How well do Reanalysis represent polar lows?
NASA Astrophysics Data System (ADS)
Zappa, G.; Shaffrey, L.; Hodges, K.
2013-12-01
Polar lows are intense maritime mesocyclones forming at high latitudes during polar air outbreaks. The associated high surface winds can be an important cause of coastal damage.They also seem to play a relevant role in the climate system by modulating the oceanic surface heat fluxes. This creates strong interest in understanding whether modern reanalysis datasets are able to represent polar lows, as well as how their representation may be sensitive to the model resolution. In this talk we investigate how ERA-Interim reanalysis represents the polar lows identified by the Norwegian meteorological services and listed in the STARS (Combination of Sea Surface Temperature and AltimeteR Synergy) dataset for the period 2002-2011. The sensitivity to resolution is explored by comparing ERA-Interim to the ECMWF operational analyses (2008-2011), which have three times higher horizontal resolution compared to ERA-Interim. We show that ERAI-Interim has excellent ability to capture the observed polar lows events with up to 90% of the observed events being found in the reanalysis. However, ERA-Interim tends to have polar lows of weaker dynamical intensity, in terms of both winds and vorticity, and with less spatial structure than in the ECMWF operational analyses (See Fig 1). Furthermore, we apply an objective feature tracking algorithm to the 3 hourly vorticity at 850 hPa with constraints on vorticity intensity and atmospheric static stability to objectively identify polar lows in the ERA-Interim reanalysis. We show that for the stronger polar lows the objective climatology shows good agreement with the STARS dataset over the 2002-2011 period. This allows us to extend the polar lows climatology over the whole ERA Interim period. Differences with another reanalysis product (NCEP-CFSR) will be also discussed. Fig 1: Composite of the tangential wind speed at 925 hPa for 34 polar lows observed in the Norwegian sea between 2008-2010 as represented by the ERA-Interim reanalysis (left) and by the ECMWF Operational analysis (right). Positive values indicate cyclonic circulation. The composite is centered on the polar low vorticity maxima and it is presented for a radial cap of 5 degrees of radius on the sphere (~550Km).
NASA Astrophysics Data System (ADS)
Srivastava, Prashant K.; Han, Dawei; Islam, Tanvir; Petropoulos, George P.; Gupta, Manika; Dai, Qiang
2016-04-01
Reference evapotranspiration (ETo) is an important variable in hydrological modeling, which is not always available, especially for ungauged catchments. Satellite data, such as those available from the MODerate Resolution Imaging Spectroradiometer (MODIS), and global datasets via the European Centre for Medium Range Weather Forecasts (ECMWF) reanalysis (ERA) interim and National Centers for Environmental Prediction (NCEP) reanalysis are important sources of information for ETo. This study explored the seasonal performances of MODIS (MOD16) and Weather Research and Forecasting (WRF) model downscaled global reanalysis datasets, such as ERA interim and NCEP-derived ETo, against ground-based datasets. Overall, on the basis of the statistical metrics computed, ETo derived from ERA interim and MODIS were more accurate in comparison to the estimates from NCEP for all the seasons. The pooled datasets also revealed a similar performance to the seasonal assessment with higher agreement for the ERA interim (r = 0.96, RMSE = 2.76 mm/8 days; bias = 0.24 mm/8 days), followed by MODIS (r = 0.95, RMSE = 7.66 mm/8 days; bias = -7.17 mm/8 days) and NCEP (r = 0.76, RMSE = 11.81 mm/8 days; bias = -10.20 mm/8 days). The only limitation with downscaling ERA interim reanalysis datasets using WRF is that it is time-consuming in contrast to the readily available MODIS operational product for use in mesoscale studies and practical applications.
NASA Astrophysics Data System (ADS)
Ahmed, F.; Dousa, J.; Hunegnaw, A.; Teferle, F. N.; Bingley, R.
2017-12-01
Integrated water vapor (IWV) derived from climate reanalysis models, such as the European Centre for Medium-range Weather Forecasts (ECMWF) ReAnalysis-Interim (ERA-Interim), is widely used in many atmospheric applications. Therefore, it is of interest to assess the quality of this reanalysis product using available observations. Observations from Global Navigation Satellite Systems (GNSS) are, as of now, available for a period of over 2 decades and their global availability makes it possible to validate the IWV obtained from climate reanalysis models in different geographical and climatic regions. In this study, primarily, three 5-year long homogeneously reprocessed GNSS-derived IWV datasets containing over 400 globally distributed ground-based GNSS stations have been used to validate the IWV estimates obtained from the ERA-Interim climate reanalysis model in 25 different climate zones. The IWV from ERA-Interim has been obtained by vertically integrating the specific humidity at all model levels above the locations of GNSS stations. It has been studied how the difference between the ERA-Interim IWV and the GNSS-derived IWV varies with respect to the different climate zones as well as with respect to the difference in the model orography and latitude. The results show a dependence of the ability of ERA-Interim to model the IWV on difference in climate types and latitude. This dependence, however, is dictated by the concentration of water vapor in different climate zones and at different latitudes. Furthermore, as a secondary focus of this study, the weighted mean atmospheric temperature (Tm) obtained from ERA-Interim has been compared to its equivalent obtained using two widely used approximations globally.
Using ERA-Interim reanalysis for creating datasets of energy-relevant climate variables
NASA Astrophysics Data System (ADS)
Jones, Philip D.; Harpham, Colin; Troccoli, Alberto; Gschwind, Benoit; Ranchin, Thierry; Wald, Lucien; Goodess, Clare M.; Dorling, Stephen
2017-07-01
The construction of a bias-adjusted dataset of climate variables at the near surface using ERA-Interim reanalysis is presented. A number of different, variable-dependent, bias-adjustment approaches have been proposed. Here we modify the parameters of different distributions (depending on the variable), adjusting ERA-Interim based on gridded station or direct station observations. The variables are air temperature, dewpoint temperature, precipitation (daily only), solar radiation, wind speed, and relative humidity. These are available on either 3 or 6 h timescales over the period 1979-2016. The resulting bias-adjusted dataset is available through the Climate Data Store (CDS) of the Copernicus Climate Change Data Store (C3S) and can be accessed at present from ftp://ecem.climate.copernicus.eu. The benefit of performing bias adjustment is demonstrated by comparing initial and bias-adjusted ERA-Interim data against gridded observational fields.
NASA Astrophysics Data System (ADS)
Shi, Chunhua; Huang, Ying; Guo, Dong; Zhou, Shunwu; Hu, Kaixi; Liu, Yu
2018-05-01
The South Asian High (SAH) has an important influence on atmospheric circulation and the Asian climate in summer. However, current comparative analyses of the SAH are mostly between reanalysis datasets and there is a lack of sounding data. We therefore compared the climatology, trends and abrupt changes in the SAH in the Japanese 55-year Reanalysis (JRA-55) dataset, the National Centers for Environmental Prediction Climate Forecast System Reanalysis (NCEP-CFSR) dataset, the European Center for Medium-Range Weather Forecasts Reanalysis Interim (ERA-interim) dataset and radiosonde data from China using linear analysis and a sliding t-test. The trends in geopotential height in the control area of the SAH were positive in the JRA-55, NCEP-CFSR and ERA-interim datasets, but negative in the radiosonde data in the time period 1979-2014. The negative trends for the SAH were significant at the 90% confidence level in the radiosonde data from May to September. The positive trends in the NCEP-CFSR dataset were significant at the 90% confidence level in May, July, August and September, but the positive trends in the JRA-55 and ERA-Interim were only significant at the 90% confidence level in September. The reasons for the differences in the trends of the SAH between the radiosonde data and the three reanalysis datasets in the time period 1979-2014 were updates to the sounding systems, changes in instrumentation and improvements in the radiation correction method for calculations around the year 2000. We therefore analyzed the trends in the two time periods of 1979-2000 and 2001-2014 separately. From 1979 to 2000, the negative SAH trends in the radiosonde data mainly agreed with the negative trends in the NCEP-CFSR dataset, but were in contrast with the positive trends in the JRA-55 and ERA-Interim datasets. In 2001-2014, however, the trends in the SAH were positive in all four datasets and most of the trends in the radiosonde and NCEP-CFSR datasets were significant. It is therefore better to use the NCEP-CFSR dataset than the JRA-55 and ERA-Interim datasets when discussing trends in the SAH.
Evaluation of reanalysis datasets against observational soil temperature data over China
NASA Astrophysics Data System (ADS)
Yang, Kai; Zhang, Jingyong
2018-01-01
Soil temperature is a key land surface variable, and is a potential predictor for seasonal climate anomalies and extremes. Using observational soil temperature data in China for 1981-2005, we evaluate four reanalysis datasets, the land surface reanalysis of the European Centre for Medium-Range Weather Forecasts (ERA-Interim/Land), the second modern-era retrospective analysis for research and applications (MERRA-2), the National Center for Environmental Prediction Climate Forecast System Reanalysis (NCEP-CFSR), and version 2 of the Global Land Data Assimilation System (GLDAS-2.0), with a focus on 40 cm soil layer. The results show that reanalysis data can mainly reproduce the spatial distributions of soil temperature in summer and winter, especially over the east of China, but generally underestimate their magnitudes. Owing to the influence of precipitation on soil temperature, the four datasets perform better in winter than in summer. The ERA-Interim/Land and GLDAS-2.0 produce spatial characteristics of the climatological mean that are similar to observations. The interannual variability of soil temperature is well reproduced by the ERA-Interim/Land dataset in summer and by the CFSR dataset in winter. The linear trend of soil temperature in summer is well rebuilt by reanalysis datasets. We demonstrate that soil heat fluxes in April-June and in winter are highly correlated with the soil temperature in summer and winter, respectively. Different estimations of surface energy balance components can contribute to different behaviors in reanalysis products in terms of estimating soil temperature. In addition, reanalysis datasets can mainly rebuild the northwest-southeast gradient of soil temperature memory over China.
Lagrangian large eddy simulations of boundary layer clouds on ERA-Interim and ERA5 trajectories
NASA Astrophysics Data System (ADS)
Kazil, J.; Feingold, G.; Yamaguchi, T.
2017-12-01
This exploratory study examines Lagrangian large eddy simulations of boundary layer clouds along wind trajectories from the ERA-Interim and ERA5 reanalyses. The study is motivated by the need for statistically representative sets of high resolution simulations of cloud field evolution in realistic meteorological conditions. The study will serve as a foundation for the investigation of biomass burning effects on the transition from stratocumulus to shallow cumulus clouds in the South-East Atlantic. Trajectories that pass through a location with radiosonde data (St. Helena) and which exhibit a well-defined cloud structure and evolution were identified in satellite imagery, and sea surface temperature and atmospheric vertical profiles along the trajectories were extracted from the reanalysis data sets. The System for Atmospheric Modeling (SAM) simulated boundary layer turbulence and cloud properties along the trajectories. Mean temperature and moisture (in the free troposphere) and mean wind speed (at all levels) were nudged towards the reanalysis data. Atmospheric and cloud properties in the large eddy simulations were compared with those from the reanalysis products, and evaluated with satellite imagery and radiosonde data. Simulations using ERA-Interim data and the higher resolution ERA5 data are contrasted.
Evaluation of ERA-Interim precipitation data in complex terrain
NASA Astrophysics Data System (ADS)
Gao, Lu; Bernhardt, Matthias; Schulz, Karsten
2013-04-01
Precipitation controls a large variety of environmental processes, which is an essential input parameter for land surface models e.g. in hydrology, ecology and climatology. However, rain gauge networks provides the necessary information, are commonly sparse in complex terrains, especially in high mountainous regions. Reanalysis products (e.g. ERA-40 and NCEP-NCAR) as surrogate data are increasing applied in the past years. Although they are improving forward, previous studies showed that these products should be objectively evaluated due to their various uncertainties. In this study, we evaluated the precipitation data from ERA-Interim, which is a latest reanalysis product developed by ECMWF. ERA-Interim daily total precipitation are compared with high resolution gridded observation dataset (E-OBS) at 0.25°×0.25° grids for the period 1979-2010 over central Alps (45.5-48°N, 6.25-11.5°E). Wet or dry day is defined using different threshold values (0.5mm, 1mm, 5mm, 10mm and 20mm). The correspondence ratio (CR) is applied for frequency comparison, which is the ratio of days when precipitation occurs in both ERA-Interim and E-OBS dataset. The result shows that ERA-Interim captures precipitation occurrence very well with a range of CR from 0.80 to 0.97 for 0.5mm to 20mm thresholds. However, the bias of intensity increases with rising thresholds. Mean absolute error (MAE) varies between 4.5 mm day-1 and 9.5 mm day-1 in wet days for whole area. In term of mean annual cycle, ERA-Interim almost has the same standard deviation of the interannual variability of daily precipitation with E-OBS, 1.0 mm day-1. Significant wet biases happened in ERA-Interim throughout warm season (May to August) and dry biases in cold season (November to February). The spatial distribution of mean annual daily precipitation shows that ERA-Interim significant underestimates precipitation intensity in high mountains and northern flank of Alpine chain from November to March while pronounced overestimate in the southern flank of Alps. The poor topographical and flow related characteristic representation of ERA-Interim model is possibly responsible for the bias. Particularly, the mountain block effect of moisture is weak captured. The comparison demonstrates that ERA-Interim precipitation intensity needs bias correction for further alpine climate studies, although it reasonably captures precipitation frequency. This critical evaluation not only diagnosed the data quality of ERA-Interim, but also provided the evidence for reanalysis products downscaling and bias correction in complex terrain.
NASA Astrophysics Data System (ADS)
Wegmann, Martin; Dutra, Emanuel; Jacobi, Hans-Werner; Zolina, Olga
2018-06-01
This study uses daily observations and modern reanalyses in order to evaluate reanalysis products over northern Eurasia regarding the spring snow albedo feedback (SAF) during the period from 2000 to 2013. We used the state-of-the-art reanalyses from ERA-Interim/Land and the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) as well as an experimental set-up of ERA-Interim/Land with prescribed short grass as land cover to enhance the comparability with the station data while underlining the caveats of comparing in situ observations with gridded data. Snow depth statistics derived from daily station data are well reproduced in all three reanalyses. However day-to-day albedo variability is notably higher at the stations than for any reanalysis product. The ERA-Interim grass set-up shows improved performance when representing albedo variability and generates comparable estimates for the snow albedo in spring. We find that modern reanalyses show a physically consistent representation of SAF, with realistic spatial patterns and area-averaged sensitivity estimates. However, station-based SAF values are significantly higher than in the reanalyses, which is mostly driven by the stronger contrast between snow and snow-free albedo. Switching to grass-only vegetation in ERA-Interim/Land increases the SAF values up to the level of station-based estimates. We found no significant trend in the examined 14-year time series of SAF, but interannual changes of about 0.5 % K-1 in both station-based and reanalysis estimates were derived. This interannual variability is primarily dominated by the variability in the snowmelt sensitivity, which is correctly captured in reanalysis products. Although modern reanalyses perform well for snow variables, efforts should be made to improve the representation of dynamic albedo changes.
Spatiotemporal Evaluation of Reanalysis and In-situ Surface Air Temperature over Ethiopia
NASA Astrophysics Data System (ADS)
Tesfaye, T.
2017-12-01
Tewodros Woldemariam Tesfaye*1, C.T. Dhanya 2,and A.K. Gosain3 1Research Scholar, Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India 2Assistant Professor, Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India 3 Professor, Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India, *e-mail: tewodros2002@gmail.com Abstract: Water resources management and modelling studies are often constrained by the scarcity of observed data, especially of the two major variables i.e., precipitation and temperature. Modellers, hence, rely on reanalysis datasets as a substitute; though its performance heavily vary depending on the data availability and regional characteristics. The present study aims at examining the ability of frequently used reanalysis datasets in capturing the spatiotemporal characteristics of maximum and minimum surface temperatures over Ethiopia and to highlight the biases, if any, in these over Ethiopian region. We considered ERA-Interim, NCEP 2, MERRA and CFSR reanalysis datasets and compared these with temperature observations from 15 synoptic stations spread over Ethiopia. In addition to the long term averages and annual cycle, a critical comparison of various extreme indices such as diurnal temperature range, warm days, warm nights, cool days, cool nights, summer days and tropical nights are also undertaken. Our results indicate that, the performance of CFSR followed by NCEP 2 is better in capturing majority of the aspects. ERA-Interim suffers a huge additive bias in the simulation of various aspects of minimum temperature in all the stations considered; while its performance is better for maximum temperature. The inferior performance of ERA-Interim is noted to be only because of the difficulty in simulating minimum temperature. Key words: ERA Interim; NCEP Reanalysis; MERRA; CFSR; Diurnal temperature range; reanalysis performance.
NASA Astrophysics Data System (ADS)
Sharifi, Ehsan; Steinacker, Reinhold; Saghafian, Bahram
2016-04-01
Precipitation is a critical component of the Earth's hydrological cycle. The primary requirement in precipitation measurement is to know where and how much precipitation is falling at any given time. Especially in data sparse regions with insufficient radar coverage, satellite information can provide a spatial and temporal context. Nonetheless, evaluation of satellite precipitation is essential prior to operational use. This is why many previous studies are devoted to the validation of satellite estimation. Accurate quantitative precipitation estimation over mountainous basins is of great importance because of their susceptibility to hazards. In situ observations over mountainous areas are mostly limited, but currently available satellite precipitation products can potentially provide the precipitation estimation needed for meteorological and hydrological applications. One of the newest and blended methods that use multi-satellites and multi-sensors has been developed for estimating global precipitation. The considered data set known as Integrated Multi-satellitE Retrievals (IMERG) for GPM (Global Precipitation Measurement) is routinely produced by the GPM constellation satellites. Moreover, recent efforts have been put into the improvement of the precipitation products derived from reanalysis systems, which has led to significant progress. One of the best and a worldwide used model is developed by the European Centre for Medium Range Weather Forecasts (ECMWF). They have produced global reanalysis daily precipitation, known as ERA-Interim. This study has evaluated one year of precipitation data from the GPM-IMERG and ERA-Interim reanalysis daily time series over West of Iran. IMERG and ERA-Interim yield underestimate the observed values while IMERG underestimated slightly and performed better when precipitation is greater than 10mm. Furthermore, with respect to evaluation of probability of detection (POD), threat score (TS), false alarm ratio (FAR) and probability of false detection (POFD) IMERG yields a better value of POD, TS, FAR and POFD in comparison to era-Interim. Overall, ERA-Interim product produced fewer robust results when compared to IMERG.
NASA Astrophysics Data System (ADS)
Xie, Jin; Yu, Ye; Li, Jiang-lin; Ge, Jun; Liu, Chuan
2018-02-01
Surface sensible and latent heat fluxes (SH and LE) over the Tibetan Plateau (TP) have been under research since 1950s, especially for recent several years, by mainly using observation, reanalysis, and satellite data. However, the spatiotemporal changes are not consistent among different studies. This paper focuses on the spatiotemporal variation of SH and LE over the TP from 1981 to 2013 using reanalysis data sets (ERA-Interim, JRA-55, and MERRA) and observations. Results show that the spatiotemporal changes from the three reanalysis data sets are significantly different and the probable causes are discussed. Averaged for the whole TP, both SH and LE from MERRA are obviously higher than the other two reanalysis data sets. ERA-Interim shows a significant downward trend for SH and JRA-55 shows a significant increase of LE during the 33 years with other data sets having no obvious changes. By comparing the heat fluxes and some climate factors from the reanalysis with observations, it is found that the differences of heat fluxes among the three reanalysis data sets are closely related to their differences in meteorological conditions as well as the different parameterizations for surface transfer coefficients. In general, the heat fluxes from the three reanalysis have a better representation in the western TP than that in the eastern TP under inter-annual scale. While in terms of monthly variation, ERA-Interim may have better applicability in the eastern TP with dense vegetation conditions, while SH of JRA-55 and LE of MERRA are probably more representative for the middle and western TP with poor vegetation conditions.
Tropopause sharpening by data assimilation
NASA Astrophysics Data System (ADS)
Pilch Kedzierski, R.; Neef, L.; Matthes, K.
2016-08-01
Data assimilation was recently suggested to smooth out the sharp gradients that characterize the tropopause inversion layer (TIL) in systems that did not assimilate TIL-resolving observations. We investigate whether this effect is present in the ERA-Interim reanalysis and the European Centre for Medium-Range Weather Forecasts (ECMWF) operational forecast system (which assimilate high-resolution observations) by analyzing the 4D-Var increments and how the TIL is represented in their data assimilation systems. For comparison, we also diagnose the TIL from high-resolution GPS radio occultation temperature profiles from the COSMIC satellite mission, degraded to the same vertical resolution as ERA-Interim and ECMWF operational analyses. Our results show that more recent reanalysis and forecast systems improve the representation of the TIL, updating the earlier hypothesis. However, the TIL in ERA-Interim and ECMWF operational analyses is still weaker and farther away from the tropopause than GPS radio occultation observations of the same vertical resolution.
NASA Astrophysics Data System (ADS)
Bock, Olivier; Parracho, Ana; Bastin, Sophie; Hourdin, Frededic; Mellul, Lidia
2016-04-01
A high-quality, consistent, global, long-term dataset of integrated water vapour (IWV) was produced from Global Positioning System (GPS) measurements at more than 400 sites over the globe among which 120 sites have more than 15 years of data. The GPS delay data were converted to IWV using surface pressure and weighted mean temperature estimates from ERA-Interim reanalysis. A two-step screening method was developed to detect and remove outliers in the IWV data. It is based on: 1) GPS data processing information and delay formal errors, and 2) intercomparison with ERA-Interim reanalysis data. The GPS IWV data are also homogenized to correct for offsets due to instrumental changes and other unknown factors. The differential homogenization method uses ERA-Interim IWV as a reference. The resulting GPS data are used to document the mean distribution, the global trends and the variability of IWV over the period 1995-2010, and are analysed in coherence with precipitation and surface temperature data (from observations and ERA-Interim reanalysis). These data are also used to assess global climate model simulations extracted from the IPCC AR5 archive. Large coherent spatial patterns of moistening and drying are evidenced but significant discrepancies are also seen between GPS measurements, reanalysis and climate models in various regions. In terms of variability, the monthly mean anomalies are intercompared. The temporal correlation between GPS and the climate model simulations is overall quite small but the spatial variation of the magnitude of the anomalies is globally well simulated. GPS IWV data prove to be useful to validate global climate model simulations and highlight deficiencies in their representation of the water cycle.
NASA Astrophysics Data System (ADS)
Ries, H.; Moseley, C.; Haensler, A.
2012-04-01
Reanalyses depict the state of the atmosphere as a best fit in space and time of many atmospheric observations in a physically consistent way. By essentially solving the data assimilation problem in a very accurate manner, reanalysis results can be used as reference for model evaluation procedures and as forcing data sets for different model applications. However, the spatial resolution of the most common and accepted reanalysis data sets (e.g. JRA25, ERA-Interim) ranges from approximately 124 km to 80 km. This resolution is too coarse to simulate certain small scale processes often associated with extreme events. In addition, many models need higher resolved forcing data ( e.g. land-surface models, tools for identifying and assessing hydrological extremes). Therefore we downscaled the ERA-Interim reanalysis over the EURO-CORDEX-Domain for the time period 1989 to 2008 to a horizontal resolution of approximately 12 km. The downscaling is performed by nudging REMO-simulations to lower and lateral boundary conditions of the reanalysis, and by re-initializing the model every 24 hours ("REMO in forecast mode"). In this study the three following questions will be addressed: 1.) Does the REMO poor man's reanalysis meet the needs (accuracy, extreme value distribution) in validation and forcing? 2.) What lessons can be learned about the model used for downscaling? As REMO is used as a pure downscaling procedure, any systematic deviations from ERA-Interim result from poor process modelling but not from predictability limitations. 3.) How much small scale information generated by the downscaling model is lost with frequent initializations? A comparison to a simulation that is performed in climate mode will be presented.
Tropical cyclone genesis potential index over the western North Pacific simulated by CMIP5 models
NASA Astrophysics Data System (ADS)
Song, Yajuan; Wang, Lei; Lei, Xiaoyan; Wang, Xidong
2015-11-01
Tropical cyclone (TC) genesis over the western North Pacific (WNP) is analyzed using 23 CMIP5 (Coupled Model Intercomparison Project Phase 5) models and reanalysis datasets. The models are evaluated according to TC genesis potential index (GPI). The spatial and temporal variations of the GPI are first calculated using three atmospheric reanalysis datasets (ERA-Interim, NCEP/NCAR Reanalysis-1, and NCEP/DOE Reanalysis-2). Spatial distributions of July-October-mean TC frequency based on the GPI from ERA-interim are more consistent with observed ones derived from IBTrACS global TC data. So, the ERA-interim reanalysis dataset is used to examine the CMIP5 models in terms of reproducing GPI during the period 1982-2005. Although most models possess deficiencies in reproducing the spatial distribution of the GPI, their multimodel ensemble (MME) mean shows a reasonable climatological GPI pattern characterized by a high GPI zone along 20°N in the WNP. There was an upward trend of TC genesis frequency during 1982 to 1998, followed by a downward trend. Both MME results and reanalysis data can represent a robust increasing trend during 1982-1998, but the models cannot simulate the downward trend after 2000. Analysis based on future projection experiments shows that the GPI exhibits no significant change in the first half of the 21st century, and then starts to decrease at the end of the 21st century under the representative concentration pathway (RCP) 2.6 scenario. Under the RCP8.5 scenario, the GPI shows an increasing trend in the vicinity of 20°N, indicating more TCs could possibly be expected over the WNP under future global warming.
NASA Astrophysics Data System (ADS)
Zhao, Tianbao; Wang, Juanhuai; Dai, Aiguo
2015-10-01
Many multidecadal atmospheric reanalysis products are available now, but their consistencies and reliability are far from perfect. In this study, atmospheric precipitable water (PW) from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR), NCEP/Department of Energy (DOE), Modern Era Retrospective-Analysis for Research and Applications (MERRA), Japanese 55 year Reanalysis (JRA-55), JRA-25, ERA-Interim, ERA-40, Climate Forecast System Reanalysis (CFSR), and 20th Century Reanalysis version 2 is evaluated against homogenized radiosonde observations over China during 1979-2012 (1979-2001 for ERA-40). Results suggest that the PW biases in the reanalyses are within ˜20% for most of northern and eastern China, but the reanalyses underestimate the observed PW by 20%-40% over western China and by ˜60% over the southwestern Tibetan Plateau. The newer-generation reanalyses (e.g., JRA25, JRA55, CFSR, and ERA-Interim) have smaller root-mean-square error than the older-generation ones (NCEP/NCAR, NCEP/DOE, and ERA-40). Most of the reanalyses reproduce well the observed PW climatology and interannual variations over China. However, few reanalyses capture the observed long-term PW changes, primarily because they show spurious wet biases before about 2002. This deficiency results mainly from the discontinuities contained in reanalysis relative humidity fields in the middle-lower troposphere due to the wet bias in older radiosonde records that are assimilated into the reanalyses. An empirical orthogonal function (EOF) analysis revealed two leading modes that represent the long-term PW changes and El Niño-Southern Oscillation-related interannual variations with robust spatial patterns. The reanalysis products, especially the MERRA and JRA-25, roughly capture these EOF modes, which account for over 50% of the total variance. The results show that even during the post-1979 satellite era, discontinuities in radiosonde data can still induce large spurious long-term changes in reanalysis PW and other related fields. Thus, more efforts are needed to remove spurious changes in input data for future long-term reanalyses.
NASA Astrophysics Data System (ADS)
Punge, H. J.; Bedka, K. M.; Kunz, M.; Reinbold, A.
2017-12-01
This article presents a hail frequency estimation based on the detection of cold overshooting cloud tops (OTs) from the Meteosat Second Generation (MSG) operational weather satellites, in combination with a hail-specific filter derived from the ERA-INTERIM reanalysis. This filter has been designed based on the atmospheric properties in the vicinity of hail reports registered in the European Severe Weather Database (ESWD). These include Convective Available Potential Energy (CAPE), 0-6-km bulk wind shear and freezing level height, evaluated at the nearest time step and interpolated from the reanalysis grid to the location of the hail report. Regions highly exposed to hail events include Northern Italy, followed by South-Eastern Austria and Eastern Spain. Pronounced hail frequency is also found in large parts of Eastern Europe, around the Alps, the Czech Republic, Southern Germany, Southern and Eastern France, and in the Iberic and Apennine mountain ranges.
Reanalysis Data Evaluation to Study Temperature Extremes in Siberia
NASA Astrophysics Data System (ADS)
Shulgina, T. M.; Gordov, E. P.
2014-12-01
Ongoing global climate changes are strongly pronounced in Siberia by significant warming in the 2nd half of 20th century and recent extreme events such as 2010 heat wave and 2013 flood in Russia's Far East. To improve our understanding of observed climate extremes and to provide to regional decision makers the reliable scientifically based information with high special and temporal resolution on climate state, we need to operate with accurate meteorological data in our study. However, from available 231 stations across Siberia only 130 of them present the homogeneous daily temperature time series. Sparse, station network, especially in high latitudes, force us to use simulated reanalysis data. However those might differ from observations. To obtain reliable information on temperature extreme "hot spots" in Siberia we have compared daily temperatures form ERA-40, ERA Interim, JRA-25, JRA-55, NCEP/DOE, MERRA Reanalysis, HadEX2 and GHCNDEX gridded datasets with observations from RIHMI-WDC/CDIAC dataset for overlap period 1981-2000. Data agreement was estimated at station coordinates to which reanalysis data were interpolated using modified Shepard method. Comparison of averaged over 20 year annual mean temperatures shows general agreement for Siberia excepting Baikal region, where reanalyses significantly underestimate observed temperature behavior. The annual temperatures closest to observed one were obtained from ERA-40 and ERA Interim. Furthermore, t-test results show homogeneity of these datasets, which allows one to combine them for long term time series analysis. In particular, we compared the combined data with observations for percentile-based extreme indices. In Western Siberia reanalysis and gridded data accurately reproduce observed daily max/min temperatures. For East Siberia, Lake Baikal area, ERA Interim data slightly underestimates TN90p and TX90p values. Results obtained allows regional decision-makers to get required high spatial resolution (0,25°×0,25°) climatic information products from the combined ERA data. The authors acknowledge partial financial support for this research from the RFBR (13-05-12034, 14-05-00502), SB RAS Integration projects (131, VIII.80.2.1.) and grant of the President of RF (№ 181).
Cyclone Activity in the Arctic From an Ensemble of Regional Climate Models (Arctic CORDEX)
NASA Astrophysics Data System (ADS)
Akperov, Mirseid; Rinke, Annette; Mokhov, Igor I.; Matthes, Heidrun; Semenov, Vladimir A.; Adakudlu, Muralidhar; Cassano, John; Christensen, Jens H.; Dembitskaya, Mariya A.; Dethloff, Klaus; Fettweis, Xavier; Glisan, Justin; Gutjahr, Oliver; Heinemann, Günther; Koenigk, Torben; Koldunov, Nikolay V.; Laprise, René; Mottram, Ruth; Nikiéma, Oumarou; Scinocca, John F.; Sein, Dmitry; Sobolowski, Stefan; Winger, Katja; Zhang, Wenxin
2018-03-01
The ability of state-of-the-art regional climate models to simulate cyclone activity in the Arctic is assessed based on an ensemble of 13 simulations from 11 models from the Arctic-CORDEX initiative. Some models employ large-scale spectral nudging techniques. Cyclone characteristics simulated by the ensemble are compared with the results forced by four reanalyses (ERA-Interim, National Centers for Environmental Prediction-Climate Forecast System Reanalysis, National Aeronautics and Space Administration-Modern-Era Retrospective analysis for Research and Applications Version 2, and Japan Meteorological Agency-Japanese 55-year reanalysis) in winter and summer for 1981-2010 period. In addition, we compare cyclone statistics between ERA-Interim and the Arctic System Reanalysis reanalyses for 2000-2010. Biases in cyclone frequency, intensity, and size over the Arctic are also quantified. Variations in cyclone frequency across the models are partly attributed to the differences in cyclone frequency over land. The variations across the models are largest for small and shallow cyclones for both seasons. A connection between biases in the zonal wind at 200 hPa and cyclone characteristics is found for both seasons. Most models underestimate zonal wind speed in both seasons, which likely leads to underestimation of cyclone mean depth and deep cyclone frequency in the Arctic. In general, the regional climate models are able to represent the spatial distribution of cyclone characteristics in the Arctic but models that employ large-scale spectral nudging show a better agreement with ERA-Interim reanalysis than the rest of the models. Trends also exhibit the benefits of nudging. Models with spectral nudging are able to reproduce the cyclone trends, whereas most of the nonnudged models fail to do so. However, the cyclone characteristics and trends are sensitive to the choice of nudged variables.
Estimating trends in atmospheric water vapor and temperature time series over Germany
NASA Astrophysics Data System (ADS)
Alshawaf, Fadwa; Balidakis, Kyriakos; Dick, Galina; Heise, Stefan; Wickert, Jens
2017-08-01
Ground-based GNSS (Global Navigation Satellite System) has efficiently been used since the 1990s as a meteorological observing system. Recently scientists have used GNSS time series of precipitable water vapor (PWV) for climate research. In this work, we compare the temporal trends estimated from GNSS time series with those estimated from European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-Interim) data and meteorological measurements. We aim to evaluate climate evolution in Germany by monitoring different atmospheric variables such as temperature and PWV. PWV time series were obtained by three methods: (1) estimated from ground-based GNSS observations using the method of precise point positioning, (2) inferred from ERA-Interim reanalysis data, and (3) determined based on daily in situ measurements of temperature and relative humidity. The other relevant atmospheric parameters are available from surface measurements of meteorological stations or derived from ERA-Interim. The trends are estimated using two methods: the first applies least squares to deseasonalized time series and the second uses the Theil-Sen estimator. The trends estimated at 113 GNSS sites, with 10 to 19 years temporal coverage, vary between -1.5 and 2.3 mm decade-1 with standard deviations below 0.25 mm decade-1. These results were validated by estimating the trends from ERA-Interim data over the same time windows, which show similar values. These values of the trend depend on the length and the variations of the time series. Therefore, to give a mean value of the PWV trend over Germany, we estimated the trends using ERA-Interim spanning from 1991 to 2016 (26 years) at 227 synoptic stations over Germany. The ERA-Interim data show positive PWV trends of 0.33 ± 0.06 mm decade-1 with standard errors below 0.03 mm decade-1. The increment in PWV varies between 4.5 and 6.5 % per degree Celsius rise in temperature, which is comparable to the theoretical rate of the Clausius-Clapeyron equation.
The high-resolution regional reanalysis COSMO-REA6
NASA Astrophysics Data System (ADS)
Ohlwein, C.
2016-12-01
Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.
A high-resolution regional reanalysis for Europe
NASA Astrophysics Data System (ADS)
Ohlwein, C.
2015-12-01
Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.
NASA Astrophysics Data System (ADS)
Fettweis, Xavier; Box, Jason E.; Agosta, Cécile; Amory, Charles; Kittel, Christoph; Lang, Charlotte; van As, Dirk; Machguth, Horst; Gallée, Hubert
2017-04-01
With the aim of studying the recent Greenland ice sheet (GrIS) surface mass balance (SMB) decrease relative to the last century, we have forced the regional climate MAR (Modèle Atmosphérique Régional; version 3.5.2) model with the ERA-Interim (ECMWF Interim Re-Analysis; 1979-2015), ERA-40 (1958-2001), NCEP-NCARv1 (National Centers for Environmental Prediction-National Center for Atmospheric Research Reanalysis version 1; 1948-2015), NCEP-NCARv2 (1979-2015), JRA-55 (Japanese 55-year Reanalysis; 1958-2014), 20CRv2(c) (Twentieth Century Reanalysis version 2; 1900-2014) and ERA-20C (1900-2010) reanalyses. While all these forcing products are reanalyses that are assumed to represent the same climate, they produce significant differences in the MAR-simulated SMB over their common period. A temperature adjustment of +1 °C (respectively -1 °C) was, for example, needed at the MAR boundaries with ERA-20C (20CRv2) reanalysis, given that ERA-20C (20CRv2) is ˜ 1 °C colder (warmer) than ERA-Interim over Greenland during the period 1980-2010. Comparisons with daily PROMICE (Programme for Monitoring of the Greenland Ice Sheet) near-surface observations support these adjustments. Comparisons with SMB measurements, ice cores and satellite-derived melt extent reveal the most accurate forcing datasets for the simulation of the GrIS SMB to be ERA-Interim and NCEP-NCARv1. However, some biases remain in MAR, suggesting that some improvements are still needed in its cloudiness and radiative schemes as well as in the representation of the bare ice albedo. Results from all MAR simulations indicate that (i) the period 1961-1990, commonly chosen as a stable reference period for Greenland SMB and ice dynamics, is actually a period of anomalously positive SMB (˜ +40 Gt yr-1) compared to 1900-2010; (ii) SMB has decreased significantly after this reference period due to increasing and unprecedented melt reaching the highest rates in the 120-year common period; (iii) before 1960, both ERA-20C and 20CRv2-forced MAR simulations suggest a significant precipitation increase over 1900-1950, but this increase could be the result of an artefact in the reanalyses that are not well-enough constrained by observations during this period and (iv) since the 1980s, snowfall is quite stable after having reached a maximum in the 1970s. These MAR-based SMB and accumulation reconstructions are, however, quite similar to those from Box (2013) after 1930 and confirm that SMB was quite stable from the 1940s to the 1990s. Finally, only the ERA-20C-forced simulation suggests that SMB during the 1920-1930 warm period over Greenland was comparable to the SMB of the 2000s, due to both higher melt and lower precipitation than normal.
Modeling extreme sea levels due to tropical and extra-tropical cyclones at the global-scale
NASA Astrophysics Data System (ADS)
Muis, S.; Lin, N.; Verlaan, M.; Winsemius, H.; Ward, P.; Aerts, J.
2017-12-01
Extreme sea levels, a combination of storm surges and astronomical tides, can cause catastrophic floods. Due to their intense wind speeds and low pressure, tropical cyclones (TCs) typically cause higher storm surges than extra-tropical cyclones (ETCs), but ETCs may still contribute significantly to the overall flood risk. In this contribution, we show a novel approach to model extreme sea levels due to both tropical and extra-tropical cyclones at the global-scale. Using a global hydrodynamic model we have developed the Global Tide and Surge Reanalysis (GTSR) dataset (Muis et al., 2016), which provides daily maximum timeseries of storm tide from 1979 to 2014. GTSR is based on wind and pressure fields from the ERA-Interim climate reanalysis (Dee at al., 2011). A severe limitation of the GTSR dataset is the underrepresentation of TCs. This is due to the relatively coarse grid resolution of ERA-Interim, which means that the strong intensities of TCs are not fully included. Furthermore, the length of ERA-Interim is too short to estimate the probabilities of extreme TCs in a reliable way. We will discuss potential ways to address this limitation, and demonstrate how to improve the global GTSR framework. We will apply the improved framework to the east coast of the United States. First, we improve our meteorological forcing by applying a parametric hurricane model (Holland 1980), and we improve the tide and surge reanalysis dataset (Muis et al., 2016) by explicitly modeling the historical TCs in the Extended Best Track dataset (Demuth et al., 2006). Second, we improve our sampling by statistically extending the observed TC record to many thousands of years (Emanuel et al., 2006). The improved framework allows for the mapping of probabilities of extreme sea levels, including extremes TC events, for the east coast of the United States. ReferencesDee et al (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553-97. Emanuel et al (2006). A Statistical Deterministic Approach to Hurricane Risk Assessment/ Bull. Am. Meteorol. Soc. 87, 299-314. Holland (1980). An analytic model of the wind and pressure profiles in hurricanes. Mon. Weather Rev. 108, 1212-1218. Muis et al (2016). A global reanalysis of storm surge and extreme sea levels. Nat. Commun. 7, 1-11
NASA Astrophysics Data System (ADS)
Zhao, T.; Wang, J.; Dai, A.
2015-12-01
Many multi-decadal atmospheric reanalysis products are avialable now, but their consistencies and reliability are far from perfect. In this study, atmospheric precipitable water (PW) from the NCEP/NCAR, NCEP/DOE, MERRA, JRA-55, JRA-25, ERA-Interim, ERA-40, CFSR and 20CR reanalyses is evaluated against homogenized radiosonde observations over China during 1979-2012 (1979-2001 for ERA-40). Results suggest that the PW biases in the reanalyses are within ˜20% for most of northern and eastern China, but the reanalyses underestimate the observed PW by 20%-40% over western China, and by ˜60% over the southwestern Tibetan Plateau. The newer-generation reanalyses (e.g., JRA25, JRA55, CFSR and ERA-Interim) have smaller root-mean-square error (RMSE) than the older-generation ones (NCEP/NCAR, NCEP/DOE and ERA-40). Most of the reanalyses reproduce well the observed PW climatology and interannual variations over China. However, few reanalyses capture the observed long-term PW changes, primarily because they show spurious wet biases before about 2002. This deficiency results mainly from the discontinuities contained in reanalysis RH fields in the mid-lower troposphere due to the wet bias in older radiosonde records that are assimilated into the reanalyses. An empirical orthogonal function (EOF) analysis revealed two leading modes that represent the long-term PW changes and ENSO-related interannual variations with robust spatial patterns. The reanalysis products, especially the MERRA and JRA-25, roughly capture these EOF modes, which account for over 50% of the total variance. The results show that even during the post-1979 satellite era, discontinuities in radiosonde data can still induce large spurious long-term changes in reanalysis PW and other related fields. Thus, more efforts are needed to remove spurious changes in input data for future long-term reanlayses.
NASA Technical Reports Server (NTRS)
Druyan, Leonard M.; Fulakeza, Matthew B.
2013-01-01
Five annual climate cycles (1998-2002) are simulated for continental Africa and adjacent oceans by a regional atmospheric model (RM3). RM3 horizontal grid spacing is 0.44deg at 28 vertical levels. Each of 2 simulation ensembles is driven by lateral boundary conditions from each of 2 alternative reanalysis data sets. One simulation downs cales National Center for Environmental Prediction reanalysis 2 (NCPR2) and the other the European Centre for Medium Range Weather Forecasts Interim reanalysis (ERA-I). NCPR2 data are archived at 2.5deg grid spacing, while a recent version of ERA-I provides data at 0.75deg spacing. ERA-I-forced simulations are recomrp. ended by the Coordinated Regional Downscaling Experiment (CORDEX). Comparisons of the 2 sets of simulations with each other and with observational evidence assess the relative performance of each downscaling system. A third simulation also uses ERA-I forcing, but degraded to the same horizontal resolution as NCPR2. RM3-simulated pentad and monthly mean precipitation data are compared to Tropical Rainfall Measuring Mission (TRMM) data, gridded at 0.5deg, and RM3-simulated circulation is compared to both reanalyses. Results suggest that each downscaling system provides advantages and disadvantages relative to the other. The RM3/NCPR2 achieves a more realistic northward advance of summer monsoon rains over West Africa, but RM3/ERA-I creates the more realistic monsoon circulation. Both systems recreate some features of JulySeptember 1999 minus 2002 precipitation differences. Degrading the resolution of ERA-I driving data unrealistically slows the monsoon circulation and considerably diminishes summer rainfall rates over West Africa. The high resolution of ERA-I data, therefore, contributes to the quality of the downscaling, but NCPR2laterai boundary conditions nevertheless produce better simulations of some features.
NASA Astrophysics Data System (ADS)
Nadeem, Imran; Formayer, Herbert
2016-11-01
A suite of high-resolution (10 km) simulations were performed with the International Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM3) to study the effect of various lateral boundary conditions (LBCs), domain size, and intermediate domains on simulated precipitation over the Great Alpine Region. The boundary conditions used were ECMWF ERA-Interim Reanalysis with grid spacing 0.75∘, the ECMWF ERA-40 Reanalysis with grid spacing 1.125 and 2.5∘, and finally the 2.5∘ NCEP/DOE AMIP-II Reanalysis. The model was run in one-way nesting mode with direct nesting of the high-resolution RCM (horizontal grid spacing Δx = 10 km) with driving reanalysis, with one intermediate resolution nest (Δx = 30 km) between high-resolution RCM and reanalysis forcings, and also with two intermediate resolution nests (Δx = 90 km and Δx = 30 km) for simulations forced with LBC of resolution 2.5∘. Additionally, the impact of domain size was investigated. The results of multiple simulations were evaluated using different analysis techniques, e.g., Taylor diagram and a newly defined useful statistical parameter, called Skill-Score, for evaluation of daily precipitation simulated by the model. It has been found that domain size has the major impact on the results, while different resolution and versions of LBCs, e.g., 1.125∘ ERA40 and 0.7∘ ERA-Interim, do not produce significantly different results. It is also noticed that direct nesting with reasonable domain size, seems to be the most adequate method for reproducing precipitation over complex terrain, while introducing intermediate resolution nests seems to deteriorate the results.
A generalized multivariate regression model for modelling ocean wave heights
NASA Astrophysics Data System (ADS)
Wang, X. L.; Feng, Y.; Swail, V. R.
2012-04-01
In this study, a generalized multivariate linear regression model is developed to represent the relationship between 6-hourly ocean significant wave heights (Hs) and the corresponding 6-hourly mean sea level pressure (MSLP) fields. The model is calibrated using the ERA-Interim reanalysis of Hs and MSLP fields for 1981-2000, and is validated using the ERA-Interim reanalysis for 2001-2010 and ERA40 reanalysis of Hs and MSLP for 1958-2001. The performance of the fitted model is evaluated in terms of Pierce skill score, frequency bias index, and correlation skill score. Being not normally distributed, wave heights are subjected to a data adaptive Box-Cox transformation before being used in the model fitting. Also, since 6-hourly data are being modelled, lag-1 autocorrelation must be and is accounted for. The models with and without Box-Cox transformation, and with and without accounting for autocorrelation, are inter-compared in terms of their prediction skills. The fitted MSLP-Hs relationship is then used to reconstruct historical wave height climate from the 6-hourly MSLP fields taken from the Twentieth Century Reanalysis (20CR, Compo et al. 2011), and to project possible future wave height climates using CMIP5 model simulations of MSLP fields. The reconstructed and projected wave heights, both seasonal means and maxima, are subject to a trend analysis that allows for non-linear (polynomial) trends.
NASA Astrophysics Data System (ADS)
Gruzdev, A. N.
2017-07-01
Using the data of the ERA-Interim reanalysis, we have obtained estimates of changes in temperature, the geopotential and its large-scale zonal harmonics, wind velocity, and potential vorticity in the troposphere and stratosphere of the Northern and Southern hemispheres during the 11-year solar cycle. The estimates have been obtained using the method of multiple linear regression. Specific features of response of the indicated atmospheric parameters to the solar cycle have been revealed in particular regions of the atmosphere for a whole year and depending on the season. The results of the analysis indicate the existence of a reliable statistical relationship of large-scale dynamic and thermodynamic processes in the troposphere and stratosphere with the 11-year solar cycle.
NASA Technical Reports Server (NTRS)
Reichle, Rolf; Koster, Randal; DeLannoy, Gabrielle; Forman, Barton; Liu, Qing; Mahanama, Sarith; Toure, Ally
2011-01-01
The Modern-Era Retrospective analysis for Research and Applications (MERRA) is a state-of-the-art reanalysis that provides. in addition to atmospheric fields. global estimates of soil moisture, latent heat flux. snow. and runoff for J 979-present. This study introduces a supplemental and improved set of land surface hydrological fields ('MERRA-Land') generated by replaying a revised version of the land component of the MERRA system. Specifically. the MERRA-Land estimates benefit from corrections to the precipitation forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised parameters in the rainfall interception model, changes that effectively correct for known limitations in the MERRA land surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against observations and compared to the skill of the state-of-the-art ERA-Interim reanalysis. MERRA-Land and ERA-Interim root zone soil moisture skills (against in situ observations at 85 US stations) are comparable and significantly greater than that of MERRA. Throughout the northern hemisphere, MERRA and MERRA-Land agree reasonably well with in situ snow depth measurements (from 583 stations) and with snow water equivalent from an independent analysis. Runoff skill (against naturalized stream flow observations from 15 basins in the western US) of MERRA and MERRA-Land is typically higher than that of ERA-Interim. With a few exceptions. the MERRA-Land data appear more accurate than the original MERRA estimates and are thus recommended for those interested in using '\\-tERRA output for land surface hydrological studies.
Recent Reanalysis Activities at ECMWF: Results from ERA-20C and Plans for ERA5
NASA Astrophysics Data System (ADS)
Dragani, R.; Hersbach, H.; Poli, P.; Pebeuy, C.; Hirahara, S.; Simmons, A.; Dee, D.
2015-12-01
This presentation will provide an overview of the most recent reanalysis activities performed at the European Centre for Medium-Range Weather Forecasts (ECMWF). A pilot reanalysis of the 20th-century (ERA-20C) has recently been completed. Funded through the European FP7 collaborative project ERA-CLIM, ERA-20C is part of a suite of experiments that also includes a model-only integration (ERA-20CM) and a land-surface reanalysis (ERA-20CL). Its data assimilation system is constrained by only surface observations obtained from ISPD (3.2.6) and ICOADS (2.5.1). Surface boundary conditions are provided by the Hadley Centre (HadISST2.1.0.0) and radiative forcing follows CMIP5 recommended data sets. First-guess uncertainty estimates are based on a 10-member ensemble of Data Assimilations, ERA-20C ensemble, run prior to ERA-20C using ten SST and sea-ice realizations from the Hadley Centre. In November 2014, the European Commission entrusted ECMWF to run on its behalf the Copernicus Climate Change Service (C3S) aiming at producing quality-assured information about the past, current and future states of the climate at both European and global scales. Reanalysis will be one of the main components of the C3S portfolio and the first one to be produced is a global modern era reanalysis (ERA5) covering the period from 1979 onwards. Based on a recent version of the ECMWF data assimilation system, ERA5 will replace the widely used ERA-Interim dataset. This new production will benefit from a much improved model, and better characterized and exploited observations compared to its predecessor. The first part of the presentation will focus on the ERA-20C production, provide an overview of its main characteristics and discuss some of the key results from its assessment. The second part of the talk will give an overview of ERA5, and briefly discuss some of its challenges.
Evaluation of a High-Resolution Regional Reanalysis for Europe
NASA Astrophysics Data System (ADS)
Ohlwein, C.; Wahl, S.; Keller, J. D.; Bollmeyer, C.
2014-12-01
Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers 6 years (2007-2012) and is currently extended to 16 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.
NASA Astrophysics Data System (ADS)
Tang, Malcolm S. Y.; Chenoli, Sheeba Nettukandy; Samah, Azizan Abu; Hai, Ooi See
2018-03-01
The study of Antarctic precipitation has attracted a lot of attention recently. The reliability of climate models in simulating Antarctic precipitation, however, is still debatable. This work assess the precipitation and surface air temperature (SAT) of Antarctica (90 oS to 60 oS) using 49 Coupled Model Intercomparison Project phase 5 (CMIP5) global climate models and the European Centre for Medium-range Weather Forecasts "Interim" reanalysis (ERA-Interim); the National Centers for Environmental Prediction Climate Forecast System Reanalysis (CFSR); the Japan Meteorological Agency 55-year Reanalysis (JRA-55); and the Modern Era Retrospective-analysis for Research and Applications (MERRA) datasets for 1979-2005 (27 years). For precipitation, the time series show that the MERRA and JRA-55 have significantly increased from 1979 to 2005, while the ERA-Int and CFSR have insignificant changes. The reanalyses also have low correlation with one another (generally less than +0.69). 37 CMIP5 models show increasing trend, 18 of which are significant. The resulting CMIP5 MMM also has a significant increasing trend of 0.29 ± 0.06 mm year-1. For SAT, the reanalyses show insignificant changes and have high correlation with one another, while the CMIP5 MMM shows a significant increasing trend. Nonetheless, the variability of precipitation and SAT of MMM could affect the significance of its trend. One of the many reasons for the large differences of precipitation is the CMIP5 models' resolution.
NASA Astrophysics Data System (ADS)
Bock, O.; Parracho, A. C.; Bastin, S.; Hourdin, F.
2016-12-01
A high-quality, consistent, global, long-term dataset of integrated water vapor (IWV) was produced from Global Positioning System (GPS) measurements at more than 400 sites over the globe among which 120 sites have more than 15 years of data. The GPS delay data were converted to IWV using surface pressure and weighted mean temperature estimates from ERA-Interim reanalysis. A two-step screening method was developed to detect and remove outliers in the IWV data. It is based on: 1) GPS data processing information and delay formal errors, and 2) inter-comparison with ERA-Interim reanalysis data. The GPS IWV data are also homogenized to correct for offsets due to instrumental changes and other unknown factors. The differential homogenization method uses ERA-Interim IWV as a reference. The resulting GPS data are used to document the mean distribution, the global trends and the variability of IWV over the period 1995-2010, and to assess global climate model simulations extracted from the IPCC AR5 archive. Large coherent spatial patterns of moistening and drying are evidenced but significant discrepancies are also seen between GPS measurements, reanalysis and climate models in various regions. In terms of variability, the monthly mean anomalies are inter-compared. The temporal correlation between GPS and the climate model simulations is overall quite small but the spatial variation of the magnitude of the anomalies is globally well simulated. GPS IWV data prove to be useful to validate global climate model simulations and highlight deficiencies in their representation of the water cycle.
Evaluation of reanalysis near-surface winds over northern Africa in Boreal summer
NASA Astrophysics Data System (ADS)
Engelstaedter, Sebastian; Washington, Richard
2014-05-01
The emission of dust from desert surfaces depends on the combined effects of surface properties such as surface roughness, soil moisture, soil texture and particle size (erodibility) and wind speed (erosivity). In order for dust cycle models to realistically simulate dust emissions for the right reasons, it is essential that erosivity and erodibility controlling factors are represented correctly. There has been a focus on improving dust emission schemes or input fields of soil distribution and texture even though it has been shown that the use of wind fields from different reanalysis datasets to drive the same model can result in significant differences in the dust emissions. Here we evaluate the representation of near-surface wind speed from three different reanalysis datasets (ERA-Interim, CFSR and MERRA) over the North African domain. Reanalysis 10m wind speeds are compared with observations from SYNOP and METAR reports available from the UK Meteorological Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations Dataset. We compare 6-hourly observations of 10m wind speed between 1 January 1989 and 31 December 2009 from more the 500 surface stations with the corresponding reanalysis values. A station data based mean wind speed climatology for North Africa is presented. Overall, the representation of 10m winds is relatively poor in all three reanalysis datasets with stations in the northern parts of the Sahara still being better simulated (correlation coefficients ~ 0.5) than stations in the Sahel (correlation coefficients < 0.3) which points at the reanalyses not being able to realistically capture the Sahel dynamics systems. All three reanalyses have a systematic bias towards overestimating wind speed below 3-4 m/s and underestimating wind speed above 4 m/s. This bias becomes larger with increasing wind speed but is independent of the time of day. For instance, 14 m/s observed wind speeds are underestimated on average by 6 m/s in the ERA-Interim reanalysis. Given the cubic relationship between wind speed and dust emission this large underestimation is expected to significantly impact the simulation of dust emissions. A negative relationship between observed and ERA-Interim wind speed is found for winds above 14 m/s indicating that high wind speed generating processes are not well (if at all) represented in the model.
Towards a full representation of tropical cyclones in a global reanalysis of extreme sea levels
NASA Astrophysics Data System (ADS)
Muis, S.; Verlaan, M.; Lin, N.; Winsemius, H.; Vatvani, D.; Ward, P.; Aerts, J.
2016-12-01
Tropical cyclones (TCs), including hurricanes and typhoons, are characterised by high wind speeds and low pressure, and cause dangerous storm surges in coastal areas. Recent disasters like the flooding of New Orleans in 2005 due to Hurricane Katrina and of New York in 2012 due to Hurricane Sandy exemplify the significant TC risk in the United States. In this contribution, we present a new framework to model TC storm surges and probabilities at the Atlantic basin- and, ultimately, global scales. This works builds on the work of Muis et al. (2016), which presented the first dynamically-derived reanalysis dataset of storm surges that covers the entire world's coastline (GTSR dataset). Surge levels for the period 1979-2014 were simulated by forcing the Global Surge and Tide Model (GTSM) with wind speed and atmospheric pressure from the ERA-Interim reanalysis. There is generally a good agreement between simulated and observed sea level extremes in extra-tropical regions; however for areas prone to TCs there is a severe underestimation of extremes. For example, the maximum surge levels during Hurricane Katrina in New Orleans exceeded 8 m, whilst the GTSM surge levels in that area do not exceed 2-3 m. Hence, due to the coarse grid resolution, the strong intensities of TCs are not fully captured in ERA-Interim. Furthermore, the length of ERA-Interim data set, like other reanalysis datasets, is too short to estimate the probabilities of extreme TC events in a reliable way. For accurate risk assessments it is essential to improve the representation of TCs in these global reanalysis of extreme sea levels. First, we need a higher resolution of meteorological forcing, which can be modelled with input from the observed best track data. Second, we need to statistically extend the observed record to many thousands of years. We will present the first results of these steps for the east coast of the United States. We will validate the GTSM model forced with best track data using recent extreme events like Katrina and Sandy. We will investigate how the statistics of the extreme sea level will change due to improved representation of TCs.
NASA Astrophysics Data System (ADS)
Kunstmann, H.; Lorenz, C.
2012-12-01
The three state-of-the-art global atmospheric reanalysis models—namely, ECMWF Interim Re-Analysis (ERA-Interim), Modern-Era Retrospective Analysis for Research and Applications (MERRA; NASA), and Climate Forecast System Reanalysis (CFSR; NCEP)—are analyzed and compared with independent observations (GPCC; GPCP; CRU; CPC; DEL; HOAPS) in the period between 1989 and 2006. Comparison of precipitation and temperature estimates from the three models with gridded observations reveals large differences between the reanalyses and also of the observation datasets. A major source of uncertainty in the observations is the spatial distribution and change of the number of gauges over time. In South America for example, active measuring stations were reduced from 4267 to 390. The quality of precipitation estimates from the reanalyses strongly depends on the geographic location, as there are significant differences especially in tropical regions. The closure of the water cycle in the three reanalyses is analyzed by estimating long-term mean values for precipitation, evapotranspiration, surface runoff, and moisture flux divergence. Major shortcomings in the moisture budgets of the datasets are mainly due to inconsistencies of the net precipitation minus evaporation and evapotranspiration, respectively, (P-E) estimates over the oceans and landmasses. This imbalance largely originates from the assimilation of radiance sounding data from the NOAA-15 satellite, which results in an unrealistic increase of oceanic P-E in the MERRA and CFSR budgets. Overall, ERA-Interim shows both a comparatively reasonable closure of the terrestrial and atmospheric water balance and a reasonable agreement with the observation datasets. The limited performance of the three state-of-the-art reanalyses in reproducing the hydrological cycle, however, puts the use of these models for climate trend analyses and long-term water budget studies into question.
Severe Weather Environments in Atmospheric Reanalyses
NASA Astrophysics Data System (ADS)
King, A. T.; Kennedy, A. D.
2017-12-01
Atmospheric reanalyses combine historical observation data using a fixed assimilation scheme to achieve a dynamically coherent representation of the atmosphere. How well these reanalyses represent severe weather environments via proxies is poorly defined. To quantify the performance of reanalyses, a database of proximity soundings near severe storms from the Rapid Update Cycle 2 (RUC-2) model will be compared to a suite of reanalyses including: North American Reanalysis (NARR), European Interim Reanalysis (ERA-Interim), 2nd Modern-Era Retrospective Reanalysis for Research and Applications (MERRA-2), Japanese 55-year Reanalysis (JRA-55), 20th Century Reanalysis (20CR), and Climate Forecast System Reanalysis (CFSR). A variety of severe weather parameters will be calculated from these soundings including: convective available potential energy (CAPE), storm relative helicity (SRH), supercell composite parameter (SCP), and significant tornado parameter (STP). These soundings will be generated using the SHARPpy python module, which is an open source tool used to calculate severe weather parameters. Preliminary results indicate that the NARR and JRA55 are significantly more skilled at producing accurate severe weather environments than the other reanalyses. The primary difference between these two reanalyses and the remaining reanalyses is a significant negative bias for thermodynamic parameters. To facilitate climatological studies, the scope of work will be expanded to compute these parameters for the entire domain and duration of select renalyses. Preliminary results from this effort will be presented and compared to observations at select locations. This dataset will be made pubically available to the larger scientific community, and details of this product will be provided.
Reanalysis comparisons of upper tropospheric-lower stratospheric jets and multiple tropopauses
NASA Astrophysics Data System (ADS)
Manney, Gloria L.; Hegglin, Michaela I.; Lawrence, Zachary D.; Wargan, Krzysztof; Millán, Luis F.; Schwartz, Michael J.; Santee, Michelle L.; Lambert, Alyn; Pawson, Steven; Knosp, Brian W.; Fuller, Ryan A.; Daffer, William H.
2017-09-01
The representation of upper tropospheric-lower stratospheric (UTLS) jet and tropopause characteristics is compared in five modern high-resolution reanalyses for 1980 through 2014. Climatologies of upper tropospheric jet, subvortex jet (the lowermost part of the stratospheric vortex), and multiple tropopause frequency distributions in MERRA (Modern-Era Retrospective analysis for Research and Applications), ERA-I (ERA-Interim; the European Centre for Medium-Range Weather Forecasts, ECMWF, interim reanalysis), JRA-55 (the Japanese 55-year Reanalysis), and CFSR (the Climate Forecast System Reanalysis) are compared with those in MERRA-2. Differences between alternate products from individual reanalysis systems are assessed; in particular, a comparison of CFSR data on model and pressure levels highlights the importance of vertical grid spacing. Most of the differences in distributions of UTLS jets and multiple tropopauses are consistent with the differences in assimilation model grids and resolution - for example, ERA-I (with coarsest native horizontal resolution) typically shows a significant low bias in upper tropospheric jets with respect to MERRA-2, and JRA-55 (the Japanese 55-year Reanalysis) a more modest one, while CFSR (with finest native horizontal resolution) shows a high bias with respect to MERRA-2 in both upper tropospheric jets and multiple tropopauses. Vertical temperature structure and grid spacing are especially important for multiple tropopause characterizations. Substantial differences between MERRA and MERRA-2 are seen in mid- to high-latitude Southern Hemisphere (SH) winter upper tropospheric jets and multiple tropopauses as well as in the upper tropospheric jets associated with tropical circulations during the solstice seasons; some of the largest differences from the other reanalyses are seen in the same times and places. Very good qualitative agreement among the reanalyses is seen between the large-scale climatological features in UTLS jet and multiple tropopause distributions. Quantitative differences may, however, have important consequences for transport and variability studies. Our results highlight the importance of considering reanalyses differences in UTLS studies, especially in relation to resolution and model grids; this is particularly critical when using high-resolution reanalyses as an observational reference for evaluating global chemistry-climate models.
NASA Astrophysics Data System (ADS)
Wang, Junhong; Zhang, Liangying; Lin, Po-Hsiung; Bradford, Mark; Cole, Harold; Fox, Jack; Hock, Terry; Lauritsen, Dean; Loehrer, Scot; Martin, Charlie; Vanandel, Joseph; Weng, Chun-Hsiung; Young, Kathryn
2010-11-01
During the THORPEX (The Observing System Research and Predictability Experiment) Pacific Asian Regional Campaign (T-PARC), from 1 August to 30 September 2008, ˜1900 high-quality, high vertical resolution soundings were collected over the Pacific Ocean. These include dropsondes deployed from four aircrafts and zero-pressure balloons in the stratosphere (NCAR's Driftsonde system). The water vapor probability distribution and spatial variability in the northern subtropical Pacific (14°-20°N, 140°E-155°W) are studied using Driftsonde and COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) data and four global reanalysis products. Driftsonde data analysis shows distinct differences of relative humidity (RH) distributions in the free troposphere between the Eastern and Western Pacific (EP and WP, defined as east and west of 180°, respectively), very dry with a single peak of ˜1% RH in the EP and bi-modal distributions in the WP with one peak near ice saturation and one varying with altitude. The frequent occurrences of extreme dry air are found in the driftsonde data with 59% and 19% of RHs less than or equal to 5% and at 1% at 500 hPa in the EP, respectively. RH with respect to ice in the free troposphere exhibits considerable longitudinal variations, very low (<20%) in the EP, but varying from 20% to 100% in the WP. Inter-comparisons of Driftsonde, COSMIC and reanalysis data show generally good agreement among the Driftsonde, COSMIC, ECMWF Reanalysis-Interim (ERA-Interim) and Japanese Reanalysis (JRA) below 200 hPa. The ERA-Interim and JRA are approved to be successful on describing RH frequency distributions and spatial variations in the region. The comparisons also reveal problems in Driftsonde, two National Center for Environmental Prediction (NCEP) reanalyses and COSMIC data. The moist layer at 200-100 hPa in the WP shown in the ERA-Interim, JRA and COSMIC is missing in Driftsonde data. Major problems are found in the RH means and variability over the study region for both NCEP reanalyses. Although the higher-moisture layer at 200-100 hPa in the WP in the COSMIC data agrees well with the ERA-Interim and JRA, it is primarily attributed to the first guess of the 1-Dimensional (1D) variational analysis used in the COSMIC retrieval rather than the refractivity measurements. The limited soundings (total 268) of Driftsonde data are capable of portraying RH probability distributions and longitudinal variability. This implies that Driftsonde system has the potential to become a valuable operational system for upper air observations over the ocean.
NASA Astrophysics Data System (ADS)
José González-Rojí, Santos; Wilby, Robert L.; Sáenz, Jon; Ibarra-Berastegi, Gabriel
2017-04-01
Downscaling via the Statistical DownScaling Model (SDSM) version 5.2 and two different configurations of the dynamical WRF model (with and without 3DVAR data assimilation) was evaluated for the estimation of daily precipitation over 21 sites across the Iberian Peninsula during the period 2010-2014. Six different strategies were used to calibrate the SDSM model. These options cover (1) use of NCEP/NCAR R1 Reanalysis and (2) ERA Interim data for downscaling predictor variables calibrated with data from periods (3) 1948-2009 (NCEP/NCAR R1) and (4) 1979-2009 (NCEP/NCAR R1 and ERA Interim). Additionally, for the ERA Interim case, two different grid resolutions have been used, (5) 2.5° and (6) 0.75°. On the other side, for the NCEP/NCAR R1 case, only the 2.5° resolution has been used. Configuring the SDSM model in this way allows testing the sensitivity of the results to different origins of the predictors, fit to different calibration periods and use of different reanalysis resolutions. On the other hand, ERA Interim data at the highest resolution was used as the initial/boundary conditions to run WRF simulations with a 15 km x 15 km horizontal resolution over the Iberian Peninsula, for two different configurations. The first experiment (N) was run using the same configuration typically used for numerical downscaling, with information being fed through the boundaries of the domain. The second experiment (D) was run using 3DVAR data assimilation at 00UTC, 06UTC, 12UTC and 18UTC. In both cases, WRF simulations were run over the period 2009-2014, using the first year (2009) as spin-up for the soil model. Results from the WRF N and D runs and comparable SDSM set up for the period 2010-2014 were evaluated using observations from ECA and E-OBS datasets. In each case, model skill was assessed using seven daily precipitation metrics (absolute mean, wet-day intensity, 90th percentile, maximum 5-day total, maximum number of consecutive dry days, fraction of total from heavy events and number of heavy events defined here as values over the threshold of 90th percentile. Our results show that the SDSM model improves its behaviour when using predictors from the ERA Interim Reanalysis. Improvements are even more impressive when using the 0.75° resolution for ERA Interim. Better results than using WRF D are obtained with this configuration of the SDSM model for mean precipitation and precipitation intensity. Overall, the analysis reveals the extent to which the skill of SDSM can be improved through judicious choice of downscaling predictor source, grid resolution and calibration period. Moreover, the computationally efficient SDSM tool can achieve comparable skill to WRF over a range of precipitation metrics and the contrasting rainfall regimes of the Iberian Peninsula.
Evaluation of the sensitivity of the Amazonian diurnal cycle to convective intensity in reanalyses
NASA Astrophysics Data System (ADS)
Itterly, Kyle F.; Taylor, Patrick C.
2017-02-01
Model parameterizations of tropical deep convection are unable to reproduce the observed diurnal and spatial variability of convection in the Amazon, which contributes to climatological biases in the water cycle and energy budget. Convective intensity regimes are defined using percentiles of daily minimum 3-hourly averaged outgoing longwave radiation (OLR) from Clouds and the Earth's Radiant Energy System (CERES). This study compares the observed spatial variability of convective diurnal cycle statistics for each regime to MERRA-2 and ERA-Interim (ERA) reanalysis data sets. Composite diurnal cycle statistics are computed for daytime hours (06:00-21:00 local time) in the wet season (December-January-February). MERRA-2 matches observations more closely than ERA for domain averaged composite diurnal statistics—specifically precipitation. However, ERA reproduces mesoscale features of OLR and precipitation phase associated with topography and the propagation of the coastal squall line. Both reanalysis models are shown to underestimate extreme convection.
Evaluation of the Sensitivity of the Amazonian Diurnal Cycle to Convective Intensity in Reanalyses
NASA Technical Reports Server (NTRS)
Itterly, Kyle F.; Taylor, Patrick C.
2016-01-01
Model parameterizations of tropical deep convection are unable to reproduce the observed diurnal and spatial variability of convection in the Amazon, which contributes to climatological biases in the water cycle and energy budget. Convective intensity regimes are defined using percentiles of daily minimum 3-hourly averaged outgoing longwave radiation (OLR) from Clouds and the Earth's Radiant Energy System (CERES). This study compares the observed spatial variability of convective diurnal cycle statistics for each regime to MERRA-2 and ERA-Interim (ERA) reanalysis data sets. Composite diurnal cycle statistics are computed for daytime hours (06:00-21:00 local time) in the wet season (December-January-February). MERRA-2 matches observations more closely than ERA for domain averaged composite diurnal statistics-specifically precipitation. However, ERA reproduces mesoscale features of OLR and precipitation phase associated with topography and the propagation of the coastal squall line. Both reanalysis models are shown to underestimate extreme convection.
A comparison of Loon balloon observations and stratospheric reanalysis products
NASA Astrophysics Data System (ADS)
Friedrich, Leon S.; McDonald, Adrian J.; Bodeker, Gregory E.; Cooper, Kathy E.; Lewis, Jared; Paterson, Alexander J.
2017-01-01
Location information from long-duration super-pressure balloons flying in the Southern Hemisphere lower stratosphere during 2014 as part of X Project Loon are used to assess the quality of a number of different reanalyses including National Centers for Environmental Prediction Climate Forecast System version 2 (NCEP-CFSv2), European Centre for Medium-Range Weather Forecasts (ERA-Interim), NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and the recently released MERRA version 2. Balloon GPS location information is used to derive wind speeds which are then compared with values from the reanalyses interpolated to the balloon times and locations. All reanalysis data sets accurately describe the winds, with biases in zonal winds of less than 0.37 m s-1 and meridional biases of less than 0.08 m s-1. The standard deviation on the differences between Loon and reanalyses zonal winds is latitude-dependent, ranging between 2.5 and 3.5 m s-1, increasing equatorward. Comparisons between Loon trajectories and those calculated by applying a trajectory model to reanalysis wind fields show that MERRA-2 wind fields result in the most accurate simulated trajectories with a mean 5-day balloon-reanalysis trajectory separation of 621 km and median separation of 324 km showing significant improvements over MERRA version 1 and slightly outperforming ERA-Interim. The latitudinal structure of the trajectory statistics for all reanalyses displays marginally lower mean separations between 15 and 35° S than between 35 and 55° S, despite standard deviations in the wind differences increasing toward the equator. This is shown to be related to the distance travelled by the balloon playing a role in the separation statistics.
NASA Astrophysics Data System (ADS)
Kishore, P.; Jyothi, S.; Basha, Ghouse; Rao, S. V. B.; Rajeevan, M.; Velicogna, Isabella; Sutterley, Tyler C.
2016-01-01
Changing rainfall patterns have significant effect on water resources, agriculture output in many countries, especially the country like India where the economy depends on rain-fed agriculture. Rainfall over India has large spatial as well as temporal variability. To understand the variability in rainfall, spatial-temporal analyses of rainfall have been studied by using 107 (1901-2007) years of daily gridded India Meteorological Department (IMD) rainfall datasets. Further, the validation of IMD precipitation data is carried out with different observational and different reanalysis datasets during the period from 1989 to 2007. The Global Precipitation Climatology Project data shows similar features as that of IMD with high degree of comparison, whereas Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation data show similar features but with large differences, especially over northwest, west coast and western Himalayas. Spatially, large deviation is observed in the interior peninsula during the monsoon season with National Aeronautics Space Administration-Modern Era Retrospective-analysis for Research and Applications (NASA-MERRA), pre-monsoon with Japanese 25 years Re Analysis (JRA-25), and post-monsoon with climate forecast system reanalysis (CFSR) reanalysis datasets. Among the reanalysis datasets, European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) shows good comparison followed by CFSR, NASA-MERRA, and JRA-25. Further, for the first time, with high resolution and long-term IMD data, the spatial distribution of trends is estimated using robust regression analysis technique on the annual and seasonal rainfall data with respect to different regions of India. Significant positive and negative trends are noticed in the whole time series of data during the monsoon season. The northeast and west coast of the Indian region shows significant positive trends and negative trends over western Himalayas and north central Indian region.
NASA Astrophysics Data System (ADS)
Manzanas, R., Sr.; Brands, S.; San Martin, D., Sr.; Gutiérrez, J. M., Sr.
2014-12-01
This work shows that local-scale climate projections obtained by means of statistical downscaling are sensitive to the choice of reanalysis used for calibration. To this aim, a Generalized Linear Model (GLM) approach is applied to downscale daily precipitation in the Philippines. First, the GLMs are trained and tested -under a cross-validation scheme- separately for two distinct reanalyses (ERA-Interim and JRA-25) for the period 1981-2000. When the observed and downscaled time-series are compared, the attained performance is found to be sensitive to the reanalysis considered if climate change signal bearing variables (temperature and/or specific humidity) are included in the predictor field. Moreover, performance differences are shown to be in correspondence with the disagreement found between the raw predictors from the two reanalyses. Second, the regression coefficients calibrated either with ERA-Interim or JRA-25 are subsequently applied to the output of a Global Climate Model (MPI-ECHAM5) in order to assess the sensitivity of local-scale climate change projections (up to 2100) to reanalysis choice. In this case, the differences detected in present climate conditions are considerably amplified, leading to "delta-change" estimates differing by up to a 35% (on average for the entire country) depending on the reanalysis used for calibration. Therefore, reanalysis choice is shown to importantly contribute to the uncertainty of local-scale climate change projections, and, consequently, should be treated with equal care as other, well-known, sources of uncertainty -e.g., the choice of the GCM and/or downscaling method.- Implications of the results for the entire tropics, as well as for the Model Output Statistics downscaling approach are also briefly discussed.
Coastal Low-Level Wind Jets: A Global Study Based On An Ensemble Of Reanalysis
NASA Astrophysics Data System (ADS)
Cardoso, R. M.; Lima, D. C. A.; Soares, P. M. M.; Semedo, A.
2017-12-01
Reanalyses data are a useful tool for climate and atmospheric studies since they provide physically consistent spatial and temporal information of observable and unobservable atmospheric parameters. Here, we propose the analysis of coastal low-level jets (CLLJs) resorting to three global reanalyses. The six hourly data from the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim), the Japanese 55-year Reanalysis (JRA-55) and the Modern Era Retrospective-analysis for Research and Applications (MERRA2), are used to build an ensemble of reanalyses, for a period encompassing 1980-2016. A detailed global climatology of CLLJs is presented based on a reanalyses ensemble. This gives robustness to the CLLJs representation and also reduces uncertainty. The annual and diurnal cycle as well as the inter-annual variability are analysed in order to evaluate the temporal fluctuations of frequency of occurrence of CLLJ. The ensemble mean displays a good representation of their seasonal spatial variability. The Oman and Benguela CLLJs show, respectively, a decrease and increase of frequency of occurrence, which is statistically significant during boreal summer and austral spring for the period of study. The Oman CLLJ is the most intense and occurs in higher altitudes when compared with the other jets occurring during the season where each CLLJs have higher mean incidence.
Impact of bias-corrected reanalysis-derived lateral boundary conditions on WRF simulations
NASA Astrophysics Data System (ADS)
Moalafhi, Ditiro Benson; Sharma, Ashish; Evans, Jason Peter; Mehrotra, Rajeshwar; Rocheta, Eytan
2017-08-01
Lateral and lower boundary conditions derived from a suitable global reanalysis data set form the basis for deriving a dynamically consistent finer resolution downscaled product for climate and hydrological assessment studies. A problem with this, however, is that systematic biases have been noted to be present in the global reanalysis data sets that form these boundaries, biases which can be carried into the downscaled simulations thereby reducing their accuracy or efficacy. In this work, three Weather Research and Forecasting (WRF) model downscaling experiments are undertaken to investigate the impact of bias correcting European Centre for Medium range Weather Forecasting Reanalysis ERA-Interim (ERA-I) atmospheric temperature and relative humidity using Atmospheric Infrared Sounder (AIRS) satellite data. The downscaling is performed over a domain centered over southern Africa between the years 2003 and 2012. The sample mean and the mean as well as standard deviation at each grid cell for each variable are used for bias correction. The resultant WRF simulations of near-surface temperature and precipitation are evaluated seasonally and annually against global gridded observational data sets and compared with ERA-I reanalysis driving field. The study reveals inconsistencies between the impact of the bias correction prior to downscaling and the resultant model simulations after downscaling. Mean and standard deviation bias-corrected WRF simulations are, however, found to be marginally better than mean only bias-corrected WRF simulations and raw ERA-I reanalysis-driven WRF simulations. Performances, however, differ when assessing different attributes in the downscaled field. This raises questions about the efficacy of the correction procedures adopted.
NASA Astrophysics Data System (ADS)
Patra, Anindita; Bhaskaran, Prasad K.
2017-08-01
The head Bay region bordering the northern Bay of Bengal is a densely populated area with a complex geomorphologic setting, and highly vulnerable to extreme water levels along with other factors like sea level rise and impact of tropical cyclones. The influence of climate change on wind-wave regime from this region of Bay of Bengal is not known well and that requires special attention, and there is a need to perform its long-term assessment for societal benefits. This study provides a comprehensive analysis on the temporal variability in domain averaged wind speed, significant wave height (SWH) utilizing satellite altimeter data (1992-2012) and mean wave period using ECMWF reanalysis products ERA-Interim (1992-2012) and ERA-20C (1992-2010) over this region. The SWH derived from WAVEWATCH III (WW3) model along with the ERA-Interim reanalysis supplements the observed variability in satellite altimeter observations. Further, the study performs an extensive error estimation of SWH and mean wave period with ESSO-NIOT wave atlas that shows a high degree of under-estimation in the wave atlas mean wave period. Annual mean and wind speed maxima from altimeter show an increasing trend, and to a lesser extent in the SWH. Interestingly, the estimated trend is higher for maxima compared to the mean conditions. Analysis of decadal variability exhibits an increased frequency of higher waves in the present decade compared to the past. Linear trend analysis show significant upswing in spatially averaged ERA-20C mean wave period, whereas the noticed variations are marginal in the ERA-Interim data. A separate trend analysis for the wind-seas, swell wave heights and period from ERA-20C decipher the fact that distant swells governs the local wind-wave climatology over the head Bay region, and over time the swell activity have increased in this region.
Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data
Araújo, Alex Maurício
2017-01-01
This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area. PMID:28817731
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Po-Lun; Gattiker, J. R.; Liu, Xiaohong
2013-06-27
A Gaussian process (GP) emulator is applied to quantify the contribution of local and remote emissions of black carbon (BC) on the BC concentrations in different regions using a Latin Hypercube sampling strategy for emission perturbations in the offline version of the Community Atmosphere Model Version 5.1 (CAM5) simulations. The source-receptor relationships are computed based on simulations constrained by a standard free-running CAM5 simulation and the ERA-Interim reanalysis product. The analysis demonstrates that the emulator is capable of retrieving the source-receptor relationships based on a small number of CAM5 simulations. Most regions are found susceptible to their local emissions. Themore » emulator also finds that the source-receptor relationships retrieved from the model-driven and the reanalysis-driven simulations are very similar, suggesting that the simulated circulation in CAM5 resembles the assimilated meteorology in ERA-Interim. The robustness of the results provides confidence for applying the emulator to detect dose-response signals in the climate system.« less
Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data.
Espindola, Rafael Luz; Araújo, Alex Maurício
2017-01-01
This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area.
NASA Astrophysics Data System (ADS)
Bresson, Émilie; Arbogast, Philippe; Aouf, Lotfi; Paradis, Denis; Kortcheva, Anna; Bogatchev, Andrey; Galabov, Vasko; Dimitrova, Marieta; Morvan, Guillaume; Ohl, Patrick; Tsenova, Boryana; Rabier, Florence
2018-04-01
Winds, waves and storm surges can inflict severe damage in coastal areas. In order to improve preparedness for such events, a better understanding of storm-induced coastal flooding episodes is necessary. To this end, this paper highlights the use of atmospheric downscaling techniques in order to improve wave and storm surge hindcasts. The downscaling techniques used here are based on existing European Centre for Medium-Range Weather Forecasts reanalyses (ERA-20C, ERA-40 and ERA-Interim). The results show that the 10 km resolution data forcing provided by a downscaled atmospheric model gives a better wave and surge hindcast compared to using data directly from the reanalysis. Furthermore, the analysis of the most extreme mid-latitude cyclones indicates that a four-dimensional blending approach improves the whole process, as it assimilates more small-scale processes in the initial conditions. Our approach has been successfully applied to ERA-20C (the 20th century reanalysis).
Evaluation of ERA-interim and MERRA Cloudiness in the Southern Oceans
NASA Technical Reports Server (NTRS)
Naud, Catherine M.; Booth, James F.; Del Genio, Anthony D.
2014-01-01
The Southern Ocean cloud cover modeled by the Interim ECMWF Re-Analysis (ERA-Interim) and Modern- Era Retrospective Analysis for Research and Applications (MERRA) reanalyses are compared against Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR) observations. ERA-Interim monthly mean cloud amounts match the observations within 5%, while MERRA significantly underestimates the cloud amount. For a compositing analysis of clouds in warm season extratropical cyclones, both reanalyses show a low bias in cloud cover. They display a larger bias to the west of the cyclones in the region of subsidence behind the cold fronts. This low bias is larger for MERRA than for ERA-Interim. Both MODIS and MISR retrievals indicate that the clouds in this sector are at a low altitude, often composed of liquid, and of a broken nature. The combined CloudSat-Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) cloud profiles confirm these passive observations, but they also reveal that low-level clouds in other parts of the cyclones are also not properly represented in the reanalyses. The two reanalyses are in fairly good agreement for the dynamic and thermodynamic characteristics of the cyclones, suggesting that the cloud, convection, or boundary layer schemes are the problem instead. An examination of the lower-tropospheric stability distribution in the cyclones from both reanalyses suggests that the parameterization of shallow cumulus clouds may contribute in a large part to the problem. However, the differences in the cloud schemes and in particular in the precipitation processes, which may also contribute, cannot be excluded.
NASA Astrophysics Data System (ADS)
Galos, Stephan; Hofer, Marlis; Marzeion, Ben; Mölg, Thomas; Großhauser, Martin
2013-04-01
Due to their setting, tropical glaciers are sensitive indicators of mid-tropospheric meteorological variability and climate change. Furthermore these glaciers are of particular interest because they respond faster to climatic changes than glaciers located in mid- or high-latitudes. As long-term direct meteorological measurements in such remote environments are scarce, reanalysis data (e.g. ERA-Interim) provide a highly valuable source of information. Reanalysis datasets (i) enable a temporal extension of data records gained by direct measurements and (ii) provide information from regions where direct measurements are not available. In order to properly derive the physical exchange processes between glaciers and atmosphere from reanalysis data, downscaling procedures are required. In the present study we investigate if downscaled atmospheric variables (air temperature and relative humidity) from a reanalysis dataset can be used as input for a physically based, high resolution energy and mass balance model. We apply a well validated empirical-statistical downscaling model, fed with ERA-Interim data, to an automated weather station (AWS) on the surface of Glaciar Artesonraju (8.96° S | 77.63° W). The downscaled data is then used to replace measured air temperature and relative humidity in the input for the energy and mass balance model, which was calibrated using ablation data from stakes and a sonic ranger. In order to test the sensitivity of the modeled mass balance to the downscaled data, the results are compared to a reference model run driven solely with AWS data as model input. We finally discuss the results and present future perspectives for further developing this method.
NASA Astrophysics Data System (ADS)
Kobayashi, Shinya; Poli, Paul; John, Viju O.
2017-02-01
The near-global and all-sky coverage of satellite observations from microwave humidity sounders operating in the 183 GHz band complement radiosonde and aircraft observations and satellite infrared clear-sky observations. The Special Sensor Microwave Water Vapor Profiler (SSM/T-2) of the Defense Meteorological Satellite Program began operations late 1991. It has been followed by several other microwave humidity sounders, continuing today. However, expertise and accrued knowledge regarding the SSM/T-2 data record is limited because it has remained underused for climate applications and reanalyses. In this study, SSM/T-2 radiances are characterised using several global atmospheric reanalyses. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim), the first ECMWF reanalysis of the 20th-century (ERA-20C), and the Japanese 55-year Reanalysis (JRA-55) are projected into SSM/T-2 radiance space using a fast radiative transfer model. The present study confirms earlier indications that the polarisation state of SSM/T-2 antenna is horizontal (not vertical) in the limit of nadir viewing. The study also formulates several recommendations to improve use of the SSM/T-2 measurement data in future fundamental climate data records or reanalyses. Recommendations are (1) to correct geolocation errors, especially for DMSP 14; (2) to blacklist poor quality data identified in the paper; (3) to correct for inter-satellite biases, estimated here on the order of 1 K, by applying an inter-satellite recalibration or, for reanalysis, an automated (e.g., variational) bias correction; and (4) to improve precipitating cloud filtering or, for reanalysis, consider an all-sky assimilation scheme where radiative transfer simulations account for the scattering effect of hydrometeors.
Mid-latitude storm track variability and its influence on atmospheric composition
NASA Astrophysics Data System (ADS)
Knowland, K. E.; Doherty, R. M.; Hodges, K.
2013-12-01
Using the storm tracking algorithm, TRACK (Hodges, 1994, 1995, 1999), we have studied the behaviour of storm tracks in the North Atlantic basin, using 850-hPa relative vorticity from the ERA-Interim Re-analysis (Dee et al., 2011). We have correlated surface ozone measurements at rural coastal sites in Europe to the storm track data to explore the role mid-latitude cyclones and their transport of pollutants play in determining surface air quality in Western Europe. To further investigate this relationship, we have used the Monitoring Atmospheric Composition Climate (MACC) Re-analysis dataset (Inness et al., 2013) in TRACK. The MACC Re-analysis is a 10-year dataset which couples a chemistry transport model (Mozart-3; Stein 2009, 2012) to an extended version of the European Centre for Medium-Range Weather Forecasts' (ECMWF) Integrated Forecast System (IFS). Storm tracks in the MACC Re-analysis compare well to the storm tracks using the ERA-Interim Re-analysis for the same 10-year period, as both are based on ECMWF IFSs. We also compare surface ozone values from MACC to surface ozone measurements previously studied. Using TRACK, we follow ozone (O3) and carbon monoxide (CO) through the life cycle of storms from North America to Western Europe. Along the storm tracks, we examine the distribution of CO and O3 within 6 degrees of the center of each storm and vertically at different pressure levels in the troposphere. We hope to better understand the mechanisms with which pollution is vented from the boundary layer to the free troposphere, as well as transport of pollutants to rural areas. Our hope is to give policy makers more detailed information on how climate variability associated with storm tracks between 1979-2013 may affect air quality in Northeast USA and Western Europe.
NASA Astrophysics Data System (ADS)
Jones, R. W.; Renfrew, I. A.; Orr, A.; Webber, B. G. M.; Holland, D. M.; Lazzara, M. A.
2016-06-01
The glaciers within the Amundsen Sea Embayment (ASE), West Antarctica, are amongst the most rapidly retreating in Antarctica. Meteorological reanalysis products are widely used to help understand and simulate the processes causing this retreat. Here we provide an evaluation against observations of four of the latest global reanalysis products within the ASE region—the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-I), Japanese 55-year Reanalysis (JRA-55), Climate Forecast System Reanalysis (CFSR), and Modern Era Retrospective-Analysis for Research and Applications (MERRA). The observations comprise data from four automatic weather stations (AWSs), three research vessel cruises, and a new set of 38 radiosondes all within the period 2009-2014. All four reanalyses produce 2 m temperature fields that are colder than AWS observations, with the biases varying from approximately -1.8°C (ERA-I) to -6.8°C (MERRA). Over the Amundsen Sea, spatially averaged summertime biases are between -0.4°C (JRA-55) and -2.1°C (MERRA) with notably larger cold biases close to the continent (up to -6°C) in all reanalyses. All four reanalyses underestimate near-surface wind speed at high wind speeds (>15 m s-1) and exhibit dry biases and relatively large root-mean-square errors (RMSE) in specific humidity. A comparison to the radiosonde soundings shows that the cold, dry bias at the surface extends into the lower troposphere; here ERA-I and CFSR reanalyses provide the most accurate profiles. The reanalyses generally contain larger temperature and humidity biases, (and RMSE) when a temperature inversion is observed, and contain larger wind speed biases (~2 to 3 m s-1), when a low-level jet is observed.
NASA Astrophysics Data System (ADS)
Montini, T.; Jones, C.
2017-12-01
The South American low-level jet (SALLJ) is one of the key components of the South American Monsoon System. The SALLJ transports large amounts of moisture to the subtropics, influencing the development of deep convection and heavy precipitation over southeastern South America. Previous studies have analyzed the jet using reanalysis data due to the lack of available upper-air observations over this region. The purpose of the current study is to quantify uncertainties in the climatology, variability, and changes in the SALLJ based on various reanalyses for the period 1979-2015. This is important because there are significant differences among reanalysis datasets due to variations in their data quality control, data assimilation systems, and model physics. The datasets used in this analysis are: (1) Climate Forecast System Reanalysis, (2) ERA-Interim, (3) the Japanese 55-year reanalysis, (4) the Second Modern Era Retrospective-analysis for Research and Applications (MERRA-2). Finally, significant changes in the SALLJ are discussed in relation to substantial warming over South America in recent decades and changes in the monsoon.
NASA Astrophysics Data System (ADS)
Zhang, X.; Liang, S.; Wang, G.; Yao, Y.; Jiang, B.; Cheng, J.
2016-12-01
Solar radiation incident at the Earth's surface (Rs) is an essential component of the total energy exchange between the atmosphere and the surface. Reanalysis data have been widely used, but a comprehensive validation using surface measurements is still highly needed. In this study, we evaluated the Rs estimates from six current representative global reanalyses [NCEP-NCAR, NCEP-DOE; CFSR; ERA-Interim; MERRA; and JRA-55] using surface measurements from different observation networks [GEBA; BSRN; GC-NET; Buoy; and CMA] (674 sites in total) and the Earth's Radiant Energy System (CERES) EBAF product from 2001 to 2009. The global mean biases between the reanalysis Rs and surface measurements at all sites ranged from 11.25 W/m2 to 49.80 W/m2. Comparing with the CERES-EBAF Rs product, all the reanalyses overestimate Rs, except for ERA-Interim, with the biases ranging from -2.98 W/m2 to 21.97 W/m2 over the globe. It was also found that the biases of cloud fraction (CF) in the reanalyses caused the overestimation of Rs. After removing the averaged bias of CERES-EBAF, weighted by the area of the latitudinal band, a global annual mean Rs values of 184.6 W/m2, 180.0 W/m2, and 182.9 W/m2 was obtained over land, ocean, and the globe, respectively.
NASA Astrophysics Data System (ADS)
Roberts, Tjarda J.; Dütsch, Marina; Hole, Lars R.; Voss, Paul B.
2016-09-01
Observations from CMET (Controlled Meteorological) balloons are analysed to provide insights into tropospheric meteorological conditions (temperature, humidity, wind) around Svalbard, European High Arctic. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard (Spitsbergen) over 5-12 May 2011 and measured vertical atmospheric profiles over coastal areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic marine boundary layer (ABL) over a period of more than 10 h. Profiles from two CMET flights are compared to model output from ECMWF Era-Interim reanalysis (ERA-I) and to a high-resolution (15 km) Arctic System Reanalysis (ASR) product. To the east of Svalbard over sea ice, the CMET observed a stable ABL profile with a temperature inversion that was reproduced by ASR but not captured by ERA-I. In a coastal ice-free region to the west of Svalbard, the CMET observed a stable ABL with strong wind shear. The CMET profiles document increases in ABL temperature and humidity that are broadly reproduced by both ASR and ERA-I. The ASR finds a more stably stratified ABL than observed but captured the wind shear in contrast to ERA-I. Detailed analysis of the coastal CMET-automated soundings identifies small-scale temperature and humidity variations with a low-level flow and provides an estimate of local wind fields. We demonstrate that CMET balloons are a valuable approach for profiling the free atmosphere and boundary layer in remote regions such as the Arctic, where few other in situ observations are available for model validation.
Validation of HOAPS- and ERA-Interim precipitation estimates over the ocean
NASA Astrophysics Data System (ADS)
Bumke, Karl; Schröder, Marc; Fennig, Karsten
2014-05-01
Although precipitation is one of the key parameters of the global hydrological cycle there are still large gaps in the global observation networks, especially over the oceans. But the progress in satellite technology has provided the possibility to retrieve global data sets from space, including precipitation. Levizzani et al. (2007) showed that precipitation over the oceans can be derived with sufficient accuracy from passive microwave radiometry. Advances in analysis techniques have also improved our knowledge of the global precipitation. On the other hand, e.g. Andersson et al. (2011) or Pfeifroth et al. (2012) pointed out that even state-of-the-art satellite retrievals and reanalysis data sets still disagree on global or regional precipitation with respect to amounts, patterns, variability or temporal behavior compared to observations. That creates the need for a validation study over data sparse areas. Within this study, a validation of HOAPS-3.0 (Hamburg Ocean Atmosphere Parameters and fluxes from Satellite Data) based precipitation at pixel-level resolution and of ERA-Interim reanalysis data for 1995-1997 is performed mainly over the Atlantic Ocean using information from ship rain gauges and optical disdrometers mounted onboard of research vessels. The satellite and ERA-Interim data are compared to the in situ measurement by the nearest neighbor approach. Therefore, it must be ensured that both observations are related to each other, which can be determined by the decorrelation lengths in space and time. At least a number of 658 precipitation events are at our disposal including 127 snow events. The statistical analysis follows the recommendations given by the World Meteorological Organization (WMO) for dichotomous or binary forecasts (WWRP/WGNE: http://www.cawcr.gov.au/projects/verification/#Methods_for_dichotomous_forecasts). Based on contingency tables a number of statistical parameters like the accuracy, the bias, the false alarm rate, success ratio or hit rate have been computed. Summarized, the results show that HOAPS data agrees well with observations with respect to the frequency of precipitation events while ERA-Interim overestimates considerably the number of precipitation events. Results are similar for rain and snow events. Although it is difficult to compare rain rates directly due to the limited number of collocated events and different spatial resolution, the results suggest a slight underestimation of precipitation rates by HOAPS and an overestimation by ERA-Interim. References Andersson, A., Klepp, C., Fennig, K., Bakan, S., Graßl, H. and495 co-authors. 2011. Evaluation of HOAPS-3 ocean surface freshwater flux components. J. Appl. Meteorol. Climatol. 50, 379-398, doi:10.1175/2010JAMC2341.1. Levizzani, V., Bauer, P. and Turk, F. J.) 2007. Measuring Precipitation from Space, EURAINSAT and the Future. Advances in Global Change Research, Vol. 28, Springer, 724 p. Pfeifroth,U.,R.Mueller, and B.Ahrens, 2012: Evaluation of Satellite-Based and Reanalysis Precipitation Data in the Tropical Pacific, J. of Appl. Meteorology and Climatology 52, 634-644
NASA Astrophysics Data System (ADS)
Long, Craig S.; Fujiwara, Masatomo; Davis, Sean; Mitchell, Daniel M.; Wright, Corwin J.
2017-12-01
Two of the most basic parameters generated from a reanalysis are temperature and winds. Temperatures in the reanalyses are derived from conventional (surface and balloon), aircraft, and satellite observations. Winds are observed by conventional systems, cloud tracked, and derived from height fields, which are in turn derived from the vertical temperature structure. In this paper we evaluate as part of the SPARC Reanalysis Intercomparison Project (S-RIP) the temperature and wind structure of all the recent and past reanalyses. This evaluation is mainly among the reanalyses themselves, but comparisons against independent observations, such as HIRDLS and COSMIC temperatures, are also presented. This evaluation uses monthly mean and 2.5° zonal mean data sets and spans the satellite era from 1979-2014. There is very good agreement in temperature seasonally and latitudinally among the more recent reanalyses (CFSR, MERRA, ERA-Interim, JRA-55, and MERRA-2) between the surface and 10 hPa. At lower pressures there is increased variance among these reanalyses that changes with season and latitude. This variance also changes during the time span of these reanalyses with greater variance during the TOVS period (1979-1998) and less variance afterward in the ATOVS period (1999-2014). There is a distinct change in the temperature structure in the middle and upper stratosphere during this transition from TOVS to ATOVS systems. Zonal winds are in greater agreement than temperatures and this agreement extends to lower pressures than the temperatures. Older reanalyses (NCEP/NCAR, NCEP/DOE, ERA-40, JRA-25) have larger temperature and zonal wind disagreement from the more recent reanalyses. All reanalyses to date have issues analysing the quasi-biennial oscillation (QBO) winds. Comparisons with Singapore QBO winds show disagreement in the amplitude of the westerly and easterly anomalies. The disagreement with Singapore winds improves with the transition from TOVS to ATOVS observations. Temperature bias characteristics determined via comparisons with a reanalysis ensemble mean (MERRA, ERA-Interim, JRA-55) are similarly observed when compared with Aura HIRDLS and Aura MLS observations. There is good agreement among the NOAA TLS, SSU1, and SSU2 Climate Data Records and layer mean temperatures from the more recent reanalyses. Caution is advised for using reanalysis temperatures for trend detection and anomalies from a long climatology period as the quality and character of reanalyses may have changed over time.
NASA Astrophysics Data System (ADS)
Vergados, P.; Mannucci, A. J.; Ao, C. O.; Jiang, J. H.; Su, H.
2015-01-01
The spatial variability of the tropical tropospheric relative humidity (RH) throughout the vertical extent of the troposphere is examined using Global Positioning System Radio Occultation (GPSRO) observations from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) mission. These high vertical resolution observations capture the detailed structure and moisture budget of the Hadley Cell circulation. We compare the COSMIC observations with the European Center for Medium-range Weather Forecast (ECMWF) Re-Analysis Interim (ERA-Interim) and the Modern-Era Retrospective analysis for Research and Applications (MERRA) climatologies. Qualitatively, the spatial pattern of RH in all data sets matches up remarkably well, capturing distinct features of the general circulation. However, RH discrepancies exist between ERA-Interim and COSMIC data sets, which are noticeable across the tropical boundary layer. Specifically, ERA-Interim shows a drier Inter Tropical Convergence Zone (ITCZ) by 15-20% compared both to COSMIC and MERRA data sets, but this difference decreases with altitude. Unlike ECMWF, MERRA shows an excellent agreement with the COSMIC observations except above 400 hPa, where GPSRO observations capture drier air by 5-10%. RH climatologies were also used to evaluate intraseasonal variability. The results indicate that the tropical middle troposphere at ±5-25° is most sensitive to seasonal variations. COSMIC and MERRA data sets capture the same magnitude of the seasonal variability, but ERA-Interim shows a weaker seasonal fluctuation up to 10% in the middle troposphere inside the dry air subsidence regions of the Hadley Cell. Over the ITCZ, RH varies by maximum 9% between winter and summer.
NASA Astrophysics Data System (ADS)
Vergados, P.; Mannucci, A. J.; Ao, C. O.; Jiang, J. H.; Su, H.
2015-04-01
The spatial variability of the tropical tropospheric relative humidity (RH) throughout the vertical extent of the troposphere is examined using Global Positioning System Radio Occultation (GPSRO) observations from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission. These high vertical resolution observations capture the detailed structure and moisture budget of the Hadley Cell circulation. We compare the COSMIC observations with the European Center for Medium-range Weather Forecast (ECMWF) Reanalysis Interim (ERA-Interim) and the Modern-Era Retrospective analysis for Research and Applications (MERRA) climatologies. Qualitatively, the spatial pattern of RH in all data sets matches up remarkably well, capturing distinct features of the general circulation. However, RH discrepancies exist between ERA-Interim and COSMIC data sets that are noticeable across the tropical boundary layer. Specifically, ERA-Interim shows a drier Intertropical Convergence Zone (ITCZ) by 15-20% compared to both COSMIC and MERRA data sets, but this difference decreases with altitude. Unlike ECMWF, MERRA shows an excellent agreement with the COSMIC observations except above 400 hPa, where GPSRO observations capture drier air by 5-10%. RH climatologies were also used to evaluate intraseasonal variability. The results indicate that the tropical middle troposphere at ±5-25° is most sensitive to seasonal variations. COSMIC and MERRA data sets capture the same magnitude of the seasonal variability, but ERA-Interim shows a weaker seasonal fluctuation up to 10% in the middle troposphere inside the dry air subsidence regions of the Hadley Cell. Over the ITCZ, RH varies by maximum 9% between winter and summer.
Exploring reanalysis application for the purposes of climatological applications at regional scale
NASA Astrophysics Data System (ADS)
Kaspar, F.; Kaiser-Weiss, A.; Obregon, A.; Borsche, M.
2014-12-01
Recent advances in reanalysis methods yield new tools for climatological application. Here we use applications in Germany to discuss methodological issues at regional scale. Especially in the field of renewable energy planning and production there is a need for climatological information across all spatial scales, i.e., from climatology at a certain site to the spatial scale of national renewable energy production. Also, there is the need for the temporal resolution between the scales of a few minutes up to decadal changes. We explore the spatio-temporal scales where reanalyses can be used with benefit together with the traditional approaches which are based on station measurements only. Reanalyses can provide valuable additional information on larger scale variability, e.g. multi-annual variation over Germany. However, the change in the observing system, model errors and biases have to be carefully considered. On the other hand, the ground-based observation networks suffer from change of the station distribution, changes in instrumentation, measurements procedures and quality control as well as local changes which might modify their spatial representativity. All these effects might often been unknown or hard to characterize, although plenty of the meta-data information has been recorded for the German stations. European research activities on global and regional reanalysis are supported by the Framework Program 7 (FP7) of the European Commission as a preparation activity for the European COPERNICUS climate change service. Here we start from the user requirements for reanalyses as they were collected in the FP7 project CORE-CLIMAX. Second, we give an overview over the methods to determine whether a specific reanalysis is fit for a certain purpose (discussed in FP7 projects CORE-CLIMAX and UERRA) . Thirdly, we compare for an example application the feedback statistics from global (ERA-Interim) and regional (HErZ - COSMO) reanalyses and show which conclusion can be drawn. Finally, the wind climatologies derived from the different reanalyses (ERA-Interim, ERA-20C, HErZ-COSMO) are compared with point measurements and gridded field climatologies derived from ground-based stations, illustrating the added value of the reanalysis fields.
NASA Astrophysics Data System (ADS)
Belušić, Andreina; Prtenjak, Maja Telišman; Güttler, Ivan; Ban, Nikolina; Leutwyler, David; Schär, Christoph
2018-06-01
Over the past few decades the horizontal resolution of regional climate models (RCMs) has steadily increased, leading to a better representation of small-scale topographic features and more details in simulating dynamical aspects, especially in coastal regions and over complex terrain. Due to its complex terrain, the broader Adriatic region represents a major challenge to state-of-the-art RCMs in simulating local wind systems realistically. The objective of this study is to identify the added value in near-surface wind due to the refined grid spacing of RCMs. For this purpose, we use a multi-model ensemble composed of CORDEX regional climate simulations at 0.11° and 0.44° grid spacing, forced by the ERA-Interim reanalysis, a COSMO convection-parameterizing simulation at 0.11° and a COSMO convection-resolving simulation at 0.02° grid spacing. Surface station observations from this region and satellite QuikSCAT data over the Adriatic Sea have been compared against daily output obtained from the available simulations. Both day-to-day wind and its frequency distribution are examined. The results indicate that the 0.44° RCMs rarely outperform ERA-Interim reanalysis, while the performance of the high-resolution simulations surpasses that of ERA-Interim. We also disclose that refining the grid spacing to a few km is needed to properly capture the small-scale wind systems. Finally, we show that the simulations frequently yield the accurate angle of local wind regimes, such as for the Bora flow, but overestimate the associated wind magnitude. Finally, spectral analysis shows good agreement between measurements and simulations, indicating the correct temporal variability of the wind speed.
NASA Astrophysics Data System (ADS)
Garric, Gilles; Parent, Laurent; Greiner, Eric; Drévillon, Marie; Hamon, Mathieu; Lellouche, Jean-Michel; Régnier, Charly; Desportes, Charles; Le Galloudec, Olivier; Bricaud, Clement; Drillet, Yann; Hernandez, Fabrice; Le Traon, Pierre-Yves
2017-04-01
The purpose of this presentation is to give an overview of the recent upgrade of GLORYS2 (version 4 and GLORYS2V4 hereafter), the latest ocean reanalysis produced at Mercator Ocean that covers the altimetry era (1993-2015) in the framework of Copernicus Marine Environment Monitoring Service (CMEMS; http://marine.copernicus.eu/). The reanalysis is run at eddy-permitting resolution (¼° horizontal resolution and 75 vertical levels) with the NEMO model and driven at the surface by ERA-Interim reanalysis from ECMWF (European Centre for Medium-Range Weather Forecasts). The reanalysis system uses a multi-data and multivariate reduced order Kalman filter based on the singular extended evolutive Kalman (SEEK) filter formulation together with a 3D-VAR large scale bias correction. The assimilated observations are along-track satellite altimetry, sea surface temperature, sea ice concentration and in-situ profiles of temperature and salinity. With respect to the previous version (GLORYS2V3), GLORYS2V4 contains a number of improvements. In particular: a) new initial temperature and salinity conditions derived from EN4 data base with a better mass equilibrium with altimetry, b) the use of the updated delayed mode CORA in situ observations from CMEMS, c) a new hybrid Mean Dynamical Topography (MDT) for the assimilation scheme referenced over the 1993-2013 period, d) a better observation operator for altimetry observations for the data assimilation scheme: e) A correction of large scale ERA-Interim atmospheric surface (precipitations and radiative) fluxes as in GLORYS2V3 but towards new satellite data set f) an update of the climatological runoff data base by using the latest version of Dai's 2009 data set for the global ocean together with better account of freshwater fluxes from polar ice sheet's glaciers. The presentation will show that the new reanalysis outperforms the previous version in many aspects such as biases and root mean squared error and, especially in representing the variability of global heat and salt content and associated steric sea level in the last two decades. The dataset is available in NetCDF format and GLORYS2V4 best analysis products are distributed onto the CMEMS data portal.
NASA Astrophysics Data System (ADS)
Alshawaf, Fadwa; Dick, Galina; Heise, Stefan; Balidakis, Kyriakos; Schmidt, Torsten; Wickert, Jens
2017-04-01
Ground-based GNSS (Global Navigation Satellite Systems) have efficiently been used since the 1990s as a meteorological observing system. Recently scientists used GNSS time series of precipitable water vapor (PWV) for climate research although they may not be sufficiently long. In this work, we compare the trend estimated from GNSS time series with that estimated from European Center for Medium-RangeWeather Forecasts Reanalysis (ERA-Interim) data and meteorological measurements.We aim at evaluating climate evolution in Central Europe by monitoring different atmospheric variables such as temperature and PWV. PWV time series were obtained by three methods: 1) estimated from ground-based GNSS observations using the method of precise point positioning, 2) inferred from ERA-Interim data, and 3) determined based on daily surface measurements of temperature and relative humidity. The other variables are available from surface meteorological stations or received from ERA-Interim. The PWV trend component estimated from GNSS data strongly correlates (>70%) with that estimated from the other data sets. The linear trend is estimated by straight line fitting over 30 years of seasonally-adjusted PWV time series obtained using the meteorological measurements. The results show a positive trend in the PWV time series with an increase of 0.2-0.7 mm/decade with a mean standard deviations of 0.016 mm/decade. In this paper, we present the results at three GNSS stations. The temporal increment of the PWV correlates with the temporal increase in the temperature levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Larry K.; Riihimaki, Laura D.; Qian, Yun
This study utilizes five commonly used reanalysis products, including the NCEP-DOE Reanalysis 2 (NCEP2), ECMWF Re-Analysis (ERA)-Interim, Japanese 25-year Reanalysis (JRA-25), Modern-Era Retrospective Analysis for Research and Applications (MERRA), and North American Regional Reanalysis (NARR) to evaluate features of the Southern Great Plains Low Level Jet (LLJ) above the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains site. Two sets of radiosonde data are utilized: the six-week Midlatitude Continental Convective Clouds Experiment (MC3E), and a ten-year period spanning 2001-2010. All five reanalysis are compared to MC3E data, while only the NARR and MERRA are compared to themore » ten-year data. Each reanalysis is able to represent most aspects of the composite LLJ profile, although there is a tendency for each reanalysis to overestimate the wind speed between the nose of the LLJ and 700 mb. There are large discrepancies in the number of LLJ observed and derived from the reanalysis, particularly for strong LLJs that leads to an underestimate of the water vapor transport associated with LLJs. When the ten-year period is considered, the NARR overestimates and MERRA underestimates the total moisture transport, but both underestimate the transport associated with strong LLJs by factors of 2.0 and 2.7 for the NARR and MERR, respectively. During MC3E there were differences in the patterns of moisture convergence and divergence, with the MERRA having an area of moisture divergence over Oklahoma, while the NARR has moisture convergence. The patterns of moisture convergence and divergence are more consistent during the ten-year period.« less
NASA Astrophysics Data System (ADS)
Bai, Kaixu; Chang, Ni-Bin; Shi, Runhe; Yu, Huijia; Gao, Wei
2017-07-01
A four-step adaptive ozone trend estimation scheme is proposed by integrating multivariate linear regression (MLR) and ensemble empirical mode decomposition (EEMD) to analyze the long-term variability of total column ozone from a set of four observational and reanalysis total ozone data sets, including the rarely explored ERA-Interim total ozone reanalysis, from 1979 to 2009. Consistency among the four data sets was first assessed, indicating a mean relative difference of 1% and root-mean-square error around 2% on average, with respect to collocated ground-based total ozone observations. Nevertheless, large drifts with significant spatiotemporal inhomogeneity were diagnosed in ERA-Interim after 1995. To emphasize long-term trends, natural ozone variations associated with the solar cycle, quasi-biennial oscillation, volcanic aerosols, and El Niño-Southern Oscillation were modeled with MLR and then removed from each total ozone record, respectively, before performing EEMD analyses. The resulting rates of change estimated from the proposed scheme captured the long-term ozone variability well, with an inflection time of 2000 clearly detected. The positive rates of change after 2000 suggest that the ozone layer seems to be on a healing path, but the results are still inadequate to conclude an actual recovery of the ozone layer, and more observational evidence is needed. Further investigations suggest that biases embedded in total ozone records may significantly impact ozone trend estimations by resulting in large uncertainty or even negative rates of change after 2000.
Status of High Latitude Precipitation Estimates from Observations and Reanalyses
NASA Technical Reports Server (NTRS)
Behrangi, Ali; Christensen, Matthew; Richardson, Mark; Lebsock, Matthew; Stephens, Graeme; Huffman, George J.; Bolvin, David T.; Adler, Robert F.; Gardner, Alex; Lambrigtsen, Bjorn H.;
2016-01-01
An intercomparison of high-latitude precipitation characteristics from observation-based and reanalysis products is performed. In particular, the precipitation products from CloudSat provide an independent assessment to other widely used products, these being the observationally based Global Precipitation Climatology Project (GPCP), Global Precipitation Climatology Centre, and Climate Prediction Center Merged Analysis of Precipitation (CMAP) products and the ERA-Interim, Modern-Era Retrospective Analysis for Research and Applications (MERRA), and National Centers for Environmental Prediction-Department of Energy Reanalysis 2 (NCEP-DOE R2) reanalyses. Seasonal and annual total precipitation in both hemispheres poleward of 55 latitude are considered in all products, and CloudSat is used to assess intensity and frequency of precipitation occurrence by phase, defined as rain, snow, or mixed phase. Furthermore, an independent estimate of snow accumulation during the cold season was calculated from the Gravity Recovery and Climate Experiment. The intercomparison is performed for the 20072010 period when CloudSat was fully operational. It is found that ERA-Interim and MERRA are broadly similar, agreeing more closely with CloudSat over oceans. ERA-Interim also agrees well with CloudSat estimates of snowfall over Antarctica where total snowfall from GPCP and CloudSat is almost identical. A number of disagreements on regional or seasonal scales are identified: CMAP reports much lower ocean precipitation relative to other products, NCEP-DOE R2 reports much higher summer precipitation over Northern Hemisphere land, GPCP reports much higher snowfall over Eurasia, and CloudSat overestimates precipitation over Greenland, likely due to mischaracterization of rain and mixed-phase precipitation. These outliers are likely unrealistic for these specific regions and time periods. These estimates from observations and reanalyses provide useful insights for diagnostic assessment of precipitation products in high latitudes, quantifying the current uncertainties, improving the products, and establishing a benchmark for assessment of climate models.
Land Surface Precipitation and Hydrology in MERRA-2
NASA Technical Reports Server (NTRS)
Reichle, R.; Koster, R.; Draper, C.; Liu, Q.; Girotto, M.; Mahanama, S.; De Lannoy, G.; Partyka, G.
2017-01-01
The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), provides global, 1-hourly estimates of land surface conditions for 1980-present at 50-km resolution. Outside of the high latitudes, MERRA-2 uses observations-based precipitation data products to correct the precipitation falling on the land surface. This paper describes the precipitation correction method and evaluates the MERRA-2 land surface precipitation and hydrology. Compared to monthly GPCPv2.2 observations, the corrected MERRA-2 precipitation (M2CORR) is better than the precipitation generated by the atmospheric models within the cyclingMERRA-2 system and the earlier MERRA reanalysis. Compared to 3-hourlyTRMM observations, the M2CORR diurnal cycle has better amplitude but less realistic phasing than MERRA-2 model-generated precipitation. Because correcting the precipitation within the coupled atmosphere-land modeling system allows the MERRA-2 near-surface air temperature and humidity to respond to the improved precipitation forcing, MERRA-2 provides more self-consistent surface meteorological data than were available from the earlier, offline MERRA-Land reanalysis. Overall, MERRA-2 land hydrology estimates are better than those of MERRA-Land and MERRA. A comparison against GRACE satellite observations of terrestrial water storage demonstrates clear improvements in MERRA-2 over MERRA in South America and Africa but also reflects known errors in the observations used to correct the MERRA-2 precipitation. The MERRA-2 and MERRA-Land surface and root zone soil moisture skill vs. in situ measurements is slightly higher than that of ERA-Interim Land and higher than that of MERRA (significantly for surface soil moisture). Snow amounts from MERRA-2 have lower bias and correlate better against reference data than do those of MERRA-Land and MERRA, with MERRA-2 skill roughly matching that of ERA-Interim Land. Seasonal anomaly R values against naturalized stream flow measurements in the United States are, on balance, highest for MERRA-2 and ERA-Interim Land, somewhat lower for MERRA-Land, and lower still for MERRA.
NASA Astrophysics Data System (ADS)
Yokoi, S.
2014-12-01
This study conducts a comparison of three reanalysis products (JRA-55, JRA-25, and ERA-Interim) in representation of Madden-Julian Oscillation (MJO), focusing on column-integrated water vapor (CWV) that is considered as an essential variable for discussing MJO dynamics. Besides the analysis fields of CWV, which exhibit spatio-temporal distributions that are quite similar to satellite observations, CWV tendency simulated by forecast models and analysis increment calculated by data assimilation are examined. For JRA-55, it is revealed that, while its forecast model is able to simulate eastward propagation of the CWV anomaly, it tends to weaken the amplitude, and data assimilation process sustains the amplitude. The multi-reanalysis comparison of the analysis increment further reveals that this weakening bias is probably caused by excessively weak cloud-radiative feedback represented by the model. This bias in the feedback strength makes anomalous moisture supply by the vertical advection term in the CWV budget equation too insensitive to precipitation anomaly, resulting in reduction of the amplitude of CWV anomaly. ERA-Interim has a nearly opposite feature; the forecast model represents excessively strong feedback and unrealistically strengthens the amplitude, while the data assimilation weakens it. These results imply the necessity of accurate representation of the cloud-radiative feedback strength for a short-term MJO forecast, and may be evidence to support the argument that this feedback is essential for the existence of MJO. Furthermore, this study demonstrates that the multi-reanalysis comparison of the analysis increment will provide useful information for identifying model biases and, potentially, for estimating parameters that are difficult to estimate solely from observation data, such as gross moist stability.
NASA Astrophysics Data System (ADS)
Li, Changming; Tang, Guoqiang; Hong, Yang
2018-07-01
Evaluating the reliability of satellite and reanalysis precipitation products is critical but challenging over ungauged or poorly gauged regions. The Triple Collocation (TC) method is a reliable approach to estimate the accuracy of any three independent inputs in the absence of truth values. This study assesses the uncertainty of three types of independent precipitation products, i.e., satellite-based, ground-based and model reanalysis over Mainland China using the TC method. The ground-based data set is Gauge Based Daily Precipitation Analysis (CGDPA). The reanalysis data set is European Reanalysis Agency Reanalysis Product (ERA-interim). The satellite-based products include five mainstream satellite products. The comparison and evaluation are conducted at 0.25° and daily resolutions from 2013 to 2015. First, the effectiveness of the TC method is evaluated in South China with dense gauge network. The results demonstrate that the TC method is reliable because the correlation coefficient (CC) and root mean square error (RMSE) derived from TC are close to those derived from ground observations, with only 9% and 7% mean relative differences, respectively. Then, the TC method is applied in Mainland China, with special attention paid to the Tibetan Plateau (TP) known as the Earth's third pole with few ground stations. Results indicate that (1) The overall performance of IMERG is better than the other satellite products over Mainland China, followed by 3B42V7, CMORPH-CRT and PERSIANN-CDR. (2) In the TP, CGDPA shows the best overall performance over gauged grid cells, however, over ungauged regions, IMERG and ERA-interim slightly outperform CGDPA with similar RMSE but higher mean CC (0.63, 0.61, and 0.58, respectively). It highlights the strengths and potentiality of remote sensing and reanalysis data over the TP and reconfirms the cons of the inherent uncertainty of CGDPA due to interpolation from sparsely gauged data. The study concludes that the TC method provides not only reliable cross-validation results over Mainland China but also a new perspective for comparatively assessing multi-source precipitation products, particularly over poorly gauged regions such as the TP.
Precipitation frequency analysis based on regional climate simulations in Central Alberta
NASA Astrophysics Data System (ADS)
Kuo, Chun-Chao; Gan, Thian Yew; Hanrahan, Janel L.
2014-03-01
A Regional Climate Model (RCM), MM5 (the Fifth Generation Pennsylvania State University/National Center for Atmospheric Research mesoscale model), is used to simulate summer precipitation in Central Alberta. MM5 was set up with a one-way, three-domain nested framework, with domain resolutions of 27, 9, and 3 km, respectively, and forced with ERA-Interim reanalysis data of ECMWF (European Centre for Medium-Range Weather Forecasts). The objective is to develop high resolution, grid-based Intensity-Duration-Frequency (IDF) curves based on the simulated annual maximums of precipitation (AMP) data for durations ranging from 15-min to 24-h. The performance of MM5 was assessed in terms of simulated rainfall intensity, precipitable water, and 2-m air temperature. Next, the grid-based IDF curves derived from MM5 were compared to IDF curves derived from six RCMs of the North American Regional Climate Change Assessment Program (NARCCAP) set up with 50-km grids, driven with NCEP-DOE (National Centers for Environmental Prediction-Department of Energy) Reanalysis II data, and regional IDF curves derived from observed rain gauge data (RG-IDF). The analyzed results indicate that 6-h simulated precipitable water and 2-m temperature agree well with the ERA-Interim reanalysis data. However, compared to RG-IDF curves, IDF curves based on simulated precipitation data of MM5 are overestimated especially for IDF curves of 2-year return period. In contract, IDF curves developed from NARCCAP data suffer from under-estimation and differ more from RG-IDF curves than the MM5 IDF curves. The over-estimation of IDF curves of MM5 was corrected by a quantile-based, bias correction method. By dynamically downscale the ERA-Interim and after bias correction, it is possible to develop IDF curves useful for regions with limited or no rain gauge data. This estimation process can be further extended to predict future grid-based IDF curves subjected to possible climate change impacts based on climate change projections of GCMs (general circulation models) of IPCC (Intergovernmental Panel on Climate Change).
NASA Astrophysics Data System (ADS)
Shrivastava, Sourabh; Kar, Sarat C.; Sharma, Anu Rani
2017-07-01
Variation of soil moisture during active and weak phases of summer monsoon JJAS (June, July, August, and September) is very important for sustenance of the crop and subsequent crop yield. As in situ observations of soil moisture are few or not available, researchers use data derived from remote sensing satellites or global reanalysis. This study documents the intercomparison of soil moisture from remotely sensed and reanalyses during dry spells within monsoon seasons in central India and central Myanmar. Soil moisture data from the European Space Agency (ESA)—Climate Change Initiative (CCI) has been treated as observed data and was compared against soil moisture data from the ECMWF reanalysis-Interim (ERA-I) and the climate forecast system reanalysis (CFSR) for the period of 2002-2011. The ESA soil moisture correlates rather well with observed gridded rainfall. The ESA data indicates that soil moisture increases over India from west to east and from north to south during monsoon season. The ERA-I overestimates the soil moisture over India, while the CFSR soil moisture agrees well with the remotely sensed observation (ESA). Over Myanmar, both the reanalysis overestimate soil moisture values and the ERA-I soil moisture does not show much variability from year to year. Day-to-day variations of soil moisture in central India and central Myanmar during weak monsoon conditions indicate that, because of the rainfall deficiency, the observed (ESA) and the CFSR soil moisture values are reduced up to 0.1 m3/m3 compared to climatological values of more than 0.35 m3/m3. This reduction is not seen in the ERA-I data. Therefore, soil moisture from the CFSR is closer to the ESA observed soil moisture than that from the ERA-I during weak phases of monsoon in the study region.
Zarzycki, Colin M.; Thatcher, Diana R.; Jablonowski, Christiane
2017-01-22
This paper describes an objective technique for detecting the extratropical transition (ET) of tropical cyclones (TCs) in high-resolution gridded climate data. The algorithm is based on previous observational studies using phase spaces to define the symmetry and vertical thermal structure of cyclones. Storm tracking is automated, allowing for direct analysis of climate data. Tracker performance in the North Atlantic is assessed using 23 years of data from the variable-resolution Community Atmosphere Model (CAM) at two different resolutions (DX 55 km and 28 km), the Climate Forecast System Reanalysis (CFSR, DX 38 km), and the ERA-Interim Reanalysis (ERA-I, DX 80 km).more » The mean spatiotemporal climatologies and seasonal cycles of objectively detected ET in the observationally constrained CFSR and ERA-I are well matched to previous observational studies, demonstrating the capability of the scheme to adequately find events. High resolution CAM reproduces TC and ET statistics that are in general agreement with reanalyses. One notable model bias, however, is significantly longer time between ET onset and ET completion in CAM, particularly for TCs that lose symmetry prior to developing a cold-core structure and becoming extratropical cyclones, demonstrating the capability of this method to expose model biases in simulated cyclones beyond the tropical phase.« less
Booth, James F; Naud, Catherine M; Willison, Jeff
2018-03-01
The representation of extratropical cyclones (ETCs) precipitation in general circulation models (GCMs) and a weather research and forecasting (WRF) model is analyzed. This work considers the link between ETC precipitation and dynamical strength and tests if parameterized convection affects this link for ETCs in the North Atlantic Basin. Lagrangian cyclone tracks of ETCs in ERA-Interim reanalysis (ERAI), the GISS and GFDL CMIP5 models, and WRF with two horizontal resolutions are utilized in a compositing analysis. The 20-km resolution WRF model generates stronger ETCs based on surface wind speed and cyclone precipitation. The GCMs and ERAI generate similar composite means and distributions for cyclone precipitation rates, but GCMs generate weaker cyclone surface winds than ERAI. The amount of cyclone precipitation generated by the convection scheme differs significantly across the datasets, with GISS generating the most, followed by ERAI and then GFDL. The models and reanalysis generate relatively more parameterized convective precipitation when the total cyclone-averaged precipitation is smaller. This is partially due to the contribution of parameterized convective precipitation occurring more often late in the ETC life cycle. For reanalysis and models, precipitation increases with both cyclone moisture and surface wind speed, and this is true if the contribution from the parameterized convection scheme is larger or not. This work shows that these different models generate similar total ETC precipitation despite large differences in the parameterized convection, and these differences do not cause unexpected behavior in ETC precipitation sensitivity to cyclone moisture or surface wind speed.
NASA Astrophysics Data System (ADS)
Klehmet, K.; Rockel, B.
2012-04-01
The analysis of long-term changes and variability of climate variables for the large areal extent of Siberia - covering arctic, subarctic and temperate northern latitudes - is hampered by the sparseness of in-situ observations. To counteract this deficiency we aimed to provide a reconstruction of regional climate for the period 1948-2010 getting homogenous, consistent fields of various terrestrial and atmospheric parameters for Siberia. In order to obtain in addition a higher temporal and spatial resolution than global datasets can provide, we performed the reconstruction using the regional climate model COSMO-CLM (climate mode of the limited area model COSMO developed by the German weather service). However, the question arises whether the dynamically downscaled data of reanalysis can improve the representation of recent climate conditions. As global forcing for the initialization and the regional boundaries we use NCEP-1 Reanalysis of the National Centers for Environmental Prediction since it has the longest temporal data coverage among the reanalysis products. Additionally, spectral nudging is applied to prevent the regional model from deviating from the prescribed large-scale circulation within the whole simulation domain. The area of interest covers a region in Siberia, spanning from the Laptev Sea and Kara Sea to Northern Mongolia and from the West Siberian Lowland to the border of Sea of Okhotsk. The current horizontal resolution is of about 50 km which is planned to be increased to 25 km. To answer the question, we investigate spatial and temporal characteristics of temperature and precipitation of the model output in comparison to global reanalysis data (NCEP-1, ERA40, ERA-Interim). As reference Russian station data from the "Global Summary of the Day" data set, provided by NCDC, is used. Temperature is analyzed with respect to its climatologically spatial patterns across the model domain and its variability of extremes based on climate indices derived from daily mean, maximum, minimum temperature (e.g. frost days) for different subregions. The decreasing number of frost days from north to south of the region, calculated from the reanalysis datasets and COSMO-CLM output, indicates the temperature gradient from the arctic to temperate latitudes. For most of the considered subregions NCEP-1 shows more frost days than ERA-Interim and COSMO-CLM.
Age of air and heating rates: comparison of ERA-40 with ERA-Interim
NASA Astrophysics Data System (ADS)
Legras, B.; Fueglistaler, S.
2009-04-01
The age of air in the stratosphere is often used as a test for the good representation of the Brewer-Dobson circulation by atmospheric models. This is a critical requirement to modelize the distribution of long-lived species in chemical models. It is often advocated that using heating rates for vertical transport in the stratosphere performs better that standard analysed velocities from weather centers. This work is based on an extensive comparison of the age of air using 5 years of heating rates from the ERA-40 reanalysis and from the new ERA-interim reanalysis built with 4D-Var assimilation. The ERA-40 exhibits both too young ages with analyzed velocities and too old ages with heating rates. The reason for too young ages is spurious transport associated with too noisy wind, as a result of 3D-Var assimilation. Heating rates provide a much less noisy meridional circulation and preserve transport barriers and polar vortex confinement. However, excessive cooling near 30 hPa in the tropics blocks the ascending motion within the tropical pipe over extended periods of time inducing very old ages. This effect is usually corrected by an empirical correction which can exceed in some regions the calculated heating rate in magnitude, with opposite sign. We relate this correction to the assimilation temperature increment that is required to compensate the bias of the model, notably the excessive negative heat transport due to the noisy vertical velocities and the lack of mass conservation in the isentropic frame. The new ERA-interim exhibits much reduced noise in the vertical velocity and is ten times less diffusive than the ERA-40 in the tropics. Age of air is then found to be slightly older than given by the observations. The biases in the heating rate have also been considerably reduced with respect to ERA-40 and the assimilation increment is now only a fraction of the heating rate. The age of air is in fairly good aggreement with the observations at 20 km and higher altitudes. Further improvements combining heating rates and a filtered version of the assimilation increment for vertical transport in the stratosphere are discussed. We study the effect of restoring the mass conservation by recalculating a mass divergence balancing the modified heating rates. The new velocity dataset generated in isentropic coordinates is then used to study the interranual variability of the Brewer-Dobson and of heating rate, in relation with the QBO cycle.
NASA Astrophysics Data System (ADS)
Coppola, E.; Fantini, A.; Raffaele, F.; Torma, C. Z.; Bacer, S.; Giorgi, F.; Ahrens, B.; Dubois, C.; Sanchez, E.; Verdecchia, M.
2017-12-01
We assess the statistics of different daily precipitation indices in ensembles of Med-CORDEX and EUROCORDEX experiments at high resolution (grid spacing of ˜0.11° , or RCM11) and medium resolution (grid spacing of ˜0.44° , or RCM44) with regional climate models (RCMs) driven by the ERA-Interim reanalysis of observations for the period 1989-2008. The assessment is carried out by comparison with a set of high resolution observation datasets for 9 European subregions. The statistics analyzed include quantitative metrics for mean precipitation, daily precipitation Probability Density Functions (PDFs), daily precipitation intensity, frequency, 95th percentile and 95th percentile of dry spell length. We assess both an ensemble including all Med-CORDEX and EURO-CORDEX models and one including the Med-CORDEX models alone. For the All Models ensembles, the RCM11 one shows a remarkable performance in reproducing the spatial patterns and seasonal cycle of mean precipitation over all regions, with a consistent and marked improvement compared to the RCM44 ensemble and the ERA-Interim reanalysis. A good consistency with observations by the RCM11 ensemble (and a substantial improvement compared to RCM44 and ERA-Interim) is found also for the daily precipitation PDFs, mean intensity and, to a lesser extent, the 95th percentile. In fact, for some regions the RCM11 ensemble overestimates the occurrence of very high intensity events while for one region the models underestimate the occurrence of the largest extremes. The RCM11 ensemble still shows a general tendency to underestimate the dry day frequency and 95th percentile of dry spell length over wetter regions, with only a marginal improvement compared to the lower resolution models. This indicates that the problem of the excessive production of low precipitation events found in many climate models persists also at relatively high resolutions, at least in wet climate regimes. Concerning the Med-CORDEX model ensembles we find that their performance is of similar quality as that of the all-models over the Mediterranean regions analyzed. Finally, we stress the need of consistent and quality checked fine scale observation datasets for the assessment of RCMs run at increasingly high horizontal resolutions.
The analysis of a complex fire event using multispaceborne observations
NASA Astrophysics Data System (ADS)
Andrei, Simona; Carstea, Emil; Marmureanu, Luminita; Ene, Dragos; Binietoglou, Ioannis; Nicolae, Doina; Konsta, Dimitra; Amiridis, Vassilis; Proestakis, Emmanouil
2018-04-01
This study documents a complex fire event that occurred on October 2016, in Middle East belligerent area. Two fire outbreaks were detected by different spacecraft monitoring instruments on board of TERRA, CALIPSO and AURA Earth Observation missions. Link with local weather conditions was examined using ERA Interim Reanalysis and CAMS datasets. The detection of the event by multiple sensors enabled a detailed characterization of fires and the comparison with different observational data.
Recent decadal trends in Iberian water vapour: GPS analysis and WRF process study
NASA Astrophysics Data System (ADS)
Miranda, Pedro M. A.; Nogueira, Miguel; Semedo, Alvaro; Benevides, Pedro; Catalao, Joao; Costa, Vera
2016-04-01
A 24-year simulation of the recent Iberian climate, using the WRF model at 9km resolution forced by ERA-Interim reanalysis (1989-2012), is analysed for the decadal evolution of the upwelling forcing coastal wind and for column integrated Precipitable water vapour (PWV). Results indicate that, unlike what was found by Bakun et al. (2009) for the Peruvian region, a statistically significant trend in the upwelling favourable (northerly) wind has been accompanied by a corresponding decrease in PWV, not only inland but also over the coastal waters. Such increase is consistent with a reinforced northerly coastal jet in the maritime boundary layer contributing to atmospheric Ekman pumping of dry continental air into the coastal region. Diagnostics of the prevalence of the Iberian thermal low following Hoinka and Castro (2003) also show a positive trend in its frequency during an extended summer period (April to September). These results are consistent with recent studies indicating an upward trend in the frequency of upwelling in SW Iberia (Alves and Miranda 2013), and may be relevant for climate change applications as an increase in coastal upwelling (Miranda et al 2013) may lead to substantial regional impacts in the subtropics. The same analysis with ERA-Interim reanalysis data, which was used to force the WRF simulations, does not reveal the same signal in PWV, and indeed correlates poorly with the GPS observations, indicating that the data assimilation process makes the water vapour data in reanalysis unusable for climate change purposes. The good correlation between the WRF simulated data and GPS observations allow for a detailed analysis of the processes involved in the evolution of the PWV field. Akcnowledgements: Study done within FCT Grant RECI/GEO-MET/0380/2012, financially supported by FCT Grant UID/ GEO/50019/2013-IDL Alves JMR, Miranda PMA (2013) Variability of Iberian upwelling implied by ERA-40 and ERA-Interim reanalyses, Tellus A 2013, http://dx.doi.org/10.3402/tellusa.v65i0.19245. Bakun et al (2010) Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems, Global Change Biology, doi: 10.1111/j.1365-2486.2009.02094.x Hoinka KP, Castro M (2003) The Iberian Peninsula thermal low. QJRMS, 129, 1491- 1511, doi: 10.1256/qj.01.189. Miranda et al (2013) Climate change and upwelling: response of Iberian upwelling to atmospheric forcing in a regional climate scenario. Climate Dynamics, doi: 10.1007/s00382-012-1442-9.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vuichard, N.; Papale, D.
In this study, exchanges of carbon, water and energy between the land surface and the atmosphere are monitored by eddy covariance technique at the ecosystem level. Currently, the FLUXNET database contains more than 500 registered sites, and up to 250 of them share data (free fair-use data set). Many modelling groups use the FLUXNET data set for evaluating ecosystem models' performance, but this requires uninterrupted time series for the meteorological variables used as input. Because original in situ data often contain gaps, from very short (few hours) up to relatively long (some months) ones, we develop a new and robustmore » method for filling the gaps in meteorological data measured at site level. Our approach has the benefit of making use of continuous data available globally (ERA-Interim) and a high temporal resolution spanning from 1989 to today. These data are, however, not measured at site level, and for this reason a method to downscale and correct the ERA-Interim data is needed. We apply this method to the level 4 data (L4) from the La Thuile collection, freely available after registration under a fair-use policy. The performance of the developed method varies across sites and is also function of the meteorological variable. On average over all sites, applying the bias correction method to the ERA-Interim data reduced the mismatch with the in situ data by 10 to 36 %, depending on the meteorological variable considered. In comparison to the internal variability of the in situ data, the root mean square error (RMSE) between the in situ data and the unbiased ERA-I (ERA-Interim) data remains relatively large (on average over all sites, from 27 to 76 % of the standard deviation of in situ data, depending on the meteorological variable considered). The performance of the method remains poor for the wind speed field, in particular regarding its capacity to conserve a standard deviation similar to the one measured at FLUXNET stations.« less
Vuichard, N.; Papale, D.
2015-07-13
In this study, exchanges of carbon, water and energy between the land surface and the atmosphere are monitored by eddy covariance technique at the ecosystem level. Currently, the FLUXNET database contains more than 500 registered sites, and up to 250 of them share data (free fair-use data set). Many modelling groups use the FLUXNET data set for evaluating ecosystem models' performance, but this requires uninterrupted time series for the meteorological variables used as input. Because original in situ data often contain gaps, from very short (few hours) up to relatively long (some months) ones, we develop a new and robustmore » method for filling the gaps in meteorological data measured at site level. Our approach has the benefit of making use of continuous data available globally (ERA-Interim) and a high temporal resolution spanning from 1989 to today. These data are, however, not measured at site level, and for this reason a method to downscale and correct the ERA-Interim data is needed. We apply this method to the level 4 data (L4) from the La Thuile collection, freely available after registration under a fair-use policy. The performance of the developed method varies across sites and is also function of the meteorological variable. On average over all sites, applying the bias correction method to the ERA-Interim data reduced the mismatch with the in situ data by 10 to 36 %, depending on the meteorological variable considered. In comparison to the internal variability of the in situ data, the root mean square error (RMSE) between the in situ data and the unbiased ERA-I (ERA-Interim) data remains relatively large (on average over all sites, from 27 to 76 % of the standard deviation of in situ data, depending on the meteorological variable considered). The performance of the method remains poor for the wind speed field, in particular regarding its capacity to conserve a standard deviation similar to the one measured at FLUXNET stations.« less
NASA Astrophysics Data System (ADS)
Keefer, J.; Bourassa, M. A.
2014-12-01
A recent study (Young et al. 2011) investigated recent global trends in mean and extreme (90th- and 99th-percentile) wind speed and wave height. Wentz and Ricciardulli (2011) have criticized the study, citing the methodology solely employing data collected from a series of altimetry missions and lack of adequate verification of the results. An earlier study (Wentz et al. 2007) had differing results using data from microwave radiometers and scatterometers. This study serves as a response to these studies, employing a similar methodology but with a different set of data. Data collected from the QuikSCAT and ADEOS-2 SeaWinds scatterometers, SSMI(S), and TOPEX/POSEIDON and JASON-1 altimetry missions are used to calculate trends in the mean, 90th-, and 99th-percentile wind speed and wave height over the period 1999—2009. Linear regression analyses from the satellite missions are verified against regression analyses of data from the ERA-Interim reanalysis dataset. Temporal sampling presents the most critical consideration in the study. The scatterometers have a much greater independent temporal sampling (about 1.5 observations per day per satellite) than the altimeters (about 1 observation per 10 days). With this consideration, the satellite data are also used to sample the wind speeds in the ERA-Interim dataset. That portion of the study indicates the sampling requirements needed to accurately estimate the trends in the ERA-Interim reanalysis. Wentz, F.J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233-235. Wentz, F.J. and L. Ricciardulli, 2011: Comment on "Global trends in wind speed and wave height." Science, 334, 905. Young, I.R., S. Zieger, and A.V. Babanin, 2011a: Global trends in wind speed and wave height. Science, 332, 451-455.
NASA Astrophysics Data System (ADS)
Tang, Wei; Liao, Mingsheng; Zhang, Lu; Li, Wei; Yu, Weimin
2016-09-01
A high spatial and temporal resolution of the precipitable water vapour (PWV) in the atmosphere is a key requirement for the short-scale weather forecasting and climate research. The aim of this work is to derive temporally differenced maps of the spatial distribution of PWV by analysing the tropospheric delay "noise" in interferometric synthetic aperture radar (InSAR). Time series maps of differential PWV were obtained by processing a set of ENVISAT ASAR (Advanced Synthetic Aperture Radar) images covering the area of southern California, USA from 6 October 2007 to 29 November 2008. To get a more accurate PWV, the component of hydrostatic delay was calculated and subtracted by using ERA-Interim reanalysis products. In addition, the ERA-Interim was used to compute the conversion factors required to convert the zenith wet delay to water vapour. The InSAR-derived differential PWV maps were calibrated by means of the GPS PWV measurements over the study area. We validated our results against the measurements of PWV derived from the Medium Resolution Imaging Spectrometer (MERIS) which was located together with the ASAR sensor on board the ENVISAT satellite. Our comparative results show strong spatial correlations between the two data sets. The difference maps have Gaussian distributions with mean values close to zero and standard deviations below 2 mm. The advantage of the InSAR technique is that it provides water vapour distribution with a spatial resolution as fine as 20 m and an accuracy of ˜ 2 mm. Such high-spatial-resolution maps of PWV could lead to much greater accuracy in meteorological understanding and quantitative precipitation forecasts. With the launch of Sentinel-1A and Sentinel-1B satellites, every few days (6 days) new SAR images can be acquired with a wide swath up to 250 km, enabling a unique operational service for InSAR-based water vapour maps with unprecedented spatial and temporal resolution.
Global reanalyses over Antarctica and the Southern Ocean: Can they be used prior to 1979?
NASA Astrophysics Data System (ADS)
Bromwich, D. H.; Nicolas, J. P.
2017-12-01
High southern latitudes are a notoriously challenging area for global reanalyses, largely due to the scarcity of conventional observations in these regions. This lack of observational constraint not only reduces the reanalysis model forecast skill, but is also responsible for artifacts in their time series tied to changes in the observing system. For example, the introduction of new satellite observations (e.g., AMSU in 1998) is now a well-documented cause of widespread spurious changes in the reanalysis moisture and temperature fields, which are often exacerbated over Antarctica and the Southern Ocean. This lack of temporal consistency has significantly reduced the reliability of some reanalysis products and their suitability for trend analysis. Century-long reanalysis efforts such as 20CR and ERA-20C, which only assimilate surface pressure observations, have provided ways to achieve greater homogeneity in the observing system through time and (potentially) produce more temporally consistent datasets, particularly across 1979 and the onset of the modern satellite era. However, important issues quickly became apparent in these reanalyses, related in particular to the handling by their data assimilation systems of the near-complete absence of observations poleward of 50°S prior to the 1950s, or to the prescription of ocean boundary conditions (sea ice, SST) prior to 1979. Because of the data scarcity, comparing reanalyses with each other is one of the primary means to assess their reliability. As such, the release of the CERA-20C and ERA5 (partially) by ECMWF in 2017 provides an opportunity to reassess the skill of recent global reanalyses in high southern latitudes and take stock of the recent improvements and remaining challenges, particularly with regard to their use for long-term climate change studies. Our comparison will include both satellite-era comprehensive reanalyses (ERA-Interim, CFSR, MERRA2, JRA-55, and ERA5) and century-long limited reanalyses (20CR, ERA-20C, and CERA-20C). The focus will be placed on key climate variables such as sea level pressure, near-surface temperature, and precipitation.
NASA Astrophysics Data System (ADS)
Vergados, Panagiotis; Mannucci, Anthony J.; Ao, Chi O.; Verkhoglyadova, Olga; Iijima, Byron
2018-03-01
We construct a 9-year data record (2007-2015) of the tropospheric specific humidity using Global Positioning System radio occultation (GPS RO) observations from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission. This record covers the ±40° latitude belt and includes estimates of the zonally averaged monthly mean specific humidity from 700 up to 400 hPa. It includes three major climate zones: (a) the deep tropics (±15°), (b) the trade winds belts (±15-30°), and (c) the subtropics (±30-40°). We find that the RO observations agree very well with the European Centre for Medium-Range Weather Forecasts Re-Analysis Interim (ERA-Interim), the Modern-Era Retrospective Analysis for Research and Applications (MERRA), and the Atmospheric Infrared Sounder (AIRS) by capturing similar magnitudes and patterns of variability in the monthly zonal mean specific humidity and interannual anomaly over annual and interannual timescales. The JPL and UCAR specific humidity climatologies differ by less than 15 % (depending on location and pressure level), primarily due to differences in the retrieved refractivity. In the middle-to-upper troposphere, in all climate zones, JPL is the wettest of all data sets, AIRS is the driest of all data sets, and UCAR, ERA-Interim, and MERRA are in very good agreement, lying between the JPL and AIRS climatologies. In the lower-to-middle troposphere, we present a complex behavior of discrepancies, and we speculate that this might be due to convection and entrainment. Conclusively, the RO observations could potentially be used as a climate variable, but more thorough analysis is required to assess the structural uncertainty between centers and its origin.
NASA Astrophysics Data System (ADS)
Wang, Y.; Yang, K.; Pan, Z.; Qin, J.; Chen, D.
2016-12-01
Southern Tibetan Plateau (STP) is the pass of water vapor from South Asia into the Tibetan Plateau (TP), and the modeling accuracy of precipitable water vapor (PWV) in this region highly depends on water vapor advection estimation and land evaporation parameterization. Understanding its accuracy is important for assimilating PWV satellite products and improving hydrological cycle modeling in weather and climate models. In this study, PWV data from four satellite products (MODIS infrared and near-infrared measurements, AIRS Level-2 and Level-3) and four atmospheric reanalysis datasets (MERRA, JRA-55, NCEP-final, ERA-interim) are evaluated against ground-based GPS measurements at nine stations over the STP. Results show that the MODIS infrared water vapor is heavily underestimated by more than 20% (1.94mm), while the MODIS near-infrared water vapor is heavily overestimated by more than 35% (2.65mm) under clear-sky conditions. AIRS products have better performance than the MODIS and reanalysis data; especially, AIRS Level-2 product has lower bias (0.51mm), lower RMSE value (1.85mm) and higher correlation coefficients (R=0.90). So, the AIRS PWV has higher potential than the MODIS PWV to be used to establish high resolution and quality PWV datasets over the TP. The four reanalysis datasets exhibit similar performance in terms of correlation coefficient (R 0.88 0.91), mean bias (0.74 1.51 mm) and RMSE (2.2 2.36 mm); the ERA-interim has a slightly higher correlation (R=0.91) and the JRA-55 has a little lower bias ( 0.74 mm). The most important finding is that all the reanalyses have systematic positive biases along the PWV seasonal cycle, which is probably associated with the well-known wet bias for the TP in current climate models.
NASA Astrophysics Data System (ADS)
Wright, J. S.; Fueglistaler, S.
2013-09-01
We present the time mean heat budgets of the tropical upper troposphere (UT) and lower stratosphere (LS) as simulated by five reanalysis models: the Modern-Era Retrospective Analysis for Research and Applications (MERRA), European Reanalysis (ERA-Interim), Climate Forecast System Reanalysis (CFSR), Japanese 25-yr Reanalysis and Japan Meteorological Agency Climate Data Assimilation System (JRA-25/JCDAS), and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis 1. The simulated diabatic heat budget in the tropical UTLS differs significantly from model to model, with substantial implications for representations of transport and mixing. Large differences are apparent both in the net heat budget and in all comparable individual components, including latent heating, heating due to radiative transfer, and heating due to parameterised vertical mixing. We describe and discuss the most pronounced differences. Discrepancies in latent heating reflect continuing difficulties in representing moist convection in models. Although these discrepancies may be expected, their magnitude is still disturbing. We pay particular attention to discrepancies in radiative heating (which may be surprising given the strength of observational constraints on temperature and tropospheric water vapour) and discrepancies in heating due to turbulent mixing (which have received comparatively little attention). The largest differences in radiative heating in the tropical UTLS are attributable to differences in cloud radiative heating, but important systematic differences are present even in the absence of clouds. Local maxima in heating and cooling due to parameterised turbulent mixing occur in the vicinity of the tropical tropopause.
NASA Astrophysics Data System (ADS)
Rodehacke, C. B.; Mottram, R.; Boberg, F.
2017-12-01
The Devon Ice Cap is an example of a relatively well monitored small ice cap in the Canadian Arctic. Close to Greenland, it shows a similar surface mass balance signal to glaciers in western Greenland. Here we various boundary conditions, ranging from ERA-Interim reanalysis data via global climate model high resolution (5km) output from the regional climate model HIRHAM5, to determine the surface mass balance of the Devon ice cap. These SMB estimates are used to drive the PISM glacier model in order to model the present day and future prospects of this small Arctic ice cap. Observational data from the Devon Ice Cap in Arctic Canada is used to evaluate the surface mass balance (SMB) data output from the HIRHAM5 model for simulations forced with the ERA-Interim climate reanalysis data and the historical emissions scenario run by the EC-Earth global climate model. The RCP8.5 scenario simulated by EC-Earth is also downscaled by HIRHAM5 and this output is used to force the PISM model to simulate the likely future evolution of the Devon Ice Cap under a warming climate. We find that the Devon Ice Cap is likely to continue its present day retreat, though in the future increased precipitation partly offsets the enhanced melt rates caused by climate change.
Observed surface wind speed declining induced by urbanization in East China
NASA Astrophysics Data System (ADS)
Li, Zhengquan; Song, Lili; Ma, Hao; Xiao, Jingjing; Wang, Kuo; Chen, Lian
2018-02-01
Monthly wind data from 506 meteorological stations and ERA-Interim reanalysis during 1991-2015, are used to examine the surface wind trend over East China. Furthermore, combining the urbanization information derived from the DMSP/OLS nighttime light data during 1992-2013, the effects of urbanization on surface wind change are investigated by applying the observation minus reanalysis (OMR) method. The results show that the observed surface wind speed over East China is distinctly weakening with a rate of -0.16 m s-1 deca-1 during 1991-2015, while ERA-Interim wind speed does not have significant decreasing or increasing trend in the same period. The observed surface wind declining is mainly attributed to underlying surface changes of stations observational areas that were mostly induced by the urbanization in East China. Moreover, the wind declining intensity is closely related to the urbanization rhythms. The OMR annual surface wind speeds of Rhythm-VS, Rhythm-S, Rhythm-M, Rhythm-F and Rhythm-VF, have decreasing trends with the rates of -0.02 to -0.09, -0.16 to -0.26, -0.22 to -0.30, -0.26 to -0.36 and -0.33 to -0.51 m s-1 deca-1, respectively. The faster urbanization rhythm is, the stronger wind speed weakening presents. Additionally urban expansion is another factor resulted in the observed surface wind declining.
On the presence of equatorial waves in the lower stratosphere of a general circulation model
NASA Astrophysics Data System (ADS)
Maury, P.; Lott, F.
2014-02-01
To challenge the hypothesis that equatorial waves in the lower stratosphere are essentially forced by convection, we use the LMDz atmospheric model extended to the stratosphere and compare two versions having very different convection schemes but no quasi-biennial oscillation (QBO). The two versions have realistic time mean precipitation climatologies but very different precipitation variabilities. Despite these differences, the equatorial stratospheric Kelvin waves at 50 hPa are almost identical in the two versions and quite realistic. The Rossby gravity waves are also very similar but significantly weaker than in observations. We demonstrate that this bias on the Rossby gravity waves is essentially due to a dynamical filtering occurring because the model zonal wind is systematically westward. During a westward phase of the QBO, the ERA-Interim Rossby gravity waves compare well with those in the model. These results suggest that (i) in the model the effect of the convection scheme on the waves is in part hidden by the dynamical filtering, and (ii) the waves are produced by other sources than equatorial convection. For the Kelvin waves, this last point is illustrated by an Eliassen and Palm flux analysis, showing that in the model they come more from the subtropics and mid-latitude regions, whereas in the ERA-Interim reanalysis the sources are more equatorial. We show that non-equatorial sources are also significant in reanalysis data sets as they explain the presence of the Rossby gravity waves in the stratosphere. To illustrate this point, we identify situations with large Rossby gravity waves in the reanalysis middle stratosphere for dates selected when the stratosphere is dynamically separated from the equatorial troposphere. We refer to this process as a stratospheric reloading.
On the presence of equatorial waves in the lower stratosphere of a general circulation model
NASA Astrophysics Data System (ADS)
Maury, P.; Lott, F.
2013-08-01
To challenge the hypothesis that equatorial waves in the lower stratosphere are essentially forced by convection, we use the LMDz atmospheric model extended to the stratosphere and compare two versions having very different convection schemes but no quasi biennial oscillation (QBO). The two versions have realistic time mean precipitation climatologies but very different precipitation variabilities. Despite these differences, the equatorial stratospheric Kelvin waves at 50 hPa are almost identical in the two versions and quite realistic. The Rossby-gravity waves are also very close but significantly weaker than in observations. We demonstrate that this bias on the Rossby-gravity waves is essentially due to a dynamical filtering occurring because the model zonal wind is systematically westward: during a westward phase of the QBO, the Rossby-gravity waves in ERA-Interim compare well with those in the model. These results suggest that in the model the effect of the convection scheme on the waves is in part hidden by the dynamical filtering and the waves are produced by other sources than equatorial convection. For the Kelvin waves, this last point is illustrated by an Eliassen and Palm flux analysis, showing that in the model they come more from the subtropics and mid-latitude regions whereas in the ERA-Interim reanalysis the sources are more equatorial. We also show that non-equatorial sources are significant in reanalysis data, and we consider the case of the Rossby-gravity waves. We identify situations in the reanalysis where here are large Rossby-gravity waves in the middle stratosphere, and for dates when the stratosphere is dynamically separated from the equatorial troposphere. We refer to this process as a "stratospheric reloading".
Diagnosing causes of cloud parameterization deficiencies using ARM measurements over SGP site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, W.; Liu, Y.; Betts, A. K.
2010-03-15
Decade-long continuous surface-based measurements at Great Southern Plains (SGP) collected by the US Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility are first used to evaluate the three major reanalyses (i.e., ERA-Interim, NCEP/NCAR Reanalysis I and NCEP/DOE Reanalysis II) to identify model biases in simulating surface shortwave cloud forcing and total cloud fraction. The results show large systematic lower biases in the modeled surface shortwave cloud forcing and cloud fraction from all the three reanalysis datasets. Then we focus on diagnosing the causes of these model biases using the Active Remote Sensing of Clouds (ARSCL) products (e.g., verticalmore » distribution of cloud fraction, cloud-base and cloud-top heights, and cloud optical depth) and meteorological measurements (temperature, humidity and stability). Efforts are made to couple cloud properties with boundary processes in the diagnosis.« less
NASA Astrophysics Data System (ADS)
Renwick, J. A.; Rana, S.; McGregor, J.
2015-12-01
This work addresses the seasonal (winter, pre-monsoon, monsoon and post-monsoon) performance of seven precipitation products from three different data sources: gridded station data, satellite-derived data and reanalyses products over the Indian Subcontinent, for a period of 10 years (1997/98 to 2006/07). Precipitation products evaluated are the Asian Precipitation - Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE), the Climate Prediction Center unified gauge (CPC-uni), the Global Precipitation Climatology project (GPCP), Tropical Rainfall Measuring Mission (TRMM) post real-time research products (3B42-V6 and 3B42-V7), the Climate Forecast System Reanalysis (CFSR) and the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim). Several verification measures are employed to assess the accuracy of the data. All datasets capture the large-scale characteristics of the seasonal mean precipitation distribution, albeit with pronounced seasonal and/or regional differences. Compared to APHRODITE, the gauge-only (CPC-uni) and the satellite-derived precipitation products (GPCP, 3B42-V6 and 3B42-V7) capture the summer monsoon rainfall variability better than CFSR and ERA-Interim. Similar conclusions were drawn for the post-monsoon season, with the exception of 3B42-V7, which underestimates post-monsoon precipitation. Over mountainous regions 3B42-V7 shows an appreciable improvement over 3B42-V6 and other gauge-based precipitation products. Significantly large biases/errors occur during the winter months, which is likely related to the uncertainty in observations that artificially inflate the existing error in reanalyses and satellite retrievals.
Long-term change of the atmospheric energy cycles and weather disturbances
NASA Astrophysics Data System (ADS)
Kim, WonMoo; Choi, Yong-Sang
2017-11-01
Weather disturbances are the manifestation of mean atmospheric energy cascading into eddies, thus identifying atmospheric energy structure is of fundamental importance to understand the weather variability in a changing climate. The question is whether our observational data can lead to a consistent diagnosis on the energy conversion characteristics. Here we investigate the atmospheric energy cascades by a simple framework of Lorenz energy cycle, and analyze the energy distribution in mean and eddy fields as forms of potential and kinetic energy. It is found that even the widely utilized independent reanalysis datasets, NCEP-DOE AMIP-II Reanalysis (NCEP2) and ERA-Interim (ERA-INT), draw different conclusions on the change of weather variability measured by eddy-related kinetic energy. NCEP2 shows an increased mean-to-eddy energy conversion and enhanced eddy activity due to efficient baroclinic energy cascade, but ERA-INT shows relatively constant energy cascading structure between the 1980s and the 2000s. The source of discrepancy mainly originates from the uncertainties in hydrological variables in the mid-troposphere. Therefore, much efforts should be made to improve mid-tropospheric observations for more reliable diagnosis of the weather disturbances as a consequence of man-made greenhouse effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarzycki, Colin M.; Thatcher, Diana R.; Jablonowski, Christiane
This paper describes an objective technique for detecting the extratropical transition (ET) of tropical cyclones (TCs) in high-resolution gridded climate data. The algorithm is based on previous observational studies using phase spaces to define the symmetry and vertical thermal structure of cyclones. Storm tracking is automated, allowing for direct analysis of climate data. Tracker performance in the North Atlantic is assessed using 23 years of data from the variable-resolution Community Atmosphere Model (CAM) at two different resolutions (DX 55 km and 28 km), the Climate Forecast System Reanalysis (CFSR, DX 38 km), and the ERA-Interim Reanalysis (ERA-I, DX 80 km).more » The mean spatiotemporal climatologies and seasonal cycles of objectively detected ET in the observationally constrained CFSR and ERA-I are well matched to previous observational studies, demonstrating the capability of the scheme to adequately find events. High resolution CAM reproduces TC and ET statistics that are in general agreement with reanalyses. One notable model bias, however, is significantly longer time between ET onset and ET completion in CAM, particularly for TCs that lose symmetry prior to developing a cold-core structure and becoming extratropical cyclones, demonstrating the capability of this method to expose model biases in simulated cyclones beyond the tropical phase.« less
Potential impact of climate change on coffee rust over Mexico and Central America
NASA Astrophysics Data System (ADS)
Calderon-Ezquerro, Maria del Carmen; Martinez-Lopez, Benjamin; Cabos Narvaez, William David; Sein, Dmitry
2017-04-01
In this work, some meteorological variables from a regional climate model are used to characterize the dispersion of coffee rust (a fungal disease) from Central America to Mexico, during the 20 Century. The climate model consists of the regional atmosphere model REMO coupled to the MPIOM global ocean model with increased resolution in the Atlantic Ocean. Lateral atmospheric and upper oceanic boundary conditions outside the coupled domain were prescribed using both ERA-40 and ERA-Interim reanalysis data. In addition to the historical simulation, a projection of the evolution of the coffee rust for the 21 Century was obtained from a REMO run using MPIESM data for the lateral forcing.
A Global Climatology of Extratropical Transition
NASA Astrophysics Data System (ADS)
Camargo, S. J.; Bieli, M.; Sobel, A. H.; Evans, J. L.; Hall, T. M.
2017-12-01
When moving into midlatitude regions, tropical cyclones often undergo a process called extratropical transition (ET), in which they radically change their physical structure and develop characteristics typical of extratropical cyclones. We present the first climatology of ET that encompasses all major global tropical cyclone basins and is based on a consistent set of data, time period, and method. Using best-track data from 1979-2015 to define the tracks of the storm centers, we identify storms that undergo ET by means of their paths in the cyclone phase space (CPS), calculated from geopotential height fields in reanalysis datasets. Two reanalyses are employed and compared for this purpose, the Japanese 55-year Reanalysis (JRA-55) and the ECMWF Interim Reanalysis (ERA-Interim). The results are used to study the seasonal and geographical distributions of storms undergoing ET, inter-basin differences in the statistics of ET occurrence, and the differences between the ETs defined by CPS and those defined by the 'extratropical' labels (determined subjectively by human forecasters using a wider range of data) in the best-track archives. About 50% of all storms in the North Atlantic and the Western North Pacific undergo ET. In the southern hemisphere, ET fractions range from about 20% in the South Indian Ocean and the Australian region to 40% in the South Pacific. The North Atlantic and Western North Pacific exhibit somewhat different seasonal cycles, with the probability of ET maximizing later in the North Atlantic, but having a local minimum in the earlier part of the peak season in both basins. Southern hemispheric basins have much less pronounced seasonal cycles. The classification of ET storms based on JRA-55 agrees better with the best-track data than the ERA-Interim classification. In the North Atlantic and the Western North Pacific, the differences are small and both reanalyses achieve F1 performance scores of at least 0.8, but JRA-55 has a higher classification skill in all other basins.Due to the global scope and consistent methodology, the results presented are well suited to serve as a benchmark for other studies including research on ET under climate change scenarios.
NASA Astrophysics Data System (ADS)
Hodges, K.
2010-12-01
Re-analyses are produced using a forecast model, data assimilation system and historical observations. Whilst the observations are common between the re-analyses the way they are assimilated and the forecast model used are often different between the re-analyses which can introduce uncertainty in the representation of particular phenomena between the re-analyses, for example the distribution and properties of weather systems. It is important to inter-compare re-analyses to determine the uncertainty in their representation of the atmosphere, its circulation and weather systems in order to have confidence in their use for studies of the atmosphere and validating climate models. The four recent re-analyses, ERA-Interim, NASA-MERRA, NCEP-CFS and JRA25 are explored and compared for the representation of synoptic scale extra-tropical cyclones. Previous studies of the older re-analyses. ERA40, NCEP-NCAR and DOE has shown that whilst in the NH there was relatively good agreement between the re-analyses in terms of the distribution and properties of extra-tropical cyclones, in the SH there was much larger uncertainty. The newest re-analyses are produced at much higher resolutions than previous re-analyses, in addition more modern data assimilation systems and forecast models have been used. Hence, it would be hoped that the representation of cyclones will be improved to the same extent as that seen in modern NWP systems. This study contrasts extra-tropical cyclones, their distribution and properties, between these new re-analyses and compares them with cyclones in the slightly older though lower resolution JRA25 re-analysis. Results will show that in general in the higher resolution re-analysis more cyclones are identified than in JRA25. In the NH the distribution of storms agrees as well if not better than was the case for the older re-analyses. However, it is in the SH that the largest improvement in agreement is seen for the distribution of storms. For ERA-Interim, NASA-MERRA and NCEP-CFS the agreement in the SH is almost as good as in the NH with the best agreement occurring between ERA-Interim and NCEP-CFS. However, the comparison with JRA25 shows the same level of uncertainty as seen with the older re-analyses. Determining the separation distances of storms using storm matching confirm these results. The biggest differences between the re-analyses occurs for the intensity of storms with the NASA-MERRA having consistently the strongest extreme storms in terms of pressure and winds and JRA25 the weakest, ERA-Interim and NCEP-CFS are very similar in this respect. Using vorticity as an intensity measure shows the greatest sensitivity and goes with resolution. If time permits a comparison of the structure of the storms will also be presented. The approach used only highlights the uncertainty between the re-analyses it does not say which one is right. To try to address this some early results of comparing the re-analyses directly with observations of low level winds from scatterometers in the vicinity of storms will be presented if time permits.
Simulation of the West African monsoon onset using the HadGEM3-RA regional climate model
NASA Astrophysics Data System (ADS)
Diallo, Ismaïla; Bain, Caroline L.; Gaye, Amadou T.; Moufouma-Okia, Wilfran; Niang, Coumba; Dieng, Mame D. B.; Graham, Richard
2014-08-01
The performance of the Hadley Centre Global Environmental Model version 3 regional climate model (HadGEM3-RA) in simulating the West African monsoon (WAM) is investigated. We focus on performance for monsoon onset timing and for rainfall totals over the June-July-August (JJA) season and on the model's representation of the underlying dynamical processes. Experiments are driven by the ERA-Interim reanalysis and follow the CORDEX experimental protocol. Simulations with the HadGEM3 global model, which shares a common physical formulation with HadGEM3-RA, are used to gain insight into the causes of HadGEM3-RA simulation errors. It is found that HadGEM3-RA simulations of monsoon onset timing are realistic, with an error in mean onset date of two pentads. However, the model has a dry bias over the Sahel during JJA of 15-20 %. Analysis suggests that this is related to errors in the positioning of the Saharan heat low, which is too far south in HadGEM3-RA and associated with an insufficient northward reach of the south-westerly low-level monsoon flow and weaker moisture convergence over the Sahel. Despite these biases HadGEM3-RA's representation of the general rainfall distribution during the WAM appears superior to that of ERA-Interim when using Global Precipitation Climatology Project or Tropical Rain Measurement Mission data as reference. This suggests that the associated dynamical features seen in HadGEM3-RA can complement the physical picture available from ERA-Interim. This approach is supported by the fact that the global HadGEM3 model generates realistic simulations of the WAM without the benefit of pseudo-observational forcing at the lateral boundaries; suggesting that the physical formulation shared with HadGEM3-RA, is able to represent the driving processes. HadGEM3-RA simulations confirm previous findings that the main rainfall peak near 10°N during June-August is maintained by a region of mid-tropospheric ascent located, latitudinally, between the cores of the African Easterly Jet and Tropical Easterly Jet that intensifies around the time of onset. This region of ascent is weaker and located further south near 5°N in the driving ERA-Interim reanalysis, for reasons that may be related to the coarser resolution or the physics of the underlying model, and this is consistent with a less realistic latitudinal rainfall profile than found in the HadGEM3-RA simulations.
NASA Astrophysics Data System (ADS)
Guo, Donglin; Wang, Huijun; Wang, Aihui
2017-11-01
Numerical simulation is of great importance to the investigation of changes in frozen ground on large spatial and long temporal scales. Previous studies have focused on the impacts of improvements in the model for the simulation of frozen ground. Here the sensitivities of permafrost simulation to different atmospheric forcing data sets are examined using the Community Land Model, version 4.5 (CLM4.5), in combination with three sets of newly developed and reanalysis-based atmospheric forcing data sets (NOAA Climate Forecast System Reanalysis (CFSR), European Centre for Medium-Range Weather Forecasts Re-Analysis Interim (ERA-I), and NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA)). All three simulations were run from 1979 to 2009 at a resolution of 0.5° × 0.5° and validated with what is considered to be the best available permafrost observations (soil temperature, active layer thickness, and permafrost extent). Results show that the use of reanalysis-based atmospheric forcing data set reproduces the variations in soil temperature and active layer thickness but produces evident biases in their climatologies. Overall, the simulations based on the CFSR and ERA-I data sets give more reasonable results than the simulation based on the MERRA data set, particularly for the present-day permafrost extent and the change in active layer thickness. The three simulations produce ranges for the present-day climatology (permafrost area: 11.31-13.57 × 106 km2; active layer thickness: 1.10-1.26 m) and for recent changes (permafrost area: -5.8% to -9.0%; active layer thickness: 9.9%-20.2%). The differences in air temperature increase, snow depth, and permafrost thermal conditions in these simulations contribute to the differences in simulated results.
A High-resolution Reanalysis for the European CORDEX Region
NASA Astrophysics Data System (ADS)
Bentzien, Sabrina; Bollmeyer, Christoph; Crewell, Susanne; Friederichs, Petra; Hense, Andreas; Keller, Jan; Keune, Jessica; Kneifel, Stefan; Ohlwein, Christian; Pscheidt, Ieda; Redl, Stephanie; Steinke, Sandra
2014-05-01
A High-resolution Reanalysis for the European CORDEX Region Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. The work presented here focuses on the regional reanalysis for Europe with a domain matching the CORDEX-EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km). The COSMO reanalysis system comprises the assimilation of observational data using the existing nudging scheme of COSMO and is complemented by a special soil moisture analysis and boundary conditions given by ERA-interim data. The reanalysis data set currently covers 6 years (2007-2012). The evaluation of the reanalyses is done using independent observations with special emphasis on precipitation and high-impact weather situations. The development and evaluation of the COSMO-based reanalysis for the CORDEX-Euro domain can be seen as a preparation for joint European activities on the development of an ensemble system of regional reanalyses for Europe.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man
2008-01-01
This study presents an approach that converts the vertical profiles of grid-averaged cloud properties from large-scale models to probability density functions (pdfs) of subgrid-cell cloud physical properties measured at satellite footprints. Cloud physical and radiative properties, rather than just cloud and precipitation occurrences, of assimilated cloud systems by the European Center for Medium-range Weather Forecasts (ECMWF) operational analysis (EOA) and ECMWF Re-Analyses (ERA-40 and ERA Interim) are validated against those obtained from Earth Observing System satellite cloud object data for January-August 1998 and March 2000 periods. These properties include ice water path (IWP), cloud-top height and temperature, cloud optical depth and solar and infrared radiative fluxes. Each cloud object, a contiguous region with similar cloud physical properties, is temporally and spatially matched with EOA and ERA-40 data. Results indicate that most pdfs of EOA and ERA-40 cloud physical and radiative properties agree with those of satellite observations of the tropical deep convective cloud-object type for the January-August 1998 period. There are, however, significant discrepancies in selected ranges of the cloud property pdfs such as the upper range of EOA cloud top height. A major discrepancy is that the dependence of the pdfs on the cloud object size for both EOA and ERA-40 is not as strong as in the observations. Modifications to the cloud parameterization in ECMWF that occurred in October 1999 eliminate the clouds near the tropopause but shift power of the pdf to lower cloud-top heights and greatly reduce the ranges of IWP and cloud optical depth pdfs. These features persist in ERA-40 due to the use of the same cloud parameterizations. The downgrade of data assimilation technique and the lack of snow water content information in ERA-40, not the coarser horizontal grid resolution, are also responsible for the disagreements with observed pdfs of cloud physical properties although the detection rates of cloud object occurrence are improved for small size categories. A possible improvement to the convective parameterization is to introduce a stronger dependence of updraft penetration heights with grid-cell dynamics. These conclusions will be rechecked using the ERA Interim data, due to recent changes in the ECMWF convective parameterization (Bechtold et al. 2004, 2008). Results from the ERA Interim will be presented at the meeting.
NASA Astrophysics Data System (ADS)
Georgievski, Goran; Keuler, Klaus
2013-04-01
Water supply and its potential to increase social, economic and environmental risks are among the most critical challenges for the upcoming decades. Therefore, the assessment of the reliability of regional climate models (RCMs) to represent present-day hydrological balance of river basins is one of the most challenging tasks with high priority for climate modelling in order to estimate range of possible socio-economic impacts of the climate change. However, previous work in the frame of 4th IPCC AR and corresponding regional downscaling experiments (with focus on Europe and Danube river basin) showed that even the meteorological re-analyses provide unreliable data set for evaluations of climate model performance. Furthermore, large discrepancies among the RCMs are caused by internal model deficiencies (for example: systematic errors in dynamics, land-soil parameterizations, large-scale condensation and convection schemes), and in spite of higher resolution RCMs do not always improve much the results from GCMs, but even deteriorate it in some cases. All that has a consequence that capturing impact of climate change on hydrological cycle is not an easy task. Here we present state of the art of RCMs in the frame of the CORDEX project for Europe. First analysis shows again that even the up to date ERA-INTERIM re-analysis is not reliable for evaluation of hydrological cycle in major European midlatitude river basins (Seine, Rhine, Elbe, Oder, Vistula, Danube, Po, Rhone, Garonne and Ebro). Therefore, terrestrial water storage, a quasi observed parameter which is a combination of river discharge (from Global River Discharge Centre data set) and atmospheric moisture fluxes from ERA-INTERIM re-analysis, is used for verification. It shows qualitatively good agreement with COSMO-CLM (CCLM) regional climate simulation (abbreviated CCLM_eval) at 0.11 degrees horizontal resolution forced by ERA-INTERIM re-analysis. Furthermore, intercomparison of terrestrial water storage seasonal cycle averaged in Danube river basin for the ten years (1990-1999) overlapping period between CCLM historical experiment (abbreviated CCLM_hist), its forcing GCM (MPI-ESM-LR, here abbreviated MPI_hist) and CCLM_eval is performed. It reveals that CCLM_hist simulation is in better agreement with quasi observed terrestrial water storage than MPI_hist and CCLM_eval. This result seems promising for the assessment of impact of climate change on hydrological cycle. However, evaluation of the whole ensemble of regional climate downscaling experiments participated in CORDEX-Europe project would provide a more robust estimate.
Return levels of temperature extremes in southern Pakistan
NASA Astrophysics Data System (ADS)
Zahid, Maida; Blender, Richard; Lucarini, Valerio; Caterina Bramati, Maria
2017-12-01
Southern Pakistan (Sindh) is one of the hottest regions in the world and is highly vulnerable to temperature extremes. In order to improve rural and urban planning, it is useful to gather information about the recurrence of temperature extremes. In this work, return levels of the daily maximum temperature Tmax are estimated, as well as the daily maximum wet-bulb temperature TWmax extremes. We adopt the peaks over threshold (POT) method, which has not yet been used for similar studies in this region. Two main datasets are analyzed: temperatures observed at nine meteorological stations in southern Pakistan from 1980 to 2013, and the ERA-Interim (ECMWF reanalysis) data for the nearest corresponding locations. The analysis provides the 2-, 5-, 10-, 25-, 50-, and 100-year return levels (RLs) of temperature extremes. The 90 % quantile is found to be a suitable threshold for all stations. We find that the RLs of the observed Tmax are above 50 °C at northern stations and above 45 °C at the southern stations. The RLs of the observed TWmax exceed 35 °C in the region, which is considered as a limit of survivability. The RLs estimated from the ERA-Interim data are lower by 3 to 5 °C than the RLs assessed for the nine meteorological stations. A simple bias correction applied to ERA-Interim data improves the RLs remarkably, yet discrepancies are still present. The results have potential implications for the risk assessment of extreme temperatures in Sindh.
NASA Astrophysics Data System (ADS)
Liu, Z.; Schweiger, A. J. B.
2016-12-01
We use the Polar Weather Research and Forecasting (WRF) model to simulate atmospheric conditions during the Seasonal Ice Zone Reconnaissance Survey (SIZRS) over the Beaufort Sea in the summer since 2013. With the 119 SIZRS dropsondes in the18 cross sections along the 150W and 140W longitude lines, we evaluate the performance of WRF simulations and two forcing data sets, the ERA-Interim reanalysis and the Global Forecast System (GFS) analysis, and explore the improvement of the Polar WRF performance when the dropsonde data are assimilated using observation nudging. Polar WRF, ERA-Interim, and GFS can reproduce the general features of the observed mean atmospheric profiles, such as low-level temperature inversion, low-level jet (LLJ) and specific humidity inversion. The Polar WRF significantly improves the mean LLJ, with a lower and stronger jet and a larger turning angle than the forcing, which is likely related to the lower values of the boundary layer diffusion in WRF than in the global models such as ECMWF and GFS. The Polar WRF simulated relative humidity closely resembles the forcing datasets while having large biases compared to observations. This suggests that the performance of Polar WRF and its forecasts in this region are limited by the quality of the forcing dataset and that the assimilation of more and better-calibrated observations, such as humidity data, is critical for their improvement. We investigate the potential of assimilating the SIZRS dropsonde dataset in improving the weather forecast over the Beaufort Sea. A simple local nudging approach is adopted. Along SIZRS flight cross sections, a set of Polar WRF simulations are performed with varying number of variables and dropsonde profiles assimilated. Different model physics are tested to examine the sensitivity of different aspects of model physics, such as boundary layer schemes, cloud microphysics, and radiation parameterization, to data assimilation. The comparison of the Polar WRF runs with assimilation and the runs without assimilation demonstrates the importance of SIZRS dropsonde data to the improvement of atmospheric analysis and reanalysis such as GFS and ERA-Interim, and consequently to the improvement of weather forecast in this region.
NASA Astrophysics Data System (ADS)
Titov, A. G.; Gordov, E. P.; Okladnikov, I.; Shulgina, T. M.
2011-12-01
Analysis of recent climatic and environmental changes in Siberia performed on the basis of the CLEARS (CLimate and Environment Analysis and Research System) information-computational system is presented. The system was developed using the specialized software framework for rapid development of thematic information-computational systems based on Web-GIS technologies. It comprises structured environmental datasets, computational kernel, specialized web portal implementing web mapping application logic, and graphical user interface. Functional capabilities of the system include a number of procedures for mathematical and statistical analysis, data processing and visualization. At present a number of georeferenced datasets is available for processing including two editions of NCEP/NCAR Reanalysis, JMA/CRIEPI JRA-25 Reanalysis, ECMWF ERA-40 and ERA Interim Reanalysis, meteorological observation data for the territory of the former USSR, and others. Firstly, using functionality of the computational kernel employing approved statistical methods it was shown that the most reliable spatio-temporal characteristics of surface temperature and precipitation in Siberia in the second half of 20th and beginning of 21st centuries are provided by ERA-40/ERA Interim Reanalysis and APHRODITE JMA Reanalysis, respectively. Namely those Reanalyses are statistically consistent with reliable in situ meteorological observations. Analysis of surface temperature and precipitation dynamics for the territory of Siberia performed on the base of the developed information-computational system reveals fine spatial and temporal details in heterogeneous patterns obtained for the region earlier. Dynamics of bioclimatic indices determining climate change impact on structure and functioning of regional vegetation cover was investigated as well. Analysis shows significant positive trends of growing season length accompanied by statistically significant increase of sum of growing degree days and total annual precipitation over the south of Western Siberia. In particular, we conclude that analysis of trends of growing season length, sum of growing degree-days and total precipitation during the growing season reveals a tendency to an increase of vegetation ecosystems productivity across the south of Western Siberia (55°-60°N, 59°-84°E) in the past several decades. The developed system functionality providing instruments for comparison of modeling and observational data and for reliable climatological analysis allowed us to obtain new results characterizing regional manifestations of global change. It should be added that each analysis performed using the system leads also to generation of the archive of spatio-temporal data fields ready for subsequent usage by other specialists. In particular, the archive of bioclimatic indices obtained will allow performing further detailed studies of interrelations between local climate and vegetation cover changes, including changes of carbon uptake related to variations of types and amount of vegetation and spatial shift of vegetation zones. This work is partially supported by RFBR grants #10-07-00547 and #11-05-01190-a, SB RAS Basic Program Projects 4.31.1.5 and 4.31.2.7.
Toward a 35-years North American Precipitation and Surface Reanalysis
NASA Astrophysics Data System (ADS)
Gasset, N.; Fortin, V.
2017-12-01
In support of the International Watersheds Initiative (IWI) of the International Joint Commission (IJC), a 35-years precipitation and surface reanalysis covering North America at a 3-hours and 15-km resolution is currently being developed at the Canadian Meteorological Centre (CMC). A deterministic reforecast / dynamical downscaling approach is followed where a global reanalysis (ERA-Interim) is used as initial condition of the Global Environmental Multi-scale model (GEM). Moreover, the latter is coupled with precipitation and surface data assimilation systems, i.e. the Canadian Precipitation Analysis (CaPA) and the Canadian Land Data Assimilation System (CaLDAS). While optimized to be more computationally efficient in the context of a reforecast experiment, all systems used are closely related to model versions and configurations currently run operationally at CMC, meaning they have undergone a strict and thorough validation procedure.As a proof of concept and in order to identify the optimal set-up before achieving the 35-years reanalysis, several configurations of the approach are evaluated for the years 2010-2014 using both standard CMC validation methodology as well as more dedicated scores such as comparison against the currently available products (North American Regional Reanalysis, MERRA-Land and the newly released ERA5 reanalysis). A special attention is dedicated to the evaluation of analysed variables, i.e. precipitation, snow depth, surface/ground temperature and moisture over the whole domain of interest. Results from these preliminary samples are very encouraging and the optimal set-up is identified. The coupled approach, i.e. GEM+CaPA/CaLDAS, always shows clear improvements over classical reforecast and dynamical downscaling where surface observations are present. Furthermore, results are inline or better than currently available products and the reference CMC operational approach that was operated from 2012 to 2016 (GEM 3.3, 10-km resolution). This reanalysis will allow for bias correction of current estimates and forecasts, and help decision maker understand and communicate by how much the current forecasted state of the system differs from the recent past.
Near-surface wind speed statistical distribution: comparison between ECMWF System 4 and ERA-Interim
NASA Astrophysics Data System (ADS)
Marcos, Raül; Gonzalez-Reviriego, Nube; Torralba, Verónica; Cortesi, Nicola; Young, Doo; Doblas-Reyes, Francisco J.
2017-04-01
In the framework of seasonal forecast verification, knowing whether the characteristics of the climatological wind speed distribution, simulated by the forecasting systems, are similar to the observed ones is essential to guide the subsequent process of bias adjustment. To bring some light about this topic, this work assesses the properties of the statistical distributions of 10m wind speed from both ERA-Interim reanalysis and seasonal forecasts of ECMWF system 4. The 10m wind speed distribution has been characterized in terms of the four main moments of the probability distribution (mean, standard deviation, skewness and kurtosis) together with the coefficient of variation and goodness of fit Shapiro-Wilks test, allowing the identification of regions with higher wind variability and non-Gaussian behaviour at monthly time-scales. Also, the comparison of the predicted and observed 10m wind speed distributions has been measured considering both inter-annual and intra-seasonal variability. Such a comparison is important in both climate research and climate services communities because it provides useful climate information for decision-making processes and wind industry applications.
Improving Global Net Surface Heat Flux with Ocean Reanalysis
NASA Astrophysics Data System (ADS)
Carton, J.; Chepurin, G. A.; Chen, L.; Grodsky, S.
2017-12-01
This project addresses the current level of uncertainty in surface heat flux estimates. Time mean surface heat flux estimates provided by atmospheric reanalyses differ by 10-30W/m2. They are generally unbalanced globally, and have been shown by ocean simulation studies to be incompatible with ocean temperature and velocity measurements. Here a method is presented 1) to identify the spatial and temporal structure of the underlying errors and 2) to reduce them by exploiting hydrographic observations and the analysis increments produced by an ocean reanalysis using sequential data assimilation. The method is applied to fluxes computed from daily state variables obtained from three widely used reanalyses: MERRA2, ERA-Interim, and JRA-55, during an eight year period 2007-2014. For each of these seasonal heat flux errors/corrections are obtained. In a second set of experiments the heat fluxes are corrected and the ocean reanalysis experiments are repeated. This second round of experiments shows that the time mean error in the corrected fluxes is reduced to within ±5W/m2 over the interior subtropical and midlatitude oceans, with the most significant changes occuring over the Southern Ocean. The global heat flux imbalance of each reanalysis is reduced to within a few W/m2 with this single correction. Encouragingly, the corrected forms of the three sets of fluxes are also shown to converge. In the final discussion we present experiments beginning with a modified form of the ERA-Int reanalysis, produced by the DAKKAR program, in which state variables have been individually corrected based on independent measurements. Finally, we discuss the separation of flux error from model error.
Relating isotopic composition of precipitation to atmospheric patterns and local moisture recycling
NASA Astrophysics Data System (ADS)
Logan, K. E.; Brunsell, N. A.; Nippert, J. B.
2016-12-01
Local land management practices such as irrigation significantly alter surface evapotranspiration (ET), regional boundary layer development, and potentially modify precipitation likelihood and amount. How strong this local forcing is in comparison to synoptic-scale dynamics, and how much ET is recycled locally as precipitation are areas of great uncertainty and are especially important when trying to forecast the impact of local land management strategies on drought mitigation. Stable isotope analysis has long been a useful tool for tracing movement throughout the water cycle. In this study, reanalysis data and stable isotope samples of precipitation events are used to estimate the contribution of local moisture recycling to precipitation at the Konza Prairie LTER - located in the Great Plains, downwind of intensive agricultural areas. From 2001 to 2014 samples of all precipitation events over 5mm were collected and 18O and D isotopes measured. Comparison of observed precipitation totals and MERRA and ERA-interim reanalysis totals is used to diagnose periods of strong local moisture contribution (especially from irrigation) to precipitation. Large discrepancies in precipitation between observation and reanalysis, particularly MERRA, tend to follow dry periods during the growing season, presumably because while ERA-Interim adjusts soil moisture using observed surface temperature and humidity, MERRA includes no such local soil moisture adjustment and therefore lacks potential precipitation feedbacks induced by irrigation. The δ18O and δD signature of local irrigation recycling is evaluated using these incongruous observations. Self-organizing maps (SOM) are then used to identify a comprehensive range of synoptic conditions that result in precipitation at Konza LTER. Comparison of isotopic signature and SOM classification of rainfall events allows for identification of the primary moisture source and estimation of the contribution of locally recycled moisture. The climatology of precipitation source and changes in the influence of local moisture over the course of 14 years of observation are explored.
High-Resolution Regional Reanalysis in China: Evaluation of 1 Year Period Experiments
NASA Astrophysics Data System (ADS)
Zhang, Qi; Pan, Yinong; Wang, Shuyu; Xu, Jianjun; Tang, Jianping
2017-10-01
Globally, reanalysis data sets are widely used in assessing climate change, validating numerical models, and understanding the interactions between the components of a climate system. However, due to the relatively coarse resolution, most global reanalysis data sets are not suitable to apply at the local and regional scales directly with the inadequate descriptions of mesoscale systems and climatic extreme incidents such as mesoscale convective systems, squall lines, tropical cyclones, regional droughts, and heat waves. In this study, by using a data assimilation system of Gridpoint Statistical Interpolation, and a mesoscale atmospheric model of Weather Research and Forecast model, we build a regional reanalysis system. This is preliminary and the first experimental attempt to construct a high-resolution reanalysis for China main land. Four regional test bed data sets are generated for year 2013 via three widely used methods (classical dynamical downscaling, spectral nudging, and data assimilation) and a hybrid method with data assimilation coupled with spectral nudging. Temperature at 2 m, precipitation, and upper level atmospheric variables are evaluated by comparing against observations for one-year-long tests. It can be concluded that the regional reanalysis with assimilation and nudging methods can better produce the atmospheric variables from surface to upper levels, and regional extreme events such as heat waves, than the classical dynamical downscaling. Compared to the ERA-Interim global reanalysis, the hybrid nudging method performs slightly better in reproducing upper level temperature and low-level moisture over China, which improves regional reanalysis data quality.
Developing a high-resolution regional atmospheric reanalysis for Australia
NASA Astrophysics Data System (ADS)
White, Christopher; Fox-Hughes, Paul; Su, Chun-Hsu; Jakob, Dörte; Kociuba, Greg; Eisenberg, Nathan; Steinle, Peter; Harris, Rebecca; Corney, Stuart; Love, Peter; Remenyi, Tomas; Chladil, Mark; Bally, John; Bindoff, Nathan
2017-04-01
A dynamically consistent, long-term atmospheric reanalysis can be used to support high-quality assessments of environmental risk and likelihood of extreme events. Most reanalyses are presently based on coarse-scale global systems that are not suitable for regional assessments in fire risk, water and natural resources, amongst others. The Australian Bureau of Meteorology is currently working to close this gap by producing a high-resolution reanalysis over the Australian and New Zealand region to construct a sequence of atmospheric conditions at sub-hourly intervals over the past 25 years from 1990. The Australia reanalysis consists of a convective-scale analysis nested within a 12 km regional-scale reanalysis, which is bounded by a coarse-scale ERA-Interim reanalysis that provides the required boundary and initial conditions. We use an unchanging atmospheric modelling suite based on the UERRA system used at the UK Met Office and the more recent version of the Bureau of Meteorology's operational numerical prediction model used in ACCESS-R (Australian Community Climate and Earth-System Simulator-Regional system). An advanced (4-dimensional variational) data assimilation scheme is used to optimally combine model physics with multiple observations from aircrafts, sondes, surface observations and satellites to create a best estimate of state of the atmosphere over a 6-hour moving window. This analysis is in turn used to drive a higher-resolution (1.5 km) downscaling model over selected subdomains within Australia, currently eastern New South Wales and Tasmania, with the capability to support this anywhere in the Australia-New Zealand domain. The temporal resolution of the gridded analysis fields for both the regional and higher-resolution subdomains are generally one hour, with many fields such as 10 m winds and 2 m temperatures available every 10 minutes. The reanalysis also produces many other variables that include wind, temperature, moisture, pressure, cloud cover, precipitation, evaporation, soil water, and energy fluxes. In this presentation, we report on the implementation of the Australia regional reanalysis and results from first stages of the project, with a focus on the Tasmanian subdomain. An initial benchmarking 1.5 km data set - referred to as the 'Initial Analysis' - has been constructed over the subdomains consisting of regridded and harmonised analysis and short-term forecast fields from the operational ACCESS-C model using the past 5 years (2011-2015) of archived data. Evaluation of the Initial Analysis against surface observations from automatic weather stations indicate changes in model skills over time that may be attributed to changes in NWP and assimilation systems, and model cycling frequency. Preliminary evaluations of the reanalysis across Tasmania and its inter-comparisons with the Initial Analysis and the ERA-Interim reanalysis products will be presented, including some features across the Tasmanian subdomain such as means and extremes of analysed weather variables. Finally, we describe a number of applications across Tasmania of the reanalysis of immediate interest to meteorologists, fire and landscape managers and other members of the emergency management community, including the use of the data to create post-processed fields such as soil dryness, tornados and fire danger indices for forest fire danger risk assessment, including a climatology of Continuous Haines Index.
Tropospheric delays from GNSS for application in coastal altimetry
NASA Astrophysics Data System (ADS)
Fernandes, M. Joana; Pires, Nelson; Lázaro, Clara; Nunes, Alexandra L.
2013-04-01
In the scope of the development of an improved methodology for the computation of the wet tropospheric correction for coastal altimetry, based on the use of tropospheric delays derived from GNSS (Global Navigation Satellite Systems), various studies have been conducted aiming to improve the estimation, at global scale, of GNSS-derived tropospheric delays.Amongst these studies, two are presented in this paper: (1) a global assessment of zenith total delays (ZTD) determined at international data centres such as EPN (EUREF Permanent Network) and IGS (International GNSS Service) by comparison with ZTD solutions computed at the University of Porto (U.Porto) using state-of-the-art methodologies and ZTD estimated from ERA Interim, the latest reanalysis dataset from ECMWF (European Centre for Medium-Range Weather Forecasts), (2) evaluation of the accuracy of the hydrostatic component of the tropospheric delay (zenith hydrostatic delay, ZHD) estimation from different sources of surface pressure.When compared with ERA Interim, both IGS and U.Porto ZTD are homogeneous with a mean standard deviation of the differences, for all analysed sites, of 12 mm. The U.Porto and IGS ZTD agree within 4 mm (1σ), while for EPN the same result is only valid for the period after November 2006. Before that date, the EPN solutions are slightly degraded and require an adequate correction.Aiming to evaluate the accuracy of ZHD determination from various sources of atmospheric pressure, a study is presented that compares ZHD values determined with in situ measurements of surface pressure at a global set of 63 coastal barometric sites (GNSS stations), the corresponding values obtained from ECMWF operational model, ERA Interim sea level pressure (SLP) and ZHD from the Vienna Mapping Functions 1 (VMF1).Results show that the global grids of sea level pressure provided by ECMWF operational model, either at 0.25° or 0.125° spacing, or the ERA Interim reanalysis product at 1.5°, allow the estimation of the hydrostatic component of the tropospheric delay with an accuracy of 1 to 3 mm at global scale, provided an adequate model for the height dependence of atmospheric pressure is adopted. In comparison, for VMF1 grids provided at 2.5° spacing, although the overall accuracy of ZHD estimation is 2-4 mm in most sites, in regions with high variability and strong seasonal signal in the surface pressure, VMF1 can reveal errors with a clear annual pattern and epochs for which the error exceeds the centimetre level. When used to estimate the wet component of the tropospheric delay (zenith wet delay, ZWD) for coastal altimetry, these errors can translate into errors of similar magnitude in sea level studies.
NASA Astrophysics Data System (ADS)
Rasmussen, K. L.; Prein, A. F.; Rasmussen, R. M.; Ikeda, K.; Liu, C.
2017-11-01
Novel high-resolution convection-permitting regional climate simulations over the US employing the pseudo-global warming approach are used to investigate changes in the convective population and thermodynamic environments in a future climate. Two continuous 13-year simulations were conducted using (1) ERA-Interim reanalysis and (2) ERA-Interim reanalysis plus a climate perturbation for the RCP8.5 scenario. The simulations adequately reproduce the observed precipitation diurnal cycle, indicating that they capture organized and propagating convection that most climate models cannot adequately represent. This study shows that weak to moderate convection will decrease and strong convection will increase in frequency in a future climate. Analysis of the thermodynamic environments supporting convection shows that both convective available potential energy (CAPE) and convective inhibition (CIN) increase downstream of the Rockies in a future climate. Previous studies suggest that CAPE will increase in a warming climate, however a corresponding increase in CIN acts as a balancing force to shift the convective population by suppressing weak to moderate convection and provides an environment where CAPE can build to extreme levels that may result in more frequent severe convection. An idealized investigation of fundamental changes in the thermodynamic environment was conducted by shifting a standard atmospheric profile by ± 5 °C. When temperature is increased, both CAPE and CIN increase in magnitude, while the opposite is true for decreased temperatures. Thus, even in the absence of synoptic and mesoscale variations, a warmer climate will provide more CAPE and CIN that will shift the convective population, likely impacting water and energy budgets on Earth.
Assessment and Enhancement of MERRA Land Surface Hydrology Estimates
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; Koster, Randal D.; deLannoy, Gabrielle J. M.; Forman, Barton A.; Liu, Qing; Mahanama, Sarith P. P.; Toure, Ally
2012-01-01
The Modern-Era Retrospective analysis for Research and Applications (MERRA) is a state-ofthe-art reanalysis that provides, in addition to atmospheric fields, global estimates of soil moisture, latent heat flux, snow, and runoff for 1979-present. This study introduces a supplemental and improved set of land surface hydrological fields ("MERRA-Land") generated by re-running a revised version of the land component of the MERRA system. Specifically, the MERRA-Land estimates benefit from corrections to the precipitation forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised parameter values in the rainfall interception model, changes that effectively correct for known limitations in the MERRA surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against observations and compared to the skill of the state-of-the-art ERA-Interim (ERA-I) reanalysis. MERRA-Land and ERA-I root zone soil moisture skills (against in situ observations at 85 US stations) are comparable and significantly greater than that of MERRA. Throughout the northern hemisphere, MERRA and MERRA-Land agree reasonably well with in situ snow depth measurements (from 583 stations) and with snow water equivalent from an independent analysis. Runoff skill (against naturalized stream flow observations from 18 US basins) of MERRA and MERRA-Land is typically higher than that of ERA-I. With a few exceptions, the MERRA-Land data appear more accurate than the original MERRA estimates and are thus recommended for those interested in using MERRA output for land surface hydrological studies.
Determination of zenith hydrostatic delay and its impact on GNSS-derived integrated water vapor
NASA Astrophysics Data System (ADS)
Wang, Xiaoming; Zhang, Kefei; Wu, Suqin; He, Changyong; Cheng, Yingyan; Li, Xingxing
2017-08-01
Surface pressure is a necessary meteorological variable for the accurate determination of integrated water vapor (IWV) using Global Navigation Satellite System (GNSS). The lack of pressure observations is a big issue for the conversion of historical GNSS observations, which is a relatively new area of GNSS applications in climatology. Hence the use of the surface pressure derived from either a blind model (e.g., Global Pressure and Temperature 2 wet, GPT2w) or a global atmospheric reanalysis (e.g., ERA-Interim) becomes an important alternative solution. In this study, pressure derived from these two methods is compared against the pressure observed at 108 global GNSS stations at four epochs (00:00, 06:00, 12:00 and 18:00 UTC) each day for the period 2000-2013. Results show that a good accuracy is achieved from the GPT2w-derived pressure in the latitude band between -30 and 30° and the average value of 6 h root-mean-square errors (RMSEs) across all the stations in this region is 2.5 hPa. Correspondingly, an error of 5.8 mm and 0.9 kg m-2 in its resultant zenith hydrostatic delay (ZHD) and IWV is expected. However, for the stations located in the mid-latitude bands between -30 and -60° and between 30 and 60°, the mean value of the RMSEs is 7.3 hPa, and for the stations located in the high-latitude bands from -60 to -90° and from 60 to 90°, the mean value of the RMSEs is 9.9 hPa. The mean of the RMSEs of the ERA-Interim-derived pressure across at the selected 100 stations is 0.9 hPa, which will lead to an equivalent error of 2.1 mm and 0.3 kg m-2 in the ZHD and IWV, respectively, determined from this ERA-Interim-derived pressure. Results also show that the monthly IWV determined using pressure from ERA-Interim has a good accuracy - with a relative error of better than 3 % on a global scale; thus, the monthly IWV resulting from ERA-Interim-derived pressure has the potential to be used for climate studies, whilst the monthly IWV resulting from GPT2w-derived pressure has a relative error of 6.7 % in the mid-latitude regions and even reaches 20.8 % in the high-latitude regions. The comparison between GPT2w and seasonal models of pressure-ZHD derived from ERA-Interim and pressure observations indicates that GPT2w captures the seasonal variations in pressure-ZHD very well.
NASA Technical Reports Server (NTRS)
Wei, Jiangfeng; Dirmeyer, Paul A.; Wisser, Dominik; Bosilovich, Michael G.; Mocko, David M.
2013-01-01
Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.
On the transferability of RegCM4: Europe, Africa and Asia
NASA Astrophysics Data System (ADS)
Belda, Michal; Halenka, Tomas
2013-04-01
Simulations driven by ERA-interim reanalysis for CORDEX domains covering Europe, Africa and Asia have been performed using RegCM4 at 50 km resolution. The same settings are used in basic simulations and preliminary evaluation of model performance for individual regions will be presented. Several settings of different options is tested and sensitivity of selected ones will be shown in individual regions. Secant Mercator projection is introduced for Africa providing more efficient model geometry setting, the impact of proper emissivity inclusion is compared especially for Africa and Asia desserts. CRU data are used for the validation.
NASA Astrophysics Data System (ADS)
Strobach, E.; Molod, A.; Menemenlis, D.; Forget, G.; Hill, C. N.; Campin, J. M.; Heimbach, P.
2017-12-01
Forcing ocean models with reanalysis data is a common practice in ocean modeling. As part of this practice, prescribed atmospheric state variables and interactive ocean SST are used to calculate fluxes between the ocean and the atmosphere. When forcing an ocean model with reanalysis fields, errors in the reanalysis data, errors in the ocean model and errors in the forcing formulation will generate a different solution compared to other ocean reanalysis solutions (which also have their own errors). As a first step towards a consistent coupled ocean-atmosphere reanalysis, we compare surface heat fluxes from a state-of-the-art atmospheric reanalysis, the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), to heat fluxes from a state-of-the-art oceanic reanalysis, the Estimating the Circulation and Climate of the Ocean Version 4, Release 2 (ECCO-v4). Then, we investigate the errors associated with the MITgcm ocean model in its ECCO-v4 ocean reanalysis configuration (1992-2011) when it is forced with MERRA-2 atmospheric reanalysis fields instead of with the ECCO-v4 adjoint optimized ERA-interim state variables. This is done by forcing ECCO-v4 ocean with and without feedbacks from MERRA-2 related to turbulent fluxes of heat and moisture and the outgoing long wave radiation. In addition, we introduce an intermediate forcing method that includes only the feedback from the interactive outgoing long wave radiation. The resulting ocean circulation is compared with ECCO-v4 reanalysis and in-situ observations. We show that, without feedbacks, imbalances in the energy and the hydrological cycles of MERRA-2 (which are directly related to the fact it was created without interactive ocean) result in considerable SST drifts and a large reduction in sea level. The bulk formulae and interactive outgoing long wave radiation, although providing air-sea feedbacks and reducing model-data misfit, strongly relax the ocean to observed SST and may result in unwanted features such as large change in the water budget. These features have implications in on desired forcing recipe to be used. The results strongly and unambiguously argue for next generation data assimilation climate studies to involve fully coupled systems.
Evaluation and inter-comparison of modern day reanalysis datasets over Africa and the Middle East
NASA Astrophysics Data System (ADS)
Shukla, S.; Arsenault, K. R.; Hobbins, M.; Peters-Lidard, C. D.; Verdin, J. P.
2015-12-01
Reanalysis datasets are potentially very valuable for otherwise data-sparse regions such as Africa and the Middle East. They are potentially useful for long-term climate and hydrologic analyses and, given their availability in real-time, they are particularity attractive for real-time hydrologic monitoring purposes (e.g. to monitor flood and drought events). Generally in data-sparse regions, reanalysis variables such as precipitation, temperature, radiation and humidity are used in conjunction with in-situ and/or satellite-based datasets to generate long-term gridded atmospheric forcing datasets. These atmospheric forcing datasets are used to drive offline land surface models and simulate soil moisture and runoff, which are natural indicators of hydrologic conditions. Therefore, any uncertainty or bias in the reanalysis datasets contributes to uncertainties in hydrologic monitoring estimates. In this presentation, we report on a comprehensive analysis that evaluates several modern-day reanalysis products (such as NASA's MERRA-1 and -2, ECMWF's ERA-Interim and NCEP's CFS Reanalysis) over Africa and the Middle East region. We compare the precipitation and temperature from the reanalysis products with other independent gridded datasets such as GPCC, CRU, and USGS/UCSB's CHIRPS precipitation datasets, and CRU's temperature datasets. The evaluations are conducted at a monthly time scale, since some of these independent datasets are only available at this temporal resolution. The evaluations range from the comparison of the monthly mean climatology to inter-annual variability and long-term changes. Finally, we also present the results of inter-comparisons of radiation and humidity variables from the different reanalysis datasets.
Relationships between High Impact Tropical Rainfall Events and Environmental Conditions
NASA Astrophysics Data System (ADS)
Painter, C.; Varble, A.; Zipser, E. J.
