Yin, Zhihua; Su, Meng; Li, Xuelian; Li, Mingchuan; Ma, Rui; He, Qincheng; Zhou, Baosen
2009-12-14
Excision repair cross-complementing group 1 (ERCC1) and group 2 (ERCC2) proteins play important roles in the repair of DNA damage and adducts. Single nucleotide polymorphisms (SNPs) of DNA repair genes are suspected to influence the risk of lung cancer. This study aimed to investigate the association between the ERCC2 751, 312 and ERCC1 118 polymorphisms and the risk of lung adenocarcinoma in Chinese non-smoking females. A hospital-based case-control study of 285 patients and 285 matched controls was conducted. Information concerning demographic and risk factors was obtained for each case and control by a trained interviewer. After informed consent was obtained, each person donated 10 ml blood for biomarker testing. Three polymorphisms were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. This study showed that the individuals with the combined ERCC2 751AC/CC genotypes were at an increased risk for lung adenocarcinoma compared with those carrying the AA genotype [adjusted odds ratios (OR) 1.64, 95% confidence interval (CI) 1.06-2.52]. The stratified analysis suggested that increased risk associated with ERCC2 751 variant genotypes (AC/CC) was more pronounced in individuals without exposure to cooking oil fume (OR 1.98, 95%CI 1.18-3.32) and those without exposure to fuel smoke (OR 2.47, 95%CI 1.46-4.18). Haplotype analysis showed that the A-G-T and C-G-C haplotypes were associated with increased risk of lung adenocarcinoma among non-smoking females (ORs were 1.43 and 2.28, 95%CIs were 1.07-1.91 and 1.34-3.89, respectively). ERCC2 751 polymorphism may be a genetic risk modifier for lung adenocarcinoma in non-smoking females in China.
Pérez-Ramírez, Cristina; Cañadas-Garre, Marisa; Alnatsha, Ahmed; Villar, Eduardo; Delgado, Juan Ramón; Faus-Dáder, María José; Calleja-Hernández, Miguel Ÿngel
2016-09-01
Platinum-based chemotherapy is the standard treatment for NSCLC patients with EGFR wild-type, and as alternative to failure to EGFR inhibitors. However, this treatment is aggressive and most patients experience grade 3-4 toxicities. ERCC1, ERCC2, ERCC5, XRCC1, MDM2, ABCB1, MTHFR, MTR, SLC19A1, IL6 and IL16 gene polymorphisms may contribute to individual variation in toxicity to chemotherapy. The aim of this study was to evaluate the effect of these polymorphisms on platinum-based chemotherapy in NSCLC patients. A prospective cohorts study was conducted, including 141 NSCLC patients. Polymorphisms were analyzed by PCR Real-Time with Taqman(®) probes and sequencing. Patients with ERCC1 C118T-T allele (p=0.00345; RR=26.05; CI95%=4.33, 515.77) and ERCC2 rs50872-CC genotype (p=0.00291; RR=4.06; CI95%=1.66, 10.65) had higher risk of general toxicity for platinum-based chemotherapy. ERCC2 Asp312Asn G-alelle, ABCB1 C1236T-TT and the IL1B rs12621220-CT/TT genotypes conferred a higher risk to present multiple adverse events. The subtype toxicity analysis also revealed that ERCC2 rs50872-CC genotype (p=0.01562; OR=3.23; CI95%=1.29, 8.82) and IL16 rs7170924-T allele (p=0.01007; OR=3.19; CI95%=1.35, 7.97) were associated with grade 3-4 hematological toxicity. We did not found the influence of ERCC1 C8092A, ERCC2 Lys751Gln, ERCC2 Asp312Asn, ERCC5 Asp1104His, XRCC1 Arg194Trp, MDM2 rs1690924, ABCB1 C3435T, ABCB1 Ala893Ser/Thr, MTHFR A1298C, MTHFR C677T, IL1B rs1143623, IL1B rs16944, and IL1B rs1143627 on platinum-based chemotherapy toxicity. In conclusion, ERCC1 C118T, ERCC2 rs50872, ERCC2 Asp312Asn, ABCB1 C1236T, IL1B rs12621220 and IL16 rs7170924 polymorphisms may substantially act as prognostic factors in NSCLC patients treated with platinum-based chemotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jian, Yuekui; Tian, Xiaobin; Li, Bo; Zhou, Zhuojia; Wu, Xinglin
2015-05-01
With great interest, we read the article "ERCC polymorphisms and prognosis of patients with osteosarcoma" (by Li JS et al.), which has reached important conclusions about the relationship between ERCC polymorphisms and osteosarcoma prognosis. Through quantitative analysis, the meta-analysis showed that ERCC2 Lys751Gln (ORGG vs. AA = 0.40 (95%CI = 0.1-0.86), P heterogeneity = 0.502; I (2) = 0 %) and ERCC5 His46His (ORCC vs. TT = 0.37 (95%CI = 0.15-0.93), P heterogeneity = 0.569; I (2) = 0 %) polymorphisms might influence the prognosis of patients with osteosarcoma [1]. The meta-analysis results are encouraging. Nevertheless, some deficiencies still existed that we would like to raise.
Xiao, Sha; Gao, Lin; Liu, Yanhua; Yu, Tao; Jin, Cuihong; Pan, Liang; Zhu, Guolian; Lu, Xiaobo
2013-02-18
DNA damage induced by benzene and its metabolites is thought of as an important mechanism underlying benzene genotoxicity in chronic benzene poisoning (CBP). Therefore, genetic variation in DNA repair genes may contribute to susceptibility to CBP in the exposed population. Since benzene-induced DNA damages include DNA adducts, we hypothesized that the polymorphisms of ERCC1 (Excision repair cross complementation group 1) and ERCC2/XPD (Excision repair cross complementation group 2/xeroderma pigmentosum group D) are associated with the risk of CBP. A case-control study involving 102 benzene-poisoned patients and 204 none-benzene-poisoned controls occupationally exposed to benzene was carried out in the Northeast region of China. The polymorphisms of codon 118 (rs11615) and C8092A (rs3212986) of ERCC1, codon 751 (rs13181), 312 (rs1799793) and 156 (rs238406) of ERCC2/XPD were genotyped by TaqMan(®) Real-time PCR. The results showed that individuals carrying the ERCC1 codon 118 TT genotype had an increased risk of CBP (OR(adj)=3.390; 95%CI: 1.393-8.253; P=0.007) comparing with its CC genotype. After stratified by smoking, gender and exposure duration we found that the increased risk of CBP associated with the ERCC1 codon 118 TT genotype confined to nonsmokers (OR=3.214; 95% CI: 1.359-7.601; P=0.006), female (OR=3.049; 95% CI: 1.235-7.529; P=0.013) and exposure duration> 12 years (OR=3.750; 95% CI: 1.041-13.513; P=0.035). Since ERCC1 and ERCC2/XPD are both located on chromosome 19q13.3, haplotype analysis of all 5 SNPs was also conducted. However no correlations between the risks of CBP and other genotypes or haplotypes were found. Therefore, our findings suggest an important role of ERCC1 codon 118 polymorphisms for a biomarker to CBP in the Chinese occupational population. Copyright © 2012 Elsevier B.V. All rights reserved.
ERCC2/XPD Lys751Gln alter DNA repair efficiency of platinum-induced DNA damage through P53 pathway.
Zhang, Guopei; Guan, Yangyang; Zhao, Yuejiao; van der Straaten, Tahar; Xiao, Sha; Xue, Ping; Zhu, Guolian; Liu, Qiufang; Cai, Yuan; Jin, Cuihong; Yang, Jinghua; Wu, Shengwen; Lu, Xiaobo
2017-02-01
Platinum-based treatment causes Pt-DNA adducts which lead to cell death. The platinum-induced DNA damage is recognized and repaired by the nucleotide excision repair (NER) system of which ERCC2/XPD is a critical enzyme. Single nucleotide polymorphisms in ERCC2/XPD have been found to be associated with platinum resistance. The aim of the present study was to investigate whether ERCC2/XPD Lys751Gln (rs13181) polymorphism is causally related to DNA repair capacity of platinum-induced DNA damage. First, cDNA clones expressing different genotypes of the polymorphism was transfected to an ERCC2/XPD defective CHO cell line (UV5). Second, all cells were treated with cisplatin. Cellular survival rate were investigated by MTT growth inhibition assay, DNA damage levels were investigated by comet assay and RAD51 staining. The distribution of cell cycle and the change of apoptosis rates were detected by a flow cytometric method (FCM). Finally, P53mRNA and phospho-P53 protein levels were further investigated in order to explore a possible explanation. As expected, there was a significantly increased in viability of UV5 ERCC2 (AA) as compared to UV5 ERCC2 (CC) after cisplatin treatment. The DNA damage level of UV5 ERCC2 (AA) was significant decreased compared to UV5 ERCC2 (CC) at 24 h of treatment. Mutation of ERCC2rs13181 AA to CC causes a prolonged S phase in cell cycle. UV5 ERCC2 (AA) alleviated the apoptosis compared to UV5 ERCC2 (CC) , meanwhile P53mRNA levels in UV ERCC2 (AA) was also lower when compared UV5 ERCC2 (CC) . It co-incides with a prolonged high expression of phospho-P53, which is relevant for cell cycle regulation, apoptosis, and the DNA damage response (DDR). We concluded that ERCC2/XPD rs13181 polymorphism is possibly related to the DNA repair capacity of platinum-induced DNA damage. This functional study provides some clues to clarify the relationship between cisplatin resistance and ERCC2/XPDrs13181 polymorphism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Jing, Jing-Jing; Lu, You-Zhu; Sun, Li-Ping; Liu, Jing-Wei; Gong, Yue-Hua; Xu, Qian; Dong, Nan-Nan; Yuan, Yuan
2017-06-27
Excision repair cross-complementing group 6 and 8 (ERCC6 and ERCC8) are two indispensable genes for the initiation of transcription-coupled nucleotide excision repair pathway. This study aimed to evaluate the interactions between single nucleotide polymorphisms of ERCC6 (rs1917799) and ERCC8 (rs158572 and rs158916) in gastric cancer and its precancerous diseases. Besides, protein level analysis were performed to compare ERCC6 and ERCC8 expression in different stages of gastric diseases, and to correlate SNPs jointly with gene expression. Sequenom MassARRAY platform method was used to detect polymorphisms of ERCC6 and ERCC8 in 1916 subjects. In situ ERCC6 and ERCC8 protein expression were detected by immunohistochemistry in 109 chronic superficial gastritis, 109 chronic atrophic gastritis and 109 gastric cancer cases. Our results demonstrated pairwise epistatic interactions between ERCC6 and ERCC8 SNPs that ERCC6 rs1917799-ERCC8 rs158572 combination was associated with decreased risk of chronic atrophic gastritis and increased risk of gastric cancer. ERCC6 rs1917799 also showed a significant interaction with ERCC8 rs158916 to reduce gastric cancer risk. The expressions of ERCC6, ERCC8 and ERCC6-ERCC8 combination have similarities that higher positivity was observed in chronic superficial gastritis compared with chronic atrophic gastritis and gastric cancer. As for the effects of ERCC6 and ERCC8 SNPs on the protein expression, single SNP had no correlation with corresponding gene expression, whereas the ERCC6 rs1917799-ERCC8 rs158572 pair had significant influence on ERCC6 and ERCC6-ERCC8 expression. In conclusion, ERCC6 rs1917799, ERCC8 rs158572 and rs158916 demonstrated pairwise epistatic interactions to associate with chronic atrophic gastritis and gastric cancer risk. The ERCC6 rs1917799-ERCC8 rs158572 pair significantly influence ERCC6 and ERCC6-ERCC8 expression.
Wang, Yuemei; Wang, Xiaowei
2018-01-01
Background A number of studies have investigated the roles of excision repair cross-complementation group 1 (ERCC1) gene rs3212986 polymorphisms as potential biomarkers in gastric cancer (GC). However, the results were inconsistent. Here, we performed a meta-analysis to explore ERCC1 rs3212986 polymorphisms in the chemotherapy response and clinical outcome of GC. Methods PubMed, Embase, and Web of Science were searched up to July 28, 2017, for studies on the association between ERCC1 rs3212986 A/C polymorphisms and response to chemotherapy as well as overall survival time of GC. A fixed-effect or random-effect model was used to calculate the pooled odds ratios (ORs) based on the results from the heterogeneity tests. Results The result revealed that there was no significant association between the ERCC1 rs3212986 A/C polymorphism and response to chemotherapy in GC under comparison models (AA + CA versus CC, OR 0.95, P=0.80, AA versus CA, OR 0.85, P=0.55, AA versus CC, OR 0.74, P=0.47). Further identification suggested that ERCC1 rs3212986 A/C polymorphisms were not linked with the overall survival of GC (AA + CA versus CC, OR 1.09, P=0.52, AA versus CA, OR 1.05, P=0.85, AA versus CC, OR 1.43, P=0.23). Conclusion Our meta-analysis indicated that the ERCC1 rs3212986 A/C polymorphism was not associated with response to chemotherapy or overall survival time in GC. Well-designed studies with larger sample sizes and more ethnic groups should be performed to further validate our results. PMID:29302191
Kawashima, Atsunari; Takayama, Hitoshi; Tsujimura, Akira
2012-01-01
The excision repair cross-complementing group 1 (ERCC1) gene performs a critical incision step in DNA repair and is reported to be correlated with carcinogenesis and resistance to drug or ionizing radiation therapy. We reviewed the correlation between ERCC1 and bladder cancer. In carcinogenesis, several reports discussed the relation between ERCC1 single nucleotide polymorphisms and carcinogenesis in bladder cancer only in case-control studies. Regarding the relation between ERCC1 and resistance to chemoradiotherapy, in vitro and clinical studies indicate that ERCC1 might be related to resistance to radiation therapy rather than cisplatin therapy. It is controversial whether ERCC1 predicts prognosis of bladder cancer treated with cisplatin-based chemotherapy. Tyrosine kinase receptors or endothelial-mesenchymal transition are reported to regulate the expression of ERCC1, and further study is needed to clarify the mechanism of ERCC1 expression and resistance to chemoradiotherapy in vitro and to discover novel therapies for advanced and metastatic bladder cancer.
Hardi, Hanaa; Melki, Rahma; Boughaleb, Zouhour; El Harroudi, Tijani; Aissaoui, Souria; Boukhatem, Noureddine
2018-03-15
Genetic determinants of breast cancer (BC) remained largely unknown in the majority of Moroccan patients. The purpose of this study was to explore the association of ERCC2 and MTHFR polymorphisms with genetic susceptibility to breast cancer in Moroccan population. We genotyped ERCC2 polymorphisms (rs1799793 (G934A) and rs13181 (A2251C)) and MTHFR polymorphisms (rs1801133 (C677T) and rs1801131 (A1298C)) using TaqMan SNP Genotyping Assays. Genotypes were compared in 151 BC cases and 156 population-matched controls. Allelic, genotypic and haplotype associations with the risk and clinicopathological features of BC were assessed using logistic regression analyses. ERCC2-rs1799793-AA genotype was associated with high risk of BC compared to wild type genotype (recessive model: OR: 2.90, 95% CI: 1.34-6.26, p = 0.0069) even after Bonferroni correction (p < 0,0125). MTHFR rs1801133-TT genotype was associated with increased risk of BC (recessive model, OR: 2.49, 95% CI: 1.17-5.29, p = 0.017) but the association turned insignificant after Bonferroni correction. For the rest of SNPs, no statistical associations to BC risk were detected. Significant association with clinical features was detected for MTHFR-rs1801133-TC genotype with early age at diagnosis and familial BC. Following Bonferroni correction, only association with familial BC remained significant. MTHFR-rs1801131-CC genotype was associated with sporadic BC. ERCC2-rs1799793-AA genotype correlated with ER+ and PR+ breast cancer. ERCC2-rs13181-CA genotype was significantly associated large tumors (T ≥ 3) in BC patients. None of these associations passed Bonferroni correction. Haplotype analysis showed that ERCC2 A-C haplotype was significantly associated with increased BC risk (OR: 3.71, 95% CI: 1.7-8.12, p = 0.0002 and p = 0.0008 before and after Bonferroni correction, respectively) and positive expression of ER and PR in BC patients. ERCC2 G-C haplotype was correlated with PR negative and larger tumor (T4). We did not find any MTHFR haplotypes associated with BC susceptibility. However, the less common haplotype MTHFR T-C was more frequent in young patients and in familial breast cancer, while MTHFR C-C haplotype was associated with sporadic BC form. Our findings are a first observation of association between ERCC2 SNPs and breast cancer in Moroccan population. The results suggested that ERCC2 and MTHFR polymorphisms may be reliable for assessing risk and prognosis of BC in Moroccan population.
