D.; Lauffenburger, Douglas A.; Wiley, H S.

    2005-06-01

    All ligands of the epidermal growth factor receptor (EGFR) are synthesized as membrane-anchored precursors. Previous work has suggested that some ligands, such as EGF, must be proteolytically released to be active, whereas others, such as heparin binding EGF-like growth factor (HB-EGF) can function while still anchored to the membrane (i.e., juxtacrine signaling). To explore the structural basis for these differences in ligand activity, we engineered a series of membrane-anchored ligands in which the core, receptor-binding domain of EGF was combined with different domains of both EGF and HB-EGF. We found that ligands having the N-terminal extension of EGF could not bind to the EGFR, even when released from the membrane. Ligands lacking an N-terminal extension, but possessing the membrane-anchoring domain of EGF still required proteolytic release for activity, whereas ligands with the membrane anchoring domain of HB-EGF could elicit full biological activity while still membrane anchored. Ligands containing the HB-EGF membrane anchor, but lacking an N-terminal extension, activated EGFR during their transit through the Golgi apparatus . However, cell-mixing experiments and fluorescence resonance energy transfer (FRET) studies showed that juxtacrine signaling typically occurred in trans at the cell surface, at points of cell-cell contact. Our data suggest that the membrane-anchoring domain of ligands selectively controls their ability to participate in juxtacrine signaling and thus, only a subclass of EGFR ligands can act in a juxtacrine mode.

  10. Selective and programmed cleavage of GPI-anchored proteins from the surface membrane by phospholipase C.

    PubMed

    Müller, Alexandra; Klöppel, Christine; Smith-Valentine, Megan; Van Houten, Judith; Simon, Martin

    2012-01-01

    Many surface proteins of eukaryotic cells are tethered to the membrane by a GPI-anchor which is enzymatically cleavable. Here, we investigate cleavage and release of different GPI-proteins by phospholipase C from the outer membrane of the ciliate Paramecium tetraurelia. Our data indicate that different GPI-proteins are not equally cleaved as proteins of the surface antigen family are preferentially released in vitro compared to several smaller GPI-proteins. Likewise, the analysis of culture medium indicates exclusive in vivo release of surface antigens by two phospholipase C isoforms (PLC2 and PLC6). This suggests that phospholipase C shows affinity for select groups of GPI-anchored proteins. Our data also reveal an up-regulation of PLC isoforms in GPI-anchored protein cleavage during antigenic switching. As a consequence, silencing of these PLCs leads to a drastic decrease of antigen concentration in the medium. These results suggest a higher order of GPI-regulation by phospholipase C as cleavage occurs programmed and specific for single GPI-proteins instead of an unspecific shedding of the entire surface membrane GPI-content.

  11. Influence of trifluoroethanol on membrane interfacial anchoring interactions of transmembrane alpha-helical peptides.

    PubMed

    Ozdirekcan, Suat; Nyholm, Thomas K M; Raja, Mobeen; Rijkers, Dirk T S; Liskamp, Rob M J; Killian, J Antoinette

    2008-02-15

    Interfacial anchoring interactions between aromatic amino acid residues and the lipid-water interface are believed to be important determinants for membrane protein structure and function. Thus, it is possible that molecules that partition into the lipid-water interface can influence membrane protein activity simply by interfering with these anchoring interactions. Here we tested this hypothesis by investigating the effects of 2,2,2-trifluoroethanol (TFE) on the interaction of a Trp-flanked synthetic transmembrane peptide (acetyl-GW(2)(LA)(8)LW(2)A-NH(2)) with model membranes of dimyristoylphosphatidylcholine. Two striking observations were made. First, using (2)H nuclear magnetic resonance on acyl chain deuterated lipids, we found that addition of 4 or 8 vol % of TFE completely abolishes the ability of the peptide to order and stretch the lipid acyl chains in these relatively thin bilayers. Second, we observed that addition of 8 vol % TFE reduces the tilt angle of the peptide from 5.3 degrees to 2.5 degrees, as measured by (2)H NMR on Ala-d(4) labeled peptides. The "straightening" of the peptide was accompanied by an increased exposure of Trp to the aqueous phase, as shown by Trp-fluorescence quenching experiments using acrylamide. The observation of a reduced tilt angle was surprising because we also found that TFE partioning results in a significant thinning of the membrane, which would increase the extent of hydrophobic mismatch. In contrast to the Trp-flanked peptide, no effect of TFE was observed on the interaction of a Lys-flanked analog (acetyl-GK(2)(LA)(8)LK(2)A-NH(2)) with the lipid bilayer. These results emphasize the importance of interfacial anchoring interactions for membrane organization and provide new insights into how molecules such as TFE that can act as anesthetics may affect the behavior of membrane proteins that are enriched in aromatic amino acids at the lipid-water interface.

  12. Membrane-Induced Structural Rearrangement and Identification of a Novel Membrane Anchor in Talin F2F3

    PubMed Central

    Arcario, Mark J.; Tajkhorshid, Emad

    2014-01-01

    Experimental challenges associated with characterization of the membrane-bound form of talin have prevented us from understanding the molecular mechanism of its membrane-dependent integrin activation. Here, utilizing what we believe to be a novel membrane mimetic model, we present a reproducible model of membrane-bound talin observed across multiple independent simulations. We characterize both local and global membrane-induced structural transitions that successfully reconcile discrepancies between biochemical and structural studies and provide insight into how talin might modulate integrin function. Membrane binding of talin, captured in unbiased simulations, proceeds through three distinct steps: initial electrostatic recruitment of the F2 subdomain to anionic lipids via several basic residues; insertion of an initially buried, conserved hydrophobic anchor into the membrane; and association of the F3 subdomain with the membrane surface through a large, interdomain conformational change. These latter two steps, to our knowledge, have not been observed or described previously. Electrostatic analysis shows talin F2F3 to be highly polarized, with a highly positive underside, which we attribute to the initial electrostatic recruitment, and a negative top face, which can help orient the protein optimally with respect to the membrane, thereby reducing the number of unproductive membrane collision events. PMID:25418091

  13. Ectoenzymes of the kidney microvillar membrane. Differential solubilization by detergents can predict a glycosyl-phosphatidylinositol membrane anchor.

    PubMed Central

    Hooper, N M; Turner, A J

    1988-01-01

    The pattern of solubilization of nine kidney microvillar ectoenzymes by a range of detergents distinguished two classes of membrane proteins: those released from the membrane by bacterial phosphatidylinositol-specific phospholipase C and those not so released. The latter group of transmembrane proteins were solubilized efficiently (greater than 80%) by all the detergents examined. In contrast, proteins released by phosphatidylinositol-specific phospholipase C were solubilized effectively only by octyl glucoside, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulphonate and sodium deoxycholate. Octyl glucoside solubilized the amphipathic forms of the ectoenzymes examined, suggesting that this may be a useful detergent in the purification of glycosyl-phosphatidylinositol-anchored ectoenzymes. PMID:2839148

  14. A novel ER J-protein DNAJB12 accelerates ER-associated degradation of membrane proteins including CFTR.

    PubMed

    Yamamoto, Yo-hei; Kimura, Taiji; Momohara, Shuku; Takeuchi, Masato; Tani, Tokio; Kimata, Yukio; Kadokura, Hiroshi; Kohno, Kenji

    2010-01-01

    Cytosolic Hsc70/Hsp70 are known to contribute to the endoplasmic reticulum (ER)-associated degradation of membrane proteins. However, at least in mammalian cells, its partner ER-localized J-protein for this cellular event has not been identified. Here we propose that this missing protein is DNAJB12. Protease protection assay and immunofluorescence study revealed that DNAJB12 is an ER-localized single membrane-spanning protein carrying a J-domain facing the cytosol. Using co-immunoprecipitation assay, we found that DNAJB12 is able to bind Hsc70 and thus can recruit Hsc70 to the ER membrane. Remarkably, cellular overexpression of DNAJB12 accelerated the degradation of misfolded membrane proteins including cystic fibrosis transmembrane conductance regulator (CFTR), but not a misfolded luminal protein. The DNAJB12-dependent degradation of CFTR was compromised by a proteasome inhibitor, lactacystin, suggesting that this process requires the ubiquitin-proteasome system. Conversely, knockdown of DNAJB12 expression attenuated the degradation of CFTR. Thus, DNAJB12 is a novel mammalian ER-localized J-protein that plays a vital role in the quality control of membrane proteins.

  15. Binding constants of membrane-anchored receptors and ligands: A general theory corroborated by Monte Carlo simulations.

    PubMed

    Xu, Guang-Kui; Hu, Jinglei; Lipowsky, Reinhard; Weikl, Thomas R

    2015-12-28

    Adhesion processes of biological membranes that enclose cells and cellular organelles are essential for immune responses, tissue formation, and signaling. These processes depend sensitively on the binding constant K2D of the membrane-anchored receptor and ligand proteins that mediate adhesion, which is difficult to measure in the "two-dimensional" (2D) membrane environment of the proteins. An important problem therefore is to relate K2D to the binding constant K3D of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in three dimensions (3D). In this article, we present a general theory for the binding constants K2D and K3D of rather stiff proteins whose main degrees of freedom are translation and rotation, along membranes and around anchor points "in 2D," or unconstrained "in 3D." The theory generalizes previous results by describing how K2D depends both on the average separation and thermal nanoscale roughness of the apposing membranes, and on the length and anchoring flexibility of the receptors and ligands. Our theoretical results for the ratio K2D/K3D of the binding constants agree with detailed results from Monte Carlo simulations without any data fitting, which indicates that the theory captures the essential features of the "dimensionality reduction" due to membrane anchoring. In our Monte Carlo simulations, we consider a novel coarse-grained model of biomembrane adhesion in which the membranes are represented as discretized elastic surfaces, and the receptors and ligands as anchored molecules that diffuse continuously along the membranes and rotate at their anchor points.

  16. STIM1 Is a Novel Component of ER-Chlamydia trachomatis Inclusion Membrane Contact Sites

    PubMed Central

    Agaisse, Hervé; Derré, Isabelle

    2015-01-01

    Productive developmental cycle of the obligate intracellular bacterial pathogen Chlamydia trachomatis depends on the interaction of the replicative vacuole, named the inclusion, with cellular organelles. We have recently reported the formation of ER-Inclusion membrane contact sites (MCSs), where the endoplasmic reticulum (ER) is in apposition to the inclusion membrane. These platforms contain the C. trachomatis inclusion membrane protein IncD, the mammalian ceramide transfer protein CERT and the ER resident proteins VAPA/B and were proposed to play a role in the non-vesicular trafficking of lipids to the inclusion. Here, we identify STIM1 as a novel component of ER-Inclusion MCSs. STIM1, an ER calcium (Ca2+) sensor that relocate to ER-Plasma Membrane (PM) MCSs upon Ca2+ store depletion, associated with C. trachomatis inclusion. STIM1, but not the general ER markers Rtn3C and Sec61ß, was enriched at the inclusion membrane. Ultra-structural studies demonstrated that STIM1 localized to ER-Inclusion MCSs. Time-course experiments showed that STIM1, CERT and VAPB co-localized throughout the developmental cycle. By contrast, Orai1, the PM Ca2+ channel that interacts with STIM1 at ER-PM MCSs, did not associate with C. trachomatis inclusion. Upon ER Ca2+ store depletion, a pool of STIM1 relocated to ER-PM MCSs, while the existing ER-Inclusion MCSs remained enriched in STIM1. Finally, we have identified the CAD domain, which mediates STIM1-Orai1 interaction, as the minimal domain required for STIM1 enrichment at ER-Inclusion MCSs. Altogether this study identifies STIM1 as a novel component of ER-C. trachomatis inclusion MCSs. We discuss the potential role(s) of STIM1 during the infection process. PMID:25915399

  17. D-AKAP1a is a signal-anchored protein in the mitochondrial outer membrane.

    PubMed

    Jun, Yong-Woo; Park, Heeju; Lee, You-Kyung; Kaang, Bong-Kiun; Lee, Jin-A; Jang, Deok-Jin

    2016-04-01

    Dual A-kinase anchoring protein 1a (D-AKAP1a, AKAP1) regulates cAMP signaling in mitochondria. However, it is not clear how D-AKAP1a is associated with mitochondria. In this study, we show that D-AKAP1a is a transmembrane protein in the mitochondrial outer membrane (MOM). We revealed that the N-terminus of D-AKAP1a is exposed to the intermembrane space of mitochondria and that its C-terminus is located on the cytoplasmic side of the MOM. Moderate hydrophobicity and the positively charged flanking residues of the transmembrane domain of D-AKAP1a were important for targeting. Taken together, D-AKAP1a can be classified as a signal-anchored protein in the MOM. Our topological study provides valuable information about the molecular and cellular mechanisms of mitochondrial targeting of AKAP1.

  18. D-AKAP1a is a signal-anchored protein in the mitochondrial outer membrane.

    PubMed

    Jun, Yong-Woo; Park, Heeju; Lee, You-Kyung; Kaang, Bong-Kiun; Lee, Jin-A; Jang, Deok-Jin

    2016-04-01

    Dual A-kinase anchoring protein 1a (D-AKAP1a, AKAP1) regulates cAMP signaling in mitochondria. However, it is not clear how D-AKAP1a is associated with mitochondria. In this study, we show that D-AKAP1a is a transmembrane protein in the mitochondrial outer membrane (MOM). We revealed that the N-terminus of D-AKAP1a is exposed to the intermembrane space of mitochondria and that its C-terminus is located on the cytoplasmic side of the MOM. Moderate hydrophobicity and the positively charged flanking residues of the transmembrane domain of D-AKAP1a were important for targeting. Taken together, D-AKAP1a can be classified as a signal-anchored protein in the MOM. Our topological study provides valuable information about the molecular and cellular mechanisms of mitochondrial targeting of AKAP1. PMID:26950402

  19. Differential effects of glycosphingolipids on the detergent-insolubility of the glycosylphosphatidylinositol-anchored membrane dipeptidase.

    PubMed

    Parkin, E T; Turner, A J; Hooper, N M

    2001-08-15

    The insolubility of glycosylphosphatidylinositol (GPI)-anchored proteins in certain detergents appears to be an intrinsic property of their association with sphingolipids and cholesterol in lipid rafts. We show that the GPI-anchored protein membrane dipeptidase is localized in detergent-insoluble lipid rafts isolated from porcine kidney microvillar membranes, and that these rafts, which lack caveolin, are enriched not only in sphingomyelin and cholesterol, but also in the glycosphingolipid lactosylceramide (LacCer). Dipeptidase purified from porcine kidney was reconstituted into artificial liposomes in order to investigate the relationship between glycosphingolipids and GPI-anchored protein detergent-insolubility. Dipeptidase was insoluble in liposomes containing extremely low concentrations of LacCer. In contrast, identical concentrations of glucosylceramide or galactosylceramide failed to promote significant detergent-insolubility. Cholesterol was shown to enhance the detergent-insoluble effect of LacCer. GC-MS analysis revealed dramatic differences between the fatty acyl compositions of LacCer and those of the other glycosphingolipids. However, despite these differences, we show that the unusually marked effect of LacCer to promote the detergent-insolubility of dipeptidase cannot be singularly attributed to the fatty acyl composition of this glycosphingolipid molecule. Instead, we suggest that the ability of LacCer to confer detergent-insolubility on this GPI-anchored protein is dependent on the structure of the lipid molecule in its entirety, and that this glycosphingolipid may have an important role to play in the stabilization of lipid rafts, particularly the caveolin-free glycosphingolipid signalling domains.

  20. Characterization of the phosphatidylinositol-glycan membrane anchor of human placental alkaline phosphatase

    SciTech Connect

    Howard, A.D.; Berger, J.; Gerber, L.; Familletti, P.; Udenfriend, S.

    1987-09-01

    Placental alkaline phosphatase (orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1) is a member of a diverse group of membrane proteins whose attachment to the lipid bilayer is mediated by a phosphatidylinositol-glycan. To investigate structural aspects of the glycolipid anchor, cultured WISH cells were used because, they produce the enzyme in abundant quantities. When cell suspensions were incubated with purified phosphatidylinositol-specific phospholipase C, most of the placental alkaline phosphatase was released from membranes in a hydrophilic form. On incubation of the cells with (/sup 14/C)ethanolamine, (/sup 14/C)myristic acid, or myo(/sup 3/H)inositol, each was incorporated into the phosphatase near the carboxyl terminus, showing that these components, which are found in other phosphatidylinositol membrane-linked proteins, are also present in placental alkaline phosphatase.

  1. Tethered bilayer lipid membranes on mixed self-assembled monolayers of a novel anchoring thiol: impact of the anchoring thiol density on bilayer formation.

    PubMed

    Basit, Hajra; Van der Heyden, Angéline; Gondran, Chantal; Nysten, Bernard; Dumy, Pascal; Labbé, Pierre

    2011-12-01

    Tethered bilayer lipid membranes (tBLMs) are designed on mixed self-assembled monolayers (SAMs) of a novel synthetic anchoring thiol, 2,3-di-o-palmitoylglycerol-1-tetraethylene glycol mercaptopropanoic acid ester (TEG-DP), and a new short dilution thiol molecule, tetraethylene glycol mercaptopropanoic acid ester (TEG). tBLM formation was accomplished by self-directed fusion of small unilamellar vesicles of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. The influence of the dilution of the anchoring thiol molecule in the SAM on the vesicle fusion process and on the properties of the resulting tBLMs is studied. It is observed by quartz crystal microbalance that vesicle fusion is a one-step process for a pure TEG-DP SAM as well as for mixed SAMs containing a high concentration of the anchoring thiol. However, upon dilution of the anchoring thiol to moderate concentrations, this process is decelerated and possibly follows a pathway different from that observed on a pure TEG-DP SAM. Electrochemical impedance spectroscopy is used to qualitatively correlate the composition of the SAM to the electrical properties of the tBLM. In this paper we also delineate the necessity of a critical concentration of this anchoring TEG-DP thiol as a requisite for inducing the fusion of vesicles to form a tBLM.

  2. An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER

    PubMed Central

    Markgraf, Daniel F.; Klemm, Robin W.; Junker, Mirco; Hannibal-Bach, Hans K.; Ejsing, Christer S.; Rapoport, Tom A.

    2014-01-01

    Eukaryotic cells store neutral lipids, such as triacylglycerol (TAG), in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show in S. cerevisiae that LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein, Ice2p, facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG-degradation and -synthesis, promoting the rapid re-localization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER, and explain how cells switch neutral lipid metabolism from storage to consumption. PMID:24373967

  3. An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER.

    PubMed

    Markgraf, Daniel F; Klemm, Robin W; Junker, Mirco; Hannibal-Bach, Hans K; Ejsing, Christer S; Rapoport, Tom A

    2014-01-16

    Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption.

  4. Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase.

    PubMed

    González, Lisandro J; Bahr, Guillermo; Nakashige, Toshiki G; Nolan, Elizabeth M; Bonomo, Robert A; Vila, Alejandro J

    2016-07-01

    Carbapenems, 'last-resort' β-lactam antibiotics, are inactivated by zinc-dependent metallo-β-lactamases (MBLs). The host innate immune response withholds nutrient metal ions from microbial pathogens by releasing metal-chelating proteins such as calprotectin. We show that metal sequestration is detrimental for the accumulation of MBLs in the bacterial periplasm, because those enzymes are readily degraded in their nonmetallated form. However, the New Delhi metallo-β-lactamase (NDM-1) can persist under conditions of metal depletion. NDM-1 is a lipidated protein that anchors to the outer membrane of Gram-negative bacteria. Membrane anchoring contributes to the unusual stability of NDM-1 and favors secretion of this enzyme in outer-membrane vesicles (OMVs). OMVs containing NDM-1 can protect nearby populations of bacteria from otherwise lethal antibiotic levels, and OMVs from clinical pathogens expressing NDM-1 can carry this MBL and the blaNDM gene. We show that protein export into OMVs can be targeted, providing possibilities of new antibacterial therapeutic strategies.

  5. New insights into the targeting of a sub-set of tail-anchored proteins to the outer mitochondrial membrane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tail-anchored (TA) proteins are a unique class of functionally diverse membrane proteins that are defined by their single C-terminal membrane-spanning domain and their ability to insert post-translationally into specific organelles with an Nout-Cin orientation. The molecular mechanisms by which TA p...

  6. Solid-state NMR Study of the YadA Membrane-Anchor Domain in the Bacterial Outer Membrane.

    PubMed

    Shahid, Shakeel A; Nagaraj, Madhu; Chauhan, Nandini; Franks, Trent W; Bardiaux, Benjamin; Habeck, Michael; Orwick-Rydmark, Marcella; Linke, Dirk; van Rossum, Barth-J

    2015-10-19

    MAS-NMR was used to study the structure and dynamics at ambient temperatures of the membrane-anchor domain of YadA (YadA-M) in a pellet of the outer membrane of E. coli in which it was expressed. YadA is an adhesin from the pathogen Yersinia enterocolitica that is involved in interactions with the host cell, and it is a model protein for studying the autotransport process. Existing assignments were sucessfully transferred to a large part of the YadA-M protein in the E. coli lipid environment by using (13) C-(13) C DARR and PDSD spectra at different mixing times. The chemical shifts in most regions of YadA-M are unchanged relative to those in microcrystalline YadA-M preparations from which a structure has previously been solved, including the ASSA region that is proposed to be involved in transition-state hairpin formation for transport of the soluble domain. Comparisons of the dynamics between the microcrystalline and membrane-embedded samples indicate greater flexibility of the ASSA region in the outer-membrane preparation at physiological temperatures. This study will pave the way towards MAS-NMR structure determination of membrane proteins, and a better understanding of functionally important dynamic residues in native membrane environments. PMID:26332158

  7. Polybasic trafficking signal mediates golgi export, ER retention or ER export and retrieval based on membrane-proximity.

    PubMed

    Parmar, Hirendrasinh B; Barry, Chris; Duncan, Roy

    2014-01-01

    Trafficking of integral membrane proteins between the ER and Golgi complex, and protein sorting and trafficking between the TGN and endosomal/lysosomal compartments or plasma membranes, are dependent on cis-acting, linear amino acid sorting signals. Numerous sorting signals of this type have been identified in the cytoplasmic domains of membrane proteins, several of which rely on basic residues. A novel Golgi export signal that relies on a membrane-proximal polybasic motif (PBM) was recently identified in the reptilian reovirus p14 protein, a representative of an unusual group of bitopic fusion-associated small transmembrane (FAST) proteins encoded by fusogenic orthoreoviruses and responsible for cell-cell fusion and syncytium formation. Using immunofluorescence microscopy, cell surface immunofluorescence, and endoglycosidase H assays, we now show the p14 PBM can mediate several distinct trafficking functions depending on its proximity to the transmembrane domain (TMD). When present within 4-residues of the TMD it serves as a Golgi export signal, but when located at the C-terminus of the 68-residue p14 cytoplasmic endodomain it functions as an ER retention signal. The PBM has no effect on protein trafficking when located at an internal position in the cytoplasmic domain. When present in both membrane-proximal and -distal locations, the PBMs promote export to, and efficient retrieval from, the Golgi complex. Interestingly, the conflicting trafficking signals provided by two PBMs induces extensive ER tubulation and segregation of ER components. These studies highlight how a single trafficking signal in a simple transmembrane protein can have remarkably diverse, position-dependent effects on protein trafficking and ER morphogenesis.

  8. TMPRSS2, a novel membrane-anchored mediator in cancer pain.

    PubMed

    Lam, David K; Dang, Dongmin; Flynn, Andrea N; Hardt, Markus; Schmidt, Brian L

    2015-05-01

    More than half of all cancer patients have significant pain during the course of their disease. The strategic localization of TMPRSS2, a membrane-bound serine protease, on the cancer cell surface may allow it to mediate signal transduction between the cancer cell and its extracellular environment. We show that TMPRSS2 expression is not only dramatically increased in the primary cancers of patients but TMPRSS2 immunopositivity is also directly correlated with cancer pain severity in these patients. TMPRSS2 induced proteolytic activity, activated trigeminal neurons, and produced marked mechanical hyperalgesia when administered into the hind paw of wild-type mice but not PAR2-deficient mice. Coculture of human cancer cells with murine trigeminal neurons demonstrated colocalization of TMPRSS2 with PAR2. These results point to a novel role for a cell membrane-anchored mediator in cancer pain, as well as pain in general.

  9. Single-mode and single-polarization photonics with anchored-membrane waveguides

    NASA Astrophysics Data System (ADS)

    Chiles, Jeff; Fathpour, Sasan

    2016-08-01

    An integrated photonic platform with anchored-membrane structures, the T-Guide, is proposed and numerically investigated. These compact air-clad structures have high index contrast and are much more stable than prior membrane-type structures. Their semi-infinite geometry enables single-mode and single-polarization (SMSP) operation over unprecedented bandwidths. Modal simulations quantify this behavior, showing that an SMSP window of 2.75 octaves (1.2 - 8.1 {\\mu}m) is feasible for silicon T-Guides, spanning almost the entire transparency range of silicon. Dispersion engineering for T-Guides yields broad regions of anomalous group velocity dispersion, rendering them a promising platform for nonlinear applications, such as wideband frequency conversion.

  10. Anchoring PEG-oleate to cell membranes stimulates reactive oxygen species production.

    PubMed

    Sakai, Shinji; Nomura, Koujiro; Mochizuki, Kei; Taya, Masahito

    2016-11-01

    Polyethylene glycol (PEG) derivatives possessing oleyl and reactive groups for conjugating functional substrates, such as proteins and quantum dots, are useful materials for cell-surface engineering and cell immobilization onto substrates. The reagent is known as a biocompatible anchor for cell membranes (BAM). Here, BAM-anchoring on cell membranes is reported to stimulate reactive oxygen species (ROS) production in those cells. Significant increases in ROS production and release to the surrounding environment were detected in mouse fibroblast cell line 10T1/2 when soaked in a solution containing BAM conjugated with 1/10mol/mol bovine serum albumin at 1.5μM-protein. ROS production stimulation was confirmed to be independent of the protein crosslinked with BAM and of cell type. Similar stimulation was detected for BAMs conjugated with ovalbumin and casein, in human hepatoma cell line HepG2, and human umbilical vein endothelial cells. Considering the effects of ROS on a variety of cellular processes, these results demonstrated the necessity for focusing attention on the effects of generated and released ROS on the behaviors of cells in the studies applying BAM to cells.

  11. Loss of Dfg5 glycosylphosphatidylinositol-anchored membrane protein confers enhanced heat tolerance in Saccharomyces cerevisiae.

    PubMed

    Nasution, Olviyani; Lee, Jaok; Srinivasa, Kavitha; Choi, In-Geol; Lee, Young Mi; Kim, Eunjung; Choi, Wonja; Kim, Wankee

    2015-08-01

    The protein product of Saccharomyces cerevisiae DFG5 gene is a glycosylphosphatidylinositol (GPI)-anchored plasma membrane protein and a putative glycosidase/glycosyltransferase that links other GPI-anchored proteins to β-glucans in the cell wall. Upon exposure to heat (41°C), DFG5 deletion mutant dfg5Δ displayed significantly enhanced heat tolerance as well as lowered level of reactive oxygen species and decreased membrane permeability compared with those in the control (BY4741). Comparative transcriptome profiles of BY4741 and dfg5Δ revealed that 38 and 23 genes were up- and down-regulated in dfg5Δ respectively. Of the 23 down-regulated genes, 11 of 13 viable deletion mutants were identified to be tolerant to heat, suggesting that the down-regulation of those genes might have contributed to the enhanced heat tolerance in dfg5Δ. Deletion of DFG5 caused slight activation of mitogen-activated protein kinases Hog1 in the high-osmolarity glycerol pathway and Slt2 in the cell wall integrity pathway. Therefore, a model is proposed on the signal transduction pathways associated with deletion of DFG5 upon heat stress.

  12. Megadalton-node assembly by binding of Skb1 to the membrane anchor Slf1

    PubMed Central

    Deng, Lin; Kabeche, Ruth; Wang, Ning; Wu, Jian-Qiu; Moseley, James B.

    2014-01-01

    The plasma membrane contains both dynamic and static microdomains. Given the growing appreciation of cortical microdomains in cell biology, it is important to determine the organizational principles that underlie assembly of compartmentalized structures at the plasma membrane. The fission yeast plasma membrane is highly compartmentalized by distinct sets of cortical nodes, which control signaling for cell cycle progression and cytokinesis. The mitotic inhibitor Skb1 localizes to a set of cortical nodes that provide spatial control over signaling for entry into mitosis. However, it has been unclear whether these nodes contain other proteins and how they might be organized and tethered to the plasma membrane. Here we show that Skb1 forms nodes by interacting with the novel protein Slf1, which is a limiting factor for node formation in cells. Using quantitative fluorescence microscopy and in vitro assays, we demonstrate that Skb1-Slf1 nodes are megadalton structures that are anchored to the membrane by a lipid-binding region in the Slf1 C-terminus. We propose a mechanism for higher-order node formation by Skb1 and Slf1, with implications for macromolecular assemblies in diverse cell types. PMID:25009287

  13. Signal transduction across cellular membranes can be mediated by coupling of the clustering of anchored proteins in both leaflets

    NASA Astrophysics Data System (ADS)

    Yue, Tongtao; Zhang, Xianren

    2012-01-01

    One key question in signal transduction is how the signal is relayed from the outer leaflet of a cellular membrane to the inner leaflet. Using a simulation model, a mechanism for the mediation of signal transduction is proposed here in which the coupling between membrane proteins in different leaflets can be achieved by the clustering of anchored proteins, without recruiting transmembrane proteins. Depending on the hydrophobic length of the anchored proteins, three coupling patterns, including face-to-face clustering, interdigitated clustering, and weak-coupled clustering, are observed in this work. This observation provides a possible explanation of how a particular downstream signaling pathway is selected.

  14. Structure of the Membrane Anchor of Pestivirus Glycoprotein Erns, a Long Tilted Amphipathic Helix

    PubMed Central

    Aberle, Daniel; Muhle-Goll, Claudia; Bürck, Jochen; Wolf, Moritz; Reißer, Sabine; Luy, Burkhard; Wenzel, Wolfgang; Ulrich, Anne S.; Meyers, Gregor

    2014-01-01

    Erns is an essential virion glycoprotein with RNase activity that suppresses host cellular innate immune responses upon being partially secreted from the infected cells. Its unusual C-terminus plays multiple roles, as the amphiphilic helix acts as a membrane anchor, as a signal peptidase cleavage site, and as a retention/secretion signal. We analyzed the structure and membrane binding properties of this sequence to gain a better understanding of the underlying mechanisms. CD spectroscopy in different setups, as well as Monte Carlo and molecular dynamics simulations confirmed the helical folding and showed that the helix is accommodated in the amphiphilic region of the lipid bilayer with a slight tilt rather than lying parallel to the surface. This model was confirmed by NMR analyses that also identified a central stretch of 15 residues within the helix that is fully shielded from the aqueous layer, which is C-terminally followed by a putative hairpin structure. These findings explain the strong membrane binding of the protein and provide clues to establishing the Erns membrane contact, processing and secretion. PMID:24586172

  15. The lactococcal abortive infection protein AbiP is membrane-anchored and binds nucleic acids.

    PubMed

    Domingues, Susana; McGovern, Stephen; Plochocka, Danuta; Santos, Mário A; Ehrlich, S Dusko; Polard, Patrice; Chopin, Marie-Christine

    2008-03-30

    AbiP, a lactococcal abortive phage infection system, has previously been shown to arrest phage bIL66M1 DNA replication around 10 min after infection and to inhibit the switch off of phage early transcripts. We report here the functional characterization and implication in the abortive infection phenotype of two domains identified in the AbiP sequence. We show that AbiP is a protein anchored to the membrane by an N-terminal membrane-spanning domain. Our results further suggest that membrane localization may be required for the anti-phage activity of AbiP. The remainder of the protein, which contains a putative nucleic acid binding domain, is shown to be located on the cytosolic side. Purified AbiP is shown to bind nucleic acids with an approximately 10-fold preference for RNA relative to ssDNA. AbiP interaction with both ssDNA and RNA molecules occurs in a sequence-independent manner. We have analyzed the effect of substitutions of aromatic and basic residues on the surface of the putative binding fold. In vitro and in vivo studies of these AbiP derivatives indicate that the previously reported effects on phage development might be dependent on the nucleic acid binding activity displayed by the membrane-bound protein.

  16. A novel family of Apicomplexan glideosome-associated proteins with an inner membrane-anchoring role.

    PubMed

    Bullen, Hayley E; Tonkin, Christopher J; O'Donnell, Rebecca A; Tham, Wai-Hong; Papenfuss, Anthony T; Gould, Sven; Cowman, Alan F; Crabb, Brendan S; Gilson, Paul R

    2009-09-11

    The phylum Apicomplexa are a group of obligate intracellular parasites responsible for a wide range of important diseases. Central to the lifecycle of these unicellular parasites is their ability to migrate through animal tissue and invade target host cells. Apicomplexan movement is generated by a unique system of gliding motility in which substrate adhesins and invasion-related proteins are pulled across the plasma membrane by an underlying actin-myosin motor. The myosins of this motor are inserted into a dual membrane layer called the inner membrane complex (IMC) that is sandwiched between the plasma membrane and an underlying cytoskeletal basket. Central to our understanding of gliding motility is the characterization of proteins residing within the IMC, but to date only a few proteins are known. We report here a novel family of six-pass transmembrane proteins, termed the GAPM family, which are highly conserved and specific to Apicomplexa. In Plasmodium falciparum and Toxoplasma gondii the GAPMs localize to the IMC where they form highly SDS-resistant oligomeric complexes. The GAPMs co-purify with the cytoskeletal alveolin proteins and also to some degree with the actin-myosin motor itself. Hence, these proteins are strong candidates for an IMC-anchoring role, either directly or indirectly tethering the motor to the cytoskeleton.

  17. Probing the Huntingtin 1-17 Membrane Anchor on a Phospholipid Bilayer by Using All-Atom Simulations

    PubMed Central

    Côté, Sébastien; Binette, Vincent; Salnikov, Evgeniy S.; Bechinger, Burkhard; Mousseau, Normand

    2015-01-01

    Mislocalization and aggregation of the huntingtin protein are related to Huntington’s disease. Its first exon—more specifically the first 17 amino acids (Htt17)—is crucial for the physiological and pathological functions of huntingtin. It regulates huntingtin’s activity through posttranslational modifications and serves as an anchor to membrane-containing organelles of the cell. Recently, structure and orientation of the Htt17 membrane anchor were determined using a combined solution and solid-state NMR approach. This prompted us to refine this model by investigating the dynamics and thermodynamics of this membrane anchor on a POPC bilayer using all-atom, explicit solvent molecular dynamics and Hamiltonian replica exchange. Our simulations are combined with various experimental measurements to generate a high-resolution atomistic model for the huntingtin Htt17 membrane anchor on a POPC bilayer. More precisely, we observe that the single α-helix structure is more stable in the phospholipid membrane than the NMR model obtained in the presence of dodecylphosphocholine detergent micelles. The resulting Htt17 monomer has its hydrophobic plane oriented parallel to the bilayer surface. Our results further unveil the key residues interacting with the membrane in terms of hydrogen bonds, salt-bridges, and nonpolar contributions. We also observe that Htt17 equilibrates at a well-defined insertion depth and that it perturbs the physical properties—order parameter, thickness, and area per lipid—of the bilayer in a manner that could favor its dimerization. Overall, our observations reinforce and refine the NMR measurements on the Htt17 membrane anchor segment of huntingtin that is of fundamental importance to its biological functions. PMID:25762330

  18. Ultrastructural verification of anchoring role of lamina fibroreticularis of dental basement membrane in odontogenesis.

    PubMed

    Sawada, T; Inoue, S

    1999-01-01

    In a previous study of the developing tooth a characteristic fibrillar layer associated with the basement membrane of the inner enamel epithelium was found to be a highly specialized lamina fibroreticularis of the basement membrane which is unusually rich in basotubules, 10 nm wide microfibril-like structures. In this study this layer was further examined in detail in the hope of ultrastructurally elucidating its role in odontogenesis. Tooth germs of the monkey (Macaca fuscata) were processed for thin section observations. Dental papilla cell processes were inserted into the lamina fibroreticularis and their surface was closely associated with numerous parallel basotubules. With high-resolution observations the space between the surface and nearest basotubules as well as the spaces between neighbouring basotubules were bridged by 1.5-3 nm wide filaments running perpendicular to the axis of basotubules. These results indicate that the processes of dental papilla cells are linked to groups of basotubules by means of 1.5-3 nm wide filaments. Immunoperoxidase staining showed the presence of fibronectin along basotubules as well as within the space between the process and basotubule. This result, together with the comparison of these filaments with microfibril-associated 1.2-3 nm wide fibronectin filaments and the reported abundance of fibronectin in the basement membrane area during odontogenesis, indicates that these 1.5-3 nm wide filaments are composed of fibronectin. After immunostaining for amyloid P component, done with the rat tissue because of the nature of an available antiserum, basotubules in the lamina fibroreticularis were positively stained, as has been shown in basotubules/microfibrils in other locations. Microfibrils function as anchoring rods by interlinking connective tissue components to one another and to the cells. Basotubules, thought to be basement membrane-incorporated microfibrils, in the lamina fibroreticularis in this study are also likely to

  19. INTRACELLULAR TRANSPORT. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts.

    PubMed

    Chung, Jeeyun; Torta, Federico; Masai, Kaori; Lucast, Louise; Czapla, Heather; Tanner, Lukas B; Narayanaswamy, Pradeep; Wenk, Markus R; Nakatsu, Fubito; De Camilli, Pietro

    2015-07-24

    Lipid transfer between cell membrane bilayers at contacts between the endoplasmic reticulum (ER) and other membranes help to maintain membrane lipid homeostasis. We found that two similar ER integral membrane proteins, oxysterol-binding protein (OSBP)-related protein 5 (ORP5) and ORP8, tethered the ER to the plasma membrane (PM) via the interaction of their pleckstrin homology domains with phosphatidylinositol 4-phosphate (PI4P) in this membrane. Their OSBP-related domains (ORDs) harbored either PI4P or phosphatidylserine (PS) and exchanged these lipids between bilayers. Gain- and loss-of-function experiments showed that ORP5 and ORP8 could mediate PI4P/PS countertransport between the ER and the PM, thus delivering PI4P to the ER-localized PI4P phosphatase Sac1 for degradation and PS from the ER to the PM. This exchange helps to control plasma membrane PI4P levels and selectively enrich PS in the PM.

  20. Structural and genetic analyses reveal the protein SepF as a new membrane anchor for the Z ring

    PubMed Central

    Duman, Ramona; Ishikawa, Shu; Celik, Ilkay; Strahl, Henrik; Ogasawara, Naotake; Troc, Paulina; Löwe, Jan; Hamoen, Leendert W.

    2013-01-01

    A key step in bacterial cell division is the polymerization of the tubulin homolog FtsZ at midcell. FtsZ polymers are anchored to the cell membrane by FtsA and are required for the assembly of all other cell division proteins. In Gram-positive and cyanobacteria, FtsZ filaments are aligned by the protein SepF, which in vitro polymerizes into large rings that bundle FtsZ filaments. Here we describe the crystal structure of the only globular domain of SepF, located within the C-terminal region. Two-hybrid data revealed that this domain comprises the FtsZ binding site, and EM analyses showed that it is sufficient for ring formation, which is explained by the filaments in the crystals of SepF. Site-directed mutagenesis, gel filtration, and analytical ultracentrifugation indicated that dimers form the basic units of SepF filaments. High-resolution structured illumination microscopy suggested that SepF is membrane associated, and it turned out that purified SepF not only binds to lipid membranes, but also recruits FtsZ. Further genetic and biochemical analyses showed that an amphipathic helix at the N terminus functions as the membrane-binding domain, making SepF a unique membrane anchor for the FtsZ ring. This clarifies why Bacillus subtilis grows without FtsA or the putative membrane anchor EzrA and why bacteria lacking FtsA contain SepF homologs. Both FtsA and SepF use an amphipathic helix for membrane binding. These helices prefer positively curved membranes due to relaxed lipid density; therefore this type of membrane anchor may assist in keeping the Z ring positioned at the strongly curved leading edge of the developing septum. PMID:24218584

  1. A membrane-anchored protein kinase involved in Brassica self-incompatibility signaling.

    PubMed

    Murase, Kohji; Shiba, Hiroshi; Iwano, Megumi; Che, Fang-Sik; Watanabe, Masao; Isogai, Akira; Takayama, Seiji

    2004-03-01

    Self-incompatibility (SI) response in Brassica is initiated by haplotype-specific interactions between the pollen-borne ligand S locus protein 11/SCR and its stigmatic S receptor kinase, SRK. This binding induces autophosphorylation of SRK, which is then thought to trigger a signaling cascade that leads to self-pollen rejection. A recessive mutation of the modifier (m) gene eliminates the SI response in stigma. Positional cloning of M has revealed that it encodes a membrane-anchored cytoplasmic serine/threonine protein kinase, designated M locus protein kinase (MLPK). Transient expression of MLPK restores the ability of mm papilla cells to reject self-pollen, suggesting that MLPK is a positive mediator of Brassica SI signaling.

  2. Structure of the glycosylphosphatidylinositol membrane anchor of human placental alkaline phosphatase.

    PubMed Central

    Redman, C A; Thomas-Oates, J E; Ogata, S; Ikehara, Y; Ferguson, M A

    1994-01-01

    The glycosylphosphatidylinositol membrane anchor of human placental alkaline phosphatase was isolated by exhaustive proteolysis followed by hydrophobic interaction chromatography. The resulting glycosylphosphatidylinositol-peptide was subjected to compositional analysis and chemical and enzymic modifications. The neutral-glycan fraction, prepared by dephosphorylation followed by HNO2 deamination and reduction, was sequenced using exoglycosidases and acetolysis. The phosphatidylinositol moiety was analysed by fast-atom bombardment mass spectrometry and gas chromatography-mass spectrometry. Taken together the data suggest the structure, Thr-Asp-ethanolamine-PO4-Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcN-(sn-1-O- alkyl-2-O-acylglycerol-3-PO4-1-myo-D-inositol), which contains an additional ethanolamine phosphate group at an unknown position. PMID:7945214

  3. Effect of anchor positioning on binding and diffusion of elongated 3D DNA nanostructures on lipid membranes

    NASA Astrophysics Data System (ADS)

    Khmelinskaia, Alena; Franquelim, Henri G.; Petrov, Eugene P.; Schwille, Petra

    2016-05-01

    DNA origami is a state-of-the-art technology that enables the fabrication of nano-objects with defined shapes, to which functional moieties, such as lipophilic anchors, can be attached with a nanometre scale precision. Although binding of DNA origami to lipid membranes has been extensively demonstrated, the specific requirements necessary for membrane attachment are greatly overlooked. Here, we designed a set of amphipathic rectangular-shaped DNA origami structures with varying placement and number of chol-TEG anchors used for membrane attachment. Single- and multiple-cholesteryl-modified origami nanostructures were produced and studied in terms of their membrane localization, density and dynamics. We show that the positioning of at least two chol-TEG moieties near the corners is essential to ensure efficient membrane binding of large DNA nanostructures. Quantitative fluorescence correlation spectroscopy data further confirm that increasing the number of corner-positioned chol-TEG anchors lowers the dynamics of flat DNA origami structures on freestanding membranes. Taken together, our approach provides the first evidence of the importance of the location in addition to the number of hydrophobic moieties when rationally designing minimal DNA nanostructures with controlled membrane binding.

  4. Covalent binding and anchoring of cytochrome c to mitochondrial mimetic membranes promoted by cholesterol carboxyaldehyde.

    PubMed

    Genaro-Mattos, Thiago C; Appolinário, Patricia P; Mugnol, Katia C U; Bloch, Carlos; Nantes, Iseli L; Di Mascio, Paolo; Miyamoto, Sayuri

    2013-10-21

    Mitochondrial cholesterol has been reported to be increased under specific pathological conditions associated with enhanced oxidative stress parameters. In this scenario, cholesterol oxidation would be increased, leading to the production of reactive aldehydes, including cholesterol carboxyaldehyde (ChAld). By using SDS micelles as a mitochondrial mimetic model, we have demonstrated that ChAld covalently modifies cytochrome c (cytc), a protein known to participate in electron transport and apoptosis signaling. This mimetic model induces changes in cytc structure in the same way as mitochondrial membranes do. Tryptic digestion of the cytc-ChAld adduct followed by MALDI-TOF/TOF analyses revealed that modifications occur at Lys residues (K22) localized at cytc site L, a site involved in protein-protein and protein-membrane interactions. Interestingly, ChAld ligation prevented cytc detachment from liposomes even under high ionic strength conditions. Overall, it can be concluded that ChAld ligation to Lys residues at site L creates a hydrophobic tail at cytc, which promotes cytc anchoring to the membrane. Although not investigated in detail in this study, cytc adduction to cholesterol derived aldehydes could have implications in cytc release from mitochondria under apoptotic stimuli. PMID:24059586

  5. Structural insights into tail-anchored protein binding and membrane insertion by Get3.

    PubMed

    Bozkurt, Gunes; Stjepanovic, Goran; Vilardi, Fabio; Amlacher, Stefan; Wild, Klemens; Bange, Gert; Favaloro, Vincenzo; Rippe, Karsten; Hurt, Ed; Dobberstein, Bernhard; Sinning, Irmgard

    2009-12-15

    Tail-anchored (TA) membrane proteins are involved in a variety of important cellular functions, including membrane fusion, protein translocation, and apoptosis. The ATPase Get3 (Asna1, TRC40) was identified recently as the endoplasmic reticulum targeting factor of TA proteins. Get3 consists of an ATPase and alpha-helical subdomain enriched in methionine and glycine residues. We present structural and biochemical analyses of Get3 alone as well as in complex with a TA protein, ribosome-associated membrane protein 4 (Ramp4). The ATPase domains form an extensive dimer interface that encloses 2 nucleotides in a head-to-head orientation and a zinc ion. Amide proton exchange mass spectrometry shows that the alpha-helical subdomain of Get3 displays considerable flexibility in solution and maps the TA protein-binding site to the alpha-helical subdomain. The non-hydrolyzable ATP analogue AMPPNP-Mg(2+)- and ADP-Mg(2+)-bound crystal structures representing the pre- and posthydrolysis states are both in a closed form. In the absence of a TA protein cargo, ATP hydrolysis does not seem to be possible. Comparison with the ADP.AlF(4)(-)-bound structure representing the transition state (Mateja A, et al. (2009) Nature 461:361-366) indicates how the presence of a TA protein is communicated to the ATP-binding site. In vitro membrane insertion studies show that recombinant Get3 inserts Ramp4 in a nucleotide- and receptor-dependent manner. Although ATP hydrolysis is not required for Ramp4 insertion per se, it seems to be required for efficient insertion. We postulate that ATP hydrolysis is needed to release Get3 from its receptor. Taken together, our results provide mechanistic insights into posttranslational targeting of TA membrane proteins by Get3. PMID:19948960

  6. Unimpeded permeation of water through biocidal graphene oxide sheets anchored on to 3D porous polyolefinic membranes

    NASA Astrophysics Data System (ADS)

    Mural, Prasanna Kumar S.; Jain, Shubham; Kumar, Sachin; Madras, Giridhar; Bose, Suryasarathi

    2016-04-01

    3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification.3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and

  7. Unimpeded permeation of water through biocidal graphene oxide sheets anchored on to 3D porous polyolefinic membranes.

    PubMed

    Mural, Prasanna Kumar S; Jain, Shubham; Kumar, Sachin; Madras, Giridhar; Bose, Suryasarathi

    2016-04-21

    3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification.

  8. Loss of the membrane anchor of the target receptor is a mechanism of bioinsecticide resistance.

    PubMed

    Darboux, Isabelle; Pauchet, Yannick; Castella, Claude; Silva-Filha, Maria Helena; Nielsen-LeRoux, Christina; Charles, Jean-François; Pauron, David

    2002-04-30

    The mosquitocidal activity of Bacillus sphaericus is because of a binary toxin (Bin), which binds to Culex pipiens maltase 1 (Cpm1), an alpha-glucosidase present in the midgut of Culex pipiens larvae. In this work, we studied the molecular basis of the resistance to Bin developed by a strain (GEO) of C. pipiens. Immunohistochemical and in situ hybridization experiments showed that Cpm1 was undetectable in the midgut of GEO larvae, although the gene was correctly transcribed. The sequence of the cpm1(GEO) cDNA differs from the sequence we previously reported for a susceptible strain (cpm1(IP)) by seven mutations: six missense mutations and a mutation leading to the premature termination of translation. When produced in insect cells, Cpm1(IP) was attached to the membrane by a glycosylphosphatidylinositol (GPI). In contrast, the premature termination of translation of Cpm1(GEO) resulted in the targeting of the protein to the extracellular compartment because of truncation of the GPI-anchoring site. The interaction between Bin and Cpm1(GEO) and the enzyme activity of the receptor were not affected. Thus, Bin is not toxic to GEO larvae because it cannot interact with the midgut cell membrane, even though its receptor site is unaffected. This mechanism contrasts with other known resistance mechanisms in which point mutations decrease the affinity of binding between the receptor and the toxin. PMID:11983886

  9. Identification of lysines within membrane-anchored Mga2p120 that are targets of Rsp5p ubiquitination and mediate mobilization of tethered Mga2p90

    PubMed Central

    Bhattacharya, Sabyasachi; Shcherbik, Natalia; Vasilescu, Julian; Smith, Jeffrey C.; Figeys, Daniel; Haines, Dale S.

    2009-01-01

    Summary Mga2p90 is an endoplasmic reticulum (ER) localized transcription factor that is released from the ER membrane by a unique ubiquitin-dependent mechanism. Mga2p90 mobilization requires poly-ubiquitination of its associating membrane-bound Mga2p120 anchor and subsequent Mga2p120-Mga2p90 complex disassembly that is mediated by ATPase Cdc48p and its heteromeric ubiquitin-binding adaptor Npl4p-Ufd1p. Although previous studies have identified the ubiquitin ligase (i.e. Rsp5p) and ligase binding site on Mga2p120 that play a role in this process, the amino acids of Mga2p120 that are targets of ubiquitination and promote Mga2p90 mobilization are unknown. We have identified using mass spectrometry analysis of in vitro ubiquitinated Mga2p120-Mga2p90 complex that lysines 983 and 985 contained within the carboxy-terminal domain of Mga2p120 are Rsp5p-directed ubiquitin conjugation sites. Mutation of these residues as well as proximally located lysine 980 results in suppression of Mga2p120 ubiquitination in vitro and in vivo, inefficient liberation of Mga2p90 by Cdc48pNpl4p/Ufd1p in vitro, and ER retention of Mga2p in cells. Moreover, mga2Δ/spt23ts harboring Rsp5p binding and conjugation mga2 mutants express low OLE1 (an Mga2p90 target gene) transcripts and display reduced growth. We conclude that residues 980, 983 and 985 are targets of Rsp5p-induced poly-ubiquitination and mediate Cdc48pNpl4p/Ufd1p-dependent Mga2p90-Mga2p120 separation and Mga2p90 mobilization. PMID:19061897

  10. ER arrival sites for COPI vesicles localize to hotspots of membrane trafficking.

    PubMed

    Schröter, Saskia; Beckmann, Sabrina; Schmitt, Hans Dieter

    2016-09-01

    COPI-coated vesicles mediate retrograde membrane traffic from the cis-Golgi to the endoplasmic reticulum (ER) in all eukaryotic cells. However, it is still unknown whether COPI vesicles fuse everywhere or at specific sites with the ER membrane. Taking advantage of the circumstance that the vesicles still carry their coat when they arrive at the ER, we have visualized active ER arrival sites (ERAS) by monitoring contact between COPI coat components and the ER-resident Dsl tethering complex using bimolecular fluorescence complementation (BiFC). ERAS form punctate structures near Golgi compartments, clearly distinct from ER exit sites. Furthermore, ERAS are highly polarized in an actin and myosin V-dependent manner and are localized near hotspots of plasma membrane expansion. Genetic experiments suggest that the COPI•Dsl BiFC complexes recapitulate the physiological interaction between COPI and the Dsl complex and that COPI vesicles are mistargeted in dsl1 mutants. We conclude that the Dsl complex functions in confining COPI vesicle fusion sites.

  11. Identification of membrane dipeptidase as a major glycosyl-phosphatidylinositol-anchored protein of the pancreatic zymogen granule membrane, and evidence for its release by phospholipase A.

    PubMed

    Hooper, N M; Cook, S; Lainé, J; Lebel, D

    1997-05-15

    Membrane dipeptidase (EC 3.4.13.19) enzyme activity that is inhibited by cilastatin has been detected in pancreatic zymogen granule membranes of human, porcine and rat origin. Immunoelectrophoretic blot analysis of human and porcine pancreatic zymogen granule membranes with polyclonal antisera raised against the corresponding kidney membrane dipeptidase revealed that the enzyme is a disulphide-linked homodimer of subunit mass 61 kDa in the human and 45 kDa in the pig. Although membrane dipeptidase was, along with glycoprotein-2, one of the only two major components of carbonate high pH-washed membranes, no enzyme activity or immunoreactivity was detected in the zymogen granule contents. Digestion with bacterial phosphatidylinositol-specific phospholipase C (PI-PLC), and subsequent recognition by antibodies specific for the cross-reacting determinant, revealed that membrane dipeptidase in human and porcine pancreatic zymogen granule membranes is glycosyl-phosphatidylinositol-anchored. Membrane dipeptidase was released from the pancreatic zymogen granule membranes by an endogenous hydrolase, and the released form migrated as a disulphide-linked dimer on SDS/PAGE under non-reducing conditions. Under reducing conditions it migrated with the same apparent molecular mass as the membrane-bound form, and was still a substrate for bacterial PI-PLC. Treatment of kidney microvillar membranes with phospholipase A2 resulted in the release of membrane dipeptidase in a form that demonstrated electrophoretic and cilastatin-Sepharose binding properties identical to those of the endogenously released form of the enzyme from zymogen granule membranes. These results indicate that the glycosyl-phosphatidylinositol anchor on the pancreatic membrane dipeptidase is cleaved by an endogenous hydrolase, probably a phospholipase A, and that this cleavage may promote the release of the protein from the membrane.

  12. Polyelectrolyte multilayers on PTMSP as asymmetric membranes for gas separations: Langmuir-Blodgett versus self-assembly methods of anchoring.

    PubMed

    Lin, Cen; Chen, Qibin; Yi, Song; Wang, Minghui; Regen, Steven L

    2014-01-28

    Polyelectrolyte multilayers derived from poly(diallyldimethylamonium chloride) and poly(sodium 4-styrenesulfonate) have been deposited onto poly[1-(trimethylsilyl)-1-propyne] (PTMSP) with anchoring layers formed by Langmuir-Blodgett and self-assembly methods. Using gas permeation selectivity as a basis for judging the efficacy of each anchoring method, we have found that similar CO2/N2 selectivities (ranging from 110 to 140) could be achieved by both methods and that their permeances were also similar. Although LB anchors require fewer layers of polyelectrolyte to reach this level of selectivity, the greater ease associated with self-assembly and its applicability to curved, high-surface-area supports (e.g., PTMSP-coated hollow fibers) encourage its use with PTMSP in creating new membrane materials for the practical separation of gases.

  13. Entangled in a membranous web: ER and lipid droplet reorganization during hepatitis C virus infection.

    PubMed

    Meyers, Nathan L; Fontaine, Krystal A; Kumar, G Renuka; Ott, Melanie

    2016-08-01

    Hepatitis C virus (HCV) is a major cause of liver disease worldwide. To establish and maintain chronic infection, HCV extensively rearranges cellular organelles to generate distinct compartments for viral RNA replication and virion assembly. Here, we review our current knowledge of how HCV proliferates and remodels ER-derived membranes while preserving and expanding associated lipid droplets during viral infection. Unraveling the molecular mechanisms responsible for HCV-induced membrane reorganization will enhance our understanding of the HCV life-cycle, the associated liver pathology, and the biology of the ER:lipid droplet interface in general. PMID:27240021

  14. A Tenebrio molitor GPI-anchored alkaline phosphatase is involved in binding of Bacillus thuringiensis Cry3Aa to brush border membrane vesicles.

    PubMed

    Zúñiga-Navarrete, Fernando; Gómez, Isabel; Peña, Guadalupe; Bravo, Alejandra; Soberón, Mario

    2013-03-01

    Bacillus thuringiensis Cry toxins recognizes their target cells in part by the binding to glycosyl-phosphatidyl-inositol (GPI) anchored proteins such as aminopeptidase-N (APN) or alkaline phosphatases (ALP). Treatment of Tenebrio molitor brush border membrane vesicles (BBMV) with phospholipase C that cleaves out GPI-anchored proteins from the membranes, showed that GPI-anchored proteins are involved in binding of Cry3Aa toxin to BBMV. A 68 kDa GPI-anchored ALP was shown to bind Cry3Aa by toxin overlay assays. The 68 kDa GPI-anchored ALP was preferentially expressed in early instar larvae in comparison to late instar larvae. Our work shows for the first time that GPI-anchored ALP is important for Cry3Aa binding to T. molitor BBMV suggesting that the mode of action of Cry toxins is conserved in different insect orders.

  15. A Tenebrio molitor GPI-anchored alkaline phosphatase is involved in binding of Bacillus thuringiensis Cry3Aa to brush border membrane vesicles.

    PubMed

    Zúñiga-Navarrete, Fernando; Gómez, Isabel; Peña, Guadalupe; Bravo, Alejandra; Soberón, Mario

    2013-03-01

    Bacillus thuringiensis Cry toxins recognizes their target cells in part by the binding to glycosyl-phosphatidyl-inositol (GPI) anchored proteins such as aminopeptidase-N (APN) or alkaline phosphatases (ALP). Treatment of Tenebrio molitor brush border membrane vesicles (BBMV) with phospholipase C that cleaves out GPI-anchored proteins from the membranes, showed that GPI-anchored proteins are involved in binding of Cry3Aa toxin to BBMV. A 68 kDa GPI-anchored ALP was shown to bind Cry3Aa by toxin overlay assays. The 68 kDa GPI-anchored ALP was preferentially expressed in early instar larvae in comparison to late instar larvae. Our work shows for the first time that GPI-anchored ALP is important for Cry3Aa binding to T. molitor BBMV suggesting that the mode of action of Cry toxins is conserved in different insect orders. PMID:22743140

  16. Triggered Ca2+ influx is required for extended synaptotagmin 1-induced ER-plasma membrane tethering.

    PubMed

    Idevall-Hagren, Olof; Lü, Alice; Xie, Beichen; De Camilli, Pietro

    2015-09-01

    The extended synaptotagmins (E-Syts) are ER proteins that act as Ca(2+)-regulated tethers between the ER and the plasma membrane (PM) and have a putative role in lipid transport between the two membranes. Ca(2+) regulation of their tethering function, as well as the interplay of their different domains in such function, remains poorly understood. By exposing semi-intact cells to buffers of variable Ca(2+) concentrations, we found that binding of E-Syt1 to the PI(4,5)P2-rich PM critically requires its C2C and C2E domains and that the EC50 of such binding is in the low micromolar Ca(2+) range. Accordingly, E-Syt1 accumulation at ER-PM contact sites occurred only upon experimental manipulations known to achieve these levels of Ca(2+) via its influx from the extracellular medium, such as store-operated Ca(2+) entry in fibroblasts and membrane depolarization in β-cells. We also show that in spite of their very different physiological functions, membrane tethering by E-Syt1 (ER to PM) and by synaptotagmin (secretory vesicles to PM) undergo a similar regulation by plasma membrane lipids and cytosolic Ca(2+).

  17. Triggered Ca2+ influx is required for extended synaptotagmin 1-induced ER-plasma membrane tethering

    PubMed Central

    Idevall-Hagren, Olof; Lü, Alice; Xie, Beichen; De Camilli, Pietro

    2015-01-01

    The extended synaptotagmins (E-Syts) are ER proteins that act as Ca2+-regulated tethers between the ER and the plasma membrane (PM) and have a putative role in lipid transport between the two membranes. Ca2+ regulation of their tethering function, as well as the interplay of their different domains in such function, remains poorly understood. By exposing semi-intact cells to buffers of variable Ca2+ concentrations, we found that binding of E-Syt1 to the PI(4,5)P2-rich PM critically requires its C2C and C2E domains and that the EC50 of such binding is in the low micromolar Ca2+ range. Accordingly, E-Syt1 accumulation at ER-PM contact sites occurred only upon experimental manipulations known to achieve these levels of Ca2+ via its influx from the extracellular medium, such as store-operated Ca2+ entry in fibroblasts and membrane depolarization in β-cells. We also show that in spite of their very different physiological functions, membrane tethering by E-Syt1 (ER to PM) and by synaptotagmin (secretory vesicles to PM) undergo a similar regulation by plasma membrane lipids and cytosolic Ca2+. PMID:26202220

  18. Regulation by the quorum sensor from Vibrio indicates a receptor function for the membrane anchors of adenylate cyclases

    PubMed Central

    Beltz, Stephanie; Bassler, Jens; Schultz, Joachim E

    2016-01-01

    Adenylate cyclases convert intra- and extracellular stimuli into a second messenger cAMP signal. Many bacterial and most eukaryotic ACs possess membrane anchors with six transmembrane spans. We replaced the anchor of the AC Rv1625c by the quorum-sensing receptor from Vibrio harveyi which has an identical 6TM design and obtained an active, membrane-anchored AC. We show that a canonical class III AC is ligand-regulated in vitro and in vivo. At 10 µM, the cholera-autoinducer CAI-1 stimulates activity 4.8-fold. A sequence based clustering of membrane domains of class III ACs and quorum-sensing receptors established six groups of potential structural and functional similarities. The data support the notion that 6TM AC membrane domains may operate as receptors which directly regulate AC activity as opposed and in addition to the indirect regulation by GPCRs in eukaryotic congeners. This adds a completely novel dimension of potential AC regulation in bacteria and vertebrates. DOI: http://dx.doi.org/10.7554/eLife.13098.001 PMID:26920221

  19. Regulation by the quorum sensor from Vibrio indicates a receptor function for the membrane anchors of adenylate cyclases.

    PubMed

    Beltz, Stephanie; Bassler, Jens; Schultz, Joachim E

    2016-02-27

    Adenylate cyclases convert intra- and extracellular stimuli into a second messenger cAMP signal. Many bacterial and most eukaryotic ACs possess membrane anchors with six transmembrane spans. We replaced the anchor of the AC Rv1625c by the quorum-sensing receptor from Vibrio harveyi which has an identical 6TM design and obtained an active, membrane-anchored AC. We show that a canonical class III AC is ligand-regulated in vitro and in vivo. At 10 µM, the cholera-autoinducer CAI-1 stimulates activity 4.8-fold. A sequence based clustering of membrane domains of class III ACs and quorum-sensing receptors established six groups of potential structural and functional similarities. The data support the notion that 6TM AC membrane domains may operate as receptors which directly regulate AC activity as opposed and in addition to the indirect regulation by GPCRs in eukaryotic congeners. This adds a completely novel dimension of potential AC regulation in bacteria and vertebrates.

  20. Characterization of an antibody to the cross-reacting determinant of the glycosyl-phosphatidylinositol anchor of human membrane dipeptidase.

    PubMed

    Broomfield, S J; Hooper, N M

    1993-02-01

    A polyclonal antiserum raised to the phospholipase C-solubilized form of membrane dipeptidase (EC 3.4.13.11) purified from human kidney was found to cross-react with unrelated trypanosomal and porcine glycosyl-phosphatidylinositol anchored proteins. Those antibodies recognising the cross-reacting determinant (CRD) were isolated by chromatography on a column of immobilized phospholipase C-solubilized porcine aminopeptidase P (EC 3.4.11.9), and the epitopes involved in the recognition were then characterized by immunoelectrophoretic blot analysis and by a competitive ELISA. The phospholipase C-solubilized forms of human and porcine membrane dipeptidase, porcine aminopeptidase P and trypanosome variant surface glycoprotein were recognised by the anti-CRD antiserum, and this recognition was abolished by prior treatment of the proteins with either mild acid or nitrous acid. In contrast, the detergent-solubilized, membrane-forms of human and porcine membrane dipeptidase were not recognised. Of a range of components of the glycosyl-phosphatidylinositol anchor, only inositol 1,2-cyclic monophosphate and the insulin-mimetic disaccharide, glucosaminyl-1,6-inositol 1,2-cyclic monophosphate, inhibited in the micromolar range the binding of the anti-CRD antiserum to immobilized porcine aminopeptidase P. These results indicate that the major epitope recognised by this anti-CRD antiserum is the inositol 1,2-cyclic monophosphate formed on phospholipase C cleavage of the glycosyl-phosphatidylinositol anchor.

  1. Factors affecting the ability of glycosylphosphatidylinositol-specific phospholipase D to degrade the membrane anchors of cell surface proteins.

    PubMed Central

    Low, M G; Huang, K S

    1991-01-01

    Mammalian serum and plasma contain high levels of glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD). Previous studies with crude serum or partially purified GPI-PLD have shown that this enzyme is capable of degrading the GPI anchor of several purified detergent-solubilized cell surface proteins yet is unable to act on GPI-anchored proteins located in intact cells. Treatment of intact ROS17/2.8, WISH or HeLa cells (or membrane fractions prepared from them) with GPI-PLD purified from bovine serum by immunoaffinity chromatography gave no detectable release of alkaline phosphatase into the medium. However, when membranes were treated with GPI-PLD in the presence of 0.1% Nonidet P-40 substantial GPI anchor degradation (as measured by Triton X-114 phase separation) was observed. The mechanism of this stimulatory effect of detergent was further investigated using [3H]myristate-labelled variant surface glycoprotein and human placental alkaline phosphatase reconstituted into phospholipid vesicles. As with the cell membranes the reconstituted substrates exhibited marked resistance to the action of purified GPI-PLD which could be overcome by the inclusion of Nonidet P-40. Similar results were obtained when crude bovine serum was used as the source of GPI-PLD. These data indicate that the resistance of cell membranes to the action of GPI-PLD is not entirely due to the action of serum or membrane-associated inhibitory factors. A more likely explanation is that, in common with many other eukaryotic phospholipases, the action of GPI-PLD is restricted by the physical state of the phospholipid bilayer in which the substrates are embedded. These data may account for the ability of endothelial and blood cells to retain GPI-anchored proteins on their surfaces in spite of the high levels of GPI-PLD present in plasma. PMID:1835378

  2. The Nup155-mediated organisation of inner nuclear membrane proteins is independent of Nup155 anchoring to the metazoan nuclear pore complex.

    PubMed

    Busayavalasa, Kiran; Chen, Xin; Farrants, Ann-Kristin Östlund; Wagner, Nicole; Sabri, Nafiseh

    2012-09-15

    The nuclear envelope (NE), an important barrier between the nucleus and the cytoplasm, is composed of three structures: the outer nuclear membrane, which is continuous with the ER, the inner nuclear membrane (INM), which interfaces with chromatin, and nuclear pore complexes (NPCs), which are essential for the exchange of macromolecules between the two compartments. The NPC protein Nup155 has an evolutionarily conserved role in the metazoan NE formation; but the in vivo analysis of Nup155 has been severely hampered by the essential function of this protein in cell viability. Here, we take advantage of the hypomorphicity of RNAi systems and use a combination of protein binding and rescue assays to map the interaction sites of two neighbouring NPC proteins Nup93 and Nup53 on Nup155, and to define the requirements of these interactions in INM protein organization. We show that different parts of Drosophila Nup155 have distinct functions: the Nup155 β-propeller anchors the protein to the NPC, whereas the α-solenoid part of Nup155 is essential for the correct localisation of INM proteins lamin-B receptor (LBR) and otefin. Using chromatin extracts from semi-synchronized cells, we also provide evidence that the Nup155 α-solenoid has a chromatin-binding activity that is stronger at the end of mitosis. Our results argue that the role of Nup155 in INM protein localisation is not mediated through the NPC anchoring activity of the protein and suggest that regions other than Nup155 β-propeller are necessary for the targeting of proteins to the INM. PMID:22718353

  3. ER network formation and membrane fusion by atlastin1/SPG3A disease variants

    PubMed Central

    Ulengin, Idil; Park, John J.; Lee, Tina H.

    2015-01-01

    At least 38 distinct missense mutations in the neuronal atlastin1/SPG3A GTPase are implicated in an autosomal dominant form of hereditary spastic paraplegia (HSP), a motor-neurological disorder manifested by lower limb weakness and spasticity and length-dependent axonopathy of corticospinal motor neurons. Because the atlastin GTPase is sufficient to catalyze membrane fusion and required to form the ER network, at least in nonneuronal cells, it is logically assumed that defects in ER membrane morphogenesis due to impaired fusion activity are the primary drivers of SPG3A-associated HSP. Here we analyzed a subset of established atlastin1/SPG3A disease variants using cell-based assays for atlastin-mediated ER network formation and biochemical assays for atlastin-catalyzed GTP hydrolysis, dimer formation, and membrane fusion. As anticipated, some variants exhibited clear deficits. Surprisingly however, at least two disease variants, one of which represents that most frequently identified in SPG3A HSP patients, displayed wild-type levels of activity in all assays. The same variants were also capable of co-redistributing ER-localized REEP1, a recently identified function of atlastins that requires its catalytic activity. Taken together, these findings indicate that a deficit in the membrane fusion activity of atlastin1 may be a key contributor, but is not required, for HSP causation. PMID:25761634

  4. Optimisation of BACE1 inhibition of tripartite structures by modification of membrane anchors, spacers and pharmacophores - development of potential agents for the treatment of Alzheimer's disease.

