Science.gov

Sample records for erbium implanted lithium

  1. Doping silicon with erbium by recoil implantation

    NASA Astrophysics Data System (ADS)

    Feklistov, K. V.; Abramkin, D. S.; Obodnikov, V. I.; Popov, V. P.

    2015-08-01

    In attempt to achieve strong surface doping of silicon with erbium, silicon was implanted with 250-keV argon ions through a thin erbium film deposited on the target surface. As a result, erbium recoil atoms were knocked out of the film and incorporated into the silicon substrate. In this way, silicon was doped with erbium atoms to a concentration of 5 × 1020 cm-3 within a depth slightly above 10 nm. For the formation of stable optically active ErO n complexes, oxygen recoil atoms were also incorporated into silicon. During the subsequent heat treatment, about half of the implanted erbium atoms segregated in the surface SiO2 layer. The main fraction of erbium retained in silicon after heat treatments is optically inactive.

  2. Hybrid quantum circuit with implanted erbium ions

    SciTech Connect

    Probst, S.; Rotzinger, H.; Tkalčec, A.; Kukharchyk, N.; Wieck, A. D.; Wünsch, S.; Siegel, M.; Ustinov, A. V.; Bushev, P. A.

    2014-10-20

    We report on hybrid circuit quantum electrodynamics experiments with focused ion beam implanted Er{sup 3+} ions in Y{sub 2}SiO{sub 5} coupled to an array of superconducting lumped element microwave resonators. The Y{sub 2}SiO{sub 5} crystal is divided into several areas with distinct erbium doping concentrations, each coupled to a separate resonator. The coupling strength is varied from 5 MHz to 18.7 MHz, while the linewidth ranges between 50 MHz and 130 MHz. We confirm the paramagnetic properties of the implanted spin ensemble by evaluating the temperature dependence of the coupling. The efficiency of the implantation process is analyzed and the results are compared to a bulk doped Er:Y{sub 2}SiO{sub 5} sample. We demonstrate the integration of these engineered erbium spin ensembles with superconducting circuits.

  3. Er + medium energy ion implantation into lithium niobate

    NASA Astrophysics Data System (ADS)

    Svecova, B.; Nekvindova, P.; Mackova, A.; Oswald, J.; Vacik, J.; Grötzschel, R.; Spirkova, J.

    2009-05-01

    Erbium-doped lithium niobate (Er:LiNbO3) is a prospective photonics component, operating at 1.5 μm, which could find its use chiefly as an optical amplifier or waveguide laser. In this study, we have focused on the properties of the optically active Er:LiNbO3 layers, which are fabricated by medium energy ion implantation under various experimental conditions. Erbium ions were implanted at energies of 330 and 500 keV with fluences of 1.0 × 1015, 2.5 × 1015 and 1.0 × 1016 cm-2 into LiNbO3 single-crystalline cuts of various orientations. The as-implanted samples were annealed in air at 350 °C for 5 h. The depth distribution and diffusion profiles of the implanted Er were measured by Rutherford Backscattering Spectroscopy (RBS) using 2 MeV He+ ions. The projected range RP and projected range straggling ΔRP were calculated employing the SRIM code. The damage distribution and structural changes were described using the RBS/channelling method. Changes of the lithium concentration depth distribution were studied by Neutron Depth Profiling (NDP). The photoluminescence spectra of the samples were measured to determine whether the emission was in the desired region of 1.5 μm. The obtained data made it possible to reveal the relations between the structural changes of erbium-implanted lithium niobate and its luminescence properties important for photonics applications.

  4. Ion implantation of erbium into polycrystalline cadmium telluride

    SciTech Connect

    Ushakov, V. V. Klevkov, Yu. V.; Dravin, V. A.

    2015-05-15

    The specific features of the ion implantation of polycrystalline cadmium telluride with grains 20–1000 μm in dimensions are studied. The choice of erbium is motivated by the possibility of using rare-earth elements as luminescent “probes” in studies of the defect and impurity composition of materials and modification of the composition by various technological treatments. From the microphotoluminescence data, it is found that, with decreasing crystal-grain dimensions, the degree of radiation stability of the material is increased. Microphotoluminescence topography of the samples shows the efficiency of the rare-earth probe in detecting regions with higher impurity and defect concentrations, including regions of intergrain boundaries.

  5. RBS measurement of depth profiles of erbium incorporated into lithium niobate for optical amplifier applications

    NASA Astrophysics Data System (ADS)

    Peřina, Vratislav; Vacík, Jiří; Hnatovicz, Vladimír.; Červená, Jarmila; Kolářová, Pavla; Špirková-Hradilová, Jarmila; Schröfel, Josef

    1998-04-01

    Rutherford Backscattering Spectrometry (RBS) was used for the determination of Er 3+ concentration profiles in locally doped lithium niobate. The doped layers are the basic substrates for the fabrication of optical waveguiding structures which may be utilized as planar optical amplifiers and waveguiding lasers making use of the 4I 13/2 → 4I 15/2 transition in Er 3+, which falls into the third low loss telecommunication window (1.5 μm). We present a new aproach of fabrication of locally doped lithium niobate single crystal wafers. The doping occurs under moderate temperature (˜350°C) from reaction melts containing ca. 10 wt% of erbium nitrate. The erbium content in particular cuts varies dramatically between ca. 3 at.% in the Y- and Z-cut up to 20 at.% in the X-cuts. Erbium ions are localized in a 50 nm thick layer, but they can be diffused deeper into the substrate by subsequent annealing at 350°C. The Er concentrations of the samples doped at moderated temperature are compared with the Er concentrations of the samples doped by a standard high-temperature diffusion (>1000°C) from evaporated metal layers. To utilize the Er doped substrates in integrated optic circuits high quality waveguides must be subsequently fabricated. For that we used the Annealed Proton Exchange (APE) method with adipic acid. For the actual fabrication of the waveguides the following order of operation should be kept: the erbium doping should be done before the APE because the substantially changed structure of APE layers prevents the doping process. The APE process is checked by measurements of lithium depth profiles by Neutron Depth Profiling (NDP).

  6. Photoluminescence in silicon implanted with erbium ions at an elevated temperature

    SciTech Connect

    Sobolev, N. A. Kalyadin, A. E.; Shek, E. I.; Sakharov, V. I.; Serenkov, I. T.; Vdovin, V. I.; Parshin, E. O.; Makoviichuk, M. I.

    2011-08-15

    Photoluminescence spectra of n-type silicon upon implantation with erbium ions at 600 Degree-Sign C and oxygen ions at room temperature and subsequent annealings at 1100 Degree-Sign C in a chlorine-containing atmosphere have been studied. Depending on the annealing duration, photoluminescence spectra at 80 K are dominated by lines of the Er{sup 3+} ion or dislocation-related luminescence. The short-wavelength shift of the dislocation-related luminescence line observed at this temperature is due to implantation of erbium ions at an elevated temperature. At room temperature, lines of erbium and dislocation-related luminescence are observed in the spectra, but lines of near-band-edge luminescence predominate.

  7. Broadband sensitization of 1.53 μm Er3+ luminescence in erbium-implanted alumina

    NASA Astrophysics Data System (ADS)

    Chryssou, C. E.; Kenyon, A. J.; Smeeton, T. M.; Humphreys, C. J.; Hole, D. E.

    2004-11-01

    Experimental evidence of an efficient broadband sensitization mechanism in erbium-implanted alumina is presented. Alumina thin films were deposited by plasma-enhanced chemical vapor deposition using trimethyl-amine alane and nitrous oxide. The as-grown films, together with sapphire crystals, were implanted with erbium. Photoluminescence excitation spectra showed that erbium-implanted sapphire crystals exhibit characteristic Er3+ luminescence at 1.53μm only when pumped resonantly. In contrast, erbium-implanted alumina thin films exhibit 1.53μm luminescence even when pumped at wavelengths outside Er3+ absorption bands. We postulate that the sensitizing species is either small nanoclusters of aluminum or pairs of aluminum ions.

  8. Erbium ion implantation into diamond - measurement and modelling of the crystal structure.

    PubMed

    Cajzl, Jakub; Nekvindová, Pavla; Macková, Anna; Malinský, Petr; Sedmidubský, David; Hušák, Michal; Remeš, Zdeněk; Varga, Marián; Kromka, Alexander; Böttger, Roman; Oswald, Jiří

    2017-02-22

    Diamond is proposed as an extraordinary material usable in interdisciplinary fields, especially in optics and photonics. In this contribution we focus on the doping of diamond with erbium as an optically active centre. In the theoretical part of the study based on DFT simulations we have developed two Er-doped diamond structural models with 0 to 4 carbon vacancies in the vicinity of the Er atom and performed geometry optimizations by the calculation of cohesive energies and defect formation energies. The theoretical results showed an excellent agreement between the calculated and experimental cohesive energies for the parent diamond. The highest values of cohesive energies and the lowest values of defect formation energies were obtained for models with erbium in the substitutional carbon position with 1 or 3 vacancies in the vicinity of the erbium atom. From the geometry optimization the structural model with 1 vacancy had an octahedral symmetry whereas the model with 3 vacancies had a coordination of 10 forming a trigonal structure with a hexagonal ring. In the experimental part, erbium doped diamond crystal samples were prepared by ion implantation of Er(+) ions using ion implantation fluences ranging from 1 × 10(14) ions per cm(2) to 5 × 10(15) ions per cm(2). The experimental results revealed a high degree of diamond structural damage after the ion implantation process reaching up to 69% of disordered atoms in the samples. The prepared Er-doped diamond samples annealed at the temperatures of 400, 600 and 800 °C in a vacuum revealed clear luminescence, where the 〈110〉 cut sample has approximately 6-7 times higher luminescence intensity than the 〈001〉 cut sample with the same ion implantation fluence. The reported results are the first demonstration of the Er luminescence in the single crystal diamond structure for the near-infrared spectral region.

  9. Silicon shallow doping by erbium and oxygen recoils implantation

    NASA Astrophysics Data System (ADS)

    Feklistov, K. V.; Cherkov, A. G.; Popov, V. P.

    2016-09-01

    In order to get shallow high doping of Si with optically active complexes ErOn, Er followed by O recoils implantation was realized by means of subsequent Ar+ 250-290 keV implantation with doses 2×1015-1×1016 cm-2 through 50-nm deposited films of Er and then SiO2, accordingly. High Er concentration up to 5×1020 cm-3 to the depth of 10 nm was obtained after implantation. However, about a half of the Er implanted atoms become part of surface SiO2 during post-implantation annealing at 950 °C for 1 h in the N2 ambient under a SiO2 cap. The mechanism of Er segregation into the cap oxide following the moving amorphous-crystalline interface during recrystallization was rejected by the transmission electron microscopy (TEM) analysis. Instead, the other mechanism of immobile Er atoms and redistribution of recoil-implanted O atoms toward cap oxide was proposed. It explains the observed formation of two Er containing phases: Er-Si-O phase with a high O content adjacent to the cap oxide and deeper O depleted Er-Si phase. The correction of heat treatments is proposed in order to avoid the above-mentioned problems.

  10. Temperature dependences of the photoluminescence intensities of centers in silicon implanted with erbium and oxygen ions

    SciTech Connect

    Sobolev, N. A. Shtel’makh, K. F.; Kalyadin, A. E.; Shek, E. I.

    2015-12-15

    Low-temperature photoluminescence in n-Cz-Si after the implantation of erbium ions at an elevated temperature and subsequent implantation of oxygen ions at room temperature is studied. So-called X and W centers formed from self-interstitial silicon atoms, H and P centers containing oxygen atoms, and Er centers containing Er{sup 3+} ions are observed in the photoluminescence spectra. The energies of enhancing and quenching of photoluminescence for these centers are determined. These energies are determined for the first time for X and H centers. In the case of P and Er centers, the values of the energies practically coincide with previously published data. For W centers, the energies of the enhancing and quenching of photoluminescence depend on the conditions of the formation of these centers.

  11. Physical properties of erbium implanted tungsten oxide filmsdeposited by reactive dual magnetron sputtering

    SciTech Connect

    Mohamed, Sodky H.; Anders, Andre

    2006-11-08

    Amorphous and partially crystalline WO3 thin films wereprepared by reactive dual magnetron sputtering and successively implantedby erbium ions with a fluence in the range from 7.7 x 1014 to 5 x 1015ions/cm2. The electrical and optical properties were studied as afunction of the film deposition parameters and the ion fluence. Ionimplantation caused a strong decrease of the resistivity, a moderatedecrease of the index of refraction and a moderate increase of theextinction coefficient in the visible and near infrared, while theoptical band gap remained almost unchanged. These effects could belargely ascribed to ion-induced oxygen deficiency. When annealed in air,the already low resistivities of the implanted samples decreased furtherup to 70oC, whereas oxidation, and hence a strong increase of theresistivity, was observed at higher annealing temperatures.

  12. Optical switching and photoluminescence in erbium-implanted vanadium dioxide thin films

    SciTech Connect

    Lim, Herianto Stavrias, Nikolas; Johnson, Brett C.; McCallum, Jeffrey C.; Marvel, Robert E.; Haglund, Richard F.

    2014-03-07

    Vanadium dioxide (VO{sub 2}) is under intensive consideration for optical switching due to its reversible phase transition, which features a drastic and rapid shift in infrared reflectivity. Classified as an insulator–to–metal transition, the phase transition in VO{sub 2} can be induced thermally, electrically, and optically. When induced optically, the transition can occur on sub-picosecond time scales. It is interesting to dope VO{sub 2} with erbium ions (Er{sup 3+}) and observe their combined properties. The first excited-state luminescence of Er{sup 3+} lies within the wavelength window of minimal transmission-loss in silicon and has been widely utilized for signal amplification and generation in silicon photonics. The incorporation of Er{sup 3+} into VO{sub 2} could therefore result in a novel photonic material capable of simultaneous optical switching and amplification. In this work, we investigate the optical switching and photoluminescence in Er-implanted VO{sub 2} thin films. Thermally driven optical switching is demonstrated in the Er-implanted VO{sub 2} by infrared reflectometry. Photoluminescence is observed in the thin films annealed at ∼800 °C or above. In addition, Raman spectroscopy and a statistical analysis of switching hysteresis are carried out to assess the effects of the ion implantation on the VO{sub 2} thin films. We conclude that Er-implanted VO{sub 2} can function as an optical switch and amplifier, but with reduced switching quality compared to pure VO{sub 2}.

  13. Correlation between luminescent properties and structure organization in AlGaN/GaN superlattices annealed after erbium ion implantation

    NASA Astrophysics Data System (ADS)

    Baranov, E. E.; Emel'Yanov, A. M.; Lundin, W. V.; Petrov, V. N.; Sakharov, V. I.; Serenkov, I. T.; Sobolev, N. A.; Titkov, A. N.; Shek, E. I.; Shmidt, N. M.

    2006-12-01

    The evolution of the structure organization of MOCVD-grown AlGaN/GaN superlattices subjected to erbium ion implantation with an energy of 1 MeV and dose of 3 × 1015 cm-2 and subsequent annealing is correlated with their photoluminescent properties. The structure organization is quantitatively estimated using parameter Δ (degree of violation of local symmetry), which is found via multifractal analysis of surface morphology patterns obtained with atomic force microscopy. It is shown that the implantation not only causes Ga segregation on the surface, but also changes the structure organization, which shows up in the finer grain structure compared with the starting one and disordering, as well as in an increase in Δ. As the annealing temperature rises from 700 to 800°C, Δ declines, indicating that the structure organization is improved, and the intensity of the dominating photoluminescence peak due to Er3+ ions (1.542 μm) grows. With a further increase in the annealing temperature to 1050°C, the structure organization degrades, domains get larger, voids 100 200 nm deep form, and the photoluminescence intensity drops. The formation of voids during high-temperature annealing is also substantiated by data for 230-keV proton scattering. It is thus established that the improvement of the superlattice structure organization activates erbium and causes the erbium-ion-related luminescence intensity to grow.

  14. Hybrid cathode lithium batteries for implantable medical applications

    NASA Astrophysics Data System (ADS)

    Chen, Kaimin; Merritt, Donald R.; Howard, William G.; Schmidt, Craig L.; Skarstad, Paul M.

    Lithium batteries with hybrid cathodes of Ag 2V 4O 11 and CF x have been developed that combine the best features of both cathode components. They can offer power density and energy density that are competitive with or superior to other developed battery chemistries, along with the stability and reliability needed for implantable medical applications. More than 100,000 have been used in human implants since introduction in 1999.

  15. Bactericidal Effect of Erbium-Doped Yttrium Aluminum Garnet Laser and Photodynamic Therapy on Aggregatibacter Actinomycetemcomitans Biofilm on Implant Surface.

    PubMed

    Saffarpour, Anna; Fekrazad, Reza; Heibati, Maryam Naghavi; Bahador, Abbas; Saffarpour, Aida; Rokn, Amir R; Iranparvar, Aysel; KharaziFard, Mohammad J

    2016-01-01

    Peri-implantitis is a common complication of dental implants. The first step of treatment is elimination of bacterial biofilm and disinfection of the implant surface. This study sought to compare the effects of an erbium-doped yttrium aluminum garnet (Er:YAG) laser, photodynamic therapy using an indocyanin green-based photosensitizer (ICG-based PS) and diode laser, toluidine blue O (TBO) photosensitizer and light-emitting diode (LED) light source, and 2% chlorhexidine (CHX) on biofilm of Aggregatibacter actinomycetemcomitans to sandblasted, large-grit, acid-etched (SLA) implant surfaces. Fifty SLA implants were divided into five groups and were incubated with A actinomycetemcomitans bacteria to form bacterial biofilm. Group 1 underwent Er:YAG laser radiation (with 10-Hz frequency, 100-mJ energy, and 1-W power); group 2 was subjected to LED (with 630-nm wavelength and maximum output intensity of 2.000 to 4.000 mW/cm(2)) and TBO as a photosensitizer; group 3 was exposed to diode laser radiation (with 810-nm wavelength and 300-mW power) and ICG-based PS; and group 4 was immersed in 2% CHX. Group 5 was the control group, and the samples were rinsed with normal saline. The number of colony-forming units (CFU) per implant was then calculated. Data were analyzed using one-way analysis of variance (ANOVA), and the five groups were compared. Significant differences was found between the control group and the other groups (P < .01). The lowest mean of CFU per implant count was in group 4 (P < .01), and the highest mean belonged to the control group. Photodynamic therapy by TBO + LED and ICG-based PS + diode laser was more effective than Er:YAG laser irradiation in suppression of this organism (P < .01). There was no significant difference between groups 2 and 3. The antibacterial effect of 2% CHX was greater than that of other understudy methods.

  16. 1.54 micron Emission from Erbium implanted GaN for Photonic Applications

    NASA Technical Reports Server (NTRS)

    Thaik, Myo; Hommerich, U.; Schwartz, R. N.; Wilson, R. G.; Zavada, J. M.

    1998-01-01

    The development of efficient and compact light sources operating at 1.54 micron is of enormous importance for the advancement of new optical communication systems. Erbium (1%) doped fiber amplifiers (EDFA's) or semiconductor lasers are currently being employed as near infrared light sources. Both devices, however, have inherent limitations due to their mode of operation. EDFA's employ an elaborate optical pumping scheme, whereas diode lasers have a strongly temperature dependent lasing wavelength. Novel light emitters based on erbium doped III-V semiconductors could overcome these limitations. Er doped semiconductors combine the convenience of electrical excitation with the excellent luminescence properties of Er(3+) ions. Electrically pumped, compact, and temperature stable optoelectronic devices are envisioned from this new class of luminescent materials. In this paper we discuss the potential of Er doped GaN for optoelectronic applications based on temperature dependent photoluminescence excitation studies.

  17. 1.54 micron Emission from Erbium implanted GaN for Photonic Applications

    NASA Technical Reports Server (NTRS)

    Thaik, Myo; Hommerich, U.; Schwartz, R. N.; Wilson, R. G.; Zavada, J. M.

    1998-01-01

    The development of efficient and compact light sources operating at 1.54 micron is of enormous importance for the advancement of new optical communication systems. Erbium (1%) doped fiber amplifiers (EDFA's) or semiconductor lasers are currently being employed as near infrared light sources. Both devices, however, have inherent limitations due to their mode of operation. EDFA's employ an elaborate optical pumping scheme, whereas diode lasers have a strongly temperature dependent lasing wavelength. Novel light emitters based on erbium doped III-V semiconductors could overcome these limitations. Er doped semiconductors combine the convenience of electrical excitation with the excellent luminescence properties of Er(3+) ions. Electrically pumped, compact, and temperature stable optoelectronic devices are envisioned from this new class of luminescent materials. In this paper we discuss the potential of Er doped GaN for optoelectronic applications based on temperature dependent photoluminescence excitation studies.

  18. Lithium Nitride Synthesized by in situ Lithium Deposition and Ion Implantation for Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Ishitama, Shintaro; Baba, Yuji; Fujii, Ryo; Nakamura, Masaru; Imahori, Yoshio

    Li3N synthesis on Li deposition layer was conducted without H2O and O2 by in situ lithium deposition in high vacuum chamber of 10-6 Pa and ion implantation techniques and the thermo-chemical stability of the Li3N/Li/Cu tri-layered target for Boron Neutron Capture Therapy (BNCT) under laser heating and air exposure was characterized by X-ray photoelectron spectroscopy (XPS). Following conclusions were derived; (1) Li3N/Li/Cu tri-layered target with very low oxide and carbon contamination was synthesized by in situ lithium vacuum deposition and N2+ ion implantation without H2O and O2 additions, (2) The starting temperature of evaporation of Li3N/Li/Cu tri-layered target increased by 120K compared to that of the Li/Cu target and (3) Remarkable oxidation and carbon contamination were observed on the surface of Li3N/Li/Cu after air exposure and these contaminated compositions was not removed by Ar+ heavy sputtering.

  19. Rutherford backscattering and channelling studies of erbium implanted SIMOX **

    SIMOX: separation by implanted oxygen.

    structures

    NASA Astrophysics Data System (ADS)

    Zhang, Jingping; Tang, Y. S.; Hemment, P. L. F.; Sealy, B. J.

    1990-04-01

    The behaviour of 250 keV 166Er + implanted into SIMOX structures has been investigated by Rutherford backscattering and channelling analysis. The implantation doses were 1.5 ×10 14 cm -2 and 1.5 × 10 15 cm -2. Both conventional furnace and rapid therm annealing were carried out in the temperature range 600°C-1100°C. Regrowth of the amorphized silicon and redistribution of the erbium were found to be strongly influenced by the status of the damaged layer. Different regrowth processes of the completely damaged silicon overlayer were suggested respectively for conventional furnace and rapid thermal annealing. It is found that the regrowth rate increases rapidly when the temperature is higher than 900° C in both cases. The redistribution of the erbium atoms was controlled by the regrowth boundary between the damaged and the recrystallized silicon.

  20. Individual lithium disilicate crowns in a full-arch, implant-supported rehabilitation: a clinical report.

    PubMed

    Maló, Paulo; de Sousa, Sérgio Tavares; De Araújo Nobre, Miguel; Moura Guedes, Carlos; Almeida, Ricardo; Roma Torres, António; Legatheaux, João; Silva, António

    2014-08-01

    This clinical report presents the clinical outcome of a maxillary full-arch implant-supported fixed rehabilitation with lithium disilicate reinforced glass ceramic monolithic crowns opposing a mandibular metal-acrylic implant-supported fixed rehabilitation in a 62-year-old woman. Eight implants were successfully placed (four maxillary, four mandibular), and no complications occurred in the postoperative or maintenance periods. Six months after delivery, the maxillary and mandibular prostheses were found to be clinically, biologically, and mechanically stable, and the patient was satisfied with the esthetics and her ability to function. Although the present indications for the use of lithium disilicate are still restricted to tooth-borne restorations, it is possible to successfully rehabilitate edentulous patients through implant-supported fixed prostheses using lithium disilicate reinforced glass ceramic monolithic crowns. © 2014 by the American College of Prosthodontists.

  1. Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping.

    PubMed

    Chandrappan, Jayakrishnan; Murray, Matthew; Kakkar, Tarun; Petrik, Peter; Agocs, Emil; Zolnai, Zsolt; Steenson, D P; Jha, Animesh; Jose, Gin

    2015-09-15

    Chemical dissimilarity of tellurium oxide with silica glass increases phase separation and crystallization tendency when mixed and melted for making a glass. We report a novel technique for incorporating an Er(3+)-doped tellurite glass composition into silica substrates through a femtosecond (fs) laser generated plasma assisted process. The engineered material consequently exhibits the spectroscopic properties of Er(3+)-ions, which are unachievable in pure silica and implies this as an ideal material for integrated photonics platforms. Formation of a well-defined metastable and homogeneous glass structure with Er(3+)-ions in a silica network, modified with tellurite has been characterized using high-resolution cross-sectional transmission electron microscopy (HRTEM). The chemical and structural analyses using HRTEM, Rutherford backscattering spectrometry (RBS) and laser excitation techniques, confirm that such fs-laser plasma implanted glasses may be engineered for significantly higher concentration of Er(3+)-ions without clustering, validated by the record high lifetime-density product 0.96 × 10(19) s.cm(-3). Characterization of planar optical layers and photoluminescence emission spectra were undertaken to determine their thickness, refractive indices and photoluminescence properties, as a function of Er(3+) concentration via different target glasses. The increased Er(3+) content in the target glass enhance the refractive index and photoluminescence intensity of the modified silica layer whilst the lifetime and thickness decrease.

  2. Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping

    PubMed Central

    Chandrappan, Jayakrishnan; Murray, Matthew; Kakkar, Tarun; Petrik, Peter; Agocs, Emil; Zolnai, Zsolt; Steenson, D.P.; Jha, Animesh; Jose, Gin

    2015-01-01

    Chemical dissimilarity of tellurium oxide with silica glass increases phase separation and crystallization tendency when mixed and melted for making a glass. We report a novel technique for incorporating an Er3+-doped tellurite glass composition into silica substrates through a femtosecond (fs) laser generated plasma assisted process. The engineered material consequently exhibits the spectroscopic properties of Er3+-ions, which are unachievable in pure silica and implies this as an ideal material for integrated photonics platforms. Formation of a well-defined metastable and homogeneous glass structure with Er3+-ions in a silica network, modified with tellurite has been characterized using high-resolution cross-sectional transmission electron microscopy (HRTEM). The chemical and structural analyses using HRTEM, Rutherford backscattering spectrometry (RBS) and laser excitation techniques, confirm that such fs-laser plasma implanted glasses may be engineered for significantly higher concentration of Er3+-ions without clustering, validated by the record high lifetime-density product 0.96 × 1019 s.cm−3. Characterization of planar optical layers and photoluminescence emission spectra were undertaken to determine their thickness, refractive indices and photoluminescence properties, as a function of Er3+ concentration via different target glasses. The increased Er3+ content in the target glass enhance the refractive index and photoluminescence intensity of the modified silica layer whilst the lifetime and thickness decrease. PMID:26370060

  3. Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping

    NASA Astrophysics Data System (ADS)

    Chandrappan, Jayakrishnan; Murray, Matthew; Kakkar, Tarun; Petrik, Peter; Agocs, Emil; Zolnai, Zsolt; Steenson, D. P.; Jha, Animesh; Jose, Gin

    2015-09-01

    Chemical dissimilarity of tellurium oxide with silica glass increases phase separation and crystallization tendency when mixed and melted for making a glass. We report a novel technique for incorporating an Er3+-doped tellurite glass composition into silica substrates through a femtosecond (fs) laser generated plasma assisted process. The engineered material consequently exhibits the spectroscopic properties of Er3+-ions, which are unachievable in pure silica and implies this as an ideal material for integrated photonics platforms. Formation of a well-defined metastable and homogeneous glass structure with Er3+-ions in a silica network, modified with tellurite has been characterized using high-resolution cross-sectional transmission electron microscopy (HRTEM). The chemical and structural analyses using HRTEM, Rutherford backscattering spectrometry (RBS) and laser excitation techniques, confirm that such fs-laser plasma implanted glasses may be engineered for significantly higher concentration of Er3+-ions without clustering, validated by the record high lifetime-density product 0.96 × 1019 s.cm-3. Characterization of planar optical layers and photoluminescence emission spectra were undertaken to determine their thickness, refractive indices and photoluminescence properties, as a function of Er3+ concentration via different target glasses. The increased Er3+ content in the target glass enhance the refractive index and photoluminescence intensity of the modified silica layer whilst the lifetime and thickness decrease.

  4. Radiation damage and defect behavior in ion-implanted, lithium counterdoped silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Mehta, S.; Swartz, C. K.

    1984-01-01

    Boron doped silicon n+p solar cells were counterdoped with lithium by ion implantation and the resuitant n+p cells irradiated by 1 MeV electrons. The function of fluence and a Deep Level Transient Spectroscopy (DLTS) was studied to correlate defect behavior with cell performance. It was found that the lithium counterdoped cells exhibited significantly increased radiation resistance when compared to boron doped control cells. It is concluded that the annealing behavior is controlled by dissociation and recombination of defects. The DLTS studies show that counterdoping with lithium eliminates at least three deep level defects and results in three new defects. It is speculated that the increased radiation resistance of the counterdoped cells is due primarily to the interaction of lithium with oxygen, single vacanies and divacancies and that the lithium-oxygen interaction is the most effective in contributing to the increased radiation resistance.

  5. Implant Bed Preparation with an Erbium, Chromium Doped Yttrium Scandium Gallium Garnet (Er,Cr: YSGG) Laser Using Stereolithographic Surgical Guide

    PubMed Central

    Seymen, Gülin; Turgut, Zeynep; Berk, Gizem; Bodur, Ayşen

    2013-01-01

    Background: Implant bed preparation with laser is taken into consideration owing to the increased interest in use of lasers in hard tissue surgery. The purpose of this study is to determine the deviations in the position and inclination between the planned and prepared implant beds with Erbium, Chromium doped Yttrium Scandium Gallium Garnet (Er,Cr:YSGG) laser using stereolithographic (SLA) surgical guides. Methods: After 3-dimensional (3D) imaging of six sheep lower jaws, computed tomography (CT) images were transformed into 3D models. Locations of implant beds were determined on these models. Two implant beds in each half jaw were prepared with an Er,Cr:YSGG laser system and a conventional drilling method using a total of 12 SLA surgical guides. A new CT was taken to analyze the deviation values between planned and prepared implant beds. Finally, a software program was used to superimpose the images on 3D models, then the laser and conventional drilling groups were compared. Results: Differences of mean angular deviations between the planned and prepared implant beds were 5.17±4.91° in the laser group and 2.02±1.94° in the conventional drilling group.The mean coronal deviation values were found to be 0.48±0.25 mm and 0.23±0.14 mm in the laser group and conventional drilling group, respectively. While the mean deviation at the apex between the planned and prepared implant beds were 0.70±0.26 mm and 0.26±0.08 ,the mean vertical deviations were 0.06±0.15 mm and 0.02±0.05 mm for the laser group and the conventional drilling group, respectively. Conclusion: It is possible to prepare an implant bed properly with the aid of Er,Cr:YSGGlaser by using SLA surgical guide. PMID:25606303

  6. Lithium implantation at low temperature in silicon for sharp buried amorphous layer formation and defect engineering

    SciTech Connect

    Oliviero, E.; David, M. L.; Beaufort, M. F.; Barbot, J. F.; Fichtner, P. F. P.

    2013-02-28

    The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 Degree-Sign C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 Degree-Sign C annealing, complete recrystallization takes place and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {l_brace}311{r_brace} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.

  7. Removal of Dental Implants Using the Erbium,Chromium:Yttrium-Scandium-Gallium-Garnet Laser and the Conventional Trephine Bur: An in Vitro Comparative Study.

    PubMed

    Hajji, Mohammad; Franzen, Rene; Grümer, Stefan; Modabber, Ali; Nasher, Riman; Prescher, Andreas; Gutknecht, Norbert

    2016-02-01

    The purpose of this study was to compare the conventional trephine bur and the Erbium,chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser in removing implants in terms of the volume of removed bone, duration of the procedure, and morphological changes on the bone surface. Three human mandibles were utilized, and four implants were inserted in each mandible using a drilling handpiece and burs. The implants were divided into two groups (n = 6) in which two implants from each mandible were removed using a trephine bur running at 1200 rounds per minute (rpm) with water irrigation. The remaining implants (n = 6) were removed with Er,Cr:YSGG laser (power 6 W, frequency 20 Hz, pulse duration 50 μs, water 60, air 30). The volume of bone loss was calculated by filling the holes with mercury and measuring its volume. The preparation time was measured with a digital stopwatch and the postoperative bone surfaces were examined under a scanning electron microscope (SEM). The laser group exhibited a smaller amount of bone loss than the trephine bur group, whereas the latter required a shorter time of preparation. SEM revealed empty trabecular spaces with no signs of carbonization and well-defined edges in the laser group, whereas the trephine group displayed a surface covered with a smear layer and microcracks. The Er,Cr:YSGG laser provides superior results over the trephine bur in terms of bone preservation, thermal damage, and cutting efficiency.

  8. The combination methodic of diffusion and implantation technologies for creating optic wave-guided layers in lithium niobate

    NASA Astrophysics Data System (ADS)

    Orlikov, L. N.; Orlikov, N. L.; Arestov, S. I.; Mambetova, K. M.; Shandarov, S. M.

    2015-04-01

    The implantation of copper into Lithium Niobate in the prohibited crystal zone forms a definite energetic level for optic transits. This paper examines conditions of optic wave-guided layers formation on Niobate Lithium due to the method of implantation copper ions with the next diffusion. Reflect Spectrum in consequences implantation is extended. The transfer of the optical power from the primary beam into the another beam was discovered and in reverse. Photo galvanic characteristics of implantation specimen identity of crystal by traditional technology and doping CuO manufacture.

  9. Adhesive bone bonding prospects for lithium disilicate ceramic implants

    NASA Astrophysics Data System (ADS)

    Vennila Thirugnanam, Sakthi Kumar

    Temporomandibular Joint (TMJ) implants articulating mandible with temporal bone in humans have a very high failure rate. Metallic TMJ implants available in the medical market are not osseointegrated, but bond only by mechanical interlocking using screws which may fail, mandating a second surgery for removal. Stress concentration around fixture screws leads to aseptic loosening or fracture of the bone. It has been proposed that this problem can be overcome by using an all-ceramic TMJ implant bonded to bone with dental adhesives. Structural ceramics are promising materials with an excellent track record in the field of dentis.

  10. Optical and mechanical properties of MgO crystals implanted with lithium ions

    NASA Astrophysics Data System (ADS)

    Savoini, B.; Cáceres, D.; Vergara, I.; González, R.; da Silva, R. C.; Alves, E.; Chen, Y.

    2004-03-01

    Defect profile induced by implantation of Li+ ions with an energy of 175 keV and a fluence of 1×1017ions/cm2 in MgO single crystals was characterized by Rutherford backscattering and optical absorption measurements. Several absorption bands at 5.0, 3.49, 2.16, and 1.27 eV, identical to those found in neutron irradiated crystals, were observed and have been previously associated with oxygen vacancies and higher-order point defects involving oxygen vacancies. Despite the high fluence of Li+ ions, no evidence was found for the formation of Li nanocolloids during implantation. Nanoindentation experiments demonstrated that both the hardness and Young's modulus were higher in the implanted layer than in the sample before implantation. The maximum values were H=(17.4±0.4) and E=(358±9) GPa, respectively, at a contact depth of ≈165 nm. Thermal annealings in flowing argon at increasing temperatures improved the crystalline quality of the implanted layer. After annealing at 500 K, two extinction bands at ≈2.75 and 3.80 eV emerged. These bands are attributed to Mie scattering from metallic lithium nanocolloids with either a face-centered- or a body-centered-cubic structure. The latter band was almost absent by 950 K. The former reached a maximum intensity after the thermal treatment at 1050 K and disappeared by 1250 K. The behavior of these bands can be satisfactorily explained by the Maxwell-Garnett theory. The decrease in hardening cannot be correlated with the thermal destruction of the absorption bands at 5.0, 3.49, 2.16, and 1.27 eV, but rather with the annihilation of both lithium and oxygen interstitials. Lithium outdiffusion from the implanted region takes place at temperatures of ≈1100 K. It is concluded that the hardening observed in the implanted region was primarily due to the extraordinarily large concentration of both lithium and oxygen interstitials.

  11. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2011-01-01

    In 2010, lithium consumption in the United States was estimated to have been about 1 kt (1,100 st) of contained lithium, a 23-percent decrease from 2009. The United States was estimated to be the fourth largest consumer of lithium. It remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. Only one company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic resources. In 2010, world lithium consumption was estimated to have been about 21 kt (22,000 st) of lithium contained in minerals and compounds, a 12-percent increase from 2009.

  12. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2010-01-01

    In 2009, lithium consumption in the United States was estimated to have been about 1.2 kt (1,300 st) of contained lithium, a 40-percent decrease from 2008. The United States was estimated to be the fourth largest consumer of lithium, and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. Only one company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic resources. In 2009, world lithium consumption was estimated to have been about 18.7 kt (20,600 st) of lithium contained in minerals and compounds.

  13. Comparison of rechargeable lithium and nickel/cadmium battery cells for implantable circulatory support devices.

    PubMed

    MacLean, G K; Aiken, P A; Adams, W A; Mussivand, T

    1994-04-01

    Size and weight constraints are critical areas in the design of implantable medical devices. For this reason, a study of different rechargeable lithium and nickel/cadmium (Ni/Cd) battery cell types was undertaken to determine which cell type, when assembled into a multicell battery pack, would provide the smallest and lightest power source for implantation. The discharge rate and cycle life characteristics of 2 different rectangular prismatic Ni/Cd cells and 5 different rechargeable lithium cells were determined at 37 degrees C by charge/discharge cycling, the cells using a constant discharge load of 0.87 A. Using the observed discharge rate and cycle life characteristics of the cells, along with the desired performance criteria of 30 min operating time at the end of a 1-year implant period, the projected weight and volume of the various 12-V battery packs were determined. These results showed that one of the rectangular prismatic Ni/Cd cells would yield the smallest (53 ml) and lightest (189 g) 12-V battery pack that met the performance criteria specified. The results also indicate that, for applications requiring long implant times, cycle life can be more important in the selection of cells for a small, lightweight battery pack than specific energy or energy density.

  14. Optical composite nanostructures produced by silver ion implantation of lithium niobate

    NASA Astrophysics Data System (ADS)

    Sarkisov, Sergey S.; Curley, Michael J.; Williams, Eric K.; Ila, Dariush; Svetchnikov, Vasili L.; Zandbergen, Henny W.; Poker, David B.; Hensley, Dale K.

    2000-06-01

    We analyze microstructure and optical properties of thin light-guiding nanocompositte planar structures produced by implantation of MeV Ag into LiNbO3. The structures demonstrate such prominent features as change of color from yellow to pink accompanied by the appearance of light guiding after heat treatment of the implanted sample at 500 degree(s)C for one hour in open air. TEM analysis shows that before heat treatment the implanted region consists of amorphous and porous lithium niobate and nanoclusters of metallic silver localized near the edge of the nuclear stopping region. The surface plasmon resonance peak attributed to the nanoclusters is located near 430 nm giving yellow color to the sample. After heat treatment the implanted region re-crystallizes in the form of randomly oriented sub-micron grains of lithium niobate doped with enlarged and dispersed silver nanoclusters. Optical prism coupling analysis shows that the implanted region performs as a planar light guide with the refractive index apparently higher than the nuclear stopping region beneath it. In addition, the surface plasmon resonance peak of the nanoclusters moves to 550 nm giving pink color to the sample. Using computer simulations based on the Mie model, we explain such significant red frequency shift of the plasmon resonance by the increase of the effective refractive index of the host material after recrystallization and elimination of porosity caused by heat treatment. Theoretical data are in good agreement with experimental spectra of the optical extinction of the sample before and after heat treatment. This is also in agreement with the fact that the implanted planar structure becomes a light guide with substantially increased effective refractive index. Fabricated nanostructure can find application in ultra-fast photonic switches where light guiding is combined with the optical nonlinearity of the third order enhanced by the plasmon resonance.

  15. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2012-01-01

    In 2011, world lithium consumption was estimated to have been about 25 kt (25,000 st) of lithium contained in minerals and compounds, a 10-percent increase from 2010. U.S. consumption was estimated to have been about 2 kt (2,200 st) of contained lithium, a 100-percent increase from 2010. The United States was estimated to be the fourth-ranked consumer of lithium and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. One company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic brine resources near Silver Peak, NV.

  16. Lithium

    USGS Publications Warehouse

    Ober, J.A.

    2006-01-01

    In 2005, lithium consumption in the United States was at 2.5 kt of contained lithium, nearly 32% more than the estimate for 2004. World consumption was 14.1 kt of lithium contained in minerals and compounds in 2003. Exports from the US increased slightly compared with 2004. Due to strong demand for lithium compounds in 2005, both lithium carbonate plants in Chile were operating at or near capacity.

  17. Thin-film Rechargeable Lithium Batteries for Implantable Devices

    DOE R&D Accomplishments Database

    Bates, J. B.; Dudney, N. J.

    1997-05-01

    Thin films of LiCoO{sub 2} have been synthesized in which the strongest x ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001%/cycle or less. The reliability and performance of Li LiCoO{sub 2} thin film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.

  18. Thin-film rechargeable lithium batteries for implantable devices

    SciTech Connect

    Bates, J.b.; Dudney, N.J.

    1997-05-01

    Thin films of LiCoO{sub 2} have been synthesized in which the strongest x-ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin-film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001 %/cycle or less. The reliability and performance of Li-LiCoO{sub 2} thin-film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.

  19. Thin film rechargeable lithium batteries for implantable devices.

    PubMed

    Bates, J B; Dudney, N J

    1997-01-01

    Thin films of LiCoO2 have been synthesized in which the strongest x-ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells, 70% of the maximum capacity between 4.2 and 3 V (approximately 0.2 mAh/cm2) was delivered at a current of 2 mA/cm2. When cycled at rates of 0.1 mA/cm2, the capacity loss was < or = 0.001%/cycle. The reliability and performance of Li-LiCoO2 thin film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.

  20. Formation of c-BN nanoparticles by helium, lithium and boron ion implantation

    NASA Astrophysics Data System (ADS)

    Aradi, Emily; Erasmus, Rudolph M.; Derry, Trevor E.

    2012-02-01

    Ion induced phase transformation from the soft graphitic hexagonal boron nitride ( h-BN) to ultrahard cubic boron nitride ( c-BN) nanoparticles is presented in the work herein. Ion implantation was used as a technique to introduce boron lithium and helium ions, at the energy of 150 keV and fluences ranging from 1 × 10 14 to 1 × 10 16 ions/cm 2, into hot pressed, polycrystalline h-BN. Analyses using Raman Spectroscopy showed that He +, Li + and B + led to a h-BN to c-BN phase transition, evident from the longitudinal optical (LO) Raman phonon features occurring in the implanted samples' spectra. The nature of these phonon peaks and their downshifting is explained using the spatial phonon correlation model.

  1. Lithium

    USGS Publications Warehouse

    Ober, J.

    1998-01-01

    The lithium industry can be divided into two sectors: ore concentrate producers and chemical producers. Ore concentrate producers mine lithium minerals. They beneficiate the ores to produce material for use in ceramics and glass manufacturing.

  2. Advantages and esthetic results of erbium, chromium:yttrium-scandium-gallium-garnet laser application in second-stage implant surgery in patients with insufficient gingival attachment: a report of three cases.

    PubMed

    Arnabat-Domínguez, Josep; Bragado-Novel, Mercedes; España-Tost, Antonio Jesús; Berini-Aytés, Leonardo; Gay-Escoda, Cosme

    2010-05-01

    Traditional implant placement involves two surgical stages. Although the second stage is comparatively less aggressive for the patient, postoperative pain and swelling can be further reduced by the use of laser instead of a scalpel. Correct handling of peri-implant soft tissue is of major importance in obtaining adequate gingival tissue attachment around implants. The presence of this keratinized gingiva ensures adequate esthetic results and maintains implant health. We report on three patients with implants in the anterior area who were operated on under the above conditions. Traditionally, the tissue overlying the implants is removed and eliminated. In seeking a way to preserve the attached gingiva, we raised a trapezoidal flap, uncovering each implant and allowing apical repositioning and transpositioning of keratinized gingiva to the buccal side. The results obtained were compared with those from other patients operated on by conventional scalpel. The erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser minimized postoperative pain, and the time to prosthetic rehabilitation was also shortened. The esthetic results were far superior, and no complications were recorded.

  3. Preliminary evaluation of rechargeable lithium-ion cells for an implantable battery pack

    NASA Astrophysics Data System (ADS)

    MacLean, Gregory K.; Aiken, Peter A.; Adams, William A.; Mussivand, Tofy

    A preliminary evaluation of the performance characteristics of 1.08 Ah lithium-ion cells was undertaken utilizing operating conditions similar to that required for an implanted medical device, such as a ventricular assist device or total artificial heart, in order to determine their potential usefulness for this application. The major parameters studied at 22 or 37 °C were discharge-rate capability, specific energy and energy density, surface temperature, self-discharge and cycle life. The discharge loads used in the cycle-life study were either constant or pulsatile, with the constant discharge load being equivalent to the average of the pulsatile load. The lithium-ion cells showed high discharge-rate capability up to 1.5 A at 37 °C, with over 74% of their rated capacity being obtained and a midpoint voltage of over 3.3 V (> 72% of rated capacity and > 3.3 V for up to 1.0 A discharges at 22 °C), before the first indication of cell polarization was noticed. The specific energy and energy density of cells discharged at 0.88 A to 2.5 V at 37 °C was 73 Wh/kg and 190 Wh/l, respectively (64 Wh/kg and 167 Wh/l at 22 °C). The internal resistance of the cells was calculated to be 198 mΩ at 37 °C (316 mΩ at 22 °C), which resulted in a relatively high, 8.0 °C, increase in surface temperature under a 0.88 A discharge load. The self-discharge of the cells at 37 °C was relatively low, with only a 1.3% loss in capacity being observed after 24 h. The lithium-ion cells yielded longer cycle lives at 37 °C (2 239 cycles) compared with 22 °C operation (1539 cycles) under similar 0.88 A discharge loads. The cells performed slightly better under constant discharge loads than under pulsatile loads of equivalent average current (0.83 A average) with cycles lives of 2279 cycles versus 1941 cycles and operating times were 1.6 ± 1.1 min (mean) longer. Preliminary indications are that these lithium-ion cells would be suitable for use in a rechargeable battery pack capable of

  4. First-principles molecular dynamics simulations of high-concentration deuterium implantation in liquid lithium

    NASA Astrophysics Data System (ADS)

    Chen, Mohan; Abrams, Tyler; Jaworski, Michael; Carter, Emily

    2015-03-01

    First-principles molecular dynamics (FPMD) is performed to study liquid lithium (Li) samples with high-concentration deuterium (D) implantation. First, we validate FPMD against experimental properties of solid and liquid Li and LiD. The calculated properties of both Li and LiD include relative stabilities and bulk moduli of several solid phases, melting temperatures, pair distribution functions, and bond angle distribution functions. Excellent agreement is obtained between FPMD and available experimental data. Next, we randomly implant D atoms at four different concentrations into liquid Li at different temperatures. Specifically, the ratios of D:Li atoms studied are 0.25, 0.50, 0.75 and 1.00, and the temperatures range from 400 to 1143 K. FPMD reveals several interesting properties of these liquid Li samples with implanted D atoms. For example, we observe fast nucleation of rock-salt structures of LiD for samples at temperatures lower than the melting point of LiD (960 K). We find that the pure Li component is quickly suppressed with increased concentration of D atoms, and that no D clusters form. Finally, because measured diffusivities of D in liquid Li vary by several orders of magnitude, we predict the diffusivities of both Li and D atoms in all samples.

  5. Novel mechanism of premature battery failure due to lithium cluster formation in implantable cardioverter-defibrillators.

    PubMed

    Pokorney, Sean D; Greenfield, Ruth Ann; Atwater, Brett D; Daubert, James P; Piccini, Jonathan P

    2014-12-01

    Battery failure is an uncommon complication of implantable cardioverter-defibrillators (ICDs), but unanticipated battery depletion can have life-threatening consequences. The purpose of this study was to describe the prevalence of a novel mechanism of battery failure in St. Jude Medical Fortify and Unify ICDs. Cases of premature Fortify battery failure from a single center are reported. A search (January 1, 2010 through November 30, 2013) for Fortify and Unify premature batter failure was conducted of the Food and Drug Administration's Manufacturer and User Facility Device Experience Database (MAUDE). These findings were supplemented with information provided by St. Jude Medical. Premature battery failure for 2 Fortify ICDs in our practice were attributed to the presence of lithium clusters near the cathode, causing a short circuit and high current drain. The prevalence of this mechanism of premature battery failure was 0.6% in our practice. A MAUDE search identified 39 cases of Fortify (30) and Unify (9) premature battery depletion confirmed by the manufacturer, representing a 0.03% prevalence. Four additional Fortify and 2 Unify cases were identified in MAUDE as suspected premature battery depletion, but in these cases the pulse generator was not returned to the manufacturer for evaluation. St. Jude Medical identified 10 cases of premature battery failure due to lithium clusters in Fortify devices (9) and Unify devices (1), representing a 0.004% prevalence. The deposition of lithium clusters near the cathode is a novel mechanism of premature battery failure. The prevalence of this problem is unknown. Providers should be aware of this mechanism for patient management. Copyright © 2014 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  6. Incorporation and optical activation of erbium in strained silicon germanium structures

    NASA Astrophysics Data System (ADS)

    Huda, M. Q.; Peaker, A. R.

    2001-11-01

    Erbium has been incorporated in strained Si/Si 0.87Ge 0.13/Si multiple quantum well structures with a density of 10 18 cm -3. The process of ion implantation was used. Samples were amorphized by silicon implantation at liquid nitrogen temperature following the erbium implant. Recrystallization and optical activation of erbium atoms were achieved simultaneously by low temperature annealings in the range of 550-650°C. Detailed study on this low temperature window for erbium activation has been done. Reduction or complete elimination of erbium luminescence was observed for recrystallized samples having an additional step of rapid thermal annealing. It was shown that the uncontrolled sharp quenching of temperature that follows the rapid thermal annealing process deteriorates the sample structure and the erbium luminescence.

  7. Lithium-manganese dioxide cells for implantable defibrillator devices-Discharge voltage models

    NASA Astrophysics Data System (ADS)

    Root, Michael J.

    The discharge potential behavior of lithium-manganese dioxide cells designed for implantable cardiac defibrillators was characterized as a function of extent of cell depletion for tests designed to discharge the cells for times between 1 and 7 years. The discharge potential curves may be separated into two segments from 0 ≤ x ≤ ∼0.51 and ∼0.51 ≤ x ≤ 1.00, where x is the dimensionless extent of discharge referenced to the rated cell capacity. The discharge potentials conform to Tafel kinetics in each segment. This behavior allows the discharge potential curves to be predicted for an arbitrary discharge load and long term discharge performance may be predicted from short term test results. The discharge potentials may subsequently be modeled by fitting the discharge curves to empirical functions like polynomials and Padé approximants. A function based on the Nernst equation that includes a term accounting for nonideal interactions between lithium ions and the cathode host material, such as the Redlich-Kister relationship, also may be used to predict discharge behavior.

  8. A paramagnetic implant containing lithium naphthalocyanine microcrystals for high-resolution biological oximetry.

    PubMed

    Meenakshisundaram, Guruguhan; Pandian, Ramasamy P; Eteshola, Edward; Lee, Stephen C; Kuppusamy, Periannan

    2010-03-01

    Lithium naphthalocyanine (LiNc) is a microcrystalline EPR oximetry probe with high sensitivity to oxygen [R.P. Pandian, M. Dolgos, C. Marginean, P.M. Woodward, P.C. Hammel, P.T. Manoharan, P. Kuppusamy, Molecular packing and magnetic properties of lithium naphthalocyanine crystal: hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen J. Mater. Chem. 19 (2009) 4138-4147]. However, direct implantation of the crystals in the tissue for in vivo oxygen measurements may be hindered by concerns associated with their direct contact with the tissue/cells and loss of EPR signal due to particle migration in the tissue. In order to address these concerns, we have developed encapsulations (chips) of LiNc microcrystals in polydimethyl siloxane (PDMS), an oxygen-permeable, bioinert polymer. Oximetry evaluation of the fabricated chips revealed that the oxygen sensitivity of the crystals was unaffected by encapsulation in PDMS. Chips were stable against sterilization procedures or treatment with common biological oxidoreductants. In vivo oxygen measurements established the ability of the chips to provide reliable and repeated measurements of tissue oxygenation. This study establishes PDMS-encapsulated LiNc as a potential probe for long-term and repeated measurements of tissue oxygenation. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  9. Three-dimensional implantation distribution of lithium implanted into pyrographite, as revealed by solid state tomography in combination with neutron depth profiling

    NASA Astrophysics Data System (ADS)

    Fink, D.; Müller, M.; Klett, R.; Vacik, J.; Hnatowicz, V.; Cervena, J.

    1995-12-01

    We have studied the three-dimensional distribution of 2.5 MeV Li implanted into pyrographite at room temperature by means of modified tomography in combination with neutron depth profiling. Our new findings essentially reconfirm earlier results (D. Fink et al., J. Appl. Phys. 58 (1985) 668 [1]; Radiat. Eff. and Def. in Solids 114 (1990) 21 [2]) which indicated the presence of some radiation-enhanced mobility of the implanted lithium. This diffusion is anisotropic. It preferentially proceeds into the radial direction.