Hong, Wei; Wang, Kai; Zhang, Yi-ping; Kou, Jun-yan; Hong, Dan; Su, Dan; Mao, Wei-min; Yu, Xin-min; Xie, Fa-jun; Wang, Xiao-jian
2013-01-01
Objective: The aim of this study was to evaluate the association between the methylenetetrahydrofolate reductase (MTHFR) C677T excision repair cross-complementation group 1 (ERCC1) genetic polymorphisms and the clinical efficacy of gemcitabine-based chemotherapy in advanced non-small cell lung cancer (NSCLC). Methods: A total of 135 chemonaive patients with unresectable advanced NSCLC were treated with gemcitabine/platinum regimens. The polymorphisms of MTHFR C677T, ERCC1 C8092A, and ERCC1 C118T were genotyped using the TaqMan methods. Results: The overall response rate was 28.9%. Patients with MTHFR CC genotype had a higher rate of objective response than patients with variant genotype (TT or CT) (41.2% versus 19.1%, P=0.01). Median time to progression (TTP) of patients with MTHFR CC genotype was longer than that of patients with variant genotype (7.6 months versus 5.0 months, P=0.003). No significant associations were obtained between ERCC1 C118T and C8092A polymorphisms and both response and survival. Conclusions: Our data suggest the value of MTHFR C677T polymorphism as a possible predictive marker of response and TTP in advanced NSCLC patients treated with gemcitabine/platinum. PMID:23463763
Tsuji, Daiki; Ikeda, Midori; Yamamoto, Keisuke; Nakamori, Harumi; Kim, Yong-Il; Kawasaki, Yohei; Otake, Aki; Yokoi, Mari; Inoue, Kazuyuki; Hirai, Keita; Nakamichi, Hidenori; Tokou, Umi; Shiokawa, Mitsuru; Itoh, Kunihiko
2016-01-01
Abstract Chemotherapy-induced neutropenia (CIN) is one of the major adverse events that necessitate chemotherapy dose reduction. This study aimed to evaluate the association between grade 4 neutropenia and genetic polymorphisms in breast cancer patients. In this genetic polymorphism association study, peripheral blood samples from 100 consecutive breast cancer outpatients, between August 2012 and September 2014, treated with doxorubicin and cyclophosphamide (AC) combination chemotherapy were genotyped for polymorphisms in adenosine triphosphate-binding cassette subfamily B member 1 (ABCB1), cytochrome P450 (CYP) enzyme-coding genes (CYP2B6 and CYP3A5), glutathione S-transferase (GST), and excision repair cross-complementing 1 (ERCC1). Associations between grade 4 neutropenia and genotypes as well as risk factors were examined using multivariate logistic regression. From 100 patients, 32.0% had grade 4 neutropenia. Multivariate logistic regression analysis revealed that ERCC1 118C > T (odds ratio [OR], 3.43; 95% confidence interval [CI], 1.22–9.69; P = 0.020), CYP2B6∗6 (OR, 4.51; 95% CI, 1.21–16.95; P = 0.025), body mass index (BMI) (OR, 6.94; 95% CI, 1.15–41.67; P = 0.035), and baseline white blood cell (WBC) count (OR, 2.99; 95% CI, 1.06–8.40; P = 0.038) were significant predictors of grade 4 neutropenia. ERCC1 and CYP2B6 gene polymorphisms were associated with the extent of grade 4 neutropenia in patients receiving AC chemotherapy. In addition to previously known risk factors, BMI and WBC counts, ERCC1 and CYP2B6 gene polymorphisms were also identified as independent strong predictors of grade 4 neutropenia. PMID:27858847
Kassem, Amira B; Salem, Salem Eid; Abdelrahim, Mohamed E; Said, Amira S A; Salahuddin, Ahmad; Hussein, Marwa Mahmoud; Bahnassy, Abeer A
2017-02-01
The impact of Excision repair cross-complementation group 1 (ERCC1) and group 2 (ERCC2) expression levels on the efficacy of oxaliplatin-based chemotherapy is still controversial. The present study was conducted to determine the predictive value of these molecular biomarkers in stage III and IV colorectal cancer (CRC) patients receiving oxaliplatin (OX)-based chemotherapy as first-line treatment. The study included 80 CRC patients who received first line oxaliplatin based chemotherapy The expression levels of ERCC1 and ERCC2-mRNA and proteins were determined in the primary tumors by quantitative real time reverse transcription polymerase chain reaction(RT-qPCR) and immunohistochemistry (IHC); respectively. The results of mRNA expression were correlated with patients' characteristics, response to treatment, overall- and event free survival (OS & EFS). Sixty four out of the 80 patients were legible for assessment of ERCC1 and ERCC2 expression. The cut-off levels of ERCC1and ERCC2-RNA were 3.8×10 -3 & 4.6×10 -3 ; respectively. Reduced ERCC1 and ERCC2 RNA expressions were detected in 50 (78.1%) and 48 (75%) cases, respectively whereas reduced proteins were detected in 48 cases (75%) for ERCC1 and ERCC2. After The median follow up period was 30.5months (range: 7-104months), Patients with low mRNAERCC1levels showed significantly longer OS (p=0.011) and EFS (p˂0.001). However, no significant relation was found between ERCC2 levels and OS or EFS. In multivariate analysis performance status (PS), stage of the disease and ERCC1-mRNA expression were independent prognostic factors for EFS whereas tumor histology and stage of the disease were independent factors for OS. ERCC1 expression levels may help in selecting patients who benefit from oxaliplatin chemotherapy in stage III & IV CRC. Further large trials are needed to validate these data. Copyright © 2017 Elsevier Inc. All rights reserved.
[Association of ERCC6 gene polymorphisms and DNA damage in lymphocytes among coke oven workers].
He, Yue-feng; Wang, Fang; Yang, Xiao-bo; Bai, Yun; Yang, Yan; Wang, Jing
2013-11-01
To investigate the association between ERCC6 gene polymorphisms and peripheral blood lymphocyte DNA damage among the workers in coking plant. By cluster sampling, 379 coke oven workers having worked for 8 hours were included in the exposure group, 398 coke oven workers having rested for more than 16 hours were included in the recovery group, and 398 workers having never been exposed to polycyclic aromatic hydrocarbons (PAHs) in the same plant were included in the control group. Lymphocytes were separated from their peripheral venous blood, and single cell gel electrophoresis was used to evaluate DNA damage; TaqMan-MGB probes were used to analyze ERCC6 gene polymorphisms. PHASE 2.0.2 genetic analysis software was used to calculate the haplotypes. The Olive tail moment (OTM) of lymphocytes in the exposure group was significantly higher than those in the recovery group and control group (-0.86±0.70 vs -1.14±0.68 and -1.13±0.65, P < 0.05). In the exposure group, for workers ≥37 years old, the OTM of lymphocytes in workers carrying CG+GG genotype at rs3793784 locus of ERCC6 gene was significantly lower than that in workers carrying CC genotype (P < 0.05); the OTM of lymphocytes in workers <37years old carrying CC genotype at rs3793784 locus of ERCC6 gene was significantly lower than that in workers ≥37 years old carrying CC genotype (P < 0.05); the OTMof lymphocytes in workers <37 years old carrying CG+GG genotype at rs3793784 locus of ERCC6 gene was significantly higher than that in workers ≥37 years old carrying CG+GG genotype (P < 0.05). For patients with internal exposure, in the 1-hydroxypyrene >4.36 ümol/L group, the OTM of lymphocytes in workers carrying AG+GG genotype was significantly higher than that in workers carrying AA genotype (P < 0.05). Different genotypes of ERCC6 gene rs3793784 in peripheral blood lymphocytes of coke oven workers exposed to PAHs have different functions at different ages, suggesting that genotype may interact with age in population exposed to PAHs.
Coelho, Patrícia; García-Lestón, Julia; Costa, Solange; Costa, Carla; Silva, Susana; Dall'Armi, Valentina; Zoffoli, Roberto; Bonassi, Stefano; de Lima, João Pereira; Gaspar, Jorge Francisco; Pásaro, Eduardo; Laffon, Blanca; Teixeira, João Paulo
2013-10-01
Previous studies investigating the exposure to metal(loid)s of populations living in the Panasqueira mine area of central Portugal found a higher internal dose of elements such as arsenic, chromium, lead, manganese, molybdenum and zinc in exposed individuals. The aims of the present study were to evaluate the extent of genotoxic damage caused by environmental and occupational exposure in individuals previously tested for metal(loid) levels in different biological matrices, and the possible modulating role of genetic polymorphisms involved in metabolism and DNA repair. T-cell receptor mutation assay, comet assay, micronucleus (MN) test and chromosomal aberrations (CA) were performed in a group of 122 subjects working in the Panasqueira mine or living in the same region. The modifying effect of polymorphisms in GSTA2, GSTM1, GSTP1, GSTT1, XRCC1, APEX1, MPG, MUTYH, OGG1, PARP1, PARP4, ERCC1, ERCC4, and ERCC5 genes was investigated. Significant increases in the frequency of all biomarkers investigated were found in exposed groups, however those environmentally exposed were generally higher. Significant influences of polymorphisms were observed for GSTM1 deletion and OGG1 rs1052133 on CA frequencies, APEX1 rs1130409 on DNA damage, ERCC1 rs3212986 on DNA damage and CA frequency, and ERCC4 rs1800067 on MN and CA frequencies. Our results show that the metal(loid) contamination in the Panasqueira mine area induced genotoxic damage both in individuals working in the mine or living in the area. The observed effects are closely associated to the internal exposure dose, and are more evident in susceptible genotypes. The urgent intervention of authorities is required to protect exposed populations. © 2013.
Zhang, Aihua; Li, Huiyao; Xiao, Yun; Chen, Liping; Zhu, Xiaonian; Li, Jun; Ma, Lu; Pan, Xueli; Chen, Wen; He, Zhini
2017-07-01
To define whether aberrant methylation of DNA repair genes is associated with chronic arsenic poisoning. Hundred and two endemic arsenicosis patients and 36 healthy subjects were recruited. Methylight and bisulfite sequencing (BSP) assays were used to examine the methylation status of ERCC1, ERCC2 and XPC genes in peripheral blood lymphocytes (PBLs) and skin lesions of arsenicosis patients and NaAsO 2 -treated HaCaT cells. Hypermethylation of ERCC1 and ERCC2 and suppressed gene expression were found in PBLs and skin lesions of arsenicosis patients and was correlated with the level of arsenic exposure. Particularly, the expression of ERCC1 and ERCC2 was associated with the severity of skin lesions. In vitro studies revealed an induction of ERCC2 hypermethylation and decreased mRNA expression in response to NaAsO 2 treatment. Hypermethylation of ERCC1 and ERCC2 and concomitant suppression of gene expression might be served as the epigenetic marks associated with arsenic exposure and adverse health effects.
Yang, Lanlan; Ritchie, Ann-Marie; Melton, David W.
2017-01-01
DNA repair pathways present in all cells serve to preserve genome stability, but in cancer cells they also act reduce the efficacy of chemotherapy. The endonuclease ERCC1-XPF has an important role in the repair of DNA damage caused by a variety of chemotherapeutic agents and there has been intense interest in the use of ERCC1 as a predictive marker of therapeutic response in non-small cell lung carcinoma, squamous cell carcinoma and ovarian cancer. We have previously validated ERCC1 as a therapeutic target in melanoma, but all small molecule ERCC1-XPF inhibitors reported to date have lacked sufficient potency and specificity for clinical use. In an alternative approach to prevent the repair activity of ERCC1-XPF, we investigated the mechanism of ERCC1 ubiquitination and found that the key region was the C-terminal (HhH)2 domain which heterodimerizes with XPF. This ERCC1 region was modified by non-conventional lysine-independent, but proteasome-dependent polyubiquitination, involving Lys33 of ubiquitin and a linear ubiquitin chain. XPF was not polyubiquitinated and its expression was dependent on presence of ERCC1, but not vice versa. To our surprise we found that ERCC1 can also homodimerize through its C-terminal (HhH)2 domain. We exploited the ability of a peptide containing this C-terminal domain to destabilise both endogenous ERCC1 and XPF in human melanoma cells and fibroblasts, resulting in reductions of up to 85% in nucleotide excision repair and near two-fold increased sensitivity to DNA damaging agents. We suggest that the ERCC1 (HhH)2 domain could be used in an alternative strategy to treat cancer. PMID:28903417
Peters, Godefridus J; Avan, Abolfazl; Ruiz, Marielle Gallegos; Orsini, Vanessa; Avan, Amir; Giovannetti, Elisa; Smit, Egbert F
2014-01-01
Platinum combinations are the mainstay of treatment for non-small cell lung cancer (NSCLC), while for pancreatic cancer platinum combinations are being given to good-performance status patients. These platinum combinations consist of cis- or carboplatin with gemcitabine, while, for non-squamous NSCLC and mesothelioma, of pemetrexed. The combination of gemcitabine and cisplatin is based on gemcitabine-induced increased formation and retention of DNA-platinum adducts, which can be explained by a decrease of excision repair cross-complementing group-1 (ERCC1)-mediated DNA repair. In these patients, survival and response is prolonged when ERCC1 has a low protein or mRNA expression. A low expression of ribonucleotide reductase (RR) is related to a better treatment outcome after both gemcitabine and gemcitabine-platinum combinations. For pemetrexed combinations, ERCC1 expression was not related to survival. For both NSCLC and pancreatic cancer, polymorphisms in ERCC1 (C118T) and Xeroderma pigmentosum group D (XPD) (A751C) were related to survival. In currently ongoing and future prospective studies, patients should be selected based on their DNA repair status, but it still has to be determined whether this should be by immunohistochemistry, mRNA expression, or a polymorphism.
Genetic variation in ERCC1 and XPF genes and breast cancer risk.
Pei, X H; Yang, Z; Lv, X Q; Li, H X
2014-03-31
Breast cancer is one of the most frequently diagnosed cancer in women worldwide, and we conducted a case-control study by genotyping seven potentially functional SNPs, three in ERCC1 and four in XPF, in a Chinese population of 417 breast cancer cases and 417 cancer-free controls. Three SNPs in ERCC1 and four SNPs in XPF were genotyped by using the Taqman Universal PCR Master Mix in the GeneAmp(®) PCR System 9700 with Dual 384-Well Sample Block Module, and assays were performed on a 384-well plate on the Sequenom MassARRAY platform. We found that elevated breast cancer risk was associated with those who had a family history of breast cancer and history of breast disease, and those who were over 25 years old at first full-term pregnancy. We found that decreased risk of breast cancer was associated with those who had a history of full-term pregnancies. Compared with the ERCC1 rs11615 T/T genotype, a significantly higher risk of breast cancer was found in the C/C genotype in codominant and dominant models after adjusting for potential risk factors. Similarly, we found that ERCC1 rs3212986 C/C genotype was associated with an increased risk of breast cancer in codominant, dominant and recessive models. Our study indicated that the ERCC1 rs11615 and rs2298881 polymorphisms are associated with breast cancer in a Chinese population. Further studies with large sample size are greatly needed to elucidate the SNPs of ERCC1 and XPF genes in the development of breast cancer.