    PubMed

    Linning, Philipp; Haussmann, Ute; Beyer, Isaak; Weidlich, Sebastian; Schieb, Heinke; Wiltfang, Jens; Klafki, Hans-Wolfgang; Knölker, Hans-Joachim

    2012-10-01

    Systematic variation of membrane anchor, spacer and pharmacophore building blocks leads to an optimisation of the inhibitory effect of tripartite structures towards BACE1-induced cleavage of the amyloid precursor protein (APP). PMID:22930158

  5. Design and characterization of a modular membrane protein anchor to functionalize the moss Physcomitrella patens with extracellular catalytic and/or binding activities.

    PubMed

    Morath, Volker; Truong, Dong-Jiunn Jeffery; Albrecht, Florian; Polte, Ingmar; Ciccone, Rosario Adriano; Funke, Louise Friederike; Reichart, Leonie; Wolf, Christopher Guy; Brunner, Andreas-David; Fischer, Katrin; Schneider, Philipp Constantin; Brüggenthies, Johanna Barbara; Fröhlich, Fabian; Wiedemann, Gertrud; Reski, Ralf; Skerra, Arne

    2014-12-19

    Heterologous enzymes and binding proteins were secreted by the moss Physcomitrella patens or anchored extracellularly on its cell membrane in order to functionalize the apoplast as a biochemical reaction compartment. This modular membrane anchoring system utilizes the signal peptide and the transmembrane segment of the somatic embryogenesis receptor-like kinase (SERK), which were identified in a comprehensive bioinformatic analysis of the P. patens genome. By fusing the soluble enzyme NanoLuc luciferase to the signal peptide, its secretion capability was confirmed in vivo. The membrane localization of hybrid proteins comprising the SERK signal peptide, NanoLuc or other functional modules, the SERK transmembrane anchor, and a C-terminal GFP reporter was demonstrated using fluorescence microscopy as well as site-specific proteolytic release of the extracellular enzyme domain. Our membrane anchoring system enables the expression of various functional proteins in the apoplast of P. patens, empowering this photoautotrophic organism for biotechnological applications.

  6. GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes.

    PubMed

    Melikyan, G B; White, J M; Cohen, F S

    1995-11-01

    Under fusogenic conditions, fluorescent dye redistributed from the outer monolayer leaflet of red blood cells (RBCs) to cells expressing glycophosphatidylinositol-anchored influenza virus hemagglutinin (GPI-HA) without transfer of aqueous dye. This suggests that hemifusion, but not full fusion, occurred (Kemble, G. W., T. Danieli, and J. M. White. 1994. Cell. 76:383-391). We extended the evidence for hemifusion by labeling the inner monolayer leaflets of RBCs with FM4-64 and observing that these inner leaflets did not become continuous with GPI-HA-expressing cells. The region of hemifusion-separated aqueous contents, the hemifusion diaphragm, appeared to be extended and was long-lived. But when RBCs hemifused to GPI-HA-expressing cells were osmotically swollen, some diaphragms were disrupted, and spread of both inner leaflet and aqueous dyes was observed. This was characteristic of full fusion: inner leaflet and aqueous probes spread to cells expressing wild-type HA (wt-HA). By simultaneous video fluorescence microscopy and time-resolved electrical admittance measurements, we rigorously demonstrated that GPI-HA-expressing cells hemifuse to planar bilayer membranes: lipid continuity was established without formation of fusion pores. The hemifusion area became large. In contrast, for cells expressing wt-HA, before lipid dye spread, fusion pores were always observed, establishing that full fusion occurred. We present an elastic coupling model in which the ectodomain of wt-HA induces hemifusion and the transmembrane domain, absent in the GPI-HA-expressing cells, mediates full fusion. PMID:7593189

  7. The ubiquitous and ancient ER membrane protein complex (EMC): tether or not?

    PubMed Central

    Wideman, Jeremy G.

    2015-01-01

    The recently discovered endoplasmic reticulum (ER) membrane protein complex (EMC) has been implicated in ER-associated degradation (ERAD), lipid transport and tethering between the ER and mitochondrial outer membranes, and assembly of multipass ER-membrane proteins. The EMC has been studied in both animals and fungi but its presence outside the Opisthokont clade (animals + fungi + related protists) has not been demonstrated. Here, using homology-searching algorithms, I show that the EMC is truly an ancient and conserved protein complex, present in every major eukaryotic lineage. Very few organisms have completely lost the EMC, and most, even over 2 billion years of eukaryote evolution, have retained a majority of the complex members. I identify Sop4 and YDR056C in Saccharomyces cerevisiae as Emc7 and Emc10, respectively, subunits previously thought to be specific to animals. This study demonstrates that the EMC was present in the last eukaryote common ancestor (LECA) and is an extremely important component of eukaryotic cells even though its primary function remains elusive. PMID:26512320

  8. The ubiquitous and ancient ER membrane protein complex (EMC): tether or not?

    PubMed

    Wideman, Jeremy G

    2015-01-01

    The recently discovered endoplasmic reticulum (ER) membrane protein complex (EMC) has been implicated in ER-associated degradation (ERAD), lipid transport and tethering between the ER and mitochondrial outer membranes, and assembly of multipass ER-membrane proteins. The EMC has been studied in both animals and fungi but its presence outside the Opisthokont clade (animals + fungi + related protists) has not been demonstrated. Here, using homology-searching algorithms, I show that the EMC is truly an ancient and conserved protein complex, present in every major eukaryotic lineage. Very few organisms have completely lost the EMC, and most, even over 2 billion years of eukaryote evolution, have retained a majority of the complex members. I identify Sop4 and YDR056C in Saccharomyces cerevisiae as Emc7 and Emc10, respectively, subunits previously thought to be specific to animals. This study demonstrates that the EMC was present in the last eukaryote common ancestor (LECA) and is an extremely important component of eukaryotic cells even though its primary function remains elusive.

  9. Expression of TWISTED DWARF1 lacking its in-plane membrane anchor leads to increased cell elongation and hypermorphic growth.

    PubMed

    Bailly, Aurélien; Wang, Bangjun; Zwiewka, Marta; Pollmann, Stephan; Schenck, Daniel; Lüthen, Hartwig; Schulz, Alexander; Friml, Jiri; Geisler, Markus

    2014-01-01

    Plant growth is achieved predominantly by cellular elongation, which is thought to be controlled on several levels by apoplastic auxin. Auxin export into the apoplast is achieved by plasma membrane efflux catalysts of the PIN-FORMED (PIN) and ATP-binding cassette protein subfamily B/phosphor-glycoprotein (ABCB/PGP) classes; the latter were shown to depend on interaction with the FKBP42, TWISTED DWARF1 (TWD1). Here by using a transgenic approach in combination with phenotypical, biochemical and cell biological analyses we demonstrate the importance of a putative C-terminal in-plane membrane anchor of TWD1 in the regulation of ABCB-mediated auxin transport. In contrast with dwarfed twd1 loss-of-function alleles, TWD1 gain-of-function lines that lack a putative in-plane membrane anchor (HA-TWD1-Ct ) show hypermorphic plant architecture, characterized by enhanced stem length and leaf surface but reduced shoot branching. Greater hypocotyl length is the result of enhanced cell elongation that correlates with reduced polar auxin transport capacity for HA-TWD1-Ct . As a consequence, HA-TWD1-Ct displays higher hypocotyl auxin accumulation, which is shown to result in elevated auxin-induced cell elongation rates. Our data highlight the importance of C-terminal membrane anchoring for TWD1 action, which is required for specific regulation of ABCB-mediated auxin transport. These data support a model in which TWD1 controls lateral ABCB1-mediated export into the apoplast, which is required for auxin-mediated cell elongation.

  10. The sulphonylurea drug, glimepiride, stimulates release of glycosylphosphatidylinositol-anchored plasma-membrane proteins from 3T3 adipocytes.

    PubMed Central

    Müller, G; Dearey, E A; Pünter, J

    1993-01-01

    Sulphonylurea drugs stimulate glucose transport and metabolism in muscle and fat cells in vitro. The molecular basis for the insulin-mimetic extrapancreatic effects of these oral antidiabetic therapeutic agents is unknown at present. Here we demonstrate that incubation of 3T3 adipocytes with the novel sulphonylurea, glimepiride, causes a time- and concentration-dependent release of the glycosylphosphatidylinositol (GPI)-anchored ecto-proteins, 5'-nucleotidase, lipoprotein lipase and a 62 kDa cyclic AMP (cAMP)-binding protein from the plasma membrane into the culture medium. The change in the localization is accompanied by conversion of the membrane-anchored amphiphilic proteins into their soluble hydrophilic versions, as judged by pulse-chase experiments and Triton X-114 partitioning, and by appearance of anti-cross-reacting determinant (CRD) immunoreactivity of the released proteins as shown by Western blotting. Metabolic labelling of cells with myo-[14C]inositol demonstrates that inositol is retained in the major portion of released lipoprotein lipase and cAMP-binding ectoprotein. The identification of inositol phosphate after deamination of these proteins with nitrous acid suggests cleavage of their GPI membrane anchor by a GPI-specific phospholipase C. However, after longer incubation with glimepiride the amount of soluble versions of the GPI-proteins lacking inositol and anti-CRD immunoreactivity increases, which may be caused by additional drug-stimulated hydrolytic events within their GPI structure or C-termini. Since insulin also stimulates membrane release of these GPI-modified proteins, and in combination with glimepiride in a synergistic manner, sulphonylurea drugs may exert their peripheral actions in adipose tissue by using (part of) the insulin postreceptor signalling cascade at the step of activation of a GPI-specific phospholipase C. Images Figure 1 Figure 4 Figure 6 Figure 7 PMID:7678737

  11. Subcellular Fractionation Analysis of the Extraction of Ubiquitinated Polytopic Membrane Substrate during ER-Associated Degradation.

    PubMed

    Nakatsukasa, Kunio; Kamura, Takumi

    2016-01-01

    During ER-associated degradation (ERAD), misfolded polytopic membrane proteins are ubiquitinated and retrotranslocated to the cytosol for proteasomal degradation. However, our understanding as to how polytopic membrane proteins are extracted from the ER to the cytosol remains largely unclear. To better define the localization and physical properties of ubiquitinated polytopic membrane substrates in vivo, we performed subcellular fractionation analysis of Ste6*, a twelve transmembrane protein that is ubiquitinated primarily by Doa10 E3 ligase in yeast. Consistent with previous in vitro studies, ubiquitinated Ste6* was extracted from P20 (20,000 g pellet) fraction to S20 (20,000 g supernatant) fraction in a Cdc48/p97-dependent manner. Similarly, Ubx2p, which recruits Cdc48/p97 to the ER, facilitated the extraction of Ste6*. By contrast, lipid droplet formation, which was suggested to be dispensable for the degradation of Hrd1-substrates in yeast, was not required for the degradation of Ste6*. Intriguingly, we found that ubiquitinated Ste6* in the S20 fraction could be enriched by further centrifugation at 100,000 g. Although it is currently uncertain whether ubiquitinated Ste6* in P100 fraction is completely free from any lipids, membrane flotation analysis suggested the existence of two distinct populations of ubiquitinated Ste6* with different states of membrane association. Together, these results imply that ubiquitinated Ste6* may be sequestered into a putative quality control sub-structure by Cdc48/p97. Fractionation assays developed in the present study provide a means to further dissect the ill-defined post-ubiquitination step during ERAD of polytopic membrane substrates.

  12. Physiological lipid composition is vital for homotypic ER membrane fusion mediated by the dynamin-related GTPase Sey1p

    PubMed Central

    Sugiura, Shintaro; Mima, Joji

    2016-01-01

    Homotypic fusion of the endoplasmic reticulum (ER) is required for generating and maintaining the characteristic reticular ER membrane structures. This organelle membrane fusion process depends on the ER-bound dynamin-related GTPases, such as atlastins in animals and Sey1p in yeast. Here, to investigate whether specific lipid molecules facilitate GTPase-dependent ER membrane fusion directly, we comprehensively evaluated membrane docking and lipid mixing of reconstituted proteoliposomes bearing purified Sey1p and a set of ER-mimicking lipids, including phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidic acid, and ergosterol. Remarkably, we revealed that each specific lipid species contributed little to membrane docking mediated by Sey1p. Nevertheless, Sey1p-dependent lipid mixing was strongly reduced by omitting three major acidic lipids from the ER-mimicking set and, moreover, was entirely abolished by omitting either phosphatidylethanolamine or ergosterol. Our reconstitution studies thus established that physiological lipid composition is vital for lipid bilayer rearrangements in GTPase-mediated homotypic ER membrane fusion. PMID:26838333

  13. Geranylgeranyl-regulated transport of the prenyltransferase UBIAD1 between membranes of the ER and Golgi.

    PubMed

    Schumacher, Marc M; Jun, Dong-Jae; Jo, Youngah; Seemann, Joachim; DeBose-Boyd, Russell A

    2016-07-01

    UbiA prenyltransferase domain-containing protein-1 (UBIAD1) utilizes geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4. Previously, we found that sterols trigger binding of UBIAD1 to endoplasmic reticulum (ER)-localized HMG-CoA reductase, the rate-limiting enzyme in synthesis of cholesterol and nonsterol isoprenoids, including GGpp. This binding inhibits sterol-accelerated degradation of reductase, which contributes to feedback regulation of the enzyme. The addition to cells of geranylgeraniol (GGOH), which can become converted to GGpp, triggers release of UBIAD1 from reductase, allowing for its maximal degradation and permitting ER-to-Golgi transport of UBIAD1. Here, we further characterize geranylgeranyl-regulated transport of UBIAD1. Results of this characterization support a model in which UBIAD1 continuously cycles between the ER and medial-trans Golgi of isoprenoid-replete cells. Upon sensing a decline of GGpp in ER membranes, UBIAD1 becomes trapped in the organelle where it inhibits reductase degradation. Mutant forms of UBIAD1 associated with Schnyder corneal dystrophy (SCD), a human eye disease characterized by corneal accumulation of cholesterol, are sequestered in the ER and block reductase degradation. Collectively, these findings disclose a novel sensing mechanism that allows for stringent metabolic control of intracellular trafficking of UBIAD1, which directly modulates reductase degradation and becomes disrupted in SCD. PMID:27121042

  14. Targeting and insertion of peroxisomal membrane proteins: ER trafficking versus direct delivery to peroxisomes.

    PubMed

    Mayerhofer, Peter U

    2016-05-01

    The importance of peroxisomes is highlighted by severe inherited human disorders linked to impaired peroxisomal biogenesis. Besides the simple architecture of these ubiquitous and dynamic organelles, their biogenesis is surprisingly complex and involves specialized proteins, termed peroxins, which mediate targeting and insertion of peroxisomal membrane proteins (PMPs) into the peroxisomal bilayer, and the import of soluble proteins into the protein-dense matrix of the organelle. The long-standing paradigm that all peroxisomal proteins are imported directly into preexisting peroxisomes has been challenged by the detection of PMPs inside the endoplasmic reticulum (ER). New models propose that the ER originates peroxisomal biogenesis by mediating PMP trafficking to the peroxisomes via budding vesicles. However, the relative contribution of this ER-derived pathway to the total peroxisome population in vivo, and the detailed mechanisms of ER entry and exit of PMPs are controversially discussed. This review aims to summarize present knowledge about how PMPs are targeted to the ER, instead of being inserted directly into preexisting peroxisomes. Moreover, molecular mechanisms that facilitate bilayer insertion of PMPs among different species are discussed.

  15. Multifunctional roles for the protein translocation machinery in RNA anchoring to the endoplasmic reticulum.

    PubMed

    Jagannathan, Sujatha; Hsu, Jack C-C; Reid, David W; Chen, Qiang; Thompson, Will J; Moseley, Arthur M; Nicchitta, Christopher V

    2014-09-12

    Signal sequence-encoding mRNAs undergo translation-dependent localization to the endoplasmic reticulum (ER) and at the ER are anchored via translation on Sec61-bound ribosomes. Recent investigations into the composition and membrane association characteristics of ER-associated mRNAs have, however, revealed both ribosome-dependent (indirect) and ribosome-independent (direct) modes of mRNA association with the ER. These findings raise important questions regarding our understanding of how mRNAs are selected, localized, and anchored to the ER. Using semi-intact tissue culture cells, we performed a polysome solubilization screen and identified conditions that distinguish polysomes engaged in the translation of distinct cohorts of mRNAs. To gain insight into the molecular basis of direct mRNA anchoring to the ER, we performed RNA-protein UV photocross-linking studies in rough microsomes and demonstrate that numerous ER integral membrane proteins display RNA binding activity. Quantitative proteomic analyses of HeLa cytosolic and ER-bound polysome fractions identified translocon components as selective polysome-interacting proteins. Notably, the Sec61 complex was highly enriched in polysomes engaged in the translation of endomembrane organelle proteins, whereas translocon accessory proteins, such as ribophorin I, were present in all subpopulations of ER-associated polysomes. Analyses of the protein composition of oligo(dT)-selected UV photocross-linked ER protein-RNA adducts identified Sec61α,β and ribophorin I as ER-poly(A) mRNA-binding proteins, suggesting unexpected roles for the protein translocation and modification machinery in mRNA anchoring to the ER. In summary, we propose that multiple mechanisms of mRNA and ribosome association with ER operate to enable an mRNA transcriptome-wide function for the ER in protein synthesis.

  16. Membrane contact sites between apicoplast and ER in Toxoplasma gondii revealed by electron tomography.

    PubMed

    Tomova, Cveta; Humbel, Bruno M; Geerts, Willie J C; Entzeroth, Rolf; Holthuis, Joost C M; Verkleij, Arie J

    2009-10-01

    Toxoplasma gondii is an obligate intracellular parasite from the phylum Apicomplexa. A hallmark of these protozoans is the presence of a unique apical complex of organelles that includes the apicoplast, a plastid acquired by secondary endosymbiosis. The apicoplast is indispensible for parasite viability. It harbours a fatty acid biosynthesis type II (FAS II) pathway and plays a key role in the parasite lipid metabolism. Possibly, the apicoplast provides components for the establishment and the maturation of the parasitophorous vacuole, ensuring the successful infection of the host cell. This implies the presence of a transport mechanism for fast and accurate allocation of lipids between the apicoplast and other membrane-bound compartments in the parasite cell. Using a combination of high-pressure freezing, freeze-substitution and electron tomography, we analysed the ultrastructural organization of the apicoplast of T. gondii in relation with the endoplasmic reticulum (ER). This allowed us to clearly show the presence of four continuous membranes surrounding the apicoplast. We present, for the first time, the existence of membrane contact sites between the apicoplast outermost membrane and the ER. We describe the morphological characteristics of these structures and discuss their potential significance for the subcellular distribution of lipids in the parasite. PMID:19602198

  17. Two distinct trimeric conformations of natively membrane-anchored full-length herpes simplex virus 1 glycoprotein B.

    PubMed

    Zeev-Ben-Mordehai, Tzviya; Vasishtan, Daven; Hernández Durán, Anna; Vollmer, Benjamin; White, Paul; Prasad Pandurangan, Arun; Siebert, C Alistair; Topf, Maya; Grünewald, Kay

    2016-04-12

    Many viruses are enveloped by a lipid bilayer acquired during assembly, which is typically studded with one or two types of glycoproteins. These viral surface proteins act as the primary interface between the virus and the host. Entry of enveloped viruses relies on specialized fusogen proteins to help merge the virus membrane with the host membrane. In the multicomponent herpesvirus fusion machinery, glycoprotein B (gB) acts as this fusogen. Although the structure of the gB ectodomain postfusion conformation has been determined, any other conformations (e.g., prefusion, intermediate conformations) have so far remained elusive, thus restricting efforts to develop antiviral treatments and prophylactic vaccines. Here, we have characterized the full-length herpes simplex virus 1 gB in a native membrane by displaying it on cell-derived vesicles and using electron cryotomography. Alongside the known postfusion conformation, a novel one was identified. Its structure, in the context of the membrane, was determined by subvolume averaging and found to be trimeric like the postfusion conformation, but appeared more condensed. Hierarchical constrained density-fitting of domains unexpectedly revealed the fusion loops in this conformation to be apart and pointing away from the anchoring membrane. This vital observation is a substantial step forward in understanding the complex herpesvirus fusion mechanism, and opens up new opportunities for more targeted intervention of herpesvirus entry. PMID:27035968

  18. Complementary DNA for the folate binding protein correctly predicts anchoring to the membrane by glycosyl-phosphatidylinositol.

    PubMed Central

    Lacey, S W; Sanders, J M; Rothberg, K G; Anderson, R G; Kamen, B A

    1989-01-01

    Membrane bound and soluble forms of a high-affinity folate binding protein have been found in kidney, placenta, serum, milk, and in several cell lines. The two forms have similar binding characteristics for folates, are immunologically cross-reactive and based upon limited amino acid sequence data, are nearly identical. Based upon pulse-chase experiments, a precursor-product relationship has been suggested. The membrane form has been shown to mediate the transport of folate in cells grown in physiological concentrations of folate. A function for the soluble form has not yet been identified. We constructed a cDNA library from a human carcinoma cell line, Caco-2, which expresses the membrane form abundantly. The library was screened and a near full-length cDNA for the folate binder was isolated. Transfection of COS cells with the cDNA inserted in an expression vector resulted in marked overexpression of a membrane-associated folate binder as assessed by direct binding of radiolabeled folate and by indirect immunofluorescence. The deduced amino acid sequence is not consistent with a typical membrane spanning domain but rather with a signal for anchoring via a glycosyl-phosphatidylinositol linkage. Release of the binder with a phosphatidylinositol-specific phospholipase C strongly supports this hypothesis. Images PMID:2527252

  19. Male meiotic cytokinesis requires ceramide synthase 3-dependent sphingolipids with unique membrane anchors.

    PubMed

    Rabionet, Mariona; Bayerle, Aline; Jennemann, Richard; Heid, Hans; Fuchser, Jens; Marsching, Christian; Porubsky, Stefan; Bolenz, Christian; Guillou, Florian; Gröne, Hermann-Josef; Gorgas, Karin; Sandhoff, Roger

    2015-09-01

    Somatic cell cytokinesis was shown to involve the insertion of sphingolipids (SLs) to midbodies prior to abscission. Spermatogenic midbodies transform into stable intercellular bridges (ICBs) connecting clonal daughter cells in a syncytium. This process requires specialized SL structures. (1) Using high resolution-mass spectrometric imaging, we show in situ a biphasic pattern of SL synthesis with testis-specific anchors. This pattern correlates with and depends on ceramide synthase 3 (CerS3) localization in both, pachytene spermatocytes until completion of meiosis and elongating spermatids. (2) Blocking the pathways to germ cell-specific ceramides (CerS3-KO) and further to glycosphingolipids (glucosylceramide synthase-KO) in mice highlights the need for special SLs for spermatid ICB stability. In contrast to somatic mitosis these SLs require ultra-long polyunsaturated anchors with unique physico-chemical properties, which can only be provided by CerS3. Loss of these anchors causes enhanced apoptosis during meiosis, formation of multinuclear giant cells and spermatogenic arrest. Hence, testis-specific SLs, which we also link to CerS3 in human testis, are quintessential for male fertility. PMID:26045466

  20. Studies on the Roles of Clathrin-Mediated Membrane Trafficking and Zinc Transporter Cis4 in the Transport of GPI-Anchored Proteins in Fission Yeast

    PubMed Central

    Ma, Yan; Sugiura, Reiko; Kuno, Takayoshi

    2012-01-01

    We previously identified Cis4, a zinc transporter belonging to the cation diffusion facilitator protein family, and we demonstrated that Cis4 is implicated in Golgi membrane trafficking in fission yeast. Here, we identified three glycosylphosphatidylinositol (GPI)-anchored proteins, namely Ecm33, Aah3, and Gaz2, as multicopy suppressors of the MgCl2-sensitive phenotype of cis4-1 mutant. The phenotypes of ecm33, aah3 and gaz2 deletion cells were distinct from each other, and Cis4 overexpression suppressed Δecm33 phenotypes but did not suppress Δaah3 defects. Notably, green fluorescent protein-tagged Ecm33, which was observed at the cell surface in wild-type cells, mostly localized as intracellular dots that are presumed to be the Golgi and endosomes in membrane-trafficking mutants, including Δapm1, ypt3-i5, and chc1-1 mutants. Interestingly, all these membrane-trafficking mutants showed hypersensitivity to BE49385A, an inhibitor of Its8 that is involved in GPI-anchored protein synthesis. Taken together, these results suggest that GPI-anchored proteins are transported through a clathrin-mediated post-Golgi membrane trafficking pathway and that zinc transporter Cis4 may play roles in membrane trafficking of GPI-anchored proteins in fission yeast. PMID:22848669

  1. Sec35p, a Novel Peripheral Membrane Protein, Is Required for ER to Golgi Vesicle Docking

    PubMed Central

    VanRheenen, Susan M.; Cao, Xiaochun; Lupashin, Vladimir V.; Barlowe, Charles; Gerard Waters, M.

    1998-01-01

    SEC35 was identified in a novel screen for temperature-sensitive mutants in the secretory pathway of the yeast Saccharomyces cerevisiae (Wuestehube et al., 1996. Genetics. 142:393–406). At the restrictive temperature, the sec35-1 strain exhibits a transport block between the ER and the Golgi apparatus and accumulates numerous vesicles. SEC35 encodes a novel cytosolic protein of 32 kD, peripherally associated with membranes. The temperature-sensitive phenotype of sec35-1 is efficiently suppressed by YPT1, which encodes the rab-like GTPase required early in the secretory pathway, or by SLY1-20, which encodes a dominant form of the ER to Golgi target -SNARE–associated protein Sly1p. Weaker suppression is evident upon overexpression of genes encoding the vesicle-SNAREs SEC22, BET1, or YKT6. The cold-sensitive lethality that results from deleting SEC35 is suppressed by YPT1 or SLY1-20. These genetic relationships suggest that Sec35p acts upstream of, or in conjunction with, Ypt1p and Sly1p as was previously found for Uso1p. Using a cell-free assay that measures distinct steps in vesicle transport from the ER to the Golgi, we find Sec35p is required for a vesicle docking stage catalyzed by Uso1p. These genetic and biochemical results suggest Sec35p acts with Uso1p to dock ER-derived vesicles to the Golgi complex. PMID:9606204

  2. The membrane anchor of the transcriptional activator SREBP is characterized by intrinsic conformational flexibility

    PubMed Central

    Linser, Rasmus; Salvi, Nicola; Briones, Rodolfo; Rovó, Petra; de Groot, Bert L.; Wagner, Gerhard

    2015-01-01

    Regulated intramembrane proteolysis (RIP) is a conserved mechanism crucial for numerous cellular processes, including signaling, transcriptional regulation, axon guidance, cell adhesion, cellular stress responses, and transmembrane protein fragment degradation. Importantly, it is relevant in various diseases including Alzheimer’s disease, cardiovascular diseases, and cancers. Even though a number of structures of different intramembrane proteases have been solved recently, fundamental questions concerning mechanistic underpinnings of RIP and therapeutic interventions remain. In particular, this includes substrate recognition, what properties render a given substrate amenable for RIP, and how the lipid environment affects the substrate cleavage. Members of the sterol regulatory element-binding protein (SREBP) family of transcription factors are critical regulators of genes involved in cholesterol/lipid homeostasis. After site-1 protease cleavage of the inactive SREBP transmembrane precursor protein, RIP of the anchor intermediate by site-2 protease generates the mature transcription factor. In this work, we have investigated the labile anchor intermediate of SREBP-1 using NMR spectroscopy. Surprisingly, NMR chemical shifts, site-resolved solvent exposure, and relaxation studies show that the cleavage site of the lipid-signaling protein intermediate bears rigid α-helical topology. An evolutionary conserved motif, by contrast, interrupts the secondary structure ∼9–10 residues C-terminal of the scissile bond and acts as an inducer of conformational flexibility within the carboxyl-terminal transmembrane region. These results are consistent with molecular dynamics simulations. Topology, stability, and site-resolved dynamics data suggest that the cleavage of the α-helical substrate in the case of RIP may be associated with a hinge motion triggered by the molecular environment. PMID:26392539

  3. The transcription factor HLH-2/E/Daughterless regulates anchor cell invasion across basement membrane in C. elegans.

    PubMed

    Schindler, Adam J; Sherwood, David R

    2011-09-15

    Cell invasion through basement membrane is a specialized cellular behavior critical for many developmental processes and leukocyte trafficking. Invasive cellular behavior is also inappropriately co-opted during cancer progression. Acquisition of an invasive phenotype is accompanied by changes in gene expression that are thought to coordinate the steps of invasion. The transcription factors responsible for these changes in gene expression, however, are largely unknown. C. elegans anchor cell (AC) invasion is a genetically tractable in vivo model of invasion through basement membrane. AC invasion requires the conserved transcription factor FOS-1A, but other transcription factors are thought to act in parallel to FOS-1A to control invasion. Here we identify the transcription factor HLH-2, the C. elegans ortholog of Drosophila Daughterless and vertebrate E proteins, as a regulator of AC invasion. Reduction of HLH-2 function by RNAi or with a hypomorphic allele causes defects in AC invasion. Genetic analysis indicates that HLH-2 has functions outside of the FOS-1A pathway. Using expression analysis, we identify three genes that are transcriptionally regulated by HLH-2: the protocadherin cdh-3, and two genes encoding secreted extracellular matrix proteins, mig-6/papilin and him-4/hemicentin. Further, we show that reduction of HLH-2 function causes defects in polarization of F-actin to the invasive cell membrane, a process required for the AC to generate protrusions that breach the basement membrane. This work identifies HLH-2 as a regulator of the invasive phenotype in the AC, adding to our understanding of the transcriptional networks that control cell invasion.

  4. New insights into the targeting of a subset of tail-anchored proteins to the outer mitochondrial membrane

    PubMed Central

    Marty, Naomi J.; Teresinski, Howard J.; Hwang, Yeen Ting; Clendening, Eric A.; Gidda, Satinder K.; Sliwinska, Elwira; Zhang, Daiyuan; Miernyk, Ján A.; Brito, Glauber C.; Andrews, David W.; Dyer, John M.; Mullen, Robert T.

    2014-01-01

    Tail-anchored (TA) proteins are a unique class of functionally diverse membrane proteins defined by their single C-terminal membrane-spanning domain and their ability to insert post-translationally into specific organelles with an Ncytoplasm-Corganelle interior orientation. The molecular mechanisms by which TA proteins are sorted to the proper organelles are not well-understood. Herein we present results indicating that a dibasic targeting motif (i.e., -R-R/K/H-X{X≠E}) identified previously in the C terminus of the mitochondrial isoform of the TA protein cytochrome b5, also exists in many other A. thaliana outer mitochondrial membrane (OMM)-TA proteins. This motif is conspicuously absent, however, in all but one of the TA protein subunits of the translocon at the outer membrane of mitochondria (TOM), suggesting that these two groups of proteins utilize distinct biogenetic pathways. Consistent with this premise, we show that the TA sequences of the dibasic-containing proteins are both necessary and sufficient for targeting to mitochondria, and are interchangeable, while the TA regions of TOM proteins lacking a dibasic motif are necessary, but not sufficient for localization, and cannot be functionally exchanged. We also present results from a comprehensive mutational analysis of the dibasic motif and surrounding sequences that not only greatly expands the functional definition and context-dependent properties of this targeting signal, but also led to the identification of other novel putative OMM-TA proteins. Collectively, these results provide important insight to the complexity of the targeting pathways involved in the biogenesis of OMM-TA proteins and help define a consensus targeting motif that is utilized by at least a subset of these proteins. PMID:25237314

  5. RhVI1 is a membrane-anchored vacuolar invertase highly expressed in Rosa hybrida L. petals

    PubMed Central

    Farci, Domenica; Collu, Gabriella; Kirkpatrick, Joanna; Esposito, Francesca; Piano, Dario

    2016-01-01

    Invertases are a widespread group of enzymes that catalyse the conversion of sucrose into fructose and glucose. Plants invertases and their substrates are essential factors that play an active role in primary metabolism and in cellular differentiation and by these activities they sustain development and growth. Being naturally present in multiple isoforms, invertases are known to be highly differentiated and tissue specific in such a way that every isoform is characteristic of a specific part of the plant. In this work, we report the identification of the invertase RhVI1 that was found to be highly expressed in rose petals. A characterization of this protein revealed that RhVI1 is a glycosylated membrane-anchored protein associated with the cytosolic side of the vacuolar membrane which occurs in vivo in a monomeric form. Purification yields have shown that the levels of expression decreased during the passage of petals from buds to mature and pre-senescent flowers. Moreover, the activity assay indicates RhVI1 to be an acidic vacuolar invertase. The physiological implications of these findings are discussed, suggesting a possible role of this protein during anthesis. PMID:27083698

  6. Immobilization of lipid vesicles on polymer support via an amphiphilic peptidic anchor: application to a membrane enzyme.

    PubMed

    Percot, A; Zhu, X X; Lafleur, M

    2000-01-01

    To immobilize lipid vesicles on a polymer support, we have used a peptidic anchor with the following sequence: Ala-Ala-Leu-Leu-Leu-Ala-Ala-Ala-Ala-Ala-Ala-Ala-Ala-Ala-Ala-Ala-Ala-A la-Ala-Ala-Ala-Ala-Ala-Ala-Trp-Lys-Lys-Lys-Lys-Lys-Lys. This amphiphilic peptide was previously designed in our group to interact spontaneously and strongly with vesicles without perturbing their permeability. At the end of the solid-phase peptide synthesis, the peptide was left on the polymer beads and this novel polymer-peptide system was used for vesicle immobilization. It was shown that this polymer-peptide system could immobilize as much as 200 micromol of lipids per gram of dry resin. The amount of immobilized vesicles was decreased by a reduction of the proportion of the negatively charged lipids in the vesicles, indicating the importance of electrostatic interactions in the immobilization of the vesicles. The integrity of the vesicles was mostly preserved after the immobilization. This new polymer-peptide system was used easily and successfully to immobilize a membrane-bound enzyme, gamma-glutamyl transpeptidase. The activity of the membrane-bound enzyme was studied by monitoring the release of p-nitroaniline. The activity of the enzyme was still retained, even after being re-used eight times, indicating the strong immobilization of the enzyme in its active form. The polymer-peptide support could be regenerated by washing with ethanol and reused.

  7. RhVI1 is a membrane-anchored vacuolar invertase highly expressed in Rosa hybrida L. petals.

    PubMed

    Farci, Domenica; Collu, Gabriella; Kirkpatrick, Joanna; Esposito, Francesca; Piano, Dario

    2016-05-01

    Invertases are a widespread group of enzymes that catalyse the conversion of sucrose into fructose and glucose. Plants invertases and their substrates are essential factors that play an active role in primary metabolism and in cellular differentiation and by these activities they sustain development and growth. Being naturally present in multiple isoforms, invertases are known to be highly differentiated and tissue specific in such a way that every isoform is characteristic of a specific part of the plant. In this work, we report the identification of the invertase RhVI1 that was found to be highly expressed in rose petals. A characterization of this protein revealed that RhVI1 is a glycosylated membrane-anchored protein associated with the cytosolic side of the vacuolar membrane which occurs in vivo in a monomeric form. Purification yields have shown that the levels of expression decreased during the passage of petals from buds to mature and pre-senescent flowers. Moreover, the activity assay indicates RhVI1 to be an acidic vacuolar invertase. The physiological implications of these findings are discussed, suggesting a possible role of this protein during anthesis. PMID:27083698

  8. RhVI1 is a membrane-anchored vacuolar invertase highly expressed in Rosa hybrida L. petals.

    PubMed

    Farci, Domenica; Collu, Gabriella; Kirkpatrick, Joanna; Esposito, Francesca; Piano, Dario

    2016-05-01

    Invertases are a widespread group of enzymes that catalyse the conversion of sucrose into fructose and glucose. Plants invertases and their substrates are essential factors that play an active role in primary metabolism and in cellular differentiation and by these activities they sustain development and growth. Being naturally present in multiple isoforms, invertases are known to be highly differentiated and tissue specific in such a way that every isoform is characteristic of a specific part of the plant. In this work, we report the identification of the invertase RhVI1 that was found to be highly expressed in rose petals. A characterization of this protein revealed that RhVI1 is a glycosylated membrane-anchored protein associated with the cytosolic side of the vacuolar membrane which occurs in vivo in a monomeric form. Purification yields have shown that the levels of expression decreased during the passage of petals from buds to mature and pre-senescent flowers. Moreover, the activity assay indicates RhVI1 to be an acidic vacuolar invertase. The physiological implications of these findings are discussed, suggesting a possible role of this protein during anthesis.

  9. 5'-Nucleotidases of chicken gizzard and human pancreatic adenocarcinoma cells are anchored to the plasma membrane via a phosphatidylinositol-glycan.

    PubMed Central

    Stochaj, U; Flocke, K; Mathes, W; Mannherz, H G

    1989-01-01

    We have analysed the membrane anchorage of plasma-membrane 5'-nucleotidase, an ectoenzyme which can mediate binding to components of the extracellular matrix. We demonstrated that the purified enzyme obtained from chicken gizzard and a human pancreatic adenocarcinoma cell line were both completely transformed into a hydrophilic form by treatment with phospholipases C and D, cleaving glycosylphosphatidylinositol (GPI). These data indicate the presence of a glycolipid linker employed for membrane anchoring of the 5'-nucleotidase obtained from both sources. Incubation of plasma membranes under identical conditions revealed that about half of the AMPase activity was resistant to GPI-hydrolysing phospholipases. Investigation of the enzymic properties of purified chicken gizzard 5'-nucleotidase revealed only minor changes after removal of the phosphatidylinositol linker. However, cleavage of the membrane anchor resulted in an increased sensitivity towards inhibition by concanavalin A. After tissue fractionation, chicken gizzard 5'-nucleotidase could be obtained as either a membrane-bound or a soluble protein; the latter is suspected to be released from the plasma membrane by endogenous phospholipases. Higher-molecular-mass proteins immuno-cross-reactive with the purified chicken gizzard 5'-nucleotidase were detected as both soluble and membrane-bound forms. Images Fig. 1. Fig. 3. Fig. 4. PMID:2554891

  10. Biochemical requirements for the targeting and fusion of ER-derived transport vesicles with purified yeast Golgi membranes

    PubMed Central

    1996-01-01

    In order for secretion to progress, ER-derived transport vesicles must target to, and fuse with the cis-Golgi compartment. These processes have been reconstituted using highly enriched membrane fractions and partially purified soluble components. The functionally active yeast Golgi membranes that have been purified are highly enriched in the cis- Golgi marker enzymes alpha 1,6 mannosyltransferase and GDPase. Fusion of transport vesicles with these membranes requires both GTP and ATP hydrolysis, and depends on cytosolic and peripheral membrane proteins. At least two protein fractions from yeast cytosol are required for the reconstitution of ER-derived vesicle fusion. Soluble fractions prepared from temperature-sensitive mutants revealed requirements for the Ypt1p, Sec19p, Sly1p, Sec7p, and Uso1 proteins. A model for the sequential involvement of these components in the targeting and fusion reaction is proposed. PMID:8636207

  11. Biodegradable, Tethered Lipid Bilayer-Microsphere Systems with Membrane-Integrated α-Helical Peptide Anchors.

    PubMed

    Fried, Eric S; Luchan, Joshua; Gilchrist, M Lane

    2016-04-12

    Supported lipid bilayers (SLBs) are ideally suited for the study of biomembrane-biomembrane interactions and for the biomimicry of cell-to-cell communication, allowing for surface ligand displays that contain laterally mobile elements. However, the SLB paradigm does not include three-dimensionality and biocompatibility. As a way to bypass these limitations, we have developed a biodegradable form of microsphere SLBs, also known as proteolipobeads (PLBs), using PLGA microspheres. Microspheres were synthesized using solvent evaporation and size selected with fluorescence activated cell sorting (FACS). Biomembranes were covalently tethered upon fusion to microsphere supports via short-chain PEG spacers connecting membrane-integrated α-helical peptides and the microsphere surface, affecting membrane diffusivity and mobility as indicated by confocal FRAP analysis. Membrane heterogeneities, which are attributed to PLGA hydrophobicity and rough surface topography, are curtailed by the addition of PEG tethers. This method allows for the presentation of tethered, laterally mobile biomembranes in three dimensions with functionally embedded attachment peptides for mobile ligand displays.

  12. Reverse micelle encapsulation of membrane anchored proteins for solution NMR studies

    PubMed Central

    Valentine, Kathleen G.; Peterson, Ronald; Saad, Jamil S.; Summers, Michael F.; Xu, Xianzhong; Ames, James B.; Wand, A. Joshua

    2010-01-01

    SUMMARY Perhaps 5 to 10% of proteins bind to the membranes via a covalently attached lipid. Post-translational attachment of fatty acids such as myristate occurs on a variety of viral and cellular proteins. High-resolution information about the nature of lipidated proteins is remarkably sparse, often because of solubility problems caused by the exposed fatty acids. Reverse micelle encapsulation is used here to study two myristoylated proteins in their lipid-extruded states: myristoylated recoverin, which is a switch in the Ca+2 signaling pathway in vision and the myristoylated HIV-1 matrix protein, which is postulated to be targeted to the plasma membrane through its binding to phosphatidylinositol(4,5)bisphosphate. Both proteins have been successfully encapsulated in the lipid extruded state and high-resolution NMR spectra obtained. Both proteins bind their activating ligands in the reverse micelle. This approach seems broadly applicable to membrane proteins with exposed fatty acid chains that have eluded structural characterization by conventional approaches. PMID:20152148

  13. Biodegradable, Tethered Lipid Bilayer-Microsphere Systems with Membrane-Integrated α-Helical Peptide Anchors.

    PubMed

    Fried, Eric S; Luchan, Joshua; Gilchrist, M Lane

    2016-04-12

    Supported lipid bilayers (SLBs) are ideally suited for the study of biomembrane-biomembrane interactions and for the biomimicry of cell-to-cell communication, allowing for surface ligand displays that contain laterally mobile elements. However, the SLB paradigm does not include three-dimensionality and biocompatibility. As a way to bypass these limitations, we have developed a biodegradable form of microsphere SLBs, also known as proteolipobeads (PLBs), using PLGA microspheres. Microspheres were synthesized using solvent evaporation and size selected with fluorescence activated cell sorting (FACS). Biomembranes were covalently tethered upon fusion to microsphere supports via short-chain PEG spacers connecting membrane-integrated α-helical peptides and the microsphere surface, affecting membrane diffusivity and mobility as indicated by confocal FRAP analysis. Membrane heterogeneities, which are attributed to PLGA hydrophobicity and rough surface topography, are curtailed by the addition of PEG tethers. This method allows for the presentation of tethered, laterally mobile biomembranes in three dimensions with functionally embedded attachment peptides for mobile ligand displays. PMID:26972467

  14. Structure of the glycosyl-phosphatidylinositol membrane anchor of acetylcholinesterase from the electric organ of the electric-fish, Torpedo californica.

    PubMed Central

    Mehlert, A; Varon, L; Silman, I; Homans, S W; Ferguson, M A

    1993-01-01

    The structure of the glycan moiety of the glycosyl-phosphatidylinositol (GPI) membrane anchor from Torpedo californica (electric fish) electric-organ acetylcholinesterase was solved using n.m.r., methylation analysis and chemical and enzymic micro-sequencing. Two structures were found to be present: Glc alpha 1-2Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcN alpha 1-6myo-inositol and Glc alpha 1-2Man alpha 1-2Man alpha 1-6(GalNAc beta 1-4)Man alpha 1-4GlcN alpha 1-6myo-inositol. The presence of glucose in this GPI anchor structure is a novel feature. The anchor was also shown to contain 2.3 residues of ethanolamine per molecule. PMID:8257440

  15. Distinct mechanisms regulating mechanical force-induced Ca2+ signals at the plasma membrane and the ER in human MSCs

    PubMed Central

    Kim, Tae-Jin; Joo, Chirlmin; Seong, Jihye; Vafabakhsh, Reza; Botvinick, Elliot L; Berns, Michael W; Palmer, Amy E; Wang, Ning; Ha, Taekjip; Jakobsson, Eric; Sun, Jie; Wang, Yingxiao

    2015-01-01

    It is unclear that how subcellular organelles respond to external mechanical stimuli. Here, we investigated the molecular mechanisms by which mechanical force regulates Ca2+ signaling at endoplasmic reticulum (ER) in human mesenchymal stem cells. Without extracellular Ca2+, ER Ca2+ release is the source of intracellular Ca2+ oscillations induced by laser-tweezer-traction at the plasma membrane, providing a model to study how mechanical stimuli can be transmitted deep inside the cell body. This ER Ca2+ release upon mechanical stimulation is mediated not only by the mechanical support of cytoskeleton and actomyosin contractility, but also by mechanosensitive Ca2+ permeable channels on the plasma membrane, specifically TRPM7. However, Ca2+ influx at the plasma membrane via mechanosensitive Ca2+ permeable channels is only mediated by the passive cytoskeletal structure but not active actomyosin contractility. Thus, active actomyosin contractility is essential for the response of ER to the external mechanical stimuli, distinct from the mechanical regulation at the plasma membrane. DOI: http://dx.doi.org/10.7554/eLife.04876.001 PMID:25667984

  16. Glycolipid precursors for the membrane anchor of Trypanosoma brucei variant surface glycoproteins. II. Lipid structures of phosphatidylinositol-specific phospholipase C sensitive and resistant glycolipids

    SciTech Connect

    Mayor, S.; Menon, A.K.; Cross, G.A. )

    1990-04-15

    A common diagnostic feature of glycosylinositol phospholipid (GPI)-anchored proteins is their release from the membrane by a phosphatidylinositol-specific phospholipase C (PI-PLC). However, some GPI-anchored proteins are resistant to this enzyme. The best characterized example of this subclass is the human erythrocyte acetylcholinesterase, where the structural basis of PI-PLC resistance has been shown to be the acylation of an inositol hydroxyl group(s). Both PI-PLC-sensitive and resistant GPI-anchor precursors (P2 and P3, respectively) have been found in Trypanosoma brucei, where the major surface glycoprotein is anchored by a PI-PLC-sensitive glycolipid anchor. The accompanying paper shows that P2 and P3 have identical glycans, indistinguishable from the common core glycan found on all the characterized GPI protein anchors. This paper shows that the single difference between P2 and P3, and the basis for the PI-PLC insusceptibility of P3, is a fatty acid, ester-linked to the inositol residue in P3. The inositol-linked fatty acid can be removed by treatment with mild base to restore PI-PLC sensitivity. Biosynthetic labeling experiments with (3H)palmitic acid and (3H)myristic acid show that (3H)palmitic acid specifically labels the inositol residue in P3 while (3H)myristic acid labels the diacylglycerol portion. Possible models to account for the simultaneous presence of PI-PLC-resistant and sensitive glycolipids are discussed in the context of available information on the biosynthesis of GPI-anchors.

  17. A novel role of Rab11 in trafficking GPI-anchored trans-sialidase to the plasma membrane of Trypanosoma cruzi.

    PubMed

    Niyogi, Sayantanee; Docampo, Roberto

    2015-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, is a unicellular parasite that possesses a contractile vacuole complex (CVC). This organelle is usually present in free-living protists and is mainly involved in osmoregulation. However, in some organisms, like for example Dictyostelium discoideum, other roles include calcium homeostasis and transference of proteins to the plasma membrane. T. cruzi plasma membrane is very rich in glycosylphosphatidylinositol anchored proteins (GPI-AP) and a very important group of GPI-AP is that of the trans-sialidases. These enzymes catalyze the transfer of sialic acid from host glycoconjugates to mucins present in the surface of the parasite and are important for host cell invasion among other functions. We recently reported that a pathway dependent on the Rab GTPase Rab11 is involved in the traffic of trans-sialidases to the plasma membrane through the CVC of the infective stages of the parasite and that preventing this traffic results in considerable reduction in the ability of T. cruzi to infect host cells. We also found that traffic of other GPI-anchored proteins is also through the CVC but uses a Rab11-independent pathway. These represent unconventional pathways of GPI-anchored protein traffic to the plasma membrane.

  18. Different sets of ER-resident J-proteins regulate distinct polar nuclear-membrane fusion events in Arabidopsis thaliana.

    PubMed

    Maruyama, Daisuke; Yamamoto, Masaya; Endo, Toshiya; Nishikawa, Shuh-ichi

    2014-11-01

    Angiosperm female gametophytes contain a central cell with two polar nuclei. In many species, including Arabidopsis thaliana, the polar nuclei fuse during female gametogenesis. We previously showed that BiP, an Hsp70 in the endoplasmic reticulum (ER), was essential for membrane fusion during female gametogenesis. Hsp70 function requires partner proteins for full activity. J-domain containing proteins (J-proteins) are the major Hsp70 functional partners. A. thaliana ER contains three soluble J-proteins, AtERdj3A, AtERdj3B, and AtP58(IPK). Here, we analyzed mutants of these proteins and determined that double-mutant ovules lacking AtP58(IPK) and AtERdj3A or AtERdj3B were defective in polar nuclear fusion. Electron microscopy analysis identified that polar nuclei were in close contact, but no membrane fusion occurred in mutant ovules lacking AtP58(IPK) and AtERdj3A. The polar nuclear outer membrane appeared to be connected via the ER remaining at the inner unfused membrane in mutant ovules lacking AtP58(IPK) and AtERdj3B. These results indicate that ER-resident J-proteins, AtP58(IPK)/AtERdj3A and AtP58(IPK)/AtERdj3B, function at distinct steps of polar nuclear-membrane fusion. Similar to the bip1 bip2 double mutant female gametophytes, the aterdj3a atp58(ipk) double mutant female gametophytes defective in fusion of the outer polar nuclear membrane displayed aberrant endosperm proliferation after fertilization with wild-type pollen. However, endosperm proliferated normally after fertilization of the aterdj3b atp58(ipk) double mutant female gametophytes defective in fusion of the inner membrane. Our results indicate that the polar nuclear fusion defect itself does not cause an endosperm proliferation defect.

  19. Mechanical anchoring strength of L-selectin, beta2 integrins, and CD45 to neutrophil cytoskeleton and membrane.

    PubMed Central

    Shao, J Y; Hochmuth, R M

    1999-01-01

    The strength of anchoring of transmembrane receptors to cytoskeleton and membrane is important in cell adhesion and cell migration. With micropipette suction, we applied pulling forces to human neutrophils adhering to latex beads that were coated with antibodies to CD62L (L-selectin), CD18 (beta2 integrins), or CD45. In each case, the adhesion frequency between the neutrophil and bead was low, and our Monte Carlo simulation indicates that only a single bond was probably involved in every adhesion event. When the adhesion between the neutrophil and bead was ruptured, it was very likely that receptors were extracted from neutrophil surfaces. We found that it took 1-2 s to extract an L-selectin at a force range of 25-45 pN, 1-4 s to extract a beta2 integrin at a force range of 60-130 pN, and 1-11 s to extract a CD45 at a force range of 35-85 pN. Our results strongly support the conclusion that, during neutrophil rolling, L-selectin is unbound from its ligand when the adhesion between neutrophils and endothelium is ruptured. PMID:10388783

  20. Role of membrane-anchored heparin-binding epidermal growth factor-like growth factor and CD9 on macrophages.

    PubMed Central

    Ouchi, N; Kihara, S; Yamashita, S; Higashiyama, S; Nakagawa, T; Shimomura, I; Funahashi, T; Kameda-Takemura, K; Kawata, S; Taniguchi, N; Matsuzawa, Y

    1997-01-01

    Heparin-binding epidermal-growth-factor-like growth factor (HB-EGF) is a potent mitogen for smooth-muscle cells (SMCs) belonging to the EGF family. We have previously determined that HB-EGF is expressed in macrophages and SMCs of human atherosclerotic lesions and that its membrane-anchored precursor, proHB-EGF, also has a juxtacrine mitogenic activity which is markedly enhanced by CD9, a surface marker of lymphohaemopoietic cells. Therefore, when both proHB-EGF and CD9 are expressed on macrophages, they may strongly promote the development of atherosclerosis. In the present study we have investigated the changes in proHB-EGF and CD9 in THP-1 cells during differentiation into macrophages and by the addition of oxidized low-density lipoproteins (OxLDL) and assessed juxtacrine growth activity of THP-1 macrophages for human aortic SMCs. HB-EGF and CD9 at both the mRNA and the protein level were up-regulated after differentiation into macrophages, and further expression of HB-EGF was induced by the addition of OxLDL or lysophosphatidylcholine. Juxtacrine induction by formalin-fixed growth was suppressed to control levels by an inhibitor of HB-EGF and was partially decreased by anti-CD9 antibodies. These results suggest that co-expression of proHB-EGF and CD9 on macrophages plays an important role in the development of atherosclerosis by a juxtacrine mechanism. PMID:9396739

  1. Development of a membrane-anchored ligand and receptor yeast two-hybrid system for ligand-receptor interaction identification

    PubMed Central

    Li, Jingjing; Gao, Jin; Han, Lei; Zhang, Yinjie; Guan, Wen; Zhou, Liang; Yu, Yan; Han, Wei

    2016-01-01

    Identifying interactions between ligands and transmembrane receptors is crucial for understanding the endocrine system. However, the present approaches for this purpose are still not capable of high-throughput screening. In this report, a membrane-anchored ligand and receptor yeast two-hybrid (MALAR-Y2H) system was established. In the method, an extracellular ligand is linked with an intracellular split-ubiquitin reporter system via a chimeric transmembrane structure. Meanwhile, the prey proteins of transmembrane receptors are fused to the other half of the split-ubiquitin reporter system. The extracellular interaction of ligands and receptors can lead to the functional recovery of the ubiquitin reporter system in yeast, and eventually lead to the expression of report genes. Consequently, the system can be used to detect the interactions between extracellular ligands and their transmembrane receptors. To test the efficiency and universality of the method, interactions between several pairs of ligands and receptors of mouse were analyzed. The detecting results were shown to be thoroughly consistent with the present knowledge, indicating MALAR-Y2H can be utilized for such purpose with high precision, high efficiency and strong universality. The characteristics of the simple procedure and high-throughput potential make MALAR-Y2H a powerful platform to study protein-protein interaction networks between secreted proteins and transmembrane proteins. PMID:27762338

  2. Membrane topologies of the PGLa antimicrobial peptide and a transmembrane anchor sequence by Dynamic Nuclear Polarization/solid-state NMR spectroscopy

    PubMed Central

    Salnikov, Evgeniy Sergeevich; Aisenbrey, Christopher; Aussenac, Fabien; Ouari, Olivier; Sarrouj, Hiba; Reiter, Christian; Tordo, Paul; Engelke, Frank; Bechinger, Burkhard

    2016-01-01

    Dynamic Nuclear Polarization (DNP) has been introduced to overcome the sensitivity limitations of nuclear magnetic resonance (NMR) spectroscopy also of supported lipid bilayers. When investigated by solid-state NMR techniques the approach typically involves doping the samples with biradicals and their investigation at cryo-temperatures. Here we investigated the effects of temperature and membrane hydration on the topology of amphipathic and hydrophobic membrane polypeptides. Although the antimicrobial PGLa peptide in dimyristoyl phospholipids is particularly sensitive to topological alterations, the DNP conditions represent well its membrane alignment also found in bacterial lipids at ambient temperature. With a novel membrane-anchored biradical and purpose-built hardware a 17-fold enhancement in NMR signal intensity is obtained by DNP which is one of the best obtained for a truly static matrix-free system. Furthermore, a membrane anchor sequence encompassing 19 hydrophobic amino acid residues was investigated. Although at cryotemperatures the transmembrane domain adjusts it membrane tilt angle by about 10 degrees, the temperature dependence of two-dimensional separated field spectra show that freezing the motions can have beneficial effects for the structural analysis of this sequence. PMID:26876950

  3. Conversion of secretory proteins into membrane proteins by fusing with a glycosylphosphatidylinositol anchor signal of alkaline phosphatase.

    PubMed Central

    Oda, K; Cheng, J; Saku, T; Takami, N; Sohda, M; Misumi, Y; Ikehara, Y; Millán, J L

    1994-01-01

    Placental alkaline phosphatase (PLAP) is initially synthesized as a precursor (proPLAP) with a C-terminal extension. We constructed a recombinant cDNA which encodes a chimeric protein (alpha GL-PLAP) comprising rat alpha 2u-globulin (alpha GL) and the C-terminal extension of PLAP. Two molecular species (25 kDa and 22 kDa) were expressed in the COS-1 cell transfected with the cDNA for alpha GL-PLAP. Only the 22 kDa form was labelled with both [3H]stearic acid and [3H]ethanolamine. Upon digestion with phosphatidylinositol-specific phospholipase C the 22 kDa form was released into the medium, indicating that this form is anchored on the cell surface via glycosylphosphatidylinositol (GPI). A specific IgG raised against a C-terminal nonapeptide of proPLAP precipitated the 25 kDa form but not the 22 kDa form, suggesting that the 25 kDa form is a precursor retaining the C-terminal propeptide. When a mutant alpha GL-PLAP, in which the aspartic acid residue is replaced with tryptophan at a putative cleavage/attachment site, was expressed in COS-1 cells, the 25 kDa precursor was the only form found inside the cell and retained in the endoplasmic reticulum, as judged by immunofluorescence microscopy. In vitro translation programmed with mRNAs coding for the wild-type and mutant forms of alpha GL-PLAP demonstrated that the C-terminal propeptide was cleaved from the wild-type chimeric protein, but not from the mutant one. This gave rise to the 22 kDa form attached with a GPI anchor, suggesting that GPI is covalently linked to the aspartic acid residue (Asp159) of alpha GL-PLAP. Taken together, these results indicate that the C-terminal propeptide of PLAP functions as a signal to render alpha GL a GPI-linked membrane protein in vitro and in vivo in cultured cells, and that the chimeric protein constructed in this study may be useful for elucidating the mechanism underlying the cleavage of the propeptide and attachment of GPI, which occur in the endoplasmic reticulum. Images

  4. DRAGON, a GPI-anchored membrane protein, inhibits BMP signaling in C2C12 myoblasts.

    PubMed

    Kanomata, Kazuhiro; Kokabu, Shoichiro; Nojima, Junya; Fukuda, Toru; Katagiri, Takenobu

    2009-06-01

    Bone morphogenetic proteins (BMPs) induce osteoblastic differentiation of myoblasts via binding to cell surface receptors. Repulsive guidance molecules (RGMs) have been identified as BMP co-receptors. We report here that DRAGON/RGMb, a member of the RGM family, suppressed BMP signaling in C2C12 myoblasts via a novel mechanism. All RGMs were expressed in C2C12 cells that were differentiated into myocytes and osteoblastic cells, but RGMc was not detected in immature cells. In C2C12 cells, only DRAGON suppressed ALP and Id1 promoter activities induced by BMP-4 or by constitutively activated BMP type I receptors. This inhibition by DRAGON was dependent on the secretory form of the von Willbrand factor type D domain. DRAGON even suppressed BMP signaling induced by constitutively activated Smad1. Over-expression of neogenin did not alter the inhibitory capacity of DRAGON. Taken together, these findings indicate that DRAGON may be an inhibitor of BMP signaling in C2C12 myoblasts. We also suggest that a novel molecule(s) expressed on the cell membrane may mediate the signal transduction of DRAGON in order to suppress BMP signaling in C2C12 myoblasts.

  5. Signal peptide cleavage of a type I membrane protein, HCMV US11, is dependent on its membrane anchor

    PubMed Central

    Rehm, Armin; Stern, Patrick; Ploegh, Hidde L.; Tortorella, Domenico

    2001-01-01

    The human cytomegalovirus (HCMV) US11 polypeptide is a type I membrane glycoprotein that targets major histocompatibility complex (MHC) class I molecules for destruction in a proteasome-dependent manner. Although the US11 signal sequence appears to be a classical N-terminal signal peptide in terms of its sequence and cleavage site, a fraction of newly synthesized US11 molecules retain the signal peptide after the N-linked glycan has been attached and translation of the US11 polypeptide has been completed. Delayed cleavage of the US11 signal peptide is determined by the first four residues, the so-called n-region of the signal peptide. Its replacement with the four N-terminal residues of the H-2Kb signal sequence eliminates delayed cleavage. Surprisingly, a second region that affects the rate and extent of signal peptide cleavage is the transmembrane region close to the C-terminus of US11. Deletion of the transmembrane region of US11 (US11-180) significantly delays processing, a delay overcome by replacement with the H-2Kb signal sequence. Thus, elements at a considerable distance from the signal sequence affect its cleavage. PMID:11285222

  6. Phosphorylation of the C Terminus of RHD3 Has a Critical Role in Homotypic ER Membrane Fusion in Arabidopsis1[OPEN

    PubMed Central

    Ueda, Haruko; Yokota, Etsuo; Kuwata, Keiko; Kutsuna, Natsumaro; Mano, Shoji; Shimada, Tomoo; Tamura, Kentaro; Fukao, Yoichiro; Brandizzi, Federica; Shimmen, Teruo; Nishimura, Mikio

    2016-01-01

    The endoplasmic reticulum (ER) consists of dynamically changing tubules and cisternae. In animals and yeast, homotypic ER membrane fusion is mediated by fusogens (atlastin and Sey1p, respectively) that are membrane-associated dynamin-like GTPases. In Arabidopsis (Arabidopsis thaliana), another dynamin-like GTPase, ROOT HAIR DEFECTIVE3 (RHD3), has been proposed as an ER membrane fusogen, but direct evidence is lacking. Here, we show that RHD3 has an ER membrane fusion activity that is enhanced by phosphorylation of its C terminus. The ER network was RHD3-dependently reconstituted from the cytosol and microsome fraction of tobacco (Nicotiana tabacum) cultured cells by exogenously adding GTP, ATP, and F-actin. We next established an in vitro assay system of ER tubule formation with Arabidopsis ER vesicles, in which addition of GTP caused ER sac formation from the ER vesicles. Subsequent application of a shearing force to this system triggered the formation of tubules from the ER sacs in an RHD-dependent manner. Unexpectedly, in the absence of a shearing force, Ser/Thr kinase treatment triggered RHD3-dependent tubule formation. Mass spectrometry showed that RHD3 was phosphorylated at multiple Ser and Thr residues in the C terminus. An antibody against the RHD3 C-terminal peptide abolished kinase-triggered tubule formation. When the Ser cluster was deleted or when the Ser residues were replaced with Ala residues, kinase treatment had no effect on tubule formation. Kinase treatment induced the oligomerization of RHD3. Neither phosphorylation-dependent modulation of membrane fusion nor oligomerization has been reported for atlastin or Sey1p. Taken together, we propose that phosphorylation-stimulated oligomerization of RHD3 enhances ER membrane fusion to form the ER network. PMID:26684656

  7. An efficient bacterial surface display system based on a novel outer membrane anchoring element from the Escherichia coli protein YiaT.

    PubMed

    Han, Mee-Jung; Lee, Seung Hwan

    2015-01-01

    In a bacterial surface display system, the display of a successful recombinant protein is highly dependent on the choice of anchoring motif. In this study, we developed an efficient Escherichia coli display system using novel anchoring motifs derived from the protein YiaT. To determine the best surface-anchoring motif, full-length YiaT and two of its C-terminal truncated forms, cut at the R181 and R232 sites, were evaluated. Two industrial enzymes, a lipase from Pseudomonas fluorescens SIK W1 and an α-amylase from Bacillus subtilis, were used as the target proteins for display. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blot, immunofluorescence microscopy and whole-cell enzyme activity measurements confirmed the expression of the fusion proteins on the E. coli surface. Using YiaTR181 or YiaTR232 as the anchoring motif, the fusion proteins showed very high enzyme activities and did not exert any adverse effects on either cell growth or the outer membrane integrity. Additionally, these fusion proteins were suitable for displaying proteins of large molecular size in an active form. Compared with the previous anchoring motifs FadL and OprF, YiaTR181 and YiaTR232 had approximately 10-fold and 20-fold higher enzyme activities, respectively. These results suggest that YiaT can be used as an E. coli anchoring motif to efficiently display various enzymes; hence, this system could be employed in a variety of biotechnological and industrial applications.

  8. Roles of the protruding loop of factor B essential for the localization of lipoproteins (LolB) in the anchoring of bacterial triacylated proteins to the outer membrane.

    PubMed

    Hayashi, Yumi; Tsurumizu, Ryoji; Tsukahara, Jun; Takeda, Kazuki; Narita, Shin-ichiro; Mori, Makiko; Miki, Kunio; Tokuda, Hajime

    2014-04-11

    The Lol system comprising five Lol proteins, LolA through LolE, sorts Escherichia coli lipoproteins to outer membranes. The LolCDE complex, an ATP binding cassette transporter in inner membranes, releases outer membrane-specific lipoproteins in an ATP-dependent manner, causing formation of the LolA-lipoprotein complex in the periplasm. LolA transports lipoproteins through the periplasm to LolB on outer membranes. LolB is itself a lipoprotein anchored to outer membranes, although the membrane anchor is functionally dispensable. LolB then localizes lipoproteins to outer membranes through largely unknown mechanisms. The crystal structure of LolB is similar to that of LolA, and it possesses a hydrophobic cavity that accommodates acyl chains of lipoproteins. To elucidate the molecular function of LolB, a periplasmic version of LolB, mLolB, was mutagenized at various conserved residues. Despite the lack of acyl chains, most defective mutants were insoluble. However, a derivative with glutamate in place of leucine 68 was soluble and unable to localize lipoproteins to outer membranes. This leucine is present in a loop protruding from mLolB into an aqueous environment, and no analogous loop is present in LolA. Thus, leucine 68 was replaced with other residues. Replacement by acidic, but not hydrophobic, residues generated for the first time mLolB derivatives that can accept but cannot localize lipoproteins to outer membranes. Moreover, deletion of the leucine with neighboring residues impaired the lipoprotein receptor activity. Based on these observations, the roles of the protruding loop of LolB in the last step of lipoprotein sorting are discussed. PMID:24569999

  9. Coupling acidic organelles with the ER through Ca²⁺ microdomains at membrane contact sites.

    PubMed

    Penny, Christopher J; Kilpatrick, Bethan S; Eden, Emily R; Patel, Sandip

    2015-10-01

    Acidic organelles such as lysosomes serve as non-canonical Ca(2+) stores. The Ca(2+) mobilising messenger NAADP is thought to trigger local Ca(2+) release from such stores. These events are then amplified by Ca(2+) channels on canonical ER Ca(2+) stores to generate physiologically relevant global Ca(2+) signals. Coupling likely occurs at microdomains formed at membrane contact sites between acidic organelles and the ER. Molecular analyses and computational modelling suggest heterogeneity in the composition of these contacts and predicted Ca(2+) microdomain behaviour. Conversely, acidic organelles might also locally amplify and temper ER-evoked Ca(2+) signals. Ca(2+) microdomains between distinct Ca(2+) stores are thus likely to be integral to the genesis of complex Ca(2+) signals. PMID:25866010

  10. Molecular mapping of signals in the Qa-2 antigen required for attachment of the phosphatidylinositol membrane anchor.

    PubMed Central

    Waneck, G L; Sherman, D H; Kincade, P W; Low, M G; Flavell, R A

    1988-01-01

    Proteins anchored in the membrane by covalent linkage to phosphatidylinositol (PtdIns) can be released by treatment with purified PtdIns-specific phospholipase C (Ptd-Ins-PLC). A recent survey of leukocyte antigens using flow cytometry has shown that staining of certain Qa antigens was diminished after PtdIns-PLC treatment, but staining of structurally related H-2 antigens was not affected. Therefore, in this study, the sensitivity of cell-surface Qa-2, H-2Kb, and H-2Db to hydrolysis by PtdIns-PLC was investigated biochemically by immunoprecipitation of radioiodinated molecules from cell lysates or supernatants. Qa-2, but not H-2Kb, was released from the surface of PtdIns-PLC-treated C57BL/10 mouse spleen cells and recovered in the cell supernatants. Similar analysis of thymoma cells transfected with cloned C57BL/10 genes showed that cell-surface Qa-2 molecules encoded by a Q7b cDNA and the Q7b or Q9b gene were sensitive to hydrolysis by PtdIns-PLC, whereas the H-2Kb and H-2Db gene products were resistant. Using thymoma cells transfected with hybrid genes constructed by exchanging exons between Q7b and H-2Db, the signals for PtdIns modification were localized to a defined region of Qa-2. This region differs from H-2Db most significantly by the presence of a central aspartate residue in the transmembrane segment and in the length of the cytoplasmic portion. Images PMID:3422441

  11. Cooperation of the ER-shaping proteins atlastin, lunapark, and reticulons to generate a tubular membrane network.

    PubMed

    Wang, Songyu; Tukachinsky, Hanna; Romano, Fabian B; Rapoport, Tom A

    2016-01-01

    In higher eukaryotes, the endoplasmic reticulum (ER) contains a network of membrane tubules, which transitions into sheets during mitosis. Network formation involves curvature-stabilizing proteins, including the reticulons (Rtns), as well as the membrane-fusing GTPase atlastin (ATL) and the lunapark protein (Lnp). Here, we have analyzed how these proteins cooperate. ATL is needed to not only form, but also maintain, the ER network. Maintenance requires a balance between ATL and Rtn, as too little ATL activity or too high Rtn4a concentrations cause ER fragmentation. Lnp only affects the abundance of three-way junctions and tubules. We suggest a model in which ATL-mediated fusion counteracts the instability of free tubule ends. ATL tethers and fuses tubules stabilized by the Rtns, and transiently sits in newly formed three-way junctions. Lnp subsequently moves into the junctional sheets and forms oligomers. Lnp is inactivated by mitotic phosphorylation, which contributes to the tubule-to-sheet conversion of the ER. PMID:27619977

  12. Cooperation of the ER-shaping proteins atlastin, lunapark, and reticulons to generate a tubular membrane network

    PubMed Central

    Wang, Songyu; Tukachinsky, Hanna; Romano, Fabian B; Rapoport, Tom A

    2016-01-01

    In higher eukaryotes, the endoplasmic reticulum (ER) contains a network of membrane tubules, which transitions into sheets during mitosis. Network formation involves curvature-stabilizing proteins, including the reticulons (Rtns), as well as the membrane-fusing GTPase atlastin (ATL) and the lunapark protein (Lnp). Here, we have analyzed how these proteins cooperate. ATL is needed to not only form, but also maintain, the ER network. Maintenance requires a balance between ATL and Rtn, as too little ATL activity or too high Rtn4a concentrations cause ER fragmentation. Lnp only affects the abundance of three-way junctions and tubules. We suggest a model in which ATL-mediated fusion counteracts the instability of free tubule ends. ATL tethers and fuses tubules stabilized by the Rtns, and transiently sits in newly formed three-way junctions. Lnp subsequently moves into the junctional sheets and forms oligomers. Lnp is inactivated by mitotic phosphorylation, which contributes to the tubule-to-sheet conversion of the ER. DOI: http://dx.doi.org/10.7554/eLife.18605.001 PMID:27619977

  13. The ER membrane-anchored ubiquitin ligase Hrd1 is a positive regulator of T-cell immunity

    PubMed Central

    Xu, Yuanming; Zhao, Fang; Qiu, Quan; Chen, Kun; Wei, Juncheng; Kong, Qingfei; Gao, Beixue; Melo-Cardenas, Johanna; Zhang, Bin; Zhang, Jinping; Song, Jianxun; Zhang, Donna D.; Zhang, Jianing; Fan, Yunping; Li, Huabin; Fang, Deyu

    2016-01-01

    Identification of positive regulators of T-cell immunity induced during autoimmune diseases is critical for developing novel therapies. The endoplasmic reticulum resident ubiquitin ligase Hrd1 has recently emerged as a critical regulator of dendritic cell antigen presentation, but its role in T-cell immunity is unknown. Here we show that genetic deletion of Hrd1 in mice inhibits T-cell proliferation, production of IL-2, and differentiation of Th1 and Th17 cells, and consequently protects mice from experimental autoimmune encephalomyelitis. Hrd1 facilitates T-cell proliferation by the destruction of cyclin-dependent kinase inhibitor p27kip1, and deletion of p27kip1 in Hrd1-null T-cells rescues proliferative capacity but not the production of cytokines, including IL-2, IFN-γ and IL-17. T-cell expression of Hrd1 is higher in patients with multiple sclerosis than in healthy individuals, and knockdown of Hrd1 in human CD4+ T cells inhibits activation and differentiation to Th1 and Th17 cells. Our study identifies Hrd1 as a previously unappreciated positive regulator of T cells and implies that Hrd1 is a potential therapeutic target for autoimmune diseases. PMID:27417417

  14. Phosphatidylinositol and phosphatidic acid transport between the ER and plasma membrane during PLC activation requires the Nir2 protein.