  10. Use of prefabricated titanium abutments and customized anatomic lithium disilicate structures for cement-retained implant restorations in the esthetic zone.

    PubMed

    Lin, Wei-Shao; Harris, Bryan T; Zandinejad, Amirali; Martin, William C; Morton, Dean

    2014-03-01

    This report describes the fabrication of customized abutments consisting of prefabricated 2-piece titanium abutments and customized anatomic lithium disilicate structures for cement-retained implant restorations in the esthetic zone. The heat-pressed lithium disilicate provides esthetic customized anatomic structures and crowns independently of the computer-aided design and computer-aided manufacturing process.

  11. Silicon LEDs with room-temperature dislocation-related luminescence, fabricated by erbium ion implantation and chemical-vapor deposition of polycrystalline silicon layers heavily doped with boron and phosphorus

    SciTech Connect

    Sobolev, N. A. Emel'yanov, A. M.; Zabrodskii, V. V.; Zabrodskaya, N. V.; Sukhanov, V. L.; Shek, E. I.

    2007-05-15

    Light-emitting diodes (LEDs) have been fabricated in which optically active centers are formed by implantation of erbium ions into silicon and subsequent high-temperature annealing in an oxidizing atmosphere and the p-n junction and the ohmic contact are formed by chemical vapor deposition of polycrystalline silicon layers doped with boron and phosphorus, respectively. The luminescent properties of the LEDs have been studied. Use of polycrystalline layers makes it possible to eliminate the losses in the bulk of the light-emitting Si:Er layer. These losses are inevitable if the conventional ion implantation and diffusion methods are employed. At 80 K, the variation of electroluminescence spectra in the spectral range of the dislocation-related luminescence with the drive current is well described if the spectrum is decomposed into three Gaussian components whose peak positions and widths are current-independent and amplitudes linearly increase with the current. At 300 K, a single peak is observed in the spectral range of the dislocation-related luminescence at {approx}1.6 {mu}m.

  12. Performance and management of implantable lithium battery systems for left ventricular assist devices and total artificial hearts

    NASA Astrophysics Data System (ADS)

    Dodd, J.; Kishiyama, C.; Mukainakano, Hiroshi; Nagata, M.; Tsukamoto, H.

    A lithium ion cell designed for implantable medical devices was tested for its performance as a power source for left ventricular assist devices (LVAD) or total artificial hearts (TAH). These two cardiovascular devices require high power, and thus a high current (0.5-3 A) and high voltage (20-30 V). Since these are implantable medical devices, in addition to high power capability, the power source should have long cycle life and calendar life, as well as high safety. The QL0700I, a 700 mAh cell, was cycled at 0.5 C rate as well as at 1.5 C rate, and the cycle life capacity retention was evaluated after numerous cycles. A battery pack consisting of seven QL0700I cells in series, with a battery management system (BMS) connected, was tested for rate capability as well as safety protection.

  13. Radiation damage and defect behavior in ion-implanted, lithium counterdoped silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Mehta, S.; Swartz, C. K.

    1984-01-01

    Boron doped silicon n+p solar cells were counterdoped with lithium by ion implanation and the resultant n+p cells irradiated by 1 MeV electrons. The function of fluence and a Deep Level Transient Spectroscopy (DLTS) was studied to correlate defect behavior with cell performance. It was found that the lithium counterdoped cells exhibited significantly increased radiation resistance when compared to boron doped control cells. It is concluded that the annealing behavior is controlled by dissociation and recombination of defects. The DLTS studies show that counterdoping with lithium eliminates at least three deep level defects and results in three new defects. It is speculated that the increased radiation resistance of the counterdoped cells is due primarily to the interaction of lithium with oxygen, single vacancies and divacancies and that the lithium-oxygen interaction is the most effective in contributing to the increased radiation resistance.

  14. Influence of zirconia abutment preparation on the fracture strength of single implant lithium disilicate crowns after chewing simulation.

    PubMed

    Mitsias, Miltiadis; Koutayas, Spiridon-Oumvertos; Wolfart, Stefan; Kern, Matthias

    2014-06-01

    The use of all-ceramic crowns over zirconia abutments is a well-established esthetic treatment option in implant dentistry; however, the effect of the mechanical processing due to abutment preparation has not been investigated under functional loading. The purpose of the study was to evaluate the influence of the zirconia abutment preparation depth and preparation mode on the fracture strength and fracture mode of lithium disilicate crowns after chewing simulation. Seventy single implant-supported lithium disilicate glass-ceramic crowns (IPS e.max Press, Ivoclar Vivadent) were adhesively cemented (Multilink Automix, Ivoclar Vivadent) onto zirconia abutments (ZirDesign, Astra Tech) using implants with a diameter of 4.5 mm and a length of 15.0 mm (Osseospeed, Astra Tech). Study design concerned the replacement of a maxillary central incisor (11.0 mm in height and 8.0 mm in width). Subgroups (n = 7) were subjected to dynamic loading (C) up to 1.2 × 10(6) loading cycles at 135° with 98N in a thermomechanical chewing simulator (Kausimulator, Willytech); followed by quasi-static loading at a cross-head speed of 0.5 mm/min until fracture in a universal testing machine (Z010/TN2S, Zwick). Additional subgroups were also subjected to quasi-static loading (S) at 135°. Lithium disilicate implant crowns were divided into five study groups (n = 14) according to the abutment preparation depth [A (control): 0.5 mm, B: 0.7 mm, C: 0.9 mm, and preparation mode [(No label): milling by the manufacturer, (P): copy-milling by the Celay System (Mikrona)]. All specimens survived dynamic loading and mean fracture strengths (N) after quasi-static loading were as follows: Group SA: 384 ± 84; Group CA: 403 ± 67; Group SB: 294 ± 95; Group CB: 374 ± 75; Group SC: 332 ± 52; Group CC: 373 ± 105; Group SPB: 332 ± 80; Group CPB: 499 ± 91; Group SPC: 380 ± 101; and Group CPC: 358 ± 54. Statistical analysis using multiple linear regression showed that both the preparation depth and mode

  15. Establishing a suitable surface roughness for lithium disilicate implant abutments under laboratory conditions: a morphologic SEM and profilometric pilot study.

    PubMed

    Fabel, Gertrud; Beuer, Florian

    The increasing use of dental implants rather than fixed cantilever bridges for standard dental restorations has led to the development of multiple materials in this field. The goal in modern dentistry in recent years has been to achieve results in implantology that match the natural dentition in esthetics and function. Constant efforts have been made to achieve a perfect emergence profile, and to individualize the surrounding periimplant soft tissue. Powder-free digital scanning is now possible, which allows for the computer-assisted design/computer-assisted manufacturing (CAD/CAM) of ready-to-fit customized immediate implant abutments in various appropriate materials. Since lithium disilicate can be used as a hybrid abutment for restorations, many patients today can more easily afford a customized solution. Apart from the esthetic advantages in the transition area of the crown, the microscopic characterization of the emergence profile is also relevant. Numerous research studies have shown that the optimal surface of titanium abutments is neither too rough nor too smooth. Following these studies, various methods have been used to establish the same proven roughness for zirconia and lithium disilicate surfaces. The present study looks at different polishing methods and glaze firing processes.

  16. Helium trapping at erbium oxide precipitates in erbium hydride

    SciTech Connect

    Foiles, Stephen M.; Battaile, Corbett Chandler

    2016-02-01

    The formation of He bubbles in erbium tritides is a significant process in the aging of these materials. Due to the long-standing uncertainty about the initial nucleation process of these bubbles, there is interest in mechanisms that can lead to the localization of He in erbium hydrides. Previous work has been unable to identify nucleation sites in homogeneous erbium hydride. This work builds on the experimental observation that erbium hydrides have nano- scale erbium oxide precipitates due to the high thermodynamic stability of erbium oxide and the ubiquitous presence of oxygen during materials processing. Fundamental DFT calculations indicate that the He is energetically favored in the oxide relative to the bulk hydride. Activation energies for the motion of He in the oxide and at the oxide-hydride interface indicate that trapping is kinetically feasible. A simple kinetic Monte Carlo model is developed that demonstrates the degree of trapping of He as a function of temperature and oxide fraction.

  17. Electrical conductivity of MgO crystals implanted with lithium ions

    NASA Astrophysics Data System (ADS)

    Tardío, M.; Ramírez, R.; González, R.; Chen, Y.; Alves, E.

    2002-05-01

    MgO single crystals were implanted with a fluence of 1×10 17 Li +/cm 2 with 175 keV. Using ac and dc techniques, the electrical conductivity of these crystals was investigated in the temperature range 296-440 K. The electrical conductivity of the implanted region was 14 orders of magnitude higher than the unimplanted area. Measurements at different temperatures suggest a thermally activated process with an activation energy of about 0.33 eV. In the implanted area, electrical contacts are found to be ohmic whereas contacts are blocking in unimplanted crystals. Removal of thin layers of the implanted region by immersing the crystal in hot phosphoric acid suggests that the enhancement in conductivity in the implanted region is associated with the intrinsic defects created by the implantation, rather than with the Li ions.

  18. Erbium diffusion in silicon dioxide

    SciTech Connect

    Lu Yingwei; Julsgaard, B.; Petersen, M. Christian; Jensen, R. V. Skougaard; Pedersen, T. Garm; Pedersen, K.; Larsen, A. Nylandsted

    2010-10-04

    Erbium diffusion in silicon dioxide layers prepared by magnetron sputtering, chemical vapor deposition, and thermal growth has been investigated by secondary ion mass spectrometry, and diffusion coefficients have been extracted from simulations based on Fick's second law of diffusion. Erbium diffusion in magnetron sputtered silicon dioxide from buried erbium distributions has in particular been studied, and in this case a simple Arrhenius law can describe the diffusivity with an activation energy of 5.3{+-}0.1 eV. Within a factor of two, the erbium diffusion coefficients at a given temperature are identical for all investigated matrices.

  19. Erbium lasers in dentistry.

    PubMed

    van As, Glenn

    2004-10-01

    Erbium hard tissue lasers have the capability to prepare enamel, dentin, caries, cementum, and bone in addition to cutting soft tissue. The ability of hard tissue lasers to reduce or eliminate vibrations, the audible whine of drills, microfractures, and some of the discomfort that many patients fear and commonly associate with high-speed handpieces is impressive. In addition, these lasers can be used with a reduced amount of local anesthetic for many procedures. Today, these instruments have evolved from their initial use for all classes of cavity preparations to their ability for removing soft tissue, their usefulness in the disinfection of bacteria within endodontic canals, and most recently, as an alternative to the high speed handpiece for the removal of bone in oral and maxillofacial surgery. In addition, recent research has centered on the value of the erbium family of laser wavelengths in periodontics, including the removal of calculus.

  20. Erbium hydride decomposition kinetics.

    SciTech Connect

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  1. Suppressed gross erosion of high-temperature lithium via rapid deuterium implantation

    DOE PAGES

    Abrams, T.; Jaworski, M. A.; Chen, M.; ...

    2015-12-17

    Lithium-coated high-Z substrates are planned for use in the NSTX-U divertor and are a candidate plasma facing component (PFC) for reactors, but it remains necessary to characterize the gross Li erosion rate under high plasma fluxes (>1023 m-2 s-1), typical for the divertor region. In this work, a realistic model for the compositional evolution of a Li/D layer is developed that incorporates first principles molecular dynamics (MD) simulations of D diffusion in liquid Li. Predictions of Li erosion from a mixed Li/D material are also developed that include formation of lithium deuteride (LiD). The erosion rate of Li from LiDmore » is predicted to be significantly lower than from pure Li. This prediction is tested in the Magnum-PSI linear plasma device at ion fluxes of 1023-1024 m-2 s-1 and Li surface temperatures. ≤800 °C. Li/LiD coatings ranging in thickness from 0.2 to 500 μm are studied. The dynamic D/Li concentrations are inferred via diffusion simulations. The pure Li erosion rate remains greater than Langmuir Law evaporation, as expected. For mixed-material Li/LiD surfaces, the erosion rates are reduced, in good agreement with modelling in almost all cases. Lastly, these results imply that the temperature limit for a Li-coated PFC may be significantly higher than previously imagined.« less

  2. Field electron emission enhancement in lithium implanted and annealed nitrogen-incorporated nanocrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Sankaran, K. J.; Srinivasu, K.; Yeh, C. J.; Thomas, J. P.; Drijkoningen, S.; Pobedinskas, P.; Sundaravel, B.; Leou, K. C.; Leung, K. T.; Van Bael, M. K.; Schreck, M.; Lin, I. N.; Haenen, K.

    2017-06-01

    The field electron emission (FEE) properties of nitrogen-incorporated nanocrystalline diamond films were enhanced due to Li-ion implantation/annealing processes. Li-ion implantation mainly induced the formation of electron trap centers inside diamond grains, whereas post-annealing healed the defects and converted the a-C phase into nanographite, forming conduction channels for effective transport of electrons. This resulted in a high electrical conductivity of 11.0 S/cm and enhanced FEE performance with a low turn-on field of 10.6 V/μm, a high current density of 25.5 mA/cm2 (at 23.2 V/μm), and a high lifetime stability of 1,090 min for nitrogen incorporated nanocrystalline diamond films.

  3. Suppressed gross erosion of high-temperature lithium via rapid deuterium implantation

    SciTech Connect

    Abrams, T.; Jaworski, M. A.; Chen, M.; Carter, E. A.; Kaita, R.; Stotler, D. P.; De Temmerman, G.; Morgan, T. W.; van den Berg, M. A.; van der Meiden, H. J.

    2015-12-17

    Lithium-coated high-Z substrates are planned for use in the NSTX-U divertor and are a candidate plasma facing component (PFC) for reactors, but it remains necessary to characterize the gross Li erosion rate under high plasma fluxes (>1023 m-2 s-1), typical for the divertor region. In this work, a realistic model for the compositional evolution of a Li/D layer is developed that incorporates first principles molecular dynamics (MD) simulations of D diffusion in liquid Li. Predictions of Li erosion from a mixed Li/D material are also developed that include formation of lithium deuteride (LiD). The erosion rate of Li from LiD is predicted to be significantly lower than from pure Li. This prediction is tested in the Magnum-PSI linear plasma device at ion fluxes of 1023-1024 m-2 s-1 and Li surface temperatures. ≤800 °C. Li/LiD coatings ranging in thickness from 0.2 to 500 μm are studied. The dynamic D/Li concentrations are inferred via diffusion simulations. The pure Li erosion rate remains greater than Langmuir Law evaporation, as expected. For mixed-material Li/LiD surfaces, the erosion rates are reduced, in good agreement with modelling in almost all cases. Lastly, these results imply that the temperature limit for a Li-coated PFC may be significantly higher than previously imagined.

  4. Clean waveguides in lithium niobate thin film formed by He ion implantation

    NASA Astrophysics Data System (ADS)

    Zhang, Shao-Mei; Jiang, Yun-Peng; Jiao, Yang

    2017-08-01

    We report on the fabrication of channel waveguides by He ion implantation in a single-crystal LiNbO3 film bonded to a SiO2/LiNbO3 substrate. The planar waveguides were also formed under the same conditions to show the refractive index changes and the thermal annealing properties of ion-implanted LiNbO3 thin film. Using a moderate implantation energy, the formed channel waveguides were clean because He ions passed through the LiNbO3 thin film and deposited into the SiO2 layer. The optical propagation properties of channel waveguides were measured using an end-face coupling method, and the theoretical results were simultaneously calculated for comparison. The mode sizes and end-face reflectivities of channel waveguides with different widths were numerically calculated. The propagation losses were also estimated at approximately 12.2 and 14.3 dB/cm for 7 μm- and 5 μm-wide waveguides, respectively, by the Fabry-Perot method.

  5. Misfit and fracture load of implant-supported monolithic crowns in zirconia-reinforced lithium silicate

    PubMed Central

    GOMES, Rafael Soares; de SOUZA, Caroline Mathias Carvalho; BERGAMO, Edmara Tatiely Pedroso; BORDIN, Dimorvan; DEL BEL CURY, Altair Antoninha

    2017-01-01

    Abstract Zirconia-reinforced lithium silicate (ZLS) is a ceramic that promises to have better mechanical properties than other materials with the same indications as well as improved adaptation and fracture strength. Objective In this study, marginal and internal misfit and fracture load with and without thermal-mechanical aging (TMA) of monolithic ZLS and lithium disilicate (LDS) crowns were evaluated. Material and methods Crowns were milled using a computer-aided design/computer-aided manufacturing system. Marginal gaps (MGs), absolute marginal discrepancy (AMD), axial gaps, and occlusal gaps were measured by X-ray microtomography (n=8). For fracture load testing, crowns were cemented in a universal abutment, and divided into four groups: ZLS without TMA, ZLS with TMA, LDS without TMA, and LDS with TMA (n=10). TMA groups were subjected to 10,000 thermal cycles (5-55°C) and 1,000,000 mechanical cycles (200 N, 3.8 Hz). All groups were subjected to compressive strength testing in a universal testing machine at a crosshead speed of 1 mm/min until failure. Student’s t-test was used to examine misfit, two-way analysis of variance was used to analyze fracture load, and Pearson’s correlation coefficients for misfit and fracture load were calculated (α=0.05). The materials were analyzed according to Weibull distribution, with 95% confidence intervals. Results Average MG (p<0.001) and AMD (p=0.003) values were greater in ZLS than in LDS crowns. TMA did not affect the fracture load of either material. However, fracture loads of ZLS crowns were lower than those of LDS crowns (p<0.001). Fracture load was moderately correlated with MG (r=-0.553) and AMD (r=-0.497). ZLS with TMA was least reliable, according to Weibull probability. Conclusion Within the limitations of this study, ZLS crowns had lower fracture load values and greater marginal misfit than did LDS crowns, although these values were within acceptable limits. PMID:28678947

  6. Misfit and fracture load of implant-supported monolithic crowns in zirconia-reinforced lithium silicate.

    PubMed

    Gomes, Rafael Soares; Souza, Caroline Mathias Carvalho de; Bergamo, Edmara Tatiely Pedroso; Bordin, Dimorvan; Del Bel Cury, Altair Antoninha

    2017-01-01

    In this study, marginal and internal misfit and fracture load with and without thermal-mechanical aging (TMA) of monolithic ZLS and lithium disilicate (LDS) crowns were evaluated. Crowns were milled using a computer-aided design/computer-aided manufacturing system. Marginal gaps (MGs), absolute marginal discrepancy (AMD), axial gaps, and occlusal gaps were measured by X-ray microtomography (n=8). For fracture load testing, crowns were cemented in a universal abutment, and divided into four groups: ZLS without TMA, ZLS with TMA, LDS without TMA, and LDS with TMA (n=10). TMA groups were subjected to 10,000 thermal cycles (5-55°C) and 1,000,000 mechanical cycles (200 N, 3.8 Hz). All groups were subjected to compressive strength testing in a universal testing machine at a crosshead speed of 1 mm/min until failure. Student's t-test was used to examine misfit, two-way analysis of variance was used to analyze fracture load, and Pearson's correlation coefficients for misfit and fracture load were calculated (α=0.05). The materials were analyzed according to Weibull distribution, with 95% confidence intervals. Average MG (p<0.001) and AMD (p=0.003) values were greater in ZLS than in LDS crowns. TMA did not affect the fracture load of either material. However, fracture loads of ZLS crowns were lower than those of LDS crowns (p<0.001). Fracture load was moderately correlated with MG (r=-0.553) and AMD (r=-0.497). ZLS with TMA was least reliable, according to Weibull probability. Within the limitations of this study, ZLS crowns had lower fracture load values and greater marginal misfit than did LDS crowns, although these values were within acceptable limits.

  7. Optical emission from erbium-doped silica nanowires

    SciTech Connect

    Elliman, R. G.; Wilkinson, A. R.; Kim, T.-H.; Sekhar, P. K.; Bhansali, S.

    2008-05-15

    Infrared optical emission from erbium-doped silica nanowires is shown to have property characteristic of the material nanostructure and to provide the basis for the fabrication of integrated photonic devices and biosensors. Silica nanowires of approximately 150 nm diameter were grown on a silicon wafer by metal-induced growth using a thin (20 nm) sputter-deposited palladium layer as a catalyst. The resulting wires were then ion implanted with 110 keV ErO{sup -} ions and annealed at 900 deg. C to optically activate the erbium. These wires exhibited photoluminescence emission at 1.54 {mu}m, characteristic of the {sup 4}I{sub 15/2}-{sup 4}I{sub 13/2} transition in erbium; however, comparison to similarly implanted fused silica layers revealed stronger thermal quenching and longer luminescence lifetimes in the nanowire samples. The former is attributed to an increase in defect-induced quenching partly due to the large surface-volume ratio of the nanowires, while the latter is attributed to a reduction in the optical density of states associated with the nanostructure morphology. Details of this behavior are discussed together with the implications for potential device applications.

  8. Erbium: YAG laser lithotripsy mechanism.

    PubMed

    Chan, Kin Foong; Lee, Ho; Teichman, Joel M H; Kamerer, Angela; McGuff, H Stan; Vargas, Gracie; Welch, Ashley J

    2002-08-01

    We tested the hypothesis that the mechanism of long pulse erbium:YAG laser lithotripsy is photothermal. Human urinary calculi were placed in deionized water and irradiated with erbium:YAG laser energy delivered through a sapphire optical fiber. Erbium:YAG bubble dynamics were visualized with Schlieren flash photography and correlated to acoustic emissions measured by a polyvinylidene fluoride needle hydrophone. The sapphire fiber was placed either parallel or perpendicular to the calculus surface to assess the contribution of acoustic transients to fragmentation. Stones were irradiated using desiccated stone irradiated in air, hydrated stone irradiated in air and hydrated stone irradiated in water. Ablation crater sizes were compared. Uric acid stones were irradiated in water and the water was assayed for cyanide. During the early phase of vapor bubble expansion, acoustic transients had minimal effects on calculus fragmentation. Fragmentation occurred due to direct absorption of laser energy transmitted to the calculus through the vapor channel between the sapphire fiber tip and calculus. The forward axial expansion of the bubble occurred more rapidly than the radial expansion. A parallel oriented fiber on the calculus surface produced no fragmentation but generated larger amplitude acoustic transients compared to perpendicular orientation. In perpendicular orientation the erbium:YAG laser did not generate any collapse acoustic waves but fragmentation occurred. Crater width was greatest for desiccated stones irradiated in air (p <0.03). Cyanide production increased as erbium:YAG irradiation of uric acid calculi increased, (r2 = 0.98). The erbium:YAG laser fragments stones through a photothermal mechanism.

  9. A Clinical Study Assessing the Influence of Anodized Titanium and Zirconium Dioxide Abutments and Peri-implant Soft Tissue Thickness on the Optical Outcome of Implant-Supported Lithium Disilicate Single Crowns.

    PubMed

    Martínez-Rus, Francisco; Prieto, Marta; Salido, María P; Madrigal, Cristina; Özcan, Mutlu; Pradíes, Guillermo

    To assess the influence of anodized titanium and zirconium dioxide abutments and peri-implant soft tissue thickness on the optical outcome of implant-supported lithium disilicate single crowns. Twenty patients with a missing maxillary single incisor, canine, or first premolar received an endosseous implant after a two-stage surgery protocol. After healing and soft tissue conditioning, peri-implant soft tissues were reproduced in the impression, and the thickness was measured. Customized abutments were made of titanium, gold-anodized titanium, pink-anodized titanium, and zirconium dioxide. The definitive prosthesis was a lithium disilicate crown stratified by feldsphatic porcelain. Customized abutments were screwed (35 Ncm), and the crown was temporarily placed on the abutment with a try-in paste. Color measurements were made using a spectrophotometer. CIELab color scale was employed following the formula: ΔE = (ΔL)² + (Δa) ² + (Δb) ². Data were analyzed using repeated-measures analysis of variance (ANOVA), Bonferroni and Pearson's correlation tests (α = .05). Abutment material type significantly affected the ΔE values at both the peri-implant soft tissue (P = .0001) and coronal level (P = .001). The lowest ΔE values were obtained with zirconia abutments at both soft tissue (6.06 ± 3.2) and coronal level (5.76 ± 2.9) compared with those of other abutments (soft tissue: 8.96 ± 3.1 to 11.56 ± 3.4; coronal: 8.66 ± 6.1 to 10.42 ± 6.3). Mean soft tissue thickness (1.63 ± 0.64 mm) affected the ΔE values at the peri-implant soft tissue level for only titanium and pink-anodized titanium abutments (P = .024 and P = .048, respectively). In all conditions, correlation coefficients between ΔE and the abutment materials were higher for titanium (r = -0.544; P = .024) and the least for zirconia (r = -0.313; P = .238) and gold-anodized titanium (r = -0.393; P = .119) abutments. All abutment types demonstrated noticeable color difference at both the soft tissue

  10. Proceedings of the symposia on power sources for biomedical implantable applications and ambient temperature lithium batteries, 1979

    SciTech Connect

    Owens, B.B.; Margalit, N.

    1980-01-01

    The includes 57 papers that provide a ready reference to much of the technological development work on lithium batteries during the past ten year period. The symposium on ambient temperature lithium batteries covered lithium systems under development for normal ambient temperature applications. This is divided into subsections dealing with: low drain systems; components preparation and evaluation; secondary systems; oxyhalide systems; and SO/sub 2/ cells. Topics considered include: primary and secondary batteries and their use for pacemakers, electrolytes, electrolytic cells, cathodes, electrochemistry aspects, and chemical solutions. 55 papers are abstracted and indexed separately.

  11. Study of the negative magneto-resistance of single proton-implanted lithium-doped ZnO microwires.

    PubMed

    Lorite, I; Zandalazini, C; Esquinazi, P; Spemann, D; Friedländer, S; Pöppl, A; Michalsky, T; Grundmann, M; Vogt, J; Meijer, J; Heluani, S P; Ohldag, H; Adeagbo, W A; Nayak, S K; Hergert, W; Ernst, A; Hoffmann, M

    2015-07-01

    The magneto-transport properties of single proton-implanted ZnO and of Li(7%)-doped ZnO microwires have been studied. The as-grown microwires were highly insulating and not magnetic. After proton implantation the Li(7%) doped ZnO microwires showed a non-monotonous behavior of the negative magneto-resistance (MR) at temperature above 150 K. This is in contrast to the monotonous NMR observed below 50 K for proton-implanted ZnO. The observed difference in the transport properties of the wires is related to the amount of stable Zn vacancies created at the near surface region by the proton implantation and Li doping. The magnetic field dependence of the resistance might be explained by the formation of a magnetic/non-magnetic heterostructure in the wire after proton implantation.

  12. RBS, PIXE and NDP study of erbium incorporation into glass surface for photonics applications

    NASA Astrophysics Data System (ADS)

    Macková, Anna; Havránek, Vladimír; Vacík, Jiří; Salavcová, Linda; Špirková, Jarmila

    2006-08-01

    This paper reports on the fabrication and the characterisation of successful erbium in-diffusion into silicate glass surface for potential use in photonics active structures through ion beam analytical methods. The erbium doping occurred by ion exchange of erbium ions from a molten source for lithium ions from the specially designed glass substrates. Composition of the optical layers was studied by ion beam analytical techniques: RBS (Rutherford backscattering spectroscopy) characterized depth distribution of the incorporated Er3+ ions and PIXE (particle induced X-ray emission spectroscopy) gave information on the total amount of erbium incorporated in the samples. The NDP (neutron depth profiling) method was used to evaluate changes in distribution of Li+ ions in the surfaces of the fabricated samples. We observed shallow Er profiles that were accompanied by more mobile Cs+, Rb+ ions incorporated in the much deeper layer as compared to the Er. The Li concentration in the glass substrate occurs as the most important parameter for Er diffusion into the glass substrate.

  13. Fabrication and properties of erbium oxide

    SciTech Connect

    Neuman, A.; Platero, M.; Romero, R.; McClellan, K.J.; Petrovic, J.J.

    1997-03-01

    Erbium oxide (Er{sub 2}O{sub 3}) is a rare earth oxide of interest because of its chemical and thermal stability and high melting point, 2,430 C. However, there is relatively little information available regarding the relation between the structure and the mechanical properties of this material. A densification study of polycrystalline erbium oxide powders is reported here. Erbium oxide pellets were uniaxially pressed (40--280 MPa) and sintered (1,500--1,800 C) in order to obtain density data for as-received commercial powders. In addition, the particle size and distribution of as-received powders were varied by milling and the effects on densification were studied. The powders were characterized for particle size, phase and impurity content and surface area. The mechanical properties of high density sintered erbium oxide bodies were characterized using indentation hardness and toughness as a function of temperature and microstructure. Relations between the microstructure and mechanical properties are described.

  14. [Synthesis, characterization and NIR luminescence properties of erbium organic complexes].

    PubMed

    Wang, Huai-shan; Qian, Guo-dong; Wang, Min-quan; Luo, Yong-shi; Lin, Jiu-ling

    2005-03-01

    Several erbium organic complexes, hydrated erbium binary complexes with acetylacetone (AcAc) or dibenzoylmethane (DBM), erbium ternary complexes derived from 1,10-phenanthroline (Phen) with acetylacetone (AcAc), dibenzoylmethane (DBM) or trifluoroacetylacetone (TFA), were synthesized and identified by elemental analysis. The UV-Vis absorption and FTIR spectra measurements have been employed for all the erbium complexes. Near infrared (NIR) photoluminescence properties, such as luminescence intensity and effective bandwidth, of the erbium complexes were also studied. As a result, the erbium ternary complex with AcAc and Phen exhibits the most excellent luminescence properties among those investigated complexes.

  15. Erbium Doped Fiber Optic Gravimeter

    NASA Astrophysics Data System (ADS)

    Pérez-Sánchez, G. G.; Pérez-Torres, J. R.; Flores-Bravo, J. A.; Álvarez-Chávez, J. A.; Martínez-Piñón, F.

    2017-01-01

    Gravimeters are devices that can be used in a wide range of applications, such as mining, seismology, geodesy, archeology, geophysics and many others. These devices have great sensibility, which makes them susceptible to external vibrations like electromagnetic waves. There are several technologies regarding gravimeters that are of use in industrial metrology. Optical fiber is immune to electromagnetic interference, and together with long period gratings can form high sensibility sensors of small size, offering advantages over other systems with different technologies. This paper shows the development of an optical fiber gravimeter doped with Erbium that was characterized optically for loads going from 1 to 10 kg in a bandwidth between 1590nm to 1960nm, displaying a weight linear response against power. Later on this paper, the experimental results show that the previous described behavior can be modeled as characteristic function of the sensor.

  16. Perioral Rejuvenation With Ablative Erbium Resurfacing.

    PubMed

    Cohen, Joel L

    2015-11-01

    Since the introduction of the scanning full-field erbium laser, misconceptions regarding ablative erbium resurfacing have resulted in its being largely overshadowed by ablative fractional resurfacing. This case report illustrates the appropriateness of full-field erbium ablation for perioral resurfacing. A patient with profoundly severe perioral photodamage etched-in lines underwent full-field ablative perioral resurfacing with an erbium laser (Contour TRL, Sciton Inc., Palo Alto, CA) that allows separate control of ablation and coagulation. The pre-procedure consultations included evaluation of the severity of etched-in lines, and discussion of patient goals, expectations, and appropriate treatment options, as well as a review of patient photos and post-treatment care required. The author generally avoids full-field erbium ablation in patients with Fitzpatrick type IV and above. For each of 2 treatment sessions (separated by approximately 4 months), the patient received (12 cc plain 2% lidodaine) sulcus blocks before undergoing 4 passes with the erbium laser at 150 μ ablation, no coagulation, and then some very focal 30 μ ablation to areas of residual lines still visualized through the pinpoint bleeding. Similarly, full-field ablative resurfacing can be very reliable for significant wrinkles and creping in the lower eyelid skin--where often a single treatment of 80 μ ablation, 50 μ coagulation can lead to a nice improvement. Standardized digital imaging revealed significant improvement in deeply etched rhytides without significant adverse events. For appropriately selected patients requiring perioral (or periorbital) rejuvenation, full-field ablative erbium resurfacing is safe, efficacious and merits consideration.

  17. Growth studies of erbium-doped GaAs deposited by metalorganic vapor phase epitaxy using noval cyclopentadienyl-based erbium sources

    NASA Technical Reports Server (NTRS)

    Redwing, J. M.; Kuech, T. F.; Gordon, D. C.; Vaartstra, B. A.; Lau, S. S.

    1994-01-01

    Erbium-doped GaAS layers were grown by metalorganic vapor phase epitaxy using two new sources, bis(i-propylcyclopentadienyl)cyclopentadienyl erbium and tris(t-butylcyclopentadienyl) erbium. Controlled Er doping in the range of 10(exp 17) - 10(exp 18)/cu cm was achieved using a relatively low source temperature of 90 C. The doping exhibits a second-order dependence on inlet source partial pressure, similar to behavior obtained with cyclopentadienyl Mg dopant sources. Equivalent amounts of oxygen and Er are present in 'as-grown' films indicating that the majority of Er dopants probably exist as Er-O complexes in the material. Er(+3) luminescence at 1.54 micrometers was measured from the as-grown films, but ion implantation of additional oxygen decreases the emission intensity. Electrical compensation of n-type GaAs layers codoped with Er and Si is directly correlated to the Er concentration is proposed to arise from the deep centers associated with Er which are responsible for a broad emission band near 0.90 micrometers present in the photoluminescence spectra of GaAs:Si, Er films.

  18. Growth studies of erbium-doped GaAs deposited by metalorganic vapor phase epitaxy using noval cyclopentadienyl-based erbium sources

    NASA Technical Reports Server (NTRS)

    Redwing, J. M.; Kuech, T. F.; Gordon, D. C.; Vaartstra, B. A.; Lau, S. S.

    1994-01-01

    Erbium-doped GaAS layers were grown by metalorganic vapor phase epitaxy using two new sources, bis(i-propylcyclopentadienyl)cyclopentadienyl erbium and tris(t-butylcyclopentadienyl) erbium. Controlled Er doping in the range of 10(exp 17) - 10(exp 18)/cu cm was achieved using a relatively low source temperature of 90 C. The doping exhibits a second-order dependence on inlet source partial pressure, similar to behavior obtained with cyclopentadienyl Mg dopant sources. Equivalent amounts of oxygen and Er are present in 'as-grown' films indicating that the majority of Er dopants probably exist as Er-O complexes in the material. Er(+3) luminescence at 1.54 micrometers was measured from the as-grown films, but ion implantation of additional oxygen decreases the emission intensity. Electrical compensation of n-type GaAs layers codoped with Er and Si is directly correlated to the Er concentration is proposed to arise from the deep centers associated with Er which are responsible for a broad emission band near 0.90 micrometers present in the photoluminescence spectra of GaAs:Si, Er films.

  19. Erbium-doped aluminophosphosilicate optical fibres

    SciTech Connect

    Likhachev, M E; Bubnov, M M; Zotov, K V; Medvedkov, O I; Lipatov, D S; Yashkov, M V; Gur'yanov, Aleksei N

    2010-09-10

    We have studied the active properties of erbium-doped aluminophosphosilicate (APS) core fibres in wide ranges of erbia, alumina and phosphorus pentoxide concentrations. The absorption and luminescence spectra of the P{sub 2}O{sub 5}- or Al{sub 2}O{sub 3}-enriched erbium-doped APS fibres are shown to be similar to those of the erbium-doped fibres singly doped with phosphorus pentoxide or alumina, respectively. The formation of AlPO{sub 4} in APS fibres leads not only to a reduction in the refractive index of the glass but also to a marked increase in Er{sub 2}O{sub 3} solubility in silica. (optical fibres)

  20. Photonic properties of erbium activated coated microspheres

    NASA Astrophysics Data System (ADS)

    Jestin, Y.; Armellini, C.; Chiappini, A.; Chiasera, A.; Dumeige, Y.; Ferrari, M.; Féron, P.; Ghisa, L.; Nunzi Conti, G.; Trebaol, S.; Righini, G. C.

    2008-02-01

    μA simple method based on the sol-gel technology has been developed to coat passive microspheres with an active coating. The microspheres were prepared by fusion of a standard telecom fiber with a dimension of about 200 μm and 400 μm and have been respectively dipped in a 70SiO II-30HfO II sol activated by 1 mol% and 0.1 mol% of erbium ions. Here we first report about the luminescence properties of a silica-hafnia coating doped with erbium ions and then whispering gallery mode spectra were analysed for different sphere diameters, thickness of coating and erbium concentration. The thickness of the coating has been chosen in order to support at least one whispering gallery mode at 1.5 μm.

  1. Erbium:YAG laser for cataract extraction

    NASA Astrophysics Data System (ADS)

    Snyder, Robert W.; Jani, Mahendra G.; Yarborough, Mike; Marcellino, George R.; Noecker, Robert J.; Kramer, Theresa R.; Vidaurri, Jesus

    1998-06-01

    The Erbium:YAG laser may be an effective laser for use in cataract surgery. At 2.94 mm the energy is maximally absorbed by water thereby efficiently disrupting tissue with minimal surrounding thermal damage. The laser may be safer to use in the eye than conventional ultrasonic emulsifiers. Preliminary clinical studies of the safety and efficacy have begun.

  2. Erbium hydride thermal desorption : controlling kinetics.

    SciTech Connect

    Ferrizz, Robert Matthew

    2007-08-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report show that hydride film processing parameters directly impact thermal stability. Issues to be addressed include desorption kinetics for dihydrides and trihydrides, and the effect of film growth parameters, loading parameters, and substrate selection on desorption kinetics.

  3. Luminescence from Erbium Oxide Grown on Silicon

    DTIC Science & Technology

    2002-01-01

    H9.14 Luminescence from erbium oxide grown on silicon E. Nogales’, B. Mrndez , J.Piqueras’, R.Plugaru2 , J. A. Garcfa3 and T. J. Tate4 ’ Universidad ... Complutense de Madrid, Dpto. Ffsica de Materiales, 28040 Madrid, Spain.2Inst. of Microtechnology, Bucharest, Romania.3Universidad del Pais Vasco, Dpto

  4. Clinical application of erbium:YAG laser in periodontology.

    PubMed

    Ishikawa, Isao; Aoki, Akira; Takasaki, Aristeo Atsushi

    2008-01-01

    Various lasers have been introduced for the treatment of oral diseases and their applications in dental clinics have become a topic of much interest among practitioners. Technological advances and improvements have increased the choices of the available laser systems for oral use. Among them, a recently developed erbium-doped:yttrium aluminum garnet (Er:YAG) laser system possesses suitable characteristics for oral soft and hard tissue ablation. Due to its high absorption in water, an effective ablation with a very thin surface interaction occurs on the irradiated tissues without any major thermal damage to the irradiated and surrounding tissues. In the field of periodontics, the application of Er:YAG laser for periodontal hard tissue has begun with studies from Japanese and German researchers. Several in vitro and clinical studies have already demonstrated an effective application of the Er:YAG laser for calculus removal and decontamination of the diseased root surface in periodontal non-surgical and surgical procedures. However, further studies are required to better understand the various effects of Er:YAG laser irradiation on biological tissues for its safe and effective application during periodontal and implant therapy. Randomized controlled clinical trials and more basic studies have to be encouraged and performed to confirm the status of Er:YAG laser treatment as an adjunct or alternative to conventional mechanical periodontal therapy. In this paper, the advantages and current clinical applications of this laser in periodontics and implant dentistry are summarized based on current scientific evidence.

  5. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.

    PubMed

    Okamoto, Eiji; Nakamura, Masatoshi; Akasaka, Yuhta; Inoue, Yusuke; Abe, Yusuke; Chinzei, Tsuneo; Saito, Itsuro; Isoyama, Takashi; Mochizuki, Shuichi; Imachi, Kou; Mitamura, Yoshinori

    2007-07-01

    We have developed internal battery systems for driving an undulation pump ventricular assist device using two kinds of lithium ion rechargeable batteries. The lithium ion rechargeable batteries have high energy density, long life, and no memory effect; however, rise in temperature of the lithium ion rechargeable battery is a critical issue. Evaluation of temperature rise by means of numerical estimation is required to develop an internal battery system. Temperature of the lithium ion rechargeable batteries is determined by ohmic loss due to internal resistance, chemical loss due to chemical reaction, and heat release. Measurement results of internal resistance (R(cell)) at an ambient temperature of 37 degrees C were 0.1 Omega in the lithium ion (Li-ion) battery and 0.03 Omega in the lithium polymer (Li-po) battery. Entropy change (DeltaS) of each battery, which leads to chemical loss, was -1.6 to -61.1 J/(mol.K) in the Li-ion battery and -9.6 to -67.5 J/(mol.K) in the Li-po battery depending on state of charge (SOC). Temperature of each lithium ion rechargeable battery under a discharge current of 1 A was estimated by finite element method heat transfer analysis at an ambient temperature of 37 degrees C configuring with measured R(cell) and measured DeltaS in each SOC. Results of estimation of time-course change in the surface temperature of each battery coincided with results of measurement results, and the success of the estimation will greatly contribute to the development of an internal battery system using lithium ion rechargeable batteries.

  6. Microstructural, electrical and magnetic properties of erbium doped zinc oxide single crystals

    NASA Astrophysics Data System (ADS)

    Murmu, P. P.; Kennedy, J.; Ruck, B. J.; Rubanov, S.

    2015-11-01

    We report the structural, electrical and magnetic properties of erbium (Er) implanted zinc oxide (ZnO) single crystals. Rutherford backscattering and channeling results showed that the majority of Er atoms resided in Zn substitutional lattice sites. Annealing led to a fraction of Er atoms moving into random interstitial sites. Transmission electron microscopy micrographs revealed that doped Er atoms were located in the near-surface region, consistent with the results obtained from DYNAMIC-TRIM calculations. A non-linear Hall-voltage was observed near 100 K, which is associated with inhomogeneous transport in the material. The Er implanted and annealed ZnO exhibited persistent magnetic ordering to room temperature. Ferromagnetism was likely from the presence of intrinsic defects in ZnO, which mediates the magnetic ordering in Er implanted and annealed ZnO. [Figure not available: see fulltext.

  7. The role of lithium batteries in modern health care

    NASA Astrophysics Data System (ADS)

    Holmes, Curtis F.

    Since the implantation of the first lithium-powered pacemaker in 1972, biomedical devices powered by lithium batteries have played a significant role in saving lives and providing health-improving therapy. Today a wide variety of devices performing functions from managing cardiac rhythm to relieving pain and administering drugs is available to clinicians. Newer devices such as ventricular assist devices and implantable hearing devices are powered by lithium ion secondary batteries.

  8. Brillouin-Erbium fiber laser with enhanced feedback coupling using common Erbium gain section.

    PubMed

    Samsuri, N M; Zamzuri, A K; Al-Mansoori, M H; Ahmad, A; Mahdi, M A

    2008-10-13

    We demonstrate an enhanced architecture of Brillouin-Erbium fiber laser utilizing the reverse-S-shaped fiber section as the coupling mechanism. The enhancement is made by locating a common section of Erbium-doped fiber next to the single-mode fiber to amplify the Brillouin pumps and the oscillating Stokes lines. The requirement of having two Erbium gain sections to enhance the multiple Brillouin Stokes lines generation is neglected by the proposed fiber laser structure. The mode competitions arise from the self-lasing cavity modes of the fiber laser are efficiently suppressed by the stronger pre-amplified Brillouin pump power before entering the single mode fiber section. The maximum output power of 20 mW is obtained from the proposed fiber laser with 10 laser lines that equally separated by 0.089 nm spacing.

  9. Erbium-doped-fiber optical limiting amplifiers

    NASA Astrophysics Data System (ADS)

    Graydon, Oliver C.; Nickolaos Zervas, Michael; Laming, Richard I.

    1995-05-01

    A novel configuration of an erbium-doped-fiber optical output-limiting amplifier (OLA) is presented which is realized by simply introducing a differential lump-loss between the signal and the pump power at a particular point along the fiber. The OLA exhibits an input-power dynamic range in excess of 40 dB and the capacity to control optically the level of the constant-output signal.

  10. Characterization of the surface changes during the activation of erbium/erbium oxide for hydrogen storage.

    SciTech Connect

    Zavadil, Kevin Robert; Snow, Clark Sheldon; Brumbach, Michael Todd

    2010-09-01

    Erbium is known to effectively load with hydrogen when held at high temperature in a hydrogen atmosphere. To make the storage of hydrogen kinetically feasible, a thermal activation step is required. Activation is a routine practice, but very little is known about the physical, chemical, and/or electronic processes that occur during Activation. This work presents in situ characterization of erbium Activation using variable energy photoelectron spectroscopy at various stages of the Activation process. Modification of the passive surface oxide plays a significant role in Activation. The chemical and electronic changes observed from core-level and valence band spectra will be discussed along with corroborating ion scattering spectroscopy measurements.

  11. Lithium battery technology

    SciTech Connect

    Venkatasetty, A.V.

    1984-01-01

    This book presents papers on the use of lithium in electric batteries. Topics considered include solvents for lithium battery technology, transport properties and structure of nonaqueous electrolyte solutions, primary lithium batteries, lithium sulfur dioxide batteries, lithium oxyhalide batteries, medical batteries, ambient-temperature rechargeable lithium cells, high-temperature lithium batteries, and lithium ion-conducting solid electrolytes.

  12. Slow light propagation in a ring erbium-doped fiber.

    PubMed

    Bencheikh, K; Baldit, E; Briaudeau, S; Monnier, P; Levenson, J A; Mélin, G

    2010-12-06

    Slow light propagation is demonstrated by implementing Coherent Population Oscillations in a silica fiber doped with erbium ions in a ring surrounding the single mode core. Though only the wings of the mode interact with erbium ions, group velocities around 1360 m/s are obtained without any spatial distortion of the propagating mode.

  13. Gamma-ray-induced damage and recovery behavior in an erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Bussjager, Rebecca J.; Hayduk, Michael J.; Johns, Steven T.; Taylor, Linda R.; Taylor, Edward W.

    2002-01-01

    Erbium-doped fiber lasers (EDFLs) may soon find applications in space as high bit rate optical communication systems and photonic analog-to-digital converters (ADCs). The rapid advancement in digital signal processing systems has led to an increased interest in the direct digitization of high- frequency analog signals. The potential high bandwidth, reduced weight, and reduced power requirements makes photonics an attractive technology for wide-band signal conversion as well as for use in space-based platforms. It is anticipated that photonic ADCs will be able to operate at sampling rates and resolutions far greater than current electronic ADCs. The high repetition rates and narrow pulse widths produced by EDFLs allow for high-speed impulse sampling of analog signals thus making it a vital component of a photonic ADC. In this paper we report on the in situ gamma-ray irradiation of an actively mode-locked EDFL operating at 1530 nm. The onset, growth and extent of ionization induced damage under time-resolved operational conditions is presented. The laser consisted of approximately 3 meters of erbium-doped fiber pumped by a laser diode operating at 980 nm. The picosecond pulses produced by the laser were initiated and controlled by a Mach-Zehnder lithium niobate electro-optic modulator. The active mode-locking element allowed for the precise timing control of the laser repetition rate which is critical in high-speed optical networking systems as well as in photonic ADCs.

  14. Amplifying properties of heavily erbium-doped active fibres

    SciTech Connect

    Plotskii, A Yu; Kurkov, Andrei S; Yashkov, M Yu; Bubnov, M M; Likhachev, M E; Sysolyatin, A A; Dianov, Evgenii M; Gur'yanov, A N

    2005-06-30

    The relative concentration of erbium ions undergoing nonradiative relaxation from the metastable to the ground level is measured in aluminosilicate glass fibres doped with erbium ions at concentration between 3x10{sup 18} and 10{sup 20} cm{sup -3}. The dependence of the fraction of such ions on the Er{sup 3+} concentration is determined for fibres containing different amounts of aluminium oxide in a core. It is shown that the fraction of erbium ions not involved in amplification substantially decreases with increasing the Al{sub 2}O{sub 3} concentration. It is found that clustering leads to a considerable decrease in the gain in heavily Er{sup 3+}-doped active fibres. The dependence of the quantum efficiency of a fibre amplifier on the erbium ion concentration is obtained based on the measurements performed. This dependence can be used for optimising the parameters of erbium-doped fibre amplifiers. (fibres. integrated-optic waveguides)

  15. Hydrogen, lithium, and lithium hydride production

    DOEpatents

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.; Powell, G. Louis; Campbell, Peggy J.

    2017-06-20

    A method is provided for extracting hydrogen from lithium hydride. The method includes (a) heating lithium hydride to form liquid-phase lithium hydride; (b) extracting hydrogen from the liquid-phase lithium hydride, leaving residual liquid-phase lithium metal; (c) hydriding the residual liquid-phase lithium metal to form refined lithium hydride; and repeating steps (a) and (b) on the refined lithium hydride.

  16. Synoviorthesis with erbium-169: a double-blind controlled comparison of erbium-169 with corticosteroid.

    PubMed Central

    Gumpel, J M; Matthews, S A; Fisher, M

    1979-01-01

    Intra-articular injections of erbium--169 citrate and methylprednisolone acetate in hand joints were compared in a randomly selected double-blind trial. The patients included 21 with rheumatoid arthritis and 3 with psoriatic arthritis, and the design was an intrapatient comparison. No difference between joints treated with the radioisotope or steroid was observed in the year following injection. PMID:386961

  17. Hydrogen, lithium, and lithium hydride production

    DOEpatents

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  18. Super-enhancement of 1.54 μm emission from erbium codoped with oxygen in silicon-on-insulator

    PubMed Central

    Lourenço, M. A.; Milošević, M. M.; Gorin, A.; Gwilliam, R. M.; Homewood, K. P.

    2016-01-01

    We report on the super enhancement of the 1.54 μm Er emission in erbium doped silicon-on-insulator when codoped with oxygen at a ratio of 1:1. This is attributed to a more favourable crystal field splitting in the substitutional tetrahedral site favoured for the singly coordinated case. The results on these carefully matched implant profiles show that optical response is highly determined by the amount and ratio of erbium and oxygen present in the sample and ratios of O:Er greater than unity are severely detrimental to the Er emission. The most efficient luminescence is forty times higher than in silicon-on-insulator implanted with Er only. This super enhancement now offers a realistic route not only for optical communication applications but also for the implementation of silicon photonic integrated circuits for sensing, biomedical instrumentation and quantum communication. PMID:27874059

  19. Super-enhancement of 1.54 μm emission from erbium codoped with oxygen in silicon-on-insulator

    NASA Astrophysics Data System (ADS)

    Lourenço, M. A.; Milošević, M. M.; Gorin, A.; Gwilliam, R. M.; Homewood, K. P.

    2016-11-01

    We report on the super enhancement of the 1.54 μm Er emission in erbium doped silicon-on-insulator when codoped with oxygen at a ratio of 1:1. This is attributed to a more favourable crystal field splitting in the substitutional tetrahedral site favoured for the singly coordinated case. The results on these carefully matched implant profiles show that optical response is highly determined by the amount and ratio of erbium and oxygen present in the sample and ratios of O:Er greater than unity are severely detrimental to the Er emission. The most efficient luminescence is forty times higher than in silicon-on-insulator implanted with Er only. This super enhancement now offers a realistic route not only for optical communication applications but also for the implementation of silicon photonic integrated circuits for sensing, biomedical instrumentation and quantum communication.

  20. Erbium laser resurfacing for actinic cheilitis.

    PubMed

    Cohen, Joel L

    2013-11-01

    Actinic cheilitis is a precancerous condition characterized by grayish-whitish area(s) of discoloration on the mucosal lip, often blunting the demarcation between mucosa and cutaneous lip. Actinic cheilitis is considered to be an early part of the spectrum of squamous cell carcinoma. Squamous cell carcinoma specifically of the lip has a high rate of recurrence and metastasis through the oral cavity leading to a poor overall survival. Risk factors for the development of actinic cheilitis include chronic solar irradiation, increasing age, male gender, light skin complexion, immunosuppression, and possibly tobacco and alcohol consumption. Treatment options include topical pharmacotherapy (eg, fluorouracil, imiquimod) or procedural interventions (eg, cryotherapy, electrosurgery, surgical vermillionectomy, laser resurfacing), each with their known advantages and disadvantages. There is little consensus as to which treatment options offer the most clinical utility given the paucity of comparative clinical data. In my practice, laser resurfacing has become an important tool for the treatment of actinic cheilitis owing to its ease of use and overall safety, tolerability, and cosmetic acceptability. Herein the use of erbium laser resurfacing is described for three actinic cheilitis presentations for which I find it particularly useful: clinically prominent actinic cheilitis, biopsy-proven actinic cheilitis, and treatment of the entire lip following complete tumor excision of squamous cell carcinoma. All patients were treated with a 2940-nm erbium laser (Sciton Profile Contour Tunable Resurfacing Laser [TRL], Sciton, Inc., Palo Alto, CA).

  1. Lithium nephrotoxicity.

    PubMed

    Oliveira, Jobson Lopes de; Silva Júnior, Geraldo Bezerra da; Abreu, Krasnalhia Lívia Soares de; Rocha, Natália de Albuquerque; Franco, Luiz Fernando Leonavicius G; Araújo, Sônia Maria Holanda Almeida; Daher, Elizabeth de Francesco

    2010-01-01

    Lithium has been widely used in the treatment of bipolar disorder. Its renal toxicity includes impaired urinary concentrating ability and natriuresis, renal tubular acidosis, tubulointerstitial nephritis progressing to chronic kidney disease and hypercalcemia. The most common adverse effect is nephrogenic diabetes insipidus, which affects 20-40% of patients within weeks of lithium initiation. Chronic nephropathy correlates with duration of lithium therapy. Early detection of renal dysfunction should be achieved by rigorous monitoring of patients and close collaboration between psychiatrists and nephrologists. Recent experimental and clinical studies begin to clarify the mechanisms by which lithium induces changes in renal function. The aim of this study was to review the pathogenesis, clinical presentation, histopathological aspects and treatment of lithium-induced nephrotoxicity.

  2. Erbium triflate promoted multicomponent synthesis of highly substituted imidazoles.

    PubMed

    Rajaguru, Kandasamy; Suresh, Rajendran; Mariappan, Arumugam; Muthusubramanian, Shanmugam; Bhuvanesh, Nattamai

    2014-02-07

    The synthesis of highly substituted imidazole derivatives has been achieved from various α-azido chalcones, aryl aldehydes, and anilines. This multicomponent protocol employs erbium triflate as a catalyst resulting in excellent yield of the imidazoles.

  3. Cladding-pumped erbium-doped multicore fiber amplifier.

    PubMed

    Abedin, K S; Taunay, T F; Fishteyn, M; DiGiovanni, D J; Supradeepa, V R; Fini, J M; Yan, M F; Zhu, B; Monberg, E M; Dimarcello, F V

    2012-08-27

    A cladding pumped multicore erbium-doped fiber amplifier for simultaneous amplification of 6 channels is demonstrated. Peak gain over 32 dB has been obtained at a wavelength of 1560 nm and the bandwidth measured at 20-dB gain was about 35 nm. Numerical modeling of cladding pumped multicore erbium-doped amplifier was also performed to study the properties of the amplifier. The results of experiment and simulation are found to be in good agreement.

  4. Positron confinement in embedded lithium nanoclusters

    NASA Astrophysics Data System (ADS)

    van Huis, M. A.; van Veen, A.; Schut, H.; Falub, C. V.; Eijt, S. W.; Mijnarends, P. E.; Kuriplach, J.

    2002-02-01

    Quantum confinement of positrons in nanoclusters offers the opportunity to obtain detailed information on the electronic structure of nanoclusters by application of positron annihilation spectroscopy techniques. In this work, positron confinement is investigated in lithium nanoclusters embedded in monocrystalline MgO. These nanoclusters were created by means of ion implantation and subsequent annealing. It was found from the results of Doppler broadening positron beam analysis that approximately 92% of the implanted positrons annihilate in lithium nanoclusters rather than in the embedding MgO, while the local fraction of lithium at the implantation depth is only 1.3 at. %. The results of two-dimensional angular correlation of annihilation radiation confirm the presence of crystalline bulk lithium. The confinement of positrons is ascribed to the difference in positron affinity between lithium and MgO. The nanocluster acts as a potential well for positrons, where the depth of the potential well is equal to the difference in the positron affinities of lithium and MgO. These affinities were calculated using the linear muffin-tin orbital atomic sphere approximation method. This yields a positronic potential step at the MgO||Li interface of 1.8 eV using the generalized gradient approximation and 2.8 eV using the insulator model.

  5. Lithium iodide cardiac pacemakers: initial clinical experience.

    PubMed Central

    Burr, L. H.

    1976-01-01

    A new long-life cardiac pacemaker pulse generator powered by a lithium iodide fuel cell was introduced in Canada in 1973. The compact, hermetically sealed unit is easily implanted and reliable, has excellent patient acceptance and has an anticipated battery life of almost 14 years. Among 105 patients who received a lithium iodide pacemaker, complications occurred in 18. The lithium iodide pacemaker represents a significant advance in pacemaker generator technology and is recommended for long-term cardiac pacing; the manufacturer guarantees the pulse generator for 6 years. Images FIG. 1 PMID:974965

  6. Miniature pin-type lithium batteries for medical applications

    NASA Astrophysics Data System (ADS)

    Nagata, Mikito; Saraswat, Ashok; Nakahara, Hiroshi; Yumoto, Hiroyuki; Skinlo, David M.; Takeya, Kaname; Tsukamoto, Hisashi

    Miniature pin-type batteries featuring lithium-ion rechargeable chemistry and lithium/CF x chemistry have been developed for implantable medical applications. The characteristics of these batteries include hermeticity, small volume, and high power. Optimizing the jellyroll configuration and battery electrode design allows small volumes and high power.

  7. Luminescence of erbium ions in tellurite glasses

    NASA Astrophysics Data System (ADS)

    Savikin, Alexander P.; Grishin, Igor A.; Sharkov, Valery V.; Budruev, Andrei V.

    2013-11-01

    Optical characteristics of new generation of tellurite glasses having high stability against crystallization have been studied. As the initial reagents for the glasses synthesis on the base of tellurium oxide (TeO2) there were used such oxides as WO3, MoO3, La2O3, Li2CO3, ZnO—Bi2O2CO3 and active components such as high purity Er2O3, Yb2O3, ErF3 and YbF3. Intensities of luminescence at 1.53 µm of the erbium ions were determined after excitation at 975 nm. Experimental data obtained have shown the possibility to use the studied glasses doped by Er3+ and Yb3+ as active elements for fiber and integrated optics.

  8. Luminescence of erbium ions in tellurite glasses

    SciTech Connect

    Savikin, Alexander P.; Grishin, Igor A.; Sharkov, Valery V.; Budruev, Andrei V.

    2013-11-15

    Optical characteristics of new generation of tellurite glasses having high stability against crystallization have been studied. As the initial reagents for the glasses synthesis on the base of tellurium oxide (TeO{sub 2}) there were used such oxides as WO{sub 3}, MoO{sub 3}, La{sub 2}O{sub 3}, Li{sub 2}CO{sub 3}, ZnO—Bi{sub 2}O{sub 2}CO{sub 3} and active components such as high purity Er{sub 2}O{sub 3}, Yb{sub 2}O{sub 3}, ErF{sub 3} and YbF{sub 3}. Intensities of luminescence at 1.53 µm of the erbium ions were determined after excitation at 975 nm. Experimental data obtained have shown the possibility to use the studied glasses doped by Er{sup 3+} and Yb{sup 3+} as active elements for fiber and integrated optics. - Graphical abstract: In contrast to the case of ZBLAN glass the TeO{sub 2}–WO{sub 3} (Er{sup 3+}) glass has bright intensity of luminescence at 1.53 µm for erbium ions that should be caused by excitation at 975 nm. Experimental data obtained have shown the possibility to use the studied glasses doped by Er{sup 3+} and Yb{sup 3+} as active elements for fiber and integrated optics. Display Omitted - Highlights: • We examined changes in growth of luminescence in doubly-doped tellurite glasses. • We found that luminescence grows in two orders by using Er{sup 3+} and Yb{sup 3+} at 1.53 μm. • We see possibility to use those glasses as active elements for integrated optics.

  9. A self-Q-switched all-fiber erbium laser at 1530 nm using an auxiliary 1570-nm erbium laser.

    PubMed

    Tsai, Tzong-Yow; Fang, Yen-Cheng

    2009-11-23

    We demonstrate a self-Q-switched, all-fiber, tunable, erbium laser at 1530 nm with high pulse repetition rates of 0.9-10 kHz. Through the use of an auxiliary 10-mW, 1570 nm laser that shortened the relaxation time of erbium, sequentially Q-switched pulses with pulse energies between 4 and 6 microJ and pulse widths of 40 ns were steadily achieved. A peak pulse power of 165 W was obtained.

  10. [Lithium nephropathy].

    PubMed

    Kaczmarczyk, Ireneusz; Sułowicz, Władysław

    2013-01-01

    Lithium salts are the first-line drug therapy in the treatment of uni- and bipolar disorder since the sixties of the twentieth century. In the mid-70s, the first information about their nephrotoxicity appeared. Lithium salts have a narrow therapeutic index. Side effects during treatment are polyuria, polydipsia and nephrogenic diabetes insipidus. Accidental intoxication can cause acute renal failure requiring renal replacement therapy while receiving long-term lithium salt can lead to the development of chronic kidney disease. The renal biopsy changes revealed a type of chronic tubulointerstitial nephropathy. The imaging studies revealed the presence of numerous symmetric microcysts. Care of the patient receiving lithium should include regular determination of serum creatinine, creatinine clearance and monitoring of urine volume. In case of deterioration of renal function reducing the dose should be considered.

  11. Lithium toxicity

    MedlinePlus

    ... Lithonate Note: Lithium is also commonly found in batteries, lubricants, high performance metal alloys, and soldering supplies. ... Kidney failure Memory problems Movement disorders Problems ... your body Psychosis (disturbed thought processes, unpredictable ...

  12. Microstructure of titanium-cement-lithium disilicate interface in CAD-CAM dental implant crowns: a three-dimensional profilometric analysis.

    PubMed

    Cresti, Stefano; Itri, Angelo; Rebaudi, Alberto; Diaspro, Alberto; Salerno, Marco

    2015-01-01

    Peri-implantitis is an infection of the implant surface caused by adhesion of bacteria that generate bone resorption and sometimes even consequent implant loss. Both screw-retained and cemented fixed implants are affected. The purpose of this study is to investigate the morphological defects at the cemented interface between titanium abutment and ceramic crown, comparing different adhesive cements used to fill the marginal gap. Twelve computer-aided design-computer-aided manufacturing dental crowns were cemented to titanium abutments using three different resin composite cements. Sealed margins were polished using grommets with descending diamond particle size. Three groups of four crowns each were made according to the cement used, namely RelyX Unicem (3 M ESPE), Panavia F 2.0 (Kuraray), and NX3 (Nexus Kerr). Samples were analyzed using optical inspection, three-dimensional profilometry, and image analysis, including analysis of variance. Although RelyX showed significantly lower root mean square surface roughness (4.4 ± 1.5 μm) than that of NX3 (7.0 ± 2.9 μm), it showed no significant difference with Panavia (3.7 ± 1.5 μm). The marginal gap was significantly wider in Panavia (149 ± 108 μm) as compared with NX3 (71 ± 45 μm) and Relyx (64 ± 34 μm). For all groups, homogeneous heights of both metal-cement and ceramic-cement gaps were observed. Moreover, all samples showed homogeneity of the margins and absence of instrumental bias, thus validating both procedure and materials. When using the chosen polishing method, RelyX Unicem showed both low roughness and marginal width, and thus the smoothest and more continuous abutment-crown interlayer, promising a low probability of occurrence of peri-implantitis. © 2013 Wiley Periodicals, Inc.

  13. Air Force/Ion Physics hardened lithium doped solar cell development

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A.; Bartels, F.; Carnes, C.; Ho, J.; Smith, D.

    1971-01-01

    Introduction of lithium by ion implantation eliminates reproducibility and surface problem deficiencies of other introduction techniques. Implantation has been demonstrated to make possible a degree of control over the cell lithium content which has not previously been available. Front barrier development remains to be completed. Successful development of the barrier will make available the freedom to select optimum lithium concentration throughout the cell, including in the vicinity of the junction.

  14. Navy Lithium Battery Safety

    DTIC Science & Technology

    2010-07-14

    lithium -sulfur dioxide (Li-SO2), lithium - thionyl chloride (Li- SOCL2), and lithium -sulfuryl chloride (Li-S02CL2...and 1980’s with active primary cells: Lithium -sulfur dioxide (Li-SO2) Lithium - thionyl chloride (Li-SOCL2) Lithium -sulfuryl chloride (Li-S0 CL ) 2 2...DISTRIBUTION A. Approved for public release; distribution unlimited. NAVY LITHIUM BATTERY SAFETY John Dow1 and Chris Batchelor2 Naval

  15. Laser (cooling) refrigeration in erbium based solid state materials

    NASA Astrophysics Data System (ADS)

    Lynch, Jonathan W.

    The objective of this study was to investigate the potential of erbium based solid state materials for laser refrigeration in bulk material. A great deal of work in the field has been focused on the use of ytterbium based ZBLAN glass. Some experiments have also reported cooling in thulium based solid state materials but with considerably less success. We proposed that erbium had many attractive features compared to ytterbium and therefore should be tried for cooling. The low lying energy level structure of erbium provides energy levels that could bring obtainable temperatures two orders of magnitude lower. Erbium transitions of interest for cooling fall in the near IR region (0.87 microns and 1.5 microns). Lasers for one of these transitions, in the 1.5 micron region, are well developed for communication and are in the eye-safe and water and atmosphere transparent region. Theoretical calculations are also presented so as to identify energy levels of the eleven 4f electrons in Er3+ in Cs2NaYCl 6:Er3+ and the transitions between them. The strengths of the optical transitions between them have been calculated. Knowledge of such energy levels and the strength of the laser induced transitions between them is crucial for understanding the refrigeration mechanisms and different energy transfer pathways following the laser irradiation. The crystal host for erbium was a hexa-chloro-elpasolite crystal, Cs 2NaYCl6:Er3+ with an 80% (stoichiometric) concentration of erbium. The best cooling results were obtained using the 0.87 micron transition. We have demonstrated bulk cooling in this crystal with a temperature difference of ~6.2 K below the surrounding temperature. The temperatures of the crystal and its immediate surrounding environment were measured using differential thermometry. Refrigeration experiments using the 1.5 micron transition were performed and the results are presented. The demonstrated temperature difference was orders of magnitude smaller. Only a temperature

  16. Temperature and pressure effects during erbium laser stapedotomy.

    PubMed

    Pratisto, H; Frenz, M; Ith, M; Romano, V; Felix, D; Grossenbacher, R; Altermatt, H J; Weber, H P

    1996-01-01

    Laser-assisted stapedotomy has become a well-established alternative to the mechanical drilling method. The goal of this study is to quantify the mechanical and thermal tissue effects and to determine optimum erbium laser parameters for safe clinical treatment. On an inner ear model, time-resolved pressure measurements and Schlieren optical flash photography were performed during the perforation of the stapes foot plate using an erbium laser at 2.79 microns. The laser radiation was transmitted via an optical zirconium fluoride fiber. The laser-treated foot plates were investigated by light microscopy and scanning electron microscopy to visualise the laser-induced tissue effects. Perforation of the stapes foot plate can be performed with a few erbium laser pulses with high precision and a thermal damage zone of < 10 microns. Strong pressure transients were found to be generated by the bone ablation process and the collapse of a vapor channel created in the perilymph after fenestration. From the comparison of the laser-induced pressure with the limit graph to avoid hearing defects published by Pfander, an unobjectionable use of the erbium laser is deduced for fluences < 10 J/cm2. The erbium laser seems to represent an ideal instrument for middle ear surgery with all the advantages (precision, fiber optic transportable, high ablation efficiency, safety) desired for clinical application.

  17. High pressure studies of the erbium hydrogen system

    NASA Astrophysics Data System (ADS)

    Palasyuk, T.; Tkacz, M.; Vajda, P.

    2005-07-01

    High-pressure X-ray diffraction investigations up to 25 GPa using diamond anvil cell techniques (DAC) have been carried out on erbium and a series of erbium hydrides. The equations of state have been evaluated for ErH 1.95, ErH 2.091 (in the β-phase) and for γ-ErH 3. For comparison, the compressibility of pure erbium metal has also been determined in the same pressure range. A rapid drop of lattice volume at a pressure of about 14.5 GPa has been observed for ErH 2.091 accompanied by a color change of reflected light. This phenomenon was not observed in ErH 1.95 where the molar volume varied smoothly up to the highest pressure. A pressure-induced transformation from hexagonal to cubic phase has been detected for erbium trihydride. For pure erbium metal, a transition from hexagonal to samarium structure has been revealed, confirming previously reported behavior.

  18. Nanothermometry using optically trapped erbium oxide nanoparticle

    NASA Astrophysics Data System (ADS)

    Baral, Susil; Johnson, Samuel C.; Alaulamie, Arwa A.; Richardson, Hugh H.

    2016-04-01

    A new optical probe technique using a laser-trapped erbium oxide nanoparticle (size ~150 nm) is introduced that can measure absolute temperature with a spatial resolution on the size of the trapped nanoparticle. This technique (scanning optical probe thermometry) is used to collect a thermal image of a gold nanodot prepared with hole-mask colloidal lithography. A convolution analysis of the thermal profile shows that the point spread function of our measurement is a Gaussian with a FWHM of 165 nm. We attribute the width of this function to clustering of Er2O3 nanoparticles in solution. The scanning optical probe thermometer is used to measure the temperature where vapor nucleation occurs in degassed water (555 K), confirming that a nanoscale object heated in water will superheat the surrounding water to the spinodal decomposition temperature. Subsequently, the temperature inside the vapor bubble rises to the melting point of the gold nanostructure (~1300) where a temperature plateau is observed. The rise in temperature is attributed to inhibition of thermal transfer to the surrounding liquid by the thermal insulating vapor cocoon.

  19. Activatino of Erbium Films for Hydrogen Storage

    SciTech Connect

    M Brumbach; j Ohlhausen; K Zavadil; C Snow; J Woicik

    2011-12-31

    Hydriding of metals can be routinely performed at high temperature in a rich hydrogen atmosphere. Prior to the hydrogen loading process, a thermal activation procedure is required to promote facile hydrogen sorption into the metal. Despite the wide spread utilization of this activation procedure, little is known about the chemical and electronic changes that occur during activation and how this thermal pretreatment leads to increased rates of hydrogen uptake. This study utilized variable kinetic energy X-ray photoelectron spectroscopy to interrogate the changes during in situ thermal annealing of erbium films, with results confirmed by time-of-flight secondary ion mass spectrometry and low energy ion scattering. Activation can be identified by a large increase in photoemission between the valence band edge and the Fermi level and appears to occur over a two stage process. The first stage involves desorption of contaminants and recrystallization of the oxide, initially impeding hydrogen loading. Further heating overcomes the first stage and leads to degradation of the passive surface oxide leading to a bulk film more accessible for hydrogen loading.

  20. Laser cooling transitions in atomic erbium.

    PubMed

    Ban, H; Jacka, M; Hanssen, J; Reader, J; McClelland, J

    2005-04-18

    We discuss laser cooling opportunities in atomic erbium, identifying five J ? J + 1 transitions from the 4f126s2 3H6 ground state that are accessible to common visible and near-infrared continuous-wave tunable lasers. We present lifetime measurements for the 4f11(4Io 15/2)5d5/26s2 (15/2, 5/2)7o state at 11888 cm-1 and the 4f11(4Io 13/2)5d3/26s2 (13/2, 5/2)7o state at 15847 cm-1, showing values of 20 +/- 4 micros and 5.6 +/- 1.4 micros, respectively. We also present a calculated value of 13 +/- 7 s-1 for the transition rate from the 4f11(4Io 15/2)5d3/26s2 (15/2, 3/2)7 o state at 7697 cm-1 to the ground state, based on scaled Hartree-Fock energy parameters. Laser cooling on these transitions in combination with a strong, fast (5.8 ns) laser cooling transition at 401 nm, suggest new opportunities for narrowband laser cooling of a large-magnetic moment atom, with possible applications in quantum information processing, high-precision atomic clocks, quantum degenerate gases, and deterministic single-atom doping of materials.

  1. Erbium concentration dependent absorbance in tellurite glass

    SciTech Connect

    Sazali, E. S. Rohani, M. S. Sahar, M. R. Arifin, R. Ghoshal, S. K. Hamzah, K.

    2014-09-25

    Enhancing the optical absorption cross-section in topically important rare earth doped tellurite glasses is challenging for photonic devices. Controlled synthesis and detailed characterizations of the optical properties of these glasses are important for the optimization. The influence of varying concentration of Er{sup 3+} ions on the absorbance characteristics of lead tellurite glasses synthesized via melt-quenching technique are investigated. The UV-Vis absorption spectra exhibits six prominent peaks centered at 490, 526, 652, 800, 982 and 1520 nm ascribed to the transitions in erbium ion from the ground state to the excited states {sup 4}F{sub 7/2}, {sup 2}H{sub 11/2}, {sup 4}F{sub 9/2}, {sup 4}I{sub 9/2}, {sup 2}H{sub 11/2} and {sup 4}I{sub 13/2}, respectively. The results are analyzed by means of optical band gap E{sub g} and Urbach energy E{sub u}. The values of the energy band gap are found decreased from 2.82 to 2.51 eV and the Urbach energy increased from 0.15 to 0.24 eV with the increase of the Er{sub 2}O{sub 3} concentration from 0 to 1.5 mol%. The excellent absorbance of the prepared tellurite glasses makes them suitable for fabricating solid state lasers.

  2. Batteries used to Power Implantable Biomedical Devices

    PubMed Central

    Bock, David C.; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    2012-01-01

    Battery systems have been developed that provide years of service for implantable medical devices. The primary systems utilize lithium metal anodes with cathode systems including iodine, manganese oxide, carbon monofluoride, silver vanadium oxide and hybrid cathodes. Secondary lithium ion batteries have also been developed for medical applications where the batteries are charged while remaining implanted. While the specific performance requirements of the devices vary, some general requirements are common. These include high safety, reliability and volumetric energy density, long service life, and state of discharge indication. Successful development and implementation of these battery types has helped enable implanted biomedical devices and their treatment of human disease. PMID:24179249

  3. Batteries used to Power Implantable Biomedical Devices.

    PubMed

    Bock, David C; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2012-12-01

    Battery systems have been developed that provide years of service for implantable medical devices. The primary systems utilize lithium metal anodes with cathode systems including iodine, manganese oxide, carbon monofluoride, silver vanadium oxide and hybrid cathodes. Secondary lithium ion batteries have also been developed for medical applications where the batteries are charged while remaining implanted. While the specific performance requirements of the devices vary, some general requirements are common. These include high safety, reliability and volumetric energy density, long service life, and state of discharge indication. Successful development and implementation of these battery types has helped enable implanted biomedical devices and their treatment of human disease.

  4. Composition and structure of sputter deposited erbium hydride thin films

    SciTech Connect

    ADAMS,DAVID P.; ROMERO,JUAN A.; RODRIGUEZ,MARK A.; FLORO,JERROLD A.; BANKS,JAMES C.

    2000-05-10

    Erbium hydride thin films are grown onto polished, a-axis {alpha} Al{sub 2}O{sub 3} (sapphire) substrates by reactive ion beam sputtering and analyzed to determine composition, phase and microstructure. Erbium is sputtered while maintaining a H{sub 2} partial pressure of 1.4 x 10{sup {minus}4} Torr. Growth is conducted at several substrate temperatures between 30 and 500 C. Rutherford backscattering spectrometry (RBS) and elastic recoil detection analyses after deposition show that the H/Er areal density ratio is approximately 3:1 for growth temperatures of 30, 150 and 275 C, while for growth above {approximately}430 C, the ratio of hydrogen to metal is closer to 2:1. However, x-ray diffraction shows that all films have a cubic metal sublattice structure corresponding to that of ErH{sub 2}. RBS and Auger electron that sputtered erbium hydride thin films are relatively free of impurities.

  5. Erbium:YAG laser resurfacing using a novel portable device.

    PubMed

    Gordon, James; Khan, Misbah H; Khatri, Khalil A

    2007-05-01

    Laser resurfacing of facial rhytids has become a popular treatment for many patients who have wrinkles, photodamage, and acne scarring. Erbium:YAG laser resurfacing has emerged as one of the safer, more effective methods of facial rejuvenation and its increasing popularity has led to its widespread use for resurfacing. However, size and high initial and maintenance cost are among the problems with currently available laser devices. The LightPod portable Erbium:YAG laser from Aerolase offers a new paradigm for more cost effective means of performing ablative resurfacing with reduced initial and maintenance cost and the ease of portability with significantly reduced size and weight. The objective of this pilot study was to analyze the efficacy of The LightPod Erbium:YAG laser in different skin types for various indications.

  6. Spectroscopic properties and Judd-Ofelt theory analysis of erbium chelates.

    PubMed

    Wang, Huaishan; Qian, Guodong; Wang, Zhiyu; Wang, Minquan

    2005-11-01

    Erbium chelates including tris(acetylacetonato) erbium(III) monohydrate, tris(acetylacetonato)(1,10-phenanthroline) erbium(III) and tris(trifluoroacetylacetonato)(1,10-phenanthroline) erbium(III) are synthesized. Judd-Ofelt theory is employed on basis of the UV-Vis-NIR absorption spectra of erbium chelates dissolved in methanol. Judd-Ofelt parameters of erbium chelates are determined by a least square fitting and dealt with the chemical structure of erbium chelates. Photoluminescence characteristics of erbium chelates are investigated upon excitation at 488 nm by an Ar(+) laser. The qualitative correlation of Judd-Ofelt parameters with photoluminescence properties for erbium chelates is also discussed. It is found that larger Omega(6) value for erbium chelate is and larger photoluminescence intensity at 1.54 microm is, and Omega(2) value should contribute to the photoluminescence full width at half maximum (FWHM) at 1.54 microm. The changes of Judd-Ofelt parameters result from the introduction of the second ligand phenathroline or the substitution of electron-drawing group CF(3) in beta-diketone for erbium chelates.

  7. Spectroscopic properties and Judd-Ofelt theory analysis of erbium chelates

    NASA Astrophysics Data System (ADS)

    Wang, Huaishan; Qian, Guodong; Wang, Zhiyu; Wang, Minquan

    2005-11-01

    Erbium chelates including tris(acetylacetonato) erbium(III) monohydrate, tris(acetylacetonato)(1,10-phenanthroline) erbium(III) and tris(trifluoroacetylacetonato)(1,10-phenanthroline) erbium(III) are synthesized. Judd-Ofelt theory is employed on basis of the UV-Vis-NIR absorption spectra of erbium chelates dissolved in methanol. Judd-Ofelt parameters of erbium chelates are determined by a least square fitting and dealt with the chemical structure of erbium chelates. Photoluminescence characteristics of erbium chelates are investigated upon excitation at 488 nm by an Ar + laser. The qualitative correlation of Judd-Ofelt parameters with photoluminescence properties for erbium chelates is also discussed. It is found that larger Ω6 value for erbium chelate is and larger photoluminescence intensity at 1.54 μm is, and Ω2 value should contribute to the photoluminescence full width at half maximum (FWHM) at 1.54 μm. The changes of Judd-Ofelt parameters result from the introduction of the second ligand phenathroline or the substitution of electron-drawing group CF 3 in β-diketone for erbium chelates.

  8. Study of upconversion in PCFs with high erbium concentration

    NASA Astrophysics Data System (ADS)

    Berdejo, Víctor; Vallés, Juan A.; Rebolledo, Miguel Á.; Diez, Antonio; Martin, Juan C.; Sanchez-Martin, José A.; Álvarez, José M.; Andrés, Miguel V.

    2011-09-01

    We report on a comparison of characterization techniques for high concentration erbium-doped photonic crystal fibres (PCFs). A highly erbium-doped-silica PCF was fabricated and an amplifier based on the PCF was built. Then, measurements on the amplifier output optical powers were carried out. To model the amplifier, three different formalisms were assumed for the Er3+-ion upconversion mechanism and the numerical results were fitted to the experimental ones. The sets of best-fit parameters are compared and the use of these techniques for active PCF characterisation is discussed.

  9. Radiation-resistant erbium-doped silica fibre

    SciTech Connect

    Zotov, K V; Likhachev, M E; Tomashuk, A L; Bubnov, M M; Yashkov, M V; Gur'yanov, A N

    2007-10-31

    It is shown that the service life of erbium-doped fibres can be increased many times under conditions of an elevated radiation level by loading the fibre glass network with molecular hydrogen. Backdiffusion of hydrogen from the fibre in the process of its operation is virtually excluded for the fibre covered with a hermetic carbon coating. It is shown that this technique of fibre preparation allows one to slow down significantly degradation of the lasing properties of erbium fibres under the conditions characteristic of space applications. (special issue devoted to the 25th anniversary of the a.m. prokhorov general physics institute)

  10. Brillouin gain spectrum dependences on temperature and strain in erbium-doped optical fibers with different erbium concentrations

    NASA Astrophysics Data System (ADS)

    Ding, Mingjie; Hayashi, Neisei; Mizuno, Yosuke; Nakamura, Kentaro

    2013-05-01

    Brillouin Stokes power in erbium-doped optical fibers (EDFs) can be potentially controlled by pumping, but no report has been provided on its detailed characterization. In this study, as the first step toward this goal, the Brillouin gain spectra in EDFs with three different erbium concentrations (0.72, 1.20, and 2.28 wtppt) are measured at 1.55 μm without pumping, and the Brillouin frequency shifts (BFSs) and their dependences on strain, temperature, and erbium concentration are fully investigated. In the EDF with 0.72-wtppt concentration, the BFS was 11.42 GHz, and its temperature and strain coefficients were 0.87 MHz/K and 479 MHz/%, respectively.

  11. Fabrication of low-loss ridge waveguides in z-cut lithium niobate by combination of ion implantation and UV picosecond laser micromachining

    NASA Astrophysics Data System (ADS)

    Stolze, M.; Herrmann, T.; L'huillier, J. A.

    2016-03-01

    Ridge waveguides in ferroelectric materials like LiNbO3 attended great interest for highly efficient integrated optical devices, for instance, electro-optic modulators, frequency converters and ring resonators. The main challenges are the realization of high index barrier towards the substrate and the processing of smooth ridges for minimized scattering losses. For fabricating ridges a variety of techniques, like chemical and wet etching as well as optical grade dicing, have been investigated in detail. Among them, laser micromachining offers a versatile and flexible processing technology, but up to now only a limited side wall roughness has been achieved by this technique. Here we report on laser micromachining of smooth ridges for low-loss optical waveguides in LiNbO3. The ridges with a top width of 7 µm were fabricated in z-cut LiNbO3 by a combination of UV picosecond micromachining and thermal annealing. The laser processing parameters show a strong influence on the achievable sidewall roughness of the ridges and were systematically investigated and optimized. Finally, the surface quality is further improved by an optimized thermal post-processing. The roughness of the ridges were analysed with confocal microscopy and the scattering losses were measured at an optical characterization wavelength of 632.8 nm by using the end-fire coupling method. In these investigations the index barrier was formed by multi-energy low dose oxygen ion implantation technology in a depth of 2.7 μm. With optimized laser processing parameters and thermal post-processing a scattering loss as low as 0.1 dB/cm has been demonstrated.

  12. Characterization of the surface changes during the activation process of erbium/erbium oxide for hydrogen storage.

    SciTech Connect

    Zavadil, Kevin Robert; Snow, Clark Sheldon; Ohlhausen, James Anthony; Brumbach, Michael Todd

    2010-10-01

    Erbium is known to effectively load with hydrogen when held at high temperature in a hydrogen atmosphere. To make the storage of hydrogen kinetically feasible, a thermal activation step is required. Activation is a routine practice, but very little is known about the physical, chemical, and/or electronic processes that occur during Activation. This work presents in situ characterization of erbium Activation using variable energy photoelectron spectroscopy at various stages of the Activation process. Modification of the passive surface oxide plays a significant role in Activation. The chemical and electronic changes observed from core-level and valence band spectra will be discussed along with corroborating ion scattering spectroscopy measurements.

  13. Lithium in 2012

    USGS Publications Warehouse

    Jaskula, B.W.

    2013-01-01

    In 2012, estimated world lithium consumption was about 28 kt (31,000 st) of lithium contained in minerals and compounds, an 8 percent increase from that of 2011. Estimated U.S. consumption was about 2 kt (2,200 st) of contained lithium, the same as that of 2011. The United States was thought to rank fourth in consumption of lithium and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. One company, Rockwood Lithium Inc., produced lithium compounds from domestic brine resources near Silver Peak, NV.

  14. Influence of Bi on the Er luminescence in yttrium-erbium disilicate thin films

    SciTech Connect

    Scarangella, Adriana; Miritello, Maria; Priolo, Francesco

    2014-09-28

    The influence of bismuth on erbium optical properties at 1.54 μm has been investigated in yttrium-erbium disilicate thin films synthesized by magnetron co-sputtering and implanted with two Bi different doses. The Bi depth distribution and the evolution of its oxidation states after annealing treatments at 1000 °C in two atmospheres, O₂ and N₂, have been investigated. It was found that only in O₂ the Bi³⁺ valence state is prevalent, thanks to the enhanced Bi mobility in the oxidizing ambient, as demonstrated by Rutherford backscattering spectrometry. At lower Bi content, although the formation of Bi⁰ metallic nanoparticles that are deleterious non radiative channels for Er luminescence, efficient energy transfer from Bi to Er has been obtained only in O₂. It is due to the excitation of ultraviolet broad Bi₃⁺ absorption band and the energy transfer to Er ions. We have evaluated that in this case, Er effective excitation cross section increased by a factor of 5 in respect with the one for direct Er absorption at 488 nm. At higher Bi dose, this mechanism is absent, but an increased Er optical efficiency at 1.54 μm has been observed under resonant excitation. It is due to the contribution of a fraction of Er ions having an increased lifetime. This phenomenon is associated with the formation of Bi agglomerates, induced at higher Bi doses, which well isolate Er from non-radiative quenching centers. The increased decay time assures higher optical efficiency at 1.54 μm.

  15. Discovery of dysprosium, holmium, erbium, thulium, and ytterbium isotopes

    SciTech Connect

    Fry, C.; Thoennessen, M.

    2013-09-15

    Currently, thirty-one dysprosium, thirty-two holmium, thirty-two erbium, thirty-three thulium, and thirty-one ytterbium isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  16. Erbium:YAG laser-assisted cataract surgery.

    PubMed

    Stevens, G; Long, B; Hamann, J M; Allen, R C

    1998-03-01

    To assess the safety and efficacy of erbium:YAG laser-assisted cataract removal. A total of 15 patients underwent cataractous lens removal. All the patients had a visual acuity of 20/50 or worse secondary to senile cataract. The endothelial cell count was calculated preoperatively and at 6 weeks postoperatively. A 2.94-micron-wavelength erbium: YAG laser with a zirconium-fluoride fiber optic and silica tip was used to fracture and emulsify the nucleus. The erbium:YAG laser was chosen due to its high absorption in water, a primary component of a cataractous lens. The postoperative visual acuity was 20/30 or better in all the eyes that were treated with surgery. The endothelial cell loss at 3 months was 0% to 10%. No laser-related complications were noted. A conversion to an ultrasound surgical technique was utilized in six cases. Vitreous loss occurred in one case due to the posterior extension of an anterior capsulotomy tear. This study demonstrated the ability of an erbium:YAG laser system to safely and effectively emulsify the lens nucleus. Laser-assisted cataract surgery is a promising new clinical procedure.

  17. Controlling hyperchaos in erbium-doped fibre laser

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng-Hai; Shen, Ke

    2003-02-01

    The dual-ring erbium-doped fibre laser shows a hyperchaotic behaviour under some conditions. The hyperchaotic behaviour can be well controlled to enter into periodicity by modulating the pumping in one of the two rings. The period is different for different modulation index at the same modulation frequency, or for different modulation frequency at the same modulation index.

  18. Gettering of carbon dioxide by erbium thin films

    SciTech Connect

    Mehrhoff, T K

    1980-01-01

    The interaction of carbon dioxide and erbium thin films is characterized at 300 to 900/sup 0/C and 5 x 10/sup -7/ torr. Temperature ramp experiments with thin erbium films indicated a significant reaction above 300/sup 0/C, preceded by desorption of water vapor, hydrogen and nitrogen and/or carbon monoxide from the film surface. The sticking coefficients were plotted as a function of Langmuirs of carbon dioxide exposure. Between 400 and 600/sup 0/C, the length of the exposure was found to be more important than the temperature of the exposure in determining the sticking coefficient. Some evolution of carbon monoxide was noted particularly in the 400 to 500/sup 0/C region. An 80% conversion of carbon dioxide to carbon monoxide was measured at 500/sup 0/C. The film pumping speeds were compared with published vapor pressure data for erbium. This comparison indicated that a significant portion of the pumping action observed at temperatures of 800/sup 0/C and above was due to evaporation of erbium metal.

  19. Erbium-doped slot waveguides containing size-controlled silicon nanocrystals

    SciTech Connect

    Hoffmann, R.; Beyer, J. Heitmann, J.; Klemm, V.; Rafaja, D.; Johnson, B. C.; McCallum, J. C.

    2015-04-28

    Silicon based slot waveguides with a slot containing Si nanocrystals (Si-nc) and Erbium ions (Er{sup 3+}) inside a silica matrix were prepared using sputter deposition and low-energy ion implantation. This sequence enabled independent optimization of nanocrystal formation and Er{sup 3+} incorporation parameters. Using a superlattice approach, the size of the Si-nc inside the slot could be controlled and optimized for maximum Er{sup 3+} luminescence yield at 1.54 μm. Er{sup 3+} is found to be efficiently pumped by Si-nc of sizes around 3 to 4 nm. Increasing Er{sup 3+} photoluminescence at 1.54 μm with increasing post-implantation annealing temperatures up to 1000 °C is attributed to annealing of matrix or Si-nc interface defects mainly. Additionally, a dependence of the Er{sup 3+} luminescence intensity on both the excitation and emission linear polarization orientation is shown, which demonstrates efficient field enhancement in sputtered slot waveguide structures.

  20. Erbium-doped slot waveguides containing size-controlled silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Hoffmann, R.; Beyer, J.; Klemm, V.; Rafaja, D.; Johnson, B. C.; McCallum, J. C.; Heitmann, J.

    2015-04-01

    Silicon based slot waveguides with a slot containing Si nanocrystals (Si-nc) and Erbium ions (Er3+) inside a silica matrix were prepared using sputter deposition and low-energy ion implantation. This sequence enabled independent optimization of nanocrystal formation and Er3+ incorporation parameters. Using a superlattice approach, the size of the Si-nc inside the slot could be controlled and optimized for maximum Er3+ luminescence yield at 1.54 μm. Er3+ is found to be efficiently pumped by Si-nc of sizes around 3 to 4 nm. Increasing Er3+ photoluminescence at 1.54 μm with increasing post-implantation annealing temperatures up to 1000 °C is attributed to annealing of matrix or Si-nc interface defects mainly. Additionally, a dependence of the Er3+ luminescence intensity on both the excitation and emission linear polarization orientation is shown, which demonstrates efficient field enhancement in sputtered slot waveguide structures.

  1. Cochlear Implants

    MedlinePlus

    ... Medical Procedures Implants and Prosthetics Cochlear Implants Cochlear Implants Share Tweet Linkedin Pin it More sharing options ... normal ear, ear with hearing loss, and cochlear implant procedure Welcome to the Food and Drug Administration ( ...

  2. Lithium-associated hyperthyroidism.

    PubMed

    Siyam, Fadi F; Deshmukh, Sanaa; Garcia-Touza, Mariana

    2013-08-01

    Goiters and hypothyroidism are well-known patient complications of the use of lithium for treatment of bipolar disease. However, the occurrence of lithium-induced hyperthyroidism is a more rare event. Many times, the condition can be confused with a flare of mania. Monitoring through serial biochemical measurement of thyroid function is critical in patients taking lithium. Hyperthyroidism induced by lithium is a condition that generally can be controlled medically without the patient having to discontinue lithium therapy, although in some circumstances, discontinuation of lithium therapy may be indicated. We report on a patient case of lithium-associated hyperthyroidism that resolved after discontinuation of the medication.

  3. Specific features of erbium ion photoluminescence in structures with amorphous and crystalline silicon nanoclusters in silica matrix

    SciTech Connect

    Dyakov, S. A. Zhigunov, D. M.; Timoshenko, V. Yu.

    2010-04-15

    Photoluminescence properties of the structures of amorphous and crystalline silicon nanoclusters with average sizes no larger than 4 nm in an erbium-doped silicon dioxide matrix were studied. It was found that the photoluminescence lifetime of Er{sup 3+} ions at a wavelength of 1.5 {mu}m decreases from 5.7 to 2.0 ms and from 3.5 to 1.5 ms in samples with amorphous nanoclusters and with nanocrystals, respectively, as the Er{sup 3+} concentration increases from 10{sup 19} to 10{sup 21} cm{sup -3}. The decrease in the erbium photoluminescence lifetime with the ion concentration is attributed to the effects of concentration-related quenching and residual implantation-induced defects. The difference between lifetimes for samples with amorphous and crystalline nanoclusters is interpreted as the effect of different probabilities of energy back transfer from Er{sup 3+} ions to the solid-state matrix in the structures under consideration.

  4. Effect of temperature on the active properties of erbium-doped optical fibres

    SciTech Connect

    Kotov, L V; Ignat'ev, A D; Bubnov, M M; Likhachev, M E

    2016-03-31

    We have studied the effect of heating on the performance of erbium-doped fibre based devices and determined temperaturedependent absorption and emission cross sections of the erbium ion in silica glass. The results demonstrate that heating of fibres in claddingpumped high-power (∼100 W) erbium-doped fibre lasers causes no significant decrease in their efficiency. In contrast, superluminescent sources operating in the long-wavelength region (1565 – 1610 nm) are extremely sensitive to temperature changes. (fiber optics)

  5. Erbium--169 versus triamcinolone hexacetonide in the treatment of rheumatoid finger joints.

    PubMed Central

    Ruotsi, A; Hypén, M; Rekonen, A; Oka, M

    1979-01-01

    Erbium--169 was compared with triamcinolone hexacetonide in the topical treatment of 32 patients suffering from rheumatoid arthritis. Erbium--169 was injected into 83 and triamcinolone hexacetonide into 54 proximal interphalangeal or metacarpophalangeal joints. Both treatments produced alleviation of joint pain and swelling and improvement of grip strength. At every check-up (1--18 months) the percentage of remissions was higher after triamcinolone hexacetonide injection than after erbium--169. The difference was significant at 1, 3, and 6 months. PMID:434946

  6. Room Temperature Erbium-Doped Yttrium Vanadate (Er:YVO4) Laser and Amplifier

    DTIC Science & Technology

    2016-09-01

    ARL-TR-7791 ● SEP 2016 US Army Research Laboratory Room Temperature Erbium-Doped Yttrium Vanadate (Er:YVO4) Laser and Amplifier...longer needed. Do not return it to the originator. ARL-TR-7791 ● SEP 2016 US Army Research Laboratory Room Temperature Erbium-Doped...DD-MM-YYYY) September 2016 2. REPORT TYPE Technical Report 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Room Temperature Erbium-Doped

  7. The cardiac implantable electronic device power source: evolution and revolution.

    PubMed

    Mond, Harry G; Freitag, Gary

    2014-12-01

    Although the first power source for an implantable pacemaker was a rechargeable nickel-cadmium battery, it was rapidly replaced by an unreliable short-life zinc-mercury cell. This sustained the small pacemaker industry until the early 1970s, when the lithium-iodine cell became the dominant power source for low voltage, microampere current, single- and dual-chamber pacemakers. By the early 2000s, a number of significant advances were occurring with pacemaker technology which necessitated that the power source should now provide milliampere current for data logging, telemetric communication, and programming, as well as powering more complicated pacing devices such as biventricular pacemakers, treatment or prevention of atrial tachyarrhythmias, and the integration of innovative physiologic sensors. Because the current delivery of the lithium-iodine battery was inadequate for these functions, other lithium anode chemistries that can provide medium power were introduced. These include lithium-carbon monofluoride, lithium-manganese dioxide, and lithium-silver vanadium oxide/carbon mono-fluoride hybrids. In the early 1980s, the first implantable defibrillators for high voltage therapy used a lithium-vanadium pentoxide battery. With the introduction of the implantable cardioverter defibrillator, the reliable lithium-silver vanadium oxide became the power source. More recently, because of the demands of biventricular pacing, data logging, and telemetry, lithium-manganese dioxide and the hybrid lithium-silver vanadium oxide/carbon mono-fluoride laminate have also been used. Today all cardiac implantable electronic devices are powered by lithium anode batteries. ©2014 Wiley Periodicals, Inc.

  8. Toxicity of materials used in the manufacture of lithium batteries

    SciTech Connect

    Archuleta, M.M.

    1994-05-01

    The growing interest in battery systems has led to major advances in high-energy and/or high-power-density lithium batteries. Potential applications for lithium batteries include radio transceivers, portable electronic instrumentation, emergency locator transmitters, night vision devices, human implantable devices, as well as uses in the aerospace and defense programs. With this new technology comes the use of new solvent and electrolyte systems in the research, development, and production of lithium batteries. The goal is to enhance lithium battery technology with the use of non-hazardous materials. Therefore, the toxicity and health hazards associated with exposure to the solvents and electrolytes used in current lithium battery research and development is evaluated and described.

  9. Performance and properties of arsenic passivated lithium-titanium disulfide cells

    NASA Technical Reports Server (NTRS)

    Yen, S. P. S.; Shen, D.; Fitzgerald, D.; Vasquez, R. P.; Somoano, R. B.

    1986-01-01

    In order to inhibit chemical degradation associated with the lithium-electrolyte interaction in ambient temperature lithium cells, an attempt was made to synthetically passivate the anode via ion implantation of arsenic. Solvent reduction is reduced although salt reaction with lithium is still present. The performance of the Li-TiS2 cell differs from those with standard electrodes, but further work is necessary to clarify the efficacy of this mode of passivation.

  10. Performance and properties of arsenic passivated lithium-titanium disulfide cells

    NASA Technical Reports Server (NTRS)

    Yen, S. P. S.; Shen, D.; Fitzgerald, D.; Vasquez, R. P.; Somoano, R. B.

    1986-01-01

    In order to inhibit chemical degradation associated with the lithium-electrolyte interaction in ambient temperature lithium cells, an attempt was made to synthetically passivate the anode via ion implantation of arsenic. Solvent reduction is reduced although salt reaction with lithium is still present. The performance of the Li-TiS2 cell differs from those with standard electrodes, but further work is necessary to clarify the efficacy of this mode of passivation.

  11. Urbach absorption edge in epitaxial erbium-doped silicon

    SciTech Connect

    Shmagin, V. B. Kudryavtsev, K. E.; Shengurov, D. V.; Krasilnik, Z. F.

    2015-02-07

    We investigate the dependencies of the photocurrent in Si:Er p-n junctions on the energy of the incident photons. The exponential absorption edge (Urbach edge) just below fundamental edge of silicon was observed in the absorption spectra of epitaxial Si:Er layers grown at 400–600 C. It is shown that the introduction of erbium significantly enhances the structural disorder in the silicon crystal which was estimated from the slope of the Urbach edge. We discuss the possible nature of the structural disorder in Si:Er and a new mechanism of erbium excitation, which does not require the presence of deep levels in the band gap of silicon.

  12. Laser isotope separation of erbium and other isotopes

    DOEpatents

    Haynam, Christopher A.; Worden, Earl F.

    1995-01-01

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of .sup.167 Er. The hyperfine structure of .sup.167 Er was used to find two three-step photoionization pathways having a common upper energy level.

  13. Laser isotope separation of erbium and other isotopes

    DOEpatents

    Haynam, C.A.; Worden, E.F.

    1995-08-22

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of {sup 167}Er. The hyperfine structure of {sup 167}Er was used to find two three-step photoionization pathways having a common upper energy level. 3 figs.

  14. Superficial erbium:YAG laser resurfacing of photodamaged skin.

    PubMed

    Pozner, Jason N; Goldberg, David J

    2006-06-01

    Light chemical peels and microdermabrasion have enjoyed recent popularity for the treatment of mild photoaging. However, clinical improvement from these modalities is often minimal from both a patient's and physician's perspective. Erbium:YAG lasers have been effective in treating mild to moderate photoaging, but the need for either regional or general anesthesia, as well as the significant post-treatment recovery period has limited its use. We sought to utilize a very low fluence approach to erbium:YAG laser resurfacing, with topical anesthesia, to ascertain its efficacy in treating mild to moderate photoaging. A total of 250 subjects aged 28-80 years with skin types 1-4 and mild to moderate facial rhytids were treated with topical anesthesia and subsequently one pass of a 2940 nm erbium:YAG laser, using between 5 and 17.5 J/cm2. In addition, 58 of the treated facial subjects underwent neck resurfacing with fluences between 5 and 15 J/cm2 and eight treated facial subjects underwent upper chest resurfacing at fluences of 5-7 J/cm2. A single treatment was received by 246 subjects; four subjects were treated a second time after a 1-month interval. Most subjects completely re-epithelialized by 3-4 days; healing time was depth dependent. Most subjects were able to start skin care regimens within 1-2 weeks after the procedure. Results were judged to be excellent in individuals with thin skin and good in subjects with thicker skin. One pass of low fluence erbium:YAG resurfacing, under topical anesthesia, was effective for the treatment of mild to moderate photoaging.

  15. Method for measuring deuterium in erbium deuteride films

    SciTech Connect

    Brangan, J.R.; Thornberg, S.M.; Keenan, M.R.

    1997-09-01

    Determining the quantity of deuterium in an erbium deuteride (ErD{sub 2}) film is essential for assessing the quality of the hydriding process but is a challenging measurement to make. First, the ideal gas law cannot be applied directly due to high temperature (950{degrees}C) and low temperature (25{degrees}C) regions in the same manifold. Additionally, the metal hydride does not release all of the deuterium rapidly upon heating and metal evaporation occurs during extended heating periods. Therefore, the method developed must provide a means to compensate for temperature inhomogeneities and the amount of deuterium retained in the metal film while heating for a minimal duration. This paper presents two thermal desorption methods used to evaluate the kinetics and equilibria of the deuterium desorption process at high temperatures (950{degrees}C). Of primary concern is the evaluation of the quantity of deuterium remaining in these films at the high temperature. A multiple volume expansion technique provided insight into the kinetics of the deuterium evolution and metal evaporation from the film. Finally a repeated pump-down approach yielded data that indicated approximately 10% of the deuterium is retained in the metal film at 950{degrees}C and approximately 1 Torr pressure. When the total moles of deuterium determined by this method were divided by the moles of erbium determined by ICP/AES, nearly stochiometric values of 2:1 were obtained for several erbium dideuteride films. Although this work presents data for erbium and deuterium, these methods are applicable to other metal hydrides as well.

  16. Erbium:Yag laser therapy of lichenoid red tattoo reaction.

    PubMed

    De Argila, D; Chaves, A; Moreno, J C

    2004-05-01

    Delayed reactions caused by red tattoo pigments are often difficult to treat. We report a 31-year-old female patient with a lichenoid reaction to a red tattoo on the right ankle who was successfully treated with five sessions of a surgical Erbium:Yag laser, using several passes in each session. Our work leads us to consider that Er:Yag laser therapy may be an effective and safe treatment for these therapeutically challenging reactions.

  17. Transient photoacoustic effects induced in liquids by pulsed erbium lasers

    NASA Astrophysics Data System (ADS)

    Frenz, Martin; Pratisto, Hans; Ith, Michael; Asshauer, Thomas; Rink, Klaus; Delacretaz, Guy P.; Romano, Valerio; Salathe, Rene-Paul; Weber, Heinz P.

    1994-08-01

    The intense interest in the investigation of erbium laser radiation in medicine is due to the fact that radiation at 3 micrometers is very strongly absorbed by water, which is present in all biological tissue. As a consequence of this high absorption the interaction of pulsed radiation is characterized by an explosive process with a low ablation threshold and a thin coagulation zone along the laser incisions. Erbium lasers, therefore, have a wide field of potential medical applications which become even more attractive with the availability of reliable delivery systems. An interesting situation arises in orthopaedics and angioplasty, where a precise cutting instrument is needed in a liquid environment. For this reason, we experimentally investigated the interaction mechanism of fiber transmitted, pulsed, free-running and Q- switched Erbium:YSGG ((lambda) equals 2.79 micrometers ) and Erbium:YAG ((lambda) equals 2.94 micrometers ) laser radiation with liquid water. The dynamics of the bubble formation and the propagation of shockwaves in water was studied and visualized by flash photography. Acoustic transients of a few hundreds of bars accompanying the ablation process were measured with a needle hydrophone. A clear correlation between the spikes of the laser pulse and those of the pressure signal was observed. Additionally, strong pressure transients were measured after the end of the laser pulse, which could be associated with the collapse of the vapor bubble and further collapses after multiple rebounds. The influence of pulse energy, fiber size and pulse duration on the formation and the amplitude of the pressure waves is demonstrated.

  18. Cochlear Implants.

    ERIC Educational Resources Information Center

    Clark, Catherine; Scott, Larry

    This brochure explains what a cochlear implant is, lists the types of individuals with deafness who may be helped by a cochlear implant, describes the process of evaluating people for cochlear implants, discusses the surgical process for implanting the aid, traces the path of sound through the cochlear implant to the brain, notes the costs of…

  19. Cochlear Implants.

    ERIC Educational Resources Information Center

    Clark, Catherine; Scott, Larry

    This brochure explains what a cochlear implant is, lists the types of individuals with deafness who may be helped by a cochlear implant, describes the process of evaluating people for cochlear implants, discusses the surgical process for implanting the aid, traces the path of sound through the cochlear implant to the brain, notes the costs of…

  20. Molten salt lithium cells

    DOEpatents

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  1. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  2. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  3. Penile Implants

    MedlinePlus

    Penile Implants Overview By Mayo Clinic Staff Penile implants are devices placed inside the penis to allow men with erectile dysfunction (ED) to get an erection. Penile implants are typically recommended after other treatments for ED ...

  4. Erbium doped ceramic nanofiber synthesis for thermophotovoltaic selective emitter applications

    NASA Astrophysics Data System (ADS)

    Trifon, George Sebastian

    This thesis explored the development of isothermal selective emitters for harvesting thermal energy to be used in conjunction with photovoltaic cells. The selective emitters were Erbium doped Titania nanofibers and Erbium and Yttrium doped Titania nanofibers that may be used with a Gallium Antimonide photovoltaic cell. The ultimate aim of this research was to develop Erbium doped Yttrium Titanate nanofibers. This research is of importance in recovering heat from a number of resources including power plant boilers. The thermal energy lost in the boilers can be as high as 20% of the input fuel energy and a recovery of this energy would boost the thermal performance of the power plants. It has been observed that the temperatures of the flue gas reaching the heat recovery region may be higher than 1600K and the radiation and convective losses in the burner occurs at even higher temperatures. Thermophotovoltaics (TPV) offer a solution in terms of converting the thermal energy to electricity without any moving parts. The efficiencies of conventional TPVs are very small (10-20%) and thus not a solution as the primary electric generator. However, in the field of the harvesting of waste energy, TPVs have tremendous potential. In order to improve efficiencies, Erbia (which can absorb thermal energy and convert it to electromagnetic radiation with a narrow wavelength spectrum with mean wavelength of 1500nm) can be used as a selective emitter with GaSb PV cells (which have its maximum efficiency in the same wavelength range) as the collector. In order to further improve its performance, the Erbia was proposed to be supported by Titania, which is transparent to IR in this range. However, past research has shown that the Erbia doped Titania nanofibers essentially have Erbium in the form of pyrochlore Erbium Titanate. Thus the research focused on a way to synthesize ErxY2-xTi 2O7 pyrochlore structure to act as the selective emitter. The self-supporting composite was designed to

  5. Dental Implants.

    PubMed

    Griggs, Jason A

    2017-10-01

    Systematic reviews of literature over the period between 2008 and 2017 are discussed regarding clinical evidence for the factors affecting survival and failure of dental implants. The factors addressed include publication bias, tooth location, insertion torque, collar design, implant-abutment connection design, implant length, implant width, bone augmentation, platform switching, surface roughness, implant coatings, and the use of ceramic materials in the implant body and abutment. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. High-performace cladding-pumped erbium-doped fibre laser and amplifier

    SciTech Connect

    Kotov, L V; Likhachev, M E; Bubnov, M M; Medvedkov, O I; Lipatov, D S; Vechkanov, N N; Guryanov, Aleksei N

    2012-05-31

    We report cladding-pumped erbium-doped fibre laser and amplifier configurations. Through fibre design optimisation, we have achieved a record-high laser slope efficiency, 40 % with respect to absorbed pump power ({lambda} = 976 nm), and an output power of 7.5 W. The erbium-doped fibre amplifier efficiency reaches 32 %.

  7. Striae distensae after breast augmentation: treatment using the nonablative fractionated 1550-nm erbium glass laser.

    PubMed

    Guimarães, Paulo Afonso Monteiro Pacheco; Haddad, Alessandra; Sabino Neto, Miguel; Lage, Fabiana Claudino; Ferreira, Lydia Masako

    2013-03-01

    Stretch marks, or striae distensae, are dermal scars and result in considerable aesthetic concern. The responsible factors for their development are poorly understood. Development of striae distensae is a rare complication after breast augmentation. Successfully treating striae distensae has always been challenging. Lasers and light devices have recently become a good therapeutic option. The fractional laser has shown encouraging results with less risk of pigmentation in the treatment of recent stretch marks. Forty-seven patients underwent breast augmentation over a period of 2 months; of these, 10 patients developed new striae distensae. They were submitted to nonablative fractionated 1550-nm erbium glass laser treatment. Response was assessed from photographs obtained before and 4 weeks after the end of treatment. Two plastic surgeons analyzed improvements clinically and photographically, and a patient satisfaction score was recorded as well. There was a significant relationship between age and development of striae, (p = 0.003), but there was no significant relationship between striae distensae and nulliparity (p = 0.147), volume of the silicone implant (p = 0.892), or use of oral contraceptive (p = 1.00). The scores achieved by both the evaluators and the patients were high, with 50 percent of them between 9 and 10 (maximum scores), and with a high index of satisfaction with the treatment. Age is statistically significant in the development of striae distensae after breast augmentation. This report demonstrates excellent patient and plastic surgeon satisfaction after treatment. The use of fractional photothermolysis is a good treatment modality for striae rubrae.

  8. The 6 volt battery for implantable cardioverter/defibrillators.

    PubMed

    Drews, J; Wolf, R; Fehrmann, G; Staub, R

    1998-01-01

    The usage of a 6 V lithium manganese dioxide battery results in a significant reduction of capacitor loading time within implantable defibrillators/cardioverters. In order to provide ERI indication a new cathode formulation has been developed. The battery shows no voltage delays, a low self-discharge and fulfilled all requirements to an energy source for an implantable device.

  9. Lithium and Pregnancy

    MedlinePlus

    ... best live chat Live Help Fact Sheets Share Lithium and Pregnancy Saturday, 20 September 2014 In every ... risk. This sheet talks about whether exposure to lithium may increase the risk for birth defects over ...

  10. Lithium Battery Diaper Ulceration.

    PubMed

    Maridet, Claire; Taïeb, Alain

    2016-01-01

    We report a case of lithium battery diaper ulceration in a 16-month-old girl. Gastrointestinal and ear, nose, and throat lesions after lithium battery ingestion have been reported, but skin involvement has not been reported to our knowledge.

  11. 67 cm long bismuth-based erbium doped fiber amplifier with wideband operation

    NASA Astrophysics Data System (ADS)

    Cheng, X. S.; Hamida, B. A.; Naji, A. W.; Ahmad, H.; Harun, S. W.

    2011-11-01

    In this paper, we demonstrate a wideband Bismuth-based erbium doped fiber amplifier (Bi-EDFA) using two pieces of bismuth-based erbium-doped fiber (Bi-EDF) with a total length of 67 cm as gain media in a double pass parallel configuration. Both Bi-EDFs have an erbium ion concentration of 6300 ppm. Compared to conventional silica-based erbium-doped fiber amplifier (Si-EDFA) with the same amount of erbium ions, the Bi-EDFA provides a higher attainable gain as well as a greater amplification bandwidth, which ranging from 1525 to 1620 nm. The proposed Bi-EDFA achieved a wideband gain of around 18 dB within the wavelength region from 1530 to 1565 nm. The noise figures are maintained below 10 dB within a wide wavelength region from 1535 nm to 1620 nm.

  12. Performance analysis of a concatenated erbium-doped fiber amplifier supporting four mode groups

    NASA Astrophysics Data System (ADS)

    Qin, Zujun; Fan, Di; Zhang, Wentao; Xiong, Xianming

    2016-05-01

    An erbium-doped fiber amplifier (EDFA) supporting four mode groups has been theoretically designed by concatenating two sections of erbium-doped fibers (EDFs). Each EDF has a simple erbium doping profile for the purpose of reducing its fabrication complexity. We propose a modified genetic algorithm (GA) to provide detailed investigations on the concatenated amplifier. Both the optimal fiber length and erbium doping radius in each EDF have been found to minimize the gain difference between signal modes. Results show that the parameters of the central-doped EDF have a greater impact on the amplifier performance compared to those of the annular-doped one. We then investigate the influence of the small deviations of the erbium fiber length, doping radius and doping concentration of each EDF from their optimal values upon the amplifier performance, and discuss their design tolerances in obtaining a desirable amplification characteristics.

  13. Lithium Cell Reactions.

    DTIC Science & Technology

    1985-02-01

    Page 1. INVESTIGATION OF CHEMICAL, ELECTROCHEMICAL AND PARASITIC REACTIONS IN LITHIUM - THIONYL CHLORIDE CELLS ....... ................. 1 1.1 INTRODUCTION...OF LITHIUM - THIONYL CHLORIDE CELLS. ................ 56 1.4.1 Carbon Limited Overdischarge...............56 1.4.1.1 Background... LITHIUM THIONYL - CHLORIDE CELLS. .. ............ ...... 101 1.5.1 Background. ....... ............ .... 101 1.5.2 Microphotography

  14. Electro-optic properties of indium/erbium-codoped lithium niobate crystal for integrated optics

    NASA Astrophysics Data System (ADS)

    Du, Wan-Ying; Zhang, Zi-Bo; Ren, Shuai; Wong, Wing-Han; Yu, Dao-Yin; Pun, Edwin Yue-Bun; Zhang, De-Long

    2017-02-01

    Clamped and unclamped electro-optic coefficients γ13 and γ33 of In3+/Er3+-codoped LiNbO3 crystals, which were grown by Czochralski method from the melts containing 0.5 mol% Er2O3 while varied In2O3 contents of 0.0, 0.5, 1.0 and 1.5 mol%, were measured by Mach-Zehnder interferometry. The results show that In3+/Er3+ codoping does not cause change of γ13 and γ33, and both γ13 and γ33 can be regarded as unchanged in the studied In3+ concentration range of 0-2.6 mol% (in crystal) within the experimental error of 3%. The small doping effect is desired in light of the electro-optic application of the crystal. A qualitative, comprehensible explanation for the small effect is given on the basis of the EO coefficient model of LiNbO3 and doping effect on the defect structure of LiNbO3.

  15. Lithium use in batteries

    USGS Publications Warehouse

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  16. Erbium-doped fiber amplifier elements for structural analysis sensors

    NASA Technical Reports Server (NTRS)

    Hanna-Hawver, P.; Kamdar, K. D.; Mehta, S.; Nagarajan, S.; Nasta, M. H.; Claus, R. O.

    1992-01-01

    The use of erbium-doped fiber amplifiers (EDFA's) in optical fiber sensor systems for structural analysis is described. EDFA's were developed for primary applications as periodic regenerator amplifiers in long-distance fiber-based communication systems. Their in-line amplification performance also makes them attractive for optical fiber sensor systems which require long effective lengths or the synthesis of special length-dependent signal processing functions. Sensor geometries incorporating EDFA's in recirculating and multiple loop sensors are discussed. Noise and polarization birefringence are also considered, and the experimental development of system components is discussed.

  17. Sub-Doppler laser cooling and magnetic trapping of erbium

    SciTech Connect

    Berglund, Andrew J.; McClelland, Jabez J.; Lee, Siu Au

    2007-11-15

    We investigate cooling mechanisms in magneto-optically and magnetically trapped erbium. We find efficient sub-Doppler cooling in our trap, which can persist even in large magnetic fields due to the near degeneracy of two Lande g factors. Furthermore, a continuously loaded magnetic trap is demonstrated where we observe temperatures below 25 {mu}K. These favorable cooling and trapping properties suggest a number of scientific possibilities for rare-earth-metal atomic physics, including narrow linewidth laser cooling and spectroscopy, unique collision studies, and degenerate bosonic and fermionic gases with long-range magnetic dipole coupling.

  18. Sensitized photoluminescence of erbium silicate synthesized on porous silicon framework

    NASA Astrophysics Data System (ADS)

    Shen, Hao; Xu, Lingbo; Li, Dongsheng; Yang, Deren

    2017-09-01

    Er silicate/porous silicon (PS) composites with effective sensitized erbium emission at 1.53 μm have been synthesized on the PS framework. Cross-sectional scanning electron microscopy and X-ray diffraction reveal that the PS is coated by Er silicate in composites. Indirect excitation of Er3+ ion luminescence via energy transfer from PS is confirmed. The temperature dependence of Er-related photoluminescence intensity and lifetime is investigated, which concludes a phonon-mediated energy transfer process. The combination of the PS framework and Er silicate provides a possible strategy for practical silicon-based light sources.

  19. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth

    NASA Astrophysics Data System (ADS)

    Li, Weiyang; Yao, Hongbin; Yan, Kai; Zheng, Guangyuan; Liang, Zheng; Chiang, Yet-Ming; Cui, Yi

    2015-06-01

    Lithium metal has shown great promise as an anode material for high-energy storage systems, owing to its high theoretical specific capacity and low negative electrochemical potential. Unfortunately, uncontrolled dendritic and mossy lithium growth, as well as electrolyte decomposition inherent in lithium metal-based batteries, cause safety issues and low Coulombic efficiency. Here we demonstrate that the growth of lithium dendrites can be suppressed by exploiting the reaction between lithium and lithium polysulfide, which has long been considered as a critical flaw in lithium-sulfur batteries. We show that a stable and uniform solid electrolyte interphase layer is formed due to a synergetic effect of both lithium polysulfide and lithium nitrate as additives in ether-based electrolyte, preventing dendrite growth and minimizing electrolyte decomposition. Our findings allow for re-evaluation of the reactions regarding lithium polysulfide, lithium nitrate and lithium metal, and provide insights into solving the problems associated with lithium metal anodes.

  20. High-performance lithium battery anodes using silicon nanowires.

    PubMed

    Chan, Candace K; Peng, Hailin; Liu, Gao; McIlwrath, Kevin; Zhang, Xiao Feng; Huggins, Robert A; Cui, Yi

    2008-01-01

    There is great interest in developing rechargeable lithium batteries with higher energy capacity and longer cycle life for applications in portable electronic devices, electric vehicles and implantable medical devices. Silicon is an attractive anode material for lithium batteries because it has a low discharge potential and the highest known theoretical charge capacity (4,200 mAh g(-1); ref. 2). Although this is more than ten times higher than existing graphite anodes and much larger than various nitride and oxide materials, silicon anodes have limited applications because silicon's volume changes by 400% upon insertion and extraction of lithium which results in pulverization and capacity fading. Here, we show that silicon nanowire battery electrodes circumvent these issues as they can accommodate large strain without pulverization, provide good electronic contact and conduction, and display short lithium insertion distances. We achieved the theoretical charge capacity for silicon anodes and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.

  1. High-performance lithium battery anodes using silicon nanowires

    NASA Astrophysics Data System (ADS)

    Chan, Candace K.; Peng, Hailin; Liu, Gao; McIlwrath, Kevin; Zhang, Xiao Feng; Huggins, Robert A.; Cui, Yi

    2008-01-01

    There is great interest in developing rechargeable lithium batteries with higher energy capacity and longer cycle life for applications in portable electronic devices, electric vehicles and implantable medical devices. Silicon is an attractive anode material for lithium batteries because it has a low discharge potential and the highest known theoretical charge capacity (4,200 mAh g-1 ref. 2). Although this is more than ten times higher than existing graphite anodes and much larger than various nitride and oxide materials, silicon anodes have limited applications because silicon's volume changes by 400% upon insertion and extraction of lithium which results in pulverization and capacity fading. Here, we show that silicon nanowire battery electrodes circumvent these issues as they can accommodate large strain without pulverization, provide good electronic contact and conduction, and display short lithium insertion distances. We achieved the theoretical charge capacity for silicon anodes and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.

  2. Method of recycling lithium borate to lithium borohydride through diborane

    DOEpatents

    Filby, Evan E.

    1976-01-01

    This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a diborane intermediate to complete the recycle scheme.

  3. Double-blind study of erbium 169 injection (synoviorthesis) in rheumatoid digital joints.

    PubMed Central

    Menkes, C J; Gô, A L; Verrier, P; Aignan, M; Delbarre, F

    1977-01-01

    A double-blind study of erbium 169 injection into rheumatoid digital joints was carried out with saline as control. 201 joints in 36 patients were studied (137 metacarpophalalangeal, 64 proximal interphalangeal). Erbium 169 was injected into 121 joints and saline water into 80 joints. Local injection of corticosteroids was given to both groups. A definite improvement was observed in 55% to 58% of cases with erbium 169 (+prednisolone acetate) and in 26% to 28% of cases with saline (+prednisolone acetate). The difference was highly significant. PMID:327948

  4. Spectroscopy of erbium-doped potassium double tungstate waveguides

    NASA Astrophysics Data System (ADS)

    Vázquez-Córdova, Sergio A.; Aravazhi, Shanmugam; Grivas, Christos; Heuer, Alexander M.; Kränkel, Christian; Yong, Yean-Sheng; García-Blanco, Sonia M.; Herek, Jennifer L.; Pollnau, Markus

    2017-02-01

    We report the spectroscopy of crystalline waveguide amplifiers operating in the telecom C-band. Thin films of erbiumdoped gadolinium lutetium potassium double tungstate, KGdxLuyEr1-x-y (WO4)2, are grown by liquid- phase epitaxy onto undoped potassium yttrium double tungstate (KYW) substrates and micro-structured by Ar+- beam etching. Channel waveguides with erbium concentrations between 0.45-6.35 × 1020 cm-3 are characterized. The transition cross-sections of interest are estimated. The effect of energy-transfer up-conversion (ETU) is experimentally investigated. Microscopic and macroscopic ETU parameters are extracted from a simultaneous analysis of 20 decay curves of luminescence on the transition 4I13/2 -> 4I13/2. The correlation between ETU and the doping concentration is studied. Pump excited-state absorption (ESA) on the transition 4I11/2 -> 4F7/2 is investigated via a direct ESA measurement using a double-modulation pump-probe technique. The effect of ESA is studied for different pump wavelengths. The pump wavelength of 984.5 nm is found to be favorable for the complete range of erbium concentrations.

  5. Dental Implants.

    PubMed

    Zohrabian, Vahe M; Sonick, Michael; Hwang, Debby; Abrahams, James J

    2015-10-01

    Dental implants restore function to near normal in partially or completely edentulous patients. A root-form implant is the most frequently used type of dental implant today. The basis for dental implants is osseointegration, in which osteoblasts grow and directly integrate with the surface of titanium posts surgically embedded into the jaw. Radiologic assessment is critical in the preoperative evaluation of the dental implant patient, as the exact height, width, and contour of the alveolar ridge must be determined. Moreover, the precise locations of the maxillary sinuses and mandibular canals, as well as their relationships to the site of implant surgery must be ascertained. As such, radiologists must be familiar with implant design and surgical placement, as well as augmentation procedures utilized in those patients with insufficient bone in the maxilla and mandible to support dental implants.

  6. Penile Implants

    MedlinePlus

    ... Three-piece inflatable implants use a fluid-filled reservoir implanted under the abdominal wall, a pump and ... an erection, you pump the fluid from the reservoir into the cylinders. Afterward, you release the valve ...

  7. Microencapsulation of Lithium

    DTIC Science & Technology

    1985-12-31

    SPILLED With dry rubber gloves. Rick up t.- lithium ingot and return to steel container and store under oil : label or tag , Keep away from moisture or...was in a 30% solids dispersion of mineral oil . Thus, the dispersion was purchased and the lithium metal was cleaned by extracting the mineral oil with... oil could be eliminated. Unfortunately, the manufacturer was unable to meet product specifications. Of the micronized lithium metal supplied to SwRI

  8. Lithium purification technique

    DOEpatents

    Keough, Robert F.; Meadows, George E.

    1985-01-01

    A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.

  9. Lithium purification technique

    DOEpatents

    Keough, R.F.; Meadows, G.E.

    1984-01-10

    A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.

  10. [Parkinsonism during lithium use].

    PubMed

    Walrave, T R W M; Bulens, C

    2009-01-01

    Two patients with bipolar disorder had been treated for years with lithium without any complications but began to develop symptoms of rigidity and an altered gait, namely symptoms compatible with a diagnosis of Parkinsonism with an action tremor. In both patients lithium levels were within the therapeutic range. Medication-induced Parkinsonism occurs frequently in patients using antipsychotic medication, but is a rare complication in patients receiving long term treatment with lithium. The lithium dosage was reduced gradually and within a few months all neurological symptoms subsided completely.

  11. Lithium and hematopoiesis.

    PubMed Central

    Barr, R. D.; Galbraith, P. R.

    1983-01-01

    Some of lithium's effects on blood cell formation suggest that the element may be of value in treating hematologic disorders. Lithium enhances granulopoiesis and thereby induces neutrophilia. Two possible mechanisms of action are suggested: a direct action on the pluripotent stem cells, or an inhibition of the suppressor cells (thymus-dependent lymphocytes) that limit hematopoiesis. Lithium also inhibits erythropoiesis. Although most studies use concentrations at or above pharmacologic levels there is evidence that lithium plays a role in normal cell metabolism. PMID:6336655

  12. Lithium nephrotoxicity revisited.

    PubMed

    Grünfeld, Jean-Pierre; Rossier, Bernard C

    2009-05-01

    Lithium is widely used to treat bipolar disorder. Nephrogenic diabetes insipidus (NDI) is the most common adverse effect of lithium and occurs in up to 40% of patients. Renal lithium toxicity is characterized by increased water and sodium diuresis, which can result in mild dehydration, hyperchloremic metabolic acidosis and renal tubular acidosis. The concentrating defect and natriuretic effect develop within weeks of lithium initiation. After years of lithium exposure, full-blown nephropathy can develop, which is characterized by decreased glomerular filtration rate and chronic kidney disease. Here, we review the clinical and experimental evidence that the principal cell of the collecting duct is the primary target for the nephrotoxic effects of lithium, and that these effects are characterized by dysregulation of aquaporin 2. This dysregulation is believed to occur as a result of the accumulation of cytotoxic concentrations of lithium, which enters via the epithelial sodium channel (ENaC) on the apical membrane and leads to the inhibition of signaling pathways that involve glycogen synthase kinase type 3beta. Experimental and clinical evidence demonstrates the efficacy of the ENaC inhibitor amiloride for the treatment of lithium-induced NDI; however, whether this agent can prevent the long-term adverse effects of lithium is not yet known.

  13. Radiation-resistant erbium-doped-nanoparticles optical fiber for space applications.

    PubMed

    Thomas, Jérémie; Myara, Mikhaël; Troussellier, Laurent; Burov, Ekaterina; Pastouret, Alain; Boivin, David; Mélin, Gilles; Gilard, Olivier; Sotom, Michel; Signoret, Philippe

    2012-01-30

    We demonstrate for the first time a radiation-resistant Erbium-Doped Fiber exhibiting performances that can fill the requirements of Erbium-Doped Fiber Amplifiers for space applications. This is based on an Aluminum co-doping atom reduction enabled by Nanoparticules Doping-Process. For this purpose, we developed several fibers containing very different erbium and aluminum concentrations, and tested them in the same optical amplifier configuration. This work allows to bring to the fore a highly radiation resistant Erbium-doped pure silica optical fiber exhibiting a low quenching level. This result is an important step as the EDFA is increasingly recognized as an enabling technology for the extensive use of photonic sub-systems in future satellites.

  14. Endolenticular phacolysis using the erbium:YAG laser on human autopsy lenses: a histopathologic study

    NASA Astrophysics Data System (ADS)

    Noecker, Robert J.; Kramer, Theresa R.; Ellsworth, Lansing G.; Snyder, Robert W.; Yarborough, J. Michael

    1994-06-01

    A pulsed erbium:YAG laser equipped with a 1-m zirconium fluoride fiber coupled with a sapphire tip was used to photovaporize human autopsy lens tissue. Measured diameter of photovaporization of human lens cortex with erbium:YAG laser ranged from 117 micrometers at a fluence of 3.98 J/cm2 to 227 micrometers at fluence of 15.92 J/cm2. Measured diameter of photovaporization of human lens nucleus with Erbium:YAG laser ranged from 265 micrometers at a fluence of 11 J/cm2 and 295 micrometers at a fluence of 15 J/cm2. Endolenticular phacovaporization with the Erbium:YAG laser appears to be a potentially efficient and precise means of removing the human lens.

  15. Resonantly photo-pumped nickel-like erbium X-ray laser

    DOEpatents

    Nilsen, Joseph

    1990-01-01

    A resonantly photo-pumped X-ray laser (10) that enhances the gain of seve laser lines that also lase because of collisional excitations and recombination processes, is described. The laser comprises an aluminum (12) and erbium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like erbium ions (34) are resonantly photo-pumped by line emission from hydrogen-like aluminum ions (32).

  16. Numerical analysis of multiwavelength erbium-doped fiber ring laser exploiting four-wave mixing.

    PubMed

    Xu, Xiaochuan; Yao, Yong; Chen, Deying

    2008-08-04

    In this paper, a model is proposed to study the behavior of four-wave mixing assisted multiwavelength erbium doped fiber ring laser based on the theoretical model of the multiple FWM processes and Gile's theory of erbium-doped fiber. It is demonstrated that the mode competition can be effectively suppressed through FWM. The effect of phase matching, the nonlinear coefficient, the power in the cavity and the length of the nonlinear medium on output spectrum uniformity are also investigated.

  17. Probing the spiral magnetic phase in 6 nm textured erbium using polarised neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Satchell, N.; Witt, J. D. S.; Burnell, G.; Curran, P. J.; Kinane, C. J.; Charlton, T. R.; Langridge, S.; Cooper, J. F. K.

    2017-02-01

    We characterise the magnetic state of highly-textured, sputter deposited erbium for a film of thickness 6 nm. Using polarised neutron reflectometry it is found that the film has a high degree of magnetic disorder, and we present some evidence that the film’s local magnetic state is consistent with bulk-like spiral magnetism. This, combined with complementary characterisation techniques, show that thin film erbium is a strong candidate material for incorporation into device structures.

  18. In situ lithium diffusion measurement in solid ionic conductors using short-lived radiotracer beam of 8Li

    NASA Astrophysics Data System (ADS)

    Ishiyama, H.; Jeong, S. C.; Watanabe, Y. X.; Hirayama, Y.; Imai, N.; Miyatake, H.; Oyaizu, M.; Osa, A.; Otokawa, Y.; Matsuda, M.; Nishio, K.; Makii, H.; Sato, T. K.; Kuwata, N.; Kawamura, J.; Nakao, A.; Ueno, H.; Kim, Y. H.; Kimura, S.; Mukai, M.

    2015-07-01

    We developed an in situ radiotracer method for diffusion studies in solids using short-lived α-emitting 8Li tracer. In the method, while implanting a pulsed 8Li beam into a solid material of interest, the α particles emitted into the implantation side of the sample surface were detected as a function of time. By changing the implantation depth and the detection angle against the sample surface according to lithium diffusivity (deep implantation and large angle with a large solid angle, or shallow implantation and small angle with a narrow solid angle), the method can be sensitive to a wide range of diffusion length ranging from micrometer scale to nanometer scale per second. The feasibility of the method was demonstrated by measuring the lithium diffusion coefficients to the order of 10-12 cm2/s in lithium ionic conductors.

  19. CO2, excimer and erbium:YAG laser in deep sclerectomy.

    PubMed

    Klink, Thomas; Schlunck, Gunther; Lieb, Wolfgang; Klink, Janine; Grehn, Franz

    2008-01-01

    Deep sclerectomy is a non-penetrating filtering procedure that is not generally accepted, as tissue dissection is difficult and varying success rates have been reported. The purpose of the present study was to compare the use of CO2, excimer and erbium:YAG lasers in dissection of the deep corneoscleral lamella. In enucleated porcine eyes a superficial lamellar scleral flap of 5 x 5 mm was surgically dissected. The deep lamella was removed using a pulsed erbium:YAG, a CO2 or an excimer laser (10 eyes/group). All eyes were analysed histologically and 3 in each group by scanning electron microscopy (SEM). It is feasible to ablate the deep corneoscleral lamella with the CO2, excimer and erbium:YAG lasers without perforating the anterior chamber. The following histology and SEM showed a smoother surface after dissection with the CO2 and excimer lasers compared to the erbium:YAG laser. There was no thermal damage after excimer laser treatment, compared to a damage zone of 10-30 mum using the erbium laser and one of 70-100 microm with the CO2 laser. Excimer,erbium:YAG and CO2 lasers allow the microsurgical dissection of the deep lamella. The excimer and CO2 lasers achieve a more regular and smoother tissue surface. The excimer laser has the advantage to dissect without thermal tissue damage. Copyright 2008 S. Karger AG, Basel.

  20. Magnetic Phases of Sputter Deposited Thin-Film Erbium

    PubMed Central

    Witt, J. D. S.; Cooper, J. F. K.; Satchell, N.; Kinane, C. J.; Curran, P. J.; Bending, S. J.; Langridge, S.; Heyderman, L. J.; Burnell, G.

    2016-01-01

    We present a detailed structural and magnetic characterization of sputter deposited thin film erbium, determined by x-ray diffraction, transport measurements, magnetometry and neutron diffraction. This provides information on the onset and change of the magnetic state as a function of temperature and applied magnetic field. Many of the features of bulk material are reproduced. Also of interest is the identification of a conical magnetic state which repeats with a wavevector parallel to the c axis τc = 4/17 in units of the reciprocal lattice parameter c*, which is a state not observed in any other thin film or bulk measurements. The data from the various techniques are combined to construct magnetic field, temperature (H, T)–phase diagrams for the 200 nm-thick Er sample that serves as a foundation for future exploitation of this complex magnetic thin film system. PMID:27966662

  1. Magnetic Phases of Sputter Deposited Thin-Film Erbium

    NASA Astrophysics Data System (ADS)

    Witt, J. D. S.; Cooper, J. F. K.; Satchell, N.; Kinane, C. J.; Curran, P. J.; Bending, S. J.; Langridge, S.; Heyderman, L. J.; Burnell, G.

    2016-12-01

    We present a detailed structural and magnetic characterization of sputter deposited thin film erbium, determined by x-ray diffraction, transport measurements, magnetometry and neutron diffraction. This provides information on the onset and change of the magnetic state as a function of temperature and applied magnetic field. Many of the features of bulk material are reproduced. Also of interest is the identification of a conical magnetic state which repeats with a wavevector parallel to the c axis τc = 4/17 in units of the reciprocal lattice parameter c*, which is a state not observed in any other thin film or bulk measurements. The data from the various techniques are combined to construct magnetic field, temperature (H, T)-phase diagrams for the 200 nm-thick Er sample that serves as a foundation for future exploitation of this complex magnetic thin film system.

  2. Dual-kind Q-switching of erbium fiber laser

    SciTech Connect

    Barmenkov, Yuri O. Kir'yanov, Alexander V.; Cruz, Jose L.; Andres, Miguel V.

    2014-03-03

    Two different regimes of Q-switching in the same implementation of an actively Q-switched erbium-doped fiber laser are demonstrated. Depending on the active fiber length and repetition rate of an intracavity Q-cell (acousto-optic modulator), the laser operates either in the regime of common, rather long and low-power, pulses composed of several sub-pulses or in the one of very short and powerful stimulated Brillouin scattering-induced pulses. The basic physical reason of the laser system to oscillate in one of these two regimes is the existence or absence of CW narrow-line “bad-cavity” lasing in the intervals when the Q-cell is blocked.

  3. A higher-order-mode erbium-doped-fiber amplifier.

    PubMed

    Nicholson, J W; Fini, J M; DeSantolo, A M; Monberg, E; DiMarcello, F; Fleming, J; Headley, C; DiGiovanni, D J; Ghalmi, S; Ramachandran, S

    2010-08-16

    We demonstrate the first erbium-doped fiber amplifier operating in a single, large-mode area, higher-order mode. A high-power, fundamental-mode, Raman fiber laser operating at 1480 nm was used as a pump source. Using a UV-written, long-period grating, both pump and 1564 nm signal were converted to the LP(0,10) mode, which had an effective area of 2700 microm(2) at 1550 nm. A maximum output power of 5.8 W at 1564 nm with more than 20 dB of gain in a 2.68 m long amplifier was obtained. The mode profile was undistorted at the highest output power.

  4. Organo-erbium systems for optical amplification at telecommunications wavelengths.

    PubMed

    Ye, H Q; Li, Z; Peng, Y; Wang, C C; Li, T Y; Zheng, Y X; Sapelkin, A; Adamopoulos, G; Hernández, I; Wyatt, P B; Gillin, W P

    2014-04-01

    Modern telecommunications rely on the transmission and manipulation of optical signals. Optical amplification plays a vital part in this technology, as all components in a real telecommunications system produce some loss. The two main issues with present amplifiers, which rely on erbium ions in a glass matrix, are the difficulty in integration onto a single substrate and the need of high pump power densities to produce gain. Here we show a potential organic optical amplifier material that demonstrates population inversion when pumped from above using low-power visible light. This system is integrated into an organic light-emitting diode demonstrating that electrical pumping can be achieved. This opens the possibility of direct electrically driven optical amplifiers and optical circuits. Our results provide an alternative approach to producing low-cost integrated optics that is compatible with existing silicon photonics and a different route to an effective integrated optics technology.

  5. Tungsten diselenide Q-switched erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, Bohua; Zhang, Xiaoyan; Guo, Chaoshi; Wu, Kan; Chen, Jianping; Wang, Jun

    2016-08-01

    We report a tungsten diselenide (WSe2) polyvinyl alcohol (PVA)-based, saturable absorber and related experiment results of a Q-switched fiber laser. WSe2-PVA film is synthesized by liquid phase exfoliation method, and its saturable absorption is measured via a nonlinear transmission experiment. The result shows that WSe2-PVA saturable absorber has a modulation depth of 3.5%, which means it has potential for generating an ultrafast pulse laser. We apply this absorber into a ring-cavity erbium-doped fiber laser and obtain Q-switched pulses under appropriate pump power. Our work demonstrates the reliable nonlinear optical characteristics of WSe2 and the feasibility for this two-dimensional material to be applied in the field of nonlinear optics.

  6. Vector self-pulsing in erbium-doped fiber lasers.

    PubMed

    Sergeyev, Sergey V

    2016-10-15

    Insight into instabilities of fiber laser regimes leading to complex self-pulsing operations is an opportunity to unlock the high power and dynamic operation tunability of lasers. Though many models have been suggested, there is no complete covering of self-pulsing complexity observed experimentally. Here, I further generalized our previous vector model of erbium-doped fiber laser and, for the first time, to the best of my knowledge, map tunability of complex vector self-pulsing on Poincare sphere (limit cycles and double scroll polarization attractors) for laser parameters, e.g., power, ellipticity of the pump wave, and in-cavity birefringence. Analysis validated by extensive numerical simulations demonstrates good correspondence to the experimental results on complex self-pulsing regimes obtained by many authors during the last 20 years.

  7. Multiwavelength erbium-doped fiber laser based on graphene oxide.

    PubMed

    Hao, Xia; Tong, Zhengrong; Zhao, Junfa; Cao, Ye; Li, Lan

    2014-07-10

    A multiwavelength erbium-doped fiber (EDF) laser based on graphene oxide (GO) has been proposed, to the best of our knowledge, for the first time, to generate an output of stable wavelengths. The structure mainly comprises a few layers of GO between two single-mode fibers incorporated into a capillary device and a Lyot comb filter. GO can show a good nonlinear optical effect, which is beneficial to suppress the mode competition caused by the EDF and stabilize the multiwavelength output. With assistance from the GO device, 11 stable simultaneous lasing signals with a power nonuniformity of about 1.5 dB are obtained. Wavelength spacing is about 0.42 nm and the linewidth of each wavelength is less than 0.07 nm.

  8. Chaos synchronization characteristics in erbium-doped fiber laser systems

    NASA Astrophysics Data System (ADS)

    Imai, Y.; Murakawa, H.; Imoto, T.

    2003-03-01

    Chaos synchronization characteristics in the master-slave and slave-slave systems with modulated erbium-doped fiber lasers are investigated numerically. We find that synchronization state of chaos becomes better, i.e., the correlation coefficient between the two outputs reaches unity, as the difference in the input power between the two subsystems decreases and is not dependent strongly upon the difference in the modulation index in both the master-slave and slave-slave systems. In the master-slave system, the highest correlation coefficient is attained at the smaller pump power and the larger modulation index in the slave subsystem than those in the master subsystem. On the other hand, the correlation coefficient equal to unity is achieved with the identical parameters in the slave 1 and 2 subsystems in the slave-slave system.

  9. An Erbium Quantum Gas Microscope with a Reflective Objective

    NASA Astrophysics Data System (ADS)

    Krahn, Aaron; Phelps, Gregory; Hebert, Anne; Dickerson, Susannah; Greiner, Markus; Erbium Lab Team

    2016-05-01

    Dipolar atoms present an exciting opportunity to extend previous quantum gas microscope (QGM) experiments to more complex systems influenced by long range, anisotropic interactions. We present on current progress toward the construction of a QGM for ultracold Erbium atoms in an optical lattice, including the development of a novel imaging system for single-site resolution. While most QGMs until now have typically utilized a high numerical aperture microscope objective, we discuss a reflective mirror alternative that offers an equally high NA (.9-.95), a comparable field of view (34 micrometers radial), and a larger working distance (25 millimeters) that keeps the atoms far from any surfaces. By operating in a Schmidt telescope configuration, this imaging system is well-suited both for collecting 401 nm imaging fluorescence and for the creation of an expandable lattice with a variety of associated lattice geometries.

  10. Synthesis and properties of erbium oxide single crystals

    SciTech Connect

    Petrovic, J.J.; Romero, R.S.; Mendoza, D.; Kukla, A.M.; Hoover, R.C.; McClellan, K.J.

    1999-04-01

    Erbium oxide (Er{sub 2}O{sub 3}, erbia) is a highly stable cubic rare earth oxide with a high melting point of 2,430 C. Because of this, it may have potential applications where high temperature stability and corrosion resistance are required. However, relatively little is known about the properties of this oxide ceramic. The authors have employed a xenon optical floating zone unit with a temperature capability of 3,000 C to grow high quality single crystals of erbia. The conditions for single crystal growth of erbia have been established. The mechanical properties of erbia single crystals have been initially examined using microhardness indentation as a function of temperature.

  11. Characteristics of the Brillouin spectra in Erbium-Ytterbium fibers.

    PubMed

    Canat, G; Durécu, A; Lesueur, G; Lombard, L; Bourdon, P; Jolivet, V; Jaouën, Y

    2008-03-03

    This paper reports the main characteristics of the Stokes spectra for typical pumped and unpumped Erbium-Ytterbium doped fibers. Doped fibers show shorter Brillouin shifts and their spectra are up to 1.6 times broader than undoped fibers. Those spectra are composed of several peaks originating from several longitudinal acoustic modes. The effective Brillouin gain of the secondary modes can be as large as 20% of the main peak gain. They can merge into a more complex structure for the largest cores. Simulations allow to relate these characteristics to the influence of codoping and index profile inhomogeneity. An additional broadening of the Stokes spectrum in pumped fibers is reported and attributed to thermal effects.

  12. Deep sclerectomy using erbium:YAG laser in pigs eyes

    NASA Astrophysics Data System (ADS)

    Badr, Yehia A.; Taher, Ibrahim M.; Bahgat, Mostafa M.; Ghoneim, Dina F.

    2004-07-01

    The potential benefits of using pulsed Erbium: YAG laser in removing the deep lamella of the sclera during the procedure of deep sclerectomy was studied. Thirty porcine eyes were divided into 3 groups. A superficial lamellar scleral flap with an area of 5x5 mm as for trabeculectomy was surgically prepared. Using an Erbium: YAG laser (2.94 micron), the deep lamella with an area of 3x1.8 mm was removed. Group I was subjected to an energy level of 40-60 m.J, Descemet's membrane was preserved and trabecular meshwork was left intact and no thermal damage on the contiguous structures in all eyes, group II to 60-80 m.J Descemet's membrane was ruptured in 30% (3 eyes), thermal damage was 20% (2 eyes) on superficial structures, while group III to 80-100m.J there was a high risk of rupture of Descemet's membrane 50% (5 eyes), thermal damage was 30%(3 eyes) on superficial structures & 20%(2 eyes) on deep & superficial structures. Eyes were analyzed histologically by electron microscopy to study Descemet's membrane & the trabecular meshwork & the thermal damage on contiguous structures. Eyes with rupture of Descemet's membrane had total energy power of 11.75 J +/- 6.39, average power was 0.58W +/- 0.07 & power density 1155W/cm2 +/- 144, compared to eyes with no rupture 24.23J +/- 11.77 total energy power, 0.46W average power & 916.4W/cm2 +/- 227 power density. Thermal damage changes occurred at total energy power of 10.14 J, average power was 0.59W & power density 1180W/cm2, compared to eyes with no rupture 24.17J total energy power, 0.46W average power & 919.1W/cm2 power density.

  13. Modelling of lithium erosion and transport in FTU lithium experiments

    NASA Astrophysics Data System (ADS)

    Ding, R.; Maddaluno, G.; Apicella, M. L.; Mazzitelli, G.; Pericoli Ridolfini, V.; Kirschner, A.; Chen, J. L.; Li, J. G.; Luo, G.-N.

    2013-07-01

    The ERO code has been used to simulate lithium erosion, transport and re-deposition from liquid lithium limiter experiments in FTU. Two different operational cases from LLL experiments with different plasma parameters and surface temperature are modelled. According to the effective lithium sputtering yields, for both cases the lithium erosion is mainly due to physical sputtering rather than evaporation. Furthermore, the modelled re-deposition fraction of evaporated lithium is much higher than that of sputtered lithium, which is due to the shorter ionisation mean free path of thermal lithium atoms. Therefore, the evaporation erosion effect can be neglected compared to physical sputtering when the surface temperature is below 450 °C. According to the simulations, most of the lithium impurities exist in the form of Li+, and the main plasma contamination by lithium ions is low because most of eroded lithium particles are not transported into the core plasma and stay outside of the LCFS.

  14. LITHIUM AND RENAL FUNCTIONS

    PubMed Central

    Sethi, N.; Trivedi, J.K.; Sethi, B.B.

    1987-01-01

    SUMMARY Thirty patients of affective disorder who were on lithium for a year and thirty patients on antidepressant were studied in detail for renal functions. Our observation is that lithium therapy does not lead to any deterioration in kidney functions. The results are discussed. PMID:21927211

  15. Cathode material for lithium batteries

    DOEpatents

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  16. Cathode material for lithium batteries

    DOEpatents

    Park, Sang-Ho; Amine, Khalil

    2015-01-13

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  17. Decontamination of Anodized Implant Surface With Different Modalities for Peri-Implantitis Treatment: Lasers and Mechanical Debridement With Citric Acid.

    PubMed

    Htet, Moe; Madi, Marwa; Zakaria, Osama; Miyahara, Takayuki; Xin, Wang; Lin, Zayar; Aoki, Kazuhiro; Kasugai, Shohei

    2016-08-01

    Although oral rehabilitation with dental implants is a very promising and effective procedure, peri-implantitis is an emerging concern. Surgical and non-surgical methods have been applied to treat peri-implantitis together with various implant surface decontamination methods. However, there is no consensus concerning the most effective treatment for peri-implantitis. The aim of the present study is to evaluate the effects of erbium-doped:yttrium, aluminum, and garnet (Er:YAG) laser, photodynamic therapy (PDT), and titanium bur with and without citric acid on ligature-induced peri-implantitis around an anodized implant surface. Thirty dental implants with anodized surface (3.3 × 10 mm) were installed in the mandibles of five beagle dogs. After 3 months, peri-implantitis was induced by applying cotton ligatures subgingivally. After ligature removal (baseline), the implants were divided into the following treatment groups: 1) Er:YAG laser, 2) PDT, 3) titanium bur alone, and 4) titanium bur with citric acid. Animals were sacrificed after 3 months, and clinical, radiologic, histologic, and histomorphometric evaluations were conducted for all treatment modalities. The data were analyzed using one-way analysis of variance and Tukey test. A value of P <0.05 was considered statistically significant. The titanium bur with citric acid group exhibited statistically significantly greater improvement in vertical bone height than the Er:YAG laser group and significantly better bone-to-implant contact than the PDT group and the bur-alone group. Within the limits of the study, the combination of mechanical and chemical treatment proved to be the most effective treatment for disinfection of the anodized implant surface.

  18. [Intoxication with lithium].

    PubMed

    Fiegler, K; Liechti, M E; Bodmer, M; Bruggisser, M

    2009-06-24

    We report a case of a 75-year-old male patient who presented to the emergency room with arterial hypotension and impaired vigilance. The patient was on lithium therapy due to mood disorder. One month earlier medication with a betablocker, a loop-diuretic and an ACE-inhibitor had been started due to heart failure. Findings at admission included renal insufficiency, pneumonia and a slightly increased serum level of lithium. Three days later his Glasgow Coma Scale Score was 7, he showed gaze deviation, increased muscle tonus and cloni. The patient fully recovered after volume substitution and normalization of his renal function. Diagnosis of chronic intoxication with lithium was made due to the clinical picture and after exclusion of neurological pathologies. The pharmacokinetic characteristics of lithium is described and the risk factors leading to lithium intoxication and treatment of intoxication are discussed.

  19. Neuropsychologic effects of lithium discontinuation.

    PubMed

    Kocsis, J H; Shaw, E D; Stokes, P E; Wilner, P; Elliot, A S; Sikes, C; Myers, B; Manevitz, A; Parides, M

    1993-08-01

    This study investigated the effects of blind lithium discontinuation and resumption on measures of cognition, creativity, and fine motor performance in 46 lithium-maintained euthymic outpatients. Scores on memory measures, tests of tapping speed, and associative productivity all improved significantly during the time off of lithium. In an effort to further explain these results, analyses were undertaken with six possible intervening variables: age, sex, lithium concentration in plasma, thyroid function, duration of lithium maintenance, and depressive symptoms. Significant group and interactive effects are reported and discussed. A multiple regression analysis suggested that lithium has a greater neuropsychologic effect in younger, less-depressed patients having higher lithium concentrations in plasma.

  20. Implantable Microimagers

    PubMed Central

    Ng, David C.; Tokuda, Takashi; Shiosaka, Sadao; Tano, Yasuo; Ohta, Jun

    2008-01-01

    Implantable devices such as cardiac pacemakers, drug-delivery systems, and defibrillators have had a tremendous impact on the quality of live for many disabled people. To date, many devices have been developed for implantation into various parts of the human body. In this paper, we focus on devices implanted in the head. In particular, we describe the technologies necessary to create implantable microimagers. Design, fabrication, and implementation issues are discussed vis-à-vis two examples of implantable microimagers; the retinal prosthesis and in vivo neuro-microimager. Testing of these devices in animals verify the use of the microimagers in the implanted state. We believe that further advancement of these devices will lead to the development of a new method for medical and scientific applications. PMID:27879873

  1. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Kim, Jeom-Soo; Johnson, Christopher S.

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  2. High Productivity Implantation ''PARTIAL IMPLANT''

    SciTech Connect

    Hino, Masayoshi; Miyamoto, Naoki; Sakai, Shigeki; Matsumoto, Takao

    2008-11-03

    The patterned ion implantation 'PARTIAL IMPLANT' has been developed as a productivity improvement tool. The Partial Implant can form several different ion dose areas on the wafer surface by controlling the speed of wafer moving and the stepwise rotation of twist axis. The Partial Implant system contains two implant methods. One method is 'DIVIDE PARTIAL IMPLANT', that is aimed at reducing the consumption of the wafer. The Divide Partial Implant evenly divides dose area on one wafer surface into two or three different dose part. Any dose can be selected in each area. So the consumption of the wafer for experimental implantation can be reduced. The second method is 'RING PARTIAL IMPLANT' that is aimed at improving yield by correcting electrical characteristic of devices. The Ring Partial Implant can form concentric ion dose areas. The dose of wafer external area can be selected to be within plus or minus 30% of dose of wafer central area. So the electrical characteristic of devices can be corrected by controlling dose at edge side on the wafer.

  3. Use of Er:YAG laser to decontaminate infected dental implant surface in preparation for reestablishment of bone-to-implant contact.

    PubMed

    Nevins, Myron; Nevins, Marc L; Yamamoto, Atsuhiko; Yoshino, Toshiaki; Ono, Yoshihiro; Wang, Chin-Wei; Kim, David M

    2014-01-01

    The prevalence of peri-implantitis is of concern to all clinicians participating in implant dentistry. Peri-implant inflammation results in the loss of supporting bone for the implant that may or may not be accompanied by bleeding on probing and suppuration. Early diagnosis and intervention are mandated, but there is a paucity of evidence leading to the most effective therapy. There is agreement that one of the challenges in surgically treating peri-implant defects is the process of cleaning and decontaminating the implant surface, which may be contaminated by bacterial aggregates. This preclinical canine study investigates the erbium:yttrium-aluminum-garnet laser to decontaminate the complex rough surface of the implant by stripping the contaminated oxide layer for induction of hard and soft tissue adaptation to a compromised or failing implant. The results provide evidence of new bone-to-implant contact established at a level representative of the size of the defects. The soft tissues contain little or no evidence of inflammation, which can be interpreted as an arrest of the disease progression process. The results can be translated to a treatment goal of stabilizing the prognosis of an implant that has been compromised.

  4. Endodontic implants

    PubMed Central

    Yadav, Rakesh K.; Tikku, A. P.; Chandra, Anil; Wadhwani, K. K.; Ashutosh kr; Singh, Mayank

    2014-01-01

    Endodontic implants were introduced back in 1960. Endodontic implants enjoyed few successes and many failures. Various reasons for failures include improper case selection, improper use of materials and sealers and poor preparation for implants. Proper case selection had given remarkable long-term success. Two different cases are being presented here, which have been treated successfully with endodontic implants and mineral trioxide aggregate Fillapex (Andreaus, Brazil), an MTA based sealer. We suggest that carefully selected cases can give a higher success rate and this method should be considered as one of the treatment modalities. PMID:25298723

  5. Combination of fiber-guided pulsed erbium and holmium laser radiation for tissue ablation under water

    NASA Astrophysics Data System (ADS)

    Pratisto, Hans; Frenz, Martin; Ith, Michael; Altermatt, Hans J.; Jansen, E. Duco; Weber, Heinz P.

    1996-07-01

    Because of the high absorption of near-infrared laser radiation in biological tissue, erbium lasers and holmium lasers emitting at 3 and 2 mu m, respectively, have been proven to have optimal qualities for cutting or welding and coagulating tissue. To combine the advantages of both wavelengths, we realized a multiwavelength laser system by simultaneously guiding erbium and holmium laser radiation by means of a single zirconium fluoride (ZrF4) fiber. Laser-induced channel formation in water and poly(acrylamide) gel was investigated by the use of a time-resolved flash-photography setup, while pressure transients were recorded simultaneously with a needle hydrophone. The shapes and depths of vapor channels produced in water and in a submerged gel after single erbium and after combination erbium-holmium radiation delivered by means of a 400- mu m ZrF4 fiber were measured. Transmission measurements were performed to determine the amount of pulse energy available for tissue ablation. The effects of laser wavelength and the delay time between pulses of different wavelengths on the photomechanical and photothermal responses of meniscal tissue were evaluated in vitro by the use of histology. It was observed that the use of a short (200- mu s, 100-mJ) holmium laser pulse as a prepulse to generate a vapor bubble through which the ablating erbium laser pulse can be transmitted (delay time, 100 mu s) increases the cutting depth in meniscus from 450 to 1120 mu m as compared with the depth following a single erbium pulse. The results indicate that a combination of erbium and holmium laser radiation precisely and efficiently cuts tissue under water with 20-50- mu m collateral tissue damage. wave, cavitation, channel formation, infrared-fiber-delivery system, tissue damage, cartilage.

  6. Numerical estimation of heat distribution from the implantable battery system of an undulation pump LVAD.

    PubMed

    Okamoto, Eiji; Makino, Tsutomu; Nakamura, Masatoshi; Tanaka, Shuji; Chinzei, Tsuneo; Abe, Yusuke; Isoyama, Takashi; Saito, Itsuro; Mochizuki, Shu-ichi; Imachi, Kou; Inoue, Yusuke; Mitamura, Yoshinori

    2006-01-01

    We have been developing an implantable battery system using three series-connected lithium ion batteries having an energy capacity of 1,800 mAh to drive an undulation pump left ventricular assist device. However, the lithium ion battery undergoes an exothermic reaction during the discharge phase, and the temperature rise of the lithium ion battery is a critical issue for implantation usage. Heat generation in the lithium ion battery depends on the intensity of the discharge current, and we obtained a relationship between the heat flow from the lithium ion battery q(c)(I) and the intensity of the discharge current I as q(c)(I) = 0.63 x I (W) in in vitro experiments. The temperature distribution of the implantable battery system was estimated by means of three-dimentional finite-element method (FEM) heat transfer analysis using the heat flow function q(c)(I), and we also measured the temperature rise of the implantable battery system in in vitro experiments to conduct verification of the estimation. The maximum temperatures of the lithium ion battery and the implantable battery case were measured as 52.2 degrees C and 41.1 degrees C, respectively. The estimated result of temperature distribution of the implantable battery system agreed well with the measured results using thermography. In conclusion, FEM heat transfer analysis is promising as a tool to estimate the temperature of the implantable lithium ion battery system under any pump current without the need for animal experiments, and it is a convenient tool for optimization of heat transfer characteristics of the implantable battery system.

  7. Sealed Lithium Inorganic Battery

    DTIC Science & Technology

    1976-08-01

    MuWrn , 1,ad iw..am m4 IdM.D to We"L406W) Inorganic Electrolyte lattery Carbon Cathode Evaluation Thionyl Chloride Gas Generation Lithium C ell sign...hardware surface to carry the reductIon of thionyl chloride when in contact with lithium (self discharge) and the corro,’ion of hardware materials... Lithium - Aluminum Chloride 10) AOSTSAC? (Cmawl/e o ade H .m.eewr W MWO, AV 600 nwe w) Stdies were continued of the effects of hardware materials on the

  8. Lithium Combustion: A Review

    DTIC Science & Technology

    1990-12-01

    lithium vapors generated with air formed an intense white flame that produced branched- chain condensation aerosol particles, of concentrations 򓆄 mg/im3...generated chain -aggregate lithium combustion aerosols in dry, COg-free air prior to reaction with 0, 0.10, 0.50, 1.0, 1.75, or 5.0% CO in air at a...In order to burn in gaseous chlorine or in bromine or iodine vapor, lithium needs to be heated. With iodine vapor, the reaction is accompanied by

  9. Lithium and Ebstein's anomaly.

    PubMed

    Sípek, A

    1989-01-01

    The article deals with Ebstein's anomaly, lithium and their relationship. Some studies suggest that lithium might be involved as a teratogen increasing the incidence of Ebstein's anomaly in the offspring of female patients with manio-depressive psychosis and lithium-administered during pregnancy. The second part of the article contains data on the incidence of Ebstein's anomaly in the Czech Socialist Republic between 1960 and 1985. The results indicate a steady rise in the incidence of this congenital malformation over the above period of time.

  10. Lithium Dendrite Formation

    SciTech Connect

    2015-03-06

    Scientists at the Department of Energy’s Oak Ridge National Laboratory have captured the first real-time nanoscale images of lithium dendrite structures known to degrade lithium-ion batteries. The ORNL team’s electron microscopy could help researchers address long-standing issues related to battery performance and safety. Video shows annular dark-field scanning transmission electron microscopy imaging (ADF STEM) of lithium dendrite nucleation and growth from a glassy carbon working electrode and within a 1.2M LiPF6 EC:DM battery electrolyte.

  11. Implantable power-sources: a review.

    PubMed

    Greatbatch, W

    1984-01-01

    It has now been 25 years since the first pacemakers were implanted. It is indeed fascinating to see the breadth and the vision of the early investigators on both sides of the ocean, most of them friends of the author, in the almost desperate search for a power source that would enable the pacemaker to last as long as the expected lifetime of the average patient. Every conceivable method of power generation, power storage, and energy conservation was studied. The result was an orderly transition from zinc-mercury batteries, to lithium-iodine batteries, to the newest lithium oxyhalide systems of the coming decade, all of which coincided with tentative sidesteps into rechargeable batteries and nuclear batteries. This paper traces this 25 years of progress and salutes the many investigators who have brought the implantable pacemaker and its power source to their present state of acceptance by the medical profession.

  12. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  13. Use of lithium batteries in biomedical devices. Technical report No. 8, July 1988-June 1989

    SciTech Connect

    Owens, B.B.

    1989-06-15

    Lithium batteries have played an important role in the development of useful implantable biomedical devices. The cardiac pacemaker is the most well known of these devices and high-energy, long-life reliable lithium primary cells have effectively replaced all of the alkaline cells previously used in these electronic systems. The recent development of higher-power devices such as drug pumps and cardiac defibrillators require the use of batteries with higher energy and power capabilities. High rate rechargeable batteries that can be configured as flat prismatic cells would be especially useful in some of these new applications. Lithium polymer electrolyte-batteries may find a useful role in these new areas.

  14. Root Surface Bio-modification with Erbium Lasers- A Myth or a Reality??

    PubMed Central

    Lavu, Vamsi; Sundaram, Subramoniam; Sabarish, Ram; Rao, Suresh Ranga

    2015-01-01

    The objective of this literature review was to critically review the evidence available in the literature regarding the expediency of erbium family of lasers for root bio modification as a part of periodontal therapy. The literature search was performed on the Pubmed using MeSH words such as "lasers/therapeutic use, scaling, dental calculus, tooth root/anatomy and histology, ultrasonic therapy". The studies were screened and were grouped as follows: those evaluating a) efficacy for calculus removal with the Erbium family of laser b) root surface changes following Er YAG and Er Cr YSGG application c) comparative studies of the Er YAG, Er Cr YSGG lasers versus conventional methods of root surface modification d) Bio compatibility of root surface following Erbium laser treatment e) Studies on the combined efficacy of laser root modification with conventional methods towards root surface bio-modification f) Studies on effectiveness of root surface bio-modification prior to root coverage procedures. In conclusion, the erbium family has a proven anti-bacterial action, predictable calculus removal, minimal root substance removal, and appears to favor cell attachment. The Erbium family of lasers appears to be a useful adjunct for the management of periodontal disease. PMID:25713635

  15. Root Surface Bio-modification with Erbium Lasers- A Myth or a Reality??

    PubMed

    Lavu, Vamsi; Sundaram, Subramoniam; Sabarish, Ram; Rao, Suresh Ranga

    2015-01-01

    The objective of this literature review was to critically review the evidence available in the literature regarding the expediency of erbium family of lasers for root bio modification as a part of periodontal therapy. The literature search was performed on the Pubmed using MeSH words such as "lasers/therapeutic use, scaling, dental calculus, tooth root/anatomy and histology, ultrasonic therapy". The studies were screened and were grouped as follows: those evaluating a) efficacy for calculus removal with the Erbium family of laser b) root surface changes following Er YAG and Er Cr YSGG application c) comparative studies of the Er YAG, Er Cr YSGG lasers versus conventional methods of root surface modification d) Bio compatibility of root surface following Erbium laser treatment e) Studies on the combined efficacy of laser root modification with conventional methods towards root surface bio-modification f) Studies on effectiveness of root surface bio-modification prior to root coverage procedures. In conclusion, the erbium family has a proven anti-bacterial action, predictable calculus removal, minimal root substance removal, and appears to favor cell attachment. The Erbium family of lasers appears to be a useful adjunct for the management of periodontal disease.

  16. A simple theoretical model for erbium doped PCF ring lasers design

    NASA Astrophysics Data System (ADS)

    Sánchez-Martín, J. A.; Álvarez, J. M.; Rebolledo, M. A.; Andrés, M. V.; Vallés, J. A.; Martín, J. C.; Berdejo, V.; Díez, A.

    2011-09-01

    In this paper a simple theoretical model is presented where the energy conservation principle is used. The model is based on semi-analytical equations describing the behaviour of an erbium-doped photonic crystal fibre (PCF) inside a ring laser. These semi-analytical equations allow the characterisation of the erbium-doped PCF. Spectral absorption and emission coefficients can be determined through the measurement of the gain in the PCF as a function of pump power attenuation for several fibre lengths by means of a linear fitting. These coefficients are proportional to the erbium concentration and to the corresponding absorption or emission cross section. So if the concentration is known the erbium cross sections can be immediately determined. The model was successfully checked by means of two different home-made erbium doped PCFs. Once the fibres were characterised the values of the spectral absorption and emission coefficients were used to simulate the behaviour of a back propagating ring laser made of each fibre. Passive losses of the components in the cavity were previously calibrated. A good agreement was found between simulated and experimental values of efficiency, pump power threshold and output laser power for a wide set of experimental situations (several values of the input pump power, output coupling factor, laser wavelength and fibre length).

  17. Silicon-erbium ytterbium silicate nanowire waveguides with optimized optical gain

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Xia; Zheng, Wei-Hao; Zhang, Qing-Lin; Zhu, Xiao-Li; Zhou, Hong; Zhuang, Xiu-Juan; Pan, An-Lian; Duan, Xiang-Feng

    2017-02-01

    Single-crystal erbium silicate nanowires have attracted considerable attention because of their high optical gain. In this work, we report the controlled synthesis of silicon-erbium ytterbium silicate core-shell nanowires and fine-tuning the erbium mole fraction in the shell from x = 0:3 to x = 1:0, which corresponds to changing the erbium concentration from 4:8 × 1021 to 1:6 × 1022 cm-3. By controlling and properly optimizing the composition of erbium and ytterbium in the nanowires, we can effectively suppress upconversion photoluminescence while simultaneously enhancing near-infrared emission. The composition-optimized nanowires have very long photoluminescence lifetimes and large emission cross-sections, which contribute to the high optical gain that we observed. We suspended these concentration-optimized nanowires in the air to measure and analyze their propagation loss and optical gain in the near-infrared communication band. Through systematic measurements using wires with different core sizes, we obtained a maximum net gain of 20±8 dB·mm-1, which occurs at a wavelength of 1534 nm, for a nanowire with a diameter of 600 nm and a silicon core diameter of 300 nm.

  18. Differentiating the role of lithium and oxygen in retaining deuterium on lithiated plasma-facing components

    NASA Astrophysics Data System (ADS)

    Taylor, Chase

    2013-10-01

    Lithium wall conditioning has been implemented in nearly a dozen fusion devices, resulting in significantly improved plasma performance. Improvements are manifest as a reduction and eventual elimination of edge localized modes, reduced edge neutral density, reduced deuterium recycling, and some reduction in impurities. Initially, researchers assumed that lithium, via a direct lithium-deuterium bond, was directly responsible for these improvements. Our experiments and atomistic simulations have revealed that lithium coatings play a much more indirect role in improving plasma performance. The presence of oxygen in tokamaks is ubiquitously viewed as unfavorable. However, recent results show that lithium reduces oxygen impurities and surprisingly uses the oxygen to retain deuterium. Experiments using X-ray photoelectron spectroscopy identify that oxygen immediately begins to accumulate on lithium conditioned surfaces. Tight-binding density functional theory simulations tested various carbon matrices with and without lithium, oxygen, and hydrogen, and identified that oxygen plays the key role in retaining deuterium. In fact, a simulated PFC with 20% oxygen in carbon retains more deuterium than does 20% lithium in carbon. Recent experiments implanted oxygen in graphite to match simulations; however, we were unable to achieve the simulated results because all implanted oxygen was released upon deuterium bombardment. We therefore conclude that while oxygen retains deuterium, lithium plays an indispensible role in this process. Lithium attracts and retains oxygen, and then oxygen binds and retains deuterium. Work supported by USDOE Contracts DE-FG02-08ER54990 and DOE ID Field Office contract DE-AC07-05ID14517.

  19. APPARATUS FOR THE PRODUCTION OF LITHIUM METAL

    DOEpatents

    Baker, P.S.; Duncan, F.R.; Greene, H.B.

    1961-08-22

    Methods and apparatus for the production of high-purity lithium from lithium halides are described. The apparatus is provided for continuously contacting a molten lithium halide with molten barium, thereby forming lithium metal and a barium halide, establishing separate layers of these reaction products and unreacted barium and lithium halide, and continuously withdrawing lithium and barium halide from the reaction zone. (AEC)

  20. About Implantable Contraception

    MedlinePlus

    ... TV, Video Games, and the Internet About Implantable Contraception KidsHealth > For Parents > About Implantable Contraception Print A ... How Much Does It Cost? What Is Implantable Contraception? Implantable contraception (often called the birth control implant) ...

  1. Lithium Sulfuryl Chloride Battery.

    DTIC Science & Technology

    Primary batteries , Electrochemistry, Ionic current, Electrolytes, Cathodes(Electrolytic cell), Anodes(Electrolytic cell), Thionyl chloride ...Phosphorus compounds, Electrical conductivity, Calibration, Solutions(Mixtures), Electrical resistance, Performance tests, Solvents, Lithium compounds

  2. Lithium Mining, Nevada

    NASA Image and Video Library

    2014-08-05

    This image from NASA Terra spacecraft shows the once-abandoned mining town of Silver Peak, Nevada, which began to thrive again when Foote Mineral Company began extracting lithium from brine below the floor of Clayton Valley in 1966.

  3. Lithium drifted germanium system

    NASA Technical Reports Server (NTRS)

    Fjarlie, E. J.

    1969-01-01

    General characteristics of the lithium-drifted germanium photodiode-Dewar-preamplifier system and particular operating instructions for the device are given. Information is included on solving operational problems.

  4. Lithium and Autophagy

    PubMed Central

    2014-01-01

    Lithium, a drug used to treat bipolar disorders, has a variety of neuroprotective mechanisms, including autophagy regulation, in various neuropsychiatric conditions. In neurodegenerative diseases, lithium enhances degradation of aggregate-prone proteins, including mutated huntingtin, phosphorylated tau, and α-synuclein, and causes damaged mitochondria to degrade, while in a mouse model of cerebral ischemia and Alzheimer’s disease autophagy downregulation by lithium is observed. The signaling pathway of lithium as an autophagy enhancer might be associated with the mammalian target of rapamycin (mTOR)-independent pathway, which is involved in myo-inositol-1,4,5-trisphosphate (IP3) in Huntington’s disease and Parkinson’s disease. However, the mTOR-dependent pathway might be involved in inhibiting glycogen synthase kinase-3β (GSK3β) in other diseases. Lithium’s autophagy-enhancing property may contribute to the therapeutic benefit of patients with neuropsychiatric disorders. PMID:24738557

  5. Solid-state lithium battery

    DOEpatents

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  6. Lithium battery management system

    DOEpatents

    Dougherty, Thomas J [Waukesha, WI

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  7. Electroluminescence efficiencies of erbium in silicon-based hosts

    SciTech Connect

    Cueff, Sébastien E-mail: christophe.labbe@ensicaen.fr; Manel Ramírez, Joan; Berencén, Yonder; Garrido, Blas; Kurvits, Jonathan A.; Zia, Rashid; Rizk, Richard; Labbé, Christophe E-mail: christophe.labbe@ensicaen.fr

    2013-11-04

    We report on room-temperature 1.5 μm electroluminescence from trivalent erbium (Er{sup 3+}) ions embedded in three different CMOS-compatible silicon-based hosts: SiO{sub 2}, Si{sub 3}N{sub 4}, and SiN{sub x}. We show that although the insertion of either nitrogen or excess silicon helps enhance electrical conduction and reduce the onset voltage for electroluminescence, it drastically decreases the external quantum efficiency of Er{sup 3+} ions from 2% in SiO{sub 2} to 0.001% and 0.0004% in SiN{sub x} and Si{sub 3}N{sub 4}, respectively. Furthermore, we present strong evidence that hot carrier injection is significantly more efficient than defect-assisted conduction for the electrical excitation of Er{sup 3+} ions. These results suggest strategies to optimize the engineering of on-chip electrically excited silicon-based nanophotonic light sources.

  8. Assignments of the Raman modes of monoclinic erbium oxide

    SciTech Connect

    Yan, D.; Wu, P. Zhang, S. P.; Liang, L.; Yang, F.; Pei, Y. L.; Chen, S.

    2013-11-21

    As a heavy rare earth oxide, erbium oxide (Er{sub 2}O{sub 3}) has many attractive properties. Monoclinic Er{sub 2}O{sub 3} has useful properties not found in stable cubic Er{sub 2}O{sub 3}, such as unique optical properties and high radiation damage tolerance. In this study, cubic Er{sub 2}O{sub 3} coating and Er{sub 2}O{sub 3} coating with mixed phases were prepared. The Raman scattering spectra of these coatings were investigated by using a confocal micro-Raman spectrometer equipped with 325, 473, 514, 532, 633, and 784 nm lasers. A total of 17 first-order Raman modes of monoclinic Er{sub 2}O{sub 3} were identified and assigned. The modes at 83, 112, 152, 170, 278, 290, 409, 446, 478, 521, 603, and 622 cm{sup −1} are of A{sub g} symmetry, whereas modes at 71, 98, 333, 409, 446, and 468 cm{sup −1} are of B{sub g} symmetry. This research provides basic data necessary for the characterization of monoclinic Er{sub 2}O{sub 3} by Raman spectroscopy.

  9. Refractive index of erbium doped GaN thin films

    SciTech Connect

    Alajlouni, S.; Sun, Z. Y.; Li, J.; Lin, J. Y.; Jiang, H. X.; Zavada, J. M.

    2014-08-25

    GaN is an excellent host for erbium (Er) to provide optical emission in the technologically important as well as eye-safe 1540 nm wavelength window. Er doped GaN (GaN:Er) epilayers were synthesized on c-plane sapphire substrates using metal organic chemical vapor deposition. By employing a pulsed growth scheme, the crystalline quality of GaN:Er epilayers was significantly improved over those obtained by conventional growth method of continuous flow of reaction precursors. X-ray diffraction rocking curve linewidths of less than 300 arc sec were achieved for the GaN (0002) diffraction peak, which is comparable to the typical results of undoped high quality GaN epilayers and represents a major improvement over previously reported results for GaN:Er. Spectroscopic ellipsometry was used to determine the refractive index of the GaN:Er epilayers in the 1540 nm wavelength window and a linear dependence on Er concentration was found. The observed refractive index increase with Er incorporation and the improved crystalline quality of the GaN:Er epilayers indicate that low loss GaN:Er optical waveguiding structures are feasible.

  10. Ablation characteristics of quantum square pulse mode dental erbium laser

    NASA Astrophysics Data System (ADS)

    Lukač, Nejc; Suhovršnik, Tomaž; Lukač, Matjaž; Jezeršek, Matija

    2016-01-01

    Erbium lasers are by now an accepted tool for performing ablative medical procedures, especially when minimal invasiveness is desired. Ideally, a minimally invasive laser cutting procedure should be fast and precise, and with minimal pain and thermal side effects. All these characteristics are significantly influenced by laser pulse duration, albeit not in the same manner. For example, high cutting efficacy and low heat deposition are characteristics of short pulses, while vibrations and ejected debris screening are less pronounced at longer pulse durations. We report on a study of ablation characteristics on dental enamel and cementum, of a chopped-pulse Er:YAG [quantum square pulse (QSP)] mode, which was designed to reduce debris screening during an ablation process. It is shown that in comparison to other studied standard Er:YAG and Er,Cr:YSGG laser pulse duration modes, the QSP mode exhibits the highest ablation drilling efficacy with lowest heat deposition and reduced vibrations, demonstrating that debris screening has a considerable influence on the ablation process. By measuring single-pulse ablation depths, we also show that tissue desiccation during the consecutive delivery of laser pulses leads to a significant reduction of the intrinsic ablation efficacy that cannot be fully restored under clinical settings by rehydrating the tooth using an external water spray.

  11. Erbium-doped photonic crystal fiber chaotic laser

    NASA Astrophysics Data System (ADS)

    Martín, Juan C.; Used, Javier; Sánchez-Martín, José A.; Berdejo, Víctor; Vallés, Juan A.; Álvarez, José M.; Rebolledo, Miguel A.

    2011-09-01

    An erbium-doped photonic crystal fiber laser has been designed, constructed and characterized in order to examine the feasibility of this kind of devices for secure communications applications based on two identical chaotic lasers. Inclusion of a tailored photonic crystal fiber as active medium improves considerably the security of the device because it allows customization of the mode transversal profile, very influential on the laser dynamics and virtually impossible to be cloned by undesired listeners. The laser design has been facilitated by the combination of characterization procedures and models developed by us, which allow prediction of the most suitable laser features (losses, length of active fiber, etc.) to a given purpose (in our case, a laser that emits chaotically for a wide assortment of pump modulation conditions). The chaotic signals obtained have been characterized by means of topological analysis techniques. The underlying chaotic attractors found present topological structures belonging to classes of which very scarce experimental results have been reported. This fact is interesting from the point of view of the study of nonlinear systems and, besides, it is promising for secure communications: the stranger the signals, the more difficult for an eavesdropper to synthesize another system with similar dynamics.

  12. Advanced experiments with an erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Marques, Paulo V. S.; Marques, Manuel B.; Rosa, Carla C.

    2014-07-01

    This communication describes an optical hands-on fiber laser experiment aimed at advanced college courses. Optical amplifiers and laser sources represent very important optical devices in numerous applications ranging from telecommunications to medicine. The study of advanced photonics experiments is particularly relevant at undergraduate and master level. This paper discusses the implementation of an optical fiber laser made with a cavity built with two tunable Bragg gratings. This scheme allows the students to understand the laser working principles as a function of the laser cavity set-up. One or both of the gratings can be finely tuned in wavelength through applied stress; therefore, the degree of spectral mismatch of the two gratings can be adjusted, effectively changing the cavity feedback. The impact of the cavity conditions on the laser threshold, spectrum and efficiency is analyzed. This experiment assumes that in a previous practice, the students should had already characterized the erbium doped fiber in terms of absorption and fluorescent spectra, and the spectral gain as a function of pump power.

  13. Cavitation bubbles induced by Erbium lasers: implications for dentistry

    NASA Astrophysics Data System (ADS)

    Verleng, Marja; Verdaasdonk, Rudolf; van der Veen, Albert; Lemberg, Vladimir; Boutoussov, Dmitri

    2014-02-01

    With new fiber systems available for 3 μm, Erbium lasers become more interesting for precise tissue ablation in a water environment enabling new application in e.g. dentistry. The dynamics of explosive bubble formation was investigated at 2.78 μm (Er,Cr;YSGG) and 2.94 μm (Er:YAG), in relation to energy (10-50 mJ), pulse length (20-150 μs) and fiber tip shape (flat or taper). The dynamics of exploding and imploding vapor bubbles were captured with high speed imaging (10 - 300 μs range). Increasing the pulse length and energy, the vapor bubble became more elongated with an opaque surface for flat tip fibers. Tapered fibers produced spherical vapor bubbles with an optically transparent surface expected to be more forceful for creating mechanical effects in both hard and soft tissues. There was no significant difference between bubbles formed at 2.78 μm (Er,Cr;YSGG) and 2.94 μm (Er:YAG).

  14. The study on the effect of erbium on diamond-like carbon deposited by pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Foong, Y. M.; Hsieh, J.; Li, X.; Chua, D. H. C.

    2009-09-01

    Diamond-like carbon (DLC) films doped with a small fraction of erbium (0.5-2.0 at. %, at 0.5 at. % interval) were prepared by using a 248 nm KrF pulsed laser deposition technique. The effects of erbium on the surface morphology, microstructure, chemical binding states, tribological property, and the adhesion strength of DLC films were investigated. Atomic force microscopy showed that the surface roughness of the films increased with the increasing of erbium fraction, but generally the nanocomposite films were smooth with rms below 1 nm. Raman analysis showed broad peaks centered at 1550 cm-1 on all the samples. The deconvoluted Raman spectra on DLC doped with different fractions of erbium showed that the ID/IG ratio increased with increasing erbium content, and the comparative percent of sp3 is between 50% and 58% for erbium fraction between 0.5 and 2.0 at. %. High resolution x-ray photoelectron spectroscopy confirmed that the C 1s peaks had slightly shifted away from 285.2 (diamond) to 284.5 eV (graphite). The deconvolution of the spectra further confirmed the influence of erbium to the sp3 contents and revealed the presence of SiC with the increasing of Er fraction. Microscratch tester results showed that the adhesion strength (critical load) of the films improved with the presence of SiC bonding at the interface. This hinted that the presence of the heavier erbium may force the impinging carbon ions to react more with the interface to form silicon carbide bonds, thus enhancing the adhesion strength. Although the presence of erbium increased the surface roughness of the films, the coefficients of friction of the erbium doped DLC films were still closely resembled to pure DLC, i.e., 0.11-0.12 compared to 0.10 for pure DLC.

  15. Lasers in minimally invasive periodontal and peri-implant therapy.

    PubMed

    Mizutani, Koji; Aoki, Akira; Coluzzi, Donald; Yukna, Raymond; Wang, Chen-Ying; Pavlic, Verica; Izumi, Yuichi

    2016-06-01

    Laser therapy has the potential to be an effective, minimally invasive procedure in periodontal therapy. The aim of the present review was to survey the relevant literature on the clinical application of lasers as a minimally invasive treatment for periodontitis and peri-implant disease. Currently, there are a large number of published clinical studies and case reports that evaluate the adjunctive use of diode, carbon dioxide, neodymium-doped yttrium aluminium garnet (Nd:YAG), erbium-doped yttrium aluminium garnet (Er:YAG) and erbium, chromium-doped: yttrium, scandium, gallium, garnet (Er,Cr:YSGG) lasers or antimicrobial photodynamic therapy for nonsurgical and minimally invasive surgical treatment of periodontal pockets. These procedures are expected not only to control inflammation but also to provide biostimulation effects with photonic energy. Recent meta-analyses did not show statistically significant differences in pocket reduction and clinical attachment gain compared with mechanical debridement alone, although limited positive effects of adjunctive laser therapy were reported. At present, systematic literature approaches suggest that more evidence-based studies need to be performed to support the integration of various laser therapies into the treatment of periodontal and peri-implant diseases. The disparity between previous statistical analyses and individual successful clinical outcomes of laser applications might reveal the necessity of developing optimal laser-treatment modalities of different wavelengths and better-defined indications for each protocol. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Low-temperature growth of silicon epitaxial layers codoped with erbium and oxygen atoms

    SciTech Connect

    Shengurov, D. V.; Chalkov, V. Yu.; Denisov, S. A.; Shengurov, V. G.; Stepikhova, M. V.; Drozdov, M. N.; Krasilnik, Z. F.

    2013-03-15

    The fabrication technology and properties of light-emitting Si structures codoped with erbium and oxygen are reported. The layers are deposited onto (100) Si by molecular beam epitaxy (MBE) using an Er-doped silicon sublimation source. The partial pressure of the oxygen-containing gases in the growth chamber of the MBE facility before layer growth is lower than 5 Multiplication-Sign 10{sup -10} Torr. The oxygen and erbium concentrations in the Si layers grown at 450 Degree-Sign C is {approx}1 Multiplication-Sign 10{sup 19} and 10{sup 18} cm{sup -3}, respectively. The silicon epitaxial layers codoped with erbium and oxygen have high crystal quality and yield effective photoluminescence and electroluminescence signals with the dominant optically active Er-1 center forming upon postgrowth annealing at a temperature of 800 Degree-Sign C.

  17. Synthesis and characterization of discrete luminescent erbium-doped silicon nanocrystals

    SciTech Connect

    John, J.S.; Coffer, J.L.; Chen, Y.; Pinizzotto, R.F.

    1999-03-10

    The preparation of discrete erbium-doped silicon nanoparticles prepared by the co-pyrolysis of disilane and the volatile complex Er(tmhd){sub 3} (tmhd = 2,2,6,6-tetramethyl-3,5-heptanedionato) is described. The nanoparticles were characterized by transmission electron microscopy, selected area electron diffraction, X-ray dispersive spectroscopy, photoluminescence, and UV-visible absorption spectroscopies. Erbium-doped silicon nanoparticles possess a distinctive dark contrast in the transmission electron microscope, and the presence of erbium is confirmed by X-ray energy dispersive spectroscopy. The mean diameter of the nanoparticle aggregates can be shifted by altering the length of the pyrolysis oven employed. Characteristic Er{sup 3+} near-infrared photoluminescence at 1,540 nm is detected in these doped nanoparticles; preliminary excitation and power dependence measurements of this luminescence suggest a carrier-mediated emission mechanism.

  18. In vitro application of optical transmission systems in erbium:YAG laser temporomandibular joint surgery

    NASA Astrophysics Data System (ADS)

    Nuebler-Moritz, Michael; Hering, Peter; Niederdellmann, Herbert; Deuerling, Christian; Dammer, Ralf

    1995-05-01

    The experimental setup of this study is focused on the changes in temporomandibular joint tissue after irradiation with an Erbium:YAG laser. Initially, the free-running beam from the laser was focused onto freshly excised porcine tissue samples, indicating an optimum average energy density and pulse duration for the purpose of temporomandibular joint surgery of about 15 - 60 J/cm2 and 120 microsecond(s) - 240 microsecond(s) , respectively. Consecutively, an attempt was made to couple the Erbium:YAG laser beam on the one hand to optical fibers made of infrared-transmitting glasses (fluoride- and chalcogenide-based), on the other hand to a recently developed sapphire and liquid core fiber, respectively. From the preliminary observations of this investigation it appears that both the liquid core and the sapphire fiber are the most promising candidates for delivery of Erbium-YAG laser radiation in arthroscopic surgery of the craniomandibular articulation.

  19. Enhancement of photoluminescence intensity of erbium doped silica containing Ge nanocrystals: distance dependent interactions

    NASA Astrophysics Data System (ADS)

    Manna, S.; Aluguri, R.; Bar, R.; Das, S.; Prtljaga, N.; Pavesi, L.; Ray, S. K.

    2015-01-01

    Photo-physical processes in Er-doped silica glass matrix containing Ge nanocrystals prepared by the sol-gel method are presented in this article. Strong photoluminescence at 1.54 μm, important for fiber optics telecommunication systems, is observed from the different sol-gel derived glasses at room temperature. We demonstrate that Ge nanocrystals act as strong sensitizers for Er3+ ions emission and the effective Er excitation cross section increases by almost four orders of magnitude with respect to the one without Ge nanocrystals. Rate equations are considered to demonstrate the sensitization of erbium luminescence by Ge nanocrystals. Analyzing the erbium effective excitation cross section, extracted from the flux dependent rise and decay times, a Dexter type of short range energy transfer from a Ge nanocrystal to erbium ion is established.

  20. Hydrogen Outgassing from Lithium Hydride

    SciTech Connect

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  1. Atmospheric corrosion of lithium electrodes

    SciTech Connect

    Johnson, C.J.

    1981-10-01

    Atmospheric corrosion of lithium during lithium-cell assembly and the dry storage of cells prior to electrolyte fill has been found to initiate lithium corrosion pits and to form corrosion products. Scanning Electron Microscopy (SEM) was used to investigate lithium pitting and the white floccullent corrosion products. Electron Spectroscopy for Chemical Analysis (ESCA) and Auger spectroscopy in combination with X-ray diffraction were used to characterize lithium surfaces. Lithium surfaces with corrosion products were found to be high in carbonate content indicating the presence of lithium carbonate. Lithium electrodes dry stored in unfilled batteries were found to contain high concentration of lithium flouride a possible corrosion product from gaseous materials from the carbon monofluoride cathode. Future investigations of the corrosion phenomena will emphasize the effect of the corrosion products on the electrolyte and ultimate battery performance. The need to protect lithium electrodes from atmospheric exposure is commonly recognized to minimize corrosion induced by reaction with water, oxygen, carbon dioxide or nitrogen (1). Manufacturing facilities customarily limit the relative humidity to less than two percent. Electrodes that have been manufactured for use in lithium cells are typically stored in dry-argon containers. In spite of these precautions, lithium has been found to corrode over a long time period due to residual gases or slow diffusion of the same into storage containers. The purpose of this investigation was to determine the nature of the lithium corrosion.

  2. Thermal properties of holmium-implanted gold films for a neutrino mass experiment with cryogenic microcalorimeters

    SciTech Connect

    Prasai, K.; Yanardag, S. Basak; Galeazzi, M.; Uprety, Y.; Alves, E.; Rocha, J.; Bagliani, D.; Biasotti, M.; Gatti, F.; Gomes, M. Ribeiro

    2013-08-15

    In a microcalorimetric neutrino mass experiment using the radioactive decay of {sup 163}Ho, the radioactive material must be fully embedded in the microcalorimeter absorber. One option that is being investigated is to implant the radioactive isotope into a gold absorber, as gold is successfully used in other applications. However, knowing the thermal properties at the working temperature of microcalorimeters is critical for choosing the absorber material and for optimizing the detector performance. In particular, it is paramount to understand if implanting the radioactive material in gold changes its heat capacity. We used a bolometric technique to measure the heat capacity of gold films, implanted with various concentrations of holmium and erbium (a byproduct of the {sup 163}Ho fabrication), in the temperature range 70 mK–300 mK. Our results show that the specific heat capacity of the gold films is not affected by the implant, making this a viable option for a future microcalorimeter holmium experiment.

  3. Plasma source ion implantation to increase the adhesion of subsequently deposited coatings

    SciTech Connect

    Wood, B.P.; Walter, K.C.; Taylor, T.N.

    1997-10-01

    In Plasma Source Ion Implantation (PSII) an object is placed in a plasma and pulse biased to a high negative potential, so as to implant the plasma ions into the surface of the object. Although ion implantation, by itself, can yield desirable surface modification, it is even more useful as a method of creating a functionally graded interface between the substrate material and a subsequently deposited coating, which may be produced by altering operating conditions on the same plasma source. Although this interfacial region is very thin - as little as 20 nm - it can greatly increase the adhesion of the deposited coatings. We present here a description of this process, and compare a simulation of the graded interface with an XPS depth profile of the interfacial region for erbium metal implanted into steel.

  4. Cochlear implant

    MedlinePlus

    ... bilateral cochlear implantation: a review. Curr Opin Otolaryngol Head Neck Surg . 2007;15(5):315-318. PMID: 17823546. ... BH, Lund V, et al, eds. Cummings Otolaryngology: Head & Neck Surgery . 6th ed. Philadelphia, PA: Elsevier Saunders; 2015: ...

  5. Histrelin Implant

    MedlinePlus

    ... implant (Supprelin LA) is used to treat central precocious puberty (CPP; a condition causing children to enter puberty too soon, resulting in faster than normal bone growth and development of sexual characteristics) in girls ...

  6. Breast Implants

    MedlinePlus

    ... in the United States: saline-filled and silicone gel-filled. Both types have a silicone outer shell. ... them. Provide information on saline-filled and silicone gel-filled breast implants, including data supporting a reasonable ...

  7. US Navy lithium cell applications

    NASA Technical Reports Server (NTRS)

    Bowers, F. M.

    1978-01-01

    Applications of lithium systems that are already in the fleet are discussed. The approach that the Navy is taking in the control of the introduction of lithium batteries into the fleet is also discussed.

  8. Lithium: for harnessing renewable energy

    USGS Publications Warehouse

    Bradley, Dwight; Jaskula, Brian W.

    2014-01-01

    Lithium, which has the chemical symbol Li and an atomic number of 3, is the first metal in the periodic table. Lithium has many uses, the most prominent being in batteries for cell phones, laptops, and electric and hybrid vehicles. Worldwide sources of lithium are broken down by ore-deposit type as follows: closed-basin brines, 58%; pegmatites and related granites, 26%; lithium-enriched clays, 7%; oilfield brines, 3%; geothermal brines, 3%; and lithium-enriched zeolites, 3% (2013 statistics). There are over 39 million tons of lithium resources worldwide. Of this resource, the USGS estimates there to be approximately 13 million tons of current economically recoverable lithium reserves. To help predict where future lithium supplies might be located, USGS scientists study how and where identified resources are concentrated in the Earth’s crust, and they use that knowledge to assess the likelihood that undiscovered resources also exist.

  9. Rechargeable ambient temperature lithium cells

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.

    1980-01-01

    The cycling performance of a secondary lithium cell with a 2-methyl THF lithium hectofluorarsenate electrolyte is discussed. Stripping efficiency, dendritization, passivation on standing, and discharge efficiency are considered.

  10. Infrared luminescence from spark-processed silicon and erbium-doped spark-processed silicon

    NASA Astrophysics Data System (ADS)

    Kim, Kwanghoon

    Spark-processed silicon has substantial potential as an optical material. In the past 15 years, our group has investigated a multitude of properties of this unique material, concentrating mostly on the visible and near UV spectral region. The present study expands our endeavors to infrared photoluminescence (PL) of undoped spark-processed silicon. A broad infrared photoluminescence peak at around 945 nm under Ar ion laser excitation was observed at room temperature when investigating a spark-processed layer on a silicon wafer. This light emission is interpreted to be the result of energy transfers between certain energy levels involving the spark-processed silicon matrix. The infrared PL intensity of spark-processed silicon was found to be proportional to the excitation energy. However, telecommunication requires presently a light emission near 1.54 mum (because fiber-optics "conductors" have a minimum in absorption at this wavelength). This cannot be achieved with pure spark-processed silicon. Therefore spark-processed silicon needs to be doped with a rare-earth element such as erbium to shift the emission to longer wavelengths. It is known that erbium has a light emission from intrashell energy transition, that is, from 4I13/2 →4I15/2. Erbium was deposited on a silicon wafer followed by spark-processing, which enables diffusion of some erbium into the SiOx matrix, thus achieving opto-electronically active spark-processed silicon. Rapid thermal annealing enhances the 1.54 mum wavelength intensity from erbium-doped spark-processed silicon. The processing conditions that result in the most efficient photoluminescence have been established and will be presented in this dissertation. In contrast to erbium-doped crystalline silicon, whose light emission is highly affected by temperature (103 times reduction in intensity when heating from 12 K to 150 K), the intensity of erbium-doped spark-processed silicon decreases by only a factor of 4 when heated from 15 K to room

  11. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    PubMed

    Maeda, Y

    1994-01-10

    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection.

  12. Manufacture and properties of erythromycin beads containing neutron-activated erbium-171

    SciTech Connect

    Parr, A.F.; Digenis, G.A.; Sandefer, E.P.; Ghebre-Sellassie, I.; Iyer, U.; Nesbitt, R.U.; Scheinthal, B.M. )

    1990-03-01

    To evaluate the effects of a neutron activation radiolabeling technique on an enteric-coated multiparticulate formulation of erythromycin, test quantities were produced under industrial pilot scale conditions. The pellets contained the stable isotope erbium oxide (Er-170), which was later converted by neutron activation into the short-lived gamma ray-emitting radionuclide, erbium-171. In vitro studies indicated that the dissolution profile, acid resistance, and enteric-coated surface of the pellets were minimally affected by the irradiation procedure. Antimicrobial potency was also unaffected, as determined by microbiological assay. Neutron activation thus appears to simplify the radiolabeling of complex pharmaceutical dosage forms for in vivo study by external gamma scintigraphy.

  13. Pump absorption and temperature distribution in erbium-doped double-clad fluoride-glass fibers.

    PubMed

    Gorjan, Martin; Marincek, Marko; Copic, Martin

    2009-10-26

    We investigate diode pump absorption and temperature distribution in three erbium-doped double-clad fluoride fibers. Absorption is measured via fluorescence intensity and temperature distribution is measured with thermal imaging. Ray-tracing calculations of absorption and heat-equation modeling of temperature distribution are also conducted. We found excellent agreement between measurements and calculations for all fibers. Results indicate that erbium-doped fluoride fiber lasers have already reached maximum output powers allowed under natural convection cooling, with fiber end being the most critical. We propose cooling and fiber design optimizations that may allow an order-of-magnitude further power-scaling.

  14. Widely tunable erbium-doped fiber laser based on multimode interference effect.

    PubMed

    Castillo-Guzman, A; Antonio-Lopez, J E; Selvas-Aguilar, R; May-Arrioja, D A; Estudillo-Ayala, J; LiKamWa, P

    2010-01-18

    A widely tunable erbium-doped all-fiber laser has been demonstrated. The tunable mechanism is based on a novel tunable filter using multimode interference effects (MMI). The tunable MMI filter was applied to fabricate a tunable erbium-doped fiber laser via a standard ring cavity. A tuning range of 60 nm was obtained, ranging from 1549 nm to 1609 nm, with a signal to noise ratio of 40 dB. The tunable MMI filter mechanism is very simple and inexpensive, but also quite efficient as a wavelength tunable filter.

  15. Ablation of brain by erbium laser: study of dynamic behavior and tissue damage

    NASA Astrophysics Data System (ADS)

    Cubeddu, Rinaldo; Sozzi, C.; Taroni, Paola; Valentini, Gianluca; Bottiroli, Giovanni F.; Croce, Anna C.

    1994-02-01

    In this work two aspects of the ablation of brain by Erbium laser have been mainly addressed: the time evolution of the phenomenon and the damages, both thermal and mechanical, produced in the tissues. The time resolved images acquired during the laser interaction revealed that deep lacerations develop in the tissue due to a mechanical stress. The damages have been evaluated by studying the changes in the autofluorescence emission properties and the reduction in enzymatic activities (NADH Oxidase and ATPase). The results obtained in this study indicate that the thermal alterations resulting from the exposure to Erbium laser are limited, whereas the mechanical damages can be very pronounced.

  16. Multi-wavelength erbium-doped fiber laser based on random distributed feedback

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyang; Dong, Xinyong; Jiang, Meng; Yu, Xia; Shum, Ping

    2016-09-01

    We experimentally demonstrated a multi-wavelength erbium-doped fiber laser based on random distributed feedback via a 20-km-long single-mode fiber together with a Sagnac loop mirror. The number of channels can be modulated from 2 to 8 at room temperature when the pump power is changed from 30 to 180 mW, indicating that wavelength competition caused by homogenous gain broadening of erbium-doped fiber is significantly suppressed. Other advantages of the laser include low cost, low-threshold pump power and simple fabrication.

  17. Erbium oxide thin films on Si(100) obtained by laser ablation and electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Queralt, X.; Ferrater, C.; Sánchez, F.; Aguiar, R.; Palau, J.; Varela, M.

    1995-02-01

    Erbium oxide thin films have been obtained by laser ablation and electron beam evaporation techniques on Si(100) substrates. The samples were grown under different conditions of oxygen atmosphere and substrate temperature without any oxidation process after deposition. The crystal structure has been studied by X-ray diffraction. Films obtained by laser ablation are highly textured in the [ hhh] direction, although this depends on the conditions of oxygen pressure and substrate temperature. In order to study the depth composition profile of the thin films and the interdiffusion of erbium metal and oxygen towards the silicon substrates, X-ray photoelectron spectroscopy analyses have been carried out.

  18. Cochlear implants.

    PubMed

    Connell, Sarah S; Balkany, Thomas J

    2006-08-01

    Cochlear implants are cost-effective auditory prostheses that safely provide a high-quality sensation of hearing to adults who are severely or profoundly deaf. In the past 5 years, progress has been made in hardware and software design, candidate selection, surgical techniques, device programming, education and rehabilitation,and, most importantly, outcomes. Cochlear implantation in the elderly is well tolerated and provides marked improvement in auditory performance and psychosocial functioning.

  19. Lithium Inorganic Electrolyte Battery Development.

    DTIC Science & Technology

    1971-01-01

    rjp 3.2 PRISMATIC CELLS This subsection presents the results of the investigations conducted on large prismatic lithium thionyl chloride cells, both...91 5.0 PASSIVATION 5.1 INTRODUCTION Passivation in Li/SOC12 cells consists of the surface reaction of lithium directly with thionyl chloride to...produce a film of lithium chloride (LiCI). This film prevents the complete and rapid reaction of lithium and thionyl chloride at moderate temperatures. On

  20. Contraceptive implants.

    PubMed

    McDonald-Mosley, Raegan; Burke, Anne E

    2010-03-01

    Implantable contraception has been extensively used worldwide. Implants are one of the most effective and reversible methods of contraception available. These devices may be particularly appropriate for certain populations of women, including women who cannot use estrogen-containing contraception. Implants are safe for use by women with many chronic medical problems. The newest implant, Implanon (Organon International, Oss, The Netherlands), is the only device currently available in the United States and was approved in 2006. It is registered for 3 years of pregnancy prevention. Contraceptive implants have failure rates similar to tubal ligation, and yet they are readily reversible with a return to fertility within days of removal. Moreover, these contraceptive devices can be safely placed in the immediate postpartum period, ensuring good contraceptive coverage for women who may be at risk for an unintended pregnancy. Irregular bleeding is a common side effect for all progestin-only contraceptive implants. Preinsertion counseling should address possible side effects, and treatment may be offered to women who experience prolonged or frequent bleeding.

  1. Reduced Dimensionality Lithium Niobate Microsystems

    SciTech Connect

    Eichenfield, Matt

    2017-01-01

    The following report describes work performed under the LDRD program at Sandia National Laboratories October 2014 and September 2016. The work presented demonstrates the ability of Sandia Labs to develop state-of-the-art photonic devices based on thin film lithium niobate (LiNbO3 ). Section 1 provides an introduction to integrated LiNbO3 devices and motivation for developing thin film nonlinear optical systems. Section 2 describes the design, fabrication, and photonic performance of thin film optical microdisks fabricated from bulk LiNbO3 using a bulk implantation method developed at Sandia. Sections 3 and 4 describe the development of similar thin film LiNbO3 structures fabricated from LiNbO3 on insulator (LNOI) substrates and our demonstration of optical frequency conversion with state-of-the-art efficiency. Finally, Section 5 describes similar microdisk resonators fabricated from LNOI wafers with a buried metal layer, in which we demonstrate electro-optic modulation.

  2. Reversibility of anodic lithium in rechargeable lithium-oxygen batteries.

    PubMed

    Shui, Jiang-Lan; Okasinski, John S; Kenesei, Peter; Dobbs, Howard A; Zhao, Dan; Almer, Jonathan D; Liu, Di-Jia

    2013-01-01

    Non-aqueous lithium-air batteries represent the next-generation energy storage devices with very high theoretical capacity. The benefit of lithium-air batteries is based on the assumption that the anodic lithium is completely reversible during the discharge-charge process. Here we report our investigation on the reversibility of the anodic lithium inside of an operating lithium-air battery using spatially and temporally resolved synchrotron X-ray diffraction and three-dimensional micro-tomography technique. A combined electrochemical process is found, consisting of a partial recovery of lithium metal during the charging cycle and a constant accumulation of lithium hydroxide under both charging and discharging conditions. A lithium hydroxide layer forms on the anode separating the lithium metal from the separator. However, numerous microscopic 'tunnels' are also found within the hydroxide layer that provide a pathway to connect the metallic lithium with the electrolyte, enabling sustained ion-transport and battery operation until the total consumption of lithium.

  3. Lithium Dinitramide as an Additive in Lithium Power Cells

    NASA Technical Reports Server (NTRS)

    Gorkovenko, Alexander A.

    2007-01-01

    Lithium dinitramide, LiN(NO2)2 has shown promise as an additive to nonaqueous electrolytes in rechargeable and non-rechargeable lithium-ion-based electrochemical power cells. Such non-aqueous electrolytes consist of lithium salts dissolved in mixtures of organic ethers, esters, carbonates, or acetals. The benefits of adding lithium dinitramide (which is also a lithium salt) include lower irreversible loss of capacity on the first charge/discharge cycle, higher cycle life, lower self-discharge, greater flexibility in selection of electrolyte solvents, and greater charge capacity. The need for a suitable electrolyte additive arises as follows: The metallic lithium in the anode of a lithium-ion-based power cell is so highly reactive that in addition to the desired main electrochemical reaction, it engages in side reactions that cause formation of resistive films and dendrites, which degrade performance as quantified in terms of charge capacity, cycle life, shelf life, first-cycle irreversible capacity loss, specific power, and specific energy. The incidence of side reactions can be reduced through the formation of a solid-electrolyte interface (SEI) a thin film that prevents direct contact between the lithium anode material and the electrolyte. Ideally, an SEI should chemically protect the anode and the electrolyte from each other while exhibiting high conductivity for lithium ions and little or no conductivity for electrons. A suitable additive can act as an SEI promoter. Heretofore, most SEI promotion was thought to derive from organic molecules in electrolyte solutions. In contrast, lithium dinitramide is inorganic. Dinitramide compounds are known as oxidizers in rocket-fuel chemistry and until now, were not known as SEI promoters in battery chemistry. Although the exact reason for the improvement afforded by the addition of lithium dinitramide is not clear, it has been hypothesized that lithium dinitramide competes with other electrolyte constituents to react with

  4. Laser Treatment of Peri-Implantitis: A Literature Review

    PubMed Central

    Ashnagar, Sajjad; Nowzari, Hessam; Nokhbatolfoghahaei, Hanieh; Yaghoub Zadeh, Behnoush; Chiniforush, Nasim; Choukhachi Zadeh, Nastaran

    2014-01-01

    Peri-implantitis is a state defined as an inflammatory reaction around osseointegrated implants, leading to progressive loss of supporting bone. Various treatment methods are suggested in the treatment of peri-implantitis and clinicians have to choose a method over a large number of treatment protocols. Lasers have shown promising therapeutic effect in treatment of peri-implantitis. However, some controversies have been found in clinical outcomes after using lasers. Therefore, we aimed to review the current literature over the past ten years for the use of lasers in treatment of peri-implantitis, via the Pubmed electronic database of the US National Library of Medicine. Fifteen human studies were reviewed. Er:YAG (Erbium-Doped Yttrium Aluminum Garnet), CO2(Carbon Dioxide Laser) and Diode lasers were used. Despite inconsistencies and disharmonies among studies in terms of study design, positive treatment outcomes were obvious among the majority of them. However, short period of follow-ups and poor control of plaque index, as a critical confounding factor, were the major problems which these studies suffered from. It seems that one session laser therapy is not adequate for achieving optimal clinical outcome. Further studies with longer periods of follow-ups, intense control of plaque index, and various sessions of laser treatments are needed to clearly illustrate the clinical privilege of laser therapy. PMID:25653815

  5. Ion beam nano-engineering of erbium doped silicon for enhanced light emission at 1.54 microns

    NASA Astrophysics Data System (ADS)

    Naczas, Sebastian

    Erbium doped silicon is of great interest as a potential light source in Silicon Photonics research due to its light emission at 1.54 mum, which corresponds to the minimal loss of optical transmission in silica fibers for telecommunications. In this thesis a basic mechanism for excitation and de-excitation of Er in Si is reviewed. Based on such fundamental understanding, an innovative approach is proposed and implemented to improve Er luminescence properties through the formation of metal nanoparticles via impurity gettering in Si nanocavities. The first part of the work demonstrates the use of ion implantation combined with thermal treatments for forming Ag nanoparticles in the vicinity of Er luminescence centers in Si. The utilization of standard semiconductor fabrication equipment and moderate thermal budgets make this approach fully compatible with Si CMOS technologies. The presence of Ag nanoparticles leads to an enhancement in the Er photoluminescence intensity, its excitation cross section and the population of optically active Er, possibly due to the surface plasmon excitation effects related to Ag nanoparticles. The resulting structures were characterized by Hydrogen depth profiling (NRA), Rutherford backscattering spectroscopy (RBS), Photoluminescence (PL), Transmission electron microscopy (TEM). In order to optimize the Er luminescence properties in such a system it is necessary to understand how the sample conditions affect the formation of Ag nanoparticles in Si. Therefore in the second part of this project we investigate the role of surface oxide in point defect generation and recombination, and the consequence on nanocavity formation and defect retention in Si. Investigation of the surface oxide effects on nanocavity formation in hydrogen implanted silicon and the influence of resultant nanocavities on diffusion and gettering of implanted silver atoms. Two sets of Si samples were prepared, depending on whether the oxide layer was etched off before

  6. Novel Thermal Effects at the First Order Magnetic Phase Transition in Erbium, and a Comparison with Dysprosium

    SciTech Connect

    Gschneidner, K.A. Jr.; Pecharsky, V.K.; Fort, D.

    1997-06-01

    In low temperature studies of ultrapure erbium (and dysprosium) we have discovered unusual thermal effects at the first order magnetic transformation of erbium ({congruent} 19K). These include (1)superheating (i.e., {ital the metal is colder after heat has been added to it than before the heat pulse }), (2)supercooling, and (3)the existence of metastable intermediate phases during this phase transformation in erbium (four on heating and two on cooling). In comparison, dysprosium exhibits both superheating and supercooling, but no intermediate metastable phases are observed. Furthermore, none of these effects are observed in less pure metals. {copyright} {ital 1997} {ital The American Physical Society}

  7. All-fiber phase actuator based on an erbium-doped fiber amplifier for coherent beam combining at 1064 nm.

    PubMed

    Tünnermann, Henrik; Neumann, Jörg; Kracht, Dietmar; Wessels, Peter

    2011-02-15

    Active phase control in fiber amplifiers is of considerable interest for low-noise single-frequency amplifiers and for coherent beam combining. We demonstrate phase control at 1064 nm by use of an erbium-doped fiber. We investigated the phase shift by guiding the beam through an erbium-doped fiber amplifier in a Mach-Zehnder configuration and applied the results to stabilize the relative phase of two ytterbium-doped fiber amplifiers. To the best of our knowledge, this is the first demonstration of an all-fiber coherent beam combining at 1064 nm employing an erbium-doped fiber as a phase actuator.

  8. Microwave photonic filter using multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency shift

    SciTech Connect

    Loh, K. K.; Yeo, K. S.; Shee, Y. G.

    2015-04-24

    A microwave photonic filter based on double-Brillouin-frequency spaced multiwavelength Brillouin-erbium fiber laser (BEFL) is experimentally demonstrated. The filter selectivity can be easily adjusted by tuning and apodizing the optical taps generated from the multiwavelength BEFL. Reconfiguration of different frequency responses are demonstrated.

  9. Apicoectomies with the erbium laser: a complementary technique for retrograde endodontic treatment.

    PubMed

    Angiero, Francesca; Benedicenti, Stefano; Signore, Antonio; Parker, Steven; Crippa, Rolando

    2011-12-01

    The purpose of this study was to evaluate the efficacy of erbium lasers for retrograde endodontic treatment, in terms of clinical outcome and therapeutic success. Apicoectomy with retrograde filling is a well-established surgical procedure to treat teeth affected by persistent periapical lesions. The apical root end is generally removed with burs, and the adjacent periapical tissue curetted, or alternatively treated with ultrasound or laser. Between 2000 and 2010, 65 apicoectomies were performed on necrotic teeth that presented apical lesions (29 men, 36 women). The lasers used in the study were the erbium:yttrium-aluminum-garnet (Er:YAG) laser, wavelength 2940 nm, and the erbium,chromium-doped:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser, wavelength 2780 nm. Of the 65 teeth in the study, failure only occurred in 9 CASES, MANIFESTING AFTER DIFFERENT TIMES. THE REMAINING PATIENTS, 86.15%, experienced no complications, and their treatment followed a positive course. Laser-assisted surgery increases the range of therapeutic approaches in the sphere of retrograde endodontic treatment. The results of this study show that the erbium laser, used for apicoectomy, results in a high success rate with considerable benefit in terms of clinical outcome and therapeutic success.

  10. Erbium:YAG laser contouring of the nasal dorsum: a preliminary investigation

    NASA Astrophysics Data System (ADS)

    Truong, Mai T.; Majaron, Boris; Pandoh, Nidhi S.; Wong, Brian J.

    2001-05-01

    In conventional aesthetic rhinoplasty operations, manual or powered rasps are used to reduce the osseo-cartilagenous nasal dorsum. This tactile method requires palpation of the instrument and the dorsum during surgery to estimate the degree of volume reduction, and often requires forceful manipulation of the dorsum which may illicit pain during surgery and contribute to post-operative edema and echymosis. In this preliminary study, we investigated the use of the Erbium:YAG laser ((lambda) equals294 micrometers ) to reduce bone and cartilage using ex-vivo porcine nasal dorsum and human cadaveric tissues. The short pulsed length and high absorption of this laser in biologic tissues results in minimization of thermal injury which are ideal for non- contact optical contouring of osseous and cartilagenous tissues in the face. Two Erbium:YAG lasers were used to ablate fresh porcine nasal bone and compared for their use. One Erbium:YAG laser, the Fidelis Laser, Fontana Medical Lasers, Ljubljana, Slovenija with variable pulse repetition rates (2 to 50 Hz), pulse energy (80 to 1000 mJ), and pulse duration (100, 300, 750 and 1000 microsecond(s) ) was used and compared to the Ultrafine Erbium:YAG laser, Coherent Inc., Santa Clara California, with variable pulse repetition rate (2 to 10 Hz), pulse energy (2-16 J/cm2), and spot diameter (2-6 mm). Only laser parameters approximating the conditions for thermal confinement were evaluated.

  11. Optical Parametric Oscillator on GaSe Crystal Pumped by a 3 Micron Erbium Laser

    DTIC Science & Technology

    2007-11-02

    based on Ho3+ and Er - doped crystals have been developed. Holmium lasers have wavelengths near 2 micron and Erbium lasers near 3 micron. Both...experience in working with GaSe OPO pumped by Q-switched pulses shows that pumping of GaSe by 2 |im laser radiation (a holmium laser) is also possible

  12. Enhanced Erbium-Doped Ceria Nanostructure Coating to Improve Solar Cell Performance.

    PubMed

    Shehata, Nader; Clavel, Michael; Meehan, Kathleen; Samir, Effat; Gaballah, Soha; Salah, Mohammed

    2015-11-12

    This paper discusses the effect of adding reduced erbium-doped ceria nanoparticles (REDC NPs) as a coating on silicon solar cells. Reduced ceria nanoparticles doped with erbium have the advantages of both improving conductivity and optical conversion of solar cells. Oxygen vacancies in ceria nanoparticles reduce Ce(4+) to Ce(3+) which follow the rule of improving conductivity of solar cells through the hopping mechanism. The existence of Ce(3+) helps in the down-conversion from 430 nm excitation to 530 nm emission. The erbium dopant forms energy levels inside the low-phonon ceria host to up-convert the 780 nm excitations into green and red emissions. When coating reduced erbium-doped ceria nanoparticles on the back side of a solar cell, a promising improvement in the solar cell efficiency has been observed from 15% to 16.5% due to the mutual impact of improved electric conductivity and multi-optical conversions. Finally, the impact of the added coater on the electric field distribution inside the solar cell has been studied.

  13. Ultrasonic approach for formation of erbium oxide nanoparticles with variable geometries.

    PubMed

    Radziuk, Darya; Skirtach, André; Gessner, Andre; Kumke, Michael U; Zhang, Wei; Möhwald, Helmuth; Shchukin, Dmitry

    2011-12-06

    Ultrasound (20 kHz, 29 W·cm(-2)) is employed to form three types of erbium oxide nanoparticles in the presence of multiwalled carbon nanotubes as a template material in water. The nanoparticles are (i) erbium carboxioxide nanoparticles deposited on the external walls of multiwalled carbon nanotubes and Er(2)O(3) in the bulk with (ii) hexagonal and (iii) spherical geometries. Each type of ultrasonically formed nanoparticle reveals Er(3+) photoluminescence from crystal lattice. The main advantage of the erbium carboxioxide nanoparticles on the carbon nanotubes is the electromagnetic emission in the visible region, which is new and not examined up to the present date. On the other hand, the photoluminescence of hexagonal erbium oxide nanoparticles is long-lived (μs) and enables the higher energy transition ((4)S(3/2)-(4)I(15/2)), which is not observed for spherical nanoparticles. Our work is unique because it combines for the first time spectroscopy of Er(3+) electronic transitions in the host crystal lattices of nanoparticles with the geometry established by ultrasound in aqueous solution of carbon nanotubes employed as a template material. The work can be of great interest for "green" chemistry synthesis of photoluminescent nanoparticles in water. © 2011 American Chemical Society

  14. Perfluorinated nitrosopyrazolone-based erbium chelates: a new efficient solution processable NIR emitter.

    PubMed

    Beverina, Luca; Crippa, Maurizio; Sassi, Mauro; Monguzzi, Angelo; Meinardi, Francesco; Tubino, Riccardo; Pagani, Giorgio A

    2009-09-14

    We show the design and synthesis of new perfluorinated nitrosopyrazolone-based ligands and the original method employed for their complexation of erbium ions in the presence of the co-ligand perfluorotriphenylphosphine oxide; the resulting chelate is non-hygroscopic, solution processable and possesses a NIR emission with lifetimes as long as 16 micros.

  15. Performance of a High-Concentration Erbium-Doped Fiber Amplifier with 100 nm Amplification Bandwidth

    SciTech Connect

    Hajireza, P.; Shahabuddin, N. S.; Abbasi-Zargaleh, S.; Emami, S. D.; Abdul-Rashid, H. A.; Yusoff, Z.

    2010-07-07

    Increasing demand for higher bandwidth has driven the need for higher Wavelength Division Multiplexing (WDM) channels. One of the requirements to achieve this is a broadband amplifier. This paper reports the performance of a broadband, compact, high-concentration and silica-based erbium-doped fiber amplifier. The amplifier optimized to a 2.15 m long erbium-doped fiber with erbium ion concentration of 2000 ppm. The gain spectrum of the amplifier has a measured amplification bandwidth of 100 nm using a 980 nm laser diode with power of 150 mW. This silica-based EDFA shows lower noise figure, higher gain and wider bandwidth in shorter wavelengths compared to Bismuth-based EDFA with higher erbium ion concentration of 3250 ppm at equivalent EDF length. The silica-based EDF shows peak gain at 22 dB and amplification bandwidth between 1520 nm and 1620 nm. The lowest noise figure is 5 dB. The gain is further improved with the implementation of enhanced EDFA configurations.

  16. Argon laser versus erbium:YAG laser in the treatment of xanthelasma palpebrarum

    PubMed Central

    Abdelkader, Mona; Alashry, Shereen Ezzelregal

    2014-01-01

    Background Xanthelasma palpebrarum is the most common of the xanthomas with asymptomatic, symmetrical, bilateral, soft, yellow, polygonal papules around the eyelids. Though it is a benign lesion causing no functional disturbance, it is esthetically annoying. The surgical laser offers an extremely elegant and powerful solution to this problem. Objective To evaluate the effectiveness of erbium:YAG and argon lasers in the treatment of xanthelasma lesions. Patients and methods Forty patients were included in the study. Twenty patients (15 patients were bilateral with 30 eyes either in the upper or lower lid and 5 patients were unilateral) were treated with erbium:YAG laser. Another 20 patients (10 patients were bilateral with 20 eyes and 10 patients were unilateral) were treated with argon laser. Results In the majority of treated patients (either treated with erbium:YAG or argon laser), xanthelasma lesions were completely disappeared or significantly decreased in size. Two patients showed pigmentary changes in the form of hypopigmentation with erbium:YAG laser (one case), another case showed hyperpigmentation. No intraoperative complication was observed. No significant scar or recurrence was observed. Conclusion Argon laser in xanthelasma is an easy, effective, and safe method of treatment for small lesions and YAG laser is more better for large lesions than argon laser. PMID:25892929

  17. Locking of self-oscillation frequency by pump modulation in an erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Pisarchik, A. N.; Barmenkov, Yu. O.

    2005-10-01

    Frequency locking of self-oscillations in a diode-pumped erbium-doped fiber laser by external modulation of the diode current is studied experimentally. The coexistence of locking and unlocking regimes is detected. The condition for onset of the bistability and dependences of the frequency detuning on the modulation frequency and amplitude are established. Transitions to torus-chaos are also demonstrated.

  18. Retinotomy using an erbium:YAG laser on human autopsy eyes

    NASA Astrophysics Data System (ADS)

    Ellsworth, Lansing G.; Kramer, Theresa R.; Noecker, Robert J.; Snyder, Robert W.; Yarborough, J. Michael

    1994-06-01

    Mid-IR lasers that operate near the absorption peak of water have a short penetration depth in ocular tissues. Ablation of tissue can be accomplished with minimal coagulative damage to underlying structures. We used an erbium:YAG laser equipped with a contact probe to create retinotomy sites in the human retina of eye bank eyes. An erbium:YAG laser (2.94 micrometers ) equipped with an infrared transmitting glass fiber and a sapphire tip (400 micrometers ) was used to directly ablate the surface of the retina. We administered both single and multiple pulses to the macula and peripheral retina using energy levels from 4 to 16 mJ per pulse. The retinas were then examined histopathologically to evaluate the extent of ablation and coagulative damage. Single pulses at low energy levels were noted to cause ablative damage to the nerve fiber layer and ganglion cell layer without a notable coagulative effect. The mean ablation depth at lower energy levels was less than the mean ablation depth at higher energy levels. Extensive laser application produced disruption of the retinal pigment epithelium, choroid and sclera. the erbium:YAG laser equipped with a contact probe is an effective means of creating retinotomies in human autopsy eyes. When used in the single pulse mode at lower energy levels, the erbium:YAG laser appears capable of removing superficial retinal layers without damaging deeper structures.

  19. Study of the effects of structural properties on the photoluminescence behavior of erbium thin films

    NASA Astrophysics Data System (ADS)

    Kamineni, Himani S.; Gallis, Spyros; Huang, Mengbing; Kaloyeros, Alain E.

    2012-10-01

    Erbium oxide is a promising candidate for possible applications as Si-based light emitting devices in nanoscale electronics. The current report presents findings pertaining to the effects of the structural properties of erbium-based thin films on their photoluminescence characteristics. Erbium metal films were deposited on silicon via electron beam evaporation followed by thermal oxidation. The effects of post-deposition annealing conditions on the structural and optical properties of the thin films were examined using a variety of techniques, such as spectroscopic ellipsometry, xray diffraction, and x-ray photoelectron spectroscopy. It was shown that the thin films evolved as function of thermal treatment from an Er-rich to an ErO-rich (700°C) to an Er2O3-rich (900°C) phase due to an increase in oxygen incorporation with higher oxidation temperatures. At temperatures >= 1000°C, out-diffusion of silicon from the substrate led to the formation of erbium monosilicate. Furthermore, the photoluminescence spectra of these various phases were measured, and the correlation between structural properties and luminescence characteristics will be discussed in this paper.

  20. LITHIUM PROPHYLAXIS IN AFFECTIVE DISORDER

    PubMed Central

    Rao, A. Venkoba; Hariharasubramanian, N.; Devi, S. Parvathi; Sugumar, A.; Srinivasan, V.

    1982-01-01

    SUMMARY Out of 108 patients on the rolls in the Lithium clinic, Madurai Medical College and Govt. Rajaji Hospital, Madurai, India, 47 patients suffering from affective disorders receiving lithium continuously for more than three years were analysed with a view to study the recurrences. Thirteen suffered no relapses while on lithium while nineteen experienced them while on lithium. Four were free from recurrences after lithium was withdrawn- Seven defaulted but suffered recurrences while in four the drug was withdrawn and in both the groups remission was achieved with re-administration of lithium. The study reveals that lithium besides averting the recurrences can reduce the frequency, number, duration, intensity of episodes and improve the amenability to drugs. Among the symptoms, suicidal ideas and behaviour and insight were found to be influenced favourably by lithium. Among the factors that help favourable response to lithium were a positive family history of affective disorder, in the first degree relatives and lesser frequency and number of episodes in the pre-lithium period. A reappraisal of the natural history of the illness is called for in the light of lithium prophylaxis of manic depressive psychosis. PMID:21965880

  1. Lithium tetraborate transducer cuts

    NASA Astrophysics Data System (ADS)

    Kosinski, John; Ballato, Arthur; Lukaszek, Theodore

    1990-03-01

    Lithium tetraborate is a tetragonal material of considerable promise for frequency control and signal processing applications. It exhibits piezoelectric coupling values that fall between those of lithium niobate and quartz, but possesses orientations for which the temperature coefficient of frequency and delay time is zero for bulk and surface acoustic waves. In this report, we discuss the properties of two doubly rotated bulk wave resonator orientations having both first- and second-order temperature coefficients equal to zero. These are suitable for shear and compressional wave transducers in applications where very low temperature sensitivity is required simultaneously with moderately strong piezocoupling coefficients.

  2. Lithium tetraborate transducers

    NASA Astrophysics Data System (ADS)

    Ballato, Arthur; Kosinski, John A.; Lukaszek, Ted J.

    1991-01-01

    Lithium tetraborate is a tetragonal material of considerable promise for frequency control and signal processing applications. It exhibits piezoelectric coupling values that fall between those of lithium niobate and quartz, but possesses orientations for which the temperature coefficient of frequency and delay time is zero for bulk and surface acoustic waves. The properties of two doubly rotated bulk wave resonator orientations having first- and second-order temperature coefficients equal to zero are discussed. These are suitable for shear and compressional wave transducers in applications where very low temperature sensitivity is required simultaneously with moderately strong piezocoupling coefficients.

  3. Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lithium ion batteries, which use a new battery chemistry, are being developed under cooperative agreements between Lockheed Martin, Ultralife Battery, and the NASA Lewis Research Center. The unit cells are made in flat (prismatic) shapes that can be connected in series and parallel to achieve desired voltages and capacities. These batteries will soon be marketed to commercial original-equipment manufacturers and thereafter will be available for military and space use. Current NiCd batteries offer about 35 W-hr/kg compared with 110 W-hr/kg for current lithium ion batteries. Our ultimate target for these batteries is 200 W-hr/kg.

  4. Large lithium loop experience

    SciTech Connect

    Kolowith, R.; Owen, T.J.; Berg, J.D.; Atwood, J.M.

    1981-10-01

    An engineering design and operating experience of a large, isothermal, lithium-coolant test loop are presented. This liquid metal coolant loop is called the Experimental Lithium System (ELS) and has operated safely and reliably for over 6500 hours through September 1981. The loop is used for full-scale testing of components for the Fusion Materials Irradiation Test (FMIT) Facility. Main system parameters include coolant temperatures to 430/sup 0/C and flow to 0.038 m/sup 3//s (600 gal/min). Performance of the main pump, vacuum system, and control system is discussed. Unique test capabilities of the ELS are also discussed.

  5. Investigation of Lithium Ion Storage

    NASA Technical Reports Server (NTRS)

    Lee, Leonine; Rao, Gopalkrishna M.

    1999-01-01

    NASA/GSFC is interested in flying lithium ion cells for geosynchronous earth orbit (GEO) satellites. To determine the preferred solstice storage conditions for the lithium ion chemistry, we have been studying either a constant current storage with a maximum voltage clamp or storage with only a voltage clamp. The cells used for this study are two 4Ah SAFT cylindrical lithium ion cells, two 1.5Ah Wilson Great Batch lithium ion cells, and one 8Ah Lithium Technology lithium polymer cell. In each pair, one cell is clamped at 4V, and the other is trickle charged at C/500 with a 4.lV clamp. The Lithium Technology cell is only undergoing voltage clamped storage testing. After each storage period the cells are subjected to a capacity test (C/2 discharge, C/10 charge) and a charge retention test at room temperature. Results after 4 weeks and 8 weeks of storage testing will be presented here.

  6. Reliability systems for implantable cardiac defibrillator batteries

    NASA Astrophysics Data System (ADS)

    Takeuchi, Esther S.

    The reliability of the power sources used in implantable cardiac defibrillators is critical due to the life-saving nature of the device. Achieving a high reliability power source depends on several systems functioning together. Appropriate cell design is the first step in assuring a reliable product. Qualification of critical components and of the cells using those components is done prior to their designation as implantable grade. Product consistency is assured by control of manufacturing practices and verified by sampling plans using both accelerated and real-time testing. Results to date show that lithium/silver vanadium oxide cells used for implantable cardiac defibrillators have a calculated maximum random failure rate of 0.005% per test month.

  7. A dual-wavelength erbium-doped fiber laser based on fiber grating pair

    NASA Astrophysics Data System (ADS)

    Sun, Hongwei; Wang, Tianshu; Jia, Qingsong; Zhang, Peng; Jiang, Huilin

    2014-12-01

    A dual-wavelength linear cavity erbium-doped fiber (EDF) laser based on a fiber grating pair is demonstrated experimentally. A circulator, a 980nm/1550nm wavelength division multiplexing (WDM) coupler, a 1×2 coupler, a polarization controller, a 6m long erbium-doped fiber and a fiber grating pair for wavelength interval of 0.3nm are included in the structure. A circulator connected at two ports as reflecting mirror structure. A 980nm pump source pump an erbium-doped fiber with a length of 6m consist of an erbium doped fiber amplifier. Through adjusting the state of the polarization controller, the transmission characteristic of cavity is changed. In both polarization and wavelength, the feedback from the fiber grating pair results in the laser operating on two longitudinal modes that are separated. The birefringence induced by the fiber grating pair is beneficial to diversify the polarization states of different wavelength in the erbium-doped fiber. So it is enhanced the polarization hole burning effect. This polarization hole burning effect greatly reduced the wavelength competition. Then, it was possible to achieve stable dual-wavelength. It turns out the structure generated the stable dual-wavelength with the 0.3nm wavelength interval and the output power is 0.13dBm in the end. The whole system have a simple and compact structure, it can work stably and laid a foundation for microwave/millimeter wave generator. It has a good application performance in the future for scientific research and daily life.

  8. Lithium ion conducting electrolytes

    DOEpatents

    Angell, C. Austen; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

  9. Lithium ion conducting electrolytes

    DOEpatents

    Angell, C.A.; Liu, C.

    1996-04-09

    A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

  10. Lithium disulfide battery

    DOEpatents

    Kaun, Thomas D.

    1988-01-01

    A negative electrode limited secondary electrochemical cell having dense FeS.sub.2 positive electrode operating exclusively on the upper plateau, a Li alloy negative electrode and a suitable lithium-containing electrolyte. The electrolyte preferably is 25 mole percent LiCl, 38 mole percent LiBr and 37 mole percent KBr. The cell may be operated isothermally.

  11. Lithium battery discharge tests

    NASA Technical Reports Server (NTRS)

    Johnson, C. J.

    1980-01-01

    The long term discharge of a variety of lithium cells was characterized and the susceptibility of the cells to chemical variation during the slow discharge was tested. A shunt resistor was set across the terminals to monitor the voltage as a function of time. Failures were identified by premature voltage drops.

  12. Lithium Polymer Battery

    DTIC Science & Technology

    2003-11-01

    formation of the galvanic cell , lithium foil approximately 150 µm thick and with an area of 0.785 cm2 was placed on top of the pressed electrolyte/cathode...pellet. The entire galvanic cell fabricated in this configuration was hermetically sealed and under pressure. A Tenney environmental chamber was

  13. Cochlear Implants

    MedlinePlus

    ... outside of the body, behind the ear. A second part is surgically placed under the skin. An implant does not restore normal hearing. It can help a person understand speech. Children and adults can benefit from them. National Institute on Deafness and Other Communication Disorders

  14. Comparison of the erbium-yttrium aluminum garnet and carbon dioxide lasers for in vitro bone and cartilage ablation

    SciTech Connect

    Gonzalez, C.; van de Merwe, W.P.; Smith, M.; Reinisch, L. )

    1990-01-01

    The in vitro bone- and cartilage-ablation characteristics of the solid-state erbium:yttrium aluminum garnet laser were compared to those of the carbon dioxide laser. Ablations of fresh, frozen cadaver septal cartilage and maxillary sinus bone were performed using total energies between 1 and 6 J. Specimens were studied using hematoxylin and eosin stain and digitized, computer-assisted measurements of 35-mm photographs. Erbium-yttrium aluminum garnet-ablated bone averaged 5 microns of adjacent tissue thermal injury, compared with 67 microns with carbon dioxide-ablated bone. Erbium-yttrium aluminum garnet-ablated cartilage averaged 2 microns of adjacent tissue thermal injury, compared with 21 microns with the carbon dioxide-ablated cartilage. The tissue-ablation characteristics of the erbium-yttrium aluminum garnet laser are promising for future otolaryngologic applications.

  15. A systems approach to creating reliable batteries for implantable medical applications

    NASA Astrophysics Data System (ADS)

    Clark, William D. K.; Syracuse, Kenneth C.; Visbisky, Mark

    Lithium batteries have been used to power implantable medical devices for over 25 years. During this period a system to ensure the reliability of battery performance has evolved, and continues to evolve, that embodies the use of quality systems, statistical sampling and testing of product, life testing and performance modeling. The development of a new lithium/carbon monofluoride battery product line will be used as an example of how these elements work together.

  16. Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories

    SciTech Connect

    Miyazono, Evan; Zhong, Tian; Craiciu, Ioana; Kindem, Jonathan M.; Faraon, Andrei

    2016-01-04

    Erbium dopants in crystals exhibit highly coherent optical transitions well suited for solid-state optical quantum memories operating in the telecom band. Here, we demonstrate coupling of erbium dopant ions in yttrium orthosilicate to a photonic crystal cavity fabricated directly in the host crystal using focused ion beam milling. The coupling leads to reduction of the photoluminescence lifetime and enhancement of the optical depth in microns-long devices, which will enable on-chip quantum memories.

  17. Sputter deposition of lithium silicate - lithium phosphate amorphous electrolytes

    SciTech Connect

    Dudney, N.J.; Bates, J.B.; Luck, C.F. ); Robertson, J.D. . Dept. of Chemistry)

    1991-01-01

    Thin films of an amorphous lithium-conducting electrolyte were deposited by rf magnetron sputtering of ceramic targets containing Li{sub 4}SiO{sub 4} and Li{sub 3}PO{sub 4}. The lithium content of the films was found to depend more strongly on the nature and composition of the targets than on many other sputtering parameters. For targets containing Li{sub 4}SiO{sub 4}, most of the lithium was found to segregate away from the sputtered area of the target. Codeposition using two sputter sources achieves a high lithium content in a controlled and reproducible film growth. 10 refs., 4 figs.

  18. Development of erbium phosphate doped poly(glycidyl methacrylate/ethylene dimethacrylate) spin columns for selective enrichment of phosphopeptides.

    PubMed

    Güzel, Yüksel; Rainer, Matthias; Messner, Christoph B; Hussain, Shah; Meischl, Florian; Sasse, Michael; Tessadri, Richard; Bonn, Günther K

    2015-05-01

    In this study, a novel method for the highly selective enrichment of phosphopeptides using erbium phosphate doped poly(glycidyl methacrylate/ethylene dimethacrylate) spin columns is presented. Erbium phosphate was synthesized by precipitation from boiling phosphoric acid and incubated overnight in erbium chloride solutions. The resulting powder was embedded in a monolithic poly(glycidyl methacrylate/ethylene dimethacrylate) polymer. The monolith was synthesized in a spin column by radical polymerization. Erbium phosphate demonstrated a high affinity and selectivity for phosphopeptides due to the strong interaction of trivalent erbium ions with the phosphate groups of phosphopeptides. The high selectivity and performance of the designed spin columns were demonstrated by successfully enriching phosphopeptides from tryptically digested protein mixtures containing the model phosphoproteins α- and β-casein, bovine milk, and human saliva. By the implementation of several washing steps, unspecific components were removed and the enriched phosphopeptides were effectively eluted from the spin columns under alkaline conditions. The selective performance of the presented method was further demonstrated by the enrichment of two synthetic phosphopeptides, which were spiked in tryptically digested and dephosphorylated HeLa cell lysates at low ratios. Finally, the presented approach was compared to conventional phosphopeptide enrichment by titanium oxide and revealed higher recoveries for the erbium phosphate doped monoliths.

  19. Antiviral effect of lithium chloride.

    PubMed

    Cernescu, C; Popescu, L; Constantinescu, S; Cernescu, S

    1988-01-01

    Studies in human embryo fibroblasts infected with measles or herpes simplex virus showed a reduction in virus yield when cultures were pretreated with 1-10 mM lithium chloride doses. Maximum effect was obtained by a 1 h treatment with 10 mM lithium chloride, preceding viral infection by 19-24 hours. A specific antiviral effect against measles virus was manifest immediately after culture pretreatment. Intermittent treatment with 10 mM lithium chloride of cultures persistently infected with measles or herpes virus obtained from human myeloid K-562 cell line shows a reduction in the extracellular virus yield. In the K-562/herpes virus system, the culture treatment with lithium chloride and acyclovir (10 microM) has an additive inhibitory effect on virus production. The paper is focused on the mechanism of lithium chloride antiviral action and the expediency of lithium therapy in SSPE (subacute sclerosing panencephalitis).

  20. Experimental lithium system. Final report

    SciTech Connect

    Kolowith, R.; Berg, J.D.; Miller, W.C.

    1985-04-01

    A full-scale mockup of the Fusion Materials Irradiation Test (FMIT) Facility lithium system was built at the Hanford Engineering Development Laboratory (HEDL). This isothermal mockup, called the Experimental Lithium System (ELS), was prototypic of FMIT, excluding the accelerator and dump heat exchanger. This 3.8 m/sup 3/ lithium test loop achieved over 16,000 hours of safe and reliable operation. An extensive test program demonstrated satisfactory performance of the system components, including the HEDL-supplied electromagnetic lithium pump, the lithium jet target, the purification and characterization hardware, as well as the auxiliary argon and vacuum systems. Experience with the test loop provided important information on system operation, performance, and reliability. This report presents a complete overview of the entire Experimental Lithium System test program and also includes a summary of such areas as instrumentation, coolant chemistry, vapor/aerosol transport, and corrosion.

  1. A Foldable Lithium-Sulfur Battery.

    PubMed

    Li, Lu; Wu, Zi Ping; Sun, Hao; Chen, Deming; Gao, Jian; Suresh, Shravan; Chow, Philippe; Singh, Chandra Veer; Koratkar, Nikhil

    2015-11-24

    The next generation of deformable and shape-conformable electronics devices will need to be powered by batteries that are not only flexible but also foldable. Here we report a foldable lithium-sulfur (Li-S) rechargeable battery, with the highest areal capacity (∼3 mAh cm(-2)) reported to date among all types of foldable energy-storage devices. The key to this result lies in the use of fully foldable and superelastic carbon nanotube current-collector films and impregnation of the active materials (S and Li) into the current-collectors in a checkerboard pattern, enabling the battery to be folded along two mutually orthogonal directions. The carbon nanotube films also serve as the sulfur entrapment layer in the Li-S battery. The foldable battery showed <12% loss in specific capacity over 100 continuous folding and unfolding cycles. Such shape-conformable Li-S batteries with significantly greater energy density than traditional lithium-ion batteries could power the flexible and foldable devices of the future including laptops, cell phones, tablet computers, surgical tools, and implantable biomedical devices.

  2. Sealed Lithium Inorganic Electrolyte Cell

    DTIC Science & Technology

    1976-03-01

    revere side it necoeery and idM,1117 "~ bfoh numiber) Inorganic Electrolyte Battery Carbon Cathode Evaluation Thionyl Chloride Gas Generation Lithium ...hardware corrosion in cold rolled steel cans, due to cathodic protection of the cans by the lithium . Recent data 4 showed that thionyl chloride is reduced...very slowly on the surface of nickel and stainless steel, when these materials were in contact with a lithium anode in the thionyl chloride

  3. Membranes in lithium ion batteries.

    PubMed

    Yang, Min; Hou, Junbo

    2012-07-04

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  4. Membranes in Lithium Ion Batteries

    PubMed Central

    Yang, Min; Hou, Junbo

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed. PMID:24958286

  5. Real-time synchrotoron radiation X-ray diffraction and abnormal temperature dependence of photoluminescence from erbium silicates on SiO{sub 2}/Si substrates

    SciTech Connect

    Omi, H.; Tawara, T.; Tateishi, M.

    2012-03-15

    The erbium silicate formation processes during annealing in Ar gas were monitored by synchrotron radiation grazing incidence X-ray diffraction (GIXD) in real time and the optical properties of the silicates were investigated by photoluminescence measurements in spectral and time-resolved domains. The GIXD measurements show that erbium silicates and erbium oxide are formed by interface reactions between silicon oxide and erbium oxides deposited on silicon oxide by reactive sputtering in Ar gas and O{sub 2}/Ar mixture gas ambiences. The erbium silicates are formed above 1060 degree sign C in Ar gas ambience and above 1010 degree sign C in O{sub 2}/Ar gas ambience, and erbium silicides are dominantly formed above 1250 degree sign C. The I{sub 15/2}-I{sub 13/2} Er{sup 3+} photoluminescence from the erbium oxide and erbium silicate exhibits abnormal temperature dependence, which can be explained by the phonon-assisted resonant absorption of the 532-nm excitation photons into the {sup 2}H{sub 11/2} levels of Er{sup 3+} ions of the erbium compounds.

  6. Lithium-Inorganic Electrolyte Batteries.

    DTIC Science & Technology

    PRIMARY BATTERIES , TEMPERATURE, LITHIUM , CATHODES, ELECTRODES, PROTECTIVE COATINGS, PLATINUM, NICKEL, SULFUR, STORAGE, GOLD, RELIABILITY(ELECTRONICS...CHEMICAL ANALYSIS, CARBON BLACK, GAS CHROMATOGRAPHY, THIONYL CHLORIDE , REDUCTION(CHEMISTRY).

  7. Advanced lithium ion battery charger

    SciTech Connect

    Teofilo, V.L.; Merritt, L.V.; Hollandsworth, R.P.

    1997-12-01

    A lithium ion battery charger has been developed for four and eight cell batteries or multiples thereof. This charger has the advantage over those using commercial lithium ion charging chips in that the individual cells are allowed to be taper charged at their upper charging voltage rather than be cutoff when all cells of the string have reached the upper charging voltage limit. Since 30--60% of the capacity of lithium ion cells maybe restored during the taper charge, this charger has a distinct benefit of fully charging lithium ion batteries by restoring all of the available capacity to all of its cells.

  8. Up conversion processes in yttrium-lithium-flouride crystals co-doped with erbium and ytterbium ions

    NASA Astrophysics Data System (ADS)

    Spinger, B.; Danilov, Valery P.; Prokhorov, Alexander M.; Schwan, L. O.; Schmid, D.

    2002-07-01

    We report on studies of the up-conversion process in YLiF4 single crystals co-doped with Er3+ and with Yb3+. Er3+ has a well known complicated energy level system within the 4f shell which gives rise to the up- conversion process. Yb3+ with a broad absorption band int eh regime 940 nm

  9. Short Implants: New Horizon in Implant Dentistry

    PubMed Central

    Gulati, Manisha; Garg, Meenu; Pathak, Chetan

    2016-01-01

    The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration. PMID:27790598

  10. Short Implants: New Horizon in Implant Dentistry.

    PubMed

    Jain, Neha; Gulati, Manisha; Garg, Meenu; Pathak, Chetan

    2016-09-01

    The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration.

  11. Optimized lithium oxyhalide cells

    NASA Astrophysics Data System (ADS)

    Kilroy, W. P.; Schlaikjer, C.; Polsonetti, P.; Jones, M.

    1993-04-01

    Lithium thionyl chloride cells were optimized with respect to electrolyte and carbon cathode composition. Wound 'C-size' cells with various mixtures of Chevron acetylene black with Ketjenblack EC-300J and containing various concentrations of LiAlCl4 and derivatives, LiGaCl4, and mixtures of SOCl2 and SO2Cl2 were evaluated as a function of discharge rate, temperature, and storage condition.

  12. Lithium ion sources

    NASA Astrophysics Data System (ADS)

    Roy, Prabir K.; Greenway, Wayne G.; Grote, Dave P.; Kwan, Joe W.; Lidia, Steven M.; Seidl, Peter A.; Waldron, William L.

    2014-01-01

    A 10.9 cm diameter lithium alumino-silicate ion source has been chosen as a source of ˜100mA lithium ion current for the Neutralized Drift Compression Experiment (NDCX-II) at LBNL. Research and development was carried out on lithium alumino-silicate ion sources prior to NDCX-II source fabrication. Space-charge-limited emission with the current density exceeding 1 mA/cm2 was measured with 0.64 cm diameter lithium alumino-silicate ion sources at 1275 °C. The beam current density is less for the first 10.9 cm diameter NDCX-II source, and it may be due to an issue of surface coverage. The lifetime of a thin coated (on a tungsten substrate) source is varied, roughly 40-50 h, when pulsed at 0.05 Hz and with pulse length of 6μs each, i.e., a duty factor of 3×10-7, at an operating temperature of 1250-1275 °C. The 10.9 cm diameter source lifetime is likely the same as of a 0.64 cm source, but the lifetime of a source with a 2 mm diameter (without a tungsten substrate) is 10-15 h with a duty factor of 1 (DC extraction). The lifetime variation is dependent on the amount of deposition of β-eucryptite mass, and the surface temperature. The amount of mass deposition does not significantly alter the current density. More ion source work is needed to improve the large source performance.

  13. Optical waveguides in lithium niobate: Recent developments and applications

    SciTech Connect

    Bazzan, Marco Sada, Cinzia

    2015-12-15

    The state of the art of optical waveguide fabrication in lithium niobate is reviewed, with particular emphasis on new technologies and recent applications. The attention is mainly devoted to recently developed fabrication methods, such as femtosecond laser writing, ion implantation, and smart cut waveguides as well as to the realization of waveguides with tailored functionalities, such as photorefractive or domain engineered structures. More exotic systems, such as reconfigurable and photorefractive soliton waveguides, are also considered. Classical techniques, such as Ti in-diffusion and proton exchange, are cited and briefly reviewed as a reference standpoint to highlight the recent developments. In all cases, the application-oriented point of view is preferred, in order to provide the reader with an up-to date panorama of the vast possibilities offered by lithium niobate to integrated photonics.

  14. Modelling of micromachining of human tooth enamel by erbium laser radiation

    SciTech Connect

    Belikov, A V; Skrypnik, A V; Shatilova, K V

    2014-08-31

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength between the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained. (laser biophotonics)

  15. Invariant bandwidth of erbium in ZnO-PbO-tellurite glasses: Local probe/model

    SciTech Connect

    Ramamoorthy, Raj Kumar; Bhatnagar, Anil K.

    2014-04-24

    A series of [(70TeO{sub 2}−(30−x)ZnO−xPbO){sub 0.99}−(Er{sub 2}O{sub 3}){sub 0.01}; where x = 5, 10, 15 and 20] tellurite glasses, were prepared using the melt quenching technique. Crucial emission bandwidth of erbium at 1.5 μm has been derived and found to be the same for all the glasses, irrespective of PbO content. This identical bandwidth in all tellurite glasses is attributed to the presence of erbium in tellurium rich disordered environments. This result has been complemented through XANES spectra and the obtained invariant first shell of 6.5 oxygen atoms, confirm the unchanged environment in these glasses for all PbO content.

  16. Double Brillouin frequency spaced multiwavelength Brillouin-erbium fiber laser with 50 nm tuning range

    NASA Astrophysics Data System (ADS)

    Zhao, J. F.; Liao, T. Q.; Zhang, C.; Zhang, R. X.; Miao, C. Y.; Tong, Z. R.

    2012-09-01

    A 50 nm tuning range multiwavelength Brillouin-erbium fiber laser (MWBEFL) with double Brillouin frequency spacing is presented. Two separated gain blocks with symmetrical architecture, consisted by erbium-doped fiber amplifiers (EDFAs) and Brillouin gain media, are used to generate double Brillouin frequency spacing. The wider tuning range is realized by eliminating the self-lasing cavity modes existing in conventional MWBEFLs because of the absence of the physical mirrors at the ends of the linear cavity. The Brillouin pump (BP) is preamplified by the EDFA before entering the single-mode fiber (SMF), which leads to the reduction of threshold power and the generation enhancement of Brillouin Stokes (BS) signals. Four channels with 0.176 nm spacing are achieved at 2 mW BP power and 280 mW 980 nm pump power which can be tuned from 1525 to 1575 nm.

  17. Modelling of micromachining of human tooth enamel by erbium laser radiation

    NASA Astrophysics Data System (ADS)

    Belikov, A. V.; Skrypnik, A. V.; Shatilova, K. V.

    2014-08-01

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength between the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained.

  18. Erbium-doped spiral amplifiers with 20 dB of net gain on silicon.

    PubMed

    Vázquez-Córdova, Sergio A; Dijkstra, Meindert; Bernhardi, Edward H; Ay, Feridun; Wörhoff, Kerstin; Herek, Jennifer L; García-Blanco, Sonia M; Pollnau, Markus

    2014-10-20

    Spiral-waveguide amplifiers in erbium-doped aluminum oxide on a silicon wafer are fabricated and characterized. Spirals of several lengths and four different erbium concentrations are studied experimentally and theoretically. A maximum internal net gain of 20 dB in the small-signal-gain regime is measured at the peak emission wavelength of 1532 nm for two sample configurations with waveguide lengths of 12.9 cm and 24.4 cm and concentrations of 1.92 × 10(20) cm(-3) and 0.95 × 10(20) cm(-3), respectively. The noise figures of these samples are reported. Gain saturation as a result of increasing signal power and the temperature dependence of gain are studied.

  19. Biomimetic synthesis of chiral erbium-doped silver/peptide/silica core-shell nanoparticles (ESPN).

    PubMed

    Mantion, Alexandre; Graf, Philipp; Florea, Ileana; Haase, Andrea; Thünemann, Andreas F; Mašić, Admir; Ersen, Ovidiu; Rabu, Pierre; Meier, Wolfgang; Luch, Andreas; Taubert, Andreas

    2011-12-01

    Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er(2)O(3) particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell.

  20. Opportunities for Low Cost Processing of Erbium 8-Quinolinolates for Active Integrated Photonic Applications.

    PubMed

    Penna, Stefano; Mattiello, Leonardo; Di Bartolo, Silvia; Pizzoleo, Angelo; Attanasio, Vincenzo; Beleffi, Giorgio Maria Tosi; Otomo, Akira

    2016-04-01

    Erbium-doped organic emitters are promising active materials for Photonic Integrated Circuits (PICs) due to their emission shown at 1550 nm combined to the potential low cost processing. In particular, Erbium Quinoline (ErQ) gained a strong interest in the last decade for the good emission efficiency. This contribution reports the results derived from the application of ErQ as active core material within a buried optical waveguide, following the development of a purposed optical process to control the refractive index of ErQ and then to define a patterned structure from a single thin film deposition step. The reported results show the potential of Er-doped organic materials for low cost processing and application to planar PICs.

  1. Erbium-doped all-fiber laser at 2.94 microm.

    PubMed

    Faucher, Dominic; Bernier, Martin; Caron, Nicolas; Vallée, Réal

    2009-11-01

    We report what we believe is the first demonstration of laser emission at 2.94 microm in an erbium-doped fluoride fiber laser. The low-loss all-fiber Fabry-Perot laser cavity was formed by two fiber Bragg gratings of 90% and 15% reflectivities in a 6.6 m, 7 mol.% Er-doped double-clad fiber. A maximum cw output power of 5.2 W was measured, which is to our knowledge the highest reported to date for a diode-pumped laser at this wavelength. A coreless endcap was fused at the output fiber end to prevent its deterioration at high output powers. Our results, including the slope efficiency of 26.6% with respect to launched pump power, suggest that erbium could be a better alternative than holmium in the search for a replacement for the flashlamp-pumped Er:YAG at 2.94 microm.

  2. Cavity-dumped 2.70 microm erbium laser using optomechanical shutter.

    PubMed

    Park, Young Ho; Won Lee, Dong; Kong, Hong Jin; Kim, Yeong Sik

    2008-12-01

    A cavity-dumped 2.70 microm erbium laser with a frustrated total internal reflection (FTIR) shutter was investigated and compared with a Q-switched erbium laser using the FTIR shutter. The Q-switched and the cavity-dumped 2.70 microm laser outputs were obtained with a dichroic coated mirror with high reflectance at 2.70 microm and high transmittance at 2.79 microm. For the Q-switched operation, a maximum peak power of 33.5 kW was achieved, and its pulse width was 1.3 mus. For the cavity-dumped operation, the laser pulse energy was optimized by changing the switching time of the FTIR shutter. When the pulse width is reduced to 210 ns, the peak power increases to 154 kW.

  3. Tunable multiwavelength L-band Brillouin-Erbium fiber laser utilizing passive EDF absorber section

    NASA Astrophysics Data System (ADS)

    Al-Mashhadani, T. F.; Al-Mansoori, M. H.; Jamaludin, M. Z.; Abdullah, F.; Abass, A. K.; Rawi, N. I. M.

    2013-12-01

    We demonstrate a simple tunable L-band multiwavelength Brillouin-Erbium fiber laser that utilizes a short passive erbium doped fiber (PEDF) as an absorber section. The impact of including the PEDF absorber section on the laser tunability is investigated. The proposed laser structure exhibits a wide tuning range of 24.4 nm (from 1583.5 nm to 1607.9 nm) at 1480 nm pump and Brillouin pump powers of 100 and 4 mW, respectively. This tuning range represents a 31% increase compared with a laser without a PEDF absorber section. The average number of stable output channels produced within this wavelength range is 16 channels with a spacing of 0.089 nm.

  4. Electric and magnetic long-range interactions between two Erbium atoms

    NASA Astrophysics Data System (ADS)

    Dulieu, Olivier; Lepers, Maxence; Aymar, Mireille; Luc, Eliane; Wyart, Jean-Francois

    2011-05-01

    Lanthanides have recently attracted a lot of interest in the field of laser-cooling and trapping. Their high magnetic dipole moment - seven Bohr magnetons for Erbium - opens new prospects for the precise control of their mutual interactions. As they are also characterized by a high orbital angular momentum, they also interact through their permanent electric quadrupole moments. We have studied the combined effects of the magnetic-dipole and electric-quadrupole interaction as functions of the distance R between two atoms of Erbium. Although they scale as R-3 and R-5 respectively, we have shown that the two types of interaction can compete with each other in a wide range of interatomic distances. This is due to the weakness of magnetic forces compared to electric ones. For example, we observe long-range wells, which could drastically influence the collisional properties of the atoms. Our calculations can be generalized to other lanthanides, like Dysprosium.

  5. Effect of holmium and erbium laser action on the human lens: an in-vitro study

    NASA Astrophysics Data System (ADS)

    Kasprzak, Jan; Kecik, Dariusz

    1997-10-01

    We investigated the holmium and erbium lasers operating at the medium IR range, used for cataract surgery. The main advantage of these lasers action on biological structures is total absorption of radiation by superficial layers. During the study of the lens emulsification process we found that the mechanical properties of the lens nucleus were of crucial importance for the rate of emulsification. The soft lenses were fragmented and emulsified after 200-700 pulses, while the hard lens required 5000 or more pulses while complete emulsification was not achieved. The results are promising and show that the holmium and erbium lasers can be used for human lens emulsification during ECCE. For clinical purposes, however, it is necessary to construct a suitable fiberoptic tip to be used in cataract removal. It seems that lasers whose beam is in the medium IR range could be used in many ophthalmic operations.

  6. Simulation of an erbium-doped chalcogenide micro-disk mid-infrared laser source.

    PubMed

    Al Tal, Faleh; Dimas, Clara; Hu, Juejun; Agarwal, Anu; Kimerling, Lionel C

    2011-06-20

    The feasibility of mid-infrared (MIR) lasing in erbium-doped gallium lanthanum sulfide (GLS) micro-disks was examined. Lasing condition at 4.5 µm signal using 800 nm pump source was simulated using rate equations, mode propagation and transfer matrix formulation. Cavity quality (Q) factors of 1.48 × 10(4) and 1.53 × 10(6) were assumed at the pump and signal wavelengths, respectively, based on state-of-the-art chalcogenide micro-disk resonator parameters. With an 80 µm disk diameter and an active erbium concentration of 2.8 × 10(20) cm(-3), lasing was shown to be possible with a maximum slope efficiency of 1.26 × 10(-4) and associated pump threshold of 0.5 mW.

  7. C-band wavelength-swept single-longitudinalmode erbium-doped fiber ring laser.

    PubMed

    Zhang, Kang; Kang, Jin U

    2008-09-01

    A wavelength-swept single-longitudinal-mode erbium-doped fiber ring laser capable of operating at sweeping frequency in the order of a few kHz is designed and demonstrated by using a fiber Fabry-Perot tunable filter and a Sagnac loop incorporated with a 3.5-meter unpumped erbium-doped fiber. The laser operates in continuous-wave (CW) mode and can sweep approximately 45 nm over the entire C-band (1520nm-1570nm) window with linewidth less than 0.7 kHz. The optimum wavelength sweeping frequency in order to achieve the best output power stability was found to be approximately20Hz with sweeping-induced power fluctuation of only 0.1%.

  8. Photo-annealing effect of gamma-irradiated erbium-doped fibre by femtosecond pulsed laser

    NASA Astrophysics Data System (ADS)

    Hsiung Chang, Sheng; Liu, Ren-Young; Lin, Chu-En; Chou, Fong-In; Tai, Chao-Yi; Chen, Chii-Chang

    2013-12-01

    In this work, a photo-annealing effect of gamma-irradiated erbium-doped glass fibre is investigated. Two commercial erbium-doped fibres (EDFs) with different doping concentrations were sealed inside a chamber with a cobalt-60 gamma source for 6 h to give an accumulated dose of 3.18 kGy. A tunable femtosecond pulsed laser with a repetition rate of 80 MHz was then used to pump EDF to generate 1550 nm fluorescence and green up-conversion emission, resulting in the annealing effect of the gamma-irradiated EDF. The fluorescence power of gamma-irradiated EDF with a moderate level of doping was almost returned to the initial state by photo-annealing, unlike that of a heavily doped EDF. This finding may facilitate the development of anti-irradiated superfluorescence fibre source for space navigation.

  9. 1.5-μm low threshold, high efficiency Erbium-Raman random fiber laser

    NASA Astrophysics Data System (ADS)

    Wu, H.; Wang, Z. N.; Sun, W.; He, Q. H.; Rao, Y. J.

    2017-04-01

    We report a low threshold, high efficiency random fiber laser with hybrid Erbium-Raman gain. The numerical analysis is made to describe the power performance of the proposed Erbium-Raman random fiber laser and reveal the high efficiency generation in this simple configuration. Thanks to the hybrid gain, the experimentally achieved laser threshold has been reduced to 60 mW. The optical conversion efficiency is of record high in the 1.5 μm regime, reaching 61.5% when pump power is 2 W. This work provides an effective way to generate high efficiency stable 1.5 μm random lasing, which could have important applications in optical fiber sensing and communication.

  10. Reflection L-band erbium-doped fiber-amplifier-based fiber loop mirror

    NASA Astrophysics Data System (ADS)

    Meng, Hongyun; Liu, Songhao; Dong, Xiaoyi

    2005-01-01

    We constructed a reflection L-band erbium-doped fiber amplifier based on fiber loop mirror, which reflects the backward ASE to the EDF as a secondary pumping source. A gain of 30 dB increased 6 dB compared to the forward end-pumped EDFA has been achieved in the wavelength region from 1570 to 1603 nm. In order to improve the gain and NF further, we constructed a novel configuration for reflection L-band erbium-doped fiber amplifier via inserting a 980 nm LD in the input part. Adjusting the ratio of power of the two LDs, the gain and NF are greatly improved in different degree in the region from 1565 to 1615 nm. Compared to the configuration pumped by only 1480 nm LD with given power, the gain enhanced 1.5-9.9 dB and the NF decreases 1.3-9.4 dB.

  11. Healing of bone in the rat following surgery with the erbium-YAG laser

    NASA Astrophysics Data System (ADS)

    Dickinson, Mark R.; Devlin, Hugh; El Montaser, Monsour A.; Sloan, Philip

    1996-12-01

    Background and objectives: the aim of this study was to examine the pattern of healing in rat calvarial defects prepared with the erbium-YAG laser, using the 'guided tissue regeneration' technique. Materials and method: PTFE membranes were placed over lased skull defects, and the skin wounds sutured. Rats were killed humanely at intervals after surgery, and the skulls processed for paraffin wax histology. A further group of mature rats were also killed humanely and the calvariae removed. Slots were prepared using the erbium-YAG laser and immediately examined under the environmental scanning electron microscope (ESEM) in hydrated conditions, which avoided drying artifacts. Results: An amorphous, mineral-rich carbon layer surrounds the lased bone defect, which in the in vivo experiments was seen as a basophilic zone which was resistant to resorption.

  12. Specific features of the crystal structure of erbium polyphosphate of the structural type C

    SciTech Connect

    Murashova, E. V. Chudinova, N. N.; Ilyukhin, A. B.

    2007-03-15

    Erbium polyphosphate Er(PO{sub 3}){sub 3} is synthesized at a temperature of 270 deg. C from a polyphosphoric acid melt containing cerium, erbium, and phosphorus in the atomic ratio Cs: Er: P = 5: 1: 15. The crystal structure of the Er(PO{sub 3}){sub 3} polyphosphate synthesized is determined. The framework structure of the Er(PO{sub 3}){sub 3} polyphosphate is built up of infinite polyphosphate chains and ErO{sub 6} octahedra bonded to these chains. The structure is a derivative of the structural type C, in which a large number of trivalent metal polyphosphates crystallize. The main distinguishing feature of this structural type is an increase in the parameter b of the monoclinic unit cell of the Er(PO{sub 3}){sub 3} compound by a factor of 11 (a = 10.040 A, b = 73.482 A, c = 11.268 A, {beta} = 97.28 deg., space group Ia)

  13. Erbium Distribution in Single Crystal YAG Fibers Grown by Laser-Heated Pedestal Growth Technique

    DTIC Science & Technology

    2015-08-28

    OMB NO. 0704-0188 3. DATES COVERED (From - To) - UU UU UU UU 28-08-2015 Approved for public release; distribution is unlimited. Erbium distribution in...official Department of the Army position, policy or decision, unless so designated by other documentation. 9. SPONSORING/MONITORING AGENCY NAME(S... public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions

  14. Erbium: YAG Laser Incision of Urethral Structures for Treatment of Urinary Incontinence After Prostate Cancer Spray

    DTIC Science & Technology

    2006-02-01

    devoted to in vivo animal studies comparing the wound healingafter Erbium and Holmium laser incision of the urethra and bladder neck. Further...urinary incontinence. Conventional treatments for stricture (including balloon dilation, cold knife incision, electrocautery, and Holmium laser incision...urethral tissue with a thermal damage zone of only 10-20 µm. This thermal damage zone was much less than that of the Holmium laser which produced 300 µm of

  15. Self-similar erbium-doped fiber laser with large normal dispersion.

    PubMed

    Liu, Hui; Liu, Zhanwei; Lamb, Erin S; Wise, Frank

    2014-02-15

    We report a large normal dispersion erbium-doped fiber laser with self-similar pulse evolution in the gain fiber. The cavity is stabilized by the local nonlinear attractor in the gain fiber through the use of a narrow filter. Experimental results are accounted for by numerical simulations. This laser produces 3.5 nJ pulses, which can be dechirped to 70 fs with an external grating pair.

  16. Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators

    SciTech Connect

    Lei, Fuchuan; Peng, Bo; Özdemir, Şahin Kaya Yang, Lan; Long, Gui Lu

    2014-09-08

    We report Fano-like asymmetric resonances modulated by optical gain in a whispering-gallery-mode resonator fabricated from erbium-doped silica. A time-dependent gain profile leads to dynamically varying sharp asymmetric resonances with features similar to Fano resonances. Depending on the scan speed of the frequency of the probe laser and the pump-probe power ratio, transmission spectra of the active microcavity exhibit a resonance dip, a resonance peak, or a Fano-like resonance.

  17. Synthesis and characterization of erbium-doped YAlO3 phosphor.

    PubMed

    Baig, Huma Nazli; Saluja, Jagjeet Kaur; Dhoble, S J

    2016-03-01

    In the yttrium aluminium system, the YAlO3 phosphor is a prominent host because of the yttrium aluminium ratio (1:1). Phosphor was synthesized by the solid-state reaction method at variable concentrations of erbium (0.1-2.5 mol%). This method is suitable for large-scale production and is a less time-consuming method when compared with the soft synthesis method. The prepared sample was characterized by X-ray diffraction technique and the crystallite size was calculated by Scherer's formula. Vibrational and bending analysis of prepared phosphor for optimized concentration of erbium ion is described based on the Fourier transform infrared spectroscopic technique. The photoluminescence (PL) emission spectra of prepared phosphor for variable concentrations of erbium ion were recorded and the excitation spectrum was found to be at 291 nm with three shoulder peaks at 305, 270 and 242 nm. For 291 nm excitation, the emission spectrum was found at 546 nm and 552 nm. PL intensity increased with increasing concentrations of erbium and after 2 mol% emission intensity decreased due to concentration quenching. Spectrophotometric determination of YAlO3:Er(3+) is described by CIE co-ordinates and shows an intense emission in the green region such that the prepared phosphor can act as a single host for green light emission. Thermoluminescence glow curve analysis of the YAlO3:Er(3+) phosphor was recorded for different ultraviolet (UV) light exposures and gamma exposure. Different gamma doses 0.5-2 kGy show a linear response. Kinetic parameters were calculated by the peak shape method.

  18. Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass.

    PubMed

    Fernandez, T Toney; Della Valle, G; Osellame, R; Jose, G; Chiodo, N; Jha, A; Laporta, P

    2008-09-15

    We report on fs-laser micromachining of active waveguides in a new erbium-doped phospho-tellurite glass by means of a compact cavity-dumped Yb-based writing system. The spectroscopic properties of the glass were investigated, and the fs-laser written waveguides were characterized in terms of passive as well as active performance. In particular, internal gain was demonstrated in the whole C+L band of optical communications (1530- 1610 nm).

  19. Bidirectional optical bistability in a dual-pumped erbium doped fiber ring laser.

    PubMed

    Lai, W J; Shum, P; Binh, L

    2004-11-15

    We investigate bidirectional optical wave propagations in a dual-pumped erbium doped fiber ring laser without isolator, and observe optical bistability behaviors. Consequently, we propose and construct a NOLM-NALM fiber ring laser to demonstrate and exploit this bidirectional optical bistability phenomenon in optical switching by introducing two tunable variable ratio couplers in the system. Numerical analyses based on the proposed laser structure have also been demonstrated corroborated with the experimental results.

  20. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene.

    PubMed

    Zhang, H; Tang, D Y; Zhao, L M; Bao, Q L; Loh, K P

    2009-09-28

    We report on large energy pulse generation in an erbium-doped fiber laser passively mode-locked with atomic layer graphene. Stable mode locked pulses with single pulse energy up to 7.3 nJ and pulse width of 415 fs have been directly generated from the laser. Our results show that atomic layer graphene could be a promising saturable absorber for large energy mode locking.

  1. Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser.

    PubMed

    Wu, X; Tang, D Y; Zhang, H; Zhao, L M

    2009-03-30

    We report on the generation of 281.2 nJ mode locked pulses directly from an erbium-doped fiber laser mode-locked with the nonlinear polarization rotation technique. We show that apart from the conventional dissipative soliton operation, an all-normal-dispersion fiber laser can also emit square-profile dissipative solitons whose energy could increase to a very large value without pulse breaking.

  2. Observation of central wavelength dynamics in erbium-doped fiber ring laser.

    PubMed

    Xu, Huiwen; Lei, Dajun; Wen, Shuangchun; Fu, Xiquan; Zhang, Jinggui; Shao, Yufeng; Zhang, Lifu; Zhang, Hua; Fan, Dianyuan

    2008-05-12

    We report on the observation of central wavelength dynamics in an erbium-doped fiber ring laser by using the nonlinear polarization rotating technique. The evolution of central wavelength with the laser operation state was observed experimentally. Numerical simulations confirmed the experimental observation and further demonstrated that the dynamics of wavelength evolution is due to the combined effects of fiber birefringence, fiber nonlinearity, and cavity filter.

  3. Self-similar erbium-doped fiber laser with large normal dispersion

    PubMed Central

    Liu, Hui; Liu, Zhanwei; Lamb, Erin S.; Wise, Frank

    2014-01-01

    We report a large normal dispersion erbium-doped fiber laser with self-similar pulse evolution in the gain fiber. The cavity is stabilized by the local nonlinear attractor in the gain fiber through the use of a narrow filter. Experimental results are accounted for by numerical simulations. This laser produces 3.5 nJ pulses, which can be dechirped to 70 fs with an external grating pair. PMID:24562267

  4. Sensitized erbium emission from silicon-rich nitride/silicon superlattice structures

    SciTech Connect

    Dal Negro, L.; Li, R.; Warga, J.; Basu, S. N.

    2008-05-05

    Erbium-doped silicon-rich nitride/silicon superlattice structures were fabricated by direct magnetron cosputtering deposition on Si substrates. Rapid thermal annealing resulted in the nucleation of small amorphous Si clusters, which efficiently sensitize 1.54 {mu}m emission via a nanosecond-fast nonresonant energy transfer process, providing an alternative route toward the fabrication of Si-compatible devices based on Er sensitization.

  5. Micro-fractional ablative skin resurfacing with two novel erbium laser systems.

    PubMed

    Dierickx, Christine C; Khatri, Khalil A; Tannous, Zeina S; Childs, James J; Cohen, Richard H; Erofeev, Andrei; Tabatadze, David; Yaroslavsky, Ilya V; Altshuler, Gregory B

    2008-02-01

    Fractional ablation offers the potential benefits of full-surface ablative skin resurfacing while minimizing adverse effects. The purpose of this study was to evaluate the safety, damage profile, and efficacy of erbium fractional lasers. Histology from animal and human skin as well as clinical evaluations were conducted with erbium YAG (2,940 nm) and erbium YSGG (2,790 nm) fractional lasers varying pulse width, microbeam (microb) energy, number of passes, and stacking of pulses. Single-pulse treatment parameters from 1 to 12 mJ per 50-70 microm diameter microbeam and 0.25-5 milliseconds pulse widths produced microcolumns of ablation with border coagulation of up to 100 microm width and 450 microm depth. Stacking of pulses generated deeper microcolumns. Clinical observations and in vivo histology demonstrate rapid re-epithelization and limited adverse side effects. Facial treatments were performed in the periorbital and perioral areas using 1-8 passes of single and stacked pulses. Treatments were well-tolerated and subjects could resume their normal routine in 4 days. A statistically significant reduction in wrinkle scores at 3 months was observed for both periorbital and perioral wrinkles using blinded grading. For periorbital treatments of four passes or more, over 90% had > or =1 score wrinkle reduction (0-9 scale) and 42% had > or =2. For perioral wrinkles, over 50% had substantial improvements (> or =2). The clinical observations and histology findings demonstrate that micro-fractional ablative treatment with 2,790 and 2,940 nm erbium lasers resulted in safe and effective wrinkle reduction with minimal patient downtime. The depth and width of the ablated microcolumns and varying extent of surrounding coagulation can be controlled and used to design new treatment procedures targeted for specific indications and areas such as moderate to severe rhytides and photodamaged skin.

  6. Silica fibers doped with erbium ions obtained by the sol gel method

    NASA Astrophysics Data System (ADS)

    Pawlik, Elzbieta; Strek, Wieslaw; Wojcik, Jan; Wojciechowski, C.; Malashkevich, G. E.; Melnichenko, I. M.; Poddenezhny, E. N.

    1997-08-01

    The paper presents the optical properties of glasses and optical fibers from quartz glass, obtained by the sol-gel method. A new technique of sol-gel glass preparation is described. Rods were formed from the glass thus produced from which PCS-type fibers were next drawn. Using the same sol-gel technology, the erbium-doped quartz glasses were obtained. The transmission and luminescence characteristics were measured for the glasses as well as for fibers drawn from them.

  7. Evaluation of an erbium modulator in x-ray scatter correction using primary modulation

    NASA Astrophysics Data System (ADS)

    Gao, Hewei; Niu, Tianye; Zhu, Lei; Fahrig, Rebecca

    2011-03-01

    A primary modulator made of erbium is evaluated in X-ray scatter correction using primary modulation. Our early studies have shown that erbium is the optimal modulator material for an X-ray cone-beam computed tomography (CBCT) system operated at 120 kVp, exhibiting minimum beam hardening which otherwise weakens the modulator's ability to separate scatter from primary. In this work, the accuracy of scatter correction is compared for two copper modulators (105 and 210 μm of thickness) and one erbium modulator (25.4 μm of thickness) with the same modulation frequencies. The variations in the effective transmission factors of these three modulators as functions of object filtrations are first measured to show the magnitudes of beam hardening caused by the modulators themselves. Their scatter correction performances are then tested using a Catphan©600 phantom on our tabletop CBCT system. With and without 300 μm of copper in the beam, the measured variations for these three modulators are 4.3%, 7.8%, and 0.9%, respectively. Using the 105- and 210-μm copper modulators, our scatter correction method reduces the average CT number error from 327.3 Hounsfield units (HU) to 19.4 and 20.9 HU in the selected regions of interest, and enhances the contrast-to-noise ratio (CNR) from 10.7 to 16.5 and 15.9, respectively. With the 25.4-μm erbium modulator, the CT number error is markedly reduced to 2.8 HU and the CNR is further increased to 17.4.

  8. Investigation on the effect of EDFA location in ring cavity Brillouin-Erbium fiber laser.

    PubMed

    Hambali, Nor Azura Malini A; Mahdi, Mohd Adzir; Al-Mansoori, Mohammed Hayder; Abas, Ahmad Fauzi; Saripan, M Iqbal

    2009-07-06

    We have investigated the characteristics of Brillouin-Erbium fiber laser (BEFL) with variation of Erbium-doped fiber amplifier (EDFA) locations in a ring cavity configuration. Three possible locations of the EDFA in the laser cavity have been studied. The experimental results show that the location of EDFA plays vital role in determining the output power and the tuning range. Besides the Erbium gain, Brillouin gain also contributes to the performance of the BEFL. By placing the EDFA next to the Brillouin gain medium (dispersion compensating fiber), the Brillouin pump signal is amplified thereby generating higher intensities of Brillouin Stokes line. This efficient process suppresses the free running self-lasing cavity modes from oscillating in cavity as a result of higher Stokes laser power and thus provide a wider tuning range. At the injected Brillouin pump power of 1.6 mW and the maximum 1480 nm pump power of 135 mW, the maximum Stokes laser power of 25.1 mW was measured and a tuning range of 50 nm without any self-lasing cavity modes was obtained.

  9. Erbium-formate frameworks templated by diammonium cations: syntheses, structures, structural transition and magnetic properties.

    PubMed

    Li, Mengyuan; Liu, Bin; Wang, Bingwu; Wang, Zheming; Gao, Song; Kurmoo, Mohamedally

    2011-06-14

    Two structurally different Er-formate frameworks, one NaCl-like [dmenH(2)][Er(HCOO)(4)](2) (1) and the other pillared-layer type [tmenH(2)][Er(HCOO)(4)](2) (2), were obtained when templated by the corresponding protonated N,N'-dimethylethylenediamine (dmenH(2)) and N,N,N',N'-tetramethyl- ethylenediamine (tmenH(2)). The shape and size of the template cations dictate the different coordination geometries of erbium and consequently the framework topologies, though erbium adopts eight coordination in the two compounds. In the NaCl-like structure of 1, erbium is coordinated by eight anti-anti bridging formates in a square antiprism, while in the pillared-layer structure of 2, it is coordinated by six anti-anti bridging formates and one chelating formate in a pentagonal bipyramid. 2 exhibits a structural phase transition around -70 °C which is related to the disorder-order transition of the template cation. Both compounds behave as paramagnets between 2 and 300 K. However, they display field-dependent ac-susceptibilities with complicated field-induced magnetic relaxation processes, and the major slow ones probably results from spin-lattice relaxation.

  10. Mode-locked erbium-doped fiber lasers, synchronization and noise

    NASA Astrophysics Data System (ADS)

    Kaechele, Walter Irving, IV

    1997-09-01

    As the applications multiply for compact sources of ultrashort pulses, it is necessary to develop a full understanding of the advantages and limitations of the different mode-locking techniques. With the current emphasis on increasing the capacity of the communications infrastructure, picosecond and sub-picosecond pulsed fiber lasers have attracted increasing interest especially in light of the efficiency of erbium fiber amplifiers. With this in mind, a comparative, experimental study of the mode-locking processes of three erbium-doped fiber lasers was conducted. An actively mode-locked fiber ring laser and a passively mode-locked Fabry-Perot fiber laser employing a multiple quantum well saturable absorber were constructed as a precursor to developing a hybrid laser source which would combine the most desirable features of the individual lasers. The actively mode-locked laser produced picosecond pulses at repetition rates ranging from 1.5 MHz to 5.0 GHz and was tunable over the whole erbium gain bandwidth. The passively mode-locked laser utilized the nonlinear transmission of the multiple quantum well saturable absorber to start and sustain mode-locked operation. Additionally, the two lasers were integrated to form a hybrid mode-locked laser. By injecting a portion of the ring laser's output directly into the Fabry-Perot cavity, the output of the two lasers would synchronize at the fundamental cavity frequency.

  11. Melasma treatment using an erbium:YAG laser: a clinical, immunohistochemical, and ultrastructural study.

    PubMed

    Attwa, Enayat; Khater, Mohamed; Assaf, Magda; Haleem, Manal Abdel

    2015-02-01

    Melasma is a common pigmentary disorder that remains resistant to available therapies. The aim of the present study was to evaluate the efficacy of erbium:YAG lasers in the treatment of refractory melasma and investigate the histopathological and ultrastructural changes between melasma skin and adjacent control skin before and after surgery. Fifteen Egyptian female patients with melasma unresponsive to previous therapy of bleaching creams and chemical peels were included in this study. Full-face skin resurfacing using an erbium:YAG laser was performed. Clinical parameters included physician and patient assessment, and melasma area and severity index score were done. Adverse effects after laser resurfacing were recorded. Biopsies of lesions and adjacent healthy skin were stained using hematoxylin-eosin, immunohistochemically marked for Melan-A, and evaluated by electron microscopy. The amount of melanin, staining intensity, and number of epidermal melanocytes are increased in melasma lesions as compared to normal skin. Electron microscopic analysis revealed an increased number of mature melanosomes in keratinocytes and melanocytes, with more marked cytoplasmic organelles in melasma skin than in biopsy specimens from normal skin, suggesting increased cell activity. After surgery, the number of melanocytes and concentration of melanin decreased in melasma skin, and the mean melasma area and severity index score decreased dramatically. Erbium:YAG laser resurfacing effectively improves melasma; however, the almost universal appearance of transient postinflammatory hyperpigmentation necessitates prompt and persistent intervention. © 2014 The International Society of Dermatology.

  12. Solid lithium-ion electrolyte

    DOEpatents

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-02-10

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  13. Solid lithium-ion electrolyte

    DOEpatents

    Zhang, Ji-Guang; Benson, David K.; Tracy, C. Edwin

    1998-01-01

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  14. Dental Implant Surgery

    MedlinePlus

    Dental implant surgery Overview By Mayo Clinic Staff Dental implant surgery is a procedure that replaces tooth roots ... that look and function much like real ones. Dental implant surgery can offer a welcome alternative to dentures ...

  15. Hip Implant Systems

    MedlinePlus

    ... Medical Devices Products and Medical Procedures Implants and Prosthetics Metal-on-Metal Hip Implants Hip Implants Share ... femoral head) is removed and replaced with a prosthetic ball made of metal or ceramic, and the ...

  16. Lithium/bromine cell systems

    SciTech Connect

    Howard, W.G.; Skarstad, P.M.; Hayes, T.G.; Owens, B.B.

    1980-01-01

    Bromine is attractive as a cathode material because cells with a high energy density and high cell voltage are theoretically possible. The addition of small amounts of certain salts or organic compounds results in bromine solutions of sufficient conductivity for cathode applications. However, given these highly conductive bromine cathodes, lithium/bromine cells are limited in rate and practical available capacity by the high resistivity of the discharge product. The rate of resistance increase for the best bromine cells in this study is more than one order of magnitude greater than that observed for corresponding lithium/iodine cells. Lithium/bromine cells can function at pacemaker rates and they may be superior to cells used in early pacemakers. However, the authors have not found the lithium/bromine cells described to be superior to existing lithium/iodine cells available for cardiac pacemakers. 17 refs.

  17. Lithium Treatment for Psychiatric Disorders

    PubMed Central

    Maletzky, Barry M.; Shore, James H.

    1978-01-01

    Although used around the world since 1949, lithium has come into extensive use in psychiatry in the United States only within the past decade. Before initiating treatment with this drug, physicians must be familiar with the diagnostic scheme of the major affective disorders, the indications and contraindications to lithium's use, and its principles of treatment, including evaluation before lithium therapy, criteria for monitoring blood levels and signs of impending toxicity. Despite earlier reports about the toxicity of lithium when it was promoted as a salt substitute, lithium is a safe drug. Its use not only has revolutionized the treatment of the major affective disorders, but has opened up new and broad avenues of research into the regulation of man's emotions. PMID:664651

  18. [Cochlear implants].

    PubMed

    Lehnhardt, E; Battmer, R D; Nakahodo, K; Laszig, R

    1986-07-01

    Since the middle of 1984, the HNO-Klinik der Medizinischen Hochschule Hannover has provided deaf adults with a 22-channel cochlear implant (CI) device of Clark-NUCLEUS. The digital working system consists of an implantable stimulator/receiver and an externally worn speech processor. Energy and signals are transmitted transcutaneously via a transmitter coil. During the prevailing 26 operations (April 1986) the electrode array could be inserted at least 17 mm into the cochlea. The threshold and comfort levels of all patients were adjusted very quickly; the dynamic range usually grows during the first postoperative weeks. The individual rehabilitation results vary greatly, but all patients show a significant increase of vowel and consonant comprehension while using the speech processor and an improvement of words understood per minute in speech tracking from lip-reading alone to lip-reading with speech processor. Four months after surgery seven of 17 patients (group I) are able to understand on average 42.7 words per minute by speech tracking without lip-reading. Six patients (group II) recognise 69.2% of vowels and 42.5% of consonants by speech processor alone. Four patients (group III) can correctly repeat only vowels (52.3%) without lip-reading, but using the speech processor together with lip reading they have an improvement in consonant understanding of 37.9% and under freefield conditions they are able to understand up to 17.8% numbers of the Freiburg speech test.

  19. Implant marketing: cost effective implant dentistry.

    PubMed

    Wohrle, P S; Levin, R P

    1996-01-01

    The application of the KAL-Technique to the field of implant dentistry allows both patients and dental practices to benefit. It is an exciting advance that decreases frustration and stress in providing implant procedures and lowers overall costs. Professionals using the KAL-Technique report significant predictability in achieving passive framework fit. They are also lowering overall cost of implant cases, which increases the number of patients who can accept implant treatment. It has been well established that the more individuals in a practice that receive implants, the more referrals a practice will gain. This is because implant patients find tremendous advances in the quality of life, and do not hesitate to tell others who can take advantage of this opportunity. Implant dentistry is one of the fastest growing fields in dentistry today. While some other areas of dentistry begin to decline in volume and need, implant dentistry provides the opportunity to keep practices strong and to insure long-term success.

  20. Positive electrode for a lithium battery

    DOEpatents

    Park, Sang-Ho; Amine, Khalil

    2015-04-07

    A method for producing a lithium alkali transition metal oxide for use as a positive electrode material for lithium secondary batteries by a precipitation method. The positive electrode material is a lithium alkali transition metal composite oxide and is prepared by mixing a solid state mixed with alkali and transition metal carbonate and a lithium source. The mixture is thermally treated to obtain a small amount of alkali metal residual in the lithium transition metal composite oxide cathode material.

  1. Optimizing the pumping configuration for the power scaling of in-band pumped erbium doped fiber amplifiers.

    PubMed

    Lim, Ee-Leong; Alam, Shaif-ul; Richardson, David J

    2012-06-18

    A highly efficient (~80%), high power (18.45 W) in-band, core pumped erbium/ytterbium co-doped fiber laser is demonstrated. To the best of our knowledge, this is the highest reported efficiency from an in-band pumped 1.5 µm fiber laser operating in the tens of watts regime. Using a fitted simulation model, we show that the significantly sub-quantum limit conversion efficiency of in-band pumped erbium doped fiber amplifiers observed experimentally can be explained by concentration quenching. We then numerically study and experimentally validate the optimum pumping configuration for power scaling of in-band, cladding pumped erbium doped fiber amplifiers. Our simulation results indicate that a ~77% power conversion efficiency with high output power should be possible through cladding pumping of current commercially available pure Erbium doped active fibers providing the loss experienced by the cladding guided 1535 nm pump due to the coating absorption can be reduced to an acceptable level by better coating material choice. The power conversion efficiency has the potential to exceed 90% if concentration quenching of erbium ions can be reduced via improvements in fiber design and fabrication.

  2. Sintering effects on structure, morphology, and electrical properties of sol-gel synthesized, nano-crystalline erbium oxide

    NASA Astrophysics Data System (ADS)

    Bakhsh, Allah; Maqsood, Asghari

    2012-12-01

    The nano-crystalline erbium oxide powder was synthesized through the sol-gel technique. The effect of sintering temperature from 250°C to 1400°C on structure, morphology, and electrical properties was studied. The results were compared with the microcrystalline erbium oxide purchased from the market. The synthesized erbium oxide showed fiber like nanostructures. Dielectric properties at different sintering temperatures were measured in the frequency range 100 Hz to 5MHz. The synthesized erbium oxide had the highest dielectric constant at 650°C. The behavior of the dissipation factor tan δ for sol-gel synthesized material was distinct from that of the purchased material; it was higher at low frequencies and then decreased with the increase in frequency. The synthesized material sintered at different temperatures exhibited a similar sort of frequency-dependent response for permittivity (ɛ) and resistivity ( ρ). This was in accordance with Koop's theory of dielectrics. For the microcrystalline material, frequency dependence of permittivity and resistivity was not uniform. The results showed that sol-gel synthesized erbium oxide could be a good candidate for high-k applications.

  3. Method of recycling lithium borate to lithium borohydride through methyl borate

    DOEpatents

    Filby, Evan E.

    1977-01-01

    This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a methyl borate intermediate to complete the recycle scheme.

  4. Lithium electric dipole polarizability

    SciTech Connect

    Puchalski, M.; KePdziera, D.; Pachucki, K.

    2011-11-15

    The electric dipole polarizability of the lithium atom in the ground state is calculated including relativistic and quantum electrodynamics corrections. The obtained result {alpha}{sub E}=164.0740(5) a.u. is in good agreement with the less accurate experimental value of 164.19(1.08) a.u. The small uncertainty of about 3 parts per 10{sup 6} comes from the approximate treatment of quantum electrodynamics corrections. Our theoretical result can be considered as a benchmark for more general atomic structure methods and may serve as a reference value for the relative measurement of polarizabilities of the other alkali-metal atoms.

  5. Lithium niobate explosion monitor

    DOEpatents

    Bundy, Charles H.; Graham, Robert A.; Kuehn, Stephen F.; Precit, Richard R.; Rogers, Michael S.

    1990-01-01

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

  6. Halo Star Lithium Depletion

    SciTech Connect

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-12-10

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  7. Lithium Reserve Battery.

    DTIC Science & Technology

    the high temperature stability of 2M LiAsF6/MF electrolyte solutions. It was found that the addition of small amounts of LiBF4 to these solutions...greatly increased their high temperature storage capabilities. It was determined that the LiBF4 was effective only when lithium metal was also present in...the solution. LiBF4 was able to stabilize solutions prepared with grades of LiAsF6 obtained from other vendors but to a much lesser degree.

  8. Lithium niobate explosion monitor

    DOEpatents

    Bundy, C.H.; Graham, R.A.; Kuehn, S.F.; Precit, R.R.; Rogers, M.S.

    1990-01-09

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier. 8 figs.

  9. Surface segregation effects of erbium in GaAs growth and their implications for optical devices containing ErAs nanostructures

    SciTech Connect

    Crook, Adam M.; Nair, Hari P.; Bank, Seth R.

    2011-03-21

    We report on the integration of semimetallic ErAs nanoparticles with high optical quality GaAs-based semiconductors, grown by molecular beam epitaxy. Secondary ion mass spectrometry and photoluminescence measurements provide evidence of surface segregation and incorporation of erbium into layers grown with the erbium cell hot, despite the closed erbium source shutter. We establish the existence of a critical areal density of the surface erbium layer, below which the formation of ErAs precipitates is suppressed. Based upon these findings, we demonstrate a method for overgrowing ErAs nanoparticles with III-V layers of high optical quality, using subsurface ErAs nanoparticles as a sink to deplete the surface erbium concentration. This approach provides a path toward realizing optical devices based on plasmonic effects in an epitaxially-compatible semimetal/semiconductor system.

  10. Bilayer Implants

    PubMed Central

    Schagemann, Jan C.; Rudert, Nicola; Taylor, Michelle E.; Sim, Sotcheadt; Quenneville, Eric; Garon, Martin; Klinger, Mathias; Buschmann, Michael D.; Mittelstaedt, Hagen

    2016-01-01

    Objective To compare the regenerative capacity of 2 distinct bilayer implants for the restoration of osteochondral defects in a preliminary sheep model. Methods Critical sized osteochondral defects were treated with a novel biomimetic poly-ε-caprolactone (PCL) implant (Treatment No. 2; n = 6) or a combination of Chondro-Gide and Orthoss (Treatment No. 1; n = 6). At 19 months postoperation, repair tissue (n = 5 each) was analyzed for histology and biochemistry. Electromechanical mappings (Arthro-BST) were performed ex vivo. Results Histological scores, electromechanical quantitative parameter values, dsDNA and sGAG contents measured at the repair sites were statistically lower than those obtained from the contralateral surfaces. Electromechanical mappings and higher dsDNA and sGAG/weight levels indicated better regeneration for Treatment No. 1. However, these differences were not significant. For both treatments, Arthro-BST revealed early signs of degeneration of the cartilage surrounding the repair site. The International Cartilage Repair Society II histological scores of the repair tissue were significantly higher for Treatment No. 1 (10.3 ± 0.38 SE) compared to Treatment No. 2 (8.7 ± 0.45 SE). The parameters cell morphology and vascularization scored highest whereas tidemark formation scored the lowest. Conclusion There was cell infiltration and regeneration of bone and cartilage. However, repair was incomplete and fibrocartilaginous. There were no significant differences in the quality of regeneration between the treatments except in some histological scoring categories. The results from Arthro-BST measurements were comparable to traditional invasive/destructive methods of measuring quality of cartilage repair. PMID:27688843

  11. A lithium superionic conductor.

    PubMed

    Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro; Hirayama, Masaaki; Kanno, Ryoji; Yonemura, Masao; Kamiyama, Takashi; Kato, Yuki; Hama, Shigenori; Kawamoto, Koji; Mitsui, Akio

    2011-07-31

    Batteries are a key technology in modern society. They are used to power electric and hybrid electric vehicles and to store wind and solar energy in smart grids. Electrochemical devices with high energy and power densities can currently be powered only by batteries with organic liquid electrolytes. However, such batteries require relatively stringent safety precautions, making large-scale systems very complicated and expensive. The application of solid electrolytes is currently limited because they attain practically useful conductivities (10(-2) S cm(-1)) only at 50-80 °C, which is one order of magnitude lower than those of organic liquid electrolytes. Here, we report a lithium superionic conductor, Li(10)GeP(2)S(12) that has a new three-dimensional framework structure. It exhibits an extremely high lithium ionic conductivity of 12 mS cm(-1) at room temperature. This represents the highest conductivity achieved in a solid electrolyte, exceeding even those of liquid organic electrolytes. This new solid-state battery electrolyte has many advantages in terms of device fabrication (facile shaping, patterning and integration), stability (non-volatile), safety (non-explosive) and excellent electrochemical properties (high conductivity and wide potential window).

  12. A lithium superionic conductor

    NASA Astrophysics Data System (ADS)

    Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro; Hirayama, Masaaki; Kanno, Ryoji; Yonemura, Masao; Kamiyama, Takashi; Kato, Yuki; Hama, Shigenori; Kawamoto, Koji; Mitsui, Akio

    2011-09-01

    Batteries are a key technology in modern society. They are used to power electric and hybrid electric vehicles and to store wind and solar energy in smart grids. Electrochemical devices with high energy and power densities can currently be powered only by batteries with organic liquid electrolytes. However, such batteries require relatively stringent safety precautions, making large-scale systems very complicated and expensive. The application of solid electrolytes is currently limited because they attain practically useful conductivities (10-2 S cm-1) only at 50-80 °C, which is one order of magnitude lower than those of organic liquid electrolytes. Here, we report a lithium superionic conductor, Li10GeP2S12 that has a new three-dimensional framework structure. It exhibits an extremely high lithium ionic conductivity of 12 mS cm-1 at room temperature. This represents the highest conductivity achieved in a solid electrolyte, exceeding even those of liquid organic electrolytes. This new solid-state battery electrolyte has many advantages in terms of device fabrication (facile shaping, patterning and integration), stability (non-volatile), safety (non-explosive) and excellent electrochemical properties (high conductivity and wide potential window).

  13. Lithium ion conducting ionic electrolytes

    DOEpatents

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  14. Lithium ion conducting ionic electrolytes

    DOEpatents

    Angell, C. Austen; Xu, Kang; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

  15. Ambient Temperature Rechargeable Lithium Battery.

    DTIC Science & Technology

    1982-08-01

    AD-AI O297 EIC LA BS INC NEWTON MA F/6 10/3 AMB IENT TEMPERATURE RECHARGEABLE LITHIUM BATTERAU AG(MARHMU)L TI ARI AK IC07 UNCLASSIFIED C-655DEE TB6...036FL -T Research and Development Technical Report -N DELET-TR-81-0378-F AMBIENT TEMPERATURE RECHARGEABLE LITHIUM BATTERY K. M. Abraham D. L. Natwig...WORDS (Cenimne an revee filf Of ~"#amp Pu l41"lfr bg’ 61WA amober) Rechargeable lithium battery, CrO.5VO.5S2 positive electrode, 2Me-THF/LiAsF6, cell

  16. Lithium-Thionyl Chloride Battery.

    DTIC Science & Technology

    1981-04-01

    EEEElhIhEEEEEE 1111 1 - MI(CRO( fy Hl ff1Sf UIIIUN Ift I IA I~t Research and Development Technical Report DELET - TR - 78 - 0563 - F Cq LITHIUM - THIONYL CHLORIDE ...2b(1110) S. TYPE OF REPORT & PERIOD COVERED Lithium - Thionyl Chloride Battery -10/1/78 - 11/30/80 6. PNING ORG. REPORT NUMBER Z %A a.~as B.,OWRACT OR...block number) Inorganic Electrolyte battery, Thionyl Chloride , lithium , high rate D cell, high rate flat cylindrical cell, laser designator battery. C//i

  17. Anodes for rechargeable lithium batteries

    DOEpatents

    Thackeray, Michael M.; Kepler, Keith D.; Vaughey, John T.

    2003-01-01

    A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.

  18. Specific features of the mechanisms of excitation of erbium photoluminescence in epitaxial Si:Er/Si structures

    SciTech Connect

    Yablonskiy, A. N. Andreev, B. A.; Krasilnikova, L. V.; Kryzhkov, D. I.; Kuznetsov, V. P.; Krasilnik, Z. F.

    2010-11-15

    The excitation spectra and kinetics of erbium photoluminescence and silicon interband photoluminescence in Si:Er/Si structures under conditions of high-intensity pulse optical excitation are studied. It is shown that, in the interband photoluminescence spectra of the Si:Er/Si structures, both the luminescence of free excitons and the emission associated with the electron-hole plasma can be observed, depending on the excitation power and wavelength. It is found that the formation of a peak in the erbium photoluminescence excitation spectra at high pumping powers correlates with the Mott transition from the exciton gas to the electron-hole plasma. It is demonstrated that, in the Si:Er/Si structures, the characteristic rise times of erbium photoluminescence substantially depend on the concentration of charge carriers.

  19. High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system.

    PubMed

    Luo, Hongyu; Li, Jianfneg; Xie, Jitao; Zhai, Bo; Wei, Chen; Liu, Yong

    2016-12-12

    We reported a high average power and energy microsecond pulse erbium-doped fluoride fiber MOPA system centered at 2786.8 nm. The master oscillator was a passively Q-switched erbium-doped fluoride fiber laser based on SESAM in a linear cavity. Then a one-stage erbium-doped fluoride fiber amplifier was used to boost its average output power to 4.2 W and pulse energy to 58.87 μJ. The pulse duration and repetition rate were 2.29 µs and 71.73 kHz, respectively. To the best of our knowledge, the achieved average output power and pulse energy are the recorded levels for the passively Q-switched fiber lasers at 3 μm wavelength region.

  20. Continuous-wave supercontinuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear optical fiber

    NASA Astrophysics Data System (ADS)

    Lee, Ju Han; Takushima, Yuichi; Kikuchi, Kazuro

    2005-10-01

    We experimentally demonstrate a novel erbium-doped fiber based continuous-wave (cw) supercontinuum laser. The laser has a simple ring-cavity structure incorporating an erbium-doped fiber and a highly nonlinear dispersion-shifted fiber (HNL-DSF). Differently from previously demonstrated cw supercontinuum sources based on single propagation of a strong Raman pump laser beam through a highly nonlinear fiber, erbium gain inside the cavity generates a seed light oscillation, and the oscillated light subsequently evolves into a supercontinuum by nonlinear effects such as modulation instability and stimulated Raman scattering in the HNL-DSF. High quality of the depolarized supercontinuum laser output with a spectral bandwidth larger than 250 nm is readily achieved.

  1. Continuous-wave supercontinuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear optical fiber.

    PubMed

    Lee, Ju Han; Takushima, Yuichi; Kikuchi, Kazuro

    2005-10-01

    We experimentally demonstrate a novel erbium-doped fiber based continuous-wave (cw) supercontinuum laser. The laser has a simple ring-cavity structure incorporating an erbium-doped fiber and a highly nonlinear dispersion-shifted fiber (HNL-DSF). Differently from previously demonstrated cw supercontinuum sources based on single propagation of a strong Raman pump laser beam through a highly nonlinear fiber, erbium gain inside the cavity generates a seed light oscillation, and the oscillated light subsequently evolves into a supercontinuum by nonlinear effects such as modulation instability and stimulated Raman scattering in the HNL-DSF. High quality of the depolarized supercontinuum laser output with a spectral bandwidth larger than 250 nm is readily achieved.

  2. A Lithium Superionic Sulfide Cathode for Lithium-Sulfur Batteries

    SciTech Connect

    Lin, Zhan; Liu, Zengcai; Dudney, Nancy J; Liang, Chengdu

    2013-01-01

    This work presents a facile synthesis approach for core-shell structured Li2S nanoparticles, which have Li2S as the core and Li3PS4 as the shell. This material functions as lithium superionic sulfide (LSS) cathode for long-lasting, energy-efficient lithium-sulfur (Li-S) batteries. The LSS has an ionic conductivity of 10-7 S cm-1 at 25 oC, which is 6 orders of magnitude higher than that of bulk Li2S (~10-13 S cm-1). The high lithium-ion conductivity of LSS imparts an excellent cycling performance to all-solid Li-S batteries, which also promises safe cycling of high-energy batteries with metallic lithium anodes.

  3. Cyanoethylated compounds as additives in lithium/lithium batteries

    DOEpatents

    Nagasubramanian, Ganesan

    1999-01-01

    The power loss of lithium/lithium ion battery cells is significantly reduced, especially at low temperatures, when about 1% by weight of an additive is incorporated in the electrolyte layer of the cells. The usable additives are organic solvent soluble cyanoethylated polysaccharides and poly(vinyl alcohol). The power loss decrease results primarily from the decrease in the charge transfer resistance at the interface between the electrolyte and the cathode.

  4. Lithium metal doped electrodes for lithium-ion rechargeable chemistry

    DOEpatents

    Liu, Gao; Battaglia, Vince; Wang, Lei

    2016-09-13

    An embodiment of the invention combines the superior performance of a polyvinylidene difluoride (PVDF) or polyethyleneoxide (POE) binder, the strong binding force of a styrene-butadiene (SBR) binder, and a source of lithium ions in the form of solid lithium metal powder (SLMP) to form an electrode system that has improved performance as compared to PVDF/SBR binder based electrodes. This invention will provide a new way to achieve improved results at a much reduced cost.

  5. [Bilateral cochlear implantation].

    PubMed

    Kronenberg, Jona; Migirov, Lela; Taitelbaum-Swead, Rikey; Hildesheimer, Minka

    2010-06-01

    Cochlear implant surgery became the standard of care in hearing rehabilitation of patients with severe to profound sensorineural hearing loss. This procedure may alter the lives of children and adults enabling them to integrate with the hearing population. In the past, implantation was performed only in one ear, despite the fact that binaural hearing is superior to unilateral, especially in noisy conditions. Cochlear implantation may be performed sequentially or simultaneously. The "sensitive period" of time between hearing loss and implantation and between the two implantations, when performed sequentially, significantly influences the results. Shorter time spans between implantations improve the hearing results after implantation. Hearing success after implantation is highly dependent on the rehabilitation process which includes mapping, implant adjustments and hearing training. Bilateral cochlear implantation in children is recommended as the proposed procedure in spite of the additional financial burden.

  6. Comparison of the efficacy of different types of lasers for the treatment of peri-implantitis: a systematic review.

    PubMed

    Natto, Zuhair S; Aladmawy, Majdi; Levi, Paul A; Wang, Hom-Lay

    2015-01-01

    To evaluate the efficacy of various types of lasers (neodymium-doped yttrium-aluminum-garnet [Nd:YAG], carbon dioxide [CO2], diode, erbium/chromium-doped yttrium-scandium-gallium-garnet [Er,Cr:YSGG], and erbium-doped yttrium-aluminum-garnet [Er:YAG]) in the treatment of peri-implantitis and their use in surgical and nonsurgical procedures. Human studies for the treatment of peri-implantitis with laser therapy, published between 2002 and January 2014, were collected utilizing the electronic databases PubMed, Ovid, MEDLINE, Cochrane, and Google Scholar. Two reviewers conducted the study selection, data collection, and validity assessment. Eight hundred twelve studies were selected in the initial title search; 13 studies were then chosen for this review. No human studies evaluated the effect of the Nd:YAG laser on peri-implantitis. The CO2 laser is reported to be safe and able to enhance bone regeneration. The diode laser (980 nm) seems to be effective in its bactericidal effect without changing the implant surface pattern. The Er,Cr:YSGG laser was reported to obtain bone regeneration around a failing implant in one case, while the Er:YAG laser exhibits a strong bactericidal effect against periodontopathic bacteria at a low energy level. Although lasers have shown promising results in reducing clinical signs of peri-implantitis, because of the limited sample sizes and short follow-up periods, no firm conclusion can be drawn at this moment. Hence, there is a need for more well-designed, longitudinal, randomized controlled clinical trials.

  7. 21 CFR 862.3560 - Lithium test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lithium test system. 862.3560 Section 862.3560....3560 Lithium test system. (a) Identification. A lithium test system is a device intended to measure lithium (from the drug lithium carbonate) in serum or plasma. Measurements of lithium are used to assure...

  8. 21 CFR 862.3560 - Lithium test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lithium test system. 862.3560 Section 862.3560....3560 Lithium test system. (a) Identification. A lithium test system is a device intended to measure lithium (from the drug lithium carbonate) in serum or plasma. Measurements of lithium are used to assure...

  9. 21 CFR 862.3560 - Lithium test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lithium test system. 862.3560 Section 862.3560....3560 Lithium test system. (a) Identification. A lithium test system is a device intended to measure lithium (from the drug lithium carbonate) in serum or plasma. Measurements of lithium are used to assure...

  10. 21 CFR 862.3560 - Lithium test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lithium test system. 862.3560 Section 862.3560....3560 Lithium test system. (a) Identification. A lithium test system is a device intended to measure lithium (from the drug lithium carbonate) in serum or plasma. Measurements of lithium are used to assure...

  11. 21 CFR 862.3560 - Lithium test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lithium test system. 862.3560 Section 862.3560....3560 Lithium test system. (a) Identification. A lithium test system is a device intended to measure lithium (from the drug lithium carbonate) in serum or plasma. Measurements of lithium are used to assure...

  12. Multiwavelength Erbium-doped fiber laser employing nonlinear polarization rotation in a symmetric nonlinear optical loop mirror.

    PubMed

    Tian, Jiajun; Yao, Yong; Sun, Yunxu; Yu, Xuelian; Chen, Deying

    2009-08-17

    A new multiwavelength Erbium-doped fiber laser is proposed and demonstrated. The intensity-dependent loss induced by nonlinear polarization rotation in a power-symmetric nonlinear optical loop mirror (NOLM) suppresses the mode competition of an Erbium-doped fiber and ensures stable multiwavelength operation at room temperature. The polarization state and its evolution conditions for stable multiwavelength operation in the ring laser cavity are discussed. The number and spectra region of output wavelength can be controlled by adjusting the work states of NOLM. (c) 2009 Optical Society of America

  13. The compensation of potential changes produced by trivalent erbium ion in squid giant axon with applied potentials.

    PubMed Central

    Starzak, M E; Starzak, R J

    1978-01-01

    The transmembrane potential of voltage-clamped squid giant axon is increased to compensate for a reduction in the rate of potassium channel kinetics when artificial seawater with trivalent erbium ion is substituted for artificial seawater. The additional potential required to produce an equivalent rise time is a measure of the potential shift produced by the erbium ions. When the kinetics of K+ channels are matched in this manner, the maximal K+ currents are larger for the larger transmembrane potential. This observation requires a functional separation of the open K+ channel and the voltage sensor for the gating mechanism of this channel. Images FIGURE 1 FIGURE 2 PMID:728529

  14. Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions

    NASA Astrophysics Data System (ADS)

    Jambois, O.; Berencen, Y.; Hijazi, K.; Wojdak, M.; Kenyon, A. J.; Gourbilleau, F.; Rizk, R.; Garrido, B.

    2009-09-01

    We have studied the current transport and electroluminescence properties of metal oxide semiconductor (MOS) devices in which the oxide layer, which is codoped with silicon nanoclusters and erbium ions, is made by magnetron sputtering. Electrical measurements have allowed us to identify a Poole-Frenkel conduction mechanism. We observe an important contribution of the Si nanoclusters to the conduction in silicon oxide films, and no evidence of Fowler-Nordheim tunneling. The results suggest that the electroluminescence of the erbium ions in these layers is generated by energy transfer from the Si nanoparticles. Finally, we report an electroluminescence power efficiency above 10-3%.

  15. Silica Precipitation and Lithium Sorption

    SciTech Connect

    Jay Renew

    2015-09-20

    This file contains silica precipitation and lithium sorption data from the project. The silica removal data is corrected from the previous submission. The previous submission did not take into account the limit of detection of the ICP-MS procedure.

  16. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1993-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator, such as porous polypropylene, adjacent to the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator, such as polytetrafluoroethylene, that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  17. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator such as porous polypropylene adjacent the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator such as polytetrafluoroethylene that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  18. Lithium compensation for full cell operation

    SciTech Connect

    Xiao, Jie; Zheng, Jianming; Chen, Xilin; Lu, Dongping; Liu, Jun; Jiguang, Jiguang

    2016-05-17

    Disclosed herein are embodiments of a lithium-ion battery system comprising an anode, an anode current collector, and a layer of lithium metal in contact with the current collector, but not in contact with the anode. The lithium compensation layer dissolves into the electrolyte to compensate for the loss of lithium ions during usage of the full cell. The specific placement of the lithium compensation layer, such that there is no direct physical contact between the lithium compensation layer and the anode, provides certain advantages.

  19. Secondary lithium batteries for space applications

    NASA Technical Reports Server (NTRS)

    Carter, B.; Khanna, S. K.; Yen, S. P. S.; Shen, D.; Somoano, R. B.

    1981-01-01

    Secondary lithium cells which use a LiAsF6-2-Me-THF electrolyte and a TiS2 intercalatable cathode exhibit encouraging cycle life at ambient temperature. Electrochemical and surface analytical studies indicate that the electrolyte is unstable in the presence of metallic lithium, leading to the formation of a lithium passivating film composed of lithium arsenic oxyfluorides and lithium fluorsilicates. The lithium cyclability remains as the most important problem to solve. Different electrolyte solvents, such as sulfolane, exhibit promising characteristics but lead to new compatibility problems with the other cell component materials.

  20. Secondary lithium batteries for space applications

    NASA Technical Reports Server (NTRS)

    Carter, B.; Khanna, S. K.; Yen, S. P. S.; Shen, D.; Somoano, R. B.

    1981-01-01

    Secondary lithium cells which use a LiAsF6-2-Me-THF electrolyte and a TiS2 intercalatable cathode exhibit encouraging cycle life at ambient temperature. Electrochemical and surface analytical studies indicate that the electrolyte is unstable in the presence of metallic lithium, leading to the formation of a lithium passivating film composed of lithium arsenic oxyfluorides and lithium fluorsilicates. The lithium cyclability remains as the most important problem to solve. Different electrolyte solvents, such as sulfolane, exhibit promising characteristics but lead to new compatibility problems with the other cell component materials.

  1. Luminescent amino-functionalized or erbium-doped silica spheres for biological applications.

    PubMed

    Enrichi, Francesco

    2008-01-01

    This work presents the morphological and optical properties of luminescent silica spheres, discussing applications in bioimaging and biosensing. The spheres are obtained by the hydrolysis and condensation of tetraethylorthosilicate (TEOS) and can be synthesized by following either a basic or an acidic route. Luminescence emission is induced after incorporation of aminopropyltriethoxysilane (APTES) during synthesis or by introducing an optically active element, such as erbium, or other rare-earth elements. The luminescence properties of APTES-functionalized silica spheres have been investigated and optimized by varying the annealing temperature. On the other hand, erbium incorporation in silica spheres was also studied and the corresponding Er(3+) luminescence emission at 1.54 microm was evaluated for intensity and lifetime. The basic pH environment in the synthesis allows good control of the size of the spheres (approximately 200 nm in diameter), whereas the acidic route produces a wide dispersion in particle size (200-5000 nm). Both these approaches, however, can be followed to obtain an efficient photoluminescence (PL) emission for the APTES-functionalized silica spheres after 400-600 degrees C thermal treatment. If Er(NO(3))(3) is introduced in the basic solution, a rapid precipitation of Er(OH)(3) occurs, but erbium can be easily and efficiently incorporated in the acid-synthesized spheres, showing high PL intensity at 1.54 microm with lifetime of 3.9 ms. Finally, I discuss perspectives for the applications of these luminescent silica spheres, in particular as biological markers for bioimaging and biosensing.

  2. Dental Adhesion to Erbium-Lased Tooth Structure: A Review of the Literature.

    PubMed

    Lopes, Raquel Marianna; Trevelin, Lívia Tosi; da Cunha, Sandra Ribeiro Barros; de Oliveira, Renata Ferreira; de Andrade Salgado, Daniela Miranda Richarte; de Freitas, Patrícia Moreira; de Paula Eduardo, Carlos; Aranha, Ana Cecília Corrêa

    2015-08-01

    The aim of the present study was to conduct a review of the literature about adhesion on erbium laser prepared cavities, related to the specific conditions of the irradiated dentin substrate and the effects on bond strength values. Advances in adhesive restorative techniques significantly influenced modern restorative dentistry. The concept of "minimally invasive dentistry" aims to perform more conservative treatment of cavities in which the removal of sound dentin is no longer necessary. This approach, which relies on the concept of adhesion of restorative materials to the mineralized dental tissues, is considered to be a contemporary outcome in dentistry. Similarly, laser technology in restorative dentistry opened new possibilities and strategies as alternatives to conventional treatment. Considering the clinical aspects of the use of erbium lasers for caries removal, cavity preparations, and substrate conditioning, treatment with lasers can be considered to be an efficient technique with wide acceptance by patients. Computerized and manual searches were conducted for studies through 2015 that addressed the topic. According to the literature, there is no defined standard protocol concerning the information that articles must provide, making a definitive protocol very difficult to establish. Data varied from the type of adhesive and resin composite used, substrate, and parameters (power, energy density, pulse duration, irradiation time, distance, cooling system) to the bond strength test methodology used. Further studies are necessary in order to define a standard protocol with positive results and higher bond strength values when using erbium lasers. Detailed information concerning laser parameters should be implemented. Also, longitudinal clinical studies should be developed in the search for new parameters that behave favorably in the irradiated substrate.

  3. LD-pumped erbium and neodymium lasers with high energy and output beam quality

    NASA Astrophysics Data System (ADS)

    Kabanov, Vladimir V.; Bezyazychnaya, Tatiana V.; Bogdanovich, Maxim V.; Grigor'ev, Alexandr V.; Lebiadok, Yahor V.; Lepchenkov, Kirill V.; Ryabtsev, Andrew G.; Ryabtsev, Gennadii I.; Shchemelev, Maxim A.

    2013-05-01

    Physical and fabrication peculiarities which provide the high output energy and beam quality for the diode pumped erbium glass and Nd:YAG lasers are considered. Developed design approach allow to make passively Q-switched erbium glass eye-safe portable laser sources with output energy 8 - 12 mJ (output pulse duration is less than 25 ns, pulse repetition rate up to 5 Hz) and beam quality M2 less than 1.3. To reach these values the erbium laser pump unit parameters were optimized also. Namely, for the powerful laser diode arrays the optimal near-field fill-factor, output mirror reflectivity and heterostructure properties were determined. Construction of advanced diode and solid-state lasers as well as the optical properties of the active element and the pump unit make possible the lasing within a rather wide temperature interval (e.g. from minus forty till plus sixty Celsius degree) without application of water-based chillers. The transversally pumped Nd:YAG laser output beam uniformity was investigated depending on the active element (AE) pump conditions. In particular, to enhance the pump uniformity within AE volume, a special layer which practically doesn't absorb the pump radiation but effectively scatters the pump and lasing beams, was used. Application of such layer results in amplified spontaneous emission suppression and improvement of the laser output beam uniformity. The carried out investigations allow us to fabricate the solid-state Nd:YAG lasers (1064 nm) with the output energy up to 420 mJ at the pulse repetition rate up to 30 Hz and the output energy up to 100 mJ at the pulse repetition rate of of 100 Hz. Also the laser sources with following characteristics: 35 mJ, 30 Hz (266 nm); 60 mJ, 30 Hz (355 nm); 100 mJ, 30 Hz (532 nm) were manufactured on the base of the developed Nd:YAG quantrons.

  4. Implementation of Lean System on Erbium Doped Fibre Amplifier Manufacturing Process to Reduce Production Time

    NASA Astrophysics Data System (ADS)

    Maneechote, T.; Luangpaiboon, P.

    2010-10-01

    A manufacturing process of erbium doped fibre amplifiers is complicated. It needs to meet the customers' requirements under a present economic status that products need to be shipped to customers as soon as possible after purchasing orders. This research aims to study and improve processes and production lines of erbium doped fibre amplifiers using lean manufacturing systems via an application of computer simulation. Three scenarios of lean tooled box systems are selected via the expert system. Firstly, the production schedule based on shipment date is combined with a first in first out control system. The second scenario focuses on a designed flow process plant layout. Finally, the previous flow process plant layout combines with production schedule based on shipment date including the first in first out control systems. The computer simulation with the limited data via an expected value is used to observe the performance of all scenarios. The most preferable resulted lean tooled box systems from a computer simulation are selected to implement in the real process of a production of erbium doped fibre amplifiers. A comparison is carried out to determine the actual performance measures via an analysis of variance of the response or the production time per unit achieved in each scenario. The goodness of an adequacy of the linear statistical model via experimental errors or residuals is also performed to check the normality, constant variance and independence of the residuals. The results show that a hybrid scenario of lean manufacturing system with the first in first out control and flow process plant lay out statistically leads to better performance in terms of the mean and variance of production times.

  5. Erosive effects in liquid lithium

    SciTech Connect

    Down, M.G.; Bagnall, C.; Keeton, A.R.; Tsu, T.C.

    1982-09-01

    Results are reported of experimental testing to investigate the potential erosive effect of liquid lithium at 270/sup 0/C and velocities up to 24 ms/sup -1/, on type 304 stainless steel. Two experiments were performed in order to compare data from a conventional flow-through isothermal test leg with those from specimens attached to the circumference of a rotating disc in static lithium.

  6. Lithium-iodine pacemaker cell

    SciTech Connect

    Schneider, A.A.; Snyder, S.E.; DeVan, T.; Harney, M.J.; Harney, D.E.

    1980-01-01

    The lithium-iodine pacemaker cell is described as supplied by several manufacturers. The features of each design are discussed along with their effect on energy density, self-discharge and shape of the discharge curve. Differences in performance characteristics are related to morphology of the lithium iodine electrolyte and to the form of the cathode. A new, high-drain cell is mentioned which can supply 60 /mu/a/cm/sup 2/. 10 refs.

  7. Military applications of lithium batteries

    NASA Astrophysics Data System (ADS)

    Marsh, Richard A.

    1989-05-01

    Practically every weapon system requires a battery to provide electrical power for various functions. The lithium battery is becoming the 'power source of choice' for a large number of these military systems. Lithium technology offers unique solutions to the combination of requirements imposed by military systems - low weight, low volume, long storage life, low life cycle cost, and immediate readiness over the full military environmental condition spectrum.

  8. Modeling the Lithium Ion Battery

    ERIC Educational Resources Information Center

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  9. Air breathing lithium power cells

    SciTech Connect

    Farmer, Joseph C.

    2014-07-15

    A cell suitable for use in a battery according to one embodiment includes a catalytic oxygen cathode; a stabilized zirconia electrolyte for selective oxygen anion transport; a molten salt electrolyte; and a lithium-based anode. A cell suitable for use in a battery according to another embodiment includes a catalytic oxygen cathode; an electrolyte; a membrane selective to molecular oxygen; and a lithium-based anode.

  10. Modeling the Lithium Ion Battery

    ERIC Educational Resources Information Center

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  11. International Meeting on Lithium Batteries.

    DTIC Science & Technology

    1983-07-07

    nk(k 1) interconnected MO6 octahedra, e.g., titanium dioxide (TiO2); and rhenium To overcome the problems of cor- trioxide (ReO3 )-related structures...discharge reactions for the with a conductive foil, and the assembly lithium/manganese dioxide, lithium/iron is pressed and sealed. Hampartzumian disulfide ...films as electrode matrials. G.L. sulfide (NbS) shows trigenal pris- Farrington (Univ. of Pennsylvania) matic, and tantalum disulfide (TaS,) reported

  12. Development of ion-implantation confined, shallow mesa stripe (Pn,Sn)Te/Pb(Te,Se) DH laser diodes

    NASA Technical Reports Server (NTRS)

    Fonstad, C. G.; Harton, A.; Jiang, Y.-N.; Appelman, H.

    1983-01-01

    Preliminary results of a program to develop ion implantation confined, shallow mesa stripe (Pb,Sn)Te laser diodes are presented. The practicality of using a shallow mesa stripe to produce single mode laser output and to increase the single mode tuning range are demonstrated. The first results of p-type ion implantation in the lead-tin salts are also reported. It is shown that sodium and lithium both can be used to convert n-type Pb(Te,Se) to p-type. The implant and anneal procedures are described, and electrical characteristics of Li-implanted layers are presented.

  13. Development of a hybrid battery system for an implantable biomedical device, especially a defibrillator/cardioverter (ICD)

    NASA Astrophysics Data System (ADS)

    Drews, Jürgen; Wolf, R.; Fehrmann, G.; Staub, R.

    An implantable defibrillator battery has to provide pulse power capabilities as well as high energy density. Low self-discharge rates are mandatory and a way to check the remaining available capacity is necessary. These requirements are accomplished by a system consisting of a lithium/manganese dioxide 6 V battery, plus a lithium/iodine-cell. The use of a high rate 6 V double-cell design in combination with a high energy density cell reduces the total volume required by the power source within an implantable defibrillator. The design features and performance data of the hybrid system are described.

  14. New Types of Rogue Wave in an Erbium-Doped Fibre System

    NASA Astrophysics Data System (ADS)

    He, Jingsong; Xu, Shuwei; Porsezian, Kuppuswamy

    2012-03-01

    We report a novel and new types of rogue optical wave propagation in an erbium-doped fibre system governed by the nonlinear Schrödinger and the Maxwell--Bloch equation. The breather solutions of the three fields, namely field envelop, polarization and population inversion, are used to generate the rogue waves. For the first time, we report bright and, in particular, dark rogue waves in a coupled nonlinear optical systems. The distinction between bright and dark rogue waves are discussed in detail through figures. The rogue wave formation in our model can also be connected to the generation of supercontinuum generation in resonant optical fibre.

  15. Microprocessing of human hard tooth tissues surface by mid-infrared erbium lasers radiation

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Shatilova, Ksenia V.; Skrypnik, Alexei V.

    2015-03-01

    A new method of hard tooth tissues laser treatment is described. The method consists in formation of regular microdefects on tissue surface by mid-infrared erbium laser radiation with propagation ratio M2<2 (Er-laser microprocessing). Proposed method was used for preparation of hard tooth tissues surface before filling for improvement of bond strength between tissues surface and restorative materials, microleakage reduction between tissues surface and restorative materials, and for caries prevention as a result of increasing microhardness and acid resistance of tooth enamel.

  16. Preparative scale separation of thulium from erbium for neutron capture cross section measurements - Part: Preparative scale

    DOE PAGES

    Birnbaum, Eva R.; Bene, Balazs J.; Taylor, Wayne Allen; ...

    2016-06-04

    Here, this paper discusses the development of a separation method for isolation of Tm-171 from a half-gram irradiated erbium target in support of stockpile stewardship and astrophysics research. The developed procedure is based on cation exchange separation using alpha-hydroxyisobutyric acid (α-HIBA) as chelating agent. It is able to achieve either a decontamination factor of 1.4(4) × 105 with 68.9(3) % recovery or 95.4(3) % recovery with a decontamination factor of 5.82(7) × 103 for a mock 500-mg target containing 17.9 mg thulium in a single pass-through at room temperature.

  17. Poor fluorinated graphene sheets carboxymethylcellulose polymer composite mode locker for erbium doped fiber laser

    SciTech Connect

    Mou, Chengbo E-mail: a.rozhin@aston.ac.uk; Turitsyn, Sergei; Rozhin, Aleksey E-mail: a.rozhin@aston.ac.uk; Arif, Raz; Lobach, Anatoly S.; Spitsina, Nataliya G.; Khudyakov, Dmitry V.; Kazakov, Valery A.

    2015-02-09

    We report poor fluorinated graphene sheets produced by thermal exfoliation embedding in carboxymethylcellulose polymer composite (GCMC) as an efficient mode locker for erbium doped fiber laser. Two GCMC mode lockers with different concentration have been fabricated. The GCMC based mode locked fiber laser shows stable soliton output pulse shaping with repetition rate of 28.5 MHz and output power of 5.5 mW was achieved with the high concentration GCMC, while a slightly higher output power of 6.9 mW was obtained using the low concentration GCMC mode locker.

  18. Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber.

    PubMed

    Ahmad, H; Shahi, S; Harun, S W

    2009-01-05

    A multi-wavelength laser comb is demonstrated using a nonlinear effect in a backward pumped Bismuth-based Erbium-doped fiber (Bi-EDF) for the first time. It uses a ring cavity resonator scheme containing a 215 cm long highly nonlinear Bi-EDF, optical isolators, polarisation controller and 10 dB output coupler. The laser generates more than 10 lines of optical comb with a line spacing of approximately 0.41 nm at 1615.5 nm region using 146 mW of 1480 nm pump power.

  19. Erbium Doping Effects on the Conduction Band Edge in Germanium Nanocrystals

    SciTech Connect

    Meulenberg, Robert W.; Willey, Trevor M.; Lee, Jonathan R.; Terminello, Louis J.; Van Buren, T.

    2011-05-16

    We have produced erbium-doped germanium nanocrystals (NCs) using a new two cell physical vapor deposition system. Using element specific x-ray techniques (absorption and photoemission), we are able to probe the chemical environment of Er in the Ge NCs. Evidence for the optically active Er3+ state is seen at low Er concentrations, with a disruption of NC formation at high Er concentrations. The x-ray absorption measurements suggest that the Er occupies lattice sites near the surface of the NC. Analysis of the quantum confinement effect with Er doping suggests that the native quantum properties of the Ge NC are maintained at low Er concentrations.

  20. LASERS: Transversely diode-pumped passively Q-switched erbium glass laser emitter

    NASA Astrophysics Data System (ADS)

    Bykov, V. N.; Izyneev, A. A.; Sadovoi, A. G.; Sadovskii, P. I.; Sorokina, O. A.

    2008-03-01

    The properties of a laser diode array-pumped passively Q-switched ytterbium-erbium glass laser emitter are studied. It is found experimentally that the maximum output energy is achieved when the diameter of the TEM00 mode is 0.65-0.77 of the transverse size of the active element. By using two 100-W linear laser diode arrays with the output power not exceeding 70% of the maximum power, 5 mJ was achieved in a 50-ns diffraction-limited single pulse for the efficiency (with respect to the pump radiation energy) of 1.35%.

  1. Single-longitudinal-mode erbium-doped fiber laser with multiple linear cavity

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Ren, Wenhua; Jian, Shuisheng

    2008-12-01

    An improved stable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser with multiple-linear short cavity is demonstrated. Three fiber Bragg gratings (FBGs) with the same parameters directly written in a homemade photosensitive EDF (PEDF) in a single step are used as the wavelength-selective and mode-selective component in a 14 cm long linear laser cavity. The optical signal-to-noise ratio (OSNR) is over 50 dB. The amplitude variation in nearly one hour is less than 0.3 dB. The proposed laser has the advantages such as simple fabrication and compact all-optical fiber configuration.

  2. Tradeoff on gain-flatness and gain-stabilization of erbium doped fiber amplifier with FBGs

    NASA Astrophysics Data System (ADS)

    Buyin, Garidi; OuYang, Yunlun; Ma, Yu; Chang, Jinlong; Liu, Changxing; Yang, Jiuru

    2014-07-01

    It is a challenge to get gain-stabilization and gain-flatness of erbium doped fiber amplifier (EDFA) in C-band, simultaneously. In this article, we establish a gain-clamped EDFA model based uniform fiber grating-pair and optimize the reflectivity of grating by the designed targets. The tradeoff between stabilization and flatness can be obtained when an ideal reflectivity is adopted. The numerical results show that the gain-stabilization is controlled in +/-0.1dB and gain-flatness is less than +/-1.41dB in the range from 1535nm to 1565nm.

  3. Two simultaneous operating regimes in an Erbium doped-fiber laser

    NASA Astrophysics Data System (ADS)

    Demori, C. B. S.; Thoroh de Souza, E. A.

    2015-06-01

    This work presents an Erbium doped fiber laser operating simultaneously in two distinct regimes, active mode-locking and continuous wave (CW), by introducing two arrayed waveguide gratings (AWG) paired inside ring cavity. Active phase modulator operating at 10 GHz and a single mode fiber were introduced between the two AWGs to allow the two operating regimes. The mode-locking was able to generated pulses with 30 ps simultaneous with the CW line. Both lasers could be tunable independent and simultaneously from 1530 nm to 1565 nm.

  4. Latest results and future perspectives on Few-Mode Erbium Doped Fiber Amplifiers

    NASA Astrophysics Data System (ADS)

    Trinel, Jean-Baptiste; Le Cocq, Guillaume; Andresen, Esben Ravn; Quiquempois, Yves; Bigot, Laurent

    2017-02-01

    Space division multiplexing has generated a lot of interest during the last five years and motivated intensive work on multicore and few-mode fibers. Whereas some concepts like multimode waveguides and mode coupling have been re-visited for mode-division multiplexing, some new problems have been addressed, as is the case for multimode optical amplifiers. This paper recalls the general context of the work on Few-Mode Erbium-Doped Fiber Amplifiers and reviews the main results reported so far on this topic.

  5. Normal dispersion erbium-doped fiber laser with pulse energies above 10 nJ.

    PubMed

    Ruehl, Axel; Kuhn, Vincent; Wandt, Dieter; Kracht, Dietmar

    2008-03-03

    We report on an erbium-doped fiber oscillator mode-locked by nonlinear polarization evolution operating in the large normal dispersion regime. The setup produced highly chirped 10 nJ pulses at 37 MHz which can be compressed externally to below 75 fs. Hence, this simple and practical setup is capable of providing ultrashort pulses with a peak power of 140 kW. The pulse formation is indeed subject to intrapulse Raman-scattering but a clean and stable pulse train can be observed. The similarities as well as the differences of the output characteristics to the parabolic pulse and wave breaking-free regime are explicated.

  6. Generating few-cycle pulses for nanoscale photoemission easily with an erbium-doped fiber laser.

    PubMed

    Thomas, Sebastian; Holzwarth, Ronald; Hommelhoff, Peter

    2012-06-18

    We demonstrate a simple setup capable of generating four-cycle pulses at a center wavelength of 1700 nm for nanoscale photoemission. Pulses from an amplified erbium-doped fiber laser are spectrally broadened by propagation through a highly non-linear fiber. Subsequently, we exploit dispersion in two different types of glass to compress the pulses. The pulse length is estimated by measuring an interferometric autocorrelation trace and comparing it to a numerical simulation. We demonstrate highly non-linear photoemission of electrons from a nanometric tungsten tip in a hitherto unexplored pulse parameter range.

  7. Two-photon-induced internal modification of silicon by erbium-doped fiber laser.

    PubMed

    Verburg, P C; Römer, G R B E; Huis In 't Veld, A J

    2014-09-08

    Three-dimensional bulk modification of dielectric materials by multiphoton absorption of laser pulses is a well-established technology. The use of multiphoton absorption to machine bulk silicon has been investigated by a number of authors using femtosecond laser sources. However, no modifications confined in bulk silicon, induced by multiphoton absorption, have been reported so far. Based on results from numerical simulations, we employed an erbium-doped fiber laser operating at a relatively long pulse duration of 3.5 nanoseconds and a wavelength of 1549 nm for this process. We found that these laser parameters are suitable to produce modifications at various depths inside crystalline silicon.

  8. Smart Q-switching for single-pulse generation in an erbium-doped fiber laser.

    PubMed

    Escalante-Zarate, Luis; Barmenkov, Yuri O; Kolpakov, Stanislav A; Cruz, José L; Andrés, Miguel V

    2012-02-13

    In this paper, we report an active Q-switching of an erbium-doped fiber laser with special modulation functions and novel laser geometry. We experimentally demonstrate that using such a smart Q-switch approach, Q-switch ripple-free pulses with Gaussian-like shape and 17.3 ns width can be easily obtained. The idea behind the smart Q-switch is to suppress one of two laser waves contra-propagating along the fiber cavity, which arises after Q-cell opening, and to eliminate the minor sub-pulses.

  9. Use of proper cavity loss for a stable single-longitudinal-mode erbium fiber laser

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Zhuang, Yuan-Hong; Tsai, Ning; Chow, Chi-Wai; Chen, Jing-Heng

    2017-06-01

    A stable and selectable erbium-doped fiber (EDF) ring laser configuration with single-longitudinal-mode (SLM) output is proposed and demonstrated in this paper. In the proposed laser scheme, a proper cavity loss is utilized for significant suppression of the side mode. In the experiment, the different coupling ratios required to produce various cavity losses in the proposed fiber laser are analyzed. Here, to reach the wavelength selection, several fiber Bragg gratings (FBGs) and an optical tunable bandpass filter (OTBF) in the C-band range are employed for demonstration. In addition, the output performance with respect to stability and SLM in the proposed EDF ring laser are also investigated simultaneously.

  10. Highly stable and efficient erbium-doped 2.8 microm all fiber laser.

    PubMed

    Bernier, Martin; Faucher, Dominic; Caron, Nicolas; Vallée, Réal

    2009-09-14

    We demonstrate the efficient and stable CW laser operation at 2.824 microm of a diode-pumped erbium-doped fluoride fiber laser employing an intracore fiber Bragg grating high reflector. An output power of 5 W and an optical-to-optical conversion efficiency of 32% are reported. The temporal and spectral stability of the laser represent a significant improvement over previous work. This report paves the way to the commercialization of compact and stable fiber lasers for spectroscopic and medical applications.

  11. Reverse horseshoe and spiral templates in an erbium-doped fiber laser.

    PubMed

    Used, Javier; Martín, Juan Carlos

    2009-04-01

    Time series obtained from the emission of an erbium-doped fiber ring laser with sine-wave pump modulation have been analyzed in order to determine the topological structure of the underlying chaotic attractor. With appropriate modulation conditions, topological structures not often observed in experimental systems have been found: the reverse horseshoe and the spiral template. The method employed for template determination is not conventional as it takes profit of the high dissipation of the system, which allows one to simplify dramatically the general procedure of analysis.

  12. A unidirectional multiwavelength erbium-doped fiber ring laser without isolator at room temperature

    NASA Astrophysics Data System (ADS)

    Sun, Guoyong; Qu, Ronghui; Yang, Jing; Wang, Xiangzhao; Fang, Zujie

    2005-01-01

    Highly uniform multiwavelength erbium-doped fiber ring laser with a sinusoidal phase modulator and line intervals of 0.45 nm is demonstrated. The flat and stable output distribution is realized by optimizing modulation voltage and frequency for the sine phase modulator. Simultaneous 30 lasing lines are obtained in power difference less than 2 dB. In addition, the implemented cavity structure can support unidirectional operation even without optical isolators. The power difference between clockwise and counterclockwise direction is higher than 20 dB, almost independent of pumping powers and lasing wavelengths in lasing operation.

  13. Reverse horseshoe and spiral templates in an erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Used, Javier; Martín, Juan Carlos

    2009-04-01

    Time series obtained from the emission of an erbium-doped fiber ring laser with sine-wave pump modulation have been analyzed in order to determine the topological structure of the underlying chaotic attractor. With appropriate modulation conditions, topological structures not often observed in experimental systems have been found: the reverse horseshoe and the spiral template. The method employed for template determination is not conventional as it takes profit of the high dissipation of the system, which allows one to simplify dramatically the general procedure of analysis.

  14. Figure-eight actively-passively mode-locked erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoying; Yu, Zhenhong; Ge, Chunfeng; Zhang, Ruifeng; Jia, Dongfang; Li, Shichen

    2003-03-01

    The advantages of using nonlinear optical loop mirror (NOLM) to compress pulse with slight amplitude fluctuation and reflected energy loss are analyzed in theory. Experimentally the NOLM is placed in an actively mode-locked erbium-doped fiber ring laser to form a figure-eight actively and passively modelocked fiber laser. 12 ps mode-locked pulses centered at 1.543 ?m were obtained with the modulation frequency of 2.498748700 GHz. 3.715 mW output power is achieved with 50 mW pump power.

  15. Dynamics of an erbium-doped fiber laser with pump modulation: theory and experiment

    NASA Astrophysics Data System (ADS)

    Pisarchik, Alexander N.; Kir'yanov, Alexander V.; Barmenkov, Yuri O.; Jaimes-Reátegui, Rider

    2005-10-01

    We study in detail the complex dynamics of an erbium-doped fiber laser that has been subjected to harmonic modulation of a diode pump laser. We introduce a novel laser model that describes perfectly all experimentally observed features. The model is generalized to a nonlinear oscillator. The coexistence of different periodic and chaotic regimes and their relation to subharmonics and higher harmonics of the relaxation oscillation frequency of the laser are demonstrated with codimensional-one and codimensional-two bifurcation diagrams in parameter space of the modulation frequency and amplitude. The phase difference between the laser response and the pump modulation is also investigated.

  16. Tunable multiwavelength narrow linewidth Brillouin erbium fiber laser based on Rayleigh backscattering

    NASA Astrophysics Data System (ADS)

    Wang, Xiaorui; Yang, Yanfu; Liu, Meng; Yao, Yong

    2016-06-01

    A Rayleigh backscattering (RBS) assisted Brillouin erbium fiber laser scheme with multiwavelength narrow linewidth output is proposed and investigated experimentally. The stimulated Brillouin scattering and RBS take place at two conventional single-mode fibers (SMFs), respectively. RBS is used as a mechanism to compress the linewidth of each Stokes component, and it has been realized and maximized in conventional SMF by optimizing injection power of Stokes light through adjusting variable optical attenuator (VOA). By adjusting VOA attenuation, the laser can obtain three wavelengths output with 3 dB linewidth less than 2 KHz for each wavelength, or six wavelengths output with 3 dB linewidth less than 5 KHz.

  17. Poor fluorinated graphene sheets carboxymethylcellulose polymer composite mode locker for erbium doped fiber laser

    NASA Astrophysics Data System (ADS)

    Mou, Chengbo; Arif, Raz; Lobach, Anatoly S.; Khudyakov, Dmitry V.; Spitsina, Nataliya G.; Kazakov, Valery A.; Turitsyn, Sergei; Rozhin, Aleksey

    2015-02-01

    We report poor fluorinated graphene sheets produced by thermal exfoliation embedding in carboxymethylcellulose polymer composite (GCMC) as an efficient mode locker for erbium doped fiber laser. Two GCMC mode lockers with different concentration have been fabricated. The GCMC based mode locked fiber laser shows stable soliton output pulse shaping with repetition rate of 28.5 MHz and output power of 5.5 mW was achieved with the high concentration GCMC, while a slightly higher output power of 6.9 mW was obtained using the low concentration GCMC mode locker.

  18. Pulpal response to cavity preparation by an erbium, chromium:YSGG laser-powered hydrokinetic system.

    PubMed

    Eversole, L R; Rizoiu, I; Kimmel, A I

    1997-08-01

    The near red-pulsed erbium, chromium:yttrium-scandium-gallium-garnet laser hydrokinetic system, or Er,Cr:YSGG laser HKS, is effective in cutting dental hard tissues. In this longitudinal study, the authors studied the continuously erupting open-apex incisors of New Zealand albino rabbits and the constricted apex teeth of beagles to determine the effects of HKS-produced lesions at various energy levels and of preparations produced by a tapered fissure bur on dental pulp. No pulpal inflammatory responses could be identified either immediately or 30 days after surgery in HKS preparations that removed enamel and dentin without pulp exposure.

  19. Infrared spectroscopy and upconversion luminescence behaviour of erbium doped yttrium (III) oxide phosphor

    NASA Astrophysics Data System (ADS)

    Dubey, Vikas; Tiwari, Ratnesh; Tamrakar, Raunak Kumar; Rathore, Gajendra Singh; Sharma, Chitrakant; Tiwari, Neha

    2014-11-01

    The paper reports upconversion luminescence behaviour and infra-red spectroscopic pattern of erbium doped yttrium (III) oxide phosphor. Sample was synthesized by solid state reaction method with variable concentration or erbium (0.5-2.5 mol%). The conventional solid state method is suitable for large scale production and eco-friendly method. The prepared sample was characterized by X-ray diffraction (XRD) technique. From structural analysis by XRD technique shows cubic structure of prepared sample with variable concentration of erbium and no impurity phase were found when increase the concentration of Er3+. Particle size was calculated by Scherer's formula and it varies from 67 nm to 120 nm. The surface morphology of prepared phosphor was determined by field emission gun scanning electron microscopy (FEGSEM) technique. The surface morphology of the sample shows good connectivity with grains as well as some agglomerates formation occurs in sample. The functional group analysis was done by Fourier transform infra-red technique (FTIR) analysis which confirm the formation of Y2O3:Er3+ phosphor was prepared. The results indicated that the Y2O3:Er3+ phosphors might have high upconversion efficiency because of their low vibrational energy. Under 980 nm laser excitation sample shows intense green emission at 555 nm and orange emission at 590 nm wavelength. For green emission transition occurs 2H11/2 → 4I15/2, 4S3/2 → 4I15/2 for upconversion emissions. Excited state absorption and energy transfer process were discussed as possible upconversion mechanisms. The near infrared luminescence spectra was recorded. The upconversion luminescence intensity increase with increasing the concentration or erbium up to 2 mol% after that luminescence intensity decreases due to concentration quenching occurs. Spectrophotometric determinations of peaks are evaluated by Commission Internationale de I'Eclairage (CIE) technique. From CIE technique the dominant peak of from PL spectra shows

  20. Erbium-doped yttrium aluminium garnet ablative laser treatment for endogenous ochronosis.

    PubMed

    Chaptini, Cassandra; Huilgol, Shyamala C

    2015-08-01

    Ochronosis is a rare disease characterised clinically by bluish-grey skin discolouration and histologically by yellow-brown pigment deposits in the dermis. It occurs in endogenous and exogenous forms. Endogenous ochronosis, also known as alkaptonuria, is an autosomal recessive disease of tyrosine metabolism, resulting in the accumulation and deposition of homogentisic acid in connective tissue. We report a case of facial endogenous ochronosis and coexistent photodamage, which was successfully treated with erbium-doped yttrium aluminium garnet laser resurfacing and deep focal point treatment to remove areas of residual deep pigment.

  1. S- plus C-band erbium-doped fiber amplifier in parallel structure

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Lee, Chien-Chung; Chi, Sien

    2004-11-01

    A new S- plus C-band erbium-doped fiber amplifier (EDFA) module with coupled structure over 96 nm gain bandwidth of 1480-1576 nm has been experimentally investigated and demonstrated. For this proposed configuration, 30 and 36.2 dB peak gains are observed at 1506 and 1532 nm, respectively, when the input signal power is -25 dBm. In addition, this proposed amplifier module also can provide a broadband amplified spontaneous emission (ASE) light source from 1480 to 1572 nm.

  2. Different types of nonlinear localized and periodic waves in an erbium-doped fiber system

    NASA Astrophysics Data System (ADS)

    Ren, Yang; Yang, Zhan-Ying; Liu, Chong; Yang, Wen-Li

    2015-12-01

    We study nonlinear waves on a plane-wave background in an erbium-doped fiber system, which is governed by the coupled nonlinear Schrödinger and the Maxwell-Bloch equations. We find that prolific different types of nonlinear localized and periodic waves do exist in the system, including multi-peak soliton, periodic wave, antidark soliton, and W-shaped soliton (as well as the known bright soliton, breather, and rogue wave). In particular, the dynamics of these waves can be extracted from a unified exact solution, and the corresponding existence conditions are presented explicitly. Our results demonstrate the structural diversity of the nonlinear waves in this system.

  3. Fibercore AstroGain fiber: multichannel erbium doped fibers for optical space communications

    NASA Astrophysics Data System (ADS)

    Hill, Mark; Gray, Rebecca; Hankey, Judith; Gillooly, Andy

    2014-03-01

    Fibercore have developed AstroGainTM fiber optimized for multichannel amplifiers used in optical satellite communications and control. The fiber has been designed to take full advantage of the photo-annealing effect that results from pumping in the 980nm region. The proprietary trivalent structure of the core matrix allows optimum recovery following radiation damage to the fiber, whilst also providing a market leading Erbium Doped Fiber Amplifier (EDFA) efficiency. Direct measurements have been taken of amplifier efficiency in a multichannel assembly, which show an effective photo-annealing recovery of up to 100% of the radiation induced attenuation through excitation of point defects.

  4. Investigation of dynamic properties of erbium fiber laser for ultrasonic sensing.

    PubMed

    Wu, Qi; Okabe, Yoji; Sun, Junqiang

    2014-04-07

    Dynamic properties of an erbium fiber laser (EFL) is researched and demonstrated for ultrasonic sensing in this research. The EFL has ring cavity incorporated with a phase-shifted fiber Bragg grating. A numerical model is used to analyze its dynamic responses to quasi-static change, continuous wave and burst wave. The ultrasonic behavior of the EFL resembles the forced single degree of freedom vibration with damping. Corresponding experimental results fit the simulation results well, showing some interesting ultrasonic properties of this EFL. After certain data process method, this EFL can be used in practical ultrasonic nondestructive testing.

  5. A p-channel MESFET on silicon using an erbium gate

    NASA Astrophysics Data System (ADS)

    Bohlin, K.; Nilsson, H. T.; Tove, P. A.

    1985-09-01

    A p-channel MESFET (metal semiconductor field-effect transistor) has been fabricated using erbium as gate material and iridium as source and drain contacts. The results show that it is possible to achieve p-type devices with characteristics comparable to n-type devices. As substrate silicon on sapphire (SOS) was used since it gives a well-defined channel thickness. The thickness of the silicon was 0.6 μm; after processing this was reduced to about 0.5 μm, which was, thus, the ultimate channel thickness.

  6. Effects of erbium doping of indium tin oxide electrode in resistive random access memory

    NASA Astrophysics Data System (ADS)

    Chen, Po-Hsun; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Pan, Chih-Hung; Lin, Chih-Yang; Jin, Fu-Yuan; Chen, Min-Chen; Huang, Hui-Chun; Lo, Ikai; Zheng, Jin-Cheng; Sze, Simon M.

    2016-03-01

    Identical insulators and bottom electrodes were fabricated and capped by an indium tin oxide (ITO) film, either undoped or doped with erbium (Er), as a top electrode. This distinctive top electrode dramatically altered the resistive random access memory (RRAM) characteristics, for example, lowering the operation current and enlarging the memory window. In addition, the RESET voltage increased, whereas the SET voltage remained almost the same. A conduction model of Er-doped ITO is proposed through current-voltage (I-V) measurement and current fitting to explain the resistance switching mechanism of Er-doped ITO RRAM and is confirmed by material analysis and reliability tests.

  7. Design of optical fiber cable television distribution systems using erbium-doped fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Guo; Sharma, A. B.; Ritthisoonthorn, Pichet

    1998-04-01

    Optical fiber distribution systems with intensity- modulation/direct-detection and erbium-doped fiber amplifiers are designed for cable television (CATV) applications. Two types of system configurations are considered, i.e., the passive power splitter with optically preamplified receivers (PPS-OPR) scheme and the hybrid passive-and-active power splitter (HPAPS) scheme. The receiver sensitivity is calculated for various system parameters. We compare both schemes through the number of CATV subscribers and show that the HPAPS scheme is superior to the PPS-OPR scheme for large- scale CATV distribution applications.

  8. High-rate lithium/manganese dioxide batteries; the double cell concept

    NASA Astrophysics Data System (ADS)

    Drews, Jürgen; Wolf, Rüdiger; Fehrmann, Gerd; Staub, Roland

    An implantable defibrillator battery has to provide pulse-power capabilities as well as high energy density. Low self-discharge rates are mandatory and an ability to check the state of charge is required. To accomplish these requirements, a lithium/manganese dioxide battery with a modified active cathode mass has been developed. Usage of a double cell design increases significantly the battery performance within an implantable defibrillator. The design features of a high-rate, pulse-power, manganese dioxide double cell are described.

  9. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    SciTech Connect

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

    2004-12-14

    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were {approx} 4 x 10{sup -7} cm{sup 2}/s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10{sup -5} to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form.

  10. Aqueous lithium air batteries

    DOEpatents

    Visco, Steven J.; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Petrov, Alexei; Goncharenko, Nikolay

    2017-05-23

    Aqueous Li/Air secondary battery cells are configurable to achieve high energy density and prolonged cycle life. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. The aqueous catholyte comprises an evaporative-loss resistant and/or polyprotic active compound or active agent that partakes in the discharge reaction and effectuates cathode capacity for discharge in the acidic region. This leads to improved performance including one or more of increased specific energy, improved stability on open circuit, and prolonged cycle life, as well as various methods, including a method of operating an aqueous Li/Air cell to simultaneously achieve improved energy density and prolonged cycle life.

  11. Lithium peroxide primary element

    SciTech Connect

    Winsel, A.

    1982-05-04

    In a galvanic primary element of the system Li/H/sub 2/O/sub 2/, the aqueous cathode depolarizer H/sub 2/O/sub 2/ is fixated as a polyurethane gel. It can thereby be controlled and caused to react with the anode metal in accordance with the current drain requirements. This is accomplished using a ram to press the gel toward a conductor which covers the lithium anode, which may take the form of a metal grid and/or a gas diffusion electrode. The oxygen which forms in the working layer through catalytic decomposition of hydrogen peroxide creates a gas bubble when the current is interrupted or the ram is stopped, thereby interrupting the further supply of hydrogen peroxide to the catalyst.

  12. Plasma Immersion Ion Implantation with Solid Targets for Space and Aerospace Applications

    SciTech Connect

    Oliveira, R. M.; Goncalves, J. A. N.; Ueda, M.; Silva, G.; Baba, K.

    2009-01-05

    This paper describes successful results obtained by a new type of plasma source, named as Vaporization of Solid Targets (VAST), for treatment of materials for space and aerospace applications, by means of plasma immersion ion implantation and deposition (PIII and D). Here, the solid element is vaporized in a high pressure glow discharge, being further ionized and implanted/deposited in a low pressure cycle, with the aid of an extra electrode. First experiments in VAST were run using lithium as the solid target. Samples of silicon and aluminum alloy (2024) were immersed into highly ionized lithium plasma, whose density was measured by a double Langmuir probe. Measurements performed with scanning electron microscopy (SEM) showed clear modification of the cross-sectioned treated silicon samples. X-ray photoelectron spectroscopy (XPS) analysis revealed that lithium was implanted/deposited into/onto the surface of the silicon. Implantation depth profiles may vary according to the condition of operation of VAST. One direct application of this treatment concerns the protection against radiation damage for silicon solar cells. For the case of the aluminum alloy, X-ray diffraction analysis indicated the appearance of prominent new peaks. Surface modification of A12024 by lithium implantation/deposition can lower the coefficient of friction and improve the resistance to fatigue of this alloy. Recently, cadmium was vaporized and ionized in VAST. The main benefit of this element is associated with the improvement of corrosion resistance of metallic substrates. Besides lithium and cadmium, VAST allows to performing PIII and D with other species, leading to the modification of the near-surface of materials for distinct purposes, including applications in the space and aerospace areas.

  13. Plasma Immersion Ion Implantation with Solid Targets for Space and Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Oliveira, R. M.; Gonçalves, J. A. N.; Ueda, M.; Silva, G.; Baba, K.

    2009-01-01

    This paper describes successful results obtained by a new type of plasma source, named as Vaporization of Solid Targets (VAST), for treatment of materials for space and aerospace applications, by means of plasma immersion ion implantation and deposition (PIII&D). Here, the solid element is vaporized in a high pressure glow discharge, being further ionized and implanted/deposited in a low pressure cycle, with the aid of an extra electrode. First experiments in VAST were run using lithium as the solid target. Samples of silicon and aluminum alloy (2024) were immersed into highly ionized lithium plasma, whose density was measured by a double Langmuir probe. Measurements performed with scanning electron microscopy (SEM) showed clear modification of the cross-sectioned treated silicon samples. X-ray photoelectron spectroscopy (XPS) analysis revealed that lithium was implanted/deposited into/onto the surface of the silicon. Implantation depth profiles may vary according to the condition of operation of VAST. One direct application of this treatment concerns the protection against radiation damage for silicon solar cells. For the case of the aluminum alloy, X-ray diffraction analysis indicated the appearance of prominent new peaks. Surface modification of A12024 by lithium implantation/deposition can lower the coefficient of friction and improve the resistance to fatigue of this alloy. Recently, cadmium was vaporized and ionized in VAST. The main benefit of this element is associated with the improvement of corrosion resistance of metallic substrates. Besides lithium and cadmium, VAST allows to performing PIII&D with other species, leading to the modification of the near-surface of materials for distinct purposes, including applications in the space and aerospace areas.

  14. Norplant implants.

    PubMed

    Henley, E

    1993-06-01

    This letter to the editor is in response to 3 articles on the use of the Norplant implant contraceptive in The Indian Health Service (IHS) Provider. Norplant and the FDA-approved Depo-Provera now expand contraceptive options for women. All IHS and 638 sites might be able to offer both options. Several of the authors expressed concern regarding decreased Norplant effectiveness in heavier patients. Norplant is still more effective than any other currently available reversible contraceptive in the US at all weights. Many experts feel the current silastic capsule provides adequate hormone levels even in heavier women. The Crow Service Unit has initiated their Norplant program, although the Wyeth consent form seems unnecessarily extensive. The Albuquerque Service Unit consent form simply describes the procedure and confirms that patients have read and understand the fact sheet. The theoretical risk of thromboembolism is vastly outweighed by the potential benefit of reliable contraception in high risk alcoholic women, except perhaps in women with severe liver disease. While Norplant is expensive, programs need to consider the actual cost of a pregnancy, potential complications, and the financial and social costs of unintended pregnancy. For those in difficult straits, the manufacturer has set up a foundation for obtaining Norplant free of charge. Depo-Provera comes in a 150 mg dose vial that is given every 3 months. The mean time to ovulation is 4.5 months from the last dose. The adverse reaction spectrum is similar to Norplant as they are both progesterone-related agents. Providers and clinics should reduce barriers to family planning by giving out more pill packs at a time; letting adolescents who wish to delay their first pelvic exam have 3 months of pills without an exam; making condoms available in exam rooms rather than through pharmacy prescriptions; and increasing patient accessibility to the morning-after pill.

  15. Influence of preparation mode and depth on the fracture strength of zirconia ceramic abutments restored with lithium disilicate crowns.

    PubMed

    Koutayas, Spiridon-Oumvertos; Mitsias, Miltiadis; Wolfart, Stefan; Kern, Matthias

    2012-01-01

    Zirconia implant abutments offer enhanced esthetics and promote biologic sealing; however, the effect of laboratory or intraoral preparation on the mechanical stability of zirconia has not been investigated. The purpose of the study was to evaluate the influence of the preparation mode and depth on the fracture strength of zirconia abutments restored with lithium disilicate crowns. To replace a maxillary central incisor (11.0 mm in height and 8.0 mm in width), 35 lithium disilicate crowns were cemented onto zirconia abutments on 4.5- ° - 15-mm titanium implants. Lithium disilicate implant crowns were divided into five study groups (n = 7) according to the abutment preparation mode (milling by the manufacturer or milling by the Celay System [Mikrona] [P]) and preparation depth (0.5 mm [A], 0.7 mm [B], or 0.9 mm [C]). All groups were subjected to quasi-static loading (S) at 135 degrees to the implant axis in a universal testing machine. Mean fracture strengths were: group SA, 384 ± 84 N (control); group SB, 294 ± 95 N; group SPB, 332 ± 80 N; group SC, 332 ± 52; group SPC, 381 ± 101 N. All specimens presented a typical fracture mode within the implant/abutment internal connection. Multiple regression analysis revealed that preparation depth up to 0.7 mm statistically influenced the fracture strength (P = .034), whereas the preparation mode did not seem to play an important role (P = .175). Regardless of preparation mode, circumferential preparation of zirconia abutments might negatively affect the fracture strength of adhesively cemented single implant lithium disilicate crowns.

  16. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls

    SciTech Connect

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G.; Capece, A.; Koel, B.; Roszell, J.; Biewer, T. M.; Gray, T. K.; Kubota, S.; Beiersdorfer, P.; and others

    2015-05-15

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.

  17. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium wallsa)

    SciTech Connect

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G.; Capece, A.; Koel, B.; Roszell, J.; Biewer, T. M.; Gray, T. K.; Kubota, S.; Beiersdorfer, P.; Widmann, K.; Tritz, K.

    2015-05-01

    The first-ever successful operation of a tokamak with a large area (40% of the total plasm surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.

  18. Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method

    DOEpatents

    Bates, John B.

    1994-01-01

    A battery structure including a cathode, a lithium metal anode and an electrolyte disposed between the lithium anode and the cathode utilizes a thin-film layer of lithium phosphorus oxynitride overlying so as to coat the lithium anode and thereby separate the lithium anode from the electrolyte. If desired, a preliminary layer of lithium nitride may be coated upon the lithium anode before the lithium phosphorous oxynitride is, in turn, coated upon the lithium anode so that the separation of the anode and the electrolyte is further enhanced. By coating the lithium anode with this material lay-up, the life of the battery is lengthened and the performance of the battery is enhanced.

  19. Recent advances in lithium ion technology

    SciTech Connect

    Levy, S.C.

    1995-01-01

    Lithium ion technology is based on the use of lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells (1) and in 1983 for ambient temperature systems (2) it was not until Sony Energytech announced a new lithium ion rechargeable cell containing a lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these cells have the high energy density, high voltage and fight weight of metallic lithium systems plus a very long cycle life, but without the disadvantages of dendrite formation on charge and the safety considerations associated with metallic lithium.

  20. Khalil Amine on Lithium-air Batteries

    SciTech Connect

    Khalil Amine

    2009-09-14

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  1. Michael Thackeray on Lithium-air Batteries

    ScienceCinema

    Thackeray, Michael

    2016-07-12

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  2. Khalil Amine on Lithium-air Batteries

    ScienceCinema

    Khalil Amine

    2016-07-12

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  3. Laser-Assisted Osteotomy for Implant Site Preparation: A Literature Review.

    PubMed

    Moslemi, Neda; Shahnaz, Aysan; Masoumi, Samane; Torabi, Sepehr; Akbari, Solmaz

    2017-02-01

    The aim of this study was to review the scientific evidence about the laser osteotomy in implant bed preparation. An electronic search was performed on relevant English articles up to April 2016 in the PubMed, Scopus, and Google Scholar databases. Twenty-two articles (1 clinical, 13 animal, and 8 ex vivo studies) were included. Implant sites prepared by erbium family lasers and drill showed comparable results regarding the percentage of bone-to-implant contact, values of biomechanical tests, and healing process. Selection of proper laser wavelength and parameters was of paramount importance to minimize the risk of thermal bone damage. Lack of depth control and long time needed for implant site osteotomy with laser were the most challenging concerns for its clinical applicability. Computer-guided laser osteotomy showed promise for future use of laser osteotomy in clinical settings. Evidence from animal studies shows promising results regarding laser osteotomy in implant site preparation. However, because of the lack of clinical studies, it is not possible to make a conclusive result whether there is superiority of laser osteotomy in clinical practice.

  4. The continuous improvement of H-mode discharge performance with progressively increasing lithium coatings in NSTX

    NASA Astrophysics Data System (ADS)

    Maingi, R.; Kaye, S. M.; Skinner, C. H.; Boyle, D. P.; Canik, J. M.; NSTX Team

    2011-10-01

    Lithium wall coatings have been shown to reduce recycling, improve energy confinement,, and suppress edge localized modes, in the NSTX. Here we show that these effects depend nearly continuously on the amount of pre-discharge lithium evaporation. We observed a nearly monotonic reduction in recycling and a decrease in edge electron transport with increasing lithium. Moreover we see a reduction in the electron temperature and profile peaking factors, as well as an improvement in ELM stability with increasing lithium. These correlations challenge basic expectations, given that even the smallest coatings provided a nominal minimum lithium coating thickness of 30 nm, and an average of 60 nm near the outer divertor strike point; the maximum coating thickness was 8x higher. In comparison, the nominal implantation range, which is the relevant scale length for recycling and pumping, was < 10 nm. *Supported in part by U.S. DoE contracts DE-AC05-00OR22725 and DE-AC02-09CH11466.

  5. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    DOEpatents

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  6. Sealed Primary Lithium-Inorganic Electrolyte Cell

    DTIC Science & Technology

    1977-02-01

    Battery , Thionyl Chloride , Lithium , Lithium Aluminum Chloride , Hermetic Lithium Battery , D Cell, Voltage-Delay, Shelf Life, High Energy Density Battery ... lithium - thionyl chloride , inorganic electrclyte system is one of the highest energy density systems known to date (1-4). The cells contain an Li anoae, a...However, this is not tne case with te thionyl chloride system. A completely discharged battery , while sitting on

  7. Lithium in Medicine: Mechanisms of Action.

    PubMed

    Mota de Freitas, Duarte; Leverson, Brian D; Goossens, Jesse L

    2016-01-01

    In this chapter, we review the mechanism of action of lithium salts from a chemical perspective. A description on how lithium salts are used to treat mental illnesses, in particular bipolar disorder, and other disease states is provided. Emphasis is not placed on the genetics and the psychopharmacology of the ailments for which lithium salts have proven to be beneficial. Rather we highlight the application of chemical methodologies for the characterization of the cellular targets of lithium salts and their distribution in tissues.

  8. Novel Electrolytes for Lithium Ion Batteries

    SciTech Connect

    Lucht, Brett L.

    2014-12-12

    We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

  9. Primary lithium batteries, some consumer considerations

    NASA Technical Reports Server (NTRS)

    Bro, P.

    1983-01-01

    In order to determine whether larger size lithium batteries would be commercially marketable, the performance of several D size lithium batteries was compared with that of an equivalent alkaline manganese battery, and the relative costs of the different systems were compared. It is concluded that opportunities exist in the consumer market for the larger sizes of the low rate and moderate rate lithium batteries, and that the high rate lithium batteries need further improvements before they can be recommended for consumer applications.

  10. Rechargeable lithium battery technology - A survey

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald; Surampudi, Subbarao

    1990-01-01

    The technology of the rechargeable lithium battery is discussed with special attention given to the types of rechargeable lithium cells and to their expected performance and advantages. Consideration is also given to the organic-electrolyte and polymeric-electrolyte cells and to molten salt lithium cells, as well as to technical issues, such as the cycle life, charge control, rate capability, cell size, and safety. The role of the rechargeable lithium cell in future NASA applications is discussed.

  11. Rechargeable lithium battery technology - A survey

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald; Surampudi, Subbarao

    1990-01-01

    The technology of the rechargeable lithium battery is discussed with special attention given to the types of rechargeable lithium cells and to their expected performance and advantages. Consideration is also given to the organic-electrolyte and polymeric-electrolyte cells and to molten salt lithium cells, as well as to technical issues, such as the cycle life, charge control, rate capability, cell size, and safety. The role of the rechargeable lithium cell in future NASA applications is discussed.

  12. Lithium Ion Battery Anode Aging Mechanisms

    PubMed Central

    Agubra, Victor; Fergus, Jeffrey

    2013-01-01

    Degradation mechanisms such as lithium plating, growth of the passivated surface film layer on the electrodes and loss of both recyclable lithium ions and electrode material adversely affect the longevity of the lithium ion battery. The anode electrode is very vulnerable to these degradation mechanisms. In this paper, the most common aging mechanisms occurring at the anode during the operation of the lithium battery, as well as some approaches for minimizing the degradation are reviewed. PMID:28809211

  13. Primary lithium batteries, some consumer considerations

    NASA Technical Reports Server (NTRS)

    Bro, P.

    1983-01-01

    In order to determine whether larger size lithium batteries would be commercially marketable, the performance of several D size lithium batteries was compared with that of an equivalent alkaline manganese battery, and the relative costs of the different systems were compared. It is concluded that opportunities exist in the consumer market for the larger sizes of the low rate and moderate rate lithium batteries, and that the high rate lithium batteries need further improvements before they can be recommended for consumer applications.

  14. Surface-Directed Synthesis of Erbium-Doped Yttrium Oxide Nanoparticles within Organosilane Zeptoliter Containers

    PubMed Central

    2015-01-01

    We introduce an approach to synthesize rare earth oxide nanoparticles using high temperature without aggregation of the nanoparticles. The dispersity of the nanoparticles is controlled at the nanoscale by using small organosilane molds as reaction containers. Zeptoliter reaction vessels prepared from organosilane self-assembled monolayers (SAMs) were used for the surface-directed synthesis of rare earth oxide (REO) nanoparticles. Nanopores of octadecyltrichlorosilane were prepared on Si(111) using particle lithography with immersion steps. The nanopores were filled with a precursor solution of erbium and yttrium salts to confine the crystallization step to occur within individual zeptoliter-sized organosilane reaction vessels. Areas between the nanopores were separated by a matrix film of octadecyltrichlorosilane. With heating, the organosilane template was removed by calcination to generate a surface array of erbium-doped yttria nanoparticles. Nanoparticles synthesized by the surface-directed approach retain the periodic arrangement of the nanopores formed from mesoparticle masks. While bulk rare earth oxides can be readily prepared by solid state methods at high temperature (>900 °C), approaches for preparing REO nanoparticles are limited. Conventional wet chemistry methods are limited to low temperatures according to the boiling points of the solvents used for synthesis. To achieve crystallinity of REO nanoparticles requires steps for high-temperature processing of samples, which can cause self-aggregation and dispersity in sample diameters. The facile steps for particle lithography address the problems of aggregation and the requirement for high-temperature synthesis. PMID:25163977

  15. Surface-directed synthesis of erbium-doped yttrium oxide nanoparticles within organosilane zeptoliter containers.

    PubMed

    Englade-Franklin, Lauren E; Morrison, Gregory; Verberne-Sutton, Susan D; Francis, Asenath L; Chan, Julia Y; Garno, Jayne C

    2014-09-24

    We introduce an approach to synthesize rare earth oxide nanoparticles using high temperature without aggregation of the nanoparticles. The dispersity of the nanoparticles is controlled at the nanoscale by using small organosilane molds as reaction containers. Zeptoliter reaction vessels prepared from organosilane self-assembled monolayers (SAMs) were used for the surface-directed synthesis of rare earth oxide (REO) nanoparticles. Nanopores of octadecyltrichlorosilane were prepared on Si(111) using particle lithography with immersion steps. The nanopores were filled with a precursor solution of erbium and yttrium salts to confine the crystallization step to occur within individual zeptoliter-sized organosilane reaction vessels. Areas between the nanopores were separated by a matrix film of octadecyltrichlorosilane. With heating, the organosilane template was removed by calcination to generate a surface array of erbium-doped yttria nanoparticles. Nanoparticles synthesized by the surface-directed approach retain the periodic arrangement of the nanopores formed from mesoparticle masks. While bulk rare earth oxides can be readily prepared by solid state methods at high temperature (>900 °C), approaches for preparing REO nanoparticles are limited. Conventional wet chemistry methods are limited to low temperatures according to the boiling points of the solvents used for synthesis. To achieve crystallinity of REO nanoparticles requires steps for high-temperature processing of samples, which can cause self-aggregation and dispersity in sample diameters. The facile steps for particle lithography address the problems of aggregation and the requirement for high-temperature synthesis.

  16. Treatment of dilated pores with 1410-nm fractional erbium-doped fiber laser.

    PubMed

    Suh, Dong-Hye; Chang, Ka-Yeun; Lee, Sang-Jun; Song, Kye-Yong; Choi, Jeong Hwee; Shin, Min Kyung; Jeong, Ki-Heon

    2015-04-01

    Dilated pores can be an early sign of skin aging and are a significant cosmetic concern. The 1410-nm wavelength is optimal for superficial dermal treatments up to 650 μm deep. The aim of the present study was to evaluate the clinical effectiveness and safety of the fractional erbium-doped fiber 1410-nm laser in the treatment of dilated pores. Fifteen patients with dilated facial pores underwent three laser treatments at 3-week intervals. Posttreatment skin responses and side effects were assessed at treatment and follow-up visits by study physicians. Clinical effectiveness of treatment was assessed by both study physicians and patients 3 months after the final laser treatment using a quartile grading scale. Histological examination was performed using biopsy samples taken at baseline (pretreatment) and 3 months after the last treatment. This study showed that greater than 51 % improvement in dilated pores was demonstrated in 14 of 15 patients after three sessions of laser treatments. Improvements in skin texture, tone, and smoothness were reported in all patients. Treatment was well tolerated in all patients, with no unanticipated side effects. This study demonstrates that the 1410-nm fractional erbium fiber laser is effective and safe for treatment of dilated facial pores in Fitzpatrick skin types III-IV.

  17. The impact of erbium incorporation on the structure and photophysics of silicon-germanium nanowires.

    PubMed

    Wu, Ji; Wieligor, Monika; Zerda, T Waldek; Coffer, Jeffery L

    2010-12-01

    In this paper, we report multi-step processes for the fabrication of Er3+-doped SiGe nanowires (NWs) and characterization of their emissive properties. Three different alloyed architectures are obtained by altering the deposition sequences of Si and Er3+ on a Ge core NW, each involving a fixed concentration of these three elements. The deposition of Si onto the Ge NW core, followed by an Er3+-rich layer on the outermost surface, permits facile formation of a SiGe alloy given the lack of an erbium diffusion barrier; yet clustering of the erbium centers on the NW surface produces the weakest emitter. For nanowires prepared by co-depositing Si and Er3+ on top of the Ge core, the presence of impurity Er3+ ions greatly reduces the alloying rate of Si and Ge such that less Si can diffuse into the Ge core. For this structure, the reduction of Er-Er interactions by a polycrystalline Si shell results in the strongest emission at 1540 nm. If an Er3+ layer is inserted between the Ge and Si layers (a sandwich structure), it is found that Er3+ ions diffuse preferentially into the SiGe core instead of the silicon-rich shell, with a correspondingly weaker luminescence intensity. A combination of high resolution transmission electron microscopy, energy dispersive X-ray mapping, micro-Raman spectroscopy, and photoluminescence spectroscopy are employed to derive these conclusions.

  18. Acid synthesis of luminescent amine-functionalized or erbium-doped silica spheres for biological applications.

    PubMed

    Enrichi, Francesco; Trave, Enrico; Bersani, Marco

    2008-03-01

    In this work we discuss and investigate the morphological and optical properties of luminescent silica spheres which can have interesting applications in bioimaging and biosensing. The spheres are synthesized following an acid route by the hydrolysis and condensation of tetraethylortosilicate (TEOS) and can be functionalized by incorporation of aminopropyl-triethoxysilane (APTES) during the synthesis, inducing a significant luminescence that can be attributed to a recombination mechanism from localized organic defects related to -NH(2) groups. It is shown that the acid synthesis route produces very regular spherical particles, but their diameter vary in the range of 200-4,000 nm. The luminescence properties have been investigated and optimized by variation of the annealing temperature for the functionalized spheres, obtaining the most efficient PL emission after a thermal treatment of 1 h at 600 degrees C in air. Moreover, the possibility to introduce rare earths like erbium in the spheres was also studied and the corresponding Er(3) luminescence emission at 1.53 microm is reported in terms of intensity and lifetime, pointing out that erbium can be easily and efficiently incorporated during the acid synthesis giving high PL intensity with a good lifetime of 3.9 ms.

  19. Pulpal thermal responses to an erbium,chromium: YSGG pulsed laser hydrokinetic system.

    PubMed

    Rizoiu, I; Kohanghadosh, F; Kimmel, A I; Eversole, L R

    1998-08-01

    Laser systems are known to raise pulpal temperatures when applied to tooth surfaces. Dental biocalcified tissues can be cut with an erbium,chromium:yttrium-scandium-gallium-garnet laser-powered hydrokinetic system. This device is effective for caries removal and cavity preparation in vitro. Pulpal monitoring of temperature changes during hard tissue cutting by a hydrokinetic system have not been reported. This study compared the effects of hydrokinetic system, dry bur, and wet bur tooth cutting on pulpal temperature. In vivo thermocouple intrapulpal measurements were made on cuspid teeth in anesthetized beagle dogs. In vitro measurements were made on extracted human molar teeth preserved in high-salt solution and later rinsed in phosphate-buffered saline (pH 7.4) to simulate in vivo conditions. The hydrokinetic system was compared with conventional air-turbine-powered bur cutting. The hydrokinetic system cuts and bur preparations were randomly made on the buccal surfaces at the cervical one third of the crown and extended until exposure of the pulp was confirmed clinically. Pulpal temperatures associated with the hydrokinetic system either showed no change or decreased by up to 2 degrees C. Wet bur preparations resulted in a 3 degrees to 4 degrees C rise. With dry bur preparations, a 14 degrees C rise in temperature was recorded. Under the conditions of this study, the erbium,chromium:yttrium-scandium-gallium-garnet laser-powered hydrokinetic system, when used for cavity preparation, had no apparent adverse thermal effect as measured in the pulp space.

  20. Erbium:YAG laser photothermal retinal ablation in enucleated rabbit eyes.

    PubMed

    D'Amico, D J; Moulton, R S; Theodossiadis, P G; Yarborough, J M

    1994-06-15

    The erbium:YAG laser has been shown to produce precise tissue ablation because of the high water absorption of the 2.94-microns wave-length emitted by this laser. We used an experimental system to create lesions of various depths in the surface of the rabbit retina in enucleated eyes in vitro to examine the potential application to maneuvers such as retinotomy and the removal of epiretinal membranes in vitrectomy. With an air/retinal interface, single pulses produced discrete craters in the retinal surface with a depth proportional to fluence, ranging from 30 microns for a pulse of 1.3 J/cm2 to a full-thickness retinotomy at 3.9 J/cm2. An adjacent zone of coagulated tissue ranging in size from 15 to 40 microns was noted. Multiple pulses had an additive effect. With a fluid/retinal interface, 20 pulses of 3.6 J/cm2 produced a full-thickness retinotomy, with an adjacent zone of damaged tissue up to 1 mm, caused by effects of volatilization of intervening fluid. The erbium:YAG laser may have a role in vitreoretinal surgery.