Hansen, Rikke D; Sørensen, Mette; Tjønneland, Anne; Overvad, Kim; Wallin, Håkan; Raaschou-Nielsen, Ole; Vogel, Ulla
2008-02-20
Single nucleotide polymorphisms (SNPs) are the most frequent type of genetic variation in the human genome, and are of interest for the study of susceptibility to and protection from diseases. The haplotype at chromosome 19q13.2-3 encompassing the three SNPs ASE-1 G-21A, RAI IVS1 A4364G and ERCC1 Asn118Asn have been associated with risk of breast cancer and lung cancer. Haplotype carriers are defined as the homozygous carriers of RAI IVS1 A4364GA, ERCC1 Asn118AsnT and ASE-1 G-21AG. We aimed to evaluate whether the three polymorphisms and the haplotype are associated to risk of colorectal cancer, and investigated gene-environment associations between the polymorphisms and the haplotype and smoking status at enrolment, smoking duration, average smoking intensity and alcohol consumption, respectively, in relation to risk of colorectal cancer. Associations between the three individual polymorphisms, the haplotype and risk of colorectal cancer were examined, as well as gene-environment interaction, in a Danish case-cohort study including 405 cases and a comparison group of 810 persons. Incidence rate ratio (IRR) were estimated by the Cox proportional hazards model stratified according to gender, and two-sided 95% confidence intervals (CI) and p-values were calculated based on robust estimates of the variance-covariance matrix and Wald's test of the Cox regression parameter. No consistent associations between the three individual polymorphisms, the haplotype and risk of colorectal cancer were found. No statistically significant interactions between the genotypes and the lifestyle exposures smoking or alcohol consumption were observed. Our results suggest that the ASE-1 G-21A, RAI IVS1 A4364G and ERCC1 Asn118Asn polymorphisms and the previously identified haplotype are not associated with risk of colorectal cancer. We found no evidence of gene-environment interaction between the three polymorphisms and the haplotype and smoking intensity and alcohol consumption, respectively, in relation to the risk of colorectal cancer.
ERCC1-XPF Endonuclease Facilitates DNA Double-Strand Break Repair▿ †
Ahmad, Anwaar; Robinson, Andria Rasile; Duensing, Anette; van Drunen, Ellen; Beverloo, H. Berna; Weisberg, David B.; Hasty, Paul; Hoeijmakers, Jan H. J.; Niedernhofer, Laura J.
2008-01-01
ERCC1-XPF endonuclease is required for nucleotide excision repair (NER) of helix-distorting DNA lesions. However, mutations in ERCC1 or XPF in humans or mice cause a more severe phenotype than absence of NER, prompting a search for novel repair activities of the nuclease. In Saccharomyces cerevisiae, orthologs of ERCC1-XPF (Rad10-Rad1) participate in the repair of double-strand breaks (DSBs). Rad10-Rad1 contributes to two error-prone DSB repair pathways: microhomology-mediated end joining (a Ku86-independent mechanism) and single-strand annealing. To determine if ERCC1-XPF participates in DSB repair in mammals, mutant cells and mice were screened for sensitivity to gamma irradiation. ERCC1-XPF-deficient fibroblasts were hypersensitive to gamma irradiation, and γH2AX foci, a marker of DSBs, persisted in irradiated mutant cells, consistent with a defect in DSB repair. Mutant mice were also hypersensitive to irradiation, establishing an essential role for ERCC1-XPF in protecting against DSBs in vivo. Mice defective in both ERCC1-XPF and Ku86 were not viable. However, Ercc1−/− Ku86−/− fibroblasts were hypersensitive to gamma irradiation compared to single mutants and accumulated significantly greater chromosomal aberrations. Finally, in vitro repair of DSBs with 3′ overhangs led to large deletions in the absence of ERCC1-XPF. These data support the conclusion that, as in yeast, ERCC1-XPF facilitates DSB repair via an end-joining mechanism that is Ku86 independent. PMID:18541667
The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor.
Schaeffer, L; Moncollin, V; Roy, R; Staub, A; Mezzina, M; Sarasin, A; Weeda, G; Hoeijmakers, J H; Egly, J M
1994-01-01
ERCC2 is involved in the DNA repair syndrome xeroderma pigmentosum (XP) group D and was found to copurify with the RNA polymerase II (B) transcription factor BTF2/TFIIH that possesses a bidirectional helicase activity. Antibodies directed towards the 89 kDa (ERCC3) or the p62 subunit of BTF2 are able to either immunoprecipitate ERCC2 or shift the polypeptide in a glycerol gradient. Conversely, an antibody directed towards ERCC2 also retains or shifts BTF2. ERCC2 could be resolved from the other characterized components of BTF2 upon salt treatment, while its readdition enhanced BTF2 transcription activity. ERCC2, ERCC3 and p44 are three repair proteins found in association with BTF2. Two of them, ERCC2 and ERCC3, are responsible for atypical forms of XP disorders which confer a high predisposition to skin cancer. This includes clinical features that lack an adequate rationalization on the basis of nucleotide excision repair (NER) deficiency but which may now be explained better in terms of a partial transcription deficiency. Images PMID:8194528
Grimminger, P P; Shi, M; Barrett, C; Lebwohl, D; Danenberg, K D; Brabender, J; Vigen, C L P; Danenberg, P V; Winder, T; Lenz, H-J
2012-10-01
To validate established cutoff levels of thymidylate synthase (TS) and excision repair cross-complementing (ERCC-1) intratumoral mRNA expressions in tumor samples from metastatic colorectal cancer (mCRC) patients treated with PTK787/ZK222584 (PTK/ZK). From 122 samples of patients with mCRC enrolled in CONFIRM-1 (Colorectal Oral Novel Therapy for the Inhibition of Angiogenesis and Retarding of Metastases) or CONFIRM-2, mRNA was isolated of microdissected formalin-fixed paraffin-embedded samples and quantitated using TaqMan-based technology. Existing TS and ERCC-1 cutoff levels were tested for their prognostic value in first-line and second-line therapy. TS expression was associated with overall survival (OS) in first-line, but not second-line therapy. ERCC-1 was associated with OS in patients treated with first-line and second-line FOLFOX4. In first-line FOLFOX4, combination of high TS and/or high ERCC-1 was associated with shorter OS. A correlation was observed between ERCC-1 expression and benefit from PTK/ZK+FOLFOX4 treatment. TS and ERCC-1 expression is associated with clinical outcome in mCRC. Baseline TS and ERCC-1 levels may allow the selection of patients who benefit from FOLFOX4 chemotherapy.
Yu, Shao-Nan; Liu, Gui-Feng; Li, Xue-Feng; Fu, Bao-Hong; Dong, Li-Xin; Zhang, Shu-Hua
2017-12-01
This network meta-analysis (NMA) was conducted to compare the predictive value of 14 SNPs in eight DNA repair genes on the efficacy of platinum-based chemotherapy in patients with non-small cell lung cancer (NSCLC). These included ERCC1 (rs11615, rs3212986, rs3212948), XRCC1 (rs25487, rs25489, rs1799782), XPD (rs13181, rs1799793), XPG (rs1047768, rs17655), XPA (rs1800975), XRCC3 (rs861539), APE1 (rs3136820), and RRM1 (rs1042858). The PubMed and Cochrane library databases were reviewed from their inception to February 2017 and studies which met our inclusion criteria were included in our investigation. This network meta-analysis combines direct and indirect evidence to assess the predictive value of 14 SNPs in eight DNA repair genes on the efficacy of platinum-based chemotherapy in NSCLC. We evaluated the predictive value through the use of the odd ratios (OR) and drawing surface under the cumulative ranking curves (SUCRA). A total of 26 eligible cohort studies were enrolled in this NMA. The pairwise meta-analysis indicated that in terms of overall response ratio (ORR), ERCC1 (rs11615), XRCC1 (rs25487, rs1799782), and XPD (rs13181) polymorphisms are associated with the efficacy of platinum-based chemotherapy in NSCLC. The result of this NMA suggests that there is no significant difference in predictive value of 8 DNA repair genes on the efficacy of platinum-based chemotherapy in NSCLC patients. The rank of SUCRA values of the 14 SNPs in the eight DNA repair genes were: XPD (rs1799793)→ERCC1 (rs3212986)→XPA(rs1800975)→ERCC1(rs3212948)→XRCC1(rs25487)→XRCC3(rs861539)→APE1(rs3136820)→ERCC1(rs11615)→XRCC1(rs1799782)→RRM1(rs1042858)→XPD(rs13181)→XPG (rs1047768)→XPG(rs17655)→XRCC1(rs25489). ERCC1(rs11615), XRCC1(rs25487, rs1799782) and XPD(rs13181) polymorphisms were better predictors in evaluating the efficacy of platinum-based chemotherapy in NSCLC patients. J. Cell. Biochem. 118: 4782-4791, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Friboulet, Luc; Postel-Vinay, Sophie; Sourisseau, Tony; Adam, Julien; Stoclin, Annabelle; Ponsonnailles, Florence; Dorvault, Nicolas; Commo, Frédéric; Saulnier, Patrick; Salome-Desmoulez, Sophie; Pottier, Géraldine; André, Fabrice; Kroemer, Guido; Soria, Jean Charles; Olaussen, Ken André
2013-01-01
ERCC1 (excision repair cross-complementation group 1) plays essential roles in the removal of DNA intrastrand crosslinks by nucleotide excision repair, and that of DNA interstrand crosslinks by the Fanconi anemia (FA) pathway and homology-directed repair processes (HDR). The function of ERCC1 thus impacts on the DNA damage response (DDR), particularly in anticancer therapy when DNA damaging agents are employed. ERCC1 expression has been proposed as a predictive biomarker of the response to platinum-based therapy. However, the assessment of ERCC1 expression in clinical samples is complicated by the existence of 4 functionally distinct protein isoforms, which differently impact on DDR. Here, we explored the functional competence of each ERCC1 protein isoform and obtained evidence that the 202 isoform is the sole one endowed with ERCC1 activity in DNA repair pathways. The ERCC1 isoform 202 interacts with RPA, XPA, and XPF, and XPF stability requires expression of the ERCC1 202 isoform (but none of the 3 others). ERCC1-deficient non-small cell lung cancer cells show abnormal mitosis, a phenotype reminiscent of the FA phenotype that can be rescued by isoform 202 only. Finally, we could not observe any dominant-negative interaction between ERCC1 isoforms. These data suggest that the selective assessment of the ERCC1 isoform 202 in clinical samples should accurately reflect the DDR-related activity of the gene and hence constitute a useful biomarker for customizing anticancer therapies. PMID:24036546
El-Din, Mennat Allah Kamal; Khorshied, Mervat Mamdooh; El-Saadany, Zainab Ali; El-Banna, Marwa Ahmed; Reda Khorshid, Ola M
2013-12-01
Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous neoplasm. Although several genetic and environmental factors have been postulated, no obvious risk factors have been emerged for DLBCL in the general population. DNA repair systems are responsible for maintaining the integrity of the genome and protecting it against genetic alterations that can lead to malignant transformation. The current study aimed at investigating the possible role of ERCC2/XPD Arg156Arg, Asp312Asn and Lys751Gln genetic polymorphisms as risk factors for DLBCL in Egypt. The study included 81 DLBCL patients and 100 healthy controls. Genotyping of the studied genetic polymorphisms was performed by polymerase chain reaction-restriction fragment length polymorphism technique. Our results revealed that there was no statistical difference encountered in the distribution of -Asp312Asn and -Lys751Gln polymorphic genotypes between DLBCL cases and controls, thus it could not considered as molecular risk factors for DLBCL in Egyptians. However, Arg156Arg polymorphism at exon-6 conferred twofold increased risk of DLBCL (OR 2.034, 95 %CI 1.015-4.35, p = 0.43), and the risk increased when co-inherited with Lys751Gln at exon-23 (OR 3.304, 95 %CI 1.113-9.812, p = 0.038). In conclusion, ERCC2/XPD Arg156Arg polymorphism might be considered as a genetic risk factor for DLBCL in Egyptians, whether alone or conjoined with Lys751Gln.
Jones, Nathan R; Spratt, Thomas E; Berg, Arthur S; Muscat, Joshua E; Lazarus, Philip; Gallagher, Carla J
2011-04-01
The formation of bulky DNA adducts caused by diol epoxide derivatives of polycyclic aromatic hydrocarbons has been associated with tobacco-induced cancers, and inefficient repair of such adducts by the nucleotide excision repair (NER) system has been linked to increased risk of tobacco-induced lung and head and neck (H&N) cancers. The human excision repair cross-complementation group 1 (ERCC1) protein is essential for a functional NER system and genetic variation in ERCC1 may contribute to impaired DNA repair capacity and increased lung and H&N cancer risk. In order to comprehensively capture common genetic variation in the ERCC1 gene, Caucasian data from the International HapMap project was used to assess linkage disequilibrium and choose four tagSNPs (rs1319052, rs3212955, rs3212948, and rs735482) in the ERCC1 gene to genotype 452 lung cancer cases, 175 H&N cancer cases, and 790 healthy controls. Haplotypes were estimated using expectation maximization (EM) algorithm, and haplotype association with cancer was investigated using Haplo.stats software adjusting for known covariates. The genotype and haplotype frequencies matched previous estimates from Caucasians. There was no significant difference in the prevalence of rs1319052, rs3212955, rs3212948, and rs735482 when comparing lung or H&N cancer cases with controls (p-values>0.05). Similarly, there was no association between ERCC1 haplotypes and lung or H&N cancer susceptibility in this Caucasian population (p-values>0.05). No associations were found when stratifying lung cancer cases by histology, sex, smoking status, or smoking intensity. This study suggests that ERCC1 polymorphisms and haplotypes do not play a role in lung and H&N cancer susceptibility in Caucasians. Copyright © 2010 Elsevier Ltd. All rights reserved.
Mapping of interaction domains between human repair proteins ERCC1 and XPF.
de Laat, W L; Sijbers, A M; Odijk, H; Jaspers, N G; Hoeijmakers, J H
1998-09-15
ERCC1-XPF is a heterodimeric protein complexinvolved in nucleotide excision repair and recombinational processes. Like its homologous complex in Saccharomyces cerevisiae , Rad10-Rad1, it acts as a structure-specific DNA endonuclease, cleaving at duplex-single-stranded DNA junctions. In repair, ERCC1-XPF and Rad10-Rad1 make an incision on the the 5'-side of the lesion. No humans with a defect in the ERCC1 subunit of this protein complex have been identified and ERCC1-deficient mice suffer from severe developmental problems and signs of premature aging on top of a repair-deficient phenotype. Xeroderma pigmentosum group F patients carry mutations in the XPF subunit and generally show the clinical symptoms of mild DNA repair deficiency. All XP-F patients examined demonstrate reduced levels of XPF and ERCC1 protein, suggesting that proper complex formation is required for stability of the two proteins. To better understand the molecular and clinical consequences of mutations in the ERCC1-XPF complex, we decided to map the interaction domains between the two subunits. The XPF-binding domain comprises C-terminal residues 224-297 of ERCC1. Intriguingly, this domain resides outside the region of homology with its yeast Rad10 counterpart. The ERCC1-binding domain in XPF maps to C-terminal residues 814-905. ERCC1-XPF complex formation is established by a direct interaction between these two binding domains. A mutation from an XP-F patient that alters the ERCC1-binding domain in XPF indeed affects complex formation with ERCC1.