    PubMed

    Kim, Yeun Ju; Guzman-Hernandez, Maria Luisa; Wisniewski, Eva; Echeverria, Nicolas; Balla, Tamas

    2016-02-01

    Phospholipase C (PLC)-mediated hydrolysis of the limited pool of plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] requires replenishment from a larger pool of phosphatidylinositol (PtdIns) via sequential phosphorylation by PtdIns 4-kinases and phosphatidylinositol 4-phosphate (PtdIns4P) 5-kinases. Since PtdIns is synthesized in the endoplasmic reticulum (ER) and PtdIns(4,5)P2 is generated in the PM, it has been postulated that PtdIns transfer proteins (PITPs) provide the means for this lipid transfer function. Recent studies identified the large PITP protein, Nir2 as important for PtdIns transfer from the ER to the PM. It was also found that Nir2 was required for the transfer of phosphatidic acid (PtdOH) from the PM to the ER. In Nir2-depleted cells, activation of PLC leads to PtdOH accumulation in the PM and PtdIns synthesis becomes severely impaired. In quiescent cells, Nir2 is localized to the ER via interaction of its FFAT domain with ER-bound VAMP-associated proteins VAP-A and-B. After PLC activation, Nir2 also binds to the PM via interaction of its C-terminal domains with diacylglycerol (DAG) and PtdOH. Through these interactions, Nir2 functions in ER-PM contact zones. Mutations in VAP-B that have been identified in familial forms of amyotrophic lateral sclerosis (ALS or Lou-Gehrig's disease) cause aggregation of the VAP-B protein, which then impairs its binding to several proteins, including Nir2. These findings have shed new lights on the importance of non-vesicular lipid transfer of PtdIns and PtdOH in ER-PM contact zones with a possible link to a devastating human disease.

  15. Autophagy-related direct membrane import from ER/cytoplasm into the vacuole or apoplast: a hidden gateway also for secondary metabolites and phytohormones?

    PubMed

    Kulich, Ivan; Žárský, Viktor

    2014-04-29

    Transportation of low molecular weight cargoes into the plant vacuole represents an essential plant cell function. Several lines of evidence indicate that autophagy-related direct endoplasmic reticulum (ER) to vacuole (and also, apoplast) transport plays here a more general role than expected. This route is regulated by autophagy proteins, including recently discovered involvement of the exocyst subcomplex. Traffic from ER into the vacuole bypassing Golgi apparatus (GA) acts not only in stress-related cytoplasm recycling or detoxification, but also in developmentally-regulated biopolymer and secondary metabolite import into the vacuole (or apoplast), exemplified by storage proteins and anthocyanins. We propose that this pathway is relevant also for some phytohormones' (e.g., auxin, abscisic acid (ABA) and salicylic acid (SA)) degradation. We hypothesize that SA is not only an autophagy inducer, but also a cargo for autophagy-related ER to vacuole membrane container delivery and catabolism. ER membrane localized enzymes will potentially enhance the area of biosynthetic reactive surfaces, and also, abundant ER localized membrane importers (e.g., ABC transporters) will internalize specific molecular species into the autophagosome biogenesis domain of ER. Such active ER domains may create tubular invaginations of tonoplast into the vacuoles as import intermediates. Packaging of cargos into the ER-derived autophagosome-like containers might be an important mechanism of vacuole and exosome biogenesis and cytoplasm protection against toxic metabolites. A new perspective on metabolic transformations intimately linked to membrane trafficking in plants is emerging.

  16. The ER-Membrane Transport System Is Critical for Intercellular Trafficking of the NSm Movement Protein and Tomato Spotted Wilt Tospovirus

    PubMed Central

    Feng, Zhike; Xue, Fan; Xu, Min; Chen, Xiaojiao; Zhao, Wenyang; Garcia-Murria, Maria J.; Mingarro, Ismael; Liu, Yong; Huang, Ying; Jiang, Lei; Zhu, Min; Tao, Xiaorong

    2016-01-01

    Plant viruses move through plasmodesmata to infect new cells. The plant endoplasmic reticulum (ER) is interconnected among cells via the ER desmotubule in the plasmodesma across the cell wall, forming a continuous ER network throughout the entire plant. This ER continuity is unique to plants and has been postulated to serve as a platform for the intercellular trafficking of macromolecules. In the present study, the contribution of the plant ER membrane transport system to the intercellular trafficking of the NSm movement protein and Tomato spotted wilt tospovirus (TSWV) is investigated. We showed that TSWV NSm is physically associated with the ER membrane in Nicotiana benthamiana plants. An NSm-GFP fusion protein transiently expressed in single leaf cells was trafficked into neighboring cells. Mutations in NSm that impaired its association with the ER or caused its mis-localization to other subcellular sites inhibited cell-to-cell trafficking. Pharmacological disruption of the ER network severely inhibited NSm-GFP trafficking but not GFP diffusion. In the Arabidopsis thaliana mutant rhd3 with an impaired ER network, NSm-GFP trafficking was significantly reduced, whereas GFP diffusion was not affected. We also showed that the ER-to-Golgi secretion pathway and the cytoskeleton transport systems were not involved in the intercellular trafficking of TSWV NSm. Importantly, TSWV cell-to-cell spread was delayed in the ER-defective rhd3 mutant, and this reduced viral infection was not due to reduced replication. On the basis of robust biochemical, cellular and genetic analysis, we established that the ER membrane transport system serves as an important direct route for intercellular trafficking of NSm and TSWV. PMID:26863622

  17. Enhancement of tendon-bone healing via the combination of biodegradable collagen-loaded nanofibrous membranes and a three-dimensional printed bone-anchoring bolt.

    PubMed

    Chou, Ying-Chao; Yeh, Wen-Lin; Chao, Chien-Lin; Hsu, Yung-Heng; Yu, Yi-Hsun; Chen, Jan-Kan; Liu, Shih-Jung

    2016-01-01

    A composite biodegradable polymeric model was developed to enhance tendon graft healing. This model included a biodegradable polylactide (PLA) bolt as the bone anchor and a poly(D,L-lactide-co-glycolide) (PLGA) nanofibrous membrane embedded with collagen as a biomimic patch to promote tendon-bone interface integration. Degradation rate and compressive strength of the PLA bolt were measured after immersion in a buffer solution for 3 months. In vitro biochemical characteristics and the nanofibrous matrix were assessed using a water contact angle analyzer, pH meter, and tetrazolium reduction assay. In vivo efficacies of PLGA/collagen nanofibers and PLA bolts for tendon-bone healing were investigated on a rabbit bone tunnel model with histological and tendon pullout tests. The PLGA/collagen-blended nanofibrous membrane was a hydrophilic, stable, and biocompatible scaffold. The PLA bolt was durable for tendon-bone anchoring. Histology showed adequate biocompatibility of the PLA bolt on a medial cortex with progressive bone ingrowth and without tissue overreaction. PLGA nanofibers within the bone tunnel also decreased the tunnel enlargement phenomenon and enhanced tendon-bone integration. Composite polymers of the PLA bolt and PLGA/collagen nanofibrous membrane can effectively promote outcomes of tendon reconstruction in a rabbit model. The composite biodegradable polymeric system may be useful in humans for tendon reconstruction. PMID:27601901

  18. Enhancement of tendon–bone healing via the combination of biodegradable collagen-loaded nanofibrous membranes and a three-dimensional printed bone-anchoring bolt

    PubMed Central

    Chou, Ying-Chao; Yeh, Wen-Lin; Chao, Chien-Lin; Hsu, Yung-Heng; Yu, Yi-Hsun; Chen, Jan-Kan; Liu, Shih-Jung

    2016-01-01

    A composite biodegradable polymeric model was developed to enhance tendon graft healing. This model included a biodegradable polylactide (PLA) bolt as the bone anchor and a poly(D,L-lactide-co-glycolide) (PLGA) nanofibrous membrane embedded with collagen as a biomimic patch to promote tendon–bone interface integration. Degradation rate and compressive strength of the PLA bolt were measured after immersion in a buffer solution for 3 months. In vitro biochemical characteristics and the nanofibrous matrix were assessed using a water contact angle analyzer, pH meter, and tetrazolium reduction assay. In vivo efficacies of PLGA/collagen nanofibers and PLA bolts for tendon–bone healing were investigated on a rabbit bone tunnel model with histological and tendon pullout tests. The PLGA/collagen-blended nanofibrous membrane was a hydrophilic, stable, and biocompatible scaffold. The PLA bolt was durable for tendon–bone anchoring. Histology showed adequate biocompatibility of the PLA bolt on a medial cortex with progressive bone ingrowth and without tissue overreaction. PLGA nanofibers within the bone tunnel also decreased the tunnel enlargement phenomenon and enhanced tendon–bone integration. Composite polymers of the PLA bolt and PLGA/collagen nanofibrous membrane can effectively promote outcomes of tendon reconstruction in a rabbit model. The composite biodegradable polymeric system may be useful in humans for tendon reconstruction.

  19. Enhancement of tendon–bone healing via the combination of biodegradable collagen-loaded nanofibrous membranes and a three-dimensional printed bone-anchoring bolt

    PubMed Central

    Chou, Ying-Chao; Yeh, Wen-Lin; Chao, Chien-Lin; Hsu, Yung-Heng; Yu, Yi-Hsun; Chen, Jan-Kan; Liu, Shih-Jung

    2016-01-01

    A composite biodegradable polymeric model was developed to enhance tendon graft healing. This model included a biodegradable polylactide (PLA) bolt as the bone anchor and a poly(D,L-lactide-co-glycolide) (PLGA) nanofibrous membrane embedded with collagen as a biomimic patch to promote tendon–bone interface integration. Degradation rate and compressive strength of the PLA bolt were measured after immersion in a buffer solution for 3 months. In vitro biochemical characteristics and the nanofibrous matrix were assessed using a water contact angle analyzer, pH meter, and tetrazolium reduction assay. In vivo efficacies of PLGA/collagen nanofibers and PLA bolts for tendon–bone healing were investigated on a rabbit bone tunnel model with histological and tendon pullout tests. The PLGA/collagen-blended nanofibrous membrane was a hydrophilic, stable, and biocompatible scaffold. The PLA bolt was durable for tendon–bone anchoring. Histology showed adequate biocompatibility of the PLA bolt on a medial cortex with progressive bone ingrowth and without tissue overreaction. PLGA nanofibers within the bone tunnel also decreased the tunnel enlargement phenomenon and enhanced tendon–bone integration. Composite polymers of the PLA bolt and PLGA/collagen nanofibrous membrane can effectively promote outcomes of tendon reconstruction in a rabbit model. The composite biodegradable polymeric system may be useful in humans for tendon reconstruction. PMID:27601901

  20. Evidence for the involvement of lipid rafts localized at the ER-mitochondria associated membranes in autophagosome formation.

    PubMed

    Garofalo, Tina; Matarrese, Paola; Manganelli, Valeria; Marconi, Matteo; Tinari, Antonella; Gambardella, Lucrezia; Faggioni, Alberto; Misasi, Roberta; Sorice, Maurizio; Malorni, Walter

    2016-06-01

    Mitochondria-associated membranes (MAMs) are subdomains of the endoplasmic reticulum (ER) that interact with mitochondria. This membrane scrambling between ER and mitochondria appears to play a critical role in the earliest steps of autophagy. Recently, lipid microdomains, i.e. lipid rafts, have been identified as further actors of the autophagic process. In the present work, a series of biochemical and molecular analyses has been carried out in human fibroblasts with the specific aim of characterizing lipid rafts in MAMs and to decipher their possible implication in the autophagosome formation. In fact, the presence of lipid microdomains in MAMs has been detected and, in these structures, a molecular interaction of the ganglioside GD3, a paradigmatic "brick" of lipid rafts, with core-initiator proteins of autophagy, such as AMBRA1 and WIPI1, was revealed. This association seems thus to take place in the early phases of autophagic process in which MAMs have been hypothesized to play a key role. The functional activity of GD3 was suggested by the experiments carried out by knocking down ST8SIA1 gene expression, i.e., the synthase that leads to the ganglioside formation. This experimental condition results in fact in the impairment of the ER-mitochondria crosstalk and the subsequent hindering of autophagosome nucleation. We thus hypothesize that MAM raft-like microdomains could be pivotal in the initial organelle scrambling activity that finally leads to the formation of autophagosome.

  1. A variant of estrogen receptor-α, hER-α36: Transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling

    PubMed Central

    Wang, ZhaoYi; Zhang, XinTian; Shen, Peng; Loggie, Brian W.; Chang, YunChao; Deuel, Thomas F.

    2006-01-01

    The status of the 66-kDa human estrogen receptor-α (hER-α66) is a critical determinant in the assessment of the prognosis and in the design of treatment strategies of human breast cancer. Recently, we cloned the cDNA of an alternatively spliced variant of hER-α66, termed hER-α36; the predicted protein lacks both transcriptional activation domains of hER-α66 but retains its DNA-binding domain, partial dimerization, and ligand-binding domains and three potential myristoylation sites located near the N terminus. These findings thus predict that hER-α36 functions very differently from hER-α66 in response to estrogen signaling. We now demonstrate that hER-α36 inhibits the estrogen-dependent and estrogen-independent transactivation activities of hER-α66 and hER-β. We further demonstrate that hER-α36 is predominantly associated with the plasma membrane where it transduces both estrogen- and antiestrogen-dependent activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway and stimulates cell growth. We conclude that hER-α36 is a predominantly membrane-based, unique alternatively spliced variant of hER-α66 that acts as a dominant-negative effector of both estrogen-dependent and estrogen-independent transactivation functions signaled through hER-α66 and ER-β; it also transduces membrane-initiated estrogen-dependent activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase mitogenic signaling pathway. The estrogen and antiestrogen signaling pathways mediated by hER-α36 provide an alternative explanation for why some human breast cancers are resistant to and others are worsened by antiestrogen therapy; the data suggest that hER-α36 also may be an important marker to direct therapy in human breast cancers, and perhaps hER-α36 also may transduce estrogen-dependent signaling in other estrogen target tissues. PMID:16754886

  2. Priority targeting of glycosyl-phosphatidylinositol-anchored proteins to the bile-canalicular (apical) plasma membrane of hepatocytes. Involvement of 'late' endosomes.

    PubMed Central

    Ali, N; Evans, W H

    1990-01-01

    1. Liver plasma membranes originating from the sinusoidal, lateral and canalicular surface domains of hepatocytes were covalently labelled with sulpho-N-hydroxysuccinamide-biotin. After solubilization in Triton X-114, treatment with a phosphatidylinositol-specific phospholipase C (PI-PLC), two-phase partitioning and 125I-streptavidin labelling of the proteins resolved by PAGE, six major polypeptides (molecular masses 110, 85, 70, 55, 38 and 35 kDa) were shown to be anchored in bile canalicular membrane vesicles by a glycosyl-phosphatidylinositol (G-PI) 'tail'. 2. Permeabilized 'early' and 'late' endocytic vesicles isolated from liver were also examined. Two polypeptides (110 and 35 kDa) were shown to be anchored by a G-PI tail in 'late' endocytic vesicles. 3. Analysis of marker enzymes in bile-canalicular vesicles treated with PI-PLC showed that 5'-nucleotidase and alkaline phosphatase, but not leucine aminopeptidase and ecto-Ca2(+)-ATPase activities were released from the membrane. A low release and recovery of alkaline phosphodiesterase activity was noted. The cleavage from the membrane of 5'-nucleotidase as a 70 kDa polypeptide was confirmed by Western blotting using an antibody to this enzyme. 4. Antibodies raised to proteins released from bile-canalicular vesicles by PI-PLC treatment, and purified by partitioning in aqueous and Triton X-114 phases, localized to the bile canaliculi in thin liver sections. Antibodies to proteins not hydrolysed by this treatment stained by immunofluorescence the sinusoidal and canalicular surface regions of hepatocytes. 5. Antibodies generated to proteins cleaved by PI-PLC treatment of canalicular vesicles were shown to identify, by Western blotting, a major 110 kDa polypeptide in these vesicles. Two polypeptides (55 and 38 kDa) were detected in MDCK and HepG-2 cultured cells. 6. Since two of the six G-PI-anchored proteins targeted to the bile-canalicular plasma membrane were also detected in 'late' endocytic vesicles, the

  3. Type VII collagen associated with the basement membrane of amniotic epithelium forms giant anchoring rivets which penetrate a massive lamina reticularis.

    PubMed

    Ockleford, C D; McCracken, S A; Rimmington, L A; Hubbard, A R D; Bright, N A; Cockcroft, N; Jefferson, T B; Waldron, E; d'Lacey, C

    2013-09-01

    In human amnion a simple cuboidal epithelium and underlying fibroblast layer are separated by an almost acellular compact layer rich in collagen types I and III. This (>10 μm) layer, which may be a thick lamina reticularis, apparently presents an unusual set of conditions. Integration of the multilaminous tissue across it is apparently achieved by waisted structures which we have observed with the light microscope in frozen, paraffin-wax and semi-thin resin sections. We have also captured transmission and scanning electron micrographs of the structures. These structures which cross the compact layer we call "rivets". The composition of these "rivets" has been examined immunocytochemically and in three dimensions using the confocal laser scanning epi-fluorescence microscope. The rivets contain type VII collagen and an α6 integrin. They associate with type IV collagen containing structures (basement membrane lamina densa and spongy coils) and a special population of fibroblasts which may generate, maintain or anchor rivets to the underlying mesenchymal layer. Although type VII collagen is well known to anchor basal lamina to underlying mesodermal collagen fibres these "rivets" are an order of magnitude larger than any previously described type VII collagen containing anchoring structures. Intriguing possible functions of these features include nodes for growth of fibrous collagen sheets and sites of possible enzymatic degradation during regulated amnion weakening approaching term. If these sites are confirmed to be involved in amnion degradation and growth they may represent important targets for therapeutic agents that are designed to delay preterm premature rupture of the membranes a major cause of fetal morbidity and mortality.

  4. Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts

    SciTech Connect

    Du, Yijun; Pattnaik, Asit K.; Song, Cheng; Yoo, Dongwan; Li, Gang

    2012-03-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) glycoprotein 4 (GP4) resembles a typical type I membrane protein in its structure but lacks a hydrophilic tail at the C-terminus, suggesting that GP4 may be a lipid-anchored membrane protein. Using the human decay-accelerating factor (DAF; CD55), a known glycosyl-phosphatidylinositol (GPI) lipid-anchored protein, chimeric constructs were made to substitute the GPI-anchor domain of DAF with the putative lipid-anchor domain of GP4, and their membrane association and lipase cleavage were determined in cells. The DAF-GP4 fusion protein was transported to the plasma membrane and was cleaved by phosphatidylinositol-specific phospholipase C (PI-PLC), indicating that the C-terminal domain of GP4 functions as a GPI anchor. Mutational studies for residues adjacent to the GPI modification site and characterization of respective mutant viruses generated from infectious cDNA clones show that the ability of GP4 for membrane association corresponded to virus viability and growth characteristics. The residues T158 ({omega} - 2, where {omega} is the GPI moiety at E160), P159 ({omega} - 1), and M162 ({omega} + 2) of GP4 were determined to be important for virus replication, with M162 being of particular importance for virus infectivity. The complete removal of the peptide-anchor domain in GP4 resulted in a complete loss of virus infectivity. The depletion of cholesterol from the plasma membrane of cells reduced the virus production, suggesting a role of lipid rafts in PRRSV infection. Remarkably, GP4 was found to co-localize with CD163 in the lipid rafts on the plasma membrane. Since CD163 has been reported as a cellular receptor for PRRSV and GP4 has been shown to interact with this receptor, our data implicates an important role of lipid rafts during entry of the virus.

  5. Functional substitution of the transient membrane-anchor domain in Escherichia coli FtsY with an N-terminal hydrophobic segment of Streptomyces lividans FtsY.

    PubMed

    Maeda, Isamu; Hirata, Asumi; Shoji, Miki; Ueda, Shunsaku; Yoshida, Kazuyuki

    2008-10-01

    FtsY is a signal recognition particle receptor in Escherichia coli that mediates the targeting of integral membrane proteins to translocons by interacting with both signal recognition particle (SRP)-nascent polypeptide-ribosome complexes and the cytoplasmic membrane. Genes encoding the N-terminal segments of Streptomyces lividans FtsY were fused to a gene encoding the E. coli FtsY NG domain (truncated versions of FtsY lacking the transient membrane-anchor domain at the N-terminus), introduced into a conditional ftsY-deletion mutant of E. coli, and expressed in trans to produce chimeric FtsY proteins. Under FtsY-depleted conditions, strains producing chimeric proteins including 34 N-terminal hydrophobic residues grew whereas strains producing chimeric proteins without these 34 residues did not. A strain producing the chimeric protein comprising the 34 residues and NG domain processed beta-lactamase, suggesting that the SRP-dependent membrane integration of leader peptidase was restored in this strain. These results suggest that the N-terminal hydrophobic segment of FtsY in this Gram-positive bacterium is responsible for its interaction with the cytoplasmic membrane.

  6. Novel pathogenic mechanism of microbial metalloproteinases: liberation of membrane-anchored molecules in biologically active form exemplified by studies with the human interleukin-6 receptor.

    PubMed Central

    Vollmer, P; Walev, I; Rose-John, S; Bhakdi, S

    1996-01-01

    Certain membrane-anchored proteins, including several cytokines and cytokine receptors, can be released into cell supernatants through the action of endogenous membrane-bound metalloproteinases. The shed molecules are then able to fulfill various biological functions; for example, soluble interleukin-6 receptor (sIL-6R) can bind to bystander cells, rendering these cells sensitive to the action of IL-6. Using IL-6R as a model substrate, we report that the metalloproteinase from Serratia marcescens mimics the action of the endogenous shedding proteinase. Treatment of human monocytes with the bacterial protease led to a rapid release of sIL-6R into the supernatant. This effect was inhibitable with TAPI [N-(D,L-[2-(hydroxyaminocarbonyl)methyl]-4-methylpentanoyl) L-3-(2' naphthyl)-alanyl-L-alanine, 2-aminoethyl amide], a specific inhibitor of the membrane-bound intrinsic metalloproteinase, but not with other conventional proteinase inhibitors. sIL-6R-liberating activity was also detected in culture supernatants of Staphylococcus aureus, Pseudomonas aeruginosa, and Listeria monocytogenes, organisms that are known to produce metalloproteinases. sIL-6R released through the action of S. marcescens metalloproteinase retained biological activity and rendered IL-6-unresponsive human hepatoma cells sensitive to stimulation with IL-6. This was shown by Northern (RNA) blot detection of haptoglobin mRNA and by quantitative measurements of de novo-synthesized haptoglobin in cell supernatants. Analysis of immunoprecipitated, radiolabeled sIL-6R revealed that the bacterial protease cleaved IL-6R at a site distinct from that utilized by the endogenous protease. These studies show that membrane-anchored proteins can be released in active form through cleavage at multiple sites, and they uncover a novel mechanism via which microbial proteases possibly provoke long-range biological effects in the host organism. PMID:8751912

  7. The role of phosphatidylglycerol as a functional effector and membrane anchor of the D1-core peptide from photosystem II-particles of the cyanobacterium Oscillatoria chalybea.

    PubMed

    Kruse, O; Schmid, G H

    1995-01-01

    The intrinsic polypeptide D1, isolated from photosystem (PS) II-particles of the cyanobacterium Oscillatoria chalybea, was obtained by electroelution and fractionated extraction with organic solvents. Purification was demonstrated by Western blotting and amino acid sequencing. By carrying out D1-immunization in rabbits a polyclonal monospecific D1-antiserum was obtained. For the qualitative characterization of D1 as a lipid-binding peptide, the effect of the lipids phosphatidylglycerol (PG), monogalactosyldiacylglyceride (MGDG) and phosphatidylcholine (PC) on PSII-oxygen evolution was analysed in reconstitution experiments. In these experiments purified photosystem II (PSII)-particle preparations were treated with the enzyme phospholipase A2 and supplemented with lipid emulsions. We were able to show that the inhibition of electron transport, as the consequence of this lipase treatment, was only relieved, if phosphatidylglycerol was added to the preparation. A model was proposed, in which phosphatidylglycerol is a functional effector for the optimal conformation of D1 in the PSII core complex. Phosphatidylglycerol molecules are unusually tightly bound to the D1 peptide by hydrophobic interactions. A covalent binding seems not probable. The localisation of phosphatidylglycerol binding sites was found by trypsin treatment of D1 and analysis of the obtained oligopeptides with HPLC and immunoblotting. The binding sites could be confined to the hydrophobic amino acid section between arginine 27 and arginine 225, which is known to be the membrane anchor of D1. This has led us to the conclusion that the phospholipid phosphatidylglycerol plays an important role for anchoring the D1-peptide and for its orientation in the thylakoid membrane. Phosphatidylglycerol with its high amount of palmitic acid has in prokaryotic cyanobacteria apparently a role in stabilization and orientation. The high turn-over of D1 and the spatial separation of the synthesis- and incorporation

  8. A phospholipid is the membrane-anchoring domain of a protein growth factor of molecular mass 34 kDa in placental trophoblasts.

    PubMed Central

    Roy-Choudhury, S; Mishra, V S; Low, M G; Das, M

    1988-01-01

    Recently we isolated a protein growth factor of 34 kDa from trophoblastic membranes of human placenta. A fraction (approximately equal to 50%) of the membrane-associated 34-kDa protein is peripherally associated--i.e., it can be released by high salt treatment. The remainder shows the characteristics of an integral membrane protein--i.e., its release requires detergent treatment. Here we report studies on the structural basis for membrane anchorage of the protein. Phospholipase C was found to release an immunoreactive 34-kDa polypeptide from intact isolated cytotrophoblasts. Studies with isolated trophoblastic membranes showed that phospholipase C specifically released the salt-resistant fraction of the 34-kDa polypeptide. The polypeptide released by phospholipase C showed the same electrophoretic mobility in NaDodSO4/PAGE as the polypeptide prior to phospholipase C treatment. The identity of the released protein with the 34-kDa growth factor has been established by both immunologic and receptor-binding assays. Other studies show that there is biosynthetic incorporation of [3H]myristate into the 34-kDa protein. The myristate label is labile to phospholipase C treatment. These results suggest that some of the 34-kDa protein is anchored to the plasma membrane via a posttranslationally added phospholipid. This mode of anchorage has been observed for some other membrane proteins and raises interesting questions regarding the role of this novel linkage in the mitogenic function of the 34-kDa polypeptide. Images PMID:3162324

  9. Multiple GTP-binding proteins regulate vesicular transport from the ER to Golgi membranes

    PubMed Central

    1992-01-01

    Using indirect immunofluorescence we have examined the effects of reagents which inhibit the function of ras-related rab small GTP- binding proteins and heterotrimeric G alpha beta gamma proteins in ER to Golgi transport. Export from the ER was inhibited by an antibody towards rab1B and an NH2-terminal peptide which inhibits ARF function (Balch, W. E., R. A. Kahn, and R. Schwaninger. 1992. J. Biol. Chem. 267:13053-13061), suggesting that both of these small GTP-binding proteins are essential for the transport vesicle formation. Export from the ER was also potently inhibited by mastoparan, a peptide which mimics G protein binding regions of seven transmembrane spanning receptors activating and uncoupling heterotrimeric G proteins from their cognate receptors. Consistent with this result, purified beta gamma subunits inhibited the export of VSV-G from the ER suggesting an initial event in transport vesicle assembly was regulated by a heterotrimeric G protein. In contrast, incubation in the presence of GTP gamma S or AIF(3-5) resulted in the accumulation of transported protein in different populations of punctate pre-Golgi intermediates distributed throughout the cytoplasm of the cell. Finally, a peptide which is believed to antagonize the interaction of rab proteins with putative downstream effector molecules inhibited transport at a later step preceding delivery to the cis Golgi compartment, similar to the site of accumulation of transported protein in the absence of NSF or calcium (Plutner, H., H. W. Davidson, J. Saraste, and W. E. Balch. 1992. J. Cell Biol. 119:1097-1116). These results are consistent with the hypothesis that multiple GTP-binding proteins including a heterotrimeric G protein(s), ARF and rab1 differentially regulate steps in the transport of protein between early compartments of the secretory pathway. The concept that G protein-coupled receptors gate the export of protein from the ER is discussed. PMID:1447289

  10. Subcellular post-transcriptional targeting: delivery of an intracellular protein to the extracellular leaflet of the plasma membrane using a glycosyl-phosphatidylinositol (GPI) membrane anchor in neurons and polarised epithelial cells.

    PubMed

    Brown, O; Cowen, R L; Preston, C M; Castro, M G; Lowenstein, P R

    2000-11-01

    The effectiveness of viral vector-mediated gene transfer depends on the expression of therapeutic transgenes in the correct target cell types. So far, however, little attention has been given to targeted subcellular distribution of expressed transgenes. Targeting individual transgenes to particular subcellular compartments will provide various advantages in increasing the safety, efficacy, and specificity of viral vector-mediated gene delivery. Viruses normally hijack the cellular protein synthesis machinery for their own advantages. It is thus unknown whether cells infected with viral vectors will be able to target proteins to the correct subcellular organelles, or whether the subcellular targeting machinery would be selectively disrupted by viral infection. In this article we explored whether a herpes simplex virus type 1-derived vector could be used to deliver a transgene engineered to be targeted to the extracellular membrane of target cells. To do so we constructed a temperature-sensitive mutant HSV-1 vector, tsK-TT21 expressing a recombinant marker protein, tissue inhibitor of metalloproteinases (TIMP), linked to sequence encoding a signal for the addition of a glycosyl-phosphatidylinositol (GPI)-anchor within the endoplasmic reticulum. Our results demonstrate that HSV1-derived viral vectors can be used to target transgenes as GPI anchored proteins to the outside leaflet of plasma membranes, without disrupting the targeting machinery of host epithelial cells or neurons. This approach could then be used to target specific proteins to the cell membrane to modify cell-cell interactions, the function of specific plasma membrane proteins, or their interactions with other membrane proteins, and also to target a prodrug converting enzyme to the plasma membrane of target cells, therefore enhancing its cell killing effects.

  11. Enhancement of fuel cell performance with less-water dependent composite membranes having polyoxometalate anchored nanofibrous interlayer

    NASA Astrophysics Data System (ADS)

    Abouzari-lotf, Ebrahim; Jacob, Mohan V.; Ghassemi, Hossein; Ahmad, Arshad; Nasef, Mohamed Mahmoud; Zakeri, Masoumeh; Mehdipour-Ataei, Shahram

    2016-09-01

    Polyoxometalate immobilized nanofiber was used to fabricate low gas permeable layer for composite membranes designed for proton exchange membrane fuel cell (PEMFC) operating at low relative humidity (RH). The composite membranes revealed enhanced proton conductivity in dry conditions compared with state-of-the-art pristine membrane (Nafion 112, N112). This was coupled with a low fuel crossover inheriting the composite membranes about 100 mV higher OCV than N112 when tested in PEMFC at 60 °C and 40% RH. A maximum power density of up to 930 mW cm-2 was also achieved which is substantially higher than the N112 under similar conditions (577 mW cm-2). Such remarkable performance enhancement along with undetectable leaching of immobilized polyoxometalate, high dimensional stability and low water uptake of the composite membranes suggest a strong potential for PEMFC under low RH operation.

  12. A new family of StART domain proteins at membrane contact sites has a role in ER-PM sterol transport

    PubMed Central

    Gatta, Alberto T; Wong, Louise H; Sere, Yves Y; Calderón-Noreña, Diana M; Cockcroft, Shamshad; Menon, Anant K; Levine, Tim P

    2015-01-01

    Sterol traffic between the endoplasmic reticulum (ER) and plasma membrane (PM) is a fundamental cellular process that occurs by a poorly understood non-vesicular mechanism. We identified a novel, evolutionarily diverse family of ER membrane proteins with StART-like lipid transfer domains and studied them in yeast. StART-like domains from Ysp2p and its paralog Lam4p specifically bind sterols, and Ysp2p, Lam4p and their homologs Ysp1p and Sip3p target punctate ER-PM contact sites distinct from those occupied by known ER-PM tethers. The activity of Ysp2p, reflected in amphotericin-sensitivity assays, requires its second StART-like domain to be positioned so that it can reach across ER-PM contacts. Absence of Ysp2p, Ysp1p or Sip3p reduces the rate at which exogenously supplied sterols traffic from the PM to the ER. Our data suggest that these StART-like proteins act in trans to mediate a step in sterol exchange between the PM and ER. DOI: http://dx.doi.org/10.7554/eLife.07253.001 PMID:26001273

  13. Er:YAG laser ablation of epiretinal membranes in perfluorocarbon fluid-filled eyeballs: a preliminary report

    NASA Astrophysics Data System (ADS)

    Frenz, Martin; Ith, Michael; Weber, Heinz P.; Wesendahl, Th.; Janknecht, P.

    1998-06-01

    Purpose: The Er:YAG laser emitting radiation at a wavelength of 2.94 micrometer has been shown to produce precise tissue ablation because of the high water absorption at this wavelength. These studies evaluated the effects of the Er:YAG laser on pig retina utilizing a perfluoro-carbon/retina interphase with the goal to precisely ablate epiretinal membranes. Method: Various laser pulse energies were applied to the surface of pig retinas in perfluorocarbon filled enucleated eyes using a specially designed rotating sample holder. Free running ((tau) equals 250 microseconds) Er:YAG laser pulses were transmitted through a zirconium fluoride (ZrF4) fiber guarded by a low OH-quartz fiber at its distal tip. The tip diameters measured 400 micrometers and 1 mm. The fiber probe was elevated 1 mm above the retinal surface. The laser energy was applied in a systematic fashion while alternating energy settings and probe diameters. Radiant exposures were set to 1 J/cm2, 3 J/cm2, 5 J/cm2, and 10 J/cm2. Results: Eight of ten eyes were treated with concentric circles of 3.5 mm, 6.5 mm, and 9.5 mm radius. The remaining two eyes were treated with a hand held probe. Tissue ablation increased with radiant exposure in a linear fashion. At a radiant exposure of 1 J/cm2, tissue ablation was minimal with a maximum tissue ablation depth of 10 micrometers and minimal thermal damage to adjacent tissue. A radiant exposure of 10 J/cm2 produced an ablation depth of 30 - 50 micrometers. As the ablation was performed under perfluorcarbon fluid, used as transmitting medium, no laser- induced pressure transients have been measured. Conclusion: The Er:YAG laser in combination with perfluorocarbon fluid produced precise and homogeneous tissue ablation of the pig retina. Such precise tissue ablation needs to be achieved in order to safely ablate epiretinal membranes in close proximity to the retina surface. Further in-vivo experiments will be done to examine the functionality of the retina after laser

  14. Determination of the membrane topology of Arv1 and the requirement of the ER luminal region for Arv1 function in Saccharomyces cerevisiae.

    PubMed

    Villasmil, Michelle L; Nickels, Joseph T

    2011-09-01

    In Saccharomyces cerevisiae, ARV1 encodes a 321 amino acid transmembrane protein localized to the endoplasmic reticulum (ER) and Golgi. It has been shown previously that arv1 cells harbor defects in sphingolipid and glycosylphosphatidylinositol biosyntheses, and may harbor sterol trafficking defects. Using C-terminal fusion to Suc2-His4, we determined the orientation of full-length Arv1 in the ER membrane. Once membrane topology was determined, we used this information and truncation analysis to establish the minimum protein length required for Arv1 function and phenotypic suppression. By understanding the topology of Arv1 we can now further analyze its putative lipid and glycosylphosphatidylinositol intermediate transport activities.

  15. Sub-Cellular Localization and Complex Formation by Aminoacyl-tRNA Synthetases in Cyanobacteria: Evidence for Interaction of Membrane-Anchored ValRS with ATP Synthase.

    PubMed

    Santamaría-Gómez, Javier; Ochoa de Alda, Jesús A G; Olmedo-Verd, Elvira; Bru-Martínez, Roque; Luque, Ignacio

    2016-01-01

    tRNAs are charged with cognate amino acids by aminoacyl-tRNA synthetases (aaRSs) and subsequently delivered to the ribosome to be used as substrates for gene translation. Whether aminoacyl-tRNAs are channeled to the ribosome by transit within translational complexes that avoid their diffusion in the cytoplasm is a matter of intense investigation in organisms of the three domains of life. In the cyanobacterium Anabaena sp. PCC 7120, the valyl-tRNA synthetase (ValRS) is anchored to thylakoid membranes by means of the CAAD domain. We have investigated whether in this organism ValRS could act as a hub for the nucleation of a translational complex by attracting other aaRSs to the membranes. Out of the 20 aaRSs, only ValRS was found to localize in thylakoid membranes whereas the other enzymes occupied the soluble portion of the cytoplasm. To investigate the basis for this asymmetric distribution of aaRSs, a global search for proteins interacting with the 20 aaRSs was conducted. The interaction between ValRS and the FoF1 ATP synthase complex here reported is of utmost interest and suggests a functional link between elements of the gene translation and energy production machineries.

  16. Sub-Cellular Localization and Complex Formation by Aminoacyl-tRNA Synthetases in Cyanobacteria: Evidence for Interaction of Membrane-Anchored ValRS with ATP Synthase

    PubMed Central

    Santamaría-Gómez, Javier; Ochoa de Alda, Jesús A. G.; Olmedo-Verd, Elvira; Bru-Martínez, Roque; Luque, Ignacio

    2016-01-01

    tRNAs are charged with cognate amino acids by aminoacyl-tRNA synthetases (aaRSs) and subsequently delivered to the ribosome to be used as substrates for gene translation. Whether aminoacyl-tRNAs are channeled to the ribosome by transit within translational complexes that avoid their diffusion in the cytoplasm is a matter of intense investigation in organisms of the three domains of life. In the cyanobacterium Anabaena sp. PCC 7120, the valyl-tRNA synthetase (ValRS) is anchored to thylakoid membranes by means of the CAAD domain. We have investigated whether in this organism ValRS could act as a hub for the nucleation of a translational complex by attracting other aaRSs to the membranes. Out of the 20 aaRSs, only ValRS was found to localize in thylakoid membranes whereas the other enzymes occupied the soluble portion of the cytoplasm. To investigate the basis for this asymmetric distribution of aaRSs, a global search for proteins interacting with the 20 aaRSs was conducted. The interaction between ValRS and the FoF1 ATP synthase complex here reported is of utmost interest and suggests a functional link between elements of the gene translation and energy production machineries. PMID:27375579

  17. Membrane Anchoring by a C-terminal Tryptophan Enables HIV-1 Vpu to Displace Bone Marrow Stromal Antigen 2 (BST2) from Sites of Viral Assembly*

    PubMed Central

    Lewinski, Mary K.; Jafari, Moein; Zhang, Hua; Opella, Stanley J.; Guatelli, John

    2015-01-01

    The restriction factor BST2 (tetherin) prevents the release of enveloped viruses from the host cell and is counteracted by HIV-1 Vpu. Vpu and BST2 interact directly via their transmembrane domains. This interaction enables Vpu to induce the surface down-regulation and the degradation of BST2, but neither of these activities fully accounts for the ability of Vpu to enhance virion release. During a study of naturally occurring Vpu proteins, we found that a tryptophan residue near the Vpu C terminus is particularly important for enhancing virion release. Vpu proteins with a W76G polymorphism degraded and down-regulated BST2 from the cell surface, yet they inefficiently stimulated virion release. Here we explore the mechanism of this anomaly. We find that Trp-76 is critical for the ability of Vpu to displace BST2 from sites of viral assembly in the plane of the plasma membrane. This effect does not appear to involve a general reorganization of the membrane microdomains associated with virion assembly, but rather is a specific effect of Vpu on BST2. Using NMR spectroscopy, we find that the cytoplasmic domain of Vpu and Trp-76 specifically interact with lipids. Moreover, paramagnetic relaxation enhancement studies show that Trp-76 inserts into the lipid. These data are consistent with a model whereby Trp-76 anchors the C terminus of the cytoplasmic tail of Vpu to the plasma membrane, enabling the movement of Vpu-bound BST2 away from viral assembly sites. PMID:25759385

  18. Sub-Cellular Localization and Complex Formation by Aminoacyl-tRNA Synthetases in Cyanobacteria: Evidence for Interaction of Membrane-Anchored ValRS with ATP Synthase.

    PubMed

    Santamaría-Gómez, Javier; Ochoa de Alda, Jesús A G; Olmedo-Verd, Elvira; Bru-Martínez, Roque; Luque, Ignacio

    2016-01-01

    tRNAs are charged with cognate amino acids by aminoacyl-tRNA synthetases (aaRSs) and subsequently delivered to the ribosome to be used as substrates for gene translation. Whether aminoacyl-tRNAs are channeled to the ribosome by transit within translational complexes that avoid their diffusion in the cytoplasm is a matter of intense investigation in organisms of the three domains of life. In the cyanobacterium Anabaena sp. PCC 7120, the valyl-tRNA synthetase (ValRS) is anchored to thylakoid membranes by means of the CAAD domain. We have investigated whether in this organism ValRS could act as a hub for the nucleation of a translational complex by attracting other aaRSs to the membranes. Out of the 20 aaRSs, only ValRS was found to localize in thylakoid membranes whereas the other enzymes occupied the soluble portion of the cytoplasm. To investigate the basis for this asymmetric distribution of aaRSs, a global search for proteins interacting with the 20 aaRSs was conducted. The interaction between ValRS and the FoF1 ATP synthase complex here reported is of utmost interest and suggests a functional link between elements of the gene translation and energy production machineries. PMID:27375579

  19. Cytosol-dependent membrane fusion in ER, nuclear envelope and nuclear pore assembly: biological implications.

    PubMed

    Rafikova, Elvira R; Melikov, Kamran; Chernomordik, Leonid V

    2010-01-01

    Endoplasmic reticulum and nuclear envelope rearrangements after mitosis are often studied in the reconstitution system based on Xenopus egg extract. In our recent work we partially replaced the membrane vesicles in the reconstitution mix with protein-free liposomes to explore the relative contributions of cytosolic and transmembrane proteins. Here we discuss our finding that cytosolic proteins mediate fusion between membranes lacking functional transmembrane proteins and the role of membrane fusion in endoplasmic reticulum and nuclear envelope reorganization. Cytosol-dependent liposome fusion has allowed us to restore, without adding transmembrane nucleoporins, functionality of nuclear pores, their spatial distribution and chromatin decondensation in nuclei formed at insufficient amounts of membrane material and characterized by only partial decondensation of chromatin and lack of nuclear transport. Both the mechanisms and the biological implications of the discovered coupling between spatial distribution of nuclear pores, chromatin decondensation and nuclear transport are discussed.

  20. Physalis floridana Cell Number Regulator1 encodes a cell membrane-anchored modulator of cell cycle and negatively controls fruit size

    PubMed Central

    Li, Zhichao; He, Chaoying

    2015-01-01

    Physalis species show a significant variation in berry size; however, the underlying molecular basis is unknown. In this work, we showed that cell division difference in the ovaries might contribute to the ultimate berry size variation within Physalis species, and that mRNA abundance of Physalis floridana Cell Number Regulator1 (PfCNR1), the putative orthologue of the tomato fruit weight 2.2 (FW2.2), was negatively correlated with cell division in the ovaries. Moreover, heterochronic expression variation of the PfCNR1 genes in the ovaries concomitantly correlated with berry weight variation within Physalis species. In transgenic Physalis, multiple organ sizes could be negatively controlled by altering PfCNR1 levels, and cell division instead of cell expansion was primarily affected. PfCNR1 was shown to be anchored in the plasma membrane and to interact with PfAG2 (an AGAMOUS-like protein determining ovary identity). The expression of PfCYCD2;1, a putative orthologue of the mitosis-specific gene CyclinD2;1 in the cell cycle was negatively correlated with the PfCNR1 mRNA levels. PfAG2 was found to selectively bind to the CArG-box in the PfCYCD2;1 promoter and to repress PfCYCD2;1 expression, thus suggesting a PfAG2-mediated pathway for PfCNR1 to regulate cell division. The interaction of PfCNR1 with PfAG2 enhanced the repression of PfCYCD2;1 expression. The nuclear import of PfAG2 was essential in the proposed pathway. Our data provide new insights into the developmental pathways of a cell membrane-anchored protein that modulates cell division and governs organ size determination. This study also sheds light on the link between organ identity and organ growth in plants. PMID:25305759

  1. Physalis floridana Cell Number Regulator1 encodes a cell membrane-anchored modulator of cell cycle and negatively controls fruit size.

    PubMed

    Li, Zhichao; He, Chaoying

    2015-01-01

    Physalis species show a significant variation in berry size; however, the underlying molecular basis is unknown. In this work, we showed that cell division difference in the ovaries might contribute to the ultimate berry size variation within Physalis species, and that mRNA abundance of Physalis floridana Cell Number Regulator1 (PfCNR1), the putative orthologue of the tomato fruit weight 2.2 (FW2.2), was negatively correlated with cell division in the ovaries. Moreover, heterochronic expression variation of the PfCNR1 genes in the ovaries concomitantly correlated with berry weight variation within Physalis species. In transgenic Physalis, multiple organ sizes could be negatively controlled by altering PfCNR1 levels, and cell division instead of cell expansion was primarily affected. PfCNR1 was shown to be anchored in the plasma membrane and to interact with PfAG2 (an AGAMOUS-like protein determining ovary identity). The expression of PfCYCD2;1, a putative orthologue of the mitosis-specific gene CyclinD2;1 in the cell cycle was negatively correlated with the PfCNR1 mRNA levels. PfAG2 was found to selectively bind to the CArG-box in the PfCYCD2;1 promoter and to repress PfCYCD2;1 expression, thus suggesting a PfAG2-mediated pathway for PfCNR1 to regulate cell division. The interaction of PfCNR1 with PfAG2 enhanced the repression of PfCYCD2;1 expression. The nuclear import of PfAG2 was essential in the proposed pathway. Our data provide new insights into the developmental pathways of a cell membrane-anchored protein that modulates cell division and governs organ size determination. This study also sheds light on the link between organ identity and organ growth in plants.

  2. Characterization of a Functional Soluble Form of a Brassica napus Membrane-Anchored Endo-1,4-β-Glucanase Heterologously Expressed in Pichia pastoris1

    PubMed Central

    Mølhøj, Michael; Ulvskov, Peter; Dal Degan, Florence

    2001-01-01

    The Brassica napus gene, Cel16, encodes a membrane-anchored endo-1,4-β-glucanase with a deduced molecular mass of 69 kD. As for other membrane-anchored endo-1,4-β-glucanases, Cel16 consists of a predicted intracellular, charged N terminus (methionine1-lysine70), a hydrophobic transmembrane domain (isoleucine71-valine93), and a periplasmic catalytic core (lysine94-proline621). Here, we report the functional analysis of Δ1-90Cel16, the N terminally truncated Cel16, missing residues 1 through 90 and comprising the catalytic domain of Cel16 expressed recombinantly in the methylotrophic yeast Pichia pastoris as a soluble protein. A two-step purification protocol yielded Δ1-90Cel16 in a pure form. The molecular mass of Δ1-90Cel16, when determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was about 130 kD and about 60 kD after enzymatic removal of N-glycans, fitting the expected molecular mass of 59 kD. Δ1-90Cel16 was highly N glycosylated as compared with the native B. napus Cel16 protein. Δ1-90Cel16 had a pH optimum of 6.0. The activity of Δ1-90Cel16 was inhibited by EDTA and exhibited a strong dependence on calcium. Δ1-90Cel16 showed substrate specificity for low substituted carboxymethyl-cellulose and amorphous cellulose. It did not hydrolyze crystalline cellulose, xyloglycan, xylan, (1→3),(1→4)-β-d-glucan, the highly substituted hydroxyethylcellulose, or the oligosaccharides cellotriose, cellotetraose, cellopentaose, or xylopentaose. Size exclusion analysis of Δ1-90Cel16-hydrolyzed carboxymethylcellulose showed that Δ1-90Cel16 is a true endo-acting glucanase. PMID:11598241

  3. Quantitative determination of the lateral density and intermolecular correlation between proteins anchored on the membrane surfaces using grazing incidence small-angle X-ray scattering and grazing incidence X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Abuillan, Wasim; Vorobiev, Alexei; Hartel, Andreas; Jones, Nicola G.; Engstler, Markus; Tanaka, Motomu

    2012-11-01

    As a physical model of the surface of cells coated with densely packed, non-crystalline proteins coupled to lipid anchors, we functionalized the surface of phospholipid membranes by coupling of neutravidin to biotinylated lipid anchors. After the characterization of fine structures perpendicular to the plane of membrane using specular X-ray reflectivity, the same membrane was characterized by grazing incidence small angle X-ray scattering (GISAXS). Within the framework of distorted wave Born approximation and two-dimensional Percus-Yevick function, we can analyze the form and structure factors of the non-crystalline, membrane-anchored proteins for the first time. As a new experimental technique to quantify the surface density of proteins on the membrane surface, we utilized grazing incidence X-ray fluorescence (GIXF). Here, the mean intermolecular distance between proteins from the sulfur peak intensities can be calculated by applying Abelé's matrix formalism. The characteristic correlation distance between non-crystalline neutravidin obtained by the GISAXS analysis agrees well with the intermolecular distance calculated by GIXF, suggesting a large potential of the combination of GISAXS and GIXF in probing the lateral density and correlation of non-crystalline proteins displayed on the membrane surface.

  4. Proteins which mediate the nuclear entry of goat uterine non activated estrogen receptor (naER) following naER internalization from the plasma membrane.

    PubMed

    Sreeja, S; Thampan, Raghava Varman

    2004-04-01

    The nuclear transport of the internalised naER is influenced by a 58 kDa protein, p58, that appears to recognize the nuclear localization signals on the naER. At the nuclear pore complex the naER-p58 complex binds to a 62 kDa protein, p62; p58 recognizes p62 in this interaction. It is further observed that p62 gets 'docked' at a 66 kDa nuclear pore complex protein, npcp66. The nuclear entry of naER is an ATP-dependent process. An ATP-dependent biphasic nuclear entry of naER, has been observed. It is possible that the docking of p58-naER complex at the nuclear pore complex and the eventual nuclear entry of naER following its dissociation from the p58 are influenced by two different ranges in the concentration of ATP. In this process, it appears that, the nuclear entry requires an additional quantum of energy, provided by the hydrolysed ATP, in contrast to the energy requirement associated with, the nuclear 'docking' event. PMID:15124917

  5. CHEMICAL SYNTHESIS OF GLYCOSYLPHOSPHATIDYLINOSITOL ANCHORS

    PubMed Central

    Swarts, Benjamin M.; Guo, Zhongwu

    2013-01-01

    Many eukaryotic cell-surface proteins and glycoproteins are anchored to the plasma membrane by glycosylphosphatidylinositols (GPIs), a family of glycolipids that are post-translationally attached to proteins at their C-termini. GPIs and GPI-anchored proteins play important roles in many biological and pathological events, such as cell recognition and adhesion, signal transduction, host defense, and acting as receptors for viruses and toxins. Chemical synthesis of structurally defined GPI anchors and GPI derivatives is a necessary step toward understanding the properties and functions of these molecules in biological systems and exploring their potential therapeutic applications. In the first part of this comprehensive article on the chemical synthesis of GPIs, classic syntheses of naturally occurring GPI anchors from protozoan parasites, yeast, and mammals are covered. The second part of the article focuses on recent diversity-oriented strategies for the synthesis of GPI anchors containing unsaturated lipids, “click chemistry” tags, and highly branched and modified structures. PMID:22794184

  6. Phosphatidylserine-binding protein lactadherin inhibits protein translocation across the ER membrane.

    PubMed

    Yamamoto, Hitoshi; Kida, Yuichiro; Sakaguchi, Masao

    2013-05-10

    Secretory and membrane proteins are translocated across and inserted into the endoplasmic reticulum membrane via translocon channels. To investigate the effect of the negatively-charged phospholipid phosphatidylserine on the translocation of nascent polypeptide chains through the translocon, we used the phosphatidylserine-binding protein lactadherin C2-domain. Lactadherin inhibited targeting of nascent chain to the translocon by signal sequence and the initiation of translocation. Moreover, lactadherin inhibited the movement of the translocating polypeptide chain regardless of the presence or absence of positively-charged residues. Phosphatidylserine might be critically involved in translocon function, but it is not a major determinant for translocation arrest of positively-charged residues. PMID:23583395

  7. Integrative Structure–Function Mapping of the Nucleoporin Nup133 Suggests a Conserved Mechanism for Membrane Anchoring of the Nuclear Pore Complex*

    PubMed Central

    Kim, Seung Joong; Fernandez-Martinez, Javier; Sampathkumar, Parthasarathy; Martel, Anne; Matsui, Tsutomu; Tsuruta, Hiro; Weiss, Thomas M.; Shi, Yi; Markina-Inarrairaegui, Ane; Bonanno, Jeffery B.; Sauder, J. Michael; Burley, Stephen K.; Chait, Brian T.; Almo, Steven C.; Rout, Michael P.; Sali, Andrej

    2014-01-01

    The nuclear pore complex (NPC) is the sole passageway for the transport of macromolecules across the nuclear envelope. Nup133, a major component in the essential Y-shaped Nup84 complex, is a large scaffold protein of the NPC's outer ring structure. Here, we describe an integrative modeling approach that produces atomic models for multiple states of Saccharomyces cerevisiae (Sc) Nup133, based on the crystal structures of the sequence segments and their homologs, including the related Vanderwaltozyma polyspora (Vp) Nup133 residues 55 to 502 (VpNup13355–502) determined in this study, small angle X-ray scattering profiles for 18 constructs of ScNup133 and one construct of VpNup133, and 23 negative-stain electron microscopy class averages of ScNup1332–1157. Using our integrative approach, we then computed a multi-state structural model of the full-length ScNup133 and validated it with mutational studies and 45 chemical cross-links determined via mass spectrometry. Finally, the model of ScNup133 allowed us to annotate a potential ArfGAP1 lipid packing sensor (ALPS) motif in Sc and VpNup133 and discuss its potential significance in the context of the whole NPC; we suggest that ALPS motifs are scattered throughout the NPC's scaffold in all eukaryotes and play a major role in the assembly and membrane anchoring of the NPC in the nuclear envelope. Our results are consistent with a common evolutionary origin of Nup133 with membrane coating complexes (the protocoatomer hypothesis); the presence of the ALPS motifs in coatomer-like nucleoporins suggests an ancestral mechanism for membrane recognition present in early membrane coating complexes. PMID:25139911

  8. Integrative structure-function mapping of the nucleoporin Nup133 suggests a conserved mechanism for membrane anchoring of the nuclear pore complex.

    PubMed

    Kim, Seung Joong; Fernandez-Martinez, Javier; Sampathkumar, Parthasarathy; Martel, Anne; Matsui, Tsutomu; Tsuruta, Hiro; Weiss, Thomas M; Shi, Yi; Markina-Inarrairaegui, Ane; Bonanno, Jeffery B; Sauder, J Michael; Burley, Stephen K; Chait, Brian T; Almo, Steven C; Rout, Michael P; Sali, Andrej

    2014-11-01

    The nuclear pore complex (NPC) is the sole passageway for the transport of macromolecules across the nuclear envelope. Nup133, a major component in the essential Y-shaped Nup84 complex, is a large scaffold protein of the NPC's outer ring structure. Here, we describe an integrative modeling approach that produces atomic models for multiple states of Saccharomyces cerevisiae (Sc) Nup133, based on the crystal structures of the sequence segments and their homologs, including the related Vanderwaltozyma polyspora (Vp) Nup133 residues 55 to 502 (VpNup133(55-502)) determined in this study, small angle X-ray scattering profiles for 18 constructs of ScNup133 and one construct of VpNup133, and 23 negative-stain electron microscopy class averages of ScNup133(2-1157). Using our integrative approach, we then computed a multi-state structural model of the full-length ScNup133 and validated it with mutational studies and 45 chemical cross-links determined via mass spectrometry. Finally, the model of ScNup133 allowed us to annotate a potential ArfGAP1 lipid packing sensor (ALPS) motif in Sc and VpNup133 and discuss its potential significance in the context of the whole NPC; we suggest that ALPS motifs are scattered throughout the NPC's scaffold in all eukaryotes and play a major role in the assembly and membrane anchoring of the NPC in the nuclear envelope. Our results are consistent with a common evolutionary origin of Nup133 with membrane coating complexes (the protocoatomer hypothesis); the presence of the ALPS motifs in coatomer-like nucleoporins suggests an ancestral mechanism for membrane recognition present in early membrane coating complexes. PMID:25139911

  9. Integrative structure-function mapping of the nucleoporin Nup133 suggests a conserved mechanism for membrane anchoring of the nuclear pore complex.

    PubMed

    Kim, Seung Joong; Fernandez-Martinez, Javier; Sampathkumar, Parthasarathy; Martel, Anne; Matsui, Tsutomu; Tsuruta, Hiro; Weiss, Thomas M; Shi, Yi; Markina-Inarrairaegui, Ane; Bonanno, Jeffery B; Sauder, J Michael; Burley, Stephen K; Chait, Brian T; Almo, Steven C; Rout, Michael P; Sali, Andrej

    2014-11-01

    The nuclear pore complex (NPC) is the sole passageway for the transport of macromolecules across the nuclear envelope. Nup133, a major component in the essential Y-shaped Nup84 complex, is a large scaffold protein of the NPC's outer ring structure. Here, we describe an integrative modeling approach that produces atomic models for multiple states of Saccharomyces cerevisiae (Sc) Nup133, based on the crystal structures of the sequence segments and their homologs, including the related Vanderwaltozyma polyspora (Vp) Nup133 residues 55 to 502 (VpNup133(55-502)) determined in this study, small angle X-ray scattering profiles for 18 constructs of ScNup133 and one construct of VpNup133, and 23 negative-stain electron microscopy class averages of ScNup133(2-1157). Using our integrative approach, we then computed a multi-state structural model of the full-length ScNup133 and validated it with mutational studies and 45 chemical cross-links determined via mass spectrometry. Finally, the model of ScNup133 allowed us to annotate a potential ArfGAP1 lipid packing sensor (ALPS) motif in Sc and VpNup133 and discuss its potential significance in the context of the whole NPC; we suggest that ALPS motifs are scattered throughout the NPC's scaffold in all eukaryotes and play a major role in the assembly and membrane anchoring of the NPC in the nuclear envelope. Our results are consistent with a common evolutionary origin of Nup133 with membrane coating complexes (the protocoatomer hypothesis); the presence of the ALPS motifs in coatomer-like nucleoporins suggests an ancestral mechanism for membrane recognition present in early membrane coating complexes.

  10. The solution structure of the C-terminal domain of NfeD reveals a novel membrane-anchored OB-fold.

    PubMed

    Kuwahara, Yohta; Ohno, Ayako; Morii, Taichi; Yokoyama, Hideshi; Matsui, Ikuo; Tochio, Hidehito; Shirakawa, Masahiro; Hiroaki, Hidekazu

    2008-11-01

    Nodulation formation efficiency D (NfeD) is a member of a class of membrane-anchored ClpP-class proteases. There is a second class of NfeD homologs that lack the ClpP domain. The genes of both NfeD classes usually are part of an operon that also contains a gene for a prokaryotic homolog of stomatin. (Stomatin is a major integral-membrane protein of mammalian erythrocytes.) Such NfeD/stomatin homolog gene pairs are present in more than 290 bacterial and archaeal genomes, and their protein products may be part of the machinery used for quality control of membrane proteins. Herein, we report the structure of the isolated C-terminal domain of PH0471, a Pyrococcus horikoshii NfeD homolog, which lacks the ClpP domain. This C-terminal domain (termed NfeDC) contains a five-strand beta-barrel, which is structurally very similar to the OB-fold (oligosaccharide/oligonucleotide-binding fold) domain. However, there is little sequence similarity between it and previously characterized OB-fold domains. The NfeDC domain lacks the conserved surface residues that are necessary for the binding of an OB-fold domain to DNA/RNA, an ion. Instead, its surface is composed of residues that are uniquely conserved in NfeD homologs and that form the structurally conserved surface turns and beta-bulges. There is also a conserved tryptophan present on the surface. We propose that, in general, NfeDC domains may interact with other spatially proximal membrane proteins and thereby regulate their activities. PMID:18687870

  11. In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae.

    PubMed

    Caro, L H; Tettelin, H; Vossen, J H; Ram, A F; van den Ende, H; Klis, F M

    1997-12-01

    Use of the Von Heijne algorithm allowed the identification of 686 open reading frames (ORFs) in the genome of Saccharomyces cerevisiae that encode proteins with a potential N-terminal signal sequence for entering the secretory pathway. On further analysis, 51 of these proteins contain a potential glycosyl-phosphatidylinositol (GPI)-attachment signal. Seven additional ORFs were found to belong to this group. Upon examination of the possible GPI-attachment sites, it was found that in yeast the most probable amino acids for GPI-attachment as asparagine and glycine. In yeast, GPI-proteins are found at the cell surface, either attached to the plasma-membrane or as an intrinsic part of the cell wall. It was noted that plasma-membrane GPI-proteins possess a dibasic residue motif just before their predicted GPI-attachment site. Based on this, and on homologies between proteins, families of plasma-membrane and cell wall proteins were assigned, revealing 20 potential plasma-membrane and 38 potential cell wall proteins. For members of three plasma-membrane protein families, a function has been described. On the other hand, most of the cell wall proteins seem to be structural components of the wall, responsive to different growth conditions. The GPI-attachment site of yeast slightly differs from mammalian cells. This might be of use in the development of anti-fungal drugs.

  12. Distinct mechanisms regulating mechanical force-induced Ca²⁺ signals at the plasma membrane and the ER in human MSCs.

    PubMed

    Kim, Tae-Jin; Joo, Chirlmin; Seong, Jihye; Vafabakhsh, Reza; Botvinick, Elliot L; Berns, Michael W; Palmer, Amy E; Wang, Ning; Ha, Taekjip; Jakobsson, Eric; Sun, Jie; Wang, Yingxiao

    2015-02-10

    It is unclear that how subcellular organelles respond to external mechanical stimuli. Here, we investigated the molecular mechanisms by which mechanical force regulates Ca(2+) signaling at endoplasmic reticulum (ER) in human mesenchymal stem cells. Without extracellular Ca(2+), ER Ca(2+) release is the source of intracellular Ca(2+) oscillations induced by laser-tweezer-traction at the plasma membrane, providing a model to study how mechanical stimuli can be transmitted deep inside the cell body. This ER Ca(2+) release upon mechanical stimulation is mediated not only by the mechanical support of cytoskeleton and actomyosin contractility, but also by mechanosensitive Ca(2+) permeable channels on the plasma membrane, specifically TRPM7. However, Ca(2+) influx at the plasma membrane via mechanosensitive Ca(2+) permeable channels is only mediated by the passive cytoskeletal structure but not active actomyosin contractility. Thus, active actomyosin contractility is essential for the response of ER to the external mechanical stimuli, distinct from the mechanical regulation at the plasma membrane.

  13. Paralemmin, a Prenyl-Palmitoyl–anchored Phosphoprotein Abundant in Neurons and Implicated in Plasma Membrane Dynamics and Cell Process Formation

    PubMed Central

    Kutzleb, Christian; Sanders, Gabriele; Yamamoto, Raina; Wang, Xiaolu; Lichte, Beate; Petrasch-Parwez, Elisabeth; Kilimann, Manfred W.

    1998-01-01

    We report the identification and initial characterization of paralemmin, a putative new morphoregulatory protein associated with the plasma membrane. Paralemmin is highly expressed in the brain but also less abundantly in many other tissues and cell types. cDNAs from chicken, human, and mouse predict acidic proteins of 42 kD that display a pattern of sequence cassettes with high inter-species conservation separated by poorly conserved linker sequences. Prenylation and palmitoylation of a COOH-terminal cluster of three cysteine residues confers hydrophobicity and membrane association to paralemmin. Paralemmin is also phosphorylated, and its mRNA is differentially spliced in a tissue-specific and developmentally regulated manner. Differential splicing, lipidation, and phosphorylation contribute to electrophoretic heterogeneity that results in an array of multiple bands on Western blots, most notably in brain. Paralemmin is associated with the cytoplasmic face of the plasma membranes of postsynaptic specializations, axonal and dendritic processes and perikarya, and also appears to be associated with an intracellular vesicle pool. It does not line the neuronal plasmalemma continuously but in clusters and patches. Its molecular and morphological properties are reminiscent of GAP-43, CAP-23, and MARCKS, proteins implicated in plasma membrane dynamics. Overexpression in several cell lines shows that paralemmin concentrates at sites of plasma membrane activity such as filopodia and microspikes, and induces cell expansion and process formation. The lipidation motif is essential for this morphogenic activity. We propose a function for paralemmin in the control of cell shape, e.g., through an involvement in membrane flow or in membrane–cytoskeleton interaction. PMID:9813098

  14. Apical sorting of lysoGPI-anchored proteins occurs independent of association with detergent-resistant membranes but dependent on their N-glycosylation

    PubMed Central

    Castillon, Guillaume Alain; Michon, Laetitia; Watanabe, Reika

    2013-01-01

    Most glycosylphosphatidylinositol-anchored proteins (GPI-APs) are located at the apical surface of epithelial cells. The apical delivery of GPI-APs is believed to result from their association with lipid rafts. We find that overexpression of C-terminally tagged PGAP3 caused predominant production of lysoGPI-APs, an intermediate precursor in the GPI lipid remodeling process in Madin–Darby canine kidney cells. In these cells, produced lysoGPI-APs are not incorporated into detergent-resistant membranes (DRMs) but still are delivered apically, suggesting that GPI-AP association with DRMs is not necessary for apical targeting. In contrast, apical transport of both fully remodeled and lyso forms of GPI-APs is dependent on N-glycosylation, confirming a general role of N-glycans in apical protein transport. We also find that depletion of cholesterol causes apical-to-basolateral retargeting not only of fully remodeled GPI-APs, but also of lysoGPI-APs, as well as endogenous soluble and transmembrane proteins that would normally be targeted to the apical membrane. These findings confirm the essential role for cholesterol in the apical protein targeting and further demonstrate that the mechanism of cholesterol-dependent apical sorting is not related to DRM association of GPI-APs. PMID:23615438

  15. Dynamic control of yeast MAP kinase network by induced association and dissociation between the Ste50 scaffold and the Opy2 membrane anchor.

    PubMed

    Yamamoto, Katsuyoshi; Tatebayashi, Kazuo; Tanaka, Keiichiro; Saito, Haruo

    2010-10-01

    Membrane localization of the Ste11 MAPKKK is essential for activation of both the filamentous growth/invasive growth (FG/IG) MAP kinase (MAPK) pathway and the SHO1 branch of the osmoregulatory HOG MAPK pathway, and is mediated by binding of the Ste50 scaffold protein to the Opy2 membrane anchor. We found that Opy2 has two major (CR-A and CR-B), and one minor (CR-D), binding sites for Ste50. CR-A binds Ste50 constitutively and can transmit signals to both the Hog1 and Fus3/Kss1 MAPKs. CR-B, in contrast, binds Ste50 only when Opy2 is phosphorylated by Yck1/Yck2 under glucose-rich conditions and transmits the signal preferentially to the Hog1 MAPK. Ste50 phosphorylation by activated Hog1/Fus3/Kss1 MAPKs downregulates the HOG MAPK pathway by dissociating Ste50 from Opy2. Furthermore, Ste50 phosphorylation, together with MAPK-specific protein phosphatases, reduces the basal activity of the HOG and the mating MAPK pathways. Thus, dynamic regulation of Ste50-Opy2 interaction fine-tunes the MAPK signaling network. PMID:20932477

  16. Novel proton-exchange membrane based on single-step preparation of functionalized ceramic powder containing surface-anchored sulfonic acid

    NASA Astrophysics Data System (ADS)

    Reichman, S.; Burstein, L.; Peled, E.

    2008-05-01

    A novel approach to the synthesis of a low-cost proton-exchange membrane (PEM) based on the single-step preparation of a functionalized ceramic powder containing surface-anchored sulfonic acid (SASA) and a polymer binder, is presented for the first time. The added value of this technique, compared with earlier work published by our group, is the adoption of a direct, single-step synthesis, as opposed to a multiple-step synthesis. The latter requires an oxidation step, in order to convert the thiol group into a sulfonic group. SASA powders of different compositions have been prepared and characterized by means of Brunaur-Emmet-Teller (BET), thermogravimetric analysis-differential thermal analysis (TGA-DTG), differential scanning calorimeter (DSC), Fourier transformation infrared (FT-IR), nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM) and electrochemical techniques. The lowest equivalent weight measured for SASA powders is 1281 g equiv.-1. The ionic conductivity of a 100-μm-thick membrane is measured ex situ at room temperature (25 ± 3 °C) and the highest proton conductivity is 48 mS cm-1. The typical pore size, for the SASA powders is less than 10 nm and ranges from 2 to 50 nm for the SASA-based membranes. The membranes are thermally stable up to 250 °C. Direct methanol fuel cells (DMFCs) are assembled with some of the membranes. Preliminary tests showed that the cell resistance for a ∼100-μm-thick membrane ranges between 0.29 and 0.19 Ω cm2 from 80 to 130 °C, respectively, and that the maximum cell power density with a 1 M methanol solution is 127, 208 and 290 mW cm-2 at 80, 110 and 130 °C, respectively, while the corresponding methanol crossover current density is 0.093, 0.238 and 0.281 A cm-2.

  17. Novel connections and gaps in ethylene signaling from the ER membrane to the nucleus

    PubMed Central

    Cho, Young-Hee; Yoo, Sang-Dong

    2015-01-01

    The signaling of the plant hormone ethylene has been studied genetically, resulting in the identification of signaling components from membrane receptors to nuclear effectors. Among constituents of the hormone signaling pathway, functional links involving a putative mitogen-activated protein kinase kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) and a membrane transporter-like protein ETHYLENE INSENSITIVE2 (EIN2) have been missing for a long time. We now learn that EIN2 is cleaved and its C-terminal end moves to the nucleus upon ethylene perception at the membrane receptors, and then the C-terminal end of EIN2 in the nucleus supports EIN3-dependent ethylene-response gene expression. CTR1 kinase activity negatively controls the EIN2 cleavage process through direct phosphorylation. Despite the novel connection of CTR1 with EIN2 that explains a large portion of the missing links in ethylene signaling, our understanding still remains far from its completion. This focused review will summarize recent advances in the EIN3-dependent ethylene signaling mechanisms including CTR1–EIN2 functions with respect to EIN3 regulation and ethylene responses. This will also present several emerging issues that need to be addressed for the comprehensive understanding of signaling pathways of the invaluable plant hormone ethylene. PMID:25601870

  18. Identification of high density lipoprotein-binding proteins, including a glycosyl phosphatidylinositol-anchored membrane dipeptidase, in rat lung and type II pneumocytes.

    PubMed

    Witt, W; Kolleck, I; Rüstow, B

    2000-06-01

    Numerous communications have indicated that specific binding proteins for high density lipoprotein (HDL) exist in addition to the well characterized candidate HDL receptor SR-BI, but structural information was presented only in a few cases, and most of the work was aimed at the liver and steroidogenic glands. In this study, we purified two HDL-binding proteins by standard procedures from rat lung tissue. One of these membrane glycoproteins was identified by N-terminal sequencing and with specific antibodies as HB2, a previously described HDL-binding protein, whereas the other one was identified as a glycosyl phosphatidylinositol-anchored membrane dipeptidase (MDP). The apparent dissociation constant of the HDL binding was determined by solid phase assay to be 2.1 microg/ml (HB2) and 25 microg/ml (MDP). MDP also exerts affinity to low density lipoprotein (LDL) on ligand blots, and competition between HDL and LDL was observed, but analysis by solid phase assay showed that very high concentrations of LDL are required. The physiologic relevance of this effect is therefore questionable. The level in type II pneumocyte membranes of both binding proteins, MDP and HB2, increased when the plasma lipoprotein concentration was reduced by treatment of rats with 4-aminopyrazolo[3,4-d]-pyrimidine, consistent with a function to facilitate lipid uptake in vivo. The binding proteins were also dramatically upregulated by feeding rats a vitamin E-depleted diet. Vitamin E uptake requires interaction between HDL and type II cells, suggesting a role of HB2 and MDP also in this process.

  19. Investigating Alternative Transport of Integral Plasma Membrane Proteins from the ER to the Golgi: Lessons from the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).

    PubMed

    Amaral, Margarida D; Farinha, Carlos M; Matos, Paulo; Botelho, Hugo M

    2016-01-01

    Secretory traffic became a topical field because many important cell regulators are plasma membrane proteins (transporters, channels, receptors), being thus key targets in biomedicine and drug discovery. Cystic fibrosis (CF), caused by defects in a single gene encoding the CF transmembrane conductance regulator (CFTR), constitutes the most common of rare diseases and certainly a paradigmatic one.Here we focus on five different approaches that allow biochemical and cellular characterization of CFTR from its co-translational insertion into the ER membrane to its delivery to the plasma membrane. PMID:27665554

  20. ER stress and basement membrane defects combine to cause glomerular and tubular renal disease resulting from Col4a1 mutations in mice.

    PubMed

    Jones, Frances E; Bailey, Matthew A; Murray, Lydia S; Lu, Yinhui; McNeilly, Sarah; Schlötzer-Schrehardt, Ursula; Lennon, Rachel; Sado, Yoshikazu; Brownstein, David G; Mullins, John J; Kadler, Karl E; Van Agtmael, Tom

    2016-02-01

    Collagen IV is a major component of basement membranes, and mutations in COL4A1, which encodes collagen IV alpha chain 1, cause a multisystemic disease encompassing cerebrovascular, eye and kidney defects. However, COL4A1 renal disease remains poorly characterized and its pathomolecular mechanisms are unknown. We show that Col4a1 mutations in mice cause hypotension and renal disease, including proteinuria and defects in Bowman's capsule and the glomerular basement membrane, indicating a role for Col4a1 in glomerular filtration. Impaired sodium reabsorption in the loop of Henle and distal nephron despite elevated aldosterone levels indicates that tubular defects contribute to the hypotension, highlighting a novel role for the basement membrane in vascular homeostasis by modulation of the tubular response to aldosterone. Col4a1 mutations also cause diabetes insipidus, whereby the tubular defects lead to polyuria associated with medullary atrophy and a subsequent reduction in the ability to upregulate aquaporin 2 and concentrate urine. Moreover, haematuria, haemorrhage and vascular basement membrane defects confirm an important vascular component. Interestingly, although structural and compositional basement membrane defects occurred in the glomerulus and Bowman's capsule, no tubular basement membrane defects were detected. By contrast, medullary atrophy was associated with chronic ER stress, providing evidence for cell-type-dependent molecular mechanisms of Col4a1 mutations. These data show that both basement membrane defects and ER stress contribute to Col4a1 renal disease, which has important implications for the development of treatment strategies for collagenopathies.

  1. Glycosylphosphatidylinositols synthesized by asexual erythrocytic stages of the malarial parasite, Plasmodium falciparum. Candidates for plasmodial glycosylphosphatidylinositol membrane anchor precursors and pathogenicity factors.

    PubMed

    Gerold, P; Dieckmann-Schuppert, A; Schwarz, R T

    1994-01-28

    Plasmodium falciparum is the causative agent of malaria tropica in man. Biochemical studies were focused on the asexual, intraerythrocytic stages of P. falciparum, because of their role in the clinical phase of the disease and the possibility of propagation in a cell culture system. In this report, we describe the in-culture labeling of malarial glycolipids and the analysis of their hydrophilic moieties. They were identified as glycosylphosphatidylinositols (GPIs) by: 1) labeling with [3H]mannose, [3H]glucosamine, and [3H]ethanolamine and 2) sensitivity toward glycosylphosphatidylinositol-specific phospholipase D, phospholipase A2, and nitrous acid. Malarial GPIs are shown to be unaffected by treatment with phosphatidylinositol-specific phospholipase C, regardless of prior treatment with mild base commonly used for inositol deacylation. Two candidates for putative GPI-anchor precursors to malarial membrane proteins with the structures ethanolamine-phosphate-6(Man alpha 1-2)Man alpha 1-2Man alpha 1-6Man alpha 1-4 GlcN-PI (Pfg1 alpha) and ethanolamine-phosphate-6Man alpha 1-2Man alpha 1-6Man-alpha 1-4-GlcN-PI (Pfg1 beta) were identified.

  2. Plasmodium falciparum Plasmodium helical interspersed subtelomeric proteins contribute to cytoadherence and anchor P. falciparum erythrocyte membrane protein 1 to the host cell cytoskeleton.

    PubMed

    Oberli, Alexander; Zurbrügg, Laura; Rusch, Sebastian; Brand, Françoise; Butler, Madeleine E; Day, Jemma L; Cutts, Erin E; Lavstsen, Thomas; Vakonakis, Ioannis; Beck, Hans-Peter

    2016-10-01

    Adherence of Plasmodium falciparum-infected erythrocytes to host endothelium is conferred through the parasite-derived virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major contributor to malaria severity. PfEMP1 located at knob structures on the erythrocyte surface is anchored to the cytoskeleton, and the Plasmodium helical interspersed subtelomeric (PHIST) gene family plays a role in many host cell modifications including binding the intracellular domain of PfEMP1. Here, we show that conditional reduction of the PHIST protein PFE1605w strongly reduces adhesion of infected erythrocytes to the endothelial receptor CD36. Adhesion to other endothelial receptors was less affected or even unaltered by PFE1605w depletion, suggesting that PHIST proteins might be optimized for subsets of PfEMP1 variants. PFE1605w does not play a role in PfEMP1 transport, but it directly interacts with both the intracellular segment of PfEMP1 and with cytoskeletal components. This is the first report of a PHIST protein interacting with key molecules of the cytoadherence complex and the host cytoskeleton, and this functional role seems to play an essential role in the pathology of P. falciparum.

  3. Scanning electron microscopy study of neutrophil membrane tubulovesicular extensions (cytonemes) and their role in anchoring, aggregation and phagocytosis. The effect of nitric oxide

    SciTech Connect

    Galkina, Svetlana I. . E-mail: galkina@genebee.msu.ru; Molotkovsky, Julian G.; Ullrich, Volker; Sud'ina, Galina F.

    2005-04-01

    We have shown that human neutrophils develop dynamic thin and very long tubulovesicular extensions (cytonemes) upon adhesion to fibronectin, if cell spreading was blocked by Na{sup +}-free medium or by 4-bromophenacyl bromide, N-ethylmaleimide, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole and cytochalasin D (S. I. Galkina, G. F. Sud'ina and V. Ullrich (2001). Exp. Cell Res. 266, 222-228). In the present work we found that similar in size and behavior tubulovesicular extensions were formed on the neutrophil cell bodies upon adhesion to fibronectin-coated substrata in the presence of the nitric oxide donor diethylamine NONOate. In the presence of the nitric oxide synthase inhibitor N-{omega}-nitro-L-arginine methyl ester, neutrophils were well spread and had no microextensions. Using scanning electron microscopy, we demonstrated that tubulovesicular extensions of neutrophils executed long-range adhesion and binding objects for phagocytosis, such as serum-opsonized zymosan particles and erythrocytes. Tubulovesicular extensions anchored neutrophils to substrata in a {beta}1 and {beta}2 integrin-independent, but L-selectin-dependent manner. BODIPY-sphingomyelin impaired development of tubulovesicular extension, and heparitinase 1 played a role in their destruction. Membrane tubulovesicular extensions are supposed to represent protrusions of an intracellular exocytotic traffic and serve as cellular sensory and adhesive organelles. Nitric oxide seems to play a role in regulation of tubulovesicular extensions formation, thus affecting neutrophil adhesive interactions and phagocytosis.

  4. Prostasin, a membrane-anchored serine peptidase, regulates sodium currents in JME/CF15 cells, a cystic fibrosis airway epithelial cell line.

    PubMed

    Tong, Zhenyue; Illek, Beate; Bhagwandin, Vikash J; Verghese, George M; Caughey, George H

    2004-11-01

    Prostasin is a tryptic peptidase expressed in prostate, kidney, lung, and airway. Mammalian prostasins are related to Xenopus channel-activating protease, which stimulates epithelial Na+ channel (ENaC) activity in frogs. In human epithelia, prostasin is one of several membrane peptidases proposed to regulate ENaC. This study tests the hypothesis that prostasin can regulate ENaC in cystic fibrosis epithelia in which excessive Na+ uptake contributes to salt and water imbalance. We show that prostasin mRNA and protein are strongly expressed by human airway epithelial cell lines, including immortalized JME/CF15 nasal epithelial cells homozygous for the DeltaF508 cystic fibrosis mutation. Epithelial cells transfected with vectors encoding recombinant soluble prostasin secrete active, tryptic peptidase that is highly sensitive to inactivation by aprotinin. When studied as monolayers in Ussing chambers, JME/CF15 cells exhibit amiloride-sensitive, transepithelial Na+ currents that are markedly diminished by aprotinin, suggesting regulation by serine-class peptidases. Overproduction of membrane-anchored prostasin in transfected JME/CF15 cells does not augment Na+ currents, and trypsin-induced increases are small, suggesting that baseline serine peptidase-dependent ENaC activation is maximal in these cells. To probe prostasin's involvement in basal ENaC activity, we silenced expression of prostasin using short interfering RNA targeting of prostasin mRNA's 3'-untranslated region. This drops ENaC currents to 26 +/- 9% of baseline. These data predict that prostasin is a major regulator of ENaC-mediated Na+ current in DeltaF508 cystic fibrosis epithelia and suggest that airway prostasin is a target for therapeutic inhibition to normalize ion current in cystic fibrosis airway. PMID:15246975

  5. Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP

    PubMed Central

    Sabeh, Farideh; Ota, Ichiro; Holmbeck, Kenn; Birkedal-Hansen, Henning; Soloway, Paul; Balbin, Milagros; Lopez-Otin, Carlos; Shapiro, Steven; Inada, Masaki; Krane, Stephen; Allen, Edward; Chung, Duane; Weiss, Stephen J.

    2004-01-01

    As cancer cells traverse collagen-rich extracellular matrix (ECM) barriers and intravasate, they adopt a fibroblast-like phenotype and engage undefined proteolytic cascades that mediate invasive activity. Herein, we find that fibroblasts and cancer cells express an indistinguishable pericellular collagenolytic activity that allows them to traverse the ECM. Using fibroblasts isolated from gene-targeted mice, a matrix metalloproteinase (MMP)–dependent activity is identified that drives invasion independently of plasminogen, the gelatinase A/TIMP-2 axis, gelatinase B, collagenase-3, collagenase-2, or stromelysin-1. In contrast, deleting or suppressing expression of the membrane-tethered MMP, MT1-MMP, in fibroblasts or tumor cells results in a loss of collagenolytic and invasive activity in vitro or in vivo. Thus, MT1-MMP serves as the major cell-associated proteinase necessary to confer normal or neoplastic cells with invasive activity. PMID:15557125

  6. Freely turning over palmitate in erythrocyte membrane proteins is not responsible for the anchoring of lipid rafts to the spectrin skeleton: a study with bio-orthogonal chemical probes.

    PubMed

    Ciana, Annarita; Achilli, Cesare; Hannoush, Rami N; Risso, Angela; Balduini, Cesare; Minetti, Giampaolo

    2013-03-01

    Erythrocyte lipid rafts are anchored to the underlying spectrin membrane skeleton [A. Ciana, C. Achilli, C. Balduini, G. Minetti, On the association of lipid rafts to the spectrin skeleton in human erythrocytes, Biochim. Biophys. Acta 1808 (2011) 183-190]. The nature of this linkage and the molecules involved are poorly understood. The interaction is sensitive to the increase in pH and ionic strength induced by carbonate. Given the role of palmitoylation in modulating the partitioning of certain proteins between various sub-cellular compartments and the plasma membrane, we asked whether palmitoylation of p55, a peripheral protein located at the junctional complex between spectrin-actin-protein 4.1 that anchors the membrane skeleton to the lipid bilayer via the transmembrane protein glycophorin C, could contribute to the anchoring of lipid rafts to the membrane skeleton. We adopted a new, non-radioactive method for studying protein palmitoylation, based on bio-orthogonal chemical analogues of fatty acids, containing an omega-alkynyl group, to metabolically label cell proteins, which are then revealed by a "click chemistry" reaction of the alkynyl moiety with an azide-containing reporter tag. We show that the membrane localization and palmitoylation levels of p55 did not change after carbonate treatment. 2-bromopalmitate and cerulenin, two known palmitoylation inhibitors, completely inhibited p55 palmitoylation, and protein palmitoyl thioesterase-1 (PPT1) reduced it, without affecting the association between lipid rafts and membrane-skeleton, indicating, on the one hand, that p55 palmitoylation is enzymatic, and, on the other, that it is not involved in the modulation of the linkage of lipid rafts to the membrane-skeleton.

  7. Construction of membrane-anchoring fusion protein of Thermococcus kodakaraensis glycerol kinase and its application to repetitive batchwise reactions.

    PubMed

    Restiawaty, Elvi; Honda, Kohsuke; Okano, Kenji; Hirota, Ryuichi; Omasa, Takeshi; Kuroda, Akio; Ohtake, Hisao

    2012-04-01

    We previously demonstrated the stoichiometric conversion of glycerol to glycerol-3-phosphate (G3P) using Escherichia coli recombinants producing the ATP-dependent glycerol kinase of the hyperthermophile Thermococcus kodakaraensis (TkGK) and the polyphosphate kinase of Thermus thermophilus HB27 (TtPPK). TtPPK was associated with the membrane fraction of E. coli recombinants, whereas TkGK was released from the cells during the reaction at 70°C. In this study, TkGK was fused with either TtPPK or an E. coli membrane-intrinsic protein, YedZ, to minimize the heat-induced leakage of TkGK. When the E. coli recombinants having these fusion proteins were incubated at 70°C for 2h, more than 80% of TkGK activity was retained in the heated E. coli cells. However, the yields of G3P production by E. coli having the fusion proteins of TtPPK and TkGK were only less than 35%. Polyphosphate is a strong chelator for metal ions and has an inhibitory effect on TkGK which requires magnesium. Insufficient space between TtPPK and TkGK might enhance the inhibitory effect of polyphosphate on TkGK activity of the fusion protein. The mixture of E. coli cells having TtPPK and those having TkGK fused with YedZ converted 80% of glycerol into G3P. These recombinant cells could be easily recovered from the reaction mixture by centrifugation and repeatedly used without a significant loss of enzyme activities.

  8. Subcellular Partitioning of Protein Tyrosine Phosphatase 1B to the Endoplasmic Reticulum and Mitochondria Depends Sensitively on the Composition of Its Tail Anchor

    PubMed Central

    Fueller, Julia; Egorov, Mikhail V.; Walther, Kirstin A.; Sabet, Ola; Mallah, Jana; Grabenbauer, Markus; Kinkhabwala, Ali

    2015-01-01

    The canonical protein tyrosine phosphatase PTP1B is an important regulator of diverse cellular signaling networks. PTP1B has long been thought to exert its influence solely from its perch on the endoplasmic reticulum (ER); however, an additional subpopulation of PTP1B has recently been detected in mitochondria extracted from rat brain tissue. Here, we show that PTP1B’s mitochondrial localization is general (observed across diverse mammalian cell lines) and sensitively dependent on the transmembrane domain length, C-terminal charge and hydropathy of its short (≤35 amino acid) tail anchor. Our electron microscopy of specific DAB precipitation revealed that PTP1B localizes via its tail anchor to the outer mitochondrial membrane (OMM), with fluorescence lifetime imaging microscopy establishing that this OMM pool contributes to the previously reported cytoplasmic interaction of PTP1B with endocytosed epidermal growth factor receptor. We additionally examined the mechanism of PTP1B’s insertion into the ER membrane through heterologous expression of PTP1B’s tail anchor in wild-type yeast and yeast mutants of major conserved ER insertion pathways: In none of these yeast strains was ER targeting significantly impeded, providing in vivo support for the hypothesis of spontaneous membrane insertion (as previously demonstrated in vitro). Further functional elucidation of the newly recognized mitochondrial pool of PTP1B will likely be important for understanding its complex roles in cellular responses to external stimuli, cell proliferation and diseased states. PMID:26431424

  9. The yeast p24 complex regulates GPI-anchored protein transport and quality control by monitoring anchor remodeling

    PubMed Central

    Castillon, Guillaume A.; Aguilera-Romero, Auxiliadora; Manzano-Lopez, Javier; Epstein, Sharon; Kajiwara, Kentaro; Funato, Kouichi; Watanabe, Reika; Riezman, Howard; Muñiz, Manuel

    2011-01-01

    Glycosylphosphatidylinositol (GPI)-anchored proteins are secretory proteins that are attached to the cell surface of eukaryotic cells by a glycolipid moiety. Once GPI anchoring has occurred in the lumen of the endoplasmic reticulum (ER), the structure of the lipid part on the GPI anchor undergoes a remodeling process prior to ER exit. In this study, we provide evidence suggesting that the yeast p24 complex, through binding specifically to GPI-anchored proteins in an anchor-dependent manner, plays a dual role in their selective trafficking. First, the p24 complex promotes efficient ER exit of remodeled GPI-anchored proteins after concentration by connecting them with the COPII coat and thus facilitates their incorporation into vesicles. Second, it retrieves escaped, unremodeled GPI-anchored proteins from the Golgi to the ER in COPI vesicles. Therefore the p24 complex, by sensing the status of the GPI anchor, regulates GPI-anchored protein intracellular transport and coordinates this with correct anchor remodeling. PMID:21680708

  10. Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic [published errata appear in J Cell Biol 1995 Mar;128(5):following 988 and 1995 May;129(3):893

    PubMed Central

    1995-01-01

    The distribution and dynamics of both the ER and Golgi complex in animal cells are known to be dependent on microtubules; in many cell types the ER extends toward the plus ends of microtubules at the cell periphery and the Golgi clusters at the minus ends of microtubules near the centrosome. In this study we provide evidence that the microtubule motor, kinesin, is present on membranes cycling between the ER and Golgi and powers peripherally directed movements of membrane within this system. Immunolocalization of kinesin at both the light and electron microscopy levels in NRK cells using the H1 monoclonal antibody to kinesin heavy chain, revealed kinesin to be associated with all membranes of the ER/Golgi system. At steady-state at 37 degrees C, however, kinesin was most concentrated on peripherally distributed, pre- Golgi structures containing beta COP and vesicular stomatitis virus glycoprotein newly released from the ER. Upon temperature reduction or nocodazole treatment, kinesin's distribution shifted onto the Golgi, while with brefeldin A (BFA)-treatment, kinesin could be found in both Golgi-derived tubules and in the ER. This suggested that kinesin associates with membranes that constitutively cycle between the ER and Golgi. Kinesin's role on these membranes was examined by microinjecting kinesin antibody. Golgi-to-ER but not ER-to-Golgi membrane transport was found to be inhibited by the microinjected anti-kinesin, suggesting kinesin powers the microtubule plus end-directed recycling of membrane to the ER, and remains inactive on pre-Golgi intermediates that move toward the Golgi complex. PMID:7844144

  11. Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus

    PubMed Central

    Ji, Xianliang; Ren, Zhiguang; Xu, Na; Meng, Lingnan; Yu, Zhijun; Feng, Na; Sang, Xiaoyu; Li, Shengnan; Li, Yuanguo; Wang, Tiecheng; Zhao, Yongkun; Wang, Hualei; Zheng, Xuexing; Jin, Hongli; Li, Nan; Yang, Songtao; Cao, Jinshan; Liu, Wensen; Gao, Yuwei; Xia, Xianzhu

    2016-01-01

    Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs) composed of the hemagglutinin (HA), neuraminidase (NA) and matrix protein (M1) of A/Changchun/01/2009 (H1N1) with or without either membrane-anchored cholera toxin B (CTB) or ricin toxin B (RTB) as molecular adjuvants. The intranasal immunization of mice with VLPs containing membrane-anchored CTB or RTB elicited stronger humoral and cellular immune responses when compared to mice immunized with VLPs alone. Administration of VLPs containing CTB or RTB significantly enhanced virus-specific systemic and mucosal antibody responses, hemagglutination inhibiting antibody titers, virus neutralizing antibody titers, and the frequency of virus-specific IFN-γ and IL-4 secreting splenocytes. VLPs with and without CTB or RTB conferred complete protection against lethal challenge with a mouse-adapted homologous virus. When challenged with an antigenically distinct H1N1 virus, all mice immunized with VLPs containing CTB or RTB survived whereas mice immunized with VLPs alone showed only partial protection (80% survival). Our results suggest that membrane-anchored CTB and RTB possess strong adjuvant properties when incorporated into an intranasally-delivered influenza VLP vaccine. Chimeric influenza VLPs containing CTB or RTB may represent promising vaccine candidates for improved immunological protection against homologous and antigenically distinct influenza viruses. PMID:27110810

  12. Expression and interaction of the mango ethylene receptor MiETR1 and different receptor versions of MiERS1.

    PubMed

    Winterhagen, Patrick; Hagemann, Michael H; Wünsche, Jens N

    2016-05-01

    Different versions of the mango ethylene receptor MiERS1 were identified and the analysis indicates that, in addition to MiERS1, two short versions of this receptor (MiERS1m, MiERS1s), representing truncated proteins with central deletions of functional domains, are present in mango. The short receptor versions reveal a different expression pattern compared to MiERS1, and they are highly variably transcribed. With transient expression assays using fluorescent fusion proteins, the localisation and the interaction of the receptors were determined in leaf cells of the tobacco model. MiERS1, MiETR1, and the short MiERS1 receptor versions are anchored in the endoplasmic reticulum (ER) membrane and co-localise with each other and with an ER-marker. Furthermore, ectopic expression of the mango receptors appears to induce a re-organisation of the ER resulting in accumulation of ER bodies. Interaction assays suggest that both short MiERS1 receptor versions can bind to proteins located in the ER. Bi-molecular fluorescence complementation (BiFC) assays indicate, that MiERS1m may dimerise with itself and can also interact with MiERS1, but not with MiETR1. Further, it as found that MiETR1 can interact with MiERS1. Interaction of MiERS1s with the other ethylene receptors could not be detected, although it was located in the ER membrane system. PMID:26993233

  13. The membrane interface dictates different anchor roles for "inner pair" and "outer pair" tryptophan indole rings in gramicidin A channels.

    PubMed

    Gu, Hong; Lum, Kevin; Kim, Jung H; Greathouse, Denise V; Andersen, Olaf S; Koeppe, Roger E

    2011-06-01

    We investigated the effects of substituting two of the four tryptophans (the "inner pair" Trp(9) and Trp(11) or the "outer pair" Trp(13) and Trp(15)) in gramicidin A (gA) channels. The conformational preferences of the doubly substituted gA analogues were assessed using circular dichroism spectroscopy and size-exclusion chromatography, which show that the inner tryptophans 9 and 11 are critical for the gA's conformational preference in lipid bilayer membranes. [Phe(13,15)]gA largely retains the single-stranded helical channel structure, whereas [Phe(9,11)]gA exists primarily as double-stranded conformers. Within this context, the (2)H NMR spectra from labeled tryptophans were used to examine the changes in average indole ring orientations, induced by the Phe substitutions and by the shift in conformational preference. Using a method for deuterium labeling of already synthesized gAs, we introduced deuterium selectively onto positions C2 and C5 of the remaining tryptophan indole rings in the substituted gA analogues for solid-state (2)H NMR spectroscopy. The (least possible) changes in orientation and overall motion of each indole ring were estimated from the experimental spectra. Regardless of the mixture of backbone folds, the indole ring orientations observed in the analogues are similar to those found previously for gA channels. Both Phe-substituted analogues form single-stranded channels, as judged from the formation of heterodimeric channels with the native gA. [Phe(13,15)]gA channels have Na(+) currents that are ~50% and lifetimes that are ~80% of those of native gA channels. The double-stranded conformer(s) of [Phe(9,11)]gA do not form detectable channels. The minor single-stranded population of [Phe(9,11)]gA forms channels with Na(+) currents that are ~25% and single-channel lifetimes that are ~300% of those of native gA channels. Our results suggest that Trp(9) and Trp(11), when "reaching" for the interface, tend to drive both monomer folding (to "open" a

  14. Pathogen and Circadian Controlled 1 (PCC1) Protein Is Anchored to the Plasma Membrane and Interacts with Subunit 5 of COP9 Signalosome in Arabidopsis

    PubMed Central

    Mir, Ricardo; León, José

    2014-01-01

    The Pathogen and Circadian Controlled 1 (PCC1) gene, previously identified and further characterized as involved in defense to pathogens and stress-induced flowering, codes for an 81-amino acid protein with a cysteine-rich C-terminal domain. This domain is essential for homodimerization and anchoring to the plasma membrane. Transgenic plants with the ß-glucuronidase (GUS) reporter gene under the control of 1.1 kb promoter sequence of PCC1 gene display a dual pattern of expression. At early post-germination, PCC1 is expressed only in the root vasculature and in the stomata guard cells of cotyledons. During the transition from vegetative to reproductive development, PCC1 is strongly expressed in the vascular tissue of petioles and basal part of the leaf, and it further spreads to the whole limb in fully expanded leaves. This developmental pattern of expression together with the late flowering phenotype of long-day grown RNA interference (iPCC1) plants with reduced PCC1 expression pointed to a regulatory role of PCC1 in the photoperiod-dependent flowering pathway. iPCC1 plants are defective in light perception and signaling but are not impaired in the function of the core CO-FT module of the photoperiod-dependent pathway. The regulatory effect exerted by PCC1 on the transition to flowering as well as on other reported phenotypes might be explained by a mechanism involving the interaction with the subunit 5 of the COP9 signalosome (CSN). PMID:24475254

  15. Membrane estrogen receptors: genomic actions and post transcriptional regulation.

    PubMed

    Jacob, Julie; Sebastian, K S; Devassy, Sony; Priyadarsini, Lakshmi; Farook, Mohamed Febin; Shameem, A; Mathew, Deepa; Sreeja, S; Thampan, Raghava Varman

    2006-02-26

    The primary cellular location of the nuclear estrogen receptor II (nER II) is the plasma membrane. A number of reports that have appeared in the recent past indicate that plasma membrane localized estrogen receptor alpha (ERalpha) also exists. Whether the membrane localized ERalpha represents the receptor that binds to the estrogen responsive element (ERE) remains to be known. The mechanisms that underlie the internalization of nER II (non-activated estrogen receptor, deglycosylated) have been identified to a certain extent. The question remains: is the primary location of the ERalpha also the plasma membrane? If that is the case, it will be a challenging task to identify the molecular events that underlie the plasma membrane-to-nucleus movement of ERalpha. The internalization mechanisms for the two 66kDa plasma membrane ERs, following hormone binding, appear to be distinct and without any overlaps. Interestingly, while the major gene regulatory role for ERalpha appears to be at the level of transcription, the nER II has its major functional role in post transcriptional mechanisms. The endoplasmic reticulum associated anchor protein-55 (ap55) that was recently reported from the author's laboratory needs a closer look. It is a high affinity estrogen binding protein that anchors the estrogen receptor activation factor (E-RAF) in an estrogen-mediated event. It will be interesting to examine whether ap55 bears any structural similarity with either ERalpha or ERbeta. PMID:16423448

  16. Hypomorphic Mutations in PGAP2, Encoding a GPI-Anchor-Remodeling Protein, Cause Autosomal-Recessive Intellectual Disability

    PubMed Central

    Hansen, Lars; Tawamie, Hasan; Murakami, Yoshiko; Mang, Yuan; ur Rehman, Shoaib; Buchert, Rebecca; Schaffer, Stefanie; Muhammad, Safia; Bak, Mads; Nöthen, Markus M.; Bennett, Eric P.; Maeda, Yusuke; Aigner, Michael; Reis, André; Kinoshita, Taroh; Tommerup, Niels; Baig, Shahid Mahmood; Abou Jamra, Rami

    2013-01-01

    PGAP2 encodes a protein involved in remodeling the glycosylphosphatidylinositol (GPI) anchor in the Golgi apparatus. After synthesis in the endoplasmic reticulum (ER), GPI anchors are transferred to the proteins and are remodeled while transported through the Golgi to the cell membrane. Germline mutations in six genes (PIGA, PIGL, PIGM, PIGV, PIGN, and PIGO) in the ER-located part of the GPI-anchor-biosynthesis pathway have been reported, and all are associated with phenotypes extending from malformation and lethality to severe intellectual disability, epilepsy, minor dysmorphisms, and elevated alkaline phosphatase (ALP). We performed autozygosity mapping and ultra-deep sequencing followed by stringent filtering and identified two homozygous PGAP2 alterations, p.Tyr99Cys and p.Arg177Pro, in seven offspring with nonspecific autosomal-recessive intellectual disability from two consanguineous families. Rescue experiments with the altered proteins in PGAP2-deficient Chinese hamster ovary cell lines showed less expression of cell-surface GPI-anchored proteins DAF and CD59 than of the wild-type protein, substantiating the pathogenicity of the identified alterations. Furthermore, we observed a full rescue when we used strong promoters before the mutant cDNAs, suggesting a hypomorphic effect of the mutations. We report on alterations in the Golgi-located part of the GPI-anchor-biosynthesis pathway and extend the phenotypic spectrum of the GPI-anchor deficiencies to isolated intellectual disability with elevated ALP. GPI-anchor deficiencies can be interpreted within the concept of a disease family, and we propose that the severity of the phenotype is dependent on the location of the altered protein in the biosynthesis chain. PMID:23561846

  17. STARD3 or STARD3NL and VAP form a novel molecular tether between late endosomes and the ER.

    PubMed

    Alpy, Fabien; Rousseau, Adrien; Schwab, Yannick; Legueux, François; Stoll, Isabelle; Wendling, Corinne; Spiegelhalter, Coralie; Kessler, Pascal; Mathelin, Carole; Rio, Marie-Christine; Levine, Timothy P; Tomasetto, Catherine

    2013-12-01

    Inter-organelle membrane contacts sites (MCSs) are specific subcellular regions favoring the exchange of metabolites and information. We investigated the potential role of the late-endosomal membrane-anchored proteins StAR related lipid transfer domain-3 (STARD3) and STARD3 N-terminal like (STARD3NL) in the formation of MCSs involving late-endosomes (LEs). We demonstrate that both STARD3 and STARD3NL create MCSs between LEs and the endoplasmic reticulum (ER). STARD3 and STARD3NL use a conserved two phenylalanines in an acidic tract (FFAT)-motif to interact with ER-anchored VAP proteins. Together, they form an LE-ER tethering complex allowing heterologous membrane apposition. This LE-ER tethering complex affects organelle dynamics by altering the formation of endosomal tubules. An in situ proximity ligation assay between STARD3, STARD3NL and VAP proteins identified endogenous LE-ER MCS. Thus, we report here the identification of proteins involved in inter-organellar interaction.

  18. Analysis of Membrane Topology and Identification of Essential Residues for the Yeast Endoplasmic Reticulum Inositol Acyltransferase Gwt1p

    PubMed Central

    Sagane, Koji; Umemura, Mariko; Ogawa-Mitsuhashi, Kaoru; Tsukahara, Kappei; Yoko-o, Takehiko; Jigami, Yoshifumi

    2011-01-01

    Glycosylphosphatidylinositol (GPI) is a post-translational modification that anchors cell surface proteins to the plasma membrane, and GPI modifications occur in all eukaryotes. Biosynthesis of GPI starts on the cytoplasmic face of the endoplasmic reticulum (ER) membrane, and GPI precursors flip from the cytoplasmic side to the luminal side of the ER, where biosynthesis of GPI precursors is completed. Gwt1p and PIG-W are inositol acyltransferases that transfer fatty acyl chains to the inositol moiety of GPI precursors in yeast and mammalian cells, respectively. To ascertain whether flipping across the ER membrane occurs before or after inositol acylation of GPI precursors, we identified essential residues of PIG-W and Gwt1p and determined the membrane topology of Gwt1p. Guided by algorithm-based predictions of membrane topology, we experimentally identified 13 transmembrane domains in Gwt1p. We found that Gwt1p, PIG-W, and their orthologs shared four conserved regions and that these four regions in Gwt1p faced the luminal side of the ER membrane. Moreover, essential residues of Gwt1p and PIG-W faced the ER lumen or were near the luminal edge of transmembrane domains. The membrane topology of Gwt1p suggested that inositol acylation occurred on the luminal side of the ER membrane. Rather than stimulate flipping of the GPI precursor across the ER membrane, inositol acylation of GPI precursors may anchor the precursors to the luminal side of the ER membrane, preventing flip-flops. PMID:21367863

  19. Plasma membrane localization of Solanum tuberosum remorin from group 1, homolog 3 is mediated by conformational changes in a novel C-terminal anchor and required for the restriction of potato virus X movement].

    PubMed

    Perraki, Artemis; Cacas, Jean-Luc; Crowet, Jean-Marc; Lins, Laurence; Castroviejo, Michel; German-Retana, Sylvie; Mongrand, Sébastien; Raffaele, Sylvain

    2012-10-01

    The formation of plasma membrane (PM) microdomains plays a crucial role in the regulation of membrane signaling and trafficking. Remorins are a plant-specific family of proteins organized in six phylogenetic groups, and Remorins of group 1 are among the few plant proteins known to specifically associate with membrane rafts. As such, they are valuable to understand the molecular bases for PM lateral organization in plants. However, little is known about the structural determinants underlying the specific association of group 1 Remorins with membrane rafts. We used a structure-function approach to identify a short C-terminal anchor (RemCA) indispensable and sufficient for tight direct binding of potato (Solanum tuberosum) REMORIN 1.3 (StREM1.3) to the PM. RemCA switches from unordered to α-helical structure in a nonpolar environment. Protein structure modeling indicates that RemCA folds into a tight hairpin of amphipathic helices. Consistently, mutations reducing RemCA amphipathy abolished StREM1.3 PM localization. Furthermore, RemCA directly binds to biological membranes in vitro, shows higher affinity for Detergent-Insoluble Membranes lipids, and targets yellow fluorescent protein to Detergent-Insoluble Membranes in vivo. Mutations in RemCA resulting in cytoplasmic StREM1.3 localization abolish StREM1.3 function in restricting potato virus X movement. The mechanisms described here provide new insights on the control and function of lateral segregation of plant PM.

  20. Hepatocyte growth factor is a preferred in vitro substrate for human hepsin, a membrane-anchored serine protease implicated in prostate and ovarian cancers

    PubMed Central

    Herter, Sylvia; Piper, Derek E.; Aaron, Wade; Gabriele, Timothy; Cutler, Gene; Cao, Ping; Bhatt, Ami S.; Choe, Youngchool; Craik, Charles S.; Walker, Nigel; Meininger, David; Hoey, Timothy; Austin, Richard J.

    2005-01-01

    Hepsin is a membrane-anchored, trypsin-like serine protease with prominent expression in the human liver and tumours of the prostate and ovaries. To better understand the biological functions of hepsin, we identified macromolecular substrates employing a tetrapeptide PS-SCL (positional scanning-synthetic combinatorial library) screen that rapidly determines the P1–P4 substrate specificity. Hepsin exhibited strong preference at the P1 position for arginine over lysine, and favoured threonine, leucine or asparagine at the P2, glutamine or lysine at the P3, and proline or lysine at the P4 position. The relative activity of hepsin toward individual AMC (7-amino-4-methylcoumarin)-tetrapeptides was generally consistent with the overall peptide profiling results derived from the PC-SCL screen. The most active tetrapeptide substrate Ac (acetyl)-KQLR-AMC matched with the activation cleavage site of the hepatocyte growth factor precursor sc-HGF (single-chain HGF), KQLR↓VVNG (where ↓ denotes the cleavage site), as identified by a database analysis of trypsin-like precursors. X-ray crystallographic studies with KQLR chloromethylketone showed that the KQLR peptide fits well into the substrate-binding cleft of hepsin. This hepsin-processed HGF induced c-Met receptor tyrosine phosphorylation in SKOV-3 ovarian cancer cells, indicating that the hepsin-cleaved HGF is biologically active. Activation cleavage site mutants of sc-HGF with predicted non-preferred sequences, DPGR↓VVNG or KQLQ↓VVNG, were not processed, illustrating that the P4–P1 residues can be important determinants for substrate specificity. In addition to finding macromolecular hepsin substrates, the extracellular inhibitors of the HGF activator, HAI-1 and HAI-2, were potent inhibitors of hepsin activity (IC50 4±0.2 nM and 12±0.5 nM respectively). Together, our findings suggest that the HGF precursor is a potential in vivo substrate for hepsin in tumours, where hepsin expression is dysregulated and may

  1. How anchoring proteins shape pain.

    PubMed

    Fischer, Michael J M; McNaughton, Peter A

    2014-09-01

    Cellular responsiveness to external stimuli can be altered by extracellular mediators which activate membrane receptors, in turn signalling to the intracellular space via calcium, cyclic nucleotides, membrane lipids or enzyme activity. These signalling events trigger a cascade leading to an effector which can be a channel, an enzyme or a transcription factor. The effectiveness of these intracellular events is enhanced when they are maintained in close proximity by anchoring proteins, which assemble complexes of signalling molecules such as kinases together with their targets, and in this way enhance both the speed and the precision of intracellular signalling. The A kinase anchoring protein (AKAP) family are adaptor proteins originally named for their ability to associate Protein Kinase A and its targets, but several other enzymes bound by AKAPs have now been found and a wide variety of target structures has been described. This review provides an overview of anchoring proteins involved in pain signalling. The key anchoring proteins and their ion channel targets in primary sensory neurons responding to painful stimuli (nociceptors) are discussed.

  2. Biomedical applications of glycosylphosphatidylinositol-anchored proteins

    PubMed Central

    Heider, Susanne; Dangerfield, John A.

    2016-01-01

    Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) use a unique posttranslational modification to link proteins to lipid bilayer membranes. The anchoring structure consists of both a lipid and carbohydrate portion and is highly conserved in eukaryotic organisms regarding its basic characteristics, yet highly variable in its molecular details. The strong membrane targeting property has made the anchors an interesting tool for biotechnological modification of lipid membrane-covered entities from cells through extracellular vesicles to enveloped virus particles. In this review, we will take a closer look at the mechanisms and fields of application for GPI-APs in lipid bilayer membrane engineering and discuss their advantages and disadvantages for biomedicine. PMID:27542385

  3. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis

    PubMed Central

    Ju, Chuanli; Yoon, Gyeong Mee; Shemansky, Jennifer Marie; Lin, David Y.; Ying, Z. Irene; Chang, Jianhong; Garrett, Wesley M.; Kessenbrock, Mareike; Groth, Georg; Tucker, Mark L.; Cooper, Bret; Kieber, Joseph J.; Chang, Caren

    2012-01-01

    The gaseous phytohormone ethylene C2H4 mediates numerous aspects of growth and development. Genetic analysis has identified a number of critical elements in ethylene signaling, but how these elements interact biochemically to transduce the signal from the ethylene receptor complex at the endoplasmic reticulum (ER) membrane to transcription factors in the nucleus is unknown. To close this gap in our understanding of the ethylene signaling pathway, the challenge has been to identify the target of the CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) Raf-like protein kinase, as well as the molecular events surrounding ETHYLENE-INSENSITIVE2 (EIN2), an ER membrane-localized Nramp homolog that positively regulates ethylene responses. Here we demonstrate that CTR1 interacts with and directly phosphorylates the cytosolic C-terminal domain of EIN2. Mutations that block the EIN2 phosphorylation sites result in constitutive nuclear localization of the EIN2 C terminus, concomitant with constitutive activation of ethylene responses in Arabidopsis. Our results suggest that phosphorylation of EIN2 by CTR1 prevents EIN2 from signaling in the absence of ethylene, whereas inhibition of CTR1 upon ethylene perception is a signal for cleavage and nuclear localization of the EIN2 C terminus, allowing the ethylene signal to reach the downstream transcription factors. These findings significantly advance our understanding of the mechanisms underlying ethylene signal transduction. PMID:23132950

  4. Associations between subunit ectodomains promote T cell antigen receptor assembly and protect against degradation in the ER

    PubMed Central

    1993-01-01

    The T cell antigen receptor (TCR) is an oligomeric protein complex made from at least six different integral membrane proteins (alpha beta gamma delta epsilon and zeta). The TCR is assembled in the ER of T cells, and correct assembly is required for transport to the cell surface. Single subunits and partial receptor complexes are retained in the ER where TCR alpha, beta, and CD3 delta chains are degraded selectively. The information required for the ER degradation of the TCR beta chain is confined to the membrane anchor of the protein (Wileman et al., 1990c; Bonifacino et al., 1990b). In this study we show that the rapid degradation of the TCR beta chain is inhibited when it assembles with single CD3 gamma, delta, or epsilon subunits in the ER, and have started to define the role played by transmembrane anchors, and receptor ectodomains, in the masking proteolytic targeting information. Acidic residues within the membrane spanning domains of CD3 subunits were essential for binding to the TCR beta chain. TCR beta chains and CD3 subunits therefore interact via transmembrane domains. However, when sites of binding were restricted to the membrane anchor of the TCR beta chain, stabilization by CD3 subunits was markedly reduced. Interactions between membrane spanning domains were not, therefore, sufficient for the protection of the beta chain from ER proteolysis. The presence of the C beta domain, containing the first 150 amino acids of the TCR ectodomain, greatly increased the stability of complexes formed in the ER. For assembly with CD3 epsilon, stability was further enhanced by the V beta amino acids. The results showed that the efficient neutralization of transmembrane proteolytic targeting information required associations between membrane spanning domains and the presence of receptor ectodomains. Interactions between receptor ectodomains may slow the dissociation of CD3 subunits from the beta chain and prolong the masking of transmembrane targeting information. In

  5. Location of the two catalytic sites in intestinal lactase-phlorizin hydrolase. Comparison with sucrase-isomaltase and with other glycosidases, the membrane anchor of lactase-phlorizin hydrolase.

    PubMed

    Wacker, H; Keller, P; Falchetto, R; Legler, G; Semenza, G

    1992-09-15

    Lactase-phlorizin hydrolase was isolated by immunoadsorption chromatography from rabbit brush-border membrane vesicles. Inactivation of the enzyme with [3H]conduritol-B-epoxide, a covalent active site-directed inhibitor, labeled glutamates at positions 1271 and 1747. Glu1271 was assigned to lactase, Glu1747 to phlorizin hydrolase activity. In contrast, the nucleophiles in the active sites of sucrase-isomaltase are aspartates (Asp505 and Asp1394). Asp505 is a part of the isomaltase active site and is localized on the larger subunit, which carries the membrane anchor also, while Asp1394 is a part of the active of sucrase. Alignment of these 2 nucleophilic Glu residues in lactase-phlorizin hydrolase and of their flanking regions with published sequences of several other beta-glycosidases allows the classification of the configuration retaining glycosidases into two major families: the "Asp" and the "Glu" glycosidases, depending on the carboxylate presumed to interact with the putative oxocarbonium ion in the transition state. We offer some predictions as to the Glu acting as the nucleophile in the active site of some glycosidases. By hydrophobic photolabeling, the membrane-spanning domain of lactase-phlorizin hydrolase was directly localized in the carboxyl-terminal region thus confirming this enzyme as a monotopic type I protein (i.e. with Nout-Cin orientation) of the brush-border membranes. A simplified version of the Me2+ precipitation method to efficiently and simply prepare brush-border membrane vesicles is also reported.

  6. Nuclear versus cytosolic activity of the yeast Hog1 MAP kinase in response to osmotic and tunicamycin-induced ER stress.

    PubMed

    García-Marqués, Sara; Randez-Gil, Francisca; Prieto, Jose A

    2015-07-22

    We examined the physiological significance of the nuclear versus cytosolic localization of the MAPK Hog1p in the ability of yeast cells to cope with osmotic and ER (endoplasmic reticulum) stress. Our results indicate that nuclear import of Hog1p is not critical for osmoadaptation. Plasma membrane-anchored Hog1p is still able to induce increased expression of GPD1 and glycerol accumulation. This is a key osmoregulatory event, although a small production of the osmolyte coupled with the nuclear import of Hog1p is sufficient to provide osmoresistance. On the contrary, the nuclear activity of Hog1p is dispensable for ER stress adaptation.

  7. Phytoplasma infection in tomato is associated with re-organization of plasma membrane, ER stacks, and actin filaments in sieve elements

    PubMed Central

    Buxa, Stefanie V.; Degola, Francesca; Polizzotto, Rachele; De Marco, Federica; Loschi, Alberto; Kogel, Karl-Heinz; di Toppi, Luigi Sanità; van Bel, Aart J. E.; Musetti, Rita

    2015-01-01

    Phytoplasmas, biotrophic wall-less prokaryotes, only reside in sieve elements of their host plants. The essentials of the intimate interaction between phytoplasmas and their hosts are poorly understood, which calls for research on potential ultrastructural modifications. We investigated modifications of the sieve-element ultrastructure induced in tomato plants by ‘Candidatus Phytoplasma solani,’ the pathogen associated with the stolbur disease. Phytoplasma infection induces a drastic re-organization of sieve-element substructures including changes in plasma membrane surface and distortion of the sieve-element reticulum. Observations of healthy and stolbur-diseased plants provided evidence for the emergence of structural links between sieve-element plasma membrane and phytoplasmas. One-sided actin aggregates on the phytoplasma surface also inferred a connection between phytoplasma and sieve-element cytoskeleton. Actin filaments displaced from the sieve-element mictoplasm to the surface of the phytoplasmas in infected sieve elements. Western blot analysis revealed a decrease of actin and an increase of ER-resident chaperone luminal binding protein (BiP) in midribs of phytoplasma-infected plants. Collectively, the studies provided novel insights into ultrastructural responses of host sieve elements to phloem-restricted prokaryotes. PMID:26347766

  8. Yeast membrane proteomics using leucine metabolic labelling: Bioinformatic data processing and exemplary application to the ER-intramembrane protease Ypf1.

    PubMed

    Nilse, Lars; Avci, Dönem; Heisterkamp, Patrick; Serang, Oliver; Lemberg, Marius K; Schilling, Oliver

    2016-10-01

    We describe in detail the usage of leucine metabolic labelling in yeast in order to monitor quantitative proteome alterations, e.g. upon removal of a protease. Since laboratory yeast strains are typically leucine auxotroph, metabolic labelling with trideuterated leucine (d3-leucine) is a straightforward, cost-effective, and ubiquitously applicable strategy for quantitative proteomic studies, similar to the widely used arginine/lysine metabolic labelling method for mammalian cells. We showcase the usage of advanced peptide quantification using the FeatureFinderMultiplex algorithm (part of the OpenMS software package) for robust and reliable quantification. Furthermore, we present an OpenMS bioinformatics data analysis workflow that combines accurate quantification with high proteome coverage. In order to enable visualization, peptide-mapping, and sharing of quantitative proteomic data, especially for membrane-spanning and cell-surface proteins, we further developed the web-application Proteator (http://proteator.appspot.com). Due to its simplicity and robustness, we expect metabolic leucine labelling in yeast to be of great interest to the research community. As an exemplary application, we show the identification of the copper transporter Ctr1 as a putative substrate of the ER-intramembrane protease Ypf1 by yeast membrane proteomics using d3-leucine isotopic labelling.

  9. Yeast membrane proteomics using leucine metabolic labelling: Bioinformatic data processing and exemplary application to the ER-intramembrane protease Ypf1.

    PubMed

    Nilse, Lars; Avci, Dönem; Heisterkamp, Patrick; Serang, Oliver; Lemberg, Marius K; Schilling, Oliver

    2016-10-01

    We describe in detail the usage of leucine metabolic labelling in yeast in order to monitor quantitative proteome alterations, e.g. upon removal of a protease. Since laboratory yeast strains are typically leucine auxotroph, metabolic labelling with trideuterated leucine (d3-leucine) is a straightforward, cost-effective, and ubiquitously applicable strategy for quantitative proteomic studies, similar to the widely used arginine/lysine metabolic labelling method for mammalian cells. We showcase the usage of advanced peptide quantification using the FeatureFinderMultiplex algorithm (part of the OpenMS software package) for robust and reliable quantification. Furthermore, we present an OpenMS bioinformatics data analysis workflow that combines accurate quantification with high proteome coverage. In order to enable visualization, peptide-mapping, and sharing of quantitative proteomic data, especially for membrane-spanning and cell-surface proteins, we further developed the web-application Proteator (http://proteator.appspot.com). Due to its simplicity and robustness, we expect metabolic leucine labelling in yeast to be of great interest to the research community. As an exemplary application, we show the identification of the copper transporter Ctr1 as a putative substrate of the ER-intramembrane protease Ypf1 by yeast membrane proteomics using d3-leucine isotopic labelling. PMID:27426920

  10. Reticulomics: Protein-Protein Interaction Studies with Two Plasmodesmata-Localized Reticulon Family Proteins Identify Binding Partners Enriched at Plasmodesmata, Endoplasmic Reticulum, and the Plasma Membrane.

    PubMed

    Kriechbaumer, Verena; Botchway, Stanley W; Slade, Susan E; Knox, Kirsten; Frigerio, Lorenzo; Oparka, Karl; Hawes, Chris

    2015-11-01

    The endoplasmic reticulum (ER) is a ubiquitous organelle that plays roles in secretory protein production, folding, quality control, and lipid biosynthesis. The cortical ER in plants is pleomorphic and structured as a tubular network capable of morphing into flat cisternae, mainly at three-way junctions, and back to tubules. Plant reticulon family proteins (RTNLB) tubulate the ER by dimerization and oligomerization, creating localized ER membrane tensions that result in membrane curvature. Some RTNLB ER-shaping proteins are present in the plasmodesmata (PD) proteome and may contribute to the formation of the desmotubule, the axial ER-derived structure that traverses primary PD. Here, we investigate the binding partners of two PD-resident reticulon proteins, RTNLB3 and RTNLB6, that are located in primary PD at cytokinesis in tobacco (Nicotiana tabacum). Coimmunoprecipitation of green fluorescent protein-tagged RTNLB3 and RTNLB6 followed by mass spectrometry detected a high percentage of known PD-localized proteins as well as plasma membrane proteins with putative membrane-anchoring roles. Förster resonance energy transfer by fluorescence lifetime imaging microscopy assays revealed a highly significant interaction of the detected PD proteins with the bait RTNLB proteins. Our data suggest that RTNLB proteins, in addition to a role in ER modeling, may play important roles in linking the cortical ER to the plasma membrane.

  11. Proliferation and Morphogenesis of the Endoplasmic Reticulum Driven by the Membrane Domain of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase in Plant Cells.

    PubMed

    Ferrero, Sergi; Grados-Torrez, Ricardo Enrique; Leivar, Pablo; Antolín-Llovera, Meritxell; López-Iglesias, Carmen; Cortadellas, Nuria; Ferrer, Joan Carles; Campos, Narciso

    2015-07-01

    The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) has a key regulatory role in the mevalonate pathway for isoprenoid biosynthesis and is composed of an endoplasmic reticulum (ER)-anchoring membrane domain with low sequence similarity among eukaryotic kingdoms and a conserved cytosolic catalytic domain. Organized smooth endoplasmic reticulum (OSER) structures are common formations of hypertrophied tightly packed ER membranes devoted to specific biosynthetic and secretory functions, the biogenesis of which remains largely unexplored. We show that the membrane domain of plant HMGR suffices to trigger ER proliferation and OSER biogenesis. The proliferating membranes become highly enriched in HMGR protein, but they do not accumulate sterols, indicating a morphogenetic rather than a metabolic role for HMGR. The N-terminal MDVRRRPP motif present in most plant HMGR isoforms is not required for retention in the ER, which was previously proposed, but functions as an ER morphogenic signal. Plant OSER structures are morphologically similar to those of animal cells, emerge from tripartite ER junctions, and mainly build up beside the nuclear envelope, indicating conserved OSER biogenesis in high eukaryotes. Factors other than the OSER-inducing HMGR construct mediate the tight apposition of the proliferating membranes, implying separate ER proliferation and membrane association steps. Overexpression of the membrane domain of Arabidopsis (Arabidopsis thaliana) HMGR leads to ER hypertrophy in every tested cell type and plant species, whereas the knockout of the HMG1 gene from Arabidopsis, encoding its major HMGR isoform, causes ER aggregation at the nuclear envelope. Our results show that the membrane domain of HMGR contributes to ER morphogenesis in plant cells.

  12. Proliferation and Morphogenesis of the Endoplasmic Reticulum Driven by the Membrane Domain of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase in Plant Cells1[OPEN

    PubMed Central

    Ferrero, Sergi; Grados-Torrez, Ricardo Enrique; Antolín-Llovera, Meritxell; López-Iglesias, Carmen; Cortadellas, Nuria; Ferrer, Joan Carles

    2015-01-01

    The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) has a key regulatory role in the mevalonate pathway for isoprenoid biosynthesis and is composed of an endoplasmic reticulum (ER)-anchoring membrane domain with low sequence similarity among eukaryotic kingdoms and a conserved cytosolic catalytic domain. Organized smooth endoplasmic reticulum (OSER) structures are common formations of hypertrophied tightly packed ER membranes devoted to specific biosynthetic and secretory functions, the biogenesis of which remains largely unexplored. We show that the membrane domain of plant HMGR suffices to trigger ER proliferation and OSER biogenesis. The proliferating membranes become highly enriched in HMGR protein, but they do not accumulate sterols, indicating a morphogenetic rather than a metabolic role for HMGR. The N-terminal MDVRRRPP motif present in most plant HMGR isoforms is not required for retention in the ER, which was previously proposed, but functions as an ER morphogenic signal. Plant OSER structures are morphologically similar to those of animal cells, emerge from tripartite ER junctions, and mainly build up beside the nuclear envelope, indicating conserved OSER biogenesis in high eukaryotes. Factors other than the OSER-inducing HMGR construct mediate the tight apposition of the proliferating membranes, implying separate ER proliferation and membrane association steps. Overexpression of the membrane domain of Arabidopsis (Arabidopsis thaliana) HMGR leads to ER hypertrophy in every tested cell type and plant species, whereas the knockout of the HMG1 gene from Arabidopsis, encoding its major HMGR isoform, causes ER aggregation at the nuclear envelope. Our results show that the membrane domain of HMGR contributes to ER morphogenesis in plant cells. PMID:26015445

  13. Defective lipid remodeling of GPI anchors in peroxisomal disorders, Zellweger syndrome, and rhizomelic chondrodysplasia punctata

    PubMed Central

    Kanzawa, Noriyuki; Shimozawa, Nobuyuki; Wanders, Ronald J. A.; Ikeda, Kazutaka; Murakami, Yoshiko; Waterham, Hans R.; Mukai, Satoru; Fujita, Morihisa; Maeda, Yusuke; Taguchi, Ryo; Fujiki, Yukio; Kinoshita, Taroh

    2012-01-01

    Many cell surface proteins in mammalian cells are anchored to the plasma membrane via glycosylphosphatidylinositol (GPI). The predominant form of mammalian GPI contains 1-alkyl-2-acyl phosphatidylinositol (PI), which is generated by lipid remodeling from diacyl PI. The conversion of diacyl PI to 1-alkyl-2-acyl PI occurs in the ER at the third intermediate in the GPI biosynthetic pathway. This lipid remodeling requires the alkyl-phospholipid biosynthetic pathway in peroxisome. Indeed, cells defective in dihydroxyacetone phosphate acyltransferase (DHAP-AT) or alkyl-DHAP synthase express only the diacyl form of GPI-anchored proteins. A defect in the alkyl-phospholipid biosynthetic pathway causes a peroxisomal disorder, rhizomelic chondrodysplasia punctata (RCDP), and defective biogenesis of peroxisomes causes Zellweger syndrome, both of which are lethal genetic diseases with multiple clinical phenotypes such as psychomotor defects, mental retardation, and skeletal abnormalities. Here, we report that GPI lipid remodeling is defective in cells from patients with Zellweger syndrome having mutations in the peroxisomal biogenesis factors PEX5, PEX16, and PEX19 and in cells from patients with RCDP types 1, 2, and 3 caused by mutations in PEX7, DHAP-AT, and alkyl-DHAP synthase, respectively. Absence of the 1-alkyl-2-acyl form of GPI-anchored proteins might account for some of the complex phenotypes of these two major peroxisomal disorders. PMID:22253471

  14. Anchors for Education Reforms

    ERIC Educational Resources Information Center

    Alok, Kumar

    2012-01-01

    Education reforms, considering their significance, deserve better methods than mere "trial and error." This article conceptualizes a network of six anchors for education reforms: education policy, education system, curriculum, pedagogy, assessment, and teacher education. It establishes the futility to reform anchors in isolation and anticipates…

  15. Membrane-Anchored Cytochrome P450 1A2-Cytochrome b5 Complex Features an X-Shaped Contact between Antiparallel Transmembrane Helices.

    PubMed

    Jeřábek, Petr; Florián, Jan; Martínek, Václav

    2016-04-18

    Eukaryotic cytochromes P450 (P450) are membrane-bound enzymes oxidizing a broad spectrum of hydrophobic substrates, including xenobiotics. Protein-protein interactions play a critical role in this process. In particular, the formation of transient complexes of P450 with another protein of the endoplasmic reticulum membrane, cytochrome b5 (cyt b5), dictates catalytic activities of several P450s. To lay a structural foundation for the investigation of these effects, we constructed a model of the membrane-bound full-length human P450 1A2-cyt b5 complex. The model was assembled from several parts using a multiscale modeling approach covering all-atom and coarse-grained molecular dynamics (MD). For soluble P450 1A2-cyt b5 complexes, these simulations yielded three stable binding modes (sAI, sAII, and sB). The membrane-spanning transmembrane domains were reconstituted with the phospholipid bilayer using self-assembly MD. The predicted full-length membrane-bound complexes (mAI and mB) featured a spontaneously formed X-shaped contact between antiparallel transmembrane domains, whereas the mAII mode was found to be unstable in the membrane environment. The mutual position of soluble domains in binding mode mAI was analogous to the sAI complex. Featuring the largest contact area, the least structural flexibility, the shortest electron transfer distance, and the highest number of interprotein salt bridges, mode mAI is the best candidate for the catalytically relevant full-length complex. PMID:26918755

  16. A biochemical analysis of the constraints of tail-anchored protein biogenesis.

    PubMed

    Leznicki, Pawel; Warwicker, Jim; High, Stephen

    2011-06-15

    TA (tail-anchored) proteins utilize distinct biosynthetic pathways, including TRC40 (transmembrane domain recognition complex of 40 kDa)-mediated, chaperone-dependent and/or unassisted routes to the ER (endoplasmic reticulum) membrane. We have addressed the flexibility of cytosolic components participating in these pathways, and explored the thermodynamic constraints of their membrane insertion, by exploiting recombinant forms of Sec61β and Cytb5 (cytochrome b5) bearing covalent modifications within their TA region. In both cases, efficient membrane insertion relied on cytosolic factors capable of accommodating a surprising range of covalent modifications to the TA region. For Sec61β, we found that both SGTA (small glutamine-rich tetratricopeptide repeat-containing protein α) and TRC40 can bind this substrate with a singly PEGylated TA region. However, by introducing two PEG [poly(ethylene glycol)] moieties, TRC40 binding can be prevented, resulting in a block of subsequent membrane integration. Although TRC40 can bind Sec61β polypeptides singly PEGylated at different locations, membrane insertion is more sensitive to the precise location of PEG attachment. Modelling and experimentation indicate that this post-TRC40 effect results from an increased energetic cost of inserting different PEGylated TA regions into the lipid bilayer. We therefore propose that the membrane integration of TA proteins delivered via TRC40 is strongly dependent upon underlying thermodynamics, and speculate that their insertion is via a phospholipid-mediated process.

  17. Structural design, solid-phase synthesis and activity of membrane-anchored β-secretase inhibitors on Aβ generation from wild-type and Swedish-mutant APP.

    PubMed

    Schieb, Heinke; Weidlich, Sebastian; Schlechtingen, Georg; Linning, Philipp; Jennings, Gary; Gruner, Margit; Wiltfang, Jens; Klafki, Hans-Wolfgang; Knölker, Hans-Joachim

    2010-12-27

    Covalent coupling of β-secretase inhibitors to a raftophilic lipid anchor via a suitable spacer by using solid-phase peptide synthesis leads to tripartite structures displaying substantially improved inhibition of cellular secretion of the β-amyloid peptide (Aβ). Herein, we describe a series of novel tripartite structures, their full characterization by NMR spectroscopy and mass spectrometry, and the analysis of their biological activity in cell-based assays. The tripartite structure concept is applicable to different pharmacophores, and the potency in terms of β-secretase inhibition can be optimized by adjusting the spacer length to achieve an optimal distance of the inhibitor from the lipid bilayer. A tripartite structure containing a transition-state mimic inhibitor was found to be less potent on Aβ generation from Swedish-mutant amyloid precursor protein (APP) than from the wild-type protein. Moreover, our observations suggest that specific variants of Aβ are generated from wild-type APP but not from Swedish-mutant APP and are resistant to β-secretase inhibition. Efficient inhibition of Aβ secretion by tripartite structures in the absence of appreciable neurotoxicity was confirmed in a primary neuronal cell culture, thus further supporting the concept. PMID:21132705

  18. PEA-15 facilitates EGFR dephosphorylation via ERK sequestration at increased ER-PM contacts in TNBC cells.

    PubMed

    Shin, Miyoung; Lee, Kyung-Eun; Yang, Eun Gyeong; Jeon, Hyesung; Song, Hyun Kyu

    2015-04-13

    Phosphoprotein enriched in astrocytes of 15 kDa (PEA-15) is known to sequester extracellular signal-regulated kinase (ERK) in the cytoplasm, inhibiting tumorigenesis of human breast cancer cells. Here, we describe how PEA-15 expression affects the dephosphorylation of epidermal growth factor receptor (EGFR) through endoplasmic reticulum (ER)-plasma membrane (PM) contacts in MDA-MB-468, triple-negative breast cancer (TNBC) cells. The increased intracellular calcium concentration resulting from increased cytoplasmic phosphorylated ERK facilitates movement of ER-anchored calcium sensors to the PM. The driving force of trans-localization of calcium-dependent proteins enhances the contact between the activated EGFR and ER-localized phosphatase, PTP1B. Consequently, our findings suggest a mechanism underneath the facilitation of EGFR dephosphorylation by cytoplasmic PEA-15 expression inside TNBC cells, which may be one of the dynamic mechanisms for down-regulation of activated EGFR in cancer cells.

  19. Regulation of lipid biosynthesis, sliding motility, and biofilm formation by a membrane-anchored nucleoid-associated protein of Mycobacterium tuberculosis.

    PubMed

    Ghosh, Soumitra; Indi, Shantinath S; Nagaraja, Valakunja

    2013-04-01

    Bacteria use a number of small basic proteins for organization and compaction of their genomes. By their interaction with DNA, these nucleoid-associated proteins (NAPs) also influence gene expression. Rv3852, a NAP of Mycobacterium tuberculosis, is conserved among the pathogenic and slow-growing species of mycobacteria. Here, we show that the protein predominantly localizes in the cell membrane and that the carboxy-terminal region with the propensity to form a transmembrane helix is necessary for its membrane localization. The protein is involved in genome organization, and its ectopic expression in Mycobacterium smegmatis resulted in altered nucleoid morphology, defects in biofilm formation, sliding motility, and change in apolar lipid profile. We demonstrate its crucial role in regulating the expression of KasA, KasB, and GroEL1 proteins, which are in turn involved in controlling the surface phenotypes in mycobacteria. PMID:23396914

  20. Engineered retargeting of viral RNA replication complexes to an alternative intracellular membrane.

    PubMed

    Miller, David J; Schwartz, Michael D; Dye, Billy T; Ahlquist, Paul

    2003-11-01

    Positive-strand RNA virus replication complexes are universally associated with intracellular membranes, although different viruses use membranes derived from diverse and sometimes multiple organelles. We investigated whether unique intracellular membranes are required for viral RNA replication complex formation and function in yeast by retargeting protein A, the Flock House virus (FHV) RNA-dependent RNA polymerase. Protein A, the only viral protein required for FHV RNA replication, targets and anchors replication complexes to outer mitochondrial membranes in part via an N-proximal sequence that contains a transmembrane domain. We replaced the FHV protein A mitochondrial outer membrane-targeting sequence with the N-terminal endoplasmic reticulum (ER)-targeting sequence from the yeast NADP cytochrome P450 oxidoreductase or inverted C-terminal ER-targeting sequences from the hepatitis C virus NS5B polymerase or the yeast t-SNARE Ufe1p. Confocal immunofluorescence microscopy confirmed that protein A chimeras retargeted to the ER. FHV subgenomic and genomic RNA accumulation in yeast expressing ER-targeted protein A increased 2- to 13-fold over that in yeast expressing wild-type protein A, despite similar protein A levels. Density gradient flotation assays demonstrated that ER-targeted protein A remained membrane associated, and in vitro RNA-dependent RNA polymerase assays demonstrated an eightfold increase in the in vitro RNA synthesis activity of the ER-targeted FHV RNA replication complexes. Electron microscopy showed a change in the intracellular membrane alterations from a clustered mitochondrial distribution with wild-type protein A to the formation of perinuclear layers with ER-targeted protein A. We conclude that specific intracellular membranes are not required for FHV RNA replication complex formation and function.

  1. Anchor Trial Launch

    Cancer.gov

    NCI has launched a multicenter phase III clinical trial called the ANCHOR Study -- Anal Cancer HSIL (High-grade Squamous Intraepithelial Lesion) Outcomes Research Study -- to determine if treatment of HSIL in HIV-infected individuals can prevent anal canc

  2. The Saccharomyces cerevisiae YLL012/YEH1, YLR020/YEH2, and TGL1 genes encode a novel family of membrane-anchored lipases that are required for steryl ester hydrolysis.

    PubMed

    Köffel, René; Tiwari, Rashi; Falquet, Laurent; Schneiter, Roger

    2005-03-01

    Sterol homeostasis in eukaryotic cells relies on the reciprocal interconversion of free sterols and steryl esters. The formation of steryl esters is well characterized, but the mechanisms that control steryl ester mobilization upon cellular demand are less well understood. We have identified a family of three lipases of Saccharomyces cerevisiae that are required for efficient steryl ester mobilization. These lipases, encoded by YLL012/YEH1, YLR020/YEH2, and TGL1, are paralogues of the mammalian acid lipase family, which is composed of the lysosomal acid lipase, the gastric lipase, and four novel as yet uncharacterized human open reading frames. Lipase triple-mutant yeast cells are completely blocked in steryl ester hydrolysis but do not affect the mobilization of triacylglycerols, indicating that the three lipases are required for steryl ester mobilization in vivo. Lipase single mutants mobilize steryl esters to various degrees, indicating partial functional redundancy of the three gene products. Lipase double-mutant cells in which the third lipase is expressed from the inducible GAL1 promoter have greatly reduced steady-state levels of steryl esters, indicating that overexpression of any of the three lipases is sufficient for steryl ester mobilization in vivo. The three yeast enzymes constitute a novel class of membrane-anchored lipases that differ in topology and subcellular localization.

  3. The Arabidopsis Synaptotagmin1 Is Enriched in Endoplasmic Reticulum-Plasma Membrane Contact Sites and Confers Cellular Resistance to Mechanical Stresses1[OPEN

    PubMed Central

    Pérez-Sancho, Jessica; Vanneste, Steffen; Lee, Eunkyoung; McFarlane, Heather E.; Esteban del Valle, Alicia; Valpuesta, Victoriano; Friml, Jiří

    2015-01-01

    Eukaryotic endoplasmic reticulum (ER)-plasma membrane (PM) contact sites are evolutionarily conserved microdomains that have important roles in specialized metabolic functions such as ER-PM communication, lipid homeostasis, and Ca2+ influx. Despite recent advances in knowledge about ER-PM contact site components and functions in yeast (Saccharomyces cerevisiae) and mammals, relatively little is known about the functional significance of these structures in plants. In this report, we characterize the Arabidopsis (Arabidopsis thaliana) phospholipid binding Synaptotagmin1 (SYT1) as a plant ortholog of the mammal extended synaptotagmins and yeast tricalbins families of ER-PM anchors. We propose that SYT1 functions at ER-PM contact sites because it displays a dual ER-PM localization, it is enriched in microtubule-depleted regions at the cell cortex, and it colocalizes with Vesicle-Associated Protein27-1, a known ER-PM marker. Furthermore, biochemical and physiological analyses indicate that SYT1 might function as an electrostatic phospholipid anchor conferring mechanical stability in plant cells. Together, the subcellular localization and functional characterization of SYT1 highlights a putative role of plant ER-PM contact site components in the cellular adaptation to environmental stresses. PMID:25792253

  4. Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum-plasma membrane contact sites.

    PubMed

    Fernández-Busnadiego, Rubén; Saheki, Yasunori; De Camilli, Pietro

    2015-04-21

    The close apposition between the endoplasmic reticulum (ER) and the plasma membrane (PM) plays important roles in Ca(2+) homeostasis, signaling, and lipid metabolism. The extended synaptotagmins (E-Syts; tricalbins in yeast) are ER-anchored proteins that mediate the tethering of the ER to the PM and are thought to mediate lipid transfer between the two membranes. E-Syt cytoplasmic domains comprise a synaptotagmin-like mitochondrial-lipid-binding protein (SMP) domain followed by five C2 domains in E-Syt1 and three C2 domains in E-Syt2/3. Here, we used cryo-electron tomography to study the 3D architecture of E-Syt-mediated ER-PM contacts at molecular resolution. In vitrified frozen-hydrated mammalian cells overexpressing individual E-Syts, in which E-Syt-dependent contacts were by far the predominant contacts, ER-PM distance (19-22 nm) correlated with the amino acid length of the cytosolic region of E-Syts (i.e., the number of C2 domains). Elevation of cytosolic Ca(2+) shortened the ER-PM distance at E-Syt1-dependent contacts sites. E-Syt-mediated contacts displayed a characteristic electron-dense layer between the ER and the PM. These features were strikingly different from those observed in cells exposed to conditions that induce contacts mediated by the stromal interaction molecule 1 (STIM1) and the Ca(2+) channel Orai1 as well as store operated Ca(2+) entry. In these cells the gap between the ER and the PM was spanned by filamentous structures perpendicular to the membranes. Our results define specific ultrastructural features of E-Syt-dependent ER-PM contacts and reveal their structural plasticity, which may impact on the cross-talk between the ER and the PM and the functions of E-Syts in lipid transport between the two bilayers. PMID:25787254

  5. Rearrangements in the Relative Orientation of Cytoplasmic Domains Induced by a Membrane-anchored Protein Mediate Modulations in Kv Channel Gating*

    PubMed Central

    Lvov, Anatoli; Greitzer, Dafna; Berlin, Shai; Chikvashvili, Dodo; Tsuk, Sharon; Lotan, Ilana; Michaelevski, Izhak

    2009-01-01

    Interdomain interactions between intracellular N and C termini have been described for various K+ channels, including the voltage-gated Kv2.1, and suggested to affect channel gating. However, no channel regulatory protein directly affecting N/C interactions has been demonstrated. Most Kv2.1 channel interactions with regulatory factors occur at its C terminus. The vesicular SNARE that is also present at a high concentration in the neuronal plasma membrane, VAMP2, is the only protein documented to affect Kv2.1 gating by binding to its N terminus. As its binding target has been mapped near a site implicated in Kv2.1 N/C interactions, we hypothesized that VAMP2 binding to the N terminus requires concomitant conformational changes in the C terminus, which wraps around the N terminus from the outside, to give VAMP2 access. Here, we first determined that the Kv2.1 N terminus, although crucial, is not sufficient to convey functional interaction with VAMP2, and that, concomitant to its binding to the “docking loop” at the Kv2.1 N terminus, VAMP2 binds to the proximal part of the Kv2.1 C terminus, C1a. Next, using computational biology approaches (ab initio modeling, docking, and molecular dynamics simulations) supported by molecular biology, biochemical, electrophysiological, and fluorescence resonance energy transfer analyses, we mapped the interaction sites on both VAMP2 and Kv2.1 and found that this interaction is accompanied by rearrangements in the relative orientation of Kv2.1 cytoplasmic domains. We propose that VAMP2 modulates Kv2.1 inactivation by interfering with the interaction between the docking loop and C1a, a mechanism for gating regulation that may pertain also to other Kv channels. PMID:19690160

  6. Protein folding in the ER.

    SciTech Connect

    Stevens, F. J.; Argon, Y.; Biosciences Division; Univ. of Chicago

    1999-10-01

    The endoplasmic reticulum (ER) is a major protein folding compartment for secreted, plasma membrane and organelle proteins. Each of these newly-synthesized polypeptides folds in a deterministic process, affected by the unique conditions that exist in the ER. An understanding of protein folding in the ER is a fundamental biomolecular challenge at two levels. The first level addresses how the amino acid sequence programs that polypeptide to efficiently arrive at a particular fold out of a multitude of alternatives, and how different sequences obtain similar folds. At the second level are the issues introduced by folding not in the cytosol, but in the ER, including the risk of aggregation in a molecularly crowded environment, accommodation of post-translational modifications and the compatibility with subsequent intracellular trafficking. This review discusses both the physicochemical and cell biological constraints of folding, which are the challenges that the ER molecular chaperones help overcome.

  7. Decoding Cytoskeleton-Anchored and Non-Anchored Receptors from Single-Cell Adhesion Force Data.

    PubMed

    Sariisik, Ediz; Popov, Cvetan; Müller, Jochen P; Docheva, Denitsa; Clausen-Schaumann, Hauke; Benoit, Martin

    2015-10-01

    Complementary to parameters established for cell-adhesion force curve analysis, we evaluated the slope before a force step together with the distance from the surface at which the step occurs and visualized the result in a two-dimensional density plot. This new tool allows detachment steps of long membrane tethers to be distinguished from shorter jumplike force steps, which are typical for cytoskeleton-anchored bonds. A prostate cancer cell line (PC3) immobilized on an atomic-force-microscopy sensor interacted with three different substrates: collagen-I (Col-I), bovine serum albumin, and a monolayer of bone marrow-derived stem cells (SCP1). To address PC3 cells' predominant Col-I binding molecules, an antibody-blocking β1-integrin was used. Untreated PC3 cells on Col-I or SCP1 cells, which express Col-I, predominantly showed jumps in their force curves, while PC3 cells on bovine-serum-albumin- and antibody-treated PC3 cells showed long membrane tethers. The probability density plots thus revealed that β1-integrin-specific interactions are predominately anchored to the cytoskeleton, while the nonspecific interactions are mainly membrane-anchored. Experiments with latrunculin-A-treated PC3 cells corroborated these observations. The plots thus reveal details of the anchoring of bonds to the cell and provide a better understanding of receptor-ligand interactions. PMID:26445433

  8. Anchoring the Deficit of the Anchor Deficit: Dyslexia or Attention?

    ERIC Educational Resources Information Center

    Willburger, Edith; Landerl, Karin

    2010-01-01

    In the anchoring deficit hypothesis of dyslexia ("Trends Cogn. Sci.", 2007; 11: 458-465), it is proposed that perceptual problems arise from the lack of forming a perceptual anchor for repeatedly presented stimuli. A study designed to explicitly test the specificity of the anchoring deficit for dyslexia is presented. Four groups, representing all…

  9. ER-stress in Alzheimer's disease: turning the scale?

    PubMed

    Endres, Kristina; Reinhardt, Sven

    2013-01-01

    Pathogenic mechanisms of Alzheimer's disease (AD) are intensely investigated as it is the most common form of dementia and burdens society by its costs and social demands. While key molecules such as A-beta peptides and tau have been identified decades ago, it is still enigmatic what drives the disease in its sporadic manifestation. Synthesis of A-beta peptides as well as phosphorylation of tau proteins comprise normal cellular functions and occur in principle in the healthy as well as in dementia-affected persons. Dyshomeostasis of Amyloid Precursor Protein (APP) cleavage, energy metabolism or kinase/phosphatase activity due to stressors has been suggested as a trigger of the disease. One way for cells to escape stress based on dysfunction of ER is the unfolded protein response - the UPR. This pathway is composed out of three different routes that differ in proteins involved, targets and consequences for cell fate: activation of transmembrane ER resident kinases IRE1-alpha and PERK or monomerization of membrane-anchored activating transcription factor 6 (ATF6) induce activation of versatile transcription factors (XBP-1, eIF2-alpha/ATF4 and ATF6 P50). These bind to specific DNA sequences on target gene promoters and on one hand attenuate general ER-prone protein synthesis and on the other equip the cell with tools to de-stress. If cells fail in stress compensation, this signaling also is able to evoke apoptosis. In this review we summarized knowledge on how APP processing and phosphorylation of tau might be influenced by ER-stress signaling. In addition, we depicted the effects UPR itself seems to have on molecules closely related to AD and describe what is known about UPR in AD animal models as well as in human patients. PMID:24319643

  10. Endosome-ER Contacts Control Actin Nucleation and Retromer Function through VAP-Dependent Regulation of PI4P.

    PubMed

    Dong, Rui; Saheki, Yasunori; Swarup, Sharan; Lucast, Louise; Harper, J Wade; De Camilli, Pietro

    2016-07-14

    VAP (VAPA and VAPB) is an evolutionarily conserved endoplasmic reticulum (ER)-anchored protein that helps generate tethers between the ER and other membranes through which lipids are exchanged across adjacent bilayers. Here, we report that by regulating PI4P levels on endosomes, VAP affects WASH-dependent actin nucleation on these organelles and the function of the retromer, a protein coat responsible for endosome-to-Golgi traffic. VAP is recruited to retromer budding sites on endosomes via an interaction with the retromer SNX2 subunit. Cells lacking VAP accumulate high levels of PI4P, actin comets, and trans-Golgi proteins on endosomes. Such defects are mimicked by downregulation of OSBP, a VAP interactor and PI4P transporter that participates in VAP-dependent ER-endosomes tethers. These results reveal a role of PI4P in retromer-/WASH-dependent budding from endosomes. Collectively, our data show how the ER can control budding dynamics and association with the cytoskeleton of another membrane by direct contacts leading to bilayer lipid modifications. PMID:27419871

  11. Endosome-ER Contacts Control Actin Nucleation and Retromer Function through VAP-Dependent Regulation of PI4P.

    PubMed

    Dong, Rui; Saheki, Yasunori; Swarup, Sharan; Lucast, Louise; Harper, J Wade; De Camilli, Pietro

    2016-07-14

    VAP (VAPA and VAPB) is an evolutionarily conserved endoplasmic reticulum (ER)-anchored protein that helps generate tethers between the ER and other membranes through which lipids are exchanged across adjacent bilayers. Here, we report that by regulating PI4P levels on endosomes, VAP affects WASH-dependent actin nucleation on these organelles and the function of the retromer, a protein coat responsible for endosome-to-Golgi traffic. VAP is recruited to retromer budding sites on endosomes via an interaction with the retromer SNX2 subunit. Cells lacking VAP accumulate high levels of PI4P, actin comets, and trans-Golgi proteins on endosomes. Such defects are mimicked by downregulation of OSBP, a VAP interactor and PI4P transporter that participates in VAP-dependent ER-endosomes tethers. These results reveal a role of PI4P in retromer-/WASH-dependent budding from endosomes. Collectively, our data show how the ER can control budding dynamics and association with the cytoskeleton of another membrane by direct contacts leading to bilayer lipid modifications.

  12. Peroxisome dependency of alkyl-containing GPI-anchor biosynthesis in the endoplasmic reticulum

    PubMed Central

    Kanzawa, Noriyuki; Maeda, Yusuke; Ogiso, Hideo; Murakami, Yoshiko; Taguchi, Ryo; Kinoshita, Taroh

    2009-01-01

    Glycosylphosphatidylinositol-anchored proteins (GPI-APs) play various roles in cell–cell and cell–environment interactions. GPI is synthesized in the endoplasmic reticulum (ER) from phosphatidylinositol (PI) through step-wise reactions including transfers of monosaccharides and preassembled GPI is transferred en bloc to proteins. Cellular PI contains mostly diacyl glycerol and unsaturated fatty acid in the sn-2 position, whereas mammalian GPI-APs have mainly 1-alkyl-2-acyl PI and almost exclusively stearic acid, a saturated chain, at the sn-2 position. The latter characteristic is the result of fatty acid remodeling occurring in the Golgi, generating GPI-anchors compatible with raft membrane. The former characteristic is the result of diacyl to alkyl-acyl change occurring in the third GPI intermediate, glucosaminyl-inositolacylated-PI (GlcN-acyl-PI). Here we investigated the origin of the sn-1 alkyl-chain in GPI-APs. Using cell lines defective in the peroxisomal alkyl-phospholipid biosynthetic pathway, we demonstrated that generation of alkyl-containing GPI is dependent upon the peroxisomal pathway. We further demonstrated that in cells defective in the peroxisome pathway, the chain composition of the diacyl glycerol moiety in GlcN-acyl-PI is different from those in the first intermediate N-acetylglucosaminyl-PI and cellular PI, indicating that not only diacyl to alkyl-acyl change but also diacyl to diacyl change occurs in GlcN-acyl-PI. We therefore propose a biosynthetic step within GlcN-acyl-PI in which the diacyl glycerol (or diacyl phosphatidic acid) part is replaced by diradyl glycerol (or diradyl phosphatidic acid). These results highlight cooperation of three organelles, the ER, the Golgi, and the peroxisome, in the generation of the lipid portion of GPI-APs. PMID:19815513

  13. The calmodulin-like proteins AtCML4 and AtCML5 are single-pass membrane proteins targeted to the endomembrane system by an N-terminal signal anchor sequence

    PubMed Central

    Ruge, Henning; Flosdorff, Sandra; Ebersberger, Ingo; Chigri, Fatima; Vothknecht, Ute C.

    2016-01-01

    Calmodulins (CaMs) are important mediators of Ca2+ signals that are found ubiquitously in all eukaryotic organisms. Plants contain a unique family of calmodulin-like proteins (CMLs) that exhibit greater sequence variance compared to canonical CaMs. The Arabidopsis thaliana proteins AtCML4 and AtCML5 are members of CML subfamily VII and possess a CaM domain comprising the characteristic double pair of EF-hands, but they are distinguished from other members of this subfamily and from canonical CaMs by an N-terminal extension of their amino acid sequence. Transient expression of yellow fluorescent protein-tagged AtCML4 and AtCML5 under a 35S-promoter in Nicotiana benthamiana leaf cells revealed a spherical fluorescence pattern. This pattern was confirmed by transient expression in Arabidopsis protoplasts under the native promoter. Co-localization analyses with various endomembrane marker proteins suggest that AtCML4 and AtCML5 are localized to vesicular structures in the interphase between Golgi and the endosomal system. Further studies revealed AtCML5 to be a single-pass membrane protein that is targeted into the endomembrane system by an N-terminal signal anchor sequence. Self-assembly green fluorescent protein and protease protection assays support a topology with the CaM domain exposed to the cytosolic surface and not the lumen of the vesicles, indicating that AtCML5 could sense Ca2+ signals in the cytosol. Phylogenetic analysis suggests that AtCML4 and AtCML5 are closely related paralogues originating from a duplication event within the Brassicaceae family. CML4/5-like proteins seem to be universally present in eudicots but are absent in some monocots. Together these results show that CML4/5-like proteins represent a flowering plant-specific subfamily of CMLs with a potential function in vesicle transport within the plant endomembrane system. PMID:27029353

  14. The calmodulin-like proteins AtCML4 and AtCML5 are single-pass membrane proteins targeted to the endomembrane system by an N-terminal signal anchor sequence.

    PubMed

    Ruge, Henning; Flosdorff, Sandra; Ebersberger, Ingo; Chigri, Fatima; Vothknecht, Ute C

    2016-06-01

    Calmodulins (CaMs) are important mediators of Ca(2+) signals that are found ubiquitously in all eukaryotic organisms. Plants contain a unique family of calmodulin-like proteins (CMLs) that exhibit greater sequence variance compared to canonical CaMs. The Arabidopsis thaliana proteins AtCML4 and AtCML5 are members of CML subfamily VII and possess a CaM domain comprising the characteristic double pair of EF-hands, but they are distinguished from other members of this subfamily and from canonical CaMs by an N-terminal extension of their amino acid sequence. Transient expression of yellow fluorescent protein-tagged AtCML4 and AtCML5 under a 35S-promoter in Nicotiana benthamiana leaf cells revealed a spherical fluorescence pattern. This pattern was confirmed by transient expression in Arabidopsis protoplasts under the native promoter. Co-localization analyses with various endomembrane marker proteins suggest that AtCML4 and AtCML5 are localized to vesicular structures in the interphase between Golgi and the endosomal system. Further studies revealed AtCML5 to be a single-pass membrane protein that is targeted into the endomembrane system by an N-terminal signal anchor sequence. Self-assembly green fluorescent protein and protease protection assays support a topology with the CaM domain exposed to the cytosolic surface and not the lumen of the vesicles, indicating that AtCML5 could sense Ca(2+) signals in the cytosol. Phylogenetic analysis suggests that AtCML4 and AtCML5 are closely related paralogues originating from a duplication event within the Brassicaceae family. CML4/5-like proteins seem to be universally present in eudicots but are absent in some monocots. Together these results show that CML4/5-like proteins represent a flowering plant-specific subfamily of CMLs with a potential function in vesicle transport within the plant endomembrane system. PMID:27029353

  15. A di-arginine ER retention signal regulates trafficking of HCN1 channels from the early secretory pathway to the plasma membrane.

    PubMed

    Pan, Yuan; Laird, Joseph G; Yamaguchi, David M; Baker, Sheila A

    2015-02-01

    Hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels carry Ih, which contributes to neuronal excitability and signal transmission in the nervous system. Controlling the trafficking of HCN1 is an important aspect of its regulation, yet the details of this process are poorly understood. Here, we investigated how the C-terminus of HCN1 regulates trafficking by testing for its ability to redirect the localization of a non-targeted reporter in transgenic Xenopus laevis photoreceptors. We found that HCN1 contains an ER localization signal and through a series of deletion constructs, identified the responsible di-arginine ER retention signal. This signal is located in the intrinsically disordered region of the C-terminus of HCN1. To test the function of the ER retention signal in intact channels, we expressed wild type and mutant HCN1 in HEK293 cells and found this signal negatively regulates surface expression of HCN1. In summary, we report a new mode of regulating HCN1 trafficking: through the use of a di-arginine ER retention signal that monitors processing of the channel in the early secretory pathway.

  16. VAP-B binds to Rab3GAP1 at the ER: its implication in nuclear envelope formation through the ER-Golgi intermediate compartment.

    PubMed

    Hantan, Degejirihu; Yamamoto, Yasunori; Sakisaka, Toshiaki

    2014-01-01

    The vesicle-associated membrane protein-associated protein B (VAP-B) is a tail-anchored protein in the endoplasmic reticulum (ER). VAP-B functions as an adaptor protein to recruit target proteins to the ER and execute various cellular functions, lipid transport, membrane traffic, ER stress etc. Recently, VAP-B has been shown to regulate the nuclear envelope protein transport through the ER-Golgi intermediate compartment (ERGIC). We showed here that VAP-B directly binds to Rab3 GTPase activating protein 1 (Rab3GAP1), the catalytic subunit of Rab3GAP, through the two phenylalanines (FF) in an acidic tract (FFAT)-like motif of Rab3GAP1. Rab3GAP consists of two subunits, the catalytic subunit Rab3GAP1 and the non-catalytic subunit Rab3GAP2. VAP-B binds to Rab3GAP1 even in the Rab3GAP1/2 heterodimer complex. A single amino acid substitution of the FFAT-like motif reduces the binding activity of Rab3GAP1 to VAP-B. On the other hand, the FFAT-like motif mutation increases the binding activity of Rab3GAP1 to ERGIC-53, the ERGIC marker protein. Overexpression of Rab3GAP1 affects nuclear envelope formation more potently than that of Rab3GAP1 FFAT-like motif mutant. These results suggest that the binding of VAP-B to Rab3GAP1 is implicated in the regulation of nuclear envelope formation through ERGIC.

  17. Bellow seal and anchor

    DOEpatents

    Mansure, Arthur J.

    2001-01-01

    An annular seal is made of a collapsible bellows. The bellows can function as an anchor or a seal and is easily set into position using relative component movement. The bellows folds can be slanted and their outer sealing edges can have different profiles to meet expected conditions. The bellows is expanded for insertion to reduce its outer dimension and sets by compaction as a result of relative movement. The bellows can be straight or tapered and is settable with a minimal axial force.

  18. An ER-peroxisome tether exerts peroxisome population control in yeast.

    PubMed

    Knoblach, Barbara; Sun, Xuejun; Coquelle, Nicolas; Fagarasanu, Andrei; Poirier, Richard L; Rachubinski, Richard A

    2013-09-11

    Eukaryotic cells compartmentalize biochemical reactions into membrane-enclosed organelles that must be faithfully propagated from one cell generation to the next. Transport and retention processes balance the partitioning of organelles between mother and daughter cells. Here we report the identification of an ER-peroxisome tether that links peroxisomes to the ER and ensures peroxisome population control in the yeast Saccharomyces cerevisiae. The tether consists of the peroxisome biogenic protein, Pex3p, and the peroxisome inheritance factor, Inp1p. Inp1p bridges the two compartments by acting as a molecular hinge between ER-bound Pex3p and peroxisomal Pex3p. Asymmetric peroxisome division leads to the formation of Inp1p-containing anchored peroxisomes and Inp1p-deficient mobile peroxisomes that segregate to the bud. While peroxisomes in mother cells are not released from tethering, de novo formation of tethers in the bud assists in the directionality of peroxisome transfer. Peroxisomes are thus stably maintained over generations of cells through their continued interaction with tethers.

  19. The chlamydial organism Simkania negevensis forms ER vacuole contact sites and inhibits ER-stress.

    PubMed

    Mehlitz, Adrian; Karunakaran, Karthika; Herweg, Jo-Ana; Krohne, Georg; van de Linde, Sebastian; Rieck, Elke; Sauer, Markus; Rudel, Thomas

    2014-08-01

    Most intracellular bacterial pathogens reside within membrane-surrounded host-derived vacuoles. Few of these bacteria exploit membranes from the host's endoplasmic reticulum (ER) to form a replicative vacuole. Here, we describe the formation of ER-vacuole contact sites as part of the replicative niche of the chlamydial organism Simkania negevensis. Formation of ER-vacuole contact sites is evolutionary conserved in the distantly related protozoan host Acanthamoeba castellanii. Simkania growth is accompanied by mitochondria associating with the Simkania-containing vacuole (SCV). Super-resolution microscopy as well as 3D reconstruction from electron micrographs of serial ultra-thin sections revealed a single vacuolar system forming extensive ER-SCV contact sites on the Simkania vacuolar surface. Simkania infection induced an ER-stress response, which was later downregulated. Induction of ER-stress with Thapsigargin or Tunicamycin was strongly inhibited in cells infected with Simkania. Inhibition of ER-stress was required for inclusion formation and efficient growth, demonstrating a role of ER-stress in the control of Simkania infection. Thus, Simkania forms extensive ER-SCV contact sites in host species evolutionary as diverse as human and amoeba. Moreover, Simkania is the first bacterial pathogen described to interfere with ER-stress induced signalling to promote infection.

  20. Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail-anchored proteins

    PubMed Central

    Chen, Yu-Chan; Umanah, George K E; Dephoure, Noah; Andrabi, Shaida A; Gygi, Steven P; Dawson, Ted M; Dawson, Valina L; Rutter, Jared

    2014-01-01

    The majority of ER-targeted tail-anchored (TA) proteins are inserted into membranes by the Guided Entry of Tail-anchored protein (GET) system. Disruption of this system causes a subset of TA proteins to mislocalize to mitochondria. We show that the AAA+ ATPase Msp1 limits the accumulation of mislocalized TA proteins on mitochondria. Deletion of MSP1 causes the Pex15 and Gos1 TA proteins to accumulate on mitochondria when the GET system is impaired. Likely as a result of failing to extract mislocalized TA proteins, yeast with combined mutation of the MSP1 gene and the GET system exhibit strong synergistic growth defects and severe mitochondrial damage, including loss of mitochondrial DNA and protein and aberrant mitochondrial morphology. Like yeast Msp1, human ATAD1 limits the mitochondrial mislocalization of PEX26 and GOS28, orthologs of Pex15 and Gos1, respectively. GOS28 protein level is also increased in ATAD1−/− mouse tissues. Therefore, we propose that yeast Msp1 and mammalian ATAD1 are conserved members of the mitochondrial protein quality control system that might promote the extraction and degradation of mislocalized TA proteins to maintain mitochondrial integrity. PMID:24843043

  1. Granular Simulation of NEO Anchoring

    NASA Technical Reports Server (NTRS)

    Mazhar, Hammad

    2011-01-01

    NASA is interested in designing a spacecraft capable of visiting a Near Earth Object (NEO), performing experiments, and then returning safely. Certain periods of this mission will require the spacecraft to remain stationary relative to the NEO. Such situations require an anchoring mechanism that is compact, easy to deploy and upon mission completion, easily removed. The design philosophy used in the project relies on the simulation capability of a multibody dynamics physics engine. On Earth it is difficult to create low gravity conditions and testing in low gravity environments, whether artificial or in space is costly and therefore not feasible. Through simulation, gravity can be controlled with great accuracy, making it ideally suited to analyze the problem at hand. Using Chrono::Engine [1], a simulation package capable of utilizing massively parallel GPU hardware, several validation experiments will be performed. Once there is sufficient confidence, modeling of the NEO regolith interaction will begin after which the anchor tests will be performed and analyzed. The outcome of this task is a study with an analysis of several different anchor designs, along with a recommendation on which anchor is better suited to the task of anchoring. With the anchors tested against a range of parameters relating to soil, environment and anchor penetration angles/velocities on a NEO.

  2. Solid-state NMR spectra of lipid-anchored proteins under magic angle spinning.

    PubMed

    Nomura, Kaoru; Harada, Erisa; Sugase, Kenji; Shimamoto, Keiko

    2014-03-01

    Solid-state NMR is a promising tool for elucidating membrane-related biological phenomena. We achieved the measurement of high-resolution solid-state NMR spectra for a lipid-anchored protein embedded in lipid bilayers under magic angle spinning (MAS). To date, solid-state NMR measurements of lipid-anchored proteins have not been accomplished due to the difficulty in supplying sufficient amount of stable isotope labeled samples in the overexpression of lipid-anchored proteins requiring complex posttranslational modification. We designed a pseudo lipid-anchored protein in which the protein component was expressed in E. coli and attached to a chemically synthesized lipid-anchor mimic. Using two types of membranes, liposomes and bicelles, we demonstrated different types of insertion procedures for lipid-anchored protein into membranes. In the liposome sample, we were able to observe the cross-polarization and the (13)C-(13)C chemical shift correlation spectra under MAS, indicating that the liposome sample can be used to analyze molecular interactions using dipolar-based NMR experiments. In contrast, the bicelle sample showed sufficient quality of spectra through scalar-based experiments. The relaxation times and protein-membrane interaction were capable of being analyzed in the bicelle sample. These results demonstrated the applicability of two types of sample system to elucidate the roles of lipid-anchors in regulating diverse biological phenomena.

  3. A Role for Macro-ER-Phagy in ER Quality Control.

    PubMed

    Lipatova, Zhanna; Segev, Nava

    2015-07-01

    The endoplasmic-reticulum quality-control (ERQC) system shuttles misfolded proteins for degradation by the proteasome through the well-defined ER-associated degradation (ERAD) pathway. In contrast, very little is known about the role of autophagy in ERQC. Macro-autophagy, a collection of pathways that deliver proteins through autophagosomes (APs) for degradation in the lysosome (vacuole in yeast), is mediated by autophagy-specific proteins, Atgs, and regulated by Ypt/Rab GTPases. Until recently, the term ER-phagy was used to describe degradation of ER membrane and proteins in the lysosome under stress: either ER stress induced by drugs or whole-cell stress induced by starvation. These two types of stresses induce micro-ER-phagy, which does not use autophagic organelles and machinery, and non-selective autophagy. Here, we characterize the macro-ER-phagy pathway and uncover its role in ERQC. This pathway delivers 20-50% of certain ER-resident membrane proteins to the vacuole and is further induced to >90% by overexpression of a single integral-membrane protein. Even though such overexpression in cells defective in macro-ER-phagy induces the unfolded-protein response (UPR), UPR is not needed for macro-ER-phagy. We show that macro-ER-phagy is dependent on Atgs and Ypt GTPases and its cargo passes through APs. Moreover, for the first time the role of Atg9, the only integral-membrane core Atg, is uncoupled from that of other core Atgs. Finally, three sequential steps of this pathway are delineated: Atg9-dependent exit from the ER en route to autophagy, Ypt1- and core Atgs-mediated pre-autophagsomal-structure organization, and Ypt51-mediated delivery of APs to the vacuole.

  4. Poxvirus Membrane Biogenesis

    PubMed Central

    2015-01-01

    Poxviruses differ from most DNA viruses by replicating entirely within the cytoplasm. The first discernible viral structures are crescents and spherical immature virions containing a single lipoprotein membrane bilayer with an external honeycomb lattice. Because this viral membrane displays no obvious continuity with a cellular organelle, a de novo origin was suggested. Nevertheless, transient connections between viral and cellular membranes could be difficult to resolve. Despite the absence of direct evidence, the intermediate compartment (ERGIC) between the endoplasmic reticulum (ER) and Golgi apparatus and the ER itself were considered possible sources of crescent membranes. A break-through in understanding poxvirus membrane biogenesis has come from recent studies of the abortive replication of several vaccinia virus null mutants. Novel images showing continuity between viral crescents and the ER and the accumulation of immature virions in the expanded ER lumen provide the first direct evidence for a cellular origin of this poxvirus membrane. PMID:25728299

  5. Bone cement improves suture anchor fixation.

    PubMed

    Giori, Nicholas J; Sohn, David H; Mirza, Faisal M; Lindsey, Derek P; Lee, Arthur T

    2006-10-01

    Suture anchor fixation failure can occur if the anchor pulls out of bone. We hypothesized that suture anchor fixation can be augmented with polymethylmethacrylate cement, and that polymethylmethacrylate can be used to improve fixation in a stripped anchor hole. Six matched cadaveric proximal humeri were used. On one side, suture anchors were placed and loaded to failure using a ramped cyclic loading protocol. The stripped anchor holes then were injected with approximately 1 cc polymethylmethacrylate, and anchors were replaced and tested again. In the contralateral humerus, polymethylmethacrylate was injected into anchor holes before anchor placement and testing. In unstripped anchors, polymethylmethacrylate increased the number of cycles to failure by 34% and failure load by 71% compared with anchors not augmented with polymethylmethacrylate. Polymethylmethacrylate haugmentation of stripped anchors increased the cycles to failure by 31% and failure load by 111% compared with unstripped uncemented anchors. No difference was found in cycles to failure or failure load between cemented stripped anchors and cemented unstripped anchors. Polymethylmethacrylate can be used to augment fixation, reducing the risk of anchor pull-out failure, regardless whether the suture anchor hole is stripped or unstripped. PMID:16702922

  6. Anchoring: A "Cure" for Epy.

    ERIC Educational Resources Information Center

    Thalgott, Mary R.

    1986-01-01

    Anchoring, a neurolinguistic programing technique, was successful in helping a sixth grader with learning disabilities reduce his anxiety reaction to math tasks. Other uses for the approach are noted and guidelines offered. (CL)

  7. Molecular cloning of gp42, a cell-surface molecule that is selectively induced on rat natural killer cells by interleukin 2: glycolipid membrane anchoring and capacity for transmembrane signaling

    PubMed Central

    1991-01-01

    We have previously shown that in vitro culture of rat natural killer (NK) cells in high concentrations of recombinant interleukin 2 (rIL-2) leads to the expression of a surface glycoprotein with a molecular mass of approximately 42 kD. This glycoprotein, gp42, is not induced on other lymphocytes and thus provides a lineage-specific marker for rIL-2- activated NK cells. We here present the nucleotide sequence for gp42 cDNA. The open reading frame encodes 233 amino acids with three potential sites for N-linked glycosylation. The deduced amino acid sequence lacks an apparent transmembrane domain and instead contains a hydrophobic COOH terminus that is characteristic of glycosylphosphatidylinositol (GPI)-anchored surface proteins. Consistent with this, gp42 is cleaved from the NK-like cell line, RNK- 16, by phosphatidylinositol-specific phospholipase C (PI-PLC), as is gp42 expressed on CHO cells that have been transformed with gp42 cDNA. On rIL-2-activated NK cells, gp42 is resistant to PI-PLC, though our studies suggest that gp42 on these cells is still expressed as a GPI- anchored molecule. Antibody to gp42 stimulates in RNK-16 cells an increase in inositol phosphates and in intracellular calciu, signals that are associated with the activation of lymphocytes, including NK cells. rIL-2-activated NK cells, however, lack this response to gp42 as well as to other stimuli. Thus, gp42, the only NK-specific activation antigen, is a GPI-anchored surface molecule with the capacity to stimulate transmembrane signaling. PMID:1845873

  8. The Autocrine Mitogenic Loop of the Ciliate Euplotes raikovi: The Pheromone Membrane-bound Forms Are the Cell Binding Sites and Potential Signaling Receptors of Soluble Pheromones

    PubMed Central

    Ortenzi, Claudio; Alimenti, Claudio; Vallesi, Adriana; Di Pretoro, Barbara; Terza, Antonietta La; Luporini, Pierangelo

    2000-01-01

    Homologous proteins, denoted pheromones, promote cell mitotic proliferation and mating pair formation in the ciliate Euplotes raikovi, according to whether they bind to cells in an autocrine- or paracrine-like manner. The primary transcripts of the genes encoding these proteins undergo alternate splicing, which generates at least two distinct mRNAs. One is specific for the soluble pheromone, the other for a pheromone isoform that remains anchored to the cell surface as a type II protein, whose extracellular C-terminal region is structurally equivalent to the secreted form. The 15-kDa membrane-bound isoform of pheromone Er-1, denoted Er-1mem and synthesized by the same E. raikovi cells that secrete Er-1, has been purified from cell membranes by affinity chromatography prepared with matrix-bound Er-1, and its extracellular and cytoplasmic regions have been expressed as recombinant proteins. Using the purified material and these recombinant proteins, it has been shown that Er-1mem has the property of binding pheromones competitively through its extracellular pheromone-like domain and associating reversibly and specifically with a guanine nucleotide-binding protein through its intracellular domain. It has been concluded that the membrane-bound pheromone isoforms of E. raikovi represent the cell effective pheromone binding sites and are functionally equipped for transducing the signal generated by this binding. PMID:10749941

  9. Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum–plasma membrane contact sites

    PubMed Central

    Fernández-Busnadiego, Rubén; Saheki, Yasunori; De Camilli, Pietro

    2015-01-01

    The close apposition between the endoplasmic reticulum (ER) and the plasma membrane (PM) plays important roles in Ca2+ homeostasis, signaling, and lipid metabolism. The extended synaptotagmins (E-Syts; tricalbins in yeast) are ER-anchored proteins that mediate the tethering of the ER to the PM and are thought to mediate lipid transfer between the two membranes. E-Syt cytoplasmic domains comprise a synaptotagmin-like mitochondrial-lipid–binding protein (SMP) domain followed by five C2 domains in E-Syt1 and three C2 domains in E-Syt2/3. Here, we used cryo-electron tomography to study the 3D architecture of E-Syt–mediated ER–PM contacts at molecular resolution. In vitrified frozen-hydrated mammalian cells overexpressing individual E-Syts, in which E-Syt–dependent contacts were by far the predominant contacts, ER–PM distance (19–22 nm) correlated with the amino acid length of the cytosolic region of E-Syts (i.e., the number of C2 domains). Elevation of cytosolic Ca2+ shortened the ER–PM distance at E-Syt1–dependent contacts sites. E-Syt–mediated contacts displayed a characteristic electron-dense layer between the ER and the PM. These features were strikingly different from those observed in cells exposed to conditions that induce contacts mediated by the stromal interaction molecule 1 (STIM1) and the Ca2+ channel Orai1 as well as store operated Ca2+ entry. In these cells the gap between the ER and the PM was spanned by filamentous structures perpendicular to the membranes. Our results define specific ultrastructural features of E-Syt–dependent ER–PM contacts and reveal their structural plasticity, which may impact on the cross-talk between the ER and the PM and the functions of E-Syts in lipid transport between the two bilayers. PMID:25787254

  10. Protein Folding and Quality Control in the ER

    PubMed Central

    Araki, Kazutaka; Nagata, Kazuhiro

    2011-01-01

    The endoplasmic reticulum (ER) uses an elaborate surveillance system called the ER quality control (ERQC) system. The ERQC facilitates folding and modification of secretory and membrane proteins and eliminates terminally misfolded polypeptides through ER-associated degradation (ERAD) or autophagic degradation. This mechanism of ER protein surveillance is closely linked to redox and calcium homeostasis in the ER, whose balance is presumed to be regulated by a specific cellular compartment. The potential to modulate proteostasis and metabolism with chemical compounds or targeted siRNAs may offer an ideal option for the treatment of disease. PMID:21875985

  11. Data for identification of GPI-anchored peptides and ω-sites in cancer cell lines

    PubMed Central

    Masuishi, Yusuke; Kimura, Yayoi; Arakawa, Noriaki; Hirano, Hisashi

    2016-01-01

    We present data obtained using a focused proteomics approach to identify the glycosylphosphatidylinositol (GPI)-anchored peptides in 19 human cancer cell lines. GPI-anchored proteins (GPI-APs), which localize to the outer leaflet of the membrane microdomains commonly referred to as lipid rafts play important roles in diverse biological processes. Due to the complex structure of the GPI-anchor moiety, it has been difficult to identify GPI-anchored peptide sequences on the proteomic scale by database searches using tools such as MASCOT. Here we provide data from 73 ω-sites derived from 49 GPI-APs in 19 human cancer cell lines. This article contains data related to the research article entitled “Identification of glycosylphosphatidylinositol-anchored proteins and ω-sites using TiO2-based affinity purification followed by hydrogen fluoride treatment” (Masuishi et al., 2016) [1]. PMID:27141528

  12. Data for identification of GPI-anchored peptides and ω-sites in cancer cell lines.

    PubMed

    Masuishi, Yusuke; Kimura, Yayoi; Arakawa, Noriaki; Hirano, Hisashi

    2016-06-01

    We present data obtained using a focused proteomics approach to identify the glycosylphosphatidylinositol (GPI)-anchored peptides in 19 human cancer cell lines. GPI-anchored proteins (GPI-APs), which localize to the outer leaflet of the membrane microdomains commonly referred to as lipid rafts play important roles in diverse biological processes. Due to the complex structure of the GPI-anchor moiety, it has been difficult to identify GPI-anchored peptide sequences on the proteomic scale by database searches using tools such as MASCOT. Here we provide data from 73 ω-sites derived from 49 GPI-APs in 19 human cancer cell lines. This article contains data related to the research article entitled "Identification of glycosylphosphatidylinositol-anchored proteins and ω-sites using TiO2-based affinity purification followed by hydrogen fluoride treatment" (Masuishi et al., 2016) [1]. PMID:27141528

  13. Glycosylphosphatidylinositols: More than just an anchor?

    PubMed

    Bate, Clive; Nolan, William; Williams, Alun

    2016-01-01

    There is increasing interest in the role of glycosylphosphatidylinositol (GPI) anchors that attach some proteins to cell membranes. Far from being biologically inert, GPIs influence the targeting, intracellular trafficking and function of the attached protein. Our recent paper demonstrated the role of sialic acid on the GPI of the cellular prion protein (PrP(C)). The "prion diseases" arise following the conversion of PrP(C) to a disease-associated isoform called PrP(Sc) or "prion". Our paper showed that desialylated PrP(C) inhibited PrP(Sc) formation. Aggregated PrP(Sc) creates a signaling platform in the cell membrane incorporating and activating cytoplasmic phospholipase A2 (cPLA2), an enzyme that regulates PrP(C) trafficking and hence PrP(Sc) formation. The presence of desialylated PrP(C) caused the dissociation of cPLA2 from PrP-containing platforms, reduced the activation of cPLA2 and inhibited PrP(Sc) production. We concluded that sialic acid contained within the GPI attached to PrP(C) modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrP(Sc) formation. PMID:27195066

  14. Glycosylphosphatidylinositols: More than just an anchor?

    PubMed Central

    Bate, Clive; Nolan, William; Williams, Alun

    2016-01-01

    ABSTRACT There is increasing interest in the role of glycosylphosphatidylinositol (GPI) anchors that attach some proteins to cell membranes. Far from being biologically inert, GPIs influence the targeting, intracellular trafficking and function of the attached protein. Our recent paper demonstrated the role of sialic acid on the GPI of the cellular prion protein (PrPC). The “prion diseases” arise following the conversion of PrPC to a disease-associated isoform called PrPSc or “prion”. Our paper showed that desialylated PrPC inhibited PrPSc formation. Aggregated PrPSc creates a signaling platform in the cell membrane incorporating and activating cytoplasmic phospholipase A2 (cPLA2), an enzyme that regulates PrPC trafficking and hence PrPSc formation. The presence of desialylated PrPC caused the dissociation of cPLA2 from PrP-containing platforms, reduced the activation of cPLA2 and inhibited PrPSc production. We concluded that sialic acid contained within the GPI attached to PrPC modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrPSc formation. PMID:27195066

  15. Bone Anchored Hearing Aid

    PubMed Central

    2002-01-01

    Executive Summary Objective The objective of this health technology policy assessment was to determine the effectiveness and cost-effectiveness of bone-anchored hearing aid (BAHA) in improving the hearing of people with conduction or mixed hearing loss. The Technology The (BAHA) is a bone conduction hearing device that includes a titanium fixture permanently implanted into the mastoid bone of the skull and an external percutaneous sound processor. The sound processor is attached to the fixture by means of a skin penetrating abutment. Because the device bypasses the middle ear and directly stimulates the cochlea, it has been recommended for individuals with conduction hearing loss or discharging middle ear infection. The titanium implant is expected to last a lifetime while the external sound processor is expected to last 5 years. The total initial device cost is approximately $5,300 and the external sound processor costs approximately $3,500. Review of BAHA by the Medical Advisory Secretariat The Medical Advisory Secretariat’s review is a descriptive synthesis of findings from 36 research articles published between January 1990 and May 2002. Summary of Findings No randomized controlled studies were found. The evidence was derived from level 4 case series with relative small sample sizes (ranging from 30-188). The majority of the studies have follow-up periods of eight years or longer. All except one study were based on monaural BAHA implant on the side with the best bone conduction threshold. Safety Level 4 evidence showed that BAHA has been be implanted safely in adults and children with success rates of 90% or higher in most studies. No mortality or life threatening morbidity has been reported. Revision rates for tissue reduction or resiting were generally under 10% for adults but have been reported to be as high as 25% in pediatric studies. Adverse skin reaction around the skin penetration site was the most common complication reported. Most of these

  16. ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery

    PubMed Central

    Schuck, Sebastian; Gallagher, Ciara M.; Walter, Peter

    2014-01-01

    ABSTRACT Selective autophagy of damaged or redundant organelles is an important mechanism for maintaining cell homeostasis. We found previously that endoplasmic reticulum (ER) stress in the yeast Saccharomyces cerevisiae causes massive ER expansion and triggers the formation of large ER whorls. Here, we show that stress-induced ER whorls are selectively taken up into the vacuole, the yeast lysosome, by a process termed ER-phagy. Import into the vacuole does not involve autophagosomes but occurs through invagination of the vacuolar membrane, indicating that ER-phagy is topologically equivalent to microautophagy. Even so, ER-phagy requires neither the core autophagy machinery nor several other proteins specifically implicated in microautophagy. Thus, autophagy of ER whorls represents a distinct type of organelle-selective autophagy. Finally, we provide evidence that ER-phagy degrades excess ER membrane, suggesting that it contributes to cell homeostasis by controlling organelle size. PMID:25052096

  17. Microgravity Drill and Anchor System

    NASA Technical Reports Server (NTRS)

    Parness, Aaron; Frost, Matthew A.; King, Jonathan P.

    2013-01-01

    This work is a method to drill into a rock surface regardless of the gravitational field or orientation. The required weight-on-bit (WOB) is supplied by a self-contained anchoring mechanism. The system includes a rotary percussive coring drill, forming a complete sampling instrument usable by robot or human. This method of in situ sample acquisition using micro - spine anchoring technology enables several NASA mission concepts not currently possible with existing technology, including sampling from consolidated rock on asteroids, providing a bolt network for astronauts visiting a near-Earth asteroid, and sampling from the ceilings or vertical walls of lava tubes and cliff faces on Mars. One of the most fundamental parameters of drilling is the WOB; essentially, the load applied to the bit that allows it to cut, creating a reaction force normal to the surface. In every drilling application, there is a minimum WOB that must be maintained for the system to function properly. In microgravity (asteroids and comets), even a small WOB could not be supported conventionally by the weight of the robot or astronaut. An anchoring mechanism would be needed to resist the reactions, or the robot or astronaut would push themselves off the surface and into space. The ability of the system to anchor itself to a surface creates potential applications that reach beyond use in low gravity. The use of these anchoring mechanisms as end effectors on climbing robots has the potential of vastly expanding the scope of what is considered accessible terrain. Further, because the drill is supported by its own anchor rather than by a robotic arm, the workspace is not constrained by the reach of such an arm. Yet, if the drill is on a robotic arm, it has the benefit of not reflecting the forces of drilling back to the arm s joints. Combining the drill with the anchoring feet will create a highly mobile, highly stable, and highly reliable system. The drilling system s anchor uses hundreds of

  18. Final Report for DE-FG02-04ER15626: P-type ATPases in Plants – Role of Lipid Flippases in Membrane Biogenesis

    SciTech Connect

    Harper, Jeffrey F.

    2015-02-24

    The long-range goal of the research is to understand the structure and biological functions of different P-type ATPases (ion pumps) in plant cells, and to use that knowledge to enhance the production of bioenergy from plants, or plant-research inspired technologies. Ptype ATPases include ion pumps that specifically transport H+, Ca2+, Zn2+, Cu2+, K+, or Na+, as well as at least one unusual subfamily that appears to function as lipid flippases, flipping specific lipids from one side of a membrane bilayer to the other. As a group, P-type ATPases are thought to consume more than 1/3 of the cellular ATP in typical eukaryotic cells. Recent research in the Harper lab focused on understanding the biochemical and biological functions of P-type ATPases that flip lipids. These flippases belong to the P4 subfamily of P-type ATPases. The activity of lipid flippases is thought to induce membrane curvature and/or create an asymmetry in which certain lipid head groups are preferential exposed to one surface or the other. In Arabidopsis thaliana there are 12 members of this family referred to as Aminophospholipid ATPase (ALA) 1 to ALA12. Using genetic knockouts, the Harper lab has established that this unusual subfamily of P-type ATPases are critical for plants to cope with even modest changes in temperature (e.g., down to 15°C, or up to 30°C). In addition, members of one subclade are critical for cell expansion, and loss of function mutants result in severe dwarfism. Other members of this same sub-clade are critical for pollen tube growth, and loss of function mutants are sterile under conditions of hot days and cold nights. While the cellular processes that depend on lipid flippases are still unclear, the genetic analysis of loss of function mutants clearly show they are of fundamental importance to plant growth and response to the environment.

  19. Permanent ground anchors: Nicholson design criteria

    NASA Astrophysics Data System (ADS)

    Nicholson, P. J.; Uranowski, D. D.; Wycliffe-Jones, P. T.

    1982-09-01

    The methods used by Nicholson Construction Company in the design of permanent ground anchors specifically as related to retaining walls are discussed. Basic soil parameters, design concepts, drilling and grouting methods for ground anchors are discussed. Particular emphasis is placed on anchors founded in soil rather than rock formations. Also, soil properties necessary for the proper design of anchored retaining walls are detailed. The second chapter of the report is devoted to a general discussion of retaining wall and anchor design. In addition, a design example of an anchored retaining wall is presented in a step by step manner.

  20. The glycosyl phosphatidylinositol anchor is critical for Ly-6A/E- mediated T cell activation

    PubMed Central

    1991-01-01

    Ly-6E, a glycosyl phosphatidylinositol (GPI)-anchored murine alloantigen that can activate T cells upon antibody cross-linking, has been converted into an integral membrane protein by gene fusion. This fusion product, designated Ly-6EDb, was characterized in transiently transfected COS cells and demonstrated to be an integral cell surface membrane protein. Furthermore, the fusion antigen can be expressed on the surface of the BW5147 class "E" mutant cell line, which only expresses integral membrane proteins but not GPI-anchored proteins. The capability of this fusion antigen to activate T cells was examined by gene transfer studies in D10G4.1, a type 2 T cell helper clones. When transfected into D10 cells, the GPI-anchored Ly-6E antigen, as well as the endogenous GPI-anchored Ly-6A antigen, can initiate T cell activation upon antibody cross-linking. In contrast, the transmembrane anchored Ly-6EDb antigen was unable to mediate T cell activation. Our results demonstrate that the GPI-anchor is critical to Ly-6A/E-mediated T cell activation. PMID:1825084

  1. Anchors Aweigh: A Demonstration of Cross-Modality Anchoring and Magnitude Priming

    ERIC Educational Resources Information Center

    Oppenheimer, Daniel M.; LeBoeuf, Robyn A.; Brewer, Noel T.

    2008-01-01

    Research has shown that judgments tend to assimilate to irrelevant "anchors." We extend anchoring effects to show that anchors can even operate across modalities by, apparently, priming a general sense of magnitude that is not moored to any unit or scale. An initial study showed that participants drawing long "anchor" lines made higher numerical…

  2. 33 CFR 401.15 - Stern anchors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Stern anchors. 401.15 Section 401... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Condition of Vessels § 401.15 Stern anchors. (a) Every... equipped with a stern anchor. (b) Every integrated tug and barge or articulated tug and barge unit...

  3. 30 CFR 57.19002 - Anchoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Anchoring. 57.19002 Section 57.19002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND....19002 Anchoring. Hoists shall be anchored securely....

  4. 30 CFR 56.19002 - Anchoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Anchoring. 56.19002 Section 56.19002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Anchoring. Hoists shall be anchored securely....

  5. Late disengagement of a knotless anchor.

    PubMed

    Antonogiannakis, Emmanuel; Yiannakopoulos, Christos K; Karliaftis, Konstantinos; Karabalis, Christos

    2002-10-01

    The knotless anchor is a new type of suture anchor that eliminates the need to perform arthroscopic knots, thus facilitating the performance of arthroscopic shoulder surgery. We report our experience in the use of this type of anchor in arthroscopic Bankart repair and discuss a complication related to using this type of fixation device.

  6. Ethylene perception by the ERS1 protein in Arabidopsis.

    PubMed

    Hall, A E; Findell, J L; Schaller, G E; Sisler, E C; Bleecker, A B

    2000-08-01

    Ethylene perception in Arabidopsis is controlled by a family of five genes, including ETR1, ERS1 (ethylene response sensor 1), ERS2, ETR2, and EIN4. ERS1, the most highly conserved gene with ETR1, encodes a protein with 67% identity to ETR1. To clarify the role of ERS1 in ethylene sensing, we biochemically characterized the ERS1 protein by heterologous expression in yeast. ERS1, like ETR1, forms a membrane-associated, disulfide-linked dimer. In addition, yeast expressing the ERS1 protein contains ethylene-binding sites, indicating ERS1 is also an ethylene-binding protein. This finding supports previous genetic evidence that isoforms of ETR1 also function in plants as ethylene receptors. Further, we used the ethylene antagonist 1-methylcyclopropene (1-MCP) to characterize the ethylene-binding sites of ERS1 and ETR1. We found 1-MCP to be both a potent inhibitor of the ethylene-induced seedling triple response, as well as ethylene binding by yeast expressing ETR1 and ERS1. Yeast expressing ETR1 and ERS1 showed nearly identical sensitivity to 1-MCP, suggesting that the ethylene-binding sites of ETR1 and ERS1 have similar affinities for ethylene.

  7. Both the hydrophobicity and a positively charged region flanking the C-terminal region of the transmembrane domain of signal-anchored proteins play critical roles in determining their targeting specificity to the endoplasmic reticulum or endosymbiotic organelles in Arabidopsis cells.

    PubMed

    Lee, Junho; Lee, Hyunkyung; Kim, Jinho; Lee, Sumin; Kim, Dae Heon; Kim, Sanguk; Hwang, Inhwan

    2011-04-01

    Proteins localized to various cellular and subcellular membranes play pivotal roles in numerous cellular activities. Accordingly, in eukaryotic cells, the biogenesis of organellar proteins is an essential process requiring their correct localization among various cellular and subcellular membranes. Localization of these proteins is determined by either cotranslational or posttranslational mechanisms, depending on the final destination. However, it is not fully understood how the targeting specificity of membrane proteins is determined in plant cells. Here, we investigate the mechanism by which signal-anchored (SA) proteins are differentially targeted to the endoplasmic reticulum (ER) or endosymbiotic organelles using in vivo targeting, subcellular fractionation, and bioinformatics approaches. For targeting SA proteins to endosymbiotic organelles, the C-terminal positively charged region (CPR) flanking the transmembrane domain (TMD) is necessary but not sufficient. The hydrophobicity of the TMD in CPR-containing proteins also plays a critical role in determining targeting specificity; TMDs with a hydrophobicity value >0.4 on the Wimley and White scale are targeted primarily to the ER, whereas TMDs with lower values are targeted to endosymbiotic organelles. Based on these data, we propose that the CPR and the hydrophobicity of the TMD play a critical role in determining the targeting specificity between the ER and endosymbiotic organelles.

  8. Mitochondria supply membranes for autophagosome biogenesis during starvation

    PubMed Central

    Hailey, Dale W.; Kim, Peter K.; Satpute-Krishnan, Prasanna; Rambold, Angelika S.; Mitra, Kasturi; Sougrat, Rachid; Lippincott-Schwartz, Jennifer

    2010-01-01

    Starvation-induced autophagosomes engulf cytosol and/or organelles and deliver them to lysosomes for degradation, thereby re-supplying depleted nutrients. Despite advances in understanding the molecular basis of this process, the membrane origin of autophagosomes remains unclear. Here, we demonstrate that, in starved cells, autophagosomes are derived from the outer membranes of mitochondria. In time-lapse movies, the early autophagosomal marker, mApg5, transiently localizes to punctae on the surface of mitochondria, followed by the late autophagosomal marker, LC3. A unique tail-anchored outer mitochondrial membrane protein, but not other outer nor inner mitochondrial membrane proteins, labels autophagosomes and diffuses into newly forming autophagosomes from mitochondria. The fluorescent lipid, NBD-PS (which converts to PE in mitochondria) transfers from mitochondria to autophagosomes in starved cells. In addition, when mitochondria/ER connections are perturbed by loss of mitofusin2, starvation-induced autophagosomes do not form. Mitochondria thus play a central role in starvation-induced autophagy, serving as membrane source of autophagosomes. PMID:20478256

  9. Cross-species sequence analysis reveals multiple charged residue-rich domains that regulate nuclear/cytoplasmic partitioning and membrane localization of a kinase anchoring protein 12 (SSeCKS/Gravin).

    PubMed

    Streb, Jeffrey W; Miano, Joseph M

    2005-07-29

    A kinase anchoring proteins (AKAPs) assemble and compartmentalize multiprotein signaling complexes at discrete subcellular locales and thus confer specificity to transduction cascades using ubiquitous signaling enzymes, such as protein kinase A. Intrinsic targeting domains in each AKAP determine the subcellular localization of these complexes and, along with protein-protein interaction domains, form the core of AKAP function. As a foundational step toward elucidating the relationship between location and function, we have used cross-species sequence analysis and deletion mapping to facilitate the identification of the targeting determinants of AKAP12 (also known as SSeCKS or Gravin). Three charged residue-rich regions were identified that regulate two aspects of AKAP12 localization, nuclear/cytoplasmic partitioning and perinuclear/cell periphery targeting. Using deletion mapping and green fluorescent protein chimeras, we uncovered a heretofore unrecognized nuclear localization potential. Five nuclear localization signals, including a novel class of this type of signal termed X2-NLS, are found in the central region of AKAP12 and are important for nuclear targeting. However, this nuclear localization is suppressed by the negatively charged C terminus that mediates nuclear exclusion. In this condition, the distribution of AKAP12 is regulated by an N-terminal targeting domain that simultaneously directs perinuclear and peripheral AKAP12 localization. Three basic residue-rich regions in the N-terminal targeting region have similarity to the MARCKS proteins and were found to control AKAP12 localization to ganglioside-rich regions at the cell periphery. Our data suggest that AKAP12 localization is regulated by a hierarchy of targeting domains and that the localization of AKAP12-assembled signaling complexes may be dynamically regulated. PMID:15923193

  10. The ROSETTA Lander anchoring system

    NASA Astrophysics Data System (ADS)

    Thiel, Markus; Stöcker, Jakob; Rohe, Christian; Kömle, Norbert I.; Kargl, Günter; Hillenmaier, Olaf; Lell, Peter

    2003-09-01

    A major goal of the ESA cornerstone mission ROSETTA is to land a package of scientific instruments known as the ROSETTA Lander on the nucleus of a comet. Due to the low gravity a highly reliable fixation of the ROSETTA Lander to the target comet 67P/Churyumov-Gerasimenko (3rd) is essential. For that purpose a redundant Anchoring System, consisting of two pyrotechnically actuated Anchoring Harpoons and a redundant Control Electronics has been developed, built and qualified at the Max-Planck-Institut für extraterrestrische Physik (MPE), Garching. The pyrotechnical gas generator has been developed jointly by Pyroglobe GmbH and MPE, the procurement of the control electronics has been sub-contracted to Magson GmbH, Berlin. A study to obtain a suitable lubrication method for the commutator of a brushed DC motor has been conducted at the European Space Tribology Laboratory (ESTL; S. D. Lewis et al., 2003).

  11. Anchoring bias in online voting

    NASA Astrophysics Data System (ADS)

    Yang, Zimo; Zhang, Zi-Ke; Zhou, Tao

    2012-12-01

    Voting online with explicit ratings could largely reflect people's preferences and objects' qualities, but ratings are always irrational, because they may be affected by many unpredictable factors like mood, weather and other people's votes. By analyzing two real systems, this paper reveals a systematic bias embedding in the individual decision-making processes, namely people tend to give a low rating after a low rating, as well as a high rating following a high rating. This so-called anchoring bias is validated via extensive comparisons with null models, and numerically speaking, the extent of bias decays with voting interval in a logarithmic form. Our findings could be applied in the design of recommender systems and considered as important complementary materials to previous knowledge about anchoring effects on financial trades, performance judgments, auctions, and so on.

  12. Anchoring in Numeric Judgments of Visual Stimuli

    PubMed Central

    Langeborg, Linda; Eriksson, Mårten

    2016-01-01

    This article investigates effects of anchoring in age estimation and estimation of quantities, two tasks which to different extents are based on visual stimuli. The results are compared to anchoring in answers to classic general knowledge questions that rely on semantic knowledge. Cognitive load was manipulated to explore possible differences between domains. Effects of source credibility, manipulated by differing instructions regarding the selection of anchor values (no information regarding anchor selection, information that the anchors are randomly generated or information that the anchors are answers from an expert) on anchoring were also investigated. Effects of anchoring were large for all types of judgments but were not affected by cognitive load or by source credibility in either one of the researched domains. A main effect of cognitive load on quantity estimations and main effects of source credibility in the two visually based domains indicate that the manipulations were efficient. Implications for theoretical explanations of anchoring are discussed. In particular, because anchoring did not interact with cognitive load, the results imply that the process behind anchoring in visual tasks is predominantly automatic and unconscious. PMID:26941684

  13. Anchoring in Numeric Judgments of Visual Stimuli.

    PubMed

    Langeborg, Linda; Eriksson, Mårten

    2016-01-01

    This article investigates effects of anchoring in age estimation and estimation of quantities, two tasks which to different extents are based on visual stimuli. The results are compared to anchoring in answers to classic general knowledge questions that rely on semantic knowledge. Cognitive load was manipulated to explore possible differences between domains. Effects of source credibility, manipulated by differing instructions regarding the selection of anchor values (no information regarding anchor selection, information that the anchors are randomly generated or information that the anchors are answers from an expert) on anchoring were also investigated. Effects of anchoring were large for all types of judgments but were not affected by cognitive load or by source credibility in either one of the researched domains. A main effect of cognitive load on quantity estimations and main effects of source credibility in the two visually based domains indicate that the manipulations were efficient. Implications for theoretical explanations of anchoring are discussed. In particular, because anchoring did not interact with cognitive load, the results imply that the process behind anchoring in visual tasks is predominantly automatic and unconscious. PMID:26941684

  14. Anchoring in Numeric Judgments of Visual Stimuli.

    PubMed

    Langeborg, Linda; Eriksson, Mårten

    2016-01-01

    This article investigates effects of anchoring in age estimation and estimation of quantities, two tasks which to different extents are based on visual stimuli. The results are compared to anchoring in answers to classic general knowledge questions that rely on semantic knowledge. Cognitive load was manipulated to explore possible differences between domains. Effects of source credibility, manipulated by differing instructions regarding the selection of anchor values (no information regarding anchor selection, information that the anchors are randomly generated or information that the anchors are answers from an expert) on anchoring were also investigated. Effects of anchoring were large for all types of judgments but were not affected by cognitive load or by source credibility in either one of the researched domains. A main effect of cognitive load on quantity estimations and main effects of source credibility in the two visually based domains indicate that the manipulations were efficient. Implications for theoretical explanations of anchoring are discussed. In particular, because anchoring did not interact with cognitive load, the results imply that the process behind anchoring in visual tasks is predominantly automatic and unconscious.

  15. Independent control of polar and azimuthal anchoring.

    PubMed

    Anquetil-Deck, C; Cleaver, D J; Bramble, J P; Atherton, T J

    2013-07-01

    Monte Carlo simulation, experiment, and continuum theory are used to examine the anchoring exhibited by a nematic liquid crystal at a patterned substrate comprising a periodic array of rectangles that, respectively, promote vertical and planar alignment. It is shown that the easy axis and effective anchoring energy promoted by such surfaces can be readily controlled by adjusting the design of the pattern. The calculations reveal rich behavior: for strong anchoring, as exhibited by the simulated system, for rectangle ratios ≥2 the nematic aligns in the direction of the long edge of the rectangles, the azimuthal anchoring coefficient changing with pattern shape. In weak anchoring scenarios, however, including our experimental systems, preferential anchoring is degenerate between the two rectangle diagonals. Bistability between diagonally aligned and edge-aligned arrangement is predicted for intermediate combinations of anchoring coefficient and system length scale.

  16. Independent control of polar and azimuthal anchoring.

    PubMed

    Anquetil-Deck, C; Cleaver, D J; Bramble, J P; Atherton, T J

    2013-07-01

    Monte Carlo simulation, experiment, and continuum theory are used to examine the anchoring exhibited by a nematic liquid crystal at a patterned substrate comprising a periodic array of rectangles that, respectively, promote vertical and planar alignment. It is shown that the easy axis and effective anchoring energy promoted by such surfaces can be readily controlled by adjusting the design of the pattern. The calculations reveal rich behavior: for strong anchoring, as exhibited by the simulated system, for rectangle ratios ≥2 the nematic aligns in the direction of the long edge of the rectangles, the azimuthal anchoring coefficient changing with pattern shape. In weak anchoring scenarios, however, including our experimental systems, preferential anchoring is degenerate between the two rectangle diagonals. Bistability between diagonally aligned and edge-aligned arrangement is predicted for intermediate combinations of anchoring coefficient and system length scale. PMID:23944468

  17. Accessorizing and anchoring the LINC complex for multifunctionality

    PubMed Central

    Chang, Wakam; Worman, Howard J.

    2015-01-01

    The linker of nucleoskeleton and cytoskeleton (LINC) complex, composed of outer and inner nuclear membrane Klarsicht, ANC-1, and Syne homology (KASH) and Sad1 and UNC-84 (SUN) proteins, respectively, connects the nucleus to cytoskeletal filaments and performs diverse functions including nuclear positioning, mechanotransduction, and meiotic chromosome movements. Recent studies have shed light on the source of this diversity by identifying factors associated with the complex that endow specific functions as well as those that differentially anchor the complex within the nucleus. Additional diversity may be provided by accessory factors that reorganize the complex into higher-ordered arrays. As core components of the LINC complex are associated with several diseases, understanding the role of accessory and anchoring proteins could provide insights into pathogenic mechanisms. PMID:25559183

  18. Phosphoinositide kinase signaling controls ER-PM cross-talk

    PubMed Central

    Omnus, Deike J.; Manford, Andrew G.; Bader, Jakob M.; Emr, Scott D.; Stefan, Christopher J.

    2016-01-01

    Membrane lipid dynamics must be precisely regulated for normal cellular function, and disruptions in lipid homeostasis are linked to the progression of several diseases. However, little is known about the sensory mechanisms for detecting membrane composition and how lipid metabolism is regulated in response to membrane stress. We find that phosphoinositide (PI) kinase signaling controls a conserved PDK-TORC2-Akt signaling cascade as part of a homeostasis network that allows the endoplasmic reticulum (ER) to modulate essential responses, including Ca2+-regulated lipid biogenesis, upon plasma membrane (PM) stress. Furthermore, loss of ER-PM junctions impairs this protective response, leading to PM integrity defects upon heat stress. Thus PI kinase–mediated ER-PM cross-talk comprises a regulatory system that ensures cellular integrity under membrane stress conditions. PMID:26864629

  19. ER-Mitochondria contact sites: A new regulator of cellular calcium flux comes into play.

    PubMed

    Krols, Michiel; Bultynck, Geert; Janssens, Sophie

    2016-08-15

    Endoplasmic reticulum (ER)-mitochondria membrane contacts are hotspots for calcium signaling. In this issue, Raturi et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201512077) show that the thioredoxin TMX1 inhibits the calcium pump SERCA2b at ER-mitochondria contact sites, thereby affecting ER-mitochondrial calcium transfer and mitochondrial bioenergetics. PMID:27528654

  20. The organization, structure, and inheritance of the ER in higher and lower eukaryotes.

    PubMed

    Estrada de Martin, Paula; Novick, Peter; Ferro-Novick, Susan

    2005-12-01

    The endoplasmic reticulum (ER) is a fundamental organelle required for protein assembly, lipid biosynthesis, and vesicular traffic, as well as calcium storage and the controlled release of calcium from the ER lumen into the cytosol. Membranes functionally linked to the ER by vesicle-mediated transport, such as the Golgi complex, endosomes, vacuoles-lysosomes, secretory vesicles, and the plasma membrane, originate largely from proteins and lipids synthesized in the ER. In this review we will discuss the structural organization of the ER and its inheritance.

  1. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange

    PubMed Central

    Quon, Evan; Beh, Christopher T.

    2015-01-01

    Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer. In yeast, cortical ER is stapled to the PM through membrane-tethering proteins, which establish a direct connection between the membranes. In this review, we consider passive and facilitated models for lipid transfer at PM–ER contact sites. Besides the tethering proteins, we examine the roles of an additional repertoire of lipid and protein regulators that prime and propagate PM–ER membrane association. We conclude that instead of being simple mediators of membrane association, regulatory components of membrane contact sites have complex and multilayered functions. PMID:26949334

  2. Key role of heparan sulfate chains in assembly of anchoring complex at the dermal-epidermal junction.

    PubMed

    Iriyama, Shunsuke; Tsunenaga, Makoto; Amano, Satoshi; Adachi, Eijiro

    2011-11-01

    Epidermal basement membrane forms anchoring complex composed of hemidesmosomes, anchoring filaments, lamina densa and anchoring fibrils to link epidermis to dermis. However, the anchoring complex is rarely formed in skin equivalent models, probably because of degradation of extracellular matrix (ECM) proteins and heparan sulfate chains by matrix metalloproteinases (MMPs) and heparanase, respectively. To explore the roles of ECM proteins and heparan sulfate in anchoring complex assembly, we used specific inhibitors of MMPs and heparanase, and the formation of anchoring complex was analysed in terms of polarized deposition of collagen VII, BP180 and β4 integrin at the dermal-epidermal junction (DEJ) by means of immunohistochemistry and transmission electron microscopy (TEM). The deposition of collagen VII was polarized to the basal side by the addition of MMP inhibitor, and the staining intensity was increased by combined treatment with MMP inhibitor and heparanase inhibitor, which enhanced anchoring fibril formation as observed by TEM. BP180 was polarized to the basal side by heparanase inhibitor, which protects HS chains, but not by MMP inhibitor. MMP inhibitor improved the polarization of β4 integrin. Hemidesmosomes were formed in the presence of each inhibitor, as observed by TEM, and formation was greatly enhanced by the combined treatment. These findings suggest that heparan sulfate chains, in addition to ECM proteins at the DEJ, play an important role in the assembly of anchoring complex, especially hemidesmosomes and anchoring fibrils.

  3. TWISTED DWARF1, a Unique Plasma Membrane-anchored Immunophilin-like Protein, Interacts with Arabidopsis Multidrug Resistance-like Transporters AtPGP1 and AtPGP19

    PubMed Central

    Geisler, Markus; Kolukisaoglu, H. Üner; Bouchard, Rodolphe; Billion, Karla; Berger, Joachim; Saal, Beate; Frangne, Nathalie; Koncz-Kálmán, Zsuzsanna; Koncz, Csaba; Dudler, Robert; Blakeslee, Joshua J.; Murphy, Angus S.; Martinoia, Enrico; Schulz, Burkhard

    2003-01-01

    Null-mutations of the Arabidopsis FKBP-like immunophilin TWISTED DWARF1 (TWD1) gene cause a pleiotropic phenotype characterized by reduction of cell elongation and disorientated growth of all plant organs. Heterologously expressed TWD1 does not exhibit cis-trans-peptidylprolyl isomerase (PPIase) activity and does not complement yeast FKBP12 mutants, suggesting that TWD1 acts indirectly via protein-protein interaction. Yeast two-hybrid protein interaction screens with TWD1 identified cDNA sequences that encode the C-terminal domain of Arabidopsis multidrugresistance-like ABC transporter AtPGP1. This interaction was verified in vitro. Mapping of protein interaction domains shows that AtPGP1 surprisingly binds to the N-terminus of TWD1 harboring the cis-trans peptidyl-prolyl isomerase-like domain and not to the tetratrico-peptide repeat domain, which has been shown to mediate protein-protein interaction. Unlike all other FKBPs, TWD1 is shown to be an integral membrane protein that colocalizes with its interacting partner AtPGP1 on the plasma membrane. TWD1 also interacts with AtPGP19 (AtMDR1), the closest homologue of AtPGP1. The single gene mutation twd1-1 and double atpgp1-1/atpgp19-1 (atmdr1-1) mutants exhibit similar phenotypes including epinastic growth, reduced inflorescence size, and reduced polar auxin transport, suggesting that a functional TWD1-AtPGP1/AtPGP19 complex is required for proper plant development. PMID:14517332

  4. Recent Advances with ER Targeted Intrabodies.

    PubMed

    Marschall, Andrea L J; Dübel, Stefan; Böldicke, Thomas

    2016-01-01

    ER intrabodies are recombinant antibody fragments produced and retained in the endoplasmatic reticulum (ER) of a cell or an organism with the purpose to induce phenotypes generated by interfering with the intracellular processing or by changing the location of the recognized antigen. The most common application is the generation of functional knockdowns of membrane proteins, which cannot reach their natural location on the cell surface when they are retained in the ER by the intrabody. Phenotypes generated by interfering with the secretion of extracellular or plasma proteins can be analyzed in a similar way. So far, most ER intrabody studies relied on scFv fragments subcloned from hybridoma lines. Recently, several large international research consortia have started to provide antibodies, with the final goal to cover substantial parts of the human proteome. For practical reasons of throughput and effort, in these consortia the most appropriate method to generate the necessary large numbers of monoclonal antibodies is in vitro selection, typically employing phage or yeast display. These methods provide the antibody genes right from the start, thereby facilitating the application of ER antibody approaches. On the other end, the first transgenic mice expressing an ER intrabody has recently been described. This moves the ER intrabody approach finally to level with classic in vivo knockout strategies - but also offers novel capabilities to the researchers. Promising new perspectives may originate from the fact that the knockdown is restricted to the protein level, that a graded knockdown strength can be achieved, or that the targeting of individual posttranslational modifications will be possible with previously impossible specificity. Finally, the link of today's high throughput recombinant antibody generation to a knock down phenotype is now possible with a single cloning step. It can therefore be expected that we will see a much quicker growth of the number of

  5. A lunar/Martian anchor emplacement system

    NASA Technical Reports Server (NTRS)

    Clinton, Dustin; Holt, Andrew; Jantz, Erik; Kaufman, Teresa; Martin, James; Weber, Reed

    1993-01-01

    On the Moon or Mars, it is necessary to have an anchor, or a stable, fixed point able to support the forces necessary to rescue a stuck vehicle, act as a stake for a tent in a Martian gale, act as a fulcrum in the erection of general construction poles, or support tent-like regolith shields. The anchor emplacement system must be highly autonomous. It must supply the energy and stability for anchor deployment. The goal of the anchor emplacement system project is to design and build a prototype anchor and to design a conceptual anchor emplacement system. Various anchors were tested in a 1.3 cubic meter test bed containing decomposed granite. A simulated lunar soil was created by adjusting the moisture and compaction characteristics of the soil. We conducted tests on emplacement torque, amount of force the anchor could withstand before failure, anchor pull out force at various angles, and soil disturbances caused by placing the anchor. A single helix auger anchor performed best in this test bed based on energy to emplace, and the ultimate holding capacity. The anchor was optimized for ultimate holding capacity, minimum emplacement torque, and minimum soil disturbance in sandy soils yielding the following dimensions: helix diameter (4.45 cm), pitch (1.27 cm), blade thickness (0.15 cm), total length (35.56 cm), shaft diameter (0.78 cm), and a weight of 212.62 g. The experimental results showed that smaller diameter, single-helix augers held more force than larger diameter augers for a given depth. The emplacement system consists of a flywheel and a motor for power, sealed in a protective box supported by four legs. The flywheel system was chosen over a gear system based on its increased reliability in the lunar environment.

  6. Analysis of the Key Elements of FFAT-Like Motifs Identifies New Proteins That Potentially Bind VAP on the ER, Including Two AKAPs and FAPP2

    PubMed Central

    Mikitova, Veronika; Levine, Timothy P.

    2012-01-01

    Background Two phenylalanines (FF) in an acidic tract (FFAT)-motifs were originally described as having seven elements: an acidic flanking region followed by 6 residues (EFFDA–E). Such motifs are found in several lipid transfer protein (LTP) families, and they interact with a protein on the cytosolic face of the ER called vesicle-associated membrane protein-associated protein (VAP). Mutation of which causes ER stress and motor neuron disease, making it important to determine which proteins bind VAP. Among other proteins that bind VAP, some contain FFAT-like motifs that are missing one or more of the seven elements. Defining how much variation is tolerated in FFAT-like motifs is a preliminary step prior to the identification of the full range of VAP interactors. Results We used a quantifiable in vivo system that measured ER targeting in a reporter yeast strain that over-expressed VAP to study the effect of substituting different elements of FFAT-like motifs in turn. By defining FFAT-like motifs more widely than before, we found them in novel proteins the functions of which had not previously been directly linked to the ER, including: two PKA anchoring proteins, AKAP220 and AKAP110; a family of plant LTPs; and the glycolipid LTP phosphatidylinositol-four-phosphate adaptor-protein-2 (FAPP-2). Conclusion All of the seven essential elements of a FFAT motif tolerate variation, and weak targeting to the ER via VAP is still detected if two elements are substituted. In addition to the strong FFAT motifs already known, there are additional proteins with weaker FFAT-like motifs, which might be functionally important VAP interactors. PMID:22276202

  7. Protein prenyltransferases: anchor size, pseudogenes and parasites.

    PubMed

    Maurer-Stroh, Sebastian; Washietl, Stefan; Eisenhaber, Frank

    2003-07-01

    Lipid modification of eukaryotic proteins by protein prenyltransferases is required for critical signaling pathways, cell cycle progression, cytoskeleton remodeling, induction of apoptosis and vesicular trafficking. This review analyzes the influence of distinct states of sequential posttranslational processing that can be obtained after single or double prenylation, reversible palmitoylation, proteolytic cleavage of the C-terminus and possible reversible carboxymethylation. This series of modifications, as well as the exact length of the prenyl anchor, are determinants in protein-membrane and specific protein-protein interactions of protein prenyltransferase substrates. Furthermore, the occurrence and distribution of pseudogenes of protein prenyltransferase subunits are discussed. Besides being developed as anti-cancer agents, prenyltransferase inhibitors are effective against an increasing number of parasitic diseases. Extensive screens for protein prenyltransferases in genomic data of fungal and protozoan pathogens unveil a series of new pharmacologic targets for prenyltransferase inhibition, including the parasites Brugia malayi, Onchocerca volvulus, Aspergillus nidulans, Pneumocystis carinii, Entamoeba histolytica, Strongyloides stercoralis, Trichinella spiralis and Cryptosporidium parvum.

  8. Anchored Instruction and Anchored Assessment: An Ecological Approach to Measuring Situated Learning.

    ERIC Educational Resources Information Center

    Young, Michael F.; Kulikowich, Jonna M.

    Anchored instruction and anchored assessment are described and illustrated through a mathematics problem from the Jasper problem solving series developed at Vanderbilt University in Nashville (Tennessee). Anchored instruction is instruction situated in a context complex enough to provide meaning and reasons for why information is useful. Problems…

  9. 33 CFR 164.19 - Requirements for vessels at anchor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... anchor. 164.19 Section 164.19 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... vessels at anchor. The master or person in charge of each vessel that is anchored shall ensure that: (a) A proper anchor watch is maintained; (b) Procedures are followed to detect a dragging anchor; and...

  10. Coupled ER to Golgi Transport Reconstituted with Purified Cytosolic Proteins

    PubMed Central

    Barlowe, Charles

    1997-01-01

    A cell-free vesicle fusion assay that reproduces a subreaction in transport of pro-α-factor from the ER to the Golgi complex has been used to fractionate yeast cytosol. Purified Sec18p, Uso1p, and LMA1 in the presence of ATP and GTP satisfies the requirement for cytosol in fusion of ER-derived vesicles with Golgi membranes. Although these purified factors are sufficient for vesicle docking and fusion, overall ER to Golgi transport in yeast semi-intact cells depends on COPII proteins (components of a membrane coat that drive vesicle budding from the ER). Thus, membrane fusion is coupled to vesicle formation in ER to Golgi transport even in the presence of saturating levels of purified fusion factors. Manipulation of the semi-intact cell assay is used to distinguish freely diffusible ER- derived vesicles containing pro-α-factor from docked vesicles and from fused vesicles. Uso1p mediates vesicle docking and produces a dilution resistant intermediate. Sec18p and LMA1 are not required for the docking phase, but are required for efficient fusion of ER- derived vesicles with the Golgi complex. Surprisingly, elevated levels of Sec23p complex (a subunit of the COPII coat) prevent vesicle fusion in a reversible manner, but do not interfere with vesicle docking. Ordering experiments using the dilution resistant intermediate and reversible Sec23p complex inhibition indicate Sec18p action is required before LMA1 function. PMID:9382859

  11. Reaction Diffusion Modeling of Calcium Dynamics with Realistic ER Geometry

    PubMed Central

    Means, Shawn; Smith, Alexander J.; Shepherd, Jason; Shadid, John; Fowler, John; Wojcikiewicz, Richard J. H.; Mazel, Tomas; Smith, Gregory D.; Wilson, Bridget S.

    2006-01-01

    We describe a finite-element model of mast cell calcium dynamics that incorporates the endoplasmic reticulum's complex geometry. The model is built upon a three-dimensional reconstruction of the endoplasmic reticulum (ER) from an electron tomographic tilt series. Tetrahedral meshes provide volumetric representations of the ER lumen, ER membrane, cytoplasm, and plasma membrane. The reaction-diffusion model simultaneously tracks changes in cytoplasmic and ER intraluminal calcium concentrations and includes luminal and cytoplasmic protein buffers. Transport fluxes via PMCA, SERCA, ER leakage, and Type II IP3 receptors are also represented. Unique features of the model include stochastic behavior of IP3 receptor calcium channels and comparisons of channel open times when diffusely distributed or aggregated in clusters on the ER surface. Simulations show that IP3R channels in close proximity modulate activity of their neighbors through local Ca2+ feedback effects. Cytoplasmic calcium levels rise higher, and ER luminal calcium concentrations drop lower, after IP3-mediated release from receptors in the diffuse configuration. Simulation results also suggest that the buffering capacity of the ER, and not restricted diffusion, is the predominant factor influencing average luminal calcium concentrations. PMID:16617072

  12. Calcium homoeostasis modulator 1 (CALHM1) reduces the calcium content of the endoplasmic reticulum (ER) and triggers ER stress.

    PubMed

    Gallego-Sandín, Sonia; Alonso, María Teresa; García-Sancho, Javier

    2011-08-01

    CALHM1 (calcium homoeostasis modulator 1), a membrane protein with similarity to NMDA (N-methyl-D-aspartate) receptor channels that localizes in the plasma membrane and the ER (endoplasmic reticulum) of neurons, has been shown to generate a plasma-membrane Ca(2+) conductance and has been proposed to influence Alzheimer's disease risk. In the present study we have investigated the effects of CALHM1 on intracellular Ca(2+) handling in HEK-293T [HEK (human embryonic kidney)-293 cells expressing the large T-antigen of SV40 (simian virus 40)] cells by using targeted aequorins for selective monitorization of Ca(2+) transport by organelles. We find that CALHM1 increases Ca(2+) leak from the ER and, more importantly, reduces ER Ca(2+) uptake by decreasing both the transport capacity and the Ca(2+) affinity of SERCA (sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase). As a result, the Ca(2+) content of the ER is drastically decreased. This reduction in the Ca(2+) content of the ER triggered the UPR (unfolded protein response) with induction of several ER stress markers, such as CHOP [C/EBP (CCAAT/enhancer-binding protein)-homologous protein], ERdj4, GRP78 (glucose-regulated protein of 78 kDa) and XBP1 (X-box-binding protein 1). Thus CALHM1 might provide a relevant link between Ca(2+) homoeostasis disruption, ER stress and cell damage in the pathogenesis of neurodegenerative diseases.

  13. Ltc1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contacts.

    PubMed

    Murley, Andrew; Sarsam, Reta D; Toulmay, Alexandre; Yamada, Justin; Prinz, William A; Nunnari, Jodi

    2015-05-25

    Organelle contact sites perform fundamental functions in cells, including lipid and ion homeostasis, membrane dynamics, and signaling. Using a forward proteomics approach in yeast, we identified new ER-mitochondria and ER-vacuole contacts specified by an uncharacterized protein, Ylr072w. Ylr072w is a conserved protein with GRAM and VASt domains that selectively transports sterols and is thus termed Ltc1, for Lipid transfer at contact site 1. Ltc1 localized to ER-mitochondria and ER-vacuole contacts via the mitochondrial import receptors Tom70/71 and the vacuolar protein Vac8, respectively. At mitochondria, Ltc1 was required for cell viability in the absence of Mdm34, a subunit of the ER-mitochondria encounter structure. At vacuoles, Ltc1 was required for sterol-enriched membrane domain formation in response to stress. Increasing the proportion of Ltc1 at vacuoles was sufficient to induce sterol-enriched vacuolar domains without stress. Thus, our data support a model in which Ltc1 is a sterol-dependent regulator of organelle and cellular homeostasis via its dual localization to ER-mitochondria and ER-vacuole contact sites.

  14. Observed Score Equating Using a Mini-Version Anchor and an Anchor with Less Spread of Difficulty: A Comparison Study

    ERIC Educational Resources Information Center

    Liu, Jinghua; Sinharay, Sandip; Holland, Paul; Feigenbaum, Miriam; Curley, Edward

    2011-01-01

    Two different types of anchors are investigated in this study: a mini-version anchor and an anchor that has a less spread of difficulty than the tests to be equated. The latter is referred to as a midi anchor. The impact of these two different types of anchors on observed score equating are evaluated and compared with respect to systematic error…

  15. 21 CFR 872.3130 - Preformed anchor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Preformed anchor. 872.3130 Section 872.3130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3130 Preformed anchor. (a) Identification. A...

  16. 21 CFR 872.3130 - Preformed anchor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Preformed anchor. 872.3130 Section 872.3130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3130 Preformed anchor. (a) Identification. A...

  17. DSSC anchoring groups: a surface dependent decision.

    PubMed

    O'Rourke, C; Bowler, D R

    2014-05-14

    Electrodes in dye sensitised solar cells are typically nanocrystalline anatase TiO2 with a majority (1 0 1) surface exposed. Generally the sensitising dye employs a carboxylic anchoring moiety through which it adheres to the TiO₂ surface. Recent interest in exploiting the properties of differing TiO₂ electrode morphologies, such as rutile nanorods exposing the (1 1 0) surface and anatase electrodes with high percentages of the (0 0 1) surface exposed, begs the question of whether this anchoring strategy is best, irrespective of the majority surface exposed. Here we address this question by presenting density functional theory calculations contrasting the binding properties of two promising anchoring groups, phosphonic acid and boronic acid, to that of carboxylic acid. Anchor-electrode interactions are studied for the prototypical anatase (1 0 1) surface, along with the anatase (0 0 1) and rutile (1 1 0) surfaces. Finally the effect of using these alternative anchoring groups to bind a typical coumarin dye (NKX-2311) to these TiO₂ substrates is examined. Significant differences in the binding properties are found depending on both the anchor and surface, illustrating that the choice of anchor is necessarily dependent upon the surface exposed in the electrode. In particular the boronic acid is found to show the potential to be an excellent anchor choice for electrodes exposing the anatase (0 0 1) surface.

  18. 30 CFR 57.7032 - Anchoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Anchoring. 57.7032 Section 57.7032 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Drilling-Underground Only § 57.7032 Anchoring. Columns and the drills mounted on them shall be...

  19. Anchors of Religious Commitment in Adolescents

    ERIC Educational Resources Information Center

    Layton, Emily; Dollahite, David C.; Hardy, Sam A.

    2011-01-01

    This study explores adolescent religious commitment using qualitative data from a religiously diverse (Jewish, Christian, Muslim) sample of 80 adolescents. A new construct, "anchors of religious commitment," grounded in interview data, is proposed to describe what adolescents commit to as a part of their religious identity. Seven anchors of…

  20. Method of fabrication of anchored nanostructure materials

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-11-26

    Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.

  1. Untangling the web: mechanisms underlying ER network formation.

    PubMed

    Goyal, Uma; Blackstone, Craig

    2013-11-01

    The ER is a continuous membrane system consisting of the nuclear envelope, flat sheets often studded with ribosomes, and a polygonal network of highly-curved tubules extending throughout the cell. Although protein and lipid biosynthesis, protein modification, vesicular transport, Ca(2+)dynamics, and protein quality control have been investigated in great detail, mechanisms that generate the distinctive architecture of the ER have been uncovered only recently. Several protein families including the reticulons and REEPs/DP1/Yop1p harbor hydrophobic hairpin domains that shape high-curvature ER tubules and mediate intramembrane protein interactions. Members of the atlastin/RHD3/Sey1p family of dynamin-related GTPases interact with the ER-shaping proteins and mediate the formation of three-way junctions responsible for the polygonal structure of the tubular ER network, with Lunapark proteins acting antagonistically. Additional classes of tubular ER proteins including some REEPs and the M1 spastin ATPase interact with the microtubule cytoskeleton. Flat ER sheets possess a different complement of proteins such as p180, CLIMP-63 and kinectin implicated in shaping, cisternal stacking and cytoskeletal interactions. The ER is also in constant motion, and numerous signaling pathways as well as interactions among cytoskeletal elements, the plasma membrane, and organelles cooperate to position and shape the ER dynamically. Finally, many proteins involved in shaping the ER network are mutated in the most common forms of hereditary spastic paraplegia, indicating a particular importance for proper ER morphology and distribution in large, highly-polarized cells such as neurons. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum. PMID:23602970

  2. The I-antigens of Ichthyophthirius multifiliis are GPI-anchored proteins.

    PubMed

    Clark, T G; Gao, Y; Gaertig, J; Wang, X; Cheng, G

    2001-01-01

    The parasitic ciliate Ichthyophthirius multifiliis has abundant surface membrane proteins (i-antigens) that when clustered, trigger rapid, premature exit from the host. Similar antigens are present in free-living ciliates and are GPI-anchored in both Paramecium and Tetrahymena. Although transmembrane signalling through GPI-anchored proteins has been well-documented in metazoan cells, comparable phenomena have yet to be described in protists. Since premature exit of Ichthyophthirius is likely to involve a transmembrane signalling event, we sought to determine whether i-antigens are GPI-anchored in these cells as well. Based on their solubility properties in Triton X-114, the i-antigens of Ichthyophthirius are amphiphilic in nature and partition with the detergent phase. Nevertheless, following treatment of detergent lysates with phospholipase C, the same proteins become hydrophilic. Concomitantly, they are recognized by antibodies against a cross-reacting determinant exposed on virtually all GPI-anchored proteins following cleavage with phospholipase C. Finally, when expressed in recombinant form in Tetrahymena thermophila, full-length i-antigens are restricted to the membrane, while those lacking hydrophobic C-termini are secreted from the cell. Taken together, these observations argue strongly that the i-antigens of Ichthyophthirius multifiliis are, in fact, GPI-anchored proteins.

  3. Research resource: Monitoring endoplasmic reticulum membrane integrity in β-cells at the single-cell level.

    PubMed

    Kanekura, Kohsuke; Ou, Jianhong; Hara, Takashi; Zhu, Lihua J; Urano, Fumihiko

    2015-03-01

    Endoplasmic reticulum (ER) membrane integrity is an emerging target for human chronic diseases associated with ER stress. Despite the underlying importance of compromised ER membrane integrity in disease states, the entire process leading to ER membrane permeabilization and cell death is still not clear due to technical limitations. Here we describe a novel method for monitoring ER membrane integrity at the single-cell level in real time. Using a β-cell line expressing ER-targeted redox sensitive green fluorescent protein, we could identify a β-cell population undergoing ER membrane permeabilization induced by palmitate and could monitor cell fate and ER stress of these cells at the single-cell level. Our method could be used to develop a novel therapeutic modality targeting the ER membrane for ER-associated disorders, including β-cell death in diabetes, neurodegeneration, and Wolfram syndrome.

  4. Neural Membrane Signaling Platforms

    PubMed Central

    Wallace, Ron

    2010-01-01

    Throughout much of the history of biology, the cell membrane was functionally defined as a semi-permeable barrier separating aqueous compartments, and an anchoring site for proteins. Little attention was devoted to its possible regulatory role in intracellular molecular processes and neuron electrical signaling. This article reviews the history of membrane studies and the current state of the art. Emphasis is placed on natural and artificial membrane studies of electric field effects on molecular organization, especially as these may relate to impulse propagation in neurons. Implications of these studies for new designs in artificial intelligence are briefly examined. PMID:20640161

  5. Endoplasmic Reticulum Membrane Reorganization Is Regulated by Ionic Homeostasis

    PubMed Central

    Varadarajan, Shankar; Bampton, Edward T. W.; Pellecchia, Maurizio; Dinsdale, David; Willars, Gary B.; Cohen, Gerald M.

    2013-01-01

    Recently we described a new, evolutionarily conserved cellular stress response characterized by a reversible reorganization of endoplasmic reticulum (ER) membranes that is distinct from canonical ER stress and the unfolded protein response (UPR). Apogossypol, a putative broad spectrum BCL-2 family antagonist, was the prototype compound used to induce this ER membrane reorganization. Following microarray analysis of cells treated with apogossypol, we used connectivity mapping to identify a wide range of structurally diverse chemicals from different pharmacological classes and established their ability to induce ER membrane reorganization. Such structural diversity suggests that the mechanisms initiating ER membrane reorganization are also diverse and a major objective of the present study was to identify potentially common features of these mechanisms. In order to explore this, we used hierarchical clustering of transcription profiles for a number of chemicals that induce membrane reorganization and discovered two distinct clusters. One cluster contained chemicals with known effects on Ca2+ homeostasis. Support for this was provided by the findings that ER membrane reorganization was induced by agents that either deplete ER Ca2+ (thapsigargin) or cause an alteration in cellular Ca2+ handling (calmodulin antagonists). Furthermore, overexpression of the ER luminal Ca2+ sensor, STIM1, also evoked ER membrane reorganization. Although perturbation of Ca2+ homeostasis was clearly one mechanism by which some agents induced ER membrane reorganization, influx of extracellular Na+ but not Ca2+ was required for ER membrane reorganization induced by apogossypol and the related BCL-2 family antagonist, TW37, in both human and yeast cells. Not only is this novel, non-canonical ER stress response evolutionary conserved but so also are aspects of the mechanism of formation of ER membrane aggregates. Thus perturbation of ionic homeostasis is important in the regulation of ER

  6. Estradiol dependent anchoring of the goat uterine estrogen receptor activation factor (E-RAF) at the endoplasmic reticulum by a 55 kDa anchor protein (ap55).

    PubMed

    Govind, Anitha P; Sreeja, S; Thampan, Raghava Varman

    2003-05-01

    The primary intracellular site of localization of the estrogen receptor activation factor (E-RAF) is shown here to be the endoplasmic reticulum where the protein remains anchored through an estrogen dependent mechanism. The retention of E-RAF by the endoplasmic reticulum is facilitated by two proteins: (1) a 55 kDa anchor protein (ap55) which is an integral membrane protein of the endoplasmic reticulum. ap55 is a high affinity estrogen binding protein. A conformational change induced by estrogen binding is thought to favor the anchoring process. (2) The anchoring of E-RAF by ap55 is mediated by yet another protein. This is the 66 kDa transport protein (tp66) which recognizes ap55 on the one hand and E-RAF on the other. The presence of estradiol that saturates the hormone binding sites on ap55 appears to favor the anchoring of tp66-E-RAF complex to ap55. This interaction appears to be weakened by levels of estradiol below 7 nM concentration leading to the dissociation of the tp66-E-RAF complex from ap55. The tp66-E-RAF complex moves towards the nucleus. PMID:12682911

  7. Ire1 supports normal ER differentiation in developing Drosophila photoreceptors

    PubMed Central

    Xu, Zuyuan; Chikka, Madhusudana Rao; Xia, Hongai; Ready, Donald F.

    2016-01-01

    ABSTRACT The endoplasmic reticulum (ER) serves virtually all aspects of cell physiology and, by pathways that are incompletely understood, is dynamically remodeled to meet changing cell needs. Inositol-requiring enzyme 1 (Ire1), a conserved core protein of the unfolded protein response (UPR), participates in ER remodeling and is particularly required during the differentiation of cells devoted to intense secretory activity, so-called ‘professional’ secretory cells. Here, we characterize the role of Ire1 in ER differentiation in the developing Drosophila compound eye photoreceptors (R cells). As part of normal development, R cells take a turn as professional secretory cells with a massive secretory effort that builds the photosensitive membrane organelle, the rhabdomere. We find rough ER sheets proliferate as rhabdomere biogenesis culminates, and Ire1 is required for normal ER differentiation. Ire1 is active early in R cell development and is required in anticipation of peak biosynthesis. Without Ire1, the amount of rough ER sheets is strongly reduced and the extensive cortical ER network at the rhabdomere base, the subrhabdomere cisterna (SRC), fails. Instead, ER proliferates in persistent and ribosome-poor tubular tangles. A phase of Ire1 activity early in R cell development thus shapes dynamic ER. PMID:26787744

  8. Evaluating the Potential Bioactivity of a Novel Compound ER1626

    PubMed Central

    Wang, Tianling; Liu, Hongyi; Xiao, Hong; Xiang, Hua

    2014-01-01

    Background ER1626, a novel compound, is a derivate of indeno-isoquinoline ketone. This study was designed to evaluate the biological activity and potential anti-tumor mechanism of ER1626. Method MTT assay, scratch assay and flow cytometry were used to determine cell proliferation, cell migration and cell cycle distribution as well as cell apoptosis on human breast cancer MCF-7 cells and endometrial cancer Ishikawa cells. We also explored the antiangiogenic effect of ER1626 on HUVEC cells and chicken embryos. The expression of estrogen receptor protein was investigated with western-blot analysis. Results ER1626 down-regulated the expression of estrogen receptor α protein and up-regulated β protein in MCF-7 and Ishikawa cells. The value of IC50 of ER1626 on MCF-7 and Ishikawa cells were respectively 8.52 and 3.08 µmol/L. Meanwhile, ER1626 decreased VEGF secretion of MCF-7 and Ishikawa cells, disturbed the formation of VEGF-stimulated tubular structure in HUVEC cells, and inhibited the angiogenesis on the chicken chorioallantoic membrane. Scratch assay revealed that ER1626 suppressed the migration of MCF-7, Ishikawa and HUVEC cells. In addition to induction tumor cell apoptosis, ER1626 arrested cell cycle in G1/G0 phase in MCF-7 cells and G2/M phase in Ishikawa cells. Conclusion In conclusion, our results demonstrated that ER1626 has favorable bioactivities to be a potential candidate against breast cancer and angiogenesis. PMID:24475135

  9. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division.

    PubMed

    Manor, Uri; Bartholomew, Sadie; Golani, Gonen; Christenson, Eric; Kozlov, Michael; Higgs, Henry; Spudich, James; Lippincott-Schwartz, Jennifer

    2015-08-25

    Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction and division. We propose Spire1C cooperates with INF2 to regulate actin assembly at ER-mitochondrial contacts. Simulations support this model's feasibility and demonstrate polymerizing actin filaments can induce mitochondrial constriction. Thus, Spire1C is optimally positioned to serve as a molecular hub that links mitochondria to actin and the ER for regulation of mitochondrial division.

  10. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division

    PubMed Central

    Manor, Uri; Bartholomew, Sadie; Golani, Gonen; Christenson, Eric; Kozlov, Michael; Higgs, Henry; Spudich, James; Lippincott-Schwartz, Jennifer

    2015-01-01

    Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction and division. We propose Spire1C cooperates with INF2 to regulate actin assembly at ER-mitochondrial contacts. Simulations support this model's feasibility and demonstrate polymerizing actin filaments can induce mitochondrial constriction. Thus, Spire1C is optimally positioned to serve as a molecular hub that links mitochondria to actin and the ER for regulation of mitochondrial division. DOI: http://dx.doi.org/10.7554/eLife.08828.001 PMID:26305500

  11. ER-2 in flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In this film clip, we see an ER-2 on its take off roll and climb as it departs from runway 22 at Edwards AFB, California. In 1981, NASA acquired its first ER-2 aircraft. The agency obtained a second ER-2 in 1989. These airplanes replaced two Lockheed U-2 aircraft, which NASA had used to collect scientific data since 1971. The U-2, and later the ER-2, were based at the Ames Research Center, Moffett Field, California, until 1997. In 1997, the ER-2 aircraft and their operations moved to NASA Dryden Flight Research Center, Edwards, California. Since the inaugural flight for this program, August 31, 1971, NASA U-2 and ER-2 aircraft have flown more than 4,000 data missions and test flights in support of scientific research conducted by scientists from NASA, other federal agencies, states, universities, and the private sector. NASA is currently using two ER-2 Airborne Science aircraft as flying laboratories. The aircraft, based at NASA Dryden, collect information about our surroundings, including Earth resources, celestial observations, atmospheric chemistry and dynamics, and oceanic processes. The aircraft also are used for electronic sensor research and development, satellite calibration, and satellite data validation. The ER-2 is a versatile aircraft well-suited to perform multiple mission tasks. It is 30 percent larger than the U-2 with a 20 feet longer wingspan and a considerably increased payload over the older airframe. The aircraft has four large pressurized experiment compartments and a high-capacity AC/DC electrical system, permitting it to carry a variety of payloads on a single mission. The modular design of the aircraft permits rapid installation or removal of payloads to meet changing mission requirements. The ER-2 has a range beyond 3,000 miles (4800 kilometers); is capable of long flight duration and can operate at altitudes up to 70,000 feet (21.3 kilometers) if required. Operating at an altitude of 65,000 feet (19.8 kilometers) the ER-2 acquires data

  12. ER trapping reveals Golgi enzymes continually revisit the ER through a recycling pathway that controls Golgi organization.

    PubMed

    Sengupta, Prabuddha; Satpute-Krishnan, Prasanna; Seo, Arnold Y; Burnette, Dylan T; Patterson, George H; Lippincott-Schwartz, Jennifer

    2015-12-01

    Whether Golgi enzymes remain localized within the Golgi or constitutively cycle through the endoplasmic reticulum (ER) is unclear, yet is important for understanding Golgi dependence on the ER. Here, we demonstrate that the previously reported inefficient ER trapping of Golgi enzymes in a rapamycin-based assay results from an artifact involving an endogenous ER-localized 13-kD FK506 binding protein (FKBP13) competing with the FKBP12-tagged Golgi enzyme for binding to an FKBP-rapamycin binding domain (FRB)-tagged ER trap. When we express an FKBP12-tagged ER trap and FRB-tagged Golgi enzymes, conditions precluding such competition, the Golgi enzymes completely redistribute to the ER upon rapamycin treatment. A photoactivatable FRB-Golgi enzyme, highlighted only in the Golgi, likewise redistributes to the ER. These data establish Golgi enzymes constitutively cycle through the ER. Using our trapping scheme, we identify roles of rab6a and calcium-independent phospholipase A2 (iPLA2) in Golgi enzyme recycling, and show that retrograde transport of Golgi membrane underlies Golgi dispersal during microtubule depolymerization and mitosis. PMID:26598700

  13. Subcellular localizations of Arabidopsis myotubularins MTM1 and MTM2 suggest possible functions in vesicular trafficking between ER and cis-Golgi.

    PubMed

    Nagpal, Akanksha; Ndamukong, Ivan; Hassan, Ammar; Avramova, Zoya; Baluška, František

    2016-08-01

    The two Arabidopsis genes AtMTM1 and AtMTM2 encode highly similar phosphoinositide 3-phosphatases from the myotubularin family. Despite the high-level conservation of structure and biochemical activities, their physiological roles have significantly diverged. The nature of a membrane and the concentrations of their membrane-anchored substrates (PtdIns3P or PtdIns3,5P2) and/or products (PtdIns5P and PtdIns) are considered critical for determining the functional specificity of myotubularins. We have performed comprehensive analyses of the subcellular localization of AtMTM1 and AtMTM2 using a variety of specific constructs transiently expressed in Nicotiana benthamiana leaf epidermal cells under the control of 35S promoter. AtMTM1 co-localized preferentially with cis-Golgi membranes, while AtMTM2 associated predominantly with ER membranes. In a stark contrast with animal/human MTMs, neither AtMTM1 nor AtMTM2 co-localizes with early or late endosomes or with TGN/EE compartments, making them unlikely participants in the endosomal trafficking system. Localization of the AtMTM2 is sensitive to cold and osmotic stress challenges. In contrast to animal myotubularins, Arabidopsis myotubularins do not associate with endosomes. Our results suggest that Arabidopsis myotubularins play a role in the vesicular trafficking between ER exit sites and cis-Golgi elements. The significance of these results is discussed also in the context of stress biology and plant autophagy. PMID:27340857

  14. A phospholipid transfer function of ER-mitochondria encounter structure revealed in vitro

    PubMed Central

    Kojima, Rieko; Endo, Toshiya; Tamura, Yasushi

    2016-01-01

    As phospholipids are synthesized mainly in the endoplasmic reticulum (ER) and mitochondrial inner membranes, how cells properly distribute specific phospholipids to diverse cellular membranes is a crucial problem for maintenance of organelle-specific phospholipid compositions. Although the ER-mitochondria encounter structure (ERMES) was proposed to facilitate phospholipid transfer between the ER and mitochondria, such a role of ERMES is still controversial and awaits experimental demonstration. Here we developed a novel in vitro assay system with isolated yeast membrane fractions to monitor phospholipid exchange between the ER and mitochondria. With this system, we found that phospholipid transport between the ER and mitochondria relies on membrane intactness, but not energy sources such as ATP, GTP or the membrane potential across the mitochondrial inner membrane. We further found that lack of the ERMES component impairs the phosphatidylserine transport from the ER to mitochondria, but not the phosphatidylethanolamine transport from mitochondria to the ER. This in vitro assay system thus offers a powerful tool to analyze the non-vesicular phospholipid transport between the ER and mitochondria. PMID:27469264

  15. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response

    PubMed Central

    Prinz, William A.; Thorn, Kurt S.; Voss, Christiane; Walter, Peter

    2009-01-01

    Cells constantly adjust the sizes and shapes of their organelles according to need. In this study, we examine endoplasmic reticulum (ER) membrane expansion during the unfolded protein response (UPR) in the yeast Saccharomyces cerevisiae. We find that membrane expansion occurs through the generation of ER sheets, requires UPR signaling, and is driven by lipid biosynthesis. Uncoupling ER size control and the UPR reveals that membrane expansion alleviates ER stress independently of an increase in ER chaperone levels. Converting the sheets of the expanded ER into tubules by reticulon overexpression does not affect the ability of cells to cope with ER stress, showing that ER size rather than shape is the key factor. Thus, increasing ER size through membrane synthesis is an integral yet distinct part of the cellular program to overcome ER stress. PMID:19948500

  16. Anchored nanostructure materials and method of fabrication

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2012-11-27

    Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

  17. Anchoring Revisited: The Role of the Comparative Question

    PubMed Central

    Grau, Ina; Bohner, Gerd

    2014-01-01

    When people estimate a numeric value after judging whether it is larger or smaller than a high or low anchor value (comparative question), estimates are biased in the direction of the anchor. One explanation for this anchoring effect is that people selectively access knowledge consistent with the anchor value as part of a positive test strategy. Two studies (total N = 184) supported the alternative explanation that people access knowledge consistent with their own answer to the comparative question. Specifically, anchoring effects emerged when the answer to the comparative question was unexpected (lower than the low anchor or higher than the high anchor). For expected answers (lower than the high anchor or higher than the low anchor), however, anchoring effects were attenuated or reversed. The anchor value itself was almost never reported as an absolute estimate. PMID:24454953

  18. Anchors away! Fos fosters anchor-cell invasion.

    PubMed

    Montell, Denise J

    2005-06-17

    Invasion of cells through breakdown of the basement membrane is a crucial step during development and cancer metastasis. In this issue of Cell, simple and genetically tractable cellular assay in the worm for elucidating the molecular processes that underlie cell invasion in vivo is described. They demonstrate that the transcription factor Fos is required for cell invasion and identify three of its downstream target genes (encoding a matrix metalloproteinase, hemicentin, and a fat-like protocadherin).

  19. Sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival.

    PubMed

    Mori, Tomohisa; Hayashi, Teruo; Hayashi, Eri; Su, Tsung-Ping

    2013-01-01

    The membrane of the endoplasmic reticulum (ER) of a cell forms contacts directly with mitochondria whereby the contact is referred to as the mitochondrion-associated ER membrane or the MAM. Here we found that the MAM regulates cellular survival via an MAM-residing ER chaperone the sigma-1 receptor (Sig-1R) in that the Sig-1R chaperones the ER stress sensor IRE1 to facilitate inter-organelle signaling for survival. IRE1 is found in this study to be enriched at the MAM in CHO cells. We found that IRE1 is stabilized at the MAM by Sig-1Rs when cells are under ER stress. Sig-1Rs stabilize IRE1 and thus allow for conformationally correct IRE1 to dimerize into the long-lasting, activated endonuclease. The IRE1 at the MAM also responds to reactive oxygen species derived from mitochondria. Therefore, the ER-mitochondrion interface serves as an important subcellular entity in the regulation of cellular survival by enhancing the stress-responding signaling between mitochondria, ER, and nucleus.

  20. ER Stress and Angiogenesis.

    PubMed

    Binet, François; Sapieha, Przemyslaw

    2015-10-01

    Proper tissue vascularization is vital for cellular function as it delivers oxygen, nutrients, hormones, and immune cells and helps to clear cellular debris and metabolic waste products. Tissue angiogenesis occurs to satisfy energy requirements and cellular sensors of metabolic imbalance coordinate vessel growth. In this regard, the classical pathways of the unfolded protein response activated under conditions of ER stress have recently been described to generate angiomodulatory or angiostatic signals. This review elaborates on the link between angiogenesis and ER stress and discusses the implications for diseases characterized by altered vascular homeostasis, such as cancer, retinopathies, and atherosclerosis.

  1. Anchor Coil Technique for Arteriovenous Fistula Embolization

    PubMed Central

    Kanemaru, Kazuya; Ezura, Masayuki; Nishiyama, Yoshihisa; Yagi, Takashi; Yoshioka, Hideyuki; Fukumoto, Yuichiro; Horikoshi, Toru; Kinouch, Hiroyuki

    2014-01-01

    Summary We describe a case of arteriovenous fistula (AVF) successfully treated by coil embolization with an anchor coil inserted in the varix to facilitate dense packing at the shunting site. AVF of the left anterior choroidal artery (AChoA) draining into the ipsilateral basal vein of Rosenthal was incidentally found in a newborn female. A single detachable coil was inserted as an anchor into the varix adjacent to the shunt, and the microcatheter was pulled back to the shunting point. Three more detachable coils were delivered at the shunting point without migration under the support of the anchor coil, and the AVF was successfully obliterated with preservation of AChoA blood flow. The anchor coil technique can reduce the risk of coil migration and the number of coils required. PMID:24976089

  2. Behavior of soil anchors under dynamic loads

    SciTech Connect

    Picornell, M.; Olague, B.

    1997-07-01

    Helical anchors placed in a cohesionless soil in a laboratory setting were tested under static and dynamic loads. The dynamic tests were performed after subjecting the anchors to a seating load. The dynamic load had an intensity that changed in sinusoidal fashion and was superimposed to the static seating loads. Although, the anchors have a static pull-out capacity, when the dynamic loads are applied the anchor experiences additional deformations for each load cycle. The deformations per cycle are initially high but then decrease to a nearly constant rate. Eventually, the constant rate increases suddenly accelerating until failure. This failure can take place even at small fractions of the static pull-out capacity. The rate of deformation per load cycle is found to increase for larger seating loads and for larger dynamic pulsating loads. The results of this study shows that the designer can only adjust loads to decrease the deformation rate to suit the design life of the structure.

  3. 21 CFR 872.3130 - Preformed anchor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3130 Preformed anchor. (a) Identification. A preformed... the platinum group intended to be incorporated into a dental appliance, such as a denture, to...

  4. Bone anchored hearing aids in children.

    PubMed

    Doshi, Jayesh; McDermott, Ann-Louise

    2015-01-01

    Bone-anchored hearing devices have evolved over recent years. This article provides an overview of the device history, indications, evolution of surgical technique, evidence for benefit and focuses on the challenges that are faced in the pediatric population.

  5. Coronavirus infection, ER stress, apoptosis and innate immunity

    PubMed Central

    Fung, To S.; Liu, Ding X.

    2014-01-01

    The replication of coronavirus, a family of important animal and human pathogens, is closely associated with the cellular membrane compartments, especially the endoplasmic reticulum (ER). Coronavirus infection of cultured cells was previously shown to cause ER stress and induce the unfolded protein response (UPR), a process that aims to restore the ER homeostasis by global translation shutdown and increasing the ER folding capacity. However, under prolonged ER stress, UPR can also induce apoptotic cell death. Accumulating evidence from recent studies has shown that induction of ER stress and UPR may constitute a major aspect of coronavirus–host interaction. Activation of the three branches of UPR modulates a wide variety of signaling pathways, such as mitogen-activated protein (MAP) kinase activation, autophagy, apoptosis, and innate immune response. ER stress and UPR activation may therefore contribute significantly to the viral replication and pathogenesis during coronavirus infection. In this review, we summarize the current knowledge on coronavirus-induced ER stress and UPR activation, with emphasis on their cross-talking to apoptotic signaling. PMID:24987391

  6. Improving performance by anchoring movement and "nerves".

    PubMed

    Iso-Ahola, Seppo E; Dotson, Charles O; Jagodinsky, Adam E; Clark, Lily C; Smallwood, Lorraine L; Wilburn, Christopher; Weimar, Wendi H; Miller, Matthew W

    2016-10-01

    Golf's governing bodies' recent decision to ban all putting styles "anchoring one end of the club against the body" bridges an important practical problem with psychological theory. We report the first experiment testing whether anchoring provides technical and/or psychological advantage in competitive performance. Many "greats" of professional golf from Arnold Palmer and Jack Nicklaus to Tiger Woods have argued against anchoring, believing that it takes "nerves" out of competitive performance and therefore artificially levels the playing field. To shed more light on the issue, we tested participants' performance with anchored and unanchored putters under low and high pressure when controlling for the putter length. We found no statistically significant evidence for a technical advantage due to anchoring but a clear psychological advantage: participants who anchored their putters significantly outperformed unanchored counterparts under high, but not low, pressure. Results provide tentative evidence for the ban's justification from a competitive standpoint. However, before any definite conclusions can be made, more research is needed when using high-level golfers.

  7. Improving performance by anchoring movement and "nerves".

    PubMed

    Iso-Ahola, Seppo E; Dotson, Charles O; Jagodinsky, Adam E; Clark, Lily C; Smallwood, Lorraine L; Wilburn, Christopher; Weimar, Wendi H; Miller, Matthew W

    2016-10-01

    Golf's governing bodies' recent decision to ban all putting styles "anchoring one end of the club against the body" bridges an important practical problem with psychological theory. We report the first experiment testing whether anchoring provides technical and/or psychological advantage in competitive performance. Many "greats" of professional golf from Arnold Palmer and Jack Nicklaus to Tiger Woods have argued against anchoring, believing that it takes "nerves" out of competitive performance and therefore artificially levels the playing field. To shed more light on the issue, we tested participants' performance with anchored and unanchored putters under low and high pressure when controlling for the putter length. We found no statistically significant evidence for a technical advantage due to anchoring but a clear psychological advantage: participants who anchored their putters significantly outperformed unanchored counterparts under high, but not low, pressure. Results provide tentative evidence for the ban's justification from a competitive standpoint. However, before any definite conclusions can be made, more research is needed when using high-level golfers. PMID:27459587

  8. 46 CFR 28.235 - Anchors and radar reflectors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Anchors and radar reflectors. 28.235 Section 28.235....235 Anchors and radar reflectors. (a) Each vessel must be fitted with an anchor(s) and chain(s), cable... rigged with gear that provides a radar signature from a distance of 6 miles, each nonmetallic hull...

  9. 46 CFR 28.235 - Anchors and radar reflectors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Anchors and radar reflectors. 28.235 Section 28.235....235 Anchors and radar reflectors. (a) Each vessel must be fitted with an anchor(s) and chain(s), cable... rigged with gear that provides a radar signature from a distance of 6 miles, each nonmetallic hull...

  10. 46 CFR 28.235 - Anchors and radar reflectors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Anchors and radar reflectors. 28.235 Section 28.235....235 Anchors and radar reflectors. (a) Each vessel must be fitted with an anchor(s) and chain(s), cable... rigged with gear that provides a radar signature from a distance of 6 miles, each nonmetallic hull...

  11. 46 CFR 28.235 - Anchors and radar reflectors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Anchors and radar reflectors. 28.235 Section 28.235....235 Anchors and radar reflectors. (a) Each vessel must be fitted with an anchor(s) and chain(s), cable... rigged with gear that provides a radar signature from a distance of 6 miles, each nonmetallic hull...

  12. 46 CFR 28.235 - Anchors and radar reflectors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Anchors and radar reflectors. 28.235 Section 28.235....235 Anchors and radar reflectors. (a) Each vessel must be fitted with an anchor(s) and chain(s), cable... rigged with gear that provides a radar signature from a distance of 6 miles, each nonmetallic hull...

  13. The Use of Comics-Based Cases in Anchored Instruction

    ERIC Educational Resources Information Center

    Kneller, Matthew F.

    2009-01-01

    The primary purpose of this research was to understand how comics fulfill the role of anchor in an anchored instruction learning environment. Anchored instruction addresses the inert knowledge problem through the use of realistic multimedia stories, or "anchors," that embed a problem and the necessary data to solve it within the narrative. In the…

  14. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    SciTech Connect

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  15. Isolation of a potential anchoring motif based on proteome analysis of Escherichia coli and its use for cell surface display.

    PubMed

    Yim, Sung Sun; An, Seul Ji; Han, Mee-Jung; Choi, Jae Woong; Jeong, Ki Jun

    2013-06-01

    For bacterial cell surface display, the target protein needs to be linked to an anchoring motif, and it is essential to choose an appropriate anchoring motif for efficient and stable display of the protein on the cell surface. To isolate a potential anchoring motif that would allow a stable and enhanced display of target proteins on the surface of an Escherichia coli host, we analyzed the outer membrane proteome of E. coli. On the basis of this proteomic analysis, the outer membrane protein X (OmpX), which has a small, monomeric β-barrel structure and is highly expressed, was selected as a potential anchoring motif. The role of OmpX as an anchoring motif for cell surface display was demonstrated using three important industrial enzymes: endoxylanase, lipase, and alkaline phosphatase. Two different positions (Lys(122), Val(160)) in the extracellular loops of OmpX were examined for C-terminal fusion, and the biological activities and localization of the displayed enzymes were analyzed. All three enzymes examined were efficiently displayed on the E. coli cell surface with high activity. These results reveal that the use of OmpX as an anchoring motif is an efficient method to display functional enzymes on the surface of an E. coli host.

  16. Chemogenetic E-MAP in Saccharomyces cerevisiae for Identification of Membrane Transporters Operating Lipid Flip Flop.

    PubMed

    Vazquez, Hector M; Vionnet, Christine; Roubaty, Carole; Mallela, Shamroop K; Schneiter, Roger; Conzelmann, Andreas

    2016-07-01

    While most yeast enzymes for the biosynthesis of glycerophospholipids, sphingolipids and ergosterol are known, genes for several postulated transporters allowing the flopping of biosynthetic intermediates and newly made lipids from the cytosolic to the lumenal side of the membrane are still not identified. An E-MAP measuring the growth of 142'108 double mutants generated by systematically crossing 543 hypomorphic or deletion alleles in genes encoding multispan membrane proteins, both on media with or without an inhibitor of fatty acid synthesis, was generated. Flc proteins, represented by 4 homologous genes encoding presumed FAD or calcium transporters of the ER, have a severe depression of sphingolipid biosynthesis and elevated detergent sensitivity of the ER. FLC1, FLC2 and FLC3 are redundant in granting a common function, which remains essential even when the severe cell wall defect of flc mutants is compensated by osmotic support. Biochemical characterization of some other genetic interactions shows that Cst26 is the enzyme mainly responsible for the introduction of saturated very long chain fatty acids into phosphatidylinositol and that the GPI lipid remodelase Cwh43, responsible for introducing ceramides into GPI anchors having a C26:0 fatty acid in sn-2 of the glycerol moiety can also use lyso-GPI protein anchors and various base resistant lipids as substrates. Furthermore, we observe that adjacent deletions in several chromosomal regions show strong negative genetic interactions with a single gene on another chromosome suggesting the presence of undeclared suppressor mutations in certain chromosomal regions that need to be identified in order to yield meaningful E-map data. PMID:27462707

  17. Chemogenetic E-MAP in Saccharomyces cerevisiae for Identification of Membrane Transporters Operating Lipid Flip Flop

    PubMed Central

    Vazquez, Hector M.; Vionnet, Christine; Roubaty, Carole; Mallela, Shamroop k.; Schneiter, Roger; Conzelmann, Andreas

    2016-01-01

    While most yeast enzymes for the biosynthesis of glycerophospholipids, sphingolipids and ergosterol are known, genes for several postulated transporters allowing the flopping of biosynthetic intermediates and newly made lipids from the cytosolic to the lumenal side of the membrane are still not identified. An E-MAP measuring the growth of 142'108 double mutants generated by systematically crossing 543 hypomorphic or deletion alleles in genes encoding multispan membrane proteins, both on media with or without an inhibitor of fatty acid synthesis, was generated. Flc proteins, represented by 4 homologous genes encoding presumed FAD or calcium transporters of the ER, have a severe depression of sphingolipid biosynthesis and elevated detergent sensitivity of the ER. FLC1, FLC2 and FLC3 are redundant in granting a common function, which remains essential even when the severe cell wall defect of flc mutants is compensated by osmotic support. Biochemical characterization of some other genetic interactions shows that Cst26 is the enzyme mainly responsible for the introduction of saturated very long chain fatty acids into phosphatidylinositol and that the GPI lipid remodelase Cwh43, responsible for introducing ceramides into GPI anchors having a C26:0 fatty acid in sn-2 of the glycerol moiety can also use lyso-GPI protein anchors and various base resistant lipids as substrates. Furthermore, we observe that adjacent deletions in several chromosomal regions show strong negative genetic interactions with a single gene on another chromosome suggesting the presence of undeclared suppressor mutations in certain chromosomal regions that need to be identified in order to yield meaningful E-map data. PMID:27462707

  18. Anchors as Semantic Primes in Value Construction: An EEG Study of the Anchoring Effect

    PubMed Central

    Shen, Qiang; Qiu, Wenwei

    2015-01-01

    Previous research regarding anchoring effects has demonstrated that human judgments are often assimilated to irrelevant information. Studies have demonstrated that anchors influence the economic valuation of various products and experiences; however, the cognitive explanations of this effect remain controversial, and its neural mechanisms have rarely been explored. In the current study, we conducted an electroencephalography (EEG) experiment to investigate the anchoring effect on willingness to accept (WTA) for an aversive hedonic experience and the role of anchors in this judgment heuristic. The behavioral results demonstrated that random numbers affect participants’ WTA for listening to pieces of noise. The participants asked for higher pay after comparing their WTA with higher numbers. The EEG results indicated that anchors also influenced the neural underpinnings of the valuation process. Specifically, when a higher anchor number was drawn, larger P2 and late positive potential amplitudes were elicited, reflecting the anticipation of more intensive pain from the subsequent noise. Moreover, higher anchors induced a stronger theta band power increase compared with lower anchors when subjects listened to the noises, indicating that the participants felt more unpleasant during the actual experience of the noise. The levels of unpleasantness during both anticipation and experience were consistent with the semantic information implied by the anchors. Therefore, these data suggest that a semantic priming process underlies the anchoring effect in WTA. This study provides proof for the robustness of the anchoring effect and neural evidence of the semantic priming model. Our findings indicate that activated contextual information, even seemingly irrelevant, can be embedded in the construction of economic value in the brain. PMID:26439926

  19. Anchors as Semantic Primes in Value Construction: An EEG Study of the Anchoring Effect.

    PubMed

    Ma, Qingguo; Li, Diandian; Shen, Qiang; Qiu, Wenwei

    2015-01-01

    Previous research regarding anchoring effects has demonstrated that human judgments are often assimilated to irrelevant information. Studies have demonstrated that anchors influence the economic valuation of various products and experiences; however, the cognitive explanations of this effect remain controversial, and its neural mechanisms have rarely been explored. In the current study, we conducted an electroencephalography (EEG) experiment to investigate the anchoring effect on willingness to accept (WTA) for an aversive hedonic experience and the role of anchors in this judgment heuristic. The behavioral results demonstrated that random numbers affect participants' WTA for listening to pieces of noise. The participants asked for higher pay after comparing their WTA with higher numbers. The EEG results indicated that anchors also influenced the neural underpinnings of the valuation process. Specifically, when a higher anchor number was drawn, larger P2 and late positive potential amplitudes were elicited, reflecting the anticipation of more intensive pain from the subsequent noise. Moreover, higher anchors induced a stronger theta band power increase compared with lower anchors when subjects listened to the noises, indicating that the participants felt more unpleasant during the actual experience of the noise. The levels of unpleasantness during both anticipation and experience were consistent with the semantic information implied by the anchors. Therefore, these data suggest that a semantic priming process underlies the anchoring effect in WTA. This study provides proof for the robustness of the anchoring effect and neural evidence of the semantic priming model. Our findings indicate that activated contextual information, even seemingly irrelevant, can be embedded in the construction of economic value in the brain.

  20. Anchors as Semantic Primes in Value Construction: An EEG Study of the Anchoring Effect.

    PubMed

    Ma, Qingguo; Li, Diandian; Shen, Qiang; Qiu, Wenwei

    2015-01-01

    Previous research regarding anchoring effects has demonstrated that human judgments are often assimilated to irrelevant information. Studies have demonstrated that anchors influence the economic valuation of various products and experiences; however, the cognitive explanations of this effect remain controversial, and its neural mechanisms have rarely been explored. In the current study, we conducted an electroencephalography (EEG) experiment to investigate the anchoring effect on willingness to accept (WTA) for an aversive hedonic experience and the role of anchors in this judgment heuristic. The behavioral results demonstrated that random numbers affect participants' WTA for listening to pieces of noise. The participants asked for higher pay after comparing their WTA with higher numbers. The EEG results indicated that anchors also influenced the neural underpinnings of the valuation process. Specifically, when a higher anchor number was drawn, larger P2 and late positive potential amplitudes were elicited, reflecting the anticipation of more intensive pain from the subsequent noise. Moreover, higher anchors induced a stronger theta band power increase compared with lower anchors when subjects listened to the noises, indicating that the participants felt more unpleasant during the actual experience of the noise. The levels of unpleasantness during both anticipation and experience were consistent with the semantic information implied by the anchors. Therefore, these data suggest that a semantic priming process underlies the anchoring effect in WTA. This study provides proof for the robustness of the anchoring effect and neural evidence of the semantic priming model. Our findings indicate that activated contextual information, even seemingly irrelevant, can be embedded in the construction of economic value in the brain. PMID:26439926

  1. Listeria monocytogenes phosphatidylinositol (PI)-specific phospholipase C has low activity on glycosyl-PI-anchored proteins.

    PubMed Central

    Gandhi, A J; Perussia, B; Goldfine, H

    1993-01-01

    The ability of the phosphatidylinositol-specific phospholipase C (PI-PLC) from Listeria monocytogenes to hydrolyze glycosyl phosphatidylinositol (GPI)-anchored membrane proteins was compared with the ability of the PI-PLC from Bacillus thuringiensis to hydrolyze such proteins. The L. monocytogenes enzyme produced no detectable release of acetylcholinesterase from bovine, sheep, and human erythrocytes. The cleavage of the GPI anchors of alkaline phosphatase from rat and rabbit kidney slices was less than 10% of the cleavage seen with the PI-PLC from B. thuringiensis. Activity for release of Fc gamma receptor IIIB (CD16) on human granulocytes was also low. Variations in pH and salt concentration had little effect on the release of GPI-anchored proteins. Our data show that L. monocytogenes PI-PLC has low activity on GPI-anchored proteins. PMID:8253689

  2. N-Glycans and Glycosylphosphatidylinositol-Anchor Act on Polarized Sorting of Mouse PrPC in Madin-Darby Canine Kidney Cells

    PubMed Central

    Puig, Berta; Altmeppen, Hermann C.; Thurm, Dana; Geissen, Markus; Conrad, Catharina; Braulke, Thomas; Glatzel, Markus

    2011-01-01

    The cellular prion protein (PrPC) plays a fundamental role in prion disease. PrPC is a glycosylphosphatidylinositol (GPI)-anchored protein with two variably occupied N-glycosylation sites. In general, GPI-anchor and N-glycosylation direct proteins to apical membranes in polarized cells whereas the majority of mouse PrPC is found in basolateral membranes in polarized Madin-Darby canine kidney (MDCK) cells. In this study we have mutated the first, the second, and both N-glycosylation sites of PrPC and also replaced the GPI-anchor of PrPC by the Thy-1 GPI-anchor in order to investigate the role of these signals in sorting of PrPC in MDCK cells. Cell surface biotinylation experiments and confocal microscopy showed that lack of one N-linked oligosaccharide leads to loss of polarized sorting of PrPC. Exchange of the PrPC GPI-anchor for the one of Thy-1 redirects PrPC to the apical membrane. In conclusion, both N-glycosylation and GPI-anchor act on polarized sorting of PrPC, with the GPI-anchor being dominant over N-glycans. PMID:21931781

  3. The Effect of Molecular Anchoring and Curvature on Confined Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Ondris-Crawford, Renate Johanna

    Nematic liquid crystals confined to curved geometries exhibit unique elastic and anchoring properties. One result of this study was the first simultaneous measurement of the azimuthal (W_phi) and polar (W_theta) anchoring strength and the saddle-splay surface elastic constant K_{24}. The technique confined 4^'-pentyl-4 -cyanobiphenyl (5CB) to submicrometer polyimide treated cylindrical cavities of polycarbonate (Nuclepore) membranes with concentric tangential anchoring conditions for deuterium nuclear magnetic resonance studies. A structural transition upon increasing cavity radius from a planar-bipolar (PB, R < 0.4 μm) to an escaped-twisted (ET, R > 0.5 mu m) structure resulted in the measurement of W _theta and W_phi (comparable in these systems), and of K _{24}/K. The effect of the bend elastic constant K _{33} on the escaped nematic director -field of 4^'-octyl-cyanobiphenyl (8CB) in the submicrometer cavities of Nuclepore membranes is significant near the nematic-smectic A transition. The project encompassed monitoring the anchoring angle, measuring the defect density, and estimating the values for W _theta and K_{24 }/K. The lack of pretransitional smectic layering was attributed to the roughness of the cavity wall. The effect of surface treatments on the nematic structures in the submicrometer cavities of alumina (Anopore) membranes was systematically studied by treating the cavity walls with aliphatic acids (C_{n} H_{2n+1}-COOH) of varying carbon number, n. A configuration transition upon decreasing n from a planar-polar (PP, n>7) to a parallel-axial (PA, n<7) structure indicated a discontinuous anchoring transition from homeotropic to planar anchoring at n = 7. Stable nematic director-fields of chiral nematics in Anopore membranes revealed a structural transition from a PA to a twisted PB (TPB) structure as the percentage of chiral additive increased. The TPB structure is the same as the PB structure in-plane, but the symmetry axis twists along the

  4. Polarized apical distribution of glycosyl-phosphatidylinositol-anchored proteins in a renal epithelial cell line.

    PubMed Central

    Lisanti, M P; Sargiacomo, M; Graeve, L; Saltiel, A R; Rodriguez-Boulan, E

    1988-01-01

    Polarized epithelial cell monolayers contain two distinct plasma membrane domains as delineated by the presence of tight junctions--i.e., an apical surface that faces the external environment and a basolateral surface that functions both in cell-cell contact and cell-substrate attachment. Central to the understanding of epithelial cell polarity is the question of how such cell-surface specializations are generated. A different class of membrane glycoproteins has recently emerged that may yield new insight into the mechanism underlying the biogenesis of this polarity. Members of this class contain a large extracellular protein domain linked to the membrane via glycosyl-phosphatidylinositol. Using a polarized renal epithelial cell line (Madin-Darby canine kidney), we identified endogenous glycosyl-phosphatidylinositol-anchored proteins through release by a phosphatidylinositol-specific phospholipase C. Six glycosyl-phosphatidylinositol-anchored proteins of 110, 85, 70, 55, 38, and 35 kDa were identified and appeared to be restricted to the apical surface. Our data are consistent with the notion that the glycosyl-phosphatidylinositol membrane anchor may contain the necessary information for "targeting" to the apical surface. Images PMID:2974157

  5. A conserved family of proteins facilitates nascent lipid droplet budding from the ER

    PubMed Central

    Choudhary, Vineet; Ojha, Namrata; Golden, Andy

    2015-01-01

    Lipid droplets (LDs) are found in all cells and play critical roles in lipid metabolism. De novo LD biogenesis occurs in the endoplasmic reticulum (ER) but is not well understood. We imaged early stages of LD biogenesis using electron microscopy and found that nascent LDs form lens-like structures that are in the ER membrane, raising the question of how these nascent LDs bud from the ER as they grow. We found that a conserved family of proteins, fat storage-inducing transmembrane (FIT) proteins, is required for proper budding of LDs from the ER. Elimination or reduction of FIT proteins in yeast and higher eukaryotes causes LDs to remain in the ER membrane. Deletion of the single FIT protein in Caenorhabditis elegans is lethal, suggesting that LD budding is an essential process in this organism. Our findings indicated that FIT proteins are necessary to promote budding of nascent LDs from the ER. PMID:26504167

  6. Prediction of Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis. A Genomic Analysis1

    PubMed Central

    Borner, Georg H.H.; Sherrier, D. Janine; Stevens, Timothy J.; Arkin, Isaiah T.; Dupree, Paul

    2002-01-01

    Glycosylphosphatidylinositol (GPI) anchoring of proteins provides a potential mechanism for targeting to the plant plasma membrane and cell wall. However, relatively few such proteins have been identified. Here, we develop a procedure for database analysis to identify GPI-anchored proteins (GAP) based on their possession of common features. In a comprehensive search of the annotated Arabidopsis genome, we identified 167 novel putative GAP in addition to the 43 previously described candidates. Many of these 210 proteins show similarity to characterized cell surface proteins. The predicted GAP include homologs of β-1,3-glucanases (16), metallo- and aspartyl proteases (13), glycerophosphodiesterases (6), phytocyanins (25), multi-copper oxidases (2), extensins (6), plasma membrane receptors (19), and lipid-transfer-proteins (18). Classical arabinogalactan (AG) proteins (13), AG peptides (9), fasciclin-like proteins (20), COBRA and 10 homologs, and novel potential signaling peptides that we name GAPEPs (8) were also identified. A further 34 proteins of unknown function were predicted to be GPI anchored. A surprising finding was that over 40% of the proteins identified here have probable AG glycosylation modules, suggesting that AG glycosylation of cell surface proteins is widespread. This analysis shows that GPI anchoring is likely to be a major modification in plants that is used to target a specific subset of proteins to the cell surface for extracellular matrix remodeling and signaling. PMID:12068095

  7. Interaction of modified tail-anchored proteins with liposomes: effect of extensions of hydrophilic segment at the COOH-terminus of holo-cytochromes b₅.

    PubMed

    Sakamoto, Yoichi; Miura, Masahiro; Takeuchi, Fusako; Park, Sam-Yong; Tsubaki, Motonari

    2012-03-01

    A group of membrane proteins having a single COOH-terminal hydrophobic domain capable of post-translational insertion into lipid bilayer is known as tail-anchored (TA) proteins. To clarify the insertion mechanism of the TA-domain of human cytochrome b(5) (Hcytb5) into ER membranes, we produced and purified various membrane-bound forms of Hcytb5 with their heme b-bound, in which various truncated forms of NH(2)-terminal bovine opsin sequence were appended at the COOH-terminus of the native form. We analyzed the integration of the TA-domains of these forms onto protein-free liposomes. The integration occurred efficiently even in the presence of a small amount of sodium cholate and, once incorporated, such proteoliposomes were very stable. The mode of the integration was further analyzed by treatment of the proteoliposomes with trypsin either on the extravesicular side or on the luminal side. LC-MS analyses of the trypsin digests obtained from the proteoliposomes indicated that most of the C-terminal hydrophilic segment of the native Hcytb5 were exposed towards the lumen of the vesicles and, further, a significant part of the population of the extended C-terminal hydrophilic segments of the modified Hcytb5 were exposed in the lumen as well, suggesting efficient translocation ability of the TA-domain without any assistance from other protein factors. Present results opened a route for the use of the C-terminal TA-domain as a convenient tool for the transport of proteins as well as short peptides into artificial liposomes.

  8. Insertion of a glycosylphosphatidylinositol-anchored enzyme into liposomes.

    PubMed

    Ronzon, F; Morandat, S; Roux, B; Bortolato, M

    2004-02-01

    Incorporation of alkaline phosphatase (AP), a glycosylphosphatidylinositol (GPI)-anchored protein, into liposomes containing detergent, followed by detergent removal with hydrophobic resin was performed. Incorporation media were collected during different steps of detergent removal and were analyzed by flotation in sucrose gradient. The presence of protein was checked by measuring enzymatic activity, while the presence of (3)H-radio-labelled liposomes was followed by determination of the radioactivity. The incorporation yield of the protein into liposomes increased with incubation time in presence of hydrophobic resin. Protein was also incorporated at different protein/lipid ratios. At the highest protein lipid ratio, our data showed that 260 molecules of GPI-linked AP (AP-GPI) could be associated with one liposome, corresponding to 65% vesicle coverage. Finally, observations by electron cryomicroscopy indicated (i) that the protein seemed exclusively associated with the lipid bilayer via the GPI-anchor, as shown by the distance-about 2.5 nm-between the protein core and the liposome membrane; (ii) that the AP-GPI distribution was heterogeneous on the liposome surface, forming clusters of protein.

  9. Monitoring ground anchor using non-destructive ground anchor integrity test (NDT-GRANIT)

    SciTech Connect

    Robbany, Z. Handayani, G.

    2015-09-30

    Monitoring at ground anchor commonly uses a pull out test method, therefor we developing a non-destructive ground anchor integrity testing (NDT-GRANIT). NDT-GRANIT using the principle of seismic waves that have been modified into form of sweep signal, the signal will be demodulated, filtered, and Fourier transformation (inverse discrete Fourier transform) so the data can be interpreted reflected wave from the ground anchor. The method was applied to determine whether the ground anchor still gripped in the subsurface by looking the attenuation of the wave generated sources. From the result we can see that ground anchor does not grip. To validate the results of the comparison method of measurement used pile integrity test.

  10. Polymer's anchoring behavior in liquid crystal cells

    NASA Astrophysics Data System (ADS)

    Cui, Yue

    The current dissertation mainly discusses about the polymers anchoring behavior in liquid crystal cells in two aspects: surface interaction and bulk interaction. The goal of the research is to understand the fundamental physics of anchoring strength and apply the knowledge to liquid crystal display devices. Researchers proposed two main contributors to the surface anchoring strength: the micro grooves generated by external force and the polymer chain's alignment. Both of them has experimental proofs. In the current study, explorations were made to understand the mechanisms of surface anchoring strength and easy axis of surface liquid crystal provided by rubbed polymer alignment layer. The work includes not only the variation of the alignment layer itself such as thickness(Chapter 3) and polymer side chain (Chapter 5), but also the variation of external conditions such as temperature (Chapter 4) and rubbing condition (Chapter 6). To determine the polar and azimuthal anchoring strengths, Rapini-Papoular's expression was applied. However, it was discovered that higher order terms may be required in order to fit the experimental result or theoretically predict unique anchoring behaviors (Chapter 2, Chapter 6). SEM and AFM technologies were introduced to gather the actual structures of polymer alignment layer and extrapolate the alignment of liquid crystal in a micro scale. The result shows that the anchoring strength can be adjusted by the layer thickness, side chain structure, while the easy axis direction can be adjusted by a second rubbing direction. In addition, different anchoring conditions combined with liquid crystal's elastic energy can generate quite different forms of liquid crystals (Chapter 7). In the study of bulk alignment, the main contrition from the current dissertation is applying the understanding of anchoring behavior to optimizing actual switchable devices. Conventional PDLC performance can be tuned with the knowledge of the polymer and the liquid

  11. GPI-anchor and GPI-anchored protein expression in PMM2-CDG patients

    PubMed Central

    2013-01-01

    Background Mutations in PMM2 impair phosphomannomutase-2 activity and cause the most frequent congenital disorder of glycosylation, PMM2-CDG. Mannose-1-phosphate, that is deficient in this disorder, is also implicated in the biosynthesis of glycosylphosphatidyl inositol (GPI) anchors. Objective To evaluate whether GPI-anchor and GPI-anchored proteins are defective in PMM2-CDG patients. Methods The expression of GPI-anchor and seven GPI-anchored proteins was evaluated by flow cytometry in different cell types from twelve PMM2-CDG patients. Additionally, neutrophil CD16 and plasma hepatic proteins were studied by Western blot. Transferrin glycoforms were evaluated by HPLC. Results Patients and controls had similar surface expression of GPI-anchor and most GPI-anchored proteins. Nevertheless, patients displayed a significantly diminished binding of two anti-CD16 antibodies (3G8 and KD1) to neutrophils and also of anti-CD14 (61D3) to monocytes. Interestingly, CD16 immunostaining and asialotransferrin levels significantly correlated with patients’ age. Analysis by flow cytometry of CD14 with MΦP9, and CD16 expression in neutrophils by Western blot using H-80 ruled out deficiencies of these antigens. Conclusions PMM2 mutations do not impair GPI-anchor or GPI-anchored protein expression. However, the glycosylation anomalies caused by PMM2 mutations might affect the immunoreactivity of monoclonal antibodies and lead to incorrect conclusions about the expression of different proteins, including GPI-anchored proteins. Neutrophils and monocytes are sensitive to PMM2 mutations, leading to abnormal glycosylation in immune receptors, which might potentially affect their affinity to their ligands, and contribute to infection. This study also confirms less severe hypoglycosylation defects in older PMM2-CDG patients. PMID:24139637

  12. The Role of Plasmalemmal-Cortical Anchoring on the Stability of Transmembrane Electropores

    PubMed Central

    Kennedy, S. M.; Ji, Z.; Rockweiler, N. B.; Hahn, A. R.; Booske, J. H.; Hagness, S. C.

    2009-01-01

    The structure of eukaryotic cells is maintained by a network of filamentous actin anchored subjacently to the plasma membrane. This structure is referred to as the actin cortex. We present a locally constrained surface tension model for electroporation in order to address the influence of plasmalemmal-cortical anchoring on electropore dynamics. This model predicts that stable electropores are possible under certain conditions. The existence of stable electropores has been suggested in several experimental studies. The electropore radius at which stability is achieved is a function of the characteristic radii of locally constrained regions about the plasma membrane. This model opens the possibility of using actin-modifying compounds to physically manipulate cortical density, thereby manipulating electroporation dynamics. It also underscores the need to improve electroporation models further by incorporating the influence of trans-electropore ionic and aqueous flow, cortical flexibility, transmembrane protein mobility, and active cellular wound healing mechanisms. PMID:20490371

  13. Anchoring in rhythmic in-phase and antiphase visuomotor tracking.

    PubMed

    Roerdink, Melvyn; Bank, Paulina J M; Peper, C E; Beek, Peter J

    2013-04-01

    Rhythmic limb movements are often anchored at particular points in the movement cycle. Anchoring may reveal essential task-specific information for motor control. We examined the effect of tracking mode (in-phase, antiphase) and gaze direction (left, right) on anchoring in visuomotor tracking with and without concurrent visual feedback of the hand movement. For in-phase tracking, anchoring was observed at the foveated reversal point whereas for antiphase tracking anchoring was observed at both reversals, suggesting the presence of two reference points instead of one. Anchoring at the foveated reversal reflected gaze anchoring (i.e., coalignment of hand and gaze) while anchoring at the nonfoveated reversal reflected visuomotor synchronization (i.e., the hand was steered to the nonfoveated reversal coincident with a target reversal at the point of gaze). We propose that the number and location of anchor points play a crucial role in the underlying control by providing reference values for error correction processes.

  14. A Hands-On Approach to Teaching Protein Translation & Translocation into the ER

    ERIC Educational Resources Information Center

    LaBonte, Michelle L.

    2013-01-01

    The process of protein translation and translocation into the endoplasmic reticulum (ER) can often be challenging for introductory college biology students to visualize. To help them understand how proteins become oriented in the ER membrane, I developed a hands-on activity in which students use Play-Doh to simulate the process of protein…

  15. ER-PM Contacts Define Actomyosin Kinetics for Proper Contractile Ring Assembly.

    PubMed

    Zhang, Dan; Bidone, Tamara C; Vavylonis, Dimitrios

    2016-03-01

    The cortical endoplasmic reticulum (ER), an elaborate network of tubules and cisternae [1], establishes contact sites with the plasma membrane (PM) through tethering machinery involving a set of conserved integral ER proteins [2]. The physiological consequences of forming ER-PM contacts are not fully understood. Here, we reveal a kinetic restriction role of ER-PM contacts over ring compaction process for proper actomyosin ring assembly in Schizosaccharomyces pombe. We show that fission yeast cells deficient in ER-PM contacts exhibit aberrant equatorial clustering of actin cables during ring assembly and are particularly susceptible to compromised actin filament crosslinking activity. Using quantitative image analyses and computer simulation, we demonstrate that ER-PM contacts function to modulate the distribution of ring components and to constrain their compaction kinetics. We propose that ER-PM contacts have evolved as important physical modulators to ensure robust ring assembly. PMID:26877082

  16. Store-operated calcium entry compensates fast ER calcium loss in resting hippocampal neurons.

    PubMed

    Samtleben, Samira; Wachter, Britta; Blum, Robert

    2015-08-01

    The endoplasmic reticulum (ER) acts as a dynamic calcium store and is involved in the generation of specific patterns of calcium signals in neurons. Calcium is mobilized from the ER store by multiple signaling cascades, and neuronal activity is known to regulate ER calcium levels. We asked how neurons regulate ER calcium levels in the resting state. Direct ER calcium imaging showed that ER calcium was lost quite rapidly from the somatic and dendritic ER when resting neurons were transiently kept under calcium-free conditions. Interestingly, free ER and free cytosolic calcium was lost continuously across the plasma membrane and was not held back in the cytosol, implying the presence of a prominent calcium influx mechanism to maintain ER calcium levels at rest. When neurons were treated acutely with inhibitors of store-operated calcium entry (SOCE), an immediate decline in ER calcium levels was observed. This continuous SOCE-like calcium entry did not require the activation of a signaling cascade, but was rather a steady-state phenomenon. The SOCE-like mechanism maintains medium-high ER calcium levels at rest and is essential for balanced resting calcium levels in the ER and cytosol.

  17. Fibre-Reinforced Adhesive for Structure Anchoring

    NASA Astrophysics Data System (ADS)

    Barnat, J.; Bajer, M.

    2015-11-01

    The topic of this paper is the glue-concrete interface of bonded anchors loaded by tension force. The paper is closely focused on bond strength experiments using high strength concrete up to class C50/60 or higher together with pure epoxy resin and fibre-reinforced resin. The goal of this research is to find the limits of the effective use of such glue types in high performance concrete, and also to verify the most commonly used design methods for bonded anchors. The presented research includes experimental analysis of the glue-concrete interface and the influence of its parameters on anchor behaviour. The presented analysis shows some problems of the 'separated failure modes' approach and also presents experimentally verified bond strength values obtained for the currently most widespread glue types. Results of fibre reinforced epoxy resin are also presented in this paper.

  18. Naltrexone ER/Bupropion ER: A Review in Obesity Management.

    PubMed

    Greig, Sarah L; Keating, Gillian M

    2015-07-01

    Oral naltrexone extended-release/bupropion extended-release (naltrexone ER/bupropion ER; Contrave(®), Mysimba(™)) is available as an adjunct to a reduced-calorie diet and increased physical activity in adults with an initial body mass index (BMI) of ≥ 30 kg/m(2) (i.e. obese) or a BMI of ≥ 27 kg/m(2) (i.e. overweight) in the presence of at least one bodyweight-related comorbidity, such as type 2 diabetes mellitus, hypertension or dyslipidaemia. In 56-week phase III trials in these patient populations, oral naltrexone ER/bupropion ER 32/360 mg/day was significantly more effective than placebo with regard to percentage bodyweight reductions from baseline and the proportion of patients who achieved bodyweight reductions of ≥ 5 and ≥ 10%. Significantly greater improvements in several cardiometabolic risk factors were also observed with naltrexone ER/bupropion ER versus placebo, as well as greater improvements in glycated haemoglobin levels in obese or overweight adults with type 2 diabetes. Naltrexone ER/bupropion ER was generally well tolerated in phase III trials, with nausea being the most common adverse event. Thus, naltrexone ER/bupropion ER 32/360 mg/day as an adjunct to a reduced-calorie diet and increased physical activity, is an effective and well tolerated option for chronic bodyweight management in obese adults or overweight adults with at least one bodyweight-related comorbidity.

  19. Mitofusin-2 knockdown increases ER-mitochondria contact and decreases amyloid β-peptide production.

    PubMed

    Leal, Nuno Santos; Schreiner, Bernadette; Pinho, Catarina Moreira; Filadi, Riccardo; Wiehager, Birgitta; Karlström, Helena; Pizzo, Paola; Ankarcrona, Maria

    2016-09-01

    Mitochondria are physically and biochemically in contact with other organelles including the endoplasmic reticulum (ER). Such contacts are formed between mitochondria-associated ER membranes (MAM), specialized subregions of ER, and the outer mitochondrial membrane (OMM). We have previously shown increased expression of MAM-associated proteins and enhanced ER to mitochondria Ca(2+) transfer from ER to mitochondria in Alzheimer's disease (AD) and amyloid β-peptide (Aβ)-related neuronal models. Here, we report that siRNA knockdown of mitofusin-2 (Mfn2), a protein that is involved in the tethering of ER and mitochondria, leads to increased contact between the two organelles. Cells depleted in Mfn2 showed increased Ca(2+) transfer from ER to mitchondria and longer stretches of ER forming contacts with OMM. Interestingly, increased contact resulted in decreased concentrations of intra- and extracellular Aβ40 and Aβ42 . Analysis of γ-secretase protein expression, maturation and activity revealed that the low Aβ concentrations were a result of impaired γ-secretase complex function. Amyloid-β precursor protein (APP), β-site APP-cleaving enzyme 1 and neprilysin expression as well as neprilysin activity were not affected by Mfn2 siRNA treatment. In summary, our data shows that modulation of ER-mitochondria contact affects γ-secretase activity and Aβ generation. Increased ER-mitochondria contact results in lower γ-secretase activity suggesting a new mechanism by which Aβ generation can be controlled. PMID:27203684

  20. Multiple magnetic microrobot control using electrostatic anchoring

    NASA Astrophysics Data System (ADS)

    Pawashe, Chytra; Floyd, Steven; Sitti, Metin

    2009-04-01

    Addressing power and control to individual untethered microrobots is a challenge for small-scale robotics. We present a 250×130×100 μm3 magnetic robot wirelessly driven by pulsed external magnetic fields. An induced stick-slip motion results in translation speeds over 8 mm/s. Control of multiple robots is achieved by an array of addressable electrostatic anchoring pads on the surface, which selectively fixes microrobots, preventing translation. We demonstrate control of two microrobots in both uncoupled individual motion and coupled symmetric motion. An estimated anchoring force of 23.0 μN is necessary to effectively fix each microrobot.

  1. Bond strength of glass fiber reinforced plastics (GFRP) grouted anchors

    SciTech Connect

    Bellavance, E.; Xu, H.; Benmokrane, B.

    1995-11-01

    This paper describes the results of laboratory and field pull-out tests on cement grouted glass fiber reinforced plastic (GFRP) anchors. As an alternative for grouted steel anchors, GFRP bars have many advantages over steel tendons, and can avoid corrosion and some difficulties in transportation, handling, and installation. Three types of 36 GFRP anchors and 20 steel anchors installed in three types of host media: steel pipe, concrete block, and rock mass were tested in the laboratory as well as in the field. The bond strength, load carrying capacity, load-displacement behavior, and critical bond length of cement grouted GFRP anchors were examined in comparison with conventional steel anchors.

  2. Release of the glycosylphosphatidylinositol-anchored enzyme ecto-5'-nucleotidase by phospholipase C: catalytic activation and modulation by the lipid bilayer.

    PubMed Central

    Lehto, M T; Sharom, F J

    1998-01-01

    Many hydrolytic enzymes are attached to the extracellular face of the plasma membrane of eukaryotic cells by a glycosylphosphatidylinositol (GPI) anchor. Little is currently known about the consequences for enzyme function of anchor cleavage by phosphatidylinositol-specific phospholipase C. We have examined this question for the GPI-anchored protein 5'-nucleotidase (5'-ribonucleotide phosphohydrolase; EC 3.1.3.5), both in the native lymphocyte plasma membrane, and following purification and reconstitution into defined lipid bilayer vesicles, using Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (PI-PLC). Membrane-bound, detergent-solubilized and cleaved 5'-nucleotidase all obeyed Michaelis-Menten kinetics, with a Km for 5'-AMP in the range 11-16 microM. The GPI anchor was removed from essentially all 5'-nucleotidase molecules, indicating that there is no phospholipase-resistant pool of enzyme. However, the phospholipase was much less efficient at cleaving the GPI anchor when 5'-nucleotidase was present in detergent solution, dimyristoyl phosphatidylcholine, egg phosphatidylethanolamine and sphingomyelin, compared with the native plasma membrane, egg phosphatidylcholine and a sphingolipid/cholesterol-rich mixture. Lipid molecular properties and bilayer packing may affect the ability of PI-PLC to gain access to the GPI anchor. Catalytic activation, characterized by an increase in Vmax, was observed following PI-PLC cleavage of reconstituted 5'-nucleotidase from vesicles of several different lipids. The highest degree of activation was noted for 5'-nucleotidase in egg phosphatidylethanolamine. An increase in Vmax was also noted for a sphingolipid/cholesterol-rich mixture, the native plasma membrane and egg phosphatidylcholine, whereas vesicles of sphingomyelin and dimyristoyl phosphatidylcholine showed little activation. Km generally remained unchanged following cleavage, except in the case of the sphingolipid/cholesterol-rich mixture. Insertion

  3. Transmembrane protein TMEM170A is a newly discovered regulator of ER and nuclear envelope morphogenesis in human cells

    PubMed Central

    Christodoulou, Andri; Santarella-Mellwig, Rachel; Santama, Niovi

    2016-01-01

    ABSTRACT The mechanism of endoplasmic reticulum (ER) morphogenesis is incompletely understood. ER tubules are shaped by the reticulons (RTNs) and DP1/Yop1p family members, but the mechanism of ER sheet formation is much less clear. Here, we characterize TMEM170A, a human transmembrane protein, which localizes in ER and nuclear envelope membranes. Silencing or overexpressing TMEM170A in HeLa K cells alters ER shape and morphology. Ultrastructural analysis reveals that downregulation of TMEM170A specifically induces tubular ER formation, whereas overexpression of TMEM170A induces ER sheet formation, indicating that TMEM170A is a newly discovered ER-sheet-promoting protein. Additionally, downregulation of TMEM170A alters nuclear shape and size, decreases the density of nuclear pore complexes (NPCs) in the nuclear envelope and causes either a reduction in inner nuclear membrane (INM) proteins or their relocalization to the ER. TMEM170A interacts with RTN4, a member of the reticulon family; simultaneous co-silencing of TMEM170A and RTN4 rescues ER, NPC and nuclear-envelope-related phenotypes, implying that the two proteins have antagonistic effects on ER membrane organization, and nuclear envelope and NPC formation. PMID:26906412

  4. Transmembrane protein TMEM170A is a newly discovered regulator of ER and nuclear envelope morphogenesis in human cells.

    PubMed

    Christodoulou, Andri; Santarella-Mellwig, Rachel; Santama, Niovi; Mattaj, Iain W

    2016-04-15

    The mechanism of endoplasmic reticulum (ER) morphogenesis is incompletely understood. ER tubules are shaped by the reticulons (RTNs) and DP1/Yop1p family members, but the mechanism of ER sheet formation is much less clear. Here, we characterize TMEM170A, a human transmembrane protein, which localizes in ER and nuclear envelope membranes. Silencing or overexpressing TMEM170A in HeLa K cells alters ER shape and morphology. Ultrastructural analysis reveals that downregulation of TMEM170A specifically induces tubular ER formation, whereas overexpression of TMEM170A induces ER sheet formation, indicating that TMEM170A is a newly discovered ER-sheet-promoting protein. Additionally, downregulation of TMEM170A alters nuclear shape and size, decreases the density of nuclear pore complexes (NPCs) in the nuclear envelope and causes either a reduction in inner nuclear membrane (INM) proteins or their relocalization to the ER. TMEM170A interacts with RTN4, a member of the reticulon family; simultaneous co-silencing of TMEM170A and RTN4 rescues ER, NPC and nuclear-envelope-related phenotypes, implying that the two proteins have antagonistic effects on ER membrane organization, and nuclear envelope and NPC formation.

  5. VIP21/caveolin, glycosphingolipid clusters and the sorting of glycosylphosphatidylinositol-anchored proteins in epithelial cells.

    PubMed Central

    Zurzolo, C; van't Hof, W; van Meer, G; Rodriguez-Boulan, E

    1994-01-01

    We studied the role of the association between glycosylphosphatidylinositol (GPI)-anchored proteins and glycosphingolipid (GSL) clusters in apical targeting using gD1-DAF, a GPI-anchored protein that is differentially sorted by three epithelial cell lines. Differently from MDCK cells, where both gD1-DAF and glucosylceramide (GlcCer) are sorted to the apical membrane, in MDCK Concanavalin A-resistant cells (MDCK-ConAr) gD1-DAF was mis-sorted to both surfaces, but GlcCer was still targeted to the apical surface. In both MDCK and MDCK-ConAr cells, gD1-DAF became associated with TX-100-insoluble GSL clusters during transport to the cell surface. In dramatic contrast with MDCK cells, the Fischer rat thyroid (FRT) cell line targeted both gD1-DAF and GlcCer basolaterally. The targeting differences for GSLs in FRT and MDCK cells cannot be accounted for by a differential ability to form clusters because, in spite of major differences in the GSL composition, both cell lines assembled GSLs into TX-100-insoluble complexes with identical isopycnic densities. Surprisingly, in FRT cells, gD1-DAF did not form clusters with GSLs and, therefore, remained completely soluble. This clustering defect in FRT cells correlated with the lack of expression of VIP21/caveolin, a protein localized to both the plasma membrane caveolae and the trans Golgi network. This suggests that VIP21/caveolin may have an important role in recruiting GPI-anchored proteins into GSL complexes necessary for their apical sorting. However, since MDCK-ConAr cells expressed caveolin and clustered GPI-anchored proteins normally, yet mis-sorted them, our results also indicate that clustering and caveolin are not sufficient for apical targeting, and that additional factors are required for the accurate apical sorting of GPI-anchored proteins. Images PMID:8306971

  6. Monogenean anchor morphometry: systematic value, phylogenetic signal, and evolution.

    PubMed

    Khang, Tsung Fei; Soo, Oi Yoon Michelle; Tan, Wooi Boon; Lim, Lee Hong Susan

    2016-01-01

    Background. Anchors are one of the important attachment appendages for monogenean parasites. Common descent and evolutionary processes have left their mark on anchor morphometry, in the form of patterns of shape and size variation useful for systematic and evolutionary studies. When combined with morphological and molecular data, analysis of anchor morphometry can potentially answer a wide range of biological questions. Materials and Methods. We used data from anchor morphometry, body size and morphology of 13 Ligophorus (Monogenea: Ancyrocephalidae) species infecting two marine mugilid (Teleostei: Mugilidae) fish hosts: Moolgarda buchanani (Bleeker) and Liza subviridis (Valenciennes) from Malaysia. Anchor shape and size data (n = 530) were generated using methods of geometric morphometrics. We used 28S rRNA, 18S rRNA, and ITS1 sequence data to infer a maximum likelihood phylogeny. We discriminated species using principal component and cluster analysis of shape data. Adams's K mult was used to detect phylogenetic signal in anchor shape. Phylogeny-correlated size and shape changes were investigated using continuous character mapping and directional statistics, respectively. We assessed morphological constraints in anchor morphometry using phylogenetic regression of anchor shape against body size and anchor size. Anchor morphological integration was studied using partial least squares method. The association between copulatory organ morphology and anchor shape and size in phylomorphospace was used to test the Rohde-Hobbs hypothesis. We created monogeneaGM, a new R package that integrates analyses of monogenean anchor geometric morphometric data with morphological and phylogenetic data. Results. We discriminated 12 of the 13 Ligophorus species using anchor shape data. Significant phylogenetic signal was detected in anchor shape. Thus, we discovered new morphological characters based on anchor shaft shape, the length between the inner root point and the outer root

  7. Monogenean anchor morphometry: systematic value, phylogenetic signal, and evolution

    PubMed Central

    Soo, Oi Yoon Michelle; Tan, Wooi Boon; Lim, Lee Hong Susan

    2016-01-01

    Background. Anchors are one of the important attachment appendages for monogenean parasites. Common descent and evolutionary processes have left their mark on anchor morphometry, in the form of patterns of shape and size variation useful for systematic and evolutionary studies. When combined with morphological and molecular data, analysis of anchor morphometry can potentially answer a wide range of biological questions. Materials and Methods. We used data from anchor morphometry, body size and morphology of 13 Ligophorus (Monogenea: Ancyrocephalidae) species infecting two marine mugilid (Teleostei: Mugilidae) fish hosts: Moolgarda buchanani (Bleeker) and Liza subviridis (Valenciennes) from Malaysia. Anchor shape and size data (n = 530) were generated using methods of geometric morphometrics. We used 28S rRNA, 18S rRNA, and ITS1 sequence data to infer a maximum likelihood phylogeny. We discriminated species using principal component and cluster analysis of shape data. Adams’s Kmult was used to detect phylogenetic signal in anchor shape. Phylogeny-correlated size and shape changes were investigated using continuous character mapping and directional statistics, respectively. We assessed morphological constraints in anchor morphometry using phylogenetic regression of anchor shape against body size and anchor size. Anchor morphological integration was studied using partial least squares method. The association between copulatory organ morphology and anchor shape and size in phylomorphospace was used to test the Rohde-Hobbs hypothesis. We created monogeneaGM, a new R package that integrates analyses of monogenean anchor geometric morphometric data with morphological and phylogenetic data. Results. We discriminated 12 of the 13 Ligophorus species using anchor shape data. Significant phylogenetic signal was detected in anchor shape. Thus, we discovered new morphological characters based on anchor shaft shape, the length between the inner root point and the outer root

  8. Soluble tyrosinase is an endoplasmic reticulum (ER)-associated degradation substrate retained in the ER by calreticulin and BiP/GRP78 and not calnexin.

    PubMed

    Popescu, Costin I; Paduraru, Crina; Dwek, Raymond A; Petrescu, Stefana M

    2005-04-01

    Tyrosinase is a type I membrane protein regulating the pigmentation process in humans. Mutations of the human tyrosinase gene cause the tyrosinase negative type I oculocutaneous albinism (OCAI). Some OCAI mutations were shown to delete the transmembrane domain or to affect its hydrophobic properties, resulting in soluble tyrosinase mutants that are retained in the endoplasmic reticulum (ER). To understand the specific mechanisms involved in the ER retention of soluble tyrosinase, we have constructed a tyrosinase mutant truncated at its C-terminal end and investigated its maturation process. The mutant is retained in the ER, and it is degraded through the proteasomal pathway. We determined that the mannose trimming is required for an efficient degradation process. Moreover, this soluble ER-associated degradation substrate is stopped at the ER quality control checkpoint with no requirements for an ER-Golgi recycling pathway. Co-immmunoprecipitation experiments showed that soluble tyrosinase interacts with calreticulin and BiP/GRP78 (and not calnexin) during its ER transit. Expression of soluble tyrosinase in calreticulin-deficient cells resulted in the export of soluble tyrosinase of the ER, indicating the calreticulin role in ER retention. Taken together, these data show that OCAI soluble tyrosinase is an ER-associated degradation substrate that, unlike other albino tyrosinases, associates with calreticulin and BiP/GRP78. The lack of specificity for calnexin interaction reveals a novel role for calreticulin in OCAI albinism.

  9. Soluble tyrosinase is an endoplasmic reticulum (ER)-associated degradation substrate retained in the ER by calreticulin and BiP/GRP78 and not calnexin.

    PubMed

    Popescu, Costin I; Paduraru, Crina; Dwek, Raymond A; Petrescu, Stefana M

    2005-04-01

    Tyrosinase is a type I membrane protein regulating the pigmentation process in humans. Mutations of the human tyrosinase gene cause the tyrosinase negative type I oculocutaneous albinism (OCAI). Some OCAI mutations were shown to delete the transmembrane domain or to affect its hydrophobic properties, resulting in soluble tyrosinase mutants that are retained in the endoplasmic reticulum (ER). To understand the specific mechanisms involved in the ER retention of soluble tyrosinase, we have constructed a tyrosinase mutant truncated at its C-terminal end and investigated its maturation process. The mutant is retained in the ER, and it is degraded through the proteasomal pathway. We determined that the mannose trimming is required for an efficient degradation process. Moreover, this soluble ER-associated degradation substrate is stopped at the ER quality control checkpoint with no requirements for an ER-Golgi recycling pathway. Co-immmunoprecipitation experiments showed that soluble tyrosinase interacts with calreticulin and BiP/GRP78 (and not calnexin) during its ER transit. Expression of soluble tyrosinase in calreticulin-deficient cells resulted in the export of soluble tyrosinase of the ER, indicating the calreticulin role in ER retention. Taken together, these data show that OCAI soluble tyrosinase is an ER-associated degradation substrate that, unlike other albino tyrosinases, associates with calreticulin and BiP/GRP78. The lack of specificity for calnexin interaction reveals a novel role for calreticulin in OCAI albinism. PMID:15677452

  10. NOD1/NOD2 signaling links ER stress with inflammation

    PubMed Central

    Keestra-Gounder, A. Marijke; Byndloss, Mariana X.; Seyffert, Núbia; Young, Briana M.; Chávez-Arroyo, Alfredo; Tsai, April Y.; Cevallos, Stephanie A.; Winter, Maria G.; Pham, Oanh H.; Tiffany, Connor R.; de Jong, Maarten F.; Kerrinnes, Tobias; Ravindran, Resmi; Luciw, Paul A.; McSorley, Stephen J.; Bäumler, Andreas J.; Tsolis, Renée M.

    2016-01-01

    Endoplasmic reticulum (ER) stress is a major contributor to inflammatory diseases, such as Crohn’s disease and type 2 diabetes1,2. ER stress induces the unfolded protein response (UPR), which involves activation of three transmembrane receptors, ATF6 (activating transcription factor 6), PERK (protein kinase RNA-like endoplasmic reticulum kinase) and IRE1α (inositol-requiring enzyme 1α)3 (Extended Data figure 1a). Once activated, IRE1α recruits TRAF2 (TNF receptor-associated factor 2) to the ER membrane to initiate inflammatory responses via the nuclear factor kappa B (NF-κB) pathway4. Inflammation is commonly triggered when pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) or nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), detect tissue damage or microbial infection. However, it is not clear which PRRs play a major role in inducing inflammation during ER stress. Here we show that NOD1 and NOD2, two members of the NLR family of PRRs, are important mediators of ER stress-induced inflammation. The ER stress inducers thapsigargin and dithiothreitol (DTT) triggered production of the pro-inflammatory cytokine interleukin (IL)-6 in a NOD1/2-dependent fashion. Inflammation and IL-6 production triggered by infection with Brucella abortus, which induces ER stress by injecting the type IV secretion system (T4SS) effector protein VceC into host cells5, was TRAF2, NOD1/2 and RIP2-dependent and could be blunted by treatment with the ER-stress inhibitor tauroursodeoxycholate (TUDCA) or an IRE1α kinase inhibitor. The association of NOD1 and NOD2 with pro-inflammatory responses induced by the IRE1α/TRAF2 signaling pathway provides a novel link between innate immunity and ER stress-induced inflammation. PMID:27007849

  11. 24 CFR 3285.401 - Anchoring instructions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Anchorage Against Wind § 3285.401... wind by use of anchor assembly type installations or by connecting the home to an alternative... must require the home to be secured against the wind, as described in this section. The...

  12. 24 CFR 3285.401 - Anchoring instructions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Anchorage Against Wind § 3285.401... wind by use of anchor assembly type installations or by connecting the home to an alternative... must require the home to be secured against the wind, as described in this section. The...

  13. 24 CFR 3285.401 - Anchoring instructions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Anchorage Against Wind § 3285.401... wind by use of anchor assembly type installations or by connecting the home to an alternative... must require the home to be secured against the wind, as described in this section. The...

  14. The "Anchor" Method: Principle and Practice.

    ERIC Educational Resources Information Center

    Selgin, Paul

    This report discusses the "anchor" language learning method that is based upon derivation rather than construction, using Italian as an example of a language to be learned. This method borrows from the natural process of language learning as it asks the student to remember whole expressions that serve as vehicles for learning both words and rules,…

  15. International Lunar Network (ILN) Anchor Nodes

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2009-01-01

    This slide presentation reviews the United States' contribution to the International Lunar Network (ILN) project, the Anchor Nodes project. The ILN is an initiative of 9 national space agencies to establish a set of robotic geophysical monitoring stations on the surface of the Moon. The project is aimed at furthering the understanding of the lunar composition, and interior structure.

  16. Anchoring the Panic Disorder Severity Scale

    ERIC Educational Resources Information Center

    Keough, Meghan E.; Porter, Eliora; Kredlow, M. Alexandra; Worthington, John J.; Hoge, Elizabeth A.; Pollack, Mark H.; Shear, M. Katherine; Simon, Naomi M.

    2012-01-01

    The Panic Disorder Severity Scale (PDSS) is a clinician-administered measure of panic disorder symptom severity widely used in clinical research. This investigation sought to provide clinically meaningful anchor points for the PDSS both in terms of clinical severity as measured by the Clinical Global Impression-Severity Scale (CGI-S) and to extend…

  17. Finding Chemical Anchors in the Kitchen

    ERIC Educational Resources Information Center

    Haim, Liliana

    2005-01-01

    ''The Chemistry Kitchen'', a unit composed of five activities with kitchen elements for elementary students ages 9-11, introduces the children to the skills and chemical working ideas to be used later as anchors for chemical concepts. These activities include kitchen elements, determining the relative mass and so on.

  18. A Description of the Anchor Test Study.

    ERIC Educational Resources Information Center

    Educational Testing Service, Princeton, NJ.

    The Anchor Test Study is described as to objectives, the need for the study, tests selected for the study, States' participation, renumeration of School Test Coordinator, teacher participation, schedule of activities, reports of test results, pupil personnel data needed, and the tests administered during the restandardization phase and equating…

  19. A mitotic beacon reveals its nucleosome anchor.

    PubMed

    Hondele, Maria; Ladurner, Andreas

    2010-09-24

    Mitosis, nuclear envelope formation, and nucleocytoplasmic transport require chromosomes to identify themselves by enriching Ran-GTP around the chromatin fiber. In a recent Nature report, Makde et al. (2010) describe the structure of the Ran activator RCC1 anchored onto nucleosomes.

  20. Anchoring and adjustment during social inferences.

    PubMed

    Tamir, Diana I; Mitchell, Jason P

    2013-02-01

    Simulation theories of social cognition suggest that people use their own mental states to understand those of others-particularly similar others. However, perceivers cannot rely solely on self-knowledge to understand another person; they must also correct for differences between the self and others. Here we investigated serial adjustment as a mechanism for correction from self-knowledge anchors during social inferences. In 3 studies, participants judged the attitudes of a similar or dissimilar person and reported their own attitudes. For each item, we calculated the discrepancy between responses for the self and other. The adjustment process unfolds serially, so to the extent that individuals indeed anchor on self-knowledge and then adjust away, trials with a large amount of self-other discrepancy should be associated with longer response times, whereas small self-other discrepancy should correspond to shorter response times. Analyses consistently revealed this positive linear relationship between reaction time and self-other discrepancy, evidence of anchoring-and-adjustment, but only during judgments of similar targets. These results suggest that perceivers mentalize about similar others using the cognitive process of anchoring-and-adjustment. PMID:22506753

  1. Influence of Anchoring on Burial Depth of Submarine Pipelines.

    PubMed

    Zhuang, Yuan; Li, Yang; Su, Wei

    2016-01-01

    Since the beginning of the twenty-first century, there has been widespread construction of submarine oil-gas transmission pipelines due to an increase in offshore oil exploration. Vessel anchoring operations are causing more damage to submarine pipelines due to shipping transportation also increasing. Therefore, it is essential that the influence of anchoring on the required burial depth of submarine pipelines is determined. In this paper, mathematical models for ordinary anchoring and emergency anchoring have been established to derive an anchor impact energy equation for each condition. The required effective burial depth for submarine pipelines has then been calculated via an energy absorption equation for the protection layer covering the submarine pipelines. Finally, the results of the model calculation have been verified by accident case analysis, and the impact of the anchoring height, anchoring water depth and the anchor weight on the required burial depth of submarine pipelines has been further analyzed. PMID:27166952

  2. Influence of Anchoring on Burial Depth of Submarine Pipelines.

    PubMed

    Zhuang, Yuan; Li, Yang; Su, Wei

    2016-01-01

    Since the beginning of the twenty-first century, there has been widespread construction of submarine oil-gas transmission pipelines due to an increase in offshore oil exploration. Vessel anchoring operations are causing more damage to submarine pipelines due to shipping transportation also increasing. Therefore, it is essential that the influence of anchoring on the required burial depth of submarine pipelines is determined. In this paper, mathematical models for ordinary anchoring and emergency anchoring have been established to derive an anchor impact energy equation for each condition. The required effective burial depth for submarine pipelines has then been calculated via an energy absorption equation for the protection layer covering the submarine pipelines. Finally, the results of the model calculation have been verified by accident case analysis, and the impact of the anchoring height, anchoring water depth and the anchor weight on the required burial depth of submarine pipelines has been further analyzed.

  3. 9. CABLE ANCHORAGE DETAIL, NORTHWEST ABUTMENT (NOTE MOSSCOVERED CONCRETE ANCHOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. CABLE ANCHORAGE DETAIL, NORTHWEST ABUTMENT (NOTE MOSS-COVERED CONCRETE ANCHOR LEFT OF ANCHOR BOLTS) - Nisqually Suspension Bridge, Spanning Nisqually River on Service Road, Longmire, Pierce County, WA

  4. Influence of Anchoring on Burial Depth of Submarine Pipelines

    PubMed Central

    Zhuang, Yuan; Li, Yang; Su, Wei

    2016-01-01

    Since the beginning of the twenty-first century, there has been widespread construction of submarine oil-gas transmission pipelines due to an increase in offshore oil exploration. Vessel anchoring operations are causing more damage to submarine pipelines due to shipping transportation also increasing. Therefore, it is essential that the influence of anchoring on the required burial depth of submarine pipelines is determined. In this paper, mathematical models for ordinary anchoring and emergency anchoring have been established to derive an anchor impact energy equation for each condition. The required effective burial depth for submarine pipelines has then been calculated via an energy absorption equation for the protection layer covering the submarine pipelines. Finally, the results of the model calculation have been verified by accident case analysis, and the impact of the anchoring height, anchoring water depth and the anchor weight on the required burial depth of submarine pipelines has been further analyzed. PMID:27166952

  5. The distribution and redistribution of endoplasmic reticulum (ER) in geoperceptive cells.

    PubMed

    Juniper, B E; French, A

    1972-09-01

    Within the root cap in maize the cells believed to be responsible for the perception of gravity possess a rough-surfaced ER system with a distinctive pattern of distribution. The ER is found normally parallel to the nuclear membrane and to the walls, and symmetrically distributed. It can be disturbed from its parallel position by moving the root to any horizontal orientation, but it is not displaced by inverting the root into the 180° vertical position. On returning to the normal position of growth the ER rapidly reforms into the original symmetrical position. The implications of this position and movement and the possible role of the ER are discussed.

  6. Malate synthase a membrane protein

    SciTech Connect

    Chapman, K.D.; Turley, R.B.; Hermerath, C.A.; Carrapico, F.; Trelease, R.N.

    1987-04-01

    Malate synthase (MS) is generally regarded as a peripheral membrane protein, and believed by some to be ontogenetically associated with ER. However, immuno- and cyto-chemical in situ localizations show MS throughout the matrix of cotton (and cucumber) glyoxysomes, not specifically near their boundary membranes, nor in ER. Only a maximum of 50% MS can be solubilized from cotton glyoxysomes with 1% Triton X-100, 2mM Zwittergen 14, or 10mM DOC +/- salts. Cotton MS does not incorporate /sup 3/H-glucosamine in vivo, nor does it react with Con A on columns or blots. Cotton MS banded with ER in sucrose gradients (20-40%) in Tricine after 3h, but not after 22h in Tricine or Hepes, or after 3h in Hepes or K-phosphate. Collectively the authors data are inconsistent with physiologically meaningful MS-membrane associations in ER or glyoxysomes. It appears that experimentally-induced aggregates of MS migrate in ER gradients and occur in isolated glyoxysomes. These data indicate that ER is not involved in synthesis or modification of cottonseed MS prior to its import into the glyoxysomal matrix.

  7. Synthetic Studies of Glycosylphosphatidylinositol (GPI) Anchors and GPI-Anchored Peptides, Glycopeptides, and Proteins

    PubMed Central

    Guo, Zhongwu

    2013-01-01

    Glycosylphosphatidylinositol (GPI) anchorage of proteins and glycoproteins onto the cell surface is ubiquitous in eukaryotes, and GPI-anchored proteins and glycoproteins play an important role in many biological processes. To study GPI anchorage and explore the functions of GPIs and GPI-anchored proteins and glycoproteins, it is essential to have access to these molecules in homogeneous and structurally defined forms. This review is focused on the progress that our laboratory has made towards the chemical and chemoenzymatic synthesis of structurally defined GPI anchors and GPI-anchored peptides, glycopeptides, and proteins. Briefly, highly convergent strategies were developed for GPI synthesis and were employed to successfully synthesize a number of GPIs, including those carrying unsaturated lipids and other useful functionalities such as the azido and alkynyl groups. The latter enabled further site-specific modification of GPIs by click chemistry. GPI-linked peptides, glycopeptides, and proteins were prepared by regioselective chemical coupling of properly protected GPIs and peptides/glycopeptides or through site-specific ligation of synthetic GPIs and peptides/glycopeptides/proteins under the influence of sortase A. The investigation of interactions between GPI anchors and pore-forming bacterial toxins by means of synthetic GPI anchors and GPI analogs is also discussed. PMID:24955081

  8. ER-mediated stress induces mitochondrial-dependent caspases activation in NT2 neuron-like cells.

    PubMed

    Arduino, Daniela M; Esteves, A Raquel; Domingues, A Filipa; Pereira, Claudia M F; Cardoso, Sandra M; Oliveira, Catarina R

    2009-11-30

    Recent studies have revealed that endoplasmic reticulum (ER) disturbance is involved in the pathophysiology of neurodegenerative disorders, contributing to the activation of the ER stress-mediated apoptotic pathway. Therefore, we investigated here the molecular mechanisms underlying the ER-mitochondria axis, focusing on calcium as a potential mediator of cell death signals. Using NT2 cells treated with brefeldin A or tunicamycin, we observed that ER stress induces changes in the mitochondrial function, impairing mitochondrial membrane potential and distressing mitochondrial respiratory chain complex Moreover, stress stimuli at ER level evoked calcium fluxes between ER and mitochondria. Under these conditions, ER stress activated the unfolded protein response by an overexpression of GRP78, and also caspase-4 and-2, both involved upstream of caspase-9. Our findings show that ER and mitochondria interconnection plays a prominent role in the induction of neuronal cell death under particular stress circumstances.

  9. Career Paths, Images and Anchors: A Study with Brazilian Professionals

    ERIC Educational Resources Information Center

    Kilimnik, Zelia Miranda; de Oliveira, Luiz Claudio Vieira; Sant'anna, Anderson De Souza; Barros, Delba Teixeira Rodrigues

    2011-01-01

    This article analyses career anchors changes associated to images and professionals trajectories. Its main question: Do anchors careers change through time? We conducted twelve interviews involving professionals from the Administration Area, applying Schein's Career Anchors Inventory (1993). We did the same two years later. In both of them, the…

  10. 33 CFR 401.14 - Anchor marking buoys.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Anchor marking buoys. 401.14... OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Condition of Vessels § 401.14 Anchor marking buoys. A highly visible anchor marking buoy of a type approved by the Manager and the...

  11. Students' Anchoring Predisposition: An Illustration from Spring Training Baseball

    ERIC Educational Resources Information Center

    Mohrweis, Lawrence C.

    2014-01-01

    The anchoring tendency results when decision makers anchor on initial values and then make final assessments that are adjusted insufficiently away from the initial values. The professional literature recognizes that auditors often risk falling into the judgment trap of anchoring and adjusting (Ranzilla et al., 2011). Students may also be unaware…

  12. Does the tail wag the dog? How the structure of a glycosylphosphatidylinositol anchor affects prion formation.

    PubMed

    Bate, Clive; Nolan, William; Williams, Alun

    2016-03-01

    There is increasing interest in the role of the glycosylphosphatidylinositol (GPI) anchor attached to the cellular prion protein (PrP(C)). Since GPI anchors can alter protein targeting, trafficking and cell signaling, our recent study examined how the structure of the GPI anchor affected prion formation. PrP(C) containing a GPI anchor from which the sialic acid had been removed (desialylated PrP(C)) was not converted to PrP(Sc) in prion-infected neuronal cell lines and in scrapie-infected primary cortical neurons. In uninfected neurons desialylated PrP(C) was associated with greater concentrations of gangliosides and cholesterol than PrP(C). In addition, the targeting of desialylated PrP(C) to lipid rafts showed greater resistance to cholesterol depletion than PrP(C). The presence of desialylated PrP(C) caused the dissociation of cytoplasmic phospholipase A2 (cPLA2) from PrP-containing lipid rafts, reduced the activation of cPLA2 and inhibited PrP(Sc) production. We conclude that the sialic acid moiety of the GPI attached to PrP(C) modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrP(Sc) formation. PMID:26901126

  13. Angiotensin-converting enzyme is a GPI-anchored protein releasing factor crucial for fertilization.

    PubMed

    Kondoh, Gen; Tojo, Hiromasa; Nakatani, Yuka; Komazawa, Nobuyasu; Murata, Chie; Yamagata, Kazuo; Maeda, Yusuke; Kinoshita, Taroh; Okabe, Masaru; Taguchi, Ryo; Takeda, Junji

    2005-02-01

    The angiotensin-converting enzyme (ACE) is a key regulator of blood pressure. It is known to cleave small peptides, such as angiotensin I and bradykinin and changes their biological activities, leading to upregulation of blood pressure. Here we describe a new activity for ACE: a glycosylphosphatidylinositol (GPI)-anchored protein releasing activity (GPIase activity). Unlike its peptidase activity, GPIase activity is weakly inhibited by the tightly binding ACE inhibitor and not inactivated by substitutions of core amino acid residues for the peptidase activity, suggesting that the active site elements for GPIase differ from those for peptidase activity. ACE shed various GPI-anchored proteins from the cell surface, and the process was accelerated by the lipid raft disruptor filipin. The released products carried portions of the GPI anchor, indicating cleavage within the GPI moiety. Further analysis by high-performance liquid chromatography-mass spectrometry predicted the cleavage site at the mannose-mannose linkage. GPI-anchored proteins such as TESP5 and PH-20 were released from the sperm membrane of wild-type mice but not in Ace knockout sperm in vivo. Moreover, peptidase-inactivated E414D mutant ACE and also PI-PLC rescued the egg-binding deficiency of Ace knockout sperms, implying that ACE plays a crucial role in fertilization through this activity. PMID:15665832

  14. Orchestration of secretory protein folding by ER chaperones

    PubMed Central

    Gidalevitz, Tali; Stevens, Fred; Argon, Yair

    2013-01-01

    The endoplasmic reticulum is a major compartment of protein biogenesis in the cell, dedicated to production of secretory, membrane and organelle proteins. The secretome has distinct structural and post-translational characteristics, since folding in the ER occurs in an environment that is distinct in terms of its ionic composition, dynamics and requirements for quality contol. The folding machinery in the ER therefore includes chaperones and folding enzymes that introduce, monitor and react to disulfide bonds, glycans, and fluctuations of luminal calcium. We describe the major chaperone networks in the lumen and discuss how they have distinct modes of operation that enable cells to accomplish highly efficient production of the secretome. PMID:23507200

  15. ER stress does not cause upregulation and activation of caspase-2 to initiate apoptosis.

    PubMed

    Sandow, J J; Dorstyn, L; O'Reilly, L A; Tailler, M; Kumar, S; Strasser, A; Ekert, P G

    2014-03-01

    A recent report claimed that endoplasmic reticulum (ER) stress activates the ER trans-membrane receptor IRE1α, leading to increased caspase-2 levels via degradation of microRNAs, and consequently induction of apoptosis. This observation casts caspase-2 into a central role in the apoptosis triggered by ER stress. We have used multiple cell types from caspase-2-deficient mice to test this hypothesis but failed to find significant impact of loss of caspase-2 on ER-stress-induced apoptosis. Moreover, we did not observe increased expression of caspase-2 protein in response to ER stress. Our data strongly argue against a critical role for caspase-2 in ER-stress-induced apoptosis.

  16. Emerging themes of ER organization in the development and maintenance of axons.

    PubMed

    Renvoisé, Benoît; Blackstone, Craig

    2010-10-01

    The endoplasmic reticulum (ER) is a continuous membrane system comprising the nuclear envelope, polyribosome-studded peripheral sheets, and a polygonal network of smooth tubules extending throughout the cell. Though protein biosynthesis, transport, and quality control in the ER have been extensively studied, mechanisms underlying the heterogeneous architecture of the ER have been clarified more recently. These insights have increased interest in ER morphology changes associated with the development of neuronal axons and dendrites as well as their integration with presynaptic and postsynaptic signaling pathways. A number of proteins involved in shaping and distributing the ER network are mutated in neurological disorders, particularly the hereditary spastic paraplegias, emphasizing the importance of proper ER morphology for the establishment and maintenance of highly polarized neurons. PMID:20678923

  17. Molecular interactions of the neuronal GPI-anchored lipocalin Lazarillo.

    PubMed

    Sanchez, Diego; Ortega-Cubero, Sara; Akerström, Bo; Herrera, Macarena; Bastiani, Michael J; Ganfornina, Maria D

    2008-01-01

    Lazarillo, a glycoprotein involved in axon growth and guidance in the grasshopper embryo, is the only member of the lipocalin family that is attached to the cell surface by a GPI anchor. Recently, the study of Lazarillo homologous genes in Drosophila and mouse has revealed new functions in the regulation of lifespan, stress resistance and neurodegeneration. Here we report an analysis of biochemical properties of Lazarillo to gain insight into the molecular basis of its physiological function. Recombinant forms of the grasshopper protein were expressed in two different systems to test: (1) potential binding of several hydrophobic ligands; (2) protein-protein homophilic interactions; and (3) whether interaction with the function-blocking mAb 10E6 interferes with ligand binding. We tested 10 candidate ligands (retinoic acid, heme, bilirubin, biliverdin, ecdysterone, juvenile hormone, farnesol, arachidonic acid, linoleic acid and palmitic acid), and monitored binding using electrophoretic mobility shift, absorbance spectrum, and fluorimetry assays. Our work indicates binding to heme and retinoic acid, resulting in increased electrophoretic mobility, as well as to fatty acids, resulting in multimerization. Retinoic acid and fatty acids binding were confirmed by fluorescence titration, and heme binding was confirmed with absorbance spectrum assays. We demonstrate that Lazarillo oligomerizes in solution and can form clusters in the plasma membrane when expressed and GPI-anchored to the cell surface, however it is unable to mediate cell-cell adhesion. Finally, by ligand-mAb competition experiments we show that ligand-binding alone cannot be the key factor for Lazarillo to perform its function during axonal growth in the grasshopper embryo.

  18. Diffusion of GPI-anchored proteins is influenced by the activity of dynamic cortical actin.

    PubMed

    Saha, Suvrajit; Lee, Il-Hyung; Polley, Anirban; Groves, Jay T; Rao, Madan; Mayor, Satyajit

    2015-11-01

    Molecular diffusion at the surface of living cells is believed to be predominantly driven by thermal kicks. However, there is growing evidence that certain cell surface molecules are driven by the fluctuating dynamics of cortical cytoskeleton. Using fluorescence correlation spectroscopy, we measure the diffusion coefficient of a variety of cell surface molecules over a temperature range of 24-37 °C. Exogenously incorporated fluorescent lipids with short acyl chains exhibit the expected increase of diffusion coefficient over this temperature range. In contrast, we find that GPI-anchored proteins exhibit temperature-independent diffusion over this range and revert to temperature-dependent diffusion on cell membrane blebs, in cells depleted of cholesterol, and upon acute perturbation of actin dynamics and myosin activity. A model transmembrane protein with a cytosolic actin-binding domain also exhibits the temperature-independent behavior, directly implicating the role of cortical actin. We show that diffusion of GPI-anchored proteins also becomes temperature dependent when the filamentous dynamic actin nucleator formin is inhibited. However, changes in cortical actin mesh size or perturbation of branched actin nucleator Arp2/3 do not affect this behavior. Thus cell surface diffusion of GPI-anchored proteins and transmembrane proteins that associate with actin is driven by active fluctuations of dynamic cortical actin filaments in addition to thermal fluctuations, consistent with expectations from an "active actin-membrane composite" cell surface.

  19. Diffusion of GPI-anchored proteins is influenced by the activity of dynamic cortical actin

    PubMed Central

    Saha, Suvrajit; Lee, Il-Hyung; Polley, Anirban; Groves, Jay T.; Rao, Madan; Mayor, Satyajit

    2015-01-01

    Molecular diffusion at the surface of living cells is believed to be predominantly driven by thermal kicks. However, there is growing evidence that certain cell surface molecules are driven by the fluctuating dynamics of cortical cytoskeleton. Using fluorescence correlation spectroscopy, we measure the diffusion coefficient of a variety of cell surface molecules over a temperature range of 24–37°C. Exogenously incorporated fluorescent lipids with short acyl chains exhibit the expected increase of diffusion coefficient over this temperature range. In contrast, we find that GPI-anchored proteins exhibit temperature-independent diffusion over this range and revert to temperature-dependent diffusion on cell membrane blebs, in cells depleted of cholesterol, and upon acute perturbation of actin dynamics and myosin activity. A model transmembrane protein with a cytosolic actin-binding domain also exhibits the temperature-independent behavior, directly implicating the role of cortical actin. We show that diffusion of GPI-anchored proteins also becomes temperature dependent when the filamentous dynamic actin nucleator formin is inhibited. However, changes in cortical actin mesh size or perturbation of branched actin nucleator Arp2/3 do not affect this behavior. Thus cell surface diffusion of GPI-anchored proteins and transmembrane proteins that associate with actin is driven by active fluctuations of dynamic cortical actin filaments in addition to thermal fluctuations, consistent with expectations from an “active actin-membrane composite” cell surface. PMID:26378258

  20. Composite materials formed with anchored nanostructures

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  1. Valosin-containing protein-interacting membrane protein (VIMP) links the endoplasmic reticulum with microtubules in concert with cytoskeleton-linking membrane protein (CLIMP)-63.

    PubMed

    Noda, Chikano; Kimura, Hana; Arasaki, Kohei; Matsushita, Mitsuru; Yamamoto, Akitsugu; Wakana, Yuichi; Inoue, Hiroki; Tagaya, Mitsuo

    2014-08-29

    The distribution and morphology of the endoplasmic reticulum (ER) in mammalian cells depend on both dynamic and static interactions of ER membrane proteins with microtubules (MTs). Cytoskeleton-linking membrane protein (CLIMP)-63 is exclusively localized in sheet-like ER membranes, typical structures of the rough ER, and plays a pivotal role in the static interaction with MTs. Our previous study showed that the 42-kDa ER-residing form of syntaxin 5 (Syn5L) regulates ER structure through the interactions with both CLIMP-63 and MTs. Here, we extend our previous study and show that the valosin-containing protein/p97-interacting membrane protein (VIMP)/SelS is also a member of the family of proteins that shape the ER by interacting with MTs. Depletion of VIMP causes the spreading of the ER to the cell periphery and affects an MT-dependent process on the ER. Although VIMP can interact with CLIMP-63 and Syn5L, it does not interact with MT-binding ER proteins (such as Reep1) that shape the tubular smooth ER, suggesting that different sets of MT-binding ER proteins are used to organize different ER subdomains.

  2. Resisting anchoring effects: The roles of metric and mapping knowledge.

    PubMed

    Smith, Andrew R; Windschitl, Paul D

    2015-10-01

    The biasing influence of anchors on numerical estimates is well established, but the relationship between knowledge level and the susceptibility to anchoring effects is less clear. In two studies, we addressed the potential mitigating effects of having knowledge in a domain on vulnerability to anchoring effects in that domain. Of critical interest was a distinction between two forms of knowledge-metric and mapping knowledge. In Study 1, participants who had studied question-relevant information-that is, high-knowledge participants-were less influenced by anchors than were participants who had studied irrelevant information. The results from knowledge measures suggested that the reduction in anchoring was tied to increases in metric rather than mapping knowledge. In Study 2, participants studied information specifically designed to influence different types of knowledge. As we predicted, increases in metric knowledge-and not mapping knowledge-led to reduced anchoring effects. Implications for debiasing anchoring effects are discussed.

  3. International Lunar Network (ILN) Anchor Nodes

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2008-01-01

    This slide presentation reviews what we know about the interior and surface of the moon and the need to establish a robotic set of geophysical monitoring stations on the surface of the Moon for the purpose of providing significant scientific value to the exploration of the Moon. The ILN Anchor Nodes will provide the backbone of the network in a way that accomplishes new science and allows other nodes to be flexible contributors to the network.

  4. Test Score Equating Using a Mini-Version Anchor and a Midi Anchor: A Case Study Using SAT[R] Data

    ERIC Educational Resources Information Center

    Liu, Jinghua; Sinharay, Sandip; Holland, Paul W.; Curley, Edward; Feigenbaum, Miriam

    2011-01-01

    This study explores an anchor that is different from the traditional miniature anchor in test score equating. In contrast to a traditional "mini" anchor that has the same spread of item difficulties as the tests to be equated, the studied anchor, referred to as a "midi" anchor (Sinharay & Holland), has a smaller spread of item difficulties than…

  5. Ligand-dependent localization and function of ORP-VAP complexes at membrane contact sites.

    PubMed

    Weber-Boyvat, Marion; Kentala, Henriikka; Peränen, Johan; Olkkonen, Vesa M

    2015-05-01

    Oxysterol-binding protein/OSBP-related proteins (ORPs) constitute a conserved family of sterol/phospholipid-binding proteins with lipid transporter or sensor functions. We investigated the spatial occurrence and regulation of the interactions of human OSBP/ORPs or the S. cerevisiae orthologs, the Osh (OSBP homolog) proteins, with their endoplasmic reticulum (ER) anchors, the VAMP-associated proteins (VAPs), by employing bimolecular fluorescence complementation and pull-down set-ups. The ORP-VAP interactions localize frequently at distinct subcellular sites, shown in several cases to represent membrane contact sites (MCSs). Using established ORP ligand-binding domain mutants and pull-down assays with recombinant proteins, we show that ORP liganding regulates the ORP-VAP association, alters the subcellular targeting of ORP-VAP complexes, or modifies organelle morphology. There is distinct protein specificity in the effects of the mutants on subcellular targeting of ORP-VAP complexes. We provide evidence that complexes of human ORP2 and VAPs at ER-lipid droplet interfaces regulate the hydrolysis of triglycerides and lipid droplet turnover. The data suggest evolutionarily conserved, complex ligand-dependent functions of ORP-VAP complexes at MCSs, with implications for cellular lipid homeostasis and signaling.

  6. Ligand-dependent localization and function of ORP-VAP complexes at membrane contact sites.

    PubMed

    Weber-Boyvat, Marion; Kentala, Henriikka; Peränen, Johan; Olkkonen, Vesa M

    2015-05-01

    Oxysterol-binding protein/OSBP-related proteins (ORPs) constitute a conserved family of sterol/phospholipid-binding proteins with lipid transporter or sensor functions. We investigated the spatial occurrence and regulation of the interactions of human OSBP/ORPs or the S. cerevisiae orthologs, the Osh (OSBP homolog) proteins, with their endoplasmic reticulum (ER) anchors, the VAMP-associated proteins (VAPs), by employing bimolecular fluorescence complementation and pull-down set-ups. The ORP-VAP interactions localize frequently at distinct subcellular sites, shown in several cases to represent membrane contact sites (MCSs). Using established ORP ligand-binding domain mutants and pull-down assays with recombinant proteins, we show that ORP liganding regulates the ORP-VAP association, alters the subcellular targeting of ORP-VAP complexes, or modifies organelle morphology. There is distinct protein specificity in the effects of the mutants on subcellular targeting of ORP-VAP complexes. We provide evidence that complexes of human ORP2 and VAPs at ER-lipid droplet interfaces regulate the hydrolysis of triglycerides and lipid droplet turnover. The data suggest evolutionarily conserved, complex ligand-dependent functions of ORP-VAP complexes at MCSs, with implications for cellular lipid homeostasis and signaling. PMID:25420878

  7. Identification of Two Novel Endoplasmic Reticulum Body-Specific Integral Membrane Proteins1[W][OA

    PubMed Central

    Yamada, Kenji; Nagano, Atsushi J.; Nishina, Momoko; Hara-Nishimura, Ikuko; Nishimura, Mikio

    2013-01-01

    The endoplasmic reticulum (ER) body, a large compartment specific to the Brassicales, accumulates β-glucosidase and possibly plays a role in the defense against pathogens and herbivores. Although the ER body is a subdomain of the ER, it is unclear whether any ER body-specific membrane protein exists. In this study, we identified two integral membrane proteins of the ER body in Arabidopsis (Arabidopsis thaliana) and termed them MEMBRANE PROTEIN OF ENDOPLASMIC RETICULUM BODY1 (MEB1) and MEB2. In Arabidopsis, a basic helix-loop-helix transcription factor, NAI1, and an ER body component, NAI2, regulate ER body formation. The expression profiles of MEB1 and MEB2 are similar to those of NAI1, NAI2, and ER body β-glucosidase PYK10 in Arabidopsis. The expression of MEB1 and MEB2 was reduced in the nai1 mutant, indicating that NAI1 regulates the expression of MEB1 and MEB2 genes. MEB1 and MEB2 proteins localize to the ER body membrane but not to the ER network, suggesting that these proteins are specifically recruited to the ER body membrane. MEB1 and MEB2 physically interacted with ER body component NAI2, and they were diffused throughout the ER network in the nai2 mutant, which has no ER body. Heterologous expression of MEB1 and MEB2 in yeast (Saccharomyces cerevisiae) suppresses iron and manganese toxicity, suggesting that MEB1 and MEB2 are metal transporters. These results indicate that the membrane of ER bodies has specific membrane proteins and suggest that the ER body is involved in defense against metal stress as well as pathogens and herbivores. PMID:23166355

  8. Protein Kinase A Activity and Anchoring Are Required for Ovarian Cancer Cell Migration and Invasion

    PubMed Central

    McKenzie, Andrew J.; Campbell, Shirley L.; Howe, Alan K.

    2011-01-01

    Epithelial ovarian cancer (EOC) is the deadliest of the gynecological malignancies, due in part to its clinically occult metastasis. Therefore, understanding the mechanisms governing EOC dissemination and invasion may provide new targets for antimetastatic therapies or new methods for detection of metastatic disease. The cAMP-dependent protein kinase (PKA) is often dysregulated in EOC. Furthermore, PKA activity and subcellular localization by A-kinase anchoring proteins (AKAPs) are important regulators of cytoskeletal dynamics and cell migration. Thus, we sought to study the role of PKA and AKAP function in both EOC cell migration and invasion. Using the plasma membrane-directed PKA biosensor, pmAKAR3, and an improved migration/invasion assay, we show that PKA is activated at the leading edge of migrating SKOV-3 EOC cells, and that inhibition of PKA activity blocks SKOV-3 cell migration. Furthermore, we show that while the PKA activity within the leading edge of these cells is mediated by anchoring of type-II regulatory PKA subunits (RII), inhibition of anchoring of either RI or RII PKA subunits blocks cell migration. Importantly, we also show – for the first time – that PKA activity is up-regulated at the leading edge of SKOV-3 cells during invasion of a three-dimensional extracellular matrix and, as seen for migration, inhibition of either PKA activity or AKAP-mediated PKA anchoring blocks matrix invasion. These data are the first to demonstrate that the invasion of extracellular matrix by cancer cells elicits activation of PKA within the invasive leading edge and that both PKA activity and anchoring are required for matrix invasion. These observations suggest a role for PKA and AKAP activity in EOC metastasis. PMID:22028904

  9. Glycosyl-phosphatidylinositol (GPI)-anchored renal dipeptidase is released by a phospholipase C in vivo.

    PubMed

    Park, Sung Wook; Choi, Kyong; Lee, Hwanghee Blaise; Park, Sung Kwang; Turner, Anthony J; Hooper, Nigel M; Park, Haeng Soon

    2002-01-01

    The release mechanism of the glycosyl-phosphatidylinositol (GPI)-anchored renal dipeptidase (EC 3.4.13.19) in vivo has been investigated. Triton X-114 phase separation indicated that the dipeptidase is exclusively present as a hydrophilic form in urine from porcine, rat, rabbit and human. Western blot analysis of human and porcine purified dipeptidase and the urine concentrates with anti-(cross-reacting determinant) serum demonstrated the presence of inositol 1,2-cyclic monophosphate indicating that the renal dipeptidase had been released from the membrane by the action of a phospholipase C. This is the first direct evidence for cleavage of a human GPI-anchored protein by a responsible phospholipase C in vivo.

  10. Robotic Ankle for Omnidirectional Rock Anchors

    NASA Technical Reports Server (NTRS)

    Parness, Aaron; Frost, Matthew; Thatte, Nitish

    2013-01-01

    Future robotic exploration of near-Earth asteroids and the vertical and inverted rock walls of lava caves and cliff faces on Mars and other planetary bodies would require a method of gripping their rocky surfaces to allow mobility without gravitational assistance. In order to successfully navigate this terrain and drill for samples, the grippers must be able to produce anchoring forces in excess of 100 N. Additionally, the grippers must be able to support the inertial forces of a moving robot, as well gravitational forces for demonstrations on Earth. One possible solution would be to use microspine arrays to anchor to rock surfaces and provide the necessary load-bearing abilities for robotic exploration of asteroids. Microspine arrays comprise dozens of small steel hooks supported on individual suspensions. When these arrays are dragged along a rock surface, the steel hooks engage with asperities and holes on the surface. The suspensions allow for individual hooks to engage with asperities while the remaining hooks continue to drag along the surface. This ensures that the maximum possible number of hooks engage with the surface, thereby increasing the load-bearing abilities of the gripper. Using the microspine array grippers described above as the end-effectors of a robot would allow it to traverse terrain previously unreachable by traditional wheeled robots. Furthermore, microspine-gripping robots that can perch on cliffs or rocky walls could enable a new class of persistent surveillance devices for military applications. In order to interface these microspine grippers with a legged robot, an ankle is needed that can robotically actuate the gripper, as well as allow it to conform to the large-scale irregularities in the rock. The anchor serves three main purposes: deploy and release the anchor, conform to roughness or misalignment with the surface, and cancel out any moments about the anchor that could cause unintentional detachment. The ankle design contains a

  11. PEX16 contributes to peroxisome maintenance by constantly trafficking PEX3 via the ER.

    PubMed

    Aranovich, Alexander; Hua, Rong; Rutenberg, Andrew D; Kim, Peter K

    2014-09-01

    The endoplasmic reticulum (ER) is required for the de novo biogenesis of peroxisomes in mammalian cells. However, its role in peroxisome maintenance is unclear. To explore ER involvement in the maintenance of peroxisomes, we redirect a peroxisomal membrane protein (PMP), PEX3, to directly target to the ER using the N-terminal ER signal sequence from preprolactin. Using biochemical techniques and fluorescent imaging, we find that ER-targeting PEX3 (ssPEX3) is continuously imported into pre-existing peroxisomes. This suggests that the ER constitutively provides membrane proteins and associated lipids to pre-existing peroxisomes. Using quantitative time-lapse live-cell fluorescence microscopy applied to cells that were either depleted of or exogenously expressing PEX16, we find that PEX16 mediates the peroxisomal trafficking of two distinct peroxisomal membrane proteins, PEX3 and PMP34, via the ER. These results not only provide insight into peroxisome maintenance and PMP trafficking in mammalian cells but also highlight important similarities and differences in the mechanisms of PMP import between the mammalian and yeast systems.

  12. STIM1L traps and gates Orai1 channels without remodeling the cortical ER

    PubMed Central

    Saüc, Sophie; Bulla, Monica; Nunes, Paula; Orci, Lelio; Marchetti, Anna; Antigny, Fabrice; Bernheim, Laurent; Cosson, Pierre; Frieden, Maud; Demaurex, Nicolas

    2015-01-01

    STIM proteins populate and expand cortical endoplasmic reticulum (ER) sheets to mediate store-operated Ca2+ entry (SOCE) by trapping and gating Orai channels in ER-plasma membrane clusters. A longer splice variant, STIM1L, forms permanent ER-plasma membrane clusters and mediates rapid Ca2+ influx in muscle. Here, we used electron microscopy, total internal reflection fluorescence (TIRF) microscopy and Ca2+ imaging to establish the trafficking and signaling properties of the two STIM1 isoforms in Stim1−/−/Stim2−/− fibroblasts. Unlike STIM1, STIM1L was poorly recruited into ER-plasma membrane clusters and did not mediate store-dependent expansion of cortical ER cisternae. Removal of the STIM1 lysine-rich tail prevented store-dependent cluster enlargement, whereas inhibition of cytosolic Ca2+ elevations or removal of the STIM1L actin-binding domain had no impact on cluster expansion. Finally, STIM1L restored robust but not accelerated SOCE and clustered with Orai1 channels more slowly than STIM1 following store depletion. These results indicate that STIM1L does not mediate rapid SOCE but can trap and gate Orai1 channels efficiently without remodeling cortical ER cisternae. The ability of STIM proteins to induce cortical ER formation is dispensable for SOCE and requires the lysine-rich tail of STIM1 involved in binding to phosphoinositides. PMID:25736291

  13. N-linked protein glycosylation in the ER.

    PubMed

    Aebi, Markus

    2013-11-01

    N-linked protein glycosylation in the endoplasmic reticulum (ER) is a conserved two phase process in eukaryotic cells. It involves the assembly of an oligosaccharide on a lipid carrier, dolichylpyrophosphate and the transfer of the oligosaccharide to selected asparagine residues of polypeptides that have entered the lumen of the ER. The assembly of the oligosaccharide (LLO) takes place at the ER membrane and requires the activity of several specific glycosyltransferases. The biosynthesis of the LLO initiates at the cytoplasmic side of the ER membrane and terminates in the lumen where oligosaccharyltransferase (OST) selects N-X-S/T sequons of polypeptide and generates the N-glycosidic linkage between the side chain amide of asparagine and the oligosaccharide. The N-glycosylation pathway in the ER modifies a multitude of proteins at one or more asparagine residues with a unique carbohydrate structure that is used as a signalling molecule in their folding pathway. In a later stage of glycoprotein processing, the same systemic modification is used in the Golgi compartment, but in this process, remodelling of the N-linked glycans in a protein-, cell-type and species specific manner generates the high structural diversity of N-linked glycans observed in eukaryotic organisms. This article summarizes the current knowledge of the N-glycosylation pathway in the ER that results in the covalent attachment of an oligosaccharide to asparagine residues of polypeptide chains and focuses on the model organism Saccharomyces cerevisiae. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum. PMID:23583305

  14. Histologic and morphologic evaluation of explanted bone anchors from bone-anchored hearing aids.

    PubMed

    Mlynski, Robert; Goldberg, Eva; Ebmeyer, Joerg; Scheich, Matthias; Gattenlöhner, Stefan; Schwager, Konrad; Hagen, Rudolf; Shehata-Dieler, Wafaa

    2009-05-01

    Bone-anchored hearing aids are a standard option in rehabilitation of patients with conductive or mixed hearing loss, and also CROS fitting. However, the skin-penetrating bone anchor repeatedly gives reason for discussion about the risk of infection of surrounding tissues as a major cause of malfunction. In the present study, explanted bone anchors with surrounding bone and soft tissue were examined and compared with the morphology of lost implants. The anchors originated from five patients. Two needed explantation due to deafness with the need of cochlea implantation. A third patient underwent explantation due to meningeal irritation by the bone anchor. Another patient lost the implant due to mechanical stress shortly after implantation. The last implant was lost in a child without apparent reason. All implants were clinically free of infection and had been stable for a median implantation period of 12 months. During the explantation procedure, the fixtures were recovered together with the attached soft tissue and bone. The specimens were examined by light microscopy or scanning electron microscopy (SEM). Sectioning for light microscopy was performed with a diamond-coated saw microtome. Histopathologic examination of the surrounding skin and subcutaneous soft tissue showed slight inflammation in one case only. The bone was regularly vital, presenting no signs of inflammation. The threads of the fixtures were filled with bone, with particularly strong attachment to the flank of traction. The SEM investigation exposed the ultrastructural interaction of bone with the implant surface. Filiform- and podocyte-like processes of osteocytes attach to the implant; lost implants did not reflect these features. Implant integration involves both osseointegration as well as soft tissue integration. Titanium oxide as the active implant surface promotes this integration even in unstable implants. The morphologic analysis exposed structural areas of the implant with weak bone

  15. Histologic and morphologic evaluation of explanted bone anchors from bone-anchored hearing aids.

    PubMed

    Mlynski, Robert; Goldberg, Eva; Ebmeyer, Joerg; Scheich, Matthias; Gattenlöhner, Stefan; Schwager, Konrad; Hagen, Rudolf; Shehata-Dieler, Wafaa

    2009-05-01

    Bone-anchored hearing aids are a standard option in rehabilitation of patients with conductive or mixed hearing loss, and also CROS fitting. However, the skin-penetrating bone anchor repeatedly gives reason for discussion about the risk of infection of surrounding tissues as a major cause of malfunction. In the present study, explanted bone anchors with surrounding bone and soft tissue were examined and compared with the morphology of lost implants. The anchors originated from five patients. Two needed explantation due to deafness with the need of cochlea implantation. A third patient underwent explantation due to meningeal irritation by the bone anchor. Another patient lost the implant due to mechanical stress shortly after implantation. The last implant was lost in a child without apparent reason. All implants were clinically free of infection and had been stable for a median implantation period of 12 months. During the explantation procedure, the fixtures were recovered together with the attached soft tissue and bone. The specimens were examined by light microscopy or scanning electron microscopy (SEM). Sectioning for light microscopy was performed with a diamond-coated saw microtome. Histopathologic examination of the surrounding skin and subcutaneous soft tissue showed slight inflammation in one case only. The bone was regularly vital, presenting no signs of inflammation. The threads of the fixtures were filled with bone, with particularly strong attachment to the flank of traction. The SEM investigation exposed the ultrastructural interaction of bone with the implant surface. Filiform- and podocyte-like processes of osteocytes attach to the implant; lost implants did not reflect these features. Implant integration involves both osseointegration as well as soft tissue integration. Titanium oxide as the active implant surface promotes this integration even in unstable implants. The morphologic analysis exposed structural areas of the implant with weak bone

  16. Dynamic formation of ER-PM junctions presents a lipid phosphatase to regulate phosphoinositides.

    PubMed

    Dickson, Eamonn J; Jensen, Jill B; Vivas, Oscar; Kruse, Martin; Traynor-Kaplan, Alexis E; Hille, Bertil

    2016-04-11

    Endoplasmic reticulum-plasma membrane (ER-PM) contact sites play an integral role in cellular processes such as excitation-contraction coupling and store-operated calcium entry (SOCE). Another ER-PM assembly is one tethered by the extended synaptotagmins (E-Syt). We have discovered that at steady state, E-Syt2 positions the ER and Sac1, an integral ER membrane lipid phosphatase, in discrete ER-PM junctions. Here, Sac1 participates in phosphoinositide homeostasis by limiting PM phosphatidylinositol 4-phosphate (PI(4)P), the precursor of PI(4,5)P2 Activation of G protein-coupled receptors that deplete PM PI(4,5)P2disrupts E-Syt2-mediated ER-PM junctions, reducing Sac1's access to the PM and permitting PM PI(4)P and PI(4,5)P2to recover. Conversely, depletion of ER luminal calcium and subsequent activation of SOCE increases the amount of Sac1 in contact with the PM, depleting PM PI(4)P. Thus, the dynamic presence of Sac1 at ER-PM contact sites allows it to act as a cellular sensor and controller of PM phosphoinositides, thereby influencing many PM processes. PMID:27044890

  17. Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs

    PubMed Central

    Terasaki, Mark; Shemesh, Tom; Kasthuri, Narayanan; Klemm, Robin W.; Schalek, Richard; Hayworth, Kenneth J.; Hand, Arthur R.; Yankova, Maya; Huber, Greg; Lichtman, Jeff W.; Rapoport, Tom A.; Kozlov, Michael M.

    2013-01-01

    The endoplasmic reticulum (ER) often forms stacked membrane sheets, an arrangement that is likely required to accommodate a maximum of membrane-bound polysomes for secretory protein synthesis. How sheets are stacked is unknown. Here, we used novel staining and automated ultra-thin sectioning electron microscopy methods to analyze stacked ER sheets in neuronal cells and secretory salivary gland cells of mice. Our results show that stacked ER sheets form a continuous membrane system in which the sheets are connected by twisted membrane surfaces with helical edges of left- or right-handedness. The three-dimensional structure of tightly stacked ER sheets resembles a parking garage, in which the different levels are connected by helicoidal ramps. A theoretical model explains the experimental observations and indicates that the structure corresponds to a minimum of elastic energy of sheet edges and surfaces. The structure allows the dense packing of ER sheets in the restricted space of a cell. PMID:23870120

  18. Biogenesis and Membrane Targeting of Lipoproteins.

    PubMed

    Narita, Shin-Ichiro; Tokuda, Hajime

    2010-09-01

    Bacterial lipoproteins represent a unique class of membrane proteins, which are anchored to membranes through triacyl chains attached to the amino-terminal cysteine. They are involved in various functions localized in cell envelope. Escherichia coli possesses more than 90 species of lipoproteins, most of which are localized in the outer membrane, with others being in the inner membrane. All lipoproteins are synthesized in the cytoplasm with an N-terminal signal peptide, translocated across the inner membrane by the Sec translocon to the periplasmic surface of the inner membrane, and converted to mature lipoproteins through sequential reactions catalyzed by three lipoprotein-processing enzymes: Lgt, LspA, and Lnt. The sorting of lipoproteins to the outer membrane requires a system comprising five Lol proteins. An ATP-binding cassette transporter, LolCDE, initiates the sorting by mediating the detachment of lipoproteins from the inner membrane. Formation of the LolA-lipoprotein complex is coupled to this LolCDE-dependent release reaction. LolA accommodates the amino-terminal acyl chain of lipoproteins in its hydrophobic cavity, thereby generating a hydrophilic complex that can traverse the periplasmic space by diffusion. Lipoproteins are then transferred to LolB on the outer membrane and anchored to the inner leaflet of the outer membrane by the action of LolB. In contrast, since LolCDE does not recognize lipoproteins possessing Asp at position +2, these lipoproteins remain anchored to the inner membrane. Genes for Lol proteins are widely conserved among gram-negative bacteria, and Lol-mediated outer membrane targeting of lipoproteins is considered to be the general lipoprotein localization mechanism. PMID:26443779

  19. Biogenesis and Membrane Targeting of Lipoproteins.

    PubMed

    Narita, Shin-Ichiro; Tokuda, Hajime

    2010-09-01

    Bacterial lipoproteins represent a unique class of membrane proteins, which are anchored to membranes through triacyl chains attached to the amino-terminal cysteine. They are involved in various functions localized in cell envelope. Escherichia coli possesses more than 90 species of lipoproteins, most of which are localized in the outer membrane, with others being in the inner membrane. All lipoproteins are synthesized in the cytoplasm with an N-terminal signal peptide, translocated across the inner membrane by the Sec translocon to the periplasmic surface of the inner membrane, and converted to mature lipoproteins through sequential reactions catalyzed by three lipoprotein-processing enzymes: Lgt, LspA, and Lnt. The sorting of lipoproteins to the outer membrane requires a system comprising five Lol proteins. An ATP-binding cassette transporter, LolCDE, initiates the sorting by mediating the detachment of lipoproteins from the inner membrane. Formation of the LolA-lipoprotein complex is coupled to this LolCDE-dependent release reaction. LolA accommodates the amino-terminal acyl chain of lipoproteins in its hydrophobic cavity, thereby generating a hydrophilic complex that can traverse the periplasmic space by diffusion. Lipoproteins are then transferred to LolB on the outer membrane and anchored to the inner leaflet of the outer membrane by the action of LolB. In contrast, since LolCDE does not recognize lipoproteins possessing Asp at position +2, these lipoproteins remain anchored to the inner membrane. Genes for Lol proteins are widely conserved among gram-negative bacteria, and Lol-mediated outer membrane targeting of lipoproteins is considered to be the general lipoprotein localization mechanism.

  20. Nuclear Membrane Dynamics and Reassembly in Living Cells: Targeting of an Inner Nuclear Membrane Protein in Interphase and Mitosis

    PubMed Central

    Ellenberg, Jan; Siggia, Eric D.; Moreira, Jorge E.; Smith, Carolyn L.; Presley, John F.; Worman, Howard J.; Lippincott-Schwartz, Jennifer

    1997-01-01

    The mechanisms of localization and retention of membrane proteins in the inner nuclear membrane and the fate of this membrane system during mitosis were studied in living cells using the inner nuclear membrane protein, lamin B receptor, fused to green fluorescent protein (LBR–GFP). Photobleaching techniques revealed the majority of LBR–GFP to be completely immobilized in the nuclear envelope (NE) of interphase cells, suggesting a tight binding to heterochromatin and/or lamins. A subpopulation of LBR–GFP within ER membranes, by contrast, was entirely mobile and diffused rapidly and freely (D = 0.41 ± 0.1 μm2/s). High resolution confocal time-lapse imaging in mitotic cells revealed LBR–GFP redistributing into the interconnected ER membrane system in prometaphase, exhibiting the same high mobility and diffusion constant as observed in interphase ER membranes. LBR–GFP rapidly diffused across the cell within the membrane network defined by the ER, suggesting the integrity of the ER was maintained in mitosis, with little or no fragmentation and vesiculation. At the end of mitosis, nuclear membrane reformation coincided with immobilization of LBR–GFP in ER elements at contact sites with chromatin. LBR–GFP–containing ER membranes then wrapped around chromatin over the course of 2–3 min, quickly and efficiently compartmentalizing nuclear material. Expansion of the NE followed over the course of 30–80 min. Thus, selective changes in lateral mobility of LBR–GFP within the ER/NE membrane system form the basis for its localization to the inner nuclear membrane during interphase. Such changes, rather than vesiculation mechanisms, also underlie the redistribution of this molecule during NE disassembly and reformation in mitosis. PMID:9298976

  1. Disruption of pioneer growth cone guidance in vivo by removal of glycosyl-phosphatidylinositol-anchored cell surface proteins.

    PubMed

    Chang, W S; Serikawa, K; Allen, K; Bentley, D

    1992-02-01

    Cell surface proteins anchored to membranes via covalently attached glycosyl-phosphatidylinositol (GPI) have been implicated in neuronal adhesion, promotion of neurite outgrowth and directed cell migration. Treatment of grasshopper embryos with bacterial phosphatidylinositol-specific phospholipase C (PI-PLC), an enzyme that cleaves the GPI anchor, often induced disruptions in the highly stereotyped migrations of peripheral pioneer growth cones and afferent neuron cell bodies. In distal limb regions of embryos treated with PI-PLC at early stages of pioneer axon outgrowth, growth cones lost their proximal orientation toward the central nervous system (CNS) and turned distally. Pioneer growth cones in treated limbs also failed to make a characteristic ventral turn along the trochanter-coxa (Tr-Cx) segment boundary, and instead continued to grow proximally across the boundary. Treatment at an earlier stage of development caused pre-axonogenesis Cx1 neurons to abandon their normal circumferential migration and reorient toward the CNS. None of these abnormal phenotypes were observed in limbs of untreated embryos or embryos exposed to other phospholipases that do not release GPI-anchored proteins. Incubation of embryos with PI-PLC effectively removed immunoreactivity for fasciclin I, a GPI-anchored protein expressed on a subset of neuronal surfaces. These results suggest that cell surface GPI-anchored proteins are involved in pioneer growth cone guidance and in pre-axonogenesis migration of neurons in the grasshopper limb bud in vivo.

  2. Fluid transport by active elastic membranes

    NASA Astrophysics Data System (ADS)

    Evans, Arthur A.; Lauga, Eric

    2011-09-01

    A flexible membrane deforming its shape in time can self-propel in a viscous fluid. Alternatively, if the membrane is anchored, its deformation will lead to fluid transport. Past work in this area focused on situations where the deformation kinematics of the membrane were prescribed. Here we consider models where the deformation of the membrane is not prescribed, but instead the membrane is internally forced. Both the time-varying membrane shape and the resulting fluid motion result then from a balance between prescribed internal active stresses, internal passive resistance, and external viscous stresses. We introduce two specific models for such active internal forcing: one where a distribution of active bending moments is prescribed, and one where active inclusions exert normal stresses on the membrane by pumping fluid through it. In each case, we asymptotically calculate the membrane shape and the fluid transport velocities for small forcing amplitudes, and recover our results using scaling analysis.

  3. Coordination of Endoplasmic Reticulum (ER) Signaling During Maize Seed Development

    SciTech Connect

    Boston, Rebecca S.

    2010-11-20

    Seed storage reserves represent one of the most important sources of renewable fixed carbon and nitrogen found in nature. Seeds are well-adapted for diverting metabolic resources to synthesize storage proteins as well as enzymes and structural proteins needed for their transport and packaging into membrane bound storage protein bodies. Our underlying hypothesis is that the endoplasmic reticulum (ER) stress response provides the critical cellular control of metabolic flux required for optimal accumulation of storage reserves in seeds. This highly conserved response is a cellular mechanism to monitor the protein folding environment of the ER and restore homeostasis in the presence of unfolded or misfolded proteins. In seeds, deposition of storage proteins in protein bodies is a highly specialized process that takes place even in the presence of mutant proteins that no longer fold and package properly. The capacity of the ER to deposit these aberrant proteins in protein bodies during a period that extends several weeks provides an excellent model for deconvoluting the ER stress response of plants. We have focused in this project on the means by which the ER senses and responds to functional perturbations and the underlying intracellular communication that occurs among biosynthetic, trafficking and degradative pathways for proteins during seed development.

  4. Amino acid conditions near the GPI anchor attachment site of prion protein for the conversion and the GPI anchoring.

    PubMed

    Hizume, Masaki; Kobayashi, Atsushi; Mizusawa, Hidehiro; Kitamoto, Tetsuyuki

    2010-01-22

    Prion protein (PrP) is a glycosylphosphatidylinositol (GPI)-anchored protein, and the C-terminal GPI anchor signal sequence (GPI-SS) of PrP is cleaved before GPI anchoring. However, mutations near the GPI anchor attachment site (the omega site) in the GPI-SS have been recognized in human genetic prion diseases. Moreover, the omega site of PrP has not been identified except hamster, though it is known that amino acid restrictions are very severe at the omega and omega+2 sites in other GPI-anchored proteins. To investigate the effect of mutations near the omega site of PrP on the conversion and the GPI anchoring, and to discover the omega site of murine PrP, we systematically created mutant murine PrP with all possible single amino acid substitutions at every amino acid residue from codon 228 to 240. We transfected them into scrapie-infected mouse neuroblastoma cells and examined the conversion efficiencies and the GPI anchoring of each mutant PrP. Mutations near the omega site altered the conversion efficiencies and the GPI anchoring efficiencies. Especially, amino acid restrictions for the conversion and the GPI anchoring were severe at codons 230 and 232 in murine PrP, though they were less severe than in other GPI-anchored proteins. Only the mutant PrPs presented on a cell surface via a GPI anchor were conversion competent. The present study shows that mutations in the GPI-SS can affect the GPI anchoring and the conversion efficiency of PrP. We clarified for the first time the omega site of murine PrP and the amino acid conditions near the omega site for the conversion as well as GPI anchoring.

  5. Tail-anchored Protein Insertion in Mammals: FUNCTION AND RECIPROCAL INTERACTIONS OF THE TWO SUBUNITS OF THE TRC40 RECEPTOR.

    PubMed

    Colombo, Sara Francesca; Cardani, Silvia; Maroli, Annalisa; Vitiello, Adriana; Soffientini, Paolo; Crespi, Arianna; Bram, Richard F; Benfante, Roberta; Borgese, Nica

    2016-07-15

    The GET (guided entry of tail-anchored proteins)/TRC (transmembrane recognition complex) pathway for tail-anchored protein targeting to the endoplasmic reticulum (ER) has been characterized in detail in yeast and is thought to function similarly in mammals, where the orthologue of the central ATPase, Get3, is known as TRC40 or Asna1. Get3/TRC40 function requires an ER receptor, which in yeast consists of the Get1/Get2 heterotetramer and in mammals of the WRB protein (tryptophan-rich basic protein), homologous to yeast Get1, in combination with CAML (calcium-modulating cyclophilin ligand), which is not homologous to Get2. To better characterize the mammalian receptor, we investigated the role of endogenous WRB and CAML in tail-anchored protein insertion as well as their association, concentration, and stoichiometry in rat liver microsomes and cultured cells. Functional proteoliposomes, reconstituted from a microsomal detergent extract, lost their activity when made with an extract depleted of TRC40-associated proteins or of CAML itself, whereas in vitro synthesized CAML and WRB together were sufficient to confer insertion competence to liposomes. CAML was found to be in ∼5-fold excess over WRB, and alteration of this ratio did not inhibit insertion. Depletion of each subunit affected the levels of the other one; in the case of CAML silencing, this effect was attributable to destabilization of the WRB transcript and not of WRB protein itself. These results reveal unanticipated complexity in the mutual regulation of the TRC40 receptor subunits and raise the question as to the role of the excess CAML in the mammalian ER.

  6. Tail-anchored Protein Insertion in Mammals: FUNCTION AND RECIPROCAL INTERACTIONS OF THE TWO SUBUNITS OF THE TRC40 RECEPTOR.

    PubMed

    Colombo, Sara Francesca; Cardani, Silvia; Maroli, Annalisa; Vitiello, Adriana; Soffientini, Paolo; Crespi, Arianna; Bram, Richard F; Benfante, Roberta; Borgese, Nica

    2016-07-15

    The GET (guided entry of tail-anchored proteins)/TRC (transmembrane recognition complex) pathway for tail-anchored protein targeting to the endoplasmic reticulum (ER) has been characterized in detail in yeast and is thought to function similarly in mammals, where the orthologue of the central ATPase, Get3, is known as TRC40 or Asna1. Get3/TRC40 function requires an ER receptor, which in yeast consists of the Get1/Get2 heterotetramer and in mammals of the WRB protein (tryptophan-rich basic protein), homologous to yeast Get1, in combination with CAML (calcium-modulating cyclophilin ligand), which is not homologous to Get2. To better characterize the mammalian receptor, we investigated the role of endogenous WRB and CAML in tail-anchored protein insertion as well as their association, concentration, and stoichiometry in rat liver microsomes and cultured cells. Functional proteoliposomes, reconstituted from a microsomal detergent extract, lost their activity when made with an extract depleted of TRC40-associated proteins or of CAML itself, whereas in vitro synthesized CAML and WRB together were sufficient to confer insertion competence to liposomes. CAML was found to be in ∼5-fold excess over WRB, and alteration of this ratio did not inhibit insertion. Depletion of each subunit affected the levels of the other one; in the case of CAML silencing, this effect was attributable to destabilization of the WRB transcript and not of WRB protein itself. These results reveal unanticipated complexity in the mutual regulation of the TRC40 receptor subunits and raise the question as to the role of the excess CAML in the mammalian ER. PMID:27226539

  7. Anchoring of FRET Sensors—A Requirement for Spatiotemporal Resolution

    PubMed Central

    Ivanova, Elena V.; Figueroa, Ricardo A.; Gatsinzi, Tom; Hallberg, Einar; Iverfeldt, Kerstin

    2016-01-01

    FRET biosensors have become a routine tool for investigating mechanisms and components of cell signaling. Strategies for improving them for particular applications are continuously sought. One important aspect to consider when designing FRET probes is the dynamic distribution and propagation of signals within living cells. We have addressed this issue by directly comparing an anchored (taFS) to a non-anchored (naFS) cleavable FRET sensor. We chose a microtubule-associated protein tau as an anchor, as microtubules are abundant throughout the cytosol of cells. We show that tau-anchored FRET sensors are concentrated at the cytoskeleton and enriched in the neurite-like processes of cells, providing high intensity of the total signal. In addition, anchoring limits the diffusion of the sensor, enabling spatiotemporally resolved monitoring of subcellular variations in enzyme activity. Thus, anchoring is an important aspect to consider when designing FRET sensors for deeper understanding of cell signaling. PMID:27196902

  8. Membrane Integration of Poliovirus 2B Viroporin▿

    PubMed Central

    Martínez-Gil, Luis; Bañó-Polo, Manuel; Redondo, Natalia; Sánchez-Martínez, Silvia; Nieva, José Luis; Carrasco, Luis; Mingarro, Ismael

    2011-01-01

    Virus infections can result in a variety of cellular injuries, and these often involve the permeabilization of host membranes by viral proteins of the viroporin family. Prototypical viroporin 2B is responsible for the alterations in host cell membrane permeability that take place in enterovirus-infected cells. 2B protein can be localized at the endoplasmic reticulum (ER) and the Golgi complex, inducing membrane remodeling and the blockade of glycoprotein trafficking. These findings suggest that 2B has the potential to integrate into the ER membrane, but specific information regarding its biogenesis and mechanism of membrane insertion is lacking. Here, we report experimental results of in vitro translation-glycosylation compatible with the translocon-mediated insertion of the 2B product into the ER membrane as a double-spanning integral membrane protein with an N-/C-terminal cytoplasmic orientation. A similar topology was found when 2B was synthesized in cultured cells. In addition, the in vitro translation of several truncated versions of the 2B protein suggests that the two hydrophobic regions cooperate to insert into the ER-derived microsomal membranes. PMID:21835803

  9. BAHA: Bone-Anchored Hearing Aid

    PubMed Central

    Hagr, Abdulrahman

    2007-01-01

    Bone-Anchored Hearing Aid (BAHA) has proven performance and advantages for patients with aural atresia or chronic ear drainage who cannot wear air-conduction hearing aids. The BAHA has both cosmetic and acoustic advantages over most conventional hearing aids and hence is becoming increasingly popular. Moreover, BAHA improves the quality of life and has also significantly reduces ear discharge. This extensive review of the literature pertaining to BAHA discus the history, the indications, the advantages, the prediction of the outcome and the complications of this device as well as comparing it to the conventional hearing aids. PMID:21475438

  10. [An update on bone anchored hearing aids].

    PubMed

    Fries, S; Maire, R; Grosjean, P; George, M; Simon, C; Zaugg, Y

    2014-10-01

    Hearing loss represents a hidden handicapwith various repercussions on development and social life. In the majority of cases, classical hearing aids address most hearing losses. However, the enhancement required for severe deafness frequently involves sound distortions which are very uncomfortable for patients. With the advent of bone anchored hearing aids, conductive hearing losses as well as mixed hearing losses are now better rehabilitated. Recently their indications have been expanded to profound to severe sensorineural hearing loss. The emergence of new materials as well as subcutaneous implants has lead to lessen skin complications and has diminished the aesthetic discomfort of this type of hearing devices.

  11. [The bone-anchored hearing aid].

    PubMed

    Foghsgaard, Søren

    2014-08-11

    The bone-anchored hearing aid (Baha) was introduced in 1977 by Tjellström and colleagues and has now been used clinically for over 30 years. Generally, the outcomes are good, and several studies have shown improved audiological- and quality of life outcomes. The principle of the Baha is, that sound vibrations are led directly to the inner ear via the mastoid bone, bypassing the middle ear. This is achieved via an osseointegrated implant and a skin-penetrating abutment. Studies report high success rates and a majority of complications as typically minor in nature.

  12. Anchor-induced chondral damage in the hip

    PubMed Central

    Matsuda, Dean K.; Bharam, Srino; White, Brian J.; Matsuda, Nicole A.; Safran, Marc

    2015-01-01

    The purpose of this study is to investigate the outcomes from anchor-induced chondral damage of the hip, both with and without frank chondral penetration. A multicenter retrospective case series was performed of patients with chondral deformation or penetration during initial hip arthroscopic surgery. Intra-operative findings, post-surgical clinical courses, hip outcome scores and descriptions of arthroscopic treatment in cases requiring revision surgery and anchor removal are reported. Five patients (three females) of mean age 32 years (range, 16–41 years) had documented anchor-induced chondral damage with mean 3.5 years (range, 1.5–6.0 years) follow-up. The 1 o'clock position (four cases) and anterior and mid-anterior portals (two cases each) were most commonly implicated. Two cases of anchor-induced acetabular chondral deformation without frank penetration had successful clinical and radiographic outcomes, while one case progressed from deformation to chondral penetration with clinical worsening. Of the cases that underwent revision hip arthroscopy, all three had confirmed exposed hard anchors which were removed. Two patients have had clinical improvement and one patient underwent early total hip arthroplasty. Anchor-induced chondral deformation without frank chondral penetration may be treated with close clinical and radiographic monitoring with a low threshold for revision surgery and anchor removal. Chondral penetration should be treated with immediate removal of offending hard anchor implants. Preventative measures include distal-based portals, small diameter and short anchors, removable hard anchors, soft suture-based anchors, curved drill and anchor insertion instrumentation and attention to safe trajectories while visualizing the acetabular articular surface. PMID:27011815

  13. Anchor-induced chondral damage in the hip.

    PubMed

    Matsuda, Dean K; Bharam, Srino; White, Brian J; Matsuda, Nicole A; Safran, Marc

    2015-01-01

    The purpose of this study is to investigate the outcomes from anchor-induced chondral damage of the hip, both with and without frank chondral penetration. A multicenter retrospective case series was performed of patients with chondral deformation or penetration during initial hip arthroscopic surgery. Intra-operative findings, post-surgical clinical courses, hip outcome scores and descriptions of arthroscopic treatment in cases requiring revision surgery and anchor removal are reported. Five patients (three females) of mean age 32 years (range, 16-41 years) had documented anchor-induced chondral damage with mean 3.5 years (range, 1.5-6.0 years) follow-up. The 1 o'clock position (four cases) and anterior and mid-anterior portals (two cases each) were most commonly implicated. Two cases of anchor-induced acetabular chondral deformation without frank penetration had successful clinical and radiographic outcomes, while one case progressed from deformation to chondral penetration with clinical worsening. Of the cases that underwent revision hip arthroscopy, all three had confirmed exposed hard anchors which were removed. Two patients have had clinical improvement and one patient underwent early total hip arthroplasty. Anchor-induced chondral deformation without frank chondral penetration may be treated with close clinical and radiographic monitoring with a low threshold for revision surgery and anchor removal. Chondral penetration should be treated with immediate removal of offending hard anchor implants. Preventative measures include distal-based portals, small diameter and short anchors, removable hard anchors, soft suture-based anchors, curved drill and anchor insertion instrumentation and attention to safe trajectories while visualizing the acetabular articular surface.

  14. Nonrotating, self-centering anchor assembly for anchoring a bolt in a borehole

    SciTech Connect

    Bevan, John E.; King, Grant W.

    1997-12-01

    An expandable anchor assembly is provided for anchoring the threaded end portion of an elongated roof bolt in a borehole. The anchoring assembly includes a hollow outer sleeve in the form of a plurality of symmetrically arranged, longitudinal segmented wall portions with exterior gripping teeth and an inner expander sleeve in the form of a corresponding plurality of longitudinal wall portions symmetrically arranged about a central axis to define an inner threaded cylindrical section. The inner sleeve is captured within and moveable axially relative to the outer sleeve. As the threaded end portion of the elongated bolt is inserted into the inner threaded cylindrical section of the inner sleeve from the trailing end to the leading end thereof, the inner sleeve expands over and clamps around the threaded end portion of the elongated bolt. Thereafter, partial withdrawal of the elongated bolt from the borehole causes the inner sleeve to axially move relative to the outer sleeve from the leading end toward the trailing end of the outer sleeve in a wedging action to cause the outer sleeve to radially expand and force engagement of the gripping teeth against the sidewall of the borehole to thereby secure the expandable anchor assembly and therewith the threaded end portion of the elongated bolt within the borehole.

  15. Nonrotating, self-centering anchor assembly for anchoring a bolt in a borehole

    DOEpatents

    Bevan, J.E.; King, G.W.

    1998-12-08

    An expandable anchor assembly is provided for anchoring the threaded end portion of an elongated roof bolt in a borehole. The anchoring assembly includes a hollow outer sleeve in the form of a plurality of symmetrically arranged, longitudinal segmented wall portions with exterior gripping teeth and an inner expander sleeve in the form of a corresponding plurality of longitudinal wall portions symmetrically arranged about a central axis to define an inner threaded cylindrical section. The inner sleeve is captured within and moveable axially relative to the outer sleeve. As the threaded end portion of the elongated bolt is inserted into the inner threaded cylindrical section of the inner sleeve from the trailing end to the leading end thereof, the inner sleeve expands over and clamps around the threaded end portion of the elongated bolt. Thereafter, partial withdrawal of the elongated bolt from the borehole causes the inner sleeve to axially move relative to the outer sleeve from the leading end toward the trailing end of the outer sleeve in a wedging action to cause the outer sleeve to radially expand and force engagement of the gripping teeth against the sidewall of the borehole to thereby secure the expandable anchor assembly and therewith the threaded end portion of the elongated bolt within the borehole. 8 figs.

  16. Nonrotating, self-centering anchor assembly for anchoring a bolt in a borehole

    DOEpatents

    Bevan, John E.; King, Grant W.

    1998-01-01

    An expandable anchor assembly is provided for anchoring the threaded end portion of an elongated roof bolt in a borehole. The anchoring assembly includes a hollow outer sleeve in the form of a plurality of symmetrically arranged, longitudinal segmented wall portions with exterior gripping teeth and an inner expander sleeve in the form of a corresponding plurality of longitudinal wall portions symmetrically arranged about a central axis to define an inner threaded cylindrical section. The inner sleeve is captured within and moveable axially relative to the outer sleeve. As the threaded end portion of the elongated bolt is inserted into the inner threaded cylindrical section of the inner sleeve from the trailing end to the leading end thereof, the inner sleeve expands over and clamps around the threaded end portion of the elongated bolt. Thereafter, partial withdrawal of the elongated bolt from the borehole causes the inner sleeve to axially move relative to the outer sleeve from the leading end toward the trailing end of the outer sleeve in a wedging action to cause the outer sleeve to radially expand and force engagement of the gripping teeth against the sidewall of the borehole to thereby secure the expandable anchor assembly and therewith the threaded end portion of the elongated bolt within the borehole.

  17. Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles

    PubMed Central

    Karanasios, Eleftherios; Walker, Simon A.; Okkenhaug, Hanneke; Manifava, Maria; Hummel, Eric; Zimmermann, Hans; Ahmed, Qashif; Domart, Marie-Charlotte; Collinson, Lucy; Ktistakis, Nicholas T.

    2016-01-01

    Autophagosome formation requires sequential translocation of autophagy-specific proteins to membranes enriched in PI3P and connected to the ER. Preceding this, the earliest autophagy-specific structure forming de novo is a small punctum of the ULK1 complex. The provenance of this structure and its mode of formation are unknown. We show that the ULK1 structure emerges from regions, where ATG9 vesicles align with the ER and its formation requires ER exit and coatomer function. Super-resolution microscopy reveals that the ULK1 compartment consists of regularly assembled punctate elements that cluster in progressively larger spherical structures and associates uniquely with the early autophagy machinery. Correlative electron microscopy after live imaging shows tubulovesicular membranes present at the locus of this structure. We propose that the nucleation of autophagosomes occurs in regions, where the ULK1 complex coalesces with ER and the ATG9 compartment. PMID:27510922

  18. Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles.

    PubMed

    Karanasios, Eleftherios; Walker, Simon A; Okkenhaug, Hanneke; Manifava, Maria; Hummel, Eric; Zimmermann, Hans; Ahmed, Qashif; Domart, Marie-Charlotte; Collinson, Lucy; Ktistakis, Nicholas T

    2016-01-01

    Autophagosome formation requires sequential translocation of autophagy-specific proteins to membranes enriched in PI3P and connected to the ER. Preceding this, the earliest autophagy-specific structure forming de novo is a small punctum of the ULK1 complex. The provenance of this structure and its mode of formation are unknown. We show that the ULK1 structure emerges from regions, where ATG9 vesicles align with the ER and its formation requires ER exit and coatomer function. Super-resolution microscopy reveals that the ULK1 compartment consists of regularly assembled punctate elements that cluster in progressively larger spherical structures and associates uniquely with the early autophagy machinery. Correlative electron microscopy after live imaging shows tubulovesicular membranes present at the locus of this structure. We propose that the nucleation of autophagosomes occurs in regions, where the ULK1 complex coalesces with ER and the ATG9 compartment. PMID:27510922

  19. New Retrievable Coil Anchors: Preliminary In Vivo Experiences in Swine

    SciTech Connect

    Konya, A. Wright, K.C.

    2005-04-15

    Purpose. To design and test retrievable coil anchors to improve the safety and efficacy of coil embolization. Methods. Fifty-two 0.038-inch homemade retrievable stainless steel coils were equipped with one of four different pre-shaped nitinol anchors and tested in 38 pigs. All coils with the anchor were completely retrieved and redeployed 3-18 times (median 7 times) prior to release. Types 1 and 2 anchored coils were acutely deployed in the external iliac arteries (n = 10 each), and chronically tested (1 week) in the common carotid arteries (n = 6 each). Larger type 1 (n = 4), type 3 (n = 6), and type 4 (n = 4) anchored coils were acutely deployed in the abdominal aorta. The largest type 1 anchors (n = 6) were acutely tested in the inferior vena cava. Results. All anchored coils were successfully retrieved and repositioned several times. All but two coils formed a compact plug and there was no coil migration except with two mechanically defective type 3 anchors. Conclusion. The use of retrievable anchors allowed the coils to be retrieved and repositioned, prevented coil migration, and enabled compact coil configuration.

  20. N-glycosylation enables high lateral mobility of GPI-anchored proteins at a molecular crowding threshold.

    PubMed

    Hartel, Andreas J W; Glogger, Marius; Jones, Nicola G; Abuillan, Wasim; Batram, Christopher; Hermann, Anne; Fenz, Susanne F; Tanaka, Motomu; Engstler, Markus

    2016-01-01

    The protein density in biological membranes can be extraordinarily high, but the impact of molecular crowding on the diffusion of membrane proteins has not been studied systematically in a natural system. The diversity of the membrane proteome of most cells may preclude systematic studies. African trypanosomes, however, feature a uniform surface coat that is dominated by a single type of variant surface glycoprotein (VSG). Here we study the density-dependence of the diffusion of different glycosylphosphatidylinositol-anchored VSG-types on living cells and in artificial membranes. Our results suggest that a specific molecular crowding threshold (MCT) limits diffusion and hence affects protein function. Obstacles in the form of heterologous proteins compromise the diffusion coefficient and the MCT. The trypanosome VSG-coat operates very close to its MCT. Importantly, our experiments show that N-linked glycans act as molecular insulators that reduce retarding intermolecular interactions allowing membrane proteins to function correctly even when densely packed. PMID:27641538

  1. N-glycosylation enables high lateral mobility of GPI-anchored proteins at a molecular crowding threshold

    PubMed Central

    Hartel, Andreas J. W.; Glogger, Marius; Jones, Nicola G.; Abuillan, Wasim; Batram, Christopher; Hermann, Anne; Fenz, Susanne F.; Tanaka, Motomu; Engstler, Markus

    2016-01-01

    The protein density in biological membranes can be extraordinarily high, but the impact of molecular crowding on the diffusion of membrane proteins has not been studied systematically in a natural system. The diversity of the membrane proteome of most cells may preclude systematic studies. African trypanosomes, however, feature a uniform surface coat that is dominated by a single type of variant surface glycoprotein (VSG). Here we study the density-dependence of the diffusion of different glycosylphosphatidylinositol-anchored VSG-types on living cells and in artificial membranes. Our results suggest that a specific molecular crowding threshold (MCT) limits diffusion and hence affects protein function. Obstacles in the form of heterologous proteins compromise the diffusion coefficient and the MCT. The trypanosome VSG-coat operates very close to its MCT. Importantly, our experiments show that N-linked glycans act as molecular insulators that reduce retarding intermolecular interactions allowing membrane proteins to function correctly even when densely packed. PMID:27641538

  2. Redox Nanodomains Are Induced by and Control Calcium Signaling at the ER-Mitochondrial Interface.

    PubMed

    Booth, David M; Enyedi, Balázs; Geiszt, Miklós; Várnai, Péter; Hajnóczky, György

    2016-07-21

    The ER-mitochondrial interface is central to calcium signaling, organellar dynamics, and lipid biosynthesis. The ER and mitochondrial membranes also host sources and targets of reactive oxygen species (ROS), but their local dynamics and relevance remained elusive since measurement and perturbation of ROS at the organellar interface has proven difficult. Employing drug-inducible synthetic ER-mitochondrial linkers, we overcame this problem and demonstrate that the ER-mitochondrial interface hosts a nanodomain of H2O2, which is induced by cytoplasmic [Ca(2+)] spikes and exerts a positive feedback on calcium oscillations. H2O2 nanodomains originate from the mitochondrial cristae, which are compressed upon calcium signal propagation to the mitochondria, likely due to Ca(2+)-induced K(+) and concomitant water influx to the matrix. Thus, ER-mitochondrial H2O2 nanodomains represent a component of inter-organelle communication, regulating calcium signaling and mitochondrial activities.

  3. A Novel Glycosylphosphatidylinositol-Anchored Glycoside Hydrolase from Ustilago esculenta Functions in β-1,3-Glucan Degradation

    PubMed Central

    Nakajima, Masahiro; Yamashita, Tetsuro; Takahashi, Machiko; Nakano, Yuki

    2012-01-01

    A glycoside hydrolase responsible for laminarin degradation was partially purified to homogeneity from a Ustilago esculenta culture filtrate by weak-cation-exchange, strong-cation-exchange, and size-exclusion chromatography. Three proteins in enzymatically active fractions were digested with chymotrypsin followed by liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis, resulting in the identification of three peptide sequences that shared significant similarity to a putative β-1,3-glucanase, a member of glucoside hydrolase family 16 (GH16) from Sporisorium reilianum SRZ2. A gene encoding a laminarin-degrading enzyme from U. esculenta, lam16A, was isolated by PCR using degenerate primers designed based on the S. reilianum SRZ2 β-1,3-glucanase gene. Lam16A possesses a GH16 catalytic domain with an N-terminal signal peptide and a C-terminal glycosylphosphatidylinositol (GPI) anchor peptide. Recombinant Lam16A fused to an N-terminal FLAG peptide (Lam16A-FLAG) overexpressed in Aspergillus oryzae exhibited hydrolytic activity toward β-1,3-glucan specifically and was localized both in the extracellular and in the membrane fractions but not in the cell wall fraction. Lam16A without a GPI anchor signal peptide was secreted extracellularly and was not detected in the membrane fraction. Membrane-anchored Lam16A-FLAG was released completely by treatment with phosphatidylinositol-specific phospholipase C. These results suggest that Lam16A is anchored in the plasma membrane in order to modify β-1,3-glucan associated with the inner cell wall and that Lam16A is also used for the catabolism of β-1,3-glucan after its release in the extracellular medium. PMID:22685137

  4. Blue-light-induced rapid chloroplast de-anchoring in Vallisneria epidermal cells.

    PubMed

    Sakai, Yuuki; Inoue, Shin-ichiro; Harada, Akiko; Shimazaki, Ken-Ichiro; Takagi, Shingo

    2015-01-01

    In the outer periclinal cytoplasm of leaf epidermal cells of an aquatic angiosperm Vallisneria, blue light induces "chloroplast de-anchoring", a rapid decline in the resistance of chloroplasts against centrifugal force. Chloroplast de-anchoring is known induced within 1 min of irradiation with high-fluence-rate blue light specifically, preceding the commencement of chloroplasts migration toward the anticlinal cytoplasm. However, its regulatory mechanism has remained elusive, although pharmacological analysis suggested that a calcium release from intracellular calcium stores is necessary for the response. In search of the responsible photoreceptors, immunoblotting analysis using antibodies against phototropins demonstrated that cross-reactive polypeptides of 120-kDa exist in the plasma-membrane fraction prepared from the leaves. In vitro phosphorylation analysis revealed that 120-kDa polypeptides were phosphorylated by exposure to blue light in a fluence-dependent manner. The blue-light-induced phosphorylation activity was sensitive to a Ser/Thr kinase inhibitor, staurosporine, and unusually was retained at a high level for a long time in darkness. Furthermore, phototropin gene homologs (Vallisneria PHOTOTROPIN1 and PHOTOTROPIN2) expressed in leaves were isolated. We propose that calcium-regulated chloroplast de-anchoring, possibly mediated by phototropins, is an initial process of the blue-light-induced avoidance response of chloroplasts in Vallisneria.

  5. Blue-light-induced rapid chloroplast de-anchoring in Vallisneria epidermal cells.

    PubMed

    Sakai, Yuuki; Inoue, Shin-ichiro; Harada, Akiko; Shimazaki, Ken-Ichiro; Takagi, Shingo

    2015-01-01

    In the outer periclinal cytoplasm of leaf epidermal cells of an aquatic angiosperm Vallisneria, blue light induces "chloroplast de-anchoring", a rapid decline in the resistance of chloroplasts against centrifugal force. Chloroplast de-anchoring is known induced within 1 min of irradiation with high-fluence-rate blue light specifically, preceding the commencement of chloroplasts migration toward the anticlinal cytoplasm. However, its regulatory mechanism has remained elusive, although pharmacological analysis suggested that a calcium release from intracellular calcium stores is necessary for the response. In search of the responsible photoreceptors, immunoblotting analysis using antibodies against phototropins demonstrated that cross-reactive polypeptides of 120-kDa exist in the plasma-membrane fraction prepared from the leaves. In vitro phosphorylation analysis revealed that 120-kDa polypeptides were phosphorylated by exposure to blue light in a fluence-dependent manner. The blue-light-induced phosphorylation activity was sensitive to a Ser/Thr kinase inhibitor, staurosporine, and unusually was retained at a high level for a long time in darkness. Furthermore, phototropin gene homologs (Vallisneria PHOTOTROPIN1 and PHOTOTROPIN2) expressed in leaves were isolated. We propose that calcium-regulated chloroplast de-anchoring, possibly mediated by phototropins, is an initial process of the blue-light-induced avoidance response of chloroplasts in Vallisneria. PMID:25231366

  6. Novel cancer vaccines prepared by anchoring cytokines to tumor cells avoiding gene transfection

    NASA Astrophysics Data System (ADS)

    Nizard, Philippe; Gross, David-Alexandre; Chenal, Alexandre; Beaumelle, Bruno; Kosmatopoulos, Konstadinos; Gillet, Daniel

    2002-06-01

    Cytokines have a strong potential for triggering anticancer immunity if released in the tumor microenvironment. Successful vaccines have been engineered using tumor cells genetically modified to secrete the cytokines. Unfortunately, this approach remains difficult and hazardous to perform in the clinic. We describe a new way of combining cytokines with tumor cells to prepare anticancer vaccines. This consists in anchoring recombinant cytokines to the membrane of killed tumor cells. Attachment is mediated by a fragment of diphtheria toxin (T) genetically connected to the cytokine. It is triggered by an acid pH pulse. The method was applied to IL-2, a potent anti-tumor cytokine. IL-2 anchored to the surface of tumor cells by the T anchor retained its IL-2 activity and remained exposed several days. Interestingly, vaccination of mice with these modified tumor cells induced a protective anti-tumor immunity mediated by tumor-specific cytotoxic T lymphocytes. This procedure presents several advantages as compared to the conventional approaches based on the transfection of tumor cells with cytokine genes. It does not require the culture of tumor cells from the patients and eliminates the safety problems connected with viral vectors while allowing the control of the amount of cytokines delivered with the vaccine.

  7. Membrane Domain Formation on Nanostructured Scaffolds

    NASA Astrophysics Data System (ADS)

    Collier, Charles; Liu, Fangjie; Srijanto, Bernadeta

    The spatial organization of lipids and proteins in biological membranes seems to have a functional role in the life of a cell. Separation of the lipids into distinct domains of greater order and anchoring to the cytoskeleton are two main mechanisms for organizing the membrane in cells. We propose a novel model membrane consisting of a lipid bilayer suspended over a nanostructured scaffold consisting of arrays of fabricated nanopillars. Unlike traditional model membranes, our model will have well-defined lateral structure and distributed substrate attachments that will emulate the connections of cellular membranes to the underlying cytoskeleton. Membranes will be characterized using neutron reflectometry, atomic force microscopy and fluorescence to verify a suspended, planar geometry with restricted diffusion at suspension points, and free diffusion in between. This architecture will allow the controlled study of lipid domain reorganization, viral infection and signal transduction that depend on the lateral structure of the membrane.

  8. A novel human erythrocyte glycosylphosphatidylinositol (GPI)-anchored glycoprotein ACA. Isolation, purification, primary structure determination, and molecular parameters of its lipid structure.

    PubMed

    Becker Kojić, Zorica A; Terness, Peter

    2002-10-25

    A method has been elaborated to isolate and purify up to homogeneity a novel membrane glycoprotein containing a glycosyl-phosphatidylinositol (GPI) anchor by means of salting out with ammonium sulfate (40-80% saturation), followed by preparative SDS-PAGE, chromatography and acetone precipitation. The preparation obtained was homogeneous upon electrophoresis in the presence of 0.1% SDS after reduction with 2-mercaptoethanol. It is protein-soluble at its isoelectrical point (pH 5.5) with molecular mass of 65,000 daltons. The isolated protein is linked to the membrane via glycosyl-phosphatidylinositol susceptible to cleavage by purified phospholipase C. The hydrophobic portion of the glycolipid membrane anchor of the protein was radiolabeled with the photoactivated reagent 3-(trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine and hydrolyzed with glycosyl-phosphatidylinositol-specific phospholipase C, followed by enzymatic deacetylation of the remaining lipid. Thin-layer chromatography showed that the generated radiolabeled fragment migrates with the same mobility as that of variant surface glycoprotein (VSG), obtained in the same manner. In this study we describe a novel erythrocyte membrane GPI-linked protein with the structural feature of an anchor that, in contrast to other GPI-linked erythrocyte proteins, has a non-acetylated inositol ring and diacylglycerol rather than alkyl-acyl glycerol as a lipid tail of the anchor.

  9. Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress

    PubMed Central

    Xu, S; Nam, S M; Kim, J-H; Das, R; Choi, S-K; Nguyen, T T; Quan, X; Choi, S J; Chung, C H; Lee, E Y; Lee, I-K; Wiederkehr, A; Wollheim, C B; Cha, S-K; Park, K-S

    2015-01-01

    Pathologic alterations in podocytes lead to failure of an essential component of the glomerular filtration barrier and proteinuria in chronic kidney diseases. Elevated levels of saturated free fatty acid (FFA) are harmful to various tissues, implemented in the progression of diabetes and its complications such as proteinuria in diabetic nephropathy. Here, we investigated the molecular mechanism of palmitate cytotoxicity in cultured mouse podocytes. Incubation with palmitate dose-dependently increased cytosolic and mitochondrial reactive oxygen species, depolarized the mitochondrial membrane potential, impaired ATP synthesis and elicited apoptotic cell death. Palmitate not only evoked mitochondrial fragmentation but also caused marked dilation of the endoplasmic reticulum (ER). Consistently, palmitate upregulated ER stress proteins, oligomerized stromal interaction molecule 1 (STIM1) in the subplasmalemmal ER membrane, abolished the cyclopiazonic acid-induced cytosolic Ca2+ increase due to depletion of luminal ER Ca2+. Palmitate-induced ER Ca2+ depletion and cytotoxicity were blocked by a selective inhibitor of the fatty-acid transporter FAT/CD36. Loss of the ER Ca2+ pool induced by palmitate was reverted by the phospholipase C (PLC) inhibitor edelfosine. Palmitate-dependent activation of PLC was further demonstrated by following cytosolic translocation of the pleckstrin homology domain of PLC in palmitate-treated podocytes. An inhibitor of diacylglycerol (DAG) kinase, which elevates cytosolic DAG, strongly promoted ER Ca2+ depletion by low-dose palmitate. GF109203X, a PKC inhibitor, partially prevented palmitate-induced ER Ca2+ loss. Remarkably, the mitochondrial antioxidant mitoTEMPO inhibited palmitate-induced PLC activation, ER Ca2+ depletion and cytotoxicity. Palmitate elicited cytoskeletal changes in podocytes and increased albumin permeability, which was also blocked by mitoTEMPO. These data suggest that oxidative stress caused by saturated FFA leads to

  10. PI(3)P-bound UVRAG coordinates Golgi-ER retrograde and Atg9 transport by differential interactions with the ER tether and the Beclin1 complex

    PubMed Central

    Lee, Joo-Hyung; Zhang, Tian; Ghozalli, Irene; Pirooz, Sara Dolatshahi; Zhao, Zhen; Bharatham, Nagakumar; Li, Baihong; Oh, Soohwan; Lee, Wen-Hwa; Takahashi, Yoshinori; Wang, Hong-Gang; Minassian, Arlet; Feng, Pinghui; Deretic, Vojo; Pepperkok, Rainer; Tagaya, Mitsuo; Yoon, Ho Sup; Liang, Chengyu

    2013-01-01

    ER-Golgi membrane transport and autophagy are intersecting trafficking pathways that are tightly regulated and crucial for homeostasis, development and diseases. Here, we identify UVRAG, a Beclin1-binding autophagic factor, as a PI(3)P-binding protein that depends on PI(3)P for its ER localization. We further show that UVRAG interacts with RINT-1, and acts as an integral component of the RINT-1-containing ER tethering complex, which couples phosphoinositide metabolism to COPI-vesicle tethering. Displacement or knockdown of UVRAG profoundly disrupted COPI cargo transfer to the ER and Golgi integrity. Intriguingly, autophagy caused the dissociation of UVRAG from the ER tether, which in turn worked in concert with the Bif-1-Beclin-PI(3)KC3 complex to mobilize Atg9 translocation for autophagosome formation. These findings identify a regulatory mechanism that coordinates Golgi-ER retrograde and autophagy-related vesicular trafficking events through physical and functional interactions between UVRAG, phosphoinositide, and their regulatory factors, thereby ensuring spatiotemporal fidelity of membrane trafficking and maintenance of organelle homeostasis. PMID:24056303

  11. Transcript Expression Analysis of Putative Trypanosoma brucei GPI-Anchored Surface Proteins during Development in the Tsetse and Mammalian Hosts

    PubMed Central

    Savage, Amy F.; Cerqueira, Gustavo C.; Regmi, Sandesh; Wu, Yineng; El Sayed, Najib M.; Aksoy, Serap

    2012-01-01

    Human African Trypanosomiasis is a devastating disease caused by the parasite Trypanosoma brucei. Trypanosomes live extracellularly in both the tsetse fly and the mammal. Trypanosome surface proteins can directly interact with the host environment, allowing parasites to effectively establish and maintain infections. Glycosylphosphatidylinositol (GPI) anchoring is a common posttranslational modification associated with eukaryotic surface proteins. In T. brucei, three GPI-anchored major surface proteins have been identified: variant surface glycoproteins (VSGs), procyclic acidic repetitive protein (PARP or procyclins), and brucei alanine rich proteins (BARP). The objective of this study was to select genes encoding predicted GPI-anchored proteins with unknown function(s) from the T. brucei genome and characterize the expression profile of a subset during cyclical development in the tsetse and mammalian hosts. An initial in silico screen of putative T. brucei proteins by Big PI algorithm identified 163 predicted GPI-anchored proteins, 106 of which had no known functions. Application of a second GPI-anchor prediction algorithm (FragAnchor), signal peptide and trans-membrane domain prediction software resulted in the identification of 25 putative hypothetical proteins. Eighty-one gene products with hypothetical functions were analyzed for stage-regulated expression using semi-quantitative RT-PCR. The expression of most of these genes were found to be upregulated in trypanosomes infecting tsetse salivary gland and proventriculus tissues, and 38% were specifically expressed only by parasites infecting salivary gland tissues. Transcripts for all of the genes specifically expressed in salivary glands were also detected in mammalian infective metacyclic trypomastigotes, suggesting a possible role for these putative proteins in invasion and/or establishment processes in the mammalian host. These results represent the first large-scale report of the differential expression of

  12. Software Note: Using BILOG for Fixed-Anchor Item Calibration

    ERIC Educational Resources Information Center

    DeMars, Christine E.; Jurich, Daniel P.

    2012-01-01

    The nonequivalent groups anchor test (NEAT) design is often used to scale item parameters from two different test forms. A subset of items, called the anchor items or common items, are administered as part of both test forms. These items are used to adjust the item calibrations for any differences in the ability distributions of the groups taking…

  13. 49 CFR 178.337-13 - Supporting and anchoring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Supporting and anchoring. 178.337-13 Section 178.337-13 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... anchoring. (a) A cargo tank that is not permanently attached to or integral with a vehicle chassis must...

  14. Retention of internal anchor tags by juvenile striped bass

    USGS Publications Warehouse

    Van Den Avyle, M.J.; Wallin, J.E.

    2001-01-01

    We marked hatchery-reared striped bass Morone saxatilis (145-265 mm total length) with internal anchor tags and monitored retention for 28 months after stocking in the Savannah River, Georgia and South Carolina. Anchor tags (with an 18-mm, T-shaped anchor and 42-mm streamer) were surgically implanted ventrally, and coded wire tags (1 mm long and 0.25 mm in diameter) were placed into the cheek muscle to help identify subsequent recaptures. The estimated probability of retention (SD) of anchor tags was 0.94 (0.05) at 4 months, 0.64 (0.13) at 16 months, and 0.33 (0.19) at 28 months. Of 10 fish recaptured with only coded wire tags, 5 showed an externally visible wound or scar near the point of anchor tag insertion. The incidence of wounds or scars, which we interpreted as evidence of tag shedding, increased to 50% in recaptures taken at 28 months (three of six fish). Our estimates for retention of anchor tags were generally lower than those in other studies of striped bass, possibly because of differences in the style of anchor or sizes of fish used. Because of its low rate of retention, the type of anchor tag we used may not be suitable for long-term assessments of stock enhancement programs that use striped bass of the sizes we evaluated.

  15. 30 CFR 56.9311 - Anchoring stationary sizing devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Anchoring stationary sizing devices. 56.9311 Section 56.9311 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Dumping Sites § 56.9311 Anchoring stationary sizing devices. Grizzlies and other stationary sizing...

  16. 30 CFR 57.9311 - Anchoring stationary sizing devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Anchoring stationary sizing devices. 57.9311 Section 57.9311 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Dumping Sites § 57.9311 Anchoring stationary sizing devices. Grizzlies and other stationary sizing...

  17. Using Anchored Instruction to Evaluate Mathematical Growth and Understanding

    ERIC Educational Resources Information Center

    Kurz, Terri L.; Batarelo, Ivana

    2005-01-01

    Anchored instruction is designed to present problems in a meaningful context to allow for investigations into real life environments. The Jasper Project was created to allow students to investigate mathematical dilemmas using anchored instruction techniques. This study uses case study methods to examine the perceptions that preservice teachers…

  18. Understanding Rasch Measurement: Partial Credit Model and Pivot Anchoring.

    ERIC Educational Resources Information Center

    Bode, Rita K.

    2001-01-01

    Describes the Rasch measurement partial credit model, what it is, how it differs from other Rasch models, and when and how to use it. Also describes the calibration of instruments with increasingly complex items. Explains pivot anchoring and illustrates its use and describes the effect of pivot anchoring on step calibrations, item hierarchy, and…

  19. Memory for Dialogue: Recalling an Anchor through Talk and Response.

    ERIC Educational Resources Information Center

    Beaver, Pam

    This paper reports on a project involving student recall of the dialogue in a movie and retention of the "anchor," which in this case refers to a videotape recording of "To Kill a Mockingbird." The project looked at how students retained knowledge over a few days and what kind of activities resulted from expertise with an anchor. The goal of…

  20. Structure of a CGI-58 motif provides the molecular basis of lipid droplet anchoring.

    PubMed

    Boeszoermenyi, Andras; Nagy, Harald Manuel; Arthanari, Haribabu; Pillip, Christoph Jens; Lindermuth, Hanna; Luna, Rafael Eulogio; Wagner, Gerhard; Zechner, Rudolf; Zangger, Klaus; Oberer, Monika

    2015-10-30

    Triacylglycerols (TGs) stored in lipid droplets (LDs) are hydrolyzed in a highly regulated metabolic process called lipolysis to free fatty acids that serve as energy substrates for β-oxidation, precursors for membrane lipids and signaling molecules. Comparative gene identification-58 (CGI-58) stimulates the enzymatic activity of adipose triglyceride lipase (ATGL), which catalyzes the hydrolysis of TGs to diacylglycerols and free fatty acids. In adipose tissue, protein-protein interactions between CGI-58 and the LD coating protein perilipin 1 restrain the ability of CGI-58 to activate ATGL under basal conditions. Phosphorylation of perilipin 1 disrupts these interactions and mobilizes CGI-58 for the activation of ATGL. We have previously demonstrated that the removal of a peptide at the N terminus (residues 10-31) of CGI-58 abrogates CGI-58 localization to LDs and CGI-58-mediated activation of ATGL. Here, we show that this tryptophan-rich N-terminal peptide serves as an independent LD anchor, with its three tryptophans serving as focal points of the left (harboring Trp(21) and Trp(25)) and right (harboring Trp(29)) anchor arms. The solution state NMR structure of a peptide comprising the LD anchor bound to dodecylphosphocholine micelles as LD mimic reveals that the left arm forms a concise hydrophobic core comprising tryptophans Trp(21) and Trp(25) and two adjacent leucines. Trp(29) serves as the core of a functionally independent anchor arm. Consequently, simultaneous tryptophan alanine permutations in both arms abolish localization and activity of CGI-58 as opposed to tryptophan substitutions that occur in only one arm.

  1. Expanding the clinical and molecular characteristics of PIGT-CDG, a disorder of glycosylphosphatidylinositol anchors.

    PubMed

    Lam, Christina; Golas, Gretchen A; Davids, Mariska; Huizing, Marjan; Kane, Megan S; Krasnewich, Donna M; Malicdan, May Christine V; Adams, David R; Markello, Thomas C; Zein, Wadih M; Gropman, Andrea L; Lodish, Maya B; Stratakis, Constantine A; Maric, Irina; Rosenzweig, Sergio D; Baker, Eva H; Ferreira, Carlos R; Danylchuk, Noelle R; Kahler, Stephen; Garnica, Adolfo D; Bradley Schaefer, G; Boerkoel, Cornelius F; Gahl, William A; Wolfe, Lynne A

    2015-01-01

    PIGT-CDG, an autosomal recessive syndromic intellectual disability disorder of glycosylphosphatidylinositol (GPI) anchors, was recently described in two independent kindreds [Multiple Congenital Anomalies-Hypotonia-Seizures Syndrome 3 (OMIM, #615398)]. PIGT encodes phosphatidylinositol-glycan biosynthesis class T, a subunit of the heteropentameric transamidase complex that facilitates the transfer of GPI to proteins. GPI facilitates attachment (anchoring) of proteins to cell membranes. We describe, at ages 7 and 6 years, two children of non-consanguineous parents; they had hypotonia, severe global developmental delay, and intractable seizures along with endocrine, ophthalmologic, skeletal, hearing, and cardiac anomalies. Exome sequencing revealed that both siblings had compound heterozygous variants in PIGT (NM_015937.5), i.e., c.918dupC, a novel duplication leading to a frameshift, and c.1342C > T encoding a previously described missense variant. Flow cytometry studies showed decreased surface expression of GPI-anchored proteins on granulocytes, consistent with findings in previous cases. These siblings further delineate the clinical spectrum of PIGT-CDG, reemphasize the neuro-ophthalmologic presentation, clarify the endocrine features, and add hypermobility, low CSF albumin quotient, and hearing loss to the phenotypic spectrum. Our results emphasize that GPI anchor-related congenital disorders of glycosylation (CDGs) should be considered in subjects with early onset severe seizure disorders and dysmorphic facial features, even in the presence of a normal carbohydrate-deficient transferrin pattern and N-glycan profiling. Currently available screening for CDGs will not reliably detect this family of disorders, and our case reaffirms that the use of flow cytometry and genetic testing is essential for diagnosis in this group of disorders.

  2. Structure of a CGI-58 Motif Provides the Molecular Basis of Lipid Droplet Anchoring*

    PubMed Central

    Boeszoermenyi, Andras; Nagy, Harald Manuel; Arthanari, Haribabu; Pillip, Christoph Jens; Lindermuth, Hanna; Luna, Rafael Eulogio; Wagner, Gerhard; Zechner, Rudolf; Zangger, Klaus; Oberer, Monika

    2015-01-01

    Triacylglycerols (TGs) stored in lipid droplets (LDs) are hydrolyzed in a highly regulated metabolic process called lipolysis to free fatty acids that serve as energy substrates for β-oxidation, precursors for membrane lipids and signaling molecules. Comparative gene identification-58 (CGI-58) stimulates the enzymatic activity of adipose triglyceride lipase (ATGL), which catalyzes the hydrolysis of TGs to diacylglycerols and free fatty acids. In adipose tissue, protein-protein interactions between CGI-58 and the LD coating protein perilipin 1 restrain the ability of CGI-58 to activate ATGL under basal conditions. Phosphorylation of perilipin 1 disrupts these interactions and mobilizes CGI-58 for the activation of ATGL. We have previously demonstrated that the removal of a peptide at the N terminus (residues 10–31) of CGI-58 abrogates CGI-58 localization to LDs and CGI-58-mediated activation of ATGL. Here, we show that this tryptophan-rich N-terminal peptide serves as an independent LD anchor, with its three tryptophans serving as focal points of the left (harboring Trp21 and Trp25) and right (harboring Trp29) anchor arms. The solution state NMR structure of a peptide comprising the LD anchor bound to dodecylphosphocholine micelles as LD mimic reveals that the left arm forms a concise hydrophobic core comprising tryptophans Trp21 and Trp25 and two adjacent leucines. Trp29 serves as the core of a functionally independent anchor arm. Consequently, simultaneous tryptophan alanine permutations in both arms abolish localization and activity of CGI-58 as opposed to tryptophan substitutions that occur in only one arm. PMID:26350461

  3. Structure of a CGI-58 motif provides the molecular basis of lipid droplet anchoring.

    PubMed

    Boeszoermenyi, Andras; Nagy, Harald Manuel; Arthanari, Haribabu; Pillip, Christoph Jens; Lindermuth, Hanna; Luna, Rafael Eulogio; Wagner, Gerhard; Zechner, Rudolf; Zangger, Klaus; Oberer, Monika

    2015-10-30

    Triacylglycerols (TGs) stored in lipid droplets (LDs) are hydrolyzed in a highly regulated metabolic process called lipolysis to free fatty acids that serve as energy substrates for β-oxidation, precursors for membrane lipids and signaling molecules. Comparative gene identification-58 (CGI-58) stimulates the enzymatic activity of adipose triglyceride lipase (ATGL), which catalyzes the hydrolysis of TGs to diacylglycerols and free fatty acids. In adipose tissue, protein-protein interactions between CGI-58 and the LD coating protein perilipin 1 restrain the ability of CGI-58 to activate ATGL under basal conditions. Phosphorylation of perilipin 1 disrupts these interactions and mobilizes CGI-58 for the activation of ATGL. We have previously demonstrated that the removal of a peptide at the N terminus (residues 10-31) of CGI-58 abrogates CGI-58 localization to LDs and CGI-58-mediated activation of ATGL. Here, we show that this tryptophan-rich N-terminal peptide serves as an independent LD anchor, with its three tryptophans serving as focal points of the left (harboring Trp(21) and Trp(25)) and right (harboring Trp(29)) anchor arms. The solution state NMR structure of a peptide comprising the LD anchor bound to dodecylphosphocholine micelles as LD mimic reveals that the left arm forms a concise hydrophobic core comprising tryptophans Trp(21) and Trp(25) and two adjacent leucines. Trp(29) serves as the core of a functionally independent anchor arm. Consequently, simultaneous tryptophan alanine permutations in both arms abolish localization and activity of CGI-58 as opposed to tryptophan substitutions that occur in only one arm. PMID:26350461

  4. Enhanced membrane protein expression by engineering increased intracellular membrane production

    PubMed Central

    2013-01-01

    Background Membrane protein research is frequently hampered by the low natural abundance of these proteins in cells and typically relies on recombinant gene expression. Different expression systems, like mammalian cells, insect cells, bacteria and yeast are being used, but very few research efforts have been directed towards specific host cell customization for enhanced expression of membrane proteins. Here we show that by increasing the intracellular membrane production by interfering with a key enzymatic step of lipid synthesis, enhanced expression of membrane proteins in yeast is achieved. Results We engineered the oleotrophic yeast, Yarrowia lipolytica, by deleting the phosphatidic acid phosphatase, PAH1, which led to massive proliferation of endoplasmic reticulum (ER) membranes. For all eight tested representatives of different integral membrane protein families, we obtained enhanced protein accumulation levels and in some cases enhanced proteolytic integrity in the ∆pah1 strain. We analysed the adenosine A2AR G-protein coupled receptor case in more detail and found that concomitant induction of the unfolded protein response in the ∆pah1 strain enhanced the specific ligand binding activity of the receptor. These data indicate an improved quality control mechanism for membrane proteins accumulating in yeast cells with proliferated ER. Conclusions We conclude that redirecting the metabolic flux of fatty acids away from triacylglycerol- and sterylester-storage towards membrane phospholipid synthesis by PAH1 gene inactivation, provides a valuable approach to enhance eukaryotic membrane protein production. Complementary to this improvement in membrane protein quantity, UPR co-induction further enhances the quality of the membrane protein in terms of its proper folding and biological activity. Importantly, since these pathways are conserved in all eukaryotes, it will be of interest to investigate similar engineering approaches in other cell types of

  5. Electrically insulated MLI and thermal anchor

    NASA Astrophysics Data System (ADS)

    Kamiya, Koji; Furukawa, Masato; Hatakenaka, Ryuta; Miyakita, Takeshi; Murakami, Haruyuki; Kizu, Kaname; Tsuchiya, Katsuhiko; Koidea, Yoshihiko; Yoshida, Kiyoshi

    2014-01-01

    The thermal shield of JT-60SA is kept at 80 K and will use the multilayer insulation (MLI) to reduce radiation heat load to the superconducting coils at 4.4 K from the cryostat at 300 K. Due to plasma pulse operation, the MLI is affected by eddy current in toroidal direction. The MLI is designed to suppress the current by electrically insulating every 20 degree in the toroidal direction by covering the MLI with polyimide films. In this paper, two kinds of designs for the MLI system are proposed, focusing on a way to overlap the layers. A boil-off calorimeter method and temperature measurement has been performed to determine the thermal performance of the MLI system. The design of the electrical insulated thermal anchor between the toroidal field (TF) coil and the thermal shield is also explained.

  6. Electrically insulated MLI and thermal anchor

    SciTech Connect

    Kamiya, Koji; Furukawa, Masato; Murakami, Haruyuki; Kizu, Kaname; Tsuchiya, Katsuhiko; Koidea, Yoshihiko; Yoshida, Kiyoshi; Hatakenaka, Ryuta; Miyakita, Takeshi

    2014-01-29

    The thermal shield of JT-60SA is kept at 80 K and will use the multilayer insulation (MLI) to reduce radiation heat load to the superconducting coils at 4.4 K from the cryostat at 300 K. Due to plasma pulse operation, the MLI is affected by eddy current in toroidal direction. The MLI is designed to suppress the current by electrically insulating every 20 degree in the toroidal direction by covering the MLI with polyimide films. In this paper, two kinds of designs for the MLI system are proposed, focusing on a way to overlap the layers. A boil-off calorimeter method and temperature measurement has been performed to determine the thermal performance of the MLI system. The design of the electrical insulated thermal anchor between the toroidal field (TF) coil and the thermal shield is also explained.