2017-12-01
While rainfall increases as moisture and vertical motion increase, relationships between regional environmental conditions and rainfall event characteristics remain more uncertain. Of particular importance are long duration, heavy rain rate, and significant accumulation events that contribute sizable fractions of overall precipitation over short time periods. This study seeks to establish relationships between observed rainfall event properties and environmental conditions. Event duration, rain rate, and rainfall accumulation are derived using the Tropical Rainfall Measuring Mission (TRMM) 3B42 3-hourly, 0.25° resolution rainfall retrieval from 2002-2013 between 10°N and 10°S. Events are accumulated into 2.5° grid boxes and matched to monthly mean total column water vapor (TCWV) and 500-hPa vertical motion (omega) in each 2.5° grid box, retrieved from ERA-interim reanalysis. Only months with greater than 3 mm/day rainfall are included to ensure sufficient sampling. 90th and 99th percentile oceanic events last more than 20% longer and have rain rates more than 20% lower than those over land for a given TCWV-omega condition. Event duration and accumulation are more sensitive to omega than TCWV over oceans, but more sensitive to TCWV than omega over land, suggesting system size, propagation speed, and/or forcing mechanism differences for land and ocean regions. Sensitivities of duration, rain rate, and accumulation to TCWV and omega increase with increasing event extremity. For 3B42 and ERA-Interim relationships, the 90th percentile oceanic event accumulation increases by 0.93 mm for every 1 Pa/min change in rising motion, but this increases to 3.7 mm for every 1 Pa/min for the 99th percentile. Over land, the 90th percentile event accumulation increases by 0.55 mm for every 1 mm increase in TCWV, whereas the 99th percentile increases by 0.90 mm for every 1 mm increase in TCWV. These changes in event accumulation are highly correlated with changes in event duration. Relationships between 3B42 event properties and ERA-Interim environmental conditions are currently being evaluated using the MERRA-2 reanalysis and two years of 30-minute, 0.1° Integrated Multi-satellitE Retrievals for GPM (IMERG) data. If results remain consistent, they may be valuable for evaluating weather and climate models.
NASA Astrophysics Data System (ADS)
Muhammed Naseef, T.; Sanil Kumar, V.
2017-10-01
An assessment of extreme wave characteristics during the design of marine facilities not only helps to ensure their safety but also assess the economic aspects. In this study, return levels of significant wave height (Hs) for different periods are estimated using the generalized extreme value distribution (GEV) and generalized Pareto distribution (GPD) based on the Waverider buoy data spanning 8 years and the ERA-Interim reanalysis data spanning 38 years. The analysis is carried out for wind-sea, swell and total Hs separately for buoy data. Seasonality of the prevailing wave climate is also considered in the analysis to provide return levels for short-term activities in the location. The study shows that the initial distribution method (IDM) underestimates return levels compared to GPD. The maximum return levels estimated by the GPD corresponding to 100 years are 5.10 m for the monsoon season (JJAS), 2.66 m for the pre-monsoon season (FMAM) and 4.28 m for the post-monsoon season (ONDJ). The intercomparison of return levels by block maxima (annual, seasonal and monthly maxima) and the r-largest method for GEV theory shows that the maximum return level for 100 years is 7.20 m in the r-largest series followed by monthly maxima (6.02 m) and annual maxima (AM) (5.66 m) series. The analysis is also carried out to understand the sensitivity of the number of observations for the GEV annual maxima estimates. It indicates that the variations in the standard deviation of the series caused by changes in the number of observations are positively correlated with the return level estimates. The 100-year return level results of Hs using the GEV method are comparable for short-term (2008 to 2016) buoy data (4.18 m) and long-term (1979 to 2016) ERA-Interim shallow data (4.39 m). The 6 h interval data tend to miss high values of Hs, and hence there is a significant difference in the 100-year return level Hs obtained using 6 h interval data compared to data at 0.5 h interval. The study shows that a single storm can cause a large difference in the 100-year Hs value.
Transport across the tropical tropopause layer and convection
NASA Astrophysics Data System (ADS)
Tissier, Ann-Sophie; Legras, Bernard; Tzella, Alexandra
2015-04-01
We investigate how air parcels detrained from convective sources enter the TTL. The approach is based on the comparison of unidimensional trajectories and Lagrangian backward and forward trajectories, using TRACZILLA and ERA-Interim. Backward trajectories are launched at 380K and run until they hit a deep convective cloud. Forward trajectories are launched at the top of high convective clouds identified by brightness temperature from CLAUS dataset. 1D trajectories are computed using Gardiner's method. Results show that the warm pool region during winter and the Bay of Bengal / Sea of China during summer are the prevalent sources as already identified in many previous studies and we quantify the respective role of the various regions. We show that the 1D model explains qualitatively and often quantitatively the 3d results. We also show that in spite of generating very high convection, Africa is quite ineffective as providing air that remains in the TTL while on the opposite the Tibetan Plateau is the most effective region in this respect although its total contribution is minor. Finally, we compare ERA-Interim, JRA-55 and MERRA reanalysis and find large similarities between the two formers.
NASA Astrophysics Data System (ADS)
Vergados, P.; Mannucci, A. J.; Ao, C. O.; Verkhoglyadova, O. P.; Iijima, B.
2017-12-01
This presentation introduces the fundamentals of the Global Positioning System radio occultation (GPS RO) remote sensing technique in retrieving atmospheric temperature and humidity information and presents the use of these observations in climate research. Our objective is to demonstrate and establish the GPS RO remote sensing technique as a complementary data set to existing state-of-the-art space-based platforms for climate studies. We show how GPS RO measurements at 1.2-1.6 GHz frequency band can be used to infer the upper tropospheric water vapor and temperature feedbacks and we present a decade-long specific humidity (SH) record from January 2007 until December 2015. We cross-compare the GPS RO-estimated climate feedbacks and the SH long-record with independent data sets from the Modern-Era Retrospective Analysis for Research and Applications (MERRA), the European Center for Medium-range Weather Forecasts Re-Analysis Interim (ERA-Interim), and the Atmospheric Infrared Sounder (AIRS) instrument. These cross-comparisons serve as a performance guide for the GPS-RO observations with respect to other data sets by providing an independent measure of climate feedbacks and humidity short-term trends.
NASA Astrophysics Data System (ADS)
Reboita, Michelle Simões; Amaro, Tatiana Rocha; de Souza, Marcelo Rodrigues
2017-09-01
Since wind is an important source of renewable energy, it has attracted attention worldwide. Several studies have been developed in order to know favorable areas where wind farms can be implemented. Therefore, the purpose of this study is to project changes in wind intensity and in wind power density (PD), at 100 m high, over South America and adjacent oceans, by downscaling and ensemble techniques. Regional climate model version 4 (RegCM4) was nested in the output of three global climate models, considering the RCP8.5 scenario. RegCM4 ensemble in the present climate (1979-2005) was validated through comparisons with ERA-Interim reanalysis. The ensemble represents well the spatial pattern of the winds, but there are some differences in relation to the wind intensity registered by ERA-Interim, mainly in center-east Brazil and Patagonia. The comparison between the future climate (2020-2050 and 2070-2098) and the present one shows that there is an increase in wind intensity and PD on the north of SA, center-east Brazil (except in summer) and latitudes higher than 50°S. Such increase is more intense in the period 2070-2098.
NASA Astrophysics Data System (ADS)
Di Giuseppe, F.; Tompkins, A. M.; Lowe, R.; Dutra, E.; Wetterhall, F.
2012-04-01
As the quality of numerical weather prediction over the monthly to seasonal leadtimes steadily improves there is an increasing motivation to apply these fruitfully to the impacts sectors of health, water, energy and agriculture. Despite these improvements, the accuracy of fields such as temperature and precipitation that are required to drive sectoral models can still be poor. This is true globally, but particularly so in Africa, the region of focus in the present study. In the last year ECMWF has been particularly active through EU research founded projects in demonstrating the capability of its longer range forecasting system to drive impact modeling systems in this region. A first assessment on the consequences of the documented errors in ECMWF forecasting system is therefore presented here looking at two different application fields which we found particularly critical for Africa - vector-born diseases prevention and hydrological monitoring. A new malaria community model (VECTRI) has been developed at ICTP and tested for the 3 target regions participating in the QWECI project. The impacts on the mean malaria climate is assessed using the newly realized seasonal forecasting system (Sys4) with the dismissed system 3 (Sys3) which had the same model cycle of the up-to-date ECMWF re-analysis product (ERA-Interim). The predictive skill of Sys4 to be employed for malaria monitoring and forecast are also evaluated by aggregating the fields to country level. As a part of the DEWFORA projects, ECMWF is also developing a system for drought monitoring and forecasting over Africa whose main meteorological input is precipitation. Similarly to what is done for the VECTRI model, the skill of seasonal forecasts of precipitation is, in this application, translated into the capability of predicting drought while ERA-Interim is used in monitoring. On a monitoring level, the near real-time update of ERA-Interim could compensate the lack of observations in the regions. However, ERA-Interim suffers from biases and drifts that limit its application for drought monitoring purposes in some regions.
Steps towards a consistent Climate Forecast System Reanalysis wave hindcast (1979-2016)
NASA Astrophysics Data System (ADS)
Stopa, Justin E.; Ardhuin, Fabrice; Huchet, Marion; Accensi, Mickael
2017-04-01
Surface gravity waves are being increasingly recognized as playing an important role within the climate system. Wave hindcasts and reanalysis products of long time series (>30 years) have been instrumental in understanding and describing the wave climate for the past several decades and have allowed a better understanding of extreme waves and inter-annual variability. Wave hindcasts have the advantage of covering the oceans in higher space-time resolution than possible with conventional observations from satellites and buoys. Wave reanalysis systems like ECWMF's ERA-Interim directly included a wave model that is coupled to the ocean and atmosphere, otherwise reanalysis wind fields are used to drive a wave model to reproduce the wave field in long time series. The ERA Interim dataset is consistent in time, but cannot adequately resolve extreme waves. On the other hand, the NCEP Climate Forecast System (CFSR) wind field better resolves the extreme wind speeds, but suffers from discontinuous features in time which are due to the quantity and quality of the remote sensing data incorporated into the product. Therefore, a consistent hindcast that resolves the extreme waves still alludes us limiting our understanding of the wave climate. In this study, we systematically correct the CFSR wind field to reproduce a homogeneous wave field in time. To verify the homogeneity of our hindcast we compute error metrics on a monthly basis using the observations from a merged altimeter wave database which has been calibrated and quality controlled from 1985-2016. Before 1985 only few wave observations exist and are limited to a select number of wave buoys mostly in the North Hemisphere. Therefore we supplement our wave observations with seismic data which responds to nonlinear wave interactions created by opposing waves with nearly equal wavenumbers. Within the CFSR wave hindcast, we find both spatial and temporal discontinuities in the error metrics. The Southern Hemisphere often has wind speed biases larger than the Northern Hemisphere and we propose a simple correction to reduce these features by applying a taper shaped by a half-Hanning window. The discontinuous features in time are corrected by scaling the entire wind field by percentages ranging typically ranging from 1-3%. Our analysis is performed on monthly time series and we expect the monthly statistics to be more adequate for climate studies.
Extensive validation of CM SAF surface radiation products over Europe.
Urraca, Ruben; Gracia-Amillo, Ana M; Koubli, Elena; Huld, Thomas; Trentmann, Jörg; Riihelä, Aku; Lindfors, Anders V; Palmer, Diane; Gottschalg, Ralph; Antonanzas-Torres, Fernando
2017-09-15
This work presents a validation of three satellite-based radiation products over an extensive network of 313 pyranometers across Europe, from 2005 to 2015. The products used have been developed by the Satellite Application Facility on Climate Monitoring (CM SAF) and are one geostationary climate dataset (SARAH-JRC), one polar-orbiting climate dataset (CLARA-A2) and one geostationary operational product. Further, the ERA-Interim reanalysis is also included in the comparison. The main objective is to determine the quality level of the daily means of CM SAF datasets, identifying their limitations, as well as analyzing the different factors that can interfere in the adequate validation of the products. The quality of the pyranometer was the most critical source of uncertainty identified. In this respect, the use of records from Second Class pyranometers and silicon-based photodiodes increased the absolute error and the bias, as well as the dispersion of both metrics, preventing an adequate validation of the daily means. The best spatial estimates for the three datasets were obtained in Central Europe with a Mean Absolute Deviation (MAD) within 8-13 W/m 2 , whereas the MAD always increased at high-latitudes, snow-covered surfaces, high mountain ranges and coastal areas. Overall, the SARAH-JRC's accuracy was demonstrated over a dense network of stations making it the most consistent dataset for climate monitoring applications. The operational dataset was comparable to SARAH-JRC in Central Europe, but lacked of the temporal stability of climate datasets, while CLARA-A2 did not achieve the same level of accuracy despite predictions obtained showed high uniformity with a small negative bias. The ERA-Interim reanalysis shows the by-far largest deviations from the surface reference measurements.
Global snowfall: A combined CloudSat, GPM, and reanalysis perspective.
NASA Astrophysics Data System (ADS)
Milani, Lisa; Kulie, Mark S.; Skofronick-Jackson, Gail; Munchak, S. Joseph; Wood, Norman B.; Levizzani, Vincenzo
2017-04-01
Quantitative global snowfall estimates derived from multi-year data records will be presented to highlight recent advances in high latitude precipitation retrievals using spaceborne observations. More specifically, the analysis features the 2006-2016 CloudSat Cloud Profiling Radar (CPR) and the 2014-2016 Global Precipitation (GPM) Microwave Imager (GMI) and Dual-frequency Precipitation Radar (DPR) observational datasets and derived products. The ERA-Interim reanalysis dataset is also used to define the meteorological context and an independent combined modeling/observational evaluation dataset. An overview is first provided of CloudSat CPR-derived results that have stimulated significant recent research regarding global snowfall, including seasonal analyses of unique snowfall modes. GMI and DPR global annual snowfall retrievals are then evaluated against the CloudSat estimates to highlight regions where the datasets provide both consistent and diverging snowfall estimates. A hemispheric seasonal analysis for both datasets will also be provided. These comparisons aim at providing a unified global snowfall characterization that leverages the respective instrument's strengths. Attention will also be devoted to regions around the globe that experience unique snowfall modes. For instance, CloudSat has demonstrated an ability to effectively discern snowfall produced by shallow cumuliform cloud structures (e.g., lake/ocean-induced convective snow produced by air/water interactions associated with seasonal cold air outbreaks). The CloudSat snowfall database also reveals prevalent seasonal shallow cumuliform snowfall trends over climate-sensitive regions like the Greenland Ice Sheet. Other regions with unique snowfall modes, such as the US East Coast winter storm track zone that experiences intense snowfall rates directly associated with strong low pressure systems, will also be highlighted to demonstrate GPM's observational effectiveness. Linkages between CloudSat and GPM global snowfall analyses and independent ERA-Interim datasets will also be presented as a final evaluation exercise.
NASA Astrophysics Data System (ADS)
Zhang, Hongxing; Yuan, Yunbin; Li, Wei; Ou, Jikun; Li, Ying; Zhang, Baocheng
2017-04-01
Weighted mean temperature (Tm) and pressure (Ps) are two parameters of great relevance to precipitable water vapor (PWV) retrieval from global positioning system (GPS) data. However, information about the Tm and Ps cannot be available for those GPS stations that are not colocated with meteorological sensors. To investigate the optimal GPS-PWV retrieval method for China, two enhanced Tm models, GM-Tm (temperature dependent) and GH-Tm (temperature independent), are developed. Additionally, the potentials of the Ps data from the two reanalysis data sets, the National Centers for Environmental Prediction (NCEP)-Department of Energy (DOE) Reanalysis II (NCEP II) and ERA-Interim, and from the empirical model GPT2w for GPS-PWV retrieval are investigated over China. To evaluate the performances of multisources Tm and Ps data for GPS-PWV retrieval, GPS data (2011-2013) collected from 22 stations of the Crustal Movement Observation Network of China (CMONOC) were processed by using the precise point positioning (PPP) technique, estimating the zenith tropospheric delay (ZTD) so as to be subsequently converted to GPS-PWV. The retrieved GPS-PWVs are compared with their counterparts derived from NCEP II and radiosonde data over China. The results show that (1) the GM-Tm model consistently shows the highest accuracy (with root mean square error of 2.3 K), and the GH-Tm model should be selected when temperature observations are not available, and that (2) the performances of Ps from NCEP II and ERA-Interim differ marginally for GPS-PWV retrieval, and significant seasonal variations are found in the agreement between the GPS-PWVs and the PWVs derived from NCEP II and radiosonde data over China.
Assessment of the simulated climate in two versions of the RegT-Band
NASA Astrophysics Data System (ADS)
da Rocha, Rosmeri; Reboita, Michelle; Llopart, Marta
2017-04-01
This study evaluates two simulations carried out with the tropical band version of the Regional Climate Model (RegT-Band). The purpose was to compare the performance of the RegCM 4.4.5 and 4.6 versions (RegT4.4.5 and RegT4.6). The domain used in the simulations extends from 45° S to 45° N and covers all tropical longitudes, with grid spacing of 39 km, 18 sigma-pressure vertical levels. The initial and boundary conditions for the simulations were provided by ERA-Interim reanalysis and the analyzed period is from January 2005 to December 2008. Regarding the physical parameterizations schemes were used the Emanuel scheme to solve cumulus convection and Community Land Model version 4.5 (CLM4.5) to surface-atmosphere interactions. Seasonal simulated precipitation was compared with Global Precipitation Climatology Project (GPCP) while 2 meters air temperature with ERA-Interim reanalysis. The main results of this study are that RegT4.6 reduces the wet bias over the oceans and the cold bias over the continents compared with RegT4.4.5. In austral summer, RegT4.6 improves the simulation reducing the precipitation amounts mainly over Indian Ocean, Indonesia and eastern northeastern Brazil. However, both versions underestimate the precipitation over the South America Convergence Zone (SACZ). During the austral winter, RegT4.6 simulates the precipitation similar to GPCP over India and it reduces the cold bias over this country compared with RegT4.4.5. However, over the South of Africa, Australia and central-southeast South America, RegT4.6 simulates a strong warm bias.
Regional Climate Model sesitivity to different parameterizations schemes with WRF over Spain
NASA Astrophysics Data System (ADS)
García-Valdecasas Ojeda, Matilde; Raquel Gámiz-Fortis, Sonia; Hidalgo-Muñoz, Jose Manuel; Argüeso, Daniel; Castro-Díez, Yolanda; Jesús Esteban-Parra, María
2015-04-01
The ability of the Weather Research and Forecasting (WRF) model to simulate the regional climate depends on the selection of an adequate combination of parameterization schemes. This study assesses WRF sensitivity to different parameterizations using six different runs that combined three cumulus, two microphysics and three surface/planetary boundary layer schemes in a topographically complex region such as Spain, for the period 1995-1996. Each of the simulations spanned a period of two years, and were carried out at a spatial resolution of 0.088° over a domain encompassing the Iberian Peninsula and nested in the coarser EURO-CORDEX domain (0.44° resolution). The experiments were driven by Interim ECMWF Re-Analysis (ERA-Interim) data. In addition, two different spectral nudging configurations were also analysed. The simulated precipitation and maximum and minimum temperatures from WRF were compared with Spain02 version 4 observational gridded datasets. The comparison was performed at different time scales with the purpose of evaluating the model capability to capture mean values and high-order statistics. ERA-Interim data was also compared with observations to determine the improvement obtained using dynamical downscaling with respect to the driving data. For this purpose, several parameters were analysed by directly comparing grid-points. On the other hand, the observational gridded data were grouped using a multistep regionalization to facilitate the comparison in term of monthly annual cycle and the percentiles of daily values analysed. The results confirm that no configuration performs best, but some combinations that produce better results could be chosen. Concerning temperatures, WRF provides an improvement over ERA-Interim. Overall, model outputs reduce the biases and the RMSE for monthly-mean maximum and minimum temperatures and are higher correlated with observations than ERA-Interim. The analysis shows that the Yonsei University planetary boundary layer scheme is the most appropriate parameterization in term of temperatures because it better describes monthly minimum temperatures and seems to perform well for maximum temperatures. Regarding precipitation, ERA-Interim time series are slightly higher correlated with observations than WRF, but the bias and the RMSE are largely worse. These results also suggest that CAM V.5.1 2-moment 5-class microphysics schemes should not be used due to the computational cost with no apparent gain with respect to simpler schemes such as WRF single-moment 3-class. For the convection scheme, this study suggests that Betts-Miller-Janjic scheme is an appropriate choice due to its robustness and Kain-Fritsch cumulus scheme should not be used over this region. KEY WORDS: Regional climate modelling, physics schemes, parameterizations, WRF. ACKNOWLEDGEMENTS This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).
Increasing frequency and duration of Arctic winter warming events
NASA Astrophysics Data System (ADS)
Graham, R. M.; Cohen, L.; Petty, A.; Boisvert, L.; Rinke, A.; Hudson, S. R.; Nicolaus, M.; Granskog, M. A.
2017-12-01
Record low Arctic sea ice extents were observed during the last three winter seasons (March). During each of these winters, near-surface air temperatures close to 0°C were observed, in situ, over sea ice in the central Arctic. Recent media reports and scientific studies suggest that such winter warming events were unprecedented for the Arctic. Here we use in situ winter (December-March) temperature observations, such as those from Soviet North Pole drifting stations and ocean buoys, to determine how common Arctic winter warming events are. The earliest record we find of a winter warming event was in March 1896, where a temperature of -3.7˚C was observed at 84˚N during the Fram expedition. Observations of winter warming events exist over most of the Arctic Basin. Despite a limited observational network, temperatures exceeding -5°C were measured in situ during more than 30% of winters from 1954 to 2010, by either North Pole drifting stations or ocean buoys. Correlation coefficients between the atmospheric reanalysis, ERA-Interim, and these in-situ temperature records are shown to be on the order of 0.90. This suggests that ERA-Interim is a suitable tool for studying Arctic winter warming events. Using the ERA-Interim record (1979-2016), we show that the North Pole (NP) region typically experiences 10 warming events (T2m > -10°C) per winter, compared with only five in the Pacific Central Arctic (PCA). We find a positive trend in the overall duration of winter warming events for both the NP region (4.25 days/decade) and PCA (1.16 days/decade), due to an increased number of events of longer duration.
NASA Astrophysics Data System (ADS)
Porfírio da Rocha, Rosmeri; Simões Reboita, Michelle
2015-04-01
Cyclones over the Southwestern South Atlantic Ocean (SAO) are a subject of great interest once they modify the weather and control the climate near east coast of South America (SA). In this study we compare the cyclones climatology in the period 1979-2005 simulated by Regional Climate Model version 4 (RegCM4) with that from ERA-Interim reanalysis (ECMWF). RegCM4 was nested in HadGEM2-ES output and the simulation used the SA domain of CORDEX project, with a horizontal grid of 50 km and 18 sigma-pressure levels in the vertical. The RegCM4 simulation used the land surface Biosphere-Atmosphere Transfer Scheme (BATS) and the mixed convection Emanuel-Grell scheme configurations. This simulation is part of the CREMA (CORDEX REgCM4 hyper-MAtrix) experiment. The cyclones were identified using an automated tracking scheme based on minima (cyclonic in Southern Hemisphere) of relative vorticity from the wind at 925 hPa. The threshold of -1.5 x 10-5s-1 was used in the algorithm. All cyclones in RegCM4 and ERA-Interim with relative vorticity lower than this threshold and with lifetime higher or equal 24 hours were included in the climatology. ERA-Interim shows three main cyclogenetic regions near east coast of SA. In general, RegCM4 simulated these same regions but with an underestimation of the number of cyclones. In each of these regions, there is a different season of higher cyclones frequency. Over extreme south of southern Brazil and Uruguay the higher frequency of cyclones occurs in winter, while southeastern Brazil and southeastern Argentina cyclones are most frequent during summer. RegCM4 is able to simulate this observed seasonality.
Cloud-Enabled Climate Analytics-as-a-Service using Reanalysis data: A case study.
NASA Astrophysics Data System (ADS)
Nadeau, D.; Duffy, D.; Schnase, J. L.; McInerney, M.; Tamkin, G.; Potter, G. L.; Thompson, J. H.
2014-12-01
The NASA Center for Climate Simulation (NCCS) maintains advanced data capabilities and facilities that allow researchers to access the enormous volume of data generated by weather and climate models. The NASA Climate Model Data Service (CDS) and the NCCS are merging their efforts to provide Climate Analytics-as-a-Service for the comparative study of the major reanalysis projects: ECMWF ERA-Interim, NASA/GMAO MERRA, NOAA/NCEP CFSR, NOAA/ESRL 20CR, JMA JRA25, and JRA55. These reanalyses have been repackaged to netCDF4 file format following the CMIP5 Climate and Forecast (CF) metadata convention prior to be sequenced into the Hadoop Distributed File System ( HDFS ). A small set of operations that represent a common starting point in many analysis workflows was then created: min, max, sum, count, variance and average. In this example, Reanalysis data exploration was performed with the use of Hadoop MapReduce and accessibility was achieved using the Climate Data Service(CDS) application programming interface (API) created at NCCS. This API provides a uniform treatment of large amount of data. In this case study, we have limited our exploration to 2 variables, temperature and precipitation, using 3 operations, min, max and avg and using 30-year of Reanalysis data for 3 regions of the world: global, polar, subtropical.
Sensitivity of a numerical wave model on wind re-analysis datasets
NASA Astrophysics Data System (ADS)
Lavidas, George; Venugopal, Vengatesan; Friedrich, Daniel
2017-03-01
Wind is the dominant process for wave generation. Detailed evaluation of metocean conditions strengthens our understanding of issues concerning potential offshore applications. However, the scarcity of buoys and high cost of monitoring systems pose a barrier to properly defining offshore conditions. Through use of numerical wave models, metocean conditions can be hindcasted and forecasted providing reliable characterisations. This study reports the sensitivity of wind inputs on a numerical wave model for the Scottish region. Two re-analysis wind datasets with different spatio-temporal characteristics are used, the ERA-Interim Re-Analysis and the CFSR-NCEP Re-Analysis dataset. Different wind products alter results, affecting the accuracy obtained. The scope of this study is to assess different available wind databases and provide information concerning the most appropriate wind dataset for the specific region, based on temporal, spatial and geographic terms for wave modelling and offshore applications. Both wind input datasets delivered results from the numerical wave model with good correlation. Wave results by the 1-h dataset have higher peaks and lower biases, in expense of a high scatter index. On the other hand, the 6-h dataset has lower scatter but higher biases. The study shows how wind dataset affects the numerical wave modelling performance, and that depending on location and study needs, different wind inputs should be considered.
NASA Astrophysics Data System (ADS)
Bedia, J.; Herrera, S.; Gutiérrez, J. M.
2013-09-01
We develop fire occurrence and burned area models in peninsular Spain, an area of high variability in climate and fuel types, for the period 1990-2008. We based the analysis on a phytoclimatic classification aiming to the stratification of the territory into homogeneous units in terms of climatic and fuel type characteristics, allowing to test model performance under different climatic and fuel conditions. We used generalized linear models (GLM) and multivariate adaptive regression splines (MARS) as modelling algorithms and temperature, relative humidity, precipitation and wind speed, taken from the ERA-Interim reanalysis, as well as the components of the Canadian Forest Fire Weather Index (FWI) System as predictors. We also computed the standardized precipitation-evapotranspiration index (SPEI) as an additional predictor for the models of burned area. We found two contrasting fire regimes in terms of area burned and number of fires: one characterized by a bimodal annual pattern, characterizing the Nemoral and Oro-boreal phytoclimatic types, and another one exhibiting an unimodal annual cycle, with the fire season concentrated in the summer months in the Mediterranean and Arid regions. The fire occurrence models attained good skill in most of the phytoclimatic zones considered, yielding in some zones notably high correlation coefficients between the observed and modelled inter-annual fire frequencies. Total area burned also exhibited a high dependence on the meteorological drivers, although their ability to reproduce the observed annual burned area time series was poor in most cases. We identified temperature and some FWI system components as the most important explanatory variables, and also SPEI in some of the burned area models, highlighting the adequacy of the FWI system for fire modelling applications and leaving the door opened to the development a more complex modelling framework based on these predictors. Furthermore, we demonstrate the potential usefulness of ERA-Interim reanalysis data for the reconstruction of historical fire-climate relationships at the scale of analysis. Fire frequency predictions may provide a preferable basis for past fire history reconstruction, long-term monitoring and the assessment of future climate impacts on fire regimes across regions, posing several advantages over burned area as response variable.
Estimation of Atlantic-Mediterranean netflow variability
NASA Astrophysics Data System (ADS)
Guerreiro, Catarina; Peliz, Alvaro; Miranda, Pedro
2016-04-01
The exchanges at the Strait of Gibraltar are extremely difficult to measure due to the strong temporal and across-strait variabilities; yet the Atlantic inflow into the Mediterranean is extremely important both for climate and to ecosystems. Most of the published numerical modeling studies do not resolve the Strait of Gibraltar realistically. Models that represent the strait at high resolution focus primarily in high frequency dynamics, whereas long-term dynamics are studied in low resolution model studies, and for that reason the Strait dynamics are poorly resolved. Estimating the variability of the exchanges requires long term and high-resolutions studies, thus an improved simulation with explicit and realistic representation of the Strait is necessary. On seasonal to inter-annual timescales the flow is essentially driven by the net evaporation contribution and consequently realistic fields of precipitation and evaporation are necessary for model setup. A comparison between observations, reanalysis and combined products shows ERA-Interim Reanalysis has the most suitable product for Mediterranean Sea. Its time and space variability are in close agreement with NOC 1.1 for the common period (1980 - 1993) and also with evaporation from OAFLUX (1989 - 2014). Subinertial fluctuations, periods from days to a few months, are the second most energetic, after tides, and are the response to atmospheric pressure fluctuations and local winds. Atmospheric pressure fluctuations in the Mediterranean cause sea level oscillations that induce a barotropic flow through the Strait. Candela's analytical model has been used to quantify this response in later studies, though comparison with observations points to an underestimation of the flow at strait. An improved representation of this term contribution to the Atlantic - Mediterranean exchange must be achieved on longer time-scales. We propose a new simulation for the last 36 years (1979 - 2014) for the Mediterranean - Atlantic domain with explicit representation of the Strait. The simulations are performed using the Regional Ocean Modeling System (ROMS) and forced with the different contributions of the freshwater budget, sea level pressure fluctuations and winds from ERA-Interim Reanalysis. The model of sea level pressure induced barotropic fluctuations simulates the barotropic variability at the Strait of Gibraltar for the last decades.
A high-resolution regional reanalysis for the European CORDEX region
NASA Astrophysics Data System (ADS)
Bollmeyer, Christoph; Keller, Jan; Ohlwein, Christian; Wahl, Sabrina
2015-04-01
Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Weather Service), a high-resolution reanalysis system based on the COSMO model has been developed. Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations, renewable energy applications). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. The work presented here focuses on two regional reanalyses for Europe and Germany. The European reanalysis COSMO-REA6 matches the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km). Nested into COSMO-REA6 is COSMO-REA2, a convective-scale reanalysis with 2km resolution for Germany. COSMO-REA6 comprises the assimilation of observational data using the existing nudging scheme of COSMO and is complemented by a special soil moisture analysis and boundary conditions given by ERA-Interim data. COSMO-REA2 also uses the nudging scheme complemented by a latent heat nudging of radar information. The reanalysis data set currently covers 17 years (1997-2013) for COSMO-REA6 and 4 years (2010-2013) for COSMO-REA2 with a very large set of output variables and a high temporal output step of hourly 3D-fields and quarter-hourly 2D-fields. The evaluation of the reanalyses is done using independent observations for the most important meteorological parameters with special emphasis on precipitation and high-impact weather situations.
Rainy Days in the New Arctic: A Comprehensive Look at Precipitation from 8 Reanalysis
NASA Astrophysics Data System (ADS)
Boisvert, L.; Webster, M.; Petty, A.; Markus, T.
2017-12-01
Precipitation in the Arctic plays an important role in the fresh water budget, and is the primary control of snow accumulation on sea ice. However, Arctic precipitation from reanalysis is highly uncertain due to differences in the atmospheric physics and use/approaches of data assimilation and sea ice concentrations across the different products. More specifically, yearly cumulative precipitation in some regions can vary by 100-150 mm across reanalyses. This creates problems for those modeling snow depth on sea ice, specifically for use in deriving sea ice thickness from satellite altimetry. In recent years, this new Arctic has become warmer and wetter, and evaporation from the ice-free ocean has been increasing, which leads to the question: is more precipitation falling and is more of this precipitation rain? This could pose a big problem for model and remote sensing applications and studies those modeling snow accumulation because rain events will can melt the existing snow pack, reduce surface albedo, and modify the ocean-to-atmosphere heat flux via snow densification. In this work we compare precipitation (both snow and rain) from 8 different reanalysis: MERRA, MERRA2, NCEP-R1, NCEP-R2, ERA-Interim, ERA-5, ASR and JRA-55. We examine the annual, seasonal, and regional differences and compare with buoy data to assess discrepancies between products during observed snowfall and rainfall events. Magnitudes and frequencies of these precipitation events are evaluated, as well as the "residual drizzle" between reanalyzes. Lastly, we will look at whether the frequency and magnitude of "rainy days" in the Arctic have been changing over recent decades.
Significant uncertainty in global scale hydrological modeling from precipitation data errors
NASA Astrophysics Data System (ADS)
Sperna Weiland, Frederiek C.; Vrugt, Jasper A.; van Beek, Rens (L.) P. H.; Weerts, Albrecht H.; Bierkens, Marc F. P.
2015-10-01
In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we focus on large-scale hydrologic modeling and analyze the effect of parameter and rainfall data uncertainty on simulated discharge dynamics with the global hydrologic model PCR-GLOBWB. We use three rainfall data products; the CFSR reanalysis, the ERA-Interim reanalysis, and a combined ERA-40 reanalysis and CRU dataset. Parameter uncertainty is derived from Latin Hypercube Sampling (LHS) using monthly discharge data from five of the largest river systems in the world. Our results demonstrate that the default parameterization of PCR-GLOBWB, derived from global datasets, can be improved by calibrating the model against monthly discharge observations. Yet, it is difficult to find a single parameterization of PCR-GLOBWB that works well for all of the five river basins considered herein and shows consistent performance during both the calibration and evaluation period. Still there may be possibilities for regionalization based on catchment similarities. Our simulations illustrate that parameter uncertainty constitutes only a minor part of predictive uncertainty. Thus, the apparent dichotomy between simulations of global-scale hydrologic behavior and actual data cannot be resolved by simply increasing the model complexity of PCR-GLOBWB and resolving sub-grid processes. Instead, it would be more productive to improve the characterization of global rainfall amounts at spatial resolutions of 0.5° and smaller.
Met Éireann high resolution reanalysis for Ireland
NASA Astrophysics Data System (ADS)
Gleeson, Emily; Whelan, Eoin; Hanley, John
2017-03-01
The Irish Meteorological Service, Met Éireann, has carried out a 35-year very high resolution (2.5 km horizontal grid) regional climate reanalysis for Ireland using the ALADIN-HIRLAM numerical weather prediction system. This article provides an overview of the reanalysis, called MÉRA, as well as a preliminary analysis of surface parameters including screen level temperature, 10 m wind speeds, mean sea-level pressure (MSLP), soil temperatures, soil moisture and 24 h rainfall accumulations. The quality of the 3-D variational data assimilation used in the reanalysis is also assessed. Preliminary analysis shows that it takes almost 12 months to spin up the deep soil in terms of moisture, justifying the choice of running year-long spin up periods. Overall, the model performed consistently over the time period. Small biases were found in screen-level temperatures (less than -0.5 °C), MSLP (within 0.5 hPa) and 10 m wind speed (up to 0.5 m s-1) Soil temperatures are well represented by the model. 24 h accumulations of precipitation generally exhibit a small positive bias of ˜ 1 mm per day and negative biases over mountains due to a mismatch between the model orography and the geography of the region. MÉRA outperforms the ERA-Interim reanalysis, particularly in terms of standard deviations in screen-level temperatures and surface winds. This dataset is the first of its kind for Ireland that will be made publically available during spring 2017.
Comparison and validation of gridded precipitation datasets for Spain
NASA Astrophysics Data System (ADS)
Quintana-Seguí, Pere; Turco, Marco; Míguez-Macho, Gonzalo
2016-04-01
In this study, two gridded precipitation datasets are compared and validated in Spain: the recently developed SAFRAN dataset and the Spain02 dataset. These are validated using rain gauges and they are also compared to the low resolution ERA-Interim reanalysis. The SAFRAN precipitation dataset has been recently produced, using the SAFRAN meteorological analysis, which is extensively used in France (Durand et al. 1993, 1999; Quintana-Seguí et al. 2008; Vidal et al., 2010) and which has recently been applied to Spain (Quintana-Seguí et al., 2015). SAFRAN uses an optimal interpolation (OI) algorithm and uses all available rain gauges from the Spanish State Meteorological Agency (Agencia Estatal de Meteorología, AEMET). The product has a spatial resolution of 5 km and it spans from September 1979 to August 2014. This dataset has been produced mainly to be used in large scale hydrological applications. Spain02 (Herrera et al. 2012, 2015) is another high quality precipitation dataset for Spain based on a dense network of quality-controlled stations and it has different versions at different resolutions. In this study we used the version with a resolution of 0.11°. The product spans from 1971 to 2010. Spain02 is well tested and widely used, mainly, but not exclusively, for RCM model validation and statistical downscliang. ERA-Interim is a well known global reanalysis with a spatial resolution of ˜79 km. It has been included in the comparison because it is a widely used product for continental and global scale studies and also in smaller scale studies in data poor countries. Thus, its comparison with higher resolution products of a data rich country, such as Spain, allows us to quantify the errors made when using such datasets for national scale studies, in line with some of the objectives of the EU-FP7 eartH2Observe project. The comparison shows that SAFRAN and Spain02 perform similarly, even though their underlying principles are different. Both products are largely better than ERA-Interim, which has a much coarser representation of the relief, which is crucial for precipitation. These results are a contribution to the Spanish Case Study of the eartH2Observe project, which is focused on the simulation of drought processes in Spain using Land-Surface Models (LSM). This study will also be helpful in the Spanish MARCO project, which aims at improving the ability of RCMs to simulate hydrometeorological extremes.
Improving uncertainty estimates: Inter-annual variability in Ireland
NASA Astrophysics Data System (ADS)
Pullinger, D.; Zhang, M.; Hill, N.; Crutchley, T.
2017-11-01
This paper addresses the uncertainty associated with inter-annual variability used within wind resource assessments for Ireland in order to more accurately represent the uncertainties within wind resource and energy yield assessments. The study was undertaken using a total of 16 ground stations (Met Eireann) and corresponding reanalysis datasets to provide an update to previous work on this topic undertaken nearly 20 years ago. The results of the work demonstrate that the previously reported 5.4% of wind speed inter-annual variability is considered to be appropriate, guidance is given on how to provide a robust assessment of IAV using available sources of data including ground stations, MERRA-2 and ERA-Interim.
NASA Astrophysics Data System (ADS)
Tamkin, G.; Schnase, J. L.; Duffy, D.; Li, J.; Strong, S.; Thompson, J. H.
2017-12-01
NASA's efforts to advance climate analytics-as-a-service are making new capabilities available to the research community: (1) A full-featured Reanalysis Ensemble Service (RES) comprising monthly means data from multiple reanalysis data sets, accessible through an enhanced set of extraction, analytic, arithmetic, and intercomparison operations. The operations are made accessible through NASA's climate data analytics Web services and our client-side Climate Data Services Python library, CDSlib; (2) A cloud-based, high-performance Virtual Real-Time Analytics Testbed supporting a select set of climate variables. This near real-time capability enables advanced technologies like Spark and Hadoop-based MapReduce analytics over native NetCDF files; and (3) A WPS-compliant Web service interface to our climate data analytics service that will enable greater interoperability with next-generation systems such as ESGF. The Reanalysis Ensemble Service includes the following: - New API that supports full temporal, spatial, and grid-based resolution services with sample queries - A Docker-ready RES application to deploy across platforms - Extended capabilities that enable single- and multiple reanalysis area average, vertical average, re-gridding, standard deviation, and ensemble averages - Convenient, one-stop shopping for commonly used data products from multiple reanalyses including basic sub-setting and arithmetic operations (e.g., avg, sum, max, min, var, count, anomaly) - Full support for the MERRA-2 reanalysis dataset in addition to, ECMWF ERA-Interim, NCEP CFSR, JMA JRA-55 and NOAA/ESRL 20CR… - A Jupyter notebook-based distribution mechanism designed for client use cases that combines CDSlib documentation with interactive scenarios and personalized project management - Supporting analytic services for NASA GMAO Forward Processing datasets - Basic uncertainty quantification services that combine heterogeneous ensemble products with comparative observational products (e.g., reanalysis, observational, visualization) - The ability to compute and visualize multiple reanalysis for ease of inter-comparisons - Automated tools to retrieve and prepare data collections for analytic processing
Potential Seasonal Predictability of Water Cycle in Observations and Reanalysis
NASA Astrophysics Data System (ADS)
Feng, X.; Houser, P.
2012-12-01
Identification of predictability of water cycle variability is crucial for climate prediction, water resources availability, ecosystem management and hazard mitigation. An analysis that can assess the potential skill in seasonal prediction was proposed by the authors, named as analysis of covariance (ANOCOVA). This method tests whether interannual variability of seasonal means exceeds that due to weather noise under the null hypothesis that seasonal means are identical every year. It has the advantage of taking into account autocorrelation structure in the daily time series but also accounting for the uncertainty of the estimated parameters in the significance test. During the past several years, multiple reanalysis datasets have become available for studying climate variability and understanding climate system. We are motivated to compare the potential predictability of water cycle variation from different reanalysis datasets against observations using the newly proposed ANOCOVA method. The selected eight reanalyses include the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP/NCAR) 40-year Reanalysis Project (NNRP), the National Centers for Environmental Prediction-Department of Energy (NCEP/DOE) Reanalysis Project (NDRP), the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year Reanalysis, The Japan Meteorological Agency 25-year Reanalysis Project (JRA25), the ECMWF) Interim Reanalysis (ERAINT), the NCEP Climate Forecast System Reanalysis (CFSR), the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective Analysis for Research and Applications (MERRA), and the National Oceanic and Atmospheric Administration-Cooperative Institute for Research in Environmental Sciences (NOAA/CIRES) 20th Century Reanalysis Version 2 (20CR). For key water cycle components, precipitation and evaporation, all reanalyses consistently show high fraction of predictable variance in the tropics, low predictability over the extratropics, more potential predictability over the ocean than land, and a stronger seasonal variation in potential predictability over land than ocean. The substantial differences are observed especially over the extropical areas where boundary-forced signal is not as significant as in tropics. We further evaluate the accuracy of reanalysis in estimating seasonal predictability over several selected regions, where rain gauge measurement or land surface data assimilation product is available and accurate, to gain insight on the strength and weakness of reanalysis products.
NASA Astrophysics Data System (ADS)
Tang, Shuaiqi; Zhang, Minghua
2015-08-01
Atmospheric vertical velocities and advective tendencies are essential large-scale forcing data to drive single-column models (SCMs), cloud-resolving models (CRMs), and large-eddy simulations (LESs). However, they cannot be directly measured from field measurements or easily calculated with great accuracy. In the Atmospheric Radiation Measurement Program (ARM), a constrained variational algorithm (1-D constrained variational analysis (1DCVA)) has been used to derive large-scale forcing data over a sounding network domain with the aid of flux measurements at the surface and top of the atmosphere (TOA). The 1DCVA algorithm is now extended into three dimensions (3DCVA) along with other improvements to calculate gridded large-scale forcing data, diabatic heating sources (Q1), and moisture sinks (Q2). Results are presented for a midlatitude cyclone case study on 3 March 2000 at the ARM Southern Great Plains site. These results are used to evaluate the diabatic heating fields in the available products such as Rapid Update Cycle, ERA-Interim, National Centers for Environmental Prediction Climate Forecast System Reanalysis, Modern-Era Retrospective Analysis for Research and Applications, Japanese 55-year Reanalysis, and North American Regional Reanalysis. We show that although the analysis/reanalysis generally captures the atmospheric state of the cyclone, their biases in the derivative terms (Q1 and Q2) at regional scale of a few hundred kilometers are large and all analyses/reanalyses tend to underestimate the subgrid-scale upward transport of moist static energy in the lower troposphere. The 3DCVA-gridded large-scale forcing data are physically consistent with the spatial distribution of surface and TOA measurements of radiation, precipitation, latent and sensible heat fluxes, and clouds that are better suited to force SCMs, CRMs, and LESs. Possible applications of the 3DCVA are discussed.
Stilianakis, Nikolaos I; Syrris, Vasileios; Petroliagkis, Thomas; Pärt, Peeter; Gewehr, Sandra; Kalaitzopoulou, Stella; Mourelatos, Spiros; Baka, Agoritsa; Pervanidou, Danai; Vontas, John; Hadjichristodoulou, Christos
2016-01-01
Climate can affect the geographic and seasonal patterns of vector-borne disease incidence such as West Nile Virus (WNV) infections. We explore the association between climatic factors and the occurrence of West Nile fever (WNF) or West Nile neuro-invasive disease (WNND) in humans in Northern Greece over the years 2010-2014. Time series over a period of 30 years (1979-2008) of climatic data of air temperature, relative humidity, soil temperature, volumetric soil water content, wind speed, and precipitation representing average climate were obtained utilising the ECMWF's (European Centre for Medium-Range Weather Forecasts) Re-Analysis (ERA-Interim) system allowing for a homogeneous set of data in time and space. We analysed data of reported human cases of WNF/WNND and Culex mosquitoes in Northern Greece. Quantitative assessment resulted in identifying associations between the above climatic variables and reported human cases of WNF/WNND. A substantial fraction of the cases was linked to the upper percentiles of the distribution of air and soil temperature for the period 1979-2008 and the lower percentiles of relative humidity and soil water content. A statistically relevant relationship between the mean weekly value climatic anomalies of wind speed (negative association), relative humidity (negative association) and air temperature (positive association) over 30 years, and reported human cases of WNF/WNND during the period 2010-2014 could be shown. A negative association between the presence of WNV infected Culex mosquitoes and wind speed could be identified. The statistically significant associations could also be confirmed for the week the WNF/WNND human cases appear and when a time lag of up to three weeks was considered. Similar statistically significant associations were identified with the weekly anomalies of the maximum and minimum values of the above climatic factors. Utilising the ERA-Interim re-analysis methodology it could be shown that besides air temperature, climatic factors such as soil temperature, relative humidity, soil water content and wind speed may affect the epidemiology of WNV.
NASA Astrophysics Data System (ADS)
Kutta, E. J.; Hubbart, J. A.; Svoma, B. M.; Eichler, T. P.; Lupo, A. R.
2016-12-01
El Nino-Southern Oscillation (ENSO) is well documented as a leading source of seasonal to inter-annual variations in global weather and climate. Strong ENSO events have been shown to alter the location and magnitude of Hadley and Walker circulations that maintain equilibrium at tropical latitudes and regulate moisture transport into mid-latitude storm tracks. Broad impacts associated with ENSO events include anomalous regional precipitation (ARP) and temperature patterns and subsequent impacts to socioeconomic and human health systems. Potential socioeconomic and human health impacts range from regional changes in water resources and agricultural productivity to local storm water management, particularly in rapidly urbanizing watersheds. Evidence is mounting to suggest that anthropogenic climate change will increase the frequency of heavy precipitation events, which compounds impacts of ARP patterns associated with strong El Nino events. Therefore, the need exists to identify common regional patterns of spatiotemporal variance of horizontal moisture flux (HMF) during months (Oct-Feb) associated with the peak intensity (Oceanic Nino Index [ONI]) of the three strongest El Nino (ONI > µ + 2σ) and La Nina (ONI < µ - σ) events occurring between January 1979 and June 2016. ERA-Interim reanalysis output on model levels was used to quantify spatial and temporal covariance of HMF at 6-hourly resolution before taking the density weighted vertical average. Long term means (LTM; 1979-2015) were quantified and the influence of strong ENSO events was assessed by quantifying deviations from the LTM for each respective covariance property during months associated with the selected ENSO events. Results reveal regions of statistically significant (CI = 0.05) differences from the LTM for the vertically integrated HMF and each covariance quantity. Broader implications of this work include potential for improved seasonal precipitation forecasts at regional scales and subsequent improvements to local water resource management. There is potential for future work objectively comparing these results with output from Earth System Models to improve representation of ENSO's influence on spatiotemporal variance of horizontal moisture transport.
Measurements of precipitation in Dumont d'Urville, Adélie Land, East Antarctica
NASA Astrophysics Data System (ADS)
Grazioli, Jacopo; Genthon, Christophe; Boudevillain, Brice; Duran-Alarcon, Claudio; Del Guasta, Massimo; Madeleine, Jean-Baptiste; Berne, Alexis
2017-08-01
The first results of a campaign of intensive observation of precipitation in Dumont d'Urville, Antarctica, are presented. Several instruments collected data from November 2015 to February 2016 or longer, including a polarimetric radar (MXPol), a Micro Rain Radar (MRR), a weighing gauge (Pluvio2), and a Multi-Angle Snowflake Camera (MASC). These instruments collected the first ground-based measurements of precipitation in the region of Adélie Land (Terre Adélie), including precipitation microphysics. Microphysical observations during the austral summer 2015/2016 showed that, close to the ground level, aggregates are the dominant hydrometeor type, together with small ice particles (mostly originating from blowing snow), and that riming is a recurring process. Eleven percent of the measured particles were fully developed graupel, and aggregates had a mean riming degree of about 30 %. Spurious precipitation in the Pluvio2 measurements in windy conditions, leading to phantom accumulations, is observed and partly removed through synergistic use of MRR data. The yearly accumulated precipitation of snow (300 m above ground), obtained by means of a local conversion relation of MRR data, trained on the Pluvio2 measurement of the summer period, is estimated to be 815 mm of water equivalent, with a confidence interval ranging between 739.5 and 989 mm. Data obtained in previous research from satellite-borne radars, and the ERA-Interim reanalysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) provide lower yearly totals: 655 mm for ERA-Interim and 679 mm for the climatological data over DDU. ERA-Interim overestimates the occurrence of low-intensity precipitation events especially in summer, but it compensates for them by underestimating the snowfall amounts carried by the most intense events. Overall, this paper provides insightful examples of the added values of precipitation monitoring in Antarctica with a synergistic use of in situ and remote sensing measurements.
Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth
NASA Astrophysics Data System (ADS)
van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.; Williams, A. G.; Chambers, S. D.
2014-10-01
We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the IFS model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The atmospheric lifetime of methane in EC-Earth is 9.4 years, which is 7% longer than the lifetime obtained with ERA-Interim but remains well within the range reported in the literature. We further evaluate the model by comparing the simulated climatologies of surface radon-222 and carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.
NASA Astrophysics Data System (ADS)
Barrett, A. P.; Stroeve, J.; Liston, G. E.; Tschudi, M. A.; Stewart, S.
2017-12-01
Retrievals of sea ice thickness from satellite- and air-borne sensors require knowledge of snow depth and density. Early retrievals used climatologies of snow depth and density - "The Warren Climatology" - based on observations from 31 Soviet drifting stations between 1957 and 1991. This climatology was the best available Arctic-wide data set at the time. However, it does not account for year-to-year variations in spatial and temporal patterns of snow depth, nor does it account for changes in snow depth over longer time periods. Recent efforts to retrieve ice thickness have used output from global and regional atmospheric reanalyses directly or as input to snow accumulation, density evolution, and melt models to estimate snow depth. While such efforts represent the state-of-the-art in terms of Arctic-wide snow depth fields, there can be large differences between precipitation (and other variables) from reanalyses. Knowledge about these differences and about biases in precipitation magnitude are important for getting the best-possible retrievals of ice thickness. Here, we evaluate fields of total precipitation and snow fall from the NASA MERRA and MERRA2, NOAA CFSR and CFSR version 2, ECMWF ERA-Interim, and Arctic System (ASR) reanalyses with a view to understanding differences in the magnitude, and temporal and spatial patterns of precipitation. Where possible we use observations to understand biases in the reanalysis output. Time series of annual total precipitation for the central Arctic correlate well with all reanalyses showing similar year-to-year variability. Time series for MERRA, MERRA2 and CFSR show no evidence of long-term trends. By contrast ERA-Interim appears to be wetter in the most recent decade. The ASR records only spans 2000 to 2012 but is similar to ERA-Interim. CFSR and MERRA2 are wetter than the other five reanalyses, especially over the eastern Arctic and North Atlantic.
NASA Astrophysics Data System (ADS)
Balidakis, Kyriakos; Nilsson, Tobias; Heinkelmann, Robert; Glaser, Susanne; Zus, Florian; Deng, Zhiguo; Schuh, Harald
2017-04-01
The quality of the parameters estimated by global navigation satellite systems (GNSS) and very long baseline interferometry (VLBI) are distorted by erroneous meteorological observations applied to model the propagation delay in the electrically neutral atmosphere. For early VLBI sessions with poor geometry, unsuitable constraints imposed on the a priori tropospheric gradients is a source of additional hassle of VLBI analysis. Therefore, climate change indicators deduced from the geodetic analysis, such as the long-term precipitable water vapor (PWV) trends, are strongly affected. In this contribution we investigate the impact of different modeling and parameterization of the propagation delay in the troposphere on the estimates of long-term PWV trends from geodetic VLBI analysis results. We address the influence of the meteorological data source, and of the a priori non-hydrostatic delays and gradients employed in the VLBI processing, on the estimated PWV trends. In particular, we assess the effect of employing temperature and pressure from (i) homogenized in situ observations, (ii) the model levels of the ERA Interim reanalysis numerical weather model and (iii) our own blind model in the style of GPT2w with enhanced parameterization, calculated using the latter data set. Furthermore, we utilize non-hydrostatic delays and gradients estimated from (i) a GNSS reprocessing at GeoForschungsZentrum Potsdam, rigorously considering tropospheric ties, and (ii)) direct ray-tracing through ERA Interim, as additional observations. To evaluate the above, the least-squares module of the VieVS@GFZ VLBI software was appropriately modified. Additionally, we study the noise characteristics of the non-hydrostatic delays and gradients estimated from our VLBI and GNSS analyses as well as from ray-tracing. We have modified the Theil-Sen estimator appropriately to robustly deduce PWV trends from VLBI, GNSS, ray-tracing and direct numerical integration in ERA Interim. We disseminate all our solutions in the latest Tropo-SINEX format.
NASA Astrophysics Data System (ADS)
Wonsick, M. M.; Pinker, R. T.; Ma, Y.
2014-08-01
The "elevated heat pump" (EHP) hypothesis has been a topic of intensive research and controversy. It postulates that aerosol-induced anomalous mid- and upper-tropospheric warming in the Himalayan foothills and above the Tibetan Plateau leads to an early onset and intensification of Asian monsoon rainfall. This finding is primarily based on results from a NASA finite-volume general circulation model run with and without radiative forcing from different types of aerosols. In particular, black carbon emissions from sources in northern India and dust from Western China, Afghanistan, Pakistan, the Thar Desert, and the Arabian Peninsula drive the modeled anomalous heating. Since the initial discussion of the EHP hypothesis in 2006, the aerosol-monsoon relationship has been investigated using various modeling and observational techniques. The current study takes a novel observational approach to detect signatures of the "elevated heat pump" effect on convection, precipitation, and temperature for contrasting aerosol content years during the period of 2000-2012. The analysis benefits from unique high-resolution convection information inferred from Meteosat-5 observations as available through 2005. Additional data sources include temperature data from the NCEP/NCAR Reanalysis and the European Reanalysis (ERA-Interim) precipitation data from the Global Precipitation Climatology Project (GPCP), aerosol optical depth from the Multi-angle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), and aerosol optical properties from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) aerosol reanalysis. Anomalous upper-tropospheric warming and the early onset and intensification of the Indian monsoon were not consistently observed during the years with high loads of absorbing aerosols. Possibly, model assumptions and/or unaccounted semi-direct aerosol effects caused the disagreement between observed and hypothesized behavior.
Relationships between outgoing longwave radiation and diabatic heating in reanalyses
NASA Astrophysics Data System (ADS)
Zhang, Kai; Randel, William J.; Fu, Rong
2017-10-01
This study investigates relationships between daily variability in National Oceanographic and Atmospheric Administration (NOAA) outgoing longwave radiation (OLR), as a proxy for deep convection, and the global diabatic heat budget derived from reanalysis data sets. Results are evaluated based on data from ECMWF Reanalysis (ERA-Interim), Japanese 55-year Reanalysis (JRA-55) and Modern-Era Retrospective Analysis for Research and Applications (MERRA2). The diabatic heating is separated into components linked to `physics' (mainly latent heat fluxes), plus longwave (LW) and shortwave (SW) radiative tendencies. Transient variability in deep convection is highly correlated with diabatic heating throughout the troposphere and stratosphere. Correlation patterns and composite analyses show that enhanced deep convection (lower OLR) is linked to amplified heating in the tropical troposphere and in the mid-latitude storm tracks, tied to latent heat release. Enhanced convection is also linked to radiative cooling in the lower stratosphere, due to weaker upwelling LW from lower altitudes. Enhanced transient deep convection increases LW and decreases SW radiation in the lower troposphere, with opposite effects in the mid to upper troposphere. The compensating effects in LW and SW radiation are largely linked to variations in cloud fraction and water content (vapor, liquid and ice). These radiative balances in reanalyses are in agreement with idealized calculations using a column radiative transfer model. The overall relationships between OLR and diabatic heating are robust among the different reanalyses, although there are differences in radiative tendencies in the tropics due to large differences of cloud water and ice content among the reanalyses. These calculations provide a simple statistical method to quantify variations in diabatic heating linked to transient deep convection in the climate system.
Web-based Reanalysis Intercomparison Tools (WRIT): Comparing Reanalyses and Observational data.
NASA Astrophysics Data System (ADS)
Compo, G. P.; Smith, C. A.; Hooper, D. K.
2014-12-01
While atmospheric reanalysis datasets are widely used in climate science, many technical issues hinder comparing them to each other and to observations. The reanalysis fields are stored in diverse file architectures, data formats, and resolutions, with metadata, such as variable name and units, that also differ. Individual users have to download the fields, convert them to a common format, store them locally, change variable names, re-grid if needed, and convert units. Comparing reanalyses with observational datasets is difficult for similar reasons. Even if a dataset can be read via Open-source Project for a Network Data Access Protocol (OPeNDAP) or a similar protocol, most of this work is still needed. All of these tasks take time, effort, and money. To overcome some of the obstacles in reanalysis intercomparison, our group at the Cooperative Institute for Research in the Environmental Sciences (CIRES) at the University of Colorado and affiliated colleagues at National Oceanic and Atmospheric Administration's (NOAA's) Earth System Research Laboratory Physical Sciences Division (ESRL/PSD) have created a set of Web-based Reanalysis Intercomparison Tools (WRIT) at http://www.esrl.noaa.gov/psd/data/writ/. WRIT allows users to easily plot and compare reanalysis and observational datasets, and to test hypotheses. Currently, there are tools to plot monthly mean maps and vertical cross-sections, timeseries, and trajectories for standard pressure level and surface variables. Users can refine dates, statistics, and plotting options. Reanalysis datasets currently available include the NCEP/NCAR R1, NCEP/DOE R2, MERRA, ERA-Interim, NCEP CFSR and the 20CR. Observational datasets include those containing precipitation (e.g. GPCP), temperature (e.g. GHCNCAMS), winds (e.g. WASWinds), precipitable water (e.g. NASA NVAP), SLP (HadSLP2), and SST (NOAA ERSST). WRIT also facilitates the mission of the Reanalyses.org website as a convenient toolkit for studying the reanalysis datasets.
NASA Astrophysics Data System (ADS)
Beck, Hylke E.; Vergopolan, Noemi; Pan, Ming; Levizzani, Vincenzo; van Dijk, Albert I. J. M.; Weedon, Graham P.; Brocca, Luca; Pappenberger, Florian; Huffman, George J.; Wood, Eric F.
2017-12-01
We undertook a comprehensive evaluation of 22 gridded (quasi-)global (sub-)daily precipitation (P) datasets for the period 2000-2016. Thirteen non-gauge-corrected P datasets were evaluated using daily P gauge observations from 76 086 gauges worldwide. Another nine gauge-corrected datasets were evaluated using hydrological modeling, by calibrating the HBV conceptual model against streamflow records for each of 9053 small to medium-sized ( < 50 000 km2) catchments worldwide, and comparing the resulting performance. Marked differences in spatio-temporal patterns and accuracy were found among the datasets. Among the uncorrected P datasets, the satellite- and reanalysis-based MSWEP-ng V1.2 and V2.0 datasets generally showed the best temporal correlations with the gauge observations, followed by the reanalyses (ERA-Interim, JRA-55, and NCEP-CFSR) and the satellite- and reanalysis-based CHIRP V2.0 dataset, the estimates based primarily on passive microwave remote sensing of rainfall (CMORPH V1.0, GSMaP V5/6, and TMPA 3B42RT V7) or near-surface soil moisture (SM2RAIN-ASCAT), and finally, estimates based primarily on thermal infrared imagery (GridSat V1.0, PERSIANN, and PERSIANN-CCS). Two of the three reanalyses (ERA-Interim and JRA-55) unexpectedly obtained lower trend errors than the satellite datasets. Among the corrected P datasets, the ones directly incorporating daily gauge data (CPC Unified, and MSWEP V1.2 and V2.0) generally provided the best calibration scores, although the good performance of the fully gauge-based CPC Unified is unlikely to translate to sparsely or ungauged regions. Next best results were obtained with P estimates directly incorporating temporally coarser gauge data (CHIRPS V2.0, GPCP-1DD V1.2, TMPA 3B42 V7, and WFDEI-CRU), which in turn outperformed the one indirectly incorporating gauge data through another multi-source dataset (PERSIANN-CDR V1R1). Our results highlight large differences in estimation accuracy, and hence the importance of P dataset selection in both research and operational applications. The good performance of MSWEP emphasizes that careful data merging can exploit the complementary strengths of gauge-, satellite-, and reanalysis-based P estimates.
Application of web-GIS approach for climate change study
NASA Astrophysics Data System (ADS)
Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander; Bogomolov, Vasily; Martynova, Yuliya; Shulgina, Tamara
2013-04-01
Georeferenced datasets are currently actively used in numerous applications including modeling, interpretation and forecast of climatic and ecosystem changes for various spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their huge size which might constitute up to tens terabytes for a single dataset at present studies in the area of climate and environmental change require a special software support. A dedicated web-GIS information-computational system for analysis of georeferenced climatological and meteorological data has been created. It is based on OGC standards and involves many modern solutions such as object-oriented programming model, modular composition, and JavaScript libraries based on GeoExt library, ExtJS Framework and OpenLayers software. The main advantage of the system lies in a possibility to perform mathematical and statistical data analysis, graphical visualization of results with GIS-functionality, and to prepare binary output files with just only a modern graphical web-browser installed on a common desktop computer connected to Internet. Several geophysical datasets represented by two editions of NCEP/NCAR Reanalysis, JMA/CRIEPI JRA-25 Reanalysis, ECMWF ERA-40 Reanalysis, ECMWF ERA Interim Reanalysis, MRI/JMA APHRODITE's Water Resources Project Reanalysis, DWD Global Precipitation Climatology Centre's data, GMAO Modern Era-Retrospective analysis for Research and Applications, meteorological observational data for the territory of the former USSR for the 20th century, results of modeling by global and regional climatological models, and others are available for processing by the system. And this list is extending. Also a functionality to run WRF and "Planet simulator" models was implemented in the system. Due to many preset parameters and limited time and spatial ranges set in the system these models have low computational power requirements and could be used in educational workflow for better understanding of basic climatological and meteorological processes. The Web-GIS information-computational system for geophysical data analysis provides specialists involved into multidisciplinary research projects with reliable and practical instruments for complex analysis of climate and ecosystems changes on global and regional scales. Using it even unskilled user without specific knowledge can perform computational processing and visualization of large meteorological, climatological and satellite monitoring datasets through unified web-interface in a common graphical web-browser. This work is partially supported by the Ministry of education and science of the Russian Federation (contract #8345), SB RAS project VIII.80.2.1, RFBR grant #11-05-01190a, and integrated project SB RAS #131.
NASA Astrophysics Data System (ADS)
Rendón, A.; Posada, J. A.; Salazar, J. F.; Mejia, J.; Villegas, J.
2016-12-01
Precipitation in the complex terrain of the tropical Andes of South America can be strongly reduced during El Niño events, with impacts on numerous societally-relevant services, including hydropower generation, the main electricity source in Colombia. Simulating rainfall patterns and behavior in such areas of complex terrain has remained a challenge for regional climate models. Current data products such as ERA-Interim and other reanalysis and modelling products generally fail to correctly represent processes at scales that are relevant for these processes. Here we assess the added value to ERA-Interim by dynamical downscaling using the WRF regional climate model, including a comparison of different cumulus parameterization schemes. We found that WRF improves the representation of precipitation during the dry season of El Niño (DJF) events using a 1996-2014 observation period. Further, we use these improved capability to simulate an extreme deforestation scenario under El Niño conditions for an area in the central Andes of Colombia, where a big proportion of the country's hydropower is generated. Our results suggest that forests dampen the effects of El Niño on precipitation. In synthesis, our results illustrate the utility of regional modelling to improve data sources, as well as their potential for predicting the local-to-regional effects of global-change-type processes in regions with limited data availability.
Objectively classifying Southern Hemisphere extratropical cyclones
NASA Astrophysics Data System (ADS)
Catto, Jennifer
2016-04-01
There has been a long tradition in attempting to separate extratropical cyclones into different classes depending on their cloud signatures, airflows, synoptic precursors, or upper-level flow features. Depending on these features, the cyclones may have different impacts, for example in their precipitation intensity. It is important, therefore, to understand how the distribution of different cyclone classes may change in the future. Many of the previous classifications have been performed manually. In order to be able to evaluate climate models and understand how extratropical cyclones might change in the future, we need to be able to use an automated method to classify cyclones. Extratropical cyclones have been identified in the Southern Hemisphere from the ERA-Interim reanalysis dataset with a commonly used identification and tracking algorithm that employs 850 hPa relative vorticity. A clustering method applied to large-scale fields from ERA-Interim at the time of cyclone genesis (when the cyclone is first detected), has been used to objectively classify identified cyclones. The results are compared to the manual classification of Sinclair and Revell (2000) and the four objectively identified classes shown in this presentation are found to match well. The relative importance of diabatic heating in the clusters is investigated, as well as the differing precipitation characteristics. The success of the objective classification shows its utility in climate model evaluation and climate change studies.
The "shallow-waterness" of the wave climate in European coastal regions
NASA Astrophysics Data System (ADS)
Håkon Christensen, Kai; Carrasco, Ana; Bidlot, Jean-Raymond; Breivik, Øyvind
2017-07-01
In contrast to deep water waves, shallow water waves are influenced by bottom topography, which has consequences for the propagation of wave energy as well as for the energy and momentum exchange between the waves and the mean flow. The ERA-Interim reanalysis is used to assess the fraction of wave energy associated with shallow water waves in coastal regions in Europe. We show maps of the distribution of this fraction as well as time series statistics from eight selected stations. There is a strong seasonal dependence and high values are typically associated with winter storms, indicating that shallow water wave effects can occasionally be important even in the deeper parts of the shelf seas otherwise dominated by deep water waves.
NASA Astrophysics Data System (ADS)
Rustemeier, E.; Ziese, M.; Meyer-Christoffer, A.; Finger, P.; Schneider, U.; Becker, A.
2015-12-01
Reliable data is essential for robust climate analysis. The ERA-20C reanalysis was developed during the projects ERA-CLIM and ERA-CLIM2. These projects focus on multi-decadal reanalyses of the global climate system. To ensure data quality and provide end users with information about uncertainties in these products, the 4th work package of ERA_CLIM2 deals with the quality assessment of the products including quality control and error estimation.In doing so, the monthly totals of the ERA-20C reanalysis are compared to two corresponding Global Precipitation Climatology Centre (GPCC) products; the Full Data Reanalysis Version 7 and the new HOMogenized PRecipitation Analysis of European in-situ data (HOMPRA Europe).ERA-20C reanalysis was produced based on ECMWFs IFS version Cy38r1 with a spatial resolution of about 125 km. It covers the time period 1900 to 2010. Only surface observations are assimilated namely marine winds and pressure. This allows the comparison with independent, not assimilated data. The GPCC Full Data Reanalysis Version 7 comprises monthly land-surface precipitation from approximately 75,000 rain-gauges covering the time period 1901-2013. For this paper, the version with 1° resolution is utilized. For trend analysis, a monthly European subset of the ERA-20C reanalysis is investigated spanning the years 1951-2005. The European subset will be compared to a new homogenized GPCC data set HOMPRA Europe. The latter is based on a collective of 5373 homogenized monthly rain gauge time series, carefully chosen from the GPCC archive of precipitation data.For the spatial and temporal evaluation of ERA-20C, global scores on monthly, seasonal and annual time scales are calculated. These include contingency table scores, correlation, along with spatial scores such as the fractional skill score. Unsurprisingly regions with strongest deviations are those of data scarcity, mountainous regions with their luv and lee effects, and monsoon regions. They all exhibit strong biases throughout their series, and severe shifts in the means. The new HOMPRA Europe data set is useful in particular for trend analysis. Therefore it is compared to a monthly European subset of the ERA-20C reanalysis for the same period, i.e. the years 1951-2005, to study the ERA-20C capability in reproducing observed trends across Europe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Daokai; Lu, Jian; Sun, Lantao
In an attempt to resolve the controversy as to whether Arctic sea ice loss leads to more mid-latitude extremes, a metric of finite-amplitude wave activity is adopted to quantify the midlatitude wave activity and its change during the observed period of the drastic Arctic sea ice decline in both ERA Interim reanalysis data and a set of AMIP-type of atmospheric model experiments. Neither the experiment with the trend in the SST or that with the declining trend of Arctic sea ice can simulate the sizable midlatitude-wide reduction in the total wave activity (Ae) observed in the reanalysis, leaving its explanationmore » to the atmospheric internal variability. On the other hand, both the diagnostics of the flux of the local wave activity and the model experiments lend evidence to a possible linkage between the sea ice loss near the Barents and Kara seas and the increasing trend of anticyclonic local wave activity over the northern part of the central Eurasia and the associated impacts on the frequency of temperature extremes.« less
NASA Astrophysics Data System (ADS)
Ma, X.; Yoshikane, T.; Hara, M.; Adachi, S. A.; Wakazuki, Y.; Kawase, H.; Kimura, F.
2014-12-01
To check the influence of boundary input data on a modeling result, we had a numerical investigation of river discharge by using runoff data derived by a regional climate model with a 4.5-km resolution as input data to a hydrological model. A hindcast experiment, which to reproduce the current climate was carried out for the two decades, 1980s and 1990s. We used the Advanced Research WRF (ARW) (ver. 3.2.1) with a two-way nesting technique and the WRF single-moment 6-class microphysics scheme. Noah-LSM is adopted to simulate the land surface process. The NCEP/NCAR and ERA-Interim 6-hourly reanalysis datasets were used as the lateral boundary condition for the runs, respectively. The output variables used for river discharge simulation from the WRF model were underground runoff and surface runoff. Four rivers (Mogami, Agano, Jinzu and Tone) were selected in this study. The results showed that the characteristic of river discharge in seasonal variation could be represented and there were overestimated compared with measured one.
Investigation of Kelvin wave periods during Hai-Tang typhoon using Empirical Mode Decomposition
NASA Astrophysics Data System (ADS)
Kishore, P.; Jayalakshmi, J.; Lin, Pay-Liam; Velicogna, Isabella; Sutterley, Tyler C.; Ciracì, Enrico; Mohajerani, Yara; Kumar, S. Balaji
2017-11-01
Equatorial Kelvin waves (KWs) are fundamental components of the tropical climate system. In this study, we investigate Kelvin waves (KWs) during the Hai-Tang typhoon of 2005 using Empirical Mode Decomposition (EMD) of regional precipitation, zonal and meridional winds. For the analysis, we use daily precipitation datasets from the Global Precipitation Climatology Project (GPCP) and wind datasets from the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-analysis (ERA-Interim). As an additional measurement, we use in-situ precipitation datasets from rain-gauges over the Taiwan region. The maximum accumulated precipitation was approximately 2400 mm during the period July 17-21, 2005 over the southwestern region of Taiwan. The spectral analysis using the wind speed at 950 hPa found in the 2nd, 3rd, and 4th intrinsic mode functions (IMFs) reveals prevailing Kelvin wave periods of ∼3 days, ∼4-6 days, and ∼6-10 days, respectively. From our analysis of precipitation datasets, we found the Kelvin waves oscillated with periods between ∼8 and 20 days.
NASA Astrophysics Data System (ADS)
Kumar, P. Vinay; Dutta, Gopa; Mohammad, Salauddin; Rao, B. Venkateswara
2017-10-01
ECMWF reanalysis (ERA-interim) data of winds for two solar cycles (1991-2012) are harmonically analyzed to delineate the characteristics and variability of diurnal tide over a tropical site (13.5° N, 79.5° E). The diurnal cycle horizontal winds measured by Gadanki (13.5° N, 79.2° E) mesosphere-stratosphere-troposphere (MST) radar between May 2005 and April 2006 have been used to compute 24 h tidal amplitudes and phases and compared with the corresponding results obtained from ERA winds. The climatological diurnal tidal amplitudes and phases have been estimated from surface to ˜33 km using ERA interim data. The amplitudes and phases obtained in the present study are found to compare reasonably well with Global Scale Wave Model (GSWM-09). Diurnal tides show larger amplitudes in the lower troposphere below 5 km during summer and in the mid-stratosphere mainly during equinoctial months and early winter. Water vapor and convection in the lower troposphere are observed to play major roles in exciting 24-h tide. Correlations between diurnal amplitude and integrated water vapor and between diurnal amplitude and outgoing longwave radiation (OLR) are 0.59 and -0.34, respectively. Ozone mixing ratio correlates ( ρ = 0.66) well with diurnal amplitude and shows annual variation in the troposphere whereas semi-annual variation is observed at stratospheric heights with stronger peaks in equinoctial months. A clear annual variation of diurnal amplitude is displayed in the troposphere and interannual variability becomes prominent in the stratosphere which could be partly due to the influence of equatorial stratospheric QBO. The influence of solar activity on diurnal oscillations is found to be insignificant.
Controlled meteorological (CMET) balloon profiling of the Arctic atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Roberts, Tjarda; Hole, Lars; Voss, Paul
2017-04-01
We demonstrate profiling of the atmospheric boundary layer over Arctic ice-free and sea-ice covered regions by free-floating controllable CMET balloons. The CMET observations (temperature, humidity, wind-speed, pressure) provide in-situ meteorological datasets in very remote regions for comparison to atmospheric models. Controlled Meteorological (CMET) balloons are small airborne platforms that use reversible lift-gas compression to regulate altitude. These balloons have approximately the same payload mass as standard weather balloons but can float for many days, change altitude on command, and transmit meteorological and system data in near-real time via satellite. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard (Spitsbergen) over 5-12 May 2011 and measured vertical atmospheric profiles (temperature, humidity, wind) over coastal and remote areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic atmospheric boundary layer (ABL) over a period of more than 10 h. Profiles from two CMET flights are compared to model output from ECMWF Era-Interim reanalysis (ERA-I) and to a high-resolution (15 km) Arctic System Reanalysis (ASR) product. To the east of Svalbard over sea-ice, the CMET observed a stable ABL profile with a temperature inversion that was reproduced by ASR but not captured by ERA-I. In a coastal ice-free region to the west of Svalbard, the CMET observed a stable ABL with strong wind-shear. The CMET profiles document increases in ABL temperature and humidity that are broadly reproduced by both ASR and ERA-I. The ASR finds a more stably stratified ABL than observed but captured the wind shear in contrast to ERA-I. Detailed analysis of the coastal CMET-automated soundings identifies small-scale temperature and humidity variations with a low-level flow and provides an estimate of local wind fields. We show that CMET balloons are a valuable approach for profiling the free atmosphere and atmospheric boundary layer in remote regions such as the Arctic, where few other in-situ observations are available to trace processes and for model evaluation. References: Roberts, T. J., Dütsch, M., Hole, L. R., and Voss, P. B.: Controlled meteorological (CMET) free balloon profiling of the Arctic atmospheric boundary layer around Spitsbergen compared to ERA-Interim and Arctic System Reanalyses. Atmos. Chem. Phys., 16, 12383-12396, doi:10.5194/acp-16-12383-2016, 2016. Hole L. R., Bello A. P., Roberts T. J., Voss P. B., Vihma T.: Measurements by controlled meteorological balloons in coastal areas of Antarctica. Antarctic Science, 1-8, doi:10.1017/S0954102016000213, 2016. Voss P. B., Hole L. R., Helbling E. F., Roberts T. J.: Continuous in-situ soundings in the arctic boundary layer: a new atmospheric measurement technique using controlled meteorological balloons. Journal of Intelligent Robot Systems, 70, 609-617, doi 10.1007/s10846-012-9758-6, 2013.
Global Climatology of the Coastal Low-Level Wind Jets using different Reanalysis
NASA Astrophysics Data System (ADS)
Lima, Daniela C. A.; Soares, Pedro M. M.; Semedo, Alvaro; Cardoso, Rita M.
2016-04-01
Coastal Low-Level Jets (henceforth referred to as "coastal jets" or simply as CLLJ) are low-tropospheric mesoscale wind features, with wind speed maxima confined to the marine atmospheric boundary layer (MABL), typically bellow 1km. Coastal jets occur in the eastern flank of the semi-permanent subtropical mid-latitude high pressure systems, along equatorward eastern boundary currents, due to a large-scale synoptic forcing. The large-scale synoptic forcing behind CLLJ occurrences is a high pressure system over the ocean and a thermal low inland. This results in coastal parallel winds that are the consequence of the geostrophic adjustment. CLLJ are found along the California (California-Oregon) and the Canary (Iberia and Northeastern Africa) currents in the Northern Hemisphere, and along the Peru-Humboldt (Peru-Chile), Benguela (Namibia) and Western Australia (West Australia) currents in the Southern Hemisphere. In the Arabian Sea (Oman CLLJ), the interaction between the high pressure over the Indian Ocean in summer (Summer Indian Monsoon) and the Somali (also known as Findlater) Jet forces a coastal jet wind feature off the southeast coast of Oman. Coastal jets play an important role in the regional climates of the mid-latitude western continental regions. The decrease of the sea surface temperatures (SST) along the coast due to upwelling lowers the evaporation over the ocean and the coast parallel winds prevents the advection of marine air inshore. The feedback processes between the CLLJ and upwelling play a crucial role in the regional climate, namely, promoting aridity since the parallel flow prevents the intrusion of moisture inland, and increasing fish stocks through the transport of rich nutrient cold water from the bottom. In this study, the global coastal low-level wind jets are identified and characterized using an ensemble of three reanalysis, the ECMWF Interim Reanalysis (ERA-Interim), the Japanese 55-year Reanalysis (JRA-55) and the NCEP Climate Forecast System Reanalysis (NCEP CFSR). The CLLJ detection method proposed by Ranjha et al. (2013) was used for the reanalysis data. The criteria was applied sequentially to wind-speed and temperature vertical profiles to detect the location and frequency of CLLJ. The CLLJs spatio-temporal features and the seasonal synoptic configuration associated with the presence of coastal jets are studied for the period (1979-2008) using the ensemble. The present study will allow us to investigate thoroughly the global coastal low-level jets occurrence and main properties, following a new perspective and to assess the uncertainties in the representation of this jets by the available reanalysis. ublication supported by project FCT UID/GEO/50019/2013 - Instituto Dom Luiz.
Introducing the Met Office 2.2-km Europe-wide convection-permitting regional climate simulations
NASA Astrophysics Data System (ADS)
Kendon, Elizabeth J.; Chan, Steven C.; Berthou, Segolene; Fosser, Giorgia; Roberts, Malcolm J.; Fowler, Hayley J.
2017-04-01
The Met Office is currently conducting Europe-wide 2.2-km convection-permitting model (CPM) simulations driven by ERA-Interim reanalysis and present/future-climate GCM simulations. Here, we present the preliminary results of these new European simulations examining daily and sub-daily precipitation outputs in comparison with observations across Europe, 12-km European and 1.5-km UK climate model simulations. As the simulations are not yet complete, we focus on diagnostics that are relatively robust with a limited amount of data; for instance, the diurnal cycle and the probability distribution of daily and sub-daily precipitation intensities. We will also present specific case studies that showcase the benefits of using continental-scale CPM simulations over previously-available small-domain CPM simulations.
Approximate Stokes Drift Profiles in Deep Water
NASA Astrophysics Data System (ADS)
Breivik, Øyvind; Janssen, Peter A. E. M.; Bidlot, Jean-Raymond
2014-09-01
A deep-water approximation to the Stokes drift velocity profile is explored as an alternative to the monochromatic profile. The alternative profile investigated relies on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons with parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profile gives a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. The alternative profile comes at no added numerical cost compared to the monochromatic profile.
Comparison of long-term trends from reanalyses
NASA Astrophysics Data System (ADS)
Kozubek, M.
2017-12-01
The long-term trend of different atmospheric parameters has been studied separately during previous years in many papers. This study is focused on the temperature, wind (u and v component), geopotential height and water vapour trends during 1979-2016. We present the trend for each month with respect to ozone turnaround during mid 1990s. The different reanalyses (MERRA, ERA-Interim, JRA-55 and NCEP-NOE) are used for comparison. We analyzed every grid point to reduce the problem with zonal averages in different pressure levels. The results will show the complex view on the trend in the middle atmosphere (troposphere, stratosphere and lower mesosphere). This comparison can give us the clue which reanalysis is better for studying different phenomena (QBO, NAO, ENSO, etc.) and which one has some issues.
The influence of El Niño-Southern Oscillation on boreal winter rainfall over Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Richard, Sandra; Walsh, Kevin J. E.
2017-09-01
Multi-scale interactions between El Niño-Southern Oscillation and the Boreal Winter Monsoon contribute to rainfall variations over Malaysia. Understanding the physical mechanisms that control these spatial variations in local rainfall is crucial for improving weather and climate prediction and related risk management. Analysis using station observations and European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) reanalysis reveals a significant decrease in rainfall during El Niño (EL) and corresponding increase during La Niña particularly north of 2°N over Peninsular Malaysia (PM). It is noted that the southern tip of PM shows a small increase in rainfall during El Niño although not significant. Analysis of the diurnal cycle of rainfall and winds indicates that there are no significant changes in morning and evening rainfall over PM that could explain the north-south disparity. Thus, we suggest that the key factor which might explain the north-south rainfall disparity is the moisture flux convergence (MFC). During the December to January (DJF) period of EL years, except for the southern tip of PM, significant negative MFC causes drying as well as suppression of uplift over most areas. In addition, lower specific humidity combined with moisture flux divergence results in less moisture over PM. Thus, over the areas north of 2°N, less rainfall (less heavy rain days) with smaller diurnal rainfall amplitude explains the negative rainfall anomaly observed during DJF of EL. The same MFC argument might explain the dipolar pattern over other areas such as Borneo if further analysis is performed.
NASA Astrophysics Data System (ADS)
Cai, Lei; Alexeev, Vladimir A.; Arp, Christopher D.; Jones, Benjamin M.; Liljedahl, Anna K.; Gädeke, Anne
2018-01-01
Climate change is most pronounced in the northern high latitude region. Yet, climate observations are unable to fully capture regional-scale dynamics due to the sparse weather station coverage, which limits our ability to make reliable climate-based assessments. A set of simulated data products was therefore developed for the North Slope of Alaska through a dynamical downscaling approach. The polar-optimized Weather Research & Forecast (Polar WRF) model was forced by three sources: The ERA-interim reanalysis data (for 1979-2014), the Community Earth System Model 1.0 (CESM1.0) historical simulation (for 1950-2005), and the CESM1.0 projected (for 2006-2100) simulations in two Representative Concentration Pathways (RCP4.5 and RCP8.5) scenarios. Climatic variables were produced in a 10-km grid spacing and a 3-hour interval. The ERA-interim forced WRF (ERA-WRF) proves the value of dynamical downscaling, which yields more realistic topographical-induced precipitation and air temperature, as well as corrects underestimations in observed precipitation. In summary, dry and cold biases to the north of the Brooks Range are presented in ERA-WRF, while CESM forced WRF (CESM-WRF) holds wet and warm biases in its historical period. A linear scaling method allowed for an adjustment of the biases, while keeping the majority of the variability and extreme values of modeled precipitation and air temperature. CESM-WRF under RCP 4.5 scenario projects smaller increase in precipitation and air temperature than observed in the historical CESM-WRF product, while the CESM-WRF under RCP8.5 scenario shows larger changes. The fine spatial and temporal resolution, long temporal coverage, and multi-scenario projections jointly make the dataset appropriate to address a myriad of physical and biological changes occurring on the North Slope of Alaska.
NASA Astrophysics Data System (ADS)
González-Rojí, Santos J.; Sáenz, Jon; Ibarra-Berastegi, Gabriel; Díaz de Argandoña, Javier
2018-01-01
An analysis of the atmospheric branch of the hydrological cycle by means of a 15 km resolution numerical integration performed using Weather Research and Forecasting (WRF) nested in ERA Interim is presented. Two WRF experiments covering the period 2010-2014 were prepared. The first one (N) was configured as in standard numerical downscaling experiments. The second one (D), with the same parameterizations, included a step of 3DVAR data assimilation every 6 h. Apart from comparing our results with ERA Interim data, several observational data sets were used to validate the precipitable water (radiosondes and MODIS data), precipitation (EOBS, ECA&D, TRMM, and GPCP), or evaporation (GLEAM). The verification results showed that the D experiment systematically performs better than N and in many instances, too, better than the forcing reanalysis. According to the results, the leading terms of the water balance are the tendency of the precipitable water, the divergence of moisture flux, evaporation, and precipitation. No spatial patterns were recognizable for the annual accumulated evaporation, but the effect of the Atlantic fronts was detected in the precipitation patterns. The transboundary moisture fluxes through the contour of the Iberian Peninsula behave differently depending on the season during 2010-2014. During winter, they show a net moisture import through the boundaries. During spring, summer, or autumn moisture is exported specially through the Mediterranean coast, and only during midday, this feature is reversed due to sea breezes.
Solar cycle in current reanalyses: (non)linear attribution study
NASA Astrophysics Data System (ADS)
Kuchar, A.; Sacha, P.; Miksovsky, J.; Pisoft, P.
2014-12-01
This study focusses on the variability of temperature, ozone and circulation characteristics in the stratosphere and lower mesosphere with regard to the influence of the 11 year solar cycle. It is based on attribution analysis using multiple nonlinear techniques (Support Vector Regression, Neural Networks) besides the traditional linear approach. The analysis was applied to several current reanalysis datasets for the 1979-2013 period, including MERRA, ERA-Interim and JRA-55, with the aim to compare how this type of data resolves especially the double-peaked solar response in temperature and ozone variables and the consequent changes induced by these anomalies. Equatorial temperature signals in the lower and upper stratosphere were found to be sufficiently robust and in qualitative agreement with previous observational studies. The analysis also pointed to the solar signal in the ozone datasets (i.e. MERRA and ERA-Interim) not being consistent with the observed double-peaked ozone anomaly extracted from satellite measurements. Consequently the results obtained by linear regression were confirmed by the nonlinear approach through all datasets, suggesting that linear regression is a relevant tool to sufficiently resolve the solar signal in the middle atmosphere. Furthermore, the seasonal dependence of the solar response was also discussed, mainly as a source of dynamical causalities in the wave propagation characteristics in the zonal wind and the induced meridional circulation in the winter hemispheres. The hypothetical mechanism of a weaker Brewer Dobson circulation was reviewed together with discussion of polar vortex stability.
NASA Astrophysics Data System (ADS)
Kuchar, A.; Sacha, P.; Miksovsky, J.; Pisoft, P.
2015-06-01
This study focusses on the variability of temperature, ozone and circulation characteristics in the stratosphere and lower mesosphere with regard to the influence of the 11-year solar cycle. It is based on attribution analysis using multiple nonlinear techniques (support vector regression, neural networks) besides the multiple linear regression approach. The analysis was applied to several current reanalysis data sets for the 1979-2013 period, including MERRA, ERA-Interim and JRA-55, with the aim to compare how these types of data resolve especially the double-peaked solar response in temperature and ozone variables and the consequent changes induced by these anomalies. Equatorial temperature signals in the tropical stratosphere were found to be in qualitative agreement with previous attribution studies, although the agreement with observational results was incomplete, especially for JRA-55. The analysis also pointed to the solar signal in the ozone data sets (i.e. MERRA and ERA-Interim) not being consistent with the observed double-peaked ozone anomaly extracted from satellite measurements. The results obtained by linear regression were confirmed by the nonlinear approach through all data sets, suggesting that linear regression is a relevant tool to sufficiently resolve the solar signal in the middle atmosphere. The seasonal evolution of the solar response was also discussed in terms of dynamical causalities in the winter hemispheres. The hypothetical mechanism of a weaker Brewer-Dobson circulation at solar maxima was reviewed together with a discussion of polar vortex behaviour.
NASA Astrophysics Data System (ADS)
Tang, G.; Li, C.; Hong, Y.; Long, D.
2017-12-01
Proliferation of satellite and reanalysis precipitation products underscores the need to evaluate their reliability, particularly over ungauged or poorly gauged regions. However, it is really challenging to perform such evaluations over regions lacking ground truth data. Here, using the triple collocation (TC) method that is capable of evaluating relative uncertainties in different products without ground truth, we evaluate five satellite-based precipitation products and comparatively assess uncertainties in three types of independent precipitation products, e.g., satellite-based, ground-observed, and model reanalysis over Mainland China, including a ground-based precipitation dataset (the gauge based daily precipitation analysis, CGDPA), the latest version of the European reanalysis agency reanalysis (ERA-interim) product, and five satellite-based products (i.e., 3B42V7, 3B42RT of TMPA, IMERG, CMORPH-CRT, PERSIANN-CDR) on a regular 0.25° grid at the daily timescale from 2013 to 2015. First, the effectiveness of the TC method is evaluated by comparison with traditional methods based on ground observations in a densely gauged region. Results show that the TC method is reliable because the correlation coefficient (CC) and root mean square error (RMSE) are close to those based on the traditional method with a maximum difference only up to 0.08 and 0.71 (mm/day) for CC and RMSE, respectively. Then, the TC method is applied to Mainland China and the Tibetan Plateau (TP). Results indicate that: (1) the overall performance of IMERG is better than the other satellite products over Mainland China; (2) over grid cells without rain gauges in the TP, IMERG and ERA show better performance than CGDPA, indicating the potential of remote sensing and reanalysis data over these regions and the inherent uncertainty of CGDPA due to interpolation using sparsely gauged data; (3) both TMPA-3B42 and CMORPH-CRT have some unexpected CC values over certain grid cells that contain water bodies, reaffirming the overestimation of precipitation over inland water bodies. Overall, the TC method provides not only reliable cross-validation results of precipitation estimates over Mainland China but also a new perspective as to compressively assess multi-source precipitation products, particularly over poorly gauged regions.
Extended and refined multi sensor reanalysis of total ozone for the period 1970-2012
NASA Astrophysics Data System (ADS)
van der A, R. J.; Allaart, M. A. F.; Eskes, H. J.
2015-07-01
The ozone multi-sensor reanalysis (MSR) is a multi-decadal ozone column data record constructed using all available ozone column satellite data sets, surface Brewer and Dobson observations and a data assimilation technique with detailed error modelling. The result is a high-resolution time series of 6-hourly global ozone column fields and forecast error fields that may be used for ozone trend analyses as well as detailed case studies. The ozone MSR is produced in two steps. First, the latest reprocessed versions of all available ozone column satellite data sets are collected and then are corrected for biases as a function of solar zenith angle (SZA), viewing zenith angle (VZA), time (trend), and stratospheric temperature using surface observations of the ozone column from Brewer and Dobson spectrophotometers from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC). Subsequently the de-biased satellite observations are assimilated within the ozone chemistry and data assimilation model TMDAM. The MSR2 (MSR version 2) reanalysis upgrade described in this paper consists of an ozone record for the 43-year period 1970-2012. The chemistry transport model and data assimilation system have been adapted to improve the resolution, error modelling and processing speed. Backscatter ultraviolet (BUV) satellite observations have been included for the period 1970-1977. The total record is extended by 13 years compared to the first version of the ozone multi sensor reanalysis, the MSR1. The latest total ozone retrievals of 15 satellite instruments are used: BUV-Nimbus4, TOMS-Nimbus7, TOMS-EP, SBUV-7, -9, -11, -14, -16, -17, -18, -19, GOME, SCIAMACHY, OMI and GOME-2. The resolution of the model runs, assimilation and output is increased from 2° × 3° to 1° × 1°. The analysis is driven by 3-hourly meteorology from the ERA-Interim reanalysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) starting from 1979, and ERA-40 before that date. The chemistry parameterization has been updated. The performance of the MSR2 analysis is studied with the help of observation-minus-forecast (OmF) departures from the data assimilation, by comparisons with the individual station observations and with ozone sondes. The OmF statistics show that the mean bias of the MSR2 analyses is less than 1 % with respect to de-biased satellite observations after 1979.
Development of web-GIS system for analysis of georeferenced geophysical data
NASA Astrophysics Data System (ADS)
Okladnikov, I.; Gordov, E. P.; Titov, A. G.; Bogomolov, V. Y.; Genina, E.; Martynova, Y.; Shulgina, T. M.
2012-12-01
Georeferenced datasets (meteorological databases, modeling and reanalysis results, remote sensing products, etc.) are currently actively used in numerous applications including modeling, interpretation and forecast of climatic and ecosystem changes for various spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their huge size which might constitute up to tens terabytes for a single dataset at present studies in the area of climate and environmental change require a special software support. A dedicated web-GIS information-computational system for analysis of georeferenced climatological and meteorological data has been created. The information-computational system consists of 4 basic parts: computational kernel developed using GNU Data Language (GDL), a set of PHP-controllers run within specialized web-portal, JavaScript class libraries for development of typical components of web mapping application graphical user interface (GUI) based on AJAX technology, and an archive of geophysical datasets. Computational kernel comprises of a number of dedicated modules for querying and extraction of data, mathematical and statistical data analysis, visualization, and preparing output files in geoTIFF and netCDF format containing processing results. Specialized web-portal consists of a web-server Apache, complying OGC standards Geoserver software which is used as a base for presenting cartographical information over the Web, and a set of PHP-controllers implementing web-mapping application logic and governing computational kernel. JavaScript libraries aiming at graphical user interface development are based on GeoExt library combining ExtJS Framework and OpenLayers software. The archive of geophysical data consists of a number of structured environmental datasets represented by data files in netCDF, HDF, GRIB, ESRI Shapefile formats. For processing by the system are available: two editions of NCEP/NCAR Reanalysis, JMA/CRIEPI JRA-25 Reanalysis, ECMWF ERA-40 Reanalysis, ECMWF ERA Interim Reanalysis, MRI/JMA APHRODITE's Water Resources Project Reanalysis, DWD Global Precipitation Climatology Centre's data, GMAO Modern Era-Retrospective analysis for Research and Applications, meteorological observational data for the territory of the former USSR for the 20th century, results of modeling by global and regional climatological models, and others. The system is already involved into a scientific research process. Particularly, recently the system was successfully used for analysis of Siberia climate changes and its impact in the region. The Web-GIS information-computational system for geophysical data analysis provides specialists involved into multidisciplinary research projects with reliable and practical instruments for complex analysis of climate and ecosystems changes on global and regional scales. Using it even unskilled user without specific knowledge can perform computational processing and visualization of large meteorological, climatological and satellite monitoring datasets through unified web-interface in a common graphical web-browser. This work is partially supported by the Ministry of education and science of the Russian Federation (contract #07.514.114044), projects IV.31.1.5, IV.31.2.7, RFBR grants #10-07-00547a, #11-05-01190a, and integrated project SB RAS #131.
Design and validation of MEDRYS, a Mediterranean Sea reanalysis over the period 1992-2013
NASA Astrophysics Data System (ADS)
Hamon, Mathieu; Beuvier, Jonathan; Somot, Samuel; Lellouche, Jean-Michel; Greiner, Eric; Jordà, Gabriel; Bouin, Marie-Noëlle; Arsouze, Thomas; Béranger, Karine; Sevault, Florence; Dubois, Clotilde; Drevillon, Marie; Drillet, Yann
2016-04-01
The French research community in the Mediterranean Sea modeling and the French operational ocean forecasting center Mercator Océan have gathered their skill and expertise in physical oceanography, ocean modeling, atmospheric forcings and data assimilation to carry out a MEDiterranean sea ReanalYsiS (MEDRYS) at high resolution for the period 1992-2013. The ocean model used is NEMOMED12, a Mediterranean configuration of NEMO with a 1/12° ( ˜ 7 km) horizontal resolution and 75 vertical z levels with partial steps. At the surface, it is forced by a new atmospheric-forcing data set (ALDERA), coming from a dynamical downscaling of the ERA-Interim atmospheric reanalysis by the regional climate model ALADIN-Climate with a 12 km horizontal and 3 h temporal resolutions. This configuration is used to carry a 34-year hindcast simulation over the period 1979-2013 (NM12-FREE), which is the initial state of the reanalysis in October 1992. MEDRYS uses the existing Mercator Océan data assimilation system SAM2 that is based on a reduced-order Kalman filter with a three-dimensional (3-D) multivariate modal decomposition of the forecast error. Altimeter data, satellite sea surface temperature (SST) and temperature and salinity vertical profiles are jointly assimilated. This paper describes the configuration we used to perform MEDRYS. We then validate the skills of the data assimilation system. It is shown that the data assimilation restores a good average temperature and salinity at intermediate layers compared to the hindcast. No particular biases are identified in the bottom layers. However, the reanalysis shows slight positive biases of 0.02 psu and 0.15 °C above 150 m depth. In the validation stage, it is also shown that the assimilation allows one to better reproduce water, heat and salt transports through the Strait of Gibraltar. Finally, the ability of the reanalysis to represent the sea surface high-frequency variability is shown.
NASA Astrophysics Data System (ADS)
Valdivieso, Maria
2014-05-01
The GODAE OceanView and CLIVAR-GSOP ocean synthesis program has been assessing the degree of consistency between global air-sea flux data sets obtained from ocean or coupled reanalyses (Valdivieso et al., 2014). So far, fifteen global air-sea heat flux products obtained from ocean or coupled reanalyses have been examined: seven are from low-resolution ocean reanalyses (BOM PEODAS, ECMWF ORAS4, JMA/MRI MOVEG2, JMA/MRI MOVECORE, Hamburg Univ. GECCO2, JPL ECCOv4, and NCEP GODAS), five are from eddy-permitting ocean reanalyses developed as part of the EU GMES MyOcean program (Mercator GLORYS2v1, Reading Univ. UR025.3, UR025.4, UKMO GloSea5, and CMCC C-GLORS), and the remaining three are couple reanalyses based on coupled climate models (JMA/MRI MOVE-C, GFDL ECDA and NCEP CFSR). The global heat closure in the products over the period 1993-2009 spanned by all data sets is presented in comparison with observational and atmospheric reanalysis estimates. Then, global maps of ensemble spread in the seasonal cycle, and of the Signal to Noise Ratio of interannual flux variability over the 17-yr common period are shown to illustrate the consistency between the products. We have also studied regional variability in the products, particularly at the OceanSITES project locations (such as, for instance, the TAO/TRITON and PIRATA arrays in the Tropical Pacific and Atlantic, respectively). Comparisons are being made with other products such as OAFlux latent and sensible heat fluxes (Yu et al., 2008) combined with ISCCP satellite-based radiation (Zhang et al., 2004), the ship-based NOC2.0 product (Berry and Kent, 2009), the Large and Yeager (2009) hybrid flux dataset CORE.2, and two atmospheric reanalysis products, the ECMWF ERA-Interim reanalysis (referred to as ERAi, Dee et al., 2011) and the NCEP/DOE reanalysis R2 (referred to as NCEP-R2, Kanamitsu et al., 2002). Preliminary comparisons with the observational flux products from OceanSITES are also underway. References Berry, D.I. and E.C. Kent (2009), A New Air-Sea Interaction Gridded Dataset from ICOADS with Uncertainty Estimates. Bull. Amer. Meteor. Soc 90(5), 645-656. doi: 10.1175/2008BAMS2639.1. Dee, D. P. et al. (2011), The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc., 137: 553-597. doi: 10.1002/qj.828. Kanamitsu M., Ebitsuzaki W., Woolen J., Yang S.K., Hnilo J.J., Fiorino M., Potter G. (2002), NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83:1631-1643. Large, W. and Yeager, S. (2009), The global climatology of an interannually varying air-sea flux data set. Clim. Dynamics, Volume 33, pp 341-364 Valdivieso, M. and co-authors (2014): Heat fluxes from ocean and coupled reanalyses, Clivar Exchanges. Issue 64. Yu, L., X. Jin, and R. A. Weller (2008), Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and Sensible Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables. Technical Report OAFlux Project (OA2008-01), Woods Hole Oceanographic Institution. Zhang, Y., WB Rossow, AA Lacis, V Oinas, MI Mishchenk (2004), Calculation of radiative fluxes from the surface to top of atmsophere based on ISCCP and other global data sets. Journal of Geophysical Research: Atmospheres (1984-2012) 109 (D19).
Software Framework for Development of Web-GIS Systems for Analysis of Georeferenced Geophysical Data
NASA Astrophysics Data System (ADS)
Okladnikov, I.; Gordov, E. P.; Titov, A. G.
2011-12-01
Georeferenced datasets (meteorological databases, modeling and reanalysis results, remote sensing products, etc.) are currently actively used in numerous applications including modeling, interpretation and forecast of climatic and ecosystem changes for various spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their size which might constitute up to tens terabytes for a single dataset at present studies in the area of climate and environmental change require a special software support. A dedicated software framework for rapid development of providing such support information-computational systems based on Web-GIS technologies has been created. The software framework consists of 3 basic parts: computational kernel developed using ITTVIS Interactive Data Language (IDL), a set of PHP-controllers run within specialized web portal, and JavaScript class library for development of typical components of web mapping application graphical user interface (GUI) based on AJAX technology. Computational kernel comprise of number of modules for datasets access, mathematical and statistical data analysis and visualization of results. Specialized web-portal consists of web-server Apache, complying OGC standards Geoserver software which is used as a base for presenting cartographical information over the Web, and a set of PHP-controllers implementing web-mapping application logic and governing computational kernel. JavaScript library aiming at graphical user interface development is based on GeoExt library combining ExtJS Framework and OpenLayers software. Based on the software framework an information-computational system for complex analysis of large georeferenced data archives was developed. Structured environmental datasets available for processing now include two editions of NCEP/NCAR Reanalysis, JMA/CRIEPI JRA-25 Reanalysis, ECMWF ERA-40 Reanalysis, ECMWF ERA Interim Reanalysis, MRI/JMA APHRODITE's Water Resources Project Reanalysis, meteorological observational data for the territory of the former USSR for the 20th century, and others. Current version of the system is already involved into a scientific research process. Particularly, recently the system was successfully used for analysis of Siberia climate changes and its impact in the region. The software framework presented allows rapid development of Web-GIS systems for geophysical data analysis thus providing specialists involved into multidisciplinary research projects with reliable and practical instruments for complex analysis of climate and ecosystems changes on global and regional scales. This work is partially supported by RFBR grants #10-07-00547, #11-05-01190, and SB RAS projects 4.31.1.5, 4.31.2.7, 4, 8, 9, 50 and 66.
Physically Based Mountain Hydrological Modelling using Reanalysis Data in Patagonia
NASA Astrophysics Data System (ADS)
Krogh, S.; Pomeroy, J. W.; McPhee, J. P.
2013-05-01
Remote regions in South America are often characterized by insufficient observations of meteorology for robust hydrological model operation. Yet water resources must be quantified, understood and predicted in order to develop effective water management policies. Here, we developed a physically based hydrological model for a major river in Patagonia using the modular Cold Regions Hydrological Modelling Platform (CRHM) in order to better understand hydrological processes leading to streamflow generation in this remote region. The Baker River -with the largest mean annual streamflow in Chile-, drains snowy mountains, glaciers, wet forests, peat and semi-arid pampas into a large lake. Meteorology over the basin is poorly monitored in that there are no high elevation weather stations and stations at low elevations are sparsely distributed, only measure temperature and rainfall and are poorly maintained. Streamflow in the basin is gauged at several points where there are high quality hydrometric stations. In order to quantify the impact of meteorological data scarcity on prediction, two additional data sources were used: the ERA-Interim (ECMWF Re-analyses) and CFSR (Climate Forecast System Reanalysis) atmospheric reanalyses. Precipitation temporal distribution and magnitude from the models and observations were compared and the reanalysis data was found to have about three times the number of days with precipitation than the observations did. Better synchronization between measured peak streamflows and modeled precipitation was found compared to observed precipitation. These differences are attributed to: (i) lack of any snowfall observations (so precipitation records does not consider snowfall events) and (ii) available rainfall observations are all located at low altitude (<500 m a.s.l), and miss the occurrence of high altitude precipitation events. CRHM parameterization was undertaken by using local physiographic and vegetation characteristics where available and transferring locally unknown hydrological process parameters from cold regions mountain environments in Canada. Some soil moisture parameters were calibrated from streamflow observations. Model performance was estimated through comparison with observed streamflow records. Simulations using observed precipitation had negligible representativeness of streamflow (Nash-Sutcliffe coefficient, NS ≈ 0.2), while those using any of the two reanalyses as forcing data had reasonable model performance (NS ≈ 0.7). In spite of the better spatial resolution of the CFSR, the ability to simulate streamflow were not significantly different using either CFSR or ERA-Interim. The modeled water balance shows that snowfall is about 30% of the total precipitation input, but snowmelt superficial runoff comprises about 10% of total runoff. About 75% of all precipitation is infiltrated, and approximately 15% of the losses are attributed to evapotranspiration from soil and lake evaporation.
Estimating irrigated areas from satellite and model soil moisture data over the contiguous US
NASA Astrophysics Data System (ADS)
Zaussinger, Felix; Dorigo, Wouter; Gruber, Alexander
2017-04-01
Information about irrigation is crucial for a number of applications such as drought- and yield management and contributes to a better understanding of the water-cycle, land-atmosphere interactions as well as climate projections. Currently, irrigation is mainly quantified by national agricultural statistics, which do not include spatial information. The digital Global Map of Irrigated Areas (GMIA) has been the first effort to quantify irrigation at the global scale by merging these statistics with remote sensing data. Also, the MODIS-Irrigated Agriculture Dataset (MirAD-US) was created by merging annual peak MODIS-NDVI with US county level irrigation statistics. In this study we aim to map irrigated areas by confronting time series of various satellite soil moisture products with soil moisture from the ERA-Interim/Land reanalysis product. We follow the assumption that irrigation signals are not modelled in the reanalysis product, nor contributing to its forcing data, but affecting the spatially continuous remote sensing observations. Based on this assumption, spatial patterns of irrigation are derived from differences between the temporal slopes of the modelled and remotely sensed time series during the irrigation season. Results show that a combination of ASCAT and ERA-Interim/Land show spatial patterns which are in good agreement with the MIrAD-US, particularly within the Mississippi Delta, Texas and eastern Nebraska. In contrast, AMSRE shows weak agreements, plausibly due to a higher vegetation dependency of the soil moisture signal. There is no significant agreement to the MIrAD-US in California, which is possibly related to higher crop-diversity and lower field sizes. Also, a strong signal in the region of the Great Corn Belt is observed, which is generally not outlined as an irrigated area. It is not yet clear to what extent the signal obtained in the Mississippi Delta is related to re-reflection effects caused by standing water due to flood or furrow irrigation practices. Consequently, future research should focus on the specific effects of different irrigation practices and crop types. This study is supported by the European Union's FP7 EartH2Observe "Global Earth Observation for Integrated Water Resource Assessment" project (grant agreement number 331 603608).
Stilianakis, Nikolaos I.; Syrris, Vasileios; Petroliagkis, Thomas; Pärt, Peeter; Gewehr, Sandra; Kalaitzopoulou, Stella; Mourelatos, Spiros; Baka, Agoritsa; Pervanidou, Danai; Vontas, John; Hadjichristodoulou, Christos
2016-01-01
Climate can affect the geographic and seasonal patterns of vector-borne disease incidence such as West Nile Virus (WNV) infections. We explore the association between climatic factors and the occurrence of West Nile fever (WNF) or West Nile neuro-invasive disease (WNND) in humans in Northern Greece over the years 2010–2014. Time series over a period of 30 years (1979–2008) of climatic data of air temperature, relative humidity, soil temperature, volumetric soil water content, wind speed, and precipitation representing average climate were obtained utilising the ECMWF’s (European Centre for Medium-Range Weather Forecasts) Re-Analysis (ERA-Interim) system allowing for a homogeneous set of data in time and space. We analysed data of reported human cases of WNF/WNND and Culex mosquitoes in Northern Greece. Quantitative assessment resulted in identifying associations between the above climatic variables and reported human cases of WNF/WNND. A substantial fraction of the cases was linked to the upper percentiles of the distribution of air and soil temperature for the period 1979–2008 and the lower percentiles of relative humidity and soil water content. A statistically relevant relationship between the mean weekly value climatic anomalies of wind speed (negative association), relative humidity (negative association) and air temperature (positive association) over 30 years, and reported human cases of WNF/WNND during the period 2010–2014 could be shown. A negative association between the presence of WNV infected Culex mosquitoes and wind speed could be identified. The statistically significant associations could also be confirmed for the week the WNF/WNND human cases appear and when a time lag of up to three weeks was considered. Similar statistically significant associations were identified with the weekly anomalies of the maximum and minimum values of the above climatic factors. Utilising the ERA-Interim re-analysis methodology it could be shown that besides air temperature, climatic factors such as soil temperature, relative humidity, soil water content and wind speed may affect the epidemiology of WNV. PMID:27631082
NASA Astrophysics Data System (ADS)
Beck, H.; Vergopolan, N.; Pan, M.; Levizzani, V.; van Dijk, A.; Weedon, G. P.; Brocca, L.; Huffman, G. J.; Wood, E. F.; William, L.
2017-12-01
We undertook a comprehensive evaluation of 22 gridded (quasi-)global (sub-)daily precipitation (P) datasets for the period 2000-2016. Twelve non-gauge-corrected P datasets were evaluated using daily P gauge observations from 76,086 gauges worldwide. Another ten gauge-corrected ones were evaluated using hydrological modeling, by calibrating the conceptual model HBV against streamflow records for each of 9053 small to medium-sized (<50,000 km2) catchments worldwide, and comparing the resulting performance. Marked differences in spatio-temporal patterns and accuracy were found among the datasets. Among the uncorrected P datasets, the satellite- and reanalysis-based MSWEP-ng V1.2 and V2.0 datasets generally showed the best temporal correlations with the gauge observations, followed by the reanalyses (ERA-Interim, JRA-55, and NCEP-CFSR), the estimates based primarily on passive microwave remote sensing of rainfall (CMORPH V1.0, GSMaP V5/6, and TMPA 3B42RT V7) or near-surface soil moisture (SM2RAIN-ASCAT), and finally, estimates based primarily on thermal infrared imagery (GridSat V1.0, PERSIANN, and PERSIANN-CCS). Two of the three reanalyses (ERA-Interim and JRA-55) unexpectedly obtained lower trend errors than the satellite datasets. Among the corrected P datasets, the ones directly incorporating daily gauge data (CPC Unified and MSWEP V1.2 and V2.0) generally provided the best calibration scores, although the good performance of the fully gauge-based CPC Unified is unlikely to translate to sparsely or ungauged regions. Next best results were obtained with P estimates directly incorporating temporally coarser gauge data (CHIRPS V2.0, GPCP-1DD V1.2, TMPA 3B42 V7, and WFDEI-CRU), which in turn outperformed those indirectly incorporating gauge data through other multi-source datasets (PERSIANN-CDR V1R1 and PGF). Our results highlight large differences in estimation accuracy, and hence, the importance of P dataset selection in both research and operational applications. The good performance of MSWEP emphasizes that careful data merging can exploit the complementary strengths of gauge-, satellite- and reanalysis-based P estimates.
NASA Astrophysics Data System (ADS)
Lambert, Alyn; Santee, Michelle L.
2018-02-01
We investigate the accuracy and precision of polar lower stratospheric temperatures (100-10 hPa during 2008-2013) reported in several contemporary reanalysis datasets comprising two versions of the Modern-Era Retrospective analysis for Research and Applications (MERRA and MERRA-2), the Japanese 55-year Reanalysis (JRA-55), the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-I), and the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (NCEP-CFSR). We also include the Goddard Earth Observing System model version 5.9.1 near-real-time analysis (GEOS-5.9.1). Comparisons of these datasets are made with respect to retrieved temperatures from the Aura Microwave Limb Sounder (MLS), Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) Global Positioning System (GPS) radio occultation (RO) temperatures, and independent absolute temperature references defined by the equilibrium thermodynamics of supercooled ternary solutions (STSs) and ice clouds. Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations of polar stratospheric clouds are used to determine the cloud particle types within the Aura MLS geometric field of view. The thermodynamic calculations for STS and the ice frost point use the colocated MLS gas-phase measurements of HNO3 and H2O. The estimated bias and precision for the STS temperature reference, over the 68 to 21 hPa pressure range, are 0.6-1.5 and 0.3-0.6 K, respectively; for the ice temperature reference, they are 0.4 and 0.3 K, respectively. These uncertainties are smaller than those estimated for the retrieved MLS temperatures and also comparable to GPS RO uncertainties (bias < 0.2 K, precision > 0.7 K) in the same pressure range. We examine a case study of the time-varying temperature structure associated with layered ice clouds formed by orographic gravity waves forced by flow over the Palmer Peninsula and compare how the wave amplitudes are reproduced by each reanalysis dataset. We find that the spatial and temporal distribution of temperatures below the ice frost point, and hence the potential to form ice polar stratospheric clouds (PSCs) in model studies driven by the reanalyses, varies significantly because of the underlying differences in the representation of mountain wave activity. High-accuracy COSMIC temperatures are used as a common reference to intercompare the reanalysis temperatures. Over the 68-21 hPa pressure range, the biases of the reanalyses with respect to COSMIC temperatures for both polar regions fall within the narrow range of -0.6 K to +0.5 K. GEOS-5.9.1, MERRA, MERRA-2, and JRA-55 have predominantly cold biases, whereas ERA-I has a predominantly warm bias. NCEP-CFSR has a warm bias in the Arctic but becomes substantially colder in the Antarctic. Reanalysis temperatures are also compared with the PSC reference temperatures. Over the 68-21 hPa pressure range, the reanalysis temperature biases are in the range -1.6 to -0.3 K with standard deviations ˜ 0.6 K for the CALIOP STS reference, and in the range -0.9 to +0.1 K with standard deviations ˜ 0.7 K for the CALIOP ice reference. Comparisons of MLS temperatures with the PSC reference temperatures reveal vertical oscillations in the MLS temperatures and a significant low bias in MLS temperatures of up to 3 K.
NASA Astrophysics Data System (ADS)
Meng, Chunchun; Ma, Yaoming
2016-04-01
Compared with European Centre for Medium-Range Weather Forecasts (ERA-interim) Reanalysis data and Global Summary Of Day (GSOD) observation data, the outcomes from RAMS of the 2008/2009 severe autumn/winter drought in eastern china are analyzed in this study. The reanalysis data showed that most parts of north China are controlled by northwest wind which was accompanied by cold air, the warm and moist air from South Sea is so weak to meet with cold air, therefore forming a circulation which is unfavorable for the formation of precipitation over Eastern China. RAMS performs very well over the simulation of this atmospheric circulation, so do the rainfall and air temperature over China and where the drought occurred. Meanwhile, the simulation of the time series of precipitation and temperature behaves excellent, the square of correlation coefficient between simulations and observations reached above 0.8. Although the performance of RAMS on this drought simulation is fairly accurate, there is amount of research work to be continued to complete a more realistic simulation. KEY WORDS RAMS; severe drought; numerical simulation; atmospheric circulation; precipitation and air temperature
NASA Astrophysics Data System (ADS)
Fuchs, Julia; Cermak, Jan; Andersen, Hendrik
2017-04-01
This study aims at untangling the impacts of external dynamics and local conditions on cloud properties in the Southeast Atlantic (SEA) by combining satellite and reanalysis data using multivariate statistics. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget, and thus prominent in climate-system research. In this study, SEA stratocumulus cloud properties are observed not only as the result of local environmental conditions but also as affected by external dynamics and spatial origins of air masses entering the study area. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a multivariate approach is conducted using satellite observations of aerosol and cloud properties (MODIS, SEVIRI), information on aerosol species composition (MACC) and meteorological context (ERA-Interim reanalysis). To account for the often-neglected but important role of air mass origin, information on air mass history based on HYSPLIT modeling is included in the statistical model. This multivariate approach is intended to lead to a better understanding of the physical processes behind observed stratocumulus cloud properties in the SEA.
NASA Astrophysics Data System (ADS)
Aemisegger, Franziska; Piaget, Nicolas
2017-04-01
A new weather-system oriented classification framework of extreme precipitation events leading to large-scale floods in Switzerland is presented on this poster. Thirty-six high impact floods in the last 130 years are assigned to three representative categories of atmospheric moisture origin and transport patterns. The methodology underlying this moisture source classification combines information of the airmass history in the twenty days preceding the precipitation event with humidity variations along the large-scale atmospheric transport systems in a Lagrangian approach. The classification scheme is defined using the 33-year ERA-Interim reanalysis dataset (1979-2011) and is then applied to the Twentieth Century Reanalysis (1871-2011) extreme precipitation events as well as the 36 selected floods. The three defined categories are characterised by different dominant moisture uptake regions including the North Atlantic, the Mediterranean and continental Europe. Furthermore, distinct anomalies in the large-scale atmospheric flow are associated with the different categories. The temporal variations in the relative importance of the three categories over the last 130 years provides new insights into the impact of changing climate conditions on the dynamical mechanisms leading to heavy precipitation in Switzerland.
MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative appraisal
NASA Astrophysics Data System (ADS)
Beck, H.; Yang, L.; Pan, M.; Wood, E. F.; William, L.
2017-12-01
Here, we present Multi-Source Weighted-Ensemble Precipitation (MSWEP) V2, the first fully global gridded precipitation (P) dataset with a 0.1° spatial resolution. The dataset covers the period 1979-2016, has a 3-hourly temporal resolution, and was derived by optimally merging a wide range of data sources based on gauges (WorldClim, GHCN-D, GSOD, and others), satellites (CMORPH, GridSat, GSMaP, and TMPA 3B42RT), and reanalyses (ERA-Interim, JRA-55, and NCEP-CFSR). MSWEP V2 implements some major improvements over V1, such as (i) the correction of distributional P biases using cumulative distribution function matching, (ii) increasing the spatial resolution from 0.25° to 0.1°, (iii) the inclusion of ocean areas, (iv) the addition of NCEP-CFSR P estimates, (v) the addition of thermal infrared-based P estimates for the pre-TRMM era, (vi) the addition of 0.1° daily interpolated gauge data, (vii) the use of a daily gauge correction scheme that accounts for regional differences in the 24-hour accumulation period of gauges, and (viii) extension of the data record to 2016. The gauge-based assessment of the reanalysis and satellite P datasets, necessary for establishing the merging weights, revealed that the reanalysis datasets strongly overestimate the P frequency for the entire globe, and that the satellite (resp. reanalysis) datasets consistently performed better at low (high) latitudes. Compared to other state-of-the-art P datasets, MSWEP V2 exhibits more plausible global patterns in mean annual P, percentiles, and annual number of dry days, and better resolves the small-scale variability over topographically complex terrain. Other P datasets appear to consistently underestimate P amounts over mountainous regions. Long-term mean P estimates for the global, land, and ocean domains based on MSWEP V2 are 959, 796, and 1026 mm/yr, respectively, in close agreement with the best previous published estimates.
NASA Astrophysics Data System (ADS)
Rakushina, E. V.; Ermakova, T. S.; Pogoreltsev, A. I.
2018-06-01
Four sets of data: the UK Met Office, Modern Era Retrospective-analysis for Research and Applications (MERRA), Japanese 55-year Reanalysis data (JRA-55), and ERA-Interim data (ERA) have been used to estimate the climatic variability of the zonal mean flow, temperature, and Stationary Planetary Waves (SPW1, SPW2) from the troposphere up to the lower mesosphere levels. The composites of the meteorological fields during mid-winter month have been averaged over the first (1995-2005) and second (2006-2016) 11 years intervals and have been compared mainly paying attention to interannual and intraseasonal variability. Results show that changes in the mean fields and SPW2 are weaker and statistical significance of these changes is lower in comparison with the changes observed in the intraseasonal variability of these characteristics. All data sets demonstrate a decrease of SPW1 amplitude at the higher-middle latitudes in the lower stratosphere and opposite effect in the upper stratosphere. However, there is an increase of the intraseasonal variability for all meteorological parameters and this rise is statistically significant. The results obtained show that UK Met Office data demonstrate stronger changes and increase of the intraseasonal variability in comparison with other data sets.
Global trends in significant wave height and marine wind speed from the ERA-20CM
NASA Astrophysics Data System (ADS)
Aarnes, Ole Johan; Breivik, Øyvind
2016-04-01
The ERA-20CM is one of the latest additions to the ERA-series produced at the European Center for Medium-Range Weather Forecasts (ECMWF). This 10 member ensemble is generated with a version of the Integrated Forecast System (IFS), a coupled atmosphere-wave model. The model integration is run as a AMIP (Atmospheric Model Intercomparison Project) constrained by CMIP5 recommended radiative forcing and different realizations of sea-surface temperature (SST) and sea-ice cover (SIC) prescribed by the HadISST2 (Met Office Hadley Center). While the ERA-20CM is unable to reproduce the actual synoptic conditions, it is designed to offer a realistic statistical representation of the past climate, spanning the period 1899-2010. In this study we investigate global trends in significant wave height and marine wind speed based on ERA-20CM, using monthly mean data, upper percentiles and monthly/annual maxima. The aim of the study is to assess the quality of the trends and how these estimates are affected by different SST and SIC. Global trends are compared against corresponding estimates obtained with ERA-Interim (1979-2009), but also crosschecked against ERA-20C - an ECMWF pilot reanalysis of the 20th-century, known to most trustworthy in the Northern Hemisphere extratropics. Over the period 1900-2009, the 10 member ensemble yields trends mainly within +/- 5% per century. However, significant trends of opposite signs are found locally. Certain areas, like the eastern equatorial Pacific, highly affected by the El Niño Southern Oscillation, show stronger trends. In general, trends based on statistical quantities further into the tail of the distribution are found less reliable.
Atmospheric Circulation and West Greenland Precipitation
NASA Astrophysics Data System (ADS)
Auger, J.; Birkel, S. D.; Maasch, K. A.; Schuenemann, K. C.; Mayewski, P. A.; Osterberg, E. C.; Hawley, R. L.; Marshall, H. P.
2016-12-01
The surface mass balance of the Greenland Ice Sheet has declined substantially in recent decades across West Greenland with important implications for global sea level and freshwater resources. Here, we investigate changes in heat and moisture delivery to West Greenland through changes in atmospheric circulation in order to gain insight into possible future climate. Particular focus is placed on the role of known climate variability, including the North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO), in influencing the intensity, frequency, and track of cyclones across the North Atlantic. This study utilizes multiple daily climate reanalysis models (CFSR, ERA-Interim, JRA-55) in addition to observational data. Preliminary results indicate a primary influence from the NAO, with a secondary influence from the low frequency oscillation connected to the AMO. Work is ongoing, and a complete synthesis will be presented at the fall meeting.
Dynamic downscaling over western Himalayas: Impact of cloud microphysics schemes
NASA Astrophysics Data System (ADS)
Tiwari, Sarita; Kar, Sarat C.; Bhatla, R.
2018-03-01
Due to lack of observation data in the region of inhomogeneous terrain of the Himalayas, detailed climate of Himalayas is still unknown. Global reanalysis data are too coarse to represent the hydroclimate over the region with sharp orography gradient in the western Himalayas. In the present study, dynamic downscaling of the European Centre for Medium-Range Weather Forecast (ECMWF) Reanalysis-Interim (ERA-I) dataset over the western Himalayas using high-resolution Weather Research and Forecast (WRF) model has been carried out. Sensitivity studies have also been carried out using convection and microphysics parameterization schemes. The WRF model simulations have been compared against ERA-I and available station observations. Analysis of the results suggests that the WRF model has simulated the hydroclimate of the region well. It is found that in the simulations that the impact of convection scheme is more during summer months than in winter. Examination of simulated results using various microphysics schemes reveal that the WRF single-moment class-6 (WSM6) scheme simulates more precipitation on the upwind region of the high mountain than that in the Morrison and Thompson schemes during the winter period. Vertical distribution of various hydrometeors shows that there are large differences in mixing ratios of ice, snow and graupel in the simulations with different microphysics schemes. The ice mixing ratio in Morrison scheme is more than WSM6 above 400 hPa. The Thompson scheme favors formation of more snow than WSM6 or Morrison schemes while the Morrison scheme has more graupel formation than other schemes.
NASA Astrophysics Data System (ADS)
Rustemeier, Elke; Ziese, Markus; Raykova, Kristin; Meyer-Christoffer, Anja; Schneider, Udo; Finger, Peter; Becker, Andreas
2017-04-01
The proper representation of precipitation, in particular extreme precipitation, in global reanalyses is still challenging. This paper focuses on the potential of the ERA-20C centennial reanalysis to reproduce precipitation events. The global ERA-20C Reanalysis has been developed within the projects ERA-CLIM and its successor ERA-CLIM2 with the aim of a multi-decadal reanalysis of the global climate system. One of the objectives of ERA-CLIM2 is to provide useful information about the uncertainty of the various parameters. Since precipitation is a prognostic variable, it allows for independent validation by in-situ measurements. For this purpose, the Global Precipitation Climatology Centre (GPCC) operated by the DWD has compared the ERA-20C Reanalysis with the GPCC observational products "Full Data Monthly Version 7" (FDM-V7) and "Full Data Daily Version 1" (FDD-V1). ERA-20C is based on the ECMWF prediction model IFS version Cy38r1 with a spatial resolution of approximately 125 km and covers the 111 years from 1900 to 2010. The GPCC FDM-V7 raster data product, on the other hand, includes the global land surface in-situ measurements between 1901 and 2013 (Schneider et al., 2014) and the FDD-V1 raster data product covers daily precipitation from 1988 to 2013 with daily resolution. The most suitable resolution of 1° was used to validate ERA-20C. For the spatial and temporal validation of the ERA-20C Reanalysis, global temporal scores were calculated on monthly, seasonal and annual time scales. These include e.g. monthly contingency table scores, correlation or climate change indices (ETCCDI) for precipitation to determine extreme values and their temporal change (Peterson et al., 2001, Appendix A). Not surprisingly, the regions with the strongest differences are also those with data scarcity, mountain regions with their luv and lee effects or monsoon areas. They all show a strong systematic difference and breaks within the time series. Differences between ERA-20C and FDD-V1 based on ETCCDI diagnoses were detected particularly in regions with large precipitation totals especially in Africa in the ITCZ area and in Indonesia. The overall comparison reveals geo-spatially heterogeneous results with areas of similar precipitation characteristics, but also areas that still remain challenging for the reanalysis' fidelity to represent the FDM-V7 and FDD-F1 based diagnostics. The results serve good guidance where improvements of the future IFS model versions should be most effective. Peterson, T., Folland, C., Gruza, G., Hogg, W., Mokssit, A. and Plummer, N. (2001): Report on the activities of the working group on climate change detection and related rapporteurs. Geneva: World Meteorological Organization. Poli, P., H. Hersbach, D. Tan, D. Dee, J.-N. Thépaut, A. Simmons, C. Peubey, P. Laloy-aux, T. Komori, P. Berrisford, R. Dragani, Y. Trémolet, E. H ´lm, M. Bonavita, L. Isaksen und M. Fisher (2013): The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C), ERA Report Series 14, http://www.ecmwf.int/publications/library/do/references/show?id=90833) Schneider, Udo, Andreas Becker, Peter Finger, Anja Meyer-Christoffer, Bruno Rudolf und Markus Ziese (2015): GPCC Full Data Reanalysis Version 7.0 at 1.0°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data. DOI: 10.5676/DWD_GPCC/FD_M_V7_100
NASA Astrophysics Data System (ADS)
Korbacz, A.; Brzeziński, A.; Thomas, M.
2008-04-01
We use new estimates of the global atmospheric and oceanic angular momenta (AAM, OAM) to study the influence on LOD/UT1. The AAM series was calculated from the output fields of the atmospheric general circulation model ERA-40 reanalysis. The OAM series is an outcome of global ocean model OMCT simulation driven by global fields of the atmospheric parameters from the ERA- 40 reanalysis. The excitation data cover the period between 1963 and 2001. Our calculations concern atmospheric and oceanic effects in LOD/UT1 over the periods between 20 days and decades. Results are compared to those derived from the alternative AAM/OAM data sets.
Tuning a climate model using nudging to reanalysis.
NASA Astrophysics Data System (ADS)
Cheedela, S. K.; Mapes, B. E.
2014-12-01
Tuning a atmospheric general circulation model involves a daunting task of adjusting non-observable parameters to adjust the mean climate. These parameters arise from necessity to describe unresolved flow through parametrizations. Tuning a climate model is often done with certain set of priorities, such as global mean temperature, net top of the atmosphere radiation. These priorities are hard enough to reach let alone reducing systematic biases in the models. The goal of currently study is to explore alternate ways to tune a climate model to reduce some systematic biases that can be used in synergy with existing efforts. Nudging a climate model to a known state is a poor man's inverse of tuning process described above. Our approach involves nudging the atmospheric model to state of art reanalysis fields thereby providing a balanced state with respect to the global mean temperature and winds. The tendencies derived from nudging are negative of errors from physical parametrizations as the errors from dynamical core would be small. Patterns of nudging are compared to the patterns of different physical parametrizations to decipher the cause for certain biases in relation to tuning parameters. This approach might also help in understanding certain compensating errors that arise from tuning process. ECHAM6 is a comprehensive general model, also used in recent Coupled Model Intercomparision Project(CMIP5). The approach used to tune it and effect of certain parameters that effect its mean climate are reported clearly, hence it serves as a benchmark for our approach. Our planned experiments include nudging ECHAM6 atmospheric model to European Center Reanalysis (ERA-Interim) and reanalysis from National Center for Environmental Prediction (NCEP) and decipher choice of certain parameters that lead to systematic biases in its simulations. Of particular interest are reducing long standing biases related to simulation of Asian summer monsoon.
NASA Astrophysics Data System (ADS)
Potter, G. L.; Bosilovich, M. G.; Carriere, L.; McInerney, M.; Nadeau, D.; Shen, Y.
2014-12-01
The NASA Climate Model Data Service (CDS) and the NASA Center for Climate Simulation (NCCS) are collaborating to provide an end-to-end system for the comparative study of the major reanalysis projects: ECMWF ERA-Interim, NASA/GMAO MERRA, NOAA/NCEP CFSR, NOAA/ESRL 20CR, JMA JRA25, and JRA55. These reanalyses have been repackaged to adhere to the CMIP5 standards and published on the ESGF. Reanalysis centers provide interfaces to the various reanalyses, but each data set requires some effort to either compare with other reanalyses or with atmospheric model output. The repackaging for ESGF required reformatting, restructuring and modifications to the metadata to facilitate the ESGF search capabilities. Once this was done, the data structure is the same as used by the very successful CMIP3 and CMIP5 making comparison among reanalyses and climate models a relatively easy exercise. The data can now be accessed using WGET, OPENDAP, or HTTPServer at https://earthsystemcog.org/projects/ana4mips/ . An example using this interface will be shown including comparison of the reanalyses portrayal of the surface heat balance during the 2010 Russian heat wave. We have found that although the difference reanalyses produce very similar atmospheric features of the heat wave, the surface energy balance terms such as latent and sensible heat show considerable differences. This comparison helps point out systematic differences in the reanalyses surface moisture and may lead to a better understanding of the differences.
Added value of dynamical downscaling of winter seasonal forecasts over North America
NASA Astrophysics Data System (ADS)
Tefera Diro, Gulilat; Sushama, Laxmi
2017-04-01
Skillful seasonal forecasts have enormous potential benefits for socio-economic sectors that are sensitive to weather and climate conditions, as the early warning routines could reduce the vulnerability of such sectors. In this study, individual ensemble members of the ECMWF global ensemble seasonal forecasts are dynamically downscaled to produce ensemble of regional seasonal forecasts over North America using the fifth generation Canadian Regional Climate Model (CRCM5). CRCM5 forecasts are initialized on November 1st of each year and are integrated for four months for the 1991-2001 period at 0.22 degree resolution to produce a one-month lead-time forecast. The initial conditions for atmospheric variables are obtained from ERA-Interim reanalysis, whereas the initial conditions for land surface are obtained from a separate ERA-interim driven CRCM5 simulation with spectral nudging applied to the interior domain. The global and regional ensemble forecasts were then verified to investigate the skill and economic benefits of dynamical downscaling. Results indicate that both the global and regional climate models produce skillful precipitation forecast over the southern Great Plains and eastern coasts of the U.S and skillful temperature forecasts over the northern U.S. and most of Canada. In comparison to ECMWF forecasts, CRCM5 forecasts improved the temperature forecast skill over most part of the domain, but the improvements for precipitation is limited to regions with complex topography, where it improves the frequency of intense daily precipitation. CRCM5 forecast also yields a better economic value compared to ECMWF precipitation forecasts, for users whose cost to loss ratio is smaller than 0.5.
Moisture Fluxes Derived from EOS Aqua Satellite Data for the North Water Polynya Over 2003-2009
NASA Technical Reports Server (NTRS)
Boisvert, Linette N.; Markus, Thorsten; Parkinson, Claire L.; Vihma, Timo
2012-01-01
Satellite data were applied to calculate the moisture flux from the North Water polynya during a series of events spanning 2003-2009. The fluxes were calculated using bulk aerodynamic formulas with the stability effects according to the Monin-Obukhov similarity theory. Input parameters were taken from three sources: air relative humidity, air temperature, and surface temperature from the Atmospheric Infrared Sounder (AIRS) onboard NASA's Earth Observing System (EOS) Aqua satellite, sea ice concentration from the Advanced Microwave Scanning Radiometer (AMSR-E, also onboard Aqua), and wind speed from the ECMWF ERA-Interim reanalysis. Our results show the progression of the moisture fluxes from the polynya during each event, as well as their atmospheric effects after the polynya has closed up. These results were compared to results from studies on other polynyas, and fall within one standard deviation of the moisture flux estimates from these studies. Although the estimated moisture fluxes over the entire study region from AIRS are smaller in magnitude than ERA-Interim, they are more accurate due to improved temperature and relative humidity profiles and ice concentration estimates over the polynya. Error estimates were calculated to be 5.56 x10(exp -3) g/sq. m/ s, only 25% of the total moisture flux, thus suggesting that AIRS and AMSR-E can be used with confidence to study smaller scale features in the Arctic sea ice pack and can capture their atmospheric effects. These findings bode well for larger-scale studies of moisture fluxes over the entire Arctic Ocean and the thinning ice pack.
NASA Astrophysics Data System (ADS)
Walz, M. A.; Donat, M.; Leckebusch, G. C.
2017-12-01
As extreme wind speeds are responsible for large socio-economic losses in Europe, a skillful prediction would be of great benefit for disaster prevention as well as for the actuarial community. Here we evaluate patterns of large-scale atmospheric variability and the seasonal predictability of extreme wind speeds (e.g. >95th percentile) in the European domain in the dynamical seasonal forecast system ECMWF System 4, and compare to the predictability based on a statistical prediction model. The dominant patterns of atmospheric variability show distinct differences between reanalysis and ECMWF System 4, with most patterns in System 4 extended downstream in comparison to ERA-Interim. The dissimilar manifestations of the patterns within the two models lead to substantially different drivers associated with the occurrence of extreme winds in the respective model. While the ECMWF System 4 is shown to provide some predictive power over Scandinavia and the eastern Atlantic, only very few grid cells in the European domain have significant correlations for extreme wind speeds in System 4 compared to ERA-Interim. In contrast, a statistical model predicts extreme wind speeds during boreal winter in better agreement with the observations. Our results suggest that System 4 does not seem to capture the potential predictability of extreme winds that exists in the real world, and therefore fails to provide reliable seasonal predictions for lead months 2-4. This is likely related to the unrealistic representation of large-scale patterns of atmospheric variability. Hence our study points to potential improvements of dynamical prediction skill by improving the simulation of large-scale atmospheric dynamics.
NASA Astrophysics Data System (ADS)
Dimri, A. P.
2018-04-01
Regional changes in surface meteorological variables are one of the key issues affecting the Indian subcontinent especially in recent decades. These changes impact agriculture, health, water, etc., hence important to assess and investigate these changes. The Indian subcontinent is characterized by heterogeneous temperature regimes at regional and seasonal scales. The India Meteorological Department (IMD) observations are limited to recent decades as far as its spatial distribution is concerned. In particular, over Hilly region, these observations are sporadic. Due to variable topography and heterogeneous land use/land cover, it is complex to substantiate impacts. The European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim (ERA-I) reanalysis not only covers a larger spatial domain but also provides a greater number of inputs than IMD. This study used ERA-I in conjunction with IMD gridded data to provide a comparative assessment of changing temperature patterns over India and its subregions at both regional and seasonal scales. Warming patterns are observed in both ERA-I and IMD data sets. Cold nights decrease during winter; warm days increase and warm spell duration increased during winter could become a cause of concern for society, agriculture, socio-economic reasons, and health. Increasing warm days over the hilly regions may affect the corresponding snow cover and thus river hydrology and glaciological dynamics. Such changes during monsoon are slower, which could be attributed to moisture availability to dampen the temperature changes. On investigation and comparison thereon, the present study provisions usages of ERA-I-based indices for various impact and adaptation studies.
Enabling Reanalysis Intercomparison with the CREATE-IP and CREATE-V Projects
NASA Astrophysics Data System (ADS)
Carriere, L.; Potter, G. L.; Hertz, J.; Shen, Y.; Britzolakis, G.; Peters, J.; Maxwell, T. P.; Li, J.; Strong, S.; Schnase, J. L.
2016-12-01
NASA Goddard Space Flight Center's Office of Computational and Information Sciences and Technology, the NASA Center for Climate Simulation (NCCS), and the Earth System Grid Federation (ESGF) are working together to build a uniform environment for the comparative study and use of a group of reanalysis datasets of particular importance to the research community. This effort is called the Collaborative REAnalysis Technical Environment (CREATE) and it contains two components: the CREATE-Intercomparison Project (CREATE-IP) and CREATE-V. For CREATE-IP, our target reanalyses include ECMWF ERA-Interim, NASA/GMAO MERRA and MERRA2, NOAA/NCEP CFSR, NOAA/ESRL 20CR and 20CRv2, JMA JRA25, and JRA55. Each dataset is reformatted similarly to the models in the CMIP5 archive. By repackaging the reanalysis data into a common structure and format, it simplifies access, subsetting, and reanalysis comparison. Both monthly average data and a selection of high frequency data (6-hr) relevant to investigations such as the 2016 El Niño are provided. Much of the processing workflow has been automated and new data appear on a regular basis. In collaboration with the CLIVAR Global Synthesis and Observations Panel (GSOP), we are also processing and publishing eight ocean reanalyses, from 1980 to the present. Here, the data are regridded to a common 1° x 1° grid, vertically interpolated to the World Ocean Atlas 09 (WOA09) depths, and an ensemble is generated. CREATE-V is a web based visualization tool that allows the user to simultaneously view four reanalyses to facilitate comparison. The addition of a backend analytics engine, based on UV-CDAT and Scala provides the ability to generate a time series and anomaly for any given location on a map. The system enables scientists to identify data of interest and visualize, subset, and compare data without the need for download large volumes of data for local visualization.
A similarity retrieval approach for weighted track and ambient field of tropical cyclones
NASA Astrophysics Data System (ADS)
Li, Ying; Xu, Luan; Hu, Bo; Li, Yuejun
2018-03-01
Retrieving historical tropical cyclones (TC) which have similar position and hazard intensity to the objective TC is an important means in TC track forecast and TC disaster assessment. A new similarity retrieval scheme is put forward based on historical TC track data and ambient field data, including ERA-Interim reanalysis and GFS and EC-fine forecast. It takes account of both TC track similarity and ambient field similarity, and optimal weight combination is explored subsequently. Result shows that both the distance and direction errors of TC track forecast at 24-hour timescale follow an approximately U-shape distribution. They tend to be large when the weight assigned to track similarity is close to 0 or 1.0, while relatively small when track similarity weight is from 0.2˜0.7 for distance error and 0.3˜0.6 for direction error.
Wind and wave extremes over the world oceans from very large ensembles
NASA Astrophysics Data System (ADS)
Breivik, Øyvind; Aarnes, Ole Johan; Abdalla, Saleh; Bidlot, Jean-Raymond; Janssen, Peter A. E. M.
2014-07-01
Global return values of marine wind speed and significant wave height are estimated from very large aggregates of archived ensemble forecasts at +240 h lead time. Long lead time ensures that the forecasts represent independent draws from the model climate. Compared with ERA-Interim, a reanalysis, the ensemble yields higher return estimates for both wind speed and significant wave height. Confidence intervals are much tighter due to the large size of the data set. The period (9 years) is short enough to be considered stationary even with climate change. Furthermore, the ensemble is large enough for nonparametric 100 year return estimates to be made from order statistics. These direct return estimates compare well with extreme value estimates outside areas with tropical cyclones. Like any method employing modeled fields, it is sensitive to tail biases in the numerical model, but we find that the biases are moderate outside areas with tropical cyclones.
NASA Astrophysics Data System (ADS)
Stephens, E.; Day, J. J.; Pappenberger, F.; Cloke, H.
2015-12-01
There are a number of factors that lead to nonlinearity between precipitation anomalies and flood hazard; this nonlinearity is a pertinent issue for applications that use a precipitation forecast as a proxy for imminent flood hazard. We assessed the degree of this nonlinearity for the first time using a recently developed global-scale hydrological model driven by the ERA-Interim/Land precipitation reanalysis (1980-2010). We introduced new indices to assess large-scale flood hazard, or floodiness, and quantified the link between monthly precipitation, river discharge, and floodiness anomalies at the global and regional scales. The results show that monthly floodiness is not well correlated with precipitation, therefore demonstrating the value of hydrometeorological systems for providing floodiness forecasts for decision-makers. A method is described for forecasting floodiness using the Global Flood Awareness System, building a climatology of regional floodiness from which to forecast floodiness anomalies out to 2 weeks.
Updated Estimates of Glacier Mass Change for Western North America
NASA Astrophysics Data System (ADS)
Menounos, B.; Gardner, A. S.; Howat, I.; Berthier, E.; Dehecq, A.; Noh, M. J.; Pelto, B. M.
2017-12-01
Alpine glaciers are critical components in Western North America's hydrologic cycle. We use varied remotely-sensed datasets to provide updated mass change estimates for Region 2 of the Randolf Glacier Inventory (RGI-02 - all North American glaciers outside of Alaska). Our datasets include: i) aerial laser altimetry surveys completed over many thousands of square kilometers; and ii) multiple Terabytes of high resolution optical stereo imagery (World View 1-3 and Pleiades). Our data from the period 2014-2017 includes the majority of glaciers in RGI-02, specifically those ice masses in the Rocky Mountains (US and Canada), Interior Ranges in British Columbia and the Cascade Mountains (Washington). We co-registered and bias corrected the recent surface models to the Shuttle Radar Topographic Mapping (SRTM) data acquired in February, 2000. In British Columbia, our estimates of mass change are within the uncertainty estimates obtained for the period 1985-2000, but estimates from some regions indicate accelerated mass loss. Work is also underway to update glacier mass change estimates for glaciers in Washington and Montana. Finally, we use re-analysis data (ERA interim and ERA5) to evaluate the meteorological drivers that explain the temporal and spatial variability of mass change evident in our analysis.
Whether the decadal shift of South Asia High intensity around the late 1970s exists or not
NASA Astrophysics Data System (ADS)
Xue, Xu; Chen, Wen; Nath, Debashis; Zhou, Dingwen
2015-05-01
This study compares the decadal means of the seasonal (June-July-August (JJA)) mean geopotential heights available from the NCEP1 and ERA-40 reanalysis data in the Northern Hemisphere. The interdecadal changes in the South Asia High (SAH) intensity derived from the reanalysis data are also compared with ground-based radiosonde observations and atmospheric model outputs. The JJA mean geopotential heights in the 1980s are distinctly larger than the 1970s in NCEP1 over most of the regions in the Northern Hemisphere, while no obvious difference is observed in ERA-40. The interannual variation of the SAH strength is very close in the two reanalysis data, so that it is appropriate to utilize the reanalysis data to study the interannual variation of SAH strength after removing the interdecadal trend. However, the discrepancy in SAH intensity between NCEP1 and ERA-40 mainly exists on the interdecadal time scale. The SAH intensity in the NCEP1 was close to that in the ERA-40 before the late 1970s but became remarkably stronger after the late 1970s, leading to a much larger decadal strengthening during the period 1970-1990. Based on the six radiosonde observation stations in the area of the SAH, the results indicate that the decadal reinforcing in the SAH strength occurs around the mid-1980s. Thus, NCEP1 may overestimate the decadal shift in the SAH intensity around the late 1970s, while ERA-40 may underestimate it. Much attention needs to be paid when we use the reanalysis data to study the decadal variability of the SAH intensity.
A three-dimensional multivariate representation of atmospheric variability
NASA Astrophysics Data System (ADS)
Žagar, Nedjeljka; Jelić, Damjan; Blaauw, Marten; Jesenko, Blaž
2016-04-01
A recently developed MODES software has been applied to the ECMWF analyses and forecasts and to several reanalysis datasets to describe the global variability of the balanced and inertio-gravity (IG) circulation across many scales by considering both mass and wind field and the whole model depth. In particular, the IG spectrum, which has only recently become observable in global datasets, can be studied simultaneously in the mass field and wind field and considering the whole model depth. MODES is open-access software that performs the normal-mode function decomposition of the 3D global datasets. Its application to the ERA Interim dataset reveals several aspects of the large-scale circulation after it has been partitioned into the linearly balanced and IG components. The global energy distribution is dominated by the balanced energy while the IG modes contribute around 8% of the total wave energy. However, on subsynoptic scales IG energy dominates and it is associated with the main features of tropical variability on all scales. The presented energy distribution and features of the zonally-averaged and equatorial circulation provide a reference for the intercomparison of several reanalysis datasets and for the validation of climate models. Features of the global IG circulation are compared in ERA Interim, MERRA and JRA reanalysis datasets and in several CMIP5 models. Since October 2014 the operational medium-range forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF) have been analyzed by MODES daily and an online archive of all the outputs is available at http://meteo.fmf.uni-lj.si/MODES. New outputs are made available daily based on the 00 UTC run and subsequent 12-hour forecasts up to 240-hour forecast. In addition to the energy spectra and horizontal circulation on selected levels for the balanced and IG components, the equatorial Kelvin waves are presented in time and space as the most energetic tropical IG modes propagating vertically and along the equator from its main generation regions in the upper troposphere over the Indian and Pacific region. The validation of the 10-day ECMWF forecasts with analyses in the modal space suggests a lack of variability in the tropics in the medium range. Reference: Žagar, N. et al., 2015: Normal-mode function representation of global 3-D data sets: open-access software for the atmospheric research community. Geosci. Model Dev., 8, 1169-1195, doi:10.5194/gmd-8-1169-2015 Žagar, N., R. Buizza, and J. Tribbia, 2015: A three-dimensional multivariate modal analysis of atmospheric predictability with application to the ECMWF ensemble. J. Atmos. Sci., 72, 4423-4444 The MODES software is available from http://meteo.fmf.uni-lj.si/MODES.
Cold Fronts in RegCM/HadGEM simulations over South America
NASA Astrophysics Data System (ADS)
Pampuch, Luana; Marcos de Jesus, Eduardo; Porfírio da Rocha, Rosmeri; Ambrizzi, Tércio
2017-04-01
Cold front is one of the most important systems that contribute for precipitation over South America. The representation of this system in climate models is important for a better representation of the precipitation. The Regional Climate Model RegCM is widely used for climate studies in South America, being important to understand how this model represents the cold fronts. A climatology (from 1979-2004) of the number of cold fronts in each season for RegCM4 simulations over South America CORDEX domain nested in HadGEM2-ES. The simulated climatology was compared with ERA-Interim reanalysis cold fronts climatology over the South America and adjacent South Atlantic Ocean. The cold fronts tracking for the model and the reanalysis were performed using an objective methodology based on decrease of air temperature in 925hPa, shift of meridional wind in 925hPa from northern to southern quadrant and increased in sea level pressure. The main differences were observed on summer and winter. On summer the model overestimate the number of cold fronts over southeastern South America and adjacent Atlantic Ocean; and underestimate it over central-south Argentina and Atlantic Ocean. On winter, the signs were opposite of that summer. On autumn and spring the differences were smaller and occurs mainly over all South Atlantic and north Argentina.
NASA Astrophysics Data System (ADS)
Ukhov, Alexander; Stenchikov, Georgiy
2017-04-01
In this study, we test the sensitivity of the horizontal and vertical distributions of aerosols to the initial and boundary conditions (IC&BC) of the aerosol/chemistry. We use the WRF-Chem model configured over the Arabian Peninsula to study both dust and anthropogenic aerosols. Currently, in the WRF-Chem the aerosol/chemistry IC&BC are constructed using either default aerosol/chemistry profiles with no inflow of aerosols and chemicals through the lateral boundaries or using the aerosol/chemistry fields from MOZART, the model for ozone and related chemical tracers from the NCAR. Here, we construct aerosol/chemistry IC&BC using MERRA-2 output. MERRA-2 is a recently developed reanalysis that assimilates ground-based and satellite observations to provide the improved distributions of aerosols and chemical species. We ran WRF-Chem simulations for July-August 2015 using GOCART/AFWA dust emission and GOCART aerosol schemes. We used the EDGAR HTAP V4 dataset to calculate SO2 emissions. Comparison of three runs initiated using the same ERA-Interim reanalysis fields but different aerosol/chemistry IC&BC (default WRF-Chem, MOZART, and MERRA-2) with AERONET, Micropulse Lidar, Balloon, and satellite observations shows that the MERRA-2 IC&BC are superior.
Atmospheric winter response to Arctic sea ice changes in reanalysis data and model simulations
NASA Astrophysics Data System (ADS)
Jaiser, Ralf; Nakamura, Tetsu; Handorf, Dörthe; Romanowsky, Erik; Dethloff, Klaus; Ukita, Jinro; Yamazaki, Koji
2017-04-01
In recent years, Arctic regions showcased the most pronounced signals of a changing climate: Sea ice is reduced by more the ten percent per decade. At the same time, global warming trends have their maximum in Arctic latitudes often labled Arctic Amplification. There is strong evidence that amplified Arctic changes feed back into mid-latitudes in winter. We identified mechanisms that link recent Arctic changes through vertically propagating planetary waves to events of a weakened stratospheric polar vortex. Related anomalies propagate downward and lead to negative AO-like situations in the troposphere. European winter climate is sensitive to negative AO situations in terms of cold air outbreaks that are likely to occur more often in that case. These results based on ERA-Interim reanalysis data do not allow to dismiss other potential forcing factors leading to observed mid-latitude climate changes. Nevertheless, properly designed Atmospheric General Circulation Model (AGCM) experiments with AFES and ECHAM6 are able to reproduce observed atmospheric circulation changes if only observed sea ice changes in the Arctic are prescribed. This allows to deduce mechanisms that explain how Arctic Amplification can lead to a negative AO response via a stratospheric pathway. Further investigation of these mechanisms may feed into improved prediction systems.
Was There a Significantly Negative Anomaly of Global Land Surface Net Radiation from 2001-2006?
NASA Astrophysics Data System (ADS)
Liang, S.; Jia, A.; Jiang, B.
2016-12-01
Surface net radiation, which characterizes surface energy budget, can be estimated from in-situ measurements, satellite products, model simulations, and reanalysis. Satellite products are usually validated using ground measurements to characterize their uncertainties. The surface net radiation product from the CERES (Clouds and the Earth's Radiant Energy System) has been widely used. After validating it using extensive ground measurements, we also verified that the CERES surface net radiation product is highly accurate. When we evaluated the temporal variations of the averaged global land surface net radiation from the CERES product, we found a significantly negative anomaly starting from 2001, reaching the maximum in 2004, and gradually coming back to normal in 2006. The valley has the magnitude of approximately 3 Wm-2 centered at 2004. After comparing with the high-resolution GLASS (Global LAnd Surface Satellite) net radiation product developed at Beijing Normal University, the CMIP5 model simulations, and the ERA-Interim reanalysis dataset, we concluded that the significant decreasing pattern of land surface net radiation from 2001-2006 is an artifact mainly due to inaccurate longwave net radiation of the CERES surface net radiation product. The current ground measurement networks are not spatially dense enough to capture the false negative anomaly from the CERES product, which calls for more ground measurements.
NASA Astrophysics Data System (ADS)
Chenoli, Sheeba Nettukandy; Ahmad Mazuki, Muhammad Yunus; Turner, John; Samah, Azizan Abu
2017-01-01
We present projected changes in the speed and meridional location of the Subtropical Jet (STJ) during winter using output of the Coupled Model Intercomparison Project Phase 5 (CMIP5) models. We use the ERA-Interim reanalysis dataset to evaluate the historical simulations of the STJ by 18 of the CMIP5 models for the period 1979-2012. Based on the climatology of the STJ from ERA-Interim, we selected the area of study as 70°E-290°E and 20°S-40°S, which is over the Indian and Southern Pacific Oceans, and 300-100 hPa to reduce altitude-related bias. An assessment of the ability of the CMIP5 models in simulating ENSO effects on the jet stream were carried out using standardized zonal wind anomalies at 300-100 hPa. Results show that 47 % of the CMIP5 models used in this study were able to simulate ENSO impacts realistically. In addition, it is more difficult for the models to reproduce the observed intensity of ENSO impacts than the patterns. The historical simulations of the CMIP5 models show a wide range of trends in meridional movement and jet strength, with a multi-model mean of 0.04° decade-1 equatorward and 0.42 ms-1 decade-1 respectively. In contrast to the ERA-Interim analysis, 94 % of the CMIP5 models show a strengthening of the jet in the historical runs. Variability of the jet strength is significantly (5 %) linked to the sea surface temperature changes over the eastern tropical Pacific. The CMIP5 model projections with Representative Concentration Pathways (RCPs) 4.5 and 8.5 were used for analysis of changes of the STJ for the period 2011-2099. Based on the RCP 4.5 (RCP 8.5) scenario the multi-model mean trend of the 18 CMIP5 models project a statistically significant (5 % level) increase in jet strength by the end of the century of 0.29 ms-1 decade-1 (0.60 ms-1 decade-1). Also, the mean meridional location of the jet is projected to shift poleward by 0.006° decade-1 (0.042° decade-1) in 2099 during winter, with the only significant (5 %) trend being with RCP 8.5.
NASA Astrophysics Data System (ADS)
Voigt, M.; Lorenz, P.; Kruschke, T.; Osinski, R.; Ulbrich, U.; Leckebusch, G. C.
2012-04-01
Winterstorms and related gusts can cause extensive socio-economic damages. Knowledge about the occurrence and the small scale structure of such events may help to make regional estimations of storm losses. For a high spatial and temporal representation, the use of dynamical downscaling methods (RCM) is a cost-intensive and time-consuming option and therefore only applicable for a limited number of events. The current study explores a methodology to provide a statistical downscaling, which offers small scale structured gust fields from an extended large scale structured eventset. Radial-basis-function (RBF) networks in combination with bidirectional Kohonen (BDK) maps are used to generate the gustfields on a spatial resolution of 7 km from the 6-hourly mean sea level pressure field from ECMWF reanalysis data. BDK maps are a kind of neural network which handles supervised classification problems. In this study they are used to provide prototypes for the RBF network and give a first order approximation for the output data. A further interpolation is done by the RBF network. For the training process the 50 most extreme storm events over the North Atlantic area from 1957 to 2011 are used, which have been selected from ECMWF reanalysis datasets ERA40 and ERA-Interim by an objective wind based tracking algorithm. These events were downscaled dynamically by application of the DWD model chain GME → COSMO-EU. Different model parameters and their influence on the quality of the generated high-resolution gustfields are studied. It is shown that the statistical RBF network approach delivers reasonable results in modeling the regional gust fields for untrained events.
Historical Climate Change Impacts on the Hydrological Processes of the Ponto-Caspian Basin
NASA Astrophysics Data System (ADS)
Koriche, Sifan A.; Singarayer, Joy S.; Coe, Michael T.; Nandini, Sri; Prange, Matthias; Cloke, Hannah; Lunt, Dan
2017-04-01
The Ponto-Caspian basin is one of the largest basins globally, composed of a closed basin (Caspian Sea) and open basins connecting to the global ocean (Black and Azov Sea). Over the historical time period (1850-present) Caspian Sea levels have varied between -25 and -29mbsl (Arpe et al., 2012), resulting in considerable changes to the area of the lake (currently 371,000 km2). Given projections of future climate change and the importance of the Caspian Sea for fisheries, agriculture, and industry, it is vital to understand how sea levels may vary in the future. Hydrological models can be used to assess the impacts of climate change on hydrological processes for future forecasts. However, it is critical to first evaluate such models using observational data for the present and recent past, and to understand the key hydrological processes driving past changes in sea level. In this study, the Terrestrial Hydrological Model (THMB) (Coe, 2000, 2002) is applied and evaluated to investigate the hydrological processes of the Ponto-Caspian basin for the historical period 1900 to 2000. The model has been forced using observational reanalysis datasets (ERA-Interim, ERA-20) and historical climate model data outputs (from CESM and HadCM3 models) to investigate the variability in the Caspian Sea level and the major river discharges. We examine the differences produced by driving the hydrological model with reanalysis data or climate models. We evaluate the model performance compared to observational discharge measurements and Caspian Sea level data. Secondly, we investigated the sensitivity of historical Caspian Sea level variations to different aspects of climate changes to examine the most important processes involved over this time period.
Added value of high-resolution regional climate model over the Bohai Sea and Yellow Sea areas
NASA Astrophysics Data System (ADS)
Li, Delei; von Storch, Hans; Geyer, Beate
2016-04-01
Added value from dynamical downscaling has long been a crucial and debatable issue in regional climate studies. A 34 year (1979-2012) high-resolution (7 km grid) atmospheric hindcast over the Bohai Sea and the Yellow Sea (BYS) has been performed using COSMO-CLM (CCLM) forced by ERA-Interim reanalysis data (ERA-I). The accuracy of CCLM in surface wind reproduction and the added value of dynamical downscaling to ERA-I have been investigated through comparisons with the satellite data (including QuikSCAT Level2B 12.5 km version 3 (L2B12v3) swath data and MODIS images) and in situ observations, with adoption of quantitative metrics and qualitative assessment methods. The results revealed that CCLM has a reliable ability to reproduce the regional wind characteristics over the BYS areas. Over marine areas, added value to ERA-I has been detected in the coastal areas with complex coastlines and orography. CCLM was better able to represent light and moderate winds but has even more added value for strong winds relative to ERA-I. Over land areas, the high-resolution CCLM hindcast can add value to ERA-I in reproducing wind intensities and direction, wind probability distribution and extreme winds mainly at mountain areas. With respect to atmospheric processes, CCLM outperforms ERA-I in resolving detailed temporal and spatial structures for phenomena of a typhoon and of a coastal atmospheric front; CCLM generates some orography related phenomena such as a vortex street which is not captured by ERA-I. These added values demonstrate the utility of the 7-km-resolution CCLM for regional and local climate studies and applications. The simulation was constrained with adoption of spectral nudging method. The results may be different when simulations are considered, which are not constrained by spectral nudging.
NASA Astrophysics Data System (ADS)
Castañeda-Vera, Alba; Garrido, Alberto; Ruiz-Ramos, Margarita; Sánchez-Sánchez, Enrique; Inés Mínguez, M.
2013-04-01
An extension of risk coverages in the insurance policies for processing tomato, mainly related to rainfall events, has resulted in an important increase in claims. This suggests that damages related to extreme or ill-timed showers have been underestimated in previous years. An estimation of damages related to rainfall in the last thirty years and the impact of climate change in the risk related to rainfall in processing tomato crops in the Guadiana river basin (SW Spain) were studied through a risk index. First, the risk index was defined with temperature and relative humidity thresholds related to different damage magnitudes. Then, this index was applied to current climate and to future climate scenarios in nine weather stations representative of the studied area to determine the trends in losses related to extreme or inopportune rainfall events. Thresholds of temperature and relative humidity were obtained from cross-checking agricultural insurance records and meteorological data from local weather stations (REDAREX, http://sw-aperos.juntaex.es/redarex). To consider longer time series, the reanalysis database ERA-INTERIM (Dee et al., 2011) was used. Simulated climate was obtained from the European Project ENSEMBLES (http://www.ensembles-eu.org/). Trends in climatic risk were analysed by applying the risk index to three sets of data defining current climate (1980-2010), mid-future climate (2010-2040) and long-term future climate (2040-2070). An algorithm to choose the surrounding cell that minimizes the temperature and precipitation climatic biases and maximizes seasonal correlation when comparing ENSEMBLES regional climate model simulations and observed climate was applied before index calculation. The results show the trends in frequency and magnitude of the risk of suffering damages related to rainfall events. The methodology decreased the uncertainty on risk levels. Results contribute to detect the periods during the growing season with larger risk of damage in order to provide information to assist research on risk management practices and to support insurance policy makers to extend guaranties and to adapt the insurance conditions and costs to real crop risks. This research is being financed by MULCLIVAR project (CGL2012-38923-C02-02), MINECO, Spain Keywords: climate change, risk, rainfall, processing tomato. References Dee, D. P., with 35 co-authors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. R. Meteorol. Soc., 137, 553-597.
NASA Astrophysics Data System (ADS)
Zubiate, Laura; McDermott, Frank; Sweeney, Conor; O'Malley, Mark
2014-05-01
Recent studies (Brayshaw, 2009, Garcia-Bustamante, 2010, Garcia-Bustamante, 2013) have drawn attention to the sensitivity of wind speed distributions and likely wind energy power output in Western Europe to changes in low-frequency, large scale atmospheric circulation patterns such as the North Atlantic Oscillation (NAO). Wind speed variations and directional shifts as a function of the NAO state can be larger or smaller depending on the North Atlantic region that is considered. Wind speeds in Ireland and the UK for example are approximately 20 % higher during NAO + phases, and up to 30 % lower during NAO - phases relative to the long-term (30 year) climatological means. By contrast, in southern Europe, wind speeds are 15 % lower than average during NAO + phases and 15 % higher than average during NAO - phases. Crucially however, some regions such as Brittany in N.W. France have been identified in which there is negligible variability in wind speeds as a function of the NAO phase, as observed in the ERA-Interim 0.5 degree gridded reanalysis database. However, the magnitude of these effects on wind conditions is temporally and spatially non-stationary. As described by Comas-Bru and McDermott (2013) for temperature and precipitation, such non-stationarity is caused by the influence of two other patterns, the East Atlantic pattern, (EA), and the Scandinavian pattern, (SCA), which modulate the position of the NAO dipole. This phenomenon has also implications for wind speeds and directions, which has been assessed using the ERA-Interim reanalysis dataset and the indices obtained from the PC analysis of sea level pressure over the Atlantic region. In order to study the implications for power production, the interaction of the NAO and the other teleconnection patterns with local topography was also analysed, as well as how these interactions ultimately translate into wind power output. The objective is to have a better defined relationship between wind speed and power output at a local level and a tool that wind farm developers could use to inform site selection. A particular priority was to assess how the potential wind power outputs over a 25-30 year windfarm lifetime in less windy, but resource-stable regions, compare with those from windier but more variable sites.
NASA Astrophysics Data System (ADS)
Saponaro, G.
2015-12-01
The present study investigates the use of long-term satellite data to assess the influence of aerosols upon cloud parameters over the Baltic Sea region. This particular area offers the contrast of a very clean environment (Fennoscandia) against a more polluted one (Germany, Poland). The datasets used in this study consist of Collection 6 Level 3 daily observations from 2002 to 2014 retrieved from observations by the NASA's Moderate-Resolution Imaging Spectrometer (MODIS) instrument on-board the Aqua platform. The MODIS aerosol optical depth (AOD) and aerosol index (AI) products are used as a proxy for the number concentration of aerosol particles while the cloud effective radius (CER) and cloud optical thickness (COT) describe cloud microphysical and optical properties respectively. Through the analysis of a 12-years dataset, distribution maps provide information on a regional scale about the first aerosol indirect effect (AIE) by determining the aerosol-cloud interaction (ACI). The ACI is defined as the change in cloud optical depth or effective radius as a function of aerosol load, for which AI is used as a proxy, for a fixed liquid water path (LWP). Reanalysis data from ECMWF, namely ERA-Interim, are used to estimate meteorological settings on a regional scale. The relative humidity (RH) and specific humidity (SH) are chosen at the pressure level of 950 hPa and they are linearly interpolated to match MODIS resolution of 1 x 1 deg. The Lower Tropospheric Stability (LTS) is computed from the ERA- Interim reanalysis data as the difference between the potential temperature at 700hPa and the surface. In order to better identify and interpret the AIE, this study proposes a framework where the interactions between aerosols and clouds are estimated by dividing the dataset into different regimes. Regimes are defined by: Liquid Water Path (LWP). The discrimination by LWP allows assessing the Twomey effect. The AIE is more evident when the LWP is lower. Aerosol loading (both AOD and AI). Separated aerosol settings (AI/AOD <25th percentile versus AI/AOD > 75th percentile) provide information regarding the saturation effect. Meteorological environments. LTS determines an unstable thermodynamic environment (LTS <25th percentile) and a stable one ( LTS >75th percentile).
The dynamics of cyclone clustering in re-analysis and a high-resolution climate model
NASA Astrophysics Data System (ADS)
Priestley, Matthew; Pinto, Joaquim; Dacre, Helen; Shaffrey, Len
2017-04-01
Extratropical cyclones have a tendency to occur in groups (clusters) in the exit of the North Atlantic storm track during wintertime, potentially leading to widespread socioeconomic impacts. The Winter of 2013/14 was the stormiest on record for the UK and was characterised by the recurrent clustering of intense extratropical cyclones. This clustering was associated with a strong, straight and persistent North Atlantic 250 hPa jet with Rossby wave-breaking (RWB) on both flanks, pinning the jet in place. Here, we provide for the first time an analysis of all clustered events in 36 years of the ERA-Interim Re-analysis at three latitudes (45˚ N, 55˚ N, 65˚ N) encompassing various regions of Western Europe. The relationship between the occurrence of RWB and cyclone clustering is studied in detail. Clustering at 55˚ N is associated with an extended and anomalously strong jet flanked on both sides by RWB. However, clustering at 65(45)˚ N is associated with RWB to the south (north) of the jet, deflecting the jet northwards (southwards). A positive correlation was found between the intensity of the clustering and RWB occurrence to the north and south of the jet. However, there is considerable spread in these relationships. Finally, analysis has shown that the relationships identified in the re-analysis are also present in a high-resolution coupled global climate model (HiGEM). In particular, clustering is associated with the same dynamical conditions at each of our three latitudes in spite of the identified biases in frequency and intensity of RWB.
Analysis of near-surface biases in ERA-Interim over the Canadian Prairies
NASA Astrophysics Data System (ADS)
Betts, Alan K.; Beljaars, Anton C. M.
2017-09-01
We quantify the biases in the diurnal cycle of temperature in ERA-Interim for both warm and cold season using hourly climate station data for four stations in Saskatchewan from 1979 to 2006. The warm season biases increase as opaque cloud cover decreases, and change substantially from April to October. The bias in mean temperature increases almost monotonically from small negative values in April to small positive values in the fall. Under clear skies, the bias in maximum temperature is of the order of -1°C in June and July, and -2°C in spring and fall; while the bias in minimum temperature increases almost monotonically from +1°C in spring to +2.5°C in October. The bias in the diurnal temperature range falls under clear skies from -2.5°C in spring to -5°C in fall. The cold season biases with surface snow have a different structure. The biases in maximum, mean and minimum temperature with a stable BL reach +1°C, +2.6°C and +3°C respectively in January under clear skies. The cold season bias in diurnal range increases from about -1.8°C in the fall to positive values in March. These diurnal biases in 2 m temperature and their seasonal trends are consistent with a high bias in both the diurnal and seasonal amplitude of the model ground heat flux, and a warm season daytime bias resulting from the model fixed leaf area index. Our results can be used as bias corrections in agricultural modeling that use these reanalysis data, and also as a framework for understanding model biases.
NASA Astrophysics Data System (ADS)
Dwivedi, Sanjeev; Narayanan, M. S.; Venkat Ratnam, M.; Narayana Rao, D.
2016-04-01
Monsoon inversion (MI) over the Arabian Sea (AS) is one of the important characteristics associated with the monsoon activity over Indian region during summer monsoon season. In the present study, we have used 5 years (2009-2013) of temperature and water vapour measurement data obtained from satellite sounder instrument, an Infrared Atmospheric Sounding Interferometer (IASI) onboard MetOp satellite, in addition to ERA-Interim data, to study their characteristics. The lower atmospheric data over the AS have been examined first to identify the areas where MIs are predominant and occur with higher strength. Based on this information, a detailed study has been made to investigate their characteristics separately in the eastern AS (EAS) and western AS (WAS) to examine their contrasting features. The initiation and dissipation times of MIs, their percentage occurrence, strength, etc., has been examined using the huge database. The relation with monsoon activity (rainfall) over Indian region during normal and poor monsoon years is also studied. WAS ΔT values are ˜ 2 K less than those over the EAS, ΔT being the temperature difference between 950 and 850 hPa. A much larger contrast between the WAS and EAS in ΔT is noticed in ERA-Interim data set vis-à-vis those observed by satellites. The possibility of detecting MI from another parameter, refractivity N, obtained directly from another satellite constellation of GPS Radio Occultation (RO) (COSMIC), has also been examined. MI detected from IASI and Atmospheric Infrared Sounder (AIRS) onboard the NOAA satellite have been compared to see how far the two data sets can be combined to study the MI characteristics. We suggest MI could also be included as one of the semipermanent features of southwest monsoon along with the presently accepted six parameters.
NASA Astrophysics Data System (ADS)
Eastman, R. M.; Wood, R.
2017-12-01
This study observes the 24-hour Lagrangian evolution of stratocumulus cloud amount and PBL depth in four eastern subtropical ocean basins: the NE Pacific, SE Pacific, SE Atlantic, and E Indian. Nearly 170,000 trajectories are computed using the 2-D wind field at 925mb and cloud properties are sampled along these trajectories twice daily as the A-Train satellite constellation passes overhead. Concurrent measurements of the overlying humidity and temperature profiles are interpolated from the ERA-Interim reanalysis grids. Cloud properties are sampled by MODIS and a measure of planetary boundary layer (PBL) depth is calculated using MODIS cloud top temperatures, CALIPSO lidar observations of cloud top heights, and ERA-Interim sea surface temperatures. High humidity overlying the PBL can reduce cloud top cooling by counteracting radiative cooling and by reducing evaporation within the entrainment zone. Both of these effects can slow the entrainment rate and change cloud evolution. To discern which effect is more important the humidity profile is broken into two distinct components: the specific humidity directly above the inversion, which is entraining into the boundary layer, and the column of specific humidity above that layer, which is radiatively interacting with the PBL, but not directly entraining. These two measures of humidity are compared in the Lagrangian framework. Results suggest that humidity above the PBL has a stronger effect on the Lagrangian PBL deepening rate compared to lower tropospheric stability. A comparison of PBL deepening rates driven by the entraining humidity versus the radiating humidity shows that the radiative effects of overlying humidity are dominant with respect to entrainment. However, the entraining effects of humidity are more important in prolonging cloud lifetime.
Impact of spectral nudging on regional climate simulation over CORDEX East Asia using WRF
NASA Astrophysics Data System (ADS)
Tang, Jianping; Wang, Shuyu; Niu, Xiaorui; Hui, Pinhong; Zong, Peishu; Wang, Xueyuan
2017-04-01
In this study, the impact of the spectral nudging method on regional climate simulation over the Coordinated Regional Climate Downscaling Experiment East Asia (CORDEX-EA) region is investigated using the Weather Research and Forecasting model (WRF). Driven by the ERA-Interim reanalysis, five continuous simulations covering 1989-2007 are conducted by the WRF model, in which four runs adopt the interior spectral nudging with different wavenumbers, nudging variables and nudging coefficients. Model validation shows that WRF has the ability to simulate spatial distributions and temporal variations of the surface climate (air temperature and precipitation) over CORDEX-EA domain. Comparably the spectral nudging technique is effective in improving the model's skill in the following aspects: (1), the simulated biases and root mean square errors of annual mean temperature and precipitation are obviously reduced. The SN3-UVT (spectral nudging with wavenumber 3 in both zonal and meridional directions applied to U, V and T) and SN6 (spectral nudging with wavenumber 6 in both zonal and meridional directions applied to U and V) experiments give the best simulations for temperature and precipitation respectively. The inter-annual and seasonal variances produced by the SN experiments are also closer to the ERA-Interim observation. (2), the application of spectral nudging in WRF is helpful for simulating the extreme temperature and precipitation, and the SN3-UVT simulation shows a clear advantage over the other simulations in depicting both the spatial distributions and inter-annual variances of temperature and precipitation extremes. With the spectral nudging, WRF is able to preserve the variability in the large scale climate information, and therefore adjust the temperature and precipitation variabilities toward the observation.
Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth
NASA Astrophysics Data System (ADS)
van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.
2014-03-01
We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the integrated forecasting system (IFS) model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which likely reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The methane lifetime is 7% higher in EC-Earth, but remains well within the range reported in the literature. We evaluate the model by comparing the simulated climatologies of surface carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.
Causes and Consequences of Exceptional North Atlantic Heat Loss in Recent Winters
NASA Astrophysics Data System (ADS)
Josey, Simon; Grist, Jeremy; Duchez, Aurelie; Frajka-Williams, Eleanor; Hirschi, Joel; Marsh, Robert; Sinha, Bablu
2016-04-01
The mid-high latitude North Atlantic loses large amounts of heat to the atmosphere in winter leading to dense water formation. An examination of reanalysis datasets (ERA-Interim, NCEP/NCAR) reveals that heat loss in the recent winters 2013-14 and 2014-15 was exceptionally strong. The causes and consequences of this extraordinary ocean heat loss will be discussed. In 2013-2014, the net air-sea heat flux anomaly averaged over the whole winter exceeded 100 Wm-2 in the eastern subpolar gyre (the most extreme in the period since 1979 spanned by ERA-Interim). The causes of this extreme heat loss will be shown to be severe latent and sensible heat fluxes driven primarily by anomalously strong westerly airflows from North America and northerly airflows originating in the Nordic Seas. The associated sea level pressure anomaly field reflects the dominance of the second mode of atmospheric variability, the East Atlantic Pattern (EAP) over the North Atlantic Oscillation (NAO) in this winter. The extreme winter heat loss had a significant impact on the ocean extending from the sea surface into the deeper layers and a re-emergent cold Sea Surface Temperature (SST) anomaly is evident in November 2014. The following winter 2014-15 experienced further extreme heat loss that served to amplify the strength of the re-emergent SST anomaly. By summer 2015, an unprecedented cold mid-latitude North Atlantic Ocean surface temperature anomaly is evident in observations and has been widely referred to as the 'big blue blob'. The role played by the extreme surface heat loss in the preceding winters in generating this feature and it subsequent evolution through winter 2015-16 will be explored.
Web-GIS approach for integrated analysis of heterogeneous georeferenced data
NASA Astrophysics Data System (ADS)
Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander; Shulgina, Tamara
2014-05-01
Georeferenced datasets are currently actively used for modeling, interpretation and forecasting of climatic and ecosystem changes on different spatial and temporal scales [1]. Due to inherent heterogeneity of environmental datasets as well as their huge size (up to tens terabytes for a single dataset) a special software supporting studies in the climate and environmental change areas is required [2]. Dedicated information-computational system for integrated analysis of heterogeneous georeferenced climatological and meteorological data is presented. It is based on combination of Web and GIS technologies according to Open Geospatial Consortium (OGC) standards, and involves many modern solutions such as object-oriented programming model, modular composition, and JavaScript libraries based on GeoExt library (http://www.geoext.org), ExtJS Framework (http://www.sencha.com/products/extjs) and OpenLayers software (http://openlayers.org). The main advantage of the system lies in it's capability to perform integrated analysis of time series of georeferenced data obtained from different sources (in-situ observations, model results, remote sensing data) and to combine the results in a single map [3, 4] as WMS and WFS layers in a web-GIS application. Also analysis results are available for downloading as binary files from the graphical user interface or can be directly accessed through web mapping (WMS) and web feature (WFS) services for a further processing by the user. Data processing is performed on geographically distributed computational cluster comprising data storage systems and corresponding computational nodes. Several geophysical datasets represented by NCEP/NCAR Reanalysis II, JMA/CRIEPI JRA-25 Reanalysis, ECMWF ERA-40 Reanalysis, ECMWF ERA Interim Reanalysis, MRI/JMA APHRODITE's Water Resources Project Reanalysis, DWD Global Precipitation Climatology Centre's data, GMAO Modern Era-Retrospective analysis for Research and Applications, reanalysis of Monitoring atmospheric composition and climate (MACC) Collaborated Project, NOAA-CIRES Twentieth Century Global Reanalysis Version II, NCEP Climate Forecast System Reanalysis (CFSR), meteorological observational data for the territory of the former USSR for the 20th century, results of modeling by global and regional climatological models, and others are available for processing by the system. The Web-GIS information-computational system for heterogeneous geophysical data analysis provides specialists involved into multidisciplinary research projects with reliable and practical instruments for integrated research of climate and ecosystems changes on global and regional scales. With its help even an unskilled in programming user is able to process and visualize multidimensional observational and model data through unified web-interface using a common graphical web-browser. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grant #13-05-12034, grant #14-05-00502, and integrated project SB RAS #131. References 1. Gordov E.P., Lykosov V.N., Krupchatnikov V.N., Okladnikov I.G., Titov A.G., Shulgina T.M. Computational and information technologies for monitoring and modeling of climate changes and their consequences. - Novosibirsk: Nauka, Siberian branch, 2013. - 195 p. (in Russian) 2. Felice Frankel, Rosalind Reid. Big data: Distilling meaning from data // Nature. Vol. 455. N. 7209. P. 30. 3. T.M. Shulgina, E.P. Gordov, I.G. Okladnikov, A.G., Titov, E.Yu. Genina, N.P. Gorbatenko, I.V. Kuzhevskaya, A.S. Akhmetshina. Software complex for a regional climate change analysis. // Vestnik NGU. Series: Information technologies. 2013. Vol. 11. Issue 1. P. 124-131 (in Russian). 4. I.G. Okladnikov, A.G. Titov, T.M. Shulgina, E.P. Gordov, V.Yu. Bogomolov, Yu.V. Martynova, S.P. Suschenko, A.V. Skvortsov. Software for analysis and visualization of climate change monitoring and forecasting data // Numerical methods and programming, 2013. Vol. 14. P. 123-131 (in Russian).
NASA Astrophysics Data System (ADS)
Garrigues, S.; Olioso, A.; Carrer, D.; Decharme, B.; Calvet, J.-C.; Martin, E.; Moulin, S.; Marloie, O.
2015-10-01
Generic land surface models are generally driven by large-scale data sets to describe the climate, the soil properties, the vegetation dynamic and the cropland management (irrigation). This paper investigates the uncertainties in these drivers and their impacts on the evapotranspiration (ET) simulated from the Interactions between Soil, Biosphere, and Atmosphere (ISBA-A-gs) land surface model over a 12-year Mediterranean crop succession. We evaluate the forcing data sets used in the standard implementation of ISBA over France where the model is driven by the SAFRAN (Système d'Analyse Fournissant des Renseignements Adaptés à la Nivologie) high spatial resolution atmospheric reanalysis, the leaf area index (LAI) time courses derived from the ECOCLIMAP-II land surface parameter database and the soil texture derived from the French soil database. For climate, we focus on the radiations and rainfall variables and we test additional data sets which include the ERA-Interim (ERA-I) low spatial resolution reanalysis, the Global Precipitation Climatology Centre data set (GPCC) and the MeteoSat Second Generation (MSG) satellite estimate of downwelling shortwave radiations. The evaluation of the drivers indicates very low bias in daily downwelling shortwave radiation for ERA-I (2.5 W m-2) compared to the negative biases found for SAFRAN (-10 W m-2) and the MSG satellite (-12 W m-2). Both SAFRAN and ERA-I underestimate downwelling longwave radiations by -12 and -16 W m-2, respectively. The SAFRAN and ERA-I/GPCC rainfall are slightly biased at daily and longer timescales (1 and 0.5 % of the mean rainfall measurement). The SAFRAN rainfall is more precise than the ERA-I/GPCC estimate which shows larger inter-annual variability in yearly rainfall error (up to 100 mm). The ECOCLIMAP-II LAI climatology does not properly resolve Mediterranean crop phenology and underestimates the bare soil period which leads to an overall overestimation of LAI over the crop succession. The simulation of irrigation by the model provides an accurate irrigation amount over the crop cycle but the timing of irrigation occurrences is frequently unrealistic. Errors in the soil hydrodynamic parameters and the lack of irrigation in the simulation have the largest influence on ET compared to uncertainties in the large-scale climate reanalysis and the LAI climatology. Among climate variables, the errors in yearly ET are mainly related to the errors in yearly rainfall. The underestimation of the available water capacity and the soil hydraulic diffusivity induce a large underestimation of ET over 12 years. The underestimation of radiations by the reanalyses and the absence of irrigation in the simulation lead to the underestimation of ET while the overall overestimation of LAI by the ECOCLIMAP-II climatology induces an overestimation of ET over 12 years. This work shows that the key challenges to monitor the water balance of cropland at regional scale concern the representation of the spatial distribution of the soil hydrodynamic parameters, the variability of the irrigation practices, the seasonal and inter-annual dynamics of vegetation and the spatiotemporal heterogeneity of rainfall.
NASA Astrophysics Data System (ADS)
Fu, J. X.
2010-12-01
Predictability of Intra-Seasonal Oscillation (ISO) relies on both initial conditions and lower boundary conditions (or atmosphere-ocean interaction). The atmospheric reanalysis datasets are commonly used as initial conditions. Here, the biases of three reanalysis datasets (NCEP_R1, _R2, and ERA_Interim) in describing ISO were revealed and the impacts of these biases as initial conditions on ISO prediction skills were assessed. A signal recovery method is proposed to improve ISO prediction. All three reanalysis datasets underestimate the intensity of the equatorial eastward-propagating ISO. When these reanalyses are used as initial conditions in the ECHAM4-UH hybrid coupled model (UH_HCM hereinafter), skillful ISO prediction reaches only about one week for both the 850-hPa zonal winds (U850) and rainfall over Southeast Asia and the global tropics. An enhanced nudging of divergence field is shown to significantly improve the initial conditions, resulting in an extension of the skillful rainfall prediction by 2-3 days and U850 prediction by 5-10 days. After recovering the ISO signals in the original reanalyses, the resultant initial conditions contain ISO strength much closer to the observed. Use of these signal-recovered reanalyses as initial conditions extends the skillful prediction of U850 and rainfall, respectively, to 23 and 18 days over Southeast Asia, and to 20 and 10 days over the global tropics. This finding underlines the urgent need to improve data assimilation systems and observations in advancement of ISO prediction by offering better initial conditions. It is also found that small-scale synoptic weather disturbances in initial conditions generally increase ISO prediction skill. The UH_HCM has better rainfall prediction than the NCEP Climate Forecast System (CFS) over Southeast Asia and both models suffer the prediction barrier over the Maritime Continent.
NASA Astrophysics Data System (ADS)
Knowland, K. E.; Doherty, R. M.; Hodges, K.
2015-12-01
The influence of the North Atlantic Oscillation (NAO) on the tropospheric distributions of ozone (O3) and carbon monoxide (CO) has been quantified. The Monitoring Atmospheric Composition and Climate (MACC) Reanalysis, a combined meteorology and composition dataset for the period 2003-2012 (Innes et al., 2013), is used to investigate the composition of the troposphere and lower stratosphere in relation to the location of the storm track as well as other meteorological parameters over the North Atlantic associated with the different NAO phases. Cyclone tracks in the MACC Reanalysis compare well to the cyclone tracks in the widely-used ERA-Interim Reanalysis for the same 10-year period (cyclone tracking performed using the tracking algorithm of Hodges (1995, 1999)), as both are based on the European Centre for Medium-Range Weather Forecasts' (ECMWF) Integrated Forecast System (IFS). A seasonal analysis is performed whereby the MACC reanalysis meteorological fields, O3 and CO mixing ratios are weighted by the monthly NAO index values. The location of the main storm track, which tilts towards high latitudes (toward the Arctic) during positive NAO phases to a more zonal location in the mid-latitudes (toward Europe) during negative NAO phases, impacts the location of both horizontal and vertical transport across the North Atlantic and into the Arctic. During positive NAO seasons, the persistence of cyclones over the North Atlantic coupled with a stronger Azores High promotes strong horizontal transport across the North Atlantic throughout the troposphere. In all seasons, significantly more intense cyclones occur at higher latitudes (north of ~50°C) during the positive phase of the NAO and in the southern mid-latitudes during the negative NAO phase. This impacts the location of stratospheric intrusions within the descending dry airstream behind the associated cold front of the extratropical cyclone and the venting of low-level pollution up into the free troposphere within the warm conveyor belt airstream which rises ahead of the cold front.
NASA Astrophysics Data System (ADS)
Kumar, A.; Singh, N.; A.
2017-12-01
To elucidate upon the effect of dust loading on the central Himalayan glaciers and snow cover, a study is carried out over the geographical boundary between 28-34° N and 78-98° E, for the period 2011-2015. Only spring and summer seasons are investigated, as the long range transport over the region are usually more prominent during these seasons. To ascertain the dust sources, data obtained from the level-2 of Cloud-Aerosol LiDAR and Infrared Pathfinder Satellite Observations (CALIPSO) ver. 4.10, Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) trajectory model, Modern-Era Retrospective analysis for Research and Applications-2 (MERRA-2) ver. 5.12.4 are utilized. The snow depth and snow fall data are taken from MERRA-2, while, for the surface Albedo, data from Global land data assimilation system (GLDAS) ver. 2.1 Noah land surface model L4 is used. ERA-Interim wind products are also used to understand the prevailing wind pattern over the site during the period of study. To show the impact of aerosols on glaciated surface and the snow fall, a regression analysis is performed between these parameters and the dust column mass density for the period of 1980-2016 using MERRA-2 reanalysis data.
Is there potential added value in COSMO-CLM forced by ERA reanalysis data?
NASA Astrophysics Data System (ADS)
Lenz, Claus-Jürgen; Früh, Barbara; Adalatpanah, Fatemeh Davary
2017-12-01
An application of the potential added value (PAV) concept suggested by Di Luca et al. (Clim Dyn 40:443-464, 2013a) is applied to ERA Interim driven runs of the regional climate model COSMO-CLM. They are performed for the time period 1979-2013 for the EURO-CORDEX domain at horizontal grid resolutions 0.11°, 0.22°, and 0.44° such that the higher resolved model grid fits into the next coarser grid. The concept of the potential added value is applied to annual, seasonal, and monthly means of the 2 m air temperature. Results show the highest potential added value at the run with the finest grid and generally increasing PAV with increasing resolution. The potential added value strongly depends on the season as well as the region of consideration. The gain of PAV is higher enhancing the resolution from 0.44° to 0.22° than from 0.22° to 0.11°. At grid aggregations to 0.88° and 1.76° the differences in PAV between the COSMO-CLM runs on the mentioned grid resolutions are maximal. They nearly vanish at aggregations to even coarser grids. In all cases the PAV is dominated by at least 80% by its stationary part.
NASA Astrophysics Data System (ADS)
Parajuli, Sagar Prasad; Yang, Zong-Liang; Lawrence, David M.
2016-06-01
Large amounts of mineral dust are injected into the atmosphere during dust storms, which are common in the Middle East and North Africa (MENA) where most of the global dust hotspots are located. In this work, we present simulations of dust emission using the Community Earth System Model Version 1.2.2 (CESM 1.2.2) and evaluate how well it captures the spatio-temporal characteristics of dust emission in the MENA region with a focus on large-scale dust storm mobilization. We explicitly focus our analysis on the model's two major input parameters that affect the vertical mass flux of dust-surface winds and the soil erodibility factor. We analyze dust emissions in simulations with both prognostic CESM winds and with CESM winds that are nudged towards ERA-Interim reanalysis values. Simulations with three existing erodibility maps and a new observation-based erodibility map are also conducted. We compare the simulated results with MODIS satellite data, MACC reanalysis data, AERONET station data, and CALIPSO 3-d aerosol profile data. The dust emission simulated by CESM, when driven by nudged reanalysis winds, compares reasonably well with observations on daily to monthly time scales despite CESM being a global General Circulation Model. However, considerable bias exists around known high dust source locations in northwest/northeast Africa and over the Arabian Peninsula where recurring large-scale dust storms are common. The new observation-based erodibility map, which can represent anthropogenic dust sources that are not directly represented by existing erodibility maps, shows improved performance in terms of the simulated dust optical depth (DOD) and aerosol optical depth (AOD) compared to existing erodibility maps although the performance of different erodibility maps varies by region.
Assessment of moisture budget over West Africa using MERRA-2's aerological model and satellite data
NASA Astrophysics Data System (ADS)
Igbawua, Tertsea; Zhang, Jiahua; Yao, Fengmei; Zhang, Da
2018-02-01
The study assessed the performance of NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) and MERRA-2 aerological (P-E*) model in reproducing the salient features of West Africa water balance including its components from 1980 to 2013. In this study we have shown that recent reanalysis efforts have generated imbalances between regional integrated precipitation (P) and surface evaporation (E), and the effect is more in the newly released MERRA-2. The atmospheric water balance of MERRA and MERRA-2 were inter-compared and thereafter compared with model forecast output of European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-I) and Japanese 55-year Reanalysis (JRA-55). Results indicated that a bias of 12-20 (5-13) mm/month in MERRA-2 (ERA-I) leads to the classification of the Sahel (14°N-20°N) as a moisture source during the West African Summer Monsoon. Comparisons between MERRA/MERRA-2 and prognostic fields from two ERA-I and JRA-55 indicated that the average P-E* in MERRA is 18.94 (52.24) mm/month which is less than ERA-I (JRA-55) over Guinea domain and 25.03 (4.53) mm/month greater than ERA-I (JRA-55) over the Sahel. In MERRA-2, average P-E* indicated 25.76 (59.06) mm/month which is less than ERA-I (JRA-55) over Guinea and 73.72 (94.22) mm/month less than ERA-I (JRA-55) over the Sahel respectively. These imbalances are due to adjustments in data assimilation methods, satellite calibration and observational data base. The change in convective P parameterization and increased re-evaporation of P in MERRA-2 is suggestive of the cause of positive biases in P and E. The little disagreements between MERRA/MERRA-2 and CRU precipitation highlights one of the major challenges associated with climate research in West Africa and major improvements in observation data and surface fluxes from reanalysis remain vital.
NASA Astrophysics Data System (ADS)
Petroliagkis, Thomas I.; Camia, Andrea; Liberta, Giorgio; Durrant, Tracy; Pappenberger, Florian; San-Miguel-Ayanz, Jesus
2014-05-01
The European Forest Fire Information System (EFFIS) has been established by the Joint Research Centre (JRC) and the Directorate General for Environment (DG ENV) of the European Commission (EC) to support the services in charge of the protection of forests against fires in the EU and neighbour countries, and also to provide the EC services and the European Parliament with information on forest fires in Europe. Within its applications, EFFIS provides current and forecast meteorological fire danger maps up to 6 days. Weather plays a key role in affecting wildfire occurrence and behaviour. Meteorological parameters can be used to derive meteorological fire weather indices that provide estimations of fire danger level at a given time over a specified area of interest. In this work, we investigate the suitability of critical thresholds of fire danger to provide an early warning for megafires (fires > 500 ha) over Europe. Past trends of fire danger are analysed computing daily fire danger from weather data taken from re-analysis fields for a period of 31 years (1980 to 2010). Re-analysis global data sets coming from the construction of high-quality climate records, which combine past observations collected from many different observing and measuring platforms, are capable of describing how Fire Danger Indices have evolved over time at a global scale. The latest and most updated ERA-Interim dataset of the European Centre for Medium-Range Weather Forecast (ECMWF) was used to extract meteorological variables needed to compute daily values of the Canadian Fire Weather Index (CFWI) over Europe, with a horizontal resolution of about 75x75 km. Daily time series of CFWI were constructed and analysed over a total of 1,071 European NUTS3 centroids, resulting in a set of percentiles and critical thresholds. Such percentiles could be used as thresholds to help fire services establish a measure of the significance of CFWI outputs as they relate to levels of fire potential, fuel conditions and fire danger. Median percentile values of fire days accumulated over the 31-year period were compared to median values of all days from that period. As expected, the CWFI time series exhibit different values on fire days than on all days. In addition, a percentile analysis was performed in order to determine the behaviour of index values corresponding to fire events falling into the megafire category. This analysis resulted in a set of critical thresholds based on percentiles. By utilising such thresholds, an initial framework of an early warning system has being established. By lowering the value of any of these thresholds, the number of hits could be increased until all extremes were captured (resulting in zero misses). However, in doing so, the number of false alarms tends to increase significantly. Consequently, an optimal trade-off between hits and false alarms has to be established when setting different (critical) CFWI thresholds.
Solar cycle modulation of Southern Annular Mode -Energy-momentum analysis-
NASA Astrophysics Data System (ADS)
Kuroda, Y.
2016-12-01
Climate is affected by various factors, including oceanic changes and volcanic eruptions. 11-year solar cycle change is one of such important factors. Observational analysis shows that the Southern Annular Mode (SAM) in late-winter/spring show structural modulation associated with 11-year solar cycle. In fact, SAM-related signal tends to extend from surface to upper stratosphere and persistent longer period in the High Solar (HS) years, whereas it is restricted in the troposphere and not persist in the Low Solar (LS) years. In the present study, we used 35-year record of ERA-Interim reanalysis data and performed wave-energy and momentum analysis on the solar-cycle modulation of the SAM to examine key factors to create such solar-SAM relationship. It is found that enhanced wave-mean flow interaction tends to take place in the middle stratosphere in association with enhanced energy input from diabatic heating on September only in HS years. The result suggests atmospheric and solar conditions on September are keys to create solar-SAM relationship.
NASA Astrophysics Data System (ADS)
Emanuelsson, B. Daniel; Bertler, Nancy A. N.; Neff, Peter D.; Renwick, James A.; Markle, Bradley R.; Baisden, W. Troy; Keller, Elizabeth D.
2018-01-01
Persistent positive 500-hPa geopotential height anomalies from the ECMWF ERA-Interim reanalysis are used to quantify Amundsen-Bellingshausen Sea (ABS) anticyclonic event occurrences associated with precipitation in West Antarctica (WA). We demonstrate that multi-day (minimum 3-day duration) anticyclones play a key role in the ABS by dynamically inducing meridional transport, which is associated with heat and moisture advection into WA. This affects surface climate variability and trends, precipitation rates and thus WA ice sheet surface mass balance. We show that the snow accumulation record from the Roosevelt Island Climate Evolution (RICE) ice core reflects interannual variability of blocking and geopotential height conditions in the ABS/Ross Sea region. Furthermore, our analysis shows that larger precipitation events are related to enhanced anticyclonic circulation and meridional winds, which cause pronounced dipole patterns in air temperature anomalies and sea ice concentrations between the eastern Ross Sea and the Bellingshausen Sea/Weddell Sea, as well as between the eastern and western Ross Sea.
NASA Astrophysics Data System (ADS)
Rychlik, Igor; Mao, Wengang
2018-02-01
The wind speed variability in the North Atlantic has been successfully modelled using a spatio-temporal transformed Gaussian field. However, this type of model does not correctly describe the extreme wind speeds attributed to tropical storms and hurricanes. In this study, the transformed Gaussian model is further developed to include the occurrence of severe storms. In this new model, random components are added to the transformed Gaussian field to model rare events with extreme wind speeds. The resulting random field is locally stationary and homogeneous. The localized dependence structure is described by time- and space-dependent parameters. The parameters have a natural physical interpretation. To exemplify its application, the model is fitted to the ECMWF ERA-Interim reanalysis data set. The model is applied to compute long-term wind speed distributions and return values, e.g., 100- or 1000-year extreme wind speeds, and to simulate random wind speed time series at a fixed location or spatio-temporal wind fields around that location.
Wind regimes and their relation to synoptic variables using self-organizing maps
NASA Astrophysics Data System (ADS)
Berkovic, Sigalit
2018-01-01
This study exemplifies the ability of the self-organizing maps (SOM) method to directly define well known wind regimes over Israel during the entire year, except summer period, at 12:00 UTC. This procedure may be applied at other hours and is highly relevant to future automatic climatological analysis and applications. The investigation is performed by analysing surface wind measurements from 53 Israel Meteorological Service stations. The relation between the synoptic variables and the wind regimes is revealed from the averages of ECMWF ERA-INTERIM reanalysis variables for each SOM wind regime. The inspection of wind regimes and their average geopotential anomalies has shown that wind regimes relate to the gradient of the pressure anomalies, rather than to the specific isobars pattern. Two main wind regimes - strong western and the strong eastern or northern - are well known over this region. The frequencies of the regimes according to seasons is verified. Strong eastern regimes are dominant during winter, while strong western regimes are frequent in all seasons.
Influence of atmospheric energy transport on amplification of winter warming in the Arctic
NASA Astrophysics Data System (ADS)
Alekseev, Genrikh; Kuzmina, Svetlana; Urazgildeeva, Aleksandra; Bobylev, Leonid
2016-04-01
The study was performed on base reanalysis ERA/Interim to discover the link between amplified warming in the high Arctic and the atmospheric transport of heat and water vapor through the 70 ° N. The partitioning transports across the Atlantic and Pacific "gates" is established the link between variations of atmospheric flux through the "gates" and a larger part of the variability of the average surface air temperature, water vapor content and its trends in the winter 1980-2014. Influence of winter (December-February) atmospheric transport across the Atlantic "gate" at the 1000 hPa on variability of average for January-February surface air temperature to north 70° N is estimated correlation coefficient 0.75 and contribution to the temperature trend 40%. These results for the first time denote the leading role of increasing atmospheric transport on the amplification of winter warming in the high Arctic. The investigation is supported with RFBR project 15-05-03512.
A Humidity-Driven Prediction System for Influenza Outbreaks
NASA Astrophysics Data System (ADS)
Thrastarson, H. T.; Teixeira, J.
2015-12-01
Recent studies have highlighted the role of absolute (or specific) humidity conditions as a leading explanation for the seasonal behavior of influenza outbreaks in temperate regions. If the timing and intensity of seasonal influenza outbreaks can be forecast, this would be of great value for public health response efforts. We have developed and implemented a SIRS (Susceptible-Infectious-Recovered-Susceptible) type numerical prediction system that is driven by specific humidity to predict influenza outbreaks. For the humidity, we have explored using both satellite data from the AIRS (Atmospheric Infrared Sounder) instrument as well as ERA-Interim re-analysis data. We discuss the development, testing, sensitivities and limitations of the prediction system and show results for influenza outbreaks in the United States during the years 2010-2014 (modeled in retrospect). Comparisons are made with other existing prediction systems and available data for influenza outbreaks from Google Flu Trends and the CDC (Center for Disease Control), and the incorporation of these datasets into the forecasting system is discussed.
Mapping probabilities of extreme continental water storage changes from space gravimetry
NASA Astrophysics Data System (ADS)
Kusche, J.; Eicker, A.; Forootan, E.; Springer, A.; Longuevergne, L.
2016-08-01
Using data from the Gravity Recovery And Climate Experiment (GRACE) mission, we derive statistically robust "hot spot" regions of high probability of peak anomalous—i.e., with respect to the seasonal cycle—water storage (of up to 0.7 m one-in-five-year return level) and flux (up to 0.14 m/month). Analysis of, and comparison with, up to 32 years of ERA-Interim reanalysis fields reveals generally good agreement of these hot spot regions to GRACE results and that most exceptions are located in the tropics. However, a simulation experiment reveals that differences observed by GRACE are statistically significant, and further error analysis suggests that by around the year 2020, it will be possible to detect temporal changes in the frequency of extreme total fluxes (i.e., combined effects of mainly precipitation and floods) for at least 10-20% of the continental area, assuming that we have a continuation of GRACE by its follow-up GRACE Follow-On (GRACE-FO) mission.
Approximate Stokes Drift Profiles and their use in Ocean Modelling
NASA Astrophysics Data System (ADS)
Breivik, O.; Biblot, J.; Janssen, P. A. E. M.
2016-02-01
Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons with parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. I will show some results from the coupled atmosphere-wave-ocean ensemble forecast system of ECMWF where these wave effects are now included in the ocean model component.
Large differences in the diabatic heat budget of the tropical UTLS in reanalyses
NASA Astrophysics Data System (ADS)
Wright, J. S.; Fueglistaler, S.
2013-04-01
We present the time mean heat budgets of the tropical upper troposphere (UT) and lower stratosphere (LS) as simulated by five reanalysis models: MERRA, ERA-Interim, CFSR, JRA-25/JCDAS, and NCEP/NCAR. The simulated diabatic heat budget in the tropical UTLS differs significantly from model to model, with substantial implications for representations of transport and mixing. Large differences are apparent both in the net heat budget and in all comparable individual components, including latent heating, heating due to radiative transfer, and heating due to parameterised vertical mixing. We describe and discuss the most pronounced differences. Although they may be expected given difficulties in representing moist convection in models, the discrepancies in latent heating are still disturbing. We pay particular attention to discrepancies in radiative heating (which may be surprising given the strength of observational constraints on temperature and tropospheric water vapour) and discrepancies in heating due to turbulent mixing (which have received comparatively little attention).
NASA Astrophysics Data System (ADS)
Mengistu Tsidu, Gizaw; Ture, Kassahun; Sivakumar, V.
2013-07-01
MOZAIC instrument measured enhanced ozone on two occasions in February, 1996 and 1997 at cruise altitude over North Africa. The cause and source of ozone enhancements over the region are investigated using additional reanalysis data from ERA-Interim. The ERA-Interim reprocessed GOME ozone indicated existence of enhancement as well. Both observational data revealed that the increase in ozone has wider latitudinal coverage extending from North Europe upto North Africa. The geopotential heights and zonal wind from ERA-Interim have indicated existence of planetary-scale flow that allowed meridional airmass exchanges between subtropics and higher latitudes. The presence of troughs-ridge pattern are attributable to large amplitude waves of zonal wavenumber 1-5 propagating eastward in the winter hemisphere westerly current as determined from Hayashi spectra as well as local fractional variance spectra determined from Multitaper Method-Singular Value Decomposition (MTM-SVD) spectral method. MTM-SVD is also used to understand the role of these waves on ozone enhancement and variability during the observation period in a mechanistic approach. A joint analysis of driving field, such as wind and potential vorticity (PV) for which only signals of the dominant zonal wavenumbers of prevailing planetary waves are retained, has revealed strong linkage between wave activity and ozone enhancement over the region at a temporal cycle of 5.8 days. One of these features is the displacement of the polar vortex southward during the enhancements, allowing strong airmass, energy and momentum exchanges. Evidence of cutoff laws that are formed within the deep trough, characteristics of Rossby wave breaking, is also seen in the ozone horizontal distribution at different pressure levels during the events. The reconstruction of signals with the cycle of 5.8 days has shown that the time and strength of enhancement depend on the circulation patterns dictated by planetary-scale flow relative to the location of observation. The positive PV anomalies upstream or at the observation region bring ozone rich airmass to the region while a negative PV anomaly upstream does the opposite. The position of the anomalies with time changes in accordance with the period of the waves involved. The snap shot of coherent variation of PV and ozone at different time during half cycle of the 5.8-day period has indicated that a region could experience positive (enhancement) or negative (depletion) ozone anomalies of different degree as the wave propagates eastward.
Dehumidification of Iberia by enhanced summer upwelling
NASA Astrophysics Data System (ADS)
Miranda, P. M.; Costa, V.; Nogueira, M.; Semedo, A.
2015-12-01
Dehumidification of Iberia by enhanced summer upwelling Miranda PMA, Costa V, Semedo AIDL, Faculdade de Ciências, University of LisbonA 24-year simulation of the recent Iberian climate, using the WRF model at 9km resolution forced by ERA-Interim reanalysis (1989-2012), is analysed for the decadal evolution of the upwelling forcing coastal wind and for column integrated Precipitable water vapour (PWV). Results indicate that, unlike what was found by Bakun et al. (2009) for the Peruvian region, a statistically significant trend in the upwelling favourable (northerly) wind has been accompanied by a corresponding decrease in PWV, not only inland but also over the coastal waters. Such increase is consistent with a reinforced northerly coastal jet in the maritime boundary layer contributing to atmospheric Ekman pumping of dry continental air into the coastal region. Diagnostics of the prevalence of the Iberian thermal low following Hoinka and Castro (2003) also show a positive trend in its frequency during an extended summer period (April to September). These results are consistent with recent studies indicating an upward trend in the frequency of upwelling in SW Iberia (Alves and Miranda 2013), and may be relevant for climate change applications as an increase in coastal upwelling (Miranda et al 2013) may lead to substantial regional impacts in the subtropics. Aknowledgements: Study supported by FCT Grant RECI/GEO-MET/0380/2012Alves JMR, Miranda PMA (2013) Variability of Iberian upwelling implied by ERA-40 and ERA-Interim reanalyses, Tellus A 2013, http://dx.doi.org/10.3402/tellusa.v65i0.19245.Bakun et al (2010) Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems, Global Change Biology, doi: 10.1111/j.1365-2486.2009.02094.xHoinka KP, Castro M (2003) The Iberian Peninsula thermal low. QJRMS, 129, 1491- 1511, doi: 10.1256/qj.01.189.Miranda et al (2013) Climate change and upwelling: response of Iberian upwelling to atmospheric forcing in a regional climate scenario. Climate Dynamics, doi: 10.1007/s00382-012-1442-9.
NASA Astrophysics Data System (ADS)
Paris, F.; Lecacheux, S.; Idier, D.; Charles, E.
2014-09-01
The Bay of Biscay, located in the Northeast Atlantic Ocean, is exposed to energetic waves coming from the open ocean that have crucial effects on the coast. Knowledge of the wave climate and trends in this region are critical to better understand the last decade's evolution of coastal hazards and morphology and to anticipate their potential future changes. This study aims to characterize the long-term trends of the present wave climate over the second half of the twentieth century in the Bay of Biscay through a robust and homogeneous intercomparison of five-wave datasets (Corrected ERA-40 (C-ERA-40), ECMWF Reanalysis Interim (ERA-Interim), Bay Of Biscay Wave Atlas (BOBWA-10kH), ANEMOC, and Bertin and Dodet 2010)). The comparison of the quality of the datasets against offshore and nearshore measurements reveals that at offshore locations, global reanalyses slightly underestimate wave heights, while regional hindcasts overestimate wave heights, especially for the highest quantiles. At coastal locations, BOBWA-10kH is the dataset that compares the best with observations. Concerning long time-scale features, the comparison highlights that the main significant trends are similarly present in the five datasets, especially during summer for which there is an increase of significant wave heights and mean wave periods (up to +15 cm and +0.6 s over the period 1970-2001) as well as a southerly shift of wave directions (around -0.4° year-1). Over the same period, an increase of high quantiles of wave heights during the autumn season (around 3 cm year-1 for 90th quantile of significant wave heights (SWH90)) is also apparent. During winter, significant trends are much lower than during summer and autumn despite a slight increase of wave heights and periods during 1958-2001. These trends can be related to modifications in the wave-type occurrence. Finally, the trends common to the five datasets are discussed by analyzing the similarities with centennial trends issued from longer time-scale studies and exploring the various factors that could explain them.
North Atlantic storm driving of extreme wave heights in the North Sea
NASA Astrophysics Data System (ADS)
Bell, R. J.; Gray, S. L.; Jones, O. P.
2017-04-01
The relationship between storms and extreme ocean waves in the North Sea is assessed using a long-period wave data set and storms identified in the Interim ECMWF Re-Analysis (ERA-Interim). An ensemble sensitivity analysis is used to provide information on the spatial and temporal forcing from mean sea-level pressure and surface wind associated with extreme ocean wave height responses. Extreme ocean waves in the central North Sea arise due to intense extratropical cyclone winds from either the cold conveyor belt (northerly-wind events) or the warm conveyor belt (southerly-wind events). The largest wave heights are associated with northerly-wind events which tend to have stronger wind speeds and occur as the cold conveyor belt wraps rearward round the cyclone to the cold side of the warm front. The northerly-wind events provide a larger fetch to the central North Sea to aid wave growth. Southerly-wind events are associated with the warm conveyor belts of intense extratropical cyclones that develop in the left upper tropospheric jet exit region. Ensemble sensitivity analysis can provide early warning of extreme wave events by demonstrating a relationship between wave height and high pressure to the west of the British Isles for northerly-wind events 48 h prior. Southerly-wind extreme events demonstrate sensitivity to low pressure to the west of the British Isles 36 h prior.
North Sea Storm Driving of Extreme Wave Heights
NASA Astrophysics Data System (ADS)
Bell, Ray; Gray, Suzanne; Jones, Oliver
2017-04-01
The relationship between storms and extreme ocean waves in the North sea is assessed using a long-period wave dataset and storms identified in the Interim ECMWF Re-Analysis (ERA-Interim). An ensemble sensitivity analysis is used to provide information on the spatial and temporal forcing from mean sea-level pressure and surface wind associated with extreme ocean wave height responses. Extreme ocean waves in the central North Sea arise due to either the winds in the cold conveyor belt (northerly-wind events) or winds in the warm conveyor belt (southerly-wind events) of extratropical cyclones. The largest wave heights are associated with northerly-wind events which tend to have stronger wind speeds and occur as the cold conveyor belt wraps rearwards round the cyclone to the cold side of the warm front. The northerly-wind events also provide a larger fetch to the central North Sea. Southerly-wind events are associated with the warm conveyor belts of intense extratropical storms developing in the right upper-tropospheric jet exit region. There is predictability in the extreme ocean wave events up to two days before the event associated with a strengthening of a high pressure system to the west (northerly-wind events) and south-west (southerly-wind events) of the British Isles. This acts to increase the pressure gradient over the British Isles and therefore drive stronger wind speeds in the central North sea.
Water Cycle Variability over the Global Oceans Estimated Using Homogenized Reanalysis Fluxes
NASA Astrophysics Data System (ADS)
Robertson, F. R.; Bosilovich, M. G.; Roberts, J. B.
2017-12-01
Establishing consistent records of the global water cycle fluxes and their variations is particularly difficult over oceans where the density of in situ observations varies enormously with time, satellite retrievals of flux processes are sparse, and reanalyses are uncertain. The latter have the positive attribute of assimilating diverse observations to provide boundary fluxes and transports but are hindered by at least two factors: (1) the physical parameterizations are imperfect and, (2) the forcing data availability and quality vary greatly in time and, thus, can induce time-dependent, false signals of climate variability. Here we examine the prospects for homogenization of reanalysis records, that is, identifying and greatly minimizing non-physical signals. Our analysis focuses on the satellite era, 1980 to near present. The strategy involves three atmospheric reanalysis systems: (1) the NASA MERRA-2, (2) the newest reanalysis produced by the Japanese Meteorological Agency, JRA-55, and (3) the European Centre for Medium Range Weather Forecasts 20th Century reanalysis, ERA-20C. MERRA-2 and ERA-20C are also accompanied by 10-member AMIP integrations, and JRA-55 by a reanalysis using only conventional observations, JRA-55C. Differencing these latter integrations from the more comprehensive reanalyses helps provide a clearer picture of the impact of satellite observations by removing the effects of SST forcing. This facilitates the use of principal component analysis as a tool to identify and remove non-physical signals. We then use these homogenized E, P and moisture transports to examine the consistency of diagnostics of thermodynamic and hydrologic scaling, especially the P-E pattern amplification or the "wet-get-wetter, dry-get-drier" response. Prospects for further validation by new turbulent flux retrievals by satellite are discussed.
NASA Astrophysics Data System (ADS)
Bordi, I.; Fraedrich, K.; Sutera, A.
2010-06-01
The lead time dependent climates of the ECMWF weather prediction model, initialized with ERA-40 reanalysis, are analysed using 44 years of day-1 to day-10 forecasts of the northern hemispheric 500-hPa geopotential height fields. The study addresses the question whether short-term tendencies have an impact on long-term trends. Comparing climate trends of ERA-40 with those of the forecasts, it seems that the forecast model rapidly loses the memory of initial conditions creating its own climate. All forecast trends show a high degree of consistency. Comparison results suggest that: (i) Only centers characterized by an upward trend are statistical significant when increasing the lead time. (ii) In midilatitudes an upward trend larger than the one observed in the reanalysis characterizes the forecasts, while in the tropics there is a good agreement. (iii) The downward trend in reanalysis at high latitudes characterizes also the day-1 forecast which, however, increasing lead time approaches zero.
Tropospheric products of the second GOP European GNSS reprocessing (1996-2014)
NASA Astrophysics Data System (ADS)
Dousa, Jan; Vaclavovic, Pavel; Elias, Michal
2017-09-01
In this paper, we present results of the second reprocessing of all data from 1996 to 2014 from all stations in International Association of Geodesy (IAG) Reference Frame Sub-Commission for Europe (EUREF) Permanent Network (EPN) as performed at the Geodetic Observatory Pecný (GOP). While the original goal of this research was to ultimately contribute to the realization of a new European Terrestrial Reference System (ETRS), we also aim to provide a new set of GNSS (Global Navigation Satellite System) tropospheric parameter time series with possible applications to climate research. To achieve these goals, we improved a strategy to guarantee the continuity of these tropospheric parameters and we prepared several variants of troposphere modelling. We then assessed all solutions in terms of the repeatability of coordinates as an internal evaluation of applied models and strategies and in terms of zenith tropospheric delays (ZTDs) and horizontal gradients with those of the ERA-Interim numerical weather model (NWM) reanalysis. When compared to the GOP Repro1 (first EUREF reprocessing) solution, the results of the GOP Repro2 (second EUREF reprocessing) yielded improvements of approximately 50 and 25 % in the repeatability of the horizontal and vertical components, respectively, and of approximately 9 % in tropospheric parameters. Vertical repeatability was reduced from 4.14 to 3.73 mm when using the VMF1 mapping function, a priori ZHD (zenith hydrostatic delay), and non-tidal atmospheric loading corrections from actual weather data. Raising the elevation cut-off angle from 3 to 7° and then to 10° increased RMS from coordinates' repeatability, which was then confirmed by independently comparing GNSS tropospheric parameters with the NWM reanalysis. The assessment of tropospheric horizontal gradients with respect to the ERA-Interim revealed a strong sensitivity of estimated gradients to the quality of GNSS antenna tracking performance. This impact was demonstrated at the Mallorca station, where gradients systematically grew up to 5 mm during the period between 2003 and 2008, before this behaviour disappeared when the antenna at the station was changed. The impact of processing variants on long-term ZTD trend estimates was assessed at 172 EUREF stations with time series longer than 10 years. The most significant site-specific impact was due to the non-tidal atmospheric loading followed by the impact of changing the elevation cut-off angle from 3 to 10°. The other processing strategy had a very small or negligible impact on estimated trends.
NASA Astrophysics Data System (ADS)
Skok, Gregor; Žagar, Nedjeljka; Honzak, Luka; Žabkar, Rahela; Rakovec, Jože; Ceglar, Andrej
2016-01-01
The study presents a precipitation intercomparison based on two satellite-derived datasets (TRMM 3B42, CMORPH), four raingauge-based datasets (GPCC, E-OBS, Willmott & Matsuura, CRU), ERA Interim reanalysis (ERAInt), and a single climate simulation using the WRF model. The comparison was performed for a domain encompassing parts of Europe and the North Atlantic over the 11-year period of 2000-2010. The four raingauge-based datasets are similar to the TRMM dataset with biases over Europe ranging from -7 % to +4 %. The spread among the raingauge-based datasets is relatively small over most of Europe, although areas with greater uncertainty (more than 30 %) exist, especially near the Alps and other mountainous regions. There are distinct differences between the datasets over the European land area and the Atlantic Ocean in comparison to the TRMM dataset. ERAInt has a small dry bias over the land; the WRF simulation has a large wet bias (+30 %), whereas CMORPH is characterized by a large and spatially consistent dry bias (-21 %). Over the ocean, both ERAInt and CMORPH have a small wet bias (+8 %) while the wet bias in WRF is significantly larger (+47 %). ERAInt has the highest frequency of low-intensity precipitation while the frequency of high-intensity precipitation is the lowest due to its lower native resolution. Both satellite-derived datasets have more low-intensity precipitation over the ocean than over the land, while the frequency of higher-intensity precipitation is similar or larger over the land. This result is likely related to orography, which triggers more intense convective precipitation, while the Atlantic Ocean is characterized by more homogenous large-scale precipitation systems which are associated with larger areas of lower intensity precipitation. However, this is not observed in ERAInt and WRF, indicating the insufficient representation of convective processes in the models. Finally, the Fraction Skill Score confirmed that both models perform better over the Atlantic Ocean with ERAInt outperforming the WRF at low thresholds and WRF outperforming ERAInt at higher thresholds. The diurnal cycle is simulated better in the WRF simulation than in ERAInt, although WRF could not reproduce well the amplitude of the diurnal cycle. While the evaluation of the WRF model confirms earlier findings related to the model's wet bias over European land, the applied satellite-derived precipitation datasets revealed differences between the land and ocean areas along with uncertainties in the observation datasets.
Impact of Arctic sea-ice retreat on the recent change in cloud-base height during autumn
NASA Astrophysics Data System (ADS)
Sato, K.; Inoue, J.; Kodama, Y.; Overland, J. E.
2012-12-01
Cloud-base observations over the ice-free Chukchi and Beaufort Seas in autumn were conducted using a shipboard ceilometer and radiosondes during the 1999-2010 cruises of the Japanese R/V Mirai. To understand the recent change in cloud base height over the Arctic Ocean, these cloud-base height data were compared with the observation data under ice-covered situation during SHEBA (the Surface Heat Budget of the Arctic Ocean project in 1998). Our ice-free results showed a 30 % decrease (increase) in the frequency of low clouds with a ceiling below (above) 500 m. Temperature profiles revealed that the boundary layer was well developed over the ice-free ocean in the 2000s, whereas a stable layer dominated during the ice-covered period in 1998. The change in surface boundary conditions likely resulted in the difference in cloud-base height, although it had little impact on air temperatures in the mid- and upper troposphere. Data from the 2010 R/V Mirai cruise were investigated in detail in terms of air-sea temperature difference. This suggests that stratus cloud over the sea ice has been replaced as stratocumulus clouds with low cloud fraction due to the decrease in static stability induced by the sea-ice retreat. The relationship between cloud-base height and air-sea temperature difference (SST-Ts) was analyzed in detail using special section data during 2010 cruise data. Stratus clouds near the sea surface were predominant under a warm advection situation, whereas stratocumulus clouds with a cloud-free layer were significant under a cold advection situation. The threshold temperature difference between sea surface and air temperatures for distinguishing the dominant cloud types was 3 K. Anomalous upward turbulent heat fluxes associated with the sea-ice retreat have likely contributed to warming of the lower troposphere. Frequency distribution of the cloud-base height (km) detected by a ceilometer/lidar (black bars) and radiosondes (gray bars), and profiles of potential temperature (K) for (a) ice-free cases (R/V Mirai during September) and (b) ice-covered case (SHEBA during September 1998). (c) Vertical profiles of air temperature from 1000 hPa to 150 hPa (solid lines: observations north of 75°N, and dashed lines: the ERA-Interim reanalysis over 75-82.5°N, 150-170°W). Green, blue, and red lines denote profiles derived from observations by NP stations (the 1980s), SHEBA (1998), and the R/V Mirai (the 2000s), respectively. (d) Temperature trend calculated by the ERA-Interim reanalysis over the area.
Air-sea exchange over Black Sea estimated from high resolution regional climate simulations
NASA Astrophysics Data System (ADS)
Velea, Liliana; Bojariu, Roxana; Cica, Roxana
2013-04-01
Black Sea is an important influencing factor for the climate of bordering countries, showing cyclogenetic activity (Trigo et al, 1999) and influencing Mediterranean cyclones passing over. As for other seas, standard observations of the atmosphere are limited in time and space and available observation-based estimations of air-sea exchange terms present quite large ranges of uncertainty. The reanalysis datasets (e.g. ERA produced by ECMWF) provide promising validation estimates of climatic characteristics against the ones in available climatic data (Schrum et al, 2001), while cannot reproduce some local features due to relatively coarse horizontal resolution. Detailed and realistic information on smaller-scale processes are foreseen to be provided by regional climate models, due to continuous improvements of physical parameterizations and numerical solutions and thus affording simulations at high spatial resolution. The aim of the study is to assess the potential of three regional climate models in reproducing known climatological characteristics of air-sea exchange over Black Sea, as well as to explore the added value of the model compared to the input (reanalysis) data. We employ results of long-term (1961-2000) simulations performed within ENSEMBLE project (http://ensemblesrt3.dmi.dk/) using models ETHZ-CLM, CNRM-ALADIN, METO-HadCM, for which the integration domain covers the whole area of interest. The analysis is performed for the entire basin for several variables entering the heat and water budget terms and available as direct output from the models, at seasonal and annual scale. A comparison with independent data (ERA-INTERIM) and findings from other studies (e.g. Schrum et al, 2001) is also presented. References: Schrum, C., Staneva, J., Stanev, E. and Ozsoy, E., 2001: Air-sea exchange in the Black Sea estimated from atmospheric analysis for the period 1979-1993, J. Marine Systems, 31, 3-19 Trigo, I. F., T. D. Davies, and G. R. Bigg (1999): Objective climatology of cyclones in the Mediterranean region. J. Climate, 12, 1685- 169
WRF added value to capture the spatio-temporal drought variability
NASA Astrophysics Data System (ADS)
García-Valdecasas Ojeda, Matilde; Quishpe-Vásquez, César; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María
2017-04-01
Regional Climate Models (RCM) has been widely used as a tool to perform high resolution climate fields in areas with high climate variability such as Spain. However, the outputs provided by downscaling techniques have many sources of uncertainty associated at different aspects. In this study, the ability of the Weather Research and Forecasting (WRF) model to capture drought conditions has been analyzed. The WRF simulation was carried out for a period that spanned from 1980 to 2010 over a domain centered in the Iberian Peninsula with a spatial resolution of 0.088°, and nested in the coarser EURO-CORDEX domain (0.44° spatial resolution). To investigate the spatiotemporal drought variability, the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) has been computed at two different timescales: 3- and 12-months due to its suitability to study agricultural and hydrological droughts. The drought indices computed from WRF outputs were compared with those obtained from the observational (MOTEDAS and MOPREDAS) datasets. In order to assess the added value provided by downscaled fields, these indices were also computed from the ERA-Interim Re-Analysis database, which provides the lateral and boundary conditions of the WRF simulations. Results from this study indicate that WRF provides a noticeable benefit with respect to ERA-Interim for many regions in Spain in terms of drought indices, greater for SPI than for SPEI. The improvement offered by WRF depends on the region, index and timescale analyzed, being greater at longer timescales. These findings prove the reliability of the downscaled fields to detect drought events and, therefore, it is a remarkable source of knowledge for a suitable decision making related to water-resource management. Keywords: Drought, added value, Regional Climate Models, WRF, SPEI, SPI. Acknowledgements: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).
Patterns of Seasonal Heat Uptake and Release Over the Arctic Ocean Between 1979-2016
NASA Astrophysics Data System (ADS)
Helmberger, M. N.; Serreze, M. C.
2017-12-01
As the Arctic Ocean loses its sea ice cover, there is a stronger oceanic heat gain from the surface fluxes throughout the spring and summer; ultimately meaning that there is more energy to transfer out of the ocean to the atmosphere and outer space in the autumn and winter. Recent work has shown that the increased oceanic heat content at the end of summer in turn delays autumn ice growth, with implications for marine shipping and other economic activities. Some of the autumn and winter heat loss to the atmosphere is represented by evaporation, which increases the atmospheric water vapor content, and there is growing evidence that this is contributing to increases in regional precipitation. However, depending on patterns of seasonal sea ice retreat and weather conditions, the spring-summer heat uptake and autumn-winter heat loss can be highly variable from year to year and regionally. Here, we examine how the seasonality in upper ocean heat uptake and release has evolved over the past 37 years and the relationships between this seasonal heat gain and loss and the evolution of sea ice cover. We determine which regions have seen the largest increases in total seasonal heat uptake and how variable this uptake can be. Has the timing at which the Arctic Ocean (either as a whole or by region) transitions from an atmospheric energy sink to an atmospheric energy source (or from a source to a sink) appreciably changed? What changes have been observed in the seasonal rates of seasonal heat uptake and release? To begin answering these questions, use is made of surface fluxes from the ERA-Interim reanalysis and satellite-derived sea ice extent spanning the period 1979 through the present. Results from ERA-Interim will be compared to those from other reanalyses and satellite-derived flux estimates.
NASA Astrophysics Data System (ADS)
Vicente-Serrano, S. M.; Gimeno, L.; Nieto, R. O.; Azorin-Molina, C.
2016-12-01
Climate models and observations suggest that atmospheric humidity is increasing as a consequence of warmer air temperatures according to the Classius-Clapeyron relationship. In addition, given unlimited water availability in oceans it is suggested that relative humidity (RH) would remain constant. Nevertheless, recent global and regional studies have pointed out that RH may be decreasing in large areas of the world, and there are different hypotheses that could explain the possible decrease in RH as related to changes in: (i) the atmospheric circulation and moisture transport processes; (ii) precipitation; (iii) air vapour saturation given different warming in lands and oceans; etc. These trends have strong implications for the atmospheric evaporative demand (AED) and drought severity. We analysed changes in RH observed at the global scale for 1979-2014. For this purpose we have used 3462 stations across the world from the HadISDH data set. RH data have been also calculated from daily records of specific humidity, air pressure and air temperature from the ERA-Interim Reanalysis data set. The comparison results between observations and ERA-Interim show a strong agreement in the spatio-temporal variability and magnitude of trends of RH. We have analysed the relationship between the variability and changes in RH, precipitation, air temperature and evaporation at the global scale, concluding that the observed spatial patterns of RH are not well explained by the observed changes in the variability of precipitation and temperature. To improve the knowledge of the possible drivers of the observed trends in RH, we have selected 15 representative areas that showed a different temporal behaviour and applied a Lagrangian model (Flexpart). This has served to identify the humidity sources corresponding to each region, and to know the behaviour showed by Sea Surface Temperature (SST) and the evolution of oceanic and continental evaporation processes on the RH variability and trends. The effect of observed RH trends on AED and drought severity has been evaluated by means of the Standardized Precipitation Evapotranspiration Index (SPEI).
NASA Astrophysics Data System (ADS)
Hoyer, J.; Madsen, K. S.; Englyst, P. N.
2017-12-01
Determining the surface and near surface air temperature from models or observations in the Polar Regions is challenging due to the extreme conditions and the lack of in situ observations. The errors in near surface temperature products are typically larger than for other regions of the world, and the potential for using Earth Observations is large. As part of the EU project, EUSTACE, we have developed empirical models for the relationship between the satellite observed skin ice temperatures and 2m air temperatures. We use the Arctic and Antarctic Sea and sea ice Surface Temperatures from thermal Infrared satellite sensors (AASTI) reanalysis to estimate daily surface air temperature over land ice and sea ice for the Arctic and the Antarctic. Large efforts have been put into collecting and quality controlling in situ observations from various data portals and research projects. The reconstruction is independent of numerical weather prediction models and thus provides an important alternative to modelled air temperature estimates. The new surface air temperature data record has been validated against more than 58.000 independent in situ measurements for the four surface types: Arctic sea ice, Greenland ice sheet, Antarctic sea ice and Antarctic ice sheet. The average correlations are 92-97% and average root mean square errors are 3.1-3.6°C for the four surface types. The root mean square error includes the uncertainty of the in-situ measurement, which ranges from 0.5 to 2°C. A comparison with ERA-Interim shows a consistently better performance of the satellite based air temperatures than the ERA-Interim for the Greenland ice sheet, when compared against observations not used in any of the two estimates. This is encouraging and demonstrates the values of these products. In addition, the procedure presented here works on satellite observations that are available in near real time and this opens up for a near real time estimation of the surface air temperature over ice from satellites.
A cross-assessment of CCI-ECVs and RCSM simulations over the Mediterranean area
NASA Astrophysics Data System (ADS)
D'Errico, Miriam; Planton, Serge; Nabat, Pierre
2017-04-01
A first objective of this study, conducted in the framework of the Climate Modelling Users Group (CMUG), one of the projects of the European Space Agency Climate Change Initiative (ESA CCI) program, is a cross-assessment of simulations of a Med-CORDEX regional climate system model (CNRM-RCSM5) and a sub-set of atmosphere, marine and surface interrelated Satellite-Derived Essential Climate Variables (CCI-ECVs) (i.e. sea surface temperature, sea level, aerosols and soil moisture content) over the Mediterranean area. The consistency between the model and the CCI-ECVs is evaluated through the analysis of a climate specific event that can be observed with the CCI-ECVs, in atmospheric reanalysis and reproduced in the RCSM simulations. In this presentation we focus on the July 2006 heat wave that affected the western part of the Mediterranean continental and marine area. The application of a spectral nudging method using ERA-Interim reanalysis in our simulation allows to reproduce this event with a proper chronology. As a result we show that the consistency between the simulated model aerosol optical depth and the ECV products (being produced by the ESA Aerosol CCI project consortium) depends on the choice of the algorithm used to infer the variable from the satellite observations. In particular the heat wave main characteristics become consistent between the model and the satellite-derived observations for sea surface temperature, soil moisture and sea level. The link between the atmospheric circulation and the aerosols distribution is also investigated.
NASA Astrophysics Data System (ADS)
Mao, Jiangyu; Wang, Ming
2018-05-01
This study investigates the structure and propagation of intraseasonal sea surface temperature (SST) variability in the South China Sea (SCS) on the 30-60-day timescale during boreal summer (May-September). TRMM-based SST, GODAS oceanic reanalysis and ERA-Interim atmospheric reanalysis datasets from 1998 to 2013 are used to examine quantitatively the atmospheric thermodynamic and oceanic dynamic mechanisms responsible for its formation. Power spectra show that the 30-60-day SST variability is predominant, accounting for 60% of the variance of the 10-90-day variability over most of the SCS. Composite analyses demonstrate that the 30-60-day SST variability is characterized by the alternate occurrence of basin-wide positive and negative SST anomalies in the SCS, with positive (negative) SST anomalies accompanied by anomalous northeasterlies (southwesterlies). The transition and expansion of SST anomalies are driven by the monsoonal trough-ridge seesaw pattern that migrates northward from the equator to the northern SCS. Quantitative diagnosis of the composite mixed-layer heat budgets shows that, within a strong 30-60-day cycle, the atmospheric thermal forcing is indeed a dominant factor, with the mixed-layer net heat flux (MNHF) contributing around 60% of the total SST tendency, while vertical entrainment contributes more than 30%. However, the entrainment-induced SST tendency is sometimes as large as the MNHF-induced component, implying that ocean processes are sometimes as important as surface fluxes in generating the 30-60-day SST variability in the SCS.
Evaluation of WRF Performance Driven by GISS-E2-R Global Model for the 2014 Rainy Season in Mexico
NASA Astrophysics Data System (ADS)
Almanza, V.; Zavala, M. A.; Lei, W.; Shindell, D. T.; Molina, L. T.
2017-12-01
Precipitation and cloud fields as well as the spatial distribution of emissions are important during the estimation of the radiative effects of atmospheric pollutants in future climate applications. In particular, landfalling hurricanes and tropical storms greatly affect the amount and distribution of annual precipitation, and thus have a direct impact on the wet deposition of pollutants and aerosol-cloud interactions. Therefore, long-term simulations in chemistry mode driven by the outputs of a global model need to consider the influence of these phenomena on the radiative effects, particularly for countries such as Mexico that have high number of landfalling hurricanes and tropical storms. In this work the NASA earth system GISS-E2-R global model is downscaled with the WRF model over a domain encompassing Mexico. We use the North American Regional Reanalysis (NARR) and Era-Interim reanalysis, along with available surface observations and data from the Tropical Rainfall Measuring Mission (TRMM) products to evaluate the contribution of spectral nudging, domain size and resolution in resolving the precipitation and cloud fraction fields for the rainy season in 2014. We focus on this year since 10 tropical cyclones made landfall in central Mexico. The results of the evaluation are useful to assess the performance of the model in representing the present conditions of precipitation and cloud fraction in Mexico. In addition, it provides guidelines for conducting the operational runs in chemistry mode for the future years.
Revisiting the cold season surge generating storms of the east coast in the 20th century
NASA Astrophysics Data System (ADS)
Lee, D. E.; Kushnir, Y.; Booth, J. F.
2014-12-01
Cold season storms in the East coast of the United States often threaten the coastal livelihood. This is a study to connect the recorded extreme cold season surges with the storms in the past, spanning from the early 20th Century. We find the 20th century reanalysis data (20CR) useful for this study, for its temporal coverage sufficiently overlaps with the modern tidal records. The storm tracks are obtained from the cold season (NDJFMA) sea level pressure field from 20CR, using the popular tracking algorithm by K.Hodges. In seeking for fidelity in the storm data, we made two major efforts: The climatology and the known climate signals imbedded in the track data are verified against those of ERA-interim reanalysis, and against the storms tracked by an independent algorithm (GISS-MCMS). In addition, it is statistically confirmed that the storm tracks and the sea level pressure fields based on 20CR around the east coast area exhibit temporal homogeneity. In the Battery, we select top 100 cold season water displacement events from the 6-hour mean water height data from 1927 to 2012, with linear trend and tide removed. Among the tracks passing close enough to the Battery, we found 91 matches. Distinctive track characteristics stand out when the positive surge events are separated from the negative surge events. More characteristic parameters of the storms are investigated according to further surge classification.
The East Asian Atmospheric Water Cycle and Monsoon Circulation in the Met Office Unified Model
NASA Astrophysics Data System (ADS)
Rodríguez, José M.; Milton, Sean F.; Marzin, Charline
2017-10-01
In this study the low-level monsoon circulation and observed sources of moisture responsible for the maintenance and seasonal evolution of the East Asian monsoon are examined, studying the detailed water budget components. These observational estimates are contrasted with the Met Office Unified Model (MetUM) climate simulation performance in capturing the circulation and water cycle at a variety of model horizontal resolutions and in fully coupled ocean-atmosphere simulations. We study the role of large-scale circulation in determining the hydrological cycle by analyzing key systematic errors in the model simulations. MetUM climate simulations exhibit robust circulation errors, including a weakening of the summer west Pacific Subtropical High, which leads to an underestimation of the southwesterly monsoon flow over the region. Precipitation and implied diabatic heating biases in the South Asian monsoon and Maritime Continent region are shown, via nudging sensitivity experiments, to have an impact on the East Asian monsoon circulation. By inference, the improvement of these tropical biases with increased model horizontal resolution is hypothesized to be a factor in improvements seen over East Asia with increased resolution. Results from the annual cycle of the hydrological budget components in five domains show a good agreement between MetUM simulations and ERA-Interim reanalysis in northern and Tibetan domains. In simulations, the contribution from moisture convergence is larger than in reanalysis, and they display less precipitation recycling over land. The errors are closely linked to monsoon circulation biases.
NASA Astrophysics Data System (ADS)
Diaconescu, Emilia Paula; Mailhot, Alain; Brown, Ross; Chaumont, Diane
2018-03-01
This study focuses on the evaluation of daily precipitation and temperature climate indices and extremes simulated by an ensemble of 12 Regional Climate Model (RCM) simulations from the ARCTIC-CORDEX experiment with surface observations in the Canadian Arctic from the Adjusted Historical Canadian Climate Dataset. Five global reanalyses products (ERA-Interim, JRA55, MERRA, CFSR and GMFD) are also included in the evaluation to assess their potential for RCM evaluation in data sparse regions. The study evaluated the means and annual anomaly distributions of indices over the 1980-2004 dataset overlap period. The results showed that RCM and reanalysis performance varied with the climate variables being evaluated. Most RCMs and reanalyses were able to simulate well climate indices related to mean air temperature and hot extremes over most of the Canadian Arctic, with the exception of the Yukon region where models displayed the largest biases related to topographic effects. Overall performance was generally poor for indices related to cold extremes. Likewise, only a few RCM simulations and reanalyses were able to provide realistic simulations of precipitation extreme indicators. The multi-reanalysis ensemble provided superior results to individual datasets for climate indicators related to mean air temperature and hot extremes, but not for other indicators. These results support the use of reanalyses as reference datasets for the evaluation of RCM mean air temperature and hot extremes over northern Canada, but not for cold extremes and precipitation indices.
Annual minimum temperature variations in early 21st century in Punjab, Pakistan
NASA Astrophysics Data System (ADS)
Jahangir, Misbah; Maria Ali, Syeda; Khalid, Bushra
2016-01-01
Climate change is a key emerging threat to the global environment. It imposes long lasting impacts both at regional and national level. In the recent era, global warming and extreme temperatures have drawn great interest to the scientific community. As in a past century considerable increase in global surface temperatures have been observed and predictions revealed that it will continue in the future. In this regard, current study mainly focused on analysis of regional climatic change (annual minimum temperature trends and its correlation with land surface temperatures in the early 21st century in Punjab) for a period of 1979-2013. The projected model data European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) has been used for eight Tehsils of Punjab i.e., annual minimum temperatures and annual seasonal temperatures. Trend analysis of annual minimum and annual seasonal temperature in (Khushab, Noorpur, Sargodha, Bhalwal, Sahiwal, Shahpur, Sillanwali and Chinoit) tehsils of Punjab was carried out by Regression analysis and Mann-Kendall test. Landsat 5 Thematic Mapper (TM) data was used in comparison with Model data for the month of May from the years 2000, 2009 and 2010. Results showed that no significant trends were observed in annual minimum temperature. A significant change was observed in Noorpur, Bhalwal, Shahpur, Sillanwali, Sahiwal, Chinoit and Sargodha tehsils during spring season, which indicated that this particular season was a transient period of time.
NASA Astrophysics Data System (ADS)
Fujiwara, Masatomo; Wright, Jonathon S.; Manney, Gloria L.; Gray, Lesley J.; Anstey, James; Birner, Thomas; Davis, Sean; Gerber, Edwin P.; Harvey, V. Lynn; Hegglin, Michaela I.; Homeyer, Cameron R.; Knox, John A.; Krüger, Kirstin; Lambert, Alyn; Long, Craig S.; Martineau, Patrick; Molod, Andrea; Monge-Sanz, Beatriz M.; Santee, Michelle L.; Tegtmeier, Susann; Chabrillat, Simon; Tan, David G. H.; Jackson, David R.; Polavarapu, Saroja; Compo, Gilbert P.; Dragani, Rossana; Ebisuzaki, Wesley; Harada, Yayoi; Kobayashi, Chiaki; McCarty, Will; Onogi, Kazutoshi; Pawson, Steven; Simmons, Adrian; Wargan, Krzysztof; Whitaker, Jeffrey S.; Zou, Cheng-Zhi
2017-01-01
The climate research community uses atmospheric reanalysis data sets to understand a wide range of processes and variability in the atmosphere, yet different reanalyses may give very different results for the same diagnostics. The Stratosphere-troposphere Processes And their Role in Climate (SPARC) Reanalysis Intercomparison Project (S-RIP) is a coordinated activity to compare reanalysis data sets using a variety of key diagnostics. The objectives of this project are to identify differences among reanalyses and understand their underlying causes, to provide guidance on appropriate usage of various reanalysis products in scientific studies, particularly those of relevance to SPARC, and to contribute to future improvements in the reanalysis products by establishing collaborative links between reanalysis centres and data users. The project focuses predominantly on differences among reanalyses, although studies that include operational analyses and studies comparing reanalyses with observations are also included when appropriate. The emphasis is on diagnostics of the upper troposphere, stratosphere, and lower mesosphere. This paper summarizes the motivation and goals of the S-RIP activity and extensively reviews key technical aspects of the reanalysis data sets that are the focus of this activity. The special issue The SPARC Reanalysis Intercomparison Project (S-RIP)
in this journal serves to collect research with relevance to the S-RIP in preparation for the publication of the planned two (interim and full) S-RIP reports.
NASA Astrophysics Data System (ADS)
González-Rojí, Santos J.; Sáenz, Jon; Ibarra-Berastegi, Gabriel
2016-04-01
A numerical downscaling exercise over the Iberian Peninsula has been run nesting the WRF model inside ERA Interim. The Iberian Peninsula has been covered by a 15km x 15 km grid with 51 vertical levels. Two model configurations have been tested in two experiments spanning the period 2010-2014 after a one year spin-up (2009). In both cases, the model uses high resolution daily-varying SST fields and the Noah land surface model. In the first experiment (N), after the model is initialised, boundary conditions drive the model, as usual in numerical downscaling experiments. The second experiment (D) is configured the same way as the N case, but 3DVAR data assimilation is run every six hours (00Z, 06Z, 12Z and 18Z) using observations obtained from the PREPBUFR dataset (NCEP ADP Global Upper Air and Surface Weather Observations) using a 120' window around analysis times. For the data assimilation experiment (D), seasonally (monthly) varying background error covariance matrices have been prepared according to the parameterisations used and the mesoscale model domain. For both N and D runs, the moisture balance of the model runs has been evaluated over the Iberian Peninsula, both internally according to the model results (moisture balance in the model) and also in terms of the observed moisture fields from observational datasets (particularly precipitable water and precipitation from observations). Verification has been performed both at the daily and monthly time scales. The verification has also been performed for ERA Interim, the driving coarse-scale dataset used to drive the regional model too. Results show that the leading terms that must be considered over the area are the tendency in the precipitable water column, the divergence of moisture flux, evaporation (computed from latent heat flux at the surface) and precipitation. In the case of ERA Interim, the divergence of Qc is also relevant, although still a minor player in the moisture balance. Both mesoscale model runs are more effective at closing the moisture balance over the whole Iberian Peninsula than ERA Interim. The N experiment (no data assimilation) shows a better closure than the D case, as could be expected from the lack of analysis increments in it. This result is robust both at the daily and monthly time scales. Both ERA Interim and the D experiment produce a negative residual in the balance equation (compatible with excess evaporation or increased convergence of moisture over the Iberian Peninsula). This is a result of the data assimilation process in the D dataset, since in the N experiment the residual is mainly positive. The seasonal cycle of evaporation is much closer in the D experiment to the one in ERA Interim than in the N case, with a higher evaporation during summer months. However, both regional climate model runs show a lower evaporation rate than ERA Interim, particularly during summer months.
The NASA Modern Era Reanalysis for Research and Applications, Version-2 (MERRA-2)
NASA Astrophysics Data System (ADS)
Gelaro, R.; McCarty, W.; Molod, A.; Suarez, M.; Takacs, L.; Todling, R.
2014-12-01
The NASA Modern Era Reanalysis for Research Applications Version-2 (MERRA-2) is a reanalysis for the satellite era using an updated version of the Goddard Earth Observing System Data Assimilation System Version-5 (GEOS-5) produced by the Global Modeling and Assimilation Office (GMAO). MERRA-2 will assimilate meteorological and aerosol observations not available to MERRA and includes improvements to the GEOS-5 model and analysis scheme so as to provide an ongoing climate analysis beyond MERRA's terminus. MERRA-2 will also serve as a development milestone for a future GMAO coupled Earth system analysis. Production of MERRA-2 began in June 2014 in four processing streams, with convergence to a single near-real time climate analysis expected by early 2015. This talk provides an overview of the MERRA-2 system developments and key science results. For example, compared with MERRA, MERRA-2 exhibits a well-balanced relationship between global precipitation and evaporation, with significantly reduced sensitivity to changes in the global observing system through time. Other notable improvements include reduced biases in the tropical middle- and upper-tropospheric wind and near-surface temperature over continents.
The Mediterranean interannual variability in MEDRYS, a Mediterranean Sea reanalysis over 1992-2013
NASA Astrophysics Data System (ADS)
Beuvier, Jonathan; Hamon, Mathieu; Lellouche, Jean-Michel; Greiner, Eric; Alias, Antoinette; Arsouze, Thomas; Benkiran, Mounir; Béranger, Karine; Drillet, Yann; Sevault, Florence; Somot, Samuel
2015-04-01
The French research community on the Mediterranean Sea and the French operational ocean forecasting center Mercator Océan are gathering their skills and expertises in physical oceanography, ocean modelling, atmospheric forcings and data assimilation, to carry out a MEDiterranean Sea ReanalYsiS (MEDRYS) at high resolution for the period 1992-2013. The reanalysis is used to have a realistic description of the ocean state over the recent decades and it will help to understand the long-term water cycle over the Mediterranean basin in terms of variability and trends, contributing thus to the HyMeX international program. The ocean model used is NEMOMED12 [Lebeaupin Brossier et al., 2011, Oc. Mod., 2012, Oc. Mod.; Beuvier et al., 2012a, JGR, 2012b, Mercator Newsl.], a Mediterranean configuration of NEMO [Madec and the NEMO Team, 2008], with a 1/12° (about 7 km) horizontal resolution and 75 vertical z-levels with partial steps. It is forced by the 3-hourly atmospheric fluxes coming from an ALADIN-Climate simulation at 12 km of resolution [Herrmann et al., 2011, NHESS], driven by the ERA-Interim atmospheric reanalysis. The exchanges with the Atlantic Ocean are performed through a buffer zone, with a damping on 3D theta-S and on sea level towards the ORA-S4 oceanic reanalysis [Balmaseda et al., 2012, QJRMS]. This model configuration is used to carry a 34-year free simulation over the period 1979-2013. This free simulation is the initial state of the reanalysis in October 1992. It is also used to compute anomalies from which the data assimilation scheme derives required characteristic covariances of the ocean model. MEDRYS1 uses the current Mercator Océan operational data assimilation system [Lellouche et al., 2013, Oc.Sci.]. It uses a reduced order Kalman filter with a 3D multivariate modal decomposition of the forecast error. A 3D-Var scheme corrects biases in temperature and salinity for the slowly evolving large-scale. In addition, some modifications dedicated to the Mediterranean area (more specific Post-Glacial-Rebound corrections, new model-equivalent for the Sea Level Anomaly for example) have been introduced. Temperature and salinity vertical profiles from the newly released CORA4 database, altimeter data and satellite SST and are jointly assimilated. Thus, the reanalysis benefits from the intensive observational field campaigns carried out during the HyMeX Special Observation Periods (SOPs) in fall 2012 and winter 2013 in the north-western Mediterranean Sea. We assess here the ability of a MEDRYS1 to reproduce the general circulation and the water masses in the Mediterranean Sea. We present the misfit between the reanalysis and the assimilated observations, as well as differences between the reanalysis and its twin free simulation. We show diagnostics on the surface circulation variability, heat and salt contents and deep water formation over the whole period of the reanalysis, with also a focus on the impact of the HyMeX data during the SOPs time period.
Forecasting the magnitude and onset of El Niño based on climate network
NASA Astrophysics Data System (ADS)
Meng, Jun; Fan, Jingfang; Ashkenazy, Yosef; Bunde, Armin; Havlin, Shlomo
2018-04-01
El Niño is probably the most influential climate phenomenon on inter-annual time scales. It affects the global climate system and is associated with natural disasters; it has serious consequences in many aspects of human life. However, the forecasting of the onset and in particular the magnitude of El Niño are still not accurate enough, at least more than half a year ahead. Here, we introduce a new forecasting index based on climate network links representing the similarity of low frequency temporal temperature anomaly variations between different sites in the Niño 3.4 region. We find that significant upward trends in our index forecast the onset of El Niño approximately 1 year ahead, and the highest peak since the end of last El Niño in our index forecasts the magnitude of the following event. We study the forecasting capability of the proposed index on several datasets, including, ERA-Interim, NCEP Reanalysis I, PCMDI-AMIP 1.1.3 and ERSST.v5.
Climatologies at high resolution for the earth’s land surface areas
Karger, Dirk Nikolaus; Conrad, Olaf; Böhner, Jürgen; Kawohl, Tobias; Kreft, Holger; Soria-Auza, Rodrigo Wilber; Zimmermann, Niklaus E.; Linder, H. Peter; Kessler, Michael
2017-01-01
High-resolution information on climatic conditions is essential to many applications in environmental and ecological sciences. Here we present the CHELSA (Climatologies at high resolution for the earth’s land surface areas) data of downscaled model output temperature and precipitation estimates of the ERA-Interim climatic reanalysis to a high resolution of 30 arc sec. The temperature algorithm is based on statistical downscaling of atmospheric temperatures. The precipitation algorithm incorporates orographic predictors including wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979–2013. We compare the data derived from the CHELSA algorithm with other standard gridded products and station data from the Global Historical Climate Network. We compare the performance of the new climatologies in species distribution modelling and show that we can increase the accuracy of species range predictions. We further show that CHELSA climatological data has a similar accuracy as other products for temperature, but that its predictions of precipitation patterns are better. PMID:28872642
NASA Astrophysics Data System (ADS)
Brenner, Frank; Marwan, Norbert; Hoffmann, Peter
2017-06-01
In this study we combined a wide range of data sets to simulate the outbreak of an airborne infectious disease that is directly transmitted from human to human. The basis is a complex network whose structures are inspired by global air traffic data (from openflights.org) containing information about airports, airport locations, direct flight connections and airplane types. Disease spreading inside every node is realized with a Susceptible-Exposed-Infected-Recovered (SEIR) compartmental model. Disease transmission rates in our model are depending on the climate environment and therefore vary in time and from node to node. To implement the correlation between water vapor pressure and influenza transmission rate [J. Shaman, M. Kohn, Proc. Natl. Acad. Sci. 106, 3243 (2009)], we use global available climate reanalysis data (WATCH-Forcing-Data-ERA-Interim, WFDEI). During our sensitivity analysis we found that disease spreading dynamics are strongly depending on network properties, the climatic environment of the epidemic outbreak location, and the season during the year in which the outbreak is happening.
NASA Astrophysics Data System (ADS)
Mbengue, Cheikh Oumar; Woollings, Tim; Dacre, Helen F.; Hodges, Kevin I.
2018-04-01
Summer seasonal forecast skill in the North Atlantic sector is lower than winter skill. To identify potential controls on predictability, the sensitivity of North Atlantic baroclinicity to atmospheric drivers is quantified. Using ERA-INTERIM reanalysis data, North Atlantic storm-track baroclinicity is shown to be less sensitive to meridional temperature-gradient variability in summer. Static stability shapes the sector's interannual variability by modulating the sensitivity of baroclinicity to variations in meridional temperature gradients and tropopause height and by modifying the baroclinicity itself. High static stability anomalies at upper levels result in more zonal extratropical cyclone tracks and higher eddy kinetic energy over the British Isles in the summertime. These static stability anomalies are not strongly related to the summer NAO; but they are correlated with the suppression of convection over the tropical Atlantic and with a poleward-shifted subtropical jet. These results suggest a non-local driver of North Atlantic variability. Furthermore, they imply that improved representations of convection over the south-eastern part of North America and the tropical Atlantic might improve summer seasonal forecast skill.
Climatologies at high resolution for the earth's land surface areas
NASA Astrophysics Data System (ADS)
Karger, Dirk Nikolaus; Conrad, Olaf; Böhner, Jürgen; Kawohl, Tobias; Kreft, Holger; Soria-Auza, Rodrigo Wilber; Zimmermann, Niklaus E.; Linder, H. Peter; Kessler, Michael
2017-09-01
High-resolution information on climatic conditions is essential to many applications in environmental and ecological sciences. Here we present the CHELSA (Climatologies at high resolution for the earth's land surface areas) data of downscaled model output temperature and precipitation estimates of the ERA-Interim climatic reanalysis to a high resolution of 30 arc sec. The temperature algorithm is based on statistical downscaling of atmospheric temperatures. The precipitation algorithm incorporates orographic predictors including wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979-2013. We compare the data derived from the CHELSA algorithm with other standard gridded products and station data from the Global Historical Climate Network. We compare the performance of the new climatologies in species distribution modelling and show that we can increase the accuracy of species range predictions. We further show that CHELSA climatological data has a similar accuracy as other products for temperature, but that its predictions of precipitation patterns are better.
Adjoint-Based Climate Model Tuning: Application to the Planet Simulator
NASA Astrophysics Data System (ADS)
Lyu, Guokun; Köhl, Armin; Matei, Ion; Stammer, Detlef
2018-01-01
The adjoint method is used to calibrate the medium complexity climate model "Planet Simulator" through parameter estimation. Identical twin experiments demonstrate that this method can retrieve default values of the control parameters when using a long assimilation window of the order of 2 months. Chaos synchronization through nudging, required to overcome limits in the temporal assimilation window in the adjoint method, is employed successfully to reach this assimilation window length. When assimilating ERA-Interim reanalysis data, the observations of air temperature and the radiative fluxes are the most important data for adjusting the control parameters. The global mean net longwave fluxes at the surface and at the top of the atmosphere are significantly improved by tuning two model parameters controlling the absorption of clouds and water vapor. The global mean net shortwave radiation at the surface is improved by optimizing three model parameters controlling cloud optical properties. The optimized parameters improve the free model (without nudging terms) simulation in a way similar to that in the assimilation experiments. Results suggest a promising way for tuning uncertain parameters in nonlinear coupled climate models.
Mapping probabilities of extreme continental water storage changes from space gravimetry
NASA Astrophysics Data System (ADS)
Kusche, J.; Eicker, A.; Forootan, E.; Springer, A.; Longuevergne, L.
2016-12-01
Using data from the Gravity Recovery and Climate Experiment (GRACE) mission, we derive statistically robust 'hotspot' regions of high probability of peak anomalous - i.e. with respect to the seasonal cycle - water storage (of up to 0.7 m one-in-five-year return level) and flux (up to 0.14 m/mon). Analysis of, and comparison with, up to 32 years of ERA-Interim reanalysis fields reveals generally good agreement of these hotspot regions to GRACE results, and that most exceptions are located in the Tropics. However, a simulation experiment reveals that differences observed by GRACE are statistically significant, and further error analysis suggests that by around the year 2020 it will be possible to detect temporal changes in the frequency of extreme total fluxes (i.e. combined effects of mainly precipitation and floods) for at least 10-20% of the continental area, assuming that we have a continuation of GRACE by its follow-up GRACE-FO. J. Kusche et al. (2016): Mapping probabilities of extreme continental water storage changes from space gravimetry, Geophysical Research Letters, accepted online, doi:10.1002/2016GL069538
Analysis of Atmospheric Moisture Transport over the Himalaya-Karakoram-Hindukush Region
NASA Astrophysics Data System (ADS)
Minallah, S.; Ivanov, V. Y.
2017-12-01
The high-altitude region of the Himalaya-Karakoram-Hindukush (HKH) ranges is susceptible to natural disasters due to their extreme topographic features and climatic conditions. The region, where large population resides in deep valleys and mountain foothills, is prone to riverine flooding, flash floods, and extreme precipitation events whose frequency is perceived to be increasing, often with attribution to climate change. It is thus imperative to study the causation using modern hydrometeorological products. In this study, we identify regions with documented trends in extreme flooding and precipitation and carry out a statistical analysis of the atmospheric moisture transport at the synoptic scale for these regions using ERA-Interim and NASA MERRA-2 reanalysis products. We focus on the two main sources for the atmospheric moisture in the region: the summer South-East Asian Monsoon and the winter Westerlies, and explore how variations in these systems affect the moisture convergence and divergence over the region. Our findings indicate that the Monsoon precipitation has been intensifying in the western Himalayas over the past decade and a half and that these changes are likely related to moisture advection into the region.
NASA Astrophysics Data System (ADS)
Arunachalam, M. S.; Obili, Manjula; Srimurali, M.
2016-07-01
Long-term variation of Surface Ozone, NO2, Temperature, Relative humidity and crop yield datasets over thirteen districts of Andhra Pradesh(AP) has been studied with the help of OMI, MODIS, AIRS, ERA-Interim re-analysis and Directorate of Economics and Statistics (DES) of AP. Inter comparison of crop yield loss estimates according to exposure metrics such as AOT40 (accumulated ozone exposure over a threshold of 40) and non-linear variation of surface temperature for twenty and eighteen varieties of two major crop growing seasons namely, kharif (April-September) and rabi (October-March), respectively has been made. Study is carried to establish a new crop-yield-exposure relationship for different crop cultivars of AP. Both ozone and temperature are showing a correlation coefficient of 0.66 and 0.87 with relative humidity; and 0.72 and 0.80 with NO2. Alleviation of high surface ozone results in high food security and improves the economy thereby reduces the induced warming of the troposphere caused by ozone. Keywords: Surface Ozone, NO2, Temperature, Relative humidity, Crop yield, AOT 40.
Interdecadal changes in the Asian winter monsoon variability and its relationship with ENSO and AO
NASA Astrophysics Data System (ADS)
Yun, Kyung-Sook; Seo, Ye-Won; Ha, Kyung-Ja; Lee, June-Yi; Kajikawa, Yoshiyuki
2014-08-01
Interdecadal changes in the Asian winter monsoon (AWM) variability are investigated using three surface air temperature datasets for the 55-year period of 1958-2012 from (1) the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis 1 (NCEP), (2) combined datasets from the European Centre for Medium-range Weather Forecasts (ECMWF) 40-yr reanalysis and interim data (ERA), and (3) Japanese 55-year reanalysis (JRA). Particular attention has been paid to the first four empirical orthogonal function (EOF) modes of the AWM temperature variability that together account for 64% of the total variance and have been previously identified as predictable modes. The four modes are characterized as follows: the first mode by a southern warming over the Indo-western Pacific Ocean associated with a gradually increasing basin-wide warming trend; the second mode by northern warming with the interdecadal change after the late 1980s; the third and fourth modes by north-south triple pattern, which reveal a phase shift after the late 1970s. The three reanalyses agree well with each other when producing the first three modes, but show large discrepancy in capturing both spatial and temporal characteristics of the fourth mode. It is therefore considered that the first three leading modes are more reliable than the rest higher modes. Considerable interdecadal changes are found mainly in the first two modes. While the first mode shows gradually decreasing variance, the second mode exhibits larger interannual variance during the recent decade. In addition, after the late 1970s, the first mode has a weakening relationship with the El Niño-Southern Oscillation (ENSO) whereas the second mode has strengthening association with the Artic Oscillation (AO). This indicates an increasing role of AO but decreasing role of ENSO on the AWM variability. A better understanding of the interdecadal change in the dominant modes would contribute toward advancing in seasonal prediction and the predictability of the AWM variability.
NASA Astrophysics Data System (ADS)
Alexandri, G.; Georgoulias, A. K.; Meleti, C.; Balis, D.; Kourtidis, K. A.; Sanchez-Lorenzo, A.; Trentmann, J.; Zanis, P.
2017-05-01
In this work, the spatiotemporal variability of surface solar radiation (SSR) is examined over the Eastern Mediterranean region for a 31-year period (1983-2013). The CM SAF SARAH (Satellite Application Facility on Climate Monitoring Solar surfAce RAdiation Heliosat) satellite-based product was found to be homogeneous (based on relative Standard Normal Homogeneity Tests - SNHTs, 95% confidence level) as compared to ground-based observations, and hence appropriate for climatological studies. Specifically, the dataset shows good agreement with monthly observations from five quality assured stations in the region with a mean bias of 7.1 W/m2 or 3.8% and a strong correlation. This high resolution (0.05° × 0.05°) product is capable of revealing various local features. Over land, the SSR levels are highly dependent on the topography, while over the sea, they exhibit a smooth latitudinal variability. SSR varies significantly over the region on a seasonal basis being three times higher in summer (309.6 ± 26.5 W/m2) than in winter (100.2 ± 31.4 W/m2). The CM SAF SARAH product was compared against three satellite-based and one reanalysis products. The satellite-based data from CERES (Cloud and the Earth's Radiant Energy System), GEWEX (Global Energy and Water Cycle Experiment) and ISCCP (International Satellite Cloud Climatology Project) underestimate SSR while the reanalysis data from the ERA-Interim overestimate SSR compared to CM SAF SARAH. Using a radiative transfer model and a set of ancillary data, these biases are attributed to the atmospheric parameters that drive the transmission of solar radiation in the atmosphere, namely, clouds, aerosols and water vapor. It is shown that the bias between CERES and CM SAF SARAH SSR can be explained through the cloud fractional cover and aerosol optical depth biases between these datasets. The CM SAF SARAH SSR trend was found to be positive (brightening) and statistically significant at the 95% confidence level (0.2 ± 0.05 W/m2/year or 0.1 ± 0.02%/year) being almost the same over land and sea. The CM SAF SARAH SSR trends are closer to the ground-based ones than the CERES, GEWEX, ISCCP and ERA-Interim trends. The use of an aerosol climatology for the production of CM SAF SARAH, that neglects the trends of aerosol loads, leads to an underestimation of the SSR trends. It is suggested here, that the inclusion of changes of the aerosol load and composition within CM SAF SARAH would allow for a more accurate reproduction of the SSR trends.
NASA Astrophysics Data System (ADS)
José González-Rojí, Santos; Sáenz, Jon; Ibarra-Berastegi, Gabriel
2017-04-01
GLEAM dataset was presented a few years ago and since that moment, it has just been used for validation of evaporation in a few places of the world (Australia and Africa). The Iberian Peninsula is composed of different soil types and it is affected by different weather regimes, with different climate regions. It is this feature which makes it a very interesting zone for the study of the meteorological cycle, including evaporation. For that purpose, a numerical downscaling exercise over the Iberian Peninsula was run nesting the WRF model inside ERA Interim. Two model configurations were tested in two experiments spanning the period 2010-2014 after a one-year spin-up (2009). In the first experiment (N), boundary conditions drive the model. The second experiment (D) is configured the same way as the N case, but 3DVAR data assimilation is run every six hours (00Z, 06Z, 12Z and 18Z) using observations obtained from the PREPBUFR dataset. For both N and D runs and ERA Interim, the evaporation of the model runs was compared to GLEAM v3.0b and v3.0c datasets over the Iberian Peninsula, both at the daily and monthly time scales. GLEAM v3.0a was not used for validation as it uses for forcing radiation and air temperature data from ERA Interim. Results show that the experiment with data assimilation (D) improve the results obtained for N experiment. Moreover, correlations values are comparable to the ones obtained with ERA Interim. However, some negative correlation values are observed at Portuguese and Mediterranean coasts for both WRF runs. All of these problematic points are considered as urban sites by the NOAH land surface model. Because of that, the model is not able to simulate a correct evaporation value. Even with these discrepancies, better results than for ERA Interim are observed for seasonal Biases and daily RMSEs over Iberian Peninsula, obtaining the best values inland. Minimal differences are observed for the two GLEAM datasets selected.
NASA Astrophysics Data System (ADS)
Rieckh, Therese; Anthes, Richard; Randel, William; Ho, Shu-Peng; Foelsche, Ulrich
2017-03-01
We use GPS radio occultation (RO) data to investigate the structure and temporal behavior of extremely dry, high-ozone tropospheric air in the tropical western Pacific during the 6-week period of the CONTRAST (CONvective TRansport of Active Species in the Tropics) experiment (January and February 2014). Our analyses are aimed at testing whether the RO method is capable of detecting these extremely dry layers and evaluating comparisons with in situ measurements, satellite observations, and model analyses. We use multiple data sources as comparisons, including CONTRAST research aircraft profiles, radiosonde profiles, AIRS (Atmospheric Infrared Sounder) satellite retrievals, and profiles extracted from the ERA (ERA-Interim reanalysis) and the GFS (US National Weather Service Global Forecast System) analyses, as well as MTSAT-2 satellite images. The independent and complementary radiosonde, aircraft, and RO data provide high vertical resolution observations of the dry layers. However, they all have limitations. The coverage of the radiosonde data is limited by having only a single station in this oceanic region; the aircraft data are limited in their temporal and spatial coverage; and the RO data are limited in their number and horizontal resolution over this period. However, nearby observations from the three types of data are highly consistent with each other and with the lower-vertical-resolution AIRS profiles. They are also consistent with the ERA and GFS data. We show that the RO data, used here for the first time to study this phenomenon, contribute significant information on the water vapor content and are capable of detecting layers in the tropics and subtropics with extremely low humidity (less than 10 %), independent of the retrieval used to extract moisture information. Our results also verify the quality of the ERA and GFS data sets, giving confidence to the reanalyses and their use in diagnosing the full four-dimensional structure of the dry layers.
Global Eddy-Permitting Ocean Reanalyses and Simulations of the Period 1992 to Present
NASA Astrophysics Data System (ADS)
Parent, L.; Ferry, N.; Barnier, B.; Garric, G.; Bricaud, C.; Testut, C.-E.; Le Galloudec, O.; Lellouche, J.-M.; Greiner, E.; Drevillon, M.; Remy, E.; Moulines, J.-M.; Guinehut, S.; Cabanes, C.
2013-09-01
We present GLORYS2V1 global ocean and sea-ice eddy permitting reanalysis over the altimetric era (1993- 2009). This reanalysis is based on an ocean and sea-ice general circulation model at 1⁄4° horizontal resolution assimilating sea surface temperature, in situ profiles of temperature and salinity and along-track sea level anomaly observations. The reanalysis has been produced along with a reference simulation called MJM95 which allows evaluating the benefits of the data assimilation. In the introduction, we briefly describe the GLORYS2V1 reanalysis system. In sections 2, 3 and 4, the reanalysis skill is presented. Data assimilation diagnostics reveal that the reanalysis is stable all along the time period, with however an improved skill when Argo observation network establishes. GLORYS2V1 captures well climate signals and trends and describes meso-scale variability in a realistic manner.
NASA Astrophysics Data System (ADS)
Blázquez, Josefina; Solman, Silvina A.
2017-04-01
The interannual variability of the frontal activity over the western Southern Hemisphere and its linkage with the variability of the atmospheric circulation and precipitation over southern South America is studied. The analysis is focused on the austral winter and spring seasons. The frontal activity is represented by an index defined as the product between the horizontal gradient of temperature and the relative vorticity at 850 hPa (FI) and is computed from the ERA Interim and NCEP2 reanalysis. For the two seasons the main mode of variability of FI, as depicted by the first Empirical Orthogonal Function, presents centres of action located in the southern part of the western Southern Hemisphere. This pattern is present in the two reanalysis datasets. The correlation coefficients between the principal component of the leading mode of FI and the two main modes of the 500 hPa geopotential height indicate that both the ENSO-mode and the SAM modulate the leading pattern of FI in winter while during the spring season the ENSO-mode controls the FI variability. The variability of the FI has a robust influence on the interannual variability of precipitation over southern South America and adjacent oceans. Over the continent, it was found that the pattern of precipitation anomalies associated with the variability of the FI depicts significant signals over southeastern South America (SESA), centre and south of Chile for winter and over SESA and southeastern Brazil for spring and agrees with the pattern of the leading mode of precipitation variability over southern South America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xingying; Rhoades, Alan M.; Ullrich, Paul A.
In this paper, the recently developed variable-resolution option within the Community Earth System Model (VR-CESM) is assessed for long-term regional climate modeling of California at 0.25° (~ 28 km) and 0.125° (~ 14 km) horizontal resolutions. The mean climatology of near-surface temperature and precipitation is analyzed and contrasted with reanalysis, gridded observational data sets, and a traditional regional climate model (RCM)—the Weather Research and Forecasting (WRF) model. Statistical metrics for model evaluation and tests for differential significance have been extensively applied. VR-CESM tended to produce a warmer summer (by about 1–3°C) and overestimated overall winter precipitation (about 25%–35%) compared tomore » reference data sets when sea surface temperatures were prescribed. Increasing resolution from 0.25° to 0.125° did not produce a statistically significant improvement in the model results. By comparison, the analogous WRF climatology (constrained laterally and at the sea surface by ERA-Interim reanalysis) was ~1–3°C colder than the reference data sets, underestimated precipitation by ~20%–30% at 27 km resolution, and overestimated precipitation by ~ 65–85% at 9 km. Overall, VR-CESM produced comparable statistical biases to WRF in key climatological quantities. Moreover, this assessment highlights the value of variable-resolution global climate models (VRGCMs) in capturing fine-scale atmospheric processes, projecting future regional climate, and addressing the computational expense of uniform-resolution global climate models.« less
NASA Astrophysics Data System (ADS)
Madonna, Erica; Ginsbourger, David; Martius, Olivia
2018-05-01
In Switzerland, hail regularly causes substantial damage to agriculture, cars and infrastructure, however, little is known about its long-term variability. To study the variability, the monthly number of days with hail in northern Switzerland is modeled in a regression framework using large-scale predictors derived from ERA-Interim reanalysis. The model is developed and verified using radar-based hail observations for the extended summer season (April-September) in the period 2002-2014. The seasonality of hail is explicitly modeled with a categorical predictor (month) and monthly anomalies of several large-scale predictors are used to capture the year-to-year variability. Several regression models are applied and their performance tested with respect to standard scores and cross-validation. The chosen model includes four predictors: the monthly anomaly of the two meter temperature, the monthly anomaly of the logarithm of the convective available potential energy (CAPE), the monthly anomaly of the wind shear and the month. This model well captures the intra-annual variability and slightly underestimates its inter-annual variability. The regression model is applied to the reanalysis data back in time to 1980. The resulting hail day time series shows an increase of the number of hail days per month, which is (in the model) related to an increase in temperature and CAPE. The trend corresponds to approximately 0.5 days per month per decade. The results of the regression model have been compared to two independent data sets. All data sets agree on the sign of the trend, but the trend is weaker in the other data sets.
NASA Astrophysics Data System (ADS)
Maoyi, Molulaqhooa L.; Abiodun, Babatunde J.; Prusa, Joseph M.; Veitch, Jennifer J.
2018-03-01
Tropical cyclones (TCs) are one of the most devastating natural phenomena. This study examines the capability of a global climate model with grid stretching (CAM-EULAG, hereafter CEU) in simulating the characteristics of TCs over the South West Indian Ocean (SWIO). In the study, CEU is applied with a variable increment global grid that has a fine horizontal grid resolution (0.5° × 0.5°) over the SWIO and coarser resolution (1° × 1°—2° × 2.25°) over the rest of the globe. The simulation is performed for the 11 years (1999-2010) and validated against the Joint Typhoon Warning Center (JTWC) best track data, global precipitation climatology project (GPCP) satellite data, and ERA-Interim (ERAINT) reanalysis. CEU gives a realistic simulation of the SWIO climate and shows some skill in simulating the spatial distribution of TC genesis locations and tracks over the basin. However, there are some discrepancies between the observed and simulated climatic features over the Mozambique channel (MC). Over MC, CEU simulates a substantial cyclonic feature that produces a higher number of TC than observed. The dynamical structure and intensities of the CEU TCs compare well with observation, though the model struggles to produce TCs with a deep pressure centre as low as the observed. The reanalysis has the same problem. The model captures the monthly variation of TC occurrence well but struggles to reproduce the interannual variation. The results of this study have application in improving and adopting CEU for seasonal forecasting over the SWIO.
NASA Astrophysics Data System (ADS)
Peevey, T. R.; Gille, J. C.; Homeyer, C. R.; Manney, G. L.
2014-09-01
Using High Resolution Dynamic Limb Sounder observations and ERA-Interim reanalysis this study demonstrates that the warm conveyor belt (WCB) is a mechanism responsible for the relationship between the double tropopause (DT) and the tropopause inversion layer (TIL), a relationship recently suggested in the literature based on idealized model simulations of baroclinic disturbances. Using these data sets, spatial and temporal characteristics of the DT-TIL relationship are examined over a 3 year period, 2005-2008. In the extratropics, results from satellite data show that as the TIL increases in strength, so does the frequency of the DT, regardless of season or hemisphere. The inverse relationship is found in the tropics. Using only DT profiles, zonal composites of wind, relative vorticity, and temperature from reanalysis data show that as the TIL increases in strength, the upper tropospheric circulation switches from cyclonic to anticyclonic, and the upward vertical motion increases. This result suggests the WCB as a mechanism since it is on the anticyclonic side of the jet and is characterized by the movement of tropical air poleward and upward from the surface. To verify this relationship, the vertical and horizontal development of a synoptic-scale baroclinic system is analyzed over a 4 day period. Results show the equatorward extension of the polar tropopause, and thus the formation of the DT, due to the strengthening of the TIL in the region of vertical motion associated with the WCB. Moreover, this result suggests that air movement within the DT could originate from high latitudes when associated with a baroclinic disturbance.
Surface wave effects in the NEMO ocean model: Forced and coupled experiments
NASA Astrophysics Data System (ADS)
Breivik, Øyvind; Mogensen, Kristian; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A. E. M.
2015-04-01
The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wavefield), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extratropics, but the sea-state-dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total ocean heat content exhibits a trend closer to that observed in a recent ocean reanalysis (ORAS4) when wave effects are included. Seasonal integrations of the coupled atmosphere-wave-ocean model consisting of NEMO, the wave model ECWAM, and the atmospheric model of ECMWF similarly show that the sea surface temperature biases are greatly reduced when the mixing is controlled by the sea state and properly weighted by the thickness of the uppermost level of the ocean model. These wave-related physical processes were recently implemented in the operational coupled ensemble forecast system of ECMWF.
NASA Astrophysics Data System (ADS)
Chen, Biyan; Liu, Zhizhao
2016-10-01
The variability and trend in global precipitable water vapor (PWV) from 1979 to 2014 are analyzed using the PWV data sets from the ERA-Interim reanalysis of the European Centre for Medium-Range Weather Forecasts (ECMWF), reanalysis of the National Centers for Environmental Prediction (NCEP), radiosonde, Global Positioning System (GPS), and microwave satellite observations. PWV data from the ECMWF and NCEP have been evaluated by radiosonde, GPS, and microwave satellite observations, showing that ECMWF has higher accuracy than NCEP. Over the oceans, ECMWF has a much better agreement with the microwave satellite than NCEP. An upward trend in the global PWV is evident in all the five PWV data sets over three study periods: 1979-2014, 1992-2014, and 2000-2014. Positive global PWV trends, defined as percentage normalized by annual average, of 0.61 ± 0.33% decade-1, 0.57 ± 0.28% decade-1, and 0.17 ± 0.35% decade-1, have been derived from the NCEP, radiosonde, and ECMWF, respectively, for the period 1979-2014. It is found that ECMWF overestimates the PWV over the ocean prior to 1992. Thus, two more periods, 1992-2014 and 2000-2014, are studied. Increasing PWV trends are observed from all the five data sets in the two periods: 1992-2014 and 2000-2014. The linear relationship between PWV and surface temperature is positive over most oceans and the polar region. Steep positive/negative regression slopes are generally found in regions where large regional moisture flux divergence/convergence occurs.
Huang, Xingying; Rhoades, Alan M.; Ullrich, Paul A.; ...
2016-03-01
In this paper, the recently developed variable-resolution option within the Community Earth System Model (VR-CESM) is assessed for long-term regional climate modeling of California at 0.25° (~ 28 km) and 0.125° (~ 14 km) horizontal resolutions. The mean climatology of near-surface temperature and precipitation is analyzed and contrasted with reanalysis, gridded observational data sets, and a traditional regional climate model (RCM)—the Weather Research and Forecasting (WRF) model. Statistical metrics for model evaluation and tests for differential significance have been extensively applied. VR-CESM tended to produce a warmer summer (by about 1–3°C) and overestimated overall winter precipitation (about 25%–35%) compared tomore » reference data sets when sea surface temperatures were prescribed. Increasing resolution from 0.25° to 0.125° did not produce a statistically significant improvement in the model results. By comparison, the analogous WRF climatology (constrained laterally and at the sea surface by ERA-Interim reanalysis) was ~1–3°C colder than the reference data sets, underestimated precipitation by ~20%–30% at 27 km resolution, and overestimated precipitation by ~ 65–85% at 9 km. Overall, VR-CESM produced comparable statistical biases to WRF in key climatological quantities. Moreover, this assessment highlights the value of variable-resolution global climate models (VRGCMs) in capturing fine-scale atmospheric processes, projecting future regional climate, and addressing the computational expense of uniform-resolution global climate models.« less
NASA Astrophysics Data System (ADS)
Moalafhi, Ditiro B.; Evans, Jason P.; Sharma, Ashish
2016-11-01
Regional climate modelling studies often begin by downscaling a reanalysis dataset in order to simulate the observed climate, allowing the investigation of regional climate processes and quantification of the errors associated with the regional model. To date choice of reanalysis to perform such downscaling has been made based either on convenience or on performance of the reanalyses within the regional domain for relevant variables such as near-surface air temperature and precipitation. However, the only information passed from the reanalysis to the regional model are the atmospheric temperature, moisture and winds at the location of the boundaries of the regional domain. Here we present a methodology to evaluate reanalyses derived lateral boundary conditions for an example domain over southern Africa using satellite data. This study focusses on atmospheric temperature and moisture which are easily available. Five commonly used global reanalyses (NCEP1, NCEP2, ERA-I, 20CRv2, and MERRA) are evaluated against the Atmospheric Infrared Sounder satellite temperature and relative humidity over boundaries of two domains centred on southern Africa for the years 2003-2012 inclusive. The study reveals that MERRA is the most suitable for climate mean with NCEP1 the next most suitable. For climate variability, ERA-I is the best followed by MERRA. Overall, MERRA is preferred for generating lateral boundary conditions for this domain, followed by ERA-I. While a "better" LBC specification is not the sole precursor to an improved downscaling outcome, any reduction in uncertainty associated with the specification of LBCs is a step in the right direction.
NASA Astrophysics Data System (ADS)
Gromov, Sergey A.; Trifonova-Yakovleva, Alisa; Gromov, Sergey S.
2016-04-01
Anthropogenic emissions, be it exhaust gases or aerosols, stem from multitude of sources and may survive long-range transport within the air masses they were emitted into. So they follow regional and global transport pathways varying under different climatological regimes. Transboundary transfer of pollutants occurs this way and has a significant impact on the ecological situation of the territories neighbouring those of emission sources, as found in a few earlier studies examining the environmental monitoring data [1]. In this study, we employ a relatively facile though robust technique for estimating the transboundary air and concomitant pollutant fluxes using actual or climatological meteorological and air pollution monitoring data. Practically, we assume pollutant transfer being proportional to the horizontal transport of air enclosed in the lower troposphere and to the concentration of the pollutant of interest. The horizontal transport, in turn, is estimated using the mean layer wind direction and strength, or their descriptive statistics at the individual transects of the boundary of interest. The domain of our interest is the segment of Russian continental border in East Asia spanning from 88° E (southern Middle Siberia) to 135° E (Far East at Pacific shore). The data on atmospheric pollutants concentration are available from the Russian monitoring sites of the region-wide Acid Deposition Monitoring Network in East Asia (EANET, http://www.eanet.asia/) Mondy (Baikal area) and Primorskaya (near Vladivostok). The data comprises multi-year continuous measurement of gas-phase and particulate species abundances in air with at least biweekly sampling rate starting from 2000. In the first phase of our study, we used climatological dataset on winds derived from the aerological soundings at Russian stations along the continental border for the 10-year period (1961-1970) by the Research Institute of Hydrometeorological Information - World Data Centre (RIHMI-WDC) [3]. This dataset provides comprehensive monthly statistics on the wind meteorological regime at the stations of interest in a given range of altitudes. Based on long-term source observational data, the dataset is assumed being representative up to date, which allowed us to estimate monthly pollutant fluxes for the years 2006-2008 over segments of the Russian border and its whole [4]. In the current phase of our study, we calculate the inter-annual variations in the transboundary pollutant fluxes for 2000-2012 using longer-term EANET data and transient changes in air mass fluxes derived from the meteorological wind fields from ERA INTERIM re-analysis [5]. We gauge similar average air transport terms and dynamics from the statistical and reanalysis data, which bolsters our earlier findings. The reanalysis data, being naturally more variable, convolutes the variations in net air fluxes and pollutant concentrations into several episodes we emphasise, in addition to the integral pollutant transfer terms we estimate. At last, we discuss on the possibility of climate change effect on the flux strength and dynamics together with regional air quality tendencies in North-East Asia countries. References: Izrael, Yu.A., et al.: Monitoring of the Transboundary Air Pollution Transport. Gidrometeoizdat, Leningrad, 303 p., 187 (in Russian). Akimoto H., et al.: Periodic Report of the State of Acid Deposition in East Asia. Part I: Regional Assessment. EANET-UNEP/RRC.AP-ADORC, 258 p., 2006. Brukhan, F.F.: Aeroclimatic Characteristics of the Mean Winds over USSR (ed. Ignatjushina E.N.). Gidrometeoizdat, Moscow, 54 p., 1984 (in Russian). Gromov S.A., et al.: First-order evaluation of transboundary pollution fluxes in areas of EANET stations in Eastern Siberia and the Russian Far East. EANET Science Bulletin, vol. 3, pp. 195-203, 2013. Dee, D. P., et al.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Quart. J. Royal Met. Soc., 137, 553-597, doi: 10.1002/qj.828, 2011.
The CAMS interim Reanalysis of Carbon Monoxide, Ozone and Aerosol for 2003-2015
NASA Astrophysics Data System (ADS)
Flemming, Johannes; Benedetti, Angela; Inness, Antje; Engelen, Richard J.; Jones, Luke; Huijnen, Vincent; Remy, Samuel; Parrington, Mark; Suttie, Martin; Bozzo, Alessio; Peuch, Vincent-Henri; Akritidis, Dimitris; Katragkou, Eleni
2017-02-01
A new global reanalysis data set of atmospheric composition (AC) for the period 2003-2015 has been produced by the Copernicus Atmosphere Monitoring Service (CAMS). Satellite observations of total column (TC) carbon monoxide (CO) and aerosol optical depth (AOD), as well as several TC and profile observations of ozone, have been assimilated with the Integrated Forecasting System for Composition (C-IFS) of the European Centre for Medium-Range Weather Forecasting. Compared to the previous Monitoring Atmospheric Composition and Climate (MACC) reanalysis (MACCRA), the new CAMS interim reanalysis (CAMSiRA) is of a coarser horizontal resolution of about 110 km, compared to 80 km, but covers a longer period with the intent to be continued to present day. This paper compares CAMSiRA with MACCRA and a control run experiment (CR) without assimilation of AC retrievals. CAMSiRA has smaller biases than the CR with respect to independent observations of CO, AOD and stratospheric ozone. However, ozone at the surface could not be improved by the assimilation because of the strong impact of surface processes such as dry deposition and titration with nitrogen monoxide (NO), which were both unchanged by the assimilation. The assimilation of AOD led to a global reduction of sea salt and desert dust as well as an exaggerated increase in sulfate. Compared to MACCRA, CAMSiRA had smaller biases for AOD, surface CO and TC ozone as well as for upper stratospheric and tropospheric ozone. Finally, the temporal consistency of CAMSiRA was better than the one of MACCRA. This was achieved by using a revised emission data set as well as by applying careful selection and bias correction to the assimilated retrievals. CAMSiRA is therefore better suited than MACCRA for the study of interannual variability, as demonstrated for trends in surface CO.
NASA Astrophysics Data System (ADS)
Nogueira, M.
2017-10-01
Monthly-to-decadal variability of the regional precipitation over Intertropical Convergence Zone and north-Atlantic and north-Pacific storm tracks was investigated using ERA-20C reanalysis. Satellite-based precipitation (
Fire danger assessment using ECMWF weather prediction system
NASA Astrophysics Data System (ADS)
Di Giuseppe, Francesca; Pappemberger, Florian; Wetterhall, Fredrik
2015-04-01
Weather plays a major role in the birth, growth and death of a wildfire wherever there is availability of combustible vegetation and suitable terrain topography. Prolonged dry periods creates favourable conditions for ignitions, wind can then increase the fire spread, while higher relative humidity, and precipitation (rain or snow) may decrease or extinguish it altogether. The European Forest Fire Information System (EFFIS), started in 2011 under the lead of the European Joint Research Centre (JRC) to monitor and forecast fire danger and fire behaviour in Europe. In 2012 a collaboration with the European Centre for Medium range Weather Forecast (ECMWF) was established to explore the potential of using state of the art weather forecast systems as driving forcing for the calculations of fire risk indices. From this collaboration in 2013 the EC-fire system was born. It implements the three most commonly used fire danger rating systems (NFDRS, FWI and MARK-5) and it is both initialised and forced by gridded atmospheric fields provided either by ECMWF re-analysis or ECMWF ensemble prediction systems. For consistency invariant fields (i.e fuel maps, vegetation cover, topogarphy) and real-time weather information are all provided on the same grid. Similarly global climatological vegetation stage conditions for each day of the year are provided by remote satellite observations. These climatological static maps substitute the traditional man judgement in an effort to create an automated procedure that can work in places where local observations are not available. The system has been in operation for the last year providing an ensemble of daily forecasts for fire indices with lead-times up to 10 days over Europe and Globally. An important part of the system is provided by its (re)-analysis dataset obtained by using the (re)-analysis forcings as drivers to calculate the fire risk indices. This is a crucial part of the whole chain since these fields are used to establish the initial conditions from which the forecast is subsequently run. The reanalysis dataset goes back to year 1980 (the starting year of ERA-Interim integrations) and is updated in quasi real time. In addition of providing the staring point for the operational forecasts it is a very useful dataset for the scope of calibration and verification of the system. Assuming reanalysis fields are good proxies for observations then, by comparison with fire events which really occurred, this dataset can be used to assess the potential predictability of fire risk indices. In this work we will introduce the EC-fire system. Then the reanalysis dataset will be used to identify regions of high fire risk predictability and where the system might be in need of further refinement.
NASA Astrophysics Data System (ADS)
Hernandez, F.; Benkiran, M.; Bourdalle-Badie, R.; Bricaud, C.; Cailleau, S.; Chanut, J.; Desportes, C.; Dombrowsky, E.; drevillon, M.; Drillet, Y.; Elmoussaoui, A.; Ferry, N.; Garric, G.; Greiner, E.; Le Galloudec, O.; Lellouche, J.; Levier, B.; Parent, L.; Perruche, C.; Reffray, G.; Regnier, C.; Rémy, E.; Testut, C.; Tranchant, B.
2011-12-01
In the framework of the European project GMES/MyOcean, Mercator Océan has designed a hierarchy of ocean analysis, forecasting and reanalysis systems based on numerical models of the ocean/sea-ice, data assimilation methods and biogeochemistry model. Operational weekly analysis provide initial conditions for daily predictions. All ocean model configurations are based on NEMO. The 1/4° global and 1/12° Atlantic and Mediterranean configurations are improved with (i) the use of high frequency (3h) atmospheric forcings including the diurnal cycle, (ii) the use of the CORE bulk formulation, (iii) the use of a new TKE vertical mixing scheme, (iv) the use of the LIM2-EVP ice model. Leading to a better representation of the diurnal cycle, the stratification in upper layers, the sea-ice interannual extensions, or mesoscale features and WBC in the 1/12°. The 1/36° IBI regional configuration, adds non linear free surface, atmospheric pressure and tidal forcing, barotropic/baroclinic time splitting, and specific boundary conditions for operational nesting with the global system. At regional scale, a number of improvements (bathymetry and bottom friction) make it suitable for coastal modelling, validated state-of-art coastal ocean models. Data assimilation is based on reduced order Kalman filter using 3D multivariate modal decomposition of the forecast error. It assimilates jointly satellite altimetry, SST and in situ observations (temperature and salinity profiles, including ARGO data). Among difficulties, the assimilation has to be operated in real time, with limited and less accurate set of observations. Recent improvements in the global systems include (v) the insertion of the zonal/meridional velocity components into the control vector, (vi) the use of the IAU procedure, (vii) the insertion of new observational operators, (viii) the use of a new MDT, (ix) the introduction of pseudo-observations, (x) the use of a bias correction method based on a variational approach to estimate large scale biases. These improvements limit noise introduced by sequential assimilation, like in in the vertical dynamics. Water masses, on the shelves or near major run-off, like the Amazon discharge, are preserved. A biogeochemistry prediction system has been added, based on PISCES model. it uses spatial degradation of the real time physic provides by the 1/4° global system. A reanalysis covering the "altimetric era" (1992-2009) has been carried out in collaboration with the Drakkar community. GLORYS reanalyses describe the evolution of the ocean and sea-ice states; It is based on Mercator operational 1/4° global system, but with 75 levels vertical grid, ERA-Interim atmospheric forcing fields (corrected with satellite-based fluxes) and the assimilation of delayed time reprocessed and quality controlled observations. First studies show the reanalysis usefulness for interannual assessment of the mesoscale dynamics, but also the thermohaline circulations changes like MOC.
NASA Technical Reports Server (NTRS)
Bosilovich, M. G.; Lucchesi, R.; Suarez, M.
2015-01-01
The second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) is a NASA atmospheric reanalysis that begins in 1980. It replaces the original MERRA reanalysis (Rienecker et al., 2011) using an upgraded version of the Goddard Earth Observing System Model, Version 5 (GEOS-5) data assimilation system. The file collections for MERRA-2 are described in detail in this document, including some important changes from those of the MERRA dataset (Lucchesi, 2012).
Impact of uncertainty in surface forcing on the new SODA 3 global reanalysis
NASA Astrophysics Data System (ADS)
Carton, J.; Chepurin, G. A.; Chen, L.
2016-02-01
An updated version of the Simple Ocean Data Assimilation reanalysis (SODA 3)has been constructed based on GFDL MOM ocean and sea ice numerics, with improved resolution and other changes. A series of three 30+ year long global ocean reanalysis experiments (1980-2014) have carried out which differ only in the choice of specified daily surface heat, momentum, and freshwater forcing: MERRA2, ERA-Int, and ERA-20. The first two forcing data sets make extensive use of satellite observations while the third only uses surface observations. The differences in the resulting SODA reanalysis experiments allow us to explore a major source of error in ocean reanalyses, which is the uncertainty introduced by errors in the surface forcing. The modest differences among the experiments tend to be concentrated at higher latitude where the MERRA2-SODA has a somewhat cooler (1C), saltier (1psu) surface leading to lower (10cm) sea level. Cooler conditions affect the upper 300m heat content at high latitude (although MERRA2-SODA HC300 is higher in the subtropics). RMS differences are small except for surface salinity at high latitude (1psu). The implications for such issues thermosteric sea level, the overturning circulation, and the rise of global heat storage will be discussed.
NASA Astrophysics Data System (ADS)
Lassonde, Sylvain; Boucher, Olivier; Breon, François-Marie; Tobin, Isabelle; Vautard, Robert
2016-04-01
The share of renewable energies in the mix of electricity production is increasing worldwide. This trend is driven by environmental and economic policies aiming at a reduction of greenhouse gas emissions and an improvement of energy security. It is expected to continue in the forthcoming years and decades. Electricity production from renewables is related to weather and climate factors such as the diurnal and seasonal cycles of sunlight and wind, but is also linked to variability on all time scales. The intermittency in the renewable electricity production (solar, wind power) could eventually hinder their future deployment. Intermittency is indeed a challenge as demand and supply of electricity need to be balanced at any time. This challenge can be addressed by the deployment of an overcapacity in power generation (from renewable and/or thermal sources), a large-scale energy storage system and/or improved management of the demand. The main goal of this study is to optimize a hypothetical renewable energy system at the French and European scales in order to investigate if spatial diversity of the production (here electricity from wind energy) could be a response to the intermittency. We use ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-interim meteorological reanalysis and meteorological fields from the Weather Research and Forecasts (WRF) model to estimate the potential for wind power generation. Electricity demand and production are provided by the French electricity network (RTE) at the scale of administrative regions for years 2013 and 2014. Firstly we will show how the simulated production of wind power compares against the measured production at the national and regional scale. Several modelling and bias correction methods of wind power production will be discussed. Secondly, we will present results from an optimization procedure that aims to minimize some measure of the intermittency of wind energy. For instance we estimate the optimal distribution between French regions (with or without cross-border inputs) that minimizes the impact of low-production periods computed in a running mean sense and its sensitivity to the period considered. We will also assess which meteorological situations are the most problematic over the 35-year ERA-interim climatology(1980-2015).
NASA Astrophysics Data System (ADS)
Karali, Anna; Giannakopoulos, Christos; Frias, Maria Dolores; Hatzaki, Maria; Roussos, Anargyros; Casanueva, Ana
2013-04-01
Forest fires have always been present in the Mediterranean ecosystems, thus they constitute a major ecological and socio-economic issue. The last few decades though, the number of forest fires has significantly increased, as well as their severity and impact on the environment. Local fire danger projections are often required when dealing with wild fire research. In the present study the application of statistical downscaling and spatial interpolation methods was performed to the Canadian Fire Weather Index (FWI), in order to assess forest fire risk in Greece. The FWI is used worldwide (including the Mediterranean basin) to estimate the fire danger in a generalized fuel type, based solely on weather observations. The meteorological inputs to the FWI System are noon values of dry-bulb temperature, air relative humidity, 10m wind speed and precipitation during the previous 24 hours. The statistical downscaling methods are based on a statistical model that takes into account empirical relationships between large scale variables (used as predictors) and local scale variables. In the framework of the current study the statistical downscaling portal developed by the Santander Meteorology Group (https://www.meteo.unican.es/downscaling) in the framework of the EU project CLIMRUN (www.climrun.eu) was used to downscale non standard parameters related to forest fire risk. In this study, two different approaches were adopted. Firstly, the analogue downscaling technique was directly performed to the FWI index values and secondly the same downscaling technique was performed indirectly through the meteorological inputs of the index. In both cases, the statistical downscaling portal was used considering the ERA-Interim reanalysis as predictands due to the lack of observations at noon. Additionally, a three-dimensional (3D) interpolation method of position and elevation, based on Thin Plate Splines (TPS) was used, to interpolate the ERA-Interim data used to calculate the index. Results from this method were compared with the statistical downscaling results obtained from the portal. Finally, FWI was computed using weather observations obtained from the Hellenic National Meteorological Service, mainly in the south continental part of Greece and a comparison with the previous results was performed.
NASA Astrophysics Data System (ADS)
Chubarova, Nataly; Pastukhova, Anna; Zhdanova, Ekaterina; Khlestova, Julia; Poliukhov, Alexei; Smyshlyaev, Sergei; Galin, Vener
2017-04-01
We present the results of long-term erythemal UV irradiance (ERY) changes over the territory of Northern Eurasia according to the ERA-INTERIM reanalysis dataset, INM-RSHU chemical climate model (CCM), and TOMS and OMI satellite data with the correction on absorbing aerosol based on the new Macv2 climatology updated from Kinne et al. (2013) over the 1979-2015 period. We show the existence of the pronounced positive ERY trend due to ozone in spring and summer over Europe and over the central areas of Siberia (up 3% over the decade). The changes in cloud cover provide even more significant ERY increase (up to 6-8% per decade). However, over Arctic region there is a pronounced negative ERY trend probably due to the effects of melting ice on global circulation processes. The combination of ozone and cloud effects provides the enhanced increase of the overall ERY trend: up to 6-9% in spring and summer over Eastern Europe, some regions of Siberia and the Far East. In addition, based on the method described in (Chubarova, Zhdanova, 2013) we estimated changes in UV resources over Northern Eurasia since 1979. We show that for the first skin type there is a significant geographical shift of UV categories: the increase in the UV optimum area in winter, where the vitamin D generation is possible without risk of getting sunburn, and its reducing in other months due to decrease in ozone and clouds. We also analyze the long-term UV changes simulated according to different scenarios using the INM-RSHU CCM. There is a general agreement between CCM and observational datasets, however, ERY trends due to cloudiness do not correspond sometimes in space and are smaller. We show that the positive ERY trend due to ozone is determined by the anthropogenic emissions of halogens. The variations in natural factors (solar activity and ocean surface temperature, stratospheric aerosol) only provide the increase in ERY dispersion. References: Kinne, S., O'Donnel D., Stier P., et al., J. Adv. Model. Earth Syst., 5, 704-740, 2013. Chubarova N., Zhdanova Ye. Photochemistry and Photobiology. - 2013. - Vol. 127. - P. 38-51.
NASA Astrophysics Data System (ADS)
Gaal, Nikolett; Ihasz, Istvan
2013-04-01
We aimed to analyze the cold drops and the upper level lows formed in the middle troposphere - which are often difficult to be predicted - by means of the statistical methods and case studies. Cold drops are often followed by intensive events such as heavy rainfall, rainstorm, at times tubas and non mesocyclonical tornadoes. Due to the above mentioned events and the incentive of Aviation and Severe Weather Forecasting Division at Hungarian Meteorological Service, the phenomenon was analyzed in a complex way by a self-developed multiple method. Upper-Level Lows (ULL-s) are closed; cyclonically circulating eddies isolated from the main western stream in the middle and upper troposphere. They are also sometimes called "cold drops" because the air within an Upper Level low is colder than in its surroundings. The cold air within usually does not show up on the surface, meaning the vertical temperature gradient is high, which in turn causes instability and heavy storms, especially during the summer. An ULL-s diameter is about a couple hundred km-s, so it looks like a miniature cyclone. ERA INTERIM is the current state of reanalysis that is still in development. It also has the best possible spatial resolution, which leads to its usage in a wide area of fields. Our studies focused mainly on the cold drops' statistics and meteorology, as well as a few case studies. Since ULL's occur rarely, we developed a new ULL-recognition process to increase the number of samples available. First of all, we gathered 70days when cold drops occurred in the past 10 years. Then we analyzed them in 6-hour periods, for a total of 280 separate time periods. Finally, we have four main case studies in the paper. In the future, we would like to run further tests with our ULL-recognition algorithm to study the last 30 years of cold drops, and we would also like to experiment more with ULL forecasting as well.
An empirical understanding of triple collocation evaluation measure
NASA Astrophysics Data System (ADS)
Scipal, Klaus; Doubkova, Marcela; Hegyova, Alena; Dorigo, Wouter; Wagner, Wolfgang
2013-04-01
Triple collocation method is an advanced evaluation method that has been used in the soil moisture field for only about half a decade. The method requires three datasets with an independent error structure that represent an identical phenomenon. The main advantages of the method are that it a) doesn't require a reference dataset that has to be considered to represent the truth, b) limits the effect of random and systematic errors of other two datasets, and c) simultaneously assesses the error of three datasets. The objective of this presentation is to assess the triple collocation error (Tc) of the ASAR Global Mode Surface Soil Moisture (GM SSM 1) km dataset and highlight problems of the method related to its ability to cancel the effect of error of ancillary datasets. In particular, the goal is to a) investigate trends in Tc related to the change in spatial resolution from 5 to 25 km, b) to investigate trends in Tc related to the choice of a hydrological model, and c) to study the relationship between Tc and other absolute evaluation methods (namely RMSE and Error Propagation EP). The triple collocation method is implemented using ASAR GM, AMSR-E, and a model (either AWRA-L, GLDAS-NOAH, or ERA-Interim). First, the significance of the relationship between the three soil moisture datasets was tested that is a prerequisite for the triple collocation method. Second, the trends in Tc related to the choice of the third reference dataset and scale were assessed. For this purpose the triple collocation is repeated replacing AWRA-L with two different globally available model reanalysis dataset operating at different spatial resolution (ERA-Interim and GLDAS-NOAH). Finally, the retrieved results were compared to the results of the RMSE and EP evaluation measures. Our results demonstrate that the Tc method does not eliminate the random and time-variant systematic errors of the second and the third dataset used in the Tc. The possible reasons include the fact a) that the TC method could not fully function with datasets acting at very different spatial resolutions, or b) that the errors were not fully independent as initially assumed.
NASA Astrophysics Data System (ADS)
Reusch, D. B.
2016-12-01
Any analysis that wants to use a GCM-based scenario of future climate benefits from knowing how much uncertainty the GCM's inherent variability adds to the development of climate change predictions. This is extra relevant in the polar regions due to the potential of global impacts (e.g., sea level rise) from local (ice sheet) climate changes such as more frequent/intense surface melting. High-resolution, regional-scale models using GCMs for boundary/initial conditions in future scenarios inherit a measure of GCM-derived externally-driven uncertainty. We investigate these uncertainties for the Greenland ice sheet using the 30-member CESM1.0-CAM5-BGC Large Ensemble (CESMLE) for recent (1981-2000) and future (2081-2100, RCP 8.5) decades. Recent simulations are skill-tested against the ERA-Interim reanalysis and AWS observations with results informing future scenarios. We focus on key variables influencing surface melting through decadal climatologies, nonlinear analysis of variability with self-organizing maps (SOMs), regional-scale modeling (Polar WRF), and simple melt models. Relative to the ensemble average, spatially averaged climatological July temperature anomalies over a Greenland ice-sheet/ocean domain are mostly between +/- 0.2 °C. The spatial average hides larger local anomalies of up to +/- 2 °C. The ensemble average itself is 2 °C cooler than ERA-Interim. SOMs extend our diagnostics by providing a concise, objective summary of model variability as a set of generalized patterns. For CESMLE, the SOM patterns summarize the variability of multiple realizations of climate. Changes in pattern frequency by ensemble member show the influence of initial conditions. For example, basic statistical analysis of pattern frequency yields interquartile ranges of 2-4% for individual patterns across the ensemble. In climate terms, this tells us about climate state variability through the range of the ensemble, a potentially significant source of melt-prediction uncertainty. SOMs can also capture the different trajectories of climate due to intramodel variability over time. Polar WRF provides higher resolution regional modeling with improved, polar-centric model physics. Simple melt models allow us to characterize impacts of the upstream uncertainties on estimates of surface melting.
NASA Astrophysics Data System (ADS)
Maksimovich, E.
2010-09-01
The spring onset of snow melt on the Arctic sea ice shows large inter-annual variability. Surface melt triggers positive feedback mechanisms between the albedo, snow properties and thickness, as well as sea ice thickness. Hence, it is important to quantify the factors contributing to inter-annual variability of the melt onset (MO) in various parts of the Arctic Ocean. Meteorological factors controlling surface heat budget and surface melting/freezing are the shortwave and longwave radiative fluxes and the turbulent fluxes of sensible and latent heat. These fluxes depend on the weather conditions, including the radiative impact of clouds, heat advection and wind speed. We make use of SSM/I-based MO time series (Markus, Miller and Stroeve) and the ECMWF ERA Interim reanalysis on the meteorological conditions and surface fluxes, both data sets spanning the period 1989-2008 and covering recent years with a rapid sea ice decline. The advantage is that SSM/I-based MO time series are independent of the ERA-Interim data. Our objective is to investigate if there exists a physically consistent and statistically significant relationship between MO timing and corresponding meteorological conditions. Results based on the regression analysis between the MO timing and seasonal anomalies of surface longwave radiative fluxes reveal strong relationships. Synoptic scale (3-14 days) anomalies in downward longwave radiation are essential in the Western Arctic. Regarding the longer history (20-60 days) the distinct contribution from the downward longwave radiative fluxes is captured within the whole study region. Positive anomalies in the downward longwave radiation dominate over the simultaneous negative anomalies in the downward shortwave radiation. The anomalies in downward radiative fluxes are consistent with the total column water vapor, sea level pressure and 10-m wind direction. Sensible and latent heat fluxes affect surface melt timing in the Beaufort Sea and in the Atlantic sector of the Arctic Basin. Stronger winds strengthen the relationship between the turbulent fluxes and the MO timing. The turbulent surface fluxes in spring are relatively weak, of the order of 1-10W/m2, compared to the downward shortwave and longwave radiative fluxes, which are of the order of 100-150W/m2. As soon as data uncertainties are comparable to the anomaly in turbulent fluxes, statistical relationships found between MO timing and preceding anomaly in turbulent fluxes do not necessarily prove their reasonal-causal relationship. This joint study of SSM/I-based MO record and the ERA-Interim meteorological fields region-wide with a focus on the seasonal transition demonstrates their consistency in time and space. Such result could be regarded as an important indicator that both data sets have the appropriate performance of the surface state in the Arctic Ocean. Nevertheless, an important additional effort is needed for to resolve better the cloud radiative and boundary layer turbulent processes over the sea ice.
Multi-method Quantification of Sea-ice Production in Weddell Sea Polynyas (Antarctica)
NASA Astrophysics Data System (ADS)
Heinemann, G.; Zentek, R.; Stulic, L.; Paul, S.; Preusser, A.; Timmermann, R.
2017-12-01
Coastal polynyas occur frequently during winter in the Weddell Sea, which leads to strong sea ice production and to the formation of a highly saline water mass which is considered to be a major source of bottom water and one of the main drivers of the circulation beneath the Filchner-Ronne Ice Shelf. Thus the quantification of sea ice production in Weddell Sea polynyas is of vital interest for understanding water mass modification in this region. We use a multi-method approach to quantify sea ice production. Method 1) is based on the energy balance simulated by the regional climate model COSMO-CLM (CCLM) with 15 / 5 km resolution for the period 2002-2015 (nested in ERA-Interim data). Daily sea ice concentrations were taken from microwave satellite measurements. Method 2) is based on remote sensing using MODIS thermal infrared data at a resolution of 1-2km and a surface energy balance model taking atmospheric data from different reanalyses (ERA-Interim, JRA55, NCEP2) as well as data of CCLM. Method 3) relies on simulations using the Finite Element Sea ice-Ocean Model (FESOM). FESOM is run on a global grid with a resolution of about 5 km along the coast of the Weddell Sea using atmospheric forcing from reanalyses (ERA-Interim (80km) and CFSR (38km)) as well as from CCLM. In addition, an experiment with assimilation of MODIS thin ice retrievals was conducted. Estimates of polynya area (POLA) and sea ice production (IP) from the different methods are presented. The MODIS-based method with ERA-Interim shows the largest POLA as well as the largest IP for the Ronne polynya (RO, POLA / IP = 2800 km² / 29 km³/a) and for the polynya off Brunt Ice Shelf (BR, 3400 km² / 30 km³/a). Sensitivity to the choice of atmosphere data is high. In particular, too low temperatures in JRA55 cause very large ice production events and a strong overestimation of IP rates. Estimates based on CCLM simulations agree generally well with MODIS/ERA-Interim. FESOM yields a generally larger ice production and shows also a pronounced sensitivity to the atmospheric forcing, but the effect on POLA and IP depends on the region. For BR the FESOM simulations show much larger POLA and IP than other methods.
NASA Astrophysics Data System (ADS)
Sekaranom, A. B.; Nurjani, E.; Pujiastuti, I.
2018-04-01
Heavy rain events are often associated with flood hazards as one of the most devastating events across the globe. It is therefore essential to identify the evolution of heavy rainfall cloud structures, primarily from global satellite observation, as a tool to provide better disaster early warning systems. To identify the mechanism of heavy rainfall systems and its relationship with cloud development, especially over The Pacific Ocean, we aim to study the westward evolution of the convective systems over this area. Several datasets from Tropical Rainfall Measuring Mission (TRMM), CloudSat GEOPROF product, and ECMWF-reanalysis (ERA) interim were utilized to characterize the evolution. Geolocation and orbital time-lag analysis of the three different datasets for more than 8 years (2006-2014) could provide information related to the evolution of cloud structures associated with heavy rain events. In the first step, a heavy rainfall database was generated from TRMM. The CloudSat coordinate and time position were then matched with TRMM coordinate and time position. All of the processes were programatically conducted in fortran programming language. The result shows a transition between East and West Pacific ocean for TMI data.
Droughts and Excessive Moisture Events in Southern Siberia in the Late XXth - Early XXIst Centuries
NASA Astrophysics Data System (ADS)
Ryazanova, A. A.; Voropay, N. N.
2017-11-01
In recent years much research has been devoted to global and regional climate changes. Special attention was paid to climate extremes, such as droughts and excessive moisture events. In this study the moisture and aridity of Southern Siberia are estimated using web-GIS called “CLIMATE”. The system “CLIMATE” is part of a hardware and software cloud storage complex for data analysis of various climatic data sets, with algorithms for searching, extracting, processing, and visualizing the data. The ECMWF ERA-Interim reanalysis data for Southern Siberia (50-65°N, 60-120°E) from 1979 to 2010 with a grid cell of 0.75×0.75° is used. Some hydrothermal conditions are estimated using the so-called Ped index (Si), which is a normalized indicator of the ratio of air temperature to precipitation. The mountain regions of Eastern Siberia are becoming more and more arid each month during the last 30 years. In Western Siberia, aridity increases in May and decreases in June, in the other months positive and negative trends are found. The greatest differences between the trends of the aridity index (Si), air temperature, and precipitation are observed in July.
The future of the Devon Ice cap: results from climate and ice dynamics modelling
NASA Astrophysics Data System (ADS)
Mottram, Ruth; Rodehacke, Christian; Boberg, Fredrik
2017-04-01
The Devon Ice Cap is an example of a relatively well monitored small ice cap in the Canadian Arctic. Close to Greenland, it shows a similar surface mass balance signal to glaciers in western Greenland. Here we use high resolution (5km) simulations from HIRHAM5 to drive the PISM glacier model in order to model the present day and future prospects of this small Arctic ice cap. Observational data from the Devon Ice Cap in Arctic Canada is used to evaluate the surface mass balance (SMB) data output from the HIRHAM5 model for simulations forced with the ERA-Interim climate reanalysis data and the historical emissions scenario run by the EC-Earth global climate model. The RCP8.5 scenario simulated by EC-Earth is also downscaled by HIRHAM5 and this output is used to force the PISM model to simulate the likely future evolution of the Devon Ice Cap under a warming climate. We find that the Devon Ice Cap is likely to continue its present day retreat, though in the future increased precipitation partly offsets the enhanced melt rates caused by climate change.
NASA Astrophysics Data System (ADS)
Boutov, D.; Peliz, A.
2012-04-01
In the frame of MedEX ("Inter-basin exchange in the changing Mediterranean Sea") Project a 20 years (1989-2008) simulation at 2km resolution covering Gulf of Cadiz and Alboran Sea, forced by 9 km winds (WRF downscaling of ERA-Interim reanalysis), is analyzed and compared with observations. Statistical methods, EOF techniques and two harmonic (including annual and semi-annual frequencies) data fit were performed for the analysis. Modeled SST fields are also compared with long-term (1996-2008) in-situ buoy observations provided by Puertos del Estado (Spain) and satellite derived Pathfinder SST database. Model SSTs generally follow observations data at annual and inter-annual scales with a global error not exceeding 0.17°C (model warmer than SST). No significant warming tendency was observed in both basins during the 20 years and the Interanual variability dominates, with the series showing a cooling period from 1991 to 1993 followed by a warming period started from 1994. In particular we show that SST cooling observed in the early 1990's in the Gulf of Cadiz - Alboran system is associated with the 1991 catastrophic eruption of Pinatubo volcano (Philippines).
NASA Astrophysics Data System (ADS)
McCoy, Isabel; Wood, Robert; Fletcher, Jennifer
Marine low clouds are key influencers of the climate and contribute significantly to uncertainty in model climate sensitivity due to their small scale and complex processes. Many low clouds occur in large-scale cellular patterns, known as open and closed mesoscale cellular convection (MCC), which have significantly different radiative and microphysical properties. Investigating MCC development and meteorological controls will improve our understanding of their impacts on the climate. We conducted an examination of time-varying meteorological conditions associated with satellite-determined open and closed MCC. The spatial and temporal patterns of MCC clouds were compared with key meteorological control variables calculated from ERA-Interim Reanalysis to highlight dependencies and major differences. This illustrated the influence of environmental stability and surface forcing as well as the role of marine cold air outbreaks (MCAO, the movement of cold air from polar-regions across warmer waters) in MCC cloud formation. Such outbreaks are important to open MCC development and may also influence the transition from open to closed MCC. Our results may lead to improvements in the parameterization of cloudiness and advance the simulation of marine low clouds. National Science Foundation Graduate Research Fellowship Grant (DGE-1256082).
Application of Humidity Data for Predictions of Influenza Outbreaks.
NASA Astrophysics Data System (ADS)
Teixeira, J.; Thrastarson, H. T.; Yeo, E.
2016-12-01
Seasonal influenza outbreaks infect millions of people, cause hundreds of thousands of deaths worldwide, and leave an immense economic footprint. Potential forecasting of the timing and intensity of these outbreaks can help mitigation and response efforts (e.g., the management and organization of vaccines, drugs and other resources). Absolute (or specific) humidity has been identified as an important driver of the seasonal behavior of influenza outbreaks in temperate regions. Building upon this result, we incorporate humidity data from both NASA's AIRS (Atmospheric Infra-Red Sounder) instrument and ERA-Interim re-analysis into a SIRS (Susceptible-Infectious-Recovered-Susceptible) type numerical epidemiological model, comprising a prediction system for influenza outbreaks. Data for influenza activity is obtained from sources such as Google Flu Trends and the CDC (Center for Disease Control) and used for comparison and assimilation. The accuracy and limitations of the prediction system are tested with hindcasts of outbreaks in the United States for the years 2005-2015. Our results give support to the hypothesis that local weather conditions drive the seasonality of influenza in temperate regions. The implementation of influenza forecasts that make use of NCEP humidity forecasts is also discussed.
NASA Astrophysics Data System (ADS)
Zus, F.; Deng, Z.; Wickert, J.
2017-08-01
The impact of higher-order ionospheric effects on the estimated station coordinates and clocks in Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) is well documented in literature. Simulation studies reveal that higher-order ionospheric effects have a significant impact on the estimated tropospheric parameters as well. In particular, the tropospheric north-gradient component is most affected for low-latitude and midlatitude stations around noon. In a practical example we select a few hundred stations randomly distributed over the globe, in March 2012 (medium solar activity), and apply/do not apply ionospheric corrections in PPP. We compare the two sets of tropospheric parameters (ionospheric corrections applied/not applied) and find an overall good agreement with the prediction from the simulation study. The comparison of the tropospheric parameters with the tropospheric parameters derived from the ERA-Interim global atmospheric reanalysis shows that ionospheric corrections must be consistently applied in PPP and the orbit and clock generation. The inconsistent application results in an artificial station displacement which is accompanied by an artificial "tilting" of the troposphere. This finding is relevant in particular for those who consider advanced GNSS tropospheric products for meteorological studies.
NASA Astrophysics Data System (ADS)
Shi, Chunhua; Gao, Yannan; Cai, Juan; Guo, Dong; Lu, Yan
2018-04-01
The response of the dynamic and thermodynamic structure of the stratosphere to the solar cycle in the boreal winter is investigated based on measurements of the solar cycle by the Spectral Irradiance Monitor onboard the SORCE satellite, monthly ERA-Interim Reanalysis data from the European Center for Medium-Range Weather Forecasts, the radiative transfer scheme of the Beijing Climate Center (BCC-RAD) and a multiple linear regression model. The results show that during periods of strong solar activity, the solar shortwave heating anomaly from the climatology in the tropical upper stratosphere triggers a local warm anomaly and strong westerly winds in mid-latitudes, which strengthens the upward propagation of planetary wave 1 but prevents that of wave 2. The enhanced westerly jet makes a slight adjustment to the propagation path of wave 1, but prevents wave 2 from propagating upward, decreases the dissipation of wave 2 in the extratropical upper stratosphere and hence weakens the Brewer-Dobson circulation. The adiabatic heating term in relation to the Brewer-Dobson circulation shows anomalous warming in the tropical lower stratosphere and anomalous cooling in the mid-latitude upper stratosphere.
Using NWP to assess the influence of the Arctic atmosphere on midlatitude weather and climate
NASA Astrophysics Data System (ADS)
Semmler, Tido; Jung, Thomas; Kasper, Marta A.; Serrar, Soumia
2018-01-01
The influence of the Arctic atmosphere on Northern Hemisphere midlatitude tropospheric weather and climate is explored by comparing the skill of two sets of 14-day weather forecast experiments using the ECMWF model with and without relaxation of the Arctic atmosphere towards ERA-Interim reanalysis data during the integration. Two pathways are identified along which the Arctic influences midlatitude weather: a pronounced one over Asia and Eastern Europe, and a secondary one over North America. In general, linkages are found to be strongest (weakest) during boreal winter (summer) when the amplitude of stationary planetary waves over the Northern Hemisphere is strongest (weakest). No discernible Arctic impact is found over the North Atlantic and North Pacific region, which is consistent with predominantly southwesterly flow. An analysis of the flow-dependence of the linkages shows that anomalous northerly flow conditions increase the Arctic influence on midlatitude weather over the continents. Specifically, an anomalous northerly flow from the Kara Sea towards West Asia leads to cold surface temperature anomalies not only over West Asia but also over Eastern and Central Europe. Finally, the results of this study are discussed in the light of potential midlatitude benefits of improved Arctic prediction capabilities.
Spatio-Temporal Evolutions of Non-Orthogonal Equatorial Wave Modes Derived from Observations
NASA Astrophysics Data System (ADS)
Barton, C.; Cai, M.
2015-12-01
Equatorial waves have been studied extensively due to their importance to the tropical climate and weather systems. Historically, their activity is diagnosed mainly in the wavenumber-frequency domain. Recently, many studies have projected observational data onto parabolic cylinder functions (PCF), which represent the meridional structure of individual wave modes, to attain time-dependent spatial wave structures. In this study, we propose a methodology that seeks to identify individual wave modes in instantaneous fields of observations by determining their projections on PCF modes according to the equatorial wave theory. The new method has the benefit of yielding a closed system with a unique solution for all waves' spatial structures, including IG waves, for a given instantaneous observed field. We have applied our method to the ERA-Interim reanalysis dataset in the tropical stratosphere where the wave-mean flow interaction mechanism for the quasi-biennial oscillation (QBO) is well-understood. We have confirmed the continuous evolution of the selection mechanism for equatorial waves in the stratosphere from observations as predicted by the theory for the QBO. This also validates the proposed method for decomposition of observed tropical wave fields into non-orthogonal equatorial wave modes.
Approximate Stokes Drift Profiles and their use in Ocean Modelling
NASA Astrophysics Data System (ADS)
Breivik, Oyvind; Bidlot, Jea-Raymond; Janssen, Peter A. E. M.; Mogensen, Kristian
2016-04-01
Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons against parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. Of the two Stokes drift profiles explored here, the profile based on the Phillips spectrum is by far the best. In particular, the shear near the surface is almost identical to that influenced by the f-5 tail of spectral wave models. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. The ECWMF coupled atmosphere-wave-ocean ensemble forecast system now includes these wave effects in the ocean model component (NEMO).
NASA Astrophysics Data System (ADS)
Prignon, Maxime; Agosta, Cécile; Kittel, Christoph; Fettweis, Xavier; Michel, Erpicum
2016-04-01
In the framework of the CORDEX project, we have applied the regional model MAR over the Africa domain at a resolution of 50 km. ERA-Interim and NCEP-NCAR reanalysis have been used as 6 hourly forcing at the MAR boundaries over 1950-2015. While MAR was already been validated over the West Africa, it is the first time that MAR simulations are carried out at the scale of the whole continent. Unpublished daily measurements, covering the Sahel and more areas up South, with a large set of variables, are used as validation of MAR, other CORDEX-Africa RCMs and both reanalyses. Comparisons with the CRU and the ECA&D databases are also performed. The unpublished daily data set covers the period 1884-2006 and comes from 1460 stations. The measured variables are wind, evapotranspiration, relative humidity, insolation, rain, surface pressure, temperature, vapour pressure and visibility. It covers 23 countries: Algeria, Benin, Burkina, Canary Islands, Cap Verde, Central Africa, Chad, Congo, Ivory Coast, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Mali, Mauritania, Morocco, Niger, Nigeria, Senegal, Sudan and Togo.
Sensitivity of the Antarctic surface mass balance to oceanic perturbations
NASA Astrophysics Data System (ADS)
Kittel, C.; Amory, C.; Agosta, C.; Fettweis, X.
2017-12-01
Regional climate models (RCMs) are suitable numerical tools to study the surface mass balance (SMB) of the wide polar ice sheets due to their high spatial resolution and polar-adapted physics. Nonetheless, RCMs are driven at their boundaries and over the ocean by reanalysis or global climate model (GCM) products and are thus influenced by potential biases in these large-scale fields. These biases can be significant for both the atmosphere and the sea surface conditions (i.e. sea ice concentration and sea surface temperature). With the RCM MAR, a set of sensitivity experiments has been realized to assess the direct response of the SMB of the Antarctic ice sheet to oceanic perturbations. MAR is forced by ERA-Interim and anomalies based on mean GCM biases are introduced in sea surface conditions. Results show significant increases (decreases) of liquid and solid precipitation due to biases related to warm (cold) oceans. As precipitation is mainly caused by low-pressure systems that intrude into the continent and do not penetrate far inland, coastal areas are more sensitive than inland regions. Furthermore, warm ocean representative biases lead to anomalies as large as anomalies simulated by other RCMs or GCMs for the end of the 21st century.
Precipitation and floodiness: forecasts of flood hazard at the regional scale
NASA Astrophysics Data System (ADS)
Stephens, Liz; Day, Jonny; Pappenberger, Florian; Cloke, Hannah
2016-04-01
In 2008, a seasonal forecast of an increased likelihood of above-normal rainfall in West Africa led the Red Cross to take early humanitarian action (such as prepositioning of relief items) on the basis that this forecast implied heightened flood risk. However, there are a number of factors that lead to non-linearity between precipitation anomalies and flood hazard, so in this presentation we use a recently developed global-scale hydrological model driven by the ERA-Interim/Land precipitation reanalysis (1980-2010) to quantify this non-linearity. Using these data, we introduce the concept of floodiness to measure the incidence of floods over a large area, and quantify the link between monthly precipitation, river discharge and floodiness anomalies. Our analysis shows that floodiness is not well correlated with precipitation, demonstrating the problem of using seasonal precipitation forecasts as a proxy for forecasting flood hazard. This analysis demonstrates the value of developing hydrometeorological forecasts of floodiness for decision-makers. As a result, we are now working with the European Centre for Medium-Range Weather Forecasts and the Joint Research Centre, as partners of the operational Global Flood Awareness System (GloFAS), to implement floodiness forecasts in real-time.
Intercomparison of mid latitude storm diagnostics (IMILAST) - synthesis of project results
NASA Astrophysics Data System (ADS)
Neu, Urs
2017-04-01
The analysis of the occurrence of mid-latitude storms is of great socio-economical interest due to their vast and destructive impacts. However, a unique definition of cyclones is missing, and therefore the definition of what a cyclone is as well as quantifying its strength contains subjective choices. Existing automatic cyclone identification and tracking algorithms are based on different definitions and use diverse characteristics, e.g. data transformation, metrics used for cyclone identification, cyclone identification procedures or tracking methods. The project IMILAST systematically compares different cyclone detection and tracking methods, with the aim to comprehensively assess the influence of different algorithms on cyclone climatologies, temporal trends of frequency, strength or other characteristics of cyclones and thus quantify systematic uncertainties in mid-latitudinal storm identification and tracking. The three main intercomparison experiments used the ERA-interim reanalysis as a common input data set and focused on differences between the methods with respect to number, track density, life cycle characteristics, and trend patterns on the one hand and potential differences of the long-term climate change signal of cyclonic activity between the methods on the other hand. For the third experiment, the intercomparison period has been extended to a 30 year period from 1979 to 2009 and focuses on more specific aspects, such as parameter sensitivities, the comparison of automated to manual tracking sets, regional analysis (regional trends, Arctic and Antarctic cyclones, cyclones in the Mediterranean) or specific phenomena like splitting and merging of cyclones. In addition, the representation of storms and their characteristics in reanalysis data sets is examined to further enhance the knowledge on uncertainties related to storm occurrence. This poster presents a synthesis of the main results from the intercomparison activities within IMILAST.
Aerosol direct and indirect radiative effect over Eastern Mediterranean
NASA Astrophysics Data System (ADS)
Georgoulias, Aristeidis; Alexandri, Georgia; Zanis, Prodromos; Ntogras, Christos; Poeschl, Ulrich; Kourtidis, Kostas
In this work, we present results from the QUADIEEMS project which is focused on the aerosol-cloud relations and the aerosol direct and indirect radiative effect over the region of Eastern Mediterranean. First, a gridded dataset at a resolution of 0.1x0.1 degrees (~10km) with aerosol and cloud related parameters was compiled, using level-2 satellite observations from MODIS TERRA (3/2000-12/2012) and AQUA (7/2002-12/2012). The aerosol gridded dataset has been validated against sunphotometric measurements from 12 AERONET ground stations, showing that generally MODIS overestimates aerosol optical depth (AOD550). Then, the AOD550 and fine mode ratio (FMR550) data from MODIS were combined with aerosol index (AI) data from the Earth Probe TOMS and OMI satellite sensors, wind field data from the ERA-interim reanalysis and AOD550 data for various aerosol types from the GOCART model and the MACC reanalysis to quantify the relative contribution of different aerosol types (marine, dust, anthropogenic, fine-mode natural) to the total AOD550. The aerosol-cloud relations over the region were investigated with the use of the joint high resolution aerosol-cloud gridded dataset. Specifically, we focused on the seasonal relations between the cloud droplet number concentration (CDNC) and AOD550. The aerosol direct and first indirect radiative effect was then calculated for each aerosol type separately making use of the aerosol relative contribution to the total AOD550, the CDND-AOD550 relations and satellite-based parameterizations. The direct radiative effect was also quantified using simulations from a regional climate model (REGCM4), simulations with a radiative transfer model (SBDART) and the three methods were finally intervalidated.
NASA Astrophysics Data System (ADS)
Poan, E.; Gachon, P., Sr.; Laprise, R.; Aider, R.; Dueymes, G.
2017-12-01
This study describes a framework using possibilities given by regional climate models (RCMs) to gain insight into extratropical cyclone (EC) activity during winter over North America (NA). Recent past climate period (1981 - 2005) is firstly considered using the NCEP regional reanalysis (NARR) as a reference, along with the European global reanalysis ERA-Interim (ERAI) and two CMIP5 Global Climate Models (GCMs) used to drive the Canadian RCM - version 5 (CRCM5) and the corresponding regional-scale simulations. While ERAI and GCM simulations show basic agreement with NARR in terms of climatological EC track patterns, detailed bias analyses show that, on the one hand, ERAI presents statistically significant positive biases in terms of EC genesis and therefore occurrence while their intensity is well captured. On the other hand, GCMs present large negative intensity biases in the overall NA domain and particularly over the eastern coast. In addition, storm occurrence from GCMs over the northwestern topographic regions is highly overestimated. When the CRCM5 is driven by ERAI, no significant skill deterioration arises and, more importantly, all storm characteristics near areas with main relief and over regions with large water masses are significantly improved with respect to ERAI. Conversely, in GCM-driven simulations, the added value from the CRCM5 is less prominent and systematic, except over western areas with high topography and over the Western Atlantic coastlines where the most frequent and intense ECs are located. Finally, time period near the end of the 21st century (2071-2100) is considered to analyze EC characteristic trends and changes relative to the current climate conditions, showing important modifications in storm activity for certain winter months, especially in term of intensity over the eastern coast.
Evaluation of high-resolution climate simulations for West Africa using COSMO-CLM
NASA Astrophysics Data System (ADS)
Dieng, Diarra; Smiatek, Gerhard; Bliefernicht, Jan; Laux, Patrick; Heinzeller, Dominikus; Kunstmann, Harald; Sarr, Abdoulaye; Thierno Gaye, Amadou
2017-04-01
The climate change modeling activities within the WASCAL program (West African Science Service Center on Climate Change and Adapted Land Use) concentrate on the provisioning of future climate change scenario data at high spatial and temporal resolution and quality in West Africa. Such information is highly required for impact studies in water resources and agriculture for the development of reliable climate change adaptation and mitigation strategies. In this study, we present a detailed evaluation of high simulation runs based on the regional climate model, COSMO model in CLimate Mode (COSMO-CLM). The model is applied over West Africa in a nested approach with two simulation domains at 0.44° and 0.11° resolution using reanalysis data from ERA-Interim (1979-2013). The models runs are compared to several state-of-the-art observational references (e.g., CRU, CHIRPS) including daily precipitation data provided by national meteorological services in West Africa. Special attention is paid to the reproduction of the dynamics of the West African Monsoon (WMA), its associated precipitation patterns and crucial agro-climatological indices such as the onset of the rainy season. In addition, first outcomes of the regional climate change simulations driven by MPI-ESM-LR are presented for a historical period (1980 to 2010) and two future periods (2020 to 2050, 2070 to 2100). The evaluation of the reanalysis runs shows that COSMO-CLM is able to reproduce the observed major climate characteristics including the West African Monsoon within the range of comparable RCM evaluations studies. However, substantial uncertainties remain, especially in the Sahel zone. The added value of the higher resolution of the nested run is reflected in a smaller bias in extreme precipitation statistics with respect to the reference data.
Characterizing moisture sources over Mediterranean Basin in a Regional Earth System Model
NASA Astrophysics Data System (ADS)
Batibeniz, F.; Ashfaq, M.; Turuncoglu, U. U.; Onol, B.
2017-12-01
We investigate precipitation dynamics over the Mediterranean region using Reanalysis data and a coupled Regional Earth System Model (RegESM). The RegESM model is run in coupled (RegCM4 coupled with ROMS) and uncoupled mode (atmosphere -land only) for 1979-2013 period using Era-Interim Reanalysis. RegESM incorporates atmosphere, ocean, river routing and wave components and thereby is better capable to improve the understanding of coupled climate system processes. We compare two model configurations to investigate the role of air sea interaction in the simulation of key processes that govern precipitation variability over the study region. Seasonal trend analyses have been performed to understand the changes in precipitation tendencies over the 35 years of the simulation period and observations. Additionally, two moisture flux analyses (Eulerian and Lagrangian) have been implemented to understand the role of various oceanic and terrestrial evaporative sources in seasonal precipitation distribution and long-term trends over the Mediterranean basin. In Eulerian approach, we use 7 different terrestrial regions to identify sources and sinks using the inflows and outflows from their boundaries. In Lagrangian approach, we divide the whole region in 9 parts to backtrack moisture coming from each region to the core Mediterranean region at intra-seasonal time-scales. Variation in the moisture contribution from each source region is investigated to quantify its role in the observed precipitation variability particularly during the extreme wet and dry years. Overall, our results highlight the importance of air-sea interaction in precipitation distribution at intra-seasonal to inter-decadal timescales over Mediterranean region as coupled RegESM configuration is able to improve of many limitations that are found in the standalone configuration.
Hazardous Convective Weather in the Central United States: Present and Future
NASA Astrophysics Data System (ADS)
Liu, C.; Ikeda, K.; Rasmussen, R.
2017-12-01
Two sets of 13-year continental-scale convection-permitting simulations were performed using the 4-km-resolution WRF model. They consist of a retrospective simulation, which downscales the ERA-Interim reanalysis during the period October 2000 - September 2013, and a future climate sensitivity simulation for the same period based on the perturbed reanalysis-derived boundary conditions with the CMIP5 ensemble-mean high-end emission scenario climate change. The evaluation of the retrospective simulation indicates that the model is able to realistically reproduce the main characteristics of deep precipitating convection observed in the current climate such as the spectra of convective population and propagating mesoscale convective systems (MCSs). It is also shown that severe convection and associated MCS will increase in frequency and intensity, implying a potential increase in high impact convective weather in a future warmer climate. In this study, the warm-season hazardous convective weather (i.e., tonadoes, hails and damaging gusty wind) in the central United states is examined using these 4-km downscaling simulations. First, a model-based proxy for hazardous convective weather is derived on the basis of a set of characteristic meteorological variables such as the model composite radar reflectivity, updraft helicity, vertical wind shear, and low-level wind. Second, the developed proxy is applied to the retrospective simulation for estimate of the model hazardous weather events during the historical period. Third, the simulated hazardous weather statistics are evaluated against the NOAA severe weather reports. Lastly, the proxy is applied to the future climate simulation for the projected change of hazardous convective weather in response to global warming. Preliminary results will be reported at the 2017 AGU session "High Resolution Climate Modeling".
Regional Eco-hydrologic Sensitivity to Projected Amazonian Land Use Scenarios
NASA Astrophysics Data System (ADS)
Knox, R. G.; Longo, M.; Zhang, K.; Levine, N. M.; Moorcroft, P. R.; Bras, R. L.
2011-12-01
Given business as usual land-use practices, it is estimated that by 2050 roughly half of the Amazon's pre-anthropogenic closed-canopy forest stands would remain. Of this, eight of the Amazon's twelve major hydrologic basins would lose more than half of their forest cover to deforestation. With the availability of these land-use projections, we may start to question the associated response of the region's hydrologic climate to significant land-cover change. Here the Ecosystem-Demography Model 2 (EDM2, a dynamic and spatially distributed terrestrial model of plant structure and composition, succession, disturbance and thermodynamic transfer) is coupled with the Brazilian Regional Atmospheric Model (BRAMS, a three-dimensional limited area model of the atmospheric fluid momentum equations and physics parameterizations for closing the system of equations at the lower boundary, convection, radiative transfer, microphysics, etc). This experiment conducts decadal simulations, framed with high-reliability lateral boundary conditions of reanalysis atmospheric data (ERA-40 interim) and variable impact of land-use scenarios (SimAmazonia). This is done by initializing the regional ecosystem structure with both aggressive and conservationist deforestation scenarios, and also by differentially allowing and not-allowing dynamic vegetation processes. While the lateral boundaries of the simulation will not reflect the future climate in the region, reanalysis data has provided improved realism as compared to results derived from GCM boundary data. Therefore, the ecosystem response (forest composition and structure) and the time-space patterns of hydrologic information (soil moisture, rainfall, evapotranspiration) are objectively compared in the context of a sensitivity experiment, as opposed to a forecast. The following questions are addressed. How do aggressive and conservative scenarios of Amazonian deforestation effect the regional patterning of hydrologic information in the Amazon and South American Convergence Zone, and does forest response in these regions influence that patterning of hydrologic information?
NASA Astrophysics Data System (ADS)
Gelati, Emiliano; Decharme, Bertrand; Calvet, Jean-Christophe; Minvielle, Marie; Polcher, Jan; Fairbairn, David; Weedon, Graham P.
2018-04-01
Physically consistent descriptions of land surface hydrology are crucial for planning human activities that involve freshwater resources, especially in light of the expected climate change scenarios. We assess how atmospheric forcing data uncertainties affect land surface model (LSM) simulations by means of an extensive evaluation exercise using a number of state-of-the-art remote sensing and station-based datasets. For this purpose, we use the CO2-responsive ISBA-A-gs LSM coupled with the CNRM version of the Total Runoff Integrated Pathways (CTRIP) river routing model. We perform multi-forcing simulations over the Euro-Mediterranean area (25-75.5° N, 11.5° W-62.5° E, at 0.5° resolution) from 1979 to 2012. The model is forced using four atmospheric datasets. Three of them are based on the ERA-Interim reanalysis (ERA-I). The fourth dataset is independent from ERA-Interim: PGF, developed at Princeton University. The hydrological impacts of atmospheric forcing uncertainties are assessed by comparing simulated surface soil moisture (SSM), leaf area index (LAI) and river discharge against observation-based datasets: SSM from the European Space Agency's Water Cycle Multi-mission Observation Strategy and Climate Change Initiative projects (ESA-CCI), LAI of the Global Inventory Modeling and Mapping Studies (GIMMS), and Global Runoff Data Centre (GRDC) river discharge. The atmospheric forcing data are also compared to reference datasets. Precipitation is the most uncertain forcing variable across datasets, while the most consistent are air temperature and SW and LW radiation. At the monthly timescale, SSM and LAI simulations are relatively insensitive to forcing uncertainties. Some discrepancies with ESA-CCI appear to be forcing-independent and may be due to different assumptions underlying the LSM and the remote sensing retrieval algorithm. All simulations overestimate average summer and early-autumn LAI. Forcing uncertainty impacts on simulated river discharge are larger on mean values and standard deviations than on correlations with GRDC data. Anomaly correlation coefficients are not inferior to those computed from raw monthly discharge time series, indicating that the model reproduces inter-annual variability fairly well. However, simulated river discharge time series generally feature larger variability compared to measurements. They also tend to overestimate winter-spring high flows and underestimate summer-autumn low flows. Considering that several differences emerge between simulations and reference data, which may not be completely explained by forcing uncertainty, we suggest several research directions. These range from further investigating the discrepancies between LSMs and remote sensing retrievals to developing new model components to represent physical and anthropogenic processes.
Reproducibility of precipitation distributions over extratropical continental regions in the CMIP5
NASA Astrophysics Data System (ADS)
Hirota, Nagio; Takayabu, Yukari
2013-04-01
Reproducibility of precipitation distributions over extratropical continental regions in the CMIP5 Nagio Hirota1,2 and Yukari N. Takayabu2 (1) National Institute of Polar Research (NIPR) (2) Atmosphere and Ocean Research Institute (AORI), the University of Tokyo Reproducibility of precipitation distributions over extratropical continental regions by CMIP5 climate models in their historical runs are evaluated, in comparison with GPCP(V2.2), CMAP(V0911), daily gridded gauge data APHRODITE. Surface temperature, cloud radiative forcing, and atmospheric circulations are also compared with observations of CRU-UEA, CERES, and ERA-interim/ERA40/JRA reanalysis data. It is shown that many CMIP5 models underestimate and overestimate summer precipitation over West and East Eurasia, respectively. These precipitation biases correspond to moisture transport associated with a cyclonic circulation bias over the whole continent of Eurasia. Meanwhile, many models underestimate cloud over the Eurasian continent, and associated shortwave cloud radiative forcing result in a significant warm bias. Evaporation feedback amplify the warm bias over West Eurasia. These processes consistently explain the precipitation biases over the Erasian continent in summer. We also examined reproducibility of winter precipitation, but robust results are not obtained yet due to the large uncertainty in observation associated with the adjustment of snow measurement in windy condition. Better observational data sets are necessary for further model validation. Acknowledgment: This study is supported by the PMM RA of JAXA, Green Network of Excellence (GRENE) Program by the Ministry of Education, Culture, Sports, Science and Technology, Japan, and Environment Research and Technology Development Fund (A-1201) of the Ministry of the Environment, Japan.
NASA Astrophysics Data System (ADS)
Palarz, Angelika; Celiński-Mysław, Daniel
2017-04-01
The dominant role in the development of deep convection is played by kinematic and thermodynamic conditions, as well as atmospheric circulation, land cover and local relief. Severe thunderstorms are considerably more likely to form in environments with large values of convective available potential energy (CAPE) and significant magnitude of vertical wind shears (VWSs). According to the most recent research, the tropospheric wind shears have an important influence on intensity, longevity and organisation of the primary convective systems - bow echoes, squall lines and supercell thunderstorms. This study, in turn, examines the role of wind structure in controlling the spatial and temporal variability of VWSs over Europe. Considering the importance of the kinematic conditions for the convective systems formation, research is limited exclusively to 0-1 km, 0-3 km and 0-6 km wind shears. In order to compute the VWS' values, the data derived from ERA-Interim reanalysis for the period 1981-2015 was applied. It consisted of U and V wind components with 12-hourly sampling and horizontal resolution of 0.75×0.75°. The VWS' values were calculated as wind difference between two levels - this entails that the hodograph's shape was not considered (e.g. Clark 2013, Pucik et. al 2015). We have analysed both VWS' mean values (MN) and frequency of VWSs exceeding assumed thresholds (FQ). Taking into account previous studies (e.g. Rasmussen & Blanchard 1998, Schneider et al. 2006, Schaumann & Przybylinski 2012), the thresholds for extremely high values of vertical wind shears were set at 10 m/s for 0-1 km shear, 15 m/s for 0-3 km shear and 18 m/s for 0-6 km shear. Both MN and FQ values were characterised by strong temporal variability, as well as significant spatial differentiation over the research area. A clear diurnal cycle was identified in the case of 0-1 km shear, while seasonal variability was typical for 0-3 km and 0-6 km shears. Regardless of the season, 0-1 km shear reached higher MN and FQ values at 00 UTC than at 12 UTC. Moreover, its spatial distribution showed distinct differences linked to the underlying surface type. Surface energy budget seems to be an important factor contributing to the diurnal and spatial variability of VWSs - it generates the formation of local air circulation leading to modification of the wind direction and speed in the boundary layer. For 0-3 km and 0-6 km shears, a noticeable spatial differentiation between land and sea areas was not recognised. The significantly higher MN and FQ values over the land were found exclusively in the case of 0-3 km shear during the winter, particularly over the Mediterranean region. In the middle troposphere, the VWS' fluctuations (0-3 and 0-6 km shears) are primarily determined by the seasonal changes in atmospheric circulation patterns over the research area.
NASA Astrophysics Data System (ADS)
Le Page, Michel; Gosset, Cindy; Oueslati, Ines; Calvez, Roger; Zribi, Mehrez; Lilli Chabaane, Zohra
2015-04-01
Meteorological forcing is essential to hydrological and hydro-geological modeling. In the case of the semi-arid catchment of Merguellil in Tunisia, long term time series are only available in the plain for a SYNOP station. Other meteorological stations have been installed since 2010. Therefore, this study aims at qualifying the reliability of the meteorological forcing necessary for an integrated model conception. We compare the meteorological data from 7 stations (sources: WMO and our own station), inside and around the Merguellil catchment, with daily gridded data at 25*25 km from AGRI4CAST and 50*50km from WFDEI. AGRI4CAST (Biaveti et al, 2008) is an interpolated dataset based on actual weather stations produced by the Joint Research Centre (JRC) for the Monitoring Agricultural Resources Unit (MARS). The WFDEI second version dataset (Weedon et al, 2014) has been generated using the same methodology as the widely used WATCH Forcing Data (WFD) by making use of the ERA-Interim reanalysis data. The studied meteorological variables are Rs, Tmoy, U2, P, RH and ET0, with the scores RMSE, bias and R pearson. Regarding the AGRI4CAST dataset, the scores are established over different periods according to variables based on stepping between the observed and interpolated data. The scores show good correlations between the observed temperatures, but with a spatial variability bound to the stations elevations. The moderate and interpolated radiations also show a good concordance indicating a good reliability. The R pearson score obtained for the values of relative humidity show a good correlation between the observations and the interpolations, however, the short periods of comparisons do not allow obtaining significant information and the RMSE and bias are important. Wind speed has an important negative bias for a majority of stations (positively for only one). Only one station shows concordances between the data. The study of the data indicates that we shall have to adjust the wind speeds and the relative humidity of the air for the implementation of a model. Finally the reference evapotranspiration seems relatively coherent, in spite of the dispersal observed during the meteorological measures, but with biases rather high and RMSE also rather high (> 1.3 mm). After revised the parameter U2 and RH, AGRI4CAST can possibly be corrected by ancillary ground stations. The analysis of the WFDEI dataset is currently under evaluation. (1) Biavetti, I., Karetsos, S., Ceglar, A., Toreti, A., Panagos P. (2014), European meteorological data: contribution to research, development and policy support, Proc. of SPIE Vol. 9229 922907-1 (2) Weedon, G. P., G. Balsamo, N. Bellouin, S. Gomes, M. J. Best, and P. Viterbo (2014), The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data, Water Resour. Res., 50, 7505-7514, doi:10.1002/ 2014WR015638.
NASA Astrophysics Data System (ADS)
Somot, Samuel; Houpert, Loic; Sevault, Florence; Testor, Pierre; Bosse, Anthony; Durrieu de Madron, Xavier; Dubois, Clotilde; Herrmann, Marine; Waldman, Robin; Bouin, Marie-Noëlle; Cassou, Christophe
2015-04-01
The North-Western Mediterranean Sea is known as one of the only place in the world where open-sea deep convection occurs (often up to more than 2000m) with the formation of the Western Mediterranean Deep Water (WMDW). This phenomena is mostly driven by local preconditioning of the water column and strong buoyancy losses during Winter. At the event scale, the WMDW formation is characterized by different phases (preconditioning, strong mixing, restratification and spreading), intense air-sea interaction and strong meso-scale activity but, on a longer time scale, it also shows a large interannual variability and may be strongly affected by climate change with impact on the regional biogeochemistry. Therefore observing, simulating and understanding the long-term temporal variability of the North-Western Mediterranean deep water formation is still today a very challenging task. We try here to tackle those issues thanks to (1) a thorough reanalysis of past in-situ observations (CTD, Argo, surface and deep moorings, gliders) and (2) an ERA-Interim driven simulation using a recently-developed fully coupled Regional Climate System Model (CNRM-RCSM4, Sevault et al. 2014). The multi-decadal simulation (1979-2013) is designed to be temporally and spatially homogeneous with a realistic chronology, a high resolution representation of both the regional ocean and atmosphere, specific initial conditions, a long-term spin-up and a full ocean-atmosphere coupling without constraint at the air-sea interface. The observation reanalysis allows to reconstruct interannual time series of deep water formation indicators (ocean surface variables, mixed layer depth, surface of the convective area, dense water volumes and characteristics of the deep water). Using the observation-based indicators and the model outputs, the 34 Winters of the period 1979-2013 are analysed in terms of weather regimes, related Winter air-sea fluxes, ocean preconditioning, mixed layer depth, surface of the convective area, deep water formation rate and long-term evolution of the deep water hydrology.
NASA Astrophysics Data System (ADS)
Kita, Y.; Waseda, T.
2016-12-01
Explosive cyclones (EXPCs) were investigated in three recent reanalyses. Their tracking methods is diverse among researchers, and additionally reanalysis data they use are various. Reanalysis data are essential as initial conditions to implement a downscale simulation with high accuracy. In this study, characteristics of EXPCs in three recent reanalyses were investigated from several perspectives: track densities, minimum MSLP (Mean Sea Level Pressure), and radius of EXPCs. The tracking method of extratropical cyclones (ECs) is to track local minimum of MSLP. The domain is limited to Eastern Asia and the North Pacific Ocean (lat20°:70°, lon100°:200°), and target period is 2000-2014. Fig.1 shows that the frequencies of EXPCs, which is defined as ECs whose MSLP drops by over 12hPa in 12hours, are greatly different, noting that extracted EXPCs are those whose most deepening phases were located around Japan (lat20°:60°, lon110°:160°). In addition, they are dissimilar to those in a previous EXPCs database (Kawamura et al.) and results in weather map analyses. The differences between each frequency might be caused by MSLP at their centers: there were sometimes small gaps of a few hPa. The minimum MSLP and effective radius were also investigated, but distributions of effective radii of EXPCs did not show significant difference (Fig.2). Thus, the gaps of central MSLP just matter in the differences of their trends. To evaluate the path density of EXPCs, two-dimensional kernel density estimation was conducted. The kernel densities of EXPCs' tracks in three reanalyses seem similar: they accumulated apparently above ocean (not shown). Two-dimensional kernel densities of EXPCs' most deepening points accumulated above Sea of Japan, Kuroshio and Extension. Therefore, it is proved that there are considerable differences in numbers of EXPCs depending on reanalyses, while the general characteristics of EXPCs just have little difference. It is worthwhile to say that careful attention should be paid when researchers investigate an individual EXPC with reanalysis data.
MERRA-2 Input Observations: Summary and Assessment
NASA Technical Reports Server (NTRS)
Koster, Randal D. (Editor); McCarty, Will; Coy, Lawrence; Gelaro, Ronald; Huang, Albert; Merkova, Dagmar; Smith, Edmond B.; Sienkiewicz, Meta; Wargan, Krzysztof
2016-01-01
The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) is an atmospheric reanalysis, spanning 1980 through near-realtime, that uses state-of-the-art processing of observations from the continually evolving global observing system. The effectiveness of any reanalysis is a function not only of the input observations themselves, but also of how the observations are handled in the assimilation procedure. Relevant issues to consider include, but are not limited to, data selection, data preprocessing, quality control, bias correction procedures, and blacklisting. As the assimilation algorithm and earth system models are fundamentally fixed in a reanalysis, it is often a change in the character of the observations, and their feedbacks on the system, that cause changes in the character of the reanalysis. It is therefore important to provide documentation of the observing system so that its discontinuities and transitions can be readily linked to discontinuities seen in the gridded atmospheric fields of the reanalysis. With this in mind, this document provides an exhaustive list of the input observations, the context under which they are assimilated, and an initial assessment of selected core observations fundamental to the reanalysis.
GPS water vapor and its comparison with radiosonde and ERA-Interim data in Algeria
NASA Astrophysics Data System (ADS)
Namaoui, Houaria; Kahlouche, Salem; Belbachir, Ahmed Hafid; Van Malderen, Roeland; Brenot, Hugues; Pottiaux, Eric
2017-05-01
Remote sensing of atmospheric water vapor using global positioning system (GPS) data has become an effective tool in meteorology, weather forecasting and climate research. This paper presents the estimation of precipitable water (PW) from GPS observations and meteorological data in Algeria, over three stations located at Algiers, Bechar and Tamanrasset. The objective of this study is to analyze the sensitivity of the GPS PW estimates for the three sites to the weighted mean temperature ( T m), obtained separately from two types of T m- T s regression [one general, and one developed specifically for Algeria ( T s stands for surface temperature)], and calculated directly from ERA-Interim data. The results show that the differences in T m are of the order of 18 K, producing differences of 2.01 mm in the final evaluation of PW. A good agreement is found between GPS-PW and PW calculated from radiosondes, with a small mean difference with Vaisala radiosondes. A comparison between GPS and ERA-Interim shows a large difference (4 mm) in the highlands region. This difference is possibly due to the topography. These first results are encouraging, in particular for meteorological applications in this region, with good hope to extend our dataset analysis to a more complete, nationwide coverage over Algeria.
Atmospheric forcing of sea ice anomalies in the Ross Sea polynya region
NASA Astrophysics Data System (ADS)
Dale, Ethan R.; McDonald, Adrian J.; Coggins, Jack H. J.; Rack, Wolfgang
2017-01-01
We investigate the impacts of strong wind events on the sea ice concentration within the Ross Sea polynya (RSP), which may have consequences on sea ice formation. Bootstrap sea ice concentration (SIC) measurements derived from satellite SSM/I brightness temperatures are correlated with surface winds and temperatures from Ross Ice Shelf automatic weather stations (AWSs) and weather models (ERA-Interim). Daily data in the austral winter period were used to classify characteristic weather regimes based on the percentiles of wind speed. For each regime a composite of a SIC anomaly was formed for the entire Ross Sea region and we found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya and vice versa. By analyzing sea ice motion vectors derived from the SSM/I brightness temperatures we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events, which persist for several days after a strong wind event has ended. Strong, negative correlations are found between SIC and AWS wind speed within the RSP indicating that strong winds cause significant advection of sea ice in the region. We were able to partially recreate these correlations using colocated, modeled ERA-Interim wind speeds. However, large AWS and model differences are observed in the vicinity of Ross Island, where ERA-Interim underestimates wind speeds by a factor of 1.7 resulting in a significant misrepresentation of RSP processes in this area based on model data. Thus, the cross-correlation functions produced by compositing based on ERA-Interim wind speeds differed significantly from those produced with AWS wind speeds. In general the rapid decrease in SIC during a strong wind event is followed by a more gradual recovery in SIC. The SIC recovery continues over a time period greater than the average persistence of strong wind events and sea ice motion anomalies. This suggests that sea ice recovery occurs through thermodynamic rather than dynamic processes.
NASA Astrophysics Data System (ADS)
Wang, Yetang; Thomas, Elizabeth R.; Hou, Shugui; Huai, Baojuan; Wu, Shuangye; Sun, Weijun; Qi, Shanzhong; Ding, Minghu; Zhang, Yulun
2017-11-01
This study uses a set of 37 firn core records over the West Antarctic Ice Sheet (WAIS) to test the performance of the twentieth century from the European Centre for Medium-Range Weather Forecasts (ERA-20C) reanalysis for snow accumulation and quantify temporal variability in snow accumulation since 1900. The firn cores are allocated to four geographical areas demarcated by drainage divides (i.e., Antarctic Peninsula (AP), western WAIS, central WAIS, and eastern WAIS) to calculate stacked records of regional snow accumulation. Our results show that the interannual variability in ERA-20C precipitation minus evaporation (P - E) agrees well with the corresponding ice core snow accumulation composites in each of the four geographical regions, suggesting its skill for simulating snow accumulation changes before the modern satellite era (pre-1979). Snow accumulation experiences significantly positive trends for the AP and eastern WAIS, a negative trend for the western WAIS, and no significant trend for the central WAIS from 1900 to 2010. The contrasting trends are associated with changes in the large-scale moisture transport driven by a deepening of the low-pressure systems and anomalies of sea ice in the Amundsen Sea Low region.
NASA Technical Reports Server (NTRS)
Cullather, Richard; Bosilovich, Michael
2017-01-01
The Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) is a global atmospheric reanalysis produced by the NASA Global Modeling and Assimilation Office (GMAO). It spans the satellite observing era from 1980 to the present. The goals of MERRA-2 are to provide a regularly-gridded, homogeneous record of the global atmosphere, and to incorporate additional aspects of the climate system including trace gas constituents (stratospheric ozone), and improved land surface representation, and cryospheric processes. MERRA-2 is also the first satellite-era global reanalysis to assimilate space-based observations of aerosols and represent their interactions with other physical processes in the climate system. The inclusion of these additional components are consistent with the overall objectives of an Integrated Earth System Analysis (IESA). MERRA-2 is intended to replace the original MERRA product, and reflects recent advances in atmospheric modeling and data assimilation. Modern hyperspectral radiance and microwave observations, along with GPS-Radio Occultation and NASA ozone datasets are now assimilated in MERRA-2. Much of the structure of the data files remains the same in MERRA-2. While the original MERRA data format was HDF-EOS, the MERRA-2 supplied binary data format is now NetCDF4 (with lossy compression to save space).
NASA Astrophysics Data System (ADS)
Rodriguez, Erasmo; Sanchez, Ines; Duque, Nicolas; Lopez, Patricia; Kaune, Alexander; Werner, Micha; Arboleda, Pedro
2017-04-01
The Magdalena Cauca Macrobasin (MCMB) in Colombia, with an area of about 257,000 km2, is the largest and most important water resources system in the country. With almost 80% of the Colombian population (46 million people) settled in the basin, it is the main source of water for demands including human consumption, agriculture, hydropower generation, industrial activities and ecosystems. Despite its importance, the basin has witnessed enormous changes in land-cover and extensive deforestation during the last three decades. To make things more complicated, the MCMB currently lacks a set of tools to support planning and decision making processes at scale of the whole watershed. Considering this, the MCMB has been selected as one of the six different regional case studies in the eartH2Observe research project, in which hydrological and meteorological reanalysis products are being validated for the period 1980-2012. The combined use of the hydrological and meteorological reanalysis data, with local hydrometeorological data (precipitation, temperature and streamflow) provided by the National Hydrometeorological Agency (IDEAM), has given us the opportunity to implement and test three hydrological models (VIC, WFLOW and a Water Balance Model based on the Budyko framework) at the basin scale. Additionally, results from the global models in the eartH2Observe hydrological reanalysis have been used to evaluate their performance against the observed streamflow data. This paper discusses the comparison between streamflow observations and simulations from the global hydrological models forced with the WFDEI data, and regional models forced with a combination of observed and meteorological reanalysis data, in the whole domain of the MCMB. For the three regional models analysed results show good performances for some sub-basins and poor performances for others. This can be due to the smoothing of the precipitation fields, interpolated from point daily rainfall data, the effect of horizontal precipitation (not included in the models) and weaknesses in the models structures; for example the poor performance of the VIC model in base flow dominated basins. In order to improve these simulations a strategy based on a hydrological model ensemble is currently being developed in the case study. Results from the global models, show that these consistently tend to overestimate runoff. This may be due to the coarse resolution used (50 km), biases in the ERA-Interim precipitation forcing, and the different partitioning within the global models of the precipitation into evapotranspiration and runoff. It is expected that within the Tier II hydrological reanalysis, where the models will produce outputs at 25 km resolution, some improvements may be identified.
Atmospheric response to Saharan dust deduced from ECMWF reanalysis (ERA) temperature increments
NASA Astrophysics Data System (ADS)
Kishcha, P.; Alpert, P.; Barkan, J.; Kirchner, I.; Machenhauer, B.
2003-09-01
This study focuses on the atmospheric temperature response to dust deduced from a new source of data the European Reanalysis (ERA) increments. These increments are the systematic errors of global climate models, generated in the reanalysis procedure. The model errors result not only from the lack of desert dust but also from a complex combination of many kinds of model errors. Over the Sahara desert the lack of dust radiative effect is believed to be a predominant model defect which should significantly affect the increments. This dust effect was examined by considering correlation between the increments and remotely sensed dust. Comparisons were made between April temporal variations of the ERA analysis increments and the variations of the Total Ozone Mapping Spectrometer aerosol index (AI) between 1979 and 1993. The distinctive structure was identified in the distribution of correlation composed of three nested areas with high positive correlation (>0.5), low correlation and high negative correlation (<-0.5). The innermost positive correlation area (PCA) is a large area near the center of the Sahara desert. For some local maxima inside this area the correlation even exceeds 0.8. The outermost negative correlation area (NCA) is not uniform. It consists of some areas over the eastern and western parts of North Africa with a relatively small amount of dust. Inside those areas both positive and negative high correlations exist at pressure levels ranging from 850 to 700 hPa, with the peak values near 775 hPa. Dust-forced heating (cooling) inside the PCA (NCA) is accompanied by changes in the static instability of the atmosphere above the dust layer. The reanalysis data of the European Center for Medium Range Weather Forecast (ECMWF) suggest that the PCA (NCA) corresponds mainly to anticyclonic (cyclonic) flow, negative (positive) vorticity and downward (upward) airflow. These findings are associated with the interaction between dust-forced heating/cooling and atmospheric circulation. This paper contributes to a better understanding of dust radiative processes missed in the model.
Global Tropical Moisture Exports and their Influence on Extratropical Cyclone Activity
NASA Astrophysics Data System (ADS)
Knippertz, P.; Wernli, H.; Gläser, G.
2012-04-01
Many case studies have shown that heavy precipitation events and rapid cyclogenesis in the extratropics can be fuelled by moist and warm tropical air masses. Often the tropical moisture export (TME) occurs through a longitudinally confined region in the subtropics. Here a climatology of TMEs to both hemispheres is constructed on the basis of seven-day forward trajectories, which were started daily from the tropical lower troposphere and which were required to reach a water vapour flux of at least 100 g kg-1 m s-1 somewhere poleward of 35 degrees. For this analysis 6-hourly European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim re-analysis data have been used for the 32-year period 1979-2010. A comparison with a TME climatology based upon the older ERA-40 re-analysis shows little sensitivity. The results are then related to the deepening of objectively identified (extratropical) cyclones in both hemispheres. On average TME trajectories move upwards and eastwards on their way across the subtropics in both hemispheres and are associated with both moisture and meridional-wind anomalies. TME shows four main regions of activity in both hemispheres: In the northern hemisphere these are the eastern Pacific ("Pineapple Express" region) with a marked activity maximum in boreal winter, the West Pacific with maximum activity in summer and autumn associated with the Asian monsoon, the narrow Great Plains region with a maximum in spring and summer associated with the North American monsoon and the western Atlantic or Gulf Stream region with a rather flat seasonal cycle. In the southern hemisphere activity peaks over the central and eastern Pacific, eastern South America and the adjacent Atlantic, the western Indian Ocean, and western Australia. Southern hemisphere TME activity peaks in boreal winter, particularly over the Atlantic and Pacific Oceans, which suggests a significant influence of northern hemispheric Rossby wave energy propagation across the equator. The interannual variability in several regions is significantly modulated by El Niño. A detailed analysis of TME encounters along individual extratropical cyclone tracks reveals several extraordinary cyclone-deepening events associated with TME trajectories (e.g. storm "Klaus" in January 2009). A statistical analysis quantifies the fraction of explosively deepening cyclones that occur with and without a TME influence.
A First Look at Surface Meteorology in the Arctic System Reanalysis
NASA Astrophysics Data System (ADS)
Slater, A. G.; Serreze, M. C.; Asr-Team, A.
2010-12-01
The Arctic System Reanalysis (ASR) is a joint venture between several universities (Ohio-State Uni., Uni. Colorado, Uni. Illinois UC, Uni. Alaska) and NCAR. It is a regional reanalysis that will span the period 2000-2010, possibly continuing into the future. Compared to current regional or global reanalyses it will have a spatial resolution twice that of prior efforts; a final product is expected to be an equal area projection of 15km grid boxes. The domain encompasses all the Arctic Ocean drainage areas. Several new reanalysis applications have been implemented, with some being Arctic specific - for example satellite derived sea ice age is translated into thickness and MODIS surface albedo is to be ingested. A preliminary ASR run has been performed for the period June 2007 - December 2008 at a reduced resolution of 30km. Here we make a comparison of all recent reanalysis products (NARR, MERRA, ERA-I, CFSRR) to both the ASR and observations at 350 surface stations in the Western Arctic; there is a major focus on Alaska. An intercomparison of surface variables (which are perhaps the most used reanalysis data) has been undertaken including temperature, humidity and solar radiation. Results indicate that the level of discrepancy between reanalysis data and observations is of similar magnitude as it is between all the reanalysis products; possibly suggesting that we have reached the limit of repersentativeness when comparing grid boxes to point measurements.
NASA Astrophysics Data System (ADS)
Beck, Hylke E.; van Dijk, Albert I. J. M.; Levizzani, Vincenzo; Schellekens, Jaap; Miralles, Diego G.; Martens, Brecht; de Roo, Ad
2017-01-01
Current global precipitation (P) datasets do not take full advantage of the complementary nature of satellite and reanalysis data. Here, we present Multi-Source Weighted-Ensemble Precipitation (MSWEP) version 1.1, a global P dataset for the period 1979-2015 with a 3-hourly temporal and 0.25° spatial resolution, specifically designed for hydrological modeling. The design philosophy of MSWEP was to optimally merge the highest quality P data sources available as a function of timescale and location. The long-term mean of MSWEP was based on the CHPclim dataset but replaced with more accurate regional datasets where available. A correction for gauge under-catch and orographic effects was introduced by inferring catchment-average P from streamflow (Q) observations at 13 762 stations across the globe. The temporal variability of MSWEP was determined by weighted averaging of P anomalies from seven datasets; two based solely on interpolation of gauge observations (CPC Unified and GPCC), three on satellite remote sensing (CMORPH, GSMaP-MVK, and TMPA 3B42RT), and two on atmospheric model reanalysis (ERA-Interim and JRA-55). For each grid cell, the weight assigned to the gauge-based estimates was calculated from the gauge network density, while the weights assigned to the satellite- and reanalysis-based estimates were calculated from their comparative performance at the surrounding gauges. The quality of MSWEP was compared against four state-of-the-art gauge-adjusted P datasets (WFDEI-CRU, GPCP-1DD, TMPA 3B42, and CPC Unified) using independent P data from 125 FLUXNET tower stations around the globe. MSWEP obtained the highest daily correlation coefficient (R) among the five P datasets for 60.0 % of the stations and a median R of 0.67 vs. 0.44-0.59 for the other datasets. We further evaluated the performance of MSWEP using hydrological modeling for 9011 catchments (< 50 000 km2) across the globe. Specifically, we calibrated the simple conceptual hydrological model HBV (Hydrologiska Byråns Vattenbalansavdelning) against daily Q observations with P from each of the different datasets. For the 1058 sparsely gauged catchments, representative of 83.9 % of the global land surface (excluding Antarctica), MSWEP obtained a median calibration NSE of 0.52 vs. 0.29-0.39 for the other P datasets. MSWEP is available via http://www.gloh2o.org.
NASA Astrophysics Data System (ADS)
Verfaillie, Deborah; Déqué, Michel; Morin, Samuel; Lafaysse, Matthieu
2017-11-01
We introduce the method ADAMONT v1.0 to adjust and disaggregate daily climate projections from a regional climate model (RCM) using an observational dataset at hourly time resolution. The method uses a refined quantile mapping approach for statistical adjustment and an analogous method for sub-daily disaggregation. The method ultimately produces adjusted hourly time series of temperature, precipitation, wind speed, humidity, and short- and longwave radiation, which can in turn be used to force any energy balance land surface model. While the method is generic and can be employed for any appropriate observation time series, here we focus on the description and evaluation of the method in the French mountainous regions. The observational dataset used here is the SAFRAN meteorological reanalysis, which covers the entire French Alps split into 23 massifs, within which meteorological conditions are provided for several 300 m elevation bands. In order to evaluate the skills of the method itself, it is applied to the ALADIN-Climate v5 RCM using the ERA-Interim reanalysis as boundary conditions, for the time period from 1980 to 2010. Results of the ADAMONT method are compared to the SAFRAN reanalysis itself. Various evaluation criteria are used for temperature and precipitation but also snow depth, which is computed by the SURFEX/ISBA-Crocus model using the meteorological driving data from either the adjusted RCM data or the SAFRAN reanalysis itself. The evaluation addresses in particular the time transferability of the method (using various learning/application time periods), the impact of the RCM grid point selection procedure for each massif/altitude band configuration, and the intervariable consistency of the adjusted meteorological data generated by the method. Results show that the performance of the method is satisfactory, with similar or even better evaluation metrics than alternative methods. However, results for air temperature are generally better than for precipitation. Results in terms of snow depth are satisfactory, which can be viewed as indicating a reasonably good intervariable consistency of the meteorological data produced by the method. In terms of temporal transferability (evaluated over time periods of 15 years only), results depend on the learning period. In terms of RCM grid point selection technique, the use of a complex RCM grid points selection technique, taking into account horizontal but also altitudinal proximity to SAFRAN massif centre points/altitude couples, generally degrades evaluation metrics for high altitudes compared to a simpler grid point selection method based on horizontal distance.
Seasonal and Interannual Variations of Heat Fluxes in the Barents Sea Region
NASA Astrophysics Data System (ADS)
Bashmachnikov, I. L.; Yurova, A. Yu.; Bobylev, L. P.; Vesman, A. V.
2018-03-01
Seasonal and interannual variations in adjective heat fluxes in the ocean ( dQ oc) and the convergence of advective heat fluxes in the atmosphere ( dQ atm) in the Barents Sea region have been investigated over the period of 1993-2012 using the results of the MIT regional eddy-permitting model and ERA-Interim atmospheric reanalysis. Wavelet analysis and singular spectrum analysis are used to reveal concealed periodicities. Seasonal 2- to 4- and 5- to 8-year cycles are revealed in the dQ oc and dQ atm data. It is also found that seasonal variations in dQ oc are primarily determined by the integrated volume fluxes through the western boundary of the Barents Sea, whereas the 20-year trend is determined by the temperature variation of the transported water. A cross-wavelet analysis of dQ oc and dQ atm in the Barents Sea region shows that the seasonal variations in dQ oc and dQ atm are nearly in-phase, while their interannual variations are out-of-phase. It is concluded that the basin of the Barents Sea plays an important role in maintaining the feedback mechanism (the Bjerknes compensation) of the ocean-atmosphere system in the Arctic region.
Prediction of North Pacific Height Anomalies During Strong Madden-Julian Oscillation Events
NASA Astrophysics Data System (ADS)
Kai-Chih, T.; Barnes, E. A.; Maloney, E. D.
2017-12-01
The Madden Julian Oscillation (MJO) creates strong variations in extratropical atmospheric circulations that have important implications for subseasonal-to-seasonal prediction. In particular, certain MJO phases are characterized by a consistent modulation of geopotential height in the North Pacific and adjacent regions across different MJO events. Until recently, only limited research has examined the relationship between these robust MJO tropical-extratropical teleconnections and model prediction skill. In this study, reanalysis data (MERRA and ERA-Interim) and ECMWF ensemble hindcasts are used to demonstrate that robust teleconnections in specific MJO phases and time lags are also characterized by excellent agreement in the prediction of geopotential height anoma- lies across model ensemble members at forecast leads of up to 3 weeks. These periods of enhanced prediction capabilities extend the possibility for skillful extratropical weather prediction beyond traditional 10-13 day limits. Furthermore, we also examine the phase dependency of teleconnection robustness by using Linear Baroclinic Model (LBM) and the result is consistent with the ensemble hindcasts : the anomalous heating of MJO phase 2 (phase 6) can consistently generate positive (negative) geopotential height anomalies around the extratropical Pacific with a lead of 15-20 days, while other phases are more sensitive to the variaion of the mean state.
Modelled and observed mass balance of Rikha Samba Glacier, Nepal, Central Himalaya
NASA Astrophysics Data System (ADS)
Gurung, T. R.; Kayastha, R. B.; Fujita, K.; Sinisalo, A. K.; Stumm, D.; Joshi, S.; Litt, M.
2016-12-01
Glacier mass balance variability has an implication for the regional water resources and it helps to understand the response of glacier to climate change in the Himalayan region. Several mass balance studies have been started in the Himalayan region since 1970s, but they are characterized by frequent temporal gaps and a poor spatial representatively. This study aims at bridging the temporal gaps in a long term mass balance series of the Rikha Samba glacier (5383 - 6475 m a.s.l.), a benchmark glacier located in the Hidden Valley, Mustang, Nepal. The ERA Interim reanalysis data for the period 2011-2015 is calibrated with the observed meteorological variables from an AWS installed near the glacier terminus. We apply an energy mass balance model, validated with the available in-situ measurements for the years 1998 and 2011-2015. The results show that the glacier is shrinking at a moderate negative mass balance rate for the period 1995 to 2015 and the high altitude location of Rikha Samba also prevents a bigger mass loss compared to other small Himalayan glaciers. Precipitation from July to January and the mean air temperature from June to October are the most influential climatic parameters of the annual mass balance variability of Rikha Samba glacier.
Pathak, Amey; Ghosh, Subimal; Kumar, Praveen; Murtugudde, Raghu
2017-10-06
Summer Monsoon Rainfall over the Indian subcontinent displays a prominent variability at intraseasonal timescales with 10-60 day periods of high and low rainfall, known as active and break periods, respectively. Here, we study moisture transport from the oceanic and terrestrial sources to the Indian landmass at intraseasonal timescales using a dynamic recycling model, based on a Lagrangian trajectory approach applied to the ECMWF-ERA-interim reanalysis data. Intraseasonal variation of monsoon rainfall is associated with both a north-south pattern from the Indian landmass to the Indian Ocean and an east-west pattern from the Core Monsoon Zone (CMZ) to eastern India. We find that the oceanic sources of moisture, namely western and central Indian Oceans (WIO and CIO) contribute to the former, while the major terrestrial source, Ganga basin (GB) contributes to the latter. The formation of the monsoon trough over Indo-Gangetic plain during the active periods results in a high moisture transport from the Bay of Bengal and GB into the CMZ in addition to the existing southwesterly jet from WIO and CIO. Our results indicate the need for the correct representation of both oceanic and terrestrial sources of moisture in models for simulating the intraseasonal variability of the monsoon.
ZWD time series analysis derived from NRT data processing. A regional study of PW in Greece.
NASA Astrophysics Data System (ADS)
Pikridas, Christos; Balidakis, Kyriakos; Katsougiannopoulos, Symeon
2015-04-01
ZWD (Zenith Wet/non-hydrostatic Delay) estimates are routinely derived Near Real Time from the new established Analysis Center in the Department of Geodesy and Surveying of Aristotle University of Thessaloniki (DGS/AUT-AC), in the framework of E-GVAP (EUMETNET GNSS water vapour project) since October 2014. This process takes place on an hourly basis and yields, among else, station coordinates and tropospheric parameter estimates for a network of 90+ permanent GNSS (Global Navigation Satellite System) stations. These are distributed at the wider part of Hellenic region. In this study, temporal and spatial variability of ZWD estimates were examined, as well as their relation with coordinate series extracted from both float and fixed solution of the initial phase ambiguities. For this investigation, Bernese GNSS Software v5.2 was used for the acquisition of the 6 month dataset from the aforementioned network. For time series analysis we employed techniques such as the Generalized Lomb-Scargle periodogram and Burg's maximum entropy method due to inefficiencies of the Discrete Fourier Transform application in the test dataset. Through the analysis, interesting results for further geophysical interpretation were drawn. In addition, the spatial and temporal distributions of Precipitable Water vapour (PW) obtained from both ZWD estimates and ERA-Interim reanalysis grids were investigated.
NASA Astrophysics Data System (ADS)
Salinas, Cornelius Csar Jude H.; Chang, Loren C.
2018-06-01
This work presents the results of a Conventional Empirical Orthogonal Function Analysis on daily global zonal mean temperature profiles in the Upper Troposphere and Lower Stratosphere (15-35 km), as measured by the FORMOSAT-3/COSMIC mission from January 2007 to June 2013. For validation, results were compared with ERA-Interim reanalysis. Results show that, the leading global EOF mode (27%) from COSMIC is consistent with temperature anomalies due to the tropical cooling associated with boreal winter Sudden Stratospheric Warmings (SSW). The second global EOF mode from COSMIC (15.3%) is consistent with temperature anomalies due to the Quasi-biennial Oscillation (QBO). The third global mode from COSMIC (10.9%) is consistent with temperature anomalies due to the El Nino Southern Oscillation. This work also shows that the second northern hemisphere EOF mode from COSMIC (16.8%) is consistent with temperature anomalies due Rossby-wave breaking (RWB) which is expected to only be resolved by a high vertical and temporal resolution dataset like COSMIC. Our work concludes that the use of a high vertical and temporal resolution dataset like COSMIC yields non-seasonal EOF modes that are consistent with relatively more intricate temperature anomalies due to the SSW, QBO, ENSO and RWB.
Inter-annual Variability of Temperature and Extreme Heat Events during the Nairobi Warm Season
NASA Astrophysics Data System (ADS)
Scott, A.; Misiani, H. O.; Zaitchik, B. F.; Ouma, G. O.; Anyah, R. O.; Jordan, A.
2016-12-01
Extreme heat events significantly stress all organisms in the ecosystem, and are likely to be amplified in peri-urban and urban areas. Understanding the variability and drivers behind these events is key to generating early warnings, yet in Equatorial East Africa, this information is currently unavailable. This study uses daily maximum and minimum temperature records from weather stations within Nairobi and its surroundings to characterize variability in daily minimum temperatures and the number of extreme heat events. ERA-Interim reanalysis is applied to assess the drivers of these events at event and seasonal time scales. At seasonal time scales, high temperatures in Nairobi are a function of large scale climate variability associated with the Atlantic Multi-decadal Oscillation (AMO) and Global Mean Sea Surface Temperature (GMSST). Extreme heat events, however, are more strongly associated with the El Nino Southern Oscillation (ENSO). For instance, the persistence of AMO and ENSO, in particular, provide a basis for seasonal prediction of extreme heat events/days in Nairobi. It is also apparent that the temporal signal from extreme heat events in tropics differs from classic heat wave definitions developed in the mid-latitudes, which suggests that a new approach for defining these events is necessary for tropical regions.
Cuo, Lan; Zhang, Yongxin
2017-07-11
The Tibetan Plateau and the surrounding (TPS) with its vast land mass and high elevation affects regional climate and weather. The TPS is also the headwater of 9 major Asian rivers that provide fresh water for 1.65 billion people and many ecosystems, with wet season (May-September) precipitation being the critical component of the fresh water. Using station observations, ERA-Interim and MERRA2 reanalysis, we find that wet season precipitation displays vertical gradients (i.e., changes with elevation) that vary within the region on the TPS. The decrease of precipitation with elevation occurs in the interior TPS with elevation larger than 4000 m, little or no change over the southeastern TPS, and increase elsewhere. The increase of precipitation with elevation is caused by increasing convective available potential energy (CAPE) and decreasing lifting condensation level (LCL) with elevation overwhelming the effects of decreasing total column water vapor (TCWV) with elevation. The decreasing precipitation with elevation is due to the combined effects of increasing LCL and decreasing TCWV. LCL and CAPE play a more important role than TCWV in determining the spatial patterns. These findings are important for hydrology study in observation scarce mountainous areas, water resources and ecosystem managements in the region.
Sensitivity analysis with the regional climate model COSMO-CLM over the CORDEX-MENA domain
NASA Astrophysics Data System (ADS)
Bucchignani, E.; Cattaneo, L.; Panitz, H.-J.; Mercogliano, P.
2016-02-01
The results of a sensitivity work based on ERA-Interim driven COSMO-CLM simulations over the Middle East-North Africa (CORDEX-MENA) domain are presented. All simulations were performed at 0.44° spatial resolution. The purpose of this study was to ascertain model performances with respect to changes in physical and tuning parameters which are mainly related to surface, convection, radiation and cloud parameterizations. Evaluation was performed for the whole CORDEX-MENA region and six sub-regions, comparing a set of 26 COSMO-CLM runs against a combination of available ground observations, satellite products and reanalysis data to assess temperature, precipitation, cloud cover and mean sea level pressure. The model proved to be very sensitive to changes in physical parameters. The optimized configuration allows COSMO-CLM to improve the simulated main climate features of this area. Its main characteristics consist in the new parameterization of albedo, based on Moderate Resolution Imaging Spectroradiometer data, and the new parameterization of aerosol, based on NASA-GISS AOD distributions. When applying this configuration, Mean Absolute Error values for the considered variables are as follows: about 1.2 °C for temperature, about 15 mm/month for precipitation, about 9 % for total cloud cover, and about 0.6 hPa for mean sea level pressure.
NASA Astrophysics Data System (ADS)
Remya, R.; Kottayil, Ajil; Mohanakumar, K.
2017-07-01
This study demonstrates the variability in Western Disturbance during the sudden stratospheric warming (SSW) period and its eventual influence on the north Indian weather pattern. The modulations in the north Indian winter under the two phases of the Quasi-biennial oscillation (QBO) during SSW periods are also examined. The analysis has been carried out by using the ERA interim reanalysis dataset for different pressure levels in the stratosphere and upper troposphere during the time period of 1980-2010. The daily minimum surface temperature data published by India Meteorological Department from 1969 to 2013 has been used for the analysis of temperature anomaly over north India during SSW. The period of intense stratospheric warming witnesses a downward propagation and intensification of kinetic energy from stratosphere to upper troposphere over the Mediterranean and Caspian Sea. When QBO is in easterly phase, the cooling over north India is much larger when compared to the westerly phase during instances of SSW. SSW coincident with the easterly phase of QBO causes an intensified subtropical jet over the mid-latitude regions. The modulation in circulation pattern in stratosphere and upper troposphere when ENSO occurs during SSW period is also analysed separately. This study provides the link among SSW, Western Disturbances and the north Indian cooling during winter season.
Cloud and radiative heating profiles associated with the boreal summer intraseasonal oscillation
NASA Astrophysics Data System (ADS)
Kim, Jinwon; Waliser, Duane E.; Cesana, Gregory V.; Jiang, Xianan; L'Ecuyer, Tristan; Neena, J. M.
2018-03-01
The cloud water content (CW) and radiative heating rate (QR) structures related to northward propagating boreal summer intraseasonal oscillations (BSISOs) are analyzed using data from A-train satellites in conjunction with the ERA-Interim reanalysis. It is found that the northward movement of CW- and QR anomalies are closely synchronized with the northward movement of BSISO precipitation maxima. Commensurate with the northward propagating BSISO precipitation maxima, the CW anomalies exhibit positive ice (liquid) CW maxima in the upper (middle/low) troposphere with a prominent tilting structure in which the low-tropospheric (upper-tropospheric) liquid (ice) CW maximum leads (lags) the BSISO precipitation maximum. The BSISO-related shortwave heating (QSW) heats (cools) the upper (low) troposphere; the longwave heating (QLW) cools (heats) the upper (middle/low) troposphere. The resulting net radiative heating (QRN), being dominated by QLW, cools (heats) the atmosphere most prominently above the 200 hPa level (below the 600 hPa level). Enhanced clouds in the upper and middle troposphere appears to play a critical role in increasing low-level QLW and QRN. The vertically-integrated QSW, QLW and QRN are positive in the region of enhanced CW with the maximum QRN near the latitude of the BSISO precipitation maximum. The bottom-heavy radiative heating anomaly resulting from the cloud-radiation interaction may act to strengthen convection.
Heat waves in Senegal : detection, characterization and associated processes.
NASA Astrophysics Data System (ADS)
Gnacoussa Sambou, Marie Jeanne; Janicot, Serge; Badiane, Daouda; Pohl, Benjamin; Dieng, Abdou L.; Gaye, Amadou T.
2017-04-01
Atmospheric configuration and synoptic evolution of patterns associated with Senegalese heat wave (HW) are examined on the period 1979-2014 using the Global Surface Summary of the Day (GSOD) observational database and ERA-Interim reanalysis. Since there is no objective and uniform definition of HW events, threshold methods based on atmospheric variables as daily maximum (Tmax) / minimum (Tmin) temperatures and daily mean apparent temperature (AT) are used to define HW threshold detection. Each criterion is related to a specific category of HW events: Tmax (warm day events), Tmin (warm night events) and AT (combining temperature and moisture). These definitions are used in order to characterize as well as possible the warm events over the Senegalese regions (oceanic versus continental region). Statistics on time evolution and spatial distribution of warm events are carried out over the 2 seasons of maximum temperature (March-May and October-November). For each season, a composite of HW events, as well as the most extended event over Senegal (as a case study) are analyzed using usual atmospheric fields (sea level pressure, geopotential height, total column water content, wind components, 2m temperature). This study is part of the project ACASIS (https://acasis.locean-ipsl.upmc.fr/doku.php) on heat waves occurrences over the Sahel and their impact on health. Keywords: heat wave, Senegal, ACASIS.
NASA Astrophysics Data System (ADS)
Fathurochman, Irvan; Lubis, Sandro W.; Setiawan, Sonni
2017-01-01
The Madden-Julian Oscillation (MJO) is the leading mode of intra-seasonal variability in the tropical troposphere, characterized by an eastward moving ‘pulse’ of cloud and rainfall near the equator. In this study, total precipitable water (TPW) and total column ozone (TCO) datasets from ECMWF ERA-Interim reanalysis were used to analyse the impact of the MJO on the distribution of water vapor and column ozone in the tropics from 1979 to 2013. The results show that seasonal variations of TPW modulated by the MJO are maximized in the tropics of about 10°S-10°N during boreal winter, while the variation in TCO is maximized in the mid-latitudes of about 30°S - 40°N in the same season. The composite analysis shows that MJO modulates TPW and TCO anomalies eastward across the globe. The underlying mechanism of the MJO’s impact on TPW is mainly associated with variation of tropical convection modulated by the MJO, while the underlying mechanism of the MJO’s impact on TCO is mainly associated with an intra-seasonal variability of tropopause height modulated by the MJO activity. This knowledge helps to improve the prediction skill of the intra-seasonal variation of water vapor and column ozone in the tropics during boreal winter.
Moisture fluxes towards Switzerland: investigating future changes in CMIP5 climate models
NASA Astrophysics Data System (ADS)
Fazan, Valerie; Martius, Olivia; Martynov, Andrey; Panziera, Luca
2017-04-01
High integrated vapor transport (IVT) in the atmosphere directed perpendicular to the orography is an important proxy for flood related precipitation in many mountainous areas around the world. Here we focus on flood related IVT and its changes in a warmer climate in Switzerland, where most high-impact floods events in the past 30 years were connected to exceptional IVT upstream of the mountains. Our study aims at investigating how these critical IVT values are projected to evolve in the future in a changing climate. The IVT is computed from 15 CMIP5 climate models for the past (1950-2005) and the future (2006-2100) under the RCP 8.5 scenario ("business as usual"). In order to check the accuracy of the models and the effect of the varying resolution, present day IVT from the CMIP5 models is compared with the ERA-Interim reanalysis data (period 1979-2015). A quantile mapping technique is then used to correct biases. The same bias corrections are applied to the future (2006-2100) IVT data. Finally, future changes in extreme IVT are investigated. This includes an analysis of changes in the magnitude and direction of the moisture flux in the different seasons for different regions in Switzerland.
NASA Astrophysics Data System (ADS)
Eiras-Barca, Jorge; Ramos, Alexandre M.; Pinto, Joaquim G.; Trigo, Ricardo M.; Liberato, Margarida L. R.; Miguez-Macho, Gonzalo
2018-01-01
The explosive cyclogenesis of extratropical cyclones and the occurrence of atmospheric rivers are characteristic features of a baroclinic atmosphere, and are both closely related to extreme hydrometeorological events in the mid-latitudes, particularly on coastal areas on the western side of the continents. The potential role of atmospheric rivers in the explosive cyclone deepening has been previously analysed for selected case studies, but a general assessment from the climatological perspective is still missing. Using ERA-Interim reanalysis data for 1979-2011, we analyse the concurrence of atmospheric rivers and explosive cyclogenesis over the North Atlantic and North Pacific basins for the extended winter months (ONDJFM). Atmospheric rivers are identified for almost 80 % of explosive deepening cyclones. For non-explosive cyclones, atmospheric rivers are found only in roughly 40 % of the cases. The analysis of the time evolution of the high values of water vapour flux associated with the atmospheric river during the cyclone development phase leads us to hypothesize that the identified relationship is the fingerprint of a mechanism that raises the odds of an explosive cyclogenesis occurrence and not merely a statistical relationship. These new insights on the relationship between explosive cyclones and atmospheric rivers may be helpful to a better understanding of the associated high-impact weather events.
Dry intrusions: Lagrangian climatology and impact on the boundary layer
NASA Astrophysics Data System (ADS)
Raveh-Rubin, Shira; Wernli, Heini
2017-04-01
Dry air intrusions (DIs) are large-scale descending airstreams. A DI is typically referred to as a coherent airstream in the cold sector of an extratropical cyclone. Emerging evidence suggests that DIs are linked to severe surface wind gusts. However, there is yet no strict Lagrangian definition of DIs, and so their climatological frequency, dynamical characteristics as well as their seasonal and spatial distributions are unknown. Furthermore, the dynamical interaction between DIs and the planetary boundary layer is not fully understood. Here, we suggest a Lagrangian definition for DI air parcels, namely a minimum pressure increase along a trajectory of 400 hPa in 48 hours. Based on this criterion, the open questions are addressed by: (i) a novel global Lagrangian climatology for the ECMWF ERA-Interim reanalysis dataset for the years 1979-2014; (ii) a case study illustrating the interaction between DIs and the boundary layer. We find that DIs occur predominantly in winter. DIs coherently descend from the upper troposphere (their stratospheric origin is small), to the mid- and low levels, where they mix with their environment and diverge. Different physical characteristics typify DIs in the different regions and seasons. Finally, we demonstrate the different mechanisms by which DIs can destabilize the boundary layer and facilitate the formation of strong surface winds.
The atmosphere- and hydrosphere-correlated signals in GPS observations
NASA Astrophysics Data System (ADS)
Bogusz, Janusz; Boy, Jean-Paul; Klos, Anna; Figurski, Mariusz
2015-04-01
The circulation of surface geophysical fluids (e.g. atmosphere, ocean, continental hydrology, etc.) induces global mass redistribution at the Earth's surface, and then surface deformations and gravity variations. The deformations can be reliably recorded by permanent GPS observations nowadays. The loading effects can be precisely modelled by convolving outputs from global general circulation models and Green's functions describing the Earth's response. Previously published papers showed that either surface gravity records or space-based observations can be efficiently corrected for atmospheric loading effects using surface pressure fields from atmospheric models. In a similar way, loading effects due to continental hydrology can be corrected from precise positioning observations. We evaluated 3-D displacement at the selected ITRF2008 core sites that belong to IGS (International GNSS Service) network due to atmospheric, oceanic and hydrological circulation using different models. Atmospheric and induced oceanic loading estimates were computed using the ECMWF (European Centre for Medium Range Weather Forecasts) operational and reanalysis (ERA interim) surface pressure fields, assuming an inverted barometer ocean response or a barotropic ocean model forced by air pressure and winds (MOG2D). The IB (Inverted Barometer) hypothesis was classically chosen, in which atmospheric pressure variations are fully compensated by static sea height variations. This approximation is valid for periods exceeding typically 5 to 20 days. At higher frequencies, dynamic effects cannot be neglected. Hydrological loading were provided using MERRA land (Modern-Era Retrospective Analysis for Research and Applications - NASA reanalysis for the satellite era using a major new version of the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5)) for the different stations. After that we compared the results to the GPS-derived time series of North, East and Up components. The analysis of satellite data was performed twofold: firstly, the time series from network solution (NS) processed in Bernese 5.0 software by the Military University of Technology EPN Local Analysis Centre, secondly, the ones from PPP (Precise Point Positioning) from JPL (Jet Propulsion Laboratory) processing in Gipsy-Oasis were analyzed. Both were modelled with wavelet decomposition with Meyer orthogonal mother wavelet. Here, nine levels of decomposition were applied and eighth detail of it was interpreted as changes close to one year. In this way, both NS and PPP time series where presented as curves with annual period with amplitudes and phases changeable in time. The same analysis was performed for atmospheric (ATM) and hydrospheric (HYDR) models. All annual curves (modelled from NS, PPP, ATM and HYDR) were then compared to each other to investigate whether GPS observations contain the atmosphere and hydrosphere correlated signals and in what way the amplitudes of them may disrupt the GPS time series.
Quantifying the changes in the High Mountain Asia snow hydrology
NASA Astrophysics Data System (ADS)
Yoon, Y.; Kumar, S.; Mocko, D. M.; Rosenberg, R. I.; Kwon, Y.; Forman, B. A.; Zaitchik, B. F.
2017-12-01
The melting of snow and glaciers in the High Mountain Asia (HMA) provides the water needs of approximately 1.3 billion people in the region. Increasing temperatures have large effects on the hydrologic cycle, influencing snowmelt, snowpack, stream flow, and water runoff, which can impact all aspects of water security, such as water allocation, conservation, efficiency and land-use planning. Most mountain regions, however, remain ungauged without in-situ measurement of precipitation or snowpack due to the complex terrain, and thus it is difficult to understand the regional water balance and assess how it might change in the future. In this study, we focus on characterizing the spatiotemporal patterns of snowpack states and fluxes over the last 30+ years (1980 - present) and assessing the relationship between snowmelt and runoff. The Noah land surface model with multi-parameterization options, version 3.6 (Noah-MP.3.6) in the NASA Land Information System (LIS) is used to establish a high resolution (1 km) modeling environment over the HMA. Combining information from satellite observations and the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) is used to provide an effective way to develop spatially and temporally continuous estimates of changes. To improve the spatial representativeness of the precipitation field for modeling at 1km resolution, the input field is downscaled using a stochastic downscaling method with the monthly WorldClim data. The other meteorological inputs (e.g., air temperature, humidity, pressure, wind, and downward shortwave and longwave) are corrected for elevation through lapse-rate and slope-aspect methods. Evaluation of the model estimates is presented using satellite-derived data (e.g., MODIS and GRACE) and reanalysis products (e.g., CMC and ERA-interim).
Assessment of atmospheric moisture transport patterns through the northeastern US, 1900-2016
NASA Astrophysics Data System (ADS)
Teale, N. G.; Robinson, D. A.
2017-12-01
Atmospheric moisture dictates precipitation on the ground; therefore, changes in precipitation such as those observed in the northeastern US must be linked to changes in atmospheric moisture. However, little attention has been paid to the changes in the atmospheric moisture in this region. This research fills this gap by identifying pathways of atmospheric moisture transport in and through the northeastern US and assessing how those patterns have changed throughout the twentieth century. Moisture transport patterns are identified using integrated vapor transport (IVT) calculated from daily eastward and northward vertically integrated vapor fluxes for 1986—2016 at a spatial resolution of 0.75° × 0.75° from ERA-Interim Reanalysis. The study region is bounded by 36°N—51°N and 85°W—60°W. A self-organizing map (SOM) methodology is employed with the daily IVT data to produce a set of IVT maps identifying recurrent moisture transport patterns intersecting the northeastern US. IVT then is calculated identically from ERA-20C for 1900-2010. These daily data are sorted into the IVT pattern maps identified in the previous step, thus extending the dataset of northeastern moisture transport pathways through the 20th century. The overlap period of 6 years provides training and validation for the classification procedure; duplicates are removed. Trends in the frequency and characteristics of these patterns are analyzed through 116 year study period. Results from this study have indicated that atmospheric rivers play a non-negligible role in the supply of water vapor in the northeastern US. Additionally, the identification of distinct moisture transport pathways provides a baseline for identifying changes moisture transport in climate model projections, which may provide additional insight into the future precipitation regime of the northeastern US.
NASA Astrophysics Data System (ADS)
Verhoef, Anne; Cook, Peter; Black, Emily; Macdonald, David; Sorensen, James
2017-04-01
This research addresses the terrestrial water balance for West Africa. Emphasis is on the prediction of groundwater recharge and how this may change in the future, which has relevance to the management of surface and groundwater resources. The study was conducted as part of the BRAVE research project, "Building understanding of climate variability into planning of groundwater supplies from low storage aquifers in Africa - Second Phase", funded under the NERC/DFID/ESRC Programme, Unlocking the Potential of Groundwater for the Poor (UPGro). We used model output data of water balance components (precipitation, surface and subsurface run-off, evapotranspiration and soil moisture content) from ERA-Interim/ERA-LAND reanalysis, CMIP5, and high resolution model runs with HadGEM3 (UPSCALE; Mizielinski et al., 2014), for current and future time-periods. Water balance components varied widely between the different models; variation was particularly large for sub-surface runoff (defined as drainage from the bottom-most soil layer of each model). In-situ data for groundwater recharge obtained from the peer-reviewed literature were compared with the model outputs. Separate off-line model sensitivity studies with key land surface models were performed to gain understanding of the reasons behind the model differences. These analyses were centered on vegetation, and soil hydraulic parameters. The modelled current and future recharge time series that had the greatest degree of confidence were used to examine the spatiotemporal variability in groundwater storage. Finally, the implications for water supply planning were assessed. Mizielinski, M.S. et al., 2014. High-resolution global climate modelling: the UPSCALE project, a large-simulation campaign. Geoscientific Model Development, 7(4), pp.1629-1640.
Land surface temperature over global deserts: Means, variability, and trends
NASA Astrophysics Data System (ADS)
Zhou, Chunlüe; Wang, Kaicun
2016-12-01
Land surface air temperature (LSAT) has been a widely used metric to study climate change. Weather observations of LSAT are the fundamental data for climate change studies and provide key evidence of global warming. However, there are very few meteorological observations over deserts due to their uninhabitable environment. This study fills this gap and provides independent evidence using satellite-derived land surface temperatures (LSTs), benefiting from their global coverage. The frequency of clear sky from MODerate Resolution Imaging Spectroradiometer (MODIS) LST data over global deserts was found to be greater than 94% for the 2002-2015 period. Our results show that MODIS LST has a bias of 1.36°C compared to ground-based observations collected at 31 U.S. Climate Reference Network (USCRN) stations, with a standard deviation of 1.83°C. After bias correction, MODIS LST was used to evaluate existing reanalyses, including ERA-Interim, Japanese 55-year Reanalysis (JRA-55), Modern-Era Retrospective Analysis for Research and Applications (MERRA), MERRA-land, National Centers for Environmental Prediction (NCEP)-R1, and NCEP-R2. The reanalyses accurately reproduce the seasonal cycle and interannual variability of the LSTs, but their multiyear means and trends of LSTs exhibit large uncertainties. The multiyear averaged LST over global deserts is 23.5°C from MODIS and varies from 20.8°C to 24.5°C in different reanalyses. The MODIS LST over global deserts increased by 0.25°C/decade from 2002 to 2015, whereas the reanalyses estimated a trend varying from -0.14 to 0.10°C/decade. The underestimation of the LST trend by the reanalyses occurs for approximately 70% of the global deserts, likely due to the imperfect performance of the reanalyses in reproducing natural climate variability.
NASA Astrophysics Data System (ADS)
Zuidema, P.; Adebiyi, A. A.; Abel, S.
2013-12-01
Smoke produced by seasonal biomass burning in the southwestern African savannah can be advected westward over the Atlantic Ocean, where it mostly overlies a major planetary stratocumulus deck. Shortwave absorption by the smoke warms the atmosphere, stabilizing it, thereby reducing cloud-top entrainment and encouraging cloud thickening (the semi-direct effect). Associated dynamical and moisture effects that may be convoluted with the semi-direct effect have received less attention, and are examined here. Radiosondes at their original resolution are available almost daily from the remote St. Helena Island (15.9oS, 5.6oW), from 2000 through 2012. These are combined with MODIS fine-mode aerosol optical depth (AODf), and composited into pristine and polluted days for the September-October months. Increases in AODf are associated with increases in 750-500 hPa moisture content, often capped by sharply defined temperature and moisture inversions. These corroborate similar associations evident in SAFARI-2000 data. The composite-mean additional moisture of ~2.2 g kg-1 produces a diurnal-mean shortwave heating rate of ~ 0.2 K day-1 in addition to that from smoke. Similarly-composited ERA-Interim Reanalysis profiles match the radiosonde composites more closely than do those based on MERRA or NCEP Reanalyses. ERA-Interim spatial composites show that the polluted conditions are associated with a stronger mid-level anticyclone over southern Africa, facilitating the westward and (offshore) southward transport of both smoke and moisture. The shallower surface-based south Atlantic anticyclone shifts to east, strengthening the low-level coastal jet exiting into the stratocumulus deck, and enhancing warm temperature advection above the main stratocumulus deck. This increases the lower tropospheric stability (θ800-θ1000) and enhances the surface fluxes, strengthening the stratocumulus deck. Thus, the dynamics encouraging smoke transport and the additional shortwave absorption by moisture act in concert with the semi-direct effect to increase the cloud fraction and thicken the clouds. The associations between smoke, moisture and circulation highlight the difficulty of distinguishing aerosol effects on the Atlantic stratocumulus deck from meteorological effects.The uncertainties inherent to the realistic modeling of the smoke, cloud, their interactions and their climatic effects motivate a field deployment, ONFIRE, proposed to the southeast Atlantic in 2016, that will also be discussed.
Evaluation of CMIP5 and CORDEX Derived Wind Wave Climate in Arabian Sea and Bay of Bengal
NASA Astrophysics Data System (ADS)
Chowdhury, P.; Behera, M. R.
2017-12-01
Climate change impact on surface ocean wave parameters need robust assessment for effective coastal zone management. Climate model skill to simulate dynamical General Circulation Models (GCMs) and Regional Circulation Models (RCMs) forced wind-wave climate over northern Indian Ocean is assessed in the present work. The historical dynamical wave climate is simulated using surface winds derived from four GCMs and four RCMs, participating in the Coupled Model Inter-comparison Project (CMIP5) and Coordinated Regional Climate Downscaling Experiment (CORDEX-South Asia), respectively, and their ensemble are used to force a spectral wave model. The surface winds derived from GCMs and RCMs are corrected for bias, using Quantile Mapping method, before being forced to the spectral wave model. The climatological properties of wave parameters (significant wave height (Hs), mean wave period (Tp) and direction (θm)) are evaluated relative to ERA-Interim historical wave reanalysis datasets over Arabian Sea (AS) and Bay of Bengal (BoB) regions of the northern Indian Ocean for a period of 27 years. We identify that the nearshore wave climate of AS is better predicted than the BoB by both GCMs and RCMs. Ensemble GCM simulated Hs in AS has a better correlation with ERA-Interim ( 90%) than in BoB ( 80%), whereas ensemble RCM simulated Hs has a low correlation in both regions ( 50% in AS and 45% in BoB). In AS, ensemble GCM simulated Tp has better predictability ( 80%) compared to ensemble RCM ( 65%). However, neither GCM nor RCM could satisfactorily predict Tp in nearshore BoB. Wave direction is poorly simulated by GCMs and RCMs in both AS and BoB, with correlation around 50% with GCMs and 60% with RCMs wind derived simulations. However, upon comparing individual RCMs with their parent GCMs, it is found that few of the RCMs predict wave properties better than their parent GCMs. It may be concluded that there is no consistent added value by RCMs over GCMs forced wind-wave climate over northern Indian Ocean. We also identify that there is little to no significance of choosing a finer resolution GCM ( 1.4°) over a coarse GCM ( 2.8°) in improving skill of GCM forced dynamical wave simulations.
On the relationship between atmospheric rivers (ARs) and heavy precipitation over Japan
NASA Astrophysics Data System (ADS)
Yatagai, A. I.; Takayabu, Y. N.
2016-12-01
Atmospheric Rivers (ARs) are known as the water-vapor rich part of the broader warm conveyor belt. Recently, several AR detection algorithms are proposed, and structures and that of statistical features are studied globally. Since Japan is a humid country located in the north of the warm pool, ARs, middle tropospheric fast moisture transport, might be an important moisture source for heavy precipitation events in Japan. The purpose of this study is to develop an algorithm of detection of ARs over Japan, and to investigate the possible relationship between them and Japanese heavy precipitation events. Since high spatial correlations were obtained between ERA-Interim reanalysis PW and that of SSM/I (microwave images), we used daily PW (0.75 degree grid) for detection of the ARs. Using 36 years (1979-2014) ERA-Interim, we defined daily smoothed PW climatology. Then, we detected AR area with daily anomaly of PW exceeding 10 mm. However, we exclude round-shaped (caused by Typhoon etc) area and the case of moisture transport not exceeding 30N/30S. The daily AR events over Japan (123-146E, 24-46N) are; 1013 cases for winter (DJF), 1722 for spring (MAM), 2229 for summer (JJA) and 1870 for autumn (SON) during the 36 years. They successfully include Hiroshima disaster event (19 August 2014, Hirota et al., 2015) and Amami heavy precipitation event (20 October 2010). The summer with large AR appearance (1998 and 2010) had negative SOI (La Nina), and lowest appearance year (1992) was the year of El Nino (positively significant SOI). Totally, more ARs come over Japan area in La Nina years, however, the seasonal statistics between SOI and the number of AR is not straightforward, indicating that it is difficult to explain ARs over Japan with only tropical inter-annual variability. We use APHRO-JP (Kamiguchi et al., 2010) daily gridded (0.05 degree) precipitation (1979-2011) over Japanese land areas for comparison. Among the 32 years (1979-2011), we had 82 cases of heavy precipitation of exceeding 500 mm/2days, and 184 cases of exceeding 400 mm/2days. Excepting typhoon events, ARs appeared over Japan area. Detailed comparison (location, vertical profile, dynamical linkage, etc) will be reported at the meeting.
Uncertainties in Decadal Model Evaluation due to the Choice of Different Reanalysis Products
NASA Astrophysics Data System (ADS)
Illing, Sebastian; Kadow, Christopher; Kunst, Oliver; Cubasch, Ulrich
2014-05-01
In recent years decadal predictions have become very popular in the climate science community. A major task is the evaluation and validation of a decadal prediction system. Therefore hindcast experiments are performed and evaluated against observation based or reanalysis data-sets. That is, various metrics and skill scores like the anomaly correlation or the mean squared error skill score (MSSS) are calculated to estimate potential prediction skill of the model system. Our results will mostly feature the Baseline 1 hindcast experiments from the MiKlip decadal prediction system. MiKlip (www.fona-miklip.de) is a project for medium-term climate prediction funded by the Federal Ministry of Education and Research in Germany (BMBF) and has the aim to create a model system that can provide reliable decadal forecasts on climate and weather. There are various reanalysis and observation based products covering at least the last forty years which can be used for model evaluation, for instance the 20th Century Reanalysis from NOAA-CIRES, the Climate Forecast System Reanalysis from NCEP or the Interim Reanalysis from ECMWF. Each of them is based on different climate models and observations. We will show that the choice of the reanalysis product has a huge impact on the value of various skill metrics. In some cases this may actually lead to a change in the interpretation of the results, e.g. when one tries to compare two model versions and the anomaly correlation difference changes its sign for two different reanalysis products. We will also show first results of our studies investigating the influence and effect of this source of uncertainty for decadal model evaluation. Furthermore we point out regions which are most affected by this uncertainty and where one has to cautious interpreting skill scores. In addition we introduce some strategies to overcome or at least reduce this source of uncertainty.
NASA Astrophysics Data System (ADS)
García-Valdecasas Ojeda, Matilde; De Franciscis, Sebastiano; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Esteban-Parra, María Jesus
2016-04-01
Variable Infiltration Capacity (VIC) model is a large-scale, semi-distributed hydrologic model [1]. Its most important properties are related to the land surface, modeled as a grid of large and uniform cells with sub-grid heterogeneity (e.g. land cover), as well as to the local water influx (i.e. water can only enter a grid cell via the atmosphere and the channel flow between grid cells is ignored). The portions of surface and subsurface water runoff that reach the local channel network, are assumed to stay in the channel, and cannot flow back into the soil. In a second step, routing of streamflow is performed separately from the land surface simulation, using a separate model, the Routing Model, described in [2]. The final goal of our research consists into set an optimal hydrological and climate model to study the evolution of the streamflow of Guadalquivir Basin with different future land use, land cover and climate scenarios. In this work we study the coupling between VIC model, Routing model and Weather Research and Forecasting (WRF) model in order to perform the evolution of the streamflow for the Guadalquivir Basin (Spain). For this end, a calibration of the most relevant VIC model parameters using real streamflow daily time series, obtained from CEDEX (Centro de Estudios y Experimentación de Obras Públicas, Spain) database [3] was performed. In the time period under study, i.e. the decades 1988-1997 (calibration step) and 1998-2007 (verification step), the VIC model has been coupled with observational climate data, obtained from SPAIN02 database [4]. Additionally, we carried out a sensitivity analysis of WRF model to different parameterizations using different cumulus, microphysics and surface/planetary boundary layer schemes for the period 1995-1996. WRF runs were carried over a domain encompassing the Iberian Peninsula and nested in the coarser EURO-CORDEX domain [5]. The optimal parameters set resulting from such analysis have been used to obtain a high-resolution 35 yr period (1980-2014) dataset, driven by Interim ECMWF Re-Analysis (ERA-Interim) data [6]. Finally, the real streamflow daily time series were compared with the ones obtained by the previously calibrated VIC with SPAIN02 dataset and with WRF dataset, using different groups of meteorological variables. This last analysis allows us to check the robustness of VIC and WRF coupling, and to find the most relevant meteorological inputs for Guadalquivir streamflow system. Key words: Regional Climate Models, VIC, WRF, calibration, meteorological variables Acknowledgements: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER). [1] http://vic.readthedocs.org/en/master/ [2] Lohmann D, Raschke E, Nijssen B, Lettenmaier D P, 1998: Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model, Hydrolog. Sci. J., 43(1), 131-141. [3] www.cedex.es [4] http://www.meteo.unican.es/en/datasets/spain02 [5] EUROCORDEX: http://www.euro-cordex.net/ [6] Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally A P, Monge-Sanz B M, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Roy. Meteor. Soc. 137:553-597.
Xueri Dang; Chun-Ta Lai; David Y. Hollinger; Andrew J. Schauer; Jingfeng Xiao; J. William Munger; Clenton Owensby; James R. Ehleringer
2011-01-01
We evaluated an idealized boundary layer (BL) model with simple parameterizations using vertical transport information from community model outputs (NCAR/NCEP Reanalysis and ECMWF Interim Analysis) to estimate regional-scale net CO2 fluxes from 2002 to 2007 at three forest and one grassland flux sites in the United States. The BL modeling...
Developing an Earth system Inverse model for the Earth's energy and water budgets.
NASA Astrophysics Data System (ADS)
Haines, K.; Thomas, C.; Liu, C.; Allan, R. P.; Carneiro, D. M.
2017-12-01
The CONCEPT-Heat project aims at developing a consistent energy budget for the Earth system in order to better understand and quantify global change. We advocate a variational "Earth system inverse" solution as the best methodology to bring the necessary expertise from different disciplines together. L'Ecuyer et al (2015) and Rodell et al (2015) first used a variational approach to adjust multiple satellite data products for air-sea-land vertical fluxes of heat and freshwater, achieving closed budgets on a regional and global scale. However their treatment of horizontal energy and water redistribution and its uncertainties was limited. Following the recent work of Liu et al (2015, 2017) which used atmospheric reanalysis convergences to derive a new total surface heat flux product from top of atmosphere fluxes, we have revisited the variational budget approach introducing a more extensive analysis of the role of horizontal transports of heat and freshwater, using multiple atmospheric and ocean reanalysis products. We find considerable improvements in fluxes in regions such as the North Atlantic and Arctic, for example requiring higher atmospheric heat and water convergences over the Arctic than given by ERA-Interim, thereby allowing lower and more realistic oceanic transports. We explore using the variational uncertainty analysis to produce lower resolution corrections to higher resolution flux products and test these against in situ flux data. We also explore the covariance errors implied between component fluxes that are imposed by the regional budget constraints. Finally we propose this as a valuable methodology for developing consistent observational constraints on the energy and water budgets in climate models. We take a first look at the same regional budget quantities in CMIP5 models and consider the implications of the differences for the processes and biases active in the models. Many further avenues of investigation are possible focused on better valuing the uncertainties in observational flux products and setting requirement targets for future observation programs.
NASA Astrophysics Data System (ADS)
Alonso-González, Esteban; López-Moreno, J. Ignacio; Gascoin, Simon; García-Valdecasas Ojeda, Matilde; Sanmiguel-Vallelado, Alba; Navarro-Serrano, Francisco; Revuelto, Jesús; Ceballos, Antonio; Jesús Esteban-Parra, María; Essery, Richard
2018-02-01
We present snow observations and a validated daily gridded snowpack dataset that was simulated from downscaled reanalysis of data for the Iberian Peninsula. The Iberian Peninsula has long-lasting seasonal snowpacks in its different mountain ranges, and winter snowfall occurs in most of its area. However, there are only limited direct observations of snow depth (SD) and snow water equivalent (SWE), making it difficult to analyze snow dynamics and the spatiotemporal patterns of snowfall. We used meteorological data from downscaled reanalyses as input of a physically based snow energy balance model to simulate SWE and SD over the Iberian Peninsula from 1980 to 2014. More specifically, the ERA-Interim reanalysis was downscaled to 10 km × 10 km resolution using the Weather Research and Forecasting (WRF) model. The WRF outputs were used directly, or as input to other submodels, to obtain data needed to drive the Factorial Snow Model (FSM). We used lapse rate coefficients and hygrobarometric adjustments to simulate snow series at 100 m elevations bands for each 10 km × 10 km grid cell in the Iberian Peninsula. The snow series were validated using data from MODIS satellite sensor and ground observations. The overall simulated snow series accurately reproduced the interannual variability of snowpack and the spatial variability of snow accumulation and melting, even in very complex topographic terrains. Thus, the presented dataset may be useful for many applications, including land management, hydrometeorological studies, phenology of flora and fauna, winter tourism, and risk management. The data presented here are freely available for download from Zenodo (https://doi.org/10.5281/zenodo.854618). This paper fully describes the work flow, data validation, uncertainty assessment, and possible applications and limitations of the database.
NASA Astrophysics Data System (ADS)
Poan, E. D.; Gachon, P.; Laprise, R.; Aider, R.; Dueymes, G.
2018-03-01
Extratropical Cyclone (EC) characteristics depend on a combination of large-scale factors and regional processes. However, the latter are considered to be poorly represented in global climate models (GCMs), partly because their resolution is too coarse. This paper describes a framework using possibilities given by regional climate models (RCMs) to gain insight into storm activity during winter over North America (NA). Recent past climate period (1981-2005) is considered to assess EC activity over NA using the NCEP regional reanalysis (NARR) as a reference, along with the European reanalysis ERA-Interim (ERAI) and two CMIP5 GCMs used to drive the Canadian Regional Climate Model—version 5 (CRCM5) and the corresponding regional-scale simulations. While ERAI and GCM simulations show basic agreement with NARR in terms of climatological storm track patterns, detailed bias analyses show that, on the one hand, ERAI presents statistically significant positive biases in terms of EC genesis and therefore occurrence while capturing their intensity fairly well. On the other hand, GCMs present large negative intensity biases in the overall NA domain and particularly over NA eastern coast. In addition, storm occurrence over the northwestern topographic regions is highly overestimated. When the CRCM5 is driven by ERAI, no significant skill deterioration arises and, more importantly, all storm characteristics near areas with marked relief and over regions with large water masses are significantly improved with respect to ERAI. Conversely, in GCM-driven simulations, the added value contributed by CRCM5 is less prominent and systematic, except over western NA areas with high topography and over the Western Atlantic coastlines where the most frequent and intense ECs are located. Despite this significant added-value on seasonal-mean characteristics, a caveat is raised on the RCM ability to handle storm temporal `seriality', as a measure of their temporal variability at a given location. In fact, the driving models induce some significant footprints on the RCM skill to reproduce the intra-seasonal pattern of storm activity.
NASA Astrophysics Data System (ADS)
Dave, P.; Bhushan, M.; Venkataraman, C.
2016-12-01
Indian subcontinent, in particular, the Indo-gangetic plain (IGP) has witnessed large temperature anomalies (Ratnam et al., 2016) along with high emission of absorbing aerosols (AA) (Gazala, et al., 2005). The anomalous high temperature observed over this region may bear a relationship with high AA emissions. Different studies have been conducted to understand AA and temperature relationships (Turco et al., 1983; Hansen et al., 1997, 2005; Seinfeld 2008; Ramanathan et al. 2010b; Ban-Weiss et al., 2012). It was found that when the AA was injected in the lower- mid troposphere the surface air temperature increases while injection of AA at higher troposphere-lower stratosphere surface temperature decreases. These studies used simulation based results to establish link between AA and temperature (Hansen et al., 1997, 2005; Ban-Weiss et al., 2012). The current work focuses on identifying the causal influence of AA on temperature using observational and re-analysis data over Indian subcontinent using cross correlation (CCs) and Granger causality (GC) (Granger, 1969). Aerosol index (AI) from TOMS-OMI was used as index for AA while ERA-interim reanalysis data was used for temperature at varying altitude. Period of study was March-April-May-June (MAMJ) for years 1979-2015. CCs were calculated for all the atmospheric layers. In each layer nearby and distant pixels (>500 kms) with high CCs were identified using clustering technique. It was found that that AI and Temperature shows statistically significant cross-correlations for co-located and distant pixels and more prominently over IGP. The CCs fades away with higher altitudes. CCs analysis was followed by GC analysis to identify the lag over which AI can influence the Temperature. GC also supported the findings of CCs analysis. It is an early attempt to link persisting large temperature anomalies with absorbing aerosols and may help in identifying the role of absorbing aerosol in causing heat waves.
Meteorological Drivers of West Antarctic Ice Sheet and Ice Shelf Surface Melt
NASA Astrophysics Data System (ADS)
Scott, R. C.; Nicolas, J. P.; Bromwich, D. H.; Norris, J. R.; Lubin, D.
2017-12-01
We identify synoptic patterns and surface energy balance components driving warming and surface melting on the West Antarctic Ice Sheet (WAIS) and ice shelves using reanalysis and satellite remote sensing data from 1973-present. We have developed a synoptic climatology of atmospheric circulation patterns during the summer melt season using k-means cluster and composite analysis of daily 700-mb geopotential height and near-surface air temperature and wind fields from the ECMWF ERA-Interim reanalysis. Surface melt occurrence is detected in satellite passive microwave brightness temperature observations (K-band, horizontal polarization) beginning with the NASA Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR) and continuing with its more familiar descendants SMMR, SSM/I and SSMIS. To diagnose synoptic precursors and physical processes driving surface melt we combine the circulation climatology and multi-decadal records of cloud cover with surface radiative fluxes from the Extended AVHRR Polar Pathfinder (APP-x) project. We identify three distinct modes of regional summer West Antarctic warming since 1979 involving anomalous ridging over West Antarctica (WA) and the Amundsen Sea (AS). During the 1970s, ESMR data reveal four extensive melt events on the Ross Sea sector of the WAIS also linked to AS blocking. We therefore define an Amundsen Sea Blocking Index (ASBI). The ASBI and synoptic circulation pattern occurrence frequencies are correlated with the tropical Pacific (ENSO) and high latitude Southern Annular Mode (SAM) indices and the West Antarctic melt index. Surface melt in WA is favored by enhanced downwelling infrared and turbulent sensible heat fluxes associated with intrusions of warm, moist marine air. Consistent with recent findings from the Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE), marine advection to the Ross sector is favored by El Niño conditions in the tropical Pacific and a negative SAM. We also find that El Niño-related blocking favors warming and melting on the marine-based ice streams draining from Wilkes Basin, East Antarctica.
Differences in CAPE between wet and dry spells of the monsoon over the southeastern peninsular India
NASA Astrophysics Data System (ADS)
Mohan, T. S.; Rao, T. N.; Rajeevan, M.
2018-03-01
In the present research we explored the variability of convective available potential energy (CAPE) during wet and dry spells over southeast India. Comparison between India Meteorological Department (IMD) observations and reanalysis products (NCEP, ERA-interim, and MERRA) reconfirms that gridded data sets can be utilized to fill the void of observations. Later, GPS radiosonde measurements made at Gadanki (13.5 N, 79.2 E) Andre analysis output are utilized to address key scientific issues related to CAPE over the southeastern peninsular region. They are: (1) How does CAPE vary between different spells of the Indian summer monsoon (i.e., from wet to dry spell)? (2) Does differences in CAPE and in the vertical structure of buoyancy between spells are localized features over Gadanki or observed all over southeastern peninsular region? (3) What physical/dynamical processes are responsible for the differences in CAPE between spells and how do they affect the convection growth in dry spell? Interestingly, CAPE is higher in wet spell than in dry spell, in contrast to the observations made elsewhere over land and warm oceans. Similar feature (high CAPE in wet spell) is observed at all grid points in the southeastern peninsular India. Furthermore, vertical buoyancy profiles show only one peak in the middle-upper troposphere in wet spell, while two peaks are observed in most of the profiles (66%) in dry spell over the entire study region in all the reanalysis products. Plausible mechanisms are discussed for the observed CAPE differences. They are, among others, timing of sounding with reference to rain occurrence, rapid buildup of surface instabilities, moistening of lower troposphere by evaporation of the surface moisture in wet spell, enhanced low-level moisture convergence, evaporation of rain in relatively warm and dry atmosphere, and reduction of positive buoyancy in dry spell. The omnipresence of stable layers and strong and deep shear in the presence of weak updrafts (buoyancy) limits the growth of convective draft cores in dry spell.
NASA Astrophysics Data System (ADS)
Forootan, E.; Safari, A.; Mostafaie, A.; Schumacher, M.; Delavar, M.; Awange, J. L.
2017-05-01
Previous studies indicate that water storage over a large part of the Middle East has been decreased over the last decade. Variability in the total (hydrological) water flux (TWF, i.e., precipitation minus evapotranspiration minus runoff) and water storage changes of the Tigris-Euphrates river basin and Iran's six major basins (Khazar, Persian, Urmia, Markazi, Hamun, and Sarakhs) over 2003-2013 is assessed in this study. Our investigation is performed based on the TWF that are estimated as temporal derivatives of terrestrial water storage (TWS) changes from the Gravity Recovery and Climate Experiment (GRACE) products and those from the reanalysis products of ERA-Interim and MERRA-Land. An inversion approach is applied to consistently estimate the spatio-temporal changes of soil moisture and groundwater storage compartments of the seven basins during the study period from GRACE TWS, altimetry, and land surface model products. The influence of TWF trends on separated water storage compartments is then explored. Our results, estimated as basin averages, indicate negative trends in the maximums of TWF peaks that reach up to -5.2 and -2.6 (mm/month/year) over 2003-2013, respectively, for the Urmia and Tigris-Euphrates basins, which are most likely due to the reported meteorological drought. Maximum amplitudes of the soil moisture compartment exhibit negative trends of -11.1, -6.6, -6.1, -4.8, -4.7, -3.8, and -1.2 (mm/year) for Urmia, Tigris-Euphrates, Khazar, Persian, Markazi, Sarakhs, and Hamun basins, respectively. Strong groundwater storage decrease is found, respectively, within the Khazar -8.6 (mm/year) and Sarakhs -7.0 (mm/year) basins. The magnitude of water storage decline in the Urmia and Tigris-Euphrates basins is found to be bigger than the decrease in the monthly accumulated TWF indicating a contribution of human water use, as well as surface and groundwater flow to the storage decline over the study area.
NASA Astrophysics Data System (ADS)
Sakazaki, Takatoshi; Fujiwara, Masatomo; Shiotani, Masato
2018-02-01
Atmospheric solar tides in the stratosphere and the lower mesosphere are investigated using temperature data from five state-of-the-art reanalysis data sets (MERRA-2, MERRA, JRA-55, ERA-Interim, and CFSR) as well as TIMED SABER and Aura MLS satellite measurements. The main focus is on the period 2006-2012 during which the satellite observations are available for direct comparison with the reanalyses. Diurnal migrating tides, semidiurnal migrating tides, and nonmigrating tides are diagnosed. Overall the reanalyses agree reasonably well with each other and with the satellite observations for both migrating and nonmigrating components, including their vertical structure and the seasonality. However, the agreement among reanalyses is more pronounced in the lower stratosphere and relatively weaker in the upper stratosphere and mesosphere. A systematic difference between SABER and the reanalyses is found for diurnal migrating tides in the upper stratosphere and the lower mesosphere; specifically, the amplitude of trapped modes in reanalyses is significantly smaller than that in SABER, although such difference is less clear between MLS and the reanalyses. The interannual variability and the possibility of long-term changes in migrating tides are also examined using the reanalyses during 1980-2012. All the reanalyses agree in exhibiting a clear quasi-biennial oscillation (QBO) in the tides, but the most significant indications of long-term changes in the tides represented in the reanalyses are most plausibly explained by the evolution of the satellite observing systems during this period. The tides are also compared in the full reanalyses produced by the Japan Meteorological Agency (i.e., JRA-55) and in two parallel data sets from this agency: one (JRA-55C) that repeats the reanalysis procedure but without any satellite data assimilated and one (JRA-55AMIP) that is a free-running integration of the model constrained only by observed sea surface temperatures. Many aspects of the tides are closer in JRA-55C and JRA-55AMIP than these are to the full reanalysis JRA-55, demonstrating the importance of the assimilation of satellite data in representing the diurnal variability of the middle atmosphere. In contrast to the assimilated data sets, the free-running model has no QBO in equatorial stratospheric mean circulation and our results show that it displays no quasi-biennial variability in the tides.
NASA Astrophysics Data System (ADS)
Rapp, Markus; Dörnbrack, Andreas; Kaifler, Bernd
2018-02-01
Temperature profiles based on radio occultation (RO) measurements with the operational European METOP satellites are used to derive monthly mean global distributions of stratospheric (20-40 km) gravity wave (GW) potential energy densities (EP) for the period July 2014-December 2016. In order to test whether the sampling and data quality of this data set is sufficient for scientific analysis, we investigate to what degree the METOP observations agree quantitatively with ECMWF operational analysis (IFS data) and reanalysis (ERA-Interim) data. A systematic comparison between corresponding monthly mean temperature fields determined for a latitude-longitude-altitude grid of 5° by 10° by 1 km is carried out. This yields very low systematic differences between RO and model data below 30 km (i.e., median temperature differences is between -0.2 and +0.3 K), which increases with height to yield median differences of +1.0 K at 34 km and +2.2 K at 40 km. Comparing EP values for three selected locations at which also ground-based lidar measurements are available yields excellent agreement between RO and IFS data below 35 km. ERA-Interim underestimates EP under conditions of strong local mountain wave forcing over northern Scandinavia which is apparently not resolved by the model. Above 35 km, RO values are consistently much larger than model values, which is likely caused by the model sponge layer, which damps small-scale fluctuations above ˜ 32 km altitude. Another reason is the well-known significant increase of noise in RO measurements above 35 km. The comparison between RO and lidar data reveals very good qualitative agreement in terms of the seasonal variation of EP, but RO values are consistently smaller than lidar values by about a factor of 2. This discrepancy is likely caused by the very different sampling characteristics of RO and lidar observations. Direct comparison of the global data set of RO and model EP fields shows large correlation coefficients (0.4-1.0) with a general degradation with increasing altitude. Concerning absolute differences between observed and modeled EP values, the median difference is relatively small at all altitudes (but increasing with altitude) with an exception between 20 and 25 km, where the median difference between RO and model data is increased and the corresponding variability is also found to be very large. The reason for this is identified as an artifact of the EP algorithm: this erroneously interprets the pronounced climatological feature of the tropical tropopause inversion layer (TTIL) as GW activity, hence yielding very large EP values in this area and also large differences between model and observations. This is because the RO data show a more pronounced TTIL than IFS and ERA-Interim. We suggest a correction for this effect based on an estimate of this artificial
EP using monthly mean zonal mean temperature profiles. This correction may be recommended for application to data sets that can only be analyzed using a vertical background determination method such as the METOP data with relatively scarce sampling statistics. However, if the sampling statistics allows, our analysis also shows that in general a horizontal background determination is advantageous in that it better avoids contributions to EP that are not caused by gravity waves.
On the physical air-sea fluxes for climate modeling
NASA Astrophysics Data System (ADS)
Bonekamp, J. G.
2001-02-01
At the sea surface, the atmosphere and the ocean exchange momentum, heat and freshwater. Mechanisms for the exchange are wind stress, turbulent mixing, radiation, evaporation and precipitation. These surface fluxes are characterized by a large spatial and temporal variability and play an important role in not only the mean atmospheric and oceanic circulation, but also in the generation and sustainment of coupled climate fluctuations such as the El Niño/La Niña phenomenon. Therefore, a good knowledge of air-sea fluxes is required for the understanding and prediction of climate changes. As part of long-term comprehensive atmospheric reanalyses with `Numerical Weather Prediction/Data assimilation' systems, data sets of global air-sea fluxes are generated. A good example is the 15-year atmospheric reanalysis of the European Centre for Medium--Range Weather Forecasts (ECMWF). Air-sea flux data sets from these reanalyses are very beneficial for climate research, because they combine a good spatial and temporal coverage with a homogeneous and consistent method of calculation. However, atmospheric reanalyses are still imperfect sources of flux information due to shortcomings in model variables, model parameterizations, assimilation methods, sampling of observations, and quality of observations. Therefore, assessments of the errors and the usefulness of air-sea flux data sets from atmospheric (re-)analyses are relevant contributions to the quantitative study of climate variability. Currently, much research is aimed at assessing the quality and usefulness of the reanalysed air-sea fluxes. Work in this thesis intends to contribute to this assessment. In particular, it attempts to answer three relevant questions. The first question is: What is the best parameterization of the momentum flux? A comparison is made of the wind stress parameterization of the ERA15 reanalysis, the currently generated ERA40 reanalysis and the wind stress measurements over the open ocean. The comparison reveals some clear differences in the mean drag coefficient. In addition, this study has indicated that progress has been made from the ERA15 to the ERA40 reanalyses by replacing the model parameterization with a constant Charnock parameter with one which depends on the sea state. The second research question is whether comparison of the response of an ocean model with ocean observations can be exploited to assess the quality of air-sea fluxes of the ERA15 reanalysis. To answer this question in a systematic way an inverse modeling approach is adopted using a four-dimensional variational data assimilation (4DVAR) scheme. Firstly, the functioning of the 4DVAR system is demonstrated from identical twin experiments. These experiments reveal that in the equatorial Pacific, a large reduction in wind-stress and upper-ocean temperature misfits can be achieved using an assimilation time window of eight weeks. It is concluded that the usefulness of inverse ocean modeling technique for global surface flux assessment is limited. The main merit of the developed ocean 4DVAR scheme will be to diagnose errors in the ocean analyses of the ocean model. The last research question is: are the ERA15 fluxes useful for the study of regional patterns of climate variability? The climate mode of consideration is the Antarctic Circumpolar Wave. This study stresses the importance to have the right climatological forcing conditions to assess time scales of climate variability and it confirms the usefulness of ERA15 air-sea fluxes as ocean model forcing fields to study climate variability on the interannual time scale.
MERRA/AS: The MERRA Analytic Services Project Interim Report
NASA Technical Reports Server (NTRS)
Schnase, John; Duffy, Dan; Tamkin, Glenn; Nadeau, Denis; Thompson, Hoot; Grieg, Cristina; Luczak, Ed; McInerney, Mark
2013-01-01
MERRA AS is a cyberinfrastructure resource that will combine iRODS-based Climate Data Server (CDS) capabilities with Coudera MapReduce to serve MERRA analytic products, store the MERRA reanalysis data collection in an HDFS to enable parallel, high-performance, storage-side data reductions, manage storage-side driver, mapper, reducer code sets and realized objects for users, and provide a library of commonly used spatiotemporal operations that can be composed to enable higher-order analyses.
Land-Climate Feedbacks in Indian Summer Monsoon Rainfall
NASA Astrophysics Data System (ADS)
Asharaf, Shakeel; Ahrens, Bodo
2016-04-01
In an attempt to identify how land surface states such as soil moisture influence the monsoonal precipitation climate over India, a series of numerical simulations including soil moisture sensitivity experiments was performed. The simulations were conducted with a nonhydrostatic regional climate model (RCM), the Consortium for Small-Scale Modeling (COSMO) in climate mode (CCLM) model, which was driven by the European Center for Medium-Range Weather Forecasts (ECMWF) Interim reanalysis (ERA-Interim) data. Results showed that pre-monsoonal soil moisture has a significant impact on monsoonal precipitation formation and large-scale atmospheric circulations. The analysis revealed that even a small change in the processes that influence precipitation via changes in local evapotranspiration was able to trigger significant variations in regional soil moisture-precipitation feedback. It was observed that these processes varied spatially from humid to arid regions in India, which further motivated an examination of soil-moisture memory variation over these regions and determination of the ISM seasonal forecasting potential. A quantitative analysis indicated that the simulated soil-moisture memory lengths increased with soil depth and were longer in the western region than those in the eastern region of India. Additionally, the subsequent precipitation variance explained by soil moisture increased from east to west. The ISM rainfall was further analyzed in two different greenhouse gas emission scenarios: the Special Report on Emissions Scenario (SRES: B1) and the new Representative Concentration Pathways (RCPs: RCP4.5). To that end, the CCLM and its driving global-coupled atmospheric-oceanic model (GCM), ECHAM/MPIOM were used in order to understand the driving processes of the projected inter-annual precipitation variability and associated trends. Results inferred that the projected rainfall changes were the result of two largely compensating processes: increase of remotely induced precipitation and decrease of precipitation efficiency. However, the complementing precipitation components and their simulation uncertainties rendered climate projections of the Indian summer monsoon rainfall as an ongoing, highly ambiguous challenge for both the GCM and the RCM.
NASA Astrophysics Data System (ADS)
Nath, O.; Sridharan, S.
2015-09-01
Chemical composition data obtained from the Microwave Limb Sounder (MLS) and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instruments onboard EOS-Aura and ENVISAT satellites are used to investigate the variation of ozone (O3), water vapor (H2O) and methane (CH4) volume mixing ratios (VMRs) in the height range 20-60 km over the equatorial region during the sudden stratospheric warmings (SSWs) of 2004, 2009 and 2012, the occurrence of which are identified using the ERA (European Center for Medium Range Weather Forecasting Reanalysis) Interim temperature and zonal wind data sets. It is found that the O3 VMR shows increment whereas H2O VMR shows decrement during the SSW event and the possible reasons for these changes in the VMRs are investigated. In the upper stratosphere, the source of water vapor is oxidation of CH4 which takes place either by hydroxyl (OH) or by atomic oxygen (O). However, the OH VMR available for the year 2009 SSW event does not show any significant variation. The decrease of zonal mean MLS temperature over the equator during the SSW suggests that the rate of the reaction of ozone production (O + O2 ⟶ O3 + M), which increases with decreasing temperature, shifts the O/O3 ratio towards O3, resulting in the decrease of CH4 oxidation and consequent decrease in water vapor.
The potential of air-sea interactions for improving summertime North Atlantic seasonal forecasts
NASA Astrophysics Data System (ADS)
Ossó, Albert; Shaffrey, Len; Dong, Buwen; Sutton, Rowan
2017-04-01
Delivering skillful summertime seasonal forecasts of the Northern Hemisphere (NH) mid-latitude climate is a key unresolved issue for the climate science community. Current climate models have some skill in forecasting the wintertime NH mid-latitude circulation but very limited skill during summertime. To explore the potential predictability of the summertime climate we analyze lagged correlation patterns between the SSTs and summer atmospheric circulation in the North Atlantic both in observations and climate model outputs. We find observational evidence in the ERA-Interim (1979-2015) reanalysis and the HadSLP2 and HadISST data of an SST pattern forced by late winter atmospheric circulation persisting from winter to early summer that excites an anticyclonic summer SLP anomaly west of the British Isles. We show that the atmospheric response is driven through the action of turbulent heat fluxes and changes on the background baroclinicity. The lagged atmospheric response to the SSTs could be exploited for summertime predictability over Western Europe. We find a statistical significant correlation of over 0.6 between April-May North Atlantic SSTs and the June-August North Atlantic SLP anomaly. The previous findings are further explored using 120 years of coupled ocean-atmosphere HadGEM3-GC2 model simulation. The climate model qualitatively reproduces the observed spatial relationship between the late winter and spring SSTs and summertime circulation, although the correlations are substantially weaker than observed.
Some mean atmospheric characteristics for snowfall occurrences in southern Brazil
NASA Astrophysics Data System (ADS)
Mintegui, Jéssica Melo; Puhales, Franciano Scremin; Boiaski, Nathalie Tissot; Nascimento, Ernani de Lima; Anabor, Vagner
2018-01-01
Snowfall is considered a natural disaster in southern Brazil, where a little infrastructure exists up to prevent against the damage it induces, making snowfall forecast a matter of great interest in this region. The present article aims to describe the mean behavior of low, mid, and high atmospheric levels during snowfall occurrences in southern Brazil. Sea-level pressure (SLP), 1000-500 hPa atmospheric thickness, geopotential height at 500 hPa, and wind speed at 200 hPa have been analyzed. One hundred and ninety-six snowfall records from the conventional surface meteorological stations have been selected for the period from 1979 to 2015. The surface synoptic pattern associated with snowfall occurrences has been obtained from ERA-Interim reanalysis data with horizontal spatial resolution of 0.75° × 0.75° and temporal resolution of 12 h. SLP fields show a high-pressure transient system displacement from the Pacific Ocean to northeastern Argentina. In addition, it is possible to relate snowfall with displacement of a low-pressure system on the coast of southern Brazil. Thickness fields indicate shallow cold air mass intrusions one day before snowfall. Such a cold air continues moving towards low latitudes during consecutive snowfall days and it may be responsible for frost events in climatologically warm regions. Finally, mid and high atmospheric levels show an eastward propagating wave amplified by the Andes.
NASA Astrophysics Data System (ADS)
Jöckel, Patrick; Tost, Holger; Pozzer, Andrea; Kunze, Markus; Kirner, Oliver; Brenninkmeijer, Carl A. M.; Brinkop, Sabine; Cai, Duy S.; Dyroff, Christoph; Eckstein, Johannes; Frank, Franziska; Garny, Hella; Gottschaldt, Klaus-Dirk; Graf, Phoebe; Grewe, Volker; Kerkweg, Astrid; Kern, Bastian; Matthes, Sigrun; Mertens, Mariano; Meul, Stefanie; Neumaier, Marco; Nützel, Matthias; Oberländer-Hayn, Sophie; Ruhnke, Roland; Runde, Theresa; Sander, Rolf; Scharffe, Dieter; Zahn, Andreas
2016-03-01
Three types of reference simulations, as recommended by the Chemistry-Climate Model Initiative (CCMI), have been performed with version 2.51 of the European Centre for Medium-Range Weather Forecasts - Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model: hindcast simulations (1950-2011), hindcast simulations with specified dynamics (1979-2013), i.e. nudged towards ERA-Interim reanalysis data, and combined hindcast and projection simulations (1950-2100). The manuscript summarizes the updates of the model system and details the different model set-ups used, including the on-line calculated diagnostics. Simulations have been performed with two different nudging set-ups, with and without interactive tropospheric aerosol, and with and without a coupled ocean model. Two different vertical resolutions have been applied. The on-line calculated sources and sinks of reactive species are quantified and a first evaluation of the simulation results from a global perspective is provided as a quality check of the data. The focus is on the intercomparison of the different model set-ups. The simulation data will become publicly available via CCMI and the Climate and Environmental Retrieval and Archive (CERA) database of the German Climate Computing Centre (DKRZ). This manuscript is intended to serve as an extensive reference for further analyses of the Earth System Chemistry integrated Modelling (ESCiMo) simulations.
Fronts and precipitation in CMIP5 models for the austral winter of the Southern Hemisphere
NASA Astrophysics Data System (ADS)
Blázquez, Josefina; Solman, Silvina A.
2018-04-01
Wintertime fronts climatology and the relationship between fronts and precipitation as depicted by a group of CMIP5 models are evaluated over the Southern Hemisphere (SH). The frontal activity is represented by an index that takes into account the vorticity, the gradient of temperature and the specific humidity at the 850 hPa level. ERA-Interim reanalysis and GPCP datasets are used to assess the performance of the models in the present climate. Overall, it is found that the models can reproduce adequately the main features of frontal activity and front frequency over the SH. The total precipitation is overestimated in most of the models, especially the maximum values over the mid latitudes. This overestimation could be related to the high values of precipitation frequency that are identified in some of the models evaluated. The relationship between fronts and precipitation has also been evaluated in terms of both frequency of frontal precipitation and percentage of precipitation due to fronts. In general terms, the models overestimate the proportion between frontal and total precipitation. In contrast with frequency of total precipitation, the frequency of frontal precipitation is well reproduced by the models, with the higher values located at the mid latitudes. The results suggest that models represent very well the dynamic forcing (fronts) and the frequency of frontal precipitation, though the amount of precipitation due to fronts is overestimated.
NASA Astrophysics Data System (ADS)
Rieckh, Therese; Anthes, Richard; Randel, William; Ho, Shu-Peng; Foelsche, Ulrich
2018-05-01
While water vapor is the most important tropospheric greenhouse gas, it is also highly variable in both space and time, and water vapor concentrations range over 3 orders of magnitude in the troposphere. These properties challenge all observing systems to accurately measure and resolve the vertical structure and variability of tropospheric humidity. In this study we characterize the humidity measurements of various observing techniques, including four separate Global Positioning System (GPS) radio occultation (RO) humidity retrievals (University Corporation for Atmospheric Research (UCAR) direct, UCAR one-dimensional variational retrieval (1D-Var), Wegener Center for Climate and Global Change (WEGC) 1D-Var, Jet Propulsion Laboratory (JPL) direct), radiosonde, and Atmospheric Infrared Sounder (AIRS) data. Furthermore, we evaluate how well the ERA-Interim reanalysis and NCEP Global Forecast System (GFS) model perform in analyzing water vapor at different levels. To investigate detailed vertical structure, we analyzed time-height cross sections over four radiosonde stations in the tropical and subtropical western Pacific for the year 2007. We found that the accuracy of RO humidity is comparable to or better than both radiosonde and AIRS humidity over 800 to 400 hPa, as well as below 800 hPa if super-refraction is absent. The various RO retrievals of specific humidity agree within 20 % in the 1000-400 hPa layer, and differences are most pronounced above 600 hPa.
Evaluation of major heat waves' mechanisms in EURO-CORDEX RCMs over Central Europe
NASA Astrophysics Data System (ADS)
Lhotka, Ondřej; Kyselý, Jan; Plavcová, Eva
2018-06-01
The main aim of the study is to evaluate the capability of EURO-CORDEX regional climate models (RCMs) to simulate major heat waves in Central Europe and their associated meteorological factors. Three reference major heat waves (1994, 2006, and 2015) were identified in the E-OBS gridded data set, based on their temperature characteristics, length and spatial extent. Atmospheric circulation, precipitation, net shortwave radiation, and evaporative fraction anomalies during these events were assessed using the ERA-Interim reanalysis. The analogous major heat waves and their links to the aforementioned factors were analysed in an ensemble of EURO-CORDEX RCMs driven by various global climate models in the 1970-2016 period. All three reference major heat waves were associated with favourable circulation conditions, precipitation deficit, reduced evaporative fraction and increased net shortwave radiation. This joint contribution of large-scale circulation and land-atmosphere interactions is simulated with difficulties in majority of the RCMs, which affects the magnitude of modelled major heat waves. In some cases, the seemingly good reproduction of major heat waves' magnitude is erroneously achieved through extremely favourable circulation conditions compensated by a substantial surplus of soil moisture or vice versa. These findings point to different driving mechanisms of major heat waves in some RCMs compared to observations, which should be taken into account when analysing and interpreting future projections of these events.
NASA Astrophysics Data System (ADS)
Wang, Pinya; Tang, Jianping; Sun, Xuguang; Liu, Jianyong; Juan, Fang
2018-03-01
Using the Weather Research and Forecasting (WRF) model, this paper analyzes the spatiotemporal features of heat waves in 20-year regional climate simulations over East Asia, and investigates the capability of WRF to reproduce observational heat waves in China. Within the framework of the Coordinated Regional Climate Downscaling Experiment (CORDEX), the WRF model is driven by the ERA-Interim (ERAIN) reanalysis, and five continuous simulations are conducted from 1989 to 2008. Of these, four runs apply the interior spectral nudging (SN) technique with different wavenumbers, nudging variables and nudging coefficients. Model validations show that WRF can reasonably reproduce the spatiotemporal features of heat waves in China. Compared with the experiment without SN, the application of SN is effectie on improving the skill of the model in simulating both the spatial distributions and temporal variations of heat waves of different intensities. The WRF model shows advantages in reproducing the synoptic circulations with SN and therefore yields better representations for heat wave events. Besides, the SN method is able to preserve the variability of large-scale circulations quite well, which in turn adjusts the extreme temperature variability towards the observation. Among the four SN experiments, those with stronger nudging coefficients perform better in modulating both the spatial and temporal features of heat waves. In contrast, smaller nudging coefficients weaken the effects of SN on improving WRF's performances.
A New Zenith Tropospheric Delay Grid Product for Real-Time PPP Applications over China.
Lou, Yidong; Huang, Jinfang; Zhang, Weixing; Liang, Hong; Zheng, Fu; Liu, Jingnan
2017-12-27
Tropospheric delay is one of the major factors affecting the accuracy of electromagnetic distance measurements. To provide wide-area real-time high precision zenith tropospheric delay (ZTD), the temporal and spatial variations of ZTD with altitude were analyzed on the bases of the latest meteorological reanalysis product (ERA-Interim) provided by the European Center for Medium-Range Weather Forecasts (ECMWF). An inverse scale height model at given locations taking latitude, longitude and day of year as inputs was then developed and used to convert real-time ZTD at GPS stations in Crustal Movement Observation Network of China (CMONOC) from station height to mean sea level (MSL). The real-time ZTD grid product (RtZTD) over China was then generated with a time interval of 5 min. Compared with ZTD estimated in post-processing mode, the bias and error RMS of ZTD at test GPS stations derived from RtZTD are 0.39 and 1.56 cm, which is significantly more accurate than commonly used empirical models. In addition, simulated real-time kinematic Precise Point Positioning (PPP) tests show that using RtZTD could accelerate the BDS-PPP convergence time by up to 32% and 65% in the horizontal and vertical components (set coordinate error thresholds to 0.4 m), respectively. For GPS-PPP, the convergence time using RtZTD can be accelerated by up to 29% in the vertical component (0.2 m).
Wind and wave dataset for Matara, Sri Lanka
NASA Astrophysics Data System (ADS)
Luo, Yao; Wang, Dongxiao; Priyadarshana Gamage, Tilak; Zhou, Fenghua; Madusanka Widanage, Charith; Liu, Taiwei
2018-01-01
We present a continuous in situ hydro-meteorology observational dataset from a set of instruments first deployed in December 2012 in the south of Sri Lanka, facing toward the north Indian Ocean. In these waters, simultaneous records of wind and wave data are sparse due to difficulties in deploying measurement instruments, although the area hosts one of the busiest shipping lanes in the world. This study describes the survey, deployment, and measurements of wind and waves, with the aim of offering future users of the dataset the most comprehensive and as much information as possible. This dataset advances our understanding of the nearshore hydrodynamic processes and wave climate, including sea waves and swells, in the north Indian Ocean. Moreover, it is a valuable resource for ocean model parameterization and validation. The archived dataset (Table 1) is examined in detail, including wave data at two locations with water depths of 20 and 10 m comprising synchronous time series of wind, ocean astronomical tide, air pressure, etc. In addition, we use these wave observations to evaluate the ERA-Interim reanalysis product. Based on Buoy 2 data, the swells are the main component of waves year-round, although monsoons can markedly alter the proportion between swell and wind sea. The dataset (Luo et al., 2017) is publicly available from Science Data Bank (https://doi.org/10.11922/sciencedb.447).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turney, Chris S. M.; Jones, Richard T.; Lister, David
Determining the timing and impact of anthropogenic climate change in data-sparse regions is a considerable challenge. Arguably, nowhere is this more difficult than the Antarctic Peninsula and the subantarctic South Atlantic where observational records are relatively short but where high rates of warming have been experienced since records began. Here we interrogate recently developed monthly-resolved observational datasets from the Falkland Islands and South Georgia, and extend the records back using climate-sensitive peat growth over the past 6000 years. Investigating the subantarctic climate data with ERA-Interim and Twentieth Century Reanalysis, we find that a stepped increase in precipitation across the 1940smore » is related to a change in synoptic atmospheric circulation: a westward migration of quasi-permanent positive pressure anomalies in the South Atlantic has brought the subantarctic islands under the increased influence of meridional airflow associated with the Amundsen Sea Low. Analysis of three comprehensively multi-dated (using 14C and 137Cs) peat sequences across the two islands demonstrates unprecedented growth rates since the mid-twentieth century relative to the last 6000 years. Comparison to observational and reconstructed sea surface temperatures suggests this change is linked to a warming tropical Pacific Ocean. Lastly, our results imply 'modern' South Atlantic atmospheric circulation has not been under this configuration for millennia.« less
Turney, Chris S. M.; Jones, Richard T.; Lister, David; ...
2016-06-09
Determining the timing and impact of anthropogenic climate change in data-sparse regions is a considerable challenge. Arguably, nowhere is this more difficult than the Antarctic Peninsula and the subantarctic South Atlantic where observational records are relatively short but where high rates of warming have been experienced since records began. Here we interrogate recently developed monthly-resolved observational datasets from the Falkland Islands and South Georgia, and extend the records back using climate-sensitive peat growth over the past 6000 years. Investigating the subantarctic climate data with ERA-Interim and Twentieth Century Reanalysis, we find that a stepped increase in precipitation across the 1940smore » is related to a change in synoptic atmospheric circulation: a westward migration of quasi-permanent positive pressure anomalies in the South Atlantic has brought the subantarctic islands under the increased influence of meridional airflow associated with the Amundsen Sea Low. Analysis of three comprehensively multi-dated (using 14C and 137Cs) peat sequences across the two islands demonstrates unprecedented growth rates since the mid-twentieth century relative to the last 6000 years. Comparison to observational and reconstructed sea surface temperatures suggests this change is linked to a warming tropical Pacific Ocean. Lastly, our results imply 'modern' South Atlantic atmospheric circulation has not been under this configuration for millennia.« less
The significant reduction of precipitation in Southern China during the Chinese Spring Festival
NASA Astrophysics Data System (ADS)
Zhang, J.; Gong, D.
2016-12-01
Long-term observational data from 2001 to 2012 over 339 stations were used to analyze the precipitation in southern China during the Chinese Spring Festival (CSF). It reveals both the precipitation frequency and precipitation intensity have a significant reduction around CSF holiday. From the second day to the sixth day after the Lunar New Year's Day, the daily mean precipitation frequency anomaly is -9%. At the same time, more than 90% stations in the study area have negative anomalies. The precipitation intensity has a continuous reduction from day 2 to day 4, which is up to 2mm in day 3. Other relevant variables, such as relative humidity and sunshine duration, have corresponding results to the precipitation's reduction during CSF. Atmospheric water vapor field's change leads to the reduction phenomenon. We analyzed the circulation configuration using the ERA-interim reanalysis data. It shows the anomalous north wind decrease the vapor and further affects the precipitation during the CSF period. The pollutants' concentration decreased around CSF, which may influence the meteorological field and lead to the anomalous north wind. Based on the S2S (sub-seasonal to seasonal prediction project) data, we calculated the circulation forecast difference to CSF period between clean days and polluted days. The result proves the north wind's existence and suggests that the aerosol decrease because of human activity may be partly responsible for the precipitation reduction during CSF.
Evaluation of CMAQ and CAMx Ensemble Air Quality Forecasts during the 2015 MAPS-Seoul Field Campaign
NASA Astrophysics Data System (ADS)
Kim, E.; Kim, S.; Bae, C.; Kim, H. C.; Kim, B. U.
2015-12-01
The performance of Air quality forecasts during the 2015 MAPS-Seoul Field Campaign was evaluated. An forecast system has been operated to support the campaign's daily aircraft route decisions for airborne measurements to observe long-range transporting plume. We utilized two real-time ensemble systems based on the Weather Research and Forecasting (WRF)-Sparse Matrix Operator Kernel Emissions (SMOKE)-Comprehensive Air quality Model with extensions (CAMx) modeling framework and WRF-SMOKE- Community Multi_scale Air Quality (CMAQ) framework over northeastern Asia to simulate PM10 concentrations. Global Forecast System (GFS) from National Centers for Environmental Prediction (NCEP) was used to provide meteorological inputs for the forecasts. For an additional set of retrospective simulations, ERA Interim Reanalysis from European Centre for Medium-Range Weather Forecasts (ECMWF) was also utilized to access forecast uncertainties from the meteorological data used. Model Inter-Comparison Study for Asia (MICS-Asia) and National Institute of Environment Research (NIER) Clean Air Policy Support System (CAPSS) emission inventories are used for foreign and domestic emissions, respectively. In the study, we evaluate the CMAQ and CAMx model performance during the campaign by comparing the results to the airborne and surface measurements. Contributions of foreign and domestic emissions are estimated using a brute force method. Analyses on model performance and emissions will be utilized to improve air quality forecasts for the upcoming KORUS-AQ field campaign planned in 2016.
Response of wheat yield in Spain to large-scale patterns
NASA Astrophysics Data System (ADS)
Hernandez-Barrera, Sara; Rodriguez-Puebla, Concepcion
2016-04-01
Crops are vulnerable to extreme climate conditions as drought, heat stress and frost risk. In previous study we have quantified the influence of these climate conditions for winter wheat in Spain (Hernandez-Barrera et al. 2015). The climate extremes respond to large-scale atmospheric and oceanic patterns. Therefore, a question emerges in our investigation: How large-scale patterns affect wheat yield? Obtaining and understanding these relationships require different approaches. In this study, we first obtained the leading mode of observed wheat yield variability to characterize the common variability over different provinces in Spain. Then, the wheat variability is related to different modes of mean sea level pressure, jet stream and sea surface temperature by using Partial Least-Squares, which captures the relevant climate drivers accounting for variations in wheat yield from sowing to harvesting. We used the ERA-Interim reanalysis data and the Extended Reconstructed Sea Surface Temperature (SST) (ERSST v3b). The derived model provides insight about the teleconnections between wheat yield and atmospheric and oceanic circulations, which is considered to project the wheat yield trend under global warming using outputs of twelve climate models corresponding to the Coupled Models Intercomparison Project phase 5 (CMIP5). Hernandez-Barrera S., C. Rodríguez-Puebla and A.J. Challinor. Effects of diurnal temperature range and drought on wheat yield in Spain. Theoretical and Applied Climatology (submitted)
Assessment of Global Wind Energy Resource Utilization Potential
NASA Astrophysics Data System (ADS)
Ma, M.; He, B.; Guan, Y.; Zhang, H.; Song, S.
2017-09-01
Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.
NASA Astrophysics Data System (ADS)
Kummerow, C.; Brown, P.
2017-12-01
The GEWEX Data and Assessments Paned (GDAP) has been working on a set of consistent products describing the water and energy budgets as well as fluxes at high spatial (1°) and temporal (3hr) resolution. Unlike individual products, the GEWEX Integrated product is careful to make assumptions consistent among algorithms and use internally derived parameters from one product (e.g. clouds from the ISCCP) as input to all other products requiring cloud information. This product was developed with two goals in mind: The first was to validate individual assumptions by cross-checking them with other products within the water and energy budget and ultimately verifying closure of the water and energy budgets within the uncertainties of each algorithm. With the recent completion of the first version of the GEWEX Integrated product, this talk will offer a first look at the consistency among the products insofar as the terrestrial water budget is concerned. Satellite observations of evaporation and precipitation will be compared to atmospheric water vapor divergences from ERA-Interim for various regions, and time scales to assess consistency among the individual estimates. The second goal was to make a available to the community, an internally consistent product that could be used to better understand climate processes and feedback. The status of this will also be discussed.
Evolution of the eastward shift in the quasi-stationary minimum of the Antarctic total ozone column
NASA Astrophysics Data System (ADS)
Grytsai, Asen; Klekociuk, Andrew; Milinevsky, Gennadi; Evtushevsky, Oleksandr; Stone, Kane
2017-02-01
The quasi-stationary pattern of the Antarctic total ozone has changed during the last 4 decades, showing an eastward shift in the zonal ozone minimum. In this work, the association between the longitudinal shift of the zonal ozone minimum and changes in meteorological fields in austral spring (September-November) for 1979-2014 is analyzed using ERA-Interim and NCEP-NCAR reanalyses. Regressive, correlative and anomaly composite analyses are applied to reanalysis data. Patterns of the Southern Annular Mode and quasi-stationary zonal waves 1 and 3 in the meteorological fields show relationships with interannual variability in the longitude of the zonal ozone minimum. On decadal timescales, consistent longitudinal shifts of the zonal ozone minimum and zonal wave 3 pattern in the middle-troposphere temperature at the southern midlatitudes are shown. Attribution runs of the chemistry-climate version of the Australian Community Climate and Earth System Simulator (ACCESS-CCM) model suggest that long-term shifts of the zonal ozone minimum are separately contributed by changes in ozone-depleting substances and greenhouse gases. As is known, Antarctic ozone depletion in spring is strongly projected on the Southern Annular Mode in summer and impacts summertime surface climate across the Southern Hemisphere. The results of this study suggest that changes in zonal ozone asymmetry accompanying ozone depletion could be associated with regional climate changes in the Southern Hemisphere in spring.
A Decade-Long European-Scale Convection-Resolving Climate Simulation on GPUs
NASA Astrophysics Data System (ADS)
Leutwyler, D.; Fuhrer, O.; Ban, N.; Lapillonne, X.; Lüthi, D.; Schar, C.
2016-12-01
Convection-resolving models have proven to be very useful tools in numerical weather prediction and in climate research. However, due to their extremely demanding computational requirements, they have so far been limited to short simulations and/or small computational domains. Innovations in the supercomputing domain have led to new supercomputer designs that involve conventional multi-core CPUs and accelerators such as graphics processing units (GPUs). One of the first atmospheric models that has been fully ported to GPUs is the Consortium for Small-Scale Modeling weather and climate model COSMO. This new version allows us to expand the size of the simulation domain to areas spanning continents and the time period up to one decade. We present results from a decade-long, convection-resolving climate simulation over Europe using the GPU-enabled COSMO version on a computational domain with 1536x1536x60 gridpoints. The simulation is driven by the ERA-interim reanalysis. The results illustrate how the approach allows for the representation of interactions between synoptic-scale and meso-scale atmospheric circulations at scales ranging from 1000 to 10 km. We discuss some of the advantages and prospects from using GPUs, and focus on the performance of the convection-resolving modeling approach on the European scale. Specifically we investigate the organization of convective clouds and on validate hourly rainfall distributions with various high-resolution data sets.
NASA Astrophysics Data System (ADS)
Hoffmann, Lars; Hertzog, Albert; Rößler, Thomas; Stein, Olaf; Wu, Xue
2017-07-01
In this study we compared temperatures and horizontal winds of meteorological analyses in the Antarctic lower stratosphere, a region of the atmosphere that is of major interest regarding chemistry and dynamics of the polar vortex. The study covers the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis, the ERA-Interim reanalysis, the Modern-Era Retrospective analysis for Research and Applications version 1 and 2 (MERRA and MERRA-2), and the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The comparison was performed with respect to long-duration observations from 19 superpressure balloon flights during the Concordiasi field campaign in September 2010 to January 2011. Most of the balloon measurements were conducted at altitudes of 17-18.5 km and latitudes of 60-85° S. We found that large-scale state temperatures of the analyses have a mean precision of 0.5-1.4 K and a warm bias of 0.4-2.1 K with respect to the balloon data. Zonal and meridional winds have a mean precision of 0.9-2.3 m s-1 and a bias below ±0.5 m s-1. Standard deviations related to small-scale fluctuations due to gravity waves are reproduced at levels of 15-60 % for temperature and 30-60 % for the horizontal winds. Considering the fact that the balloon observations have been assimilated into all analyses, except for NCEP/NCAR, notable differences found here indicate that other observations, the forecast models, and the data assimilation procedures have a significant impact on the analyses as well. We also used the balloon observations to evaluate trajectory calculations with our new Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC), where vertical motions of simulated trajectories were nudged to pressure measurements of the balloons. We found relative horizontal transport deviations of 4-12 % and error growth rates of 60-170 km day-1 for 15-day trajectories. Dispersion simulations revealed some difficulties with the representation of subgrid-scale wind fluctuations in MPTRAC, as the spread of air parcels simulated with different analyses was not consistent. However, although case studies suggest that the accuracy of trajectory calculations is influenced by meteorological complexity, diffusion generally does not contribute significantly to transport deviations in our analysis. Overall, evaluation results are satisfactory and compare well to earlier studies using superpressure balloon observations.
NASA Astrophysics Data System (ADS)
Wender Santiago Marinho, Marcos; Araújo Costa, Alexandre; Cassain Sales, Domingo; Oliveira Guimarães, Sullyandro; Mariano da Silva, Emerson; das Chagas Vasconcelos Júnior, Francisco
2013-04-01
In this study, we analyzed extreme precipitation indices, for present and future modeled climates over Northeast of Brazil (NEB), from CORDEX simulations over the domain of Tropical Americas. The period for the model validation was from 1989-2007, using data from the European Center (ECWMF) Reanalysis, ERA-INTERIM, as input to drive the regional model (RAMS 6.0). Reanalysis data were assimilated via both lateral boundaries and the entire domain (a much weaker "central nudging"). Six indices of extreme precipitation were calculated over NEB: the average number of days above 10, 20 and 30 mm in one year (R10, R20, R30), the number of consecutive dry days (CDD), the number of consecutive wet days (CWD) and the maximum rainfall in five consecutive days (RX5). Those indices were compared against two independent databases: MERRA (Modern Era Retrospective analysis for Research and Applications) and TRMM (Tropical Rainfall Measuring Mission). After validation, climate simulations were performed for the present climate (1985-2005) and short-term (2015-2035), mid-term (2045-2065) and long-term (2079 to 2099) future climates for two scenarios: RCP 4.5 and RCP 8.5, nesting RAMS into HadGEM2-ES global model (a participant of CMIP5). Along with the indices, we also calculated Probability Distribution Functions (PDFs) to study the behavior of daily precipitation in the present and by the end of the 21st century (2079 to 2099) to assess possible changes under RCPs 4.5 and 8.5. The regional model is capable of representing relatively well the extreme precipitation indices for current climate, but there is some difficulties in performing a proper validation since the observed databases disagree significantly. Future projections show significant changes in most extreme indices. Rnn generally tend to increase, especially under RCP8.5. More significant changes are projected for the long-term period, under RCP8.5, which shows a pronounced R30 enhancement over northern states. CDD tends to decrease over most of NEB in the short but this trend is reverted toward the end of the century in both scenarios with a significant increase in the duration of the dry season over Northwestern and Eastern NEB (exceeding 50 days over certain areas), whereas projected CWD changes are smaller. Rx5 shows a general increasing trend especially in the long term period,under RCP8.5.
NASA Astrophysics Data System (ADS)
Huang, Y.; Dong, X.; Xi, B.; Dolinar, E. K.; Stanfield, R.
2015-12-01
Cloud and radiation processes are very important issues in Arctic climate system. Reanalyses have proved to be the essential tools to study extreme weather and climate events, especially in data-sparse region like the Arctic. Before using reanalyses products, their strengths and uncertainties should be identified. In this study, five recent reanalyses (JRA55, 20CR V2c, CFSR, ERA-Interim and MERRA) are compared with NASA CERES satellite observations with respect of cloud fraction (CF), top-of-atmosphere (TOA) and surface longwave (LW)/shortwave (SW) radiation fluxes during the period of 03/2000-02/2012 over the Arctic (70-90°N). 20CR V2c, CFSR, ERA-Interim and MERRA overestimate CFs, particularly during the cold season, with the positive biases of annual means from +9.6% (MERRA) to +22.9% (20CR V2c). Only JRA55 can represent its overall seasonal variation and spatial distribution but with large negative biases (nearly -15%). All reanalyses can well capture the seasonal trend of TOA SW/LW upwelling fluxes. However, in all-sky condition, all of them show positive biases of TOA SW upwelling flux along northern and eastern coasts in Greenland during the warm season (JJA). There is a good agreement between reanalyses and observation in seasonal cycle of net TOA cloud radiative effects (CRE), which are calculated by TOA SW/LW fluxes. The spatial distributions of net TOA CRE in warm season show that only JRA55 and ERA-Interim are relatively consistent with their reanalyzed CFs. As for the surface radiation, the satellite-derived results were firstly validated by Baseline Surface Radiation Network (BSRN) ground-based observations. It illustrates that average biases of satellite retrievals are +9.85 W/m2 for surface downward SW flux and +0.39 W/m2 for downward LW flux in warm season within the Arctic. The seasonal variation of SW/LW fluxes can be well represented by four of five reanalyses except MERRA. Reanalyzed surface downward SW flux in JRA55, CFSR and ERA-Interim are relatively consistent with their CF results among these reanalyses. However, the biases in TOA and surface radiation fluxes cannot only explained by biased CFs in some of reanalyses.
NASA Astrophysics Data System (ADS)
Quintana-Seguí, Pere; Turco, Marco; Herrera, Sixto; Miguez-Macho, Gonzalo
2017-04-01
Offline land surface model (LSM) simulations are useful for studying the continental hydrological cycle. Because of the nonlinearities in the models, the results are very sensitive to the quality of the meteorological forcing; thus, high-quality gridded datasets of screen-level meteorological variables are needed. Precipitation datasets are particularly difficult to produce due to the inherent spatial and temporal heterogeneity of that variable. They do, however, have a large impact on the simulations, and it is thus necessary to carefully evaluate their quality in great detail. This paper reports the quality of two high-resolution precipitation datasets for Spain at the daily time scale: the new SAFRAN-based dataset and Spain02. SAFRAN is a meteorological analysis system that was designed to force LSMs and has recently been extended to the entirety of Spain for a long period of time (1979/1980-2013/2014). Spain02 is a daily precipitation dataset for Spain and was created mainly to validate regional climate models. In addition, ERA-Interim is included in the comparison to show the differences between local high-resolution and global low-resolution products. The study compares the different precipitation analyses with rain gauge data and assesses their temporal and spatial similarities to the observations. The validation of SAFRAN with independent data shows that this is a robust product. SAFRAN and Spain02 have very similar scores, although the latter slightly surpasses the former. The scores are robust with altitude and throughout the year, save perhaps in summer when a diminished skill is observed. As expected, SAFRAN and Spain02 perform better than ERA-Interim, which has difficulty capturing the effects of the relief on precipitation due to its low resolution. However, ERA-Interim reproduces spells remarkably well in contrast to the low skill shown by the high-resolution products. The high-resolution gridded products overestimate the number of precipitation days, which is a problem that affects SAFRAN more than Spain02 and is likely caused by the interpolation method. Both SAFRAN and Spain02 underestimate high precipitation events, but SAFRAN does so more than Spain02. The overestimation of low precipitation events and the underestimation of intense episodes will probably have hydrological consequences once the data are used to force a land surface or hydrological model.
NASA Astrophysics Data System (ADS)
Wurps, Hauke; Tambke, Jens; Steinfeld, Gerald; von Bremen, Lueder
2014-05-01
The development and design of wind energy converters for offshore wind farms require profound knowledge of the wind profile in the lower atmosphere. Especially an accurate and reliable estimation of turbulence, shear and veer are necessary for the prediction of energy production and loads. Currently existing wind energy turbines in the North Sea have hub heights of around 90 m and upper tip heights around 150 m, which is already higher than the highest measurement masts (e.g. FINO1: 103 m). The next generation of wind turbines will clearly outrange these altitudes, so the interest is to examine the atmosphere's properties above the North Sea up to 300 m. Therefore, besides the Prandtl layer also the Ekman layer has to be taken into account, which implies that changes of the wind direction with height become more relevant. For this investigation we use the Weather Research and Forecasting Model (WRF), a meso-scale numerical weather prediction system. In this study we compare different planetary boundary layer (PBL) schemes (MYJ, MYNN, QNSE) with the same high quality input from ECMWF used as boundary conditions (ERA-Interim). It was found in previous studies that the quality of the boundary conditions is crucially important for the accuracy of comparisons between different PBL schemes. This is due to the fact that the major source of meso-scale simulation errors is introduced by the driving boundary conditions and not by the different schemes of the meso-scale model itself. Hence, small differences in results from different PBL schemes can be distorted arbitrarily by coarse input data. For instance, ERA-Interim data leads to meso-scale RMSE values of 1.4 m/s at 100 m height above sea surface with mean wind speeds around 10 m/s, whereas other Reanalysis products lead to RMSEs larger than 2 m/s. Second, we compare our simulations to operational NWP results from the COSMO model (run by the DWD). In addition to the wind profile, also the turbulent kinetic energy (TKE) and the atmosphere's thermal stability are important to estimate power production and loads. Especially the TKE is in the focus of our research since the Master Length Scale of the closure schemes depends on it. A third step is the validation of the results using wind measurements around the North Sea. Because the considered heights are much larger than available data from met masts, we use LiDAR observations (light detection and ranging) and prospectively UAVs (unmanned aerial vehicle).
NASA Astrophysics Data System (ADS)
Crétat, Julien; Pohl, Benjamin; Dieppois, Bastien
2017-04-01
The Angola Low has been suggested in many previous studies to be an important regional feature governing southern African rainfall variability during austral summer, which is, in particular, expressed through modulations of El Niño Southern Oscillation (ENSO) impacts on rainfall at the interannual timescale. Here, we analyse a variety of state-of-the-art reanalyses (NCEP2, ERA-Interim and MERRA2) and rainfall data (in situ rain-gauges and satellite-derived products) for: i) identifying the recurrent regimes of the Angola Low (position and intensity) at the daily timescale; ii) diagnosing how they modulate the spatio-temporal variability of austral summer rainfall; and iii) examining their relationships with synoptic convective regimes and ENSO, both at the interannual timescale. The recurrent regimes of the Angola Low are identified over the 1980-2015 period by applying a cluster analysis to daily 700-hPa wind vorticity anomalies over the Angola sector from November to March. The exact number and morphological properties of vorticity regimes vary significantly among the reanalyses, in particular when using the lowest spatial resolution reanalysis (i.e., NCEP2) that leads to detect less diversity, smoothest patterns and weakest intensity across the recurrent regimes. Despite such uncertainties, the regimes describing active Angola Low are quite robust among the reanalyses. Three preferential locations (locked over eastern Angola, shifted few degrees eastward or south-westward), which significantly impact on the rainfall spatial distribution over tropical and subtropical southern Africa, are identified. Independently from its location, Angola Low favours moisture advection from the southwest Indian Ocean and reduces moisture export towards the southeast Atlantic, hence contributing to increase moisture convergence over the subcontinent. Lead/lag correlations with synoptic convective regimes suggest that Angola Low may be a local precursor of tropical-temperate troughs, but this relationship is far from being systematic and quite sensitive to the reanalyses. Finally, the influence of ENSO on the seasonal occurrence of active Angola Low appears to be highly dependent on the choice of the reanalyses. For instance, active Angola Low tends to be independent from ENSO in NCEP2, while it is clearly driven by ENSO, through increasing occurrence during La Niña conditions, in ERA-Interim and MERRA2. Our results point thus toward strong uncertainties in state-of-the-art reanalyses for studying regional circulation features, and their connection with large-scale climate dynamics at the interannual timescale.
Comparison of land surface humidity between observations and CMIP5 models
NASA Astrophysics Data System (ADS)
Dunn, Robert J. H.; Willett, Kate M.; Ciavarella, Andrew; Stott, Peter A.
2017-08-01
We compare the latest observational land surface humidity dataset, HadISDH, with the latest generation of climate models extracted from the CMIP5 archive and the ERA-Interim reanalysis over the period 1973 to present. The globally averaged behaviour of HadISDH and ERA-Interim are very similar in both humidity measures and air temperature, on decadal and interannual timescales. The global average relative humidity shows a gradual increase from 1973 to 2000, followed by a steep decline in recent years. The observed specific humidity shows a steady increase in the global average during the early period but in the later period it remains approximately constant. None of the CMIP5 models or experiments capture the observed behaviour of the relative or specific humidity over the entire study period. When using an atmosphere-only model, driven by observed sea surface temperatures and radiative forcing changes, the behaviour of regional average temperature and specific humidity are better captured, but there is little improvement in the relative humidity. Comparing the observed climatologies with those from historical model runs shows that the models are generally cooler everywhere, are drier and less saturated in the tropics and extra-tropics, and have comparable moisture levels but are more saturated in the high latitudes. The spatial pattern of linear trends is relatively similar between the models and HadISDH for temperature and specific humidity, but there are large differences for relative humidity, with less moistening shown in the models over the tropics and very little at high latitudes. The observed drying in mid-latitudes is present at a much lower magnitude in the CMIP5 models. Relationships between temperature and humidity anomalies (T-q and T-rh) show good agreement for specific humidity between models and observations, and between the models themselves, but much poorer for relative humidity. The T-q correlation from the models is more steeply positive than the observations in all regions, and this over-correlation may be due to missing processes in the models. The observed temporal behaviour appears to be a robust climate feature rather than observational error. It has been previously documented and is theoretically consistent with faster warming rates over land compared to oceans. Thus, the poor replication in the models, especially in the atmosphere-only model, leads to questions over future projections of impacts related to changes in surface relative humidity. It also precludes any formal detection and attribution assessment.
Long-Term Model Assimilated Aerosols from MERRA-2: Data and Services at NASA GES DISC
NASA Technical Reports Server (NTRS)
Shen, Suhung; Ostrenga, Dana; Huwe, Paul; Vollmer, Bruce; Kempler, Steve
2016-01-01
The Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) is the atmospheric reanalysis conducted with NASA assimilation system GEOS-5. Alongside the meteorological data assimilation, MERRA-2 includes an interactive analysis of aerosols, land, ocean, and ice that feed back into circulation.
Extreme air-sea surface turbulent fluxes in mid latitudes - estimation, origins and mechanisms
NASA Astrophysics Data System (ADS)
Gulev, Sergey; Natalia, Tilinina
2014-05-01
Extreme turbulent heat fluxes in the North Atlantic and North Pacific mid latitudes were estimated from the modern era and first generation reanalyses (NCEP-DOE, ERA-Interim, MERRA NCEP-CFSR, JRA-25) for the period from 1979 onwards. We used direct surface turbulent flux output as well as reanalysis state variables from which fluxes have been computed using COARE-3 bulk algorithm. For estimation of extreme flux values we analyzed surface flux probability density distribution which was approximated by Modified Fisher-Tippett distribution. In all reanalyses extreme turbulent heat fluxes amount to 1500-2000 W/m2 (for the 99th percentile) and can exceed 2000 W/m2 for higher percentiles in the western boundary current extension (WBCE) regions. Different reanalyses show significantly different shape of MFT distribution, implying considerable differences in the estimates of extreme fluxes. The highest extreme turbulent latent heat fluxes are diagnosed in NCEP-DOE, ERA-Interim and NCEP-CFSR reanalyses with the smallest being in MERRA. These differences may not necessarily reflect the differences in mean values. Analysis shows that differences in statistical properties of the state variables are the major source of differences in the shape of PDF of fluxes and in the estimates of extreme fluxes while the contribution of computational schemes used in different reanalyses is minor. The strongest differences in the characteristics of probability distributions of surface fluxes and extreme surface flux values between different reanalyses are found in the WBCE extension regions and high latitudes. In the next instance we analyzed the mechanisms responsible for forming surface turbulent fluxes and their potential role in changes of midlatitudinal heat balance. Midlatitudinal cyclones were considered as the major mechanism responsible for extreme turbulent fluxes which are typically occur during the cold air outbreaks in the rear parts of cyclones when atmospheric conditions provide locally high winds and air-sea temperature gradients. For this purpose we linked characteristics of cyclone activity over the midlatitudinal oceans with the extreme surface turbulent heat fluxes. Cyclone tracks and parameters of cyclone life cycle (deepening rates, propagation velocities, life time and clustering) were derived from the same reanalyses using state of the art numerical tracking algorithm. The main questions addressed in this study are (i) through which mechanisms extreme surface fluxes are associated with cyclone activity? and (ii) which types of cyclones are responsible for forming extreme turbulent fluxes? Our analysis shows that extreme surface fluxes are typically associated not with cyclones themselves but rather with cyclone-anticyclone interaction zones. This implies that North Atlantic and North Pacific series of intense cyclones do not result in the anomalous surface fluxes. Alternatively, extreme fluxes are most frequently associated with blocking situations, particularly with the intensification of the Siberian and North American Anticyclones providing cold-air outbreaks over WBC regions.
Influence of reanalysis datasets on dynamically downscaling the recent past
NASA Astrophysics Data System (ADS)
Moalafhi, Ditiro B.; Evans, Jason P.; Sharma, Ashish
2017-08-01
Multiple reanalysis datasets currently exist that can provide boundary conditions for dynamic downscaling and simulating local hydro-climatic processes at finer spatial and temporal resolutions. Previous work has suggested that there are two reanalyses alternatives that provide the best lateral boundary conditions for downscaling over southern Africa. This study dynamically downscales these reanalyses (ERA-I and MERRA) over southern Africa to a high resolution (10 km) grid using the WRF model. Simulations cover the period 1981-2010. Multiple observation datasets were used for both surface temperature and precipitation to account for observational uncertainty when assessing results. Generally, temperature is simulated quite well, except over the Namibian coastal plain where the simulations show anomalous warm temperature related to the failure to propagate the influence of the cold Benguela current inland. Precipitation tends to be overestimated in high altitude areas, and most of southern Mozambique. This could be attributed to challenges in handling complex topography and capturing large-scale circulation patterns. While MERRA driven WRF exhibits slightly less bias in temperature especially for La Nina years, ERA-I driven simulations are on average superior in terms of RMSE. When considering multiple variables and metrics, ERA-I is found to produce the best simulation of the climate over the domain. The influence of the regional model appears to be large enough to overcome the small difference in relative errors present in the lateral boundary conditions derived from these two reanalyses.
The impact of large-scale circulation patterns on summer crop yields in IP
NASA Astrophysics Data System (ADS)
Capa Morocho, Mirian; Rodríguez Fonseca, Belén; Ruiz Ramos, Margarita
2014-05-01
Large-scale circulations patterns (ENSO, NAO) have been shown to have a significant impact on seasonal weather, and therefore on crop yield over many parts of the world(Garnett and Khandekar, 1992; Aasa et al., 2004; Rozas and Garcia-Gonzalez, 2012). In this study, we analyze the influence of large-scale circulation patterns and regional climate on the principal components of maize yield variability in Iberian Peninsula (IP) using reanalysis datasets. Additionally, we investigate the modulation of these relationships by multidecadal patterns. This study is performed analyzing long time series of maize yield, only climate dependent, computed with the crop model CERES-maize (Jones and Kiniry, 1986) included in Decision Support System for Agrotechnology Transfer (DSSAT v.4.5). To simulate yields, reanalysis daily data of radiation, maximum and minimum temperature and precipitation were used. The reanalysis climate data were obtained from National Center for Environmental Prediction (20th Century and NCEP) and European Centre for Medium-Range Weather Forecasts (ECMWF) data server (ERA 40 and ERA Interim). Simulations were run at five locations: Lugo (northwestern), Lerida (NE), Madrid (central), Albacete (southeastern) and Córdoba (S IP) (Gabaldón et al., 2013). From these time series standardized anomalies were calculated. Afterwards, time series were time filtered to focus on the interannual-to-multiannual variability, splitting up in two components: low frequency (LF) and high frequency (HF) time scales. The principal components of HF yield anomalies in IP were compared with a set of documented patterns. These relationships were compared with multidecadal patterns, as Atlanctic Multidecadal Oscillations (AMO) and Interdecadal Pacific Oscillations (IPO). The results of this study have important implications in crop forecasting. In this way, it may have a positive impact on both public (agricultural planning) and private (decision support to farmers, insurance companies) sectors, to take advantage of favorable conditions or reduce the effect of adverse conditions. Acknowledgements Research by M. Capa-Morocho has been partly supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM) and MULCLIVAR project (CGL2012-38923-C02-02) References Aasa, A., Jaagus, J., Ahas, R. and Sepp, M. 2004. The influence of atmospheric circulation on plant phenological phases in central and eastern Europe. International Journal of Climatology 24, 1551-1564. Gabaldón, C. et al. 2013. Evaluation of local strategies to climate change of maize crop in Andalusia for the first half of 21st century. European Geosciences Union - General Assembly2013 Vol. 15 (Vienna - Austria, 2013). Garnett, E. R. and Khandekar, M. L. 1992. The impact of large-scale atmospheric circulations and anomalies on Indian monsoon droughts and floods and on world grain yields-a statistical analysis. Agricultural and Forest Meteorology 61, 113-128. Jones, C. and Kiniry, J. 1986. CERES-Maize: A Simulation Model of Maize Growth and Development. Texas A&M University Press, 194. Rozas, V. and Garcia-Gonzalez, I. 2012. Non-stationary influence of El Nino-Southern Oscillation and winter temperature on oak latewood growth in NW Iberian Peninsula. Int J Biometeorol 56, 787-800.
Autoregressive Processes in Homogenization of GNSS Tropospheric Data
NASA Astrophysics Data System (ADS)
Klos, A.; Bogusz, J.; Teferle, F. N.; Bock, O.; Pottiaux, E.; Van Malderen, R.
2016-12-01
Offsets due to changes in hardware equipment or any other artificial event are all a subject of a task of homogenization of tropospheric data estimated within a processing of Global Navigation Satellite System (GNSS) observables. This task is aimed at identifying exact epochs of offsets and estimate their magnitudes since they may artificially under- or over-estimate trend and its uncertainty delivered from tropospheric data and used in climate studies. In this research, we analysed a common data set of differences of Integrated Water Vapour (IWV) from GPS and ERA-Interim (1995-2010) provided for a homogenization group working within ES1206 COST Action GNSS4SWEC. We analysed daily IWV records of GPS and ERA-Interim in terms of trend, seasonal terms and noise model with Maximum Likelihood Estimation in Hector software. We found that this data has a character of autoregressive process (AR). Basing on this analysis, we performed Monte Carlo simulations of 25 years long data with two different noise types: white as well as combination of white and autoregressive and also added few strictly defined offsets. This synthetic data set of exactly the same character as IWV from GPS and ERA-Interim was then subjected to a task of manual and automatic/statistical homogenization. We made blind tests and detected possible epochs of offsets manually. We found that simulated offsets were easily detected in series with white noise, no influence of seasonal signal was noticed. The autoregressive series were much more problematic when offsets had to be determined. We found few epochs, for which no offset was simulated. This was mainly due to strong autocorrelation of data, which brings an artificial trend within. Due to regime-like behaviour of AR it is difficult for statistical methods to properly detect epochs of offsets, which was previously reported by climatologists.
NASA Astrophysics Data System (ADS)
Khandu; Awange, Joseph L.; Forootan, Ehsan
2016-04-01
Poor reliability of radiosonde records across South Asia imposes serious challenges in understanding the structure of upper-tropospheric and lower-stratospheric (UTLS) region. The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission launched in April 2006 has overcome many observational limitations inherent in conventional atmospheric sounding instruments. This study examines the interannual variability of UTLS temperature over the Ganges-Brahmaputra-Meghna (GBM) river basin in South Asia using monthly averaged COSMIC radio occultation (RO) data, together with two global reanalyses. Comparisons between August 2006 and December 2013 indicate that MERRA (Modern-Era Retrospective Analysis for Research Application) and ERA-Interim (European Centre for Medium-Range Weather Forecasts reanalysis) are warmer than COSMIC RO data by 2 °C between 200 and 50 hPa levels. These warm biases with respect to COSMIC RO data are found to be consistent over time. The UTLS temperature show considerable interannual variability from 2006 to 2013 in addition to warming (cooling) trends in the troposphere (stratosphere). The cold (warm) anomalies in the upper troposphere (tropopause region) are found to be associated with warm ENSO (El Niño-Southern Oscillation) phase, while quasi-biennial oscillation (QBO) is negatively (positively) correlated with temperature anomalies at 70 hPa (50 hPa) level. PCA (principal component analysis) decomposition of tropopause temperatures and heights over the basin indicate that ENSO accounts for 73 % of the interannual (non-seasonal) variability with a correlation of 0.77 with Niño3.4 index whereas the QBO explains about 10 % of the variability. The largest tropopause anomaly associated with ENSO occurs during the winter, when ENSO reaches its peak. The tropopause temperature (height) increased (decreased) by about 1.5 °C (300 m) during the last major El Niño event of 2009/2010. In general, we find decreasing (increasing) trend in tropopause temperature (height) between 2006 and 2013.
Realism of Indian Summer Monsoon Simulation in a Quarter Degree Global Climate Model
NASA Astrophysics Data System (ADS)
Salunke, P.; Mishra, S. K.; Sahany, S.; Gupta, K.
2017-12-01
This study assesses the fidelity of Indian Summer Monsoon (ISM) simulations using a global model at an ultra-high horizontal resolution (UHR) of 0.25°. The model used was the atmospheric component of the Community Earth System Model version 1.2.0 (CESM 1.2.0) developed at the National Center for Atmospheric Research (NCAR). Precipitation and temperature over the Indian region were analyzed for a wide range of space and time scales to evaluate the fidelity of the model under UHR, with special emphasis on the ISM simulations during the period of June-through-September (JJAS). Comparing the UHR simulations with observed data from the India Meteorological Department (IMD) over the Indian land, it was found that 0.25° resolution significantly improved spatial rainfall patterns over many regions, including the Western Ghats and the South-Eastern peninsula as compared to the standard model resolution. Convective and large-scale rainfall components were analyzed using the European Centre for Medium Range Weather Forecast (ECMWF) Re-Analysis (ERA)-Interim (ERA-I) data and it was found that at 0.25° resolution, there was an overall increase in the large-scale component and an associated decrease in the convective component of rainfall as compared to the standard model resolution. Analysis of the diurnal cycle of rainfall suggests a significant improvement in the phase characteristics simulated by the UHR model as compared to the standard model resolution. Analysis of the annual cycle of rainfall, however, failed to show any significant improvement in the UHR model as compared to the standard version. Surface temperature analysis showed small improvements in the UHR model simulations as compared to the standard version. Thus, one may conclude that there are some significant improvements in the ISM simulations using a 0.25° global model, although there is still plenty of scope for further improvement in certain aspects of the annual cycle of rainfall.
NASA Astrophysics Data System (ADS)
Lin, S.; Li, J.; Liu, Q.
2018-04-01
Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km). The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP) estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012) Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES) geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1) the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR) is about 50 % (R2 = 0.52) and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64); 2) estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE < 3 gC/m2/day), which has better performance than using MODIS 1-km NDVI/EVI product import; 3) using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.
NASA Technical Reports Server (NTRS)
van de Berg, W. J.; Medley, B.
2016-01-01
The Regional Atmospheric Climate Model (RACMO2) has been a powerful tool for improving surface mass balance (SMB) estimates from GCMs or reanalyses. However, new yearly SMB observations for West Antarctica show that the modelled interannual variability in SMB is poorly simulated by RACMO2, in contrast to ERA-Interim, which resolves this variability well. In an attempt to remedy RACMO2 performance, we included additional upper-air relaxation (UAR) in RACMO2. With UAR, the correlation to observations is similar for RACMO2 and ERA-Interim. The spatial SMB patterns and ice-sheet-integrated SMB modelled using UAR remain very similar to the estimates of RACMO2 without UAR. We only observe an upstream smoothing of precipitation in regions with very steep topography like the Antarctic Peninsula. We conclude that UAR is a useful improvement for regional climate model simulations, although results in regions with steep topography should be treated with care.
Status and Preliminary Evaluation for Chinese Re-Analysis Datasets
NASA Astrophysics Data System (ADS)
bin, zhao; chunxiang, shi; tianbao, zhao; dong, si; jingwei, liu
2016-04-01
Based on operational T639L60 spectral model, combined with Hybird_GSI assimilation system by using meteorological observations including radiosondes, buoyes, satellites el al., a set of Chinese Re-Analysis (CRA) datasets is developing by Chinese National Meteorological Information Center (NMIC) of Chinese Meteorological Administration (CMA). The datasets are run at 30km (0.28°latitude / longitude) resolution which holds higher resolution than most of the existing reanalysis dataset. The reanalysis is done in an effort to enhance the accuracy of historical synoptic analysis and aid to find out detailed investigation of various weather and climate systems. The current status of reanalysis is in a stage of preliminary experimental analysis. One-year forecast data during Jun 2013 and May 2014 has been simulated and used in synoptic and climate evaluation. We first examine the model prediction ability with the new assimilation system, and find out that it represents significant improvement in Northern and Southern hemisphere, due to addition of new satellite data, compared with operational T639L60 model, the effect of upper-level prediction is improved obviously and overall prediction stability is enhanced. In climatological analysis, compared with ERA-40, NCEP/NCAR and NCEP/DOE reanalyses, the results show that surface temperature simulates a bit lower in land and higher over ocean, 850-hPa specific humidity reflects weakened anomaly and the zonal wind value anomaly is focus on equatorial tropics. Meanwhile, the reanalysis dataset shows good ability for various climate index, such as subtropical high index, ESMI (East-Asia subtropical Summer Monsoon Index) et al., especially for the Indian and western North Pacific monsoon index. Latter we will further improve the assimilation system and dynamical simulating performance, and obtain 40-years (1979-2018) reanalysis datasets. It will provide a more comprehensive analysis for synoptic and climate diagnosis.
Storm-Tracks in ERA-40 and ERA-Interim Reanalyses
NASA Astrophysics Data System (ADS)
Liberato, M. L. R.; Trigo, I. F.; Trigo, R. M.
2009-04-01
Extratropical cyclones, their dominant paths, frequency and intensity have long been the object of climatological studies. The analysis of cyclone characteristics for the Euro-Atlantic sector (85°W-70°E; 20°N-75°N) presented here is based on the cyclone detecting and tracking algorithm first developed for the Mediterranean region (Trigo et al., 1999, 2002) and recently extended to a larger Euro-Atlantic region (Trigo, 2006). The objective methodology, which identifies and follows individual lows (Trigo et al. 1999), is applied to 6-hourly geopotential data at 1000-hPa from two reanalyses datasets provided by the European Centre for Medium-Range Weather Forecasts (ECMWF): ERA-40 and ERA-Interim reanalyses. Two storm-track databases are built over the Northern Atlantic European area, spanning the common available extended winter seasons from October 1989 to March 2002. Although relatively short, this common period allows a comparison of systems represented in reanalyses datasets with distinct horizontal resolutions (T106 and T255, respectively). This exercise is mostly focused on the key areas of cyclone formation and dissipation and main cyclone characteristics for the Euro-Atlantic sector. Trigo, I. F., T. D. Davies, and G. R. Bigg, 1999: Objective climatology of cyclones in the Mediterranean region. J. Climate, 12, 1685-1696. Trigo I. F., G. R. Bigg and T. D. Davies, 2002: Climatology of Cyclogenesis Mechanisms in the Mediterranean. Mon. Weather Rev. 130, 549-569. Trigo, I. F. 2006: Climatology and Interannual Variability of Storm-Tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR Reanalyses. Clim. Dyn. DOI 10.1007/s00382-005-0065-9.
NASA Astrophysics Data System (ADS)
Rahmani, Elham; Friederichs, Petra; Keller, Jan; Hense, Andreas
2016-05-01
The main purpose of this study is to develop an easy-to-use weather generator (WG) for the downscaling of gridded data to point measurements at regional scale. The WG is applied to daily averaged temperatures and annual growing degree days (GDD) of wheat. This particular choice of variables is motivated by future investigations on temperature impacts as the most important climate variable for wheat cultivation under irrigation in Iran. The proposed statistical downscaling relates large-scale ERA-40 reanalysis to local daily temperature and annual GDD. Long-term local observations in Iran are used at 16 synoptic stations from 1961 to 2001, which is the common period with ERA-40 data. We perform downscaling using two approaches: the first is a linear regression model that uses the ERA-40 fingerprints (FP) defined by the squared correlation with local variability, and the second employs a linear multiple regression (MR) analysis to relate the large-scale information at the neighboring grid points to the station data. Extending the usual downscaling, we implement a WG providing uncertainty information and realizations of the local temperatures and GDD by adding a Gaussian random noise. ERA-40 reanalysis well represents the local daily temperature as well as the annual GDD variability. For 2-m temperature, the FPs are more localized during the warm compared with the cold season. While MR is slightly superior for daily temperature time series, FP seems to perform best for annual GDD. We further assess the quality of the WGs applying probabilistic verification scores like the continuous ranked probability score (CRPS) and the respective skill score. They clearly demonstrate the superiority of WGs compared with a deterministic downscaling.
NASA Astrophysics Data System (ADS)
Peña-Ortiz, C.; Ribera, P.; García-Herrera, R.; Giorgetta, M. A.; García, R. R.
2008-08-01
The seasonality of the quasi-biennial oscillation (QBO) and its secondary circulation is analyzed in the European Reanalysis (ERA-40) and Middle Atmosphere European Centre Hamburg Model (MAECHAM5) general circulation model data sets through the multitaper method-singular value decomposition (MTM-SVD). In agreement with previous studies, the results reveal a strong seasonal dependence of the QBO secondary circulation. This is characterized by a two-cell structure symmetric about the equator during autumn and spring. However, anomalies strongly weaken in the summer hemisphere and strengthen in the winter hemisphere, leading to an asymmetric QBO secondary circulation characterized by a single-cell structure displaced into the winter hemisphere during the solstices. In ERA-40, this asymmetry is more pronounced during the northern than during the southern winter. These results provide the first observation of the QBO secondary circulation asymmetries in the ERA-40 reanalysis data set across the full stratosphere and the lower mesosphere, up to 0.1 hPa. The MTM-SVD reconstruction of the seasonal QBO signals in the residual circulation and the QBO signals in Eliassen Palm (EP) flux divergences suggest a particular mechanism for the seasonal asymmetries of the QBO secondary circulation and its extension across the midlatitudes. The analysis shows that the QBO modulates the EP flux in the winter hemispheric surf zone poleward of the QBO jets. The zonal wind forcing by EP flux divergence is transformed by the Coriolis effect into a meridional wind signal. The seasonality in the stratospheric EP flux and the hemispheric differences in planetary wave forcing cause the observed seasonality in the QBO secondary circulation and its hemispheric differences.
NASA Astrophysics Data System (ADS)
Casson, David; Werner, Micha; Weerts, Albrecht; Schellekens, Jaap; Solomatine, Dimitri
2017-04-01
Hydrological modelling in the Canadian Sub-Arctic is hindered by the limited spatial and temporal coverage of local meteorological data. Local watershed modelling often relies on data from a sparse network of meteorological stations with a rough density of 3 active stations per 100,000 km2. Global datasets hold great promise for application due to more comprehensive spatial and extended temporal coverage. A key objective of this study is to demonstrate the application of global datasets and data assimilation techniques for hydrological modelling of a data sparse, Sub-Arctic watershed. Application of available datasets and modelling techniques is currently limited in practice due to a lack of local capacity and understanding of available tools. Due to the importance of snow processes in the region, this study also aims to evaluate the performance of global SWE products for snowpack modelling. The Snare Watershed is a 13,300 km2 snowmelt driven sub-basin of the Mackenzie River Basin, Northwest Territories, Canada. The Snare watershed is data sparse in terms of meteorological data, but is well gauged with consistent discharge records since the late 1970s. End of winter snowpack surveys have been conducted every year from 1978-present. The application of global re-analysis datasets from the EU FP7 eartH2Observe project are investigated in this study. Precipitation data are taken from Multi-Source Weighted-Ensemble Precipitation (MSWEP) and temperature data from Watch Forcing Data applied to European Reanalysis (ERA)-Interim data (WFDEI). GlobSnow-2 is a global Snow Water Equivalent (SWE) measurement product funded by the European Space Agency (ESA) and is also evaluated over the local watershed. Downscaled precipitation, temperature and potential evaporation datasets are used as forcing data in a distributed version of the HBV model implemented in the WFLOW framework. Results demonstrate the successful application of global datasets in local watershed modelling, but that validation of actual frozen precipitation and snowpack conditions is very difficult. The distributed hydrological model shows good streamflow simulation performance based on statistical model evaluation techniques. Results are also promising for inter-annual variability, spring snowmelt onset and time to peak flows. It is expected that data assimilation of stream flow using an Ensemble Kalman Filter will further improve model performance. This study shows that global re-analysis datasets hold great potential for understanding the hydrology and snowpack dynamics of the expansive and data sparse sub-Arctic. However, global SWE products will require further validation and algorithm improvements, particularly over boreal forest and lake-rich regions.
Climate data, analysis and models for the study of natural variability and anthropogenic change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Philip D.
Gridded Temperature Under prior/current support, we completed and published (Jones et al., 2012) the fourth major update to our global land dataset of near-surface air temperatures, CRUTEM4. This is one of the most widely used records of the climate system, having been updated, maintained and further developed with DoE support since the 1980s. We have continued to update the CRUTEM4 (Jones et al., 2012) database that is combined with marine data to produce HadCRUT4 (Morice et al., 2012). The emphasis in our use of station temperature data is to access as many land series that have been homogenized by Nationalmore » Meteorological Services (NMSs, including NCDC/NOAA, Asheville, NC). Unlike the three US groups monitoring surface temperatures in a similar way, we do not infill areas that have no or missing data. We can only infill such regions in CRUTEM4 by accessing more station temperature series. During early 2014, we have begun the extensive task of updating as many of these series as possible using data provided by some NMSs and also through a number of research projects and programs around the world. All the station data used in CRUTEM4 have been available since 2009, but in Osborn and Jones (2014) we have made this more usable using a Google Earth interface (http://www.cru.uea.ac.uk/cru/data/crutem/ge/ ). We have recently completed the update of our infilled land multi-variable dataset (CRU TS 3.10, Harris et al., 2014). This additionally produces complete land fields (except for the Antarctic) for temperature, precipitation, diurnal temperature range, vapour pressure and sunshine/cloud. Using this dataset we have calculated sc-PDSI (self-calibrating Palmer Drought Severity Index) data and compared with other PDSI datasets (Trenberth et al., 2014). Also using CRU TS 3.10 and Reanalysis datasets, we showed no overall increase in global temperature variability despite changing regional patterns (Huntingford et al., 2013). Harris et al. (2014) is an update of an earlier dataset (Mitchell and Jones, 2005) which also had earlier DoE support. The earlier dataset has been cited over 1700 times according to ResearcherID on 31/July/2014 and the recent paper has already been cited 22 times. Analyses of Temperature Data Using the ERA-Interim estimate of the absolute surface air temperature of the Earth (instead of in the more normal form of anomalies) we compared the result against estimates we produced in 1999 with earlier DoE support. The two estimates are surprisingly close (differing by a couple of tenths of a degree Celsius), with the average temperature of the world (for 1981-2010) being very close to 14°C (Jones and Harpham, 2013). We have assessed ERA-Interim against station temperatures from manned and automatic weather station measurements across the Antarctic (Jones and Lister, 2014). Agreement is generally excellent across the Antarctic Peninsula and the sparsely sampled western parts of Antarctica. Differences tend to occur over eastern Antarctica where ERA-Interim is biased warm (up to 6°C) in the interior of the continent and biased cool (up to 6°C) for some of the coastal locations. Opportunities presented themselves during 2012 for collaborative work with a couple of Chinese groups. Three papers develop new temperature series for China as a whole and also for the eastern third of China (Wang et al., 2014, Cao et al., 2013 and Zhao et al., 2014). A dataset of ~400 daily Chinese temperature stations has been added to the CRU datasets. The latter paper finds that urban effects are generally about 10% of the long-term warming trend across eastern China. A fourth paper (Wang et al., 2013) illustrates issues with comparisons between reanalyses and surface temperatures across China, a method that has been widely used by some to suggest urban heating effects are much larger in the region. ERA-Interim can be used but NCEP/NCAR comparisons are very dependent on the period analysed. Earlier a new temperature dataset of homogenized records was developed for China (Li et al., 2009). Urbanization has also been addressed for London (Jones and Lister, 2009) where two rural sites have not warmed more than a city centre site since 1900. Additionally, in Ethymiadis and Jones (2010) we show that land air temperatures agree with marine data around coastal areas, further illustrating that urbanization is not a major component of large-scale surface air temperature change. Early instrumental data (before the development of modern thermometer screens) have always been suspected of being biased warm in summer, due to possible direct exposure to the sun. Two studies (Böhm et al., 2010 and Brunet et al., 2010) show this for the Greater Alpine Region (GAR) and for mainland Spain respectively. The issue is important before about 1870 in the GAR and before about 1900 in Spain. After correction for the problems, summer temperature estimates before these dates are cooler by about 0.4°C. In Jones and Wigley (2010), we discussed the importance of the biases in global temperature estimation. Exposure and to a lesser extent urbanization are the most important biases for the land areas, but both are dwarfed by the necessary adjustments for bucket SST measurements before about 1950. Individual station homogeneity is only important at the local scale. This was additionally illustrated by Hawkins and Jones (2013) where we replicated the temperature record developed by Guy Stewart Callendar in papers in 1938 and 1961. Analyses of Daily Climate Data Work here indicates that ERA-Interim (at least in Europe, Cornes and Jones, 2013, discussed in more detail in this proposal) can be used to monitor extremes (using the ETCCDI software – see Zhang et al., 2011). Additionally, also as a result of Chinese collaboration, a new method of daily temperature homogenization has been developed (Li et al., 2014). In Cornes and Jones (2011) we assessed storm activity in the northeast Atlantic region using daily gridded data. Even though the grid resolution is coarse (5° by 5° lat/long) the changes in storm activity are similar to those developed from the pressure triangle approach with station data. Analyses of humidity and pressure data In Simmons et al. (2010) we showed a reduction in relative humidity over low-latitude and mid-latitude land areas for the 10 years to 2008, based on monthly anomalies of surface air temperature and humidity from ECMWF reanalyses (ERA-40 and ERA-Interim) and our earlier land-only dataset (CRUTEM3) and synoptic humidity observations (HadCRUH). Updates of this station-based humidity dataset (now called HadISDH) extend the record, showing continued reductions (Willett et al., 2013). Analyses of Proxy Temperature Data In Vinther et al. (2010), relationships between the seasonal stable isotope data from Greenland Ice Cores and Greenland and Icelandic instrumental temperatures were investigated for the past 150-200 years. The winter season stable isotope data are found to be influenced by the North Atlantic Oscillation (NAO) and very closely related to SW Greenland temperatures. The summer season stable isotope data display higher correlations with Icelandic summer temperatures and North Atlantic SST conditions than with local SW Greenland temperatures. In Jones et al. (2014) we use these winter isotope reconstructions to show the expected inverse correlation (due to the NAO) with winter-season documentary reconstructions from the Netherlands and Sweden over the last 800 years. Finally, in this section Jones et al. (2013) shows the agreement between tree-ring width measurements from Northern Sweden and Finland and an assessment of the link to explosive volcanic eruptions. An instrumental record for the region in the early 19th century indicates that the summer of 1816 was only slightly below normal, explaining why this year has normal growth for both ring width and density. GCM/RCM/Reanalysis Evaluation In this section we have intercompared daily temperature extremes across Europe in Cornes and Jones (2013) using station data, E-OBS and ERA-Interim. We have additionally considered the impact of the urban issue on the global scale using the results of the Compo et al. (2011) Reanalyses, 20CR. These only make use of SST and station pressure data. Across the world’s land areas, they indicate similar warming since 1900 to that which has occurred (Compo et al., 2013), again illustrating that urbanization is not the cause of the long-term warming. Changes in HadCRUH global land surface specific humidity and CRUTEM3 surface temperatures from 1973 to 1999 were compared to the CMIP3 archive of climate model simulations with 20th Century forcings (Willett et al., 2010). The models reproduce the magnitude of observed interannual variance over all large regions. Observed and modelled trends and temperature-humidity relationships are comparable with the exception of the extra-tropical Southern Hemisphere where observations exhibit no trend but models exhibit moistening.« less
Prediction of sea ice thickness cluster in the Northern Hemisphere
NASA Astrophysics Data System (ADS)
Fuckar, Neven-Stjepan; Guemas, Virginie; Johnson, Nathaniel; Doblas-Reyes, Francisco
2016-04-01
Sea ice thickness (SIT) has a potential to contain substantial climate memory and predictability in the northern hemisphere (NH) sea ice system. We use 5-member NH SIT, reconstructed with an ocean-sea-ice general circulation model (NEMOv3.3 with LIM2) with a simple data assimilation routine, to determine NH SIT modes of variability disentangled from the long-term climate change. Specifically, we apply the K-means cluster analysis - one of nonhierarchical clustering methods that partition data into modes or clusters based on their distances in the physical - to determine optimal number of NH SIT clusters (K=3) and their historical variability. To examine prediction skill of NH SIT clusters in EC-Earth2.3, a state-of-the-art coupled climate forecast system, we use 5-member ocean and sea ice initial conditions (IC) from the same ocean-sea-ice historical reconstruction and atmospheric IC from ERA-Interim reanalysis. We focus on May 1st and Nov 1st start dates from 1979 to 2010. Common skill metrics of probability forecast, such as rank probability skill core and ROC (relative operating characteristics - hit rate versus false alarm rate) and reliability diagrams show that our dynamical model predominately perform better than the 1st order Marko chain forecast (that beats climatological forecast) over the first forecast year. On average May 1st start dates initially have lower skill than Nov 1st start dates, but their skill is degraded at slower rate than skill of forecast started on Nov 1st.
NASA Astrophysics Data System (ADS)
Seo, J.; Choi, W.; Youn, D.; Park, D. R.; Kim, J.
2013-12-01
The effects of the equatorial quasi-biennial oscillation (QBO) on the springtime rainfall variability in the western North Pacific (WNP) region are examined using the monthly data of GPCP precipitation, NOAA OLR, and ERA-interim reanalysis for the period of 1979-2011. The QBO phases during the spring are based on the Singapore zonal wind at 70 hPa and strong ENSO years are excluded from the analyses to investigate the sole influence of the QBO. The composite analyses of the precipitation, OLR, and related meteorological fields show that the WNP subtropical high (WNPSH) moves equatorward during the westerly QBO (WQBO) compared to the easterly QBO (EQBO) and the convergence region of moisture flux along the northwestern boundary of the WNPSH is displaced southward. In addition, the subtropical jet associated with the midlatitude frontal zone also shifts slightly southward during the WQBO compared to the EQBO. These QBO-related changes in large-scale meteorological fields induce the southward displacement of the midlatitude spring rainband extending from southeastern China to the east of the Japanese Islands and thus significant rainfall decrease in the Northeast Asia during the WQBO compared to the EQBO. The possible role of the QBO in modulating the WNPSH and subtropical jet is also discussed with regard to the strength of the Hadley circulation and the activity of subtropical planetary waves. The results of this study may improve the seasonal predictability of the spring rainfall in the Northeast Asia and the WNP region.
Assessing stratospheric transport in the CMAM30 simulations using ACE-FTS measurements
NASA Astrophysics Data System (ADS)
Kolonjari, Felicia; Plummer, David A.; Walker, Kaley A.; Boone, Chris D.; Elkins, James W.; Hegglin, Michaela I.; Manney, Gloria L.; Moore, Fred L.; Pendlebury, Diane; Ray, Eric A.; Rosenlof, Karen H.; Stiller, Gabriele P.
2018-05-01
Stratospheric transport in global circulation models and chemistry-climate models is an important component in simulating the recovery of the ozone layer as well as changes in the climate system. The Brewer-Dobson circulation is not well constrained by observations and further investigation is required to resolve uncertainties related to the mechanisms driving the circulation. This study has assessed the specified dynamics mode of the Canadian Middle Atmosphere Model (CMAM30) by comparing to the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) profile measurements of CFC-11 (CCl3F), CFC-12 (CCl2F2), and N2O. In the CMAM30 specified dynamics simulation, the meteorological fields are nudged using the ERA-Interim reanalysis and a specified tracer was employed for each species, with hemispherically defined surface measurements used as the boundary condition. A comprehensive sampling technique along the line of sight of the ACE-FTS measurements has been utilized to allow for direct comparisons between the simulated and measured tracer concentrations. The model consistently overpredicts tracer concentrations of CFC-11, CFC-12, and N2O in the lower stratosphere, particularly in the northern hemispheric winter and spring seasons. The three mixing barriers investigated, including the polar vortex, the extratropical tropopause, and the tropical pipe, show that there are significant inconsistencies between the measurements and the simulations. In particular, the CMAM30 simulation underpredicts mixing efficiency in the tropical lower stratosphere during the June-July-August season.
NASA Astrophysics Data System (ADS)
Xu, Xin; Wang, Yuan; Xue, Ming; Zhu, Kefeng
2017-11-01
The impact of horizontal propagation of mountain waves on the orographic gravity wave drag (OGWD) in the stratosphere and lower mesosphere of the Northern Hemisphere is evaluated for the first time. Using a fine-resolution (1 arc min) terrain and 2.5°×2.5° European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis data during 2011-2016, two sets of OGWD are calculated offline according to a traditional parameterization scheme (without horizontal propagation) and a newly proposed scheme (with horizontal propagation). In both cases, the zonal mean OGWDs show similar spatial patterns and undergo a notable seasonal variation. In winter, the OGWD is mainly distributed in the upper stratosphere and lower mesosphere of middle to high latitudes, whereas the summertime OGWD is confined in the lower stratosphere. Comparison between the two sets of OGWD reveal that the horizontal propagation of mountain waves tends to decrease (increase) the OGWD in the lower stratosphere (middle to upper stratosphere and lower mesosphere). Consequently, including the horizontal propagation of mountain waves in the parameterization of OGWD can reduce the excessive OGWD in the lower stratosphere and strengthen the insufficient gravity wave forcing in the mesosphere, which are the known problems of traditional OGWD schemes. The impact of horizontal propagation is more prominent in winter than in summer, with the OGWD in western Tibetan Plateau, Rocky Mountains, and Greenland notably affected.
Climate projection of synoptic patterns forming extremely high wind speed over the Barents Sea
NASA Astrophysics Data System (ADS)
Surkova, Galina; Krylov, Aleksey
2017-04-01
Frequency of extreme weather events is not very high, but their consequences for the human well-being may be hazardous. These seldom events are not always well simulated by climate models directly. Sometimes it is more effective to analyze numerical projection of large-scale synoptic event generating extreme weather. For example, in mid-latitude surface wind speed depends mainly on the sea level pressure (SLP) field - its configuration and horizontal pressure gradient. This idea was implemented for analysis of extreme wind speed events over the Barents Sea. The calendar of high surface wind speed V (10 m above the surface) was prepared for events with V exceeding 99th percentile value in the central part of the Barents Sea. Analysis of probability distribution function of V was carried out on the base of ERA-Interim reanalysis data (6-hours, 0.75x0.75 degrees of latitude and longitude) for the period 1981-2010. Storm wind events number was found to be 240 days. Sea level pressure field over the sea and surrounding area was selected for each storm wind event. For the climate of the future (scenario RCP8.5), projections of SLP from CMIP5 numerical experiments were used. More than 20 climate models results of projected SLP (2006-2100) over the Barents Sea were correlated with modern storm wind SLP fields. Our calculations showed the positive tendency of annual frequency of storm SLP patterns over the Barents Sea by the end of 21st century.
NASA Astrophysics Data System (ADS)
Bang, S. D.; Zipser, E. J.
2017-12-01
Lightning over the tropical ocean, though much rarer than over land, is predominantly observed in large, mostly mature convective systems. The implication is that these may require external forcing or organization in order to develop updrafts sufficiently strong to loft and sustain graupel and supercooled water above the freezing level and thereby produce lightning. We examine three years of radar data from the Kwajalein Atoll in the Marshall Islands in the tropical Pacific Ocean, which we subject to the Warning Decisions Support System - Integrated Information (WDSS-II) tracking algorithm in order to create an evolutionary radar feature dataset. In conjunction with ERA-interim reanalysis environmental data and World Wide Lightning Location Network (WWLLN) lightning data, we are able to observe the lifecycles of electrified convection over Kwajalein and examine the characteristics leading up to a lightning flash for radar features throughout the intensity spectrum. We find that lightning over Kwajalein exhibits the same tendency to occur in large, mature radar features, and the probability of lightning increases with increasing size and, to a certain extent, age. However, there is little evidence to support the role of singular environmental parameters in the development into large features. We continue to struggle to find the reasons that may influence or control the evolution of small features into large, organized convective systems, a major issue that has importance well beyond whether the feature is electrified.
A hemispheric climatology of monsoon depressions
NASA Astrophysics Data System (ADS)
Hurley, J. V.; Boos, W.
2012-12-01
Monsoon depressions are large (1000-2000 km diameter) cyclonic low pressure systems having organized deep convection, best known for forming in the Bay of Bengal and migrating northwest over northern India in the monsoon trough. About 3 to 5 of these systems occur during each monsoon season, contributing about half of the Indian summer rainfall. Despite their importance as a precipitation source, their dynamics are poorly constrained. Furthermore, although they do occur elsewhere, such as around Australia and in the southern Indian Ocean, there does not exist a collective inventory of these systems outside of the Bay of Bengal region. Here we present a climatology of monsoon depressions produced from the ERA-Interim Reanalysis. Feature tracks are identified using an automated tracking algorithm (K. Hodges' TRACK code) applied to the 850 hPa relative vorticity field for local summer, 1989 to 2003. Using criteria based on relative vorticity and sea level pressure, cyclonic low pressure systems are separated into different intensity categories, one of which corresponds to the definition for monsoon depressions used by the India Meteorological Department. The resultant distribution of storms obtained for the Bay of Bengal region compares well with a previously compiled climatology of monsoon depressions that was limited to the region surrounding India. Having validated our ability to identify monsoon depressions in their classic genesis region near India, we then extend the methods to include the western Pacific, Australia, and the southern Indian Ocean. Track distributions and composite structures of monsoon depressions for these different regions will be presented.
NASA Astrophysics Data System (ADS)
Ulbrich, Sven; Pinto, Joaquim G.; Economou, Theodoros; Stephenson, David B.; Karremann, Melanie K.; Shaffrey, Len C.
2017-04-01
Cyclone families are a frequent synoptic weather feature in the Euro-Atlantic area, particularly during wintertime. Given appropriate large-scale conditions, such series (clusters) of storms may cause large socio-economic impacts and cumulative losses. Recent studies analyzing reanalysis data using single cyclone tracking methods have shown that serial clustering of cyclones occurs on both flanks and downstream regions of the North Atlantic storm track. Based on winter (DJF) cyclone counts from the IMILAST cyclone database, we explore the representation of serial clustering in the ERA-Interim period and its relationship with the NAO-phase and jet intensity. With this aim, clustering is estimated by the dispersion of winter (DJF) cyclone passages for each grid point over the Euro-Atlantic area. Results indicate that clustering over the Eastern North Atlantic and Western Europe can be identified for all methods, although the exact location and the dispersion magnitude may vary. The relationship between clustering and (i) the NAO-phase and (ii) jet intensity over the North Atlantic is statistically evaluated. Results show that the NAO-index and the jet intensity show a strong contribution to clustering, even though some spread is found between methods. We conclude that the general features of clustering of extratropical cyclones over the North Atlantic and Western Europe are robust to the choice of tracking method. The same is true for the influence of the NAO and jet intensity on cyclone dispersion.
Robustness of serial clustering of extra-tropical cyclones to the choice of tracking method
NASA Astrophysics Data System (ADS)
Pinto, Joaquim G.; Ulbrich, Sven; Karremann, Melanie K.; Stephenson, David B.; Economou, Theodoros; Shaffrey, Len C.
2016-04-01
Cyclone families are a frequent synoptic weather feature in the Euro-Atlantic area in winter. Given appropriate large-scale conditions, the occurrence of such series (clusters) of storms may lead to large socio-economic impacts and cumulative losses. Recent studies analyzing Reanalysis data using single cyclone tracking methods have shown that serial clustering of cyclones occurs on both flanks and downstream regions of the North Atlantic storm track. This study explores the sensitivity of serial clustering to the choice of tracking method. With this aim, the IMILAST cyclone track database based on ERA-interim data is analysed. Clustering is estimated by the dispersion (ratio of variance to mean) of winter (DJF) cyclones passages near each grid point over the Euro-Atlantic area. Results indicate that while the general pattern of clustering is identified for all methods, there are considerable differences in detail. This can primarily be attributed to the differences in the variance of cyclone counts between the methods, which range up to one order of magnitude. Nevertheless, clustering over the Eastern North Atlantic and Western Europe can be identified for all methods and can thus be generally considered as a robust feature. The statistical links between large-scale patterns like the NAO and clustering are obtained for all methods, though with different magnitudes. We conclude that the occurrence of cyclone clustering over the Eastern North Atlantic and Western Europe is largely independent from the choice of tracking method and hence from the definition of a cyclone.
NASA Astrophysics Data System (ADS)
Barrett, Hannah G.; Jones, Julie M.; Bigg, Grant R.
2018-02-01
The meteorological information found within ships' logbooks is a unique and fascinating source of data for historical climatology. This study uses wind observations from logbooks covering the period 1815 to 1854 to reconstruct an index of El Niño Southern Oscillation (ENSO) for boreal winter (DJF). Statistically-based reconstructions of the Southern Oscillation Index (SOI) are obtained using two methods: principal component regression (PCR) and composite-plus-scale (CPS). Calibration and validation are carried out over the modern period 1979-2014, assessing the relationship between re-gridded seasonal ERA-Interim reanalysis wind data and the instrumental SOI. The reconstruction skill of both the PCR and CPS methods is found to be high with reduction of error skill scores of 0.80 and 0.75, respectively. The relationships derived during the fitting period are then applied to the logbook wind data to reconstruct the historical SOI. We develop a new method to assess the sensitivity of the reconstructions to using a limited number of observations per season and find that the CPS method performs better than PCR with a limited number of observations. A difference in the distribution of wind force terms used by British and Dutch ships is found, and its impact on the reconstruction assessed. The logbook reconstructions agree well with a previous SOI reconstructed from Jakarta rain day counts, 1830-1850, adding robustness to our reconstructions. Comparisons to additional documentary and proxy data sources are provided in a companion paper.
NASA Astrophysics Data System (ADS)
Konduru, R.; Gupta, A.; Matsumoto, J.; Takahashi, H. G.
2017-12-01
In order to explain monsoon circulation, surface temperature gradients described as most traditional concept. However, it cannot explain certain important aspects of monsoon circulation. Later, convective quasi-equilibrium framework and vertically integrated atmospheric energy budget has become recognized theories to explain the monsoon circulation. In this article, same theories were analyzed and observed for the duration 1979-2010 over south Asian summer monsoon region. With the help of NCEP-R2, NOAA 20th Century, and Era-Interim reanalysis an important feature was noticed pertained to subcloud layer entropy and vertical moist static energy. In the last 32 years, subcloud layer entropy and vertically integrated moist static energy has shown significant seasonal warming all over the region with peak over the poleward flank of the cross-equatorial cell. The important reason related to the warming was found to be increase in surface enthalpy fluxes. Instead, other dynamical contributions pertained to the warming was also observed. Increase in positive anomalies of vertical advection of moist static energy over northern Bay of Bengal, Central India, Peninsular India, Eastern Arabian Sea, and Equatorial Indian Ocean was found to be an important dynamic factor contributing for warming of vertically integrated moist static energy. Along with it vertical moist stability has also supported the argument. Similar interpretations were perceived in the AMIP simulation of CCSM4 model. Further modeling experiments on this warming will be helpful to know the exact mechanism behind it.
Ten Year Analysis of Tropopause-Overshooting Convection Using GridRad Data
NASA Astrophysics Data System (ADS)
Cooney, John W.; Bowman, Kenneth P.; Homeyer, Cameron R.; Fenske, Tyler M.
2018-01-01
Convection that penetrates the tropopause (overshooting convection) rapidly transports air from the lower troposphere to the lower stratosphere, potentially mixing air between the two layers. This exchange of air can have a substantial impact on the composition, radiation, and chemistry of the upper troposphere and lower stratosphere (UTLS). In order to improve our understanding of the role convection plays in the transport of trace gases across the tropopause, this study presents a 10 year analysis of overshooting convection for the eastern two thirds of the contiguous United States for March through August of 2004 to 2013 based on radar observations. Echo top altitudes are estimated at hourly intervals using high-resolution, three-dimensional, gridded, radar reflectivity fields created by merging observations from available radars in the National Oceanic and Atmospheric Administration Next Generation Weather Radar (NEXRAD) network. Overshooting convection is identified by comparing echo top altitudes with tropopause altitudes derived from the ERA-Interim reanalysis. It is found that overshooting convection is most common in the central United States, with a weak secondary maximum along the southeast coast. The maximum number of overshooting events occur consistently between 2200 and 0200 UTC. Most overshooting events occur in May, June, and July when convection is deepest and the tropopause altitude is relatively low. Approximately 45% of the analyzed overshooting events (those with echo tops at least 1 km above the tropopause) have echo tops extending above the 380 K level into the stratospheric overworld.
NASA Astrophysics Data System (ADS)
Martínez-Castro, Daniel; Vichot-Llano, Alejandro; Bezanilla-Morlot, Arnoldo; Centella-Artola, Abel; Campbell, Jayaka; Giorgi, Filippo; Viloria-Holguin, Cecilia C.
2018-06-01
A sensitivity study of the performance of the RegCM4 regional climate model driven by the ERA Interim reanalysis is conducted for the Central America and Caribbean region. A set of numerical experiments are completed using four configurations of the model, with a horizontal grid spacing of 25 km for a period of 6 years (1998-2003), using three of the convective parameterization schemes implemented in the model, the Emanuel scheme, the Grell over land-Emanuel over ocean scheme and two configurations of the Tiedtke scheme. The objective of the study is to investigate the ability of each configuration to reproduce different characteristics of the temperature, circulation and precipitation fields for the dry and rainy seasons. All schemes simulate the general temperature and precipitation patterns over land reasonably well, with relatively high correlations compared to observation datasets, though in specific regions there are positive or negative biases, greater in the rainy season. We also focus on some circulation features relevant for the region, such as the Caribbean low level jet and sea breeze circulations over islands, which are simulated by the model with varied performance across the different configurations. We find that no model configuration assessed is best performing for all the analysis criteria selected, but the Tiedtke configurations, which include the capability of tuning in particular the exchanges between cloud and environment air, provide the most balanced range of biases across variables, with no outstanding systematic bias emerging.
NASA Astrophysics Data System (ADS)
Kinoshita, T.; Sato, K.
2016-12-01
The Transformed Eulerian-Mean (TEM) equations were derived by Andrews and McIntyre (1976, 1978) and have been widely used to examine wave-mean flow interaction in the meridional cross section. According to previous studies, the Brewer-Dobson circulation in the stratosphere is driven by planetary waves, baroclinic waves, and inertia-gravity waves, and that the meridional circulation from the summer hemisphere to the winter hemisphere in the mesosphere is mainly driven by gravity waves (e.g., Garcia and Boville 1994; Plumb and Semeniuk 2003; Watanabe et al. 2008; Okamoto et al. 2011). However, the TEM equations do not provide the three-dimensional view of the transport, so that the three dimensional TEM equations have been formulated (Hoskins et al. 1983, Trenberth 1986, Plumb 1985, 1986, Takaya and Nakamura 1997, 2001, Miyahara 2006, Kinoshita et al. 2010, Noda 2010, Kinoshita and Sato 2013a, b, and Noda 2014). On the other hand, the TEM equations cannot properly treat the lower boundary and unstable waves. The Mass-weighted Isentropic Mean (MIM) equations derived by Iwasaki (1989, 1990) are the equations that overcome those problems and the formulation of three-dimensional MIM equations have been studied. The present study applies the three-dimensional TEM and MIM equations to the ERA-Interim reanalysis data and examines the climatological character of three-dimensional structure of Stratospheric Brewer-Dobson circulation. Next, we will discuss how to treat the flow associated with spatial structure of stationary waves.
NASA Astrophysics Data System (ADS)
Mehmood, S.; Ashfaq, M.; Evans, K. J.; Black, R. X.; Hsu, H. H.
2017-12-01
Extreme precipitation during summer season has shown an increasing trend across South Asia in recent decades, causing an exponential increase in weather related losses. Here we combine a cluster analyses technique (Agglomerative Hierarchical Clustering) with a Lagrangian based moisture analyses technique to investigate potential commonalities in the characteristics of the large scale meteorological patterns (LSMP) and moisture anomalies associated with the observed extreme precipitation events, and their representation in the Department of Energy model ACME. Using precipitation observations from the Indian Meteorological Department (IMD) and Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation (APHRODITE), and atmospheric variables from Era-Interim Reanalysis, we first identify LSMP both in upper and lower troposphere that are responsible for wide spread precipitation extreme events during 1980-2015 period. For each of the selected extreme event, we perform moisture source analyses to identify major evaporative sources that sustain anomalous moisture supply during the course of the event, with a particular focus on local terrestrial moisture recycling. Further, we perform similar analyses on two sets of five-member ensemble of ACME model (1-degree and ¼ degree) to investigate the ability of ACME model in simulating precipitation extremes associated with each of the LSMP patterns and associated anomalous moisture sourcing from each of the terrestrial and oceanic evaporative region. Comparison of low and high-resolution model configurations provides insight about the influence of horizontal grid spacing in the simulation of extreme precipitation and the governing mechanisms.
NASA Astrophysics Data System (ADS)
KIM, Y.; Lim, Y. J.; Kim, Y. H.; Kim, B. J.
2015-12-01
The impacts of climate change on wind speed, wind energy density (WED), and potential electronic production (PEP) over the Korean peninsula have been investigated by using five regional climate models (HadGEM3-RA, RegCM, WRF, GRIMs and MM5) ensemble projection data. HadGEM2-AO based two RCP scenarios (RCP4.5/8.5) data have been used for initial and boundary condition to all RCMs. Wind energy density and its annual and seasonal variability have been estimated based on monthly near-surface wind speeds, and the potential electronic production and its change have been also analyzed. As a result of comparison ensemble models based annual mean wind speed for 25-yr historical period (1981-2005) to the ERA-interim, it is shown that all RCMs overestimate near-surface wind speed compared to the reanalysis data but the results of HadGEM3-RA are most comparable. The changes annual and seasonal mean of WED and PEP for the historical period and comparison results to future projection (2021-2050) will be presented in this poster session. We also scrutinize the changes in mean sea level pressure and mean sea level pressure gradient in driving GCM/RCM as a factor inducing the variations. Our results can be used as a background data for devising a plan to develop and operate wind farm over the Korean Peninsula.
Intra-seasonal variability of extreme boreal stratospheric polar vortex events and their precursors
NASA Astrophysics Data System (ADS)
Díaz-Durán, Adelaida; Serrano, Encarna; Ayarzagüena, Blanca; Abalos, Marta; de la Cámara, Alvaro
2017-11-01
The dynamical variability of the boreal stratospheric polar vortex has been usually analysed considering the extended winter as a whole or only focusing on December, January and February. Yet recent studies have found intra-seasonal differences in the boreal stratospheric dynamics. In this study, the intra-seasonal variability of anomalous wave activity preceding polar vortex extremes in the Northern Hemisphere is examined using ERA-Interim reanalysis data. Weak (WPV) and strong (SPV) polar vortex events are grouped into early, mid- or late winter sub-periods depending on the onset date. Overall, the strongest (weakest) wave-activity anomalies preceding polar vortex extremes are found in mid- (early) winter. Most of WPV (SPV) events in early winter occur under the influence of east (west) phase of the Quasi-Biennial Oscillation (QBO) and an enhancement (inhibition) of wavenumber-1 wave activity (WN1). Mid- and late winter WPV events are preceded by a strong vortex and an enhancement of WN1 and WN2, but the spatial structure of the anomalous wave activity and the phase of the QBO are different. Prior to mid-winter WPVs the enhancement of WN2 is related to the predominance of La Niña and linked to blockings over Siberia. Mid-winter SPV events show a negative phase of the Pacific-North America pattern that inhibits WN1 injected into the stratosphere. This study suggests that dynamical features preceding extreme polar vortex events in mid-winter should not be generalized to other winter sub-periods.
NASA Astrophysics Data System (ADS)
Naz, Bibi; Kurtz, Wolfgang; Kollet, Stefan; Hendricks Franssen, Harrie-Jan; Sharples, Wendy; Görgen, Klaus; Keune, Jessica; Kulkarni, Ketan
2017-04-01
More accurate and reliable hydrologic simulations are important for many applications such as water resource management, future water availability projections and predictions of extreme events. However, simulation of spatial and temporal variations in the critical water budget components such as precipitation, snow, evaporation and runoff is highly uncertain, due to errors in e.g. model structure and inputs (hydrologic parameters and forcings). In this study, we use data assimilation techniques to improve the predictability of continental-scale water fluxes using in-situ measurements along with remotely sensed information to improve hydrologic predications for water resource systems. The Community Land Model, version 3.5 (CLM) integrated with the Parallel Data Assimilation Framework (PDAF) was implemented at spatial resolution of 1/36 degree (3 km) over the European CORDEX domain. The modeling system was forced with a high-resolution reanalysis system COSMO-REA6 from Hans-Ertel Centre for Weather Research (HErZ) and ERA-Interim datasets for time period of 1994-2014. A series of data assimilation experiments were conducted to assess the efficiency of assimilation of various observations, such as river discharge data, remotely sensed soil moisture, terrestrial water storage and snow measurements into the CLM-PDAF at regional to continental scales. This setup not only allows to quantify uncertainties, but also improves streamflow predictions by updating simultaneously model states and parameters utilizing observational information. The results from different regions, watershed sizes, spatial resolutions and timescales are compared and discussed in this study.
Dynamic and thermodynamic processes driving the January 2014 precipitation record in southern UK
NASA Astrophysics Data System (ADS)
Oueslati, B.; Yiou, P.; Jezequel, A.
2017-12-01
Regional extreme precipitation are projected to intensify as a response to planetary climate change, with important impacts on societies. Understanding and anticipating those events remain a major challenge. In this study, we revisit the mechanisms of winter precipitation record that occurred in southern United Kingdom in January 2014. The physical drivers of this event are analyzed using the water vapor budget. Precipitation changes are decomposed into dynamic contributions, related to changes in atmospheric circulation, and thermodynamic contributions, related to changes in water vapor. We attempt to quantify the relative importance of the two contributions during this event and examine the applicability of Clausius-Clapeyron scaling. This work provides a physical interpretation of the mechanisms associated with Southern UK's wettest event, which is complementary to other studies based on statistical approaches (Schaller et al., 2016, Yiou et al., 2017). The analysis is carried out using the ERA-Interim reanalysis. This is motivated by the horizontal resolution of this dataset. It is then applied to present-day simulations and future projections of CMIP5 models on selected extreme precipitation events in southern UK that are comparable to January 2014 in terms of atmospheric circulation.References:Schaller, N. et al. Human influence on climate in the 2014 southern England winter floods and their impacts, Nature Clim. Change, 2016, 6, 627-634 Yiou, P., et al. A statistical framework for conditional extreme event attribution Advances in Statistical Climatology, Meteorology and Oceanography, 2017, 3, 17-31
Global climatology of planetary boundary layer top obtained from multi-satellite GPS RO observations
NASA Astrophysics Data System (ADS)
Basha, Ghouse; Kishore, P.; Ratnam, M. Venkat; Ravindra Babu, S.; Velicogna, Isabella; Jiang, Jonathan H.; Ao, Chi O.
2018-05-01
Accurate estimation of the planetary boundary layer (PBL) top is essential for air quality prediction, weather forecast, and assessment of regional and global climate models. In this article, the long-term climatology of seasonal, global distribution of PBL is presented by using global positioning system radio occultation (GPSRO) based payloads such as Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), Communication/Navigation Outage Forecast System (C/NOFS), TerraSAR-X, and The Gravity Recovery and Climate Experiment (GRACE) from the year 2006-2015. We used Wavelet Covariance Transform (WCT) technique for precise PBL top identification. The derived PBL top from GPSRO data is rigorously evaluated with GPS radiosonde data over Gadanki. Significant seasonal variation is noticed in both radiosonde and GPSRO observations. Further, we compared the PBL obtained GPS RO with global radiosonde network and observed very good correlation. The number of occultations reaching down to 500 m and retrieval rate of PBL top from WCT method is very high in mid-latitudes compared to tropical latitudes. The global distribution of PBL top shows significant seasonal variation with higher during summer followed by spring, fall, and minimum in winter. In the vicinity of Inter Tropical Convergence Zone (ITCZ), the PBL top is high over eastern Pacific compared to other regions. The ERA-Interim reanalysis data underestimate the PBL top compared to GPS RO observations due to different measurement techniques. The seasonal variation of global averaged PBL top over land and ocean shows contrasting features at different latitude bands.
Downscaling global precipitation for local applications - a case for the Rhine basin
NASA Astrophysics Data System (ADS)
Sperna Weiland, Frederiek; van Verseveld, Willem; Schellekens, Jaap
2017-04-01
Within the EU FP7 project eartH2Observe a global Water Resources Re-analysis (WRR) is being developed. This re-analysis consists of meteorological and hydrological water balance variables with global coverage, spanning the period 1979-2014 at 0.25 degrees resolution (Schellekens et al., 2016). The dataset can be of special interest in regions with limited in-situ data availability, yet for local scale analysis particularly in mountainous regions, a resolution of 0.25 degrees may be too coarse and downscaling the data to a higher resolution may be required. A downscaling toolbox has been made that includes spatial downscaling of precipitation based on the global WorldClim dataset that is available at 1 km resolution as a monthly climatology (Hijmans et al., 2005). The input of the down-scaling tool are either the global eartH2Observe WRR1 and WRR2 datasets based on the WFDEI correction methodology (Weedon et al., 2014) or the global Multi-Source Weighted-Ensemble Precipitation (MSWEP) dataset (Beck et al., 2016). Here we present a validation of the datasets over the Rhine catchment by means of a distributed hydrological model (wflow, Schellekens et al., 2014) using a number of precipitation scenarios. (1) We start by running the model using the local reference dataset derived by spatial interpolation of gauge observations. Furthermore we use (2) the MSWEP dataset at the native 0.25-degree resolution followed by (3) MSWEP downscaled with the WorldClim dataset and final (4) MSWEP downscaled with the local reference dataset. The validation will be based on comparison of the modeled river discharges as well as rainfall statistics. We expect that down-scaling the MSWEP dataset with the WorldClim data to higher resolution will increase its performance. To test the performance of the down-scaling routine we have added a run with MSWEP data down-scaled with the local dataset and compare this with the run based on the local dataset itself. - Beck, H. E. et al., 2016. MSWEP: 3-hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data, Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-236, accepted for final publication. - Hijmans, R.J. et al., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978. - Schellekens, J. et al., 2016. A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset, Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2016-55, under review. - Schellekens, J. et al., 2014. Rapid setup of hydrological and hydraulic models using OpenStreetMap and the SRTM derived digital elevation model. Environmental Modelling&Software - Weedon, G.P. et al., 2014. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resources Research, 50, doi:10.1002/2014WR015638.
Snow water equivalent in the Alps as seen by gridded data sets, CMIP5 and CORDEX climate models
NASA Astrophysics Data System (ADS)
Terzago, Silvia; von Hardenberg, Jost; Palazzi, Elisa; Provenzale, Antonello
2017-07-01
The estimate of the current and future conditions of snow resources in mountain areas would require reliable, kilometre-resolution, regional-observation-based gridded data sets and climate models capable of properly representing snow processes and snow-climate interactions. At the moment, the development of such tools is hampered by the sparseness of station-based reference observations. In past decades passive microwave remote sensing and reanalysis products have mainly been used to infer information on the snow water equivalent distribution. However, the investigation has usually been limited to flat terrains as the reliability of these products in mountain areas is poorly characterized.This work considers the available snow water equivalent data sets from remote sensing and from reanalyses for the greater Alpine region (GAR), and explores their ability to provide a coherent view of the snow water equivalent distribution and climatology in this area. Further we analyse the simulations from the latest-generation regional and global climate models (RCMs, GCMs), participating in the Coordinated Regional Climate Downscaling Experiment over the European domain (EURO-CORDEX) and in the Fifth Coupled Model Intercomparison Project (CMIP5) respectively. We evaluate their reliability in reproducing the main drivers of snow processes - near-surface air temperature and precipitation - against the observational data set EOBS, and compare the snow water equivalent climatology with the remote sensing and reanalysis data sets previously considered. We critically discuss the model limitations in the historical period and we explore their potential in providing reliable future projections.The results of the analysis show that the time-averaged spatial distribution of snow water equivalent and the amplitude of its annual cycle are reproduced quite differently by the different remote sensing and reanalysis data sets, which in fact exhibit a large spread around the ensemble mean. We find that GCMs at spatial resolutions equal to or finer than 1.25° longitude are in closer agreement with the ensemble mean of satellite and reanalysis products in terms of root mean square error and standard deviation than lower-resolution GCMs. The set of regional climate models from the EURO-CORDEX ensemble provides estimates of snow water equivalent at 0.11° resolution that are locally much larger than those indicated by the gridded data sets, and only in a few cases are these differences smoothed out when snow water equivalent is spatially averaged over the entire Alpine domain. ERA-Interim-driven RCM simulations show an annual snow cycle that is comparable in amplitude to those provided by the reference data sets, while GCM-driven RCMs present a large positive bias. RCMs and higher-resolution GCM simulations are used to provide an estimate of the snow reduction expected by the mid-21st century (RCP 8.5 scenario) compared to the historical climatology, with the main purpose of highlighting the limits of our current knowledge and the need for developing more reliable snow simulations.
Randles, C A; Da Silva, A M; Buchard, V; Colarco, P R; Darmenov, A; Govindaraju, R; Smirnov, A; Holben, B; Ferrare, R; Hair, J; Shinozuka, Y; Flynn, C J
2017-09-01
The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) updates NASA's previous satellite era (1980 - onward) reanalysis system to include additional observations and improvements to the Goddard Earth Observing System, Version 5 (GEOS-5) Earth system model. As a major step towards a full Integrated Earth Systems Analysis (IESA), in addition to meteorological observations, MERRA-2 now includes assimilation of aerosol optical depth (AOD) from various ground- and space-based remote sensing platforms. Here, in the first of a pair of studies, we document the MERRA-2 aerosol assimilation, including a description of the prognostic model (GEOS-5 coupled to the GOCART aerosol module), aerosol emissions, and the quality control of ingested observations. We provide initial validation and evaluation of the analyzed AOD fields using independent observations from ground, aircraft, and shipborne instruments. We demonstrate the positive impact of the AOD assimilation on simulated aerosols by comparing MERRA-2 aerosol fields to an identical control simulation that does not include AOD assimilation. Having shown the AOD evaluation, we take a first look at aerosol-climate interactions by examining the shortwave, clear-sky aerosol direct radiative effect. In our companion paper, we evaluate and validate available MERRA-2 aerosol properties not directly impacted by the AOD assimilation (e.g. aerosol vertical distribution and absorption). Importantly, while highlighting the skill of the MERRA-2 aerosol assimilation products, both studies point out caveats that must be considered when using this new reanalysis product for future studies of aerosols and their interactions with weather and climate.
A Community Terrain-Following Ocean Modeling System (ROMS/TOMS)
2013-09-30
workshop at the Windsor Atlântica Hotel, Rio de Janeiro , Brazil, October 22-25, 2012. As in the past, several tutorials were offered on basic and...from the European Centre For Medium-Range Weather Forecasts (ECMWF) ERA-Interim, 3-hour dataset. River runoff is included along the Alabama
NASA Astrophysics Data System (ADS)
Tariku, Tebikachew Betru; Gan, Thian Yew
2018-06-01
Regional climate models (RCMs) have been used to simulate rainfall at relatively high spatial and temporal resolutions useful for sustainable water resources planning, design and management. In this study, the sensitivity of the RCM, weather research and forecasting (WRF), in modeling the regional climate of the Nile River Basin (NRB) was investigated using 31 combinations of different physical parameterization schemes which include cumulus (Cu), microphysics (MP), planetary boundary layer (PBL), land-surface model (LSM) and radiation (Ra) schemes. Using the European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim reanalysis data as initial and lateral boundary conditions, WRF was configured to model the climate of NRB at a resolution of 36 km with 30 vertical levels. The 1999-2001 simulations using WRF were compared with satellite data combined with ground observation and the NCEP reanalysis data for 2 m surface air temperature (T2), rainfall, short- and longwave downward radiation at the surface (SWRAD, LWRAD). Overall, WRF simulated more accurate T2 and LWRAD (with correlation coefficients >0.8 and low root-mean-square error) than SWRAD and rainfall for the NRB. Further, the simulation of rainfall is more sensitive to PBL, Cu and MP schemes than other schemes of WRF. For example, WRF simulated less biased rainfall with Kain-Fritsch combined with MYJ than with YSU as the PBL scheme. The simulation of T2 is more sensitive to LSM and Ra than to Cu, PBL and MP schemes selected, SWRAD is more sensitive to MP and Ra than to Cu, LSM and PBL schemes, and LWRAD is more sensitive to LSM, Ra and PBL than Cu, and MP schemes. In summary, the following combination of schemes simulated the most representative regional climate of NRB: WSM3 microphysics, KF cumulus, MYJ PBL, RRTM longwave radiation and Dudhia shortwave radiation schemes, and Noah LSM. The above configuration of WRF coupled to the Noah LSM has also been shown to simulate representative regional climate of NRB over 1980-2001 which include a combination of wet and dry years of the NRB.
Mechanisms for the cooling of the central eastern Pacific
NASA Astrophysics Data System (ADS)
Liu, Chunlei; Allan, Richard
2017-04-01
The sea surface temperature variation over the Central Eastern Pacific (CEP) controls the global mean surface temperature variation (Kosaka and Xie, 2013). The regional cooling over CEP is directly linked to the surface warming slowdown in last twenty years. It is important to understand the mechanisms of the CEP cooling in the warming climate in order to have a robust prediction of the future climate change. Previous studies showed the CEP cooling is related to the pronounced strengthening in Pacific trade winds over the past two decades, which is sufficient to account for the cooling of the CEP and a substantial slowdown in surface warming through increased subsurface ocean heat uptake in the Pacific shallow overturning cells and equatorial upwelling in the CEP (England et al., 2014). By analysing the cloud data, Zhou et al. (2016) showed the increase of the lower cloud cover (LCC) over the CEP area contributed to the cooling, resulting in positive local feedback and negative global feedback. Using the data from observations, ERA-Interim reanalysis and atmospheric climate simulations, our study shows that the increasing Latent Heat (LH) also plays an important role in the CEP cooling (Liu et al., 2015). After the sensitivity test using the bulk formula, it showed that both wind and total column water vapour content contribute to the cooling trends of the SST in CEP. The observed trends of the wind and LH in CEP also confirmed this. England et al. (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus, Nat. Clim. Change, 4, 222-227, doi:10.1038/nclimate2106. Kosaka, Y., and S. P. Xie (2013), Recent global-warming hiatus tied to equatorial Pacific surface cooling, Nature, 501, 403-407, doi:10.1038/nature12534. Liu et al. (2015) Combining satellite observations and reanalysis energy transports to estimate global net surface energy fluxes 1985-2012. J. Geophys. Res. , Atmospheres. ISSN 2169-8996 doi: 10.1002/2015JD023264. Zhou et al. (2016) Impact of decadal cloud variations on the Earth's energy budget, Nature Geoscience 9, 871-874 (2016) doi:10.1038/ngeo2828.
A low-order model for long-range infrasound propagation in random atmospheric waveguides
NASA Astrophysics Data System (ADS)
Millet, C.; Lott, F.
2014-12-01
In numerical modeling of long-range infrasound propagation in the atmosphere, the wind and temperature profiles are usually obtained as a result of matching atmospheric models to empirical data. The atmospheric models are classically obtained from operational numerical weather prediction centers (NOAA Global Forecast System or ECMWF Integrated Forecast system) as well as atmospheric climate reanalysis activities and thus, do not explicitly resolve atmospheric gravity waves (GWs). The GWs are generally too small to be represented in Global Circulation Models, and their effects on the resolved scales need to be parameterized in order to account for fine-scale atmospheric inhomogeneities (for length scales less than 100 km). In the present approach, the sound speed profiles are considered as random functions, obtained by superimposing a stochastic GW field on the ECMWF reanalysis ERA-Interim. The spectral domain is binned by a large number of monochromatic GWs, and the breaking of each GW is treated independently from the others. The wave equation is solved using a reduced-order model, starting from the classical normal mode technique. We focus on the asymptotic behavior of the transmitted waves in the weakly heterogeneous regime (for which the coupling between the wave and the medium is weak), with a fixed number of propagating modes that can be obtained by rearranging the eigenvalues by decreasing Sobol indices. The most important feature of the stochastic approach lies in the fact that the model order (i.e. the number of relevant eigenvalues) can be computed to satisfy a given statistical accuracy whatever the frequency. As the low-order model preserves the overall structure of waveforms under sufficiently small perturbations of the profile, it can be applied to sensitivity analysis and uncertainty quantification. The gain in CPU cost provided by the low-order model is essential for extracting statistical information from simulations. The statistics of a transmitted broadband pulse are computed by decomposing the original pulse into a sum of modal pulses that propagate with different phase speeds and can be described by a front pulse stabilization theory. The method is illustrated on two large-scale infrasound calibration experiments, that were conducted at the Sayarim Military Range, Israel, in 2009 and 2011.
NASA Astrophysics Data System (ADS)
Tariku, Tebikachew Betru; Gan, Thian Yew
2017-08-01
Regional climate models (RCMs) have been used to simulate rainfall at relatively high spatial and temporal resolutions useful for sustainable water resources planning, design and management. In this study, the sensitivity of the RCM, weather research and forecasting (WRF), in modeling the regional climate of the Nile River Basin (NRB) was investigated using 31 combinations of different physical parameterization schemes which include cumulus (Cu), microphysics (MP), planetary boundary layer (PBL), land-surface model (LSM) and radiation (Ra) schemes. Using the European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim reanalysis data as initial and lateral boundary conditions, WRF was configured to model the climate of NRB at a resolution of 36 km with 30 vertical levels. The 1999-2001 simulations using WRF were compared with satellite data combined with ground observation and the NCEP reanalysis data for 2 m surface air temperature (T2), rainfall, short- and longwave downward radiation at the surface (SWRAD, LWRAD). Overall, WRF simulated more accurate T2 and LWRAD (with correlation coefficients >0.8 and low root-mean-square error) than SWRAD and rainfall for the NRB. Further, the simulation of rainfall is more sensitive to PBL, Cu and MP schemes than other schemes of WRF. For example, WRF simulated less biased rainfall with Kain-Fritsch combined with MYJ than with YSU as the PBL scheme. The simulation of T2 is more sensitive to LSM and Ra than to Cu, PBL and MP schemes selected, SWRAD is more sensitive to MP and Ra than to Cu, LSM and PBL schemes, and LWRAD is more sensitive to LSM, Ra and PBL than Cu, and MP schemes. In summary, the following combination of schemes simulated the most representative regional climate of NRB: WSM3 microphysics, KF cumulus, MYJ PBL, RRTM longwave radiation and Dudhia shortwave radiation schemes, and Noah LSM. The above configuration of WRF coupled to the Noah LSM has also been shown to simulate representative regional climate of NRB over 1980-2001 which include a combination of wet and dry years of the NRB.
Summertime evolution of snow specific surface area close to the surface on the Antarctic Plateau
NASA Astrophysics Data System (ADS)
Libois, Q.; Picard, G.; Arnaud, L.; Dumont, M.; Lafaysse, M.; Morin, S.; Lefebvre, E.
2015-12-01
On the Antarctic Plateau, snow specific surface area (SSA) close to the surface shows complex variations at daily to seasonal scales which affect the surface albedo and in turn the surface energy budget of the ice sheet. While snow metamorphism, precipitation and strong wind events are known to drive SSA variations, usually in opposite ways, their relative contributions remain unclear. Here, a comprehensive set of SSA observations at Dome C is analysed with respect to meteorological conditions to assess the respective roles of these factors. The results show an average 2-to-3-fold SSA decrease from October to February in the topmost 10 cm in response to the increase of air temperature and absorption of solar radiation in the snowpack during spring and summer. Surface SSA is also characterized by significant daily to weekly variations due to the deposition of small crystals with SSA up to 100 m2 kg-1 onto the surface during snowfall and blowing snow events. To complement these field observations, the detailed snowpack model Crocus is used to simulate SSA, with the intent to further investigate the previously found correlation between interannual variability of summer SSA decrease and summer precipitation amount. To this end, some Crocus parameterizations have been adapted to Dome C conditions, and the model was forced by ERA-Interim reanalysis. It successfully matches the observations at daily to seasonal timescales, except for the few cases when snowfalls are not captured by the reanalysis. On the contrary, the interannual variability of summer SSA decrease is poorly simulated when compared to 14 years of microwave satellite data sensitive to the near-surface SSA. A simulation with disabled summer precipitation confirms the weak influence in the model of the precipitation on metamorphism, with only 6 % enhancement. However, we found that disabling strong wind events in the model is sufficient to reconciliate the simulations with the observations. This suggests that Crocus reproduces well the contributions of metamorphism and precipitation on surface SSA, but snow compaction by the wind might be overestimated in the model.
Summertime evolution of snow specific surface area close to the surface on the Antarctic Plateau
NASA Astrophysics Data System (ADS)
Libois, Q.; Picard, G.; Arnaud, L.; Dumont, M.; Lafaysse, M.; Morin, S.; Lefebvre, E.
2015-08-01
On the Antarctic Plateau, snow specific surface area (SSA) close to the surface shows complex variations at daily to seasonal scales which affect the surface albedo and in turn the surface energy budget of the ice sheet. While snow metamorphism, precipitation and strong wind events are known to drive SSA variations, usually in opposite ways, their relative contributions remain unclear. Here, a comprehensive set of SSA observations at Dome C is analysed with respect to meteorological conditions to assess the respective roles of these factors. The results show an average two-to-three-fold SSA decrease from October to February in the topmost 10 cm, in response to the increase of air temperature and absorption of solar radiation in the snowpack during spring and summer. Surface SSA is also characterised by significant daily to weekly variations, due to the deposition of small crystals with SSA up to 100 m2 kg-1 onto the surface during snowfall and blowing snow events. To complement these field observations, the detailed snowpack model Crocus is used to simulate SSA, with the intent to further investigate the previously found correlation between inter-annual variability of summer SSA decrease and summer precipitation amount. To this end, Crocus parameterizations have been adapted to Dome C conditions, and the model was forced by ERA-Interim reanalysis. It successfully matches the observations at daily to seasonal time scales, except for few cases when snowfalls are not captured by the reanalysis. On the contrary, the inter-annual variability of summer SSA decrease is poorly simulated when compared to 14 years of microwave satellite data sensititve to the near surface SSA. A simulation with disabled summer precipitation confirms the weak influence in the model of the precipitation on metamorphism, with only 6 % enhancement. However we found that disabling strong wind events in the model is sufficient to reconciliate the simulations with the observations. This suggests that Crocus reproduces well the contributions of metamorphism and precipitation on surface SSA, but that snow compaction by the wind might be overestimated in the model.
NASA Astrophysics Data System (ADS)
Bovolo, C. Isabella; Pereira, Ryan; Parkin, Geoff; Wagner, Thomas
2010-05-01
The tropical rainforests of the Guianas, north of the Amazon, are home to several Amerindian communities, hold high levels of biodiversity and, importantly, remain some of the world's most pristine and intact rainforests. Not only do they have important functions in the global carbon cycle, but they regulate the local and regional climate and help generate rain over vast distances. Despite their significance however, the climate and hydrology of this region is poorly understood. It is important to establish the current climate regime of the area as a baseline against which any impacts of future climate change or deforestation can be measured but observed historical climate datasets are generally sparse and of low quality. Here we examine the available precipitation and temperature datasets for the region and derive tentative precipitation and temperature maps focussed on Guyana. To overcome the limitations in the inadequate observational data coverage we also make use of a reanalysis dataset from the European Centre for Medium-range Weather Forecasts (ECMWF). The ECMWF ERA40 dataset comprises a spatially consistent global historical climate for the period 1957-2002 at a ~125 km2 (1.125 degree) resolution at the equator and is particularly valuable for establishing the climate of data-poor areas. Once validated for the area of interest, ERA40 is used to determine the precipitation and temperature regime of the Guianas. Grid-cell by grid-cell analysis provides a complete picture of spatial patterns of averaged monthly precipitation variability across the area, vital for establishing a basis from which to compare any future effects of climate change. This is the first comprehensive study of the recent historical climate and its variability in this area, placing a new hydroclimate monitoring and research program at the Iwokrama International Centre for Rainforest Conservation and Development, Guyana, into the broader climate context. Mean differences (biases) and annual average spatial correlations are examined between modelled ERA40 and observed time series comparing the seasonal cycles and the yearly, monthly and monthly anomaly time series. This is to evaluate if the reanalysis data correctly reproduces the areally averaged observed mean annual precipitation, interannual variability and seasonal precipitation cycle over the region. Results show that reanalysis precipitation for the region compares favourably with areally averaged observations where available, although the model underestimates precipitation in some zones of higher elevation. Also ERA40 data is slightly positively biased along the coast and negatively biased inland. Comparisons between observed and modelled data show that although correlations of annual time series are low (<0.6), correlations of monthly time series reach 0.8 demonstrating that the model captures much of the seasonal variation in precipitation. However correlations between monthly precipitation anomalies, where the averaged seasonal cycle has been removed from the comparison, are lower (< 0.6). As precipitation observations are not assimilated into the reanalysis these results provide a good validation of model performance. The seasonal cycle of precipitation is found to be highly variable across the region. Two wet-seasons (June and December) occur in northern Guyana which relate to the twice yearly passage of the inter-tropical convergence zone whereas a single wet season (April-August) occurs in the savannah zone, which stretches from Venezuela through the southern third of Guyana. The climate transition zone lies slightly north of the distinctive forest-savannah boundary which suggests that the boundary may be highly sensitive to future alterations in climate, such as those due to climate change or deforestation.
Heavy precipitation events in northern Switzerland
NASA Astrophysics Data System (ADS)
Giannakaki, Paraskevi; Martius, Olivia
2013-04-01
Heavy precipitation events in the Alpine region often cause floods, rock-falls and mud slides with severe consequences for population and economy. Breaking synoptic Rossby waves located over western Europe, play a central role in triggering such heavy rain events in southern Switzerland (e.g. Massacand et al. 1998). In contrast, synoptic scale structures triggering heavy precipitation on the north side of the Swiss Alps and orographic effects have so far not been studied comprehensively. An observation based high resolution precipitation data set for Switzerland and the Alps (MeteoSwiss) is used to identify heavy precipitation events affecting the north side of the Swiss Alps for the time period 1961-2010. For these events a detailed statistical and dynamical analysis of the upper level flow is conducted using ECMWFs ERA-40 and ERA-Interim reanalysis data sets. For the analysis north side of the Swiss Alps is divided in two investigation areas north-eastern and western Switzerland following the Swiss climate change scenarios (Bey et al. 2011). A subjective classification of upper level structures triggering heavy precipitation events in the areas of interest is presented. Four classes are defined based on the orientation and formation of the dynamical tropopause during extreme events in the northern part of Switzerland and its sub-regions. The analysis is extended by a climatology of breaking waves and cut-offs following the method of Wernli and Sprenger (2007) to examine their presence and location during extreme events. References Bey I., Croci-Maspoli M., Fuhrer J., Kull C, Appenzeller C., Knutti R. and Schär C. Swiss Climate Change Scenarios CH2011, C2SM, MeteoSwiss, ETH, NCCR Climate, OcCC (2011), http://dx.doi.org/10.3929/ethz-a-006720559 Massacand A., H. Wernli, and H.C. Davies, 1998. Heavy precipitation on the Alpine South side: An upper-level precursor. Geophys. Res. Lett., 25, 1435-1438. MeteoSwiss 2011. Documentation of Meteoswiss grid-data products, daily precipitation (final analysis): Rhiresd. Available at: http://www.meteosuisse.admin.ch/web/en/services/data_portal/gridded_datasets/precip.html Wernli. H., and M. Sprenger, 2007. Identification and ERA-15 climatology of potential vorticity streamers and cutoffs near the extratropical tropopause. J. Atmos. Sci., 64, 1569-1586.
PM10 Concentration Estimates over Costa Rica using Chemical Transport Modeling Techniques
NASA Astrophysics Data System (ADS)
Briceno-Castillo, J. S.; Vidaurre, G.; Herrera, J.; Mora, R.; Rivera-fernandez, E. R.; Duran-Quesada, A. M.
2016-12-01
Aerosol pollution has become a major issue in Costa Rica because of the urban development that induces an increase in vehicle and industrial emissions. The Metropolitan area in Costa Rica is a valley ( 1,967 km2 area) with a population of 2.6 million. This area concentrates 60% of the country's total industry and 57% of its vehicle emissions. In addition, this area is impacted by biogenic emissions coming from national forests surround it and windblown dust from the Sahara Desert transported by the Trade winds. PM10 and other criteria pollutants have been measured in the past 12 years. However, those monitor stations are single points of observation and do not represent the spatial and temporal resolution that the Costa Rican national government requires for long term policy decisions and health effects assessments. This investigation uses the Weather Research and Forecasting model coupled with Chemistry version 3.7 (WRF-Chem) to forecast PM10 concentration over Costa Rica in 2013. The temporal scales take into consideration the dry, rainy, and transition seasons of the country. The spatial domain was constructed with a master domain (27 km resolution) and multiple nested-domains (9, 3, and 1 km respectively) that include the total area of Costa Rica. The meteorology data bases for this model are from the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (Era-Interim; Dee et al. 2011). In addition, the chemical transport model uses emissions inventories from the PREP-CHEM-SRC tool, because of the lack of an appropriate national emission inventory for this investigation. The total average of PM10 observed at the metropolitan area of Costa Rica was 26±9 μgm-3 in 2013. According to the World Health Organization, this result exceeds the PM10 standard established in the air quality guidelines (WHO 2005). The final goal of this investigation is to evaluate the chemical transport simulations with ground-level measurements from more than 10 monitoring sites distributed in the studied domain.
Authentic Leadership in an Era of Change
ERIC Educational Resources Information Center
Orem, Donna
2016-01-01
Donna Orem, interim president of the National Association of Independent Schools (NAIS), recalls two leaders in her early career who shaped her own approach to leadership and guided her through tough times. Here she shares some reflections on authentic leadership and focuses on the following four traits: (1) Being self aware and genuine; (2) Being…
NASA Astrophysics Data System (ADS)
Sridharan, S.; Raghunath, K.; Sathishkumar, S.; Nath, D.
2011-03-01
During a major sudden stratospheric warming event (21-27 January 2009), Mie-lidar observations at Gadanki (13.5°N, 79.2°E) show persistent occurrence of cirrus clouds. Outgoing long-wave radiation averaged for 70°E-90°E, decreases to a low value (170 W/m2) on 27 January 2009 over equator indicating deep convection. The zonal mean ERA-Interim data reveal large northward and upward circulation over equatorial upper troposphere. The latitude-longitude map of ERA-Interim zonal mean potential vorticity (PV) indicates two tongues of high PV emanating from polar latitudes and extending further down to equator. Radiosonde observations at Gadanki show the presence of ∼40% relative humidity at 11-13 km and lower tropopause temperature. It is inferred that the tropical circulation change due to PV intrusion leads to deep convection, which along with high humidity and low tropopause temperature leading to the formation of persistent cirrus clouds, the occurrence frequency of which is normally less during winter season over Gadanki.
NASA Astrophysics Data System (ADS)
Erb, M. P.; Emile-Geay, J.; McKay, N.; Hakim, G. J.; Steig, E. J.; Anchukaitis, K. J.
2017-12-01
Paleoclimate observations provide a critical context for 20th century warming by putting recent climate change into a longer-term perspective. Previous work (e.g. IPCC AR3-5) has claimed that recent decades are exceptional in the context of past centuries, though these statements are usually accompanied by large uncertainties and little spatial detail. Here we leverage a recent multiproxy compilation (PAGES2k Consortium, 2017) to revisit this long-standing question. We do so via two complementary approaches. The first approach compares multi-decadal averages and trends in PAGES2k proxy records, which include trees, corals, ice cores, and more. Numerous proxy records reveal that late 20th century values are extreme compared to the remainder of the recorded period, although considerable variability exists in the signals preserved in individual records. The second approach uses the same PAGES2k data blended with climate model output to produce an optimal analysis: the Last Millennium Reanalysis (LMR; Hakim et al., 2016). Unlike proxy data, LMR is spatially-complete and explicitly models uncertainty in proxy records, resulting in objective error estimates. The LMR results show that for nearly every region of the world, late 20th century temperatures exceed temperatures in previous multi-decadal periods during the Common Era, and 20th century warming rates exceed rates in previous centuries. An uncertainty with the present analyses concerns the interpretation of proxy records. PAGES2k included only records that are primarily sensitive to temperature, but many proxies may be influenced by secondary non-temperature effects. Additionally, the issue of seasonality is important as, for example, many temperature-sensitive tree ring chronologies in the Northern Hemisphere respond to summer or growing season temperature rather than annual-means. These uncertainties will be further explored. References Hakim, G. J., et al., 2016: The last millennium climate reanalysis project: Framework and first results. Journal of Geophysical Research: Atmospheres, 121(12), 6745-6764. http://doi.org/10.1002/2016JD024751 PAGES2k Consortium, 2017: A global multiproxy database for temperature reconstructions of the Common Era. Scientific Data, 1-33. http://doi.org/10.1038/sdata.2017.88
Multidecadal Changes in the UTLS Ozone from the MERRA-2 Reanalysis and the GMI Chemistry Model
NASA Technical Reports Server (NTRS)
Wargan, Krzysztof; Orbe, Clara; Pawson, Steven; Ziemke, Jerald R.; Oman, Luke; Olsen, Mark; Coy, Lawrence; Knowland, Emma
2018-01-01
Long-term changes of ozone in the UTLS (Upper Troposphere / Lower Stratosphere) reflect the response to decreases in the stratospheric concentrations of ozone-depleting substances as well as changes in the stratospheric circulation induced by climate change. To date, studies of UTLS ozone changes and variability have relied mainly on satellite and in-situ observations as well as chemistry-climate model simulations. By comparison, the potential of reanalysis ozone data remains relatively untapped. This is despite evidence from recent studies, including detailed analyses conducted under SPARC (Scalable Processor Architecture) Reanalysis Intercomparison Project (S-RIP), that demonstrate that stratospheric ozone fields from modern atmospheric reanalyses exhibit good agreement with independent data while delineating issues related to inhomogeneities in the assimilated observations. In this presentation, we will explore the possibility of inferring long-term geographically and vertically resolved behavior of the lower stratospheric (LS) ozone from NASA's MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications -2) reanalysis after accounting for the few known discontinuities and gaps in its assimilated input data. This work builds upon previous studies that have documented excellent agreement between MERRA-2 ozone and ozonesonde observations in the LS. Of particular importance is a relatively good vertical resolution of MERRA-2 allowing precise separation of tropospheric and stratospheric ozone contents. We also compare the MERRA-2 LS ozone results with the recently completed 37-year simulation produced using Goddard Earth Observing System in "replay"� mode coupled with the GMI (Global Modeling Initiative) chemistry mechanism. Replay mode dynamically constrains the model with the MERRA-2 reanalysis winds, temperature, and pressure. We will emphasize the areas of agreement of the reanalysis and replay and interpret differences between them in the context of our increasing understanding of model transport driven by assimilated winds.
Rainfall estimation from soil moisture data: crash test for SM2RAIN algorithm
NASA Astrophysics Data System (ADS)
Brocca, Luca; Albergel, Clement; Massari, Christian; Ciabatta, Luca; Moramarco, Tommaso; de Rosnay, Patricia
2015-04-01
Soil moisture governs the partitioning of mass and energy fluxes between the land surface and the atmosphere and, hence, it represents a key variable for many applications in hydrology and earth science. In recent years, it was demonstrated that soil moisture observations from ground and satellite sensors contain important information useful for improving rainfall estimation. Indeed, soil moisture data have been used for correcting rainfall estimates from state-of-the-art satellite sensors (e.g. Crow et al., 2011), and also for improving flood prediction through a dual data assimilation approach (e.g. Massari et al., 2014; Chen et al., 2014). Brocca et al. (2013; 2014) developed a simple algorithm, called SM2RAIN, which allows estimating rainfall directly from soil moisture data. SM2RAIN has been applied successfully to in situ and satellite observations. Specifically, by using three satellite soil moisture products from ASCAT (Advanced SCATterometer), AMSR-E (Advanced Microwave Scanning Radiometer for Earth Observation) and SMOS (Soil Moisture and Ocean Salinity); it was found that the SM2RAIN-derived rainfall products are as accurate as state-of-the-art products, e.g., the real-time version of the TRMM (Tropical Rainfall Measuring Mission) product. Notwithstanding these promising results, a detailed study investigating the physical basis of the SM2RAIN algorithm, its range of applicability and its limitations on a global scale has still to be carried out. In this study, we carried out a crash test for SM2RAIN algorithm on a global scale by performing a synthetic experiment. Specifically, modelled soil moisture data are obtained from HTESSEL model (Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land) forced by ERA-Interim near-surface meteorology. Afterwards, the modelled soil moisture data are used as input into SM2RAIN algorithm for testing weather or not the resulting rainfall estimates are able to reproduce ERA-Interim rainfall data. Correlation, root mean square differences and categorical scores were used to evaluate the goodness of the results. This analysis wants to draw global picture of the performance of SM2RAIN algorithm in absence of errors in soil moisture and rainfall data. First preliminary results over Europe have shown that SM2RAIN performs particularly well over southern Europe (e.g., Spain, Italy and Greece) while its performances diminish by moving towards Northern latitudes (Scandinavia) and over Alps. The results on a global scale will be shown and discussed at the conference session. REFERENCES Brocca, L., Melone, F., Moramarco, T., Wagner, W. (2013). A new method for rainfall estimation through soil moisture observations. Geophysical Research Letters, 40(5), 853-858. Brocca, L., Ciabatta, L., Massari, C., Moramarco, T., Hahn, S., Hasenauer, S., Kidd, R., Dorigo, W., Wagner, W., Levizzani, V. (2014). Soil as a natural rain gauge: estimating global rainfall from satellite soil moisture data. Journal of Geophysical Research, 119(9), 5128-5141. Chen F, Crow WT, Ryu D. (2014) Dual forcing and state correction via soil moisture assimilation for improved rainfall-runoff modeling. J Hydrometeor, 15, 1832-1848. Crow, W.T., van den Berg, M.J., Huffman, G.J., Pellarin, T. (2011). Correcting rainfall using satellite-based surface soil moisture retrievals: the soil moisture analysis rainfall tool (SMART). Water Resour Res, 47, W08521. Dee, D. P.,et al. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Roy. Meteorol. Soc., 137, 553-597 Massari, C., Brocca, L., Moramarco, T., Tramblay, Y., Didon Lescot, J.-F. (2014). Potential of soil moisture observations in flood modelling: estimating initial conditions and correcting rainfall. Advances in Water Resources, 74, 44-53.
Impact of Climate Change on the Climatology of Vb Cyclones
NASA Astrophysics Data System (ADS)
Messmer, Martina; José Gómez-Navarro, Juan; Blumer, Sandro; Raible, Christoph C.
2017-04-01
Extra-tropical cyclones of type Vb develop over the western Mediterranean and move northeastward, leading to heavy precipitation over Central Europe and posing a major natural hazard. Since such cyclones are high-impact events that lead to important economical and personal damage, in Central Europe, and especially in the Alpine region, understanding their sensitivity to climate change is important to provide suitable adaptation measures. This communication aims at investigating the impact of climate change in Vb cyclones through a climate simulation covering the whole 21st century performed with the Community Earth System Model (CESM1). Further, some selected Vb episodes within the simulation are downscaled with the Weather Research and Forecasting Model (WRF). The analysis focuses on two different time periods. The reference period spans the ERA-Interim period 1979 to 2013, whereas the other one covers the last 30 years of the 21st century 2070-2099. The simulation uses the emissions from the business as usual scenario (RCP8.5). For both periods, the Vb cyclones were identified using a tracking tool and their main properties were characterized. During the reference period 86 Vb cyclones can be identified overall, which corresponds to approximately 2.5 Vb cyclones per year. This number corresponds very well to the 82 Vb cyclones found in the ERA-Interim reanalysis dataset in the same period of time. This number is reduced under future climate conditions, leading to 48 Vb cyclones in total, or to 1.6 Vb cyclones per year on average. Despite the reduction in their number, results indicate that there is a tendency for intensification in precipitation for high-impact Vb events of around 10% over the Alpine region in the future compared to the ones between 1979 and 2013. Interestingly, while the summer months are most prone for the occurrence of the 10 heaviest precipitation Vb events in the current conditions, the 10 heaviest precipitation Vb events in the future become shifted towards spring and also fall months, implicating an important change in the seasonality of the phenomenon. In order to gain more insight on the changes in the processes responsible for such changes in precipitation and occurrence of Vb events, we downscaled the 10 most precipitation intense Vb events of each of the two periods. Preliminary results indicate that future Vb events tend to affect more strongly the eastern costs of the Mediterranean Sea, while the impact in the Alpine region becomes slightly ameliorated compared to current situations. This result is in agreement with results previously obtained through the analysis of a set of highly idealized sensitivity experiments, and can be related to an increasing instability at the eastern coast of the Mediterranean Sea induced by a stronger latent heating over the sea under future conditions.
NASA Technical Reports Server (NTRS)
El Akkraoui, Amal; Todling, Ricardo
2017-01-01
The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) is the latest reanalysis produced by GMAO, and provides global data spanning the period 1980-present. The atmospheric data assimilation component of MERRA-2 used a 3D-Var scheme, which was operational at the time of its design. Since then, a Hybrid 3D-Var, then a Hybrid 4D-EnVar were implemented, adding an ensemble component to the data assimilation scheme. In this work, we will be examining the benefits of using hybrid ensemble flow-dependent covariances to represent errors and uncertainties in historic periods. Specifically, periods of pre- and post-satellites, as well as periods of active tropical cyclone seasons. Finally, we will also be exploring the use of adaptive localization scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randles, C. A.; da Silva, A. M.; Buchard, V.
The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) updates NASA’s previous satellite era (1980 – onward) reanalysis system to include additional observations and improvements to the Goddard Earth Observing System, Version 5 (GEOS-5) Earth system model. As a major step towards a full Integrated Earth Systems Analysis (IESA), in addition to meteorological observations, MERRA-2 now includes assimila-tion of aerosol optical depth (AOD) from various ground- and space-based remote sensing platforms. Here, in the first of a pair of studies, we document the MERRA-2 aerosol assimilation, including a description of the prognostic model (GEOS-5 coupled to the GOCARTmore » aerosol module), aerosol emissions, and the quality control of ingested observations. We provide initial validation and evaluation of the analyzed AOD fields using independent observations rom ground, aircraft, and shipborne instruments. We demonstrate the pos-itive impact of the AOD assimilation on simulated aerosols by comparing MERRA-2 aerosol fields to an identical control simulation that does not in-clude AOD assimilation. Having shown the AOD evaluation, we take a first look at aerosol-climate interactions by examining the shortwave, clear-sky aerosol direct radiative effect. In our companion paper, we evaluate and validate available MERRA-2 aerosol properties not directly impacted by the AOD assimilation (e.g. aerosol vertical distribution and absorption). Importantly, while highlighting the skill of the MERRA-2 aerosol assimilation products, both studies point out caveats that must be considered when using this new reanalysis product for future studies of aerosols and their interactions with weather and climate.« less
NASA Astrophysics Data System (ADS)
Clarke, Robin T.; Bulhoes Mendes, Carlos Andre; Costa Buarque, Diogo
2010-07-01
Two issues of particular importance for the Amazon watershed are: whether annual maxima obtained from reanalysis and raingauge records agree well enough for the former to be useful in extending records of the latter; and whether reported trends in Amazon annual rainfall are reflected in the behavior of annual extremes in precipitation estimated from reanalyses and raingauge records. To explore these issues, three sets of daily precipitation data (1979-2001) from the Brazilian Amazon were analyzed (NCEP/NCAR and ERA-40 reanalyses, and records from the raingauge network of the Brazilian water resources agency - ANA), using the following variables: (1) mean annual maximum precipitation totals, accumulated over one, two, three and five days; (2) linear trends in these variables; (3) mean length of longest within-year "dry" spell; (4) linear trends in these variables. Comparisons between variables obtained from all three data sources showed that reanalyses underestimated time-trends and mean annual maximum precipitation (over durations of one to five days), and the correlations between reanalysis and spatially-interpolated raingauge estimates were small for these two variables. Both reanalyses over-estimated mean lengths of dry period relative to the mean length recorded by the raingauge network. Correlations between the trends calculated from all three data sources were small. Time-trends averaged over the reanalysis grid-squares, and spatially-interpolated time trends from raingauge data, were all clustered around zero. In conclusion, although the NCEP/NCAR and ERA-40 gridded data-sets may be valuable for studies of inter-annual variability in precipitation totals, they were found to be inappropriate for analysis of precipitation extremes.
Modeling surface response of the Greenland Ice Sheet to interglacial climate
NASA Astrophysics Data System (ADS)
Rau, Dominik; Rogozhina, Irina
2013-04-01
We present a new parameterization of surface mass balance (SMB) of the Greenland Ice Sheet (GIS) under interglacial climate conditions validated against recent satellite observations on a regional scale. Based on detailed analysis of the modeled surface melting and refreezing rates, we conclude that the existing SMB parameterizations fail to capture either spatial pattern or amplitude of the observed surface response of the GIS. This is due to multiple simplifying assumptions adopted by the majority of modeling studies within the frame of the positive degree day method. Modeled spatial distribution of surface melting is found to be highly sensitive to a choice of daily temperature standard deviation (SD) and degree-day factors, which are generally assumed to have uniform distribution across the entire Greenland region. However, the use of uniform SD distribution and the range of commonly used SD values are absolutely unsupported by the ERA-40 and ERA-Interim climate data. In this region, SD distribution is highly inhomogeneous and characterized by low amplitudes during the summer months in the areas where most surface ice melting occurs. In addition, the use of identical degree day factors on both the eastern and western slopes of the GIS results in overestimation of surface runoff along the western coast of Greenland and significant underestimation along its eastern coast. Our approach is to make use of (i) spatially and seasonally variable SDs derived from ERA-40 and ERA-Interim time series, and (ii) spatially variable degree-day factors, measured across Greenland, Arctic Canada, Norway, Spitsbergen and Iceland. We demonstrate that the new approach is extremely efficient for modeling the evolution of the GIS during the observational period and the entire Holocene interglacial.
NASA Technical Reports Server (NTRS)
De Boer, G.; Shupe, M.D.; Caldwell, P.M.; Bauer, Susanne E.; Persson, O.; Boyle, J.S.; Kelley, M.; Klein, S.A.; Tjernstrom, M.
2014-01-01
Atmospheric measurements from the Arctic Summer Cloud Ocean Study (ASCOS) are used to evaluate the performance of three atmospheric reanalyses (European Centre for Medium Range Weather Forecasting (ECMWF)- Interim reanalysis, National Center for Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR) reanalysis, and NCEP-DOE (Department of Energy) reanalysis) and two global climate models (CAM5 (Community Atmosphere Model 5) and NASA GISS (Goddard Institute for Space Studies) ModelE2) in simulation of the high Arctic environment. Quantities analyzed include near surface meteorological variables such as temperature, pressure, humidity and winds, surface-based estimates of cloud and precipitation properties, the surface energy budget, and lower atmospheric temperature structure. In general, the models perform well in simulating large-scale dynamical quantities such as pressure and winds. Near-surface temperature and lower atmospheric stability, along with surface energy budget terms, are not as well represented due largely to errors in simulation of cloud occurrence, phase and altitude. Additionally, a development version of CAM5, which features improved handling of cloud macro physics, has demonstrated to improve simulation of cloud properties and liquid water amount. The ASCOS period additionally provides an excellent example of the benefits gained by evaluating individual budget terms, rather than simply evaluating the net end product, with large compensating errors between individual surface energy budget terms that result in the best net energy budget.
NASA Astrophysics Data System (ADS)
Ladd, Matthew; Viau, Andre
2013-04-01
Paleoclimate reconstructions rely on the accuracy of modern climate datasets for calibration of fossil records under the assumption of climate normality through time, which means that the modern climate operates in a similar manner as over the past 2,000 years. In this study, we show how using different modern climate datasets have an impact on a pollen-based reconstruction of mean temperature of the warmest month (MTWA) during the past 2,000 years for North America. The modern climate datasets used to explore this research question include the: Whitmore et al., (2005) modern climate dataset; North American Regional Reanalysis (NARR); National Center For Environmental Prediction (NCEP); European Center for Medium Range Weather Forecasting (ECMWF) ERA-40 reanalysis; WorldClim, Global Historical Climate Network (GHCN) and New et al., which is derived from the CRU dataset. Results show that some caution is advised in using the reanalysis data on large-scale reconstructions. Station data appears to dampen out the variability of the reconstruction produced using station based datasets. The reanalysis or model-based datasets are not recommended for paleoclimate large-scale North American reconstructions as they appear to lack some of the dynamics observed in station datasets (CRU) which resulted in warm-biased reconstructions as compared to the station-based reconstructions. The Whitmore et al. (2005) modern climate dataset appears to be a compromise between CRU-based datasets and model-based datasets except for the ERA-40. In addition, an ultra-high resolution gridded climate dataset such as WorldClim may only be useful if the pollen calibration sites in North America have at least the same spatial precision. We reconstruct the MTWA to within +/-0.01°C by using an average of all curves derived from the different modern climate datasets, demonstrating the robustness of the procedure used. It may be that the use of an average of different modern datasets may reduce the impact of uncertainty of paleoclimate reconstructions, however, this is yet to be determined with certainty. Future evaluation using for example the newly developed Berkeley earth surface temperature datasets should be tested against the paleoclimate record.
Synoptic and Climatological Analysis of the 1933 Trinidad Hurricane
NASA Astrophysics Data System (ADS)
Studwell, A.; Jiang, X.; Li, L.
2017-12-01
In June 1933, a Category One hurricane made landfall on the southeastern coast of Trinidad. This was the first and only hurricane to make landfall on the island during modern climate records, i.e., since the middle 19th century. The storm caused thirteen fatalities on Trinidad and yielded $55.1 million (in 2016 dollars) in damage. With twenty named tropical systems, 1933 was the second most active tropical season on record for the Atlantic basin. This is not entirely surprising since there were a developing La Niña over the equatorial Pacific and there was a positive phase on the Atlantic Multidecadal Oscillation in place, both of which are positive factors for an active season for the tropical Atlantic. However, neither of these factors would yield such a southerly track. A preliminary examination of reanalysis data indicated the 500 mb geopotential heights across tropical Atlantic during late June 1933 were well above the 1921-1950 climate normal. This uncharacteristic feature may have contributed to this southerly track and the cyclone's landfall on Trinidad, as the 500 mb winds are a proxy for the hurricane steering flow. Further research is being conducted by examining reanalysis data to determine the statistical likelihood of the anomalous ridge, both in its contemporaneous era, as well as the Climate Change (1981-2010) era.
The pre-Argo ocean reanalyses may be seriously affected by the spatial coverage of moored buoys
Sivareddy, S.; Paul, Arya; Sluka, Travis; Ravichandran, M.; Kalnay, Eugenia
2017-01-01
Assimilation methods, meant to constrain divergence of model trajectory from reality using observations, do not exactly satisfy the physical laws governing the model state variables. This allows mismatches in the analysis in the vicinity of observation locations where the effect of assimilation is most prominent. These mismatches are usually mitigated either by the model dynamics in between the analysis cycles and/or by assimilation at the next analysis cycle. However, if the observations coverage is limited in space, as it was in the ocean before the Argo era, these mechanisms may be insufficient to dampen the mismatches, which we call shocks, and they may remain and grow. Here we show through controlled experiments, using real and simulated observations in two different ocean models and assimilation systems, that such shocks are generated in the ocean at the lateral boundaries of the moored buoy network. They thrive and propagate westward as Rossby waves along these boundaries. However, these shocks are essentially eliminated by the assimilation of near-homogenous global Argo distribution. These findings question the fidelity of ocean reanalysis products in the pre-Argo era. For example, a reanalysis that ignores Argo floats and assimilates only moored buoys, wrongly represents 2008 as a negative Indian Ocean Dipole year. PMID:28429748
The use of a calculus-based cyclone identification method for generating storm statistics
NASA Astrophysics Data System (ADS)
Benestad, R. E.; Chen, D.
2006-08-01
Maps of 12 hr sea-level pressure (SLP) from the former National Meteotrological Center (NMC) and 24 hr SLP maps from the European Centre for Medium-range Weather Forecasts (ECMWF) 40 yr re-analysis (ERA40) were used to identify extratropical cyclones in the North Atlantic region. A calculus-based cyclone identification (CCI) method is introduced and evaluated, where a multiple regression against a truncated series of sinusoids was used to obtain a Fourier approximation of the north-south and east-west SLP profiles, providing a basis for analytical expressions of the derivatives. Local SLP minima were found from the zero-crossing points of the first-order derivatives for the SLP gradients where the second-order derivatives were greater than zero. Evaluation of cyclone counts indicates a good correspondence with storm track maps and independent monthly large-scale SLP anomalies. The results derived from ERA40 also revealed that the central storm pressure sometimes could be extremely deep in the re-analysis product, and it is not clear whether such outliers are truly representative of the actual events. The position and the depth of the cyclones were subjects for a study of long-term trends in cyclone number for various regions around the North Atlantic. Noting that the re-analyses may contain time-dependent biases due to changes in the observing practises, a tentative positive linear trend, statistically significant at the 10% level, was found in the number of intense storms over the Nordic countries over the period 1955-1994 in both the NMC and the ERA40 data. However, there was no significant trend in the western parts of the North Atlantic where trend analysis derived from NMC and ERA40 yielded different results. The choice of data set had a stronger influence on the results than choices such as the number of harmonics to include or spatial resolution of interpolation.
NASA Astrophysics Data System (ADS)
Ma, Zhanshan; Liu, Qijun; Zhao, Chuanfeng; Shen, Xueshun; Wang, Yuan; Jiang, Jonathan H.; Li, Zhe; Yung, Yuk
2018-03-01
An explicit prognostic cloud-cover scheme (PROGCS) is implemented into the Global/Regional Assimilation and Prediction System (GRAPES) for global middle-range numerical weather predication system (GRAPES_GFS) to improve the model performance in simulating cloud cover and radiation. Unlike the previous diagnostic cloud-cover scheme (DIAGCS), PROGCS considers the formation and dissipation of cloud cover by physically connecting it to the cumulus convection and large-scale stratiform condensation processes. Our simulation results show that clouds in mid-high latitudes arise mainly from large-scale stratiform condensation processes, while cumulus convection and large-scale condensation processes jointly determine cloud cover in low latitudes. Compared with DIAGCS, PROGCS captures more consistent vertical distributions of cloud cover with the observations from Atmospheric Radiation Measurements (ARM) program at the Southern Great Plains (SGP) site and simulates more realistic diurnal cycle of marine stratocumulus with the ERA-Interim reanalysis data. The low, high, and total cloud covers that are determined via PROGCS appear to be more realistic than those simulated via DIAGCS when both are compared with satellite retrievals though the former maintains slight negative biases. In addition, the simulations of outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from PROGCS runs have been considerably improved as well, resulting in less biases in radiative heating rates at heights below 850 hPa and above 400 hPa of GRAPES_GFS. Our results indicate that a prognostic method of cloud-cover calculation has significant advantage over the conventional diagnostic one, and it should be adopted in both weather and climate simulation and forecast.
NASA Astrophysics Data System (ADS)
Booth, J. F.; Rieder, H. E.; Lee, D.; Kushnir, Y.
2014-12-01
This study analyzes the association between wintertime high wind events (HWEs) in the northeast United States US and extratropical cyclones. Sustained wind maxima in the Daily Summary Data from the National Climatic Data Center's Integrated Surface Database are analyzed for 1979-2012. For each station, a Generalized Pareto Distribution (GPD) is fit to the upper tail of the daily maximum wind speed data, and probabilistic return levels at intervals of 1, 3 and 5-years are derived from the GPD fit. At each interval, wind events meeting the return level criteria are termed HWEs. The HWEs occurring on the same day are grouped into multi-station events allowing the association with extratropical cyclones, which are tracked in the European Center for Medium-Range Weather Forecast ERA-Interim reanalysis. Using hierarchical clustering analysis, this study finds that the HWEs are most often associated with cyclones travelling from southwest to northeast, usually originating west of the Appalachian Mountains. The results show that a storm approaching from the southwest is four times more likely to cause strong surface winds than a Nor'easter. A series of sensitivity analyses confirms the robustness of this result. Next, the relationship between the strength of the wind events and the corresponding storm minimum sea level pressure is analyzed. No robust relationship between these quantities is found for strong wind events. Nevertheless, subsequent analysis shows that a relationship between deeper storms and stronger winds emerges if the analysis is extended to the entire set of wintertime storms.
Impact of Gulf Stream SST biases on the global atmospheric circulation
NASA Astrophysics Data System (ADS)
Lee, Robert W.; Woollings, Tim J.; Hoskins, Brian J.; Williams, Keith D.; O'Reilly, Christopher H.; Masato, Giacomo
2018-02-01
The UK Met Office Unified Model in the Global Coupled 2 (GC2) configuration has a warm bias of up to almost 7 K in the Gulf Stream SSTs in the winter season, which is associated with surface heat flux biases and potentially related to biases in the atmospheric circulation. The role of this SST bias is examined with a focus on the tropospheric response by performing three sensitivity experiments. The SST biases are imposed on the atmosphere-only configuration of the model over a small and medium section of the Gulf Stream, and also the wider North Atlantic. Here we show that the dynamical response to this anomalous Gulf Stream heating (and associated shifting and changing SST gradients) is to enhance vertical motion in the transient eddies over the Gulf Stream, rather than balance the heating with a linear dynamical meridional wind or meridional eddy heat transport. Together with the imposed Gulf Stream heating bias, the response affects the troposphere not only locally but also in remote regions of the Northern Hemisphere via a planetary Rossby wave response. The sensitivity experiments partially reproduce some of the differences in the coupled configuration of the model relative to the atmosphere-only configuration and to the ERA-Interim reanalysis. These biases may have implications for the ability of the model to respond correctly to variability or changes in the Gulf Stream. Better global prediction therefore requires particular focus on reducing any large western boundary current SST biases in these regions of high ocean-atmosphere interaction.
Stratosphere-Troposphere Coupling in the Northern Hemisphere analyzed with climate network measures
NASA Astrophysics Data System (ADS)
Kirsch, C.; Donner, R. V.
2017-12-01
The Stratosphere-Troposphere Coupling (STC) is a climate phenomenon providing additional predictive skills for extended-range weather forecasting. The variability of the winter stratospheric polar vortex can particularly influence the tropospheric circulation and, hence, mid-to-high latitude weather for a few weeks or months by strong or weak vortex signals propagating downward with time. This study investigates the STC with climate networks. For this purpose, we use the geopotential height field between 20°N and 90°N at 37 vertical levels from the ERA-Interim reanalysis data from 1979 until 2016. There are two main research questions: (i) Is it possible to define a new, more robust index of the variability of the polar vortex than the currently used NAM index by exploiting climate network properties? (ii) What additional information on STC is provided by climate networks? By calculating the transitivity of evolving climate networks at 10 hPa height, we obtain a new characteristic measure for tracing evolving patterns in stratospheric variability. A higher value than the baseline transitivity indicates an anomalous (strong or weak) polar vortex. Displayed for all vertical levels, the transitivity also exhibits the downward propagation of pressure anomalies into the troposphere. Beyond these findings, we observe additional peaks in the transitivity that does not coincide with weak and strong vortex events. These peaks could be used for identifying the change between winter and summer circulation, also called final warming. We will discuss how these results could potentially affect the predictability of tropospheric weather during boreal spring.
Evaluating wind extremes in CMIP5 climate models
NASA Astrophysics Data System (ADS)
Kumar, Devashish; Mishra, Vimal; Ganguly, Auroop R.
2015-07-01
Wind extremes have consequences for renewable energy sectors, critical infrastructures, coastal ecosystems, and insurance industry. Considerable debates remain regarding the impacts of climate change on wind extremes. While climate models have occasionally shown increases in regional wind extremes, a decline in the magnitude of mean and extreme near-surface wind speeds has been recently reported over most regions of the Northern Hemisphere using observed data. Previous studies of wind extremes under climate change have focused on selected regions and employed outputs from the regional climate models (RCMs). However, RCMs ultimately rely on the outputs of global circulation models (GCMs), and the value-addition from the former over the latter has been questioned. Regional model runs rarely employ the full suite of GCM ensembles, and hence may not be able to encapsulate the most likely projections or their variability. Here we evaluate the performance of the latest generation of GCMs, the Coupled Model Intercomparison Project phase 5 (CMIP5), in simulating extreme winds. We find that the multimodel ensemble (MME) mean captures the spatial variability of annual maximum wind speeds over most regions except over the mountainous terrains. However, the historical temporal trends in annual maximum wind speeds for the reanalysis data, ERA-Interim, are not well represented in the GCMs. The historical trends in extreme winds from GCMs are statistically not significant over most regions. The MME model simulates the spatial patterns of extreme winds for 25-100 year return periods. The projected extreme winds from GCMs exhibit statistically less significant trends compared to the historical reference period.
Regional simulation of Indian summer monsoon intraseasonal oscillations at gray-zone resolution
NASA Astrophysics Data System (ADS)
Chen, Xingchao; Pauluis, Olivier M.; Zhang, Fuqing
2018-01-01
Simulations of the Indian summer monsoon by the cloud-permitting Weather Research and Forecasting (WRF) model at gray-zone resolution are described in this study, with a particular emphasis on the model ability to capture the monsoon intraseasonal oscillations (MISOs). Five boreal summers are simulated from 2007 to 2011 using the ERA-Interim reanalysis as the lateral boundary forcing data. Our experimental setup relies on a horizontal grid spacing of 9 km to explicitly simulate deep convection without the use of cumulus parameterizations. When compared to simulations with coarser grid spacing (27 km) and using a cumulus scheme, the 9 km simulations reduce the biases in mean precipitation and produce more realistic low-frequency variability associated with MISOs. Results show that the model at the 9 km gray-zone resolution captures the salient features of the summer monsoon. The spatial distributions and temporal evolutions of monsoon rainfall in the WRF simulations verify qualitatively well against observations from the Tropical Rainfall Measurement Mission (TRMM), with regional maxima located over Western Ghats, central India, Himalaya foothills, and the west coast of Myanmar. The onset, breaks, and withdrawal of the summer monsoon in each year are also realistically captured by the model. The MISO-phase composites of monsoon rainfall, low-level wind, and precipitable water anomalies in the simulations also agree qualitatively with the observations. Both the simulations and observations show a northeastward propagation of the MISOs, with the intensification and weakening of the Somali Jet over the Arabian Sea during the active and break phases of the Indian summer monsoon.
NASA Astrophysics Data System (ADS)
Yang, C.; Li, T.; Smith, A. K.; Dou, X.
2017-12-01
Using the Specified-Dynamic (SD) Whole Atmosphere Community Climate Model (WACCM), we investigated the effects of the Madden-Julian oscillation (MJO) on the mid-winter stratosphere and mesosphere in the southern hemisphere (SH). The most significant responses of the SH polar cap temperature to the MJO are found 30 days after MJO Phase 1 (P1) and 10 days after the MJO Phase 5 (P5) in both the ERA-interim reanalysis and the SD-WACCM simulation. The 200 and 500 hPa geopotential height anomalies in the SH reveal that wave trains emanate from the Indian and Pacific Oceans when the MJO convection is enhanced in the eastern Indian Ocean and the western Pacific. As a result, the upward propagation and dissipation of planetary waves (PWs) in the mid- and high- latitude of the SH stratosphere is significantly enhanced, the Brewer-Dobson (BD) circulation in the SH stratosphere strengthens, and temperatures in the SH polar stratosphere increase. Wavenumber 1 in the stratosphere is the dominant component of the PW perturbation induced by the MJO convection. Filtering by the modified SH stratospheric winds alters the gravity waves (GWs) that propagate to the mesosphere. The dissipation and breaking of these waves causes anomalous downwelling in the mid- and high- latitudes of the mesosphere. The circulation changes, in turn, result in significant anomalous cooling in the mesosphere in response to MJO P1 and P5 at lags of 10 days and 30 days, respectively.
NASA Astrophysics Data System (ADS)
de Oliveira, Cristiano Prestrelo; Aímola, Luis; Ambrizzi, Tércio; Freitas, Ana Carolina Vasques
2018-02-01
This study focuses on the differential impacts of the positive (El Niño), negative (La Niña), and neutral phases of the El Niño Southern Oscillation (ENSO) on precipitation over Africa during DJF and JJA, evaluated through changes in the regional Hadley and Walker Circulations. Identification of the Hadley and Walker Cells was done using stream function mass transport calculations of ERA-Interim reanalysis data from 1979 to 2014. Analysis of the spatial pattern of precipitation anomalies shows that during DJF, El Niño (La Niña) negatively (positively) impacts precipitation over the African continent. During JJA, El Niño (La Niña) influences precipitation variability over the Sahel region, producing positive (negative) anomalies. Negative precipitation anomalies associated with El Niño (DJF) over southern Africa are linked to a strengthening in subsidence of the descending branch of the regional Hadley Cell, and during JJA the negative precipitation anomalies over the Sahel are associated with a weakening of the ascending branch of the regional Hadley Cell. During La Niña events in DJF, there is a tendency toward increased convection in southern Africa, associated with a stronger ascending branch and weaker descending branch of the regional Hadley Cell. During La Niña events in JJA, positive precipitation anomalies over the Sahel are associated with an intensification of the ascending branch of the regional Hadley Cell north of the equator.
Observing atmospheric blocking with GPS radio occultation - one decade of measurements
NASA Astrophysics Data System (ADS)
Brunner, Lukas; Steiner, Andrea
2017-04-01
Atmospheric blocking has received a lot of attention in recent years due to its impact on mid-latitude circulation and subsequently on weather extremes such as cold and warm spells. So far blocking studies have been based mainly on re-analysis data or model output. However, it has been shown that blocking frequency exhibits considerable inter-model spread in current climate models. Here we use one decade (2006 to 2016) of satellite-based observations from GPS radio occultation (RO) to analyze blocking in RO data building on work by Brunner et al. (2016). Daily fields on a 2.5°×2.5° longitude-latitude grid are calculated by applying an adequate gridding strategy to the RO measurements. For blocking detection we use a standard blocking detection algorithm based on 500 hPa geopotential height (GPH) gradients. We investigate vertically resolved atmospheric variables such as GPH, temperature, and water vapor before, during, and after blocking events to increase process understanding. Moreover, utilizing the coverage of the RO data set, we investigate global blocking frequencies. The main blocking regions in the northern and southern hemisphere are identified and the (vertical) atmospheric structure linked to blocking events is compared. Finally, an inter-comparison of results from RO data to different re-analyses, such as ERA-Interim, MERRA 2, and JRA-55, is presented. Brunner, L., A. K. Steiner, B. Scherllin-Pirscher, and M. W. Jury (2016): Exploring atmospheric blocking with GPS radio occultation observations. Atmos. Chem. Phys., 16, 4593-4604, doi:10.5194/acp-16-4593-2016.
Sensitivity of simulated South America Climate to the Land Surface Schemes in RegCM4
NASA Astrophysics Data System (ADS)
Llopart, Marta; da Rocha, Rosmeri; Reboita, Michelle; Cuadra, Santiago
2017-04-01
This work evaluates the impact of two land surface parameterizations on the simulated climate and its variability over South America (SA). Two numerical experiments using RegCM4 coupled with Biosphere-Atmosphere Transfer Scheme (RegBATS) and Community Land Model version 3.5 (RegCLM) land surface schemes are compared. For the period 1979-2008, RegCM4 simulations used 50 km horizontal grid spacing and the ERA-Interim reanalysis as initial and boundary conditions. For the period studied, both simulations represent the main observed spatial patterns of rainfall, air temperature and low level circulation over SA. However, concerning the precipitation intensity, RegCLM values are closer to the observations than RegBATS (it is in general, wetter) over most of SA. RegCLM also provides smaller biases for air temperature. Over the Amazon basin, the amplitudes of the annual cycles of the soil moisture, evapotranspiration and sensible heat flux are higher in RegBATS than in RegCLM. This indicates that RegBATS provides large amounts of water vapor to the atmosphere and has more available energy to increase the boundary layer and make it reach the level of free convection (higher sensible heat flux values) resulting in higher precipitation rates and a large wet bias. RegCLM is closer to the observations than RegBATS, presenting smaller wet and warm biases over the Amazon basin. On an interannual scale, the magnitudes of the anomalies of the precipitation and air temperature simulated by RegCLM are closer to the observations. In general, RegBATS simulates higher magnitude for the interannual variability signal.
NASA Astrophysics Data System (ADS)
Porter, David F.; Cassano, John J.; Serreze, Mark C.
2012-06-01
The Weather Research and Forecasting (WRF) model is used to explore the sensitivity of the large-scale atmospheric energy and moisture budgets to prescribed changes in Arctic sea ice and sea surface temperatures (SSTs). Observed sea ice fractions and SSTs from 1996 and 2007, representing years of high and low sea ice extent, are used as lower boundary conditions. A pan-Arctic domain extending into the North Pacific and Atlantic Oceans is used. ERA-Interim reanalysis data from 1994 to 2008 are employed as initial and lateral forcing data for each high and low sea ice simulation. The addition of a third ensemble, with a mixed SST field between years 1996 and 2007 (using 2007 SSTs above 66°N and 1996 values below), results in a total of three 15-member ensembles. Results of the simulations show both local and remote responses to reduced sea ice. The local polar cap averaged response is largest in October and November, dominated by increased turbulent heat fluxes resulting in vertically deep heating and moistening of the Arctic atmosphere. This warmer and moister atmosphere is associated with an increase in cloud cover, affecting the surface and atmospheric energy budgets. There is an enhancement of the hydrologic cycle, with increased evaporation in areas of sea ice loss paired with increased precipitation. Most of the Arctic climate response results from within-Arctic changes, although some changes in the hydrologic cycle reflect circulation responses to midlatitude SST forcing, highlighting the general sensitivity of the Arctic climate.
NASA Astrophysics Data System (ADS)
Shen, Wenqiang; Tang, Jianping; Wang, Yuan; Wang, Shuyu; Niu, Xiaorui
2017-04-01
In this study, the characteristics of tropical cyclones (TCs) over the East Asia Coordinated Regional Downscaling Experiment domain are examined with the Weather Research and Forecasting (WRF) model. Eight 20-year (1989-2008) simulations are performed using the WRF model, with lateral boundary forcing from the ERA-Interim reanalysis, to test the sensitivity of TC simulation to interior spectral nudging (SN, including nudging time interval, nudging variables) and radiation schemes [Community Atmosphere Model (CAM), Rapid Radiative Transfer Model (RRTM)]. The simulated TCs are compared with the observation from the Regional Specialized Meteorological Centers TC best tracks. It is found that all WRF runs can simulate the climatology of key TC features such as the tracks and location/frequency of genesis reasonably well, and reproduce the inter-annual variations and seasonal cycle of TC counts. The SN runs produce enhanced TC activity compare to the runs without SN. The thermodynamic profile suggests that nudging with horizontal wind increases the unstable of thermodynamic states in tropics, which results in excessive TCs genesis. The experiments with wind and temperature nudging improve the overestimation of TCs numbers, especially suppress the TCs intensification by correct the thermodynamic profile. Weak SN coefficient enhances TCs activity significantly even with wind and temperature nudging. The analysis of TCs numbers and large scale circulation shows that the SN parameters adopted in our experiments do not appear to suppress the formation of TC. The excessive TCs activity in CAM runs relative to RRTM runs are also due to the enhanced atmospheric instability.
NASA Astrophysics Data System (ADS)
Kwok, Ron; Kurtz, Nathan T.; Brucker, Ludovic; Ivanoff, Alvaro; Newman, Thomas; Farrell, Sinead L.; King, Joshua; Howell, Stephen; Webster, Melinda A.; Paden, John; Leuschen, Carl; MacGregor, Joseph A.; Richter-Menge, Jacqueline; Harbeck, Jeremy; Tschudi, Mark
2017-11-01
Since 2009, the ultra-wideband snow radar on Operation IceBridge (OIB; a NASA airborne mission to survey the polar ice covers) has acquired data in annual campaigns conducted during the Arctic and Antarctic springs. Progressive improvements in radar hardware and data processing methodologies have led to improved data quality for subsequent retrieval of snow depth. Existing retrieval algorithms differ in the way the air-snow (a-s) and snow-ice (s-i) interfaces are detected and localized in the radar returns and in how the system limitations are addressed (e.g., noise, resolution). In 2014, the Snow Thickness On Sea Ice Working Group (STOSIWG) was formed and tasked with investigating how radar data quality affects snow depth retrievals and how retrievals from the various algorithms differ. The goal is to understand the limitations of the estimates and to produce a well-documented, long-term record that can be used for understanding broader changes in the Arctic climate system. Here, we assess five retrieval algorithms by comparisons with field measurements from two ground-based campaigns, including the BRomine, Ozone, and Mercury EXperiment (BROMEX) at Barrow, Alaska; a field program by Environment and Climate Change Canada at Eureka, Nunavut; and available climatology and snowfall from ERA-Interim reanalysis. The aim is to examine available algorithms and to use the assessment results to inform the development of future approaches. We present results from these assessments and highlight key considerations for the production of a long-term, calibrated geophysical record of springtime snow thickness over Arctic sea ice.
NASA Astrophysics Data System (ADS)
Xu, Xin; Tang, Ying; Wang, Yuan; Xue, Ming
2018-03-01
The directional absorption of mountain waves in the Northern Hemisphere is assessed by examination of horizontal wind rotation using the 2.5° × 2.5° European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis between 2011 and 2016. In the deep layer of troposphere and stratosphere, the horizontal wind rotates by more than 120° all over the Northern Hemisphere primary mountainous areas, with the rotation mainly occurring in the troposphere (stratosphere) of lower (middle to high) latitudes. The rotation of tropospheric wind increases markedly in summer over the Tibetan Plateau and Iranian Plateau, due to the influence of Asian summer monsoonal circulation. The influence of directional absorption of mountain waves on the mountain wave momentum transport is also studied using a new parameterization scheme of orographic gravity wave drag (OGWD) which accounts for the effect of directional wind shear. Owing to the directional absorption, the wave momentum flux is attenuated by more than 50% in the troposphere of lower latitudes, producing considerable orographic gravity wave lift which is normal to the mean wind. Compared with the OGWD produced in traditional schemes assuming a unidirectional wind profile, the OGWD in the new scheme is suppressed in the lower stratosphere but enhanced in the upper stratosphere and lower mesosphere. This is because the directional absorption of mountain waves in the troposphere reduces the wave amplitude in the stratosphere. Consequently, mountain waves are prone to break at higher altitudes, which favors the production of stronger OGWD given the decrease of air density with height.
Synoptic-Scale Behavior of the Extratropical Tropopause Inversion Layer
NASA Astrophysics Data System (ADS)
Pilch Kedzierski, Robin; Matthes, Katja; Bumke, Karl
2015-04-01
The Tropopause Inversion Layer (TIL) is a climatological feature of the tropopause region, characterized by enhanced static stability and strong temperature inversion in a thin layer (about 1km deep) right above the tropopause. It was discovered recently via tropopause-based averaging [Birner 2002]. The sharp static stability, temperature and wind shear gradients of the TIL theoretically shall inhibit stratosphere-troposphere exchange and influence the vertical propagation of planetary scale Rossby and small-scale gravity waves. High vertically resolved radiosonde and GPS radio occultation measurements show that the strength of the TIL is positively correlated with the tropopause height and anticyclonic conditions, and that it reaches its maximum strength in polar regions during summer [Birner 2006] [Randel and Wu, 2007 and 2010]. Our study takes advantage of the high density of vertical profiles (~2000 measurements per day, globally) measured by the COSMIC satellites (2007-present), in order to describe the synoptic-scale structures of the TIL and the differences between the seasonal climatologies from earlier studies and the real-time TIL. Also, using ERA-Interim reanalysis wind fields, we split relative vorticity into shear and curl terms and study separately their relation to TIL strength in cyclonic-anticyclonic conditions. We find that the TIL has a rich zonal structure, especially in midlatitude winter, and that its strength is instantly adjusted to the synoptic situation at near-tropopause level. The peaks of strongest TIL at midlatitude ridges in winter are stronger and much more frequent than any peaks found in polar summer. The roles of shear and curl vorticity differ substantially towards higher values of relative vorticity (both cyclonic and anticyclonic).
Surface Downward Longwave Radiation Retrieval Algorithm for GEO-KOMPSAT-2A/AMI
NASA Astrophysics Data System (ADS)
Ahn, Seo-Hee; Lee, Kyu-Tae; Rim, Se-Hun; Zo, Il-Sung; Kim, Bu-Yo
2018-05-01
This study contributes to the development of an algorithm to retrieve the Earth's surface downward longwave radiation (DLR) for 2nd Geostationary Earth Orbit KOrea Multi-Purpose SATellite (GEO-KOMPSAT-2A; GK-2A)/Advanced Meteorological Imager (AMI). Regarding simulation data for algorithm development, we referred to Clouds and the Earth's Radiant Energy System (CERES), and the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-interim reanalysis data. The clear sky DLR calculations were in good agreement with the Gangneung-Wonju National University (GWNU) Line-By-Line (LBL) model. Compared with CERES data, the Root Mean Square Error (RMSE) was 10.14Wm-2. In the case of cloudy sky DLR, we estimated the cloud base temperature empirically by utilizing cloud liquid water content (LWC) according to the cloud type. As a result, the correlation coefficients with CERES all sky DLRs were greater than 0.99. However, the RMSE between calculated DLR and CERES data was about 16.67Wm-2, due to ice clouds and problems of mismatched spatial and temporal resolutions for input data. This error may be reduced when GK-2A is launched and its products can be used as input data. Accordingly, further study is needed to improve the accuracy of DLR calculation by using high-resolution input data. In addition, when compared with BSRN surface-based observational data and retrieved DLR for all sky, the correlation coefficient was 0.86 and the RMSE was 31.55 Wm-2, which indicates relatively high accuracy. It is expected that increasing the number of experimental Cases will reduce the error.
A Decade-long Continental-Scale Convection-Resolving Climate Simulation on GPUs
NASA Astrophysics Data System (ADS)
Leutwyler, David; Fuhrer, Oliver; Lapillonne, Xavier; Lüthi, Daniel; Schär, Christoph
2016-04-01
The representation of moist convection in climate models represents a major challenge, due to the small scales involved. Convection-resolving models have proven to be very useful tools in numerical weather prediction and in climate research. Using horizontal grid spacings of O(1km), they allow to explicitly resolve deep convection leading to an improved representation of the water cycle. However, due to their extremely demanding computational requirements, they have so far been limited to short simulations and/or small computational domains. Innovations in the supercomputing domain have led to new supercomputer-designs that involve conventional multicore CPUs and accelerators such as graphics processing units (GPUs). One of the first atmospheric models that has been fully ported to GPUs is the Consortium for Small-Scale Modeling weather and climate model COSMO. This new version allows us to expand the size of the simulation domain to areas spanning continents and the time period up to one decade. We present results from a decade-long, convection-resolving climate simulation using the GPU-enabled COSMO version. The simulation is driven by the ERA-interim reanalysis. The results illustrate how the approach allows for the representation of interactions between synoptic-scale and meso-scale atmospheric circulations at scales ranging from 1000 to 10 km. We discuss the performance of the convection-resolving modeling approach on the European scale. Specifically we focus on the annual cycle of convection in Europe, on the organization of convective clouds and on the verification of hourly rainfall with various high resolution datasets.
Met UM Upper-tropospheric summer jet teleconnections: A model assessment
NASA Astrophysics Data System (ADS)
Joao Carvalho, Maria; Rodriguez, Jose; Milton, Sean
2017-04-01
The upper tropospheric jet stream has been documented to act as a waveguide (Hoskins and Ambrizzi, 1993) and supporting quasi-stationary Rossby waves (Schubert et al. 2011). These have been associated with remote effects in surface level weather such as rainfall anomalies in the East Asian Summer Monsoon as well as extreme temperature events. The goal of this work was to analyse the intraseasonal to interannual upper level boreal summer jet variability and its coupling with low level atmospheric dynamics within the Met Office Unified Model using climate runs. Using the Wallace and Gutzler (1981) proposed approach to find teleconnection patterns on the 200 hPa level wind, lead-lag correlation and Empirical Orthogonal Function analysis on the upper-level jet and relating the results with surface weather variables as well as dynamical variables, it was found that the model presents too strong jet variability, particularly in the tropical region and. In addition, the model presents high teleconnectivity hotspots with higher importance in areas such as the Mediterranean and Caspian Sea which are important source areas for Rossby Waves. Further to this, the model was found to produce an area of teleconnectivity between the tropical Atlantic and western Africa which is not observed in the reanalysis but coexists with long lasting precipitation biases. As comparison for the model results, ERA-Interim circulation and wind data and the TRMM precipitation dataset were used. In order to assess the relative importance of relevant model parameters in the biases and process errors, work is currently underway using perturbed model parameter ensembles.