Mapping of interaction domains between human repair proteins ERCC1 and XPF.
de Laat, W L; Sijbers, A M; Odijk, H; Jaspers, N G; Hoeijmakers, J H
1998-01-01
ERCC1-XPF is a heterodimeric protein complexinvolved in nucleotide excision repair and recombinational processes. Like its homologous complex in Saccharomyces cerevisiae , Rad10-Rad1, it acts as a structure-specific DNA endonuclease, cleaving at duplex-single-stranded DNA junctions. In repair, ERCC1-XPF and Rad10-Rad1 make an incision on the the 5'-side of the lesion. No humans with a defect in the ERCC1 subunit of this protein complex have been identified and ERCC1-deficient mice suffer from severe developmental problems and signs of premature aging on top of a repair-deficient phenotype. Xeroderma pigmentosum group F patients carry mutations in the XPF subunit and generally show the clinical symptoms of mild DNA repair deficiency. All XP-F patients examined demonstrate reduced levels of XPF and ERCC1 protein, suggesting that proper complex formation is required for stability of the two proteins. To better understand the molecular and clinical consequences of mutations in the ERCC1-XPF complex, we decided to map the interaction domains between the two subunits. The XPF-binding domain comprises C-terminal residues 224-297 of ERCC1. Intriguingly, this domain resides outside the region of homology with its yeast Rad10 counterpart. The ERCC1-binding domain in XPF maps to C-terminal residues 814-905. ERCC1-XPF complex formation is established by a direct interaction between these two binding domains. A mutation from an XP-F patient that alters the ERCC1-binding domain in XPF indeed affects complex formation with ERCC1. PMID:9722633
Sergio, Luiz Philippe S; Campos, Vera Maria A; Vicentini, Solange C; Mencalha, Andre Luiz; de Paoli, Flavia; Fonseca, Adenilson S
2016-04-01
Lasers emit light beams with specific characteristics, in which wavelength, frequency, power, fluence, and emission mode properties determine the photophysical, photochemical, and photobiological responses. Low-intensity lasers could induce free radical generation in biological tissues and cause alterations in macromolecules, such as DNA. Thus, the aim of this work was to evaluate excision repair cross-complementing group 1 (ERCC1) and excision repair cross-complementing group 2 (ERCC2) messenger RNA (mRNA) expression in biological tissues exposed to low-intensity lasers. Wistar rat (n = 28, 4 for each group) skin and muscle were exposed to low-intensity red (660 nm) and near-infrared (880 nm) lasers at different fluences (25, 50, and 100 J/cm(2)), and samples of these tissues were withdrawn for RNA extraction, cDNA synthesis, and gene expression evaluation by quantitative polymerase chain reaction. Laser exposure was in continuous wave and power of 100 mW. Data show that ERCC1 and ERCC2 mRNA expressions decrease in skin (p < 0.001) exposed to near-infrared laser, but increase in muscle tissue (p < 0.001). ERCC1 mRNA expression does not alter (p > 0.05), but ERCC2 mRNA expression decreases in skin (p < 0.001) and increases in muscle tissue (p < 0.001) exposed to red laser. Our results show that ERCC1 and ERCC2 mRNA expression is differently altered in skin and muscle tissue exposed to low-intensity lasers depending on wavelengths and fluences used in therapeutic protocols.
Kashiyama, Kazuya; Nakazawa, Yuka; Pilz, Daniela T.; Guo, Chaowan; Shimada, Mayuko; Sasaki, Kensaku; Fawcett, Heather; Wing, Jonathan F.; Lewin, Susan O.; Carr, Lucinda; Li, Tao-Sheng; Yoshiura, Koh-ichiro; Utani, Atsushi; Hirano, Akiyoshi; Yamashita, Shunichi; Greenblatt, Danielle; Nardo, Tiziana; Stefanini, Miria; McGibbon, David; Sarkany, Robert; Fassihi, Hiva; Takahashi, Yoshito; Nagayama, Yuji; Mitsutake, Norisato; Lehmann, Alan R.; Ogi, Tomoo
2013-01-01
Cockayne syndrome (CS) is a genetic disorder characterized by developmental abnormalities and photodermatosis resulting from the lack of transcription-coupled nucleotide excision repair, which is responsible for the removal of photodamage from actively transcribed genes. To date, all identified causative mutations for CS have been in the two known CS-associated genes, ERCC8 (CSA) and ERCC6 (CSB). For the rare combined xeroderma pigmentosum (XP) and CS phenotype, all identified mutations are in three of the XP-associated genes, ERCC3 (XPB), ERCC2 (XPD), and ERCC5 (XPG). In a previous report, we identified several CS cases who did not have mutations in any of these genes. In this paper, we describe three CS individuals deficient in ERCC1 or ERCC4 (XPF). Remarkably, one of these individuals with XP complementation group F (XP-F) had clinical features of three different DNA-repair disorders—CS, XP, and Fanconi anemia (FA). Our results, together with those from Bogliolo et al., who describe XPF alterations resulting in FA alone, indicate a multifunctional role for XPF. PMID:23623389
Kashiyama, Kazuya; Nakazawa, Yuka; Pilz, Daniela T; Guo, Chaowan; Shimada, Mayuko; Sasaki, Kensaku; Fawcett, Heather; Wing, Jonathan F; Lewin, Susan O; Carr, Lucinda; Li, Tao-Sheng; Yoshiura, Koh-ichiro; Utani, Atsushi; Hirano, Akiyoshi; Yamashita, Shunichi; Greenblatt, Danielle; Nardo, Tiziana; Stefanini, Miria; McGibbon, David; Sarkany, Robert; Fassihi, Hiva; Takahashi, Yoshito; Nagayama, Yuji; Mitsutake, Norisato; Lehmann, Alan R; Ogi, Tomoo
2013-05-02
Cockayne syndrome (CS) is a genetic disorder characterized by developmental abnormalities and photodermatosis resulting from the lack of transcription-coupled nucleotide excision repair, which is responsible for the removal of photodamage from actively transcribed genes. To date, all identified causative mutations for CS have been in the two known CS-associated genes, ERCC8 (CSA) and ERCC6 (CSB). For the rare combined xeroderma pigmentosum (XP) and CS phenotype, all identified mutations are in three of the XP-associated genes, ERCC3 (XPB), ERCC2 (XPD), and ERCC5 (XPG). In a previous report, we identified several CS cases who did not have mutations in any of these genes. In this paper, we describe three CS individuals deficient in ERCC1 or ERCC4 (XPF). Remarkably, one of these individuals with XP complementation group F (XP-F) had clinical features of three different DNA-repair disorders--CS, XP, and Fanconi anemia (FA). Our results, together with those from Bogliolo et al., who describe XPF alterations resulting in FA alone, indicate a multifunctional role for XPF. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Molecular cloning and gene expression analysis of Ercc6l in Sika deer (Cervus nippon hortulorum).
Yin, Yupeng; Tang, Lina; Zhang, Jiabao; Tang, Bo; Li, Ziyi
2011-01-01
One important protein family that functions in nucleotide excision repair (NER) factors is the SNF2 family. A newly identified mouse ERCC6-like gene, Ercc6l (excision repair cross-complementing rodent repair deficiency, complementation group 6-like), has been shown to be another developmentally related member of the SNF2 family. In this study, Sika deer Ercc6l cDNA was first cloned and then sequenced. The full-length cDNA of the Sika deer Ercc6l gene is 4197 bp and contains a 3732 bp open reading frame that encodes a putative protein of 1243 amino acids. The similarity of Sika deer Ercc6l to Bos taurus Ercc6l is 94.05% at the amino acid sequence level. The similarity, however, is reduced to 68.42-82.21% when compared to Ercc6l orthologs in other mammals and to less than 50% compared to orthologs in Gallus gallus and Xenopus. Additionally, the expression of Ercc6l mRNA was investigated in the organs of fetal and adult Sika deer (FSD and ASD, respectively) by quantitative RT-PCR. The common expression level of Ercc6l mRNA in the heart, liver, spleen, lung, kidney, and stomach from six different developmental stages of 18 Sika deer were examined, though the expression levels in each organ varied among individual Sika deer. During development, there was a slight trend toward decreased Ercc61 mRNA expression. The highest Ercc6l expression levels were seen at 3 months old in every organ and showed the highest level of detection in the spleen of FSD. The lowest Ercc6l expression levels were seen at 3 years old. We are the first to successfully clone Sika deer Ercc6l mRNA. Ercc6l transcript is present in almost every organ. During Sika deer development, there is a slight trend toward decreased Ercc61 mRNA expression. It is possible that Ercc6l has other roles in embryonic development and in maintaining the growth of animals.
Molecular Cloning and Gene Expression Analysis of Ercc6l in Sika Deer (Cervus nippon hortulorum)
Zhang, Jiabao; Tang, Bo; Li, Ziyi
2011-01-01
Background One important protein family that functions in nucleotide excision repair (NER) factors is the SNF2 family. A newly identified mouse ERCC6-like gene, Ercc6l (excision repair cross-complementing rodent repair deficiency, complementation group 6-like), has been shown to be another developmentally related member of the SNF2 family. Methodology/Principal Findings In this study, Sika deer Ercc6l cDNA was first cloned and then sequenced. The full-length cDNA of the Sika deer Ercc6l gene is 4197 bp and contains a 3732 bp open reading frame that encodes a putative protein of 1243 amino acids. The similarity of Sika deer Ercc6l to Bos taurus Ercc6l is 94.05% at the amino acid sequence level. The similarity, however, is reduced to 68.42–82.21% when compared to Ercc6l orthologs in other mammals and to less than 50% compared to orthologs in Gallus gallus and Xenopus. Additionally, the expression of Ercc6l mRNA was investigated in the organs of fetal and adult Sika deer (FSD and ASD, respectively) by quantitative RT-PCR. The common expression level of Ercc6l mRNA in the heart, liver, spleen, lung, kidney, and stomach from six different developmental stages of 18 Sika deer were examined, though the expression levels in each organ varied among individual Sika deer. During development, there was a slight trend toward decreased Ercc61 mRNA expression. The highest Ercc6l expression levels were seen at 3 months old in every organ and showed the highest level of detection in the spleen of FSD. The lowest Ercc6l expression levels were seen at 3 years old. Conclusions/Significance We are the first to successfully clone Sika deer Ercc6l mRNA. Ercc6l transcript is present in almost every organ. During Sika deer development, there is a slight trend toward decreased Ercc61 mRNA expression. It is possible that Ercc6l has other roles in embryonic development and in maintaining the growth of animals. PMID:21695076
Ishibashi, Keiichiro; Okada, Norimichi; Ishiguro, Toru; Kuwabara, Kouki; Ohsawa, Tomonori; Yokoyama, Masaru; Kumamoto, Kensuke; Haga, Norihiro; Mori, Takashi; Yamada, Hirofumi; Miura, Ichiro; Tamaru, Junichi; Itoyama, Shinji; Ishida, Hideyuki
2010-11-01
Thymidylate synthase (TS) and excision repair complementing-1 (ERCC-1) were known to be important biomarkers to predict a tumor response to 5-fluorouracil (5-FU) and oxaliplatin, but the relationship between these expressions and tumor response were still unclear. The aim of this study was to determine whether the expression of TS and ERCC-1 protein predict a tumor response in patients with unresectable colorectal cancer treated with mFOLFOX6 therapy as first-line treatment. Fifty patients with unresectable colorectal cancer treated with mFOLFOX6 therapy were enrolled in this study. The expression of TS and ERCC-1 protein in primary cancer cells were examined using immunohistochemistry. There were no significant differences between response rate and the expression of TS or ERCC-1 protein (TS: p>0.99, ERCC-1: p= 0.50). There were no significant differences between progression-free survival time and the expression of TS or ERCC-1 protein (TS: p=0.60, ERCC-1: p=0.60). In this study, the expression TS and ERCC-1 protein may not be useful for the prediction of tumor response in patients with unresectable colorectal cancer treated with mFOLFOX6 therapy.
ERCC1 isoform expression and DNA repair in non-small-cell lung cancer.
Friboulet, Luc; Olaussen, Ken André; Pignon, Jean-Pierre; Shepherd, Frances A; Tsao, Ming-Sound; Graziano, Stephen; Kratzke, Robert; Douillard, Jean-Yves; Seymour, Lesley; Pirker, Robert; Filipits, Martin; André, Fabrice; Solary, Eric; Ponsonnailles, Florence; Robin, Angélique; Stoclin, Annabelle; Dorvault, Nicolas; Commo, Frédéric; Adam, Julien; Vanhecke, Elsa; Saulnier, Patrick; Thomale, Jürgen; Le Chevalier, Thierry; Dunant, Ariane; Rousseau, Vanessa; Le Teuff, Gwénaël; Brambilla, Elisabeth; Soria, Jean-Charles
2013-03-21
The excision repair cross-complementation group 1 (ERCC1) protein is a potential prognostic biomarker of the efficacy of cisplatin-based chemotherapy in non-small-cell lung cancer (NSCLC). Although several ongoing trials are evaluating the level of expression of ERCC1, no consensus has been reached regarding a method for evaluation. We used the 8F1 antibody to measure the level of expression of ERCC1 protein by means of immunohistochemical analysis in a validation set of samples obtained from 494 patients in two independent phase 3 trials (the National Cancer Institute of Canada Clinical Trials Group JBR.10 and the Cancer and Leukemia Group B 9633 trial from the Lung Adjuvant Cisplatin Evaluation Biology project). We compared the results of repeated staining of the entire original set of samples obtained from 589 patients in the International Adjuvant Lung Cancer Trial Biology study, which had led to the initial correlation between the absence of ERCC1 expression and platinum response, with our previous results in the same tumors. We mapped the epitope recognized by 16 commercially available ERCC1 antibodies and investigated the capacity of the different ERCC1 isoforms to repair platinum-induced DNA damage. We were unable to validate the predictive effect of immunostaining for ERCC1 protein. The discordance in the results of staining for ERCC1 suggested a change in the performance of the 8F1 antibody since 2006. We found that none of the 16 antibodies could distinguish among the four ERCC1 protein isoforms, whereas only one isoform produced a protein that had full capacities for nucleotide excision repair and cisplatin resistance. Immunohistochemical analysis with the use of currently available ERCC1 antibodies did not specifically detect the unique functional ERCC1 isoform. As a result, its usefulness in guiding therapeutic decision making is limited. (Funded by Eli Lilly and others.).
Li, Sheng; Zhu, Liangjun; Yao, Li; Xia, Lei; Pan, Liangxi
2014-08-29
Aim was to explore the association of ERCC1 and TS mRNA levels with the disease free survival (DFS) in Chinese colorectal cancer (CRC) patients receiving oxaliplatin and 5-FU based adjuvant chemotherapy. Total 112 Chinese stage II-III CRC patients were respectively treated by four different chemotherapy regimens after curative operation. The TS and ERCC1 mRNA levels in primary tumor were measured by real-time RT-PCR. Kaplan-Meier curves and log-rank tests were used for DFS analysis. The Cox proportional hazards model was used for prognostic analysis. In univariate analysis, the hazard ratio (HR) for the mRNA expression levels of TS and ERCC1 (logTS: HR = 0.820, 95% CI = 0.600 - 1.117, P = 0.210; logERCC1: HR = 1.054, 95% CI = 0.852 - 1.304, P = 0.638) indicated no significant association of DFS with the TS and ERCC1 mRNA levels. In multivariate analyses, tumor stage (IIIc: reference, P = 0.083; IIb: HR = 0.240, 95% CI = 0.080 - 0.724, P = 0.011; IIc: HR < 0.0001, P = 0.977; IIIa: HR = 0.179, 95% CI = 0.012 - 2.593, P = 0.207) was confirmed to be the independent prognostic factor for DFS. Moreover, the Kaplan-Meier DFS curves showed that TS and ERCC1 mRNA levels were not significantly associated with the DFS (TS: P = 0.264; ERCC1: P = 0.484). The mRNA expression of ERCC1 and TS were not applicable to predict the DFS of Chinese stage II-III CRC patients receiving 5-FU and oxaliplatin based adjuvant chemotherapy.
Mutational analysis of the human nucleotide excision repair gene ERCC1.
Sijbers, A M; van der Spek, P J; Odijk, H; van den Berg, J; van Duin, M; Westerveld, A; Jaspers, N G; Bootsma, D; Hoeijmakers, J H
1996-01-01
The human DNA repair protein ERCC1 resides in a complex together with the ERCC4, ERCC11 and XP-F correcting activities, thought to perform the 5' strand incision during nucleotide excision repair (NER). Its yeast counterpart, RAD1-RAD10, has an additional engagement in a mitotic recombination pathway, probably required for repair of DNA cross-links. Mutational analysis revealed that the poorly conserved N-terminal 91 amino acids of ERCC1 are dispensable for both repair functions, in contrast to a deletion of only four residues from the C-terminus. A database search revealed a strongly conserved motif in this C-terminus sharing sequence homology with many DNA break processing proteins, indicating that this part is primarily required for the presumed structure-specific endonuclease activity of ERCC1. Most missense mutations in the central region give rise to an unstable protein (complex). Accordingly, we found that free ERCC1 is very rapidly degraded, suggesting that protein-protein interactions provide stability. Survival experiments show that the removal of cross-links requires less ERCC1 than UV repair. This suggests that the ERCC1-dependent step in cross-link repair occurs outside the context of NER and provides an explanation for the phenotype of the human repair syndrome xeroderma pigmentosum group F. PMID:8811092
Assis, Joana; Pereira, Carina; Nogueira, Augusto; Pereira, Deolinda; Carreira, Rafael; Medeiros, Rui
2017-12-01
The potential predictive value of genetic polymorphisms in ovarian cancer first-line treatment is inconsistently reported. We aimed to review ovarian cancer pharmacogenetic studies to update and summarize the available data and to provide directions for further research. A systematic review followed by a meta-analysis was conducted on cohort studies assessing the involvement of genetic polymorphisms in ovarian cancer first-line treatment response retrieved through a MEDLINE database search by November 2016. Studies were pooled and summary estimates and 95% confidence intervals (CI) were calculated using random or fixed-effects models as appropriate. One hundred and forty-two studies gathering 106871 patients were included. Combined data suggested that GSTM1-null genotype patients have a lower risk of death compared to GSTM1-wt carriers, specifically in advanced stages (hazard ratio (HR), 0.68; 95% CI, 0.48-0.97) and when submitted to platinum-based chemotherapy (aHR, 0.61; 95% CI, 0.39-0.94). ERCC1 rs11615 and rs3212886 might have also a significant impact in treatment outcome (aHR, 0.67; 95% CI, 0.51-0.89; aHR, 1.28; 95% CI, 1.01-1.63, respectively). Moreover, ERCC2 rs13181 and rs1799793 showed a distinct ethnic behavior (Asians: aHR, 1.41; 95% CI, 0.80-2.49; aHR, 1.07; 95% CI, 0.62-1.86; Caucasians: aHR, 0.10; 95% CI, 0.01-0.96; aHR, 0.18; 95% CI, 0.05-0.68, respectively). The definition of integrative predictive models should encompass genetic information, especially regarding GSTM1 homozygous deletion. Justifying additional pharmacogenetic investigation are variants in ERCC1 and ERCC2, which highlight the DNA Repair ability to ovarian cancer prognosis. Further knowledge could aid to understand platinum-treatment failure and to tailor chemotherapy strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.
DNA repair deficiency sensitizes lung cancer cells to NAD+ biosynthesis blockade.
Touat, Mehdi; Sourisseau, Tony; Dorvault, Nicolas; Chabanon, Roman M; Garrido, Marlène; Morel, Daphné; Krastev, Dragomir B; Bigot, Ludovic; Adam, Julien; Frankum, Jessica R; Durand, Sylvère; Pontoizeau, Clement; Souquère, Sylvie; Kuo, Mei-Shiue; Sauvaigo, Sylvie; Mardakheh, Faraz; Sarasin, Alain; Olaussen, Ken A; Friboulet, Luc; Bouillaud, Frédéric; Pierron, Gérard; Ashworth, Alan; Lombès, Anne; Lord, Christopher J; Soria, Jean-Charles; Postel-Vinay, Sophie
2018-04-02
Synthetic lethality is an efficient mechanism-based approach to selectively target DNA repair defects. Excision repair cross-complementation group 1 (ERCC1) deficiency is frequently found in non-small-cell lung cancer (NSCLC), making this DNA repair protein an attractive target for exploiting synthetic lethal approaches in the disease. Using unbiased proteomic and metabolic high-throughput profiling on a unique in-house-generated isogenic model of ERCC1 deficiency, we found marked metabolic rewiring of ERCC1-deficient populations, including decreased levels of the metabolite NAD+ and reduced expression of the rate-limiting NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT). We also found reduced NAMPT expression in NSCLC samples with low levels of ERCC1. These metabolic alterations were a primary effect of ERCC1 deficiency, and caused selective exquisite sensitivity to small-molecule NAMPT inhibitors, both in vitro - ERCC1-deficient cells being approximately 1,000 times more sensitive than ERCC1-WT cells - and in vivo. Using transmission electronic microscopy and functional metabolic studies, we found that ERCC1-deficient cells harbor mitochondrial defects. We propose a model where NAD+ acts as a regulator of ERCC1-deficient NSCLC cell fitness. These findings open therapeutic opportunities that exploit a yet-undescribed nuclear-mitochondrial synthetic lethal relationship in NSCLC models, and highlight the potential for targeting DNA repair/metabolic crosstalks for cancer therapy.
Faridounnia, Maryam; Wienk, Hans; Kovačič, Lidija; Folkers, Gert E.; Jaspers, Nicolaas G. J.; Kaptein, Robert; Hoeijmakers, Jan H. J.; Boelens, Rolf
2015-01-01
The ERCC1-XPF heterodimer, a structure-specific DNA endonuclease, is best known for its function in the nucleotide excision repair (NER) pathway. The ERCC1 point mutation F231L, located at the hydrophobic interaction interface of ERCC1 (excision repair cross-complementation group 1) and XPF (xeroderma pigmentosum complementation group F), leads to severe NER pathway deficiencies. Here, we analyze biophysical properties and report the NMR structure of the complex of the C-terminal tandem helix-hairpin-helix domains of ERCC1-XPF that contains this mutation. The structures of wild type and the F231L mutant are very similar. The F231L mutation results in only a small disturbance of the ERCC1-XPF interface, where, in contrast to Phe231, Leu231 lacks interactions stabilizing the ERCC1-XPF complex. One of the two anchor points is severely distorted, and this results in a more dynamic complex, causing reduced stability and an increased dissociation rate of the mutant complex as compared with wild type. These data provide a biophysical explanation for the severe NER deficiencies caused by this mutation. PMID:26085086
Wang, Shuai; Liu, Feng; Zhu, Jingyan; Chen, Peng; Liu, Hongxing; Liu, Qi; Han, Junqing
2016-06-12
BACKGROUND Surgery combined with chemotherapy is an important therapy for non-small cell lung cancer (NSCLC). However, chemotherapy drug resistance seriously hinders the curative effect. Studies show that DNA repair genes ERCC1 and BRCA1 are associated with NSCLC chemotherapy, but their expression and mechanism in NSCLC chemotherapy drug-resistant cells has not been elucidated. MATERIAL AND METHODS NSCLC cell line A549 and drug resistance cell line A549/DDP were cultured. Real-time PCR and Western blot analyses were used to detect ERCC1 and BRCA1 mRNA expression. A549/DDP cells were randomly divided into 3 groups: the control group; the siRNA-negative control group (scramble group); and the siRNA ERCC1 and BRCA1siRNA transfection group. Real-time PCR and Western blot analyses were used to determine ERCC1 and BRCA1 mRNA and protein expression. MTT was used to detect cell proliferation activity. Caspase 3 activity was tested by use of a kit. Western blot analysis was performed to detect PI3K, AKT, phosphorylated PI3K, and phosphorylated AKT protein expression. RESULTS ERCC1 and BRCA1 were overexpressed in A549/DDP compared with A549 (P<0.05). ERCC1 and BRCA1siRNA transfection can significantly reduce ERCC1 and BRCA1 mRNA and protein expression (P<0.05). Downregulating ERCC1 and BRCA1 expression obviously inhibited cell proliferation and increased caspase 3 activity (P<0.05). Downregulating ERCC1 and BRCA1 significantly decreased PI3K and AKT phosphorylation levels (P<0.05). CONCLUSIONS ERCC1 and BRCA1 were overexpressed in NSCLC drug-resistant cells, and they regulated lung cancer occurrence and development through the phosphorylating PI3K/AKT signaling pathway.
Arora, Sanjeevani; Heyza, Joshua; Zhang, Hao; Kalman-Maltese, Vivian; Tillison, Kristin; Floyd, Ashley M.; Chalfin, Elaine M.; Bepler, Gerold; Patrick, Steve M.
2016-01-01
ERCC1-XPF heterodimer is a 5′-3′ structure-specific endonuclease which is essential in multiple DNA repair pathways in mammalian cells. ERCC1-XPF (ERCC1-ERCC4) repairs cisplatin-DNA intrastrand adducts and interstrand crosslinks and its specific inhibition has been shown to enhance cisplatin cytotoxicity in cancer cells. In this study, we describe a high throughput screen (HTS) used to identify small molecules that inhibit the endonuclease activity of ERCC1-XPF. Primary screens identified two compounds that inhibit ERCC1-XPF activity in the nanomolar range. These compounds were validated in secondary screens against two other non-related endonucleases to ensure specificity. Results from these screens were validated using an in vitro gel-based nuclease assay. Electrophoretic mobility shift assays (EMSAs) further show that these compounds do not inhibit the binding of purified ERCC1-XPF to DNA. Next, in lung cancer cells these compounds potentiated cisplatin cytotoxicity and inhibited DNA repair. Structure activity relationship (SAR) studies identified related compounds for one of the original Hits, which also potentiated cisplatin cytotoxicity in cancer cells. Excitingly, dosing with NSC16168 compound potentiated cisplatin antitumor activity in a lung cancer xenograft model. Further development of ERCC1-XPF DNA repair inhibitors is expected to sensitize cancer cells to DNA damage-based chemotherapy. PMID:27650543
Shalaby, Sally M; El-Shal, Amal S; Abdelaziz, Lobna A; Abd-Elbary, Eman; Khairy, Mostafa M
2018-02-20
Rectal cancer involves one-third of colorectal cancers (CRCs). Recently, data supported that DNA methylation have a role in CRC pathogenesis. In the present study we aimed to analyze the methylation status of MGMT and ERCC1 promoter regions in blood and tissue of patients with benign and malignant rectal tumors. We also studied the methylated MGMT and ERCC1 genes and their relations with clinicopathological features. Furthermore, we suggested that methylation may play a critical function in the regulation of MGMT and ERCC1 expression. Fifty patients with non-metastatic cancer rectum and 43 patients with benign rectal lesions were involved in the study. DNA extraction from blood and rectal specimens was done to analyze the methylation status of MGMT and ERCC1 genes by methylation-specific PCR method. RNA was extracted also to determine the expression levels of these genes by real time-PCR. The frequency of MGMT and ERCC1 methylation was significantly higher in rectum cancers than in benign tumors both for the tissue and the blood (p<0.001). There was no relation between MGMT or ERCC1 methylation and clinicopathological features; while they were correlated with the response to therapy. An interesting finding that the agreement of the methylation levels in the blood and rectal tissue was classified as good (κ=0.78) for MGMT gene and as very good (κ=0.85) for ERCC1. Lastly, the MGMT and ERCC1 genes methylation was associated with down-regulation of their mRNA expression when compared with the non-methylated status. Our findings provided evidence that both blood and tumor tissue MGMT and ERCC1 methylation were associated with cancer rectum. MGMT or ERCC1 methylation in blood could be suitable non-invasive biomarkers differentiating benign and malignant rectal tumors. Furthermore, the methylation of the MGMT and ERCC1 promoter regions was associated with down-regulation of their mRNA expression. Copyright © 2017 Elsevier B.V. All rights reserved.
Das, Devashish; Faridounnia, Maryam; Kovacic, Lidija; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E.
2017-01-01
The nucleotide excision repair protein complex ERCC1-XPF is required for incision of DNA upstream of DNA damage. Functional studies have provided insights into the binding of ERCC1-XPF to various DNA substrates. However, because no structure for the ERCC1-XPF-DNA complex has been determined, the mechanism of substrate recognition remains elusive. Here we biochemically characterize the substrate preferences of the helix-hairpin-helix (HhH) domains of XPF and ERCC-XPF and show that the binding to single-stranded DNA (ssDNA)/dsDNA junctions is dependent on joint binding to the DNA binding domain of ERCC1 and XPF. We reveal that the homodimeric XPF is able to bind various ssDNA sequences but with a clear preference for guanine-containing substrates. NMR titration experiments and in vitro DNA binding assays also show that, within the heterodimeric ERCC1-XPF complex, XPF specifically recognizes ssDNA. On the other hand, the HhH domain of ERCC1 preferentially binds dsDNA through the hairpin region. The two separate non-overlapping DNA binding domains in the ERCC1-XPF heterodimer jointly bind to an ssDNA/dsDNA substrate and, thereby, at least partially dictate the incision position during damage removal. Based on structural models, NMR titrations, DNA-binding studies, site-directed mutagenesis, charge distribution, and sequence conservation, we propose that the HhH domain of ERCC1 binds to dsDNA upstream of the damage, and XPF binds to the non-damaged strand within a repair bubble. PMID:28028171
Faridounnia, Maryam; Wienk, Hans; Kovačič, Lidija; Folkers, Gert E; Jaspers, Nicolaas G J; Kaptein, Robert; Hoeijmakers, Jan H J; Boelens, Rolf
2015-08-14
The ERCC1-XPF heterodimer, a structure-specific DNA endonuclease, is best known for its function in the nucleotide excision repair (NER) pathway. The ERCC1 point mutation F231L, located at the hydrophobic interaction interface of ERCC1 (excision repair cross-complementation group 1) and XPF (xeroderma pigmentosum complementation group F), leads to severe NER pathway deficiencies. Here, we analyze biophysical properties and report the NMR structure of the complex of the C-terminal tandem helix-hairpin-helix domains of ERCC1-XPF that contains this mutation. The structures of wild type and the F231L mutant are very similar. The F231L mutation results in only a small disturbance of the ERCC1-XPF interface, where, in contrast to Phe(231), Leu(231) lacks interactions stabilizing the ERCC1-XPF complex. One of the two anchor points is severely distorted, and this results in a more dynamic complex, causing reduced stability and an increased dissociation rate of the mutant complex as compared with wild type. These data provide a biophysical explanation for the severe NER deficiencies caused by this mutation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
2C.07: INVOLVEMENT OF THE RENIN-ANGIOTENSIN SYSTEM IN A PREMATURE AGING MOUSE MODEL.
Van Thiel, B S; Ridwan, Y; Garrelds, I M; Vermeij, M; Groningen, M C Clahsen-Van; Danser, A H J; Essers, J; Van Der Pluijm, I
2015-06-01
Changes in the renin-angiotensin system (RAS), known for its critical role in the regulation of blood pressure and sodium homeostasis, may contribute to aging and age-related diseases. Here we characterized the RAS and kidney pathology in mice with genomic instability due to a defective nucleotide excision repair gene (Ercc1d/- mice). These mice display premature features of aging, including vascular dysfunction. Studies were performed in male and female Ercc1d/- mice and their wild type controls (Ercc1+/+) at the age of 12 or 18 weeks before and after treatment with losartan. The renin-activatable near-infrared fluorescent probe ReninSense 680™ was applied in vivo to allow non-invasive imaging of renin activity. Plasma renin concentrations (PRC) were additionally measured ex vivo by quantifying Ang I generation in the presence of excess angiotensinogen. Kidneys were harvested and examined for markers of aging, and albumin was determined in urine. Kidneys of 12-week old Ercc1d/- mice showed signs of aging, including tubular anisokaryosis, cell-senescence and increased apoptosis. This was even more pronounced at the age of 18 weeks. Yet, urinary albumin was normal at 12 weeks. The ReninSense 680™ probe showed increased intrarenal renin activity in Ercc1d/- mice versus Ercc1+/+ mice, both at 12 and 18 weeks of age, while PRC in these mice tended to be lower compared to Ercc1+/+ mice. Renin was higher in male than female mice, both in the kidney and in plasma, and losartan increased kidney and plasma renin in both Ercc1d/- and Ercc1+/+ mice. Rapidly aging Ercc1d/- mice display an activated intrarenal RAS, as evidenced by the increased fluorescence detected with the ReninSense 680™ probe. This increased RAS activity may contribute to the disturbed kidney pathology in these mice. The increased intrarenal activity detected with the ReninSense 680™ probe in male vs. female mice, as well as after losartan treatment, are in full agreement with the literature, and thus not only validate the specificity of the probe, but also support its use for longitudinal imaging of altered RAS signaling in aging.
Krawczyk, Paweł; Kucharczyk, Tomasz; Kowalski, Dariusz M; Powrózek, Tomasz; Ramlau, Rodryg; Kalinka-Warzocha, Ewa; Winiarczyk, Kinga; Knetki-Wróblewska, Magdalena; Wojas-Krawczyk, Kamila; Kałakucka, Katarzyna; Dyszkiewicz, Wojciech; Krzakowski, Maciej; Milanowski, Janusz
2014-12-01
We presented retrospective analysis of up to five polymorphisms in TS, MTHFR and ERCC1 genes as molecular predictive markers for homogeneous Caucasian, non-squamous NSCLC patients treated with pemetrexed and platinum front-line chemotherapy. The following polymorphisms in DNA isolated from 115 patients were analyzed: various number of 28-bp tandem repeats in 5'-UTR region of TS gene, single nucleotide polymorphism (SNP) within the second tandem repeat of TS gene (G>C); 6-bp deletion in 3'-UTR region of the TS (1494del6); 677C>T SNP in MTHFR; 19007C>T SNP in ERCC1. Molecular examinations' results were correlated with disease control rate, progression-free survival (PFS) and overall survival. Polymorphic tandem repeat sequence (2R, 3R) in the enhancer region of TS gene and G>C SNP within the second repeat of 3R allele seem to be important for the effectiveness of platinum and pemetrexed in first-line chemotherapy. The insignificant shortening of PFS in 3R/3R homozygotes as compared to 2R/2R and 2R/3R genotypes were observed, while it was significantly shorter in patients carrying synchronous 3R allele and G nucleotide. The combined analysis of TS VNTR and MTHFR 677C>T SNP revealed shortening of PFS in synchronous carriers of 3R allele in TS and two C alleles in MTHFR. The strongest factors increased the risk of progression were poor PS, weight loss, anemia and synchronous presence of 3R allele and G nucleotide in the second repeat of 3R allele in TS. Moreover, lack of application of second-line chemotherapy, weight loss and poor performance status and above-mentioned genotype of TS gene increased risk of early mortality. The examined polymorphisms should be accounted as molecular predictor factors for pemetrexed- and platinum-based front-line chemotherapy in non-squamous NSCLC patients.
Ma, L; Siemssen, E D; Noteborn, H M; van der Eb, A J
1994-01-01
The XPB/ERCC3 gene corrects the nucleotide excision-repair defect in the human hereditary disease xeroderma pigmentosum group B and encodes the largest subunit of the basal transcription factor BTF2/TFIIH. The primary sequence of the XPB/ERCC3 protein features the hallmarks of seven helicase motifs found in many known and putative helicases or helicase-related proteins. Recently, the multiprotein BTF2/TFIIH complex has been found to be associated with DNA helicase activity. To explore the properties and functions of XPB/ERCC3, we have used the baculovirus/insect-cell expression system to produce recombinant protein. We report here the construction and analysis of recombinant baculovirus expressing XPB/ERCC3. The XPB/ERCC3 protein is synthesized at a relatively high level in baculovirus-infected insect cells. While the majority of XPB/ERCC3 end up in the insoluble fraction of insect cell lysates, a minor fraction of recombinant protein is present in soluble form which can be purified under native conditions. We have found that a DNA helicase activity is associated with the purified XPB/ERCC3 protein, suggesting that XPB/ERCC3 may function as a DNA helicase in local unwinding of DNA template both in the context of transcription and nucleotide excision repair. Images PMID:7937133
Laska, Magdalena J; Nexø, Bjørn A; Vistisen, Kirsten; Poulsen, Henrik Enghusen; Loft, Steffen; Vogel, Ulla
2005-07-28
Testicular cancer has been suggested to be primed in utero and there is familiar occurrence, particularly brothers and sons of men with testicular cancer have increased risk. Although no specific causative genotoxic agents have been identified, variations in DNA repair capacity could be associated with the risk of testicular cancer. A case-control study of 184 testicular cancer cases and 194 population-based controls living in the Copenhagen Greater Area in Denmark was performed. We found that neither polymorphisms in several DNA repair genes nor alleles of several polymorphisms in the chromosomal of region 19q13.2-3, encompassing the genes ASE, ERCC1, RAI and XPD, were associated with risk of testicular cancer in Danish patients. This is in contrast to other cancers, where we reported strong associations between polymorphisms in ERCC1, ASE and RAI and occurrence of basal cell carcinoma, breast cancer and lung. To our knowledge this is the first study of DNA repair gene polymorphisms and risk of testicular cancer.
Chen, Liqi; Li, Guoli; Li, Jieshou; Fan, Chaogang; Xu, Jian; Wu, Bo; Liu, Kun; Zhang, Caihua
2013-04-01
To study the correlation between expression levels of ERCC1/TS mRNA and the susceptibility of preoperative chemotherapy for patients with gastric cancer. A total of forty cases with advanced gastric cancer of T3-4N1-2M0 were treated with preoperative chemotherapy according to FLEEOX regimen based on endarterial-intravenous coadministration. Sufficient, fresh gastric tissue specimens were obtained with the help of gastroscope, and the expression levels of ERCC1/TS mRNA were detected by qRT-PCR before chemotherapy. The chemotherapeutic response was evaluated with Choi Criteria after chemotherapy, and pathologic remission extent was observed after surgery. The correlation between the expression levels of ERCC1/TS mRNA before chemotherapy and the chemotherapeutic effect based on imageology and pathology was analyzed. The response rate of Chemotherapy in this cohort was 80.0 % based on imageology and 51.43 % based on pathology. The expression levels of ERCC1/TS mRNA were significantly associated with imageology remission extent (P = 0.033, P = 0.025) and pathologic remission extent (P = 0.044, P = 0.016), respectively. The chemotherapeutic effect on patients with low-expression levels of ERCC1/TS mRNA was better. From the perspective of pathology and imageology evaluating the preoperative chemotherapeutic response for patients with gastric cancer, ERCC1 and TS were used as the molecular predictors and provided prognostic information in this study.
Liu, Yu-Chin; Chang, Pu-Yuan; Chao, Chuck C.-K.
2015-01-01
In this study, we show that silencing of CITED2 using small-hairpin RNA (shCITED2) induced DNA damage and reduction of ERCC1 gene expression in HEK293, HeLa and H1299 cells, even in the absence of cisplatin. In contrast, ectopic expression of ERCC1 significantly reduced intrinsic and induced DNA damage levels, and rescued the effects of CITED2 silencing on cell viability. The effects of CITED2 silencing on DNA repair and cell death were associated with p53 activity. Furthermore, CITED2 silencing caused severe elimination of the p300 protein and markers of relaxed chromatin (acetylated H3 and H4, i.e. H3K9Ac and H3K14Ac) in HEK293 cells. Chromatin immunoprecipitation assays further revealed that DNA damage induced binding of p53 along with H3K9Ac or H3K14Ac at the ERCC1 promoter, an effect which was almost entirely abrogated by silencing of CITED2 or p300. Moreover, lentivirus-based CITED2 silencing sensitized HeLa cell line-derived tumor xenografts to cisplatin in immune-deficient mice. These results demonstrate that CITED2/p300 can be recruited by p53 at the promoter of the repair gene ERCC1 in response to cisplatin-induced DNA damage. The CITED2/p300/p53/ERCC1 pathway is thus involved in the cell response to cisplatin and represents a potential target for cancer therapy. PMID:26384430
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doll, Corinne M., E-mail: Corinne.Doll@albertahealthservices.ca; Aquino-Parsons, Christina; Pintilie, Melania
2013-03-01
Purpose: ERCC1 (excision repair cross-complementation group 1) expression has been shown to be a molecular marker of cisplatin resistance in many tumor sites, but has not been well studied in cervical cancer patients. The purpose of this study was to measure tumoral ERCC1 in patients with locally advanced cervical cancer treated with chemoradiation therapy (CRT) in a large multicenter cohort, and to correlate expression with clinical outcome parameters. Methods and Materials: A total of 264 patients with locally advanced cervical cancer, treated with curative-intent radical CRT from 3 major Canadian cancer centers were evaluated. Pretreatment formalin-fixed, paraffin-embedded tumor specimens weremore » retrieved, and tissue microarrays were constructed. Tumoral ERCC1 (FL297 antibody) was measured using AQUA (R) technology. Statistical analysis was performed to determine the significance of clinical factors and ERCC1 status with progression-free survival (PFS) and overall survival (OS) at 5 years. Results: The majority of patients had International Federation of Gynecology and Obstetrics (FIGO) stage II disease (n=119, 45%); median tumor size was 5 cm. OS was associated with tumor size (HR 1.16, P=.018), pretreatment hemoglobin status (HR 2.33, P=.00027), and FIGO stage. In addition, tumoral ERCC1 status (nuclear to cytoplasmic ratio) was associated with PFS (HR 2.33 [1.05-5.18], P=.038) and OS (HR 3.13 [1.27-7.71], P=.013). ERCC1 status was not significant on multivariate analysis when the model was adjusted for the clinical factors: for PFS (HR 1.49 [0.61-3.6], P=.38); for OS (HR 2.42 [0.94-6.24] P=.067). Conclusions: In this large multicenter cohort of locally advanced cervical cancer patients treated with radical CRT, stage, tumor size, and pretreatment hemoglobin status were significantly associated with PFS and OS. ERCC1 status appears to have prognostic impact on univariate analysis in these patients, but was not independently associated with outcome on multivariate analysis.« less
Powrózek, Tomasz; Kowalski, Dariusz M; Krawczyk, Paweł; Ramlau, Rodryg; Kucharczyk, Tomasz; Kalinka-Warzocha, Ewa; Knetki-Wróblewska, Magdalena; Winiarczyk, Kinga; Dyszkiewicz, Wojciech; Krzakowski, Maciej; Milanowski, Janusz
2014-11-01
The combination of pemetrexed and platinum compound represents the standard regimen for first-line chemotherapy in malignant pleural mesothelioma patients. Pemetrexed is a multitarget antifolate agent that inhibits folate-dependent enzymes (eg, thymidylate synthase [TS]) and thus synthesis of nucleotides and DNA. Expression of TS and folate availability, regulated by gene polymorphisms, have implications for effectiveness of chemotherapy and the outcome of mesothelioma patients. The aim of this retrospective multicenter study was to assess the correlation between TS, 5,10-methylenetetrahydrofolate reductase (MTHFR) and excision repair cross-complementing group 1 (ERCC1) gene polymorphisms and the efficacy of pemetrexed-based first-line chemotherapy of mesothelioma patients. Fifty-nine mesothelioma patients (31 men with a median age of 62 years) treated in first-line chemotherapy with platinum in combination with pemetrexed or pemetrexed monotherapy were enrolled. Genomic DNA was isolated from peripheral blood. Using polymerase chain reaction and high resolution melt methods, the variable number of tandem repeat, the G>C single nucleotide polymorphism (SNP) in these repeats, and 6-base pair (bp) insertion/deletion polymorphism of the TS gene, the SNP of 677C>T in MTHFR, and 19007C>T in the ERCC1 gene were analyzed and correlated with disease control rate, progression-free survival (PFS), and overall survival (OS) of mesothelioma patients. Greater risk of early disease progression (PD), and shortening of PFS and OS were associated with several clinical factors (eg, anemia for early PD and OS), weight loss (for PFS and OS), and previous surgical treatment (for early PD, PFS, and OS). Insertion of 6-bp in both alleles of the TS gene (1494del6) was the only genetic factor that increased the incidence of early progression (P = .028) and shortening of median PFS (P = .06) in patients treated with pemetrexed-based chemotherapy. In multivariate analysis, the 1494del6 in the 3' untranslated region (UTR) of the TS gene also had a predictive role for PFS (P = .0185; hazard ratio, 2.3258 for +6/+6 homozygotes) in analyzed mesothelioma patients. Most analyzed polymorphisms in TS, MTHFR, and ERCC1 genes failed to predict outcome in mesothelioma patients treated with pemetrexed-based chemotherapy. However, different variants of 1494del6 in the 3' UTR of the TS gene were associated with differences in disease control rate and PFS of our patients. Copyright © 2014 Elsevier Inc. All rights reserved.
RPA activates the XPF-ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks.
Abdullah, Ummi B; McGouran, Joanna F; Brolih, Sanja; Ptchelkine, Denis; El-Sagheer, Afaf H; Brown, Tom; McHugh, Peter J
2017-07-14
During replication-coupled DNA interstrand crosslink (ICL) repair, the XPF-ERCC1 endonuclease is required for the incisions that release, or "unhook", ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL Here, we report that while purified XPF-ERCC1 incises simple ICL-containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single-stranded DNA (ssDNA)-binding replication protein A (RPA) selectively restores XPF-ERCC1 endonuclease activity on this structure. The 5'-3' exonuclease SNM1A can load from the XPF-ERCC1-RPA-induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF-ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo . © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Huang, Jin; Hu, Huabin; Xie, Yangchun; Tang, Youhong; Liu, Wei; Zhong, Meizuo
2013-06-01
To analyze the impact of β-tubulin-III (TUBB3), thymidylate synthase (TS) and excision repair cross complementation group 1 (ERCC1) mRNA expression on chemoresponse and clinical outcome of patients with advanced gastric cancer treated with TXT/CDDP/FU (DCF) regimen chemotherapy. The study population consisted of 48 patients with advanced gastric cancer. All patients were treated with DCF regimen palliative chemotherapy. The mRNA expressions of TUBB3, TS and ERCC1 of primary tumors were examined by multiplex branched-DNA liquid chip technology. The patients with low TUBB3 mRNA expression had higher response rate to chemotherapy than patients with high TUBB3 expression (P=0.011). There were no significant differences between response rate and TS or ERCC1 expression pattern. Median overall survival (OS) and median time to progression (TTP) were significantly longer in patients with low TUBB3 mRNA expression (P=0.002, P<0.001). TS or ERCC1 expression was not correlated with TTP and OS. In the combined analysis including TUBB3, TS and ERCC1, the patients with 0 or 1 high expression gene had better response rate, TTP and OS than the remaining patients (all P<0.001). Multivariate analysis revealed that ECOG (Eastern Cooperative Oncology Group)≥2 (HR=2.42, P=0.009) and TUBB3 (HR=2.34, P=0.036) mRNA expression significantly impacted on OS. High TUBB3 mRNA expression is correlated with resistance to DCF regimen chemotherapy. TUBB3 might be a predictive and prognostic factor in patients with advanced gastric cancer treated with TXT-based chemotherapy. The combined evaluation of TUBB3, TS and ERCC1 expression can promote the individual treatment in advanced gastric cancer.
Gao, Zhiqiang; Han, Baohui; Shen, Jie; Gu, Aiqin; Qi, Dajiang; Huang, Jinsu; Shi, Chunlei; Xiong, Liwen; Zhao, Yizhuo; Jiang, Liyan; Wang, Huimin; Chen, Yurong
2011-09-01
Excision repair cross-complementation group 1 (ERCC1) protein has been associated with cisplatin resistance. The objective of this study was to investigate the correlation between ERCC1 protein levels and the therapeutic effect of individualized therapy in advanced non-small cell lung cancer (NSCLC). A total of 190 advanced NSCLC patients were included in this study. Patients were randomized into either the individualized therapy group or the standard therapy group at a ratio of 2:1. Patients in the standard therapy group were treated with either gemcitabine plus cisplatin or vinorelbine plus cisplatin. The expression of ERCC1 protein in lung cancer tissues of patients from the individualized therapy group was detected with immunohistochemistry. Patients with low ERCC1 levels received either gemcitabine plus cisplatin or vinorelbine plus cisplatin, and patients with high levels received gemcitabine plus vinorelbine. The main outcome assessments were response rate (RR), overall survival (OS) and time to progression (TTP). Follow-up data were recorded until September 30, 2010. RR, 1-year survival rate and TTP were not statistically significant. The median survival time was 10.10 months in the standard therapy group (95% CI 8.48-11.92) and 13.59 months in the individualized therapy group (95% CI 11.86-14.74). The difference in median survival time was significantly different between these groups (P=0.036). The median survival time was longer in the individualized group compared to the standard therapy group. ERCC1 protein expression in advanced NSCLC patients, however, was not significantly correlated with RR, OS and TTP in the individualized therapy group. Therefore, this study suggests that ERCC1 protein levels should be assessed in combination with additional biomarkers to determine an optimal index for individualized therapy in advanced NSCLC patients.
Rosell, Rafael; Manegold, Christian; Moran, Teresa; Garrido, Pilar; Blanco, Remei; Lianes, Pilar; Stahel, Rolf; Trigo, Jose Manuel; Wei, Jia; Taron, Miquel
2008-03-01
Metastatic non-small-cell lung cancer remains a fatal disease with a median survival of < 1 year. A critical challenge is to develop predictive markers for customizing platinum-based treatment. The first studies focused on the excision repair cross-complementing 1 (ERCC1) gene in this difficult task. Several layers of evidence indicate that ERCC1 mRNA expression could be a predictive marker for cisplatin alone or in combination with certain drugs such as etoposide, gemcitabine, and 5-fluorouracil but not in combination with antimicrotubule drugs. Several retrospective studies demonstrated an impressive survival advantage for gemcitabine plus cisplatin but not for other combinations in tumors with low ERCC1 expression. A customized phase III ERCC1-based trial met the primary endpoint of improvement in response but not in survival, leading us to hypothesize that docetaxel might not be the most appropriate partner for cisplatin in the presence of low ERCC1 levels or for gemcitabine in the presence of high ERCC1 levels. A phase II study demonstrated the feasibility of combining carboplatin, gemcitabine, docetaxel, and vinorelbine according to ERCC1 and ribonucleotide reductase subunit M1 expression levels. These findings highlight the importance of continual learning, and decision-making strategies for customizing treatment should reflect the limitations of our knowledge. Copyright © 2008 Elsevier Inc. All rights reserved.
Vogel, Ulla; Sørensen, Mette; Hansen, Rikke Dalgaard; Tjønneland, Anne; Overvad, Kim; Wallin, Håkan; Nexø, Bjørn A; Raaschou-Nielsen, Ole
2007-03-08
Homozygous carriers of a haplotype consisting of ERCC1 Asn118Asn(A), ASE-1 G-21A(G), RAI IVS1 A4364G(A) are at increased risk of lung cancer especially among women. Here, we analyse for gene-environment interactions with the predefined haplotype in a case cohort study including 428 lung cancer cases and a comparison group of 800 persons, all from the prospective Diet, Cancer and Health cohort of 57,000 Danes. At high smoking intensity (>20g tobacco/day), there was only additional risk of smoking intensity among women who were homozygous carriers of the haplotype (IRR=2.03; 95% CI: 1.10-3.73 per 5 additional g tobacco/day).
NASA Astrophysics Data System (ADS)
Tan, Maxine; Emaminejad, Nastaran; Qian, Wei; Sun, Shenshen; Kang, Yan; Guan, Yubao; Lure, Fleming; Zheng, Bin
2014-03-01
Stage I non-small-cell lung cancers (NSCLC) usually have favorable prognosis. However, high percentage of NSCLC patients have cancer relapse after surgery. Accurately predicting cancer prognosis is important to optimally treat and manage the patients to minimize the risk of cancer relapse. Studies have shown that an excision repair crosscomplementing 1 (ERCC1) gene was a potentially useful genetic biomarker to predict prognosis of NSCLC patients. Meanwhile, studies also found that chronic obstructive pulmonary disease (COPD) was highly associated with lung cancer prognosis. In this study, we investigated and evaluated the correlations between COPD image features and ERCC1 gene expression. A database involving 106 NSCLC patients was used. Each patient had a thoracic CT examination and ERCC1 genetic test. We applied a computer-aided detection scheme to segment and quantify COPD image features. A logistic regression method and a multilayer perceptron network were applied to analyze the correlation between the computed COPD image features and ERCC1 protein expression. A multilayer perceptron network (MPN) was also developed to test performance of using COPD-related image features to predict ERCC1 protein expression. A nine feature based logistic regression analysis showed the average COPD feature values in the low and high ERCC1 protein expression groups are significantly different (p < 0.01). Using a five-fold cross validation method, the MPN yielded an area under ROC curve (AUC = 0.669±0.053) in classifying between the low and high ERCC1 expression cases. The study indicates that CT phenotype features are associated with the genetic tests, which may provide supplementary information to help improve accuracy in assessing prognosis of NSCLC patients.
Transcriptional profiling reveals progeroid Ercc1-/Δ mice as a model system for glomerular aging
2013-01-01
Background Aging-related kidney diseases are a major health concern. Currently, models to study renal aging are lacking. Due to a reduced life-span progeroid models hold the promise to facilitate aging studies and allow examination of tissue-specific changes. Defects in genome maintenance in the Ercc1-/Δ progeroid mouse model result in premature aging and typical age-related pathologies. Here, we compared the glomerular transcriptome of young and aged Ercc1-deficient mice to young and aged WT mice in order to establish a novel model for research of aging-related kidney disease. Results In a principal component analysis, age and genotype emerged as first and second principal components. Hierarchical clustering of all 521 genes differentially regulated between young and old WT and young and old Ercc1-/Δ mice showed cluster formation between young WT and Ercc1-/Δ as well as old WT and Ercc1-/Δ samples. An unexpectedly high number of 77 genes were differentially regulated in both WT and Ercc1-/Δ mice (p < 0.0001). GO term enrichment analysis revealed these genes to be involved in immune and inflammatory response, cell death, and chemotaxis. In a network analysis, these genes were part of insulin signaling, chemokine and cytokine signaling and extracellular matrix pathways. Conclusion Beyond insulin signaling, we find chemokine and cytokine signaling as well as modifiers of extracellular matrix composition to be subject to major changes in the aging glomerulus. At the level of the transcriptome, the pattern of gene activities is similar in the progeroid Ercc1-/Δ mouse model constituting a valuable tool for future studies of aging-associated glomerular pathologies. PMID:23947592
Transcriptional profiling reveals progeroid Ercc1(-/Δ) mice as a model system for glomerular aging.
Schermer, Bernhard; Bartels, Valerie; Frommolt, Peter; Habermann, Bianca; Braun, Fabian; Schultze, Joachim L; Roodbergen, Marianne; Hoeijmakers, Jan Hj; Schumacher, Björn; Nürnberg, Peter; Dollé, Martijn Et; Benzing, Thomas; Müller, Roman-Ulrich; Kurschat, Christine E
2013-08-16
Aging-related kidney diseases are a major health concern. Currently, models to study renal aging are lacking. Due to a reduced life-span progeroid models hold the promise to facilitate aging studies and allow examination of tissue-specific changes. Defects in genome maintenance in the Ercc1(-/Δ) progeroid mouse model result in premature aging and typical age-related pathologies. Here, we compared the glomerular transcriptome of young and aged Ercc1-deficient mice to young and aged WT mice in order to establish a novel model for research of aging-related kidney disease. In a principal component analysis, age and genotype emerged as first and second principal components. Hierarchical clustering of all 521 genes differentially regulated between young and old WT and young and old Ercc1(-/Δ) mice showed cluster formation between young WT and Ercc1(-/Δ) as well as old WT and Ercc1(-/Δ) samples. An unexpectedly high number of 77 genes were differentially regulated in both WT and Ercc1(-/Δ) mice (p < 0.0001). GO term enrichment analysis revealed these genes to be involved in immune and inflammatory response, cell death, and chemotaxis. In a network analysis, these genes were part of insulin signaling, chemokine and cytokine signaling and extracellular matrix pathways. Beyond insulin signaling, we find chemokine and cytokine signaling as well as modifiers of extracellular matrix composition to be subject to major changes in the aging glomerulus. At the level of the transcriptome, the pattern of gene activities is similar in the progeroid Ercc1(-/Δ) mouse model constituting a valuable tool for future studies of aging-associated glomerular pathologies.
Deficient Pms2, ERCC1, Ku86, CcOI in field defects during progression to colon cancer.
Nguyen, Huy; Loustaunau, Cristy; Facista, Alexander; Ramsey, Lois; Hassounah, Nadia; Taylor, Hilary; Krouse, Robert; Payne, Claire M; Tsikitis, V Liana; Goldschmid, Steve; Banerjee, Bhaskar; Perini, Rafael F; Bernstein, Carol
2010-07-28
In carcinogenesis, the "field defect" is recognized clinically because of the high propensity of survivors of certain cancers to develop other malignancies of the same tissue type, often in a nearby location. Such field defects have been indicated in colon cancer. The molecular abnormalities that are responsible for a field defect in the colon should be detectable at high frequency in the histologically normal tissue surrounding a colonic adenocarcinoma or surrounding an adenoma with advanced neoplasia (well on the way to a colon cancer), but at low frequency in the colonic mucosa from patients without colonic neoplasia. Using immunohistochemistry, entire crypts within 10 cm on each side of colonic adenocarcinomas or advanced colonic neoplasias were found to be frequently reduced or absent in expression for two DNA repair proteins, Pms2 and/or ERCC1. Pms2 is a dual role protein, active in DNA mismatch repair as well as needed in apoptosis of cells with excess DNA damage. ERCC1 is active in DNA nucleotide excision repair. The reduced or absent expression of both ERCC1 and Pms2 would create cells with both increased ability to survive (apoptosis resistance) and increased level of mutability. The reduced or absent expression of both ERCC1 and Pms2 is likely an early step in progression to colon cancer. DNA repair gene Ku86 (active in DNA non-homologous end joining) and Cytochrome c Oxidase Subunit I (involved in apoptosis) had each been reported to be decreased in expression in mucosal areas close to colon cancers. However, immunohistochemical evaluation of their levels of expression showed only low to modest frequencies of crypts to be deficient in their expression in a field defect surrounding colon cancer or surrounding advanced colonic neoplasia. We show, here, our method of evaluation of crypts for expression of ERCC1, Pms2, Ku86 and CcOI. We show that frequency of entire crypts deficient for Pms2 and ERCC1 is often as great as 70% to 95% in 20 cm long areas surrounding a colonic neoplasia, while frequency of crypts deficient in Ku86 has a median value of 2% and frequency of crypts deficient in CcOI has a median value of 16% in these areas. The entire colon is 150 cm long (about 5 feet) and has about 10 million crypts in its mucosal layer. The defect in Pms2 and ERCC1 surrounding a colon cancer thus may include 1 million crypts. It is from a defective crypt that colon cancer arises.
Bišof, Vesna; Zajc Petranović, Matea; Rakušić, Zoran; Samardžić, Kristina Ruža; Juretić, Antonio
2016-09-01
Excision repair cross-complementation group 1 (ERCC1) protein has been extensively investigated as a prognostic and predictive factor for platinum-based treatment in head and neck squamous cell carcinoma (HNSCC) but with inconsistent results. We performed the present meta-analysis to better elucidate this issue in advanced HNSCC. A literature search was conducted using the PubMed and Web of Science databases. The inclusion criteria were head and neck cancer patients with platinum-based treatment and evaluation of the correlation between ERCC1 expression and clinical outcomes [objective response rate (ORR), progression-free survival (PFS), and overall survival (OS), both unadjusted and adjusted estimates]. In high vs. low pooled analyses, high ERCC1 expression was associated with unfavorable OS [hazard ratio (HR) = 1.95, 95 % confidence interval (CI) 1.18-3.21, p = 0.009], PFS (HR = 2.39, 95 % CI 1.74-3.28, p = 0.000) and ORR (odds ratio = 0.48, 95 % CI 0.23-0.98, p = 0.044). In the subgroup analysis of adjusted OS estimates, ERCC1 was a predictor of shorter survival in Asians (HR = 3.13, 95 % CI 2.09-4.70, p = 0.000) and Caucasians (HR = 2.02, 95 % CI 1.32-3.07, p = 0.001) but of longer survival in South Americans (HR = 0.17, 95 % CI 0.07-0.40, p = 0.000). Immunohistochemistry proved to be of predictive value irrespective of used antibody (p = 0.009). In the stratified analysis according to the tumor site, ERCC1 expression was associated with OS in nasopharyngeal cancer (HR = 2.72, 95 % CI 1.79-4.13, p = 0.000). ERCC1 has a potential to become predictive and prognostic factor enabling treatment tailoring in HNSCC patients.
Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1−/− mice
Prasher, Joanna M; Lalai, Astrid S; Heijmans-Antonissen, Claudia; Ploemacher, Robert E; Hoeijmakers, Jan H J; Touw, Ivo P; Niedernhofer, Laura J
2005-01-01
The ERCC1-XPF heterodimer is a structure-specific endonuclease involved in both nucleotide excision repair and interstrand crosslink repair. Mice carrying a genetic defect in Ercc1 display symptoms suggestive of a progressive, segmental progeria, indicating that disruption of one or both of these DNA damage repair pathways accelerates aging. In the hematopoietic system, there are defined age-associated changes for which the cause is unknown. To determine if DNA repair is critical to prolonged hematopoietic function, hematopoiesis in Ercc1−/− mice was compared to that in young and old wild-type mice. Ercc1−/− mice (3-week-old) exhibited multilineage cytopenia and fatty replacement of bone marrow, similar to old wild-type mice. In addition, the proliferative reserves of hematopoietic progenitors and stress erythropoiesis were significantly reduced in Ercc1−/− mice compared to age-matched controls. These features were not seen in nucleotide excision repair-deficient Xpa−/− mice, but are characteristic of Fanconi anemia, a human cancer syndrome caused by defects in interstrand crosslink repair. These data support the hypothesis that spontaneous interstrand crosslink damage contributes to the functional decline of the hematopoietic system associated with aging. PMID:15692571
Variable continental distribution of polymorphisms in the coding regions of DNA-repair genes.
Mathonnet, Géraldine; Labuda, Damian; Meloche, Caroline; Wambach, Tina; Krajinovic, Maja; Sinnett, Daniel
2003-01-01
DNA-repair pathways are critical for maintaining the integrity of the genetic material by protecting against mutations due to exposure-induced damages or replication errors. Polymorphisms in the corresponding genes may be relevant in genetic epidemiology by modifying individual cancer susceptibility or therapeutic response. We report data on the population distribution of potentially functional variants in XRCC1, APEX1, ERCC2, ERCC4, hMLH1, and hMSH3 genes among groups representing individuals of European, Middle Eastern, African, Southeast Asian and North American descent. The data indicate little interpopulation differentiation in some of these polymorphisms and typical FST values ranging from 10 to 17% at others. Low FST was observed in APEX1 and hMSH3 exon 23 in spite of their relatively high minor allele frequencies, which could suggest the effect of balancing selection. In XRCC1, hMSH3 exon 21 and hMLH1 Africa clusters either with Middle East and Europe or with Southeast Asia, which could be related to the demographic history of human populations, whereby human migrations and genetic drift rather than selection would account for the observed differences.
Correction of xeroderma pigmentosum repair defect by basal transcription factor BTF2 (TFIIH).
van Vuuren, A J; Vermeulen, W; Ma, L; Weeda, G; Appeldoorn, E; Jaspers, N G; van der Eb, A J; Bootsma, D; Hoeijmakers, J H; Humbert, S
1994-01-01
ERCC3 was initially identified as a gene correcting the nucleotide excision repair (NER) defect of xeroderma pigmentosum complementation group B (XP-B). The recent finding that its gene product is identical to the p89 subunit of basal transcription factor BTF2(TFIIH), opened the possibility that it is not directly involved in NER but that it regulates the transcription of one or more NER genes. Using an in vivo microinjection repair assay and an in vitro NER system based on cell-free extracts we demonstrate that ERCC3 in BTF2 is directly implicated in excision repair. Antibody depletion experiments support the idea that the p62 BTF2 subunit and perhaps the entire transcription factor function in NER. Microinjection experiments suggest that exogenous ERCC3 can exchange with ERCC3 subunits in the complex. Expression of a dominant negative K436-->R ERCC3 mutant, expected to have lost all helicase activity, completely abrogates NER and transcription and concomitantly induces a dramatic chromatin collapse. These findings establish the role of ERCC3 and probably the entire BTF2 complex in transcription in vivo which was hitherto only demonstrated in vitro. The results strongly suggest that transcription itself is a critical component for maintenance of chromatin structure. The remarkable dual role of ERCC3 in NER and transcription provides a clue in understanding the complex clinical features of some inherited repair syndromes. Images PMID:8157004
Wu, Haiyan; van Thiel, Bibi S; Bautista-Niño, Paula K; Reiling, Erwin; Durik, Matej; Leijten, Frank P J; Ridwan, Yanto; Brandt, Renata M C; van Steeg, Harry; Dollé, Martijn E T; Vermeij, Wilbert P; Hoeijmakers, Jan H J; Essers, Jeroen; van der Pluijm, Ingrid; Danser, A H Jan; Roks, Anton J M
2017-08-01
DNA damage is an important contributor to endothelial dysfunction and age-related vascular disease. Recently, we demonstrated in a DNA repair-deficient, prematurely aging mouse model ( Ercc1 Δ/- mice) that dietary restriction (DR) strongly increases life- and health span, including ameliorating endothelial dysfunction, by preserving genomic integrity. In this mouse mutant displaying prominent accelerated, age-dependent endothelial dysfunction we investigated the signaling pathways involved in improved endothelium-mediated vasodilation by DR, and explore the potential role of the renin-angiotensin system (RAS). Ercc1 Δ/- mice showed increased blood pressure and decreased aortic relaxations to acetylcholine (ACh) in organ bath experiments. Nitric oxide (NO) signaling and phospho-Ser 1177 -eNOS were compromised in Ercc1 Δ / - DR improved relaxations by increasing prostaglandin-mediated responses. Increase of cyclo-oxygenase 2 and decrease of phosphodiesterase 4B were identified as potential mechanisms. DR also prevented loss of NO signaling in vascular smooth muscle cells and normalized angiotensin II (Ang II) vasoconstrictions, which were increased in Ercc1 Δ/- mice. Ercc1 Δ/ - mutants showed a loss of Ang II type 2 receptor-mediated counter-regulation of Ang II type 1 receptor-induced vasoconstrictions. Chronic losartan treatment effectively decreased blood pressure, but did not improve endothelium-dependent relaxations. This result might relate to the aging-associated loss of treatment efficacy of RAS blockade with respect to endothelial function improvement. In summary, DR effectively prevents endothelium-dependent vasodilator dysfunction by augmenting prostaglandin-mediated responses, whereas chronic Ang II type 1 receptor blockade is ineffective. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Tóth, Csaba; Sükösd, Farkas; Valicsek, Erzsébet; Herpel, Esther; Schirmacher, Peter; Renner, Marcus; Mader, Christoph; Tiszlavicz, László; Kriegsmann, Jörg
2017-11-01
Liver metastasis in colorectal cancer is common and the primary treatment is chemotherapy. To date, there is no routinely used test in clinical practice to predict the effectiveness of conventional chemotherapy. Therefore, biomarkers with predictive value for conventional chemotherapy would be of considerable benefit in treatment planning. We analysed three proteins [excision repair cross-complementing 1 (ERCC1), ribonucleoside-diphosphate reductase 1 (RRM1) and class III β-tubulin (TUBB3)] in colorectal cancer liver metastasis. We used tissue microarray slides with 101 liver metastasis samples, stained for ERCC1, RRM1 and TUBB3 and established scoring systems (fitted for tissue microarray) for each protein. In statistical analysis, we compared the expression of ERCC1, RRM1 and TUBB3 to mismatch proteins (MLH1, MSH2, MSH6 and PMS2), p53 and to apoptosis repressor protein (ARC). Statistically significant correlations were found between ERCC1, TUBB3 and MLH1, MSH2 and RRM1 and MSH2, MSH6. Noteworthy, our analysis revealed a strong significant correlation between cytoplasmic ARC expression and RRM1, TUBB3 (p=0.000 and p=0.001, respectively), implying an additional role of TUBB3 and RRM1 not only in therapy resistance, but also in the apoptotic machinery. Our data strengthens the importance of ERCC1, TUBB3 and RRM1 in the prediction of chemotherapy effectiveness and suggest new functional connections in DNA repair, microtubule network and apoptotic signaling (i.e. ARC protein). In conclusion, we showed the importance and need of predictive biomarkers in metastasized colorectal cancer and pointed out the relevance not only of single predictive markers but also of their interactions with other known and newly explored relations between different signaling pathways.
Newly identified CHO ERCC3/XPB mutations and phenotype characterization
Rybanská, Ivana; Gurský, Ján; Fašková, Miriam; Salazar, Edmund P.; Kimlíčková-Polakovičová, Erika; Kleibl, Karol; Thompson, Larry H.; Piršel, Miroslav
2010-01-01
Nucleotide excision repair (NER) is a complex multistage process involving many interacting gene products to repair a wide range of DNA lesions. Genetic defects in NER cause human hereditary diseases including xeroderma pigmentosum (XP), Cockayne syndrome (CS), trichothiodystrophy and a combined XP/CS overlapping symptom. One key gene product associated with all these disorders is the excision repair cross-complementing 3/xeroderma pigmentosum B (ERCC3/XPB) DNA helicase, a subunit of the transcription factor IIH complex. ERCC3 is involved in initiation of basal transcription and global genome repair as well as in transcription-coupled repair (TCR). The hamster ERCC3 gene shows high degree of homology with the human ERCC3/XPB gene. We identified new mutations in the Chinese hamster ovary cell ERCC3 gene and characterized the role of hamster ERCC3 protein in DNA repair of ultraviolet (UV)-induced and oxidative DNA damage. All but one newly described mutations are located in the protein C-terminal region around the last intron–exon boundary. Due to protein truncations or frameshifts, they lack amino acid Ser751, phosphorylation of which prevents the 5′ incision of the UV-induced lesion during NER. Thus, despite the various locations of the mutations, their phenotypes are similar. All ercc3 mutants are extremely sensitive to UV-C light and lack recovery of RNA synthesis (RRS), confirming a defect in TCR of UV-induced damage. Their limited global genome NER capacity averages ∼8%. We detected modest sensitivity of ercc3 mutants to the photosensitizer Ro19-8022, which primarily introduces 8-oxoguanine lesions into DNA. Ro19-8022-induced damage interfered with RRS, and some of the ercc3 mutants had delayed kinetics. All ercc3 mutants showed efficient base excision repair (BER). Thus, the positions of the mutations have no effect on the sensitivity to, and repair of, Ro19-8022-induced DNA damage, suggesting that the ERCC3 protein is not involved in BER. PMID:19942596
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vermeulen, W.; Kleijer, W.J.; Bootsma, D.
1994-02-01
The human DNA excision repair gene ERCC3 specifically corrects the nucleotide excision repair (NER) defect of xeroderma pigmentosum (XP) complementation group B. In addition to its function in NER, the ERCC3 DNA helicase was recently identified as one of the components of the human BTF2/TFIIH transcription factor complex, which is required for initiation of transcription of class II genes. To date, a single patient (XP11BE) has been assigned to this XP group B (XP-B), with the remarkable conjunction of two autosomal recessive DNA repair deficiency disorders: XP and Cockayne syndrome (CS). The intriguing involvement of the ERCC3 protein in themore » vital process of transcription may provide an explanation for the rarity, severity, and wide spectrum of clinical features in this complementation group. Here the authors report the identification of two new XP-B patients: XPCS1BA and XPCS2BA (siblings), by microneedle injection of the cloned ERCC3 repair gene as well as by cell hybridization. Molecular analysis of the ERCC3 gene in both patients revealed a single base substitution causing a missense mutation in a region that is completely conserved in yeast, Drosophila, mouse, and human ERCC3. As in patient XP11BE, the expression of only one allele (paternal) is detected. The mutation causes a virtually complete inactivation of the NER function of the protein. Despite this severe NER defect, both patients display a late onset of neurologic impairment, mild cutaneous symptoms, and a striking absence of skin tumors even at an age of >40 years. Analysis of the frequency of hprt[sup [minus
Weeda, G; Ma, L B; van Ham, R C; van der Eb, A J; Hoeijmakers, J H
1991-01-01
The human XPBC/ERCC-3 was cloned by virtue of its ability to correct the excision repair defect of UV-sensitive rodent mutants of complementation group 3. The gene appeared to be in addition implicated in the human, cancer prone repair disorder xeroderma pigmentosum group B, which is also associated with Cockayne's syndrome. Here we present the genomic architecture of the gene and its expression. The XPBC/ERCC-3 gene consists of at least 14 exons spread over approximately 45 kb. Notably, the donor splice site of the third exon contains a GC instead of the canonical GT dinucleotide. The promoter region, first exon and intron comprise a CpG island with several putative GC boxes. The promoter was confined to a region of 260 bp upstream of the presumed cap site and acts bidirectionally. Like the promoter of another excision repair gene, ERCC-1, it lacks classical promoter elements such as CAAT and TATA boxes, but it shares with ERCC-1 a hitherto unknown 12 nucleotide sequence element, preceding a polypyrimidine track. Despite the presence of (AU)-rich elements in the 3'-untranslated region, which are thought to be associated with short mRNA half-life actinomycin-D experiments indicate that the mRNA is very stable (t 1/2 greater than 3h). Southern blot analysis revealed the presence of XPBC/ERCC-3 cross-hybridizing fragments elsewhere in the genome, which may belong to a related gene. Images PMID:1956789
KRAS Mutation Is a Predictor of Oxaliplatin Sensitivity in Colon Cancer Cells
Lin, Yu-Lin; Ou, Da-Liang; Lin, Liang-In; Tseng, Li-Hui; Chang, Yih-Leong; Yeh, Kun-Huei; Cheng, Ann-Lii
2012-01-01
Molecular biomarkers to determine the effectiveness of targeted therapies in cancer treatment have been widely adopted in colorectal cancer (CRC), but those to predict chemotherapy sensitivity remain poorly defined. We tested our hypothesis that KRAS mutation may be a predictor of oxaliplatin sensitivity in CRC. KRAS was knocked-down in KRAS-mutant CRC cells (DLD-1G13D and SW480G12V) by small interfering RNAs (siRNA) and overexpressed in KRAS-wild-type CRC cells (COLO320DM) by KRAS-mutant vectors to generate paired CRC cells. These paired CRC cells were tested by oxaliplatin, irinotecan and 5FU to determine the change in drug sensitivity by MTT assay and flow cytometry. Reasons for sensitivity alteration were further determined by western blot and real-time quantitative reverse transcriptase polymerase chain reaction (qRT -PCR). In KRAS-wild-type CRC cells (COLO320DM), KRAS overexpression by mutant vectors caused excision repair cross-complementation group 1 (ERCC1) downregulation in protein and mRNA levels, and enhanced oxaliplatin sensitivity. In contrast, in KRAS-mutant CRC cells (DLD-1G13D and SW480G12V), KRAS knocked-down by KRAS-siRNA led to ERCC1 upregulation and increased oxaliplatin resistance. The sensitivity of irinotecan and 5FU had not changed in the paired CRC cells. To validate ERCC1 as a predictor of sensitivity for oxaliplatin, ERCC1 was knocked-down by siRNA in KRAS-wild-type CRC cells, which restored oxaliplatin sensitivity. In contrast, ERCC1 was overexpressed by ERCC1-expressing vectors in KRAS-mutant CRC cells, and caused oxaliplatin resistance. Overall, our findings suggest that KRAS mutation is a predictor of oxaliplatin sensitivity in colon cancer cells by the mechanism of ERCC1 downregulation. PMID:23209813
Deenen, Maarten J; Meulendijks, Didier; Boot, Henk; Legdeur, Marie-Cecile J C; Beijnen, Jos H; Schellens, Jan H M; Cats, Annemieke
2015-12-01
The prognosis of gastroesophageal cancer is poor, and current regimens are associated with limited efficacy. The purpose of this study was to explore the safety and preliminary efficacy of docetaxel, oxaliplatin plus capecitabine for advanced cancer of the stomach or the gastroesophageal junction (GEJ). Secondary objectives included pharmacokinetic and pharmacogenetic analyses. Patients were treated in escalating dose levels with docetaxel and oxaliplatin (both on day 1), plus capecitabine b.i.d. on days 1-14 every 3 weeks, to determine the dose-limiting toxicity and maximum tolerated dose (MTD). An expansion cohort was treated at the MTD. A total of ten polymorphisms in pharmacokinetic and pharmacodynamic candidate genes were analyzed and tested for association with treatment outcome. A total of 34 evaluable patients were enrolled. The MTD was docetaxel 50 mg/m(2), oxaliplatin 100 mg/m(2) plus capecitabine 850 mg/m(2) b.i.d. The median number of treatment cycles was 6 (range 2-8). Grade ≥ 3 toxicities included neutropenia (24 %), leukocytopenia (15 %), febrile neutropenia (12 %), fatigue (9 %) and diarrhea (6 %). The overall response rate was 45 %; two patients achieved a complete response. Median progression-free survival and overall survival were 6.5 months (95 % CI 5.4-7.6) and 11.0 months (95 % CI 7.9-14.1), respectively. The polymorphisms ERCC1 354C>T, TYMS 1053C>T and rs2612091 in ENOSF1 were associated with severe toxicity; ERCC1 354C>T and ERCC2 2251A>C were associated with poor progression-free survival. Docetaxel, oxaliplatin plus capecitabine are a well-tolerable, safe and effective treatment regimen for patients with advanced cancer of the stomach or GEJ. