Sample records for erast program perseus

  1. Perseus in Flight

    NASA Image and Video Library

    1991-11-15

    The Perseus proof-of-concept vehicle in flight at the Dryden Flight Research Center, Edwards, California in 1991. Perseus is one of several remotely-piloted aircraft designed for high-altitude, long-endurance scientific sampling missions being evaluated under the ERAST program.

  2. Perseus B Heads for Landing on Edwards AFB Runway

    NASA Image and Video Library

    1997-04-30

    The Perseus B remotely piloted aircraft nears touchdown at Edwards Air Force Base, Calif. at the conclusion of a development flight at NASA's Dryden Flight Research Center. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  3. Perseus B Heads for Landing on Edwards AFB Runway

    NASA Image and Video Library

    1998-04-30

    The Perseus B remotely piloted aircraft approaches the runway at Edwards Air Force Base, Calif. at the conclusion of a development flight at NASA's Dryden flight Research Center in April 1998. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  4. Perseus B Taxi Tests in Preparation for a New Series of Flight Tests

    NASA Image and Video Library

    1998-04-27

    The Perseus B remotely piloted aircraft taxis on the runway at Edwards Air Force Base, California, before a series of development flights at NASA's Dryden flight Research Center. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  5. Perseus B Taxi Tests in Preparation for a New Series of Flight Tests

    NASA Image and Video Library

    1998-04-27

    The Perseus B remotely piloted aircraft on the runway at Edwards Air Force Base, California at the conclusion of a development flight at NASA's Dryden flight Research Center. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  6. Perseus B Taxi Tests in Preparation for a New Series of Flight Tests

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Perseus B remotely piloted aircraft taxis on the runway at Edwards Air Force Base, California, before a series of development flights at NASA's Dryden flight Research Center. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  7. Perseus B Landing on Runway

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Perseus B high-altitude, remotely piloted research vehicle touches down on the runway at Edwards AFB, adjacent to NASA's Dryden Flight Research Center, after a test flight in September 1999. The Perseus B was the third version of the Perseus design developed by Aurora Flight Sciences under the Dryden-managed Environmental Research Aircraft and Sensor Technology (ERAST) program. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  8. Perseus B Heads for Landing on Edwards AFB Runway

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Perseus B remotely piloted aircraft approaches the runway at Edwards Air Force Base, Calif. at the conclusion of a development flight at NASA's Dryden flight Research Center in April 1998. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  9. Perseus B Taxi Tests in Preparation for a New Series of Flight Tests

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Perseus B remotely piloted aircraft on the runway at Edwards Air Force Base, California at the conclusion of a development flight at NASA's Dryden flight Research Center. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  10. Perseus B Heads for Landing on Edwards AFB Runway

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Perseus B remotely piloted aircraft nears touchdown at Edwards Air Force Base, Calif. at the conclusion of a development flight at NASA's Dryden Flight Research Center. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  11. Perseus A, Part of the ERAST Program, in Flight

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Perseus A remotely-piloted research vehicle flies low over Rogers Dry Lake on its maiden voyage Dec. 21, 1993, at the Dryden Flight Research Center, Edwards, California. The Perseus, designed and built by Aurora Flight Sciences Corp., was towed into the air by a ground vehicle. At about 700 ft. the aircraft was released and the engine turned the propeller to take the plane to its desired altitude. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  12. Perseus in Flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Perseus proof-of-concept vehicle in flight at the Dryden Flight Research Center, Edwards, California in 1991. Perseus is one of several remotely-piloted aircraft designed for high-altitude, long-endurance scientific sampling missions being evaluated under the ERAST program. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  13. Perseus Taxi

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Perseus proof-of-concept vehicle is seen here as it taxis on Rogers Dry Lake, adjacent the Dryden Flight Research Center, Edwards, California. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  14. Perseus Post-flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Crew members check out the Perseus proof-of-concept vehicle on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, after a test flight in 1991. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  15. Perseus B Parked on Ramp

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The long, slender wing of the Perseus B remotely piloted research aircraft can be clearly seen in this photo, taken on the ramp of NASA's Dryden Flight Research Center in September 1999. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  16. Perseus High Altitude Remotely Piloted Aircraft on Ramp

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Perseus proof-of-concept vehicle waits on Rogers Dry Lake in the pre-dawn darkness before a test flight at the Dryden Flight Research Center, Edwards, California. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  17. Perseus in Flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Perseus proof-of-concept vehicle flies over Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, to test basic design concepts for the remotely-piloted, high-altitude vehicle. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  18. Perseus B Parked on Ramp

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted aircraft, seen here on the ramp at NASA's Dryden Flight Research Center, Edwards, California. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  19. Perseus B over Edwards AFB on a Development Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely-piloted research aircraft, seen here during a test flight in April1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  20. Perseus A High Altitude Remotely Piloted Aircraft being Towed in Flight

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Perseus A, a remotely piloted, high-altitude research vehicle designed by Aurora Flight Sciences Corp., takes off from Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California. The Perseus was towed into the air by a ground vehicle. At about 700 ft. the aircraft was released and the engine turned the propeller to take the plane to its desired altitude. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  1. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted research aircraft, seen here during a test flight in June 1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  2. Perseus B Parked on Ramp - View from Above

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted aircraft, seen here on the ramp of NASA's Dryden Flight Research Center in September 1999. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  3. Perseus B Parked on Ramp - Close-up of Controllable-Pitch Pusher Propeller

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A large, controllable-pitch pusher propeller at the rear is a distinctive feature of the Perseus B remotely piloted research aircraft, seen here on the ramp of NASA's Dryden Flight Research Center in September 1999. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  4. Perseus B Parked on Ramp

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The long, slender wing of the Perseus B high-altitude, remotely piloted research aircraft is clearly visible in this photo of the vehicle, taken on the ramp of NASA's Dryden Flight Research Center in September 1999. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  5. Perseus A in Flight with Moon

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Perseus A, a remotely-piloted, high-altitude research aircraft, is seen here framed against the moon and sky during a research mission at the Dryden Flight Research Center, Edwards, California in August 1994. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  6. Perseus A on Ramp

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Perseus A, a remotely-piloted, high-altitude research vehicle, is seen just after landing on Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California. The Perseus A had a unique method of takeoff and landing. To make the aircraft as aerodynamic and lightweight as possible, designers gave it only two very small centerline wheels for landing. These wheels were very close to the fuselage, and therefore produced very little drag. However, since the fuselage sat so close to the ground, it was necessary to keep the large propeller at the rear of the aircraft locked in a horizontal position during takeoff. The aircraft was towed to about 700 feet in the air, where the engine was started and the aircraft began flying under its own power. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  7. Meteorological and Remote Sensing Applications of High Altitude Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Schoenung, S. M.; Wegener, S. S.

    1999-01-01

    Unmanned aerial vehicles (UAVs) are maturing in performance and becoming available for routine use in environmental applications including weather reconnaissance and remote sensing. This paper presents a discussion of UAV characteristics and unique features compared with other measurement platforms. A summary of potential remote sensing applications is provided, along with details for four types of tropical cyclone missions. Capabilities of platforms developed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program are reviewed, including the Altus, Perseus, and solar- powered Pathfinder, all of which have flown to over 57,000 ft (17 km). In many scientific missions, the science objectives drive the experimental design, thus defining the sensor payload, aircraft performance, and operational requirements. Some examples of science missions and the requisite UAV / payload system are given. A discussion of technology developments needed to fully mature UAV systems for routine operational use is included, along with remarks on future science and commercial UAV business opportunities.

  8. Research on the Implementation of the NASA Joint Sponsored Research Program and other Innovative Mechanism for Commercializing NASA Funded Technologies

    NASA Technical Reports Server (NTRS)

    Robbins, Karen Risa

    1997-01-01

    A goal of the ERAST Program is the commercial application of technology resulting from the work if the ERAST Alliance. This goal is sufficiently primary to be called out in the recitals section of the ERAST Joint Sponsored Research Agreement. In support of this goal, two activities described below were commenced in 1996 to assess and explore commercial applications of UAV technologies relevant to the ERAST Alliance.

  9. Process for Refining and Validating a Finite Element Model of an Experimental High-Altitude, Long-Endurance (HALE) Aircraft

    DTIC Science & Technology

    2011-06-01

    7 Figure 4. Helios flying near the Hawaiian islands of Niihau and Lehua [15] ................... 8 Figure 5. Plan view of ERAST Program aircraft...Figure 4. Helios flying near the Hawaiian islands of Niihau and Lehua [15] 9 Figure 5. Plan view of ERAST Program aircraft

  10. ERAST: Scientific Applications and Technology Commercialization

    NASA Technical Reports Server (NTRS)

    Hunley, John D. (Compiler); Kellogg, Yvonne (Compiler)

    2000-01-01

    This is a conference publication for an event designed to inform potential contractors and appropriate personnel in various scientific disciplines that the ERAST (Environmental Research Aircraft and Sensor Technology) vehicles have reached a certain level of maturity and are available to perform a variety of missions ranging from data gathering to telecommunications. There are multiple applications of the technology and a great many potential commercial and governmental markets. As high altitude platforms, the ERAST vehicles can gather data at higher resolution than satellites and can do so continuously, whereas satellites pass over a particular area only once each orbit. Formal addresses are given by Rich Christiansen, (Director of Programs, NASA Aerospace Technology Ent.), Larry Roeder, (Senior Policy Advisor, U.S. Dept. of State), and Dr. Marianne McCarthy, (DFRC Education Dept.). The Commercialization Workshop is chaired by Dale Tietz (President, New Vista International) and the Science Workshop is chaired by Steve Wegener, (Deputy Manager of NASA ERAST, NASA Ames Research Center.

  11. Perseus Project: Interactive Teaching and Research Tools for Ancient Greek Civilization.

    ERIC Educational Resources Information Center

    Crane, Gregory; Harward, V. Judson

    1987-01-01

    Describes the Perseus Project, an educational program utilizing computer technology to study ancient Greek civilization. Including approximately 10 percent of all ancient literature and visual information on architecture, sculpture, ceramics, topography, and archaeology, the project spans a range of disciplines. States that Perseus fuels student…

  12. The Perseus computational platform for comprehensive analysis of (prote)omics data.

    PubMed

    Tyanova, Stefka; Temu, Tikira; Sinitcyn, Pavel; Carlson, Arthur; Hein, Marco Y; Geiger, Tamar; Mann, Matthias; Cox, Jürgen

    2016-09-01

    A main bottleneck in proteomics is the downstream biological analysis of highly multivariate quantitative protein abundance data generated using mass-spectrometry-based analysis. We developed the Perseus software platform (http://www.perseus-framework.org) to support biological and biomedical researchers in interpreting protein quantification, interaction and post-translational modification data. Perseus contains a comprehensive portfolio of statistical tools for high-dimensional omics data analysis covering normalization, pattern recognition, time-series analysis, cross-omics comparisons and multiple-hypothesis testing. A machine learning module supports the classification and validation of patient groups for diagnosis and prognosis, and it also detects predictive protein signatures. Central to Perseus is a user-friendly, interactive workflow environment that provides complete documentation of computational methods used in a publication. All activities in Perseus are realized as plugins, and users can extend the software by programming their own, which can be shared through a plugin store. We anticipate that Perseus's arsenal of algorithms and its intuitive usability will empower interdisciplinary analysis of complex large data sets.

  13. Subminiaturization for ERAST instrumentation (Environmental Research Aircraft and Sensor Technology)

    NASA Technical Reports Server (NTRS)

    Madou, Marc; Lowenstein, Max; Wegener, Steven

    1995-01-01

    We are focusing on the Argus as an example to demonstrate our philosophy on miniaturization of airborne analytical instruments for the study of atmospheric chemistry. Argus is a two channel, tunable-diode laser absorption spectrometer developed at NASA for the measurement of nitrogen dioxide (N2O) (4.5 micrometers) and ammonia (CH3) (3.3 micrometers) at the 0.1 parts per billion (ppb) level from the Perseus aircraft platform at altitudes up to 30 km. Although Argus' mass is down to 23 kg from the 197 kg Atlas, its predecessor, our goal is to design a next-generation subminiaturized instrument weighing less than 1 kg, measuring a few cm(exp 3) and able to eliminate dewars for cooling. Current designs enable use to make a small,inexpensive, monolithic spectrometer without the required sensitivity range. Further work is on its way to increase sensitivity. We are continuing to zero-base the technical approach in terms of the specifications for the given instrument. We are establishing a check list of questions to hone into the best micromachining approach and to superpose on the answers insights in scaling laws and flexible engineering designs to enable more relaxed tolerances for the smallest of the components.

  14. ERAST Program Proteus Aircraft in Flight

    NASA Image and Video Library

    1999-07-26

    The unusual design of the Proteus high-altitude aircraft, incorporating a gull-wing shape for its main wing and a long, slender forward canard, is clearly visible in this view of the aircraft in flight over the Mojave Desert in California.

  15. ERAST Program Proteus Aircraft in Flight over the Mojave Desert in California

    NASA Image and Video Library

    1999-07-26

    The unusual design of the Proteus high-altitude aircraft, incorporating a gull-wing shape for its main wing and a long, slender forward canard, is clearly visible in this view of the aircraft in flight over the Mojave Desert in California.

  16. High Resolution Airborne Digital Imagery for Precision Agriculture

    NASA Technical Reports Server (NTRS)

    Herwitz, Stanley R.

    1998-01-01

    The Environmental Research Aircraft and Sensor Technology (ERAST) program is a NASA initiative that seeks to demonstrate the application of cost-effective aircraft and sensor technology to private commercial ventures. In 1997-98, a series of flight-demonstrations and image acquisition efforts were conducted over the Hawaiian Islands using a remotely-piloted solar- powered platform (Pathfinder) and a fixed-wing piloted aircraft (Navajo) equipped with a Kodak DCS450 CIR (color infrared) digital camera. As an ERAST Science Team Member, I defined a set of flight lines over the largest coffee plantation in Hawaii: the Kauai Coffee Company's 4,000 acre Koloa Estate. Past studies have demonstrated the applications of airborne digital imaging to agricultural management. Few studies have examined the usefulness of high resolution airborne multispectral imagery with 10 cm pixel sizes. The Kodak digital camera integrated with ERAST's Airborne Real Time Imaging System (ARTIS) which generated multiband CCD images consisting of 6 x 106 pixel elements. At the designated flight altitude of 1,000 feet over the coffee plantation, pixel size was 10 cm. The study involved the analysis of imagery acquired on 5 March 1998 for the detection of anomalous reflectance values and for the definition of spectral signatures as indicators of tree vigor and treatment effectiveness (e.g., drip irrigation; fertilizer application).

  17. Interferometric Mapping of Perseus Outflows with MASSES

    NASA Astrophysics Data System (ADS)

    Stephens, Ian; Dunham, Michael; Myers, Philip C.; MASSES Team

    2017-01-01

    The MASSES (Mass Assembly of Stellar Systems and their Evolution with the SMA) survey, a Submillimeter Array (SMA) large-scale program, is mapping molecular lines and continuum emission about the 75 known Class 0/I sources in the Perseus Molecular Cloud. In this talk, I present some of the key results of this project, with a focus on the CO(2-1) maps of the molecular outflows. In particular, I investigate how protostars inherit their rotation axes from large-scale magnetic fields and filamentary structure.

  18. PERSEUS QC: preparing statistic data sets

    NASA Astrophysics Data System (ADS)

    Belokopytov, Vladimir; Khaliulin, Alexey; Ingerov, Andrey; Zhuk, Elena; Gertman, Isaac; Zodiatis, George; Nikolaidis, Marios; Nikolaidis, Andreas; Stylianou, Stavros

    2017-09-01

    The Desktop Oceanographic Data Processing Module was developed for visual analysis of interdisciplinary cruise measurements. The program provides the possibility of data selection based on different criteria, map plotting, sea horizontal sections, and sea depth vertical profiles. The data selection in the area of interest can be specified according to a set of different physical and chemical parameters complimented by additional parameters, such as the cruise number, ship name, and time period. The visual analysis of a set of vertical profiles in the selected area allows to determine the quality of the data, their location and the time of the in-situ measurements and to exclude any questionable data from the statistical analysis. For each selected set of profiles, the average vertical profile, the minimal and maximal values of the parameter under examination and the root mean square (r.m.s.) are estimated. These estimates are compared with the parameter ranges, set for each sub-region by MEDAR/MEDATLAS-II and SeaDataNet2 projects. In the framework of the PERSEUS project, certain parameters which lacked a range were calculated from scratch, while some of the previously used ranges were re-defined using more comprehensive data sets based on SeaDataNet2, SESAME and PERSEUS projects. In some cases we have used additional sub- regions to redefine the ranges ore precisely. The recalculated ranges are used to improve the PERSEUS Data Quality Control.

  19. Pathfinder aircraft taking off - setting new solar powered altitude record

    NASA Image and Video Library

    1995-09-11

    The Pathfinder solar-powered remotely piloted aircraft climbs to a record-setting altitude of 50,567 feet during a flight Sept. 11, 1995, at NASA's Dryden Flight Research Center, Edwards, California. The flight was part of the NASA ERAST (Environmental Research Aircraft and Sensor Technology) program. The Pathfinder was designed and built by AeroVironment Inc., Monrovia, California. Solar arrays cover nearly all of the upper wing surface and produce electricity to power the aircraft's six motors.

  20. Propulsion system assessment for very high UAV under ERAST

    NASA Technical Reports Server (NTRS)

    Bettner, James L.; Blandford, Craig S.; Rezy, Bernie J.

    1995-01-01

    A series of propulsion systems were configured to power a sensor platform to very high altitudes under the Experimental Research Advanced Sensor Technology (ERAST) program. The unmanned aircraft was required to carry a 100 kg instrument package to 90,000 ft altitude, collect samples and make scientific measurements for 4 hr, and then return to base. A performance screening evaluation of 11 propulsion systems for this high altitude mission was conducted. Engine configurations ranged from turboprop, spark ignition, two- and four-stroke diesel, rotary, and fuel cell concepts. Turbo and non-turbo-compounded, recuperated and nonrecuperated arrangements, along with regular JP and hydrogen fuels were interrogated. Each configuration was carried through a preliminary design where all turbomachinery, heat exchangers, and engine core concepts were sized and weighed for near-optimum design point performance. Mission analysis, which sized the aircraft for each of the propulsion systems investigated, was conducted. From the array of configurations investigated, the propulsion system for each of three different technology levels (i.e., state of the art, near term, and far term) that was best suited for this very high altitude mission was identified and recommended for further study.

  1. Pathfinder aircraft in flight

    NASA Image and Video Library

    1995-07-27

    The Pathfinder research aircraft's wing structure was clearly defined as it soared under a clear blue sky during a test flight July 27, 1995, from Dryden Flight Research Center, Edwards, California. The center section and outer wing panels of the aircraft had ribs constructed of thin plastic foam, while the ribs in the inner wing panels are fabricated from lightweight composite material. Developed by AeroVironment, Inc., the Pathfinder was one of several unmanned aircraft being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  2. Gaia DR1 Evidence of Disrupting the Perseus Arm

    NASA Astrophysics Data System (ADS)

    Baba, Junichi; Kawata, Daisuke; Matsunaga, Noriyuki; Grand, Robert J. J.; Hunt, Jason A. S.

    2018-02-01

    We have discovered a clear sign of the disruption phase of the Perseus arm in the Milky Way using Cepheid variables, taking advantage of the accurately measured distances of Cepheids and the proper motions from Gaia Data Release 1. Both the Galactocentric radial and rotation velocities of 77 Cepheids within 1.5 kpc of the Perseus arm are correlated with their distances from the locus of the Perseus arm, as the trailing side is rotating faster and moving inward compared to the leading side. We also found a negative vertex deviation for the Cepheids on the trailing side, ‑27.°6 ± 2.°4, in contrast to the positive vertex deviation in the solar neighborhood. This is, to our knowledge, the first direct evidence that the vertex deviation around the Perseus arm is affected by the spiral arm. We compared these observational trends with our N-body/hydrodynamics simulations based on a static density-wave spiral scenario and with those based on a transient dynamic spiral scenario. Although our comparisons are limited to qualitative trends, they strongly favor the conclusion that the Perseus arm is in the disruption phase of a transient arm.

  3. Harnessing the Power of the Sun

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Environmental Research Aircraft and Sensor Technology (ERAST) Alliance was created in 1994 and operated for 9 years as a NASA-sponsored coalition of 28 members from small companies, government, universities, and nonprofit organizations. ERAST s goal was to foster development of remotely piloted aircraft technology for scientific, humanitarian, and commercial purposes. Some of the aircraft in the ERAST Alliance were intended to fly unmanned at high altitudes for days at a time, and flying for such durations required alternative sources of power that did not add weight. The most successful solution for this type of sustained flight is the lightest solar energy. Photovoltaic cells convert sunlight directly into electricity. They are made of semi-conducting materials similar to those used in computer chips. When sunlight is absorbed, electrons are knocked loose from their atoms, allowing electricity to flow. Under the ERAST Alliance, two solar-powered technology demonstration aircraft, Pathfinder and Helios, were developed. Pathfinder is a lightweight, remotely piloted flying wing aircraft that demonstrated the technology of applying solar cells for long-duration, high-altitude flight. Solar arrays covering most of the upper wing surface provide power for the aircraft s electric motors, avionics, communications, and other electronic systems. Pathfinder also has a backup battery system that can provide power for between 2 and 5 hours to allow limited-duration flight after dark. It was designed, built, and operated by AeroVironment, Inc., of Monrovia, California. On September 11, 1995, Pathfinder reached an altitude of 50,500 feet, setting a new altitude record for solar-powered aircraft. The National Aeronautic Association presented the NASA-industry team with an award for 1 of the 10 Most Memorable Record Flights of 1995.

  4. The Perseus Cluster: Bridging the Extremes of Stellar Systems

    NASA Astrophysics Data System (ADS)

    Harris, William

    2017-08-01

    The Perseus cluster (Abell 426) at d=75 Mpc is as massive and diverse as Virgo and Coma and displays a rich laboratory for studying galaxy evolution. Its massive X-ray halo gas component and its high proportion of large early-type galaxies point to a long history of dynamical interaction amongst the cluster members. The central supergiant, NGC 1275, is perhaps the most active galaxy in the local universe, with a spectacular network of H-alpha filaments, cooling flows, feedback, and prominent star formation in plain view. We propose to use the Globular Cluster (GC) populations in the Perseus region with two-band imaging to pursue three connected goals: the stellar Intracluster Medium (ICM); its Ultra-Diffuse Galaxies (UDGs); and the GC populations in the Perseus core galaxies. Our analysis of a few HST/ACS Archival images covering the Perseus core strongly indicates that a substantial Intragalactic GC component is present. Our newly discovered sample of UDGs in Perseus covers the entire parameter space of these intriguing galaxies and will be thoroughly sampled in our study: are they 'failed' underluminous galaxies with high masses, or are they a mixed bag? For all our goals, the GC populations will act as powerful tracers of the dominant old stellar populations - their metallicity distributions and total populations in the ICM, the UDGs, and the three largest E galaxies in Perseus. As a bonus, we expect to find 200 new Ultra-Compact Dwarfs (UCDs) and half a dozen rare compact ellipticals (cEs). The scientific payoffs will include a broader understanding of the nature and history of all these types of galaxies and their stripped stellar material.

  5. Wide field polarimetry around the Perseus cluster at 350 MHz

    NASA Astrophysics Data System (ADS)

    Brentjens, M. A.

    2011-02-01

    Aims: This paper investigates the fascinating diffuse polarization structures at 350 MHz that have previously been tentatively attributed to the Perseus cluster and, more specifically, tries to find out whether the structures are located at (or near) the Perseus cluster, or in the Milky Way. Methods: A wide field, eight point Westerbork Synthesis Radio Telescope mosaic of the area around the Perseus cluster was observed in full polarization. The frequency range was 324 to 378 MHz and the resolution of the polarization maps was 2' × 3'. The maps were processed using Faraday rotation measure synthesis to counter bandwidth depolarization. The RM-cube covers Faraday depths of -384 to +381 rad m-2 in steps of 3 rad m-2. Results: There is emission all over the field at Faraday depths between -50 and +100 rad m-2. All previously observed structures were detected. However, no compelling evidence was found supporting association of those structures with either the Perseus cluster or large scale structure formation gas flows in the Perseus-Pisces super cluster. On the contrary, one of the structures is clearly associated with a Galactic depolarization canal at 1.41 GHz. Another large structure in polarized intensity, as well as Faraday depth at a Faraday depth of +30 rad m-2, coincides with a dark object in WHAM Hα maps at a kinematic distance of 0.5 ± 0.5 kpc. All diffuse polarized emission at 350 MHz towards the Perseus cluster is most likely located within 1 kpc from the Sun. The layers that emit the polarized radiation are less than 40 pc/|B_∥| thick. Appendix is only available in electronic form at http://www.aanda.org

  6. PERSEUS I: A DISTANT SATELLITE DWARF GALAXY OF ANDROMEDA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Nicolas F.; Laevens, Benjamin P. M.; Schlafly, Edward F.

    We present the discovery of a new dwarf galaxy, Perseus I/Andromeda XXXIII, found in the vicinity of Andromeda (M31) in stacked imaging data from the Pan-STARRS1 3π survey. Located 27.°9 away from M31, Perseus I has a heliocentric distance of 785 ± 65 kpc, compatible with it being a satellite of M31 at 374{sub −10}{sup +14} kpc from its host. The properties of Perseus I are typical for a reasonably bright dwarf galaxy (M{sub V} = –10.3 ± 0.7), with an exponential half-light radius of r{sub h} = 1.7 ± 0.4 arcmin or r{sub h}=400{sub −85}{sup +105} pc at thismore » distance, and a moderate ellipticity (ϵ=0.43{sub −0.17}{sup +0.15}). The late discovery of Perseus I is due to its fairly low surface brightness (μ{sub 0}=25.7{sub −0.9}{sup +1.0} mag arcsec{sup –2}), and to the previous lack of deep, high quality photometric data in this region. If confirmed to be a companion of M31, the location of Perseus I, far east from its host, could place interesting constraints on the bulk motion of the satellite system of M31.« less

  7. Cool Star Beginnings: YSOs in the Perseus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Young, Kaisa E.; Young, Chadwick H.

    2015-01-01

    Nearby molecular clouds, where there is considerable evidence of ongoing star formation, provide the best opportunity to observe stars in the earliest stages of their formation. The Perseus molecular cloud contains two young clusters, IC 348 and NGC 1333 and several small dense cores of the type that produce only a few stars. Perseus is often cited as an intermediate case between quiescent low-mass and turbulent high-mass clouds, making it perhaps an ideal environment for studying ``typical low-mass star formation. We present an infrared study of the Perseus molecular cloud with data from the Spitzer Space Telescope as part of the ``From Molecular Cores to Planet Forming Disks (c2d) Legacy project tep{eva03}. By comparing Spitzer's near- and mid-infrared maps, we identify and classify the young stellar objects (YSOs) in the cloud using updated extinction corrected photometry. Virtually all of the YSOs in Perseus are forming in the clusters and other smaller associations at the east and west ends of the cloud with very little evidence of star formation in the midsection even in areas of high extinction.

  8. Fermi LAT detection of renewed gamma-ray flaring activity from the radio galaxy NGC 1275 (Perseus A)

    NASA Astrophysics Data System (ADS)

    Ciprini, Stefano

    2013-01-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed GeV gamma-ray flaring activity from a source positionally consistent with NGC 1275 (also known as 2FGL J0319.8+4130, Nolan et al. 2012, ApJS, 199, 31, as Perseus A and 3C 84) a radio galaxy located at the center of the Perseus galaxy cluster (see also Abdo et al. 2009, ApJ, 699, 31).

  9. Advanced aircraft for atmospheric research

    NASA Technical Reports Server (NTRS)

    Russell, P.; Wegener, S.; Langford, J.; Anderson, J.; Lux, D.; Hall, D. W.

    1991-01-01

    The development of aircraft for high-altitude research is described in terms of program objectives and environmental, technological limitations, and the work on the Perseus A aircraft. The need for these advanced aircraft is proposed in relation to atmospheric science issues such as greenhouse trapping, the dynamics of tropical cyclones, and stratospheric ozone. The implications of the study on aircraft design requirements is addressed with attention given to the basic categories of high-altitude, long-range, long-duration, and nap-of-the-earth aircraft. A strategy is delineated for a platform that permits unique stratospheric measurements and is a step toward a more advanced aircraft. The goal of Perseus A is to carry scientific air sampling payloads weighing at least 50 kg to altitudes of more than 25 km. The airfoils are designed for low Reynolds numbers, the structural weight is very low, and the closed-cycle power plant runs on liquid oxygen.

  10. My school voyages with PERSEUS - PERSEUS@SCHOOL

    NASA Astrophysics Data System (ADS)

    Fermeli, Georgia; Papathanassiou, Evangelos; Papatheodorou, George; Streftaris, Nikos; Ioakeimidis, Christos

    2014-05-01

    PERSEUS@SCHOOL is an international environmental education thematic school network which is inspired and supported by the European research project PERSEUS (Policy Oriented Marine Environmental Research in Southern European Seas_http://www.perseus-net.eu) which is funded by EU FP7 Theme "Ocean of Tomorrow" and it is coordinating by the Hellenic Centre for Marine Research (HCMR). The overall scientific objectives of PERSEUS (FP7) research project are to identify the interacting patterns of natural and human-derived pressures on the Mediterranean and Black Seas, assess their impact on marine ecosystems and, using the objectives and principles of the Marine Strategy Framework Directive as a vehicle, to design an effective and innovative research governance framework based on solid scientific knowledge. This research governance framework will engage scientists, policy-makers and the public, thereby reaching a shared understanding and informed decision-making based on sound scientific knowledge. PERSEUS@SCHOOL network is coordinated by the Department of Environmental Education of the 1st Directorate of Secondary Education of Athens and aims to help and enhance environmental education, focusing on clean seas stewardship in schools. Educators along with marine scientists have a role in supporting and inspiring children to acquire the knowledge, skills and inspire their awareness to live and work as responsible and concerned citizens. For this purpose, the network has designed specific pedagogical activities for primary and secondary education - based on PERSEUS key thematic areas i.e. Marine biodiversity, Overfishing, Chemical Marine Pollution - Bioaccumulation - Health, Eutrophication in Marine Waters and Marine Litter. Complementary, two web-monitoring tools will be used by the network; the Jellyfish Spotting campaign and the Marine LitterWatch (MLW) app (Developed by EEA). A special emphasis is given to MLW app, as school students for first time will use it in order to test this new tool and to monitor beach marine litter in selected areas in Greece. The pedagogical activities of the network will give students an opportunity to explore similarities and differences between schools and nationalities, while simultaneously creating awareness of other young people's reality in a captivating way. PERSEUS@SCHOOL will allow students to use their imagination and knowledge provided by PERSEUS scientists, in order to think and act about the marine environment and its protection in an interactive, appealing and imaginative way. Finally, students will participate in a "true" expedition in the Aegean Sea, on the R/V AEGAEO of the Hellenic Centre for Marine Research (HCMR). The aim of this expedition is to involve students in marine scientific research and guide them to recognize the 'value' of the Mediterranean Sea and the threats and challenges it faces in the modern world. During this expedition, students will collaborate with marine scientists creating a powerful interactive learning experience, participate in experiments, interpret research findings, draw conclusions and voice their opinion for the "Oceans of tomorrow".

  11. A study of the cold cores population in the Perseus star-forming regions.

    NASA Astrophysics Data System (ADS)

    Pezzuto, S.; Fiorellino, E.; Benedettini, M.; Schisano, E.; Elia, D.; André, P.; Könyves, V.; Ladjelate, B.; Di Francesco, J.; Piccotti, L.; Herschel Gould Belt Survey Consortium

    As part of the Herschel Gould Belt survey, the Perseus star-forming cloud was observed with the Herschel PACS and SPIRE instruments. Source catalogs are preliminary, as well as the here presented core mass function.

  12. Arecibo Pisces-Perseus Supercluster Survey: Declination Strip 25

    NASA Astrophysics Data System (ADS)

    Agostino, James; Harrison, Matthew F.; Finn, Rose, Dr.; APPSS Team, Undergraduate ALFALFA Team, ALFALFA Team

    2018-01-01

    The Arecibo Pisces-Perseus Supercluster Survey (APPSS) is an observing project by the Undergraduate ALFALFA Team, aimed at determining the mass of the Pisces Perseus Supercluster through measurement of peculiar velocities from HI line detections. The survey targeted approximately 600 galaxies selected based on SDSS and GALEX photometry as likely to contain HI. We reduced Arecibo L-Band Wide observations for 90 galaxies near declination 25 degrees, 40 of which showed HI emission. 58% of those 40 galaxies were below 10,000 km/s recession velocity and thus will provide useful information to draw conclusions from. We determined the recession velocity, velocity width, and HI line flux for each detection. We discuss our results for APPSS galaxies and for ALFALFA detections near this declination strip. By combining results from all strips, APPSS will determine which galaxies are associated with the Pisces-Perseus Supercluster, and their peculiar velocities will be measured via the baryonic Tully-Fisher relation. This work has been supported by NSF grants AST-1211005 and AST-1637339.

  13. ERAST Program Proteus Aircraft in Flight over the Mojave Desert in California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The unusual design of the Proteus high-altitude aircraft, incorporating a gull-wing shape for its main wing and a long, slender forward canard, is clearly visible in this view of the aircraft in flight over the Mojave Desert in California. In the Proteus Project, NASA's Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus's deployment to the Paris Airshow in 1999. NASA's ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association's 'AirVenture 99' Airshow at Oshkosh, Wisconsin. The images were displayed on a computer monitor at the show only moments after they were taken. This was the second successful demonstration of the ARTIS camera. The aircraft is designed to cruise at altitudes from 59,000 to more than 65,000 feet for up to 18 hours. It was designed and built by Burt Rutan, president of Scaled Composites, Inc., to carry an 18-foot diameter telecommunications antenna system for relay of broadband data over major cities. The design allows for Proteus to be reconfigured at will for a variety of other missions such as atmospheric research, reconnaissance, commercial imaging, and launch of small space satellites. It is designed for extreme reliability and low operating costs, and to operate out of general aviation airports with minimal support. The aircraft consists of an all composite airframe with graphite-epoxy sandwich construction. It has a wingspan of 77 feet 7 inches, expandable to 92 feet with removable wingtips installed. It is 56.3 feet long and 17.6 feet high and weighs 5,900 pounds, empty. Proteus is powered by two Williams-Rolls FJ44-2 turbofan engines developing 2,300 pounds of thrust each.

  14. ERAST Program Proteus Aircraft in Flight over the Mojave Desert in California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The uniquely shaped Proteus high-altitude aircraft soars over California's Mojave Desert during a July 1999 flight. In the Proteus Project, NASA's Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus's deployment to the Paris Airshow in 1999. NASA's ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association's 'AirVenture 99' Airshow at Oshkosh, Wisconsin. The images were displayed on a computer monitor at the show only moments after they were taken. This was the second successful demonstration of the ARTIS camera. The aircraft is designed to cruise at altitudes from 59,000 to more than 65,000 feet for up to 18 hours. It was designed and built by Burt Rutan, president of Scaled Composites, Inc., to carry an 18-foot diameter telecommunications antenna system for relay of broadband data over major cities. The design allows for Proteus to be reconfigured at will for a variety of other missions such as atmospheric research, reconnaissance, commercial imaging, and launch of small space satellites. It is designed for extreme reliability and low operating costs, and to operate out of general aviation airports with minimal support. The aircraft consists of an all composite airframe with graphite-epoxy sandwich construction. It has a wingspan of 77 feet 7 inches, expandable to 92 feet with removable wingtips installed. It is 56.3 feet long and 17.6 feet high and weighs 5,900 pounds, empty. Proteus is powered by two Williams-Rolls FJ44-2 turbofan engines developing 2,300 pounds of thrust each.

  15. CCA Test Objectives

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Three sources have been considered to provide information allowing the evaluation of the Collision Conflict Avoidance (CCA) functional requirements: existing data, simulation, and flight test. The existing data sources that have been evaluated have been found to be lacking in two areas: The actual data that was recorded and missing elements to the system architecture. Many previous tests addressing collision avoidance were conducted without a remote operator. As such, they are missing critical elements that are required to assess the CCA functional requirements. Tests such as ERAST were conducted with all of the UAS elements. However, ERAST tests were conducted as a demonstration and the data recorded was of end-to-end performance. Many contributing elements of the system were not individually recorded or were recorded at a data rate insufficient for the purposes of evaluating the CCA functional requirements.

  16. Pathfinder aircraft flight #1

    NASA Image and Video Library

    1996-11-19

    The Pathfinder solar-powered research aircraft settles in for landing on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, after a successful test flight Nov. 19, 1996. The ultra-light craft flew a racetrack pattern at low altitudes over the flight test area for two hours while project engineers checked out various systems and sensors on the uninhabited aircraft. The Pathfinder was controlled by two pilots, one in a mobile control unit which followed the craft, the other in a stationary control station. Pathfinder, developed by AeroVironment, Inc., is one of several designs being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  17. On Perseus.

    PubMed

    Javanbakht, Arash; Whitehead, Clay C

    2006-01-01

    The story of Perseus and his exploits is one of the most famous Greek myths and is analyzed with emphasis on oedipal and symbiotic dynamics. The myth is seen to resonate with individual, social, and historical elements, illustrating the unique place of symbol and myth in mediating the coevolution of the individual and his or her culture.

  18. HI data reduction for the Arecibo Pisces-Perseus Supercluster Survey

    NASA Astrophysics Data System (ADS)

    Davis, Cory; Johnson, Cory; Craig, David W.; Haynes, Martha P.; Jones, Michael G.; Koopmann, Rebecca A.; Hallenbeck, Gregory L.; Undergraduate ALFALFA Team

    2017-01-01

    The Undergraduate ALFALFA team is currently focusing on the analysis of the Pisces-Perseus Supercluster to test current supercluster formation models. The primary goal of our research is to reduce L-band HI data from the Arecibo telescope. To reduce the data we use IDL programs written by our collaborators to reduce the data and find potential sources whose mass can be estimated by the baryonic Tully-Fisher relation, which relates the luminosity to the rotational velocity profile of spiral galaxies. Thus far we have reduced data and estimated HI masses for several galaxies in the supercluster region.We will give examples of data reduction and preliminary results for both the fall 2015 and 2016 observing seasons. We will also describe the data reduction process and the process of learning the associated software, and the use of virtual observatory tools such as the SDSS databases, Aladin, TOPCAT and others.This research was supported by the NSF grant AST-1211005.

  19. The Perseus arm in the anticenter direction

    NASA Astrophysics Data System (ADS)

    Monguió, M.; Grosbøl, P.; Figueras, F.

    2015-05-01

    The stellar overdensity due to the Perseus arm has been detected in the anticenter direction through individual field stars. For that purpose, a Str&{uml;o}mgren photometric survey covering 16° ^2 was developed with the Wide Field Camera at the Isaac Newton Telescope. This photometry allowed us to compute individual physical parameters for these stars using a new method based on atmospheric models and evolutionary tracks. The analysis of the surface density as a function of distance for intermediate young stars in this survey allowed us to detect an overdensity at 1.6±0.2 kpc from the Sun, that can be associated with the Perseus arm, with a surface density amplitude of ˜14%. The significance of the detection is above 4σ for all the cases. The fit for the radial scale length of the Galactic disk provided values in the range [2.9,3.5] kpc for the population of the B4-A1 stars. We also analyzed the interstellar visual absorption distribution, and its variation as a function of distance is coherent with a dust layer before the Perseus arm location.

  20. Non-thermal emission in the core of Perseus: results from a long XMM-Newton observation

    NASA Astrophysics Data System (ADS)

    Molendi, S.; Gastaldello, F.

    2009-01-01

    We employ a long XMM-Newton observation of the core of the Perseus cluster to validate claims of a non-thermal component discovered with Chandra. From a meticulous analysis of our dataset, which includes a detailed treatment of systematic errors, we find the 2-10 keV surface brightness of the non-thermal component to be less than about 5 × 10-16 erg~cm-2 s-1 arcsec-2. The most likely explanation for the discrepancy between the XMM-Newton and Chandra estimates is a problem in the effective area calibration of the latter. Our EPIC-based magnetic field lower limits do not disagree with Faraday rotation measure estimates on a few cool cores and with a minimum energy estimate on Perseus. In the not too distant future Simbol-X may allow detection of non-thermal components with intensities more than 10 times lower than those that can be measured with EPIC; nonetheless even the exquisite sensitivity within reach for Simbol-X might be insufficient to detect the IC emission from Perseus.

  1. Andromeda

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    (abbrev. And, gen. Andromedae; area 722 sq. deg.) A northern constellation that lies between Perseus and Pegasus, and culminates at midnight in early October. It is named after the daughter of King Cepheus and Queen Cassiopeia in Greek mythology, who was rescued by Perseus from being sacrificed to the sea monster Cetus, and is usually shown on early celestial charts as a chained maiden. Its brigh...

  2. JPL-20180201-WHATSUf-0001-Whats Up February 2018

    NASA Image and Video Library

    2018-02-01

    Monthly series for amateur astronomers. February features "celestial pairs" in honor of Valentine's Day. Constellation pairs: Perseus and Andromeda, Orion and the Pleiades. Star pairs: Pollux and Castor, Rigel and Rigel B, Mintaka and its companion star. Plus the moon pairs with Pollux and Castor and with the Pleiades. Includes animation of the myths of Perseus, Andromeda, Orion and the Pleiades.

  3. Radial Profile of the 3.5 kev Line Out to R200 in the Perseus Cluster

    NASA Technical Reports Server (NTRS)

    Franse, Jeroen; Bulbul, Esra; Foster, Adam; Boyarsky, Alexey; Markevitch, Maxim; Bautz, Mark; Lakubovskyi, Dmytro; Loewenstein, Michael; McDonald, Michael; Miller, Eric; hide

    2016-01-01

    The recent discovery of the unidentified emission line at 3.5 keV in galaxies and clusters has attracted great interest from the community. As the origin of the line remains uncertain, we study the surface brightness distribution of the line in the Perseus cluster since that information can be used to identify its origin. We examine the flux distribution of the 3.5 keV line in the deep Suzaku observations of the Perseus cluster in detail. The 3.5 keV line is observed in three concentric annuli in the central observations, although the observations of the outskirts of the cluster did not reveal such a signal. We establish that these detections and the upper limits from the non-detections are consistent with a dark matter decay origin. However, absence of positive detection in the outskirts is also consistent with some unknown astrophysical origin of the line in the dense gas of the Perseus core, as well as with a dark matter origin with a steeper dependence on mass than the dark matter decay. We also comment on several recently published analyses of the 3.5 keV line.

  4. Where do the 3.5 keV photons come from? A morphological study of the Galactic Center and of Perseus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Eric; Jeltema, Tesla; Profumo, Stefano, E-mail: erccarls@ucsc.edu, E-mail: tesla@ucsc.edu, E-mail: profumo@ucsc.edu

    We test the origin of the 3.5 keV line photons by analyzing the morphology of the emission at that energy from the Galactic Center and from the Perseus cluster of galaxies. We employ a variety of different templates to model the continuum emission and analyze the resulting radial and azimuthal distribution of the residual emission. We then perform a pixel-by-pixel binned likelihood analysis including line emission templates and dark matter templates and assess the correlation of the 3.5 keV emission with these templates. We conclude that the radial and azimuthal distribution of the residual emission is incompatible with a darkmore » matter origin for both the Galactic center and Perseus; the Galactic center 3.5 keV line photons trace the morphology of lines at comparable energy, while the Perseus 3.5 keV photons are highly correlated with the cluster's cool core, and exhibit a morphology incompatible with dark matter decay. The template analysis additionally allows us to set the most stringent constraints to date on lines in the 3.5 keV range from dark matter decay.« less

  5. RADIAL PROFILE OF THE 3.5 keV LINE OUT TO R {sub 200} IN THE PERSEUS CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franse, Jeroen; Bulbul, Esra; Bautz, Mark

    2016-10-01

    The recent discovery of the unidentified emission line at 3.5 keV in galaxies and clusters has attracted great interest from the community. As the origin of the line remains uncertain, we study the surface brightness distribution of the line in the Perseus cluster since that information can be used to identify its origin. We examine the flux distribution of the 3.5 keV line in the deep Suzaku observations of the Perseus cluster in detail. The 3.5 keV line is observed in three concentric annuli in the central observations, although the observations of the outskirts of the cluster did not revealmore » such a signal. We establish that these detections and the upper limits from the non-detections are consistent with a dark matter decay origin. However, absence of positive detection in the outskirts is also consistent with some unknown astrophysical origin of the line in the dense gas of the Perseus core, as well as with a dark matter origin with a steeper dependence on mass than the dark matter decay. We also comment on several recently published analyses of the 3.5 keV line.« less

  6. THE JCMT GOULD BELT SURVEY: EVIDENCE FOR DUST GRAIN EVOLUTION IN PERSEUS STAR-FORMING CLUMPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Michael Chun-Yuan; Francesco, J. Di; Johnstone, D.

    2016-07-20

    The dust emissivity spectral index, β , is a critical parameter for deriving the mass and temperature of star-forming structures and, consequently, their gravitational stability. The β value is dependent on various dust grain properties, such as size, porosity, and surface composition, and is expected to vary as dust grains evolve. Here we present β , dust temperature, and optical depth maps of the star-forming clumps in the Perseus Molecular Cloud determined from fitting spectral energy distributions to combined Herschel and JCMT observations in the 160, 250, 350, 500, and 850 μ m bands. Most of the derived β andmore » dust temperature values fall within the ranges of 1.0–2.7 and 8–20 K, respectively. In Perseus, we find the β distribution differs significantly from clump to clump, indicative of grain growth. Furthermore, we also see significant localized β variations within individual clumps and find low- β regions correlate with local temperature peaks, hinting at the possible origins of low- β grains. Throughout Perseus, we also see indications of heating from B stars and embedded protostars, as well evidence of outflows shaping the local landscape.« less

  7. Searches for 3.5 keV Absorption Features in Cluster AGN Spectra

    NASA Astrophysics Data System (ADS)

    Conlon, Joseph P.

    2018-06-01

    We investigate possible evidence for a spectral dip around 3.5 keV in central cluster AGNs, motivated by previous results for archival Chandra observations of the Perseus cluster and the general interest in novel spectral features around 3.5 keV that may arise from dark matter physics. We use two deep Chandra observations of the Perseus and Virgo clusters that have recently been made public. In both cases, mild improvements in the fit (Δχ2 = 4.2 and Δχ2 = 2.5) are found by including such a dip at 3.5 keV into the spectrum. A comparable result (Δχ2 = 6.5) is found re-analysing archival on-axis Chandra ACIS-S observations of the centre of the Perseus cluster.

  8. Applications of UAVs for Remote Sensing of Critical Infrastructure

    NASA Technical Reports Server (NTRS)

    Wegener, Steve; Brass, James; Schoenung, Susan

    2003-01-01

    The surveillance of critical facilities and national infrastructure such as waterways, roadways, pipelines and utilities requires advanced technological tools to provide timely, up to date information on structure status and integrity. Unmanned Aerial Vehicles (UAVs) are uniquely suited for these tasks, having large payload and long duration capabilities. UAVs also have the capability to fly dangerous and dull missions, orbiting for 24 hours over a particular area or facility providing around the clock surveillance with no personnel onboard. New UAV platforms and systems are becoming available for commercial use. High altitude platforms are being tested for use in communications, remote sensing, agriculture, forestry and disaster management. New payloads are being built and demonstrated onboard the UAVs in support of these applications. Smaller, lighter, lower power consumption imaging systems are currently being tested over coffee fields to determine yield and over fires to detect fire fronts and hotspots. Communication systems that relay video, meteorological and chemical data via satellite to users on the ground in real-time have also been demonstrated. Interest in this technology for infrastructure characterization and mapping has increased dramatically in the past year. Many of the UAV technological developments required for resource and disaster monitoring are being used for the infrastructure and facility mapping activity. This paper documents the unique contributions from NASA;s Environmental Research Aircraft and Sensor Technology (ERAST) program to these applications. ERAST is a UAV technology development effort by a consortium of private aeronautical companies and NASA. Details of demonstrations of UAV capabilities currently underway are also presented.

  9. Hitomi Constraints on the 3.5 keV Line in the Perseus Galaxy Cluster

    DOE PAGES

    Aharonian, F. A.; Akamatsu, H.; Akimoto, F.; ...

    2017-03-03

    High-resolution X-ray spectroscopy with Hitomi was expected to resolve the origin of the faint unidentifiedmore » $$E\\approx 3.5\\,\\mathrm{keV}$$ emission line reported in several low-resolution studies of various massive systems, such as galaxies and clusters, including the Perseus cluster. We have analyzed the Hitomi first-light observation of the Perseus cluster. The emission line expected for Perseus based on the XMM-Newton signal from the large cluster sample under the dark matter decay scenario is too faint to be detectable in the Hitomi data. However, the previously reported 3.5 keV flux from Perseus was anomalously high compared to the sample-based prediction. We find no unidentified line at the reported high flux level. Taking into account the XMM measurement uncertainties for this region, the inconsistency with Hitomi is at a 99% significance for a broad dark matter line and at 99.7% for a narrow line from the gas. We do not find anomalously high fluxes of the nearby faint K line or the Ar satellite line that were proposed as explanations for the earlier 3.5 keV detections. We do find a hint of a broad excess near the energies of high-n transitions of S xvi ($$E\\simeq 3.44\\,\\mathrm{keV}$$ rest-frame)—a possible signature of charge exchange in the molecular nebula and another proposed explanation for the unidentified line. While its energy is consistent with XMM pn detections, it is unlikely to explain the MOS signal. In conclusion, a confirmation of this interesting feature has to wait for a more sensitive observation with a future calorimeter experiment.« less

  10. The Mid-Infrared Extinction Law in the Ophiuchus, Perseus, and Serpens Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Chapman, Nicholas L.; Mundy, Lee G.; Lai, Shih-Ping; Evans, Neal J., II

    2009-01-01

    We compute the mid-IR extinction law from 3.6 to 24 μm in three molecular clouds—Ophiuchus, Perseus, and Serpens—by combining data from the "Cores to Disks" Spitzer Legacy Science program with deep JHKs imaging. Using a new technique, we are able to calculate the line-of-sight (LOS) extinction law toward each background star in our fields. With these LOS measurements, we create, for the first time, maps of the χ2 deviation of the data from two extinction law models. Because our χ2 maps have the same spatial resolution as our extinction maps, we can directly observe the changing extinction law as a function of the total column density. In the Spitzer Infrared Array Camera (IRAC) bands, 3.6-8 μm, we see evidence for grain growth. Below A_{K_s} = 0.5, our extinction law is well fitted by the Weingartner and Draine RV = 3.1 diffuse interstellar-medium dust model. As the extinction increases, our law gradually flattens, and for A_{K_s} \\ge 1, the data are more consistent with the Weingartner and Draine RV = 5.5 model that uses larger maximum dust grain sizes. At 24 μm, our extinction law is 2-4 times higher than the values predicted by theoretical dust models, but is more consistent with the observational results of Flaherty et al. Finally, from our χ2 maps we identify a region in Perseus where the IRAC extinction law is anomalously high considering its column density. A steeper near-IR extinction law than the one we have assumed may partially explain the IRAC extinction law in this region.

  11. VizieR Online Data Catalog: Properties of SCUBA cores in Perseus mol. cloud (Curtis+, 2010)

    NASA Astrophysics Data System (ADS)

    Curtis, E. I.; Richer, J. S.

    2013-05-01

    We extracted fully calibrated and reduced SCUBA 850um maps across the four regions in Perseus we observed with HARP from the data presented by Hatchell et al. (2005, Cat. J/A+A/440/151), where we refer the reader for details of the observations and processing. In short, the data were taken during 20 nights between 1999 and 2003. (2 data files).

  12. The Gould’s Belt Very Large Array Survey. V. The Perseus Region

    NASA Astrophysics Data System (ADS)

    Pech, Gerardo; Loinard, Laurent; Dzib, Sergio A.; Mioduszewski, Amy J.; Rodríguez, Luis F.; Ortiz-León, Gisela N.; Rivera, Juana L.; Torres, Rosa M.; Boden, Andrew F.; Hartman, Lee; Kounkel, Marina A.; Evans, Neal J., II; Briceño, Cesar; Tobin, John; Zapata, Luis A.

    2016-02-01

    We present multiepoch, large-scale (˜2000 arcmin2), fairly deep (˜16 μJy), high-resolution (˜1″) radio observations of the Perseus star-forming complex obtained with the Karl G. Jansky Very Large Array at frequencies of 4.5 and 7.5 GHz. These observations were mainly focused on the clouds NGC 1333 and IC 348, although we also observed several fields in other parts of the Perseus complex. We detect a total of 206 sources, 42 of which are associated with young stellar objects (YSOs). The radio properties of about 60% of the YSOs are compatible with a nonthermal radio emission origin. Based on our sample, we find a fairly clear relation between the prevalence of nonthermal radio emission and evolutionary status of the YSOs. By comparing our results with previously reported X-ray observations, we show that YSOs in Perseus follow a Güdel-Benz relation with κ = 0.03, consistent with other regions of star formation. We argue that most of the sources detected in our observations but not associated with known YSOs are extragalactic, but provide a list of 20 unidentified radio sources whose radio properties are consistent with being YSO candidates. Finally, we also detect five sources with extended emission features that can clearly be associated with radio galaxies.

  13. High Altitude Platform Aircraft at NASA Past, Present and Future

    NASA Technical Reports Server (NTRS)

    DelFrate, John H.

    2006-01-01

    This viewgraph presentation reviews NASA Dryden Flight Research Center's significant accomplishments from the Environment Research and Sensor Technology (ERAST) project, the present High Altitude Platform (HAP) needs and opportunities, NASA's Aeronautical focus shift, HAP Non-aeronautics challenges, and current HAP Capabilities.

  14. GaAs/Ge Solar Powered Aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Scheiman, David A.; Brinker, David J.

    1998-01-01

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration aircraft. Due to the weight, speed, and altitude constraints imposed on such an aircraft, solar array generated electric power can be a viable alternative to air-breathing engines for certain missions. Development of such an aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) has built a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office.

  15. Experiments of opportunity pay loads revisited

    NASA Technical Reports Server (NTRS)

    Shrewsberry, D. J.; Cruddace, R. G.

    1986-01-01

    The design and operation of the Spartan program are discussed. The objective of the Spartan program is to utilize the Space Shuttle for conducting exoatmospheric science research. The Spartan 1 data storage and handling, attitude control, power, and thermal control systems and structure are described. The Spartan 1 was to study the structure of two prominent cosmic X-ray sources, the Perseus cluster of galaxies, and the center of the Milky Way. Spartan 1 was launched on June 17, 1985, deployed on June 20, and retrieved on June 22. The performance of the Spartan's system, and the collected data are analyzed; it was observed that the systems performed as planned. The methods used to minimize the Spartan program costs are considered.

  16. What Do the Hitomi Observations Tell Us About the Turbulent Velocities in the Perseus Cluster?

    NASA Astrophysics Data System (ADS)

    ZuHone, John A.; Miller, Eric D.; Bulbul, Esra; Zhuravleva, Irina

    2017-08-01

    Recently, the Hitomi X-ray Observatory provided the first-ever direct measurements of Doppler line shifting and broadening from the hot plasma in clusters of galaxies via its observations of the Perseus Cluster. It has been reported that these observations demonstrate that the ICM in Perseus is "quiescent". It is indisputable that the velocities inferred from the measured line shifts and broadening are low, but what do these observations imply about the structure of the velocity field on scales smaller than the Hitomi PSF? We use hydrodynamic simulations of gas motions in a cool-core cluster in combination with synthetic Hitomi observations in order to compare the observed line-of-sight velocities to the 3D velocity structure of the ICM, and assess the impact of Hitomi's spatial resolution and the effects of varying the underlying ICM physics.

  17. Unidentified line in x-ray spectra of the Andromeda galaxy and Perseus galaxy cluster.

    PubMed

    Boyarsky, A; Ruchayskiy, O; Iakubovskyi, D; Franse, J

    2014-12-19

    We report a weak line at 3.52±0.02  keV in x-ray spectra of the Andromeda galaxy and the Perseus galaxy cluster observed by the metal-oxide-silicon (MOS) and p-n (PN) CCD cameras of the XMM-Newton telescope. This line is not known as an atomic line in the spectra of galaxies or clusters. It becomes stronger towards the centers of the objects; is stronger for Perseus than for M31; is absent in the spectrum of a deep "blank sky" data set. Although for each object it is hard to exclude that the feature is due to an instrumental effect or an atomic line, it is consistent with the behavior of a dark matter decay line. Future (non-)detections of this line in multiple objects may help to reveal its nature.

  18. VizieR Online Data Catalog: Red supergiant population in Perseus arm (Dorda+, 2018)

    NASA Astrophysics Data System (ADS)

    Dorda, R.; Negueruela, I.; Gonzalez-Fernandez, C.

    2018-03-01

    The targets were observed during two different campaigns. The first one was done in 2011, on the nights of October 16-18. The second campaign was carried out in 2012, from September 3rd to 7th. We used the Intermediate Dispersion Spectrograph, mounted on the 2.5 m Isaac Newton Telescope (INT) in La Palma (Spain). In total, we observed 637 unique targets, 102 in 2011 and 535 in 2012, without any overlap between epochs. As discussed above, 43 of them are CSGs with well-determined SpTs (all but one observed in the 2012 run) that were included in the calibration sample of Paper III (see appendix B in that work). These objects are not considered part of the Perseus sample studied here. This leaves 594 targets in our sample, which are detailed in perseus.dat file. (1 data file).

  19. The Arecibo Pisces-Perseus Supercluster Survey: Declination strip 23

    NASA Astrophysics Data System (ADS)

    Luna, Omar; Craig, David; Jones, Michael G.; Koopmann, Rebecca A.; Haynes, Martha P.; APPS Team, Undergraduate ALFALFA Team, ALFALFA Team

    2018-01-01

    We report on results of the Arecibo Pisces-Perseus Supercluster Survey (APPSS) along and near declination 23 degrees. APPSS is a targeted HI survey using the L-band wide receiever at the NAIC Arecibo observatory. It is designed to detect infall onto the Pisces-Perseus Supercluster (PPS) using a statistical comparison to models of the peculiar velocity flow field. We have investigated a subset of 67 galaxies in the PPS sky region along declination 23 degrees. For detected galaxies we have determined their systemic velocity, line width, integrated flux density, and HI mass. We will illustrate HI spectral properties of interesting detections in our region and will compare them with available optical and UV data from SDSS and the GALEX archives. We will also describe the data reduction process and the ongoing collaboration among faculty and undergraduate students of the Undergraduate ALFALFA Team.

  20. Gigantic Wave Discovered in Perseus Galaxy Cluster

    NASA Image and Video Library

    2017-12-08

    Combining data from NASA's Chandra X-ray Observatory with radio observations and computer simulations, an international team of scientists has discovered a vast wave of hot gas in the nearby Perseus galaxy cluster. Spanning some 200,000 light-years, the wave is about twice the size of our own Milky Way galaxy. The researchers say the wave formed billions of years ago, after a small galaxy cluster grazed Perseus and caused its vast supply of gas to slosh around an enormous volume of space. "Perseus is one of the most massive nearby clusters and the brightest one in X-rays, so Chandra data provide us with unparalleled detail," said lead scientist Stephen Walker at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "The wave we've identified is associated with the flyby of a smaller cluster, which shows that the merger activity that produced these giant structures is still ongoing." Read more at nasa.gov Credit: NASA's Goddard Space Flight Center/Stephen Walker href="http://www.nasa.gov/audience/formedia/features/MP_Photo_Guidelines.html" rel="nofollow">NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. PerSEUS: Ultra-Low-Power High Performance Computing for Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Doxas, I.; Andreou, A.; Lyon, J.; Angelopoulos, V.; Lu, S.; Pritchett, P. L.

    2017-12-01

    Peta-op SupErcomputing Unconventional System (PerSEUS) aims to explore the use for High Performance Scientific Computing (HPC) of ultra-low-power mixed signal unconventional computational elements developed by Johns Hopkins University (JHU), and demonstrate that capability on both fluid and particle Plasma codes. We will describe the JHU Mixed-signal Unconventional Supercomputing Elements (MUSE), and report initial results for the Lyon-Fedder-Mobarry (LFM) global magnetospheric MHD code, and a UCLA general purpose relativistic Particle-In-Cell (PIC) code.

  2. Studies of cluster X-ray sources, energy spectra for the Perseus, Virgo, and Coma clusters

    NASA Technical Reports Server (NTRS)

    Kellogg, E.; Baldwin, J. R.; Koch, D.

    1975-01-01

    Final Uhuru X-ray differential-energy spectra are presented for the Perseus, Virgo, and Coma clusters. Power-law and isothermal bremsstrahlung model spectra with low-energy cutoffs are given, and the energy-dependent Gaunt factor is calculated for the bremsstrahlung. The spectra, which are best fits to the Uhuru data between 2 and 10 keV, are compared with previous observations of these sources in the energy range from 0.1 to 100 keV. The problem of parameter estimation is discussed, error bars with 68% confidence are given for the independently determined slope and cutoff parameters, and the 68% confidence limits are plotted for the fitted spectral functions. The data for Perseus above 20 keV marginally favor the bremsstrahlung fit, those for Virgo between 0.25 and 1.0 keV clearly favor that curve, and those for Coma indicate a low-energy turnover or cutoff. Implications of such a cutoff are briefly discussed.

  3. HI-to-H2 Transitions in the Perseus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Bialy, Shmuel; Sternberg, Amiel; Lee, Min-Young; Le Petit, Franck; Roueff, Evelyne

    2015-08-01

    We use the Sternberg et al. theory for interstellar atomic to molecular hydrogen (H i-to-H2) conversion to analyze H i-to-H2 transitions in five (low-mass) star-forming and dark regions in the Perseus molecular cloud, B1, B1E, B5, IC348, and NGC1333. The observed H i mass surface densities of 6.3-9.2 {M}⊙ {{pc}}-2 are consistent with H i-to-H2 transitions dominated by H i-dust shielding in predominantly atomic envelopes. For each source, we constrain the dimensionless parameter α G, and the ratio {I}{UV}/n, of the FUV intensity to hydrogen gas density. We find α G values from 5.0 to 26.1, implying characteristic atomic hydrogen densities 11.8-1.8 cm-3, for {I}{UV}≈ 1 appropriate for Perseus. Our analysis implies that the dusty H i shielding layers are probably multiphased, with thermally unstable UNM gas in addition to cold CNM within the 21 cm kinematic radius.

  4. X-ray emission associated with radio galaxies in the Perseus cluster

    NASA Technical Reports Server (NTRS)

    Rhee, George; Burns, Jack O.; Kowalski, Michael P.

    1994-01-01

    In this paper, we report on new x-ray observations of the Perseus cluster made using four separate pointings of the Roentgen Satellite (ROSAT) Positron Sensitive Proportional Counter (PSPC). We searched for x-ray emission associated with 16 radio galaxies and detected six above 3 sigma. We made use of the PSPC spectra to determine if the x-ray emission associated with radio galaxies in Perseus is thermal or nonthermal in origin (i.e., hot gas or an active galactic nuclei (AGN)). For the head-tail radio galaxy IC 310, we find that the data are best fit by a power law model with an unusually large spectral index alpha = 2.7. This is consistent with its unresolved spatial structure. On the other hand, a second resolved x-ray source associated with another radio galaxy 2.3 Mpc from the Perseus center (V Zw 331) is best fit by a thermal model. For three sources with insufficient flux for a full spectral analysis, we calculated hardness ratios. On this basis, the x-ray emission associated with the well known head-tail source NGC 1265 is consistent with thermal radiation. The x-ray spectra of UGC 2608 and UGC 2654 probably arise from hot gas, although very steep power-law spectra (alpha greater than 3.2) are also possible. The spectrum of NGC 1275 is quite complex due to the presence of an AGN and the galaxy's location at the center of a cluster cooling flow.

  5. Discovery of a Giant, 200,000 Light-year Long Wave Rolling Through the Perseus Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Walker, Stephen; Hlavacek-Larrondo, Julie; Gendon-Marsolais, Marie-Lou; Fabian, Andy; Intema, Huib; Sanders, Jeremy

    2018-01-01

    Deep observations of nearby galaxy clusters with Chandra have revealed concave 'bay' structures in a number of clusters (Perseus, Centaurus and Abell 1795), which have similar X-ray and radio properties. These bays have all the properties of cold fronts brought about by minor mergers causing the cluster gas to slosh around in the gravitational potential. At these cold fronts the temperature rises and density falls sharply. Unusually, in the case of the 'bays' these cold fronts are concave rather than convex. By comparing to simulations of gas sloshing, we find that the bay in the Perseus cluster bears a striking resemblance in its size, location and thermal structure, to a giant (≈50 kpc) wave resulting from Kelvin-Helmholtz instabilities. Such instabilities are commonly seen on far smaller scales in nature, from billow clouds in the Earth's atmosphere, to structures in the cloud belts of gas giant planets. Here we are witnessing this phenomenon on the largest scale ever seen, twice the size of the Milky Way galaxy. The morphology of this structure seen in Perseus can be compared to simulations to put constraints on the initial magnetic pressure throughout the overall cluster before the sloshing occurs. Such Kelvin-Helmholtz features in galaxy clusters have long been predicted by simulations, but it is only now that they have finally been observed, opening up an important new way to probe the physics of the intracluster medium, which contains the majority of the baryonic matter in clusters.

  6. Extending ALFALFA in the Direction of the Pisces-Perseus Supercluster with the Arecibo L-Band Wide Receiver

    NASA Astrophysics Data System (ADS)

    O'Donoghue, Aileen A.; Haynes, Martha P.; Koopmann, Rebecca A.; Jones, Michael G.; Hallenbeck, Gregory L.; Giovanelli, Riccardo; Hoffman, Lyle; Craig, David W.; Undergraduate ALFALFA Team

    2017-01-01

    We have completed three “Harvesting ALFALFA” Arecibo observing programs in the direction of the Pisces-Perseus Supercluster (PPS) since ALFALFA observations were finished in 2012. The first was to perform follow-up observations on high signal-to-noise (S/N > 6.5) ALFALFA detections needing confirmation and low S/N sources lacking optical counterparts. A few more high S/N objects were observed in the second program along with targets visually selected from the Sloan Digital Sky Survey (SDSS). The third program included low S/N ALFALFA sources having optical counterparts with redshifts that were unknown or differed from the ALFALFA observations. It also included more galaxies selected from SDSS by eye and by Structured Query Language (SQL) searches with parameters intended to select galaxies at the distance of the PPS (~6,000 km/s). We used pointed basic Total-Power Position-Switched Observations in the 1340 - 1430 MHz ALFALFA frequency range. For sources of known redshift, we used the Wideband Arecibo Pulsar Processors (WAPP’s) , while for sources of unknown redshift we utilized a hybrid/dual bandwidth Doppler tracking mode using the Arecibo Interim 50-MHz Correlator with 9-level sampling.Results confirmed that a few high S/N ALFALFA sources are spurious as expected from the work of Saintonge (2007), low S/N ALFALA sources lacking an optical counterpart are all likely to be spurious, but low S/N sources with optical counterparts are generally reliable. Of the optically selected sources, about 80% were detected and tended to be near the distance of the PPS.This work has been supported by NSF grant AST-1211005.

  7. X-radiation from clusters of galaxies: Spectral evidence for a hot evolved gas

    NASA Technical Reports Server (NTRS)

    Serlemitsos, P. J.; Smith, B. W.; Boldt, E. A.; Holt, S. S.; Swank, J. H.

    1976-01-01

    OSO-8 observations of the X-ray flux in the range 2-60 keV from the Virgo, Perseus, and Coma Clusters provide strong evidence for the thermal origin of the radiation, including iron line emission. The data are adequately described by emission from an isothermal plasma with an iron abundance in near agreement with cosmic levels. A power law description is generally less acceptable and is ruled out in the case of Perseus. Implications on the origin of the cluster gas are discussed.

  8. Chandra "Hears" A Black Hole For The First Time

    NASA Astrophysics Data System (ADS)

    2003-09-01

    NASA's Chandra X-ray Observatory detected sound waves, for the first time, from a super-massive black hole. The "note" is the deepest ever detected from an object in the universe. The tremendous amounts of energy carried by these sound waves may solve a longstanding problem in astrophysics. The black hole resides in the Perseus cluster, located 250 million light years from Earth. In 2002, astronomers obtained a deep Chandra observation that shows ripples in the gas filling the cluster. These ripples are evidence for sound waves that have traveled hundreds of thousands of light years away from the cluster's central black hole. perseus animation Illustration of Ripples in Perseus "We have observed the prodigious amounts of light and heat created by black holes, now we have detected the sound," said Andrew Fabian of the Institute of Astronomy (IoA) in Cambridge, England, and leader of the study. In musical terms, the pitch of the sound generated by the black hole translates into the note of B flat. But, a human would have no chance of hearing this cosmic performance, because the note is 57 octaves lower than middle-C (by comparison a typical piano contains only about seven octaves). At a frequency over a million, billion times deeper than the limits of human hearing, this is the deepest note ever detected from an object in the universe. "The Perseus sound waves are much more than just an interesting form of black hole acoustics," said Steve Allen, also of the IoA and a co-investigator in the research. "These sound waves may be the key in figuring out how galaxy clusters, the largest structures in the universe, grow," Allen said. For years astronomers have tried to understand why there is so much hot gas in galaxy clusters and so little cool gas. Hot gas glowing with X-rays should cool, and the dense central gas should cool the fastest. The pressure in this cool central gas should then fall, causing gas further out to sink in towards the galaxy, forming trillions of stars along the way. Scant evidence has been found for such a flow of cool gas or star formation. This forced astronomers to invent several different ways to explain why the gas contained in clusters remained hot, and, until now, none of them was satisfactory. perseus animation Animation of Sound Waves Generated in Perseus Cluster of Ripples in Perseus Heating caused by a central black hole has long been considered a good way to prevent cluster gas from cooling. Although jets have been observed at radio wavelengths, their effect on cluster gas was unclear since this gas is only detectable in X-rays, and early X-ray observations did not have Chandra's ability to find detailed structure. Previous Chandra observations of the Perseus cluster showed two vast, bubble-shaped cavities in the cluster gas extending away from the central black hole. Jets of material pushing back the cluster gas have formed these X-ray cavities, which are bright sources of radio waves. They have long been suspected of heating the surrounding gas, but the mechanism was unknown. The sound waves, seen spreading out from the cavities in the recent Chandra observation, could provide this heating mechanism. A tremendous amount of energy is needed to generate the cavities, as much as the combined energy from 100 million supernovae. Much of this energy is carried by the sound waves and should dissipate in the cluster gas, keeping the gas warm and possibly preventing a cooling flow. If so, the B-flat pitch of the sound wave, 57 octaves below middle-C, would have remained roughly constant for about 2.5 billion years. Perseus is the brightest cluster of galaxies in X-rays, and therefore was a perfect Chandra target for finding sound waves rippling through the hot cluster gas. Other clusters show X-ray cavities, and future Chandra observations may yet detect sound waves in these objects.

  9. Cold and warm atomic gas around the Perseus molecular cloud. I. Basic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanimirović, Snežana; Murray, Claire E.; Miller, Jesse

    2014-10-01

    Using the Arecibo Observatory, we have obtained neutral hydrogen (HI) absorption and emission spectral pairs in the direction of 26 background radio continuum sources in the vicinity of the Perseus molecular cloud. Strong absorption lines were detected in all cases, allowing us to estimate spin temperature (T{sub s} ) and optical depth for 107 individual Gaussian components along these lines of sight. Basic properties of individual H I clouds (spin temperature, optical depth, and the column density of the cold and warm neutral medium (CNM and WNM), respectively) in and around Perseus are very similar to those found for randommore » interstellar lines of sight sampled by the Millennium H I survey. This suggests that the neutral gas found in and around molecular clouds is not atypical. However, lines of sight in the vicinity of Perseus have, on average, a higher total H I column density and the CNM fraction, suggesting an enhanced amount of cold H I relative to an average interstellar field. Our estimated optical depth and spin temperature are in stark contrast with the recent attempt at using Planck data to estimate properties of the optically thick H I. Only ∼15% of lines of sight in our study have a column density weighted average spin temperature lower than 50 K, in comparison with ≳ 85% of Planck's sky coverage. The observed CNM fraction is inversely proportional to the optical depth weighted average spin temperature, in excellent agreement with the recent numerical simulations by Kim et al. While the CNM fraction is, on average, higher around Perseus relative to a random interstellar field, it is generally low, between 10%-50%. This suggests that extended WNM envelopes around molecular clouds and/or significant mixing of CNM and WNM throughout molecular clouds are present and should be considered in the models of molecule and star formation. Our detailed comparison of H I absorption with CO emission spectra shows that only 3 of the 26 directions are clear candidates for probing the CO-dark gas as they have N(H I)>10{sup 21} cm{sup –2} yet no detectable CO emission.« less

  10. Spectroscopy of the Perseus Cluster

    NASA Technical Reports Server (NTRS)

    Jones, Christine; Mushotzky, Richard F. (Technical Monitor)

    2004-01-01

    We present preliminary results of a XMM-Newton 50 ks observation of the Perseus Cluster that provides an unprecedented view of the central 0.5 Mpc region. The projected gas temperature declines smoothly by a factor of 2 from a maximum value of approx. 7 keV in the outer regions to just above 3 keV at the cluster center. Over this same range, the heavy-element abundance rises slowly from 0.4 to 0.5 solar as the radius decreases from 14 ft. to 5 ft., and then it rises to a peak of almost 0.7 solar at 1&farcm;25 before declining to 0.4 at the center. Th global east-west asymmetry of the gas temperature and surface brightness distributions, approximately aligned with the chain of bright galaxies, suggests an ongoing merger, although the modest degree of the observed asymmetry certainly excludes a major merger interpretation. The chain of galaxies probably traces the filament along which accretion started some time ago and is continuing at the present time. A cold and dense (low-entropy) cluster core like Perseus is probably well "protected" against the penetration of the gas of infalling groups and poor clusters, whereas in non-cooling core clusters such as Coma and A1367, infalling subclusters can penetrate deeply into the core region. In Perseus, gas associated with infalling groups may be stripped completely at the outskirts of the main cluster and only compression waves (shocks) may reach the central regions. We argue, and show supporting simulations, that the passage of such a wave(s) can qualitatively explain the overall horseshoe shaped appearance of the gas temperature map (the hot horseshoe surrounds the colder, low-entropy core) as well as other features of the Perseus Cluster core. These simulations also show that as compression waves traverse the cluster core, they can induce oscillatory motion of the cluster gas that can generate multiple sharp "edges" on opposite sides of the central galaxy. Gas motions induced by mergers may be a natural way to explain the high frequency of "edges" seen in clusters with cooling cores.

  11. Galaxy clusters in simulations of the local Universe: a matter of constraints

    NASA Astrophysics Data System (ADS)

    Sorce, Jenny G.; Tempel, Elmo

    2018-06-01

    To study the full formation and evolution history of galaxy clusters and their population, high-resolution simulations of the latter are flourishing. However, comparing observed clusters to the simulated ones on a one-to-one basis to refine the models and theories down to the details is non-trivial. The large variety of clusters limits the comparisons between observed and numerical clusters. Simulations resembling the local Universe down to the cluster scales permit pushing the limit. Simulated and observed clusters can be matched on a one-to-one basis for direct comparisons provided that clusters are well reproduced besides being in the proper large-scale environment. Comparing random and local Universe-like simulations obtained with differently grouped observational catalogues of peculiar velocities, this paper shows that the grouping scheme used to remove non-linear motions in the catalogues that constrain the simulations affects the quality of the numerical clusters. With a less aggressive grouping scheme - galaxies still falling on to clusters are preserved - combined with a bias minimization scheme, the mass of the dark matter haloes, simulacra for five local clusters - Virgo, Centaurus, Coma, Hydra, and Perseus - is increased by 39 per cent closing the gap with observational mass estimates. Simulacra are found on average in 89 per cent of the simulations, an increase of 5 per cent with respect to the previous grouping scheme. The only exception is Perseus. Since the Perseus-Pisces region is not well covered by the used peculiar velocity catalogue, the latest release lets us foresee a better simulacrum for Perseus in a near future.

  12. Design of a GaAs/Ge Solar Array for Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Brinker, David J.; Bents, David J.; Colozza, Anthony J.

    1995-01-01

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration airplane. Due to the weight, speed, and altitude constraints imposed on such aircraft, solar array generated electric power is a viable alternative to air-breathing engines. Development of such aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) is currently building a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office. Expected completion of the plane is early 1995, with the airplane currently undergoing flight testing using battery power.

  13. Design of a GaAs/Ge solar array for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Scheiman, David A.; Brinker, David J.; Bents, David J.; Colozza, Anthony J.

    1995-03-01

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration airplane. Due to the weight, speed, and altitude constraints imposed on such aircraft, solar array generated electric power is a viable alternative to air-breathing engines. Development of such aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) is currently building a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office. Expected completion of the plane is early 1995, with the airplane currently undergoing flight testing using battery power.

  14. The Arecibo Pisces-Perseus Supercluster Survey: Declination Strip 35

    NASA Astrophysics Data System (ADS)

    McMichael, Chelsey; Ribaudo, Joseph; Koopmann, Rebecca A.; Haynes, Martha P.; APPSS Team, Undergraduate ALFALFA Team, and ALFALFA Team

    2018-01-01

    The Arecibo Pisces-Perseus Supercluster Survey (APPSS) will provide strong observational constraints on the mass-infall rate onto the main filament of the Pisces-Perseus Supercluster. The survey data consist of HI emission-line spectra of cluster galaxy candidates, obtained primarily at the Arecibo Observatory (with ALFA as part of the ALFALFA Survey and with the L-Band Wide receiver as part of APPSS observations). Here we present the details of the data reduction process and spectral-analysis techniques used to determine if a galaxy candidate is at a velocity consistent with the Supercluster, as well as the detected HI-flux and rotational velocity of the galaxy, which will be used to estimate the corresponding HI-mass. We discuss the results of a preliminary analysis on a subset of the APPSS sample, corresponding to 98 galaxies located within ~1.5° of DEC = +35.0°, with 65 possible detections. We also highlight several interesting emission-line features and galaxies discovered during the reduction and analysis process and layout the future of the APPSS project. This work has been supported by NSF grants AST-1211005 and AST-1637339.

  15. The split in the ancient cold front in the Perseus cluster

    NASA Astrophysics Data System (ADS)

    Walker, Stephen A.; ZuHone, John; Fabian, Andy; Sanders, Jeremy

    2018-04-01

    Sloshing cold fronts in clusters, produced as the dense cluster core moves around in the cluster potential in response to in-falling subgroups, provide a powerful probe of the physics of the intracluster medium and the magnetic fields permeating it1,2. These sharp discontinuities in density and temperature rise gradually outwards with age in a characteristic spiral pattern, embedding into the intracluster medium a record of the minor merging activity of clusters: the further from the cluster centre a cold front is, the older it is. Recently, it was discovered that these cold fronts can survive out to extremely large radii in the Perseus cluster3. Here, we report on high-spatial-resolution Chandra observations of the large-scale cold front in Perseus. We find that rather than broadening through diffusion, the cold front remains extremely sharp (consistent with abrupt jumps in density) and instead is split into two sharp edges. These results show that magnetic draping can suppress diffusion for vast periods of time—around 5 Gyr—even as the cold front expands out to nearly half the cluster virial radius.

  16. Sounding rockets shot from the Shuttle

    NASA Technical Reports Server (NTRS)

    Cruddace, R.; Fritz, G.; Glaab, J.; Shrewsberry, D.

    1985-01-01

    The Space Shuttle-launched sounding rocket Spartan-1 will map the structure of two extended X-ray sources: the hot gas pervading the Perseus cluster of galaxies, and the central core of the Milky Way. Spartan-1 contains two large X-ray proportional counter detectors sensitive to the 1-15 A wavelength range. A new generation of instruments destined for X-ray telescope focal planes will yield high resolution imaging and spectroscopy, over observation times sometimes exceeding one day/source, in the course of a long-term Spartan research program that will encompass planetary, solar, and UV astronomy missions.

  17. Detection of an unidentified emission line in the stacked X-ray spectrum of galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulbul, Esra; Foster, Adam; Smith, Randall K.

    2014-07-01

    We detect a weak unidentified emission line at E = (3.55-3.57) ± 0.03 keV in a stacked XMM-Newton spectrum of 73 galaxy clusters spanning a redshift range 0.01-0.35. When the full sample is divided into three subsamples (Perseus, Centaurus+Ophiuchus+Coma, and all others), the line is seen at >3σ statistical significance in all three independent MOS spectra and the PN 'all others' spectrum. It is also detected in the Chandra spectra of the Perseus Cluster. However, it is very weak and located within 50-110 eV of several known lines. The detection is at the limit of the current instrument capabilities. Wemore » argue that there should be no atomic transitions in thermal plasma at this energy. An intriguing possibility is the decay of sterile neutrino, a long-sought dark matter particle candidate. Assuming that all dark matter is in sterile neutrinos with m{sub s} = 2E = 7.1 keV, our detection corresponds to a neutrino decay rate consistent with previous upper limits. However, based on the cluster masses and distances, the line in Perseus is much brighter than expected in this model, significantly deviating from other subsamples. This appears to be because of an anomalously bright line at E = 3.62 keV in Perseus, which could be an Ar XVII dielectronic recombination line, although its emissivity would have to be 30 times the expected value and physically difficult to understand. Another alternative is the above anomaly in the Ar line combined with the nearby 3.51 keV K line also exceeding expectation by a factor of 10-20. Confirmation with Astro-H will be critical to determine the nature of this new line.« less

  18. Fermi observations of Cassiopeia and Cepheus: Diffuse gamma-ray emission in the outer galaxy

    DOE PAGES

    Abdo, A. A.

    2010-01-15

    Here, we present the analysis of the interstellar γ-ray emission measured by the Fermi Large Area Telescope toward a region in the second Galactic quadrant at 100° ≤ l ≤ 145° and –15° ≤ b ≤ +30°. This region encompasses the prominent Gould Belt clouds of Cassiopeia, Cepheus, and the Polaris flare, as well as atomic and molecular complexes at larger distances, like that associated with NGC 7538 in the Perseus arm. The good kinematic separation in velocity between the local, Perseus, and outer arms, and the presence of massive complexes in each of them, make this region well suitedmore » to probe cosmic rays (CRs) and the interstellar medium beyond the solar circle. Furthermore, the γ-ray emissivity spectrum of the gas in the Gould Belt is consistent with expectations based on the locally measured CR spectra. The γ-ray emissivity decreases from the Gould Belt to the Perseus arm, but the measured gradient is flatter than expectations for CR sources peaking in the inner Galaxy as suggested by pulsars. The X CO = N(H 2)/W CO conversion factor is found to increase from (0.87 ± 0.05) × 10 20 cm –2 (K km s –1) –1 in the Gould Belt to (1.9 ± 0.2) × 10 20 cm –2 (K km s –1) –1 in the Perseus arm. We also derive masses for the molecular clouds under study. Dark gas, not properly traced by radio and microwave surveys, is detected in the Gould Belt through a correlated excess of dust and γ-ray emission: its mass amounts to ~50% of the CO-traced mass.« less

  19. Glycolaldehyde in Perseus young solar analogs

    NASA Astrophysics Data System (ADS)

    De Simone, M.; Codella, C.; Testi, L.; Belloche, A.; Maury, A. J.; Anderl, S.; André, Ph.; Maret, S.; Podio, L.

    2017-03-01

    Context. The earliest evolutionary stages of low-mass protostars are characterised by the so-called hot-corino stage, when the newly born star heats the surrounding material and enrich the gas chemically. Studying this evolutionary phase of solar protostars may help understand the evolution of prebiotic complex molecules in the development of planetary systems. Aims: In this paper we focus on the occurrence of glycolaldehyde (HCOCH2OH) in young solar analogs by performing the first homogeneous and unbiased study of this molecule in the Class 0 protostars of the nearby Perseus star forming region. Methods: We obtained sub-arcsec angular resolution maps at 1.3 mm and 1.4 mm of glycolaldehyde emission lines using the IRAM Plateau de Bure (PdB) interferometer in the framework of the CALYPSO IRAM large program. Results: Glycolaldehyde has been detected towards 3 Class 0 and 1 Class I protostars out of the 13 continuum sources targeted in Perseus: NGC 1333-IRAS2A1, NGC 1333-IRAS4A2, NGC 1333-IRAS4B1, and SVS13-A. The NGC 1333 star forming region looks particularly glycolaldehyde rich, with a rate of occurrence up to 60%. The glycolaldehyde spatial distribution overlaps with the continuum one, tracing the inner 100 au around the protostar. A large number of lines (up to 18), with upper-level energies Eu from 37 K up to 375 K has been detected. We derived column densities ≥1015 cm-2 and rotational temperatures Trot between 115 K and 236 K, imaging for the first time hot-corinos around NGC 1333-IRAS4B1 and SVS13-A. Conclusions: In multiple systems glycolaldehyde emission is detected only in one component. The case of the SVS13-A+B and IRAS4-A1+A2 systems support that the detection of glycolaldehyde (at least in the present Perseus sample) indicates older protostars (I.e. SVS13-A and IRAS4-A2), evolved enough to develop the hot-corino region (I.e. 100 K in the inner 100 au). However, only two systems do not allow us to firmly conclude whether the primary factor leading to the detection of glycolaldehyde emission is the environments hosting the protostars, evolution (e.g. low value of Lsubmm/Lint), or accretion luminosity (high Lint). Based on observations carried out with the IRAM Plateau de Bure interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Reduced datacube (FITS file) is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A121

  20. Perseo e Andromeda

    NASA Astrophysics Data System (ADS)

    Colona, Paolo

    2004-08-01

    The Perseus-Andromeda group of constellations is the largest in the sky, yet many other Greek myths have no dedicated star at all. The author interprets the importance given to this myth in terms of its role of providing ethnic identify for the Greeks who created it. An accurate analysis of the myth, also including the etymology of the characters' names, shows how it relates to the past encounter between different culture, which are also described. Archaeological research allows us to guess the celestial situation of the epoch when the myth was transposed to the sky. The cultural heritage of the Perseus myth from its origin to the present its outlined.

  1. The Arecibo Pisces Perseus Supercluster Survey: Declination Strip 27

    NASA Astrophysics Data System (ADS)

    Ricci, Mariah; Miller, Brendan; APPSS Team; Undergraduate ALFALFA Team; ALFALFA Team

    2018-01-01

    The Arecibo Pisces Perseus Supercluster Survey (APPSS) is an HI survey measuring galaxy infall into the filament and clusters. Galaxies were selected for HI observations based on their location within the Pisces Perseus supercluster and SDSS and GALEX colors predictive of cold gas content. Most of the HI observations were conducted at Arecibo using the L Band Wide receiver, with some high-declination coverage provided by Green Bank. The observations provide increased sensitivity compared to ALFALFA blind survey data. For this project, we investigated a subset of 132 APPSS galaxies with declinations near 27 degrees. Using custom data reduction and analysis tools developed for the Undergraduate ALFALFA Team, we determined the following information for galaxies in our subset: systemic velocity, line width, integrated flux density, HI mass, and gas fraction (or corresponding limits for non-detections). We calculate our HI detection fraction and mean gas fraction as a function of stellar mass and compare to previous results. We investigate the distribution of systemic velocities for our galaxies with their location on the sky. Finally, we discuss several interesting sources from our subset of APPSS galaxies. This work has been supported by NSF grants AST-1211005, AST-1637299, and AST-1637339

  2. Looking ever so much like an alien spacecraft, the Altus II remotely piloted aircraft shows off some

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Looking ever so much like an alien spacecraft, the Altus II remotely piloted aircraft shows off some of the instruments and camera lenses mounted in its nose for a lightning study over Florida flown during the summer of 2002. The Altus Cumulus Electrification Study (ACES), led by Dr. Richard Blakeslee of NASA Marshall Space Flight center, focused on the collection of electrical, magnetic and optical measurements of thunderstorms. Data collected will help scientists understand the development and life cycles of thunderstorms, which in turn may allow meteorologists to more accurately predict when destructive storms may hit. The Altus II, built by General Atomics Aeronautical Systems, Inc., is one of several remotely operated aircraft developed and matured under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. The program focused on developing airframe, propulsion, control system and communications technologies to allow unmanned aerial vehicles (UAVs) to operate at very high altitudes for long durations while carrying a variety of sensors, cameras or other instruments for science experiments, surveillance or telecommunications relay missions.

  3. A galactic chimney in the Perseus arm of the Milky Way.

    PubMed

    Normandeau, M; Taylor, A R; Dewdney, P E

    1996-04-25

    Galaxies are surrounded by large haloes of hot gas which must be replenished as the gas cools. This has led to the concept of galactic 'chimneys'--cavities in the interstellar medium, created by multiple supernova explosions, that can act as conduits for the efficient transport of hot gas from a galaxy's disk to its halo. Here we present a high-resolution map of atomic hydrogen in the Perseus arm of our galaxy, which shows clear evidence for the existence of such a chimney. This chimney appears to have been formed by the energetic winds from a cluster of young massive stars, and may currently have reached the stage of bowing out into the halo.

  4. VizieR Online Data Catalog: HCO+ and N2D+ dense cores in Perseus (Campbell+, 2016)

    NASA Astrophysics Data System (ADS)

    Campbell, J. L.; Friesen, R. K.; Martin, P. G.; Caselli, P.; Kauffmann, J.; Pineda, J. E.

    2016-05-01

    Table 1 summarizes the 91 dense cores observed, with their Right Ascension and Declination pointing positions. Pointed observations of the Perseus cores were performed using the James Clerk Maxwell Telescope (JCMT). Targets were observed in the HCO+ (3-2) and N2D+ (3-2) rotational transitions in position-switching mode, with assumed rest frequencies of 267.557619GHz and 231.321665GHz, respectively. The spectral resolution was 30.5kHz, corresponding to a velocity resolution of 0.03km/s for HCO+ (3-2) and 0.04km/s for N2D+ (3-2). Observations were conducted between 2007 September and 2009 September. (3 data files).

  5. Initial HI results from the Arecibo Pisces-Perseus Supercluster Survey

    NASA Astrophysics Data System (ADS)

    Craig, David W.; Davis, Cory; Johnson, Cory; Koopmann, Rebecca A.; Jones, Michael G.; Hallenbeck, Gregory L.; O'Donoghue, Aileen A.; Haynes, Martha P.; Giovanelli, Riccardo; Rosenberg, Jessica L.; Venkatesan, Aparna; Undergraduate ALFALFA Team

    2017-01-01

    The Arecibo Pisces-Perseus Supercluster Survey is a targeted HI survey of galaxies that began its second observing season in October 2016. The survey is conducted by members of the Undergraduate ALFALFA Team (UAT) and extensively involves undergraduates in observations, data reduction, and analysis. It aims to complement the HI sources identified by the ALFALFA extragalactic HI line survey by probing deeper in HI mass (to lower masses) than the legacy survey itself. Measurements of the HI line velocity widths will be combined with uniform processing of images obtained in the SDSS and GALEX public databases to localize the sample within the baryonic Tully Fisher relation, allowing estimates of their redshift-independent distances and thus their peculiar velocities.The survey is designed to constrain Pisces-Perseus Supercluster infall models by producing 5-σ detections of infall velocities to a precision of about 500 km/s. By targeting galaxies based on SDSS and GALEX photometry, we have achieved detection rates of 68% of the galaxies in our sample. We will discuss the target selection process, HI velocities and mass estimates from the 2015 fall observing season, preliminary results from 2016 observations, and preliminary comparisons with inflow models predicted by numerical simulations.This work has been supported by NSF grants AST-1211005, AST-1637339, AST-1637262.

  6. A population of faint low surface brightness galaxies in the Perseus cluster core

    NASA Astrophysics Data System (ADS)

    Wittmann, Carolin; Lisker, Thorsten; Ambachew Tilahun, Liyualem; Grebel, Eva K.; Conselice, Christopher J.; Penny, Samantha; Janz, Joachim; Gallagher, John S.; Kotulla, Ralf; McCormac, James

    2017-09-01

    We present the detection of 89 low surface brightness (LSB), and thus low stellar density galaxy candidates in the Perseus cluster core, of the kind named 'ultra-diffuse galaxies', with mean effective V-band surface brightnesses 24.8-27.1 mag arcsec-2, total V-band magnitudes -11.8 to -15.5 mag, and half-light radii 0.7-4.1 kpc. The candidates have been identified in a deep mosaic covering 0.3 deg2, based on wide-field imaging data obtained with the William Herschel Telescope. We find that the LSB galaxy population is depleted in the cluster centre and only very few LSB candidates have half-light radii larger than 3 kpc. This appears consistent with an estimate of their tidal radius, which does not reach beyond the stellar extent even if we assume a high dark matter content (M/L = 100). In fact, three of our candidates seem to be associated with tidal streams, which points to their current disruption. Given that published data on faint LSB candidates in the Coma cluster - with its comparable central density to Perseus - show the same dearth of large objects in the core region, we conclude that these cannot survive the strong tides in the centres of massive clusters.

  7. Unmanned reconnaissance aircraft, Predator B in flight.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Predator B unmanned reconnaissance aircraft, shown here, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. ALTAIR/PREDATOR B -- General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft, shown here, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator testbed aircraft to validate a variety of command and control technologies for unmanned aerial vehicles (UAV), as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Ten-foot extensions have been added to each wing, giving the Altair an overall wingspan of 84 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of those basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  8. Measurements of resonant scattering in the Perseus Cluster core with Hitomi SXS

    NASA Astrophysics Data System (ADS)

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furukawa, Maki; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier O.; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ogorzalek, Anna; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shiníchiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shiníchiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen

    2018-03-01

    Thanks to its high spectral resolution (˜5 eV at 6 keV), the Soft X-ray Spectrometer (SXS) on board Hitomi enables us to measure the detailed structure of spatially resolved emission lines from highly ionized ions in galaxy clusters for the first time. In this series of papers, using the SXS we have measured the velocities of gas motions, metallicities and the multi-temperature structure of the gas in the core of the Perseus Cluster. Here, we show that when inferring physical properties from line emissivities in systems like Perseus, the resonant scattering effect should be taken into account. In the Hitomi waveband, resonant scattering mostly affects the Fe XXV Heα line (w)—the strongest line in the spectrum. The flux measured by Hitomi in this line is suppressed by a factor of ˜1.3 in the inner ˜30 kpc, compared to predictions for an optically thin plasma; the suppression decreases with the distance from the center. The w line also appears slightly broader than other lines from the same ion. The observed distortions of the w line flux, shape, and distance dependence are all consistent with the expected effect of the resonant scattering in the Perseus core. By measuring the ratio of fluxes in optically thick (w) and thin (Fe XXV forbidden, Heβ, Lyα) lines, and comparing these ratios with predictions from Monte Carlo radiative transfer simulations, the velocities of gas motions have been obtained. The results are consistent with the direct measurements of gas velocities from line broadening described elsewhere in this series, although the systematic and statistical uncertainties remain significant. Further improvements in the predictions of line emissivities in plasma models, and deeper observations with future X-ray missions offering similar or better capabilities to the Hitomi SXS, will enable resonant scattering measurements to provide powerful constraints on the amplitude and anisotropy of cluster gas motions.

  9. A Kinematic Survey in the Perseus Molecular Cloud: Results from the APOGEE Infrared Survey of Young Nebulous Clusters (IN-SYNC)

    NASA Astrophysics Data System (ADS)

    Covey, Kevin R.; Cottaar, M.; Foster, J. B.; Nidever, D. L.; Meyer, M.; Tan, J.; Da Rio, N.; Flaherty, K. M.; Stassun, K.; Frinchaboy, P. M.; Majewski, S.; APOGEE IN-SYNC Team

    2014-01-01

    Demographic studies of stellar clusters indicate that relatively few persist as bound structures for 100 Myrs or longer. If cluster dispersal is a 'violent' process, it could strongly influence the formation and early evolution of stellar binaries and planetary systems. Unfortunately, measuring the dynamical state of 'typical' (i.e., ~300-1000 member) young star clusters has been difficult, particularly for clusters still embedded within their parental molecular cloud. The near-infrared spectrograph for the Apache Point Observatory Galactic Evolution Experiment (APOGEE), which can measure precise radial velocities for 230 cluster stars simultaneously, is uniquely suited to diagnosing the dynamics of Galactic star formation regions. We give an overview of the INfrared Survey of Young Nebulous Clusters (IN-SYNC), an APOGEE ancillary science program that is carrying out a comparative study of young clusters in the Perseus molecular cloud: NGC 1333, a heavily embedded cluster, and IC 348, which has begun to disperse its surrounding molecular gas. These observations appear to rule out a significantly super-virial velocity dispersion in IC 348, contrary to predictions of models where a cluster's dynamics is strongly influenced by the dispersal of its primordial gas. We also summarize the properties of two newly identified spectroscopic binaries; binary systems such as these play a key role in the dynamical evolution of young clusters, and introduce velocity offsets that must be accounted for in measuring cluster velocity dispersions.

  10. Centurion on Lakebed during Functional Checkout

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A close-up view of the 14 wide-bladed propellers and electric motors on the Centurion solar-powered, remotely piloted flying wing. This photo was taken during a functional checkout of the aircraft prior to its first test flights at NASA's Dryden Flight Research Center, Edwards, California, in late 1998. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  11. Centurion in Flight with Internal Wing Structure Visible

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The lightweight wing structure and covering of the Centurion remotely piloted flying wing can be clearly seen in this photo of the plane during one of its initial low-altitude, battery-powered test flights in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  12. Centurion Quarter-scale Prototype Pre-flight Taxi Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As crewmen jog and cycle alongside, a battery-powered, quarter-scale prototype of the remotely-piloted Centurion flying wing rolls across the El Mirage Dry Lake during pre-flight taxi tests. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  13. Centurion Quarter-scale Prototype Pre-flight Checkout

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Technicians perform pre-test checks of a battery-powered quarter-scale prototype of the remotely-piloted Centurion flying wing during taxi tests In March 1997 at California's El Mirage Dry Lake. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  14. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Illuminated by early-morning sunlight, a quarter-scale model of the Solar-powered, remotely piloted Centurion ultra-high-altitude flying wing demonstrates its abilities during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  15. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Silhouetted under a bright blue sky, a quarter-scale model of the Centurion solar-powered flying wing shows off its long, narrow wing as it flies over the broad expanse of El Mirage Dry Lake in Southern California during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  16. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing Landing during First

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A quarter-scale model of the future Centurion solar-powered high-altitude research aircraft settles in for landing after a March 1997 test flight at El Mirage Dry Lake, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  17. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Illuminated by early-morning sunlight, a quarter-scale model of the solar-powered, remotely piloted Centurion ultra-high-altitude flying wing soars over California's Mojave Desert on a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  18. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    With the snow-covered San Gabriel Mountains as a backdrop and a motorcycle-mounted chase crew alongside, a quarter-scale model of the Centurion solar-powered flying wing soars over El Mirage Dry Lake on an early test flight in March 1997. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  19. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Framed by wispy contrails left by passing jets high above, a quarter-scale model of the Centurion solar-electric flying wing shows off its graceful lines during a March 1997 test flight at El Mirage Dry Lake in California's Mojave Desert. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  20. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Trailed by a van carrying the remote pilot and observers, a radio-controlled quarter-scale model of the Centurion solar-electric flying wing makes a low pass over El Mirage Dry Lake in Southern California during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  1. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing on Lakebed

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A quarter-scale model of the Centurion solar-powered flying wing rests on the clay of El Mirage Dry Lake in Southern California's high desert after completion of of a March 1997 flight test. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  2. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Silhouetted under a bright blue sky, a quarter-scale model of the Centurion solar-powered flying wing shows off its internal rib structure as it floats over the El Mirage Dry Lake in Southern California during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  3. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing on Lakebed

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A quarter-scale model of the Centurion solar-powered flying wing rests on the clay of El Mirage Dry Lake in Southern California's high desert after completion of a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  4. Centurion in Flight over Lakebed

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Centurion remotely piloted flying wing during an early morning test flight over the Rogers Dry Lake adjacent to at NASA's Dryden Flight Research Center, Edwards, California. The flight was one of an initial series of low-altitude, battery-powered test flights conducted in late 1998. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  5. Hubble Space Telescope survey of the Perseus cluster - III. The effect of local environment on dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Penny, Samantha J.; Conselice, Christopher J.; de Rijcke, Sven; Held, Enrico V.; Gallagher, John S.; O'Connell, Robert W.

    2011-01-01

    We present the results of a Hubble Space Telescope (HST) study of dwarf galaxies in the outer regions of the nearby rich Perseus cluster, down to MV=-12, and compare these with the dwarf population in the cluster core from our previous HST imaging. In this paper, we examine how properties such as the colour-magnitude relation, structure and morphology are affected by environment for the lowest mass galaxies. Dwarf galaxies are excellent tracers of the effects of environment due to their low masses, allowing us to derive their environmentally based evolution, which is more subtle in more massive galaxies. We identify 11 dwarf elliptical (dE) and dwarf spheroidal (dSph) galaxies in the outer regions of Perseus, all of which are previously unstudied. We measure the (V-I)0 colours of our newly discovered dEs, and find that these dwarfs lie on the same red sequence as those in the cluster core. The morphologies of these dwarfs are examined by quantifying their light distributions using concentration, asymmetry and clumpiness (CAS) parameters, and we find that dEs in the cluster outskirts are on average more disturbed than those in the core, with = 0.13 ± 0.09 and = 0.18 ± 0.08, compared to = 0.02 ± 0.04, = 0.01 ± 0.07 for those in the core. Based on these results, we infer that these objects are `transition dwarfs', likely in the process of transforming from late-type to early-type galaxies as they infall into the cluster, with their colours transforming before their structures. When we compare the number counts for both the core and outer regions of the cluster, we find that below MV=-12, the counts in the outer regions of the cluster exceed those in the core. This is evidence that in the very dense region of the cluster, dwarfs are unable to survive unless they are sufficiently massive to prevent their disruption by the cluster potential and interactions with other galaxies. Based on observations made with the NASA/ESA HST, obtained (from the Data Archive) at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO-10201 and GO-10789

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Xinyu; Xu, Ye; Yang, Ji

    Using the Purple Mountain Observatory Delingha (PMODLH) 13.7 m telescope, we report a 96 deg{sup 2} {sup 12}CO/{sup 13}CO/C{sup 18}O mapping observation toward the Galactic region of l  = [139.°75,149.°75], b  = [−5.°25, 5.°25]. The molecular structures of the Local Arm and Perseus Arm are presented. Combining H i data and part of the Outer Arm results, we obtain that the warp structure of both atomic and molecular gas is obvious, while the flare structure only exists in atomic gas in this observing region. In addition, five filamentary giant molecular clouds on the Perseus Arm are identified. Among them, four are newlymore » identified. Their relations with the Milky Way large-scale structure are discussed.« less

  7. Classifying the embedded young stellar population in Perseus and Taurus and the LOMASS database

    NASA Astrophysics Data System (ADS)

    Carney, M. T.; Yıldız, U. A.; Mottram, J. C.; van Dishoeck, E. F.; Ramchandani, J.; Jørgensen, J. K.

    2016-02-01

    Context. The classification of young stellar objects (YSOs) is typically done using the infrared spectral slope or bolometric temperature, but either can result in contamination of samples. More accurate methods to determine the evolutionary stage of YSOs will improve the reliability of statistics for the embedded YSO population and provide more robust stage lifetimes. Aims: We aim to separate the truly embedded YSOs from more evolved sources. Methods: Maps of HCO+J = 4-3 and C18O J = 3-2 were observed with HARP on the James Clerk Maxwell Telescope (JCMT) for a sample of 56 candidate YSOs in Perseus and Taurus in order to characterize the presence and morphology of emission from high density (ncrit > 106 cm-3) and high column density gas, respectively. These are supplemented with archival dust continuum maps observed with SCUBA on the JCMT and Herschel PACS to compare the morphology of the gas and dust in the protostellar envelopes. The spatial concentration of HCO+J = 4-3 and 850 μm dust emission are used to classify the embedded nature of YSOs. Results: Approximately 30% of Class 0+I sources in Perseus and Taurus are not Stage I, but are likely to be more evolved Stage II pre-main sequence (PMS) stars with disks. An additional 16% are confused sources with an uncertain evolutionary stage. Outflows are found to make a negligible contribution to the integrated HCO+ intensity for the majority of sources in this study. Conclusions: Separating classifications by cloud reveals that a high percentage of the Class 0+I sources in the Perseus star forming region are truly embedded Stage I sources (71%), while the Taurus cloud hosts a majority of evolved PMS stars with disks (68%). The concentration factor method is useful to correct misidentified embedded YSOs, yielding higher accuracy for YSO population statistics and Stage timescales. Current estimates (0.54 Myr) may overpredict the Stage I lifetime on the order of 30%, resulting in timescales down to 0.38 Myr for the embedded phase.

  8. The effect of fresh gas flow rate and type of anesthesia machine on time to reach target sevoflurane concentration.

    PubMed

    Shin, Hye Won; Yu, Hae Na; Bae, Go Eun; Huh, Hyub; Park, Ji Yong; Kim, Ji Young

    2017-01-19

    Anesthesia machines have been developed by the application of new technology for rapid and easier control of anesthetic concentration. In this study, we used a test lung to investigate whether the time taken to reach the target sevoflurane concentration varies with the rate of fresh gas flow (FGF) and type of anesthesia machine (AM). We measured the times taken to reach the target sevoflurane concentration (2 minimum alveolar concentration = 4%) at variable rates of FGF (0.5, 1, or 3 L/min) and different types of AM (Primus ® , Perseus ® , and Zeus ® [Zeus ® -F; Zeus ® fresh gas mode, Zeus ® -A; Zeus ® auto-mode]). Concomitant ventilation was supplied using 100% O 2. The AMs were connected to a test lung. A sevoflurane vaporizer setting of 6% was used in Primus ® , Perseus ® , and Zeus ® -F; a target end-tidal setting of 4% was used in Zeus ® -A (from a vaporizer setting of 0%). The time taken to reach the target concentration was measured in every group. When the same AM was used (Primus ® , Perseus ® , or Zeus ® -F), the times to target concentration shortened as the FGF rate increased (P < 0.05). Conversely, when the same FGF rate was used, but with different AMs, the time to target concentration was shortest in Perseus ® , followed by Primus ® , and finally by Zeus ® -F (P < 0.05). With regards to both modes of Zeus ® , at FGF rates of 0.5 and 1 L/min, the time to target concentration was shorter in Zeus ® -A than in Zeus ® -F; however, the time was longer in Zeus ® -A than in Zeus ® -F at FGF rate of 3 L/min (P < 0.05). Shorter times taken to reach the target concentration were associated with high FGF rates, smaller internal volume of the AM, proximity of the fresh gas inlets to patients, absence of a decoupling system, and use of blower-driven ventilators in AM.

  9. Menkhib and the California Nebula

    NASA Image and Video Library

    2010-05-07

    This infrared image from NASA Wide-field Infrared Survey Explorer features one of the bright stars in the constellation Perseus, named Menkhib, along with a large star forming cloud commonly called the California Nebula.

  10. The Baryonic Tully Fisher Relation for the ALFALFA 100 Sample

    NASA Astrophysics Data System (ADS)

    Finney, Elizabeth E.; Haynes, Martha P.; APPSS Team

    2018-01-01

    The APPSS (Arecibo Pisces-Perseus Supercluster Survey) team aims to quantify the over-densities of matter in the Pisces-Perseus Supercluster (PPS) filament by exploring the Baryonic Tully Fisher Relation (BTFR) of the ALFALFA (Arecibo Legacy Fast ALFA) 100 survey – (α.100) and, in the future, using targeted observations of low mass star-forming galaxies. Galaxies in the PPS filament region and its foreground and background voids are influenced by the gravitational pull of the large concentration of matter, and are expected to show velocities that deviate significantly from the smooth Hubble expansion. By deriving the peculiar motions of galaxies in the ALFALFA 100 survey as measured by the BTFR, we will further our understanding of the amount and distribution of the underlying dark matter in the supercluster. In this project, we make a first attempt to investigate the BTFR of the α.100 sample, and discuss our findings. This sample was corrected for inclination, extinction, and other sources of scatter, and a least squares linear regression fit was applied to determine the slope of the BTFR. We compare the slope of the α.100 sample to various literature values, and find that the slope is shallower due to slower-rotating, low-mass galaxies. Investigation of this shallow slope is needed in future work, as well as a modification of the intrinsic axial ratio assumed for this sample of galaxies. EF participated in the summer 2017 REU program in the Center for Astrophysics and Planetary Science at Cornell University under NSF award AST-1659264.

  11. Preliminary results on the Arecibo Pisces-Perseus Supercluster Survey

    NASA Astrophysics Data System (ADS)

    Cortes, Rosemary; Lebron, Mayra; Jones, Michael G.; Koopmann, Rebecca A.; Haynes, Martha P.; APPSS Team, Undergraduate ALFALFA Team, and the ALFALFA Team

    2018-01-01

    The Arecibo Pisces-Perseus Supercluster Survey (APPSS) aims to exploit the Baryonic Tully-Fisher Relation to derive distances and peculiar velocities of galaxies in and near the main ridge of the Pisces-Perseus Supercluster (PPS), one of the most prominent features of the Cosmic Web in the nearby Universe. The sample of galaxies contains ~ 600 sources in the low-mass range (8 < log MHI / M⊙ < 9). The source selection was based on the ALFALFA HI survey, SDSS and GALEX photometric data. The sample galaxies have HI masses just below the ALFALFA detection threshold, and were selected to be blue disk systems (low surface brightness sources from optical photometry data). The HI data were obtained at the Arecibo Observatory between the years 2015 and 2016. With this sample, the nature of the galaxy population in and around the PPS will be investigated. The HIMF to log MHI ~ 8.0 along the PPS filament will be measured and using the Tully-Fisher relation it will be possible to make a robust measurement of the infall and backflow onto the filamentary structure.APPSS is collaborative project between more than 10 Undergraduate ALFALFA Team institutions in which each group contributes to the analysis of a subset of the HI PPS data. In this poster, we will present the contributions of the U.P.R. team to the APPSS project. We will show the procedure used for the Arecibo HI data analysis, including some examples, and will show our preliminary results.

  12. Chandra Imaging of the Outer Accretion Flow onto the Black Hole at the Center of the Perseus Cluster

    NASA Astrophysics Data System (ADS)

    Miller, J. M.; Bautz, M. W.; McNamara, B. R.

    2017-11-01

    Nowhere is black hole feedback seen in sharper relief than in the Perseus cluster of galaxies. Owing to a combination of astrophysical and instrumental challenges, however, it can be difficult to study the black hole accretion that powers feedback into clusters of galaxies. Recent observations with Hitomi have resolved the narrow Fe Kα line associated with accretion onto the black hole in NGC 1275 (3C 84), the active galaxy at the center of Perseus. The width of that line indicates that the fluorescing material is located 6-45 pc from the black hole. Here, we report on a specialized Chandra imaging observation of NGC 1275 that offers a complementary angle. Using a sub-array, sub-pixel event repositioning, and an X-ray “lucky imaging” technique, Chandra imaging suggests an upper limit of about 0.3 arcsec on the size of the Fe Kα emission region, corresponding to ˜98 pc. Both spectroscopy and direct imaging now point to an emission region consistent with an extended molecular torus or disk, potentially available to fuel the black hole. A low X-ray continuum flux was likely measured from NGC 1275; contemporaneously, radio flaring and record-high GeV fluxes were recorded. This may be an example of the correlation between X-ray flux dips and jet activity that is observed in other classes of accreting black holes across the mass scale.

  13. Centurion in Flight over Lakebed with STS Mate-DeMate Device in Background

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Centurion remotely piloted flying wing in flight during an initial series of low-altitude, battery-powered test flights in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. The special Mate-DeMate structure used by NASA to attach Space Shuttle orbiters to the back of modified Boeing 747s for transport to other locations can be seen in the background of this photo. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he was impressed to see how well the aircraft handled the large weight increase from an initial payload of 150 pounds to one of 600 pounds. During 1999, Centurion gave way to the Helios Prototype, the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions. This was an enlarged version of the Centurion flying wing with a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of the solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved its lifting capability. This allows the Helios Prototype to carry a regenerative fuel-cell-based energy storage system that will enable flight at night, while still meeting the performance goals originally established for the Centurion.

  14. Response of the Alliance 1 Proof-of-Concept Airplane Under Gust Loads

    NASA Technical Reports Server (NTRS)

    Naser, A. S.; Pototzky, A. S.; Spain, C. V.

    2001-01-01

    This report presents the work performed by Lockheed Martin's Langley Program Office in support of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. The primary purpose of this work was to develop and demonstrate a gust analysis method which accounts for the span-wise variation of gust velocity. This is important because these unmanned aircraft having high aspect ratios and low wing loading are very flexible, and fly at low speeds. The main focus of the work was therefore to perform a two-dimensional Power Spectrum Density (PSD) analysis of the Alliance 1 Proof-of-Concept Unmanned Aircraft, As of this writing, none of the aircraft described in this report have been constructed. They are concepts represented by analytical models. The process first involved the development of suitable structural and aeroelastic Finite Element Models (FEM). This was followed by development of a one-dimensional PSD gust analysis, and then the two-dimensional (PSD) analysis of the Alliance 1. For further validation and comparison, two additional analyses were performed. A two-dimensional PSD gust analysis was performed on a simplet MSC/NASTRAN example problem. Finally a one-dimensional discrete gust analysis was performed on Alliance 1. This report describes this process, shows the relevant comparisons between analytical methods, and discusses the physical meanings of the results.

  15. Contraction Signatures toward Dense Cores in the Perseus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Campbell, J. L.; Friesen, R. K.; Martin, P. G.; Caselli, P.; Kauffmann, J.; Pineda, J. E.

    2016-03-01

    We report the results of an HCO+ (3-2) and N2D+ (3-2) molecular line survey performed toward 91 dense cores in the Perseus molecular cloud using the James Clerk Maxwell Telescope, to identify the fraction of starless and protostellar cores with systematic radial motions. We quantify the HCO+ asymmetry using a dimensionless asymmetry parameter δv, and identify 20 cores with significant blue or red line asymmetries in optically thick emission indicative of collapsing or expanding motions, respectively. We separately fit the HCO+ profiles with an analytic collapse model and determine contraction (expansion) speeds toward 22 cores. Comparing the δv and collapse model results, we find that δv is a good tracer of core contraction if the optically thin emission is aligned with the model-derived systemic velocity. The contraction speeds range from subsonic (0.03 km s-1) to supersonic (0.4 km s-1), where the supersonic contraction speeds may trace global rather than local core contraction. Most cores have contraction speeds significantly less than their free-fall speeds. Only 7 of 28 starless cores have spectra well-fit by the collapse model, which more than doubles (15 of 28) for protostellar cores. Starless cores with masses greater than the Jeans mass (M/MJ > 1) are somewhat more likely to show contraction motions. We find no trend of optically thin non-thermal line width with M/MJ, suggesting that any undetected contraction motions are small and subsonic. Most starless cores in Perseus are either not in a state of collapse or expansion, or are in a very early stage of collapse.

  16. The VLA Nascent Disk and Multiplicity Survey of Perseus Protostars (VANDAM). II. Multiplicity of Protostars in the Perseus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Tobin, John J.; Looney, Leslie W.; Li, Zhi-Yun; Chandler, Claire J.; Dunham, Michael M.; Segura-Cox, Dominique; Sadavoy, Sarah I.; Melis, Carl; Harris, Robert J.; Kratter, Kaitlin; Perez, Laura

    2016-02-01

    We present a multiplicity study of all known protostars (94) in the Perseus molecular cloud from a Karl G. Jansky Very Large Array survey at Ka-band (8 mm and 1 cm) and C-band (4 and 6.6 cm). The observed sample has a bolometric luminosity range between 0.1 L⊙ and ˜33 L⊙, with a median of 0.7 L⊙. This multiplicity study is based on the Ka-band data, having a best resolution of ˜0.″065 (15 au) and separations out to ˜43″ (10,000 au) can be probed. The overall multiplicity fraction (MF) is found to be 0.40 ± 0.06 and the companion star fraction (CSF) is 0.71 ± 0.06. The MF and CSF of the Class 0 protostars are 0.57 ± 0.09 and 1.2 ± 0.2, and the MF and CSF of Class I protostars are both 0.23 ± 0.08. The distribution of companion separations appears bi-modal, with a peak at ˜75 au and another peak at ˜3000 au. Turbulent fragmentation is likely the dominant mechanism on >1000 au scales and disk fragmentation is likely to be the dominant mechanism on <200 au scales. Toward three Class 0 sources we find companions separated by <30 au. These systems have the smallest separations of currently known Class 0 protostellar binary systems. Moreover, these close systems are embedded within larger (50-400 au) structures and may be candidates for ongoing disk fragmentation.

  17. The nature and energetics of AGN-driven perturbations in the hot gas in the Perseus Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuravleva, I.; Churazov, E.; Arevalo, P.

    In this paper, cores of relaxed galaxy clusters are often disturbed by AGN. Their Chandra observations revealed a wealth of structures induced by shocks, subsonic gas motions, bubbles of relativistic plasma, etc. In this paper, we determine the nature and energy content of gas fluctuations in the Perseus core by probing statistical properties of emissivity fluctuations imprinted in the soft- and hard-band X-ray images. About 80 per cent of the total variance of perturbations on ~8–70 kpc scales in the core have an isobaric nature, i.e. are consistent with subsonic displacements of the gas in pressure equilibrium with the ambientmore » medium. The observed variance translates to the ratio of energy in perturbations to thermal energy of ~13 per cent. In the region dominated by weak ‘ripples’, about half of the total variance is associated with isobaric perturbations on scales of a few tens of kpc. If these isobaric perturbations are induced by buoyantly rising bubbles, then these results suggest that most of the AGN-injected energy should first go into bubbles rather than into shocks. Using simulations of a shock propagating through the Perseus atmosphere, we found that models reproducing the observed features of a central shock have more than 50 per cent of the AGN-injected energy associated with the bubble enthalpy and only about 20 per cent is carried away with the shock. Such energy partition is consistent with the AGN-feedback model, mediated by bubbles of relativistic plasma, and supports the importance of turbulence in the cooling–heating balance.« less

  18. Physical Origins of Gas Motions in Galaxy Cluster Cores: Interpreting Hitomi Observations of the Perseus Cluster

    NASA Astrophysics Data System (ADS)

    Lau, Erwin T.; Gaspari, Massimo; Nagai, Daisuke; Coppi, Paolo

    2017-11-01

    The Hitomi X-ray satellite has provided the first direct measurements of the plasma velocity dispersion in a galaxy cluster. It finds a relatively “quiescent” gas with a line-of-sight velocity dispersion {σ }v,{los}≃ 160 {km} {{{s}}}-1, at 30-60 kpc from the cluster center. This is surprising given the presence of jets and X-ray cavities that indicates on-going activity and feedback from the active galactic nucleus (AGN) at the cluster center. Using a set of mock Hitomi observations generated from a suite of state-of-the-art cosmological cluster simulations, and an isolated but higher resolution simulation of gas physics in the cluster core, including the effects of cooling and AGN feedback, we examine the likelihood of Hitomi detecting a cluster with the observed velocities. As long as the Perseus has not experienced a major merger in the last few gigayears, and AGN feedback is operating in a “‘gentle” mode, we reproduce the level of gas motions observed by Hitomi. The frequent mechanical AGN feedback generates net line-of-sight velocity dispersions ˜ 100{--}200 {km} {{{s}}}-1, bracketing the values measured in the Perseus core. The large-scale velocity shear observed across the core, on the other hand, is generated mainly by cosmic accretion such as mergers. We discuss the implications of these results for AGN feedback physics and cluster cosmology and progress that needs to be made in both simulations and observations, including a Hitomi re-flight and calorimeter-based instruments with higher spatial resolution.

  19. The nature and energetics of AGN-driven perturbations in the hot gas in the Perseus Cluster

    DOE PAGES

    Zhuravleva, I.; Churazov, E.; Arevalo, P.; ...

    2016-03-07

    In this paper, cores of relaxed galaxy clusters are often disturbed by AGN. Their Chandra observations revealed a wealth of structures induced by shocks, subsonic gas motions, bubbles of relativistic plasma, etc. In this paper, we determine the nature and energy content of gas fluctuations in the Perseus core by probing statistical properties of emissivity fluctuations imprinted in the soft- and hard-band X-ray images. About 80 per cent of the total variance of perturbations on ~8–70 kpc scales in the core have an isobaric nature, i.e. are consistent with subsonic displacements of the gas in pressure equilibrium with the ambientmore » medium. The observed variance translates to the ratio of energy in perturbations to thermal energy of ~13 per cent. In the region dominated by weak ‘ripples’, about half of the total variance is associated with isobaric perturbations on scales of a few tens of kpc. If these isobaric perturbations are induced by buoyantly rising bubbles, then these results suggest that most of the AGN-injected energy should first go into bubbles rather than into shocks. Using simulations of a shock propagating through the Perseus atmosphere, we found that models reproducing the observed features of a central shock have more than 50 per cent of the AGN-injected energy associated with the bubble enthalpy and only about 20 per cent is carried away with the shock. Such energy partition is consistent with the AGN-feedback model, mediated by bubbles of relativistic plasma, and supports the importance of turbulence in the cooling–heating balance.« less

  20. Altus II aircraft flying over southern California desert

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The San Gabriel range is visible as the the remotely piloted Altus II flies over Southern California's high desert. The Altus II was flown as a performance and propulsion testbed for future high-altitude science platform aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program at the Dryden Flight Research Center, Edwards, Calif. The rear-engined Altus II and its sister ship, the Altus I, were built by General Atomics/Aeronautical Systems, Inc., of San Diego, Calif. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I, built for the Naval Postgraduate School, reached over 43,500 feet with a single-stage turbocharger feeding its four-cylinder Rotax engine in 1997, while the Altus II, incorporating a two-stage turbocharger built by Thermo-Mechanical Systems, reached and sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system.

  1. Altus II high altitude science aircraft decending toward U.S. Navy's Pacific Missile Range Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Altus II descending from a flight over Kauai, Hawaii. The Altus II was flown as a performance and propulsion testbed for future high-altitude science platform aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program at the Dryden Flight Research Center, Edwards, Calif. The rear-engined Altus II and its sister ship, the Altus I, were built by General Atomics/Aeronautical Systems, Inc., of San Diego, Calif. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I, built for the Naval Postgraduate School, reached over 43,500 feet with a single-stage turbocharger feeding its four-cylinder Rotax engine in 1997, while the Altus II, incorporating a two-stage turbocharger built by Thermo-Mechanical Systems, reached and sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system.

  2. Altus II high altitude science aircraft decending toward U.S. Navy's Pacific Missile Range Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Altus II descends towards the Navy's Pacific Missile Range Facility, Kauai, Hawaii. The Altus II was flown as a performance and propulsion testbed for future high-altitude science platform aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program at the Dryden Flight Research Center, Edwards, Calif. The rear-engined Altus II and its sister ship, the Altus I, were built by General Atomics/Aeronautical Systems, Inc., of San Diego, Calif. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I, built for the Naval Postgraduate School, reached over 43,500 feet with a single-stage turbocharger feeding its four-cylinder Rotax engine in 1997, while the Altus II, incorporating a two-stage turbocharger built by Thermo-Mechanical Systems, reached and sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system.

  3. The Undergraduate ALFALFA Team: Collaborative Research Projects

    NASA Astrophysics Data System (ADS)

    Cannon, John M.; Koopmann, Rebecca A.; Haynes, Martha P.; Undergraduate ALFALFA Team, ALFALFA Team

    2016-01-01

    The NSF-sponsored Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team (UAT) has allowed faculty and students from a wide range of public and private colleges and especially those with small astronomy programs to learn how science is accomplished in a large collaboration while contributing to the scientific goals of a legacy radio astronomy survey. The UAT has achieved this through close collaboration with ALFALFA PIs to identify research areas accessible to undergraduates. In this talk we will summarize the main research efforts of the UAT, including multiwavelength followup observations of ALFALFA sources, the UAT Collaborative Groups Project, the Survey of HI in Extremely Low-mass Dwarfs (SHIELD), and the Arecibo Pisces-Perseus Supercluster Survey. This work has been supported by NSF grants AST-0724918/0902211, AST-075267/0903394, AST-0725380, and AST-1211005.

  4. WISE Eyes Evolution of Massive Stars

    NASA Image and Video Library

    2011-04-08

    In the Perseus spiral arm of the Milky Way galaxy, opposite the galactic center, lies the nebula SH 2-235. As seen in infrared light, NASA Wide-field Infrared Survey Explorer reveals SH 2-235 to be a huge star formation complex.

  5. Nebulae: Not as Close as They Appear

    NASA Image and Video Library

    2011-05-05

    This image from NASA Wide-field Infrared Survey Explorer, shows three different nebulae located in the constellation of Perseus. NGC 1491 is seen on the right side of the image, SH 2-209 is on the left side and BFS 34 lies in between.

  6. The quiescent intracluster medium in the core of the Perseus cluster.

    PubMed

    2016-07-07

    Clusters of galaxies are the most massive gravitationally bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and many astrophysical processes. However, knowledge of the dynamics of the pervasive hot gas, the mass of which is much larger than the combined mass of all the stars in the cluster, is lacking. Such knowledge would enable insights into the injection of mechanical energy by the central supermassive black hole and the use of hydrostatic equilibrium for determining cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50-million-kelvin diffuse hot plasma filling its gravitational potential well. The active galactic nucleus of the central galaxy NGC 1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These bubbles probably induce motions in the intracluster medium and heat the inner gas, preventing runaway radiative cooling--a process known as active galactic nucleus feedback. Here we report X-ray observations of the core of the Perseus cluster, which reveal a remarkably quiescent atmosphere in which the gas has a line-of-sight velocity dispersion of 164 ± 10 kilometres per second in the region 30-60 kiloparsecs from the central nucleus. A gradient in the line-of-sight velocity of 150 ± 70 kilometres per second is found across the 60-kiloparsec image of the cluster core. Turbulent pressure support in the gas is four per cent of the thermodynamic pressure, with large-scale shear at most doubling this estimate. We infer that a total cluster mass determined from hydrostatic equilibrium in a central region would require little correction for turbulent pressure.

  7. The Arecibo Pisces-Perseus Survey: An Undergraduate ALFALFA Team Project

    NASA Astrophysics Data System (ADS)

    O'Donoghue, Aileen A.; Koopmann, Rebecca A.; Haynes, Martha P.; Jones, Michael; Craig, David; Hallenbeck, Gregory L.; Rosenberg, Jessica L.; Venkatesan, Aparna; Undergraduate ALFALFA Team

    2016-01-01

    The Milky Way's position in an outer filament of Lanieakea affords us a striking view of the Pisces-Perseus Supercluster (PPS) arcing roughly from 22h to 4h and 0° to +50° concentrated between cz = 4,000 km/s and cz = 8,000 km/s as a "wall" parallel to the plane of the sky. It is bounded by voids both between Laniakea and PPS and beyond PPS. Within this box, the 70% ALFALFA survey has detected 4,800 galaxies within cz = 8,000 km/s. Of these, 80% have masses greater than 108 M⊙. At the distance of the PPS, galaxies with MHI ≤ 108 M⊙ are below the ALFALFA detection limit. Thus to further explore this rich diversity of galaxy environments and the adjoining voids, the Undergraduate ALFALFA Team is in the process of using the L-band Wide receiver at Arecibo Observatory for the Arecibo Pisces-Perseus Supercluster Survey (APPSS). We will observe galaxies with 108 M⊙ ≤ MHI ≤ 109 M⊙ chosen from the SDSS DR12 and GALEX catalogs. We are limiting our observations to the PPS ridge in 21h 30m to 3h 15m and 23° to 35°. Since this region lacks SDSS spectroscopy, targets have been selected using photometric criteria derived from SDSS and GALEX observations for galaxies detected by ALFALFA. The results of these observations will allow us to constrain the HI mass function along the PPS ridge. Application of the Tully-Fisher relation will allow a robust measure of the infall velocities of galaxies into the filament. This work has been supported by NSF grant AST-1211005.

  8. The VLA Nascent Disk And Multiplicity Survey of Perseus Protostars (VANDAM). III. Extended Radio Emission from Protostars in Perseus

    NASA Astrophysics Data System (ADS)

    Tychoniec, Łukasz; Tobin, John J.; Karska, Agata; Chandler, Claire; Dunham, Michael M.; Li, Zhi-Yun; Looney, Leslie W.; Segura-Cox, Dominique; Harris, Robert J.; Melis, Carl; Sadavoy, Sarah I.

    2018-01-01

    Centimeter continuum emission from protostars offers insight into the innermost part of the outflows, as shock-ionized gas produces free–free emission. We observed a complete population of Class 0 and I protostars in the Perseus molecular cloud at 4.1 and 6.4 cm with resolution and sensitivity superior to previous surveys. From a total of 71 detections, eight sources exhibit resolved emission at 4.1 cm and/or 6.4 cm. In this paper, we focus on this subsample, analyzing their spectral indices along the jet and their alignment with respect to the large-scale molecular outflow. Spectral indices for fluxes integrated toward the position of the protostar are consistent with free–free thermal emission. The value of the spectral index along a radio jet decreases with distance from the protostar. For six sources, emission is well aligned with the outflow central axis, showing that we observe the ionized base of the jet. This is not the case for two sources, where we note misalignment of the emission with respect to the large-scale outflow. This might indicate that the emission does not originate in the radio jet, but rather in an ionized outflow cavity wall or disk surface. For five of the sources, the spectral indices along the jet decrease well below the thermal free–free limit of ‑0.1 with > 2σ significance. This is indicative of synchrotron emission, meaning that high-energy electrons are being produced in the outflows close to the disk. This result can have far-reaching implications for the chemical composition of the embedded disks.

  9. The quiescent intracluster medium in the core of the Perseus cluster

    DOE PAGES

    Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; ...

    2016-07-06

    Clusters of galaxies are the most massive gravitationally bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and many astrophysical processes. However, knowledge of the dynamics of the pervasive hot gas, the mass of which is much larger than the combined mass of all the stars in the cluster, is lacking. Such knowledge would enable insights into the injection of mechanical energy by the central supermassive black hole and the use of hydrostatic equilibrium for determining cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50-million-kelvin diffusemore » hot plasma filling its gravitational potential well. The active galactic nucleus of the central galaxy NGC 1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These bubbles probably induce motions in the intracluster medium and heat the inner gas, preventing runaway radiative cooling—a process known as active galactic nucleus feedback. In this paper, we report X-ray observations of the core of the Perseus cluster, which reveal a remarkably quiescent atmosphere in which the gas has a line-of-sight velocity dispersion of 164 ± 10 kilometres per second in the region 30–60 kiloparsecs from the central nucleus. A gradient in the line-of-sight velocity of 150 ± 70 kilometres per second is found across the 60-kiloparsec image of the cluster core. Turbulent pressure support in the gas is four per cent of the thermodynamic pressure, with large-scale shear at most doubling this estimate. Finally, we infer that a total cluster mass determined from hydrostatic equilibrium in a central region would require little correction for turbulent pressure.« less

  10. The quiescent intracluster medium in the core of the Perseus cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie

    Clusters of galaxies are the most massive gravitationally bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and many astrophysical processes. However, knowledge of the dynamics of the pervasive hot gas, the mass of which is much larger than the combined mass of all the stars in the cluster, is lacking. Such knowledge would enable insights into the injection of mechanical energy by the central supermassive black hole and the use of hydrostatic equilibrium for determining cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50-million-kelvin diffusemore » hot plasma filling its gravitational potential well. The active galactic nucleus of the central galaxy NGC 1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These bubbles probably induce motions in the intracluster medium and heat the inner gas, preventing runaway radiative cooling—a process known as active galactic nucleus feedback. In this paper, we report X-ray observations of the core of the Perseus cluster, which reveal a remarkably quiescent atmosphere in which the gas has a line-of-sight velocity dispersion of 164 ± 10 kilometres per second in the region 30–60 kiloparsecs from the central nucleus. A gradient in the line-of-sight velocity of 150 ± 70 kilometres per second is found across the 60-kiloparsec image of the cluster core. Turbulent pressure support in the gas is four per cent of the thermodynamic pressure, with large-scale shear at most doubling this estimate. Finally, we infer that a total cluster mass determined from hydrostatic equilibrium in a central region would require little correction for turbulent pressure.« less

  11. What Do the Hitomi Observations Tell Us About the Turbulent Velocities in the Perseus Cluster? Probing the Velocity Field with Mock Observations

    NASA Astrophysics Data System (ADS)

    ZuHone, J. A.; Miller, E. D.; Bulbul, E.; Zhuravleva, I.

    2018-02-01

    Hitomi made the first direct measurements of galaxy cluster gas motions in the Perseus cluster, which implied that its core is fairly “quiescent,” with velocities less than ∼200 km s‑1, despite the presence of an active galactic nucleus and sloshing cold fronts. Building on previous work, we use synthetic Hitomi/X-ray Spectrometer (SXS) observations of the hot plasma of a simulated cluster with sloshing gas motions and varying viscosity to analyze its velocity structure in a similar fashion. We find that sloshing motions can produce line shifts and widths similar to those measured by Hitomi. We find these measurements are unaffected by the value of the gas viscosity, since its effects are only manifested clearly on angular scales smaller than the SXS ∼1‧ PSF. The PSF biases the line shift of regions near the core as much as ∼40–50 km s‑1, so it is crucial to model this effect carefully. We also infer that if sloshing motions dominate the observed velocity gradient, Perseus must be observed from a line of sight that is somewhat inclined from the plane of these motions, but one that still allows the spiral pattern to be visible. Finally, we find that assuming isotropy of motions can underestimate the total velocity and kinetic energy of the core in our simulation by as much as ∼60%. However, the total kinetic energy in our simulated cluster core is still less than 10% of the thermal energy in the core, in agreement with the Hitomi observations.

  12. The quiescent intracluster medium in the core of the Perseus cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie

    2016-07-06

    Clusters of galaxies are the most massive gravitationally bound objects in the Universe and are still forming. They are thus important probes1 of cosmological parameters and many astrophysical processes. However, knowledge of the dynamics of the pervasive hot gas, the mass of which is much larger than the combined mass of all the stars in the cluster, is lacking. Such knowledge would enable insights into the injection of mechanical energy by the central supermassive black hole and the use of hydrostatic equilibrium for determining cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50-million-kelvin diffusemore » hot plasma filling its gravitational potential well. The active galactic nucleus of the central galaxy NGC 1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These bubbles probably induce motions in the intracluster medium and heat the inner gas, preventing runaway radiative cooling—a process known as active galactic nucleus feedback2, 3, 4, 5, 6. Here we report X-ray observations of the core of the Perseus cluster, which reveal a remarkably quiescent atmosphere in which the gas has a line-of-sight velocity dispersion of 164 ± 10 kilometres per second in the region 30–60 kiloparsecs from the central nucleus. A gradient in the line-of-sight velocity of 150 ± 70 kilometres per second is found across the 60-kiloparsec image of the cluster core. Turbulent pressure support in the gas is four per cent of the thermodynamic pressure, with large-scale shear at most doubling this estimate. We infer that a total cluster mass determined from hydrostatic equilibrium in a central region would require little correction for turbulent pressure.« less

  13. Multi-phase Turbulence Density Power Spectra in the Perseus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Pingel, N. M.; Lee, Min-Young; Burkhart, Blakesley; Stanimirović, Snežana

    2018-04-01

    We derive two-dimensional spatial power spectra of four distinct interstellar medium tracers, H I, 12CO(J = 1–0), 13CO(J = 1–0), and dust, in the Perseus molecular cloud, covering linear scales ranging from ∼0.1 pc to ∼90 pc. Among the four tracers, we find the steepest slopes of ‑3.23 ± 0.05 and ‑3.22 ± 0.05 for the uncorrected and opacity-corrected H I column density images. This result suggests that the H I in and around Perseus traces a non-gravitating, transonic medium on average, with a negligible effect from opacity. On the other hand, we measure the shallowest slope of ‑2.72 ± 0.12 for the 2MASS dust extinction data and interpret this as the signature of a self-gravitating, supersonic medium. Possible variations in the dust-to-gas ratio likely do not alter our conclusion. Finally, we derive slopes of ‑3.08 ± 0.08 and ‑2.88 ± 0.07 for the 12CO(1–0) and 13CO(1–0) integrated intensity images. Based on theoretical predictions for an optically thick medium, we interpret these slopes of roughly ‑3 as implying that both CO lines are susceptible to the opacity effect. While simple tests for the impact of CO formation and depletion indicate that the measured slopes of 12CO(1–0) and 13CO(1–0) are not likely affected by these chemical effects, our results generally suggest that chemically more complex and/or fully optically thick media may not be a reliable observational tracer for characterizing turbulence.

  14. The quiescent intracluster medium in the core of the Perseus cluster

    NASA Astrophysics Data System (ADS)

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall; Blandford, Roger; Brenneman, Laura; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward; Chernyakova, Maria; Chiao, Meng; Coppi, Paolo; Costantini, Elisa; de Plaa, Jelle; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko; Hornschemeier, Ann; Hoshino, Akio; Hughes, John; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishibashi, Kazunori; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Itoh, Masayuki; Iyomoto, Naoko; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Kara, Erin; Kataoka, Jun; Katsuda, Satoru; Katsuta, Junichiro; Kawaharada, Madoka; Kawai, Nobuyuki; Kelley, Richard; Khangulyan, Dmitry; Kilbourne, Caroline; King, Ashley; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Shu; Koyama, Katsuji; Kretschmar, Peter; Krimm, Hans; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lebrun, François; Lee, Shiu-Hang; Leutenegger, Maurice; Limousin, Olivier; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Grzegorz; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian; Mehdipour, Missagh; Miller, Eric; Miller, Jon; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Moseley, Harvey; Mukai, Koji; Murakami, Hiroshi; Murakami, Toshio; Mushotzky, Richard; Nagino, Ryo; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakano, Toshio; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Masayoshi; Noda, Hirofumi; Nomachi, Masaharu; O'Dell, Steve; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stephane; Parmar, Arvind; Petre, Robert; Pinto, Ciro; Pohl, Martin; Porter, F. Scott; Pottschmidt, Katja; Ramsey, Brian; Reynolds, Christopher; Russell, Helen; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sameshima, Hiroaki; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemitsos, Peter; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall; Soong, Yang; Stawarz, Lukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'Ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Keisuke; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Ueno, Shiro; Uno, Shin'Ichiro; Urry, Meg; Ursino, Eugenio; de Vries, Cor; Watanabe, Shin; Werner, Norbert; Wik, Daniel; Wilkins, Dan; Williams, Brian; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa; Yuasa, Takayuki; Zhuravleva, Irina; Zoghbi, Abderahmen

    2016-07-01

    Clusters of galaxies are the most massive gravitationally bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and many astrophysical processes. However, knowledge of the dynamics of the pervasive hot gas, the mass of which is much larger than the combined mass of all the stars in the cluster, is lacking. Such knowledge would enable insights into the injection of mechanical energy by the central supermassive black hole and the use of hydrostatic equilibrium for determining cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50-million-kelvin diffuse hot plasma filling its gravitational potential well. The active galactic nucleus of the central galaxy NGC 1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These bubbles probably induce motions in the intracluster medium and heat the inner gas, preventing runaway radiative cooling—a process known as active galactic nucleus feedback. Here we report X-ray observations of the core of the Perseus cluster, which reveal a remarkably quiescent atmosphere in which the gas has a line-of-sight velocity dispersion of 164 ± 10 kilometres per second in the region 30-60 kiloparsecs from the central nucleus. A gradient in the line-of-sight velocity of 150 ± 70 kilometres per second is found across the 60-kiloparsec image of the cluster core. Turbulent pressure support in the gas is four per cent of the thermodynamic pressure, with large-scale shear at most doubling this estimate. We infer that a total cluster mass determined from hydrostatic equilibrium in a central region would require little correction for turbulent pressure.

  15. CONTRACTION SIGNATURES TOWARD DENSE CORES IN THE PERSEUS MOLECULAR CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, J. L.; Friesen, R. K.; Martin, P. G.

    We report the results of an HCO{sup +} (3–2) and N{sub 2}D{sup +} (3–2) molecular line survey performed toward 91 dense cores in the Perseus molecular cloud using the James Clerk Maxwell Telescope, to identify the fraction of starless and protostellar cores with systematic radial motions. We quantify the HCO{sup +} asymmetry using a dimensionless asymmetry parameter δ{sub v}, and identify 20 cores with significant blue or red line asymmetries in optically thick emission indicative of collapsing or expanding motions, respectively. We separately fit the HCO{sup +} profiles with an analytic collapse model and determine contraction (expansion) speeds toward 22more » cores. Comparing the δ{sub v} and collapse model results, we find that δ{sub v} is a good tracer of core contraction if the optically thin emission is aligned with the model-derived systemic velocity. The contraction speeds range from subsonic (0.03 km s{sup −1}) to supersonic (0.4 km s{sup −1}), where the supersonic contraction speeds may trace global rather than local core contraction. Most cores have contraction speeds significantly less than their free-fall speeds. Only 7 of 28 starless cores have spectra well-fit by the collapse model, which more than doubles (15 of 28) for protostellar cores. Starless cores with masses greater than the Jeans mass (M/M{sub J} > 1) are somewhat more likely to show contraction motions. We find no trend of optically thin non-thermal line width with M/M{sub J}, suggesting that any undetected contraction motions are small and subsonic. Most starless cores in Perseus are either not in a state of collapse or expansion, or are in a very early stage of collapse.« less

  16. Revealing the velocity structure of the filamentary nebula in NGC 1275 in its entirety

    NASA Astrophysics Data System (ADS)

    Gendron-Marsolais, M.; Hlavacek-Larrondo, J.; Martin, T. B.; Drissen, L.; McDonald, M.; Fabian, A. C.; Edge, A. C.; Hamer, S. L.; McNamara, B.; Morrison, G.

    2018-05-01

    We have produced for the first time a detailed velocity map of the giant filamentary nebula surrounding NGC 1275, the Perseus cluster's brightest galaxy, and revealed a previously unknown rich velocity structure across the entire nebula. These new observations were obtained with the optical imaging Fourier transform spectrometer SITELLE at CFHT. With its wide field of view (˜11'×11'), SITELLE is the only integral field unit spectroscopy instrument able to cover the 80 kpc×55 kpc (3.8'×2.6') large nebula in NGC 1275. Our analysis of these observations shows a smooth radial gradient of the [N II]λ6583/Hα line ratio, suggesting a change in the ionization mechanism and source across the nebula. The velocity map shows no visible general trend or rotation, indicating that filaments are not falling uniformly onto the galaxy, nor being uniformly pulled out from it. Comparison between the physical properties of the filaments and Hitomi measurements of the X-ray gas dynamics in Perseus are also explored.

  17. A uniform metallicity in the outskirts of massive, nearby galaxy clusters

    DOE PAGES

    Urban, O.; Werner, N.; Allen, S. W.; ...

    2017-06-20

    Suzaku measurements of a homogeneous metal distribution of Z ~ 0:3 Solar in the outskirts of the nearby Perseus cluster suggest that chemical elements were deposited and mixed into the intergalactic medium before clusters formed, likely over 10 billion years ago. A key prediction of this early enrichment scenario is that the intracluster medium in all massive clusters should be uniformly enriched to a similar level. Here, we confirm this prediction by determining the iron abundances in the outskirts (r > 0:25r200) of a sample of ten other nearby galaxy clusters observed with Suzaku for which robust measurements based onmore » the Fe-K lines can be made. Across our sample the iron abundances are consistent with a constant value, ZFe = 0:316 ± 0:012 Solar (Χ 2 = 28:85 for 25 degrees of freedom). This is remarkably similar to the measurements for the Perseus cluster of ZFe = 0:314±0:012 Solar, using the Solar abundance scale of Asplund et al. (2009).« less

  18. Velocity Gradients in the Intracluster Gas of the Perseus Cluster

    NASA Astrophysics Data System (ADS)

    Dupke, Renato A.; Bregman, Joel N.

    2001-02-01

    We report the results of spatially resolved X-ray spectroscopy of eight different ASCA pointings distributed symmetrically around the center of the Perseus Cluster. The outer region of the intracluster gas is roughly isothermal, with temperature ~6-7 keV and metal abundance ~0.3 solar. Spectral analysis of the central pointing is consistent with the presence of a cooling flow and a central metal abundance gradient. A significant velocity gradient is found along an axis at a position angle of ~135°, which is ~45° discrepant with the major axis of the X-ray elongation. The radial velocity difference is found to be greater than 1000 km s-1 Mpc-1 at the 90% confidence level. Simultaneous fittings of GIS 2 and 3 indicate that the velocity gradient is significant at the 95% confidence level, and the F-test rules out constant velocities at the 99% level. Intrinsic short- and long-term variations of gain are unlikely (P<0.03) to explain the velocity discrepancies.

  19. A MSFD complementary approach for the assessment of pressures, knowledge and data gaps in Southern European Seas: The PERSEUS experience.

    PubMed

    Crise, A; Kaberi, H; Ruiz, J; Zatsepin, A; Arashkevich, E; Giani, M; Karageorgis, A P; Prieto, L; Pantazi, M; Gonzalez-Fernandez, D; Ribera d'Alcalà, M; Tornero, V; Vassilopoulou, V; Durrieu de Madron, X; Guieu, C; Puig, P; Zenetos, A; Andral, B; Angel, D; Altukhov, D; Ayata, S D; Aktan, Y; Balcıoğlu, E; Benedetti, F; Bouchoucha, M; Buia, M-C; Cadiou, J-F; Canals, M; Chakroun, M; Christou, E; Christidis, M G; Civitarese, G; Coatu, V; Corsini-Foka, M; Cozzi, S; Deidun, A; Dell'Aquila, A; Dogrammatzi, A; Dumitrache, C; Edelist, D; Ettahiri, O; Fonda-Umani, S; Gana, S; Galgani, F; Gasparini, S; Giannakourou, A; Gomoiu, M-T; Gubanova, A; Gücü, A-C; Gürses, Ö; Hanke, G; Hatzianestis, I; Herut, B; Hone, R; Huertas, E; Irisson, J-O; İşinibilir, M; Jimenez, J A; Kalogirou, S; Kapiris, K; Karamfilov, V; Kavadas, S; Keskin, Ç; Kideyş, A E; Kocak, M; Kondylatos, G; Kontogiannis, C; Kosyan, R; Koubbi, P; Kušpilić, G; La Ferla, R; Langone, L; Laroche, S; Lazar, L; Lefkaditou, E; Lemeshko, I E; Machias, A; Malej, A; Mazzocchi, M-G; Medinets, V; Mihalopoulos, N; Miserocchi, S; Moncheva, S; Mukhanov, V; Oaie, G; Oros, A; Öztürk, A A; Öztürk, B; Panayotova, M; Prospathopoulos, A; Radu, G; Raykov, V; Reglero, P; Reygondeau, G; Rougeron, N; Salihoglu, B; Sanchez-Vidal, A; Sannino, G; Santinelli, C; Secrieru, D; Shapiro, G; Simboura, N; Shiganova, T; Sprovieri, M; Stefanova, K; Streftaris, N; Tirelli, V; Tom, M; Topaloğlu, B; Topçu, N E; Tsagarakis, K; Tsangaris, C; Tserpes, G; Tuğrul, S; Uysal, Z; Vasile, D; Violaki, K; Xu, J; Yüksek, A; Papathanassiou, E

    2015-06-15

    PERSEUS project aims to identify the most relevant pressures exerted on the ecosystems of the Southern European Seas (SES), highlighting knowledge and data gaps that endanger the achievement of SES Good Environmental Status (GES) as mandated by the Marine Strategy Framework Directive (MSFD). A complementary approach has been adopted, by a meta-analysis of existing literature on pressure/impact/knowledge gaps summarized in tables related to the MSFD descriptors, discriminating open waters from coastal areas. A comparative assessment of the Initial Assessments (IAs) for five SES countries has been also independently performed. The comparison between meta-analysis results and IAs shows similarities for coastal areas only. Major knowledge gaps have been detected for the biodiversity, marine food web, marine litter and underwater noise descriptors. The meta-analysis also allowed the identification of additional research themes targeting research topics that are requested to the achievement of GES. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. UAVs - Current Situation and Considerations for the Way Forward

    DTIC Science & Technology

    2000-04-01

    and UGV command and control relay. Examples Altus, Hermes 1500, Heron (EagleStar), I.GNAT, Perseus, Predator, Theseus The arrival of shipborne VTOL...Silver Arrow, Israel), Theseus (Aurora Flight Scien- RPB-35 ces, USA). , - Airspeed Airships, UK AS-A100 & 400 / AS-600 & 800 - Automation Institute

  1. Hypertext: Behind the Hype. ERIC Digest.

    ERIC Educational Resources Information Center

    Bevilacqua, Ann F.

    This digest begins by defining the concept of hypertext and describing the two types of hypertext--static and dynamic. Three prototype applications are then discussed: (1) Intermedia, a large-scale multimedia system at Brown University; (2) the Perseus Project at Harvard University, which is developing interactive courseware on classical Greek…

  2. Altus II aircraft flying over southern California desert

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The snow-capped peak of Mt. San Antonio in the San Gabriel range is visible as the the remotely piloted Altus II flies over Southern California's high desert. The Altus II was flown as a performance and propulsion testbed for future high-altitude science platform aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program at the Dryden Flight Research Center, Edwards, Calif. The rear-engined Altus II and its sister ship, the Altus I, were built by General Atomics/Aeronautical Systems, Inc., of San Diego, Calif. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I, built for the Naval Postgraduate School, reached over 43,500 feet with a single-stage turbocharger feeding its four-cylinder Rotax engine in 1997, while the Altus II, incorporating a two-stage turbocharger built by Thermo-Mechanical Systems, reached and sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system.

  3. A Far Ultraviolet Spectroscopic Explorer Survey of High-Declination Dwarf Novae

    DTIC Science & Technology

    2009-08-20

    and the occurrence of standstills. It was clas- sified as a Z Camelopardalis system by Notni & Richter (1984). Optical spectra were later obtained by...reddening in the direction of the constellation of Perseus is quite large. To estimate the reddening of FO Per, we note (Table 3) that TZ Per has a

  4. Temperature Map of the Perseus Cluster of Galaxies Observed with ASCA

    NASA Technical Reports Server (NTRS)

    Furusho, T.; Yamasaki, N. Y.; Ohashi, T.; Shibata, R.; Ezawa, H.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    We present two-dimensional temperature map of the Perseus cluster based on multi-pointing observations with the Advanced Spacecraft for Cosmology Astrophysics (ASCA) Gas Imaging Spectrometer (GIS), covering a region with a diameter of approximately 2 deg. By correcting for the effect of the X-ray telescope response, the temperatures were estimated from hardness ratios and the complete temperature structure of the cluster with a spatial resolution of about 100 kpc was obtained for the first time. There is an extended cool region with a diameter of approximately 20 arcmin and kT approx. 5 keV at about 20 arcmin east from the cluster center. This region also shows higher surface brightness and is surrounded by a large ring-like hot region with kT approx. > 7 keV, and likely to be a remnant of a merger with a poor cluster. Another extended cool region is extending outward from the IC 310 subcluster. These features and the presence of several other hot and cool blobs suggest that this rich cluster has been formed as a result of a repetition of many subcluster mergers.

  5. Alignment between Protostellar Outflows and Filamentary Structure

    NASA Astrophysics Data System (ADS)

    Stephens, Ian W.; Dunham, Michael M.; Myers, Philip C.; Pokhrel, Riwaj; Sadavoy, Sarah I.; Vorobyov, Eduard I.; Tobin, John J.; Pineda, Jaime E.; Offner, Stella S. R.; Lee, Katherine I.; Kristensen, Lars E.; Jørgensen, Jes K.; Goodman, Alyssa A.; Bourke, Tyler L.; Arce, Héctor G.; Plunkett, Adele L.

    2017-09-01

    We present new Submillimeter Array (SMA) observations of CO(2-1) outflows toward young, embedded protostars in the Perseus molecular cloud as part of the Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) survey. For 57 Perseus protostars, we characterize the orientation of the outflow angles and compare them with the orientation of the local filaments as derived from Herschel observations. We find that the relative angles between outflows and filaments are inconsistent with purely parallel or purely perpendicular distributions. Instead, the observed distribution of outflow-filament angles are more consistent with either randomly aligned angles or a mix of projected parallel and perpendicular angles. A mix of parallel and perpendicular angles requires perpendicular alignment to be more common by a factor of ˜3. Our results show that the observed distributions probably hold regardless of the protostar’s multiplicity, age, or the host core’s opacity. These observations indicate that the angular momentum axis of a protostar may be independent of the large-scale structure. We discuss the significance of independent protostellar rotation axes in the general picture of filament-based star formation.

  6. Measurements of resonant scattering in the Perseus cluster core with Hitomi SXS

    NASA Astrophysics Data System (ADS)

    Sato, K.; Zhuravleva, I.

    2017-10-01

    Hitomi (ASTRO-H) SXS allows us to investigate fine structures of emission lines in extended X-ray sources for the first time. Thanks to its high energy resolution of 5 eV at 6 keV in orbit, Hitomi SXS finds a quiescent atmosphere in the Intra cluster medium of the Perseus cluster core where the gas has a line-of-sight velocity dispersion below 200 km/sec from the line width in the spectral analysis (Hitomi collaboration, Nature, 2016). The resonant scattering is also important to measure the gas velocity as a complementary probe of the direct measurement from the line width. Particularly in the cluster core, resonant scattering should be taken into account when inferring physical properties from line intensities because the optical depth of the He-alpha resonant line is expected to be larger than 1. The observed line flux ratio of Fe XXV He-α resonant to forbidden lines is found to be lower in the cluster core when compared to the outer region, consistent with resonant scattering of the resonant line and also in support of the low turbulent velocity.

  7. A soft X-ray map of the Perseus cluster of galaxies

    NASA Technical Reports Server (NTRS)

    Cash, W.; Malina, R. F.; Wolff, R. S.

    1976-01-01

    A 0.5-3-keV X-ray map of the Perseus cluster of galaxies is presented. The map shows a region of strong emission centered near NGC 1275 plus a highly elongated emission region which lies along the line of bright galaxies that dominates the core of the cluster. The data are compared with various models that include point and diffuse sources. One model which adequately represents the data is the superposition of a point source at NGC 1275 and an isothermal ellipsoid resulting from the bremsstrahlung emission of cluster gas. The ellipsoid has a major core radius of 20.5 arcmin and a minor core radius of 5.5 arcmin, consistent with the values obtained from galaxy counts. All acceptable models provide evidence for a compact source (less than 3 arcmin FWHM) at NGC 1275 containing about 25% of the total emission. Since the diffuse X-ray and radio components have radically different morphologies, it is unlikely that the emissions arise from a common source, as proposed in inverse-Compton models.

  8. Pathfinder-Plus takes off on flight in Hawaii

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on a flight over Hawaii in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  9. Pathfinder-Plus on flight in Hawaii

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on a flight over Hawaii in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  10. Pathfinder-Plus on a flight over Hawaiian island N'ihau

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on a flight over the Hawaiian island of N'ihau in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  11. Pathfinder-Plus on flight over Hawaiian island N'ihau

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on a flight over the Hawaiian island of N'ihau in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  12. Pathfinder-Plus on flight near Hawaiian island N'ihau

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on a flight with the Hawaiian island of N'ihau in the background. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  13. Pathfinder-Plus on flight over Hawaii

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus flying over the Hawaiian Islands in 1998 with Ni'ihau Island in the background. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  14. Pathfinder-Plus on flight over Hawaii

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on flight over Hawaii. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  15. Pathfinder-Plus on a flight in Hawaii

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on a flight in 1998 over Hawaiian waters. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  16. Pathfinder-Plus on flight over Hawaiian Islands

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on flight over Hawaiian Islands in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  17. Outer rotation curve of the Galaxy with VERA. III. Astrometry of IRAS 07427-2400 and test of the density-wave theory

    NASA Astrophysics Data System (ADS)

    Sakai, Nobuyuki; Nakanishi, Hiroyuki; Matsuo, Mitsuhiro; Koide, Nagito; Tezuka, Daisuke; Kurayama, Tomoharu; Shibata, Katsunori M.; Ueno, Yuji; Honma, Mareki

    2015-08-01

    We report the trigonometric parallax of IRAS 07427-2400 with VERA to be 0.185 ± 0.027 mas, corresponding to a distance of 5.41^{+0.92}_{-0.69}kpc. The result is consistent with the previous result of 5.32^{+0.49}_{-0.42}kpc obtained by Choi et al. (2014, ApJ, 790, 99) within error. To remove the effect of internal maser motions (e.g., random motions), we observed six maser features associated with IRAS 07427-2400 and determined systematic proper motions of the source by averaging proper motions of the six maser features. The obtained proper motions are (μαcos δ, μδ) = (-1.79 ± 0.32, 2.60 ± 0.17) mas yr-1 in equatorial coordinates, while Choi et al. (2014) showed (μαcos δ, μδ) = (-2.43 ± 0.02, 2.49 ± 0.09) mas yr-1 with one maser feature. Our astrometry results place the source in the Perseus arm, the nearest main arm in the Milky Way. Using our result with previous astrometry results obtained from observations of the Perseus arm, we conducted direct (quantitative) comparisons between 27 astrometry results and an analytic gas dynamics model based on the density-wave theory, obtaining two results. First is the pitch angle of the Perseus arm determined by VLBI astrometry, 11.1° ± 1.4°, differing from what is determined by the spiral potential model (probably traced by stars), ˜ 20°. The second is an offset between a dense gas region and the bottom of the spiral potential model. The dense gas region traced by VLBI astrometry is located downstream of the spiral potential model, which was previously confirmed in the nearby grand-design spiral galaxy M 51 in Egusa, Koda, and Scoville (2011, ApJ, 726, 85).

  18. Temperature structure in the Perseus cluster core observed with Hitomi

    NASA Astrophysics Data System (ADS)

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furukawa, Maki; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Kato, Yuichi; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shiníchiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shiníchiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen

    2018-03-01

    The present paper explains the temperature structure of X-ray emitting plasma in the core of the Perseus cluster based on 1.8-20.0 keV data obtained with the Soft X-ray Spectrometer (SXS) on board the Hitomi Observatory. A series of four observations was carried out, with a total effective exposure time of 338 ks that covered a central region of ˜7΄ in diameter. SXS was operated with an energy resolution of ˜5 eV (full width at half maximum) at 5.9 keV. Not only fine structures of K-shell lines in He-like ions, but also transitions from higher principal quantum numbers were clearly resolved from Si through Fe. That enabled us to perform temperature diagnostics using the line ratios of Si, S, Ar, Ca, and Fe, and to provide the first direct measurement of the excitation temperature and ionization temperature in the Perseus cluster. The observed spectrum is roughly reproduced by a single-temperature thermal plasma model in collisional ionization equilibrium, but detailed line-ratio diagnostics reveal slight deviations from this approximation. In particular, the data exhibit an apparent trend of increasing ionization temperature with the atomic mass, as well as small differences between the ionization and excitation temperatures for Fe, the only element for which both temperatures could be measured. The best-fit two-temperature models suggest a combination of 3 and 5 keV gas, which is consistent with the idea that the observed small deviations from a single-temperature approximation are due to the effects of projecting the known radial temperature gradient in the cluster core along the line of sight. A comparison with the Chandra/ACIS and the XMM-Newton/RGS results, on the other hand, suggests that additional lower-temperature components are present in the intracluster medium (ICM), but not detectable with Hitomi/SXS giving its 1.8-20 keV energy band.

  19. The Anatomy of the Perseus Spiral Arm: 12 CO and IRAS Imaging Observations of the W3-W4-W5 Cloud Complex

    NASA Technical Reports Server (NTRS)

    Heyer, Mark H.; Terebey, S.

    1998-01-01

    Panoramic images of 12CO J = 1-0 and thermal dust emissions from the W3-W4-W5 region of the outer Galaxy are presented. These data and recently published H I 21 cm line emission images provide an approximate 1' resolution perspective to the dynamics and thermal energy content of the interstellar gas and dust components contained within a 9 deg. arc of the Perseus spiral arm. We tabulate the molecular properties of 1560 clouds identified as closed surfaces within the l-b-v CO data cube at a threshold of 0.9 K T* (sub R). Relative surface densities of the molecular (28:1) and atomic (2.5:1) gas components determined within the arm and interarm velocity intervals demonstrate that the gas component that enters the spiral arm is predominantly atomic. Molecular clouds must necessarily condense from the compressed atomic material that enters the spiral arm and are likely short lived within the interarm regions. From the distribution of centroid velocities of clouds, we determine a random cloud-to-cloud velocity dispersion of 4 km s (exp. -1) over the width of the spiral arm but find no clear evidence within the molecular gas for streaming motions induced by the spiral potential. The far-infrared images are analyzed with the CO J = 1-0 and H I 21 cm line emission. The enhanced UV (Ultraviolet) radiation field from members of the Cas OB6 association and embedded newborn stars provide a significant source of heating to the extended dust component within the Perseus arm relative to the quiescent cirrus regions. Much of the measured far-infrared flux (69% at 60 micrometers and 47% at 100 micrometers) originates from regions associated with star formation rather than the extended, infrared cirrus component.

  20. The Anatomy of the Perseus Spiral ARM: (sup 12)CO and IRAS Imaging Observations of the W3-W4-W5 Cloud Complex

    NASA Technical Reports Server (NTRS)

    Heyer, Mark H.; Terebey, S.; Oliversen, R. (Technical Monitor)

    1998-01-01

    Panoramic images of (sup l2)CO J = 1-0 and thermal dust emissions from the W3-W4-W5 region of the outer Galaxy are presented. These data and recently published H (sub I) 21 cm line emission images provide an approx. 1 min resolution perspective to the dynamics and thermal energy content of the interstellar gas and dust components contained within a 9 deg arc of the Perseus spiral arm. We tabulate the molecular properties of 1560 clouds identified as closed surfaces within the l-b-v CO data cube at a threshold of 0.9 K T(sup *)(sub R). Relative surface densities of the molecular (28:1) and atomic (2.5: 1) gas components determined within the arm and interarm velocity intervals demonstrate that the gas component that enters the spiral arm is predominantly atomic. Molecular clouds must necessarily condense from the compressed atomic material that enters the spiral arm and are likely short lived within the interarm regions. From the distribution of centroid velocities of clouds, we determine a random cloud-to-cloud velocity dispersion of 4 km/s over the width of the spiral arm but find no clear evidence within the molecular gas for streaming motions induced by the spiral potential. The far-infrared images are analyzed with the CO J = 1-0 and H (sub I) 21 cm line emission. The enhanced UV radiation field from members of the Cas OB6 association and embedded newborn stars provide a significant source of heating to the extended dust component within the Perseus arm relative to the quiescent cirrus regions. Much of the measured far-infrared flux (69% at 60 microns and 47% at 100 microns) originates from regions associated with star formation rather than the extended, infrared cirrus component.

  1. Development and testing of airfoils for high-altitude aircraft

    NASA Technical Reports Server (NTRS)

    Drela, Mark (Principal Investigator)

    1996-01-01

    Specific tasks included airfoil design; study of airfoil constraints on pullout maneuver; selection of tail airfoils; examination of wing twist; test section instrumentation and layout; and integrated airfoil/heat-exchanger tests. In the course of designing the airfoil, specifically for the APEX test vehicle, extensive studies were made over the Mach and Reynolds number ranges of interest. It is intended to be representative of airfoils required for lightweight aircraft operating at extreme altitudes, which is the primary research objective of the APEX program. Also considered were thickness, pitching moment, and off-design behavior. The maximum ceiling parameter M(exp 2)C(sub L) value achievable by the Apex-16 airfoil was found to be a strong constraint on the pullout maneuver. The NACA 1410 and 2410 airfoils (inverted) were identified as good candidates for the tail, with predictable behavior at low Reynolds numbers and good tolerance to flap deflections. With regards to wing twist, it was decided that a simple flat wing was a reasonable compromise. The test section instrumentation consisted of surface pressure taps, wake rakes, surface-mounted microphones, and skin-friction gauges. Also, a modest wind tunnel test was performed for an integrated airfoil/heat-exchanger configuration, which is currently on Aurora's 'Theseus' aircraft. Although not directly related to the APEX tests, the aerodynamics or heat exchangers has been identified as a crucial aspect of designing high-altitude aircraft and hence is relevant to the ERAST program.

  2. Perseus

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    (abbrev. Per, gen. Persei; area 615 sq. deg.) A northern constellation which lies between Andromeda and Auriga, and culminates at midnight in early November. It is named after the hero in Greek mythology who beheaded the Gorgon Medusa and rescued Andromeda from being sacrificed to the sea monster Cetus. Its brightest stars were cataloged by Ptolemy (c. AD 100-175) in the Almagest....

  3. Cetus

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    (the Sea Monster or Whale; abbrev. Cet, gen. Ceti; area 1231 sq. deg.) An equatorial constellation which lies between Aquarius and Taurus, and culminates at midnight in October. It is named after the sea monster from which Perseus rescued Andromeda in Greek mythology, though it is sometimes identified as a whale. Its brightest stars were cataloged by Ptolemy (c. AD 100-175) in the Almagest....

  4. Pegasus

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    (the Winged Horse; abbrev. Peg, gen. Pegasi; area 1121 sq. deg.) A northern constellation that extends from Cygnus, Lacerta and Andromeda almost to the celestial equator, and culminates at midnight in early September. It is named after the winged horse in Greek mythology that sprang from the body of Medusa, the Gorgon, when she was beheaded by Perseus, and later was tamed by the hero Bellerophon. ...

  5. Extraterrestrial Radio Noise and Its Effect on Radar Performance

    DTIC Science & Technology

    1983-08-01

    by the function, Sa f-0.81. TABLE 1 EQUATORIAL COORDINATES OF MAJOR DISCRETE RADIO STARS Right Constellation Declination Ascension Andromeda 400 50...ASSIOPEIA( 4 - - -VIRGO(e• TAURU -, ,-,CYGNUS-Aia 0 ~PERSEUS(O)’i ANDROMEDA (a) 101 - z li izi ii- !liisl I I i 10-26 10-25 10-24 10-2 3 10-2 2

  6. SXR, A Novel Target for Breast Cancer Therapeutics

    DTIC Science & Technology

    2009-04-01

    incubated overnight at 4°C with SXR (Anti-412, or PP-H4417, Perseus Proteomics inc., Japan) or p53 (FL- 393 HRP, Santa Cruz Biotechnology Inc., USA) antibod...min at 37°C in the presence of 0.1 U/ml nitrate reductase (from Aspergillus species, Roche), 50 μM NADPH (Sigma, USA) and 5 μM FAD (Sigma, USA). When

  7. Alignment between Protostellar Outflows and Filamentary Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, Ian W.; Dunham, Michael M.; Myers, Philip C.

    2017-09-01

    We present new Submillimeter Array (SMA) observations of CO(2–1) outflows toward young, embedded protostars in the Perseus molecular cloud as part of the Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) survey. For 57 Perseus protostars, we characterize the orientation of the outflow angles and compare them with the orientation of the local filaments as derived from Herschel observations. We find that the relative angles between outflows and filaments are inconsistent with purely parallel or purely perpendicular distributions. Instead, the observed distribution of outflow-filament angles are more consistent with either randomly aligned angles or a mixmore » of projected parallel and perpendicular angles. A mix of parallel and perpendicular angles requires perpendicular alignment to be more common by a factor of ∼3. Our results show that the observed distributions probably hold regardless of the protostar’s multiplicity, age, or the host core’s opacity. These observations indicate that the angular momentum axis of a protostar may be independent of the large-scale structure. We discuss the significance of independent protostellar rotation axes in the general picture of filament-based star formation.« less

  8. The red supergiant population in the Perseus arm

    NASA Astrophysics Data System (ADS)

    Dorda, R.; Negueruela, I.; González-Fernández, C.

    2018-04-01

    We present a new catalogue of cool supergiants in a section of the Perseus arm, most of which had not been previously identified. To generate it, we have used a set of well-defined photometric criteria to select a large number of candidates (637) that were later observed at intermediate resolution in the infrared calcium triplet spectral range, using a long-slit spectrograph. To separate red supergiants from luminous red giants, we used a statistical method, developed in previous works and improved in the present paper. We present a method to assign probabilities of being a red supergiant to a given spectrum and use the properties of a population to generate clean samples, without contamination from lower luminosity stars. We compare our identification with a classification done using classical criteria and discuss their respective efficiencies and contaminations as identification methods. We confirm that our method is as efficient at finding supergiants as the best classical methods, but with a far lower contamination by red giants than any other method. The result is a catalogue with 197 cool supergiants, 191 of which did not appear in previous lists of red supergiants. This is the largest coherent catalogue of cool supergiants in the Galaxy.

  9. VizieR Online Data Catalog: Star-forming potential in the Perseus complex (Mercimek+, 2017)

    NASA Astrophysics Data System (ADS)

    Mercimek, S.; Myers, P. C.; Lee, K. I.; Sadavoy, S. I.

    2018-05-01

    We used published catalogs of cores and YSOs at different wavelengths ranging from sub-millimeter (850 μm) to infrared (1.25 μm). We focus on seven clumps in Perseus, which Sadavoy et al. (2014ApJ...787L..18S) showed in their Figure 1. They defined these clumps and their boundaries using a fitted Herschel-derived column density map. The column density threshold of AV~7 mag is proposed as a star formation threshold by Andre et al. (2010A&A...518L.102A), Lada et al. (2010ApJ...724..687L), and Evans et al. (2014ApJ...782..114E) and is equal to N(H2)~5x1021/cm2 (see also, Kirk et al. 2006, J/ApJ/646/1009; Andre et al. 2010A&A...518L.102A). We considered a core or YSO to be associated with a clump if it is located within the AV=7 mag contour of that clump from Sadavoy et al. (2014ApJ...787L..18S). We define a "source" to be a starless core or a YSO. (7 data files).

  10. Pathfinder-Plus on flight over Hawaiian Islands, with N'ihau and Lehua in the background

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on flight over Hawaiian Islands, with N'ihau and Lehua in the background. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  11. Thermal OH Emission, A New Tracer for Galaxy Structure: Z-Thickness and Rolling Motion of the Perseus Arm

    NASA Astrophysics Data System (ADS)

    Engelke, Philip; Allen, Ronald J.; Hogg, David E.

    2016-06-01

    Recent observations with the Green Bank Telescope (Allen et al. 2015) have shown that high-sensitivity measurements of OH 18-cm emission can be a useful alternative tracer for the large-scale distribution of molecular gas in the Galactic ISM. This component of the ISM is not well traced by 3-mm CO(1-0) emission. In the quiescent regions examined so far, fewer than half of the OH spectral features found show corresponding CO emission in the CfA survey (Dame el al. 2001). The intensities of the two main-line OH transitions at 1665 and 1667 MHz are in the “thermal” or LTE ratio of 5:9 and emanate from low-opacity gas with a wide spatial distribution similar to the HI. This morphology resembles that of the “dark gas” (or “dark neutral medium”) postulated by Grenier et al. (2005) as the possible source of target nucleii required to explain the excess gamma ray emission from the Galactic ISM. OH 18-cm emission provides a new tool for studies of the quantity, distance, and kinematics of this new CO-dark molecular component of the ISM. As a demonstration of the utility of this new tool, we apply it to two questions about the molecular structure of the Perseus Arm: the thickness in the z-direction, and the rolling motions of the arm discovered in the earliest HI maps of the Galaxy (e.g. Oort 1962, Rougoor 1964). Using OH emission as a molecular tracer, we find that the molecular component of gas in the Perseus Arm has a comparable z-thickness to that measured using HI, although it appears to be clumpier. OH also shows that the molecular component experiences the “rolling motions” known from the HI data. As a molecular tracer, OH allows more regions to be observed than can be observed using CO(1-0), and as an optically-thin emission line, OH can provide direct column density measurements.

  12. A New Outer Galaxy Molecular Cloud Catalog: Applications to Galactic Structure

    NASA Astrophysics Data System (ADS)

    Kerton, C. R.; Brunt, C. M.; Pomerleau, C.

    2001-12-01

    We have generated a new molecular cloud catalog from a reprocessed version of the Five College Radio Astronomy (FCRAO) Observatory Outer Galaxy Survey (OGS) of 12CO (J=1--0) emission. The catalog has been used to develop a technique that uses the observed angular size-linewidth relation (ASLWR) as a distance indicator to molecular cloud ensembles. The new technique is a promising means to map out the large-scale structure of our Galaxy using the new high spatial dynamic range CO surveys currently available. The catalog was created using a two-stage object-identification algorithm. We first identified contiguous emission structures of a specified minimum number of pixels above a specified temperature threshold. Each structure so defined was then examined and localized emission enhancements within each structure were identified as separate objects. The resulting cloud catalog, contains basic data on 14595 objects. From the OGS we identified twenty-three cloud ensembles. For each, bisector fits to angular size vs. linewidth plots were made. The fits vary in a systematic way that allows a calibration of the fit parameters with distance to be made. Our derived distances to the ensembles are consistent with the distance to the Perseus Arm, and the accurate radial velocity measurements available from the same data are in accord with the known non-circular motions at the location of the Perseus Arm. The ASLWR method was also successfully applied to data from the Boston University/FCRAO Galactic Ring Survey (GRS) of 13CO(J=1--0) emission. Based upon our experience with the GRS and OGS, the ASLWR technique should be usable in any data set with sufficient spatial dynamic range to allow it to be properly calibrated. C.P. participated in this study through the Women in Engineering and Science (WES) program of NRC Canada. The Dominion Radio Astrophysical Observatory is a National Facility operated by the National Research Council. The Canadian Galactic Plane Survey is a Canadian project with international partners, and is supported by the Natural Sciences and Engineering Research Council (NSERC).

  13. Satellite communications provisions on NASA Ames instrumented aircraft platforms for Earth science research/applications

    NASA Technical Reports Server (NTRS)

    Shameson, L.; Brass, J. A.; Hanratty, J. J.; Roberts, A. C.; Wegener, S. S.

    1995-01-01

    Earth science activities at NASA Ames are research in atmospheric and ecosystem science, development of remote sensing and in situ sampling instruments, and their integration into scientific research platform aircraft. The use of satellite communications can greatly extend the capability of these agency research platform aircraft. Current projects and plans involve satellite links on the Perseus UAV and the ER-2 via TDRSS and a proposed experiment on the NASA Advanced Communications Technology Satellite. Provisions for data links on the Perseus research platform, via TDRSS S-band multiple access service, have been developed and are being tested. Test flights at Dryden are planned to demonstrate successful end-to-end data transfer. A Unisys Corp. airborne satcom STARLink system is being integrated into an Ames ER-2 aircraft. This equipment will support multiple data rates up to 43 Mb/s each via the TDRS S Ku-band single access service. The first flight mission for this high-rate link is planned for August 1995. Ames and JPL have proposed an ACTS experiment to use real-time satellite communications to improve wildfire research campaigns. Researchers and fire management teams making use of instrumented aircraft platforms at a prescribed burn site will be able to communicate with experts at Ames, the U.S. Forest Service, and emergency response agencies.

  14. Atomic data and spectral modeling constraints from high-resolution X-ray observations of the Perseus cluster with Hitomi

    NASA Astrophysics Data System (ADS)

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hell, Natalie; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shin'ichiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen; Raassen, A. J. J.

    2018-03-01

    The Hitomi Soft X-ray Spectrometer spectrum of the Perseus cluster, with ˜5 eV resolution in the 2-9 keV band, offers an unprecedented benchmark of the atomic modeling and database for hot collisional plasmas. It reveals both successes and challenges of the current atomic data and models. The latest versions of AtomDB/APEC (3.0.8), SPEX (3.03.00), and CHIANTI (8.0) all provide reasonable fits to the broad-band spectrum, and are in close agreement on best-fit temperature, emission measure, and abundances of a few elements such as Ni. For the Fe abundance, the APEC and SPEX measurements differ by 16%, which is 17 times higher than the statistical uncertainty. This is mostly attributed to the differences in adopted collisional excitation and dielectronic recombination rates of the strongest emission lines. We further investigate and compare the sensitivity of the derived physical parameters to the astrophysical source modeling and instrumental effects. The Hitomi results show that accurate atomic data and models are as important as the astrophysical modeling and instrumental calibration aspects. Substantial updates of atomic databases and targeted laboratory measurements are needed to get the current data and models ready for the data from the next Hitomi-level mission.

  15. Searching for the 3.5 keV Line in the Stacked Suzaku Observations of Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Bulbul, Esra; Markevitch, Maxim; Foster, Adam; Miller, Eric; Bautz, Mark; Lowenstein, Mike; Randall, Scott W.; Smith, Randall K.

    2016-01-01

    We perform a detailed study of the stacked Suzaku observations of 47 galaxy clusters, spanning a redshift range of 0.01-0.45, to search for the unidentified 3.5 keV line. This sample provides an independent test for the previously detected line. We detect a 2sigma-significant spectral feature at 3.5 keV in the spectrum of the full sample. When the sample is divided into two subsamples (cool-core and non-cool core clusters), the cool-core subsample shows no statistically significant positive residuals at the line energy. A very weak (approx. 2sigma confidence) spectral feature at 3.5 keV is permitted by the data from the non-cool-core clusters sample. The upper limit on a neutrino decay mixing angle of sin(sup 2)(2theta) = 6.1 x 10(exp -11) from the full Suzaku sample is consistent with the previous detections in the stacked XMM-Newton sample of galaxy clusters (which had a higher statistical sensitivity to faint lines), M31, and Galactic center, at a 90% confidence level. However, the constraint from the present sample, which does not include the Perseus cluster, is in tension with previously reported line flux observed in the core of the Perseus cluster with XMM-Newton and Suzaku.

  16. Optimal Configuration and Deployment of Software on Multi-Core Processing Architectures

    DTIC Science & Technology

    2008-07-01

    between the event generating threads and the collector thread is implemented through semaphores . The Perseus data logger is designed to minimize the...performance counters (through the PAPI API) and opens up access to the shared memory logger through a semaphore and Remote Procedure Call (RPC) buffer... synchronization events. Using this rich data, the TMAM is able to output all of the information necessary to identify precisely which pairs of thread

  17. Energy spectra of X-ray clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Avni, Y.

    1976-01-01

    A procedure for estimating the ranges of parameters that describe the spectra of X-rays from clusters of galaxies is presented. The applicability of the method is proved by statistical simulations of cluster spectra; such a proof is necessary because of the nonlinearity of the spectral functions. Implications for the spectra of the Perseus, Coma, and Virgo clusters are discussed. The procedure can be applied in more general problems of parameter estimation.

  18. Sseven-color Photometry and Classification of Stars in the Vicinity of the Emission Nebula Sh2-205

    NASA Astrophysics Data System (ADS)

    Čepas, V.; Zdanavičius, J.; Zdanavičius, K.; Straižys, V.; Laugalys, V.

    We present the results of CCD photometry in the seven-color Vilnius system for 922 stars down to V = 17 mag in a 1.5 square degree field at the northern edge of the H II region Sh2-205, at the Perseus and Camelopardalis border. Using the intrinsic color indices and photometric reddening-free Q-parameters, two-dimensional spectral types for most stars are determined.

  19. ED03-0152-1

    NASA Image and Video Library

    2003-06-07

    The first flight of a large aircraft to be powered by electric fuel cells began with a takeoff at 8:43 a.m. HST today from the Hawaiian island of Kauai. The Helios Prototype flying wing, built by AeroVironment, Inc., of Monrovia, Calif., as part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program, used solar panels to power its 10 electric motors for takeoff and during daylight portions of its planned 20-hour shakedown flight. As sunlight diminishes, Helios will switch to a fuel cell system to continue flight into the night. The takeoff set the stage for a two-day Helios endurance flight in the stratosphere planned for mid-July. The Helios wing, spanning 247 feet and weighing about 2,400 pounds, gave NASA and industry engineers confidence that remotely piloted aircraft would be able to stay aloft for weeks at a time, providing environmental monitoring capabilities and telecommunications relay services. Helios was an all-electric airplane. In addition to being non-polluting, Helios flew above storms, and used the power of the sun to stay aloft during daylight. Key to the success of this type of aircraft was the ability to fly in darkness, using fuel cells when sunlight cannot furnish energy. Helios flew over the Navy's Pacific Missile Range Facility where favorable sun exposure and test ranges closed to other air traffic benefited the NASA research effort. In 2003 the aircraft was lost to a crash.

  20. Magnetic fields in the Perseus Spiral Arm and in Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Hoq, Sadia

    2017-04-01

    The magnetic (B) field is ubiquitous throughout the Milky Way. Several fundamental questions about the B-field in the cool, star-forming interstellar medium (ISM) remain unanswered. In this dissertation, near-infrared (NIR) polarimetric observations are used to study the large-scale Galactic B-field in the cool ISM in a spiral arm and to determine the role of B-fields in the formation of Infrared Dark Clouds (IRDCs). NIR polarimetry of 31 star clusters, located in and around the Perseus spiral arm, were obtained to determine the orientation of the plane-of-sky B-field in the outer Galaxy, and whether the presence of a spiral arm influenced B-field properties. Cluster distances, which provide upper limits to the B-field probed by observations, were estimated by developing a maximum likelihood method to fit theoretical stellar isochrones to stars in cluster color-magnitude diagrams (CMDs). Using the distance estimates, the cluster locations relative to the Perseus arm were found. The cluster polarization percentages and orientations were compared between clusters foreground to the arm and clusters inside or behind the arm. The cluster polarization orientations are predominantly parallel to the Galactic plane. Clusters inside and behind the arm have larger polarization percentages, likely a result of more polarizing material along the line of sight. The cluster polarization data were also compared to optical, inner Galaxy NIR, and Planck submm polarimetry data, and showed agreement with all three data sets. The polarimetric properties of one IRDC, G28.23, were determined using deep NIR observations. The polarization orientations relative to the cloud major axis were found to change directions with distance from the cloud axis. The B-field strength was estimated to be 10 to 100microG. Despite these large inferred B-field strengths, the B-field was found not to be the dominant force in the formation of the IRDC, though the B-field morphology was influenced by the cloud. Using NIR observations, the B-field of 27 IRDCs were studied. The relative polarization orientations with respect to the cloud major axes were found. No preferential relative orientation was found, implying that the B-field did not greatly influence the formation of this sample of IRDCs.

  1. The open cluster IC 1805 and its vicinity: investigation of stars in the Vilnius, IPHAS, 2MASS, and WISE systems

    NASA Astrophysics Data System (ADS)

    Straižys, V.; Boyle, R. P.; Janusz, R.; Laugalys, V.; Kazlauskas, A.

    2013-06-01

    The results of CCD photometry in the Vilnius seven-color system down to V = 18 mag are presented for 242 stars in the direction of the young open cluster IC 1805 that is located in the active star-forming region W4 in the Cas OB6 association. Photometric data were used to classify stars into spectral and luminosity classes, and to determine their interstellar reddenings, extinctions and distances. We confirm the CH3OH and H2O maser VLBA parallax results that the cluster is located close to the front side of the Perseus arm, at a distance about 2.0 kpc. In the color-magnitude diagram, zero-age main sequence (ZAMS) stars of the cluster extend to spectral class A0. The extinction values for the majority of the cluster stars are between 2.2 and 2.7 mag, with a mean value of 2.46 mag. This extinction originates mainly between the Sun and the outer edge of the Local arm, in accordance with the distribution of CO clouds. In the Perseus arm and beyond, the extinction was investigated using the classification and reddening determination for A0-F0 stars measured in the r, i, Hα system of the IPHAS survey to r = 19 mag. The extinction AV within the Perseus arm ranges from 2.5-4.5 mag at the front edge to 3.0-5.0 mag at the far edge. Possibly, we have found about 20 early A-type stars located in the Outer arm. The 2MASS JHKs photometry for red giants gives much higher extinction values (up to about 6 mag), which would correspond to the stars located behind dense clouds of both arms. In the area, using the WISE, 2MASS, and IPHAS photometry data, 18 possible young stellar objects (YSOs) of low masses are identified. Six high-mass YSOs (five Ae/Be stars and a F6e star) are known from previous investigations. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/554/A3

  2. A Survey For Planetary-mass Brown Dwarfs in the Taurus and Perseus Star-forming Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esplin, T. L.; Luhman, K. L., E-mail: taran.esplin@psu.edu

    We present the initial results from a survey for planetary-mass brown dwarfs in the Taurus star-forming region. We have identified brown dwarf candidates in Taurus using proper motions and photometry from several ground- and space-based facilities. Through spectroscopy of some of the more promising candidates, we have found 18 new members of Taurus. They have spectral types ranging from mid-M to early-L, and they include the four faintest known members in extinction-corrected K{sub s}, which should have masses as low as ∼4–5 M {sub Jup} according to evolutionary models. Two of the coolest new members (M9.25, M9.5) have mid-IR excessesmore » that indicate the presence of disks. Two fainter objects with types of M9–L2 and M9–L3 also have red mid-IR colors relative to photospheres at ≤L0, but since the photospheric colors are poorly defined at >L0, it is unclear whether they have excesses from disks. We also have obtained spectra of candidate members of the IC 348 and NGC 1333 clusters in Perseus that were identified by Luhman et al. Eight candidates are found to be probable members, three of which are among the faintest and least-massive known members of the clusters (∼5 M{sub Jup}).« less

  3. Atmospheric gas dynamics in the Perseus cluster observed with Hitomi

    NASA Astrophysics Data System (ADS)

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Canning, Rebecca E. A.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashi, Tasuku; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Shota; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Keigo; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shin'ichiro; Urry, C. Megan; Ursino, Eugenio; Wang, Qian H. S.; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen

    2018-03-01

    Extending the earlier measurements reported in Hitomi collaboration (2016, Nature, 535, 117), we examine the atmospheric gas motions within the central 100 kpc of the Perseus cluster using observations obtained with the Hitomi satellite. After correcting for the point spread function of the telescope and using optically thin emission lines, we find that the line-of-sight velocity dispersion of the hot gas is remarkably low and mostly uniform. The velocity dispersion reaches a maxima of approximately 200 km s-1 toward the central active galactic nucleus (AGN) and toward the AGN inflated northwestern "ghost" bubble. Elsewhere within the observed region, the velocity dispersion appears constant around 100 km s-1. We also detect a velocity gradient with a 100 km s-1 amplitude across the cluster core, consistent with large-scale sloshing of the core gas. If the observed gas motions are isotropic, the kinetic pressure support is less than 10% of the thermal pressure support in the cluster core. The well-resolved, optically thin emission lines have Gaussian shapes, indicating that the turbulent driving scale is likely below 100 kpc, which is consistent with the size of the AGN jet inflated bubbles. We also report the first measurement of the ion temperature in the intracluster medium, which we find to be consistent with the electron temperature. In addition, we present a new measurement of the redshift of the brightest cluster galaxy NGC 1275.

  4. Dynamical histories of the IC 348 and NGC 1333 star-forming regions in Perseus

    NASA Astrophysics Data System (ADS)

    Parker, Richard J.; Alves de Oliveira, Catarina

    2017-07-01

    We present analyses of the spatial distributions of stars in the young (1-3 Myr) star-forming regions IC 348 and NGC 1333 in the Perseus giant molecular cloud. We quantify the spatial structure using the Q-parameter and find that both IC 348 and NGC 1333 are smooth and centrally concentrated with Q-parameters of 0.98 and 0.89, respectively. Neither region exhibits mass segregation (Λ _MSR = 1.1^{+0.2}_{-0.3} for IC 348 and Λ _MSR = 1.2^{+0.4}_{-0.3} for NGC 1333, where ΛMSR ˜ 1 corresponds to no mass segregation) nor do the most massive stars reside in areas of enhanced stellar surface density compared to the average surface density, according to the ΣLDR method. We then constrain the dynamical histories and hence initial conditions of both regions by comparing the observed values to N-body simulations at appropriate ages. Stars in both regions likely formed with subvirial velocities that contributed to merging of substructure and the formation of smooth clusters. The initial stellar densities were no higher than ρ ˜ 100-500 M⊙ pc-3 for IC 348 and ρ ˜ 500-2000 M⊙ pc-3 for NGC 1333. These initial densities, in particular that of NGC 1333, are high enough to facilitate dynamical interactions that would likely affect ˜10 per cent of protoplanetary discs and binary stars.

  5. Attitudes toward the unconscious.

    PubMed

    Beebe, J

    1997-01-01

    As a keynote to a conference bringing together psychoanalysts and analytical psychologists, this paper addresses different mythic attitudes toward the unconscious, starting with the caricatures of Oedipus and Narcissus that the author feels Jung and Freud originally projected onto each other in the course of their quarrel. He moves on to the fairytale-like stories of Perseus and Beauty and the Beast to discover more complex images of the stance taken in relation to the unconscious by present-day analysts working within both the Jungian and the Freudian traditions.

  6. Role of Meteorology in Flights of a Solar-Powered Airplane

    NASA Technical Reports Server (NTRS)

    Donohue, Casey

    2004-01-01

    In the summer of 2001, the Helios prototype solar-powered uninhabited aerial vehicle (UAV) [a lightweight, remotely piloted airplane] was deployed to the Pacific Missile Range Facility (PMRF), at Kauai, Hawaii, in an attempt to fly to altitudes above 100,000 ft (30.48 km). The goal of flying a UAV to such high altitudes has been designated a level-I milestone of the NASA Environmental Research Aircraft and Sensor Technology (ERAST) program. In support of this goal, meteorologists from NASA Dryden Flight Research Center were sent to PMRF, as part of the flight crew, to provide current and forecast weather information to the pilots, mission directors, and planners. Information of this kind is needed to optimize flight conditions for peak aircraft performance and to enable avoidance of weather conditions that could adversely affect safety. In general, the primary weather data of concern for ground and flight operations are wind speeds (see Figure 1). Because of its long wing span [247 ft (.75 m)] and low weight [1,500 to 1,600 lb (about 680 to 726 kg)], the Helios airplane is sensitive to wind speeds exceeding 7 kn (3.6 m/s) at the surface. Also, clouds are of concern because they can block sunlight needed to energize an array of solar photovoltaic cells that provide power to the airplane. Vertical wind shear is very closely monitored in order to prevent damage or loss of control due to turbulence.

  7. ED03-0152-2

    NASA Image and Video Library

    2003-06-07

    The first flight of a large aircraft to be powered by electric fuel cells began with a takeoff at 8:43 a.m. HST today from the Hawaiian island of Kauai. The Helios Prototype flying wing, built by AeroVironment, Inc., of Monrovia, Calif., as part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program, used solar panels to power its 10 electric motors for takeoff and during daylight portions of its planned 20-hour shakedown flight. As sunlight diminishes, Helios will switch to a fuel cell system to continue flight into the night. The takeoff set the stage for a two-day Helios endurance flight in the stratosphere planned for mid-July. The Helios wing, spanning 247 feet and weighing about 2,400 pounds, is giving NASA and industry engineers confidence that remotely piloted aircraft will be able to stay aloft for weeks at a time, providing environmental monitoring capabilities and telecommunications relay services. Helios is an all-electric airplane. In addition to being non-polluting, Helios can fly above storms, and use the power of the sun to stay aloft during daylight. Key to the success of this type of aircraft is the ability to fly in darkness, using fuel cells when sunlight cannot furnish energy. Helios flew over the Navy's Pacific Missile Range Facility where favorable sun exposure and test ranges closed to other air traffic benefited the NASA research effort. In 2003 the aircraft was lost to a crash.

  8. ED03-0152-4

    NASA Image and Video Library

    2003-06-07

    The first flight of a large aircraft to be powered by electric fuel cells began with a takeoff at 8:43 a.m. HST today from the Hawaiian island of Kauai. The Helios Prototype flying wing, built by AeroVironment, Inc., of Monrovia, Calif., as part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program, used solar panels to power its 10 electric motors for takeoff and during daylight portions of its planned 20-hour shakedown flight. As sunlight diminishes, Helios will switch to a fuel cell system to continue flight into the night. The takeoff set the stage for a two-day Helios endurance flight in the stratosphere planned for mid-July. The Helios wing, spanning 247 feet and weighing about 2,400 pounds, is giving NASA and industry engineers confidence that remotely piloted aircraft will be able to stay aloft for weeks at a time, providing environmental monitoring capabilities and telecommunications relay services. Helios is an all-electric airplane. In addition to being non-polluting, Helios can fly above storms, and use the power of the sun to stay aloft during daylight. Key to the success of this type of aircraft is the ability to fly in darkness, using fuel cells when sunlight cannot furnish energy. Helios flew over the Navy's Pacific Missile Range Facility where favorable sun exposure and test ranges closed to other air traffic benefited the NASA research effort. In 2003 the aircraft was lost to a crash.

  9. ED03-0152-3

    NASA Image and Video Library

    2003-06-07

    The first flight of a large aircraft to be powered by electric fuel cells began with a takeoff at 8:43 a.m. HST today from the Hawaiian island of Kauai. The Helios Prototype flying wing, built by AeroVironment, Inc., of Monrovia, Calif., as part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program, used solar panels to power its 10 electric motors for takeoff and during daylight portions of its planned 20-hour shakedown flight. As sunlight diminishes, Helios will switch to a fuel cell system to continue flight into the night. The takeoff set the stage for a two-day Helios endurance flight in the stratosphere planned for mid-July. The Helios wing, spanning 247 feet and weighing about 2,400 pounds, is giving NASA and industry engineers confidence that remotely piloted aircraft will be able to stay aloft for weeks at a time, providing environmental monitoring capabilities and telecommunications relay services. Helios is an all-electric airplane. In addition to being non-polluting, Helios can fly above storms, and use the power of the sun to stay aloft during daylight. Key to the success of this type of aircraft is the ability to fly in darkness, using fuel cells when sunlight cannot furnish energy. Helios flew over the Navy's Pacific Missile Range Facility where favorable sun exposure and test ranges closed to other air traffic benefited the NASA research effort. In 2003 the aircraft was lost to a crash.

  10. ED03-0152-32

    NASA Image and Video Library

    2003-06-07

    The first flight of a large aircraft to be powered by electric fuel cells began with a takeoff at 8:43 a.m. HST today from the Hawaiian island of Kauai. The Helios Prototype flying wing, built by AeroVironment, Inc., of Monrovia, Calif., as part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program, used solar panels to power its 10 electric motors for takeoff and during daylight portions of its planned 20-hour shakedown flight. As sunlight diminishes, Helios will switch to a fuel cell system to continue flight into the night. The takeoff set the stage for a two-day Helios endurance flight in the stratosphere planned for mid-July. The Helios wing, spanning 247 feet and weighing about 2,400 pounds, is giving NASA and industry engineers confidence that remotely piloted aircraft will be able to stay aloft for weeks at a time, providing environmental monitoring capabilities and telecommunications relay services. Helios is an all-electric airplane. In addition to being non-polluting, Helios can fly above storms, and use the power of the sun to stay aloft during daylight. Key to the success of this type of aircraft is the ability to fly in darkness, using fuel cells when sunlight cannot furnish energy. Helios flew over the Navy's Pacific Missile Range Facility where favorable sun exposure and test ranges closed to other air traffic benefited the NASA research effort. In 2003 the aircraft was lost to a crash.

  11. Central Elemental Abundance Ratios In the Perseus Cluster: Resonant Scattering or SN Ia Enrichment?

    NASA Technical Reports Server (NTRS)

    Dupke, Renato A.; Arnaud, Keith; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We have determined abundance ratios in the core of the Perseus Cluster for several elements. These ratios indicate a central dominance of Type 1a supernova (SN Ia) ejects similar to that found for A496, A2199 and A3571. Simultaneous analysis of ASCA spectra from SIS1, GIS2, and GIS3 shows that the ratio of Ni to Fe abundances is approx. 3.4 +/- 1.1 times solar within the central 4'. This ratio is consistent with (and more precise than) that observed in other clusters whose central regions are dominated by SN Ia ejecta. Such a large Ni overabundance is predicted by "convective deflagration" explosion models for SNe Ia such as W7 but is inconsistent with delayed detonation models. We note that with current instrumentation the Ni K(alpha) line is confused with Fe K(beta) and that the Ni overabundance we observe has been interpreted by others as an anomalously large ratio of Fe K(beta) to Fe K(alpha) caused by resonant scattering in the Fe K(alpha) line. We argue that a central enhancement of SN Ia ejecta and hence a high ratio of Ni to Fe abundances are naturally explained by scenarios that include the generation of chemical gradients by suppressed SN Ia winds or ram pressure stripping of cluster galaxies. It is not necessary to suppose that the intracluster gas is optically thick to resonant scattering of the Fe K(alpha) line.

  12. The influence of the Hall term on the development of magnetized laser-produced plasma jets

    NASA Astrophysics Data System (ADS)

    Hamlin, N. D.; Seyler, C. E.; Khiar, B.

    2018-04-01

    We present 2D axisymmetric simulation results describing the influence of the Hall term on laser-produced plasma jets and their interaction with an applied magnetic field parallel to the laser axis. Bending of the poloidal B-field lines produces an MHD shock structure surrounding a conical cavity, and a jet is produced from the convergence of the shock envelope. Both the jet and the conical cavity underneath it are bound by fast MHD shocks. We compare the MHD results generated using the extended-MHD code Physics as an Extended-MHD Relaxation System with an Efficient Upwind Scheme (PERSEUS) with MHD results generated using GORGON and find reasonable agreement. We then present extended-MHD results generated using PERSEUS, which show that the Hall term has several effects on the plasma jet evolution. A hot low-density current-carrying layer of plasma develops just outside the plume, which results in a helical rather than a purely poloidal B-field, and reduces magnetic stresses, resulting in delayed flow convergence and jet formation. The flow is partially frozen into the helical field, resulting in azimuthal rotation of the jet. The Hall term also produces field-aligned current in strongly magnetized regions. In particular, we find the influence of Hall physics on this problem to be scale-dependent. This points to the importance of mitigating the Hall effect in a laboratory setup, by increasing the jet density and system dimensions, in order to avoid inaccurate extrapolation to astrophysical scales.

  13. Derivation and validation of the prediabetes self-assessment screening score after acute pancreatitis (PERSEUS).

    PubMed

    Soo, Danielle H E; Pendharkar, Sayali A; Jivanji, Chirag J; Gillies, Nicola A; Windsor, John A; Petrov, Maxim S

    2017-10-01

    Approximately 40% of patients develop abnormal glucose metabolism after a single episode of acute pancreatitis. This study aimed to develop and validate a prediabetes self-assessment screening score for patients after acute pancreatitis. Data from non-overlapping training (n=82) and validation (n=80) cohorts were analysed. Univariate logistic and linear regression identified variables associated with prediabetes after acute pancreatitis. Multivariate logistic regression developed the score, ranging from 0 to 215. The area under the receiver-operating characteristic curve (AUROC), Hosmer-Lemeshow χ 2 statistic, and calibration plots were used to assess model discrimination and calibration. The developed score was validated using data from the validation cohort. The score had an AUROC of 0.88 (95% CI, 0.80-0.97) and Hosmer-Lemeshow χ 2 statistic of 5.75 (p=0.676). Patients with a score of ≥75 had a 94.1% probability of having prediabetes, and were 29 times more likely to have prediabetes than those with a score of <75. The AUROC in the validation cohort was 0.81 (95% CI, 0.70-0.92) and the Hosmer-Lemeshow χ 2 statistic was 5.50 (p=0.599). Model calibration of the score showed good calibration in both cohorts. The developed and validated score, called PERSEUS, is the first instrument to identify individuals who are at high risk of developing abnormal glucose metabolism following an episode of acute pancreatitis. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  14. The Mass Evolution of Protostellar Disks and Envelopes in the Perseus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Andersen, Bridget; Stephens, Ian; Dunham, Michael; Pokhrel, Riwaj; Jørgensen, Jes; Frimann, Søren

    2018-01-01

    In the standard picture for low-mass star formation, a dense molecular cloud undergoes gravitational collapse to form a protostellar system consisting of a new central star, a circumstellar disk, and a surrounding envelope of remaining material. The mass distribution of the system evolves as matter accretes from the large-scale envelope through the disk and onto the protostar. While this general picture is supported by simulations and indirect observational measurements, the specific timescales related to disk growth and envelope dissipation remain poorly constrained. We present a rigorous test of a method introduced by Jørgensen et al. (2009) to obtain observational mass measurements of disks and envelopes around embedded protostars from unresolved (resolution of ~1000 AU) observations. Using data from the recent Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) survey, we derive disk and envelope mass estimates for 59 protostellar systems in the Perseus molecular cloud. We compare our results to independent disk mass measurements from the VLA Nascent Disk and Multiplicity (VANDAM) survey and find a strong linear correlation. Then, leveraging the size and uniformity of our sample, we find no significant trend in protostellar mass distribution as a function of age, as approximated from bolometric temperatures. These results may indicate that the disk mass of a protostar is set near the onset of the Class 0 protostellar stage and remains roughly constant throughout the Class I protostellar stage.

  15. Detection of Intracluster Gas Bulk Velocities in the Perseus and Centaurus Clusters

    NASA Astrophysics Data System (ADS)

    Dupke, Renato A.; Bregman, Joel N.

    We report the results of spatially resolved X-ray spectroscopy of 8 different ASCApointings distributed symmetrically around the center of the Perseus cluster. The outer region of the intracluster gas is roughly isothermal, with temperature ~ 6-7 keV, and metal abundance ~ 0.3 Solar. Spectral analysis of the central pointing is consistent with the presence of a cooling flow and a central metal abundance gradient. A significant velocity gradient is found along an axis highly discrepant with the major axis of the X-ray elongation. The radial velocity difference is found to be greater than 1000 km s-1Mpc-1 at the 90% confidence level. Simultaneous fittings of GIS 2 & 3 indicate that two symmetrically opposed regions have different radial velocities at the 95% confidence level and the F-test rules out constant velocities for these regions at the 99% level. Intrinsic short and long term variations of gain are unlikely (P < 0.03) to explain the velocity discrepancies. We also report the preliminary results of a similar analysis carried out for the Centaurus cluster, where long-exposure SIS data is available. We also find a significant velocity gradient near the central regions (3'-8' of Centaurus. If attributed to bulk rotation the correspondent circular velocity is ~1500±150 km s-1 (at 90% confidence). The line of maximum velocity gradient in Centaurus is near-perpendicular to the infalling galaxy group associated with NGC 4709.

  16. ALMA’s Polarized View of 10 Protostars in the Perseus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Cox, Erin G.; Harris, Robert J.; Looney, Leslie W.; Li, Zhi-Yun; Yang, Haifeng; Tobin, John J.; Stephens, Ian

    2018-03-01

    We present 870 μm ALMA dust polarization observations of 10 young Class 0/I protostars in the Perseus Molecular Cloud. At ∼0.″35 (80 au) resolution, all of our sources show some degree of polarization, with most (9/10) showing significantly extended emission in the polarized continuum. Each source has incredibly intricate polarization signatures. In particular, all three disk-candidates have polarization vectors roughly along the minor axis, which is indicative of polarization produced by dust scattering. On ∼100 au scales, the polarization is at a relatively low level (≲1%) and is quite ordered. In sources with significant envelope emission, the envelope is typically polarized at a much higher (≳5%) level and has a far more disordered morphology. We compute the cumulative probability distributions for both the small (disk-scale) and large (envelope-scale) polarization percentage. We find that the two are intrinsically different, even after accounting for the different detection thresholds in the high/low surface brightness regions. We perform Kolmogorov–Smirnov and Anderson–Darling tests on the distributions of angle offsets of the polarization from the outflow axis. We find disk-candidate sources are different from the non-disk-candidate sources. We conclude that the polarization on the 100 au scale is consistent with the signature of dust scattering for disk-candidates and that the polarization on the envelope-scale in all sources may come from another mechanism, most likely magnetically aligned grains.

  17. EC02-0031-6

    NASA Image and Video Library

    2002-02-01

    The Helios Prototype flying wing stretches almost the full length of the 300-foot-long hangar at NASA's Dryden Flight Research Center, Edwards, California. The 247-foot span solar-powered aircraft, resting on its ground maneuvering dolly, was on display for a visit of NASA Administrator Sean O'Keefe and other NASA officials on January 31, 2002. The unique solar-electric flying wing reached an altitude of 96,863 feet during an almost 17-hour flight near Hawaii on August 13, 2001, a world record for sustained horizontal flight by a non-rocket powered aircraft. Developed by AeroVironment, Inc., under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude uninhabited aerial vehicles (UAV) which can serve as "atmospheric satellites," performing Earth science missions or functioning as telecommunications relay platforms in the stratosphere.

  18. EC02-0031-7

    NASA Image and Video Library

    2002-02-01

    The solar-powered Helios Prototype flying wing frames two modified F-15 research aircraft in a hangar at NASA's Dryden Flight Research Center, Edwards, California. The elongated 247-foot span lightweight aircraft, resting on its ground maneuvering dolly, stretched almost the full length of the 300-foot long hangar while on display during a visit of NASA Administrator Sean O'Keefe and other NASA officials on Jan. 31, 2002. The unique solar-electric flying wing reached an altitude of 96,863 feet during an almost 17-hour flight near Hawaii on Aug. 13, 2001, a world record for sustained horizontal flight by a non-rocket powered aircraft. Developed by AeroVironment, Inc., under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude uninhabited aerial vehicles (UAV) which can serve as "atmospheric satellites," performing Earth science missions or functioning as telecommunications relay platforms in the stratosphere.

  19. Evidence of scaling of void probability in nucleus-nucleus interactions at few GeV energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Dipak; Biswas, Biswanath; Deb, Argha

    1997-11-01

    The rapidity gap probability in the {sup 24}Mg-AgBr interaction at 4.5GeV/c/nucleon has been studied in detail. The data reveal scaling behavior of the void probability in the central rapidity domain which confirms the validity of the linked-pair approximation for the N-particle cumulant correlation functions. This scaling behavior appears to be similar to the void probability in the Perseus-Pisces supercluster region of galaxies. {copyright} {ital 1997} {ital The American Physical Society}

  20. Surveying Low-Mass Star Formation with the Submillimeter Array

    NASA Astrophysics Data System (ADS)

    Dunham, Michael

    2018-01-01

    Large astronomical surveys yield important statistical information that can’t be derived from single-object and small-number surveys. In this talk I will review two recent surveys in low-mass star formation undertaken by the Submillimeter Array (SMA): a millimeter continuum survey of disks surrounding variably accreting young stars, and a complete continuum and molecular line survey of all protostars in the nearby Perseus Molecular Cloud. I will highlight several new insights into the processes by which low-mass stars gain their mass that have resulted from the statistical power of these surveys.

  1. Optical Spectroscopy of TCP J04432130+4721280 (V392 Per) Confirms a Nova Eruption

    NASA Astrophysics Data System (ADS)

    Wagner, R. M.; Terndrup, D.; Darnley, M. J.; Starrfield, S.; Woodward, C. E.; Henze, M.

    2018-04-01

    Following reports of a new transient of magnitude 6.2 in Perseus on 2018 April 29.4740 UT discovered by Y. Nakamura designated TCP J04432130+4721280 (http://www.cbat.eps.harvard.edu/unconf/followups/J04432130+4721280.html) and positionally coincident with the previously known U Gem type dwarf nova V392 Per, we obtained an optical spectrum on 2018 April 30.116 UT (range: 396-687 nm; resolution 0.3 nm) with the 2.4 m Hiltner telescope (+OSMOS) of the MDM Observatory on Kitt Peak.

  2. The QUIJOTE experiment

    NASA Astrophysics Data System (ADS)

    López-Caniego, Marcos

    2015-08-01

    The QUIJOTE (Q-U-I JOint Tenerife) CMB Experiment is observing the polarization of the Cosmic Microwave Background and other Galactic and extragalactic signals at medium and large angular scales in the frequency range of 10-40 GHz. This experiment will provide valuable information about the polarization properties of synchrotron and anomalous microwave emission at these frequencies. The maps obtained with the multi-frequency instrument (10-20 GHz), in combination with data from other experiments like Planck and the VLA, will be used to clean the diffuse and compact foreground emission at 30 and 40 GHz, the cosmological channels. After three years of effective observations we expect to reach the required sensitivity to detect a primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r = 0.05. At the moment we have completed the Wide Survey with the multi-frequency instrument, covering 20.000 square degrees of the Northern hemisphere. In addition, we have deep integrations of our main calibrators Taurus A, Cassiopea A, Jupiter and of the Perseus molecular complex region, where we have measured the spectrum of the anomalous microwave emission. We also have observed several regions of interest for our science program where we plan to study the compact and diffuse polarized emission.

  3. The Spartan 1 mission

    NASA Technical Reports Server (NTRS)

    Cruddace, R. G.; Brandenstein, D. C.; Creighton, J. O.; Gutschewski, G.; Lucid, S. W.; Nagel, S. R.; Fabian, J. M.; Fenimore, E. E.; Shrewsberry, D. J.; Zimmermann, D.

    1990-01-01

    The first Spartan mission is documented. The Spartan program, an outgrowth of a joint Naval Research Laboratory (NRL)/National Aeronautics and Space Administration (NASA)-Goddard Space Flight Center (GSFC) development effort, was instituted by NASA for launching autonomous, recoverable payloads from the Space Shuttle. These payloads have a precise pointing system and are intended to support a wide range of space-science observations and experiments. The first Spartan, carrying an NRL X-ray astronomy instrument, was launched by the orbiter Discovery (STS51G) on June 20, 1985 and recovered successfully 45 h later, on June 22. During this period, Spartan 1 conducted a preprogrammed series of observations of two X-ray sources: the Perseus cluster of galaxies and the center of our galaxy. The mission was successful from both on engineering and a scientific viewpoint. Only one problem was encountered, the attitude control system (ACS) shut down earlier than planned because of high attitude control system gas consumption. A preplanned emergency mode then placed Spartan 1 into a stable, safe condition and allowed a safe recovery. The events are described of the mission and presents X-ray maps of the two observed sources, which were produced from the flight data.

  4. Turbulence and the Formation of Filaments, Loops, and Shock Fronts in NGC 1275

    NASA Astrophysics Data System (ADS)

    Falceta-Gonçalves, D.; de Gouveia Dal Pino, E. M.; Gallagher, J. S.; Lazarian, A.

    2010-01-01

    NGC 1275, the central galaxy in the Perseus cluster, is the host of gigantic hot bipolar bubbles inflated by active galactic nucleus (AGN) jets observed in the radio as Perseus A. It presents a spectacular Hα-emitting nebulosity surrounding NGC 1275, with loops and filaments of gas extending to over 50 kpc. The origin of the filaments is still unknown, but probably correlates with the mechanism responsible for the giant buoyant bubbles. We present 2.5 and three-dimensional magnetohydrodynamical (MHD) simulations of the central region of the cluster in which turbulent energy, possibly triggered by star formation and supernovae (SNe) explosions, is introduced. The simulations reveal that the turbulence injected by massive stars could be responsible for the nearly isotropic distribution of filaments and loops that drag magnetic fields upward as indicated by recent observations. Weak shell-like shock fronts propagating into the intracluster medium (ICM) with velocities of 100-500 km s-1 are found, also resembling the observations. The isotropic outflow momentum of the turbulence slows the infall of the ICM, thus limiting further starburst activity in NGC 1275. As the turbulence is subsonic over most of the simulated volume, the turbulent kinetic energy is not efficiently converted into heat and additional heating is required to suppress the cooling flow at the core of the cluster. Simulations combining the MHD turbulence with the AGN outflow can reproduce the temperature radial profile observed around NGC 1275. While the AGN mechanism is the main heating source, the SNe are crucial to isotropize the energy distribution.

  5. Embedded binaries and their dense cores

    NASA Astrophysics Data System (ADS)

    Sadavoy, Sarah I.; Stahler, Steven W.

    2017-08-01

    We explore the relationship between young, embedded binaries and their parent cores, using observations within the Perseus Molecular Cloud. We combine recently published Very Large Array observations of young stars with core properties obtained from Submillimetre Common-User Bolometer Array 2 observations at 850 μm. Most embedded binary systems are found towards the centres of their parent cores, although several systems have components closer to the core edge. Wide binaries, defined as those systems with physical separations greater than 500 au, show a tendency to be aligned with the long axes of their parent cores, whereas tight binaries show no preferred orientation. We test a number of simple, evolutionary models to account for the observed populations of Class 0 and I sources, both single and binary. In the model that best explains the observations, all stars form initially as wide binaries. These binaries either break up into separate stars or else shrink into tighter orbits. Under the assumption that both stars remain embedded following binary break-up, we find a total star formation rate of 168 Myr-1. Alternatively, one star may be ejected from the dense core due to binary break-up. This latter assumption results in a star formation rate of 247 Myr-1. Both production rates are in satisfactory agreement with current estimates from other studies of Perseus. Future observations should be able to distinguish between these two possibilities. If our model continues to provide a good fit to other star-forming regions, then the mass fraction of dense cores that becomes stars is double what is currently believed.

  6. Contamination by hazardous substances in the Gulf of Naples and nearby coastal areas: a review of sources, environmental levels and potential impacts in the MSFD perspective.

    PubMed

    Tornero, Victoria; Ribera d'Alcalà, Maurizio

    2014-01-01

    During the 7th FW EU Programme, a large group of research institutions with a strong tradition in marine science designed PERSEUS, a policy-oriented, marine research project aimed at identifying human-derived pressures and their impacts in the Southern European Seas. PERSEUS is about gathering and analyzing the data on our marine ecosystems and developing recommendations to assist policy makers in the implementation of the Marine Strategy Framework Directive (MSFD). In its initial phase, the project focuses on the analysis and evaluation of human pressures in selected coastal areas across the Mediterranean and Black Seas. This paper reports on the results about the chemical pollution pressure in the Gulf of Naples, one of the sites selected for the analysis, and surrounding waters of the Southern Tyrrhenian Sea. Based on a systematic up-to-date literature review, the paper brings together for the first time the available information on the presence, severity and distribution of contaminants on the site. In spite of methodological and sampling heterogeneity among studies, this review compiles the data in a harmonized and effective way, so that the current status, knowledge gaps and research priorities can be established. Thus, the review wishes not only to provide a contribution to the scientific community, but also to help to extract recommendations for mitigating pollution sources and risks in the area of concern. A similar process of analysis may be carried out for other areas and pressures in order to facilitate policy making at the European level. © 2013.

  7. The Influence of the Hall Term on the Development of Magnetized Laser-Produced Plasma Jets

    DOE PAGES

    Hamlin, N.D.; Seyler, C. E.; Khiar, B.

    2018-04-29

    We present 2D axisymmetric simulation results describing the influence of the Hall term on laser-produced plasma jets and their interaction with an applied magnetic field parallel to the laser axis. Bending of the poloidal B-field lines produces an MHD shock structure surrounding a conical cavity, and a jet is produced from the convergence of the shock envelope. Both the jet and the conical cavity underneath it are bound by fast MHD shocks. We compare the MHD results generated using the extended-MHD code Physics as an Extended-MHD Relaxation System with an Efficient Upwind Scheme (PERSEUS) with MHD results generated using GORGONmore » and find reasonable agreement. We then present extended-MHD results generated using PERSEUS, which show that the Hall term has several effects on the plasma jet evolution. A hot low-density current-carrying layer of plasma develops just outside the plume, which results in a helical rather than a purely poloidal B-field, and reduces magnetic stresses, resulting in delayed flow convergence and jet formation. The flow is partially frozen into the helical field, resulting in azimuthal rotation of the jet. The Hall term also produces field-aligned current in strongly magnetized regions. In particular, we find the influence of Hall physics on this problem to be scale-dependent. In conclusion, this points to the importance of mitigating the Hall effect in a laboratory setup, by increasing the jet density and system dimensions, in order to avoid inaccurate extrapolation to astrophysical scales.« less

  8. Survival of microorganisms in space protected by meteorite material: results of the experiment 'EXOBIOLOGIE' of the PERSEUS mission.

    PubMed

    Rettberg, P; Eschweiler, U; Strauch, K; Reitz, G; Horneck, G; Wanke, H; Brack, A; Barbier, B

    2002-01-01

    During the early evolution of life on Earth, before the formation of a protective ozone layer in the atmosphere, high intensities of solar UV radiation of short wavelengths could reach the surface of the Earth. Today the full spectrum of solar UV radiation is only experienced in space, where other important space parameters influence survival and genetic stability additionally, like vacuum, cosmic radiation, temperature extremes, microgravity. To reach a better understanding of the processes leading to the origin, evolution and distribution of life we have performed space experiments with microorganisms. The ability of resistant life forms like bacterial spores to survive high doses of extraterrestrial solar UV alone or in combination with other space parameters, e.g. vacuum, was investigated. Extraterrestrial solar UV was found to have a thousand times higher biological effectiveness than UV radiation filtered by stratospheric ozone concentrations found today on Earth. The protective effects of anorganic substances like artificial or real meteorites were determined on the MIR station. In the experiment EXOBIOLOGIE of the French PERSEUS mission (1999) it was found that very thin layers of anorganic material did not protect spores against the deleterious effects of energy-rich UV radiation in space to the expected amount, but that layers of UV radiation inactivated spores serve as a UV-shield by themselves, so that a hypothetical interplanetary transfer of life by the transport of microorganisms inside rocks through the solar system cannot be excluded, but requires the shielding of a substantial mass of anorganic substances. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  9. The Influence of the Hall Term on the Development of Magnetized Laser-Produced Plasma Jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamlin, N.D.; Seyler, C. E.; Khiar, B.

    We present 2D axisymmetric simulation results describing the influence of the Hall term on laser-produced plasma jets and their interaction with an applied magnetic field parallel to the laser axis. Bending of the poloidal B-field lines produces an MHD shock structure surrounding a conical cavity, and a jet is produced from the convergence of the shock envelope. Both the jet and the conical cavity underneath it are bound by fast MHD shocks. We compare the MHD results generated using the extended-MHD code Physics as an Extended-MHD Relaxation System with an Efficient Upwind Scheme (PERSEUS) with MHD results generated using GORGONmore » and find reasonable agreement. We then present extended-MHD results generated using PERSEUS, which show that the Hall term has several effects on the plasma jet evolution. A hot low-density current-carrying layer of plasma develops just outside the plume, which results in a helical rather than a purely poloidal B-field, and reduces magnetic stresses, resulting in delayed flow convergence and jet formation. The flow is partially frozen into the helical field, resulting in azimuthal rotation of the jet. The Hall term also produces field-aligned current in strongly magnetized regions. In particular, we find the influence of Hall physics on this problem to be scale-dependent. In conclusion, this points to the importance of mitigating the Hall effect in a laboratory setup, by increasing the jet density and system dimensions, in order to avoid inaccurate extrapolation to astrophysical scales.« less

  10. Our Milky Way Gets a Makeover

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Click on image for Fully Annotated Version Click on image for Poster Version

    Like early explorers mapping the continents of our globe, astronomers are busy charting the spiral structure of our galaxy, the Milky Way. Using infrared images from NASA's Spitzer Space Telescope, scientists have discovered that the Milky Way's elegant spiral structure is dominated by just two arms wrapping off the ends of a central bar of stars. Previously, our galaxy was thought to possess four major arms.

    This artist's concept illustrates the new view of the Milky Way, along with other findings presented at the 212th American Astronomical Society meeting in St. Louis, Mo. The galaxy's two major arms (Scutum-Centaurus and Perseus) can be seen attached to the ends of a thick central bar, while the two now-demoted minor arms (Norma and Sagittarius) are less distinct and located between the major arms. The major arms consist of the highest densities of both young and old stars; the minor arms are primarily filled with gas and pockets of star-forming activity.

    The artist's concept also includes a new spiral arm, called the 'Far-3 kiloparsec arm,' discovered via a radio-telescope survey of gas in the Milky Way. This arm is shorter than the two major arms and lies along the bar of the galaxy.

    Our sun lies near a small, partial arm called the Orion Arm, or Orion Spur, located between the Sagittarius and Perseus arms.

  11. Sound wave generation by a spherically symmetric outburst and AGN feedback in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Tang, Xiaping; Churazov, Eugene

    2017-07-01

    We consider the evolution of an outburst in a uniform medium under spherical symmetry, having in mind active galactic nucleus feedback in the intracluster medium. For a given density and pressure of the medium, the spatial structure and energy partition at a given time tage (since the onset of the outburst) are fully determined by the total injected energy Einj and the duration tb of the outburst. We are particularly interested in the late phase evolution when the strong shock transforms into a sound wave. We studied the energy partition during such transition with different combinations of Einj and tb. For an instantaneous outburst with tb → 0, which corresponds to the extension of classic Sedov-Taylor solution with counter-pressure, the fraction of energy that can be carried away by sound waves is ≲12 per cent of Einj. As tb increases, the solution approaches the 'slow piston' limit, with the fraction of energy in sound waves approaching zero. We then repeat the simulations using radial density and temperature profiles measured in Perseus and M87/Virgo clusters. We find that the results with a uniform medium broadly reproduce an outburst in more realistic conditions once proper scaling is applied. We also develop techniques to map intrinsic properties of an outburst (Einj, tb and tage) to the observables like the Mach number of the shock and radii of the shock and ejecta. For the Perseus cluster and M87, the estimated (Einj, tb and tage) agree with numerical simulations tailored for these objects with 20-30 per cent accuracy.

  12. VizieR Online Data Catalog: Study of protostars in the Perseus molecular cloud (Tobin+, 2016)

    NASA Astrophysics Data System (ADS)

    Tobin, J. J.; Looney, L. W.; Li, Z.-Y.; Chandler, C. J.; Dunham, M. M.; Segura-Cox, D.; Sadavoy, S. I.; Melis, C.; Harris, R. J.; Kratter, K.; Perez, L.

    2018-01-01

    We conducted observations with the VLA in B-configuration between 2013 September 28 and 2013 November 20 and in A-configuration during 2014 February 24 to 2014 May 31 and 2015 June 19 to 2015 September 21. The B-configuration (also referred to as B-array) has a maximum baseline (antenna separation) of 11.1 km and at 8 mm provides a resolution of ~0.2" (46 au). The A-configuration (A-array) has a maximum baseline of 36.4 km, providing a resolution of ~0.065" (15 au). (2 data files).

  13. Solar abundance ratios of the iron-peak elements in the Perseus cluster.

    PubMed

    2017-11-23

    The metal abundance of the hot plasma that permeates galaxy clusters represents the accumulation of heavy elements produced by billions of supernovae. Therefore, X-ray spectroscopy of the intracluster medium provides an opportunity to investigate the nature of supernova explosions integrated over cosmic time. In particular, the abundance of the iron-peak elements (chromium, manganese, iron and nickel) is key to understanding how the progenitors of typical type Ia supernovae evolve and explode. Recent X-ray studies of the intracluster medium found that the abundance ratios of these elements differ substantially from those seen in the Sun, suggesting differences between the nature of type Ia supernovae in the clusters and in the Milky Way. However, because the K-shell transition lines of chromium and manganese are weak and those of iron and nickel are very close in photon energy, high-resolution spectroscopy is required for an accurate determination of the abundances of these elements. Here we report observations of the Perseus cluster, with statistically significant detections of the resonance emission from chromium, manganese and nickel. Our measurements, combined with the latest atomic models, reveal that these elements have near-solar abundance ratios with respect to iron, in contrast to previous claims. Comparison between our results and modern nucleosynthesis calculations disfavours the hypothesis that type Ia supernova progenitors are exclusively white dwarfs with masses well below the Chandrasekhar limit (about 1.4 times the mass of the Sun). The observed abundance pattern of the iron-peak elements can be explained by taking into account a combination of near- and sub-Chandrasekhar-mass type Ia supernova systems, adding to the mounting evidence that both progenitor types make a substantial contribution to cosmic chemical enrichment.

  14. Near-infrared observations of galaxies in Pisces-Perseus. I. vec H-band surface photometry of 174 spiral

    NASA Astrophysics Data System (ADS)

    Moriondo, G.; Baffa, C.; Casertano, S.; Chincarini, G.; Gavazzi, G.; Giovanardi, C.; Hunt, L. K.; Pierini, D.; Sperandio, M.; Trinchieri, G.

    1999-05-01

    We present near-infrared, H-band (1.65 $() μm), surface photometry of 174 spiral galaxies in the area of the Pisces-Perseus supercluster. The images, acquired with the ARNICA camera mounted on various telescopes, are used to derive radial profiles of surface brightness, ellipticities, and position angles, together with global parameters such as H-band magnitudes and diameters Radial profiles in tabular form and images FITS files are also available upon request from gmorio@arcetri.astro.it.}. The mean relation between H-band isophotal diameter D_{21.5} and the B-band D25 implies a B-H color of the outer disk bluer than 3.5; moreover, D_{21.5}/D25 depends on (global) color and absolute luminosity. The correlations among the various photometric parameters suggest a ratio between isophotal radius D_{21.5}/2 and disk scale length of ~ m3.5 and a mean disk central brightness ~ meq 17.5 H-mag arcsec^{-2}. We confirm the trend of the concentration index C31$ with absolute luminosity and, to a lesser degree, with morphological type. We also assess the influence of non-axisymmetric structures on the radial profiles and on the derived parameters. Based on observations at the TIRGO, NOT, and VATT telescopes. TIRGO (Gornergrat, CH) is operated by CAISMI-CNR, Arcetri, Firenze. NOT (La Palma, Canary Islands) is operated by NOTSA, the Nordic Observatory Scientific Association. VATT (Mt. Graham, Az) is operated by VORG, the Vatican Observatory Research Group Table 3 and Fig. 4 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html.

  15. Discovery of an Ultra-diffuse Galaxy in the Pisces--Perseus Supercluster

    NASA Astrophysics Data System (ADS)

    Martínez-Delgado, David; Läsker, Ronald; Sharina, Margarita; Toloba, Elisa; Fliri, Jürgen; Beaton, Rachael; Valls-Gabaud, David; Karachentsev, Igor D.; Chonis, Taylor S.; Grebel, Eva K.; Forbes, Duncan A.; Romanowsky, Aaron J.; Gallego-Laborda, J.; Teuwen, Karel; Gómez-Flechoso, M. A.; Wang, Jie; Guhathakurta, Puragra; Kaisin, Serafim; Ho, Nhung

    2016-04-01

    We report the discovery of DGSAT I, an ultra-diffuse, quenched galaxy located 10.°4 in projection from the Andromeda galaxy (M31). This low-surface brightness galaxy (μV = 24.8 mag arcsec-2), found with a small amateur telescope, appears unresolved in sub-arcsecond archival Subaru/Suprime-Cam images, and hence has been missed by optical surveys relying on resolved star counts, in spite of its relatively large effective radius (Re(V) = 12″) and proximity (15‧) to the well-known dwarf spheroidal galaxy And II. Its red color (V - I = 1.0), shallow Sérsic index (nV = 0.68), and the absence of detectable Hα emission are typical properties of dwarf spheroidal galaxies and suggest that it is mainly composed of old stars. Initially interpreted as an interesting case of an isolated dwarf spheroidal galaxy in the local universe, our radial velocity measurement obtained with the BTA 6 m telescope (Vh = 5450 ± 40 km s-1) shows that this system is an M31-background galaxy associated with the filament of the Pisces-Perseus supercluster. At the distance of this cluster (˜78 Mpc), DGSAT I would have an Re ˜ 4.7 kpc and MV ˜ -16.3. Its properties resemble those of the ultra-diffuse galaxies (UDGs) recently discovered in the Coma cluster. DGSAT I is the first case of these rare UDGs found in this galaxy cluster. Unlike the UDGs associated with the Coma and Virgo clusters, DGSAT I is found in a much lower density environment, which provides a fresh constraint on the formation mechanisms for this intriguing class of galaxy.

  16. Hierarchical Fragmentation in the Perseus Molecular Cloud: From the Cloud Scale to Protostellar Objects

    NASA Astrophysics Data System (ADS)

    Pokhrel, Riwaj; Myers, Philip C.; Dunham, Michael M.; Stephens, Ian W.; Sadavoy, Sarah I.; Zhang, Qizhou; Bourke, Tyler L.; Tobin, John J.; Lee, Katherine I.; Gutermuth, Robert A.; Offner, Stella S. R.

    2018-01-01

    We present a study of hierarchical structure in the Perseus molecular cloud, from the scale of the entire cloud (≳ 10 pc) to smaller clumps (∼1 pc), cores (∼0.05–0.1 pc), envelopes (∼300–3000 au), and protostellar objects (∼15 au). We use new observations from the Submillimeter Array (SMA) large project “Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES)” to probe the envelopes, and recent single-dish and interferometric observations from the literature for the remaining scales. This is the first study to analyze hierarchical structure over five scales in the same cloud complex. We compare the number of fragments with the number of Jeans masses in each scale to calculate the Jeans efficiency, or the ratio of observed to expected number of fragments. The velocity dispersion is assumed to arise either from purely thermal motions or from combined thermal and non-thermal motions inferred from observed spectral line widths. For each scale, thermal Jeans fragmentation predicts more fragments than observed, corresponding to inefficient thermal Jeans fragmentation. For the smallest scale, thermal plus non-thermal Jeans fragmentation also predicts too many protostellar objects. However, at each of the larger scales thermal plus non-thermal Jeans fragmentation predicts fewer than one fragment, corresponding to no fragmentation into envelopes, cores, and clumps. Over all scales, the results are inconsistent with complete Jeans fragmentation based on either thermal or thermal plus non-thermal motions. They are more nearly consistent with inefficient thermal Jeans fragmentation, where the thermal Jeans efficiency increases from the largest to the smallest scale.

  17. Solar abundance ratios of the iron-peak elements in the Perseus cluster

    DOE PAGES

    Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; ...

    2017-11-13

    The metal abundance of the hot plasma that permeates galaxy clusters represents the accumulation of heavy elements produced by billions of supernovae1. Therefore, X-ray spectroscopy of the intracluster medium provides an opportunity to investigate the nature of supernova explosions integrated over cosmic time. In particular, the abundance of the iron-peak elements (chromium, manganese, iron and nickel) is key to understanding how the progenitors of typical type Ia supernovae evolve and explode2–6. Recent X-ray studies of the intracluster medium found that the abundance ratios of these elements differ substantially from those seen in the Sun, suggesting differences between the nature ofmore » type Ia supernovae in the clusters and in the Milky Way. However, because the K-shell transition lines of chromium and manganese are weak and those of iron and nickel are very close in photon energy, highresolution spectroscopy is required for an accurate determination of the abundances of these elements. Here in this paper we report observations of the Perseus cluster, with statistically significant detections of the resonance emission from chromium, manganese and nickel. Our measurements, combined with the latest atomic models, reveal that these elements have near-solar abundance ratios with respect to iron, in contrast to previous claims. Comparison between our results and modern nucleosynthesis calculations disfavours the hypothesis that type Ia supernova progenitors are exclusively white dwarfs with masses well below the Chandrasekhar limit (about 1.4 times the mass of the Sun). The observed abundance pattern of the iron-peak elements can be explained by taking into account a combination of near- and sub-Chandrasekhar-mass type Ia supernova systems, adding to the mounting evidence that both progenitor types make a substantial contribution to cosmic chemical enrichment.« less

  18. Solar abundance ratios of the iron-peak elements in the Perseus cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie

    The metal abundance of the hot plasma that permeates galaxy clusters represents the accumulation of heavy elements produced by billions of supernovae1. Therefore, X-ray spectroscopy of the intracluster medium provides an opportunity to investigate the nature of supernova explosions integrated over cosmic time. In particular, the abundance of the iron-peak elements (chromium, manganese, iron and nickel) is key to understanding how the progenitors of typical type Ia supernovae evolve and explode2–6. Recent X-ray studies of the intracluster medium found that the abundance ratios of these elements differ substantially from those seen in the Sun, suggesting differences between the nature ofmore » type Ia supernovae in the clusters and in the Milky Way. However, because the K-shell transition lines of chromium and manganese are weak and those of iron and nickel are very close in photon energy, highresolution spectroscopy is required for an accurate determination of the abundances of these elements. Here in this paper we report observations of the Perseus cluster, with statistically significant detections of the resonance emission from chromium, manganese and nickel. Our measurements, combined with the latest atomic models, reveal that these elements have near-solar abundance ratios with respect to iron, in contrast to previous claims. Comparison between our results and modern nucleosynthesis calculations disfavours the hypothesis that type Ia supernova progenitors are exclusively white dwarfs with masses well below the Chandrasekhar limit (about 1.4 times the mass of the Sun). The observed abundance pattern of the iron-peak elements can be explained by taking into account a combination of near- and sub-Chandrasekhar-mass type Ia supernova systems, adding to the mounting evidence that both progenitor types make a substantial contribution to cosmic chemical enrichment.« less

  19. DISCOVERY OF AN ULTRA-DIFFUSE GALAXY IN THE PISCES-PERSEUS SUPERCLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-Delgado, David; Grebel, Eva K.; Läsker, Ronald

    We report the discovery of DGSAT I, an ultra-diffuse, quenched galaxy located 10.°4 in projection from the Andromeda galaxy (M31). This low-surface brightness galaxy (μ{sub V} = 24.8 mag arcsec{sup −2}), found with a small amateur telescope, appears unresolved in sub-arcsecond archival Subaru/Suprime-Cam images, and hence has been missed by optical surveys relying on resolved star counts, in spite of its relatively large effective radius (R{sub e}(V) = 12″) and proximity (15′) to the well-known dwarf spheroidal galaxy And II. Its red color (V − I = 1.0), shallow Sérsic index (n{sub V} = 0.68), and the absence of detectable Hα emission aremore » typical properties of dwarf spheroidal galaxies and suggest that it is mainly composed of old stars. Initially interpreted as an interesting case of an isolated dwarf spheroidal galaxy in the local universe, our radial velocity measurement obtained with the BTA 6 m telescope (V{sub h} = 5450 ± 40 km s{sup −1}) shows that this system is an M31-background galaxy associated with the filament of the Pisces-Perseus supercluster. At the distance of this cluster (∼78 Mpc), DGSAT I would have an R{sub e} ∼ 4.7 kpc and M{sub V} ∼ −16.3. Its properties resemble those of the ultra-diffuse galaxies (UDGs) recently discovered in the Coma cluster. DGSAT I is the first case of these rare UDGs found in this galaxy cluster. Unlike the UDGs associated with the Coma and Virgo clusters, DGSAT I is found in a much lower density environment, which provides a fresh constraint on the formation mechanisms for this intriguing class of galaxy.« less

  20. Constraints on the Cosmic-Ray Density Gradient beyond the Solar Circle from Fermi γ-ray Observations of the Third Galactic Quadrant

    DOE PAGES

    Ackermann, M.; Ajello, M.; Baldini, L.; ...

    2010-12-17

    Here,we report an analysis of the interstellar γ-ray emission in the third Galactic quadrant measured by the Fermi Large Area Telescope. The window encompassing the Galactic plane from longitude 210° to 250° has kinematically well-defined segments of the Local and the Perseus arms, suitable to study the cosmic-ray (CR) densities across the outer Galaxy. We measure no large gradient with Galactocentric distance of the γ-ray emissivities per interstellar H atom over the regions sampled in this study. The gradient depends, however, on the optical depth correction applied to derive the H I column densities. No significant variations are found inmore » the interstellar spectra in the outer Galaxy, indicating similar shapes of the CR spectrum up to the Perseus arm for particles with GeV to tens of GeV energies. The emissivity as a function of Galactocentric radius does not show a large enhancement in the spiral arms with respect to the interarm region. The measured emissivity gradient is flatter than expectations based on a CR propagation model using the radial distribution of supernova remnants and uniform diffusion properties. In this context, observations require a larger halo size and/or a flatter CR source distribution than usually assumed. The molecular mass calibrating ratio, X CO = N(H 2)/W CO, is found to be (2.08 ± 0.11) × 10 20 cm -2(K km s –1) –1 in the Local arm clouds and is not significantly sensitive to the choice of H I spin temperature. No significant variations are found for clouds in the interarm region.« less

  1. An engineer at AeroVironment's Design Development Center inspects a set of silicon solar cells for p

    NASA Technical Reports Server (NTRS)

    2000-01-01

    An engineer at AeroVironment's Design Development Center in Simi Valley, California, closely inspects a set of silicon solar cells for potential defects. The cells, fabricated by SunPower, Inc., of Sunnyvale, California, are among 64,000 solar cells which have been installed on the Helios Prototype solar-powered aircraft to provide power to its 14 electric motors and operating systems. Developed by AeroVironment under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude aircraft which can perform atmospheric science missions and serve as telecommunications relay platforms in the stratosphere. Target goals set by NASA for the giant 246-foot span flying wing include reaching and sustaining subsonic horizontal flight at 100,000 feet altitude in 2001, and sustained continuous flight for at least four days and nights in 2003 with the aid of a regenerative fuel cell-based energy storage system now in development.

  2. AeroVironment technician checks a Helios solar cell panel

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A technician at AeroVironment's Design Development Center in Simi Valley, California, checks a panel of silicon solar cells for conductivity and voltage. The bi-facial cells, fabricated by SunPower, Inc., of Sunnyvale, California, are among 64,000 solar cells which have been installed on the Helios Prototype solar-powered aircraft to provide power to its 14 electric motors and operating systems. Developed by AeroVironment under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude aircraft which can perform atmospheric science missions and serve as telecommunications relay platforms in the stratosphere. Target goals set by NASA for the giant 246-foot span flying wing include reaching and sustaining subsonic horizontal flight at 100,000 feet altitude in 2001, and sustained continuous flight for at least four days and nights above 50,000 feet altitude with the aid of a regenerative fuel cell-based energy storage system now under development in 2003.

  3. The solar-powered Helios Prototype flying wing frames two modified F-15 research aircraft in a hanga

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The solar-powered Helios Prototype flying wing frames two modified F-15 research aircraft in a hangar at NASA's Dryden flight Research Center, Edwards, California. The elongated 247-foot span lightweight aircraft, resting on its ground maneuvering dolly, stretched almost the full length of the 300-foot long hangar while on display during a visit of NASA Administrator Sean O'Keefe and other NASA officials on Jan. 31, 2002. The unique solar-electric flying wing reached an altitude of 96,863 feet during an almost 17-hour flight near Hawaii on Aug. 13, 2001, a world record for sustained horizontal flight by a non-rocket powered aircraft. Developed by AeroVironment, Inc., under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude uninhabited aerial vehicles (UAV) which can serve as 'atmospheric satellites,' performing Earth science missions or functioning as telecommunications relay platforms in the stratosphere.

  4. Tracing the Arms of our Milky Way Galaxy

    NASA Image and Video Library

    2015-06-03

    Astronomers using data from NASA's Wide-field Infrared Survey Explorer, or WISE, are helping to trace the shape of our Milky Way galaxy's spiral arms. This illustration shows where WISE data revealed clusters of young stars shrouded in dust, called embedded clusters, which are known to reside in spiral arms. The bars represent uncertainties in the data. The nearly 100 clusters shown here were found in the arms called Perseus, Sagittarius-Carina, and Outer -- three of the galaxy's four proposed primary arms. Our sun resides in a spur to an arm, or a minor arm, called Orion Cygnus. http://photojournal.jpl.nasa.gov/catalog/PIA19341

  5. VizieR Online Data Catalog: Gould's Belt VLA survey. V. Perseus region (Pech+, 2016)

    NASA Astrophysics Data System (ADS)

    Pech, G.; Loinard, L.; Dzib, S. A.; Mioduszewski, A. J.; Rodriguez, L. F.; Ortiz-Leon, G. N.; Rivera, J. L.; Torres, R. M.; Boden, A. F.; Hartman, L.; Kounkel, M. A.; Evans, N. J., II; Briceno, C.; Tobin, J.; Zapata, L. A.

    2018-01-01

    The observations were collected with the VLA of the National Radio Astronomy Observatory in B and BnA configurations. Two frequency subbands, each 1 GHz wide and centered at 4.5 and 7.5 GHz, respectively, were recorded simultaneously. The observations were obtained in three sessions, on 2011 March 06/13, April 14/25, and May 01/02/10/19/22, typically separated from one another by a month. This dual-frequency, multiepoch strategy was chosen to enable the characterization of the spectral index and variability of the detected sources, as well as to help with the identification of the emission mechanisms. (3 data files).

  6. PSRs J0248+6021 and J2240+5832: young pulsars in the northern Galactic plane: Discovery, timing, and gamma-ray observations

    DOE PAGES

    Theureau, G.; Parent, D.; Cognard, I.; ...

    2010-12-03

    Context. Pulsars PSR J0248+6021 (with a rotation period P = 217 ms and spin-down powermore » $$\\dot{E}$$ = 2.13 × 10 35 erg s -1) and PSR J2240+5832 (P = 140 ms, $$\\dot{E}$$ = 2.12 × 10 35 erg s -1) were discovered in 1997 with the Nançay radio telescope during a northern Galactic plane survey, using the Navy-Berkeley Pulsar Processor (NBPP) filter bank. The GeV gamma-ray pulsations from both were discovered using the Fermi Large Area Telescope. Aims. We characterize the neutron star emission using radio and gamma-ray observations, and explore the rich environment of PSR J0248+6021. Methods. Twelve years of radio timing data, including glitches, with steadily improved instrumentation, such as the Berkeley-Orleans-Nançay pulsar backend, and a gamma-ray data set 2.6 times larger than previously published allow detailed investigations of these pulsars. Radio polarization data allow comparison with the geometry inferred from gamma-ray emission models. Results. The two pulsars resemble each other in both radio and gamma-ray data. Both are rare in having a single gamma-ray pulse offset far from the radio peak. The anomalously high dispersion measure for PSR J0248+6021 (DM = 370 pc cm -3) is most likely due to its being within the dense, giant HII region W5 in the Perseus arm at a distance of 2 kpc, as opposed to being beyond the edge of the Galaxy as obtained from models of average electron distributions. Its large transverse velocity and the low magnetic field along the line-of-sight favor this small distance. Neither gamma-ray, X-ray, nor optical data yield evidence of a pulsar wind nebula surrounding PSR J0248+6021. We report the discovery of gamma-ray pulsations from PSR J2240+5832. We argue that it could be in the outer arm, although slightly nearer than its DM-derived distance, but that it may be in the Perseus arm at half the distance. Conclusions. The energy flux and distance yield a gamma-ray luminosity for PSR J0248+6021 of Lγ = (1.4 ± 0.3) × 10 34 erg s -1. For PSR J2240+5832, we find either Lγ = (7.9 ± 5.2) × 10 34 erg s -1 if the pulsar is in the outer arm, or L γ = (2.2 ± 1.7) × 10 34 erg s -1 for the Perseus arm. These luminosities are consistent with an L γ∝ $$\\sqrt{\\dot{E}}$$ rule. Lastly, comparison of the gamma-ray pulse profiles with model predictions, including the constraints obtained from radio polarization data, implies outer magnetosphere emission. These two pulsars differ mainly in terms of their inclination angles and acceleration gap widths, which in turn explain the observed differences in the gamma-ray peak widths.« less

  7. X-ray astronomy in the Uhuru epoch and beyond /Newton Lacy Pierce Prize Lecture/

    NASA Technical Reports Server (NTRS)

    Kellogg, E. M.

    1975-01-01

    A review of results from the Uhuru satellite is presented. An intensive treatment of two subjects is given, rather than a broad review. First, Cyg X-1, a stellar X-ray source and a candidate for a black hole, is discussed; second, the X-ray source in the Perseus cluster of galaxies, which may be a cloud of hot intergalactic gas, is treated. In both cases, the train of logic used in establishing the nature of these objects is presented and evaluated. For both, while alternative explanations cannot be completely eliminated, they become more difficult to sustain when examined in detail, suggesting that the candidate explanations are more likely correct.

  8. A Survey of Variable Extragalactic Sources with XTE's All Sky Monitor (ASM)

    NASA Technical Reports Server (NTRS)

    Jernigan, Garrett

    1998-01-01

    The original goal of the project was the near real-time detection of AGN utilizing the SSC 3 of the ASM on XTE which does a deep integration on one 100 square degree region of the sky. While the SSC never performed sufficiently well to allow the success of this goal, the work on the project has led to the development of a new analysis method for coded aperture systems which has now been applied to ASM data for mapping regions near clusters of galaxies such as the Perseus Cluster and the Coma Cluster. Publications are in preparation that describe both the new method and the results from mapping clusters of galaxies.

  9. Search for Spectral Irregularities due to Photon-Axionlike-Particle Oscillations with the Fermi Large Area Telescope.

    PubMed

    Ajello, M; Albert, A; Anderson, B; Baldini, L; Barbiellini, G; Bastieri, D; Bellazzini, R; Bissaldi, E; Blandford, R D; Bloom, E D; Bonino, R; Bottacini, E; Bregeon, J; Bruel, P; Buehler, R; Caliandro, G A; Cameron, R A; Caragiulo, M; Caraveo, P A; Cecchi, C; Chekhtman, A; Ciprini, S; Cohen-Tanugi, J; Conrad, J; Costanza, F; D'Ammando, F; de Angelis, A; de Palma, F; Desiante, R; Di Mauro, M; Di Venere, L; Domínguez, A; Drell, P S; Favuzzi, C; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Glanzman, T; Godfrey, G; Guiriec, S; Horan, D; Jóhannesson, G; Katsuragawa, M; Kensei, S; Kuss, M; Larsson, S; Latronico, L; Li, J; Li, L; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Maldera, S; Manfreda, A; Mayer, M; Mazziotta, M N; Meyer, M; Michelson, P F; Mirabal, N; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Negro, M; Nuss, E; Okada, C; Orlando, E; Ormes, J F; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Sánchez-Conde, M; Sgrò, C; Simone, D; Siskind, E J; Spada, F; Spandre, G; Spinelli, P; Takahashi, H; Thayer, J B; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Wood, K S; Wood, M; Zaharijas, G; Zimmer, S

    2016-04-22

    We report on the search for spectral irregularities induced by oscillations between photons and axionlike-particles (ALPs) in the γ-ray spectrum of NGC 1275, the central galaxy of the Perseus cluster. Using 6 years of Fermi Large Area Telescope data, we find no evidence for ALPs and exclude couplings above 5×10^{-12}  GeV^{-1} for ALP masses 0.5≲m_{a}≲5  neV at 95% confidence. The limits are competitive with the sensitivity of planned laboratory experiments, and, together with other bounds, strongly constrain the possibility that ALPs can reduce the γ-ray opacity of the Universe.

  10. Galactic gamma-ray sources, SNOBs, and giant H2 regions

    NASA Technical Reports Server (NTRS)

    Montmerle, T.

    1985-01-01

    Progress towards understanding the nature of the COS-B galactic gamma-ray sources was made by two recent developments. The developments are: (1) the existence of extensive wide-latitude CO surveys, from the Northern Hemisphere, and from the Southern Hemisphere which give more precise information on molecular cloud population of the Perseus, Sagittarius, and Carina spiral arms; (2) the study of the time variability of gamma-ray sources in gamma-rays but also at other wavelengths, leading to the discovery of four new variable sources in addition to the already known Crab and Vela pulsars. Three classes of gamma-ray sources are found; invariable sources, active sources, and passive sources.

  11. The NSF Undergraduate ALFALFA Team: Partnering with Arecibo Observatory to Offer Undergraduate and Faculty Extragalactic Radio Astronomy Research Opportunities

    NASA Astrophysics Data System (ADS)

    Ribaudo, Joseph; Koopmann, Rebecca A.; Haynes, Martha P.; Balonek, Thomas J.; Cannon, John M.; Coble, Kimberly A.; Craig, David W.; Denn, Grant R.; Durbala, Adriana; Finn, Rose; Hallenbeck, Gregory L.; Hoffman, G. Lyle; Lebron, Mayra E.; Miller, Brendan P.; Crone-Odekon, Mary; O'Donoghue, Aileen A.; Olowin, Ronald Paul; Pantoja, Carmen; Pisano, Daniel J.; Rosenberg, Jessica L.; Troischt, Parker; Venkatesan, Aparna; Wilcots, Eric M.; ALFALFA Team

    2017-01-01

    The NSF-sponsored Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team (UAT) is a consortium of 20 institutions across the US and Puerto Rico, founded to promote undergraduate research and faculty development within the extragalactic ALFALFA HI blind survey project and follow-up programs. The objective of the UAT is to provide opportunities for its members to develop expertise in the technical aspects of observational radio spectroscopy, its associated data analysis, and the motivating science. Partnering with Arecibo Observatory, the UAT has worked with more than 280 undergraduates and 26 faculty to date, offering 8 workshops onsite at Arecibo (148 undergraduates), observing runs at Arecibo (69 undergraduates), remote observing runs on campus, undergraduate research projects based on Arecibo science (120 academic year and 185 summer projects), and presentation of results at national meetings such as the AAS (at AAS229: Ball et al., Collova et al., Davis et al., Miazzo et al., Ruvolo et al, Singer et al., Cannon et al., Craig et al., Koopmann et al., O'Donoghue et al.). 40% of the students and 45% of the faculty participants have been women and members of underrepresented groups. More than 90% of student alumni are attending graduate school and/or pursuing a career in STEM. 42% of those pursuing graduate degrees in Physics or Astronomy are women.In this presentation, we summarize the UAT program and the current research efforts of UAT members based on Arecibo science, including multiwavelength followup observations of ALFALFA sources, the UAT Collaborative Groups Project, the Survey of HI in Extremely Low-mass Dwarfs (SHIELD), and the Arecibo Pisces-Perseus Supercluster Survey (APPSS). This work has been supported by NSF grants AST-0724918/0902211, AST-075267/0903394, AST-0725380, AST-121105, and AST-1637339.

  12. Revealing Thermal Instabilities in the Core of the Phoenix Cluster

    NASA Astrophysics Data System (ADS)

    McDonald, Michael

    2017-08-01

    The Phoenix cluster is the most relaxed cluster known, and hosts the strongest cool core of any cluster yet discovered. At the center of this cluster is a massive starburst galaxy, with a SFR of 500-1000 Msun/yr, seemingly satisfying the early cooling flow predictions, despite the presence of strong AGN feedback from the central supermassive black hole. Here we propose deep narrow-band imaging of the central 120 kpc of the cluster, to map the warm (10^4K) ionized gas via the [O II] emission line. In low-z clusters, such as Perseus and Abell 1795, the warm, ionized phase is of critical importance to map out thermal instabilities in the hot gas, and maps of Halpha and [O II] have been used for decades to understand how (and how not) cooling proceeds in the intracluster medium. The data proposed for here, combined with deep ALMA data, a recently-approved Large Chandra Program, and recently-approved multi-frequency JVLA data, will allow us to probe the cooling ICM, the cool, filamentary gas, the cold molecular gas, the star-forming population, and the AGN jets all on scales of <10 kpc. This multi-observatory campaign, focusing on the most extreme cooling cluster, will lead to a more complete understanding of how and why thermal instabilities develop in the hot ICM of cool core clusters.

  13. AeroVironment Technician Marshall MacCready carefully lays a panel of solar cells into place on a wi

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Technician Marshall MacCready carefully lays a panel of solar cells into place on a wing section of the Helios Prototype flying wing at AeroVironment's Design Development Center in Simi Valley, California. More than 1,800 panels containing some 64,000 bi-facial cells, fabricated by SunPower, Inc., of Sunnyvale, California, have been installed on the solar-powered aircraft to provide electricity to its 14 motors and operating systems. Developed by AeroVironment under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude aircraft which can perform atmospheric science missions and serve as telecommunications relay platforms in the stratosphere. Target goals set by NASA for the giant 246-foot span flying wing include reaching and sustaining subsonic horizontal flight at 100,000 feet altitude in 2001, and sustained continuous flight for at least four days and nights above 50,000 feet altitude 2003 with the aid of a regenerative fuel cell-based energy storage system now being developed.

  14. Technician Marshall MacCready installs solar cells on the Helios Prototype

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Technician Marshall MacCready carefully lays a panel of solar cells into place on a wing section of the Helios Prototype flying wing at AeroVironment's Design Development Center in Simi Valley, California. The bi-facial cells, manufactured by SunPower, Inc., of Sunnyvale, California, are among 64,000 solar cells which have been installed on the solar-powered aircraft to provide electricity to its 14 motors and operating systems. Developed by AeroVironment under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude aircraft which can perform atmospheric science missions and serve as telecommunications relay platforms in the stratosphere. Target goals set by NASA for the giant 246-foot span flying wing include reaching and sustaining subsonic horizontal flight at 100,000 feet altitude in 2001, and sustained continuous flight for at least four days and nights above 50,000 feet altitude 2003 with the aid of a regenerative fuel cell-based energy storage system now being developed.

  15. State-of-the-art multi-wavelength observations of nearby brightest group/cluster galaxies

    NASA Astrophysics Data System (ADS)

    Gendron-Marsolais, Marie-Lou; Hlavacek-Larrondo, Julie

    2018-01-01

    Nearby galaxy groups and clusters are crucial to our understanding of the impact of nuclear outbursts on the intracluster medium as their proximity allows us to study in detail the processes of feedback from active galactic nuclei in these systems. In this talk, I will present state-of-the-art multi-wavelength observations signatures of this mechanism.I will first show results on multi-configuration 230-470 MHz observations of the Perseus cluster from the Karl G. Jansky Very Large Array, probing the non-thermal emission from the old particle population of the AGN outflows. These observations reveal a multitude of new structures associated with the “mini-halo” and illustrate the high-quality images that can be obtained with the new JVLA at low radio-frequencies.Second, I will present new observations with the optical imaging Fourier transform spectrometer SITELLE (CFHT) of NGC 1275, the Perseus cluster's brightest galaxy. With its wide field of view, it is the only integral field unit spectroscopy instrument able to cover the large emission-line filamentary nebula in NGC 1275. I will present the first detailed velocity map of this nebula in its entirety and tackle the question of its origin (residual cooling flow or dragged gas).Finally, I will present deep Chandra observations of the nearby early-type massive elliptical galaxy NGC 4472, the most optically luminous galaxy in the local Universe, lying on the outskirts of the Virgo cluster. Enhanced X-ray rims around the radio lobes are detected and interpreted as gas uplifted from the core by the buoyant rise of the radio bubbles. We estimate the energy required to lift the gas to constitute a significant fraction of the total outburst energy.I will thus show how these high-fidelity observations of nearby brightest group/cluster galaxies are improving our understanding of the AGN feedback mechanism taking place in galaxy groups and clusters.

  16. THE ARIZONA RADIO OBSERVATORY CO MAPPING SURVEY OF GALACTIC MOLECULAR CLOUDS. IV. THE NGC 1333 CLOUD IN PERSEUS IN CO J = 2-1 AND {sup 13}CO J = 2-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bieging, John H.; Revelle, Melissa; Peters, William L.

    2014-09-01

    We mapped the NGC 1333 section of the Perseus Molecular Cloud in the J = 2-1 emission lines of {sup 12}CO and {sup 13}CO over a 50' × 60' region (3.4 × 4.1 pc at the cloud distance of 235 pc), using the Arizona Radio Observatory Heinrich Hertz Submillimeter Telescope. The angular resolution is 38'' (0.04 pc) and velocity resolution is 0.3 km s{sup –1}. We compare our velocity moment maps with known positions of young stellar objects (YSOs) and (sub)millimeter dust continuum emission. The CO emission is brightest at the center of the cluster of YSOs, but is detectedmore » over the full extent of the mapped region at ≥10 × rms. The morphology of the CO channel maps shows a kinematically complex structure, with many elongated features extending from the YSO cluster outward by ∼1 pc. One notable feature appears as a narrow serpentine structure that curves and doubles back, with a total length of ∼3 pc. The {sup 13}CO velocity channel maps show evidence for many low-density cavities surrounded by partial shell-like structures, consistent with previous studies. Maps of the velocity moments show localized effects of bipolar outflows from embedded YSOs, as well as a large-scale velocity gradient around the central core of YSOs, suggestive of large-scale turbulent cloud motions determining the location of current star formation. The CO/{sup 13}CO intensity ratios show the distribution of the CO opacity, which exhibits a complex kinematic structure. Identified YSOs are located mainly at the positions of greatest CO opacity. The maps are available for download as FITS files.« less

  17. Deuterated methanol on a solar system scale around the HH212 protostar

    NASA Astrophysics Data System (ADS)

    Bianchi, E.; Codella, C.; Ceccarelli, C.; Taquet, V.; Cabrit, S.; Bacciotti, F.; Bachiller, R.; Chapillon, E.; Gueth, F.; Gusdorf, A.; Lefloch, B.; Leurini, S.; Podio, L.; Rygl, K. L. J.; Tabone, B.; Tafalla, M.

    2017-10-01

    Context. Deuterium fractionation is a valuable tool for understanding the chemical evolution during the process that leads to the formation of a Sun-like planetary system. Aims: Methanol is thought to be mainly formed during the prestellar phase, and its deuterated form keeps a memory of the conditions at that epoch. The unique combination of high angular resolution and sensitivity provided by ALMA enables us to measure methanol deuteration in the planet formation region around a Class 0 protostar and to understand its origin. Methods: We mapped both the 13CH3OH and CH2DOH distribution in the inner regions ( 100 au) of the HH212 system in Orion B. To this end, we used ALMA Cycle 1 and Cycle 4 observations in Band 7 with angular resolution down to 0.̋15. Results: We detected 6 lines of 13CH3OH and 13 lines of CH2DOH with upper level energies of up to 438 K in temperature units. We derived a rotational temperature of (171 ± 52) K and column densities of 7 × 1016 cm-2 (13CH3OH) and 1 × 1017 cm-2 (CH2DOH), respectively. This yields a D/H ratio of (2.4 ± 0.4) × 10-2, which is lower by an order of magnitude than previously measured values using single-dish telescopes toward protostars located in Perseus. Our findings are consistent with the higher dust temperatures in Orion B with respect to the temperature derived for the Perseus cloud. The emission traces a rotating structure extending up to 45 au from the jet axis, which is elongated by 90 au along the jet axis. So far, the origin of the observed emission appears to be related with the accretion disc. Only higher spatial resolution measurements will be able to distinguish between different possible scenarios, however: disc wind, disc atmosphere, or accretion shocks.

  18. G141.2+5.0, A NEW PULSAR WIND NEBULA DISCOVERED IN THE CYGNUS ARM OF THE MILKY WAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kothes, R.; Foster, T. J.; Sun, X. H.

    2014-04-01

    We report the discovery of the new pulsar wind nebula (PWN) G141.2+5.0 in data observed with the Dominion Radio Astrophysical Observatory's Synthesis Telescope at 1420 MHz. The new PWN has a diameter of about 3.'5, which translates to a spatial extent of about 4 pc at a distance of 4.0 kpc. It displays a radio spectral index of α ≈ –0.7, similar to the PWN G76.9+1.1. G141.2+5.0 is highly polarized up to 40% with an average of 15% in the 1420 MHz data. It is located in the center of a small spherical H I bubble, which is expanding at a velocity of 6 km s{supmore » –1} at a systemic velocity of v {sub LSR} = –53 km s{sup –1}. The bubble could be the result of the progenitor star's mass loss or the shell-type supernova remnant (SNR) created by the same supernova explosion in a highly advanced stage. The systemic LSR velocity of the bubble shares the velocity of H I associated with the Cygnus spiral arm, which is seen across the second and third quadrants and an active star-forming arm immediately beyond the Perseus arm. A kinematical distance of 4 ± 0.5 kpc is found for G141.2+5.0, similar to the optical distance of the Cygnus arm (3.8 ± 1.1 kpc). G141.2+5.0 represents the first radio PWN discovered in 17 years and the first SNR discovered in the Cygnus spiral arm, which is in stark contrast with the Perseus arm's overwhelming population of shell-type remnants.« less

  19. Solar Airplanes and Regenerative Fuel Cells

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    2007-01-01

    A solar electric aircraft with the potential to "fly forever" has captured NASA's interest, and the concept for such an aircraft was pursued under Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project. Feasibility of this aircraft happens to depend on the successful development of solar power technologies critical to NASA's Exploration Initiatives; hence, there was widespread interest throughout NASA to bring these technologies to a flight demonstration. The most critical is an energy storage system to sustain mission power during night periods. For the solar airplane, whose flight capability is already limited by the diffuse nature of solar flux and subject to latitude and time of year constraints, the feasibility of long endurance flight depends on a storage density figure of merit better than 400-600 watt-hr per kilogram. This figure of merit is beyond the capability of present day storage technologies (other than nuclear) but may be achievable in the hydrogen-oxygen regenerative fuel cell (RFC). This potential has led NASA to undertake the practical development of a hydrogen-oxygen regenerative fuel cell, initially as solar energy storage for a high altitude UAV science platform but eventually to serve as the primary power source for NASAs lunar base and other planet surface installations. Potentially the highest storage capacity and lowest weight of any non-nuclear device, a flight-weight RFC aboard a solar-electric aircraft that is flown continuously through several successive day-night cycles will provide the most convincing demonstration that this technology's widespread potential has been realized. In 1998 NASA began development of a closed cycle hydrogen oxygen PEM RFC under the Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project and continued its development, originally for a solar electric airplane flight, through FY2005 under the Low Emissions Alternative Power (LEAP) project. Construction of the closed loop system began in 2002 at the NASA Glenn Research Center in Cleveland, Ohio. System checkout was completed, and testing began, in July of 2003. The initial test sequences were done with only a fuel cell or electrolyzer in the test rig. Those tests were used to verify the test apparatus, procedures, and software. The first complete cycles of the fully closed loop, regenerative fuel cell system were successfully completed in the following September. Following some hardware upgrades to increase reactant recirculation flow, the test rig was operated at full power in December 2003 and again in January 2004. In March 2004 a newer generation of fuel cell and electrolyzer stacks was substituted for the original hardware and these stacks were successfully tested at full power under cyclic operation in June of 2004.

  20. Chandra/HETG Observations of NGC1275

    NASA Astrophysics Data System (ADS)

    Reynolds, Christopher

    2017-09-01

    NGC1275 is the active galactic nucleus (AGN) at the heart of the Perseus cluster of galaxies responsible for the mechanical heating of the intracluster medium (ICM) cool core. We propose a deep (500ks) HETG observation of NGC1275, allowing the first high-S/N, high resolution spectrum of this AGN free from contamination by the bright ICM. We will seek the signatures of powerful winds, answering the central question of whether galactic-scale quasar-mode feedback is occuring simultaneously with cluster-scale radio-mode feedback. We also probe circumnuclear gas (i.e. the fuel supply) through the 6.4keV line previously seen by XMM and Hitomi. These issues are crucial unknowns in our models for the evolution of the most massive galaxies and cluster cores.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shields, G. A.; Bonning, E. W., E-mail: shields@astro.as.utexas.edu, E-mail: erin.bonning@questu.ca

    Recent results indicate that the compact lenticular galaxy NGC 1277 in the Perseus Cluster contains a black hole of mass {approx}10{sup 10} M{sub Sun }. This far exceeds the expected mass of the central black hole in a galaxy of the modest dimensions of NGC 1277. We suggest that this giant black hole was ejected from the nearby giant galaxy NGC 1275 and subsequently captured by NGC 1277. The ejection was the result of gravitational radiation recoil when two large black holes merged following the merger of two giant ellipticals that helped to form NGC 1275. The black hole wanderedmore » in the cluster core until it was captured in a close encounter with NGC 1277. The migration of black holes in clusters may be a common occurrence.« less

  2. An Ozone Differential Absorption Lidar (DIAL) Receiver System for Use on Unpiloted Atmospheric Vehicles

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Goldschmidt, Soenke

    1999-01-01

    Measurements of global atmosphere ozone concentrations call for flexible lidar systems that can be operated from an unpiloted atmospheric vehicle (UAV) to reduce the cost of measurement missions. A lidar receiver system consisting of a fiber-optic-coupled telescope has been designed and tested for this purpose. The system weight is 13 kg and its volume of 0.06 m 3 would fit into the payload compartment of a Perseus B UAV. The optical efficiency of the telescope is 37 percent at 288 nm and 64 percent at 300 nm. Atmospheric measurements with a DIAL laser system have been performed, and the measured ozone density has matched the data from ozonesondes to an altitude of 7 km.

  3. Constraints on Massive Axion-Like Particles from X-ray Observations of NGC1275

    NASA Astrophysics Data System (ADS)

    Chen, Linhan; Conlon, Joseph P.

    2018-06-01

    If axion-like particles (ALPs) exist, photons can convert to ALPs on passage through regions containing magnetic fields. The magnetised intracluster medium of large galaxy clusters provides a region that is highly efficient at ALP-photon conversion. X-ray observations of Active Galactic Nuclei (AGNs) located within galaxy clusters can be used to search for and constrain ALPs, as photon-ALP conversion would lead to energy-dependent quasi-sinusoidal modulations in the X-ray spectrum of an AGN. We use Chandra observations of the central AGN of the Perseus Cluster, NGC1275, to place bounds on massive ALPs up to ma ˜ 10-11eV, extending previous work that used this dataset to constrain massless ALPs.

  4. Search for Spectral Irregularities due to Photon–Axionlike-Particle Oscillations with the Fermi Large Area Telescope

    DOE PAGES

    Ajello, M.; Albert, A.; Anderson, B.; ...

    2016-04-20

    In this paper, we report on the search for spectral irregularities induced by oscillations between photons and axionlike-particles (ALPs) in the γ-ray spectrum of NGC 1275, the central galaxy of the Perseus cluster. Using 6 years of Fermi Large Area Telescope data, we find no evidence for ALPs and exclude couplings above 5 x 10 -12 GeV -1 for ALP masses 0.5 ≲ m a ≲ 5 neV at 95% confidence. Finally, the limits are competitive with the sensitivity of planned laboratory experiments, and, together with other bounds, strongly constrain the possibility that ALPs can reduce the γ-ray opacity ofmore » the Universe.« less

  5. Search for Spectral Irregularities due to Photon-Axionlike-Particle Oscillations with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ajello, M.; Albert, A.; Anderson, B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R.D.; Mirabal, N.; hide

    2016-01-01

    We report on the search for spectral irregularities induced by oscillations between photons and axion-like particles (ALPs) in the gamma-ray spectrum of NGC 1275, the central galaxy of the Perseus cluster. Using 6 years of Fermi Large Area Telescope data, we find no evidence for ALPs and exclude couplings above 5 times 10 (sup -12) per gigaelectronvolt for ALP masses less than or approximately equal to 0.5 apparent magnitude (m (sub a)) less than or approximately equal to 5 nanoelectronvolts at 95 percent confidence. The limits are competitive withthe sensitivity of planned laboratory experiments, and, together with other bounds, strongly constrain thepossibility that ALPs can reduce the gamma-ray opacity of the Universe.

  6. Baryons at the edge of the X-ray-brightest galaxy cluster.

    PubMed

    Simionescu, Aurora; Allen, Steven W; Mantz, Adam; Werner, Norbert; Takei, Yoh; Morris, R Glenn; Fabian, Andrew C; Sanders, Jeremy S; Nulsen, Paul E J; George, Matthew R; Taylor, Gregory B

    2011-03-25

    Studies of the diffuse x-ray-emitting gas in galaxy clusters have provided powerful constraints on cosmological parameters and insights into plasma astrophysics. However, measurements of the faint cluster outskirts have become possible only recently. Using data from the Suzaku x-ray telescope, we determined an accurate, spatially resolved census of the gas, metals, and dark matter out to the edge of the Perseus Cluster. Contrary to previous results, our measurements of the cluster baryon fraction are consistent with the expected universal value at half of the virial radius. The apparent baryon fraction exceeds the cosmic mean at larger radii, suggesting a clumpy distribution of the gas, which is important for understanding the ongoing growth of clusters from the surrounding cosmic web.

  7. On the mid-infrared variability of candidate eruptive variables (exors): A comparison between Spitzer and WISE data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniucci, S.; Giannini, T.; Li Causi, G.

    2014-02-10

    Aiming to statistically study the variability in the mid-IR of young stellar objects, we have compared the 3.6, 4.5, and 24 μm Spitzer fluxes of 1478 sources belonging to the C2D (Cores to Disks) legacy program with the WISE fluxes at 3.4, 4.6, and 22 μm. From this comparison, we have selected a robust sample of 34 variable sources. Their variations were classified per spectral Class (according to the widely accepted scheme of Class I/flat/II/III protostars), and per star forming region. On average, the number of variable sources decreases with increasing Class and is definitely higher in Perseus and Ophiuchusmore » than in Chamaeleon and Lupus. According to the paradigm Class ≡ Evolution, the photometric variability can be considered to be a feature more pronounced in less evolved protostars, and, as such, related to accretion processes. Moreover, our statistical findings agree with the current knowledge of star formation activity in different regions. The 34 selected variables were further investigated for similarities with known young eruptive variables, namely the EXors. In particular, we analyzed (1) the shape of the spectral energy distribution, (2) the IR excess over the stellar photosphere, (3) magnitude versus color variations, and (4) output parameters of model fitting. This first systematic search for EXors ends up with 11 bona fide candidates that can be considered as suitable targets for monitoring or future investigations.« less

  8. THE YOUNG OPEN CLUSTER BERKELEY 55

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negueruela, Ignacio; Marco, Amparo, E-mail: ignacio.negueruela@ua.es, E-mail: amparo.marco@ua.es

    We present UBV photometry of the highly reddened and poorly studied open cluster Berkeley 55, revealing an important population of B-type stars and several evolved stars of high luminosity. Intermediate-resolution far-red spectra of several candidate members confirm the presence of one F-type supergiant and six late supergiants or bright giants. The brightest blue stars are mid-B giants. Spectroscopic and photometric analyses indicate an age 50 {+-} 10 Myr. The cluster is located at a distance d Almost-Equal-To 4 kpc, consistent with other tracers of the Perseus Arm in this direction. Berkeley 55 is thus a moderately young open cluster withmore » a sizable population of candidate red (super)giant members, which can provide valuable information about the evolution of intermediate-mass stars.« less

  9. Pathfinder aircraft taking off - setting new solar powered altitude record

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Pathfinder solar-powered remotely piloted aircraft climbs to a record-setting altitude of 50,567 feet during a flight Sept. 11, 1995, at NASA's Dryden Flight Research Center, Edwards, California. The flight was part of the NASA ERAST (Environmental Research Aircraft and Sensor Technology) program. The Pathfinder was designed and built by AeroVironment Inc., Monrovia, California. Solar arrays cover nearly all of the upper wing surface and produce electricity to power the aircraft's six motors. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  10. OT2_tvelusam_4: Probing Galactic Spiral Arm Tangencies with [CII

    NASA Astrophysics Data System (ADS)

    Velusamy, T.

    2011-09-01

    We propose to use the unique viewing geometry of the Galactic spiral arm tangents , which provide an ideal environment for studying the effects of density waves on spiral structure. We propose a well-sampled map of the[C II] 1.9 THz line emission along a 15-degree longitude region across the Norma-3kpc arm tangential, which includes the edge of the Perseus Arm. The COBE-FIRAS instrument observed the strongest [C II] and [N II] emission along these spiral arm tangencies.. The Herschel Open Time Key Project Galactic Observations of Terahertz C+ (GOT C+), also detects the strongest [CII] emission near these spiral arm tangential directions in its sparsely sampled HIFI survey of [CII] in the Galactic plane survey. The [C II] 158-micron line is the strongest infrared line emitted by the ISM and is an excellent tracer and probe of both the diffuse gases in the cold neutral medium (CNM) and the warm ionized medium (WIM). Furthermore, as demonstrated in the GOTC+ results, [C II] is an efficient tracer of the dark H2 gas in the ISM that is not traced by CO or HI observations. Thus, taking advantage of the long path lengths through the spiral arm across the tangencies, we can use the [C II] emission to trace and characterize the diffuse atomic and ionized gas as well as the diffuse H2 molecular gas in cloud transitions from HI to H2 and C+ to C and CO, throughout the ISM. The main goal of our proposal is to use the well sampled (at arcmin scale) [C II] to study these gas components of the ISM in the spiral-arm, and inter-arm regions, to constrain models of the spiral structure and to understand the influence of spiral density waves on the Galactic gas and the dynamical interaction between the different components. The proposed HIFI observations will consist of OTF 15 degree longitude scans and one 2-degree latitude scan sampled every 40arcsec across the Norma- 3kpc Perseus Spiral tangency.

  11. Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sánchez-Conde, Miguel A.; Cannoni, Mirco; Gómez, Mario E.

    2011-12-01

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure.more » Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We find that the level of the annihilation flux from these targets is below the sensitivities of current IACTs and the future CTA.« less

  12. Dark Matter Searches with Cherenkov Telescopes: Nearby Dwarf Galaxies or Local Galaxy Clusters?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Conde, Miguel A.; /KIPAC, Menlo Park /SLAC /IAC, La Laguna /Laguna U., Tenerife; Cannoni, Mirco

    2012-06-06

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure.more » Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We find that the level of the annihilation flux from these targets is below the sensitivities of current IACTs and the future CTA.« less

  13. Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?

    NASA Astrophysics Data System (ADS)

    Sánchez-Conde, Miguel A.; Cannoni, Mirco; Zandanel, Fabio; Gómez, Mario E.; Prada, Francisco

    2011-12-01

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We find that the level of the annihilation flux from these targets is below the sensitivities of current IACTs and the future CTA.

  14. Probing the non-thermal emission in Abell 2146 and the Perseus cluster with the JVLA

    NASA Astrophysics Data System (ADS)

    Gendron-Marsolais, Marie-Lou; Hlavacek-Larrondo, Julie; van Weeren, Reinout; Clarke, Tracy; Intema, Huib; Russell, Helen; Edge, Alastair; Fabian, Andy; Olamaie, Malak; Rumsey, Clare; King, Lindsay; McNamara, Brian; Fecteau-Beaucage, David; Hogan, Michael; Mezcua, Mar; Taylor, Gregory; Blundell, Katherine; Sanders, Jeremy

    2018-01-01

    Jets created from accretion onto supermassive black holes release relativistic particles on large distances. These strongly affect the intracluster medium when located in the center of a brightest cluster galaxy. The hierarchical merging of subclusters and groups, from which cluster originate, also generates perturbations into the intracluster medium through shocks and turbulence, constituting a potential source of reacceleration for these particles. I will present deep multi-configuration low radio frequency observations from the Karl G. Jansky Very Large Array of two unique clusters, probing the non-thermal emission from the old particle population of the AGN outflows.Recently awarded of 550 hours of Chandra observations, Abell 2146 is one of the rare clusters undergoing a spectacular merger in the plane of the sky. Our recent deep multi-configuration JVLA 1.4 GHz observations have revealed the presence of a structure extending to 850 kpc in size, consisting of one component associated with the upstream shock and classified as a radio relic, and one associated with the subcluster core, consistent with a radio halo bounded by the bow shock. Theses structures have some of the lowest radio powers detected thus far in any cluster. The flux measurements of the halo, its morphology and measurements of the dynamical state of the cluster suggest that the halo was recently created (~ 0.3 Gyr after core passage). This makes A2146 extremely interesting to study, allowing us to probe the complete evolutionary stages of halos.I will also present results on 230-470 MHz JVLA observations of the Perseus cluster. Our observations of this nearby relaxed cool core cluster have revealed a multitude of new structures associated with the mini-halo, extending to hundreds of kpc in size. Its irregular morphology seems to be have been influenced both by the AGN activity and by the sloshing motion of the cluster’ gas. In addition, it has a filamentary structure similar to that seen in radio relics found in merging clusters.These results both illustrate the high-quality images that can be obtained with the new JVLA at low radio-frequencies.

  15. First imaging results from Apertif, a phased-array feed for WSRT

    NASA Astrophysics Data System (ADS)

    Adams, Elizabeth A.; Adebahr, Björn; de Blok, Willem J. G.; Hess, Kelley M.; Hut, Boudewijn; Lucero, Danielle M.; Maccagni, Filippo; Morganti, Raffaella; Oosterloo, Tom; Staveley-Smith, Lister; van der Hulst, Thijs; Verheijen, Marc; Verstappen, Joris

    2017-01-01

    Apertif is a phased-array feed for the Westerbork Synthesis Radio Telescope (WSRT), increasing the field of view of the telescope by a factor of twenty-five. In 2017, three legacy surveys will commence: a shallow imaging survey, a medium-deep imaging survey, and a pulsars and fast transients survey. The medium-deep imaging survey will include coverage of the northern Herschel Atlas field, the CVn region, HetDex, and the Perseus-Pisces supercluster. The shallow imaging survey increases overlap with HetDex, has expanded coverage of the Perseus-Pisces supercluster, and includes part of the Zone of Avoidance. Both imaging surveys are coordinating with MaNGA and will have WEAVE follow-up. The imaging surveys will be done in full polarization over the frequency range 1130-1430 MHz, which corresponds to redshifts of z=0-0.256 for neutral hydrogen (HI). The spectral resolution is 12.2 kHz, or an HI velocity resolution of 2.6 km/s at z=0 and 3.2 km/s at z=0.256. The full resolution images will have a beam size of 15"x15"/sin(declination), and tapered data products (i.e., 30" resolution images) will also be available. The shallow survey will cover ~3500 square degrees with a four-sigma HI imaging sensitivity of 2.5x10^20 atoms cm^-2 (20 km/s linewidth) at the highest resolution and a continuum sensitivity of 15 uJy/beam (11 uJy/beam for polarization data). The current plan calls for the medium deep survey to cover 450 square degrees and provide an HI imaging sensitivity of 1.0x10^20 atoms cm^-2 at the highest resolution and a continuum sensitivity of 6 uJy/beam, close to the confusion limit (4 uJy/beam for polarization data, not confusion limited). Up-to-date information on Apertif and the planned surveys can be found at: http://www.apertif.nl.Commissioning of the Apertif instrument is currently underway. Here we present first results from the image commissioning, including the detection of HI absorption plus continuum and HI imaging. These results highlight the data quality that will be achieved for the surveys.

  16. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryukova, E.; Megeath, S. T.; Allen, T. S.

    2012-08-15

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Usingmore » protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity functions to those predicted by models and find that our observed luminosity functions are best matched by models that invoke competitive accretion, although we do not find strong agreement between the high-mass SF clouds and any of the models.« less

  17. Helical magnetic fields in molecular clouds?. A new method to determine the line-of-sight magnetic field structure in molecular clouds

    NASA Astrophysics Data System (ADS)

    Tahani, M.; Plume, R.; Brown, J. C.; Kainulainen, J.

    2018-06-01

    Context. Magnetic fields pervade in the interstellar medium (ISM) and are believed to be important in the process of star formation, yet probing magnetic fields in star formation regions is challenging. Aims: We propose a new method to use Faraday rotation measurements in small-scale star forming regions to find the direction and magnitude of the component of magnetic field along the line of sight. We test the proposed method in four relatively nearby regions of Orion A, Orion B, Perseus, and California. Methods: We use rotation measure data from the literature. We adopt a simple approach based on relative measurements to estimate the rotation measure due to the molecular clouds over the Galactic contribution. We then use a chemical evolution code along with extinction maps of each cloud to find the electron column density of the molecular cloud at the position of each rotation measure data point. Combining the rotation measures produced by the molecular clouds and the electron column density, we calculate the line-of-sight magnetic field strength and direction. Results: In California and Orion A, we find clear evidence that the magnetic fields at one side of these filamentary structures are pointing towards us and are pointing away from us at the other side. Even though the magnetic fields in Perseus might seem to suggest the same behavior, not enough data points are available to draw such conclusions. In Orion B, as well, there are not enough data points available to detect such behavior. This magnetic field reversal is consistent with a helical magnetic field morphology. In the vicinity of available Zeeman measurements in OMC-1, OMC-B, and the dark cloud Barnard 1, we find magnetic field values of - 23 ± 38 μG, - 129 ± 28 μG, and 32 ± 101 μG, respectively, which are in agreement with the Zeeman measurements. Tables 1 to 7 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A100

  18. OCULUS SeaTM: integrated maritime surveillance platform

    NASA Astrophysics Data System (ADS)

    Kanellopoulos, Sotirios A.; Katsoulis, Stavros; Motos, Dionysis; Lampropoulos, Vassilis; Margonis, Chris; Dimitros, Kostantinos; Thomopoulos, Stelios C. A.

    2015-05-01

    OCULUS Sea™ is a C2 platform for Integrated Maritime Surveillance. The platform consists of "loosely coupled" National/ Regional and Local C2 Centers which are "centrally governed". "Loosely coupled" as C2 Centers are located separately, share their Situational Pictures via a Message Oriented Middleware but preserve their administrational and operational autonomy. "Centrally governed" as there exists a central governance mechanism at the NCC that registers, authenticates and authorizes Regional and Local C2 centers into the OCULUS Sea network. From operational point of view, OCULUS Sea has been tested under realistic conditions during the PERSEUS [3] Eastern Campaign and has been positively evaluated by Coast Guard officers from Spain and Greece. From Research and Development point of view, OCULUS Sea can act as a test bed for validating any technology development is this domain in the near future.

  19. Limits on turbulent propagation of energy in cool-core clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Bambic, C. J.; Pinto, C.; Fabian, A. C.; Sanders, J.; Reynolds, C. S.

    2018-07-01

    We place constraints on the propagation velocity of bulk turbulence within the intracluster medium of three clusters and an elliptical galaxy. Using Reflection Grating Spectrometer measurements of turbulent line broadening, we show that for these clusters, the 90 per cent upper limit on turbulent velocities when accounting for instrumental broadening is too low to propagate energy radially to the cooling radius of the clusters within the required cooling time. In this way, we extend previous Hitomi-based analysis on the Perseus cluster to more clusters, with the intention of applying these results to a future, more extensive catalogue. These results constrain models of turbulent heating in active galactic nucleus feedback by requiring a mechanism which can not only provide sufficient energy to offset radiative cooling but also resupply that energy rapidly enough to balance cooling at each cluster radius.

  20. Limits on turbulent propagation of energy in cool-core clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Bambic, C. J.; Pinto, C.; Fabian, A. C.; Sanders, J.; Reynolds, C. S.

    2018-04-01

    We place constraints on the propagation velocity of bulk turbulence within the intracluster medium of three clusters and an elliptical galaxy. Using Reflection Grating Spectrometer measurements of turbulent line broadening, we show that for these clusters, the 90% upper limit on turbulent velocities when accounting for instrumental broadening is too low to propagate energy radially to the cooling radius of the clusters within the required cooling time. In this way, we extend previous Hitomi-based analysis on the Perseus cluster to more clusters, with the intention of applying these results to a future, more extensive catalog. These results constrain models of turbulent heating in AGN feedback by requiring a mechanism which can not only provide sufficient energy to offset radiative cooling, but resupply that energy rapidly enough to balance cooling at each cluster radius.

  1. Relic galaxies: where are they?

    NASA Astrophysics Data System (ADS)

    Peralta de Arriba, L.; Quilis, V.; Trujillo, I.; Cebrián, M.; Balcells, M.

    2017-03-01

    The finding that massive galaxies grow with cosmic time fired the starting gun for the search of objects which could have survived up to the present day without suffering substantial changes (neither in their structures, neither in their stellar populations). Nevertheless, and despite the community efforts, up to now only one firm candidate to be considered one of these relics is known: NGC 1277. Curiously, this galaxy is located at the centre of one of the most rich near galaxy clusters: Perseus. Is its location a matter of chance? Should relic hunters focus their search on galaxy clusters? In order to reply this question, we have performed a simultaneous and analogous analysis using simulations (Millennium I-WMAP7) and observations (New York University Value-Added Galaxy Catalogue). Our results in both frameworks agree: it is more probable to find relics in high density environments.

  2. Spatial and kinematic structure of Monoceros star-forming region

    NASA Astrophysics Data System (ADS)

    Costado, M. T.; Alfaro, E. J.

    2018-05-01

    The principal aim of this work is to study the velocity field in the Monoceros star-forming region using the radial velocity data available in the literature, as well as astrometric data from the Gaia first release. This region is a large star-forming complex formed by two associations named Monoceros OB1 and OB2. We have collected radial velocity data for more than 400 stars in the area of 8 × 12 deg2 and distance for more than 200 objects. We apply a clustering analysis in the subspace of the phase space formed by angular coordinates and radial velocity or distance data using the Spectrum of Kinematic Grouping methodology. We found four and three spatial groupings in radial velocity and distance variables, respectively, corresponding to the Local arm, the central clusters forming the associations and the Perseus arm, respectively.

  3. Most Powerful Eruption in the Universe Discovered

    NASA Astrophysics Data System (ADS)

    2005-01-01

    Astronomers have found the most powerful eruption seen in the Universe using NASA's Chandra X-ray Observatory. A supermassive black hole generated this eruption by growing at a remarkable rate. This discovery shows the enormous appetite of large black holes, and the profound impact they have on their surroundings. The huge eruption is seen in a Chandra image of the hot, X-ray emitting gas of a galaxy cluster called MS 0735.6+7421. Two vast cavities extend away from the supermassive black hole in the cluster's central galaxy. The eruption - which has lasted for 100 million years and is still going - has generated the energy equivalent to hundreds of millions of gamma-ray bursts. Animation of Eruption from Supermassive Black Hole Animation of Eruption from Supermassive Black Hole This event was caused by gravitational energy release as enormous amounts of matter fell toward a black hole. Most of the matter was swallowed, but some of it was violently ejected before being captured by the black hole. "I was stunned to find that a mass of about 300 million Suns was swallowed," said Brian McNamara of Ohio University in Athens, lead author of the study that appears in the January 6, 2005 issue of Nature. "This is almost as massive as the supermassive black hole that swallowed it." Astronomers are not sure where such large amounts of matter came from. One theory is that gas from the host galaxy catastrophically cooled and was then swallowed by the black hole. Illustration of MS 0735.6+742 Illustration of MS 0735.6+742 The energy released shows that the black hole in MS 0735 has grown very dramatically during this eruption. Previous studies suggest that other large black holes have grown very little in the recent past, and that only smaller black holes are still growing quickly. "This new result is as surprising as it is exciting", said co-author Paul Nulsen of the Harvard-Smithsonian Center of Astrophysics. "This black hole is feasting when it should be fasting." Radio emission within the cavities shows that jets from the black hole erupted to create the cavities. Gas is being pushed away from the black hole at supersonic speeds over a distance of about a million light years. The mass of the displaced gas equals about a trillion Suns, more than the mass of all the stars in the Milky Way. LA Radio & Chandra X-ray Composite of MS 0735.6+7421 VLA Radio & Chandra X-ray Composite of MS 0735.6+7421 The rapid growth of supermassive black holes is usually detected by observing very bright radiation from the centers of galaxies in the optical and X-ray wavebands, or luminous radio jets. In MS 0735 no bright central radiation is found and the radio jets are faint. Therefore, the true nature of MS 0735 is only revealed through X-ray observations of the hot cluster gas. "Until now we had no idea that this black hole was gorging itself", said co-author Michael Wise of the Massachusetts Institute of Technology. "The discovery of this eruption shows that X-ray telescopes are necessary to understand some of the most violent events in the Universe." The astronomers estimated how much energy was needed to create the cavities by calculating the density, temperature and pressure of the hot gas. By making a standard assumption, that 10% of the gravitational energy goes into launching the jets, they estimated how much material the black hole swallowed. Size Comparison of MS 0735.6+7421 & Perseus Cluster Size Comparison of MS 0735.6+7421 & Perseus Cluster Besides generating the cavities, some of the energy from this eruption should keep the hot gas around the black hole from cooling, and some of it may also generate large-scale magnetic fields in the galaxy cluster. Chandra observers have discovered other cavities in galaxy clusters, but this one is easily the largest and the most powerful. For example, the energy content here exceeds that of the Perseus cavities by 250 times, and dwarfs the cavities in M87 by a factor of 10,000. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  4. The INfrared Survey of Young Nebulous Clusters (IN-SYNC): Surveying the Dynamics and Star Formation Histories of Young Clusters with APOGEE

    NASA Astrophysics Data System (ADS)

    Covey, Kevin R.; Cottaar, Michiel; Foster, Jonathan B.; Da Rio, Nicola; Tan, Jonathan; Meyer, Michael; Nidever, David L.; Flaherty, Kevin M.; Arce, Hector G.; Rebull, Luisa M.; Chojnowski, S. Drew; Frinchaboy, Peter M.; Hearty, Fred R.; Majewski, Steven R.; Skrutskie, Michael F.; Stassun, Keivan; Wilson, John C.; Zasowski, Gail

    2015-01-01

    Young clusters are the most prolific sites of star formation in the Milky Way, but demographic studies indicate that relatively few of the Milky Way's stellar clusters persist as bound structures for 100 Myrs or longer. Uniform & precise measurements of the stellar populations and internal dynamics of these regions are difficult to obtain, however, particularly for extremely young clusters whose optical visibility is greatly hampered by their parental molecular cloud. The INfrared Survey of Young Nebulous Clusters (IN-SYNC), an SDSS-III ancillary science program, leverages the stability and multiplex capability of the APOGEE spectrograph to obtain high resolution spectra at near-infrared wavelengths, where photospheric emission is better able to penetrate the dusty shrouds that surround sites of active star formation. We summarize our recent measurements of the kinematics and stellar populations of IC 348 and NGC 1333, two young clusters in the Perseus Molecular Cloud, and of the members of the Orion Nebula Cluster (ONC) and L1641 filament in the Orion molecular complex. These measurements highlight the dynamically 'warm' environment within these young clusters, and suggest a range of stellar radii within these quasi-single-age populations. We close with a preview of plans for continuing this work as part of the APOGEE-2 science portfolio: self-consistent measurements of the kinematics and star formation histories for clusters spanning a range of initial conditions and ages will provide a opportunity to disentangle the mechanisms that drive the formation and dissolution of sites of active star formation.

  5. Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., ca

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., carefully thread control lines through a bulkhead during engine installation on NASA's Altair aircraft. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  6. IRAS galaxies versus POTENT mass - Density fields, biasing, and Omega

    NASA Technical Reports Server (NTRS)

    Dekel, Avishai; Bertschinger, Edmund; Yahil, Amos; Strauss, Michael A.; Davis, Marc; Huchra, John P.

    1993-01-01

    A comparison of the galaxy density field extracted from a complete redshift survey of IRAS galaxies brighter than 1.936 Jy with the mass-density field reconstructed by the POTENT procedure from the observed peculiar velocities of 493 objects is presented. A strong correlation is found between the galaxy and mass-density fields; both feature the Great Attractor, part of the Perseus-Pisces supercluster, and the large void between them. Monte Carlo noise simulations show that the data are consistent with the hypotheses that the smoothed fluctuations of galaxy and mass densities at each point are proportional to each other with the 'biasing' factor of IRAS galaxies, b(I), and that the peculiar velocity field is related to the mass-density field as expected according to the gravitational instability theory. Under these hypotheses, the two density fields can be related by specifying b(I) and the cosmological density parameter, Omega.

  7. TWO-STAGE FRAGMENTATION FOR CLUSTER FORMATION: ANALYTICAL MODEL AND OBSERVATIONAL CONSIDERATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Nicole D.; Basu, Shantanu, E-mail: nwityk@uwo.ca, E-mail: basu@uwo.ca

    2012-12-10

    Linear analysis of the formation of protostellar cores in planar magnetic interstellar clouds shows that molecular clouds exhibit a preferred length scale for collapse that depends on the mass-to-flux ratio and neutral-ion collision time within the cloud. We extend this linear analysis to the context of clustered star formation. By combining the results of the linear analysis with a realistic ionization profile for the cloud, we find that a molecular cloud may evolve through two fragmentation events in the evolution toward the formation of stars. Our model suggests that the initial fragmentation into clumps occurs for a transcritical cloud onmore » parsec scales while the second fragmentation can occur for transcritical and supercritical cores on subparsec scales. Comparison of our results with several star-forming regions (Perseus, Taurus, Pipe Nebula) shows support for a two-stage fragmentation model.« less

  8. First record and five new species of Xylographellini (Coleoptera: Ciidae) from China, with online DNA barcode library of the family.

    PubMed

    Lopes-Andrade, Cristiano; Grebennikov, Vasily V

    2015-08-25

    We report the first record of the beetle tribe Xylographellini (Ciidae) from the continental Palaearctic Region, represented by five new species discovered in Yunnan and Sichuan provinces, China: Scolytocis danae sp. nov., Syncosmetus euryale sp. nov., Sync. medusa sp. nov., Sync. perseus sp. nov. and Sync. stheno sp. nov. Illustrations and identification keys are provided for these new species, and in order to facilitate further research of Ciidae we present an open-access DNA barcode library (dx.doi.org/10.5883/DS-SYNCOSM) containing 114 records (of 44 species in 14 genera), 15 of which belong to the newly described species. A phylogenetic analysis based on the barcode fragment of the cytochrome oxidase I gene did not recover much tree structure within Ciidae, however both Xylographus Mellié and Syncosmetus Sharp were recovered as clades, with a single Scolytocis Blair being the sister to the latter.

  9. The structure of the nearby universe traced by theIRAS galaxies

    NASA Technical Reports Server (NTRS)

    Yahil, Amos

    1993-01-01

    One of the most important discoveries of the Infrared Astronomical Satellite (IRAS) has been the detection of about 20,000 galaxies with 60 microns fluxes above 0.5 Jy. From the observational point of view, the IRAS galaxies are ideal tracers of density, since they are homogeneously detected over most of the sky, and their fluxes are unaffected by galactic extinction. The nearby universe was mapped by the IRAS galaxies to a distance of approximately 200 h(exp -1) Mpc for the absolute value of b less than 5 deg. The ability to map down to such low galactic latitudes has proven to be particularly imporant, since some of the most important nearby large-scale structures, such as the Great Attractor, the Perseus-Pisces region, and the Shapley concentration, all lie there. Two major results of the U.S. IRAS redshift survey are discussed.

  10. Mass spectrometry data from label-free quantitative proteomic analysis of harmless and pathogenic strains of infectious microalgae, Prototheca spp.

    PubMed

    Murugaiyan, Jayaseelan; Eravci, Murat; Weise, Christoph; Roesler, Uwe

    2017-06-01

    Here, we provide the dataset associated with our research article 'label-free quantitative proteomic analysis of harmless and pathogenic strains of infectious microalgae, Prototheca spp.' (Murugaiyan et al., 2017) [1]. This dataset describes liquid chromatography-mass spectrometry (LC-MS)-based protein identification and quantification of a non-infectious strain, Prototheca zopfii genotype 1 and two strains associated with severe and mild infections, respectively, P. zopfii genotype 2 and Prototheca blaschkeae . Protein identification and label-free quantification was carried out by analysing MS raw data using the MaxQuant-Andromeda software suit. The expressional level differences of the identified proteins among the strains were computed using Perseus software and the results were presented in [1]. This DiB provides the MaxQuant output file and raw data deposited in the PRIDE repository with the dataset identifier PXD005305.

  11. X-ray lines and self-interacting dark matter.

    PubMed

    Mambrini, Yann; Toma, Takashi

    We study the correlation between a monochromatic signal from annihilating dark matter and its self-interacting cross section. We apply our argument to a complex scalar dark sector, where the pseudo-scalar plays the role of a warm dark matter candidate while the scalar mediates its interaction with the Standard Model. We combine the recent observation of the cluster Abell 3827 for self-interacting dark matter and the constraints on the annihilation cross section for monochromatic X-ray lines. We also confront our model to a set of recent experimental analyses and find that such an extension can naturally produce a monochromatic keV signal corresponding to recent observations of Perseus or Andromeda, while in the meantime it predicts a self-interacting cross section of the order of [Formula: see text], as recently claimed in the observation of the cluster Abell 3827. We also propose a way to distinguish such models by future direct detection techniques.

  12. Implications for gravitational lensing and the dark matter content in clusters of galaxies from spatially resolved x-ray spectra

    NASA Technical Reports Server (NTRS)

    Loewenstein, M.

    1994-01-01

    A simple method for deriving well-behaved temperature solutions to the equation of hydrostatic equilibrium for intracluster media with X-ray imaging observations is presented and applied to a series of generalized models as well as to observations of the Perseus cluster and Abell 2256. In these applications the allowed range in the ratio of nonbaryons to baryons as a function of radius is derived, taking into account the uncertainties and crude spatial resolution of the X-ray spectra and considering a range of physically reasonable mass models with various scale heights. Particular attention is paid to the central regions of the cluster, and it is found that the dark matter can be sufficiently concentrated to be consistent with the high central mass surface densities for moderate-redshift clusters from their gravitational lensing properties.

  13. A Color-locus Method for Mapping R V Using Ensembles of Stars

    NASA Astrophysics Data System (ADS)

    Lee, Albert; Green, Gregory M.; Schlafly, Edward F.; Finkbeiner, Douglas P.; Burgett, William; Chambers, Ken; Flewelling, Heather; Hodapp, Klaus; Kaiser, Nick; Kudritzki, Rolf-Peter; Magnier, Eugene; Metcalfe, Nigel; Wainscoat, Richard; Waters, Christopher

    2018-02-01

    We present a simple but effective technique for measuring angular variation in R V across the sky. We divide stars from the Pan-STARRS1 catalog into Healpix pixels and determine the posterior distribution of reddening and R V for each pixel using two independent Monte Carlo methods. We find the two methods to be self-consistent in the limits where they are expected to perform similarly. We also find some agreement with high-precision photometric studies of R V in Perseus and Ophiuchus, as well as with a map of reddening near the Galactic plane based on stellar spectra from APOGEE. While current studies of R V are mostly limited to isolated clouds, we have developed a systematic method for comparing R V values for the majority of observable dust. This is a proof of concept for a more rigorous Galactic reddening map.

  14. NASA Solar Array Demonstrates Commercial Potential

    NASA Technical Reports Server (NTRS)

    Creech, Gray

    2006-01-01

    A state-of-the-art solar-panel array demonstration site at NASA's Dryden Flight Research Center provides a unique opportunity for studying the latest in high-efficiency solar photovoltaic cells. This five-kilowatt solar-array site (see Figure 1) is a technology-transfer and commercialization success for NASA. Among the solar cells at this site are cells of a type that was developed in Dryden Flight Research Center s Environmental Research Aircraft and Sensor Technology (ERAST) program for use in NASA s Helios solar-powered airplane. This cell type, now denoted as A-300, has since been transferred to SunPower Corporation of Sunnyvale, California, enabling mass production of the cells for the commercial market. High efficiency separates these advanced cells from typical previously commercially available solar cells: Whereas typical previously commercially available cells are 12 to 15 percent efficient at converting sunlight to electricity, these advanced cells exhibit efficiencies approaching 23 percent. The increase in efficiency is due largely to the routing of electrical connections behind the cells (see Figure 2). This approach to increasing efficiency originated as a solution to the problem of maximizing the degree of utilization of the limited space available atop the wing of the Helios airplane. In retrospect, the solar cells in use at this site could be used on Helios, but the best cells otherwise commercially available could not be so used, because of their lower efficiencies. Historically, solar cells have been fabricated by use of methods that are common in the semiconductor industry. One of these methods includes the use of photolithography to define the rear electrical-contact features - diffusions, contact openings, and fingers. SunPower uses these methods to produce the advanced cells. To reduce fabrication costs, SunPower continues to explore new methods to define the rear electrical-contact features. The equipment at the demonstration site includes two fixed-angle solar arrays and one single-axis Sun-tracking array. One of the fixed arrays contains typical less-efficient commercial solar cells and is being used as a baseline for comparison of the other fixed array, which contains the advanced cells. The Sun-tracking array tilts to follow the Sun, using an advanced, real-time tracking device rather than customary pre-programmed mechanisms. Part of the purpose served by the demonstration is to enable determination of any potential advantage of a tracking array over a fixed array. The arrays are monitored remotely on a computer that displays pertinent information regarding the functioning of the arrays.

  15. [Nutritional assessment of the menus served in municipal nursery schools in Granada].

    PubMed

    Seiquer, Isabel; Haro, Ana; Cabrera-Vique, Carmen; Muñoz-Hoyos, Antonio; Galdó, Gabriel

    2016-10-01

    The school canteen plays today an essential role in child nutrition and for consolidating appropriate eating habits. In Spain, the guidelines for school meals have been established by the NAOS strategy and the Perseus program, and are especially aimed at school children of 6-10 years. However, there is a lack of information on menus offered in pre-school education centres, which take in children of pre-school age. The aim of this study was to evaluate the composition and the food supplied in pre-schools of the province of Granada. A study was conducted on the menus offered in public pre-schools in Granada, with a population of 420 children aged 2-6 years old. A total of 20 menus were analysed, and details were collected including direct information on the ingredients used, the proportion of these in each dish, and the form of preparation. The daily intake of energy and nutrients, as well as the frequency of weekly supply of the different food groups were studied. The average energy content of the menus was 512.5kcal, distributed into protein (17.3%), carbohydrates (48.8%), and lipids (33.9%). A suitable supply of fibre (7.8g/day) was observed, but content of calcium and zinc did not reach recommended levels. The supply of vegetables was adequate, with a daily presence of salad, as well as vegetables, meat, fish and fruit. Menus evaluated represent an adequate content of energy, and proper supply of the different groups of foods, especially vegetables, fruits and salads. A great effort is observed in the centres to adapt meals to nutritional recommendations. Copyright © 2015 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. The Green Bank Ammonia Survey: First Results of NH3 Mapping of the Gould Belt

    NASA Astrophysics Data System (ADS)

    Friesen, Rachel K.; Pineda, Jaime E.; co-PIs; Rosolowsky, Erik; Alves, Felipe; Chacón-Tanarro, Ana; How-Huan Chen, Hope; Chun-Yuan Chen, Michael; Di Francesco, James; Keown, Jared; Kirk, Helen; Punanova, Anna; Seo, Youngmin; Shirley, Yancy; Ginsburg, Adam; Hall, Christine; Offner, Stella S. R.; Singh, Ayushi; Arce, Héctor G.; Caselli, Paola; Goodman, Alyssa A.; Martin, Peter G.; Matzner, Christopher; Myers, Philip C.; Redaelli, Elena; The GAS Collaboration

    2017-07-01

    We present an overview of the first data release (DR1) and first-look science from the Green Bank Ammonia Survey (GAS). GAS is a Large Program at the Green Bank Telescope to map all Gould Belt star-forming regions with {A}{{V}}≳ 7 mag visible from the northern hemisphere in emission from NH3 and other key molecular tracers. This first release includes the data for four regions in the Gould Belt clouds: B18 in Taurus, NGC 1333 in Perseus, L1688 in Ophiuchus, and Orion A North in Orion. We compare the NH3 emission to dust continuum emission from Herschel and find that the two tracers correspond closely. We find that NH3 is present in over 60% of the lines of sight with {A}{{V}}≳ 7 mag in three of the four DR1 regions, in agreement with expectations from previous observations. The sole exception is B18, where NH3 is detected toward ∼40% of the lines of sight with {A}{{V}}≳ 7 mag. Moreover, we find that the NH3 emission is generally extended beyond the typical 0.1 pc length scales of dense cores. We produce maps of the gas kinematics, temperature, and NH3 column densities through forward modeling of the hyperfine structure of the NH3 (1, 1) and (2, 2) lines. We show that the NH3 velocity dispersion, {σ }v, and gas kinetic temperature, T K, vary systematically between the regions included in this release, with an increase in both the mean value and the spread of {σ }v and T K with increasing star formation activity. The data presented in this paper are publicly available (https://dataverse.harvard.edu/dataverse/GAS_DR1).

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenly, John B.; Seyler, Charles

    Experimental and computational studies of high energy density plasma streams ablated from fine wires. Laboratory of Plasma Studies, School of Electrical and Computer Engineering, Cornell University. Principal Investigators: Dr. John B. Greenly and Dr. Charles E. Seyler. This report summarizes progress during the final year of this project to study the physics of high energy density (HED) plasma streams of 10^17-10^20/cm3 density and high velocity (~100-500 km/s). Such streams are produced from 5-250 micrometer diameter wires heated and ionized by a 1 MA, 250 ns current pulse on the COBRA pulsed power facility at Cornell University. Plasma is ablated frommore » the wires and is driven away to high velocity by unbalanced JxB force. A wire, or an array of wires, can persist as an essentially stationary, continuous source of this streaming plasma for >200 ns, even with driving magnetic fields of many Tesla and peak current densities in the plasma of many MA/cm2. At the heart of the ablation stream generation is the continuous transport of mass from the relatively cold, near-solid-density wire "core" into current-carrying plasma within 1 mm of the wire, followed by the magnetic acceleration of that plasma and its trapped flux to form a directed stream. In the first two years of this program, an advancing understanding of ablation physics led to the discovery of several novel wire ablation experimental regimes. In the final year, one of these new HED plasma regimes has been studied in quantitative detail. This regime studies highly reproducible magnetic reconnection in strongly radiating plasma with supersonic and superalfvenic flow, and shock structures in the outflow. The key discovery is that very heavy wires, e.g. 250 micrometer diameter Al or 150 micrometer Cu, behave in a qualitatively different way than the lighter wires typically used in wire-array Z-pinches. Such wires can be configured to produce a static magnetic X-point null geometry that stores magnetic and thermal energy; reconnection and outflow are triggered when the current begins to decrease and the electric field reverses. The reconnecting flow is driven by both magnetic and thermal pressure forces, and it has been found to be possible to vary the configuration so that one or the other dominates. The magnetic null extends into a current sheet that is heated and radiates strongly, with supersonic outflows. This is the first study of reconnection in this HED plasma regime. This compressible, radiative regime, and the triggering mechanism, may be relevant to solar and astrophysical processes. The PERSEUS extended MHD code has been developed for simulation of these phenomena, and will continue to be used and further developed to help interpret and understand experimental results, as well as to guide experimental design. The code is well-suited to simulations of shocks, and includes Hall and electron inertia physics that appear to be of importance in a number of ablation flow regimes, and definitely in the reconnection regime when gradient scales are comparable to the ion inertial scale. During the final year, our graduate student supported by this grant completed a new version of PERSEUS with the finite volume computational scheme replaced by a discontinuous Galerkin method that gives much less diffusive behavior and allows faster run time and higher spatial resolution. Thecode is now being used to study shock structures produced in the outflow region of the reconnection regime.« less

  18. Technician Dave Brown installs a drilling template during construction of the all-composite left win

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Technician Dave Brown installs a drilling template during construction of the all-composite left wing of NASA's Altair aircraft at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  19. The left wing of NASA's Altair unmanned aerial vehicle (UAV) rests in a jig during construction at G

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The left wing of NASA's Altair unmanned aerial vehicle (UAV) rests in a jig during construction at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  20. Helios Prototype on lakebed during ground check of electric motors

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. Helios is one of several remotely-piloted aircraft-also known as uninhabited aerial vehicles or UAV's-being developed as technology demonstrators by several small airframe manufacturers under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Developed by AeroVironment, Inc., of Monrovia, Calif., the unique craft is intended to demonstrate two key missions: the ability to reach and sustain horizontal flight at 100,000 feet altitude on a single-day flight, and to maintain flight above 50,000 feet altitude for at least four days, both on electrical power derived from non-polluting solar energy. During later flights, AeroVironment's flight test team will evaluate new motor-control software which may allow the pitch of the aircraft-the nose-up or nose-down attitude in relation to the horizon-to be controlled entirely by the motors. If successful, productions versions of the Helios could eliminate the elevators on the wing's trailing edge now used for pitch control, saving weight and increasing the area of the wing available for installation of solar cells.

  1. Technician Shawn Warren carefully smoothes out the composite skin of an instrument fairing atop the

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Technician Shawn Warren carefully smoothes out the composite skin of an instrument fairing atop the upper fuselage of the Altair unmanned aerial vehicle (UAV) at General Atomics Aeronautical Systems, Inc., facility at Adelanto, Calif. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  2. Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., ca

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., carefully install a turboprop engine to the rear fuselage of NASA's Altair aircraft during final assembly operations. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  3. VizieR Online Data Catalog: Photometric rotation periods of stars in α Per (Prosser+ 1997)

    NASA Astrophysics Data System (ADS)

    Prosser, C. F.; Grankin, K. N.

    2013-07-01

    Members of the Alpha Perseus open cluster were monitored and their rotation periods and amplitudes were derived. These are combined with their physical characteristics to estimate rotational velocities. V-band observations of α Per stars were obtained by both C.P. and K.G. Observations by C.P. were obtained with the Whipple Observatory 48-in. telescope on Mt. Hopkins. Observations by K.G. were obtained during photometric conditions at Mt. Maidanak (Tashkent) Observatory, Uzbekistan using a 0.48m telescope. K.G. obtained absolute V (Johnson) photometric magnitudes by observing five standard stars several times each night. All together, rotational period information was obtained for 35 members of the α Per cluster in Aug-Dec 1994 and Oct, Dec 1995. This work was never published in a refereed journal because Charles Prosser was killed in an auto accident in 1998. See http://aas.org/obituaries/charles-franklin-prosser-jr-1963-1998 (1 data file).

  4. Utilizing X-ray gas velocity measurements as a new probe of AGN feedback in giant elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Ogorzalek, Anna; Zhuravleva, Irina; Allen, Steven W.; Pinto, Ciro; Werner, Norbert; Mantz, Adam; Canning, Rebecca; Fabian, Andrew C.; Kaastra, Jelle S.; de Plaa, Jelle

    2017-08-01

    Velocity structure of hot atmospheres of massive early-type galaxies remains a key open question in our understanding of galaxy formation and mechanical AGN feedback. Using a combination of resonant scattering and direct line broadening techniques applied to deep XMM-Newton Reflection Grating Spectrometer observations has allowed us to for the first time measure turbulent velocities in the cores of 13 nearby giant early-type galaxies, opening up the possibility of population studies of hot gas motions in such objects. Our method has also been successfully applied to the Hitomi Perseus observation, serving as an independent velocity probe of the cluster ICM. In this talk I will introduce our measurements and discuss their implications on the physics of kinetic AGN feedback. I will also outline future directions, emphasizing the role of resonant scattering in studying gas dynamics of cooler (~1 keV) systems, such as giant galaxies, as well as its importance for the correct interpretation of high resolution X-ray spectra from XARM and Athena.

  5. The Bolocam Galactic Plane Survey

    NASA Technical Reports Server (NTRS)

    Glenn, Jason; Aguirre, James; Bally, John; Battersby, Cara; Bradley, Eric Todd; Cyganowski, Claudia; Dowell, Darren; Drosback, Meredith; Dunham, Miranda K.; Evans, Neal J., II; hide

    2009-01-01

    The Bolocam Galactic Plane Survey (BGPS) is a 1.1 millimeter continuum survey of the northern Galactic Plane made with Bolocam and the Caltech Submillimeter Observatory. The coverage totals 170 square degrees, comprised of a contiguous range from -10.5 deg is less than or equal to 90.5 deg, 0.5 deg is less than or equal to b is less than or equal to 0.5 deg, with extended coverage in b in selected regions, and four targeted regions in the outer Galaxy, including: IC1396, toward the Perseus arm at l is approximately 111 deg, W3/4/5, and Gem OB1. Depths of the maps range from 30 to 60 mJy beam (sup 1). Approximately 8,400 sources were detected and the maps and source catalog have been made publicly available. Millimeter-wave thermal dust emission reveals dense regions within molecular clouds, thus the BGPS serves as a database for studies of the dense interstellar medium and star formation within the Milky Way.

  6. Void statistics, scaling, and the origins of large-scale structure

    NASA Technical Reports Server (NTRS)

    Fry, J. N.; Giovanelli, Riccardo; Haynes, Martha P.; Melott, Adrian L.; Scherrer, Robert J.

    1989-01-01

    The probability that a volume of the universe of given size and shape spaced at random will be void of galaxies is used here to study various models of the origin of cosmological structures. Numerical simulations are conducted on hot-particle and cold-particle-modulated inflationary models with and without biasing, on isothermal or initially Poisson models, and on models where structure is seeded by loops of cosmic string. For the Pisces-Perseus redshift compilation of Giovanelli and Haynes (1985), it is found that hierarchical scaling is obeyed for subsamples constructed with different limiting magnitudes and subsamples taken at random. This result confirms that the hierarchical ansatz holds valid to high order and supports the idea that structure in the observed universe evolves by a regular process from an almost Gaussian primordial state. Neutrino models without biasing show the effect of a strong feature in the initial power spectrum. Cosmic string models do not agree well with the galaxy data.

  7. The velocity field of clusters of galaxies within 100 megaparsecs. II - Northern clusters

    NASA Technical Reports Server (NTRS)

    Mould, J. R.; Akeson, R. L.; Bothun, G. D.; Han, M.; Huchra, J. P.; Roth, J.; Schommer, R. A.

    1993-01-01

    Distances and peculiar velocities for galaxies in eight clusters and groups have been determined by means of the near-infrared Tully-Fisher relation. With the possible exception of a group halfway between us and the Hercules Cluster, we observe peculiar velocities of the same order as the measuring errors of about 400 km/s. The present sample is drawn from the northern Galactic hemisphere and delineates a quiet region in the Hubble flow. This contrasts with the large-scale flows seen in the Hydra-Centaurus and Perseus-Pisces regions. We compare the observed peculiar velocities with predictions based upon the gravity field inferred from the IRAS redshift survey. The differences between the observed and predicted peculiar motions are generally small, except near dense structures, where the observed motions exceed the predictions by significant amounts. Kinematic models of the velocity field are also compared with the data. We cannot distinguish between parameterized models with a great attractor or models with a bulk flow.

  8. New tropical carcharhinids (chondrichthyes, carcharhiniformes) from the late Eocene early Oligocene of Balochistan, Pakistan: Paleoenvironmental and paleogeographic implications

    NASA Astrophysics Data System (ADS)

    Adnet, S.; Antoine, P.-O.; Hassan Baqri, S. R.; Crochet, J.-Y.; Marivaux, L.; Welcomme, J.-L.; Métais, G.

    2007-04-01

    New selachians (sharks and rays) have been collected from several late Eocene and early Oligocene marine localities in the Bugti Hills (Balochistan, Pakistan). Two new species of Requiem sharks (close to the Recent "Bull shark") are described : Carcharhinus balochensis and Carcharhinus perseus. The rest of the fauna is notable for the strong representation of Carcharhiniformes. These selachian faunas represent a unique tropical association for the Oligocene period and one of the first modern tropical selachian faunas, with modern taxa such as the two new species of "Bull sharks", Negaprion sp. and one of the first occurrences of Sphyrna sp. Moreover, these faunas permit paleoenvironmental interpretation of adjacent land masses. The relatively modern aspect of these faunas, compared with other contemporaneous and younger selachian associations from Atlantic and Mediterranean seas, suggests biogeographic isolation of selachian communities living in eastern and western parts of the Tethys before its final closure during the early-middle Miocene.

  9. The Structure of the Local Universe and the Coldness of the Cosmic Flow

    NASA Astrophysics Data System (ADS)

    van de Weygaert, R.; Hoffman, Y.

    Unlike the substantial coherent bulk motion in which our local patch of the Cosmos is participating, the amplitude of the random motions around this large scale flow seems to be surprisingly low. Attempts to invoke global explanations to account for this coldness of the local cosmic velocity field have not yet been succesfull. Here we propose a different view on this cosmic dilemma, stressing the repercussions of our cosmic neighbourhood embodying a rather uncharacteristic region of the Cosmos. Suspended between two huge mass concentrations, the Great Attractor region and the Perseus-Pisces chain, we find ourselves in a region of relatively low density yet with a very strong tidal shear. By means of constrained realizations of our local Universe, based on Wiener-filtered reconstructions inferred from the Mark III catalogue of galaxy peculiar velocities, we show that indeed this configuration may induce locally cold regions. Hence, the coldness of the local flow may be a cosmic variance effect.

  10. The payload bay in the nose of NASA's Altair unmanned aerial vehicle (UAV) will be able to carry up

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The payload bay in the nose of NASA's Altair unmanned aerial vehicle (UAV), shown here during final construction at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., will be able to carry up to 700 lbs. of sensors, imaging equipment and other instruments for Earth science missions. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  11. Electric Propulsion Platforms at DFRC

    NASA Technical Reports Server (NTRS)

    Baraaclough, Jonathan

    2009-01-01

    NASA Dryden Flight Research Center is a world-class flight research facility located at Edwards AFB, CA. With access to a 44 sq. mile dry lakebed and 350 testable days per year, it is the ideal location for flight research. DFRC has been undertaking aircraft research for approximately six decades including the famous X-aircraft (X-1 through X-48) and many science and exploration platforms. As part of this impressive heritage, DFRC has garnered more hours of full-sized electric aircraft testing than any other facility in the US, and possibly the world. Throughout the 80 s and 90 s Dryden was the home of the Pathfinder, Pathfinder Plus, and Helios prototype solar-electric aircraft. As part of the ERAST program, these electric aircraft achieved a world record 97,000 feet altitude for propeller-driven aircraft. As a result of these programs, Dryden s staff has collected thousands of man-hours of electric aircraft research and testing. In order to better answer the needs of the US in providing aircraft technologies with lower fuel consumption, lower toxic emissions (NOx, CO, VOCs, etc.), lower greenhouse gas (GHG) emissions, and lower noise emissions, NASA has engaged in cross-discipline research under the Aeronautics Research Mission Directorate (ARMD). As a part of this overall effort, Mark Moore of LaRC has initiated a cross-NASA-center electric propulsion working group (EPWG) to focus on electric propulsion technologies as applied to aircraft. Electric propulsion technologies are ideally suited to overcome all of the obstacles mentioned above, and are at a sufficiently advanced state of development component-wise to warrant serious R&D and testing (TRL 3+). The EPWG includes participation from NASA Langley Research Center (LaRC), Glenn Research Center (GRC), Ames Research Center (ARC), and Dryden Flight Research Center (DFRC). Each of the center participants provides their own unique expertise to support the overall goal of advancing the state-of-the-art in aircraft electric propulsion technologies. DFRC will leverage its vast experience in flight test to assist in the integration and flight test phases of any electric propulsion program. DFRC s core competencies, that have particular relevance to the goals of the EPWG, include flight research planning and execution and providing aircraft test beds for researching and testing electric propulsion concepts and equipment. There are three flight regimes that the EPWG is focusing on: subsonic small GA and UAV, subsonic transport class, and supersonic. DFRC proposes two classes of test bed aircraft, to answer the early- and mid-phase testing requirements of all flight regimes the EPWG is concerned with. First, a highly efficient PIK motor glider will be used to test concepts and equipment associated with the subsonic GA and UAV aircraft regime (N+1). Second, a small fleet of subscale remotely-piloted aircraft test beds, similar to the X48B Blended Wing Body aircraft tested at Dryden, will be developed to answer the unique testing requirements of the subsonic GA and UAV, subsonic transport and possibly the supersonic class of aircraft (N+2, N+3). These aircraft can be tested in either serial stages or concurrent stages, depending on the actual test requirements and program schedules. Both classes of test bed aircraft are described below.

  12. Towards a comprehensive knowledge of the open cluster Haffner 9

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.

    2017-03-01

    We turn our attention to Haffner 9, a Milky Way open cluster whose previous fundamental parameter estimates are far from being in agreement. In order to provide with accurate estimates, we present high-quality Washington CT1 and Johnson BVI photometry of the cluster field. We put particular care in statistically cleaning the colour-magnitude diagrams (CMDs) from field star contamination, which was found a common source in previous works for the discordant fundamental parameter estimates. The resulting cluster CMD fiducial features were confirmed from a proper motion membership analysis. Haffner 9 is a moderately young object (age ∼350 Myr), placed in the Perseus arm - at a heliocentric distance of ∼3.2 kpc - , with a lower limit for its present mass of ∼160 M⊙ and of nearly metal solar content. The combination of the cluster structural and fundamental parameters suggest that it is in an advanced stage of internal dynamical evolution, possibly in the phase typical of those with mass segregation in their core regions. However, the cluster still keeps its mass function close to that of the Salpeter's law.

  13. Cleaning HI Spectra Contaminated by GPS RFI

    NASA Astrophysics Data System (ADS)

    Sylvia, Kamin; Hallenbeck, Gregory L.; Undergraduate ALFALFA Team

    2016-01-01

    The NUDET systems aboard GPS satellites utilize radio waves to communicate information regarding surface nuclear events. The system tests appear in spectra as RFI (radio frequency interference) at 1381MHz, which contaminates observations of extragalactic HI (atomic hydrogen) signals at 50-150 Mpc. Test durations last roughly 20-120 seconds and can occur upwards of 30 times during a single night of observing. The disruption essentially renders the corresponding HI spectra useless.We present a method that automatically removes RFI in HI spectra caused by these tests. By capitalizing on the GPS system's short test durations and predictable frequency appearance we are able to devise a method of identifying times containing compromised data records. By reevaluating the remaining data, we are able to recover clean spectra while sacrificing little in terms of sensitivity to extragalactic signals. This method has been tested on 500+ spectra taken by the Undergraduate ALFALFA Team (UAT), in which it successfully identified and removed all sources of GPS RFI. It will also be used to eliminate RFI in the upcoming Arecibo Pisces-Perseus Supercluster Survey (APPSS).This work has been supported by NSF grant AST-1211005.

  14. The carbon chemistry in interstellar clouds toward moderately reddened stars

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Lambert, D. L.

    1988-01-01

    New data for C2 toward X Per, HD 206267, HD 207198, and Gamma Cep, for CH and CN toward X Per, and for CO toward HD 207198 have been obtained. The column densities of CH, C2, CN, and CO toward the stars in the Cepheus OB2 association are similar to reddened directions in Perseus and in Ophiuchus, indicating a similarity in physical conditions for the foreground clouds. The available data for other directions have been analyzed and the resulting data applied to study the transition from a photochemical regime to a chemical regime. The data for N(CN), N(C2), and N(CO) have been plotted against N(CH) to elucidate the chemistry of carbon-bearing molecules more clearly. The observed trends for CN and C2 suggest a change in slope at N(CH) of roughly 5 x 10 to the 13th/sq cm. Below this value, photodestruction is predicted to dominate and the slope is determined by the photochemistry. For directions with more N(CH), a linear correlation consistent with destruction by chemical reactions is expected.

  15. Water masers in NGC7538 region

    NASA Astrophysics Data System (ADS)

    Kameya, Osamu

    We observed H2O masers towards NGC7538 molecular-cloud core using VERA (VLBI Experiment of Radio Astrometry). This region is in the Perseus arm at a distance of about 2.7 kpc and is famous for its multiple, massive star formation. There are three areas there, N(IRS1-3), E(IRS9), and S(IRS11), each having a strong IR source(s), ultra-compact HII region(s), bipolar outflow, high-density core, and OH/H2O/CH3OH masers. We made differential VLBI observations towards the NGC7538 H2O maser sources at N and S and a reference source, Cepheus A H2O maser, simultaneously. The Cepheus A region is separated by 2 degrees from the NGC7538 region. The positions of H2O masers in N and S regions, distributed around the ultra-compact HII regions, are basically consistent with those found by means of interferometric observations of past 29 years. The masers may come from interface regions between the ultra-compact HII regions and the environments of dense molecular gas.

  16. Mapping the Extinction Curve in 3D: Structure on Kiloparsec Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlafly, E. F.; Peek, J. E. G.; Finkbeiner, D. P.

    Near-infrared spectroscopy from APOGEE and wide-field optical photometry from Pan-STARRS1 have recently made precise measurements of the shape of the extinction curve possible for tens of thousands of stars, parameterized by R ( V ). These measurements revealed structures in R ( V ) with large angular scales, which are challenging to explain in existing dust paradigms. In this work, we combine three-dimensional maps of dust column density with R ( V ) measurements to constrain the three-dimensional distribution of R ( V ) in the Milky Way. We find that the variations in R ( V ) are correlatedmore » on kiloparsec scales. In particular, most of the dust within one kiloparsec in the outer Galaxy, including many local molecular clouds (Orion, Taurus, Perseus, California, and Cepheus), has a significantly lower R ( V ) than more distant dust in the Milky Way. These results provide new input to models of dust evolution and processing, and complicate the application of locally derived extinction curves to more distant regions of the Milky Way and to other galaxies.« less

  17. Addiction and the brain-disease fallacy.

    PubMed

    Satel, Sally; Lilienfeld, Scott O

    2013-01-01

    From Brainwashed: The Seductive Appeal of Mindless Neuroscience by Sally Satel and Scott Lilienfeld, copyright © 2013. Reprinted by permission of Basic Books, a member of The Perseus Books Group. The notion that addiction is a "brain disease" has become widespread and rarely challenged. The brain-disease model implies erroneously that the brain is necessarily the most important and useful level of analysis for understanding and treating addiction. This paper will explain the limits of over-medicalizing - while acknowledging a legitimate place for medication in the therapeutic repertoire - and why a broader perspective on the problems of the addicted person is essential to understanding addiction and to providing optimal care. In short, the brain-disease model obscures the dimension of choice in addiction, the capacity to respond to incentives, and also the essential fact people use drugs for reasons (as consistent with a self-medication hypothesis). The latter becomes obvious when patients become abstinent yet still struggle to assume rewarding lives in the realm of work and relationships. Thankfully, addicts can choose to recover and are not helpless victims of their own "hijacked brains."

  18. A Catalog of Distances to Molecular Clouds from Pan-STARRS1

    NASA Astrophysics Data System (ADS)

    Schlafly, Eddie; Green, G.; Finkbeiner, D. P.; Rix, H.

    2014-01-01

    We present a catalog of distances to molecular clouds, derived from PanSTARRS-1 photometry. We simultaneously infer the full probability distribution function of reddening and distance of the stars towards these clouds using the technique of Green et al. (2013) (see neighboring poster). We fit the resulting measurements using a simple dust screen model to infer the distance to each cloud. The result is a large, homogeneous catalog of distances to molecular clouds. For clouds with heliocentric distances greater than about 200 pc, typical statistical uncertainties in the distances are 5%, with systematic uncertainty stemming from the quality of our stellar models of about 10%. We have applied this analysis to many of the most well-studied clouds in the δ > -30° sky, including Orion, California, Taurus, Perseus, and Cepheus. We have also studied the entire catalog of Magnani, Blitz, and Mundy (1985; MBM), though for about half of those clouds we can provide only upper limits on the distances. We compare our distances with distances from the literature, when available, and find good agreement.

  19. The Astro-H High Resolution Soft X-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Kelley, Richard L.; Akamatsu, Hiroki; Azzarell, Phillip; Bialas, Tom; Boyce, Kevin R.; Brown, Gregory V.; Canavan, Edgar; Chiao, Meng P.; Costantini, Elisa; DiPirro, Michael J.; hide

    2016-01-01

    We present the overall design and performance of the Astro-H (Hitomi) Soft X-Ray Spectrometer (SXS). The instrument uses a 36-pixel array of x-ray microcalorimeters at the focus of a grazing-incidence x-ray mirror Soft X-Ray Telescope (SXT) for high-resolution spectroscopy of celestial x-ray sources. The instrument was designed to achieve an energy resolution better than 7 eV over the 0.3-12 keV energy range and operate for more than 3 years in orbit. The actual energy resolution of the instrument is 4-5 eV as demonstrated during extensive ground testing prior to launch and in orbit. The measured mass flow rate of the liquid helium cryogen and initial fill level at launch predict a lifetime of more than 4 years assuming steady mechanical cooler performance. Cryogen-free operation was successfully demonstrated prior to launch. The successful operation of the SXS in orbit, including the first observations of the velocity structure of the Perseus cluster of galaxies, demonstrates the viability and power of this technology as a tool for astrophysics.

  20. Addiction and the Brain-Disease Fallacy

    PubMed Central

    Satel, Sally; Lilienfeld, Scott O.

    2014-01-01

    From Brainwashed: The Seductive Appeal of Mindless Neuroscience by Sally Satel and Scott Lilienfeld, copyright © 2013. Reprinted by permission of Basic Books, a member of The Perseus Books Group. The notion that addiction is a “brain disease” has become widespread and rarely challenged. The brain-disease model implies erroneously that the brain is necessarily the most important and useful level of analysis for understanding and treating addiction. This paper will explain the limits of over-medicalizing – while acknowledging a legitimate place for medication in the therapeutic repertoire – and why a broader perspective on the problems of the addicted person is essential to understanding addiction and to providing optimal care. In short, the brain-disease model obscures the dimension of choice in addiction, the capacity to respond to incentives, and also the essential fact people use drugs for reasons (as consistent with a self-medication hypothesis). The latter becomes obvious when patients become abstinent yet still struggle to assume rewarding lives in the realm of work and relationships. Thankfully, addicts can choose to recover and are not helpless victims of their own “hijacked brains.” PMID:24624096

  1. The Astro-H high resolution soft x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Kelley, Richard L.; Akamatsu, Hiroki; Azzarello, Phillipp; Bialas, Tom; Boyce, Kevin R.; Brown, Gregory V.; Canavan, Edgar; Chiao, Meng P.; Costantini, Elisa; DiPirro, Michael J.; Eckart, Megan E.; Ezoe, Yuichiro; Fujimoto, Ryuichi; Haas, Daniel; den Herder, Jan-Willem; Hoshino, Akio; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iyomoto, Naoko; Kilbourne, Caroline A.; Kimball, Mark O.; Kitamoto, Shunji; Konami, Saori; Koyama, Shu; Leutenegger, Maurice A.; McCammon, Dan; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Moseley, Harvey; Murakami, Hiroshi; Murakami, Masahide; Noda, Hirofumi; Ogawa, Mina; Ohashi, Takaya; Okamoto, Atsushi; Ota, Naomi; Paltani, Stéphane; Porter, F. S.; Sakai, Kazuhiro; Sato, Kosuke; Sato, Yohichi; Sawada, Makoto; Seta, Hiromi; Shinozaki, Keisuke; Shirron, Peter J.; Sneiderman, Gary A.; Sugita, Hiroyuki; Szymkowiak, Andrew E.; Takei, Yoh; Tamagawa, Toru; Tashiro, Makoto; Terada, Yukikatsu; Tsujimoto, Masahiro; de Vries, Cor P.; Yamada, Shinya; Yamasaki, Noriko Y.; Yatsu, Yoichi

    2016-07-01

    We present the overall design and performance of the Astro-H (Hitomi) Soft X-Ray Spectrometer (SXS). The instrument uses a 36-pixel array of x-ray microcalorimeters at the focus of a grazing-incidence x-ray mirror Soft X-Ray Telescope (SXT) for high-resolution spectroscopy of celestial x-ray sources. The instrument was designed to achieve an energy resolution better than 7 eV over the 0.3-12 keV energy range and operate for more than 3 years in orbit. The actual energy resolution of the instrument is 4-5 eV as demonstrated during extensive ground testing prior to launch and in orbit. The measured mass flow rate of the liquid helium cryogen and initial fill level at launch predict a lifetime of more than 4 years assuming steady mechanical cooler performance. Cryogen-free operation was successfully demonstrated prior to launch. The successful operation of the SXS in orbit, including the first observations of the velocity structure of the Perseus cluster of galaxies, demonstrates the viability and power of this technology as a tool for astrophysics.

  2. The dwarf galaxy population of nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Lisker, Thorsten; Wittmann, Carolin; Pak, Mina; Janz, Joachim; Bialas, Daniel; Peletier, Reynier; Grebel, Eva; Falcon Barroso, Jesus; Toloba, Elisa; Smakced Collaboration, Focus Collaboration

    2015-01-01

    The Fornax, Virgo, Ursa Major and Perseus galaxy clusters all have very different characteristics, in terms of their density, mass, and large-scale environment. We can regard these clusters as laboratories for studying environmental influence on galaxy evolution, using the sensitive low-mass galaxies as probes for external mechanisms. Here we report on recent and ongoing observational studies of the said clusters with imaging and spectroscopy, as well as on the interpretation of present-day cluster galaxy populations with the aid of cosmological simulations.Multicolor imaging data allow us to identify residual star formation in otherwise red early-type dwarf galaxies, which hold clues to the strength of gas stripping processes. Major-axis spectra and 2D kinematical maps provide insight regarding the amount of rotational support and how much dynamical heating a dwarf galaxy may have experienced. To this end, dedicated N-body simulations that follow the evolution of galaxies since early epochs reveal their path through parameter space, and can be compared to observations in order to understand the time-integrated effect of environmental influence.

  3. The local spiral structure of the Milky Way

    PubMed Central

    Xu, Ye; Reid, Mark; Dame, Thomas; Menten, Karl; Sakai, Nobuyuki; Li, Jingjing; Brunthaler, Andreas; Moscadelli, Luca; Zhang, Bo; Zheng, Xingwu

    2016-01-01

    The nature of the spiral structure of the Milky Way has long been debated. Only in the last decade have astronomers been able to accurately measure distances to a substantial number of high-mass star-forming regions, the classic tracers of spiral structure in galaxies. We report distance measurements at radio wavelengths using the Very Long Baseline Array for eight regions of massive star formation near the Local spiral arm of the Milky Way. Combined with previous measurements, these observations reveal that the Local Arm is larger than previously thought, and both its pitch angle and star formation rate are comparable to those of the Galaxy’s major spiral arms, such as Sagittarius and Perseus. Toward the constellation Cygnus, sources in the Local Arm extend for a great distance along our line of sight and roughly along the solar orbit. Because of this orientation, these sources cluster both on the sky and in velocity to form the complex and long enigmatic Cygnus X region. We also identify a spur that branches between the Local and Sagittarius spiral arms. PMID:27704048

  4. Protostellar accretion traced with chemistry. High-resolution C18O and continuum observations towards deeply embedded protostars in Perseus

    NASA Astrophysics Data System (ADS)

    Frimann, Søren; Jørgensen, Jes K.; Dunham, Michael M.; Bourke, Tyler L.; Kristensen, Lars E.; Offner, Stella S. R.; Stephens, Ian W.; Tobin, John J.; Vorobyov, Eduard I.

    2017-06-01

    Context. Understanding how accretion proceeds is a key question of star formation, with important implications for both the physical and chemical evolution of young stellar objects. In particular, very little is known about the accretion variability in the earliest stages of star formation. Aims: Our aim is to characterise protostellar accretion histories towards individual sources by utilising sublimation and freeze-out chemistry of CO. Methods: A sample of 24 embedded protostars are observed with the Submillimeter Array (SMA) in context of the large program "Mass Assembly of Stellar Systems and their Evolution with the SMA" (MASSES). The size of the C18O-emitting region, where CO has sublimated into the gas-phase, is measured towards each source and compared to the expected size of the region given the current luminosity. The SMA observations also include 1.3 mm continuum data, which are used to investigate whether or not a link can be established between accretion bursts and massive circumstellar disks. Results: Depending on the adopted sublimation temperature of the CO ice, between 20% and 50% of the sources in the sample show extended C18O emission indicating that the gas was warm enough in the past that CO sublimated and is currently in the process of refreezing; something which we attribute to a recent accretion burst. Given the fraction of sources with extended C18O emission, we estimate an average interval between bursts of 20 000-50 000 yr, which is consistent with previous estimates. No clear link can be established between the presence of circumstellar disks and accretion bursts, however the three closest known binaries in the sample (projected separations <20 AU) all show evidence of a past accretion burst, indicating that close binary interactions may also play a role in inducing accretion variability.

  5. Toward a dynamic biogeochemical division of the Mediterranean Sea in a context of global climate change

    NASA Astrophysics Data System (ADS)

    Reygondeau, Gabriel; Olivier Irisson, Jean; Guieu, Cecile; Gasparini, Stephane; Ayata, Sakina; Koubbi, Philippe

    2013-04-01

    In recent decades, it has been found useful to ecoregionalise the pelagic environment assuming that within each partition environmental conditions are distinguishable and unique. Indeed, each partition of the ocean that is proposed aimed to delineate the main oceanographical and ecological patterns to provide a geographical framework of marine ecosystems for ecological studies and management purposes. The aim of the present work is to integrate and process existing data on the pelagic environment of the Mediterranean Sea in order to define biogeochemical regions. Open access databases including remote sensing observations, oceanographic campaign data and physical modeling simulations are used. These various dataset allow the multidisciplinary view required to understand the interactions between climate and Mediterranean marine ecosystems. The first step of our study has consisted in a statistical selection of a set of crucial environmental factors to propose the most parsimonious biogeographical approach that allows detecting the main oceanographic structure of the Mediterranean Sea. Second, based on the identified set of environmental parameters, both non-hierarchical and hierarchical clustering algorithms have been tested. Outputs from each methodology are then inter-compared to propose a robust map of the biotopes (unique range of environmental parameters) of the area. Each biotope was then modeled using a non parametric environmental niche method to infer a dynamic biogeochemical partition. Last, the seasonal, inter annual and long term spatial changes of each biogeochemical regions were investigated. The future of this work will be to perform a second partition to subdivide the biogeochemical regions according to biotic features of the Mediterranean Sea (ecoregions). This second level of division will thus be used as a geographical framework to identify ecosystems that have been altered by human activities (i.e. pollution, fishery, invasive species) for the European project PERSEUS (Protecting EuRopean Seas and borders through the intelligence US of surveillance) and the French program MERMEX (Marine Ecosystems Response in the Mediterranean Experiment).

  6. Galactic Structure in the Outer Disk: The Field in the Line of Sight to the Intermediate-age Open Cluster Tombaugh 1

    NASA Astrophysics Data System (ADS)

    Carraro, Giovanni; Sales Silva, Joao Victor; Moni Bidin, Christian; Vazquez, Ruben A.

    2017-03-01

    We employ optical photometry and high-resolution spectroscopy to study a field toward the open cluster Tombaugh 1, where we identify a complex population mixture that we describe in terms of young and old Galactic thin disks. Of particular interest is the spatial distribution of the young population, which consists of dwarfs with spectral types as early as B6 and is distributed in a blue plume feature in the color-magnitude diagram. For the first time, we confirm spectroscopically that most of these stars are early-type stars and not blue stragglers or halo/thick-disk subdwarfs. Moreover, they are not evenly distributed along the line of sight but crowd at heliocentric distances between 6.6 and 8.2 kpc. We compare these results with present-day understanding of the spiral structure of the Galaxy and suggest that they trace the outer arm. This range of distances challenges current Galactic models adopting a disk cutoff at 14 kpc from the Galactic center. The young dwarfs overlap in space with an older component, which is identified as an old Galactic thin disk. Both young and old populations are confined in space since the disk is warped at the latitude and longitude of Tombaugh 1. The main effects of the warp are that the line of sight intersects the disk and entirely crosses it at the outer arm distance and that there are no traces of the closer Perseus arm, which would then be either unimportant in this sector or located much closer to the formal Galactic plane. Finally, we analyze a group of giant stars, which turn out to be located at very different distances and to possess very different chemical properties, with no obvious relation to the other populations. Based on observations carried out at Las Campanas Observatory, Chile (program ID CN009B-042), and Cerro Tololo Inter-American Observatory.

  7. HP2 survey. III. The California Molecular Cloud: A sleeping giant revisited

    NASA Astrophysics Data System (ADS)

    Lada, Charles J.; Lewis, John A.; Lombardi, Marco; Alves, João

    2017-10-01

    We present new high resolution and dynamic range dust column density and temperature maps of the California Molecular Cloud derived from a combination of Planck and Herschel dust-emission maps, and 2MASS NIR dust-extinction maps. We used these data to determine the ratio of the 2.2 μm extinction coefficient to the 850 μm opacity and found the value to be close to that found in similar studies of the Orion B and Perseus clouds but higher than that characterizing the Orion A cloud, indicating that variations in the fundamental optical properties of dust may exist between local clouds. We show that over a wide range of extinction, the column density probability distribution function (pdf) of the cloud can be well described by a simple power law (I.e., PDFN ∝ AK -n) with an index (n = 4.0 ± 0.1) that represents a steeper decline with AK than found (n ≈ 3) in similar studies of the Orion and Perseus clouds. Using only the protostellar population of the cloud and our extinction maps we investigate the Schmidt relation, that is, the relation between the protostellar surface density, Σ∗, and extinction, AK, within the cloud. We show that Σ∗ is directly proportional to the ratio of the protostellar and cloud pdfs, I.e., PDF∗(AK)/PDFN(AK). We use the cumulative distribution of protostars to infer the functional forms for both Σ∗ and PDF∗. We find that Σ∗ is best described by two power-law functions. At extinctions AK ≲ 2.5 mag, Σ∗ ∝ AK β with β = 3.3 while at higher extinctions β = 2.5, both values steeper than those (≈2) found in other local giant molecular clouds (GMCs). We find that PDF∗ is a declining function of extinction also best described by two power-laws whose behavior mirrors that of Σ∗. Our observations suggest that variations both in the slope of the Schmidt relation and in the sizes of the protostellar populations between GMCs are largely driven by variations in the slope, n, of PDFN(AK). This confirms earlier studies suggesting that cloud structure plays a major role in setting the global star formation rates in GMCs HP2 (Herschel-Planck-2MASS) survey is a continuation of the series originally entitled "Herschel-Planck dust opacity and column density maps" (Lombardi et al. 2014, Zari et al. 2016).The reduced Herschel and Planck map and the column density and temperature maps are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A100

  8. Old Journey, New Heights

    NASA Technical Reports Server (NTRS)

    DelFrate, John

    2005-01-01

    If you could see the road ahead, you might pass up a fantastic opportunity because you're blinded by the potential pitfalls. In my case, I was testing the project management waters at the NASA Dryden Flight Research Center after ten years of being a research engineer. I was an eager (but ignorant) rookie project manager (PM) and I was willing to engage in just about any project without knowing what it would entail. The assignment I accepted was to help NASA's Environment Research Aircraft and Sensor Technology (ERAST) Project, a partnership with a fledgling Uninhabited Aerial Vehicle (UAV) industry, to tackle stratospheric flight. I remember one of our industrial partners querying me about whether or not I understood what 1 was getting into. Like one of those bobble-head toys that have become quite popular, I nodded. But in reality, I didn't have a clue. His response was, "Hang on, it's going to be a wild ride." He was right. In retrospect, if I had clearly understood the ten years of pitfalls that were coming, I might not have "hung on." Now I can look back and say that I would not trade the experience for anything. The lows included the destruction of a number of UAVs on my watch. Later someone told me that we should not be surprised if we lost one UAV for every ten flights. We wrote many chapters in the book on what can go wrong with UAVs-and we are still writing. As you can imagine, each mishap was accompanied by an investigation. What an education!

  9. The First Non-Dispersive High-Resolution Spectroscopy of an X-ray-bright Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroya; Hitomi Collaboration

    2018-06-01

    The Hitomi X-ray Observatory was equipped with the Soft X-ray Spectrometer (SXS), an X-ray microcalorimeter that achieved an energy resolution of 5 eV (@0.5-10 keV) for extended objects. This offered an unprecedented benchmark of atomic modeling and database for hot collisional plasmas, revealing both successes and challenges in the current atomic codes that are widely used by the X-ray astronomy community. I will review the Hitomi observations of the brightest part of the Perseus Cluster, whose X-ray spectrum is dominated by thermal emission from the intra-cluster medium (ICM). The SXS successfully measured the turbulent velocities and metal abundances of the ICM, which radically altered our understanding of the dynamics and chemical enrichment in this object. At the same time, the high-resolution X-ray data led to significant improvement in the atomic models, such as AtomDB and SPEX -- I will briefly overview how this improvement was made. Nevertheless, there are still significant discrepancies among the public atomic models, causing systematic uncertainties in measurements of the temperature, abundance, and degree of the resonance scattering. Requirements for future improvements will be summarized in this context.

  10. Is Cold Gas Removed from Galaxies in Filaments and Tendrils?

    NASA Astrophysics Data System (ADS)

    Crone Odekon, Mary; Shah, Ebrahim; Hall, Ryan; Cane, Thomas; Maloney, Erin; Hallenbeck, Gregory; Haynes, Martha P.; Koopmann, Rebecca A.; APPSS Team, Undergraduate ALFALFA Team, ALFALFA Team

    2018-01-01

    We present results from an ALFALFA HI study to examine whether the cold gas reservoirs of galaxies are inhibited or enhanced in large-scale filaments, and we discuss implications for follow-up work using the new Arecibo Pisces-Perseus Supercluster survey (APPSS). From the ALFALFA survey, we find that the HI deficiency for galaxies in the range 10^8.5-10^10.5 solar masses decreases with distance from the filament spine, suggesting that galaxies are cut off from cold gas, possibly by heating or by dynamical detachment from the smaller-scale cosmic web. This contrasts with previous results for larger galaxies in the HI Parkes All-Sky Survey. We discuss the prospects for elucidating this apparent dependence on galaxy mass with data from the APPSS, which will extend to smaller masses. We also find that the most gas-rich galaxies at fixed local density and stellar mass are those in small, correlated ``tendril” structures within voids: although galaxies in tendrils are in significantly denser environments, on average, than galaxies in voids, they are not redder or more HI deficient. This work has been supported by NSF grants AST-1211005 and AST-1637339.

  11. Mapping the filaments in NGC 1275

    NASA Astrophysics Data System (ADS)

    Cobos, Aracely Susan; Rich, Jeffrey; Great Observatories All-sky LIRG Survey (GOALS)

    2018-01-01

    The giant elliptical brightest cluster galaxies (BCGs) at the centers of many massive clusters are often surrounded by drawn-out forms of gaseous material. It is believed that this gaseous material is gas condensing from the intracluster medium (ICM) in a “cooling flow,” and it can directly impact the growth of the BCG. The galaxy NGC 1275 is one of the closest giant elliptical BCGs and lies at the center of the Perseus cluster. NGC 1275 has large filaments that are thought to be associated with a cooling flow, but they may also be affected by its AGN. To investigate the relationship between the AGN and the cooling flow we have mapped the filaments around NGC 1275 with the Cosmic Web Imager, an image-slicing integral field spectrograph at Palomar Observatories. We employ standard emission-line ratio diagnostics to determine the source of ionizing radiation. We use our analysis to investigate whether the formation of the extended filaments is a result of gas from the ICM collapsing onto the galaxy as it cools or if it is possible that the filaments are a result of the cluster’s interaction with the outflow driven by the AGN.

  12. The Galactic fountain as an origin for the Smith Cloud

    NASA Astrophysics Data System (ADS)

    Marasco, A.; Fraternali, F.

    2017-01-01

    The recent discovery of an enriched metallicity for the Smith high-velocity H I Cloud (SC) lends support to a Galactic origin for this system. We use a dynamical model of the galactic fountain to reproduce the observed properties of the SC. In our model, fountain clouds are ejected from the region of the disc spiral arms and move through the halo interacting with a pre-existing hot corona. We find that a simple model where cold gas outflows vertically from the Perseus spiral arm reproduces the kinematics and the distance of the SC, but is in disagreement with the cloud's cometary morphology, if this is produced by ram-pressure stripping by the ambient gas. To explain the cloud morphology, we explore two scenarios: (I) the outflow is inclined with respect to the vertical direction and (II) the cloud is entrained by a fast wind that escapes an underlying superbubble. Solutions in agreement with all observational constraints can be found for both cases, the former requires outflow angles >40° while the latter requires ≳1000 km s-1 winds. All scenarios predict that the SC is in the ascending phase of its trajectory and has large - but not implausible - energy requirements.

  13. Subgrid Modeling of AGN-driven Turbulence in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Scannapieco, Evan; Brüggen, Marcus

    2008-10-01

    Hot, underdense bubbles powered by active galactic nuclei (AGNs) are likely to play a key role in halting catastrophic cooling in the centers of cool-core galaxy clusters. We present three-dimensional simulations that capture the evolution of such bubbles, using an adaptive mesh hydrodynamic code, FLASH3, to which we have added a subgrid model of turbulence and mixing. While pure hydro simulations indicate that AGN bubbles are disrupted into resolution-dependent pockets of underdense gas, proper modeling of subgrid turbulence indicates that this is a poor approximation to a turbulent cascade that continues far beyond the resolution limit. Instead, Rayleigh-Taylor instabilities act to effectively mix the heated region with its surroundings, while at the same time preserving it as a coherent structure, consistent with observations. Thus, bubbles are transformed into hot clouds of mixed material as they move outward in the hydrostatic intracluster medium (ICM), much as large airbursts lead to a distinctive "mushroom cloud" structure as they rise in the hydrostatic atmosphere of Earth. Properly capturing the evolution of such clouds has important implications for many ICM properties. In particular, it significantly changes the impact of AGNs on the distribution of entropy and metals in cool-core clusters such as Perseus.

  14. The H I-to-H2 Transition in a Turbulent Medium

    NASA Astrophysics Data System (ADS)

    Bialy, Shmuel; Burkhart, Blakesley; Sternberg, Amiel

    2017-07-01

    We study the effect of density fluctuations induced by turbulence on the H I/H2 structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas and chemical H I/H2 balance calculations. We derive atomic-to-molecular density profiles and the H I column density probability density function (PDF) assuming chemical equilibrium. We find that, while the H I/H2 density profiles are strongly perturbed in turbulent gas, the mean H I column density is well approximated by the uniform-density analytic formula of Sternberg et al. The PDF width depends on (a) the radiation intensity-to-mean density ratio, (b) the sonic Mach number, and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the H I PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of H I in the Perseus molecular cloud. We show that a narrow observed H I PDF may imply small-scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.

  15. Hepatic SILAC proteomic data from PANDER transgenic model.

    PubMed

    Athanason, Mark G; Stevens, Stanley M; Burkhardt, Brant R

    2016-12-01

    This article contains raw and processed data related to research published in "Quantitative Proteomic Profiling Reveals Hepatic Lipogenesis and Liver X Receptor Activation in the PANDER Transgenic Model" (M.G. Athanason, W.A. Ratliff, D. Chaput, C.B. MarElia, M.N. Kuehl, S.M., Jr. Stevens, B.R. Burkhardt (2016)) [1], and was generated by "spike-in" SILAC-based proteomic analysis of livers obtained from the PANcreatic-Derived factor (PANDER) transgenic mouse (PANTG) under various metabolic conditions [1]. The mass spectrometry output of the PANTG and wild-type B6SJLF mice liver tissue and resulting proteome search from MaxQuant 1.2.2.5 employing the Andromeda search algorithm against the UniprotKB reference database for Mus musculus has been deposited to the ProteomeXchange Consortium (http://www.proteomexchange.org) via the PRIDE partner repository with dataset identifiers PRIDE: PXD004171 and doi:10.6019/PXD004171. Protein ratio values representing PANTG/wild-type obtained by MaxQuant analysis were input into the Perseus processing suite to determine statistical significance using the Significance A outlier test (p<0.05). Differentially expressed proteins using this approach were input into Ingenuity Pathway Analysis to determined altered pathways and upstream regulators that were altered in PANTG mice.

  16. Checking the Dark Matter Origin of a 3.53 keV Line with the Milky Way Center.

    PubMed

    Boyarsky, A; Franse, J; Iakubovskyi, D; Ruchayskiy, O

    2015-10-16

    We detect a line at 3.539±0.011  keV in the deep exposure data set of the Galactic center region, observed with the x-ray multi-mirror mission Newton. The dark matter interpretation of the signal observed in the Perseus galaxy cluster, the Andromeda galaxy [A. Boyarsky et al., Phys. Rev. Lett. 113, 251301 (2014)], and in the stacked spectra of galaxy clusters [E. Bulbul et al., Astrophys. J. 789, 13 (2014)], together with nonobservation of the line in blank-sky data, put both lower and upper limits on the possible intensity of the line in the Galactic center data. Our result is consistent with these constraints for a class of Milky Way mass models, presented previously by observers, and would correspond to the radiative decay dark matter lifetime, τDM∼6-8×10(27)  sec. Although it is hard to exclude an astrophysical origin of this line based on the Galactic center data alone, this is an important consistency check of the hypothesis that encourages us to check it with more observational data that are expected by the end of 2015.

  17. Neural network-based preprocessing to estimate the parameters of the X-ray emission of a single-temperature thermal plasma

    NASA Astrophysics Data System (ADS)

    Ichinohe, Y.; Yamada, S.; Miyazaki, N.; Saito, S.

    2018-04-01

    We present data preprocessing based on an artificial neural network to estimate the parameters of the X-ray emission spectra of a single-temperature thermal plasma. The method finds appropriate parameters close to the global optimum. The neural network is designed to learn the parameters of the thermal plasma (temperature, abundance, normalization and redshift) of the input spectra. After training using 9000 simulated X-ray spectra, the network has grown to predict all the unknown parameters with uncertainties of about a few per cent. The performance dependence on the network structure has been studied. We applied the neural network to an actual high-resolution spectrum obtained with Hitomi. The predicted plasma parameters agree with the known best-fitting parameters of the Perseus cluster within uncertainties of ≲10 per cent. The result shows that neural networks trained by simulated data might possibly be used to extract a feature built in the data. This would reduce human-intensive preprocessing costs before detailed spectral analysis, and would help us make the best use of the large quantities of spectral data that will be available in the coming decades.

  18. An X-ray method for detecting substructure in galaxy clusters - Application to Perseus, A2256, Centaurus, Coma, and Sersic 40/6

    NASA Technical Reports Server (NTRS)

    Mohr, Joseph J.; Fabricant, Daniel G.; Geller, Margaret J.

    1993-01-01

    We use the moments of the X-ray surface brightness distribution to constrain the dynamical state of a galaxy cluster. Using X-ray observations from the Einstein Observatory IPC, we measure the first moment FM, the ellipsoidal orientation angle, and the axial ratio at a sequence of radii in the cluster. We argue that a significant variation in the image centroid FM as a function of radius is evidence for a nonequilibrium feature in the intracluster medium (ICM) density distribution. In simple terms, centroid shifts indicate that the center of mass of the ICM varies with radius. This variation is a tracer of continuing dynamical evolution. For each cluster, we evaluate the significance of variations in the centroid of the IPC image by computing the same statistics on an ensemble of simulated cluster images. In producing these simulated images we include X-ray point source emission, telescope vignetting, Poisson noise, and characteristics of the IPC. Application of this new method to five Abell clusters reveals that the core of each one has significant substructure. In addition, we find significant variations in the orientation angle and the axial ratio for several of the clusters.

  19. HIGH-RESOLUTION 8 mm AND 1 cm POLARIZATION OF IRAS 4A FROM THE VLA NASCENT DISK AND MULTIPLICITY (VANDAM) SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Erin G.; Harris, Robert J.; Looney, Leslie W.

    2015-12-01

    Magnetic fields can regulate disk formation, accretion, and jet launching. Until recently, it has been difficult to obtain high-resolution observations of the magnetic fields of the youngest protostars in the critical region near the protostar. The VANDAM survey is observing all known protostars in the Perseus Molecular Cloud. Here we present the polarization data of IRAS 4A. We find that with ∼0.″2 (50 AU) resolution at λ = 8.1 and 10.3 mm, the inferred magnetic field is consistent with a circular morphology, in marked contrast with the hourglass morphology seen on larger scales. This morphology is consistent with frozen-in fieldmore » lines that were dragged in by rotating material entering the infall region. The field morphology is reminiscent of rotating circumstellar material near the protostar. This is the first polarization detection of a protostar at these wavelengths. We conclude from our observations that the dust emission is optically thin with β ∼ 1.3, suggesting that millimeter-/centimeter-sized grains have grown and survived in the short lifetime of the protostar.« less

  20. La Asociación OB Bochum7 combinando datos IR y ópticos

    NASA Astrophysics Data System (ADS)

    Corti, M. A.; Bosch, G. L.; Niemela, V. S.

    We present the results of an analysis of IR data in the region of the galactic OB association Bo7, obtained from the archives of the IRAS satellite mission and the 2MASS survey. Bo7 is located at the end of Perseus spiral arm. Distances of possible members of the Bo7 association were determined calculating the absorption from the E(V-K) colour excess. These members had been previously selected according to their UBV colours and spectra. The distance values obtained with IR excess have a smaller error than those obtained considering the E(B-V) excess. An extended interstellar dust cloud (detected in IRAS maps) is found to be probably associated with the members of Bo7. Two IRAS point sources observed in the region have characteristics of star formation sites. One of these point sources has been observed in CS(2-1) by Bronfman et al. (1996), who determined a value of (LSR) velocity of 44 km/s, close to the velocity of stars in Bo7 (Corti et al. 2003). A group of main sequence O - B0.5 stars appear near the location of the aforementioned IRAS point source, suggesting sequential star formation in the Bo7 region.

  1. AGN jet feedback on a moving mesh: cocoon inflation, gas flows and turbulence

    NASA Astrophysics Data System (ADS)

    Bourne, Martin A.; Sijacki, Debora

    2017-12-01

    In many observed galaxy clusters, jets launched by the accretion process on to supermassive black holes, inflate large-scale cavities filled with energetic, relativistic plasma. This process is thought to be responsible for regulating cooling losses, thus moderating the inflow of gas on to the central galaxy, quenching further star formation and maintaining the galaxy in a red and dead state. In this paper, we implement a new jet feedback scheme into the moving mesh-code AREPO, contrast different jet injection techniques and demonstrate the validity of our implementation by comparing against simple analytical models. We find that jets can significantly affect the intracluster medium (ICM), offset the overcooling through a number of heating mechanisms, as well as drive turbulence, albeit within the jet lobes only. Jet-driven turbulence is, however, a largely ineffective heating source and is unlikely to dominate the ICM heating budget even if the jet lobes efficiently fill the cooling region, as it contains at most only a few per cent of the total injected energy. We instead show that the ICM gas motions, generated by orbiting substructures, while inefficient at heating the ICM, drive large-scale turbulence and when combined with jet feedback, result in line-of-sight velocities and velocity dispersions consistent with the Hitomi observations of the Perseus cluster.

  2. Star-Hopping

    NASA Astrophysics Data System (ADS)

    Garfinkle, Robert A.

    1997-07-01

    Introduction; Preface; Acknowledgements; 1. How to use this book and what you are going to see; 2. How the sky works, determining your field of view, observing tips and how to navigate in the night sky; 3. January - Taurus and Orion: the bull and hunter; 4. February - Canis Minor, Canis Major, and Puppis: dog days in February and Jason's Argo; 5. March - Cancer, Leo, and Corvus: a crab, the king of the beasts, and a crow; 6. April - Ursa Major: a dipper round tripper; 7. May - Coma Berenices and Virgo: the sparkling hair of Berenice and the wheat maiden and her bushel of galaxies; 8. June - Libra and Lupus: the balance scales and the wolf; 9. July - Scorpius, Sagittarius, and Scutum: the scorpion, archer, and shield of John Sobieski; 10. August - Draco: following the trail of the dragon; 11. September - Cygnus, Lyra, Vulpecula, and Sagitta: the swan, lyre, fox, and arrow; 12. October - Andromeda and Perseus: the chained lady and her rescuer; 13. November - Cepheus and Cassiopeia: the king and queen of Joppa; 14. December - Pisces, Triangulum, and Aries: of fishes, a triangle, and a ram; 15. Messier Marathon, a sundown to sunup hop across the skies; Appendix A: Classification tables; Appendix B: The constellations; Appendix C: The Greek alphabet; Appendix D: Decimalization of the day; Glossary; Bibliography; Index.

  3. Molecular Composition and Chemistry of Isolated Dense Cores

    NASA Astrophysics Data System (ADS)

    Cook, Amanda; Boogert, A.

    2009-01-01

    The composition of molecular clouds and the envelopes and disks surrounding low mass protostars within them is still poorly known. There is little doubt that a large fraction of the molecules is frozen on grains, but the abundance of several crucial species (e.g. ammonia, methanol, ions) in the ices is still uncertain. In addition, prominent spectral features discovered decades ago are still not securely identified (e.g. the 6.85-micron absorption band). Gas phase and grain surface chemistry play pivotal roles in molecule formation, but numerous other processes could have significant impacts as well: shocks, thermal heating, irradiation of ices by ultraviolet photons and cosmic rays. Complex species could be formed this way, profoundly influencing cloud, disk and planetary/cometary chemistry. We have obtained Spitzer/IRS spectra of an unprecedented sample of sight-lines tracing 25 dense isolated cores. These cores physically differ from the large, cluster-forming molecular clouds (e.g. Ophiuchus, Perseus) that are commonly studied: they are less turbulent, colder, less dense, and likely longer lived. These IRS spectra of isolated cores thus provide unique information on ice formation and destruction mechanisms. Toward the same cores, we observed 33 highly extincted background stars as well, tracing the quiescent cloud medium against which the ices around protostars can be contrasted.

  4. VizieR Online Data Catalog: Southern H II Region Discovery Survey: pilot survey (Brown+, 2017)

    NASA Astrophysics Data System (ADS)

    Brown, C.; Jordan, C.; Dickey, J. M.; Anderson, L. D.; Armentrout, W. P.; Balser, D. S.; Bania, T. M.; Dawson, J. R.; Mc Clure-Griffiths, N. M.; Wenger, T. V.

    2018-05-01

    The Southern H II Region Discovery Survey (SHRDS) is a multi-year project using the Australia Telescope Compact Array (ATCA) to complement the GBT and Arecibo HRDS by extending the survey area into the southern sky (δ<-45°). This area includes the Southern end of the Galactic Bar, the Near and Far 3 kpc Arms, the Norma/Cygnus Arm, the Scutum/Crux Arm, the Sagitttarius/Carina Arm, and outside the solar circle, the Perseus Arm, and the Outer Arm. All pilot SHRDS observations used the ATCA in the five antenna H75 array configuration, giving a nominal maximum baseline of 75 m and a beam size of FWHM ~65" at 7.8 GHz depending on the declination and hour angles of the observations. The SHRDS pilot observations were done in two sessions. Epoch I, observed 2013 June 30, focused on candidates that were expected to show bright radio recombination line (RRL) detections, which they did. Epoch II, observed 2014 June 26 and 27, used a list of candidates with expected flux densities typical of the SHRDS catalog as a whole. The two epochs also used different longitude ranges in order to generate samples of H II regions with different Galactic radii. (3 data files).

  5. Unraveling endometriosis-associated ovarian carcinomas using integrative proteomics

    PubMed Central

    Leung, Felix; Bernardini, Marcus Q.; Liang, Kun; Batruch, Ihor; Rouzbahman, Marjan; Diamandis, Eleftherios P.; Kulasingam, Vathany

    2018-01-01

    Background: To elucidate potential markers of endometriosis and endometriosis-associated endometrioid and clear cell ovarian carcinomas using mass spectrometry-based proteomics. Methods: A total of 21 fresh, frozen tissues from patients diagnosed with clear cell carcinoma, endometrioid carcinoma, endometriosis and benign endometrium were subjected to an in-depth liquid chromatography-tandem mass spectrometry analysis on the Q-Exactive Plus. Protein identification and quantification were performed using MaxQuant, while downstream analyses were performed using Perseus and various bioinformatics databases. Results: Approximately 9000 proteins were identified in total, representing the first in-depth proteomic investigation of endometriosis and its associated cancers. This proteomic data was shown to be biologically sound, with minimal variation within patient cohorts and recapitulation of known markers. While moderate concordance with genomic data was observed, it was shown that such data are limited in their abilities to represent tumours on the protein level and to distinguish tumours from their benign precursors. Conclusions: The proteomic data suggests that distinct markers may differentiate endometrioid and clear cell carcinoma from endometriosis. These markers may be indicators of pathobiology but will need to be further investigated. Ultimately, this dataset may serve as a basis to unravel the underlying biology of the endometrioid and clear cell cancers with respect to their endometriotic origins. PMID:29721309

  6. A large-scale extinction map of the Galactic Anticentre from 2MASS

    NASA Astrophysics Data System (ADS)

    Froebrich, D.; Murphy, G. C.; Smith, M. D.; Walsh, J.; Del Burgo, C.

    2007-07-01

    We present a 127 × 63-deg2 extinction map of the Anticentre of the Galaxy, based on < J - H > and < H - K > colour excess maps from the Two-Micron All-Sky Survey. This 8001-deg2 map with a resolution of 4 arcmin is provided as online material. The colour excess ratio < J - H >/< H - K > is used to determine the power-law index of the reddening law (β) for individual regions contained in the area (e.g. Orion, Perseus, Taurus, Auriga, Monoceros, Camelopardalis, Cassiopeia). On average we find a dominant value of β = 1.8 +/- 0.2 for the individual clouds, in agreement with the canonical value for the interstellar medium. We also show that there is an internal scatter of β values in these regions, and that in some areas more than one dominant β values are present. This indicates large-scale variations in the dust properties. The analysis of the AV values within individual regions shows a change in the slope of the column density distribution with distance. This can be attributed either to a change in the governing physical processes in molecular clouds on spatial scales of about 1pc or to an AV dilution with distance in our map.

  7. Copernicus studies of interstellar material in the Perseus II complex. III - The line of sight to Zeta Persei

    NASA Technical Reports Server (NTRS)

    Snow, T. P., Jr.

    1977-01-01

    Ultraviolet spectrophotometric data obtained with Copernicus are used to analyze the distribution, composition, density, temperature, and kinematics of the interstellar material along the line of sight to Zeta Persei. The far-UV extinction curve for the star is evaluated along with the kinematics of the interstellar gas, observations of atomic and molecular hydrogen, curves of growth for neutral and ionized species, atomic abundances and depletions, ionization equilibria, and observations of CO and OH lines. The results show that there are apparently three clouds along the line of sight to Zeta Persei: a main cloud at approximately +13 km/s which contains most of the material and forms all the neutral and molecular lines as well as most of the ionic lines, a second component at +22 km/s which must contribute to the strong UV lines of most ions, and a third component at roughly +2 km/s which gives rise to a strong Si III line at 1206 A. It is also found that the UV extinction curve has a somewhat steep far-UV rise, indicating the presence of a substantial number of small grains, and that about 30% of the hydrogen nuclei over the entire line of sight are in molecular form.

  8. The ``X component'' of the radio background

    NASA Astrophysics Data System (ADS)

    Semenova, T. A.; Pariiskii, Yu. N.; Bursov, N. N.

    2009-01-01

    The recent publication of evidence for a new mechanism producing background radio emission of the Galaxy at centimeter wavelengths (in addition to synchrotron radiation, free—free transitions in ionized gas, and the weak radio emission of standard dust) gave rise to a strong reaction among observers, and requires independent experimental verification. This signal is of special concern in connection with studies of the polarization of the cosmic microwave background (CMB) using new-generation experiments. We have derived independent estimates of the validity of the “spinning-dust” hypothesis (dipole emission of macromolecules) using multi-frequency RATAN-600 observations. Test studies in the Perseus molecular cloud show evidence for anomalous extended emission in the absence of strong radio sources (compact HII regions) that could imitate an anomalous radio spectrum in this region. A statistical analysis at centimeter wavelengths over the Ratan Zenith Field shows that the upper limit for the polarized noise from this new component in the spinning-dust hypothesis is unlikely to exceed 1 µK at wavelengths of 1 cm or shorter on the main scales of the EE mode of Sakharov oscillations. Thus, this emission should not hinder studies of this mode, at least to within several percent of the predicted level of polarization of the CMB emission.

  9. The H i-to-H{sub 2} Transition in a Turbulent Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bialy, Shmuel; Sternberg, Amiel; Burkhart, Blakesley, E-mail: shmuelbi@mail.tau.ac.il

    2017-07-10

    We study the effect of density fluctuations induced by turbulence on the H i/H{sub 2} structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas and chemical H i/H{sub 2} balance calculations. We derive atomic-to-molecular density profiles and the H i column density probability density function (PDF) assuming chemical equilibrium. We find that, while the H i/H{sub 2} density profiles are strongly perturbed in turbulent gas, the mean H i column density is well approximated by the uniform-density analytic formula of Sternberg et al. The PDF width depends onmore » (a) the radiation intensity–to–mean density ratio, (b) the sonic Mach number, and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the H i PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of H i in the Perseus molecular cloud. We show that a narrow observed H i PDF may imply small-scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.« less

  10. Study of the Outflow and Disk surrounding a Post-Outburst FU-Orionis Star

    NASA Astrophysics Data System (ADS)

    Mellon, Samuel N.; Perez, L. M.

    2014-01-01

    PP 13 is a fan-shaped cometary nebula located in the constellation of Perseus and embedded in the L1473 dark cloud. At optical wavelengths this region is obscured by the surrounding dark cloud, while at infrared and longer wavelengths two northern objects (PP13Na & PP13Nb) and one southern object (PP13S) are revealed. In the past, the young stellar object inside PP13S, called PP13S*, experienced an FU-Orionis type outburst due to a massive accretion episode and is currently returning to its quiescent state. Studying the FU-Orionis phase is crucial to our understanding of how low mass stars form; it is theorized that all low-mass stars go through this outburst phase while they are forming. I used CARMA 3mm interferometric observations of the PP13 region to study the continuum and molecular line emissions from PP13. With these observations, I determined the source of the previously detected outflow and learned new information about the double star system PP13Na and PP13Nb. Although I was not able to detect the accretion disk in the gas emissions, I plan to use computer modeling to help provide constraints on the properties of PP13S* and its outflow.

  11. Quantitative spectroscopic J-band study of red supergiants in Perseus OB-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gazak, J. Zachary; Kudritzki, Rolf; Davies, Ben

    2014-06-10

    We demonstrate how the metallicities of red supergiant (RSG) stars can be measured from quantitative spectroscopy down to resolutions of ≈3000 in the J-band. We have obtained high resolution spectra on a sample of the RSG population of h and χ Persei, a double cluster in the solar neighborhood. We show that careful application of the MARCS model atmospheres returns measurements of Z consistent with solar metallicity. Using two grids of synthetic spectra–one in pure LTE and one with non-LTE (NLTE) calculations for the most important diagnostic lines–we measure Z = +0.04 ± 0.10 (LTE) and Z = –0.04 ±more » 0.08 (NLTE) for the sample of eleven RSGs in the cluster. We degrade the spectral resolution of our observations and find that those values remain consistent down to resolutions of less than λ/δλ of 3000. Using measurements of effective temperatures we compare our results with stellar evolution theory and find good agreement. We construct a synthetic cluster spectrum and find that analyzing this composite spectrum with single-star RSG models returns an accurate metallicity. We conclude that the RSGs make ideal targets in the near infrared for measuring the metallicities of star forming galaxies out to 7-10 Mpc and up to 10 times farther by observing the integrated light of unresolved super star clusters.« less

  12. The accelerating pace of star formation

    NASA Astrophysics Data System (ADS)

    Caldwell, Spencer; Chang, Philip

    2018-03-01

    We study the temporal and spatial distribution of star formation rates in four well-studied star-forming regions in local molecular clouds (MCs): Taurus, Perseus, ρ Ophiuchi, and Orion A. Using published mass and age estimates for young stellar objects in each system, we show that the rate of star formation over the last 10 Myr has been accelerating and is (roughly) consistent with a t2 power law. This is in line with previous studies of the star formation history of MCs and with recent theoretical studies. We further study the clustering of star formation in the Orion nebula cluster. We examine the distribution of young stellar objects as a function of their age by computing an effective half-light radius for these young stars subdivided into age bins. We show that the distribution of young stellar objects is broadly consistent with the star formation being entirely localized within the central region. We also find a slow radial expansion of the newly formed stars at a velocity of v = 0.17 km s-1, which is roughly the sound speed of the cold molecular gas. This strongly suggests the dense structures that form stars persist much longer than the local dynamical time. We argue that this structure is quasi-static in nature and is likely the result of the density profile approaching an attractor solution as suggested by recent analytic and numerical analysis.

  13. In-orbit performance of the soft X-ray imaging system aboard Hitomi (ASTRO-H)

    NASA Astrophysics Data System (ADS)

    Nakajima, Hiroshi; Maeda, Yoshitomo; Uchida, Hiroyuki; Tanaka, Takaaki; Tsunemi, Hiroshi; Hayashida, Kiyoshi; Tsuru, Takeshi G.; Dotani, Tadayasu; Nagino, Ryo; Inoue, Shota; Ozaki, Masanobu; Tomida, Hiroshi; Natsukari, Chikara; Ueda, Shutaro; Mori, Koji; Yamauchi, Makoto; Hatsukade, Isamu; Nishioka, Yusuke; Sakata, Miho; Beppu, Tatsuhiko; Honda, Daigo; Nobukawa, Masayoshi; Hiraga, Junko S.; Kohmura, Takayoshi; Murakami, Hiroshi; Nobukawa, Kumiko K.; Bamba, Aya; Doty, John P.; Iizuka, Ryo; Sato, Toshiki; Kurashima, Sho; Nakaniwa, Nozomi; Asai, Ryota; Ishida, Manadu; Mori, Hideyuki; Soong, Yang; Okajima, Takashi; Serlemitsos, Peter; Tawara, Yuzuru; Mitsuishi, Ikuyuki; Ishibashi, Kazunori; Tamura, Keisuke; Hayashi, Takayuki; Furuzawa, Akihiro; Sugita, Satoshi; Miyazawa, Takuya; Awaki, Hisamitsu; Miller, Eric D.; Yamaguchi, Hiroya

    2018-03-01

    We describe the in-orbit performance of the soft X-ray imaging system consisting of the Soft X-ray Telescope and the Soft X-ray Imager aboard Hitomi. Verification and calibration of imaging and spectroscopic performance are carried out, making the best use of the limited data of less than three weeks. Basic performance, including a large field of view of {38^' }} × {38^' }}, is verified with the first-light image of the Perseus cluster of galaxies. Amongst the small number of observed targets, the on-minus-off pulse image for the out-of-time events of the Crab pulsar enables us to measure the half-power diameter of the telescope as ˜{1 {^'.} 3}. The average energy resolution measured with the onboard calibration source events at 5.89 keV is 179 ± 3 eV in full width at half maximum. Light leak and crosstalk issues affected the effective exposure time and the effective area, respectively, because all the observations were performed before optimizing an observation schedule and the parameters for the dark-level calculation. Screening the data affected by these two issues, we measure the background level to be 5.6 × 10-6 counts s-1 arcmin-2 cm-2 in the energy band of 5-12 keV, which is seven times lower than that of the Suzaku XIS-BI.

  14. AN EXPLORATION OF THE STATISTICAL SIGNATURES OF STELLAR FEEDBACK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyden, Ryan D.; Offner, Stella S. R.; Koch, Eric W.

    2016-12-20

    All molecular clouds are observed to be turbulent, but the origin, means of sustenance, and evolution of the turbulence remain debated. One possibility is that stellar feedback injects enough energy into the cloud to drive observed motions on parsec scales. Recent numerical studies of molecular clouds have found that feedback from stars, such as protostellar outflows and winds, injects energy and impacts turbulence. We expand upon these studies by analyzing magnetohydrodynamic simulations of molecular clouds, including stellar winds, with a range of stellar mass-loss rates and magnetic field strengths. We generate synthetic {sup 12}CO(1–0) maps assuming that the simulations aremore » at the distance of the nearby Perseus molecular cloud. By comparing the outputs from different initial conditions and evolutionary times, we identify differences in the synthetic observations and characterize these using common astrostatistics. We quantify the different statistical responses using a variety of metrics proposed in the literature. We find that multiple astrostatistics, including the principal component analysis, the spectral correlation function, and the velocity coordinate spectrum (VCS), are sensitive to changes in stellar mass-loss rates and/or time evolution. A few statistics, including the Cramer statistic and VCS, are sensitive to the magnetic field strength. These findings demonstrate that stellar feedback influences molecular cloud turbulence and can be identified and quantified observationally using such statistics.« less

  15. Laser-Sharp Jet Splits Water

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A jet of gas firing out of a very young star can be seen ramming into a wall of material in this infrared image from NASA's Spitzer Space Telescope.

    The young star, called HH 211-mm, is cloaked in dust and can't be seen. But streaming away from the star are bipolar jets, color-coded blue in this view. The pink blob at the end of the jet to the lower left shows where the jet is hitting a wall of material. The jet is hitting the wall so hard that shock waves are being generated, which causes ice to vaporize off dust grains. The shock waves are also heating material up, producing energetic ultraviolet radiation. The ultraviolet radiation then breaks the water vapor molecules apart.

    The red color at the end of the lower jet represents shock-heated iron, sulfur and dust, while the blue color in both jets denotes shock-heated hydrogen molecules.

    HH 211-mm is part of a cluster of about 300 stars, called IC 348, located 1,000 light-years away in the constellation Perseus.

    This image is a composite of infrared data from Spitzer's infrared array camera and its multiband imaging photometer. Light with wavelengths of 3.6 and 4.5 microns is blue; 8-micron-light is green; and 24-micron light is red.

  16. Parsec-scale Variations in the 7Li I/6Li I Isotope Ratio Toward IC 348 and the Perseus OB 2 Association

    NASA Astrophysics Data System (ADS)

    Knauth, D. C.; Taylor, C. J.; Ritchey, A. M.; Federman, S. R.; Lambert, D. L.

    2017-01-01

    Measurements of the lithium isotopic ratio in the diffuse interstellar medium from high-resolution spectra of the Li I λ6708 resonance doublet have now been reported for a number of lines of sight. The majority of the results for the 7Li/6Li ratio are similar to the solar system ratio of 12.2, but the line of sight toward o Per, a star near the star-forming region IC 348, gave a ratio of about two, the expected value for gas exposed to spallation and fusion reactions driven by cosmic rays. To examine the association of IC 348 with cosmic rays more closely, we measured the lithium isotopic ratio for lines of sight to three stars within a few parsecs of o Per. One star, HD 281159, has 7Li/6Li ≃ 2 confirming production by cosmic rays. The lithium isotopic ratio toward o Per and HD 281159 together with published analyses of the chemistry of interstellar diatomic molecules suggest that the superbubble surrounding IC 348 is the source of the cosmic rays. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  17. DXBC: a long distance wireless broadband communication system for coastal maritime surveillance applications

    NASA Astrophysics Data System (ADS)

    Vastianos, George E.; Argyreas, Nick D.; Xilouris, Chris K.; Thomopoulos, Stelios C. A.

    2015-05-01

    The field of Homeland Security focuses on the air, land, and sea borders surveillance in order to prevent illegal activities while facilitating lawful travel and trade. The achievement of this goal requires collaboration of complex decentralized systems and services, and transfer of huge amount of information between the remote surveillance areas and the command & control centers. It becomes obvious that the effectiveness of the provided security depends highly on the available communication capabilities between the interconnected areas. Although nowadays the broadband communication between remote places is presumed easy because of the extensive infrastructure inside residential areas, it becomes a real challenge when the required information should be acquired from locations where no infrastructure is available such as mountain or sea areas. The Integrated Systems Lab of NCSR Demokritos within the PERSEUS FP7- SEC-2011-261748 project has developed a wireless broadband telecommunication system that combines different communication channels from subGHz to microwave frequencies and provides secure IP connectivity between sea surveillance vessels and the Command and Control Centers (C3). The system was deployed in Fast Patrol Boats of the Hellenic Coast Guard that are used for maritime surveillance in sea boarders and tested successfully in two demonstration exercises for irregular migration and smuggling scenarios in the Aegean Archipelagos. This paper describes in detail the system architecture in terms of hardware and software and the evaluation measurements of the system communication capabilities.

  18. ED01-0230-1

    NASA Image and Video Library

    2001-08-13

    NASA's Helios Prototype aircraft taking off from the Pacific Missile Range Facility, Kauai, Hawaii, for the record flight. As a follow-on to the Centurion (and earlier Pathfinder and Pathfinder-Plus) aircraft, the solar-powered Helios Prototype is the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions in the stratosphere. Developed by AeroVironment, Inc., of Monrovia, California, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the unique craft is intended to demonstrate two key missions: the ability to reach and sustain horizontal flight at 100,000 feet altitude on a single-day flight in 2001, and to maintain flight above 50,000 feet altitude for at least four days in 2003, with the aid of a regenerative fuel cell-based energy storage system now in development. Both of these missions will be powered by electricity derived from non-polluting solar energy. The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at NASA's Dryden Flight Research Center in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. The remotely piloted, electrically powered Helios Prototype went aloft on its maiden low-altitude checkout flight Sept. 8, 1999, over Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center in the Southern California desert. The initial flight series was flown on battery power as a risk-reduction measure. In all, six flights were flown in the Helios Protoype's initial development series. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingsp

  19. Graeco-Roman Astro-Architecture: The Temples of Pompeii

    NASA Astrophysics Data System (ADS)

    Tiede, Vance R.

    2014-01-01

    Roman architect Marcus Vetruvius Pollio (ca. 75-15 BC) wrote, “[O]ne who professes himself as an architect should be…acquainted with astronomy and the theory of the heavens…. From astronomy we find the east, west, south, and north, as well as the theory of the heavens, the Equinox, Solstice and courses of the Stars.” (De Architectura Libri Decem I:i:3,10). In order to investigate the role of astronomy in temple orientation, the author conducted a preliminary GIS DEM/Satellite Imaging survey of 11 temples at Pompeii, Italy (N 40d 45', E 14d 29'). The GIS survey measured the true azimuth and horizon altitude of each temple’s major axis and was field checked by a Ground Truth survey with theodolite and GPS, 5-18 April 2013. The resulting 3D vector data was analyzed with Program STONEHENGE (Hawkins 1983, 328) to identify the local skyline declinations aligned with the temple major axes. Analysis suggests that the major axes of the temples of Apollo, Jupiter and Venus are equally as likely to have been oriented to Pompeii’s urban grid, itself oriented NW-SE on Mt. Vesuvius’ slope and hydraulic gradient to optimize urban sewer/street drainage (cf. Hodge 1992). However, the remaining nine temples appear to be oriented to astronomical targets on the local horizon associated with Graeco-Roman calendrics and mythology. TEMPLE/ DATE/ MAJOR AXIS ASTRO-TARGET (Skyline Declination in degrees) Public Lares/AD 50/ Cross-Quarter 7 Nov/3 Feb Sun Set, Last Gleam (-16.5) Vespsian/ AD 69-79/ Cross-Quarter 7 Nov/3 Feb Sun Set, LG (-16.2) Fortuna Augusta/ AD 1/ Winter Solstice Sun Set, LG (-22.9) Aesculapius/ 100 BC/ Perseus Rise (β Persei-Algol = +33.0) & Midsummer Moon Major Stand Still Set, LG (-28.1) Isis/ 100 BC/ Midwinter Moon Major Stand Still Rise, Tangent (+28.5) & Equinox Sun Set, Tangent (-0.3) Jupiter/ 150 BC/ Θ Scorpionis-Sargas Rise (-38.0) Apollo/ 550 (rebuilt 70 BC)/ α Columbae-Phact Rise (-37.1) Venus/ 150 BC (rebuilt 70 BC)/ α Columbae-Phact Rise (-37.7) Ceres/ 250 BC/ Midsummer Moon Major Stand Still Set, LG (-27.9) Dioysyus/ 250 BC/ Equinox Sun Set, LG (+0.3) Doric/ 550 BC/ β Orionis-Rigel Rise (-14.6)

  20. A Quantitative Analysis Of Pre-Processing In The Coma And Perseus-Pisces Superclusters Using Galex And Wise Survey Data

    NASA Astrophysics Data System (ADS)

    Yun, Min

    Studies of massive galaxy clusters and groups at redshifts below 1 typically find environments with little-to-no star formation activity, in sharp contrast with the field. Over-dense regions are dominated by passively-evolving spheroidal (S0) and elliptical galaxies, whereas galaxies in the field tend to have spiral morphologies, younger stellar populations, and systematically higher star formation rates. Studies of the galaxy populations of clusters and massive galaxy groups have found that the increase in the fraction of spirals at higher redshifts corresponds to a decline in the fraction of S0 galaxies, which strongly suggests that field spirals are transformed into S0 galaxies at some point in their transition between field and cluster regions. This transformation necessarily involves an increase in the stellar content of the bulge relative to the disk, and then a removal of disk gas accompanied by either a rapid or gradual decline in star formation to eventually produce a red, spheroidal, passively-evolving S0 galaxy. Deep and wide area cosmological surveys such as the GOODS and COSMOS have shown that both environment and stellar mass play a distinct role in the overall galaxy evolution over a wide redshift range (to z~3). The density-morphology relation and the blue-fraction, first noted in the targeted studies of clusters and groups, also appears to be an extension of the evolutionary trends seen in the field sample. However, the trends seen in these large cosmological surveys should be taken with a caution since they are broad statistical trends of primarily massive galaxies with relatively poor sensitivity on star formation rate (SFR), associated with a relatively narrow range of sparsely sampled galaxy density. This can lead to potentially serious shortcomings when studying the role of environment because many of the physical mechanisms involved may preferentially impact the lower mass galaxies. The dominant physical mechanism(s) responsible for this transformation are still being debated, but the overwhelming evidence has shown that spirals are readily altered in groups or cluster outskirts prior to falling into a galaxy cluster (pre-processing). This implies that the best approach to catch galaxy transformation in the act is to examine galaxies in lower density environments. A complete accounting of star-formation activity for galaxies over a wide range masses and environments is needed to assess which of many possible mechanisms is the dominant cause of galaxy transformation in over-dense regions. The main goal of this proposed study is to examine the SF and quenching activities associated with galaxies using the high spatial resolution of the targeted studies of individual clusters, but covering much larger areas and density ranges (from voids to cluster cores) with the sample statistics approaching those of the cosmological surveys such as COSMOS, using exquisite stellar mass and SFR (both UV and IR) sensitivity. To achieve this, we propose a multi-wavelength study (with a specific emphasis on GALEX and WISE) of the two most prominent large scale structures in the local universe: the Coma and Perseus-Pisces Superclusters. The total sample area covers ~3000 sq. degree and contains about 7000 spectroscopically identified galaxies (from SDSS and archival spectra). In addition, we will evaluate the impacts of the high mass and SFR cut employed by deep cosmological surveys by paring down our sample in stellar mass and SFR (and resulting coarse galaxy density estimates) and examine whether any important insights are missed as a result.

  1. Paradigm change in ocean studies: multi-platform observing and forecasting integrated approach in response to science and society needs

    NASA Astrophysics Data System (ADS)

    Tintoré, Joaquín

    2017-04-01

    The last 20 years of ocean research have allowed a description of the state of the large-scale ocean circulation. However, it is also well known that there is no such thing as an ocean state and that the ocean varies a wide range of spatial and temporal scales. More recently, in the last 10 years, new monitoring and modelling technologies have emerged allowing quasi real time observation and forecasting of the ocean at regional and local scales. Theses new technologies are key components of recent observing & forecasting systems being progressively implemented in many regional seas and coastal areas of the world oceans. As a result, new capabilities to characterise the ocean state and more important, its variability at small spatial and temporal scales, exists today in many cases in quasi-real time. Examples of relevance for society can be cited, among others our capabilities to detect and understand long-term climatic changes and also our capabilities to better constrain our forecasting capabilities of the coastal ocean circulation at temporal scales from sub-seasonal to inter-annual and spatial from regional to meso and submesoscale. The Mediterranean Sea is a well-known laboratory ocean where meso and submesoscale features can be ideally observed and studied as shown by the key contributions from projects such as Perseus, CMEMS, Jericonext, among others. The challenge for the next 10 years is the integration of theses technologies and multiplatform observing and forecasting systems to (a) monitor the variability at small scales mesoscale/weeks) in order (b) to resolve the sub-basin/seasonal and inter-annual variability and by this (c) establish the decadal variability, understand the associated biases and correct them. In other words, the new observing systems now allow a major change in our focus of ocean observation, now from small to large scales. Recent studies from SOCIB -www.socib.es- have shown the importance of this new small to large-scale multi-platform approach in ocean observation. Three examples from the integration capabilities of SOCIB facilities will be presented and discussed. First the quasi-continuous high frequency glider monitoring of the Ibiza Channel since 2011, an important biodiversity hot spot and a 'choke' point in the Western Mediterranean circulation, has allowed us to reveal a high frequency variability in the North-South exchanges, with very significant changes (0.8 - 0.9 Sv) occurring over periods of days to week of the same order as the previously known seasonal cycle. HF radar data and model results have also contributed more recently to better describe and understand the variability at small scales. Second, the Alborex/Perseus project multi-platform experiment (e.g., RV catamaran, 2 gliders, 25 drifters, 3 Argo type profilers & satellite data) that focused on submesoscale processes and ecosystem response and carried out in the Alborán Sea in May 2014. Glider results showed significant chlorophyll subduction in areas adjacent to the steep density front with patterns related to vertical motion. Initial dynamical interpretations will be presented. Third and final, I will discuss the key relevance of the data centre to guarantee data interoperability, quality control, availability and distribution for this new approach to ocean observation and forecasting to be really efficient in responding to key scientific state of the art priorities, enhancing technology development and responding to society needs.

  2. A distance scale from the infrared magnitude/H I velocity-width relation. III - The expansion rate outside the local supercluster

    NASA Astrophysics Data System (ADS)

    Aaronson, M.; Mould, J.; Huchra, J.; Sullivan, W. T., III; Schommer, R. A.; Bothun, G. D.

    1980-07-01

    Infrared magnitudes and 21 cm H I velocity widths are presented for galaxies in the Pegasus I cluster (V ≍ 4000 km s-1), the Cancer cluster (V ≍ 4500 km s-1), cluster Zwicky 1400.4 ± 0949 (Z74-23) (V ≍ 6000 km s-1), and the Perseus supercluster (V ≍ 5500 km s-1). The data are used to determine redshift-independent distances from which values of the Hubble ratio can be derived. With a zero point based solely on the Sandage-Tammann distances to M3 1 and M33, the following results are obtained (zero-point error excluded): Pegasus I.--r = 42 ± 4 Mpc, V/r = 91 ± 8 km s-1 Mpc-1; Cancer.--r = = 49 ± 6 Mpc, V/r = 89 ± 11 km s-1 Mpc-1; Z74-23.--r = 6l ± 4 Mpc, V/r = 96 ± 7 km s-1 Mpc-1; Perseus supercluster.--r = 53 ± 2 Mpc, V/r = 104 ± 6 km s-1 Mpc-1; The closely similar value of the Hubble ratio found in the four independent samples suggests that the zero-point calibration in the IR/H I technique does not depend on environment. The difference between the mean of these Hubble ratios, V/r = 95 ± 4 km s-1 Mpc -1, and that measured for Virgo in Paper II, V/r = 65 ±4 km s-1 Mpc-1, is significant at a formal level of 5 σ. The simplest explanation of the discrepancy is to postulate a Local Group component of motion in the direction of Virgo. The resulting velocity perturbation is ΔV = 480 ± 75 km s-1. This value agrees well with recent observations of a dipole term in the 3 K microwave background, the only other anisotropy test for which a detection significance of 5 σ or more is claimed. We are thus led to a preliminary estimate for the value of the Hubble constant of H0 = 95 ± 4 km s-1 Mpc-1. If a zero point based on de Vaucouleurs's distances to M31 and M33 is adopted instead, all distances decrease by , and the Hubble constant increases by a similar amount. A variety of possible systematic errors which might affect the present conclusions are investigated, but we can find none that are relevant. In particular, because the galaxy samples are chosen from a cluster population which is generally all at the same distance, Malmquist bias does not occur. In fact, two of the clusters (Pegasus I and Z74-23) are sampled in both magnitude and velocity width to a level as deep as Virgo itself. Other observational data related to the value of H0 are examined, as are a number of previously used anisotropy tests, including color-luminosity relations, brightest cluster member(s), central surface brightnesses, and supernovae. We find that some of these tests support the present results, while contrary evidence is currently weak. A model in which Virgo gravitationally retards the Hubble flow of galaxies within the Local Supercluster provides a natural interpretation of our findings. A range of 1.5-3 in local density contrast then leads to a value of the density parameter Ω ≍ 0.7-0.2. The deceleration parameter q0 is then 0.35-0.1 for a simple Friedmann-type expanding universe.

  3. The Effects of Ram Pressure on the Cold Clouds in the Centers of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Ruszkowski, Mateusz; Tremblay, Grant

    2018-02-01

    We discuss the effect of ram pressure on the cold clouds in the centers of cool-core galaxy clusters, and in particular, how it reduces cloud velocity and sometimes causes an offset between the cold gas and young stars. The velocities of the molecular gas in both observations and our simulations fall in the range of 100–400 km s‑1, which is much lower than expected if they fall from a few tens of kiloparsecs ballistically. If the intracluster medium (ICM) is at rest, the ram pressure of the ICM only slightly reduces the velocity of the clouds. When we assume that the clouds are actually “fluffier” because they are co-moving with a warm-hot layer, the velocity becomes smaller. If we also consider the active galactic nucleus wind in the cluster center by adding a wind profile measured from the simulation, the clouds are further slowed down at small radii, and the resulting velocities are in general agreement with the observations and simulations. Because ram pressure only affects gas but not stars, it can cause a separation between a filament and young stars that formed in the filament as they move through the ICM together. This separation has been observed in Perseus and also exists in our simulations. We show that the star-filament offset, combined with line-of-sight velocity measurements, can help determine the true motion of the cold gas, and thus distinguish between inflows and outflows.

  4. NGC 1275: an outlier of the black hole-host scaling relations

    NASA Astrophysics Data System (ADS)

    Sani, Eleonora; Ricci, Federica; La Franca, Fabio; Bianchi, Stefano; Bongiorno, Angela; Brusa, Marcella; Marconi, Alessandro; Onori, Francesca; Shankar, Francesco; Vignali, Cristian

    2018-02-01

    The active galaxy NGC 1275 lies at the center of the Perseus cluster of galaxies, being an archetypal BH-galaxy system that is supposed to fit well with the M_{BH}-host scaling relations obtained for quiescent galaxies. Since it harbours an obscured AGN, only recently our group has been able to estimate its black hole mass. Here our aim is to pinpoint NGC 1275 on the less dispersed scaling relations, namely the M_{BH}-σ_\\star and M_{BH}-L_{bul} planes. Starting from our previous work tep{ricci17b}, we estimate that NGC 1275 falls well outside the intrinsic dispersion of the M_{BH}-σ_\\star plane being 1.2 dex (in black hole mass) displaced with respect to the scaling relations. We then perform a 2D morphological decomposition analysis on Spitzer/IRAC images at 3.6 μm and find that, beyond the bright compact nucleus that dominates the central emission, NGC 1275 follows a de Vaucouleurs profile with no sign of significant star formation nor clear merger remnants. Nonetheless, its displacement on the M_{BH}-L_{bul,3.6} plane with respect to the scaling relation is as high as observed in the M_{BH}-σ_\\star. We explore various scenarios to interpret such behaviors, of which the most realistic one is the evolutionary pattern followed by NGC 1275 to approach the scaling relation. We indeed speculate that NGC 1275 might be a specimen for those galaxies in which the black holes adjusted to its host.

  5. Hα and [SII] emission from warm Ionized GAS in the Scutum-Centaurus Arm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Alex S.; Benjamin, Robert A.; Gostisha, Martin C.

    2014-06-01

    We present Wisconsin H-Alpha Mapper [SII] λ6716 and Hα spectroscopic maps of the warm ionized medium (WIM) in the Scutum-Centaurus Arm at Galactic longitudes 310° < l < 345°. Using extinction-corrected Hα intensities (I{sub Hα}{sup c}), we measure an exponential scale height of electron density squared in the arm of H{sub n{sub e{sup 2}}}=0.30 kpc (assuming a distance of 3.5 kpc), intermediate between that observed in the inner Galaxy and in the Perseus Arm. The [S II]/Hα line ratio is enhanced at large |z| and in sightlines with faint I{sub Hα}{sup c}. We find that the [S II]/Hα line ratiomore » has a power-law relationship with I{sub Hα}{sup c} from a value of ≈1.0 at I{sub Hα}{sup c}<0.2 R (Rayleighs) to a value of ≈0.08 at I{sub Hα}{sup c}≳100 R. The line ratio is better correlated with Hα intensity than with height above the plane, indicating that the physical conditions within the WIM vary systematically with electron density. We argue that the variation of the line ratio with height is a consequence of the decrease of electron density with height. Our results reinforce the well-established picture in which the diffuse Hα emission is due primarily to emission from in situ photoionized gas, with scattered light only a minor contributor.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Nicolas F.; Ibata, Rodrigo A.; Chambers, Kenneth C.

    We present Keck II/DEIMOS spectroscopy of the three distant dwarf galaxies of M31 Lacerta I, Cassiopeia III, and Perseus I, recently discovered within the Pan-STARRS1 3π imaging survey. The systemic velocities of the three systems (v {sub r,} {sub helio} = –198.4 ± 1.1 km s{sup –1}, –371.6 ± 0.7 km s{sup –1}, and –326 ± 3 km s{sup –1}, respectively) confirm that they are satellites of M31. In the case of Lacerta I and Cassiopeia III, the high quality of the data obtained for 126 and 212 member stars, respectively, yields reliable constraints on their global velocity dispersions (σ{submore » vr} = 10.3 ± 0.9 km s{sup –1} and 8.4 ± 0.6 km s{sup –1}, respectively), leading to dynamical-mass estimates for both of ∼4 × 10{sup 7} M {sub ☉} within their half-light radius. These translate to V-band mass-to-light ratios of 15{sub −9}{sup +12} and 8{sub −5}{sup +9} in solar units. We also use our spectroscopic data to determine the average metallicity of the three dwarf galaxies ([Fe/H] = –2.0 ± 0.1, –1.7 ± 0.1, and –2.0 ± 0.2, respectively). All these properties are typical of dwarf galaxy satellites of Andromeda with their luminosity and size.« less

  7. IN-SYNC VI. Identification and Radial Velocity Extraction for 100+ Double-Lined Spectroscopic Binaries in the APOGEE/IN-SYNC Fields

    NASA Astrophysics Data System (ADS)

    Fernandez, M. A.; Covey, Kevin R.; De Lee, Nathan; Chojnowski, S. Drew; Nidever, David; Ballantyne, Richard; Cottaar, Michiel; Da Rio, Nicola; Foster, Jonathan B.; Majewski, Steven R.; Meyer, Michael R.; Reyna, A. M.; Roberts, G. W.; Skinner, Jacob; Stassun, Keivan; Tan, Jonathan C.; Troup, Nicholas; Zasowski, Gail

    2017-08-01

    We present radial velocity measurements for 70 high confidence, and 34 potential binary systems in fields containing the Perseus Molecular Cloud, Pleiades, NGC 2264, and the Orion A star-forming region. Eighteen of these systems have been previously identified as binaries in the literature. Candidate double-lined spectroscopic binaries (SB2s) are identified by analyzing the cross-correlation functions (CCFs) computed during the reduction of each APOGEE spectrum. We identify sources whose CCFs are well fit as the sum of two Lorentzians as likely binaries, and provide an initial characterization of the system based on the radial velocities indicated by that dual fit. For systems observed over several epochs, we present mass ratios and systemic velocities; for two systems with observations on eight or more epochs, and which meet our criteria for robust orbital coverage, we derive initial orbital parameters. The distribution of mass ratios for multi-epoch sources in our sample peaks at q = 1, but with a significant tail toward lower q values. Tables reporting radial velocities, systemic velocities, and mass ratios are provided online. We discuss future improvements to the radial velocity extraction method we employ, as well as limitations imposed by the number of epochs currently available in the APOGEE database. The Appendix contains brief notes from the literature on each system in the sample, and more extensive notes for select sources of interest.

  8. A quantitative analysis of IRAS maps of molecular clouds

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer J.; Adams, Fred C.

    1994-01-01

    We present an analysis of IRAS maps of five molecular clouds: Orion, Ophiuchus, Perseus, Taurus, and Lupus. For the classification and description of these astrophysical maps, we use a newly developed technique which considers all maps of a given type to be elements of a pseudometric space. For each physical characteristic of interest, this formal system assigns a distance function (a pseudometric) to the space of all maps: this procedure allows us to measure quantitatively the difference between any two maps and to order the space of all maps. We thus obtain a quantitative classification scheme for molecular clouds. In this present study we use the IRAS continuum maps at 100 and 60 micrometer(s) to produce column density (or optical depth) maps for the five molecular cloud regions given above. For this sample of clouds, we compute the 'output' functions which measure the distribution of density, the distribution of topological components, the self-gravity, and the filamentary nature of the clouds. The results of this work provide a quantitative description of the structure in these molecular cloud regions. We then order the clouds according to the overall environmental 'complexity' of these star-forming regions. Finally, we compare our results with the observed populations of young stellar objects in these clouds and discuss the possible environmental effects on the star-formation process. Our results are consistent with the recently stated conjecture that more massive stars tend to form in more 'complex' environments.

  9. Geometric Aspects and Testing of the Galactic Center Distance Determination from Spiral Arm Segments

    NASA Astrophysics Data System (ADS)

    Nikiforov, I. I.; Veselova, A. V.

    2018-02-01

    We consider the problem of determining the geometric parameters of a Galactic spiral arm from its segment by including the distance to the spiral pole, i.e., the distance to the Galactic center ( R 0). The question about the number of points belonging to one turn of a logarithmic spiral and defining this spiral as a geometric figure has been investigated numerically and analytically by assuming the direction to the spiral pole (to the Galactic center) to be known. Based on the results obtained, in an effort to test the new approach, we have constructed a simplified method of solving the problem that consists in finding the median of the values for each parameter from all possible triplets of objects in the spiral arm segment satisfying the condition for the angular distance between objects. Applying the method to the data on the spatial distribution of masers in the Perseus and Scutum arms (the catalogue by Reid et al. (2014)) has led to an estimate of R 0 = 8.8 ± 0.5 kpc. The parameters of five spiral arm segments have been determined from masers of the same catalogue. We have confirmed the difference between the spiral arms in pitch angle. The pitch angles of the arms revealed by masers are shown to generally correlate with R 0 in the sense that an increase in R 0 leads to a growth in the absolute values of the pitch angles.

  10. A wide and collimated radio jet in 3C84 on the scale of a few hundred gravitational radii

    NASA Astrophysics Data System (ADS)

    Giovannini, G.; Savolainen, T.; Orienti, M.; Nakamura, M.; Nagai, H.; Kino, M.; Giroletti, M.; Hada, K.; Bruni, G.; Kovalev, Y. Y.; Anderson, J. M.; D'Ammando, F.; Hodgson, J.; Honma, M.; Krichbaum, T. P.; Lee, S.-S.; Lico, R.; Lisakov, M. M.; Lobanov, A. P.; Petrov, L.; Sohn, B. W.; Sokolovsky, K. V.; Voitsik, P. A.; Zensus, J. A.; Tingay, S.

    2018-06-01

    Understanding the formation of relativistic jets in active galactic nuclei remains an elusive problem1. This is partly because observational tests of jet formation models suffer from the limited angular resolution of ground-based very-long-baseline interferometry that has thus far been able to probe the structure of the jet acceleration and collimation region in only two sources2,3. Here, we report observations of 3C84 (NGC 1275)—the central galaxy of the Perseus cluster—made with an interferometric array including the orbiting radio telescope of the RadioAstron4 mission. The data transversely resolve the edge-brightened jet in 3C84 only 30 μas from the core, which is ten times closer to the central engine than was possible in previous ground-based observations5 and allows us to measure the jet collimation profile from 102 to 104 gravitational radii (rg) from the black hole. The previously found5, almost cylindrical jet profile on scales larger than a few thousand rg is seen to continue at least down to a few hundred rg from the black hole, and we find a broad jet with a transverse radius of ≳250 rg at only 350 rg from the core. This implies that either the bright outer jet layer goes through a very rapid lateral expansion on scales ≲102 rg or it is launched from the accretion disk.

  11. Generation of Internal Waves by Buoyant Bubbles in Galaxy Clusters and Heating of Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Zhang, Congyao; Churazov, Eugene; Schekochihin, Alexander A.

    2018-05-01

    Buoyant bubbles of relativistic plasma in cluster cores plausibly play a key role in conveying the energy from a supermassive black hole to the intracluster medium (ICM) - the process known as radio-mode AGN feedback. Energy conservation guarantees that a bubble loses most of its energy to the ICM after crossing several pressure scale heights. However, actual processes responsible for transferring the energy to the ICM are still being debated. One attractive possibility is the excitation of internal waves, which are trapped in the cluster's core and eventually dissipate. Here we show that a sufficient condition for efficient excitation of these waves in stratified cluster atmospheres is flattening of the bubbles in the radial direction. In our numerical simulations, we model the bubbles phenomenologically as rigid bodies buoyantly rising in the stratified cluster atmosphere. We find that the terminal velocities of the flattened bubbles are small enough so that the Froude number Fr ≲ 1. The effects of stratification make the dominant contribution to the total drag force balancing the buoyancy force. Clear signs of internal waves are seen in the simulations. These waves propagate horizontally and downwards from the rising bubble, spreading their energy over large volumes of the ICM. If our findings are scaled to the conditions of the Perseus cluster, the expected terminal velocity is ˜100 - 200 km s-1 near the cluster cores, which is in broad agreement with direct measurements by the Hitomi satellite.

  12. The Flow-field From Galaxy Groups In 2MASS

    NASA Astrophysics Data System (ADS)

    Crook, Aidan; Huchra, J.; Macri, L.; Masters, K.; Jarrett, T.

    2011-01-01

    We present the first model of a flow-field in the nearby Universe (cz < 12,000 km/s) constructed from groups of galaxies identified in an all-sky flux-limited survey. The Two Micron All-Sky Redshift Survey (2MRS), upon which the model is based, represents the most complete survey of its class and, with near-IR fluxes, provides the optimal method for tracing baryonic matter in the nearby Universe. Peculiar velocities are reconstructed self-consistently with a density-field based upon groups identified in the 2MRS Ks<11.75 catalog. The model predicts infall toward Virgo, Perseus-Pisces, Hydra-Centaurus, Norma, Coma, Shapley and Hercules, and most notably predicts backside-infall into the Norma Cluster. We discuss the application of the model as a predictor of galaxy distances using only angular position and redshift measurements. By calibrating the model using measured distances to galaxies inside 3000 km/s, we show that, for a randomly-sampled 2MRS galaxy, improvement in the estimated distance over the application of Hubble's law is expected to be 30%, and considerably better in the proximity of clusters. We test the model using distance estimates from the SFI++ sample, and find evidence for improvement over the application of Hubble's law to galaxies inside 4000 km/s, although the performance varies depending on the location of the target. This work has been supported by NSF grant AST 0406906 and the Massachusetts Institute of Technology Bruno Rossi and Whiteman Fellowships.

  13. A wide and collimated radio jet in 3C84 on the scale of a few hundred gravitational radii

    NASA Astrophysics Data System (ADS)

    Giovannini, G.; Savolainen, T.; Orienti, M.; Nakamura, M.; Nagai, H.; Kino, M.; Giroletti, M.; Hada, K.; Bruni, G.; Kovalev, Y. Y.; Anderson, J. M.; D'Ammando, F.; Hodgson, J.; Honma, M.; Krichbaum, T. P.; Lee, S.-S.; Lico, R.; Lisakov, M. M.; Lobanov, A. P.; Petrov, L.; Sohn, B. W.; Sokolovsky, K. V.; Voitsik, P. A.; Zensus, J. A.; Tingay, S.

    2018-04-01

    Understanding the formation of relativistic jets in active galactic nuclei remains an elusive problem1. This is partly because observational tests of jet formation models suffer from the limited angular resolution of ground-based very-long-baseline interferometry that has thus far been able to probe the structure of the jet acceleration and collimation region in only two sources2,3. Here, we report observations of 3C84 (NGC 1275)—the central galaxy of the Perseus cluster—made with an interferometric array including the orbiting radio telescope of the RadioAstron4 mission. The data transversely resolve the edge-brightened jet in 3C84 only 30 μas from the core, which is ten times closer to the central engine than was possible in previous ground-based observations5 and allows us to measure the jet collimation profile from 102 to 104 gravitational radii (rg) from the black hole. The previously found5, almost cylindrical jet profile on scales larger than a few thousand rg is seen to continue at least down to a few hundred rg from the black hole, and we find a broad jet with a transverse radius of ≳250 rg at only 350 rg from the core. This implies that either the bright outer jet layer goes through a very rapid lateral expansion on scales ≲102 rg or it is launched from the accretion disk.

  14. Preliminary tests of silicon carbide based concretes for hybrid rocket nozzles in a solar furnace

    NASA Astrophysics Data System (ADS)

    D'Elia, Raffaele; Bernhart, Gérard; Cutard, Thierry; Peraudeau, Gilles; Balat-Pichelin, Marianne

    2014-06-01

    This research is part of the PERSEUS project, a space program concerning hybrid propulsion and supported by CNES. The main goal of this study is to characterise silicon carbide based micro-concrete with a maximum aggregates size of 800 μm, in a hybrid propulsion environment. The nozzle throat has to resist to a highly oxidising polyethylene (PE)/N2O hybrid environment, under temperatures ranging up to 2980 K. The study is divided into two main parts: the first one deals with the thermo-mechanical characterisation of the material up to 1500 K and the second one with an investigation on the oxidation behaviour in a standard atmosphere, under a solar flux up to 13.5 MW/m2. Young's modulus was determined by resonant frequency method: results show an increase with the stabilisation temperature. Four point bending tests have shown a rupture tensile strength increasing with stabilisation temperature, up to 1473 K. Sintering and densification processes are primary causes of this phenomenon. Visco-plastic behaviour appears at 1373 K, due to the formation of liquid phases in cement ternary system. High-temperature oxidation in ambient air was carried out at PROMES-CNRS laboratory, on a 2 kW solar furnace, with a concentration factor of 15,000. A maximum 13.5 MW/m2 incident solar flux and a 7-90 s exposure times have been chosen. Optical microscopy, SEM, EDS analyses were used to determine the microstructure evolution and the mass loss kinetics. During these tests, silicon carbide undergoes active oxidation with production of SiO and CO smokes and ablation. A linear relation between mass loss and time is found. Oxidation tests performed at 13.5 MW/m2 solar flux have shown a mass loss of 10 mg/cm2 after 15 s. After 90 s, the mass loss reaches 60 mg/cm2. Surface temperature measurement is a main point in this study, because of necessity of a thermo-mechanical-ablative model for the material. Smokes appear at around 5.9 MW/m2, leading to the impossibility of useful temperature measurements by optical pyrometry. Micro-concrete is really interesting for the nozzle realisation, thanks to its workability, and its thermo-mechanical properties. After 30 s, mass loss in micro-concrete is one half of pure α-SiC. This result is really interesting to study SiC-based concretes in oxidising environments, instead of sintered α-SiC.

  15. Reconsiderations about Greek homosexualities.

    PubMed

    Percy, William Armstrong

    2005-01-01

    Focusing his analysis on (mostly Athenian) vase paintings of the sixth- and early fifth-century and on a handful of texts from the late fifth- and early fourth-century (again Athenian), Dover depicted the pederastic relationship of erastes (age 20 to 30) and eromenos (age 12-18) as defined by sexual roles, active and passive, respectively. This dichotomy he connected to other sexual and social phenomena, in which the active/ penetrating role was considered proper for a male adult Athenian citizen, while the passive/penetrated role was denigrated, ridiculed, and even punished. Constructing various social and psychological theories, Foucault and Halperin, along with a host of others, have extended his analysis, but at the core has remained the Dover dogma of sexual-role dichotomization. Penetration has become such a focal point in the scholarship that anything unable to be analyzed in terms of domination is downplayed or ignored. To reduce homosexuality or same-sex behaviors to the purely physical or sexual does an injustice to the complex phenomena of the Greek male experience. From Sparta to Athens to Thebes and beyond, the Greek world incorporated pederasty into their educational systems. Pederasty became a way to lead a boy into manhood and full participation in the polis, which meant not just participation in politics but primarily the ability to benefit the city in a wide range of potential ways. Thus the education, training, and even inspiration provided in the pederastic relationship released creative forces that led to what has been called the Greek 'miracle.' From around 630 BCE we find the institution of Greek pederasty informing the art and literature to a degree yet to be fully appreciated. Moreover, this influence not only extends to the 'higher' realms of culture, but also can be seen stimulating society at all levels, from the military to athletic games, from philosophy to historiography. An understanding of sexual practices-useful, even essential, to an appreciation of Greek pederasty- cannot fully explicate its relationship to these other phenomena; pederasty is found in many societies, and certainly existed before the Greeks. It is time that we move beyond Dover and recover the constructive dynamics of Greek pederasty.

  16. The parsec-scale relationship between ICO and AV in local molecular clouds

    NASA Astrophysics Data System (ADS)

    Lee, Cheoljong; Leroy, Adam K.; Bolatto, Alberto D.; Glover, Simon C. O.; Indebetouw, Remy; Sandstrom, Karin; Schruba, Andreas

    2018-03-01

    We measure the parsec-scale relationship between integrated CO intensity (ICO) and visual extinction (AV) in 24 local molecular clouds using maps of CO emission and dust optical depth from Planck. This relationship informs our understanding of CO emission across environments, but clean Milky Way measurements remain scarce. We find uniform ICO for a given AV, with the results bracketed by previous studies of the Pipe and Perseus clouds. Our measured ICO-AV relation broadly agrees with the standard Galactic CO-to-H2 conversion factor, the relation found for the Magellanic clouds at coarser resolution, and numerical simulations by Glover & Clark (2016). This supports the idea that CO emission primarily depends on shielding, which protects molecules from dissociating radiation. Evidence for CO saturation at high AV and a threshold for CO emission at low AV varies remains uncertain due to insufficient resolution and ambiguities in background subtraction. Resolution of order 0.1 pc may be required to measure these features. We use this ICO-AV relation to predict how the CO-to-H2 conversion factor (XCO) would change if the Solar Neighbourhood clouds had different dust-to-gas ratio (metallicity). The calculations highlight the need for improved observations of the CO emission threshold and H I shielding layer depth. They are also sensitive to the shape of the column density distribution. Because local clouds collectively show a self-similar distribution, we predict a shallow metallicity dependence for XCO down to a few tenths of solar metallicity. However, our calculations also imply dramatic variations in cloud-to-cloud XCO at subsolar metallicity.

  17. Applications for edge detection techniques using Chandra and XMM-Newton data: galaxy clusters and beyond

    NASA Astrophysics Data System (ADS)

    Walker, S. A.; Sanders, J. S.; Fabian, A. C.

    2016-09-01

    The unrivalled spatial resolution of the Chandra X-ray observatory has allowed many breakthroughs to be made in high-energy astrophysics. Here we explore applications of Gaussian gradient magnitude (GGM) filtering to X-ray data, which dramatically improves the clarity of surface brightness edges in X-ray observations, and maps gradients in X-ray surface brightness over a range of spatial scales. In galaxy clusters, we find that this method is able to reveal remarkable substructure behind the cold fronts in Abell 2142 and Abell 496, possibly the result of Kelvin-Helmholtz instabilities. In Abell 2319 and Abell 3667, we demonstrate that the GGM filter can provide a straightforward way of mapping variations in the widths and jump ratios along the lengths of cold fronts. We present results from our ongoing programme of analysing the Chandra and XMM-Newton archives with the GGM filter. In the Perseus cluster, we identify a previously unseen edge around 850 kpc from the core to the east, lying outside a known large-scale cold front, which is possibly a bow shock. In MKW 3s we find an unusual `V' shape surface brightness enhancement starting at the cluster core, which may be linked to the AGN jet. In the Crab nebula a new, moving feature in the outer part of the torus is identified which moves across the plane of the sky at a speed of ˜0.1c, and lies much further from the central pulsar than the previous motions seen by Chandra.

  18. SUPERNOVA DRIVING. III. SYNTHETIC MOLECULAR CLOUD OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padoan, Paolo; Juvela, Mika; Pan, Liubin

    We present a comparison of molecular clouds (MCs) from a simulation of supernova (SN) driven interstellar medium (ISM) turbulence with real MCs from the Outer Galaxy Survey. The radiative transfer calculations to compute synthetic CO spectra are carried out assuming that the CO relative abundance depends only on gas density, according to four different models. Synthetic MCs are selected above a threshold brightness temperature value, T {sub B,min} = 1.4 K, of the J = 1 − 0 {sup 12}CO line, generating 16 synthetic catalogs (four different spatial resolutions and four CO abundance models), each containing up to several thousandsmore » MCs. The comparison with the observations focuses on the mass and size distributions and on the velocity–size and mass–size Larson relations. The mass and size distributions are found to be consistent with the observations, with no significant variations with spatial resolution or chemical model, except in the case of the unrealistic model with constant CO abundance. The velocity–size relation is slightly too steep for some of the models, while the mass–size relation is a bit too shallow for all models only at a spatial resolution dx ≈ 1 pc. The normalizations of the Larson relations show a clear dependence on spatial resolution, for both the synthetic and the real MCs. The comparison of the velocity–size normalization suggests that the SN rate in the Perseus arm is approximately 70% or less of the rate adopted in the simulation. Overall, the realistic properties of the synthetic clouds confirm that SN-driven turbulence can explain the origin and dynamics of MCs.« less

  19. The Magnetic Field Structure of W3(OH)

    NASA Astrophysics Data System (ADS)

    El-Batal, Adham M.; Clemens, Dan P.; Montgomery, Jordan

    2018-06-01

    Situated in the Perseus arm of the Galaxy, the W3 molecular cloud is a high-mass star-forming region with low foreground optical extinction. Near-infrared H- and K-band polarimetric observations of a 10' × 10' field of view of W3 were obtained using the Mimir instrument on the 1.8 m Perkins Telescope. This field of view encompasses W3(OH), a region of OH and H2O masers as well as an HII region. The H-band data were used in conjunction with Spitzer M-band data to map extinction via H-M color excess. In total, 2654 stellar objects were found in the Mimir field of view, of which 1013 had H and M magnitudes with low errors. Using the extinction map and the individual stellar H-M color excess values, 429 stars with polarized signals were found to be background to the molecular cloud. These were useful for mapping the magnetic field structure and estimating the magnetic field strength of the cloud. Mid- to far-infrared (70 - 870 μm) archival Herschel and Planck data were used to map dust extinction at 850 µm and create an H2 column density map. Combined, maps of magnetic field strength and hydrogen column density can be used to infer the ratio of gravitational potential to magnetic potential ( M/Φ ). Findings are discussed in the context of M/Φ ratio in models and the stability of high-mass star-forming regions.This work has been supported by NSF AST14-12269 and NASA NNX15AE51G grants.

  20. Catalog of Observed Tangents to the Spiral Arms in the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Vallée, Jacques P.

    2014-11-01

    From the Sun's location in the Galactic disk, one can use different arm tracers (CO, H I, thermal or ionized or relativistic electrons, masers, cold and hot dust, etc.) to locate a tangent to each spiral arm in the disk of the Milky Way. We present a master catalog of the astronomically observed tangents to the Galaxy's spiral arms, using different arm tracers from the literature. Some arm tracers can have slightly divergent results from several papers, so a mean value is taken—see the Appendix for CO, H II, and masers. The catalog of means currently consists of 63 mean tracer entries, spread over many arms (Carina, Crux-Centaurus, Norma, Perseus origin, near 3 kpc, Scutum, Sagittarius), stemming from 107 original arm tracer entries. Additionally, we updated and revised a previous statistical analysis of the angular offset and linear separation from the mid-arm for each different mean arm tracer. Given enough arm tracers, and summing and averaging over all four spiral arms, one could determine if arm tracers have separate and parallel lanes in the Milky Way. This statistical analysis allows a cross-cut of a Galactic spiral arm to be made, confirming a recent discovery of a linear separation between arm tracers. Here, from the mid-arm's CO to the inner edge's hot dust, the arm halfwidth is about 340 pc doubling would yield a full arm width of 680 pc. We briefly compare these observations with the predictions of many spiral arm theories, notably the density wave theory.

  1. Resonant scattering as a sensitive diagnostic of current collisional plasma models

    NASA Astrophysics Data System (ADS)

    Ogorzalek, Anna; Zhuravleva, Irina; Allen, Steven W.; Pinto, Ciro; Werner, Norbert; Mantz, Adam; Canning, Rebecca; Fabian, Andrew C.; Kaastra, Jelle S.; de Plaa, Jelle

    2017-08-01

    Resonant scattering is a subtle process that suppresses fluxes of some of the brightest optically thick X-ray emission lines produced by collisional plasmas in galaxy clusters and massive early-type galaxies. The amplitude of the effect depends on the turbulent structure of the hot gas, making it a sensitive velocity probe. It is therefore crucial to properly model this effect in order to correctly interpret high resolution X-ray spectra. Our measurements of resonant scattering with XMM-Newton Reflection Grating Spectrometer in giant elliptical galaxies and with Hitomi in the center of Perseus Cluster show that the potentially rich inference from this effect is limited by the uncertainties in the atomic data underlying plasma codes such as APEC and SPEX. Typically, the effect is of the order of 10-20%, while the discrepancy between the two codes is of similar order or even higher. Precise knowledge of the emissivity and oscillator strengths of lines emitted by Fe XVII and Fe XXV, as well as their respective uncertainties propagated through plasma codes are key to understanding gas dynamics and microphysics in giant galaxies and cluster ICM, respectively. This is especially crucial for massive ellipticals, where sub-eV resolution would be needed to measure line broadening precisely, making resonant scattering an important velocity diagnostic in these systems for the foreseeable future. In this poster, I will summarize current status of resonant scattering measurements and show how they depend on the assumed atomic data. I will also discuss which improvements are essential to maximize scientific inference from future high resolution X-ray spectra.

  2. Observational and numerical evidence for ocean frontogenesis inducing submesoscale processes and impacting biochemistry

    NASA Astrophysics Data System (ADS)

    Claret, M.; Ruiz, S.; Pascual, A.; Olita, A.; Mahadevan, A.; Tovar, A.; Troupin, C.; Tintore, J.; Capet, A.

    2016-02-01

    We present the results of ALBOREX, a multi-platform and multi-disciplinary experiment completed in May 2014 as a part of PERSEUS EU funded project. This unique process-oriented experiment in the eastern Alboran Sea (Western Mediterranean) examined mesoscale and submesoscale dynamics at an intense front. The field campaign, conducted during 8 days, included 25 drifters, 2 gliders, 3 Argo floats and one ship (66 CTDs and 500 biochemical samples). The drifters followed coherently an anticyclonic gyre. ADCP data showed consistent patterns with currents up to 1 m/s in the southern part of the domain and Rossby numbers up to 1.5 suggesting significant ageostrophic motion. We show observational evidence for mesoscale frontogenesis produced by the confluence of (fresh) Atlantic Water and the resident (more saline) Mediterranean Water. This confluence resulted in lateral density gradients of the order of 1 kg/m3 in 10 km and associated vertical velocities of about ±20 m/day, diagnosed using the QG Omega equation. However, the vertical velocity is likely underestimated due to unresolved submesoscale processes (<10 km), which are induced by intense mesoscale frontogenesis. In order to assess the role of these submesoscale processes in the frontal vertical transport, a high-resolution Process Ocean Model Study is initialized with hydrographic data (0.5-1 km resolution) from underwater gliders. Numerical results show that observed lateral buoyancy gradients are large enough to trigger submesoscale mixed layer instabilities. The coupling between mesoscale and submesoscale phenomena can explain remarkable subduction events of chlorophyll and oxygen captured by ocean gliders, as well as local increases of primary production.

  3. CATALOG OF OBSERVED TANGENTS TO THE SPIRAL ARMS IN THE MILKY WAY GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallée, Jacques P., E-mail: jacques.vallee@nrc-cnrc.gc.ca

    2014-11-01

    From the Sun's location in the Galactic disk, one can use different arm tracers (CO, H I, thermal or ionized or relativistic electrons, masers, cold and hot dust, etc.) to locate a tangent to each spiral arm in the disk of the Milky Way. We present a master catalog of the astronomically observed tangents to the Galaxy's spiral arms, using different arm tracers from the literature. Some arm tracers can have slightly divergent results from several papers, so a mean value is taken—see the Appendix for CO, H II, and masers. The catalog of means currently consists of 63 meanmore » tracer entries, spread over many arms (Carina, Crux-Centaurus, Norma, Perseus origin, near 3 kpc, Scutum, Sagittarius), stemming from 107 original arm tracer entries. Additionally, we updated and revised a previous statistical analysis of the angular offset and linear separation from the mid-arm for each different mean arm tracer. Given enough arm tracers, and summing and averaging over all four spiral arms, one could determine if arm tracers have separate and parallel lanes in the Milky Way. This statistical analysis allows a cross-cut of a Galactic spiral arm to be made, confirming a recent discovery of a linear separation between arm tracers. Here, from the mid-arm's CO to the inner edge's hot dust, the arm halfwidth is about 340 pc; doubling would yield a full arm width of 680 pc. We briefly compare these observations with the predictions of many spiral arm theories, notably the density wave theory.« less

  4. Probing the Plasma Structure of HII Regions with Faraday Rotation

    NASA Astrophysics Data System (ADS)

    Costa, Allison; Spangler, Steven R.

    2018-01-01

    We are involved in study concerning the modification of magnetic fields in the shells of HII regions. We report Faraday Rotation results of lines on sight through or near HII regions associated with OB associations. In the our studies of the Rosette Nebula (l = 206°, b = -1.2°), we measure positive rotation measure (RM) values in excess of +40 to +1200 rad m-2 due to the shell of the nebula and a background RM of +147 rad m-2 due to the general interstellar medium (Savage et al. 2013, ApJ, 765, 42; Costa et al. 2016, ApJ, 821, 92). We are currently completing an analysis of observations probing an addition HII region, IC 1805 (l = 135°, b = +0.9°), associated with the W4 Superbubble. We measure negative RM values across the region between -68 and -961 rad m-2. We find the highest RM values for lines of sight which intersect the ionized shell of the HII region for the Rosette Nebula, but in the case of IC 1805, the highest RM values are outside the bright shell of the HII region. However, we find that the magnitude of the RM between the two regions is similar. The sign of the RM across each HII region is consistent with the expected polarity of a Galactic magnetic field that follows the Perseus spiral arm in the clockwise direction, as suggested by Han et al. (2006, ApJ, 642, 868) and Van Eck et al. (2011, ApJ, 728, 14).

  5. The Carina Nebula and Gum 31 molecular complex - II. The distribution of the atomic gas revealed in unprecedented detail

    NASA Astrophysics Data System (ADS)

    Rebolledo, David; Green, Anne J.; Burton, Michael; Brooks, Kate; Breen, Shari L.; Gaensler, B. M.; Contreras, Yanett; Braiding, Catherine; Purcell, Cormac

    2017-12-01

    We report high spatial resolution observations of the H I 21cm line in the Carina Nebula and the Gum 31 region obtained with the Australia Telescope Compact Array. The observations covered ∼12 °^2 centred on l = 287.5°, b = -1°, achieving an angular resolution of ∼35 arcsec. The H I map revealed complex filamentary structures across a wide range of velocities. Several 'bubbles' are clearly identified in the Carina Nebula complex, produced by the impact of the massive star clusters located in this region. An H I absorption profile obtained towards the strong extragalactic radio source PMN J1032-5917 showed the distribution of the cold component of the atomic gas along the Galactic disc, with the Sagittarius-Carina and Perseus spiral arms clearly distinguishable. Preliminary calculations of the optical depth and spin temperatures of the cold atomic gas show that the H I line is opaque (τ ≳ 2) at several velocities in the Sagittarius-Carina spiral arm. The spin temperature is ∼100 K in the regions with the highest optical depth, although this value might be lower for the saturated components. The atomic mass budget of Gum 31 is ∼35 per cent of the total gas mass. H I self-absorption features have molecular counterparts and good spatial correlation with the regions of cold dust as traced by the infrared maps. We suggest that in Gum 31 regions of cold temperature and high density are where the atomic to molecular gas-phase transition is likely to be occurring.

  6. Supernova Driving. III. Synthetic Molecular Cloud Observations

    NASA Astrophysics Data System (ADS)

    Padoan, Paolo; Juvela, Mika; Pan, Liubin; Haugbølle, Troels; Nordlund, Åke

    2016-08-01

    We present a comparison of molecular clouds (MCs) from a simulation of supernova (SN) driven interstellar medium (ISM) turbulence with real MCs from the Outer Galaxy Survey. The radiative transfer calculations to compute synthetic CO spectra are carried out assuming that the CO relative abundance depends only on gas density, according to four different models. Synthetic MCs are selected above a threshold brightness temperature value, T B,min = 1.4 K, of the J = 1 - 0 12CO line, generating 16 synthetic catalogs (four different spatial resolutions and four CO abundance models), each containing up to several thousands MCs. The comparison with the observations focuses on the mass and size distributions and on the velocity-size and mass-size Larson relations. The mass and size distributions are found to be consistent with the observations, with no significant variations with spatial resolution or chemical model, except in the case of the unrealistic model with constant CO abundance. The velocity-size relation is slightly too steep for some of the models, while the mass-size relation is a bit too shallow for all models only at a spatial resolution dx ≈ 1 pc. The normalizations of the Larson relations show a clear dependence on spatial resolution, for both the synthetic and the real MCs. The comparison of the velocity-size normalization suggests that the SN rate in the Perseus arm is approximately 70% or less of the rate adopted in the simulation. Overall, the realistic properties of the synthetic clouds confirm that SN-driven turbulence can explain the origin and dynamics of MCs.

  7. BINARY BLACK HOLES, GAS SLOSHING, AND COLD FRONTS IN THE X-RAY HALO HOSTING 4C+37.11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrade-Santos, Felipe; Bogdán, Ákos; Forman, William R.

    We analyzed deep Chandra ACIS-I exposures of the cluster-scale X-ray halo surrounding the radio source 4C+37.11. This remarkable system hosts the closest resolved pair of super-massive black holes and an exceptionally luminous elliptical galaxy, the likely product of a series of past mergers. We characterize the halo with r {sub 500} ∼ 0.95 Mpc, M {sub 500} = 2.5 ± 0.2 × 10{sup 14} M {sub ⊙}, kT = 4.6 ± 0.2 keV, and a gas mass of M {sub g,500} = 2.2 ± 0.1 × 10{sup 13} M {sub ⊙}. The gas mass fraction within r {sub 500} ismore » f {sub g} = 0.09 ± 0.01. The entropy profile shows large non-gravitational heating in the central regions. We see several surface brightness jumps, associated with substantial temperature and density changes but approximate pressure equilibrium, implying that these are sloshing structures driven by a recent merger. A residual intensity image shows a core spiral structure closely matching that seen in the Perseus cluster, although at z = 0.055 the spiral pattern is less distinct. We infer that the most recent merger occurred 1–2 Gyr ago and that the event that brought the two observed super-massive black holes to the system core is even older. Under this interpretation, the black hole binary pair has, unusually, remained at a parsec-scale separation for more than 2 Gyr.« less

  8. AGN Heating in Simulated Cool-core Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuan; Ruszkowski, Mateusz; Bryan, Greg L., E-mail: yuanlium@umich.edu

    We analyze heating and cooling processes in an idealized simulation of a cool-core cluster, where momentum-driven AGN feedback balances radiative cooling in a time-averaged sense. We find that, on average, energy dissipation via shock waves is almost an order of magnitude higher than via turbulence. Most of the shock waves in the simulation are very weak shocks with Mach numbers smaller than 1.5, but the stronger shocks, although rare, dissipate energy more effectively. We find that shock dissipation is a steep function of radius, with most of the energy dissipated within 30 kpc, more spatially concentrated than radiative cooling loss.more » However, adiabatic processes and mixing (of post-shock materials and the surrounding gas) are able to redistribute the heat throughout the core. A considerable fraction of the AGN energy also escapes the core region. The cluster goes through cycles of AGN outbursts accompanied by periods of enhanced precipitation and star formation, over gigayear timescales. The cluster core is under-heated at the end of each cycle, but over-heated at the peak of the AGN outburst. During the heating-dominant phase, turbulent dissipation alone is often able to balance radiative cooling at every radius but, when this is occurs, shock waves inevitably dissipate even more energy. Our simulation explains why some clusters, such as Abell 2029, are cooling dominated, while in some other clusters, such as Perseus, various heating mechanisms including shock heating, turbulent dissipation and bubble mixing can all individually balance cooling, and together, over-heat the core.« less

  9. A GALEX-BASED SEARCH FOR THE SPARSE YOUNG STELLAR POPULATION IN THE TAURUS-AURIGAE STAR FORMING REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez de Castro, Ana I.; Lopez-Santiago, Javier; López-Martínez, Fatima

    2015-02-01

    In this work, we identify 63 bona fide new candidates to T Tauri stars (TTSs) in the Taurus-Auriga region, using its ultraviolet excess as our baseline. The initial data set was defined from the GALEX all sky survey (AIS). The GALEX satellite obtained images in the near-ultraviolet (NUV) and far-ultraviolet (FUV) bands where TTSs show a prominent excess compared with main-sequence or giants stars. GALEX AIS surveyed the Taurus-Auriga molecular complex, as well as a fraction of the California Nebula and the Perseus complex; bright sources and dark clouds were avoided. The properties of TTSs in the ultraviolet (GALEX), opticalmore » (UCAC4), and infrared (2MASS) have been defined using the TTSs observed with the International Ultraviolet Explorer reference sample. The candidates were identified by means of a mixed ultraviolet-optical-infrared excess set of colors; we found that the FUV-NUV versus J–K color-color diagram is ideally suited for this purpose. From an initial sample of 163,313 bona fide NUV sources, a final list of 63 new candidates to TTSs in the region was produced. The search procedure has been validated by its ability to detect all known TTSs in the area surveyed: 31 TTSs. Also, we show that the weak-lined TTSs are located in a well-defined stripe in the FUV-NUV versus J–K diagram. Moreover, in this work, we provide a list of TTSs photometric standards for future GALEX-based studies of the young stellar population in star forming regions.« less

  10. Searching for Decaying Dark Matter in Deep XMM-Newton Observation of the Draco Dwarf Spheroidal

    NASA Technical Reports Server (NTRS)

    Ruchayskiy, Oleg; Boyardsky, Alex; Iakbovskyi, Dmytro; Bulbul, Esra; Eckert, Domique; Franse, Jeron; Malyshev, Denys; Markevitch, Maxim; Neronov, Andrii

    2016-01-01

    We present results of a search for the 3.5 keV emission line in our recent very long (approx. 1.4 Ms) XMM-Newton observation of the Draco dwarf spheroidal galaxy. The astrophysical X-ray emission from such dark matter-dominated galaxies is faint, thus they provide a test for the dark matter origin of the 3.5 keV line previously detected in other massive, but X-ray bright objects, such as galaxies and galaxy clusters. We do not detect a statistically significant emission line from Draco; this constrains the lifetime of a decaying dark matter particle to tau >(7-9) × 10(exp 27) s at 95% CL (combining all three XMM-Newton cameras; the interval corresponds to the uncertainty of the dark matter column density in the direction of Draco). The PN camera, which has the highest sensitivity of the three, does show a positive spectral residual (above the carefully modeled continuum) at E = 3.54 +/- 0.06 keV with a 2.3(sigma) significance. The two MOS cameras show less-significant or no positive deviations, consistently within 1(sigma) with PN. Our Draco limit on tau is consistent with previous detections in the stacked galaxy clusters, M31 and the Galactic Centre within their 1 - 2(sigma) uncertainties, but is inconsistent with the high signal from the core of the Perseus cluster (which has itself been inconsistent with the rest of the detections). We conclude that this Draco observation does not exclude the dark matter interpretation of the 3.5 keV line in those objects.

  11. The Spiral Arm Segments of the Galaxy within 3 kpc from the Sun: A Statistical Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griv, Evgeny; Jiang, Ing-Guey; Hou, Li-Gang, E-mail: griv@bgu.ac.il

    As can be reasonably expected, upcoming large-scale APOGEE, GAIA, GALAH, LAMOST, and WEAVE stellar spectroscopic surveys will yield rather noisy Galactic distributions of stars. In view of the possibility of employing these surveys, our aim is to present a statistical method to extract information about the spiral structure of the Galaxy from currently available data, and to demonstrate the effectiveness of this method. The model differs from previous works studying how objects are distributed in space in its calculation of the statistical significance of the hypothesis that some of the objects are actually concentrated in a spiral. A statistical analysismore » of the distribution of cold dust clumps within molecular clouds, H ii regions, Cepheid stars, and open clusters in the nearby Galactic disk within 3 kpc from the Sun is carried out. As an application of the method, we obtain distances between the Sun and the centers of the neighboring Sagittarius arm segment, the Orion arm segment in which the Sun is located, and the Perseus arm segment. Pitch angles of the logarithmic spiral segments and their widths are also estimated. The hypothesis that the collected objects accidentally form spirals is refuted with almost 100% statistical confidence. We show that these four independent distributions of young objects lead to essentially the same results. We also demonstrate that our newly deduced values of the mean distances and pitch angles for the segments are not too far from those found recently by Reid et al. using VLBI-based trigonometric parallaxes of massive star-forming regions.« less

  12. The hypothesis of the local supercloud and the nearby moving groups of stars

    NASA Astrophysics Data System (ADS)

    Olano, C. A.

    2016-06-01

    The velocity distribution of stars in the solar neighbourhood can be globally characterized by the presence of two stellar streams (I and II). Stream I contains kinematic substructures, named moving groups of stars, such us the Pleiades and Hyades groups. While Stream II is essentially associated with the Sirius group. The origin and nature of these two stellar streams are still not completely clear. We propose that Streams I and II were gravitationally linked to an old gas supercloud that was disintegrated in parts that formed new subsystems, viz., the Orion arm and Gould's belt. On the basis of this idea, we constructed a dynamical model of the supercloud in order to explain the kinematic and structural characteristics of the local system of gas and stars. For the study of the relative orbits of the two stellar streams with respect to the supercloud's centre and of the Galactic orbit of the supercloud, we developed appropriate epicyclic motion equations. The results of the model indicate the possibility that about 75-100 Myr ago the supercloud crossed the Perseus arm and as a consequence was strongly braked. Besides, around 60 Myr ago, the position of the supercloud coincided approximately with that of the Big Dent, a huge depression of the Galactic disc. We suggest that the cause that originated the Big Dent could be the same that perturbed the supercloud starting the formation of the Orion arm and Gould's belt. In this context, we derived the theoretical distributions of positions and velocities for the stars of Streams I and II.

  13. Thirty Minutes of Hypobaric Hypoxia Provokes Alterations of Immune Response, Haemostasis, and Metabolism Proteins in Human Serum

    PubMed Central

    Hinkelbein, Jochen; Jansen, Stefanie; Iovino, Ivan; Kruse, Sylvia; Meyer, Moritz; Cirillo, Fabrizio; Drinhaus, Hendrik; Hohn, Andreas; Klein, Corinna; Robertis, Edoardo De; Beutner, Dirk

    2017-01-01

    Hypobaric hypoxia (HH) during airline travel induces several (patho-) physiological reactions in the human body. Whereas severe hypoxia is investigated thoroughly, very little is known about effects of moderate or short-term hypoxia, e.g. during airline flights. The aim of the present study was to analyse changes in serum protein expression and activation of signalling cascades in human volunteers staying for 30 min in a simulated altitude equivalent to airline travel. After approval of the local ethics committee, 10 participants were exposed to moderate hypoxia (simulation of 2400 m or 8000 ft for 30 min) in a hypobaric pressure chamber. Before and after hypobaric hypoxia, serum was drawn, centrifuged, and analysed by two-dimensional gel electrophoresis (2-DIGE) and matrix-assisted laser desorption/ionization followed by time-of-flight mass spectrometry (MALDI-TOF). Biological functions of regulated proteins were identified using functional network analysis (GeneMania®, STRING®, and Perseus® software). In participants, oxygen saturation decreased from 98.1 ± 1.3% to 89.2 ± 1.8% during HH. Expression of 14 spots (i.e., 10 proteins: ALB, PGK1, APOE, GAPDH, C1QA, C1QB, CAT, CA1, F2, and CLU) was significantly altered. Bioinformatic analysis revealed an association of the altered proteins with the signalling cascades “regulation of haemostasis” (four proteins), “metabolism” (five proteins), and “leukocyte mediated immune response” (five proteins). Even though hypobaric hypoxia was short and moderate (comparable to an airliner flight), analysis of protein expression in human subjects revealed an association to immune response, protein metabolism, and haemostasis PMID:28858246

  14. ALBOREX: an intensive multi-platform and multidisciplinary experiment in the Alboran Sea

    NASA Astrophysics Data System (ADS)

    Ruiz, Simón; Pascual, Ananda; Allen, John; Olita, Antonio; Tovar, Antonio; Oguz, Temel; Mahadevan, Amala; Poulain, Pierre; Tintoré, Joaquín

    2015-04-01

    An intensive multi-platform and multidisciplinary experiment was completed in May 2014 as part of PERSEUS EU Project. 25 drifters, 2 gliders, 3 Argo floats and one ship were dedicated to sample an area of about 50x50 km in the eastern Alboran Sea during one week. The experiment, which also includes 66 CTD stations and 500 water samples (salinity, chlorophyll and nutrients), was designed to capture the intense but transient vertical exchanges associated with mesoscale and submesoscale features. The vertical motion associated with mesoscale and submesoscale features such as ocean eddies, filaments and fronts plays a major role in determining ocean productivity, due to the exchange of properties between the surface and the ocean interior. Understanding the relationship between these physical and biological processes is crucial for predicting the marine ecosystems response to changes in the climate system and to sustainable marine resource management. However, to understand the links between mesoscale and submesoscale features and ecosystem responses, it is necessary to collect data at a range of temporal and spatial scales, and then combine these data with coupled physical and biochemical models. Data from thermosalinograph revealed a sharp surface salinity front with values ranging from 36.6 (Atlantic Waters) to 38.2 (Mediterranean Waters) in conjunction with a filament in temperature. Drifters followed a massive anticyclonic gyre. Near real time data from ADCP showed coherent patterns with currents up to 1m/s. Gliders detected a subduction of chlorophyll located in areas adjacent to the front. We also present results on the horizontal strain rate, relative vorticity and quasi-geostrophic vertical motion to understand the dynamics of this intense ocean front.

  15. Dust in the outer layers of the Barnard 5 globule

    NASA Astrophysics Data System (ADS)

    Il'in, V. B.; Efimov, Yu S.; Khudyakova, T. N.; Prokopjeva, M. S.; Varivoda, V. V.

    2018-04-01

    We present the results of our UBVRI polarimetric observations of a dozen stars located close to the well-studied Bok globule Barnard 5 (B5), with several of the stars being seen through its outer layers (with AV up to ˜3 mag). Using recent astrometric, spectroscopic and photometric surveys, we estimate the distance, spectral class and visual extinction for the observed stars and find that the results are in a good agreement with the available 3D extinction maps. We use a two-layer dust model of interstellar polarization towards B5, in which the layer closer to us is an extension of the Taurus cloud complex, and the farther one (including B5 and its halo) is related to the Perseus cloud complex (d ≈ 280-350 pc). Using spectral, photometric and polarimetric data on about 30 additional stars, we estimate the parameters of the former layer as λmax ≈ 0.56 μm, Pmax ≈ 0.7 per cent, θ ≈ 50°, AV ≈ 0.7 mag, and show that the observed wavelength dependence of the position angle for the stars observed generally agrees with the two-layer model. We find that when the stars are seen through the globule layers with AV = 2-3 mag, λmax ≈ 0.6-0.8 μm, which differs significantly from the λmax = 0.52-0.58 μm obtained by us for the diffuse interstellar medium in the direction of B5. We discuss the correlation of λmax with the optical thickness into the globule as well as other correlations of the extinction and polarization parameters.

  16. Morphology and Kinematics of Filaments in the Serpens and Perseus Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Dhabal, Arnab; Mundy, Lee G.; Rizzo, Maxime J.; Storm, Shaye; Teuben, Peter

    2018-02-01

    We present H13CO+ (J = 1–0) and HNC (J = 1–0) maps of regions in Serpens South, Serpens Main, and NGC 1333 containing filaments. We also observe the Serpens regions using H13CN (J = 1–0). These dense gas tracer molecular line observations carried out with CARMA have an angular resolution of ∼7″, a spectral resolution of ∼0.16 km s‑1, and a sensitivity of 50–100 mJy beam‑1. Although the large-scale structure compares well with the Herschel dust continuum maps, we resolve finer structure within the filaments identified by Herschel. The H13CO+ emission distribution agrees with the existing CARMA N2H+ (J = 1–0) maps, so they trace the same morphology and kinematics of the filaments. The H13CO+ maps additionally reveal that many regions have multiple structures partially overlapping in the line of sight. In two regions, the velocity differences are as high as 1.4 km s‑1. We identify eight filamentary structures having typical widths of 0.03–0.08 pc in these tracers. At least 50% of the filamentary structures have distinct velocity gradients perpendicular to their major axis, with average values in the range of 4–10 km s‑1 pc‑1. These findings are in support of the theoretical models of filament formation by 2D inflow in the shock layer created by colliding turbulent cells. We also find evidence of velocity gradients along the length of two filamentary structures; the gradients suggest that these filaments are inflowing toward the cloud core.

  17. Properties of an H I-selected galaxy sample

    NASA Technical Reports Server (NTRS)

    Szomoru, Arpad; Guhathakurta, Puragra; Van Gorkom, Jacqueline H.; Knapen, Johan H.; Weinberg, David H.; Fruchter, Andrew S.

    1994-01-01

    We analyze the properties of a sample of galaxies identified in a 21cm, H I-line survey of selected areas in the Perseus-Pisces supercluster and its foreground void. Twelve fields were observed in the supercluster, five of them (target fields) centered on optically bright galaxies, and the other seven (blank fields) selected to contain no bright galaxies within 45 min. of their centers. We detected nine previously uncatalogued, gas-rich galaxies, six of them in the target fields. We also detected H I from seven previously catalogued galaxies in these fields. Observations in the void covered the same volume as the 12 supercluster fields at the same H I-mass sensitivity, but no objects were detected. Combining out H I data with optical broadband and H alpha imaging, we conclude that the properties of H I-selected galaxies do not differ substantially from those of late-type galaxies found in optical surveys. In particular, the galaxies in our sample do not appear to be unusually faint for their H I mass, or for their circular velocity. We find tentative evidence for a connection between optical surface brightness and degree of isolation, in the sense that low surface brightness galaxies tend to be more isolated. The previously catalogued, optically bright galaxies in our survey volume dominate the total H I mass density and cross section; the uncatalogued galaxies contribute only approximately 19 percent of the mass and approximately 12 percent of the cross section. Thus, existing estimates of the density and cross section of neutral hydrogen, most of which are based on optically selected galaxy samples, are probably accurate. Such estimates can be used to compare the nearby universe to the high-redshift universe probed by quasar absorption lines.

  18. Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.

    2018-04-01

    Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.

  19. Uv-Optical Spectra and Imagery of the Bubble Nebula NGC 7635

    NASA Astrophysics Data System (ADS)

    Walter, Donald

    1997-07-01

    We propose to acquire UV-optical STIS spectra and WFPC2 imagery of the wind-blown Bubble Nebula NGC 7635. This object is significant to our understanding of galactic chemical evolution, star formation {possibly triggered by radiative implosion}, the mass-loss history of precursors to supernovae, the effect of wind-driven shocks on the ISM and the process of ionization and photoevaporation of high density knots {possibly HH objects} in the presence of an intense stellar wind and radiation field. The ener getic environment of NGC 7635 is more extreme and its features have evolved on a different time scale than in more quiescent objects studied with HST {e.g. Orion and M16}. HST is essential to our study in order to achieve high spatial resolution and ac cess to the UV region of the spectrum. The nebula's nearly spherical shell is the result of a recent { < 10^6 years} stellar mass-loss event and is the best young, clearly observed bubble available for study. We will exam in e the ionization front at the r im of the bubble, the extent to which it is shock-driven and the scale of the photoevaporative flow off the face of the molecular cloud. We will resolve high density knots down to a size of 2.1 x 10^15 cm {140 au}, searching for protostellar objects. STIS U V spectra will allow us to calculate the first accurate C/H abundance in the Perseus arm and test for the presence of a galactic abundance gradient. Finally, with our HST data we will compare our observational results with our radiative shock-model predi ctions.

  20. Deep optical survey of the stellar content of Sh2-311 region

    NASA Astrophysics Data System (ADS)

    Yadav, Ram Kesh; Pandey, A. K.; Sharma, Saurabh; Jose, J.; Ogura, K.; Kobayashi, N.; Samal, M. R.; Eswaraiah, C.; Chandola, H. C.

    2015-01-01

    The stellar content in and around Sh2-311 region have been studied using the deep optical observations as well as near-infrared (NIR) data from 2MASS. The region contains three clusters, viz. NGC 2467, Haffner 18 and Haffner 19. We have made an attempt to distinguish the stellar content of these individual regions as well as to re-determine their fundamental parameters such as distance, reddening, age, onto the basis of a new and more extended optical and infrared photometric data set. NGC 2467 and Haffner 19 are found to be located in the Perseus arm at the distances of 5.0 ± 0.4 kpc and 5.7 ± 0.4 kpc, respectively, whereas Haffner 18 is located at the distance of 11.2 ± 1.0 kpc. The clusters NGC 2467 and Haffner 19 might have formed from the same molecular cloud, whereas the cluster Haffner 18 is located in the outer galactic arm, i.e. the Norma-Cygnus arm. We identify 8 class II young stellar objects (YSOs) using the NIR (J-H)/(H-K) two colour diagram. We have estimated the age and mass of the YSOs identified in the present work and those by Snider et al. (2009) using the V/(V-I) colour-magnitude diagram. The estimated ages and mass range of the majority of the YSOs are ≲1 Myr and ∼0.4-3.5 M⊙, respectively, indicating that these sources could be T-Tauri stars or their siblings. Spatial distribution of the YSOs shows that some of the YSOs are distributed around the HII region Sh2-311, suggesting a triggered star formation at its periphery.

  1. Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.

    2018-06-01

    Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.

  2. TRANSITIONAL DISKS AND THEIR ORIGINS: AN INFRARED SPECTROSCOPIC SURVEY OF ORION A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K. H.; Watson, Dan M.; Manoj, P.

    Transitional disks are protoplanetary disks around young stars, with inner holes or gaps which are surrounded by optically thick outer, and often inner, disks. Here we present observations of 62 new transitional disks in the Orion A star-forming region. These were identified using the Spitzer Space Telescope's Infrared Spectrograph and followed up with determinations of stellar and accretion parameters using the Infrared Telescope Facility's SpeX. We combine these new observations with our previous results on transitional disks in Taurus, Chamaeleon I, Ophiuchus, and Perseus, and with archival X-ray observations. This produces a sample of 105 transitional disks of ''cluster'' agemore » 3 Myr or less, by far the largest hitherto assembled. We use this sample to search for trends between the radial structure in the disks and many other system properties, in order to place constraints on the possible origins of transitional disks. We see a clear progression of host-star accretion rate and the different disk morphologies. We confirm that transitional disks with complete central clearings have median accretion rates an order of magnitude smaller than radially continuous disks of the same population. Pre-transitional disks-those objects with gaps that separate inner and outer disks-have median accretion rates intermediate between the two. Our results from the search for statistically significant trends, especially related to M-dot , strongly support that in both cases the gaps are far more likely to be due to the gravitational influence of Jovian planets or brown dwarfs orbiting within the gaps, than to any of the photoevaporative, turbulent, or grain-growth processes that can lead to disk dissipation. We also find that the fraction of Class II YSOs which are transitional disks is large, 0.1-0.2, especially in the youngest associations.« less

  3. Contributions of a Tunable Diode Laser Instrument (ATLAS) to the Stratospheric Ozone Depletion Question

    NASA Technical Reports Server (NTRS)

    Loewenstein, Max; Russell, Philip B. (Technical Monitor)

    1994-01-01

    The Airborne Tunable Laser Absorption Spectrometer - ATLAS - was designed and built at the NASA Ames Research Center and operates on the NASA ER-2 high altitude research aircraft. ATLAS has taken part in a number of important polar and mid-latitude research campaigns, since 1987, focused on various aspects of stratospheric ozone chemistry and dynamics. The chief measurement carried out by the ATLAS second harmonic diode laser spectrometer is of the important atmospheric tracer N2O. Using N2O as an inert tracer we have been able to gain significant new information on polar vortex dynamics and on the correlations of several important long-lived tracers in the stratosphere. The correlation of N2O with NOy (total reactive nitrogen) has been shown to be linear for a great variety of unperturbed stratospheric conditions, and the breakdown of this correlation has been used to detect denitrification by PSCs in the polar vortex, especially in the Antarctic spring. Denitrification is an important step in the process of ozone hole formation in the austral spring. Correlations of N2O with CFCs and CH4 have led to improved estimates of atmospheric lifetimes of these important molecules. Finally the correlation of N2O with CO2, the latter now being measured with great precision by a new instrument on the ER-2, has led to a significant new tool for studying horizontal and vertical mixing in the lower stratosphere, a tool which is very useful in assessing the potential effects of high speed civil transport aircraft in the lower stratosphere. A new, light-weight version of ATLAS is currently being built for unmanned high altitude aircraft, specifically the new Perseus vehicle. We will give a brief description of this effort.

  4. Fibers in the NGC 1333 proto-cluster

    NASA Astrophysics Data System (ADS)

    Hacar, A.; Tafalla, M.; Alves, J.

    2017-10-01

    Are the initial conditions for clustered star formation the same as for non-clustered star formation? To investigate the initial gas properties in young proto-clusters we carried out a comprehensive and high-sensitivity study of the internal structure, density, temperature, and kinematics of the dense gas content of the NGC 1333 region in Perseus, one of the nearest and best studied embedded clusters. The analysis of the gas velocities in the position-position-velocity space reveals an intricate underlying gas organization both in space and velocity. We identified a total of 14 velocity-coherent, (tran-)sonic structures within NGC 1333, with similar physical and kinematic properties than those quiescent, star-forming (aka fertile) fibers previously identified in low-mass star-forming clouds. These fibers are arranged in a complex spatial network, build-up the observed total column density, and contain the dense cores and protostars in this cloud. Our results demonstrate that the presence of fibers is not restricted to low-mass clouds but can be extended to regions of increasing mass and complexity. We propose that the observational dichotomy between clustered and non-clustered star-forming regions might be naturally explained by the distinct spatial density of fertile fibers in these environments. Based on observations carried out under project number 169-11 with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Based on observations with the 100-m telescope of the MPIfR (Max-Planck-Institut für Radioastronomie) at Effelsberg.Molecular line observations (spectral cubes) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A123

  5. Kinematics of the Galactic Supernova Remnant G109.1-1.0 (CTB 109)

    NASA Astrophysics Data System (ADS)

    Sánchez-Cruces, M.; Rosado, M.; Fuentes-Carrera, I.; Ambrocio-Cruz, P.

    2018-01-01

    We present direct images in the H α and [S II] λλ6717,6731 Å lines of the Galactic supernova remnant (SNR) G109.1-1.0 (CTB 109). We confirm that the filaments detected are the optical counterpart of the X-ray and radio SNR due to their high [S II]/H α line ratios. We study for the first time the kinematics of the optical counterpart of SNR CTB 109 using the Universidad Nacional Autónoma de México scanning Fabry-Perot interferometer PUMA. We estimate a systemic velocity of VLSR = -50 ± 6 km s-1 for this remnant and an expansion velocity of Vexp = 230 ± 5 km s-1. From this velocity and taking into account previous studies of the kinematics of objects at that Galactic longitude, we derive a distance to SNR CTB 109 of 3.1 ± 0.2 kpc, locating it in the Perseus arm. Using the [S II] λ6717/[S II] λ6731 line ratio, we find an electronic density value around ne = 580 cm-3. Considering that this remnant is evolving in a low-density medium with higher-density cloudlets responsible for the optical emission, we determine the age and energy deposited in the ISM by the supernova explosion (E0) in both the Sedov-Taylor phase and the radiative phase. For both cases, the age is thousands of years and E0 is rather typical of SNRs containing simple pulsars, so that the energy released to the ISM cannot be used to distinguish between SNRs hosting typical pulsars from those hosting powerful magnetars, like CTB 109.

  6. New Cepheid variables in the young open clusters Berkeley 51 and Berkeley 55

    NASA Astrophysics Data System (ADS)

    Lohr, M. E.; Negueruela, I.; Tabernero, H. M.; Clark, J. S.; Lewis, F.; Roche, P.

    2018-05-01

    As part of a wider investigation of evolved massive stars in Galactic open clusters, we have spectroscopically identified three candidate classical Cepheids in the little-studied clusters Berkeley 51, Berkeley 55 and NGC 6603. Using new multi-epoch photometry, we confirm that Be 51 #162 and Be 55 #107 are bona fide Cepheids, with pulsation periods of 9.83±0.01 d and 5.850±0.005 d respectively, while NGC 6603 star W2249 does not show significant photometric variability. Using the period-luminosity relationship for Cepheid variables, we determine a distance to Be 51 of 5.3^{+1.0}_{-0.8} kpc and an age of 44^{+9}_{-8} Myr, placing it in a sparsely-attested region of the Perseus arm. For Be 55, we find a distance of 2.2±0.3 kpc and age of 63^{+12}_{-11} Myr, locating the cluster in the Local arm. Taken together with our recent discovery of a long-period Cepheid in the starburst cluster VdBH222, these represent an important increase in the number of young, massive Cepheids known in Galactic open clusters. We also consider new Gaia (data release 2) parallaxes and proper motions for members of Be 51 and Be 55; the uncertainties on the parallaxes do not allow us to refine our distance estimates to these clusters, but the well-constrained proper motion measurements furnish further confirmation of cluster membership. However, future final Gaia parallaxes for such objects should provide valuable independent distance measurements, improving the calibration of the period-luminosity relationship, with implications for the distance ladder out to cosmological scales.

  7. On the Importance of Very Light Internally Subsonic AGN Jets in Radio-mode AGN Feedback

    NASA Astrophysics Data System (ADS)

    Guo, Fulai

    2016-07-01

    Radio-mode active galactic nucleus (AGN) feedback plays a key role in the evolution of galaxy groups and clusters. Its physical origin lies in the kiloparsec-scale interaction of AGN jets with the intracluster medium. Large-scale jet simulations often initiate light internally supersonic jets with density contrast 0.01 < η < 1. Here we argue for the first time for the importance of very light (η < 0.01) internally subsonic jets. We investigated the shapes of young X-ray cavities produced in a suite of hydrodynamic simulations, and found that bottom-wide cavities are always produced by internally subsonic jets, while internally supersonic jets inflate cylindrical, center-wide, or top-wide cavities. We found examples of real cavities with shapes analogous to those inflated in our simulations by internally subsonic and internally supersonic jets, suggesting a dichotomy of AGN jets according to their internal Mach numbers. We further studied the long-term cavity evolution, and found that old cavities resulted from light jets spread along the jet direction, while those produced by very light jets are significantly elongated along the perpendicular direction. The northwestern ghost cavity in Perseus is pancake shaped, providing tentative evidence for the existence of very light jets. Our simulations show that very light internally subsonic jets decelerate faster and rise much slower in the intracluster medium than light internally supersonic jets, possibly depositing a larger fraction of jet energy to cluster cores and alleviating the problem of low coupling efficiencies found previously. The internal Mach number points to the jet’s energy content, and internally subsonic jets are energetically dominated by non-kinetic energy, such as thermal energy, cosmic rays, or magnetic fields.

  8. Open clusters in Auriga OB2

    NASA Astrophysics Data System (ADS)

    Marco, Amparo; Negueruela, Ignacio

    2016-06-01

    We study the area around the H II region Sh 2-234, including the young open cluster Stock 8, to investigate the extent and definition of the association Aur OB2 and the possible role of triggering in massive cluster formation. We obtained Strömgren and J, H, KS photometry for Stock 8 and Strömgren photometry for two other cluster candidates in the area, which we confirm as young open clusters and name Alicante 11 and Alicante 12. We took spectroscopy of ˜33 early-type stars in the area, including the brightest cluster members. We calculate a common distance of 2.80^{+0.27}_{-0.24} kpc for the three open clusters and surrounding association. We derive an age 4-6 Ma for Stock 8, and do not find a significantly different age for the other clusters or the association. The star LS V +34°23, with spectral type O8 II(f), is likely the main source of ionization of Sh 2-234. We observe an important population of pre-main-sequence stars, some of them with discs, associated with the B-type members lying on the main sequence. We interpret the region as an area of recent star formation with some residual and very localized ongoing star formation. We do not find evidence for sequential star formation on a large scale. The classical definition of Aur OB2 has to be reconsidered, because its two main open clusters, Stock 8 and NGC 1893, are not at the same distance. Stock 8 is probably located in the Perseus arm, but other nearby H II regions whose distances also place them in this arm show quite different distances and radial velocities and, therefore, are not connected.

  9. The Pan-STARRS1 Proper-motion Survey for Young Brown Dwarfs in Nearby Star-forming Regions. I. Taurus Discoveries and a Reddening-free Classification Method for Ultracool Dwarfs

    NASA Astrophysics Data System (ADS)

    Zhang, Zhoujian; Liu, Michael C.; Best, William M. J.; Magnier, Eugene A.; Aller, Kimberly M.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Metcalfe, N.; Wainscoat, R. J.; Waters, C.

    2018-05-01

    We are conducting a proper-motion survey for young brown dwarfs in the Taurus-Auriga molecular cloud based on the Pan-STARRS1 3π Survey. Our search uses multi-band photometry and astrometry to select candidates, and is wider (370 deg2) and deeper (down to ≈3 M Jup) than previous searches. We present here our search methods and spectroscopic follow-up of our high-priority candidates. Since extinction complicates spectral classification, we have developed a new approach using low-resolution (R ≈ 100) near-infrared spectra to quantify reddening-free spectral types, extinctions, and gravity classifications for mid-M to late-L ultracool dwarfs (≲100–3 M Jup in Taurus). We have discovered 25 low-gravity (VL-G) and the first 11 intermediate-gravity (INT-G) substellar (M6–L1) members of Taurus, constituting the largest single increase of Taurus brown dwarfs to date. We have also discovered 1 new Pleiades member and 13 new members of the Perseus OB2 association, including a candidate very wide separation (58 kau) binary. We homogeneously reclassify the spectral types and extinctions of all previously known Taurus brown dwarfs. Altogether our discoveries have thus far increased the substellar census in Taurus by ≈40% and added three more L-type members (≲5–10 M Jup). Most notably, our discoveries reveal an older (>10 Myr) low-mass population in Taurus, in accord with recent studies of the higher-mass stellar members. The mass function appears to differ between the younger and older Taurus populations, possibly due to incompleteness of the older stellar members or different star formation processes.

  10. Wide-field direct CCD observations supporting the Astro-1 Space Shuttle mission's Ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    Hintzen, Paul; Angione, Ron; Talbert, Freddie; Cheng, K.-P.; Smith, Eric; Stecher, Theodore P.

    1993-01-01

    Wide field direct CCD observations are being obtained to support and complement the vacuum-ultraviolet (VUV) images provided by Astro's Ultraviolet Imaging Telescope (UIT) during a Space Shuttle flight in December 1990. Because of the wide variety of projects addressed by UIT, the fields observed include (1) galactic supernova remnants such as the Cygnus Loop and globular clusters such as Omega Cen and M79; (2) the Magellanic Clouds, M33, M81, and other galaxies in the Local Group; and (3) rich clusters of galaxies, principally the Perseus cluster and Abell 1367. Ground-based observations have been obtained for virtually all of the Astro-1 UIT fields. The optical images allow identification of individual UV sources in each field and provide the long baseline in wavelength necessary for accurate analysis of UV-bright sources. To facilitate use of our optical images for analysis of UIT data and other projects, we plan to archive them, with the UIT images, at the National Space Science Data Center (NSSDC), where they will be universally accessible via anonymous FTP. The UIT, one of three telescopes comprising the Astro spacecraft, is a 38-cm f/9 Ritchey-Chretien telescope on which high quantum efficiency, solar-blind image tubes are used to record VUV images on photographic film. Five filters with passbands centered between 1250A and 2500A provide both VUV colors and a measurement of extinction via the 2200A dust feature. The resulting calibrated VUV pictures are 40 arcminutes in diameter at 2.5 arcseconds resolution. The capabilities of UIT, therefore, complement HST's WFPC: the latter has 40 times greater collecting area, while UIT's usable field has 170 times WFPC's field area.

  11. The Anatomy of the Young Protostellar Outflow HH 211: Strong Evidence for CO v = 1-0 Fundamental Band Emission from Dense Gas in the Terminal Shock

    NASA Astrophysics Data System (ADS)

    Tappe, Achim; Forbrich, J.; Martín, S.; Lada, C. J.

    2011-05-01

    We present Spitzer Space Telescope 5-37 µm spectroscopic mapping observations toward the southeastern lobe of the young protostellar outflow HH 211 (part of IC 348 in Perseus, 260 pc). The terminal shock of the outflow shows a rich atomic and molecular spectrum with emission lines from OH, H2O, HCO+, CO2, H2, HD, [Fe II], [Si II], [Ne II], [S I], and [Cl I]. The spectrum also shows a rising continuum towards 5 µm, which we interpret as unresolved emission lines from highly excited rotational levels of the CO v=1-0 fundamental band. This interpretation is confirmed by a strong excess flux observed in the Spitzer IRAC 4-5 µm channel 2 image. We also observed the terminal outflow shock of this lobe with the Submillimeter Array (SMA) and detected pure rotational emission from CO 2-1, HCO+ 3-2, and HCN 3-2. The rotationally excited CO traces the collimated outflow and the terminal shock, whereas the vibrationally excited CO seen with Spitzer follows the continuation of the collimated outflow backbone in the terminal shock. The extremely high critical densities of the CO v=1-0 rovibrational lines indicate terminal shock jet densities larger than 107 cm-3. The unique combination of mid-infrared, submillimeter, and previous near-infrared observations allow us to gain detailed insights into the interaction of one of the youngest known protostellar outflows with its surrounding molecular cloud. Our results help to understand the nature of some of the so-called `green fuzzies’ (Extended Green Objects) identified by their Spitzer IRAC channel 2 excess and association with star-forming regions. They also provide a critical observational test to models of pulsed protostellar jets.

  12. New velocimetry and revised cartography of the spiral arms in the Milky Way—a consistent symbiosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallée, Jacques P., E-mail: jacques.vallee@cnrc.gc.ca

    Recent advances in the determinations of the positions (pitch angle, shape, numbers, interarm separation) and velocities (rotation curve) of the spiral arms are evaluated and compared to previous determinations. Based on these results, an average cartographic model is developed that fits the means of basic input data and provides predictions for the locations of the arms in the Milky Way, for each galactic quadrant. For each spiral arm segment in each galactic quadrant, the LSR radial velocities are calculated for the radial distance as well as for its galactic longitude. From our velocimetric model, arm intercepts (between line of sightsmore » and spiral arms) are indicated in velocity space and may be used to find the distance and velocity to any arm, in a given longitude range. Velocity comparisons between model predictions and published CO velocity distribution are done for each galactic quadrant, with good results. Our velocimetric model is not hydromagnetic in character, nor is it a particle-simulation scheme, yet it is simple to use for comparisons with the observations and it is in symbiosis and consistent with our cartographic model (itself simple to use for comparisons with observations). A blending in velocity of the Perseus and Cygnus arms is further demonstrated, as well as an apparent longitude-velocity blending of the starting points of the four spiral arms near 4 kpc (not a physical ring). An integrated (distance, velocity) model for the mass in the disk is employed, to yield the total mass of 3.0 × 10{sup 11} M{sub ☉} within a galactic radius of 28 kpc.« less

  13. ON THE IMPORTANCE OF VERY LIGHT INTERNALLY SUBSONIC AGN JETS IN RADIO-MODE AGN FEEDBACK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Fulai, E-mail: fulai@shao.ac.cn

    Radio-mode active galactic nucleus (AGN) feedback plays a key role in the evolution of galaxy groups and clusters. Its physical origin lies in the kiloparsec-scale interaction of AGN jets with the intracluster medium. Large-scale jet simulations often initiate light internally supersonic jets with density contrast 0.01 < η < 1. Here we argue for the first time for the importance of very light ( η < 0.01) internally subsonic jets. We investigated the shapes of young X-ray cavities produced in a suite of hydrodynamic simulations, and found that bottom-wide cavities are always produced by internally subsonic jets, while internally supersonicmore » jets inflate cylindrical, center-wide, or top-wide cavities. We found examples of real cavities with shapes analogous to those inflated in our simulations by internally subsonic and internally supersonic jets, suggesting a dichotomy of AGN jets according to their internal Mach numbers. We further studied the long-term cavity evolution, and found that old cavities resulted from light jets spread along the jet direction, while those produced by very light jets are significantly elongated along the perpendicular direction. The northwestern ghost cavity in Perseus is pancake shaped, providing tentative evidence for the existence of very light jets. Our simulations show that very light internally subsonic jets decelerate faster and rise much slower in the intracluster medium than light internally supersonic jets, possibly depositing a larger fraction of jet energy to cluster cores and alleviating the problem of low coupling efficiencies found previously. The internal Mach number points to the jet’s energy content, and internally subsonic jets are energetically dominated by non-kinetic energy, such as thermal energy, cosmic rays, or magnetic fields.« less

  14. ITS all right mama: investigating the formation of chimeric sequences in the ITS2 region by DNA metabarcoding analyses of fungal mock communities of different complexities.

    PubMed

    Bjørnsgaard Aas, Anders; Davey, Marie Louise; Kauserud, Håvard

    2017-07-01

    The formation of chimeric sequences can create significant methodological bias in PCR-based DNA metabarcoding analyses. During mixed-template amplification of barcoding regions, chimera formation is frequent and well documented. However, profiling of fungal communities typically uses the more variable rDNA region ITS. Due to a larger research community, tools for chimera detection have been developed mainly for the 16S/18S markers. However, these tools are widely applied to the ITS region without verification of their performance. We examined the rate of chimera formation during amplification and 454 sequencing of the ITS2 region from fungal mock communities of different complexities. We evaluated the chimera detecting ability of two common chimera-checking algorithms: perseus and uchime. Large proportions of the chimeras reported were false positives. No false negatives were found in the data set. Verified chimeras accounted for only 0.2% of the total ITS2 reads, which is considerably less than what is typically reported in 16S and 18S metabarcoding analyses. Verified chimeric 'parent sequences' had significantly higher per cent identity to one another than to random members of the mock communities. Community complexity increased the rate of chimera formation. GC content was higher around the verified chimeric break points, potentially facilitating chimera formation through base pair mismatching in the neighbouring regions of high similarity in the chimeric region. We conclude that the hypervariable nature of the ITS region seems to buffer the rate of chimera formation in comparison with other, less variable barcoding regions, due to shorter regions of high sequence similarity. © 2016 John Wiley & Sons Ltd.

  15. THE ARECIBO LEGACY FAST ALFA SURVEY. V. THE H I SOURCE CATALOG OF THE ANTI-VIRGO REGION AT {delta} = +27{sup 0}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saintonge, Amelie; Giovanelli, Riccardo; Haynes, Martha P.

    We present a second catalog of H I sources detected in the Arecibo Legacy Fast ALFA Survey. We report 488 detections over 135 deg{sup 2}, within the region of the sky having 22 h < {alpha} < 03 h and +26{sup 0} < {delta} < +28{sup 0}. We present here the detections that have either (a) S/N>6.5, where the reliability of the catalog is better than 95% or (b) 5.0 < S/N < 6.5 and a previously measured redshift that corroborates our detection. Of the 488 objects presented here, 49 are high-velocity clouds or clumps thereof with negative heliocentric recessionmore » velocities. These clouds are mostly very compact and isolated, while some of them are associated with large features such as Wright's Cloud or the northern extension of the Magellanic Stream. The remaining 439 candidate detections are identified as extragalactic objects and have all been matched with optical counterparts. Five of the six galaxies detected with M{sub Hi}<10{sup 7.5} M{sub sun} are satellites of either the NGC672/IC1727 nearby galaxy pair or their neighboring dwarf irregular galaxy NGC784. The data of this catalog release include a slice through the Pisces-Perseus foreground void, a large nearby underdensity of galaxies. We report no detections within the void, where our catalog is complete for systems with H i masses of 10{sup 8} M{sub sun}. Gas-rich, optically-dark galaxies do not seem to constitute an important void population, and therefore do not suffice for producing a viable solution to the void phenomenon.« less

  16. Molecular-cloud-scale Chemical Composition. II. Mapping Spectral Line Survey toward W3(OH) in the 3 mm Band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Yuri; Watanabe, Yoshimasa; Yamamoto, Satoshi

    To study a molecular-cloud-scale chemical composition, we conducted a mapping spectral line survey toward the Galactic molecular cloud W3(OH), which is one of the most active star-forming regions in the Perseus arm. We conducted our survey through the use of the Nobeyama Radio Observatory 45 m telescope, and observed the area of 16′ × 16′, which corresponds to 9.0 pc × 9.0 pc. The observed frequency ranges are 87–91, 96–103, and 108–112 GHz. We prepared the spectrum averaged over the observed area, in which eight molecular species (CCH, HCN, HCO{sup +}, HNC, CS, SO, C{sup 18}O, and {sup 13}CO) aremore » identified. On the other hand, the spectrum of the W3(OH) hot core observed at a 0.17 pc resolution shows the lines of various molecules such as OCS, H{sub 2}CS CH{sub 3}CCH, and CH{sub 3}CN in addition to the above species. In the spatially averaged spectrum, emission of the species concentrated just around the star-forming core, such as CH{sub 3}OH and HC{sub 3}N, is fainter than in the hot core spectrum, whereas emission of the species widely extended over the cloud such as CCH is relatively brighter. We classified the observed area into five subregions according to the integrated intensity of {sup 13}CO, and evaluated the contribution to the averaged spectrum from each subregion. The CCH, HCN, HCO{sup +}, and CS lines can be seen even in the spectrum of the subregion with the lowest {sup 13}CO integrated intensity range (<10 K km s{sup −1}). Thus, the contributions of the spatially extended emission is confirmed to be dominant in the spatially averaged spectrum.« less

  17. Suppression of AGN-Driven G-Mode Turbulence by Magnetic Fields in a Magnetohydrodynamic Model of the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Bambic, Christopher J.; Morsony, Brian J.; Reynolds, Christopher S.

    2017-08-01

    We investigate the role of AGN feedback in turbulent heating of galaxy clusters. X-ray measurements of the Perseus Cluster intracluster medium (ICM) by the Hitomi Mission found a velocity dispersion measure of σ ˜ 164 km/s, indicating a large-scale turbulent energy of approximately 4% of the thermal energy. If this energy is transferred to small scales via a turbulent cascade and dissipated as heat, radiative cooling can be offset and the cluster can remain in the observed thermal equilibrium. Using 3D ideal MHD simulations and a plane-parallel model of the ICM, we analyze the production of turbulence by g-modes generated by the supersonic expansion and buoyant rise of AGN-driven bubbles. Previous work has shown that this process is inefficient, with less than 1% of the injected energy ending up in turbulence. Hydrodynamic instabilities shred the bubbles apart before they can excite sufficiently strong g-modes. We examine the role of a large-scale magnetic field which is able to drape around these rising bubbles, preserving them from instabilities. We show that a helical magnetic field geometry is able to better preserve bubbles, driving stronger g-modes; however, the production of turbulence is still inefficient. Magnetic tension acts to stabilize g-modes, preventing the nonlinear transition to turbulence. In addition, the magnetic tension force acts along the field lines to suppress the formation of small-scale vortices. These two effects halt the turbulent cascade. Our work shows that ideal MHD is an insufficient description for the cluster feedback process, and we discuss future work such as the inclusion of anisotropic viscosity as a means of simulating high β plasma kinetic effects. In addition, other mechanisms of heating the ICM plasma such as sound waves or cosmic rays may be responsible to account for observed feedback in galaxy clusters.

  18. Apertif: A new phased-array feed for WSRT

    NASA Astrophysics Data System (ADS)

    Adams, Elizabeth; Adebahr, Björn; de Blok, Willem J. G.; Hess, Kelley M.; Lucero, Danielle M.; Maccagni, Filippo; Morganti, Raffaella; Oosterloo, Tom A.; Ponomareva, Anastasia; Staveley-Smith, Lister; van der Hulst, J. M.; Verheijen, Marc A. W.; Verstappen, Joris

    2018-01-01

    Apertif is a phased-array feed for the Westerbork Synthesis Radio Telescope (WSRT), increasing the field of view of the telescope by a factor of twenty-five to 6.8 square degrees. In 2018, three legacy surveys will commence: a shallow imaging survey, a medium-deep imaging survey, and a pulsars and fast transients survey. The imaging surveys will be done in full polarization over the frequency range 1130-1430 MHz, which corresponds to redshifts of z=0-0.256 for neutral hydrogen (HI). The spectral resolution is 12.2 kHz, or an HI velocity resolution of 2.6 km/s at z=0 and 3.2 km/s at z=0.256. The full resolution images will have a beam size of 15"x15"/sin(declination), and tapered data products (i.e., 30" resolution images) will also be available. The footprints of the imaging surveys are chosen to maximize coverage of multi-wavelength datasets, including the Herschel Atlas North Galactic Pole field, HetDex region, plus coordination with MaNGA and planned WEAVE follow-up. The survey footprints were also chosen to probe different regions of interest, including the CVn region, Coma cluster, and Perseus-Pisces supercluster. The key science cases for the imaging surveys include understanding how galaxy properties depend on environment, the role of interactions and gas accretion and removal, understanding the smallest gas-rich galaxies, connecting cold gas to AGN, understanding the history of star formation and AGN activity in the faint radio continuum population, and studying magnetic fields in galaxies and large-scale structure. After a proprietary period, the survey data products will be publicly available through the Apertif Long Term Archive (ALTA). Up-to-date information on Apertif and the planned surveys can be found at www.apertif.nl.Commissioning of the Apertif instrument is underway. Here we will present results from the imaging commissioning, highlighting the capabilities of the instrument as related to the key science cases of the imaging surveys.

  19. THE BOLOCAM GALACTIC PLANE SURVEY. XII. DISTANCE CATALOG EXPANSION USING KINEMATIC ISOLATION OF DENSE MOLECULAR CLOUD STRUCTURES WITH {sup 13}CO(1-0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellsworth-Bowers, Timothy P.; Glenn, Jason; Rosolowsky, Erik

    2015-01-20

    We present an expanded distance catalog for 1710 molecular cloud structures identified in the Bolocam Galactic Plane Survey (BGPS) version 2, representing a nearly threefold increase over the previous BGPS distance catalog. We additionally present a new method for incorporating extant data sets into our Bayesian distance probability density function (DPDF) methodology. To augment the dense-gas tracers (e.g., HCO{sup +}(3-2), NH{sub 3}(1,1)) used to derive line-of-sight velocities for kinematic distances, we utilize the Galactic Ring Survey (GRS) {sup 13}CO(1-0) data to morphologically extract velocities for BGPS sources. The outline of a BGPS source is used to select a region ofmore » the GRS {sup 13}CO data, along with a reference region to subtract enveloping diffuse emission, to produce a line profile of {sup 13}CO matched to the BGPS source. For objects with a HCO{sup +}(3-2) velocity, ≈95% of the new {sup 13}CO(1-0) velocities agree with that of the dense gas. A new prior DPDF for kinematic distance ambiguity (KDA) resolution, based on a validated formalism for associating molecular cloud structures with known objects from the literature, is presented. We demonstrate this prior using catalogs of masers with trigonometric parallaxes and H II regions with robust KDA resolutions. The distance catalog presented here contains well-constrained distance estimates for 20% of BGPS V2 sources, with typical distance uncertainties ≲ 0.5 kpc. Approximately 75% of the well-constrained sources lie within 6 kpc of the Sun, concentrated in the Scutum-Centaurus arm. Galactocentric positions of objects additionally trace out portions of the Sagittarius, Perseus, and Outer arms in the first and second Galactic quadrants, and we also find evidence for significant regions of interarm dense gas.« less

  20. Distances to M101, NGC 2403, and NGC 2366 via Long Period Variables

    NASA Astrophysics Data System (ADS)

    Jurcevic, J. S.

    1998-12-01

    A new method of measuring accurately extra-Galactic distances has been developed based on the relationship between the luminosity of red supergiant variable (RSV) stars at optical wavelengths and their period of luminosity variation. This period-luminosity (PL) relationship has been calibrated in the broadband optical R and I-bands with RSVs from the Galactic Perseus OB1 association, the Large Magellanic Cloud, and M33. To verify the effectiveness of these RSV PL relations, the distances to the galaxies M101, NGC 2403, and NGC 2366 were determined. These galaxies were chosen because they had existing Cepheid based distances to use as a comparison between the two methods. These galaxies also span a range of metallicity to investigate any metallicity effects. Ground-based photometry of the galaxies in the R-band was obtained over four years to discover red variable stars with periods in the range 100--1200 days. The number of RSVs discovered in M101, NGC 2403, and NGC 2366 was 42, 61, and 20, respectively. By assuming a distance modulus for the Large Magellanic Cloud of 18.5 +/- 0.1 mag, single epoch I-band photometry of the RSVs was used to construct random phase PL relations resulting in distance moduli for M101, NGC 2403, and NGC 2366 of 29.40 +/- 0.16, 27.67 +/- 0.16, and 27.86 +/- 0.20 mag, respectively. These distances have been corrected for extinction by assuming values of E(B - V) = 0.10, 0.04, and 0.04 mag, respectively. These distances agree quite well with those found via recent Cepheid based measurements. In particular, the RSV distance modulus to M101 is very close to the HST Key Project Cepheid modulus of 29.34 +/- 0.17 mag (Kelson {et al. } 1996). These results show that RSVs, at optical wavelengths, provide a new method for measuring distances with a precision comparable to that of Cepheids with the advantages of being more luminous and more abundant than Cepheids.

  1. Chemical complexity induced by efficient ice evaporation in the Barnard 5 molecular cloud

    NASA Astrophysics Data System (ADS)

    Taquet, V.; Wirström, E. S.; Charnley, S. B.; Faure, A.; López-Sepulcre, A.; Persson, C. M.

    2017-10-01

    Cold gas-phase water has recently been detected in a cold dark cloud, Barnard 5 located in the Perseus complex, by targeting methanol peaks as signposts for ice mantle evaporation. Observed morphology and abundances of methanol and water are consistent with a transient non-thermal evaporation process only affecting the outermost ice mantle layers, possibly triggering a more complex chemistry. Here we present the detection of the complex organic molecules (COMs) acetaldehyde (CH3CHO) and methyl formate (CH3OCHO), as well as formic acid (HCOOH) and ketene (CH2CO), and the tentative detection of di-methyl ether (CH3OCH3) towards the "methanol hotspot" of Barnard 5 located between two dense cores using the single dish OSO 20 m, IRAM 30 m, and NRO 45 m telescopes. The high energy cis-conformer of formic acid is detected, suggesting that formic acid is mostly formed at the surface of interstellar grains and then evaporated. The detection of multiple transitions for each species allows us to constrain their abundances through LTE and non-LTE methods. All the considered COMs show similar abundances between 1 and 10% relative to methanol depending on the assumed excitation temperature. The non-detection of glycolaldehyde, an isomer of methyl formate, with a [glycolaldehyde]/[methyl formate] abundance ratio lower than 6%, favours gas phase formation pathways triggered by methanol evaporation. According to their excitation temperatures derived in massive hot cores, formic acid, ketene, and acetaldehyde have been designated as "lukewarm" COMs whereas methyl formate and di-methyl ether were defined as "warm" species. Comparison with previous observations of other types of sources confirms that lukewarm and warm COMs show similar abundances in low-density cold gas whereas the warm COMs tend to be more abundant than the lukewarm species in warm protostellar cores. This abundance evolution suggests either that warm COMs are indeed mostly formed in protostellar environments and/or that lukewarm COMs are efficiently depleted by increased hydrogenation efficiency around protostars.

  2. Morphology and kinematics of filaments in Serpens and Perseus molecular clouds: a high resolution study

    NASA Astrophysics Data System (ADS)

    Dhabal, Arnab; Mundy, Lee; Rizzo, Maxime; Storm, Shaye; Teuben, Peter; CLASSy Collaboration

    2018-01-01

    Filamentary structures are prevalent in molecular clouds over a wide range of scales, and are often associated with active star formation. The study of filament morphology and kinematics provide insights into the physical processes leading to core formation in clustered environments. As part of the CARMA Large Area Star Formation Survey (CLASSy) follow-up, we observed five Herschel filaments in the Serpens Main, Serpens South and NGC1333 molecular clouds using the J=1-0 transitions of dense gas tracers H13CO+, HNC and H13CN. Of these, H13CO+ and H13CN are optically thin and serve as a test of the kinematics previously seen by the CLASSy in N2H+. The observations have an angular resolution of 7'' and a spectral resolution of 0.16 km/s. Although the large scale structure compares well with the CARMA N2H+ (J=1-0) maps and Herschel dust continuum maps, we resolve finer structure within the filaments identified by Herschel. Most regions are found to have multiple structures and filaments partially overlapping in the line-of-sight. In two regions overlapping structures have velocity differences as high as 1.4 km/s. We identify 8 individual filaments with typical widths of 0.03-0.06 pc in these tracers, which is significantly less than widths observed in the Herschel dust column density maps. At least 50% of the filaments have distinct velocity gradients perpendicular to their major axis with average values in the range 4-10 km s-1 pc-1. These findings are in support of the theoretical models of filament formation by 2-D inflow in the shock layer created by colliding turbulent cells. We also find evidence of velocity gradients along the length of two filaments; the gradients suggest that these filaments are inflowing towards the cloud core.

  3. A SCUBA-2 850-μm survey of protoplanetary discs in the IC 348 cluster

    NASA Astrophysics Data System (ADS)

    Cieza, L.; Williams, J.; Kourkchi, E.; Andrews, S.; Casassus, S.; Graves, S.; Schreiber, M. R.

    2015-12-01

    We present 850-μm observations of the 2-3 Myr cluster IC 348 in the Perseus molecular cloud using the SCUBA-2 camera on the James Clerk Maxwell Telescope. Our SCUBA-2 map has a diameter of 30 arcmin and contains ˜370 cluster members, including ˜200 objects with IR excesses. We detect a total of 13 discs. Assuming standard dust properties and a gas-to-dust-mass ratio of 100, we derive disc masses ranging from 1.5 to 16 MJUP. We also detect six Class 0/I protostars. We find that the most massive discs (MD > 3 MJUP; 850-μm flux > 10 mJy) in IC 348 tend to be transition objects according to the characteristic `dip' in their infrared spectral energy distributions (SEDs). This trend is also seen in other regions. We speculate that this could be an initial conditions effect (e.g. more massive discs tend to form giant planets that result in transition disc SEDs) and/or a disc evolution effect (the formation of one or more massive planets results in both a transition disc SED and a reduction of the accretion rate, increasing the lifetime of the outer disc). A stacking analysis of the discs that remain undetected in our SCUBA-2 observations suggests that their median 850-μm flux should be ≲1 mJy, corresponding to a disc mass ≲0.3 MJUP (gas plus dust) or ≲1 M⊕ of dust. While the available data are not deep enough to allow a meaningful comparison of the disc luminosity functions between IC 348 and other young stellar clusters, our results imply that disc masses exceeding the minimum-mass solar nebula are very rare (≲1per cent) at the age of IC 348, especially around very low-mass stars.

  4. Hitomi observation of radio galaxy NGC 1275: The first X-ray microcalorimeter spectroscopy of Fe-Kα line emission from an active galactic nucleus

    NASA Astrophysics Data System (ADS)

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier O.; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemitsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shin'ichiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen; Kawamuro, Taiki

    2018-03-01

    The origin of the narrow Fe-Kα fluorescence line at 6.4 keV from active galactic nuclei has long been under debate; some of the possible sites are the outer accretion disk, the broad line region, a molecular torus, or interstellar/intracluster media. In 2016 February-March, we performed the first X-ray microcalorimeter spectroscopy with the Soft X-ray Spectrometer (SXS) on board the Hitomi satellite of the Fanaroff-Riley type I radio galaxy NGC 1275 at the center of the Perseus cluster of galaxies. With the high-energy resolution of ˜5 eV at 6 keV achieved by Hitomi/SXS, we detected the Fe-Kα line with ˜5.4 σ significance. The velocity width is constrained to be 500-1600 km s-1 (FWHM for Gaussian models) at 90% confidence. The SXS also constrains the continuum level from the NGC 1275 nucleus up to ˜20 keV, giving an equivalent width of ˜20 eV for the 6.4 keV line. Because the velocity width is narrower than that of the broad Hα line of ˜2750 km s-1, we can exclude a large contribution to the line flux from the accretion disk and the broad line region. Furthermore, we performed pixel map analyses on the Hitomi/SXS data and image analyses on the Chandra archival data, and revealed that the Fe-Kα line comes from a region within ˜1.6 kpc of the NGC 1275 core, where an active galactic nucleus emission dominates, rather than that from intracluster media. Therefore, we suggest that the source of the Fe-Kα line from NGC 1275 is likely a low-covering-fraction molecular torus or a rotating molecular disk which probably extends from a parsec to hundreds of parsecs scale in the active galactic nucleus system.

  5. Do siblings always form and evolve simultaneously? Testing the coevality of multiple protostellar systems through SEDs

    NASA Astrophysics Data System (ADS)

    Murillo, N. M.; van Dishoeck, E. F.; Tobin, J. J.; Fedele, D.

    2016-07-01

    Context. Multiplicity is common in field stars and among protostellar systems. Models suggest two paths of formation: turbulent fragmentation and protostellar disk fragmentation. Aims: We attempt to find whether or not the coevality frequency of multiple protostellar systems can help to better understand their formation mechanism. The coevality frequency is determined by constraining the relative evolutionary stages of the components in a multiple system. Methods: Spectral energy distributions (SEDs) for known multiple protostars in Perseus were constructed from literature data. Herschel PACS photometric maps were used to sample the peak of the SED for systems with separations ≥7″, a crucial aspect in determining the evolutionary stage of a protostellar system. Inclination effects and the surrounding envelope and outflows were considered to decouple source geometry from evolution. This together with the shape and derived properties from the SED was used to determine each system's coevality as accurately as possible. SED models were used to examine the frequency of non-coevality that is due to geometry. Results: We find a non-coevality frequency of 33 ± 10% from the comparison of SED shapes of resolved multiple systems. Other source parameters suggest a somewhat lower frequency of non-coevality. The frequency of apparent non-coevality that is due to random inclination angle pairings of model SEDs is 17 ± 0.5%. Observations of the outflow of resolved multiple systems do not suggest significant misalignments within multiple systems. Effects of unresolved multiples on the SED shape are also investigated. Conclusions: We find that one-third of the multiple protostellar systems sampled here are non-coeval, which is more than expected from random geometric orientations. The other two-thirds are found to be coeval. Higher order multiples show a tendency to be non-coeval. The frequency of non-coevality found here is most likely due to formation and enhanced by dynamical evolution.

  6. THE FIRST Hi-GAL OBSERVATIONS OF THE OUTER GALAXY: A LOOK AT STAR FORMATION IN THE THIRD GALACTIC QUADRANT IN THE LONGITUDE RANGE 216. Degree-Sign 5 {approx}< l {approx}< 225. Degree-Sign 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elia, D.; Molinari, S.; Schisano, E.

    2013-07-20

    We present the first Herschel PACS and SPIRE photometric observations in a portion of the outer Galaxy (216. Degree-Sign 5 {approx}< l {approx}< 225. Degree-Sign 5 and -2 Degree-Sign {approx}< b {approx}< 0 Degree-Sign ) as a part of the Hi-GAL survey. The maps between 70 and 500 {mu}m, the derived column density and temperature maps, and the compact source catalog are presented. NANTEN CO(1-0) line observations are used to derive cloud kinematics and distances so that we can estimate distance-dependent physical parameters of the compact sources (cores and clumps) having a reliable spectral energy distribution that we separate intomore » 255 proto-stellar and 688 starless sources. Both typologies are found in association with all the distance components observed in the field, up to {approx}5.8 kpc, testifying to the presence of star formation beyond the Perseus arm at these longitudes. Selecting the starless gravitationally bound sources, we identify 590 pre-stellar candidates. Several sources of both proto- and pre-stellar nature are found to exceed the minimum requirement for being compatible with massive star formation based on the mass-radius relation. For the pre-stellar sources belonging to the Local arm (d {approx}< 1.5 kpc) we study the mass function whose high-mass end shows a power law N(log M){proportional_to}M {sup -1.0{+-}0.2}. Finally, we use a luminosity versus mass diagram to infer the evolutionary status of the sources, finding that most of the proto-stellar sources are in the early accretion phase (with some cases compatible with a Class I stage), while for pre-stellar sources, in general, accretion has not yet started.« less

  7. Chaotic Star Birth

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Click on the image for Poster VersionClick on the image for IRAS 4B Inset

    Located 1,000 light years from Earth in the constellation Perseus, a reflection nebula called NGC 1333 epitomizes the beautiful chaos of a dense group of stars being born. Most of the visible light from the young stars in this region is obscured by the dense, dusty cloud in which they formed. With NASA's Spitzer Space Telescope, scientists can detect the infrared light from these objects. This allows a look through the dust to gain a more detailed understanding of how stars like our sun begin their lives.

    The young stars in NGC 1333 do not form a single cluster, but are split between two sub-groups. One group is to the north near the nebula shown as red in the image. The other group is south, where the features shown in yellow and green abound in the densest part of the natal gas cloud. With the sharp infrared eyes of Spitzer, scientists can detect and characterize the warm and dusty disks of material that surround forming stars. By looking for differences in the disk properties between the two subgroups, they hope to find hints of the star and planet formation history of this region.

    The knotty yellow-green features located in the lower portion of the image are glowing shock fronts where jets of material, spewed from extremely young embryonic stars, are plowing into the cold, dense gas nearby. The sheer number of separate jets that appear in this region is unprecedented. This leads scientists to believe that by stirring up the cold gas, the jets may contribute to the eventual dispersal of the gas cloud, preventing more stars from forming in NGC 1333.

    In contrast, the upper portion of the image is dominated by the infrared light from warm dust, shown as red.

  8. Scattered, extinguished, emitted: Three views of the dust in Perseus

    NASA Astrophysics Data System (ADS)

    Foster, Jonathan Bruce

    Dust in star-forming regions is both a blessing and a curse. By shrouding young stars it inhibits our study of their birth, yet without dust we would have an impoverished view of the structure of the molecular cloud before it collapses to form a protostar--the initial conditions of the problem of star formation. Though less than 1% of the mass of a molecular cloud, dust is a reliable tracer of the invisible H 2 which makes up the vast majority of the material. Other molecules can trace the H 2 distribution, and are useful in the appropriate regime, but all are confounded by the complications of chemistry, excitation conditions, and depletion, processes which have little effect on dust. Interpreting observations of dust is not entirely straightforward. We do not have a comprehensive theory of dust which explains the size distribution and mineralogical composition of dust in the diverse environments where it is present, from the diffuse ISM to the proto-planetary disks around young stars. Lacking such a theory, it is surprising that models of dust are nonetheless able to reproduce many of the observational constraints imposed upon them. Among these constraints are direct capture of dust grains, spectral features, extinction of background light, scattering, and thermal emission. In this thesis I (1) describe a method to use scattered ambient galactic light to map dense cores with unprecedented high resolution; (2) extend near-infrared extinction mapping by incorporating background galaxies; (3) demonstrate a relation between column density and changes in the extinction law, which is evidence of grain growth; (4) report on a study using NH 3 temperatures to more precisely interpret a thermal emission map at 1.1-mm; and (5) apply all these different techniques to a single starless region in order to compare them and learn something both about dust and the initial conditions of star formation.

  9. The dust scattering halo of Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Corrales, L. R.; Paerels, F.

    2015-10-01

    Dust grains scatter X-ray light through small angles, producing a diffuse halo image around bright X-ray point sources situated behind a large amount of interstellar material. We present analytic solutions to the integral for the dust scattering intensity, which allow for a Bayesian analysis of the scattering halo around Cygnus X-3. Fitting the optically thin 4-6 keV halo surface brightness profile yields the dust grain size and spatial distribution. We assume a power-law distribution of grain sizes (n ∝ a-p) and fit for p, the grain radius cut-off amax, and dust mass column. We find that a p ≈ 3.5 dust grain size distribution with amax ≈ 0.2 μm fits the halo profile relatively well, whether the dust is distributed uniformly along the line of sight or in clumps. We find that a model consisting of two dust screens, representative of foreground spiral arms, requires the foreground Perseus arm to contain 80 per cent of the total dust mass. The remaining 20 per cent of the dust, which may be associated with the outer spiral arm of the Milky Way, is located within 1 kpc of Cyg X-3. Regardless of which model was used, we found τ_sca ˜ 2 E_keV^{-2}. We examine the energy resolved haloes of Cyg X-3 from 1 to 6 keV and find that there is a sharp drop in scattering halo intensity when E < 2-3 keV, which cannot be explained with multiple scattering effects. We hypothesize that this may be caused by large dust grains or material with unique dielectric properties, causing the scattering cross-section to depart from the Rayleigh-Gans approximation that is used most often in X-ray scattering studies. The foreground Cyg OB2 association, which contains several evolved stars with large extinction values, is a likely culprit for grains of unique size or composition.

  10. A comprehensive proteomics study on platelet concentrates: Platelet proteome, storage time and Mirasol pathogen reduction technology.

    PubMed

    Salunkhe, Vishal; De Cuyper, Iris M; Papadopoulos, Petros; van der Meer, Pieter F; Daal, Brunette B; Villa-Fajardo, María; de Korte, Dirk; van den Berg, Timo K; Gutiérrez, Laura

    2018-03-19

    Platelet concentrates (PCs) represent a blood transfusion product with a major concern for safety as their storage temperature (20-24°C) allows bacterial growth, and their maximum storage time period (less than a week) precludes complete microbiological testing. Pathogen inactivation technologies (PITs) provide an additional layer of safety to the blood transfusion products from known and unknown pathogens such as bacteria, viruses, and parasites. In this context, PITs, such as Mirasol Pathogen Reduction Technology (PRT), have been developed and are implemented in many countries. However, several studies have shown in vitro that Mirasol PRT induces a certain level of platelet shape change, hyperactivation, basal degranulation, and increased oxidative damage during storage. It has been suggested that Mirasol PRT might accelerate what has been described as the platelet storage lesion (PSL), but supportive molecular signatures have not been obtained. We aimed at dissecting the influence of both variables, that is, Mirasol PRT and storage time, at the proteome level. We present comprehensive proteomics data analysis of Control PCs and PCs treated with Mirasol PRT at storage days 1, 2, 6, and 8. Our workflow was set to perform proteomics analysis using a gel-free and label-free quantification (LFQ) approach. Semi-quantification was based on LFQ signal intensities of identified proteins using MaxQuant/Perseus software platform. Data are available via ProteomeXchange with identifier PXD008119. We identified marginal differences between Mirasol PRT and Control PCs during storage. However, those significant changes at the proteome level were specifically related to the functional aspects previously described to affect platelets upon Mirasol PRT. In addition, the effect of Mirasol PRT on the platelet proteome appeared not to be exclusively due to an accelerated or enhanced PSL. In summary, semi-quantitative proteomics allows to discern between proteome changes due to Mirasol PRT or PSL, and proves to be a methodology suitable to phenotype platelets in an unbiased manner, in various physiological contexts.

  11. Galactic Structure in the Outer Disk: The Field in the Line of Sight to the Intermediate-Age open Cluster Tombaugh 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carraro, Giovanni; Silva, Joao Victor Sales; Bidin, Christian Moni

    We employ optical photometry and high-resolution spectroscopy to study a field toward the open cluster Tombaugh 1, where we identify a complex population mixture that we describe in terms of young and old Galactic thin disks. Of particular interest is the spatial distribution of the young population, which consists of dwarfs with spectral types as early as B6 and is distributed in a blue plume feature in the color–magnitude diagram. For the first time, we confirm spectroscopically that most of these stars are early-type stars and not blue stragglers or halo/thick-disk subdwarfs. Moreover, they are not evenly distributed along the linemore » of sight but crowd at heliocentric distances between 6.6 and 8.2 kpc. We compare these results with present-day understanding of the spiral structure of the Galaxy and suggest that they trace the outer arm. This range of distances challenges current Galactic models adopting a disk cutoff at 14 kpc from the Galactic center. The young dwarfs overlap in space with an older component, which is identified as an old Galactic thin disk. Both young and old populations are confined in space since the disk is warped at the latitude and longitude of Tombaugh 1. The main effects of the warp are that the line of sight intersects the disk and entirely crosses it at the outer arm distance and that there are no traces of the closer Perseus arm, which would then be either unimportant in this sector or located much closer to the formal Galactic plane. Finally, we analyze a group of giant stars, which turn out to be located at very different distances and to possess very different chemical properties, with no obvious relation to the other populations.« less

  12. The circulation in the Levantine Basin as inferred from in-situ data and numerical modelling (1995-2013)

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Radhakrishnan, Hari; Lardner, Robin; Hayes, Daniel; Gertman, Isaac; Menna, Milena; Poulain, Pierre-Marie

    2014-05-01

    The general anticlockwise circulation along the coastline of the Eastern Mediterranean Levantine Basin was first proposed by Nielsen in 1912. Half a century later the schematic of the circulation in the area was enriched with sub-basin flow structures. In late 1980s, a more detailed picture of the circulation composed of eddies, gyres and coastal-offshore jets was defined during the POEM cruises. In 2005, Millot and Taupier-Letage have used SST satellite imagery to argue for a simpler pattern similar to the one proposed almost a century ago. During the last decade, renewed in-situ multi-platforms investigations under the framework of CYBO, CYCLOPS, NEMED, GROOM, HaiSec and PERSEUS projects, as well the development of the operational ocean forecasts and hindcasts in the framework of the MFS, ECOOP, MERSEA and MyOcean projects, have made possible to obtain an improved, higher spatial and temporal resolution picture of the circulation in the area. After some years of scientific disputes on the circulation pattern of the region, the new in-situ data sets and the operational numerical simulations confirm the relevant POEM results. The existing POM-based Cyprus Coastal Ocean Forecasting System (CYCOFOS), downscaling the MyOcean MFS, has been providing operational forecasts in the Eastern Mediterranean Levantine Basin region since early 2002. Recently, Radhakrishnan et al. (2012) parallelized the CYCOFOS hydrodynamic flow model using MPI to improve the accuracy of predictions while reducing the computational time. The parallel flow model is capable of modeling the Eastern Mediterranean Levantine Basin flow at a resolution of 500 m. The model was run in hindcast mode during which the innovations were computed using the historical data collected using gliders and cruises. Then, DD-OceanVar (D'Amore et al., 2013), a data assimilation tool based on 3DVAR developed by CMCC was used to compute the temperature and salinity field corrections. Numerical modeling results after the data assimilation will be presented.

  13. Modeling the spectral energy distribution of the radio galaxy IC310

    NASA Astrophysics Data System (ADS)

    Fraija, N.; Marinelli, A.; Galván-Gámez, A.; Aguilar-Ruiz, E.

    2017-03-01

    The radio galaxy IC310 located in the Perseus Cluster is one of the brightest objects in the radio and X-ray bands, and one of the closest active galactic nuclei observed in very-high energies. In GeV - TeV γ-rays, IC310 was detected in low and high flux states by the MAGIC telescopes from October 2009 to February 2010. Taking into account that the spectral energy distribution (SED) up to a few GeV seems to exhibit a double-peak feature and that a single-zone synchrotron self-Compton (SSC) model can explain all of the multiwavelength emission except for the non-simultaneous MAGIC emission, we interpret, in this work, the multifrequency data set of the radio galaxy IC310 in the context of homogeneous hadronic and leptonic models. In the leptonic framework, we present a multi-zone SSC model with two electron populations to explain the whole SED whereas for the hadronic model, we propose that a single-zone SSC model describes the SED up to a few GeVs and neutral pion decay products resulting from pγ interactions could describe the TeV - GeV γ-ray spectra. These interactions occur when Fermi-accelerated protons interact with the seed photons around the SSC peaks. We show that, in the leptonic model the minimum Lorentz factor of second electron population is exceedingly high γe ∼ 105 disfavoring this model, and in the hadronic model the required proton luminosity is not extremely high ∼1044 erg/s, provided that charge neutrality between the number of electrons and protons is given. Correlating the TeV γ-ray and neutrino spectra through photo-hadronic interactions, we find that the contribution of the emitting region of IC310 to the observed neutrino and ultra-high-energy cosmic ray fluxes are negligible.

  14. The QUIJOTE experiment

    NASA Astrophysics Data System (ADS)

    López-Caniego, Marcos

    The QUIJOTE (Q-U-I JOint Tenerife) Experiment† (Rubiño-Martín et al. 2010)) is observing the polarization of the Cosmic Microwave Background and other Galactic and extragalactic signals at medium and large angular scales in the frequency range of 10-40 GHz. This experiment is going to provide valuable information about the polarization properties of synchrotron and anomalous microwave emission at these frequencies. It consists of two telescopes and three instruments located at the the Teide Observatory (2400 m) in Tenerife, Canary Islands, Spain. This project has two phases: Phase I, the first telescope (QT1) and a multi-frequency instrument (MFI) are in operations since November 2012 observing between 10 and 20 GHz. A second instrument (TGI) with 31 polarimeters working at 30 GHz is expected to start operations in Autumn 2015 and will be devoted to primordial B-mode science. This instrument will include a fixed polariser and 90 and 180 phase switches to generate four polarization states to minimize the different systematics in the receiver; Phase II, a second QUIJOTE telescope (QT2), already in operation, and a third instrument (FGI) with 40 polarimeters working at 41 GHz, safely below the 60-GHz oxygen absorption band, will significantly increment the sensitivity of the QUIJOTE project to detect the r parameter (tensor-to-scalar ratio). The reason for this is not only the significant reduction of noise due to the number of polarimeters that will incorporate but also the lower synchrotron signal from our galaxy expected at these higher frequencies. The maps obtained with the multi-frequency instrument (10-20 GHz), in combination with data from other experiments like Planck and the VLA, will be used to clean the diffuse and compact foreground emission at 30 and 40 GHz, the cosmological channels. After three years of effective observations we expect to reach the required sensitivity to detect a primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r = 0.05. At the moment we have completed the Wide Survey with the multi-frequency instrument, covering 20.000 square degrees of the Northern hemisphere. In addition, we have deep integrations of our main calibrators Taurus A, Cassiopea A, Jupiter and of the Perseus molecular complex. In particular, the first results obtained from the measurement of the intensity and polarisation of the anomalous microwave emission inthis region, G159.6-18.5, have been recently published in Génova-Santos et al. 2015). This article presents the most precise spectrum of the anomalous microwave emission (AME) measured to date in an individual region, with 13 independent data points between 10 and 50 GHz being dominated by this emission. The four QUIJOTE data points provide the first independent confirmation of the downturn of the AME spectrum at low frequencies, initially unveiled by the COSMOlogical Structures On Medium Angular Scales (COSMOSOMAS) experiment in this region. We also have observed several regions of interest for our science program where we plan to study the compact and diffuse polarized emission.

  15. Shaken Snow Globes: Kinematic Tracers of the Multiphase Condensation Cascade in Massive Galaxies, Groups, and Clusters

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; McDonald, M.; Hamer, S. L.; Brighenti, F.; Temi, P.; Gendron-Marsolais, M.; Hlavacek-Larrondo, J.; Edge, A. C.; Werner, N.; Tozzi, P.; Sun, M.; Stone, J. M.; Tremblay, G. R.; Hogan, M. T.; Eckert, D.; Ettori, S.; Yu, H.; Biffi, V.; Planelles, S.

    2018-02-01

    We propose a novel method to constrain turbulence and bulk motions in massive galaxies, galaxy groups, and clusters, exploring both simulations and observations. As emerged in the recent picture of top-down multiphase condensation, hot gaseous halos are tightly linked to all other phases in terms of cospatiality and thermodynamics. While hot halos (∼107 K) are perturbed by subsonic turbulence, warm (∼104 K) ionized and neutral filaments condense out of the turbulent eddies. The peaks condense into cold molecular clouds (<100 K) raining in the core via chaotic cold accretion (CCA). We show that all phases are tightly linked in terms of the ensemble (wide-aperture) velocity dispersion along the line of sight. The correlation arises in complementary long-term AGN feedback simulations and high-resolution CCA runs, and is corroborated by the combined Hitomi and new Integral Field Unit measurements in the Perseus cluster. The ensemble multiphase gas distributions (from the UV to the radio band) are characterized by substantial spectral line broadening (σ v,los ≈ 100–200 {km} {{{s}}}-1) with a mild line shift. On the other hand, pencil-beam detections (as H I absorption against the AGN backlight) sample the small-scale clouds displaying smaller broadening and significant line shifts of up to several 100 {km} {{{s}}}-1 (for those falling toward the AGN), with increased scatter due to the turbulence intermittency. We present new ensemble σ v,los of the warm Hα+[N II] gas in 72 observed cluster/group cores: the constraints are consistent with the simulations and can be used as robust proxies for the turbulent velocities, in particular for the challenging hot plasma (otherwise requiring extremely long X-ray exposures). Finally, we show that the physically motivated criterion C ≡ t cool/t eddy ≈ 1 best traces the condensation extent region and the presence of multiphase gas in observed clusters and groups. The ensemble method can be applied to many available spectroscopic data sets and can substantially advance our understanding of multiphase halos in light of the next-generation multiwavelength missions.

  16. HST Observations of NGC 7252

    NASA Astrophysics Data System (ADS)

    Whitmore, Brad; Schweizer, Francois; Leitherer, Claus; Borne, Kirk; Robert, Carmelle

    1993-05-01

    A population of about 40 blue pointlike objects has been discovered in NGC 7252 using the Planetary Camera on board of the Hubble Space Telescope. NGC 7252 (sometimes referred to as the ``Atoms-for-Peace'' galaxy) is one of the prototypical examples of a merger between two disk galaxies. Schweizer (1982: ApJ, 252, 455) has argued that the remnant will eventually become an elliptical galaxy. The luminosities, V-I colors, spatial distribution, and sizes are all compatible with the hypothesis that these objects formed <= 1 Gyr ago during the original merger, and that they are the progenitors of globular clusters similar to those we see around galaxies today. It therefore appears that the number of globular clusters is not a conserved quantity during the merger of two spiral galaxies, but increases instead. This weakens van den Bergh's objection against ellipticals being formed through disk mergers, based mainly on the fact that disk galaxies have fewer globular clusters per unit luminosity than ellipticals galaxies do. The objects found in NGC 7252 are very similar to the pointlike sources recently discovered in NGC 1275 by Holtzman et al. (1992: AJ, 103, 691). However, NGC 1275 is a peculiar galaxy in the center of the Perseus cluster. While Holtzman et al. argue that the objects in NGC 1275 may be the progenitors of globular clusters, Richer et al. (1993: AJ, 105, 877) suggest that these objects may instead be related to the strong cooling flow in the cluster. Our discovery of a population of bright blue pointlike objects in NGC 7252, a prototypical merger, makes a much stronger connection between the formation of globular clusters and the merger history of a galaxy. Other findings are: (1) NGC 7252 has a single, semi-stellar nucleus; (2) spiral arms are seen within 3.5'' (1.6 kpc) of the center, presumably formed through the continued infall of gas into a disk around the center of the galaxy; (3) dust lanes and very weak spiral structure are seen out to about 9.2'' (4.3 kpc), primarily on the NE side; and (4) a ripple is found on the west side, 5.0'' from the center.

  17. Fourier-space combination of Planck and Herschel images

    NASA Astrophysics Data System (ADS)

    Abreu-Vicente, J.; Stutz, A.; Henning, Th.; Keto, E.; Ballesteros-Paredes, J.; Robitaille, T.

    2017-08-01

    Context. Herschel has revolutionized our ability to measure column densities (NH) and temperatures (T) of molecular clouds thanks to its far infrared multiwavelength coverage. However, the lack of a well defined background intensity level in the Herschel data limits the accuracy of the NH and T maps. Aims: We aim to provide a method that corrects the missing Herschel background intensity levels using the Planck model for foreground Galactic thermal dust emission. For the Herschel/PACS data, both the constant-offset as well as the spatial dependence of the missing background must be addressed. For the Herschel/SPIRE data, the constant-offset correction has already been applied to the archival data so we are primarily concerned with the spatial dependence, which is most important at 250 μm. Methods: We present a Fourier method that combines the publicly available Planck model on large angular scales with the Herschel images on smaller angular scales. Results: We have applied our method to two regions spanning a range of Galactic environments: Perseus and the Galactic plane region around l = 11deg (HiGal-11). We post-processed the combined dust continuum emission images to generate column density and temperature maps. We compared these to previously adopted constant-offset corrections. We find significant differences (≳20%) over significant ( 15%) areas of the maps, at low column densities (NH ≲ 1022 cm-2) and relatively high temperatures (T ≳ 20 K). We have also applied our method to synthetic observations of a simulated molecular cloud to validate our method. Conclusions: Our method successfully corrects the Herschel images, including both the constant-offset intensity level and the scale-dependent background variations measured by Planck. Our method improves the previous constant-offset corrections, which did not account for variations in the background emission levels. The image FITS files used in this paper are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A65

  18. Distances to Nearby Galaxies via Long Period Variables

    NASA Astrophysics Data System (ADS)

    Jurcevic, John S.

    A new method of measuring extra-Galactic distances has been developed based on the relationship between the luminosity of red supergiant variable (RSV) stars at optical wavelengths and the period of their luminosity variation. This period-luminosity (PL) relationship has been calibrated with RSVs from the Galactic Perseus OB1 association, the Large Magellanic Cloud, and M33 in the broadband optical R and I-bands, in a narrow part of the I-band at 8250 Å, and in the infrared K-band. By using these RSV PL relations, the distances to a sample of nearby galaxies (M101, NGC 2403, and NGC 2366) were determined. These galaxies were chosen because they had existing Cepheid based distances which allowed for a comparison between the two methods and provided a means of verifying the effectiveness of the RSV PL relation. The galaxies were also chosen to span a range of metallicity to allow an investigation of any effects due to metallicity differences. Photometry in the R-band was obtained over a period of three years for the galaxies with a coverage of 20, 17, and 13 epochs for M101, NGC 2403, and NGC 2366, respectively. By looking for red variable stars with periods in the range 100-1200 days the total number of RSVs discovered in the three galaxies was 123. Assuming a distance modulus for the Large Magellanic Cloud of 18.5 +/- 0.1 mag, single epoch I-band photometry of the RSVs was used to construct random phase PL relations resulting in distance moduli for M101, NGC 2403, and NGC 2366 of 29.40 +/- 0.16, 27.67 +/- 0.16, and 27.86 +/- 0.20 mag, respectively. Similarly, PL relations were also found using phase averaged R-band magnitudes which produced distance moduli of 29.09 +/- 0.16, 27.56 +/- 0.16, and 27.76 +/- 0.21 mag, respectively. These distances have been corrected for extinction by assuming values of E(B - V) = 0.10, 0.04, and 0.04 mag. The distances derived agree with those found via Cepheids which indicates that RSVs provide a very useful new method for measuring distances.

  19. QUANTIFYING OBSERVATIONAL PROJECTION EFFECTS USING MOLECULAR CLOUD SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaumont, Christopher N.; Offner, Stella S.R.; Shetty, Rahul

    2013-11-10

    The physical properties of molecular clouds are often measured using spectral-line observations, which provide the only probes of the clouds' velocity structure. It is hard, though, to assess whether and to what extent intensity features in position-position-velocity (PPV) space correspond to 'real' density structures in position-position-position (PPP) space. In this paper, we create synthetic molecular cloud spectral-line maps of simulated molecular clouds, and present a new technique for measuring the reality of individual PPV structures. Using a dendrogram algorithm, we identify hierarchical structures in both PPP and PPV space. Our procedure projects density structures identified in PPP space into correspondingmore » intensity structures in PPV space and then measures the geometric overlap of the projected structures with structures identified from the synthetic observation. The fractional overlap between a PPP and PPV structure quantifies how well the synthetic observation recovers information about the three-dimensional structure. Applying this machinery to a set of synthetic observations of CO isotopes, we measure how well spectral-line measurements recover mass, size, velocity dispersion, and virial parameter for a simulated star-forming region. By disabling various steps of our analysis, we investigate how much opacity, chemistry, and gravity affect measurements of physical properties extracted from PPV cubes. For the simulations used here, which offer a decent, but not perfect, match to the properties of a star-forming region like Perseus, our results suggest that superposition induces a ∼40% uncertainty in masses, sizes, and velocity dispersions derived from {sup 13}CO (J = 1-0). As would be expected, superposition and confusion is worst in regions where the filling factor of emitting material is large. The virial parameter is most affected by superposition, such that estimates of the virial parameter derived from PPV and PPP information typically disagree by a factor of ∼2. This uncertainty makes it particularly difficult to judge whether gravitational or kinetic energy dominate a given region, since the majority of virial parameter measurements fall within a factor of two of the equipartition level α ∼ 2.« less

  20. Charge exchange in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Gu, Liyi; Mao, Junjie; de Plaa, Jelle; Raassen, A. J. J.; Shah, Chintan; Kaastra, Jelle S.

    2018-03-01

    Context. Though theoretically expected, the charge exchange emission from galaxy clusters has never been confidently detected. Accumulating hints were reported recently, including a rather marginal detection with the Hitomi data of the Perseus cluster. As previously suggested, a detection of charge exchange line emission from galaxy clusters would not only impact the interpretation of the newly discovered 3.5 keV line, but also open up a new research topic on the interaction between hot and cold matter in clusters. Aim. We aim to perform the most systematic search for the O VIII charge exchange line in cluster spectra using the RGS on board XMM-Newton. Methods: We introduce a sample of 21 clusters observed with the RGS. In order to search for O VIII charge exchange, the sample selection criterion is a >35σ detection of the O VIII Lyα line in the archival RGS spectra. The dominating thermal plasma emission is modeled and subtracted with a two-temperature thermal component, and the residuals are stacked for the line search. The systematic uncertainties in the fits are quantified by refitting the spectra with a varying continuum and line broadening. Results: By the residual stacking, we do find a hint of a line-like feature at 14.82 Å, the characteristic wavelength expected for oxygen charge exchange. This feature has a marginal significance of 2.8σ, and the average equivalent width is 2.5 × 10-4 keV. We further demonstrate that the putative feature can be barely affected by the systematic errors from continuum modeling and instrumental effects, or the atomic uncertainties of the neighboring thermal lines. Conclusions: Assuming a realistic temperature and abundance pattern, the physical model implied by the possible oxygen line agrees well with the theoretical model proposed previously to explain the reported 3.5 keV line. If the charge exchange source indeed exists, we expect that the oxygen abundance could have been overestimated by 8-22% in previous X-ray measurements that assumed pure thermal lines. These new RGS results bring us one step forward to understanding the charge exchange phenomenon in galaxy clusters.

  1. Probing Protoplanetary Disks: From Birth to Planets

    NASA Astrophysics Data System (ADS)

    Cox, Erin Guilfoil

    2018-01-01

    Disks are very important in the evolution of protostars and their subsequent planets. How early disks can form has implications for early planet formation. In the youngest protostars (i.e., Class 0 sources) magnetic fields can control disk growth. When the field is parallel to the collapsing core’s rotation axis, infalling material loses angular momentum and disks form in later stages. Sub-/millimeter polarization continuum observations of Class 0 sources at ~1000 au resolution support this idea. However, in the inner (~100 au), denser regions, it is unknown if the polarization only traces aligned dust grains. Recent theoretical studies have shown that self-scattering of thermal emission in the disk may contribute significantly to the polarization. Determining the scattering contribution in these sources is important to disentangle the magnetic field. At older times (the Class II phase), the disk structure can both act as a modulator and signpost of planet formation, if there is enough of a mass reservoir. In my dissertation talk, I will present results that bear on disk evolution at both young and late ages. I will present 8 mm polarization results of two Class 0 protostars (IRAS 4A and IC348 MMS) from the VLA at ~50 au resolution. The inferred magnetic field of IRAS 4A has a circular morphology, reminiscent of material being dragged into a rotating structure. I will show results from SOFIA polarization data of the area surrounding IRAS 4A at ~4000 au. I will also present ALMA 850 micron polarization data of ten protostars in the Perseus Molecular Cloud. Most of these sources show very ordered patterns and low (~0.5%) polarization in their inner regions, while having very disordered patterns and high polarization patterns in their extended emission that may suggest different mechanisms in the inner/outer regions. Finally, I will present results from our ALMA dust continuum survey of protoplanetary disks in Rho Ophiuchus; we measured both the sizes and fluxes of 49 pre main-sequence stellar systems and detected either gaps or cavities in ~6 of these sources. Combined, these results build upon how early protoplanetary disks can form around young protostars and thus how early planets can begin to form.

  2. Evidence for disks at an early stage in class 0 protostars?

    NASA Astrophysics Data System (ADS)

    Gerin, M.; Pety, J.; Commerçon, B.; Fuente, A.; Cernicharo, J.; Marcelino, N.; Ciardi, A.; Lis, D. C.; Roueff, E.; Wootten, H. A.; Chapillon, E.

    2017-10-01

    Aims: The formation epoch of protostellar disks is debated because of the competing roles of rotation, turbulence, and magnetic fields in the early stages of low-mass star formation. Magnetohydrodynamics simulations of collapsing cores predict that rotationally supported disks may form in strongly magnetized cores through ambipolar diffusion or misalignment between the rotation axis and the magnetic field orientation. Detailed studies of individual sources are needed to cross check the theoretical predictions. Methods: We present 0.06-0.1'' resolution images at 350 GHz toward B1b-N and B1b-S, which are young class 0 protostars, possibly first hydrostatic cores. The images have been obtained with ALMA, and we compare these data with magnetohydrodynamics simulations of a collapsing turbulent and magnetized core. Results: The submillimeter continuum emission is spatially resolved by ALMA. Compact structures with optically thick 350 GHz emission are detected toward both B1b-N and B1b-S, with 0.2 and 0.35'' radii (46 and 80 au at the Perseus distance of 230 pc), within a more extended envelope. The flux ratio between the compact structure and the envelope is lower in B1b-N than in B1b-S, in agreement with its earlier evolutionary status. The size and orientation of the compact structure are consistent with 0.2'' resolution 32 GHz observations obtained with the Very Large Array as a part of the VANDAM survey, suggesting that grains have grown through coagulation. The morphology, temperature, and densities of the compact structures are consistent with those of disks formed in numerical simulations of collapsing cores. Moreover, the properties of B1b-N are consistent with those of a very young protostar, possibly a first hydrostatic core. These observations provide support for the early formation of disks around low-mass protostars. The reduced images and datacubes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A35

  3. A CGPS Look at the Spiral Structure of the Outer Milky Way. I. Distances and Velocities to Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Foster, T.; Brunt, C. M.

    2015-11-01

    We present a new catalog of spectrophotometric distances and line of sight systemic velocities to 103 H ii regions between 90^\\circ ≤slant {\\ell }≤slant 195^\\circ (longitude quadrants II and part of III). Two new velocities for each region are independently measured using 1 arcmin resolution 21 cm H i and 2.6 mm 12CO line maps (from the Canadian Galactic Plane Survey and Five College Radio Astronomy Observatory Outer Galaxy Surveys) that show where gaseous shells are observed around the periphery of the ionized gas. Known and neighboring O- and B-type stars with published UBV photometry and MK classifications are overlaid onto 21 cm continuum maps, and those stars observed within the boundary of the H ii emission (and whose distance is not more than three times the standard deviation of the others) are used to calculate new mean stellar distances to each of the 103 nebulae. Using this approach of excluding distance outliers from the mean distance to a group of many stars in each H ii region lessens the impact of anomalous reddening for certain individuals. The standard deviation of individual stellar distances in a cluster is typically 20% per stellar distance, and the error in the mean distance to the cluster is typically ±10%. Final mean distances of nine common objects with very long baseline interferometry parallax distances show a 1:1 correspondence. Further, comparison with previous catalogs of H ii regions in these quadrants shows a 50% reduction in scatter for the distance to Perseus spiral arm objects in the same region, and a reduction by ˜1/\\sqrt{2} in scatter around a common angular velocity relative to the Sun {{Ω }}-{{{Ω }}}0(km s-1 kpc-1). The purpose of the catalog is to provide a foundation for more detailed large-scale Galactic spiral structure and dynamics (rotation curve, density wave streaming) studies in the 2nd and 3rd quadrants, which from the Sun’s location is the most favorably viewed section of the Galaxy.

  4. Hubble Looks at Light and Dark in the Universe

    NASA Image and Video Library

    2014-08-29

    This new NASA/ESA Hubble Space Telescope image shows a variety of intriguing cosmic phenomena. Surrounded by bright stars, towards the upper middle of the frame we see a small young stellar object (YSO) known as SSTC2D J033038.2+303212. Located in the constellation of Perseus, this star is in the early stages of its life and is still forming into a fully-grown star. In this view from Hubble’s Advanced Camera for Surveys(ACS) it appears to have a murky chimney of material emanating outwards and downwards, framed by bright bursts of gas flowing from the star itself. This fledgling star is actually surrounded by a bright disk of material swirling around it as it forms — a disc that we see edge-on from our perspective. However, this small bright speck is dwarfed by its cosmic neighbor towards the bottom of the frame, a clump of bright, wispy gas swirling around as it appears to spew dark material out into space. The bright cloud is a reflection nebula known as [B77] 63, a cloud of interstellar gas that is reflecting light from the stars embedded within it. There are actually a number of bright stars within [B77] 63, most notably the emission-line star LkHA 326, and it nearby neighbor LZK 18. These stars are lighting up the surrounding gas and sculpting it into the wispy shape seen in this image. However, the most dramatic part of the image seems to be a dark stream of smoke piling outwards from [B77] 63 and its stars — a dark nebula called Dobashi 4173. Dark nebulae are incredibly dense clouds of pitch-dark material that obscure the patches of sky behind them, seemingly creating great rips and eerily empty chunks of sky. The stars speckled on top of this extreme blackness actually lie between us and Dobashi 4173. Credit: ESA/NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. The observed spiral structure of the Milky Way

    NASA Astrophysics Data System (ADS)

    Hou, L. G.; Han, J. L.

    2014-09-01

    Context. The spiral structure of the Milky Way is not yet well determined. The keys to understanding this structure are to increase the number of reliable spiral tracers and to determine their distances as accurately as possible. HII regions, giant molecular clouds (GMCs), and 6.7 GHz methanol masers are closely related to high mass star formation, and hence they are excellent spiral tracers. The distances for many of them have been determined in the literature with trigonometric, photometric, and/or kinematic methods. Aims: We update the catalogs of Galactic HII regions, GMCs, and 6.7 GHz methanol masers, and then outline the spiral structure of the Milky Way. Methods: We collected data for more than 2500 known HII regions, 1300 GMCs, and 900 6.7 GHz methanol masers. If the photometric or trigonometric distance was not yet available, we determined the kinematic distance using a Galaxy rotation curve with the current IAU standard, R0 = 8.5 kpc and Θ0 = 220 km s-1, and the most recent updated values of R0 = 8.3 kpc and Θ0 = 239 km s-1, after velocities of tracers are modified with the adopted solar motions. With the weight factors based on the excitation parameters of HII regions or the masses of GMCs, we get the distributions of these spiral tracers. Results: The distribution of tracers shows at least four segments of arms in the first Galactic quadrant, and three segments in the fourth quadrant. The Perseus Arm and the Local Arm are also delineated by many bright HII regions. The arm segments traced by massive star forming regions and GMCs are able to match the HI arms in the outer Galaxy. We found that the models of three-arm and four-arm logarithmic spirals are able to connect most spiral tracers. A model of polynomial-logarithmic spirals is also proposed, which not only delineates the tracer distribution, but also matches the observed tangential directions. Appendix A is available in electronic form at http://www.aanda.orgFull Tables A.1-A.3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/569/A125 and also at the authors' webpage: http://zmtt.bao.ac.cn/milkyway/

  6. An ALMA study of the Orion Integral Filament. I. Evidence for narrow fibers in a massive cloud

    NASA Astrophysics Data System (ADS)

    Hacar, A.; Tafalla, M.; Forbrich, J.; Alves, J.; Meingast, S.; Grossschedl, J.; Teixeira, P. S.

    2018-03-01

    Aim. We have investigated the gas organization within the paradigmatic Integral Shape Filament (ISF) in Orion in order to decipher whether or not all filaments are bundles of fibers. Methods: We combined two new ALMA Cycle 3 mosaics with previous IRAM 30m observations to produce a high-dynamic range N2H+ (1-0) emission map of the ISF tracing its high-density material and velocity structure down to scales of 0.009 pc (or 2000 AU). Results: From the analysis of the gas kinematics, we identify a total of 55 dense fibers in the central region of the ISF. Independently of their location in the cloud, these fibers are characterized by transonic internal motions, lengths of 0.15 pc, and masses per unit length close to those expected in hydrostatic equilibrium. The ISF fibers are spatially organized forming a dense bundle with multiple hub-like associations likely shaped by the local gravitational potential. Within this complex network, the ISF fibers show a compact radial emission profile with a median FWHM of 0.035 pc systematically narrower than the previously proposed universal 0.1 pc filament width. Conclusions: Our ALMA observations reveal complex bundles of fibers in the ISF, suggesting strong similarities between the internal substructure of this massive filament and previously studied lower-mass objects. The fibers show identical dynamic properties in both low- and high-mass regions, and their widespread detection in nearby clouds suggests a preferred organizational mechanism of gas in which the physical fiber dimensions (width and length) are self-regulated depending on their intrinsic gas density. Combining these results with previous works in Musca, Taurus, and Perseus, we identify a systematic increase of the surface density of fibers as a function of the total mass per-unit-length in filamentary clouds. Based on this empirical correlation, we propose a unified star-formation scenario where the observed differences between low- and high-mass clouds, and the origin of clusters, emerge naturally from the initial concentration of fibers. The movie associated to Fig. 2 is available at http://https://www.aanda.orgThe data products of this work are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A77

  7. HST STIS Spectroscopy of the Bubble Nebula, NGC 7635

    NASA Astrophysics Data System (ADS)

    Buckalew, B.; Dufour, R.; Ghavamian, P.; Hartigan, P.; Walter, D.; Hester, J.; Scowen, P.

    1999-05-01

    We report the results of longslit spectroscopy of the wind-blown bubble and photoevaporating knots around the O6.5iiif star BD+ 60(deg) 2522 made with the Space Telescope Imaging Spectrograph. The Of star is the primary ionizing source for the H ii region NGC 7635, located in the Perseus Arm. The spectra were taken through a 0.2'' x 52'' slit with low and medium resolution gratings covering the wavelength range 2900-6870 Angstroms. Observations with two slit orientations were made; one across the line of embedded knots to the west of the Of star and the second running from the Of star across the bubble to the NE. The 2D STIS spectra permit us to subtract the surrounding H ii region's diffuse emission from that of the knots and the bubble, and to study the spatial variations in various emission lines in these features to a resolution of ~ 0.1'', an order of magnitude improvement over the best ground-based spectra of this object in the literature. We present high spatial resolution emission line and line ratio profiles across the bubble and knots, and compare them with the predicted variations from photoionization, photoevaporation, and wind-shock models. We also present an analysis of temperatures, densities, and abundances in the features from higher S/N spectra extracted over selected lengths of the slit. From our analysis, we find that our measured abundances for nitrogen and oxygen are what we would expect for an H ii region at this galactocentric distance. However, the rim helium and carbon abundances show an enhancement which may be caused by contamination from the stellar wind. From our spatial scan studies of the knots and rim, we conclude that the knots are composed of photoevaporating knots surrounded by an ionization front, confirming the results of the imagery which indicate that the knots are like the EGGs of M16 seen face on. The rim appears to be the edge of a slightly supersonic shell of ionized gas that is being snowplowed through the surrounding H ii region by the star's supersonic wind. Acknowledgements. This research was supported in part by AURA/STScI grant GO-7515 and NASA-Ames grant NGT 2-52252.

  8. The Structure of Dark Molecular Gas in the Galaxy - I First Results from a GBT Pilot Survey for 18-cm OH emission towards L~105, B~1

    NASA Astrophysics Data System (ADS)

    Allen, Ronald J.; Hogg, David E.; Engelke, Philip D.

    2015-01-01

    We report the first results from a ``blind'' survey for 1665, 1667, and 1720 MHz OH emission over a small region of the Outer Galaxy centered at L = 105.0, B = +1.0. This sparse, high-sensitivity survey (Delta Ta= 3 mK rms in 0.55 km/s channels), was carried out as a pilot project with the Green Bank Telescope (FWHM 7.6') on a 3 X 9 grid at 0.5 deg spacing. The pointings were chosen to correspond with those of the CO(1-0) CfA survey of the Galaxy carried out earlier with substantially the same angular resolution (8.4'). Using 2-hr integrations, 1667 MHz OH emission was detected with the GBT at more than 21 of the 27 survey positions, confirming the ubiquity of molecular gas in the ISM as traced by this spectral line. With very few exceptions the 1665/1667 line ratios are in the LTE ratio of 5:9, and the few exceptions are familiar examples of anomalous OH emission. No OH absorption features are recorded in the area of the present survey, in agreement with the low levels of continuum background emission in this direction. With very few exceptions, peaks in the OH profiles coincide with peaks in the HI spectra (obtained concurrently with the GBT, FWHM 8.9'), although not every HI peak has associated OH emission. At each pointing the OH appears in several components extending over a wide range of radial velocity and coinciding with well-known features of Galactic structure such as the Local Arm and the Perseus Arm. In contrast, little CO emission is seen in the survey area; less than half of the 53 identified OH spectral features show detectable CO counterparts at the CfA sensitivity levels, and these are generally relatively faint. While higher-sensitivity CO data would undoubtedly turn many of the CO upper limits into measurements, such data is not likely to recover the missing CO profile line strengths. The 18-cm main lines of OH therefore appear to be a new tracer for the ``CO-Dark'' molecular gas in the Galactic ISM. Quantitative estimates for this dark molecular gas will be presented.

  9. Discovery of Ionized Gas Associated with the Tilted Inner Disk of the Milky Way

    NASA Astrophysics Data System (ADS)

    Haffner, L. Matthew; Benjamin, Robert A.; Krishnarao, Dhanesh

    2018-01-01

    The complex distribution and motion of gas within the central few kiloparsecs of our Galaxy does not follow the more regular patterns seen throughout the rest of its gaseous disk. Sensitive observations of the neutral and molecular gas over the past 40 years reveal emission intensities and velocities that are far from symmetric about the Galactic equator and the line at zero longitude. Burton and Liszt (1978-1992) show that much of the anomalous behavior is well explained by an elliptical disk, tilted with respect to the Galactic plane and our line of sight.Using the Wisconsin Hα Mapper (WHAM), we report the discovery of ionized gas near the Galactic center (l = 0° - 14° b = -8° to +4°) with a distribution and velocities also explained by this creative model. Emission from distant regions near the Galactic plane is typically blocked by a thick band of interstellar dust. However, a portion of the tilted disk is behind Baade's Window, a hole in the thick dust near the Galactic center. Combined with the unparalleled sensitivity of the WHAM Sky Survey (IHα ~ 0.1 R; EM ~ 0.2 pc cm-6), we are able to trace the distribution and kinematics of the ionized phase of this structure for the first time. The relationship between this multi-phase inner disk, outflow from the Galactic center, and the Fermi bubbles is not yet clear.In several directions around the disk, WHAM captures emission from Hα, Hβ, and several ions (N, S, and O) to explore the state and source of the ionized gas. [N II]/Hα, [S II]/Hα, and [S II]/[N II] line ratios are much different than classical H II regions and diffuse gas near the plane but are similar to those seen at high-|z| (> 1.5 kpc) in the Perseus arm. We will also compare this emission to multi-phase absorption components revealed in a recent UV absorption-line study through the low halo (z ~ -1 kpc) in this direction (Savage et al. 2017) and to emission seen near nuclear regions of other spiral galaxies, where high low-ionization-species to Hα ratios have also been observed.WHAM has been designed, built, and operated primarily through support of the National Science Foundation. The research presented here has been funded by awards AST-1108911 and AST-1714472.

  10. Evolution of column density distributions within Orion A⋆

    NASA Astrophysics Data System (ADS)

    Stutz, A. M.; Kainulainen, J.

    2015-05-01

    We compare the structure of star-forming molecular clouds in different regions of Orion A to determine how the column density probability distribution function (N-PDF) varies with environmental conditions such as the fraction of young protostars. A correlation between the N-PDF slope and Class 0 protostar fraction has been previously observed in a low-mass star-formation region (Perseus); here we test whether a similar correlation is observed in a high-mass star-forming region. We used Herschel PACS and SPIRE cold dust emission observations to derive a column density map of Orion A. We used the Herschel Orion Protostar Survey catalog to accurately identify and classify the Orion A young stellar object content, including the cold and relatively short-lived Class 0 protostars (with a lifetime of ~0.14 Myr). We divided Orion A into eight independent regions of 0.25 square degrees (13.5 pc2); in each region we fit the N-PDF distribution with a power law, and we measured the fraction of Class 0 protostars. We used a maximum-likelihood method to measure the N-PDF power-law index without binning the column density data. We find that the Class 0 fraction is higher in regions with flatter column density distributions. We tested the effects of incompleteness, extinction-driven misclassification of Class 0 sources, resolution, and adopted pixel-scales. We show that these effects cannot account for the observed trend. Our observations demonstrate an association between the slope of the power-law N-PDF and the Class 0 fractions within Orion A. Various interpretations are discussed, including timescales based on the Class 0 protostar fraction assuming a constant star-formation rate. The observed relation suggests that the N-PDF can be related to an evolutionary state of the gas. If universal, such a relation permits evaluating the evolutionary state from the N-PDF power-law index at much greater distances than those accessible with protostar counts. Appendices are available in electronic form at http://www.aanda.orgThe N(H) map as a FITS file is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/L6

  11. SEARCHES FOR HIGH-ENERGY NEUTRINO EMISSION IN THE GALAXY WITH THE COMBINED ICECUBE-AMANDA DETECTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbasi, R.; Ahlers, M.; Andeen, K.

    2013-01-20

    We report on searches for neutrino sources at energies above 200 GeV in the Northern sky of the Galactic plane, using the data collected by the South Pole neutrino telescope, IceCube, and AMANDA. The Galactic region considered in this work includes the local arm toward the Cygnus region and our closest approach to the Perseus Arm. The searches are based on the data collected between 2007 and 2009. During this time AMANDA was an integrated part of IceCube, which was still under construction and operated with 22 strings (2007-2008) and 40 strings (2008-2009) of optical modules deployed in the ice.more » By combining the advantages of the larger IceCube detector with the lower energy threshold of the more compact AMANDA detector, we obtain an improved sensitivity at energies below {approx}10 TeV with respect to previous searches. The analyses presented here are a scan for point sources within the Galactic plane, a search optimized for multiple and extended sources in the Cygnus region, which might be below the sensitivity of the point source scan, and studies of seven pre-selected neutrino source candidates. For one of them, Cygnus X-3, a time-dependent search for neutrino emission in coincidence with observed radio and X-ray flares has been performed. No evidence of a signal is found, and upper limits are reported for each of the searches. We investigate neutrino spectra proportional to E {sup -2} and E {sup -3} in order to cover the entire range of possible neutrino spectra. The steeply falling E {sup -3} neutrino spectrum can also be used to approximate neutrino energy spectra with energy cutoffs below 50 TeV since these result in a similar energy distribution of events in the detector. For the region of the Galactic plane visible in the Northern sky, the 90% confidence level muon neutrino flux upper limits are in the range E {sup 3} dN/dE {approx} 5.4-19.5 Multiplication-Sign 10{sup -11} TeV{sup 2} cm{sup -2} s{sup -1} for point-like neutrino sources in the energy region [180.0 GeV-20.5 TeV]. These represent the most stringent upper limits for soft-spectra neutrino sources within the Galaxy reported to date.« less

  12. A CCD Search for Variable Stars of Spectral Type B in the Northern Hemisphere Open Clusters. IX. NGC 457

    NASA Astrophysics Data System (ADS)

    Moździerski, D.; Pigulski, A.; Kopacki, G.; Kołaczkowski, Z.; Stęślicki, M.

    2014-06-01

    We present results of a BVIC variability survey in the young open cluster NGC 457 based on observations obtained during three separate runs spanning almost 20 years. In total, we found 79 variable stars, of which 66 are new. The BVIC photometry was transformed to the standard system and used to derive cluster parameters by means of isochrone fitting. The cluster is about 20 Myr old, the mean reddening amounts to about 0.48 mag in terms of the color excess E(B-V). Depending on the metallicity, the isochrone fitting yields a distance between 2.3 kpc and 2.9 kpc, which locates the cluster in the Perseus arm of the Galaxy. Using the complementary Hα photometry carried out in two seasons separated by over 10 years, we find that the cluster is very rich in Be stars. In total, 15 stars in the observed field of which 14 are cluster members showed Hα in emission either during our observations or in the past. Most of the Be stars vary in brightness on different time scales including short-period variability related most likely to g-mode pulsations. A single-epoch spectrum of NGC 457-6 shows that this Be star is presently in the shell phase. The inventory of variable stars in the observed field consists of a single β Cep-type star, NGC 457-8, 13 Be stars, 21 slowly pulsating B stars, seven δ Sct stars, one γ Dor star, 16 unclassified periodic stars, 8 eclipsing systems and a dozen of stars with irregular variability, of which six are also B-type stars. As many as 45 variable stars are of spectral type B which is the largest number in all open clusters presented in this series of papers. The most interesting is the discovery of a large group of slowly pulsating B stars which occupy the cluster main sequence in the range between V=11 mag and 14.5 mag, corresponding to spectral types B3 to B8. They all have very low amplitudes and about half show pulsations with frequencies higher than 3 d-1. We argue that these are most likely fast-rotating slowly pulsating B stars, observed also in other open clusters.

  13. Microbial processes and organic priority substances in marine coastal sediments (Adriatic Sea, Italy)

    NASA Astrophysics Data System (ADS)

    Zoppini, Annamaria; Ademollo, Nicoletta; Amalfitano, Stefano; Dellisanti, Walter; Lungarini, Silvia; Miserocchi, Stefano; Patrolecco, Luisa; Langone, Leonardo

    2015-04-01

    PERSEUS EU FP7 Project aims to identify the interacting patterns of natural and human-derived pressures to assess their impact on marine ecosystems and, using the objectives and principles of the Marine Strategy Framework Directive (MSFD) as a vehicle, to design an effective and innovative research governance framework based on sound scientific knowledge. In the frame of this Project (subtask 1.3.3 ADREX: Adriatic and Ionian Seas Experiment), monitoring surveys were conducted in the Adriatic Sea (Italy) in order to study the variation of structural and functional characteristics of native bacterial communities and the occurrence of selected classes of organic priority substances in sediments. The study area represents a good natural laboratory sensitive to climate variability and human pressure, owing to the semi-enclosed nature of the Adriatic Sea and to the increasing trend of human activities in the coastal regions. During the cruise ADRI-13 (November 2013) and ADRI-14 (October 2014) we sampled several coastal sites from the mouth of the Po River to the Otranto strait. Surface sediments were collected in all areas, while sediment cores were sampled in selected sites. Microbes associated with marine sediments play an important role in the C-flux being responsible for the transformation of organic detritus (autochthonous and allochthonous) into biomass. The sediment bacterial abundance was determined by epifluorescence microscopy and the rate of bacterial carbon production by measuring the 3H-leucine uptake rates. The community respiration rate was estimated by the measurement of the electron transport system (ETS) activity. The sediment contamination level was determined by measuring the concentration of contaminants included in the list of organic priority substances: PAHs, bisphenol A (BPA), alkylphenols (APs). The extraction/clean-up of PAHs, BPA and APs was performed by ultrasonic bath with the appropriate solvents, followed by analytical determination with LC-MS or HPLC UV-fluorescence. The joint analysis of the microbial properties and the concentration of the organic pollutants reflects the impact of anthropic pressure on the selected coastal areas. At the surface layers, the microbial carbon assimilation and mineralization rates were affected by the increasing concentration of pollutants. The highest concentrations of organic pollutants were detected in the deeper sediment layers (20 cm) where a significant reduction of microbial metabolic activities was observed. The results of this study can contribute to acquire information to improve the MSFD and to reach the good environmental status.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottaar, Michiel; Meyer, Michael R.; Covey, Kevin R.

    Most field stars will have encountered the highest stellar density and hence the largest number of interactions in their birth environment. Yet the stellar dynamics during this crucial phase are poorly understood. Here we analyze the radial velocities measured for 152 out of 380 observed stars in the 2–6 Myr old star cluster IC 348 as part of the SDSS-III APOGEE. The radial velocity distribution of these stars is fitted with one or two Gaussians, convolved with the measurement uncertainties including binary orbital motions. Including a second Gaussian improves the fit; the high-velocity outliers that are best fit by thismore » second component may either (1) be contaminants from the nearby Perseus OB2 association, (2) be a halo of ejected or dispersing stars from IC 348, or (3) reflect that IC 348 has not relaxed to a Gaussian velocity distribution. We measure a velocity dispersion for IC 348 of 0.72 ± 0.07 km s{sup −1} (or 0.64 ± 0.08 km s{sup −1} if two Gaussians are fitted), which implies a supervirial state, unless the gas contributes more to the gravitational potential than expected. No evidence is found for a dependence of this velocity dispersion on distance from the cluster center or stellar mass. We also find that stars with lower extinction (in the front of the cloud) tend to be redshifted compared with stars with somewhat higher extinction (toward the back of the cloud). This data suggest that the stars in IC 348 are converging along the line of sight. We show that this correlation between radial velocity and extinction is unlikely to be spuriously caused by the small cluster rotation of 0.024 ± 0.013 km s{sup −1} arcmin{sup −1} or by correlations between the radial velocities of neighboring stars. This signature, if confirmed, will be the first detection of line of sight convergence in a star cluster. Possible scenarios for reconciling this convergence with IC 348's observed supervirial state include: (a) the cluster is fluctuating around a new virial equilibrium after a recent disruption due to gas expulsion or a merger event, or (b) the population we identify as IC 348 results from the chance alignment of two sub-clusters converging along the line of sight. Additional measurements of tangential and radial velocities in IC 348 will be important for clarifying the dynamics of this region and informing models of the formation and evolution of star clusters. The radial velocities analyzed in this paper have been made available online.« less

  15. Searching for dark clouds in the outer galactic plane. I. A statistical approach for identifying extended red(dened) regions in 2MASS

    NASA Astrophysics Data System (ADS)

    Frieswijk, W. W. F.; Shipman, R. F.

    2010-06-01

    Context. Most of what is known about clustered star formation to date comes from well studied star forming regions located relatively nearby, such as Rho-Ophiuchus, Serpens and Perseus. However, the recent discovery of infrared dark clouds may give new insights in our understanding of this dominant mode of star formation in the Galaxy. Though the exact role of infrared dark clouds in the formation process is still somewhat unclear, they seem to provide useful laboratories to study the very early stages of clustered star formation. Infrared dark clouds have been identified predominantly toward the bright inner parts of the galactic plane. The low background emission makes it more difficult to identify similar objects in mid-infrared absorption in the outer parts. This is unfortunate, because the outer Galaxy represents the only nearby region where we can study effects of different (external) conditions on the star formation process. Aims: The aim of this paper is to identify extended red regions in the outer galactic plane based on reddening of stars in the near-infrared. We argue that these regions appear reddened mainly due to extinction caused by molecular clouds and young stellar objects. The work presented here is used as a basis for identifying star forming regions and in particular the very early stages. An accompanying paper describes the cross-identification of the identified regions with existing data, uncovering more on the nature of the reddening. Methods: We use the Mann-Whitney U-test, in combination with a friends-of-friends algorithm, to identify extended reddened regions in the 2MASS all-sky JHK survey. We process the data on a regular grid using two different resolutions, 60´´ and 90´´. The two resolutions have been chosen because the stellar surface density varies between the crowded spiral arm regions and the sparsely populated galactic anti-center region. Results: We identify 1320 extended red regions at the higher resolution and 1589 in the lower resolution run. The linear extent of the identified regions ranges from a few arc-minutes to about a degree. Conclusions: The majority of extended red regions are associated with major molecular cloud complexes, supporting our hypothesis that the reddening is mostly due to foreground clouds and embedded objects. The reliability of the identified regions is >99.9%. Because we choose to identify object with a high reliability we can not quantify the completeness of the list of regions. Full Table 1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/515/A51

  16. IN-SYNC. III. The Dynamical State of IC 348 - A Super-virial Velocity Dispersion and a Puzzling Sign of Convergence

    NASA Astrophysics Data System (ADS)

    Cottaar, Michiel; Covey, Kevin R.; Foster, Jonathan B.; Meyer, Michael R.; Tan, Jonathan C.; Nidever, David L.; Chojnowski, S. Drew; da Rio, Nicola; Flaherty, Kevin M.; Frinchaboy, Peter M.; Majewski, Steve; Skrutskie, Michael F.; Wilson, John C.; Zasowski, Gail

    2015-07-01

    Most field stars will have encountered the highest stellar density and hence the largest number of interactions in their birth environment. Yet the stellar dynamics during this crucial phase are poorly understood. Here we analyze the radial velocities measured for 152 out of 380 observed stars in the 2-6 Myr old star cluster IC 348 as part of the SDSS-III APOGEE. The radial velocity distribution of these stars is fitted with one or two Gaussians, convolved with the measurement uncertainties including binary orbital motions. Including a second Gaussian improves the fit; the high-velocity outliers that are best fit by this second component may either (1) be contaminants from the nearby Perseus OB2 association, (2) be a halo of ejected or dispersing stars from IC 348, or (3) reflect that IC 348 has not relaxed to a Gaussian velocity distribution. We measure a velocity dispersion for IC 348 of 0.72 ± 0.07 km s-1 (or 0.64 ± 0.08 km s-1 if two Gaussians are fitted), which implies a supervirial state, unless the gas contributes more to the gravitational potential than expected. No evidence is found for a dependence of this velocity dispersion on distance from the cluster center or stellar mass. We also find that stars with lower extinction (in the front of the cloud) tend to be redshifted compared with stars with somewhat higher extinction (toward the back of the cloud). This data suggest that the stars in IC 348 are converging along the line of sight. We show that this correlation between radial velocity and extinction is unlikely to be spuriously caused by the small cluster rotation of 0.024 ± 0.013 km s-1 arcmin-1 or by correlations between the radial velocities of neighboring stars. This signature, if confirmed, will be the first detection of line of sight convergence in a star cluster. Possible scenarios for reconciling this convergence with IC 348's observed supervirial state include: (a) the cluster is fluctuating around a new virial equilibrium after a recent disruption due to gas expulsion or a merger event, or (b) the population we identify as IC 348 results from the chance alignment of two sub-clusters converging along the line of sight. Additional measurements of tangential and radial velocities in IC 348 will be important for clarifying the dynamics of this region and informing models of the formation and evolution of star clusters. The radial velocities analyzed in this paper have been made available online.

  17. Comparing the statistics of interstellar turbulence in simulations and observations. Solenoidal versus compressive turbulence forcing

    NASA Astrophysics Data System (ADS)

    Federrath, C.; Roman-Duval, J.; Klessen, R. S.; Schmidt, W.; Mac Low, M.-M.

    2010-03-01

    Context. Density and velocity fluctuations on virtually all scales observed with modern telescopes show that molecular clouds (MCs) are turbulent. The forcing and structural characteristics of this turbulence are, however, still poorly understood. Aims: To shed light on this subject, we study two limiting cases of turbulence forcing in numerical experiments: solenoidal (divergence-free) forcing and compressive (curl-free) forcing, and compare our results to observations. Methods: We solve the equations of hydrodynamics on grids with up to 10243 cells for purely solenoidal and purely compressive forcing. Eleven lower-resolution models with different forcing mixtures are also analysed. Results: Using Fourier spectra and Δ-variance, we find velocity dispersion-size relations consistent with observations and independent numerical simulations, irrespective of the type of forcing. However, compressive forcing yields stronger compression at the same rms Mach number than solenoidal forcing, resulting in a three times larger standard deviation of volumetric and column density probability distributions (PDFs). We compare our results to different characterisations of several observed regions, and find evidence of different forcing functions. Column density PDFs in the Perseus MC suggest the presence of a mainly compressive forcing agent within a shell, driven by a massive star. Although the PDFs are close to log-normal, they have non-Gaussian skewness and kurtosis caused by intermittency. Centroid velocity increments measured in the Polaris Flare on intermediate scales agree with solenoidal forcing on that scale. However, Δ-variance analysis of the column density in the Polaris Flare suggests that turbulence is driven on large scales, with a significant compressive component on the forcing scale. This indicates that, although likely driven with mostly compressive modes on large scales, turbulence can behave like solenoidal turbulence on smaller scales. Principal component analysis of G216-2.5 and most of the Rosette MC agree with solenoidal forcing, but the interior of an ionised shell within the Rosette MC displays clear signatures of compressive forcing. Conclusions: The strong dependence of the density PDF on the type of forcing must be taken into account in any theory using the PDF to predict properties of star formation. We supply a quantitative description of this dependence. We find that different observed regions show evidence of different mixtures of compressive and solenoidal forcing, with more compressive forcing occurring primarily in swept-up shells. Finally, we emphasise the role of the sonic scale for protostellar core formation, because core formation close to the sonic scale would naturally explain the observed subsonic velocity dispersions of protostellar cores. A movie is only available in electronic form at http://www.aanda.org

  18. Warming rays in cluster cool cores

    NASA Astrophysics Data System (ADS)

    Colafrancesco, S.; Marchegiani, P.

    2008-06-01

    Context: Cosmic rays are confined in the atmospheres of galaxy clusters and, therefore, they can play a crucial role in the heating of their cool cores. Aims: We discuss here the thermal and non-thermal features of a model of cosmic ray heating of cluster cores that can provide a solution to the cooling-flow problems. To this aim, we generalize a model originally proposed by Colafrancesco, Dar & DeRujula (2004) and we show that our model predicts specific correlations between the thermal and non-thermal properties of galaxy clusters and enables various observational tests. Methods: The model reproduces the observed temperature distribution in clusters by using an energy balance condition in which the X-ray energy emitted by clusters is supplied, in a quasi-steady state, by the hadronic cosmic rays, which act as “warming rays” (WRs). The temperature profile of the intracluster (IC) gas is strictly correlated with the pressure distribution of the WRs and, consequently, with the non-thermal emission (radio, hard X-ray and gamma-ray) induced by the interaction of the WRs with the IC gas and the IC magnetic field. Results: The temperature distribution of the IC gas in both cool-core and non cool-core clusters is successfully predicted from the measured IC plasma density distribution. Under this contraint, the WR model is also able to reproduce the thermal and non-thermal pressure distribution in clusters, as well as their radial entropy distribution, as shown by the analysis of three clusters studied in detail: Perseus, A2199 and Hydra. The WR model provides other observable features of galaxy clusters: a correlation of the pressure ratio (WRs to thermal IC gas) with the inner cluster temperature (P_WR/P_th) ˜ (kT_inner)-2/3, a correlation of the gamma-ray luminosity with the inner cluster temperature Lγ ˜ (kT_inner)4/3, a substantial number of cool-core clusters observable with the GLAST-LAT experiment, a surface brightness of radio halos in cool-core clusters that recovers the observed one, a hard X-ray ICS emission from cool-core clusters that is systematically lower than the observed limits and yet observable with the next generation high-sensitivity and spatial resolution HXR experiments like Simbol-X. Conclusions: The specific theoretical properties and the multi-frequency distribution of the e.m. signals predicted in the WR model render it quite different from the other models so far proposed for the heating of clusters' cool-cores. Such differences make it possible to prove or disprove our model as an explanation for the cooling-flow problems on the basis of multi-frequency observations of galaxy clusters.

  19. VizieR Online Data Catalog: Herschel-PACS and -SPIRE spectroscopy of 70 objects (Green+, 2016)

    NASA Astrophysics Data System (ADS)

    Green, J. D.; Yang, Y.-L.; Evans, N. J., II; Karska, A.; Herczeg, G.; van Dishoeck, E. F.; Lee, J.-E.; Larson, R. L.; Bouwman, J.

    2016-10-01

    We present the CDF (COPS-DIGIT-FOOSH) archive, with Herschel spectroscopic observations of 70 objects (protostars, young stellar objects, and FU Orionis objects) from the "Dust, Ice, and Gas in Time" (DIGIT) Key Project, FU Orionis Objects Surveyed with Herschel" Open Time Program (FOOSH OT1), and "CO in Protostars" Open Time Program (COPS OT2) Herschel programs. These have been delivered to the Herschel archive and are available. The full source list is shown in Table1. The full DIGIT spectroscopic sample consists of 63 sources: 24 Herbig Ae/Be stars (intermediate mass sources with circumstellar disks), 9 T Tauri stars (low mass young stars with circumstellar disks), and 30 protostars (young stars with significant envelope emission) observed with Photodetector Array Camera and Spectrometer (PACS) spectroscopy. DIGIT also included an additional wTTS (weak-line T Tauri star) sample that was observed photometrically and delivered separately. The wTTS sample is fully described by Cieza et al. 2013ApJ...762..100C. The full DIGIT embedded protostellar sample consisted of 30 Class 0/I targets, drawn from previous studies, focusing on protostars with high-quality Spitzer-IRS 5-40μm spectroscopy (summarized by Lahuis et al. 2006 c2d Spectroscopy Explanatory Supplement; Pasadena, CA: Spitzer Science Center), and UV, optical, infrared, and submillimeter complementary data. These objects are selected from some of the nearest and best-studied molecular clouds: Taurus (140pc; 6 targets), Ophiuchus (125pc; 7 targets), Perseus (230-250pc; 7 targets), R Corona Australis (130pc; 3 targets), Serpens (429pc; 2 targets), Chamaeleon (178pc, 1 target), and 4 additional isolated cores. PACS is a 5*5 array of 9.4''*9.4'' spatial pixels (spaxels) covering the spectral range from 50 to 210μm with λ/Δλ~1000-3000, divided into four segments, covering λ~50-75, 70-105, 100-145, and 140-210μm. The PACS spatial resolution ranges from ~9'' at the shortest wavelengths (50μm) to ~18'' at the longest (210μm), corresponding to 1000-4500AU at the distances of most sources. The nominal pointing rms of the telescope is 2''. For the DIGIT embedded protostars sample we utilized the full range of PACS (50-210μm) in two linked, pointed, chop/nod rangescans: a blue scan covering 50-75 and 100-150μm (SED B2A+short R1); and a red scan covering 70-105 and 140-210μm (SED B2B+long R1). We used 6 and 4 range repetitions respectively, for integration times of 6853 and 9088s (a total of ~16000s per target for the entire 50-210μm scan). Excluding overhead, 50% of the integration time is spent on source and 50% on sky. Thus the effective on-source integration times are 3088 and 4180s, for the blue and red scans, respectively. The total on-source integration time to achieve the entire 50-210μm scan is then 7268s. Most (21 of 33) disk sources were observed with the same procedure as the embedded objects. The other 12 sources have only partial spectral coverage: 8 Herbig Ae/Be sources (HD35187, HD203024, HD245906, HD142666, HD144432, HD141569, HD98922, and HD150193) and 4 T Tauri sources (HT Lup, RU Lup, RY Lup, and RNO90) were observed using only the blue scans (i.e., achieving a wavelength coverage only from SED B2A+short R1, 100-150μm). 9 of these 12 sources (all except HD35187, HD203024, and HD245906) were observed in a further limited wavelength range (60-72+120-134μm; referred to as "forsterite only" scans for their focus on the 69μm forsterite dust feature). The FU Orionis Objects Surveyed with Herschel (FOOSH) program consisted of 21hrs of Herschel observing time: V1057Cyg, V1331Cyg, V1515Cyg, V1735Cyg, and FUOri were observed as part of FOOSH. For the FOOSH sample we again utilized the full range of PACS (50-210μm) in two linked, pointed, chop/nod rangescans: a blue scan covering 50-75 and 100-150μm (SED B2A+short R1); and a red scan covering 70-105 and 140-210μm (SED B2B+long R1). We used 6 and 4 range repetitions respectively, for integration times of 3530 and 4620s (a total of ~8000s per target and off-positions combined, for the entire 50-210μm scan; the on-source integration time is ~3000s). The telescope sky background was subtracted using two nod positions 6' from the source. The Spectral and Photometric Imaging REceiver (SPIRE; 194-670μm)/Fourier Transform Spectrometer (FTS) data were taken in a single pointing with sparse image sampling, high spectral resolution mode, over 1hr of integration time. The spectrum is divided into two orders covering the spectral ranges 194-325μm ("SSW"; Spectrograph Short Wavelengths) and 320-690μm ("SLW"; Spectrograph Long Wavelengths), with a resolution, Δv of 1.44GHz and resolving power, λ/Δλ~300-800, increasing at shorter wavelengths. The sample of 31 COPS (CO in ProtoStars) protostars observed with SPIRE-FTS includes 25 sources from the DIGIT and 6 from the WISH (Water in Star-forming regions with Herschel, PI: E. van Dischoek; van Dishoeck et al. 2011PASP..123..138V; see also Nisini et al. 2010A&A...518L.120N; Kristensen et al. 2012A&A...542A...8K; Karska et al. 2013A&A...552A.141K; Wampfler et al. 2013A&A...552A..56W) key programs. A nearly identical sample was observed in COJ=16->15 with HIFI (PI: L. Kristensen) and is presented in L. Kristensen et al. 2016, (in preparation). This data set (COPS: SPIRE-FTS) is analyzed in a forthcoming paper (J. Green et al. 2016, in preparation). The SPIRE beamsize ranges from 17'' to 40'', equivalent to physical sizes of ~2000-10000AU at the distances of the COPS sources. The COPS SPIRE-FTS data were observed identically to the FOOSH SPIRE data, in a single pointing with sparse image sampling, high spectral resolution, in 1hr of integration time per source, with one exception: the IRS 44/46 data were observed in medium image sampling (e.g., complete spatial coverage within the inner 2 rings of spaxels), in 1.5hr, in order to better distinguish IRS44 (the comparatively brighter IR source; Green et al. 2013ApJ...770..123G, J. Green et al. 2016, in preparation) from IRS46. (2 data files).

  20. Chandra Reviews Black Hole Musical: Epic But Off-Key

    NASA Astrophysics Data System (ADS)

    2006-10-01

    A gigantic sonic boom generated by a supermassive black hole has been found with NASA's Chandra X-ray Observatory, along with evidence for a cacophony of deep sound. This discovery was made by using data from the longest X-ray observation ever of M87, a nearby giant elliptical galaxy. M87 is centrally located in the Virgo cluster of galaxies and is known to harbor one of the Universe's most massive black holes. Scientists detected loops and rings in the hot, X-ray emitting gas that permeates the cluster and surrounds the galaxy. These loops provide evidence for periodic eruptions that occurred near the supermassive black hole, and that generate changes in pressure, or pressure waves, in the cluster gas that manifested themselves as sound. Chandra Low Energy X-ray Images of M87 Chandra Low Energy X-ray Images of M87 "We can tell that many deep and different sounds have been rumbling through this cluster for most of the lifetime of the Universe," said William Forman of the Harvard-Smithsonian Center for Astrophysics (CfA). The outbursts in M87, which happen every few million years, prevent the huge reservoir of gas in the cluster from cooling and forming many new stars. Without these outbursts and resultant heating, M87 would not be the elliptical galaxy it is today. "If this black hole wasn't making all of this noise, M87 could have been a completely different type of galaxy," said team member Paul Nulsen, also of the CfA, "possibly a huge spiral galaxy about 30 times brighter than the Milky Way." Chandra High Energy X-ray Image of M87 Chandra High Energy X-ray Image of M87 The outbursts result when material falls toward the black hole. While most of the matter is swallowed, some of it was violently ejected in jets. These jets are launched from regions close to the black hole (neither light nor sound can escape from the black hole itself) and push into the cluster's gas, generating cavities and sound which then propagate outwards. Chandra's M87 observations also give the strongest evidence to date of a shock wave produced by the supermassive black hole, a clear sign of a powerful explosion. This shock wave appears as a nearly circular ring of high-energy X-rays that is 85,000 light years in diameter and centered on the black hole. Other remarkable features are seen in M87 for the first time including narrow filaments of X-ray emission -- some over 100,000 light years long -- that may be due hot gas trapped by magnetic fields. Also, a large, previously unknown cavity in the hot gas, created by an outburst from the black hole about 70 million years ago, is seen in the X-ray image. Animation Showing a Supermassive Black Hole Outburst in M87 Animation Showing a Supermassive Black Hole Outburst in M87 "We can explain some of what we see, like the shock wave, with textbook physics," said team member Christine Jones, also of the CfA. "However, other details, like the filaments we find, leave us scratching our heads." Sound has been detected from another black hole in the Perseus cluster, which was calculated to have a note some 57 octaves below middle C. However, the sound in M87 appears to be more discordant and complex. A series of unevenly spaced loops in the hot gas gives evidence for small outbursts from the black hole about every 6 million years. These loops imply the presence of sound waves, not visible in the Chandra image, which are about 56 octaves below middle C. The presence of the large cavity and the sonic boom gives evidence for even deeper notes -- 58 or 59 octaves below middle C -- powered by large outbursts. These new results on M87 were presented at the High-Energy Astrophysics Division meeting being held in San Francisco. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  1. A Sparse-Sampled Redshift Survey of IRAS Galaxies - Part One - the Convergence of the IRAS Dipole and the Origin of Our Motion with Respect to the Microwave Background

    NASA Astrophysics Data System (ADS)

    Rowan-Robinson, M.; Lawrence, A.; Saunders, W.; Crawford, J.; Ellis, R.; Frenk, C. S.; Parry, I.; Xiaoyang, X.; Allington-Smith, J.; Efstathiou, G.; Kaiser, N.

    1990-11-01

    We have carried out a sparse-sampled redshift survey of IRAS Point Source Catalog 60-micron sources, at a sampling rate of one in six. For a sample of 2163 sources with S>=0.6 Jy at |b|>10^deg^, we have redshifts for 2093, or 97 per cent. Of the sources, which were selected from the IRAS 60-micron Galaxy Catalogue of Rowan-Robinson et al., 1.2 per cent turned out to be galactic and 0.4 per cent are blank fields. Our survey reaches significantly deeper than the all-sky IRAS galaxy redshift survey of Strauss & Davis, which is complete to 1.94 Jy. We have used these data to investigate the convergence of the IRAS dipole. We find that the peculiar acceleration acting on the Local Group, as measured with IRAS galaxies, is generated within 100h^-1^ Mpc. For d<50h^-1^ Mpc, our estimate of the acceleration generated agrees with that of Strauss & Davis. However, we find that a non-negligible acceleration is generated between 50 and 100h^-1^ Mpc. The direction of the acceleration is consistent, within the uncertainties, with that of the microwave background dipole. The amplitude implies a value for the cosmological density parameter {OMEGA}_0_ = 0.7 (+0.3,-0.2) if the IRAS galaxy distribution traces that of the total mass. If {OMEGA}_0_ = 1, a bias parameter b = 1.23+/-0.23 is inferred. The convergence properties of the dipole are similar to those obtained from random locations in N-body simulations of a cold dark matter universe. Assuming that the IRAS galaxies trace the mass distribution, we predict a peculiar velocity for each galaxy in the survey, by calculating the dipole at each galaxy position, initially assuming distances based on velocities. We then construct a simple analytical model for this flow field, involving 12 massive clusters (including the prominent superclusters within 150h^-1^Mpc) correcting galaxy distances and peculiar velocities in an iterative procedure. The model clusters have large haloes in which the density is proportional to r^-1.6^, extending to at least 30h^-1^Mpc. The model gives an excellent fit for the peculiar velocity of the Local Group inferred from the microwave background dipole and does not require the existence of a hypothetical 'Great Attractor' hidden behind the galactic plane, additional to the Hydra, Centaurus and Pave clusters, and their haloes. The haloes of the prominent nearby clusters merge with each other, so that Virgo, Eridanus-Fornax, Centaurus, Hydra, Pavo and Perseus-Pisces form a single large over-density, which plays a major role in explaining both our motion with respect to the microwave background and the IRAS north-south source-count anisotropy.

  2. Integrated study of Mediterranean deep canyons: Novel results and future challenges

    NASA Astrophysics Data System (ADS)

    Canals, M.; Company, J. B.; Martín, D.; Sànchez-Vidal, A.; Ramírez-Llodrà, E.

    2013-11-01

    This volume compiles a number of scientific papers resulting from a sustained multidisciplinary research effort of the deep-sea ecosystem in the Mediterranean Sea. This started 20 years ago and peaked over the last few years thanks to a number of Spanish and European projects such as PROMETEO, DOS MARES, REDECO, GRACCIE, HERMES, HERMIONE and PERSEUS, amongst others. The geographic focus of most papers is on the NW Mediterranean Sea including the Western Gulf of Lion and the North Catalan margin, with a special attention to submarine canyons, in particular the Blanes and Cap de Creus canyons. This introductory article to the Progress in Oceanography special issue on “Mediterranean deep canyons” provides background information needed to better understand the individual papers forming the volume, comments previous reference papers related to the main topics here addressed, and finally highlights the existing relationships between atmospheric forcing, oceanographic processes, seafloor physiography, ecosystem response, and litter and chemical pollution. This article also aims at constituting a sort of glue, in terms of existing knowledge and concepts and novel findings, linking together the other twenty papers in the volume, also including some illustrative figures. The main driving ideas behind this special issue, particularly fitting to the study area of the NW Mediterranean Sea, could be summarized as follows: (i) the atmosphere and the deep-sea ecosystem are connected through oceanographic processes originating in the coastal area and the ocean surface, which get activated at the occasion of high-energy events leading to fast transfers of matter and energy to the deep; (ii) shelf indented submarine canyons play a pivotal role in such transfers, which involve dense water, sedimentary particles, organic matter, litter and chemical pollutants; (iii) lateral inputs (advection) from the upper continental margin contributes significantly to the formation of intermediate and deep-water masses, and the associated fluxes of matter and energy are a main driver of deep-sea ecosystems; (iv) deep-sea organisms are highly sensitive to the arrival of external inputs, starting from the lowest food web levels and propagating upwards as time passes, which also relies upon the biology, nutritional needs and life expectancy of each individual species; and (v) innovative knowledge gained through such multidisciplinary research is of the utmost significance for an improved management of deep-sea living resources, such as the highly priced red shrimp Aristeus antennatus, for which a pilot management plan largely based in the findings described here and in related articles has been recently published (BOE, 2013). The researchers involved in such challenging endeavour have learnt tremendously from the results obtained so far and from each other, but are fully aware that there are still many unsolved questions. That is why this introductory article also includes “Future challenges” both in the title and as an individual section at the end, to express that there is still a long way to go.

  3. Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Orlando, E.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vidal, M.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Hα emission with our free-free map shows residuals that correlate with dust optical depth, consistent with a fraction (≈30%) of Hα having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in Iν) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H II regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5-20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure. We argue that nearly all the emission at 40deg > l > -90deg is part of the Loop I structure, and show that the emission extends much further in to the southern Galactic hemisphere than previously recognised, giving Loop I an ovoid rather than circular outline. However, it does not continue as far as the "Fermi bubble/microwave haze", making it less probable that these are part of the same structure. We identify a number of new faint features in the polarized sky, including a dearth of polarized synchrotron emission directly correlated with a narrow, roughly 20deg long filament seen in Hα at high Galactic latitude. Finally, we look for evidence of polarized AME, however many AME regions are significantly contaminated by polarized synchrotron emission, and we find a 2σ upper limit of 1.6% in the Perseus region.

  4. Planck 2015 results: XXV. Diffuse low-frequency Galactic foregrounds

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; ...

    2016-09-20

    In this paper, we discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Hα emission with our free-free map shows residuals that correlate with dust optical depth, consistent withmore » a fraction (≈30%) of Hα having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in I ν) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H ii regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5–20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure. We argue that nearly all the emission at 40deg > l > -90deg is part of the Loop I structure, and show that the emission extends much further in to the southern Galactic hemisphere than previously recognised, giving Loop I an ovoid rather than circular outline. However, it does not continue as far as the “Fermi bubble/microwave haze”, making it less probable that these are part of the same structure. We identify a number of new faint features in the polarized sky, including a dearth of polarized synchrotron emission directly correlated with a narrow, roughly 20deg long filament seen in Hα at high Galactic latitude. In conclusion, we look for evidence of polarized AME, however many AME regions are significantly contaminated by polarized synchrotron emission, and we find a 2σ upper limit of 1.6% in the Perseus region.« less

  5. The Bolocam Galactic Plane Survey: Survey Description and Data Reduction

    NASA Astrophysics Data System (ADS)

    Aguirre, James E.; Ginsburg, Adam G.; Dunham, Miranda K.; Drosback, Meredith M.; Bally, John; Battersby, Cara; Bradley, Eric Todd; Cyganowski, Claudia; Dowell, Darren; Evans, Neal J., II; Glenn, Jason; Harvey, Paul; Rosolowsky, Erik; Stringfellow, Guy S.; Walawender, Josh; Williams, Jonathan P.

    2011-01-01

    We present the Bolocam Galactic Plane Survey (BGPS), a 1.1 mm continuum survey at 33'' effective resolution of 170 deg2 of the Galactic Plane visible from the northern hemisphere. The BGPS is one of the first large area, systematic surveys of the Galactic Plane in the millimeter continuum without pre-selected targets. The survey is contiguous over the range -10.5 <= l <= 90.5, |b| <= 0.5. Toward the Cygnus X spiral arm, the coverage was flared to |b| <= 1.5 for 75.5 <= l <= 87.5. In addition, cross-cuts to |b| <= 1.5 were made at l= 3, 15, 30, and 31. The total area of this section is 133 deg2. With the exception of the increase in latitude, no pre-selection criteria were applied to the coverage in this region. In addition to the contiguous region, four targeted regions in the outer Galaxy were observed: IC1396 (9 deg2, 97.5 <= l <= 100.5, 2.25 <= b <= 5.25), a region toward the Perseus Arm (4 deg2 centered on l = 111, b = 0 near NGC 7538), W3/4/5 (18 deg2, 132.5 <= l <= 138.5), and Gem OB1 (6 deg2, 187.5 <= l <= 193.5). The survey has detected approximately 8400 clumps over the entire area to a limiting non-uniform 1σ noise level in the range 11-53 mJy beam-1 in the inner Galaxy. The BGPS source catalog is presented in a previously published companion paper. This paper details the survey observations and data reduction methods for the images. We discuss in detail the determination of astrometric and flux density calibration uncertainties and compare our results to the literature. Data processing algorithms that separate astronomical signals from time-variable atmospheric fluctuations in the data timestream are presented. These algorithms reproduce the structure of the astronomical sky over a limited range of angular scales and produce artifacts in the vicinity of bright sources. Based on simulations, we find that extended emission on scales larger than about 5farcm9 is nearly completely attenuated (>90%) and the linear scale at which the attenuation reaches 50% is 3farcm8. Comparison with other millimeter-wave data sets implies a possible systematic offset in flux calibration, for which no cause has been discovered. This presentation serves as a companion and guide to the public data release (http://irsa.ipac.caltech.edu/Missions/bolocam.html) through NASA's Infrared Processing and Analysis Center (IPAC) Infrared Science Archive (IRSA). New data releases will be provided through IPAC-IRSA with any future improvements in the reduction. The BGPS provides a complementary long-wavelength spectral band for the ongoing ATLASGAL and Herschel-SPIRE surveys, and an important database and context for imminent observations with SCUBA-2 and ALMA.

  6. NW Black Sea ecosystems recovery from former severe seasonal hypoxia and effect on macrofauna

    NASA Astrophysics Data System (ADS)

    Gomoiu, Marian-Traian; Begun, Tatiana; Teaca, Adrian

    2013-04-01

    The benthos researches carried out in the last decade on the NW Black Sea shelf established the transitional process of the bottom communities, from the severe disturbed state resulted from seasonal hypoxia of high eutrophication from 1970-2000 period towards a new state. The authors, with their expertise achieved in the framework of several national and EU FP6&7 projects (SESAME, HYPOX, PERSEUS), analyzing more than 600 quantitative samples, consider the benthic associations influenced mainly by the Danube River discharge being characterized as follows: • decrease in the specific diversity (e.g. Mollusca - from 170 species in the 1960s - 1970s to 70 species in the present in NW Black Sea); • loss or diminishing of some habitat areas (typical habitat with Zostera, Phyllophora, Cystoseira, Barnea, Donacilla etc.); • increase in the numeric abundance and biomass of some specific benthic populations (Melinna, Alitta, Dipolydora etc.); • loss or reduction of some specific populations (Abra prismatica, Spisula subtruncata, Chamelia gallina etc.); • replacement of some strong and quite large benthic populations by metapopulation of small extension; • diminution of the biofilter strength by reduction of the filter - feeder populations; • qualitative and quantitative worsening of benthic biological resources, especially molluscs - forms playing an important ecological part and with great economic importance (mussel Mytilus galloprovincialis, soft-shell clam Mya arenaria, veined rapa whelk Rapana venosa); • thriving of opportunistic forms (especially worms populations causing sediment bioturbation - Melinna palmata, Heteromastus filiformis) and, temporarily, some exotic species recently pervading Black Sea (Mya, Anadara, Rapana etc.); • great quantitative fluctuations of all benthic populations; • occurrence of some weak sing of ecosystem recovery. However, recovery of the benthic ecosystem appears to be less certain although an improvement on regeneration of macrophytobenthos and macrozoobenthos is suggested by the available data. The process of recovery of the Black Sea will take a long time and will require the implementation of all measures envisaged by the Black Sea Strategic Action Plan as well as some future provisions. The process will be further complicated by the fact that scientific knowledge and information on many processes and phenomena, which are needed for policy and decision making, are missing. The opinion of authors concerning the future conservation of the Black Sea biodiversity in the context of climate change and the actual state of socio-economic system of the Black Sea Region (environment-related science and policy) is that to have in mind the following key aspects: • facts are uncertain (lack of knowledge of the impacts of some mitigation and adaptation measures on biodiversity as a whole and some habitats or taxa in particular and the transfer of "best practices" should be undertaken with caution in order to ensure their applicability to a new situation); • natural and economic values in dispute, • stakes high and decisions urgent. Keywords: Black Sea, benthos, ecological state.

  7. Planck 2015 results: XXV. Diffuse low-frequency Galactic foregrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.

    In this paper, we discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Hα emission with our free-free map shows residuals that correlate with dust optical depth, consistent withmore » a fraction (≈30%) of Hα having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in I ν) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H ii regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5–20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure. We argue that nearly all the emission at 40deg > l > -90deg is part of the Loop I structure, and show that the emission extends much further in to the southern Galactic hemisphere than previously recognised, giving Loop I an ovoid rather than circular outline. However, it does not continue as far as the “Fermi bubble/microwave haze”, making it less probable that these are part of the same structure. We identify a number of new faint features in the polarized sky, including a dearth of polarized synchrotron emission directly correlated with a narrow, roughly 20deg long filament seen in Hα at high Galactic latitude. In conclusion, we look for evidence of polarized AME, however many AME regions are significantly contaminated by polarized synchrotron emission, and we find a 2σ upper limit of 1.6% in the Perseus region.« less

  8. NASA's Helios Prototype aircraft taking off from the Pacific Missile Range Facility, Kauai, Hawaii,

    NASA Technical Reports Server (NTRS)

    2001-01-01

    As a follow-on to the Centurion (and earlier Pathfinder and Pathfinder-Plus) aircraft, the solar-powered Helios Prototype is the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions in the stratosphere. Developed by AeroVironment, Inc., of Monrovia, California, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the unique craft is intended to demonstrate two key missions: the ability to reach and sustain horizontal flight at 100,000 feet altitude on a single-day flight in 2001, and to maintain flight above 50,000 feet altitude for at least four days in 2003, with the aid of a regenerative fuel cell-based energy storage system now in development. Both of these missions will be powered by electricity derived from non-polluting solar energy. The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at NASA's Dryden Flight Research Center in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. The remotely piloted, electrically powered Helios Prototype went aloft on its maiden low-altitude checkout flight Sept. 8, 1999, over Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center in the Southern California desert. The initial flight series was flown on battery power as a risk-reduction measure. In all, six flights were flown in the Helios Protoype's initial development series. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved aerodynamic efficiency, allowing the Helios Prototype to fly higher, longer and with a larger payload than the smaller craft. In addition, project engineers added a differential Global Positioning Satellite (GPS) system to improve navigation, an extensive turbulence monitoring system payload to record structural loads on the aircraft both in the air and on the ground, and radiator plates to assist in cooling the avionics at high altitudes where there is little air to dissipate heat. During 2000, more than 65,000 solar cells in 1,800 groups were mounted on the upper surface of Helios' wing. Produced by SunPower, Inc., these bi-facial silicon cells are about 19 percent efficient in the flight regime in which the helios is designed to operate, converting about 19 percent of the solar energy they receive into electrical current. The entire array is capable of producing a maximum output of about 35 kw at high noon on a summer day. The mission to reach and sustain flight at 100,000 feet in 2001 requires use of all 14 motors and minimal ballast to save weight, with the aircraft weighing in at only a little more than 1,600 lbs. The four-day mission above 50,000 feet envisioned for the Helios Prototype in 2003will see only eight motors powering the craft and the addition of the regenerative energy storage system now in development. The system will increase the Helios Prototype's flight weight to a little over 2,000 lbs. Fewer motors are needed for the long-endurance mission due to the lesser altitude requirements, and the excess electrical energy generated by the solar arrays during the daytime will be diverted to the hydrogen-oxygen fuel cell energy storage system, which will release the electricity to power the Helios after dark. With other system reliability improvements, production versions of the Helios are expected to fly missions lasting months at a time, becoming true 'atmospheric satellites.'

  9. The Helios Prototype aircraft during initial climb-out to the west over the Pacific Ocean.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    As a follow-on to the Centurion (and earlier Pathfinder and Pathfinder-Plus) aircraft, the solar-powered Helios Prototype is the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions in the stratosphere. Developed by AeroVironment, Inc., of Monrovia, California, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the unique craft is intended to demonstrate two key missions: the ability to reach and sustain horizontal flight at 100,000 feet altitude on a single-day flight in 2001, and to maintain flight above 50,000 feet altitude for at least four days in 2003, with the aid of a regenerative fuel cell-based energy storage system now in development. Both of these missions will be powered by electricity derived from non-polluting solar energy. The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at NASA's Dryden Flight Research Center in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. The remotely piloted, electrically powered Helios Prototype went aloft on its maiden low-altitude checkout flight Sept. 8, 1999, over Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center in the Southern California desert. The initial flight series was flown on battery power as a risk-reduction measure. In all, six flights were flown in the Helios Protoype's initial development series. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved aerodynamic efficiency, allowing the Helios Prototype to fly higher, longer and with a larger payload than the smaller craft. In addition, project engineers added a differential Global Positioning Satellite (GPS) system to improve navigation, an extensive turbulence monitoring system payload to record structural loads on the aircraft both in the air and on the ground, and radiator plates to assist in cooling the avionics at high altitudes where there is little air to dissipate heat. During 2000, more than 65,000 solar cells in 1,800 groups were mounted on the upper surface of Helios' wing. Produced by SunPower, Inc., these bi-facial silicon cells are about 19 percent efficient in the flight regime in which the helios is designed to operate, converting about 19 percent of the solar energy they receive into electrical current. The entire array is capable of producing a maximum output of about 35 kw at high noon on a summer day. The mission to reach and sustain flight at 100,000 feet in 2001 requires use of all 14 motors and minimal ballast to save weight, with the aircraft weighing in at only a little more than 1,600 lbs. The four-day mission above 50,000 feet envisioned for the Helios Prototype in 2003will see only eight motors powering the craft and the addition of the regenerative energy storage system now in development. The system will increase the Helios Prototype's flight weight to a little over 2,000 lbs. Fewer motors are needed for the long-endurance mission due to the lesser altitude requirements, and the excess electrical energy generated by the solar arrays during the daytime will be diverted to the hydrogen-oxygen fuel cell energy storage system, which will release the electricity to power the Helios after dark. With other system reliability improvements, production versions of the Helios are expected to fly missions lasting months at a time, becoming true 'atmospheric satellites.'

  10. The Helios Prototype aircraft in a northerly climb over Niihau Island, Hawaii, at about 8,000 feet a

    NASA Technical Reports Server (NTRS)

    2001-01-01

    As a follow-on to the Centurion (and earlier Pathfinder and Pathfinder-Plus) aircraft, the solar-powered Helios Prototype is the latest and largest example of a slow-flying ultralight flying wing designed for long-duration, high-altitude Earth science or telecommunications relay missions in the stratosphere. Developed by AeroVironment, Inc., of Monrovia, California, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the unique craft is intended to demonstrate two key missions: the ability to reach and sustain horizontal flight at 100,000 feet altitude on a single-day flight in 2001, and to maintain flight above 50,000 feet altitude for at least four days in 2003, with the aid of a regenerative fuel cell-based energy storage system now in development. Both of these missions will be powered by electricity derived from non-polluting solar energy. The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at NASA's Dryden Flight Research Center in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than the wingspans of either the Boeing 747 jetliner or Lockheed C-5 transport aircraft. The remotely piloted, electrically powered Helios Prototype went aloft on its maiden low-altitude checkout flight Sept. 8, 1999, over Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center in the Southern California desert. The initial flight series was flown on battery power as a risk-reduction measure. In all, six flights were flown in the Helios Protoype's initial development series. In upgrading the Centurion to the Helios Prototype configuration, AeroVironment added a sixth wing section and a fifth landing gear pod, among other improvements. The additional wingspan increased the area available for installation of solar cells and improved aerodynamic efficiency, allowing the Helios Prototype to fly higher, longer and with a larger payload than the smaller craft. In addition, project engineers added a differential Global Positioning Satellite (GPS) system to improve navigation, an extensive turbulence monitoring system payload to record structural loads on the aircraft both in the air and on the ground, and radiator plates to assist in cooling the avionics at high altitudes where there is little air to dissipate heat. During 2000, more than 65,000 solar cells in 1,800 groups were mounted on the upper surface of Helios' wing. Produced by SunPower, Inc., these bi-facial silicon cells are about 19 percent efficient in the flight regime in which the helios is designed to operate, converting about 19 percent of the solar energy they receive into electrical current. The entire array is capable of producing a maximum output of about 35 kw at high noon on a summer day. The mission to reach and sustain flight at 100,000 feet in 2001 requires use of all 14 motors and minimal ballast to save weight, with the aircraft weighing in at only a little more than 1,600 lbs. The four-day mission above 50,000 feet envisioned for the Helios Prototype in 2003will see only eight motors powering the craft and the addition of the regenerative energy storage system now in development. The system will increase the Helios Prototype's flight weight to a little over 2,000 lbs. Fewer motors are needed for the long-endurance mission due to the lesser altitude requirements, and the excess electrical energy generated by the solar arrays during the daytime will be diverted to the hydrogen-oxygen fuel cell energy storage system, which will release the electricity to power the Helios after dark. With other system reliability improvements, production versions of the Helios are expected to fly missions lasting months at a time, becoming true 'atmospheric satellites.'

  11. Cosmic rays, gas and dust in nearby anticentre clouds. I. CO-to-H2 conversion factors and dust opacities

    NASA Astrophysics Data System (ADS)

    Remy, Q.; Grenier, I. A.; Marshall, D. J.; Casandjian, J. M.

    2017-05-01

    Aims: We aim to explore the capabilities of dust emission and γ rays for probing the properties of the interstellar medium in the nearby anti-centre region, using γ-ray observations with the Fermi Large Area Telescope (LAT), and the thermal dust optical depth inferred from Planck and IRAS observations. We also aim to study massive star-forming clouds including the well known Taurus, Auriga, Perseus, and California molecular clouds, as well as a more diffuse structure which we refer to as Cetus. In particular, we aim at quantifying potential variations in cosmic-ray density and dust properties per gas nucleon across the different gas phases and different clouds, and at measuring the CO-to-H2 conversion factor, XCO, in different environments. Methods: We have separated six nearby anti-centre clouds that are coherent in velocities and distances, from the Galactic-disc background in H I 21-cm and 12CO 2.6-mm line emission. We have jointly modelled the γ-ray intensity recorded between 0.4 and 100 GeV, and the dust optical depth τ353 at 353 GHz as a combination of H I-bright, CO-bright, and ionised gas components. The complementary information from dust emission and γ rays was used to reveal the gas not seen, or poorly traced, by H I, free-free, and 12CO emissions, namely (I) the opaque H iand diffuse H2 present in the Dark Neutral Medium at the atomic-molecular transition, and (II) the dense H2 to be added where 12CO lines saturate. Results: The measured interstellar γ-ray spectra support a uniform penetration of the cosmic rays with energies above a few GeV through the clouds, from the atomic envelopes to the 12CO-bright cores, and with a small ± 9% cloud-to-cloud dispersion in particle flux. We detect the ionised gas from the H iiregion NGC 1499 in the dust and γ-ray emissions and measure its mean electron density and temperature. We find a gradual increase in grain opacity as the gas (atomic or molecular) becomes more dense. The increase reaches a factor of four to six in the cold molecular regions that are well shielded from stellar radiation. Consequently, the XCO factor derived from dust is systematically larger by 30% to 130% than the γ-ray estimate. We also evaluate the average γ-ray XCO factor for each cloud, and find that XCO tends to decrease from diffuse to more compact molecular clouds, as expected from theory. We find XCO factors in the anti-centre clouds close to or below 1020 cm-2 K-1 km-1 s, in agreement with other estimates in the solar neighbourhood. Together, they confirm the long-standing unexplained discrepancy, by a factor of two, between the mean XCO values measured at parsec scales in nearby clouds and those obtained at kiloparsec scale in the Galaxy. Our results also highlight large quantitative discrepancies in 12CO intensities between simulations and observations at low molecular gas densities.

  12. The Structure of Dark Molecular Gas in the Galaxy. I. A Pilot Survey for 18 cm OH Emission Toward l≈ 105°, b≈ +1°

    NASA Astrophysics Data System (ADS)

    Allen, Ronald J.; Hogg, David E.; Engelke, Philip D.

    2015-04-01

    We report the first results from a survey for 1665, 1667, and 1720 MHz OH emission over a small region of the Outer Galaxy centered at l≈ 105\\buildrel{\\circ}\\over{.} 0,b≈ +1\\buildrel{\\circ}\\over{.} 0. This sparse, high-sensitivity survey ({Δ }{{T}A}≈ {Δ }{{T}mb}≈ 3.0-3.5 mK rms in 0.55 km s-1 channels), was carried out as a pilot project with the Robert C. Byrd Green Bank Telescope (GBT) (FWHM ≈ 7\\buildrel{ \\prime}\\over{.} 6 ) on a 3 × 9 grid at 0\\buildrel{\\circ}\\over{.} 5 spacing. The pointings were chosen to correspond with those of the existing 12CO(1-0) CfA survey of the Galaxy done at a similar resolution (8.‧4). With 2 hr integrations, 1667 MHz OH emission was detected with the GBT at ≳ 21 of the 27 survey positions (≥slant 78% ), confirming the ubiquity of molecular gas in the ISM as traced by this spectral line. With few exceptions, the main OH lines at 1665 and 1667 MHz appear in the ratio of 5:9 characteristic of LTE at our sensitivity levels. No OH absorption features are recorded in the area of the present survey, in agreement with the low levels of continuum background emission in this direction. At each pointing the OH emission appears in several components extending over a wide range of radial velocity and coinciding with well-known features of Galactic structure such as the Local Arm and the Perseus Arm. In contrast, little CO emission is seen in the survey area; less than half of the ≳ 50 identified OH spectral features show detectable CO counterparts at the CfA sensitivity levels, and these are generally relatively faint. There are no CO features without corresponding OH emission in our survey. With very few exceptions, peaks in the OH profiles coincide with peaks in the GBT H i spectra (obtained concurrently, FWHM 8.‧9), although the converse is not true. We conclude that main-line OH emission is a promising tracer for the “dark molecular gas” in the Galaxy discovered earlier in far-IR and gamma-ray emission, although further work is needed to establish the quantitative details of the connection. Further aspects of the OH \\Leftrightarrow CO relation are revealed in a scatter plot of CO versus OH line strengths. This plot suggests a rough proportionality between the bright envelope of the CO emission (when present) and level of the accompanying 1667 MHz OH emission. Finally, we note several cases of anomalous OH emission. One survey position shows several narrow OH spectral features which are not well correlated with the H i spectrum; these features have been identified with a nearby known OH-IR star. Also, nine neighboring survey positions show enhanced emission at 1720 MHz, consistent with earlier observations and with models involving extended regions of elevated particle density.

  13. Performance evaluation of a non-hydrostatic regional climate model over the Mediterranean/Black Sea area and climate projections for the XXI century

    NASA Astrophysics Data System (ADS)

    Mercogliano, Paola; Bucchignani, Edoardo; Montesarchio, Myriam; Zollo, Alessandra Lucia

    2013-04-01

    In the framework of the Work Package 4 (Developing integrated tools for environmental assessment) of PERSEUS Project, high resolution climate simulations have been performed, with the aim of furthering knowledge in the field of climate variability at regional scale, its causes and impacts. CMCC is a no profit centre whose aims are the promotion, research coordination and scientific activities in the field of climate changes. In this work, we show results of numerical simulation performed over a very wide area (13W-46E; 29-56N) at spatial resolution of 14 km, which includes the Mediterranean and Black Seas, using the regional climate model COSMO-CLM. It is a non-hydrostatic model for the simulation of atmospheric processes, developed by the DWD-Germany for weather forecast services; successively, the model has been updated by the CLM-Community, in order to develop climatic applications. It is the only documented numerical model system in Europe designed for spatial resolutions down to 1 km with a range of applicability encompassing operational numerical weather prediction, regional climate modelling the dispersion of trace gases and aerosol and idealised studies and applicable in all regions of the world for a wide range of available climate simulations from global climate and NWP models. Different reasons justify the development of a regional model: the first is the increasing number of works in literature asserting that regional models have also the features to provide more detailed description of the climate extremes, that are often more important then their mean values for natural and human systems. The second one is that high resolution modelling shows adequate features to provide information for impact assessment studies. At CMCC, regional climate modelling is a part of an integrated simulation system and it has been used in different European and African projects to provide qualitative and quantitative evaluation of the hydrogeological and public health risks. A simulation covering the period 1971-2000 and driven by ERA40 reanalysis has been performed, in order to assess the capability of the model to reproduce the present climate, with "perfect boundary conditions". A comparison, in terms of 2-metre temperature and precipitation, with EOBS dataset will be shown and discussed, in order to analyze the capabilities in simulating the main features of the observed climate over a wide area, at high spatial resolution. Then, a comparison between the results of COSMO-CLM driven by the global model CMCC-MED (whose atmospheric component is ECHAM5) and by ERA40 will be provided for a characterization of the errors induced by the global model. Finally, climate projections on the examined area for the XXI century, considering the RCP4.5 emission scenario for the future, will be provided. In this work a special emphasis will be issued to the analysis of the capability to reproduce not only the average climate trend but also extremes of the present and future climate, in terms of temperature, precipitation and wind.

  14. 5 CFR 792.216 - Are Federal employees with children who are enrolled in summer programs and part-time programs...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... are enrolled in summer programs and part-time programs eligible for the child care subsidy program... summer programs and part-time programs eligible for the child care subsidy program? Federal employees... enrolled in daytime summer programs and part-time programs such as before and after school programs are...

  15. 5 CFR 792.216 - Are Federal employees with children who are enrolled in summer programs and part-time programs...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... are enrolled in summer programs and part-time programs eligible for the child care subsidy program... summer programs and part-time programs eligible for the child care subsidy program? Federal employees... enrolled in daytime summer programs and part-time programs such as before and after school programs are...

  16. 5 CFR 792.216 - Are Federal employees with children who are enrolled in summer programs and part-time programs...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... are enrolled in summer programs and part-time programs eligible for the child care subsidy program... summer programs and part-time programs eligible for the child care subsidy program? Federal employees... enrolled in daytime summer programs and part-time programs such as before and after school programs are...

  17. Positive youth development programs for adolescents with greater psychosocial needs: evaluation based on program implementers.

    PubMed

    Shek, Daniel T L; Ng, Catalina S M; Law, Moon Y M

    2017-02-01

    As program implementers' views are seldom included in program evaluation and there are few related studies in different Chinese communities, this study examined the perceptions of the program implementers who implemented the Tier 2 Program of the P.A.T.H.S. Program in Hong Kong. The Tier 2 Program was designed to promote the development of adolescents with greater psychosocial needs. In the community-based P.A.T.H.S. Project, 400 program implementers completed a subjective outcome evaluation form (Form D) for program implementers. Consistent with the previous findings, program implementers generally held positive views towards the program, implementers, and program effectiveness and their views towards these three domains did not differ across grades. In line with the hypotheses, perceived program quality and perceived implementer quality predicted program effectiveness. The present findings provided an alternative perspective showing that the Tier 2 Program was well received by the program implementers and they regarded the program to be beneficial to the program participants.

  18. Leisure Today. Leisure Programming: The State of the Art.

    ERIC Educational Resources Information Center

    Busser, James A.; And Others

    1993-01-01

    Nine articles examine current topics in leisure programing, including program design and evaluation, program design through imagery, keys to quality leisure programing, programing with style, total quality program planning, evaluation of leisure programs, programing for older adults, and the intergenerational entrepreneurship demonstration…

  19. 14 CFR 91.1411 - Continuous airworthiness maintenance program use by fractional ownership program manager.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... program use by fractional ownership program manager. 91.1411 Section 91.1411 Aeronautics and Space FEDERAL... airworthiness maintenance program use by fractional ownership program manager. Fractional ownership program... through 91.1443. Any program manager who elects to maintain the program aircraft using a continuous...

  20. DEVELOPMENT OF EMERGING TECHNOLOGIES WITHIN THE SITE PROGRAM

    EPA Science Inventory

    The Site Program is formed by five research programs: the Demonstration Program, the Emerging Technology Program, the Measurement and Monitoring Technology Development Program, the Innovative Technology Program, and the Technology Transfer Program. The Emerging Technology (ET) P...

  1. Enablers and barriers in delivery of a cancer exercise program: the Canadian experience

    PubMed Central

    Mina, D. Santa; Petrella, A.; Currie, K.L.; Bietola, K.; Alibhai, S.M.H.; Trachtenberg, J.; Ritvo, P.; Matthew, A.G.

    2015-01-01

    Background Exercise is an important therapy to improve well-being after a cancer diagnosis. Accordingly, cancer-exercise programs have been developed to enhance clinical care; however, few programs exist in Canada. Expansion of cancer-exercise programming depends on an understanding of the process of program implementation, as well as enablers and barriers to program success. Gaining knowledge from current professionals in cancer-exercise programs could serve to facilitate the necessary understanding. Methods Key personnel from Canadian cancer-exercise programs (n = 14) participated in semistructured interviews about program development and delivery. Results Content analysis revealed 13 categories and 15 subcategories, which were grouped by three organizing domains: Program Implementation, Program Enablers, and Program Barriers. ■ Program Implementation (5 categories, 8 subcategories) included Program Initiation (clinical care extension, research project expansion, program champion), Funding, Participant Intake (avenues of awareness, health and safety assessment), Active Programming (monitoring patient exercise progress, health care practitioner involvement, program composition), and Discharge and Follow-up Plan.■ Program Enablers (4 categories, 4 subcategories) included Patient Participation (personalized care, supportive network, personal control, awareness of benefits), Partnerships, Advocacy and Support, and Program Characteristics.■ Program Barriers (4 categories, 3 subcategories) included Lack of Funding, Lack of Physician Support, Deterrents to Participation (fear and shame, program location, competing interests), and Disease Progression and Treatment. Conclusions Interview results provided insight into the development and delivery of cancer-exercise programs in Canada and could be used to guide future program development and expansion in Canada. PMID:26715869

  2. --No Title--

    Science.gov Websites

    -- OAS Intranet -- Sunday 27 May 2018 Approved Program-Budget 2018 Proposed Program-Budget 2018 Approved Program-Budget 2017 Proposed Program-Budget 2017 Approved Program-Budget 2016 Proposed Program -Budget 2016 Approved Program-Budget 2015 Proposed Program-Budget 2015 Approved Program-Budget 2014

  3. Menu-Driven Solver Of Linear-Programming Problems

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.; Ferencz, D.

    1992-01-01

    Program assists inexperienced user in formulating linear-programming problems. A Linear Program Solver (ALPS) computer program is full-featured LP analysis program. Solves plain linear-programming problems as well as more-complicated mixed-integer and pure-integer programs. Also contains efficient technique for solution of purely binary linear-programming problems. Written entirely in IBM's APL2/PC software, Version 1.01. Packed program contains licensed material, property of IBM (copyright 1988, all rights reserved).

  4. Bystander programs addressing sexual violence on college campuses: A systematic review and meta-analysis of program outcomes and delivery methods.

    PubMed

    Jouriles, Ernest N; Krauss, Alison; Vu, Nicole L; Banyard, Victoria L; McDonald, Renee

    2018-02-06

    This systematic review and meta-analysis evaluates the effectiveness of bystander programs that address sexual violence on college campuses. Program effects on student attitudes/beliefs and bystander behavior were examined. Durability of program outcomes and the influence of program-delivery methods (e.g., facilitator-led programs vs. video, online or poster campaign programs) and program-parameters (e.g., program length) were also evaluated. Twenty-four studies met criteria for inclusion in the meta-analysis, and 207 separate results from these studies were coded. Students who participated in a bystander program, compared to those who had not, had more pro-social attitudes/beliefs about sexual violence and intervening to prevent it, and engaged in more bystander behavior. Program effects diminished over time, but meaningful changes persisted for at least three months following program delivery. Longer programs had greater effects than shorter programs on attitudes/beliefs. Bystander programs can be a valuable addition to colleges' violence prevention efforts.

  5. 75 FR 19185 - Direct and Counter-Cyclical Program and Average Crop Revenue Election Program, Disaster...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... Program, Disaster Assistance Programs, Marketing Assistance Loans and Loan Deficiency Payments Program... Disaster Program (LFP), the Supplemental Revenue Assistance Payments Program (SURE) and the Marketing... losses, unless the loss has already been reported for the Noninsured Crop Disaster Assistance Program...

  6. Educational Programs and Services.

    ERIC Educational Resources Information Center

    American Annals of the Deaf, 1989

    1989-01-01

    Listed are over 1,000 programs for the deaf including preschool through secondary schools and classes in the U.S. and Canada, postsecondary programs, teacher training programs, programs for professional specialists, programs for training interpreters for the deaf, programs for the deaf-blind, the Helen Keller National Center, and programs for…

  7. The MSFC Program Control Development Program

    NASA Technical Reports Server (NTRS)

    1994-01-01

    It is the policy of the Marshall Space Flight Center (MSFC) that employees be given the opportunity to develop their individual skills and realize their full potential consistent with their selected career path and with the overall Center's needs and objectives. The MSFC Program Control Development Program has been designed to assist individuals who have selected Program Control or Program Analyst Program Control as a career path to achieve their ultimate career goals. Individuals selected to participate in the MSFC Program Control Development Program will be provided with development training in the various Program Control functional areas identified in the NASA Program Control Model. The purpose of the MSFC Program Control Development Program is to develop individual skills in the various Program Control functions by on-the-job and classroom instructional training on the various systems, tools, techniques, and processes utilized in these areas.

  8. Environmental Sciences Division annual progress report for period ending September 30, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auerbach, S.I.; Reichle, D.E.

    1982-04-01

    Research programs from the following sections and programs are summarized: aquatic ecology, environmental resources, earth sciences, terrestrial ecology, advanced fossil energy program, toxic substances program, environmental impacts program, biomass, low-level waste research and development program, US DOE low-level waste management program, and waste isolation program.

  9. 38 CFR 41.520 - Major program determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... auditor shall identify the larger Federal programs, which shall be labeled Type A programs. Type A... programs not labeled Type A under paragraph (b)(1) of this section shall be labeled Type B programs. (3... programs as Type A programs. When a Federal program providing loans significantly affects the number or...

  10. A simulation model for wind energy storage systems. Volume 3: Program descriptions

    NASA Technical Reports Server (NTRS)

    Warren, A. W.; Edsinger, R. W.; Burroughs, J. D.

    1977-01-01

    Program descriptions, flow charts, and program listings for the SIMWEST model generation program, the simulation program, the file maintenance program, and the printer plotter program are given. For Vol 2, see .

  11. The contributions and future direction of Program Science in HIV/STI prevention.

    PubMed

    Becker, Marissa; Mishra, Sharmistha; Aral, Sevgi; Bhattacharjee, Parinita; Lorway, Rob; Green, Kalada; Anthony, John; Isac, Shajy; Emmanuel, Faran; Musyoki, Helgar; Lazarus, Lisa; Thompson, Laura H; Cheuk, Eve; Blanchard, James F

    2018-01-01

    Program Science is an iterative, multi-phase research and program framework where programs drive the scientific inquiry, and both program and science are aligned towards a collective goal of improving population health. To achieve this, Program Science involves the systematic application of theoretical and empirical knowledge to optimize the scale, quality and impact of public health programs. Program Science tools and approaches developed for strategic planning, program implementation, and program management and evaluation have been incorporated into HIV and sexually transmitted infection prevention programs in Kenya, Nigeria, India, and the United States. In this paper, we highlight key scientific contributions that emerged from the growing application of Program Science in the field of HIV and STI prevention, and conclude by proposing future directions for Program Science.

  12. 34 CFR 477.1 - What is the State Program Analysis Assistance and Policy Studies Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ANALYSIS ASSISTANCE AND POLICY STUDIES PROGRAM General § 477.1 What is the State Program Analysis Assistance and Policy Studies Program? The State Program Analysis Assistance and Policy Studies Program... 34 Education 3 2011-07-01 2011-07-01 false What is the State Program Analysis Assistance and...

  13. 34 CFR 477.1 - What is the State Program Analysis Assistance and Policy Studies Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ANALYSIS ASSISTANCE AND POLICY STUDIES PROGRAM General § 477.1 What is the State Program Analysis Assistance and Policy Studies Program? The State Program Analysis Assistance and Policy Studies Program... 34 Education 3 2010-07-01 2010-07-01 false What is the State Program Analysis Assistance and...

  14. Implementing reduced-risk integrated pest management in fresh-market cabbage: improved net returns via scouting and timing of effective control.

    PubMed

    Burkness, Eric C; Hutchison, W D

    2008-04-01

    During 1998-2001, field studies were done to assess the efficacy of an integrated pest management (IPM) program using an action threshold and "reduced-risk" insecticides. The IPM program was compared with a conventional grower-based program. Program performance was evaluated based on management of Trichoplusia ni (Hiibner), Pieris (=Artogeia) rapae (L.), and Plutella xylostella (L.), as well as the economic impact of each program on net returns. The action threshold used in the IPM program consisted of 10% plants infested with T. ni larvae, based on previous small-plot experiment station trials. In all years of the study, the IPM program resulted in significantly lower percentages of plants infested than the conventional program or untreated check. The mean reduction in insecticide applications for the IPM program compared with the conventional program was 23.5%, whereas, on average, the costs of the IPM program were 46.0% higher than the conventional program. Pest reduction in the IPM program resulted in an average of 10.5% higher marketable yields than the conventional program. Percentages of marketable heads in the IPM program ranged from 82 to 99% and from 63 to 96% in the conventional program. Mean net returns for the IPM program exceeded the conventional program by $984.20/ha. These results indicated that the IPM program reduced insecticide use overall, even though costs of the IPM program, with either spinosad or indoxacarb, were sometimes higher. Overall, net returns of the IPM program were higher due to active pest scouting, improved application timing, and increases in marketable yield. Given the potential decrease in insecticide applications and increases in net profit resulting from this IPM program, additional analyses should be conducted to quantify the economic risk, or consistency of the results, to fully evaluate the benefits of the IPM program compared with a conventional program.

  15. Ideas for Secondary School Physical Education.

    ERIC Educational Resources Information Center

    Barry, Patricia E., Ed.

    This book contains descriptions of secondary school physical education programs. The programs described fall into the following categories: (1) career/leadership programs, (2) contract/individualized instruction programs, (3) elective physical education programs, (4) motivational programs, (5) outdoor/environmental programs, (6)…

  16. Afghanistan: U.S. Rule of Law and Justice Sector Assistance

    DTIC Science & Technology

    2010-11-09

    Sector Support Program ( JSSP ) and Corrections System Support Program (CSSP); • U.S. Agency for International Development’s (USAID’s) formal and informal...Sector Support Program ( JSSP )........................................................................ 28 Corrections System Support Program (CSSP...programs are the Judicial Sector Support Program ( JSSP ), the Corrections System Support Program (CSSP), the ROL Stabilization (RLS) Program, and the

  17. 76 FR 22603 - Geographic Preference Option for the Procurement of Unprocessed Agricultural Products in Child...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... Program, Special Milk Program for Children, Child and Adult Care Food Program and Summer Food Service... Program, Fresh Fruit and Vegetable Program, Special Milk Program, Child and Adult Care Food Program and... and 10.553, respectively. The Special Milk Program is listed under No. 10.556. The Child and Adult...

  18. A strategy for automatically generating programs in the lucid programming language

    NASA Technical Reports Server (NTRS)

    Johnson, Sally C.

    1987-01-01

    A strategy for automatically generating and verifying simple computer programs is described. The programs are specified by a precondition and a postcondition in predicate calculus. The programs generated are in the Lucid programming language, a high-level, data-flow language known for its attractive mathematical properties and ease of program verification. The Lucid programming is described, and the automatic program generation strategy is described and applied to several example problems.

  19. Human operator identification model and related computer programs

    NASA Technical Reports Server (NTRS)

    Kessler, K. M.; Mohr, J. N.

    1978-01-01

    Four computer programs which provide computational assistance in the analysis of man/machine systems are reported. The programs are: (1) Modified Transfer Function Program (TF); (2) Time Varying Response Program (TVSR); (3) Optimal Simulation Program (TVOPT); and (4) Linear Identification Program (SCIDNT). The TV program converts the time domain state variable system representative to frequency domain transfer function system representation. The TVSR program computes time histories of the input/output responses of the human operator model. The TVOPT program is an optimal simulation program and is similar to TVSR in that it produces time histories of system states associated with an operator in the loop system. The differences between the two programs are presented. The SCIDNT program is an open loop identification code which operates on the simulated data from TVOPT (or TVSR) or real operator data from motion simulators.

  20. Effective Practices for Evaluating Education and Public Outreach Programs

    NASA Astrophysics Data System (ADS)

    Wilkerson, S.

    2013-12-01

    Stephanie Baird Wilkerson, PhD Carol Haden EdD Magnolia Consulting,LLC Education and public outreach (EPO) program developers and providers seeking insights regarding effective practices for evaluating EPO activities programs benefit from understanding why evaluation is critical to the success of EPO activities and programs, what data collection methods are appropriate, and how to effectively communicate and report findings. Based on our extensive experience evaluating EPO programs, we will share lessons learned and examples of how these practices play out in actual evaluation studies. EPO program developers, providers, and evaluators must consider several factors that influence which evaluation designs and data collection methods will be most appropriate, given the nature of EPO programs. Effective evaluation practices of EPO programs take into account a program's phase of development, duration, and budget as well as a program's intended outcomes. EPO programs that are just beginning development will have different evaluation needs and priorities than will well-established programs. Effective evaluation practices consider the 'life' of a program with an evaluation design that supports a program's growth through various phases including development, revision and refinement, and completion. It would be premature and inappropriate to expect the attainment of longer-term outcomes of activities during program development phases or early stages of implementation. During program development, EPO providers should clearly define program outcomes that are feasible and appropriate given a program's scope and expected reach. In many respects, this directly relates to the amount of time, or duration, intended audiences participate in EPO programs. As program duration increases so does the likelihood that the program can achieve longer-term outcomes. When choosing which outcomes are reasonable to impact and measure, program duration should be considered. Effective evaluation practices include selecting appropriate data collection methods given a program's duration and corresponding intended outcomes. Data collection methods for programs of short duration might involve simple evaluation activities, whereas programs of longer duration might involve ongoing data collection measures including longitudinal student surveys, implementation logs, student journals, and student achievement measures. During our presentation, we will share examples from our own experience to illustrate how effective evaluation practices can be applied to various EPO programs based on program duration. Irrespective of duration, we find that EPO program developers and providers want both formative feedback to guide improvements and summative feedback on outcomes. More often than not, evaluation budgets for EPO programs are meager at best, yet come with the same information needs and priorities as programs with larger evaluation budgets. So how do program providers get the information they need given their limited funds for evaluation? We will offer several recommendations for helping EPO program providers work with evaluators to become better-informed consumers of evaluation by maximizing evaluation offerings and minimizing costs. During our presentation we also will share examples of communicating and reporting results for EPO program developers, EPO facilitators and practitioners, and funders.

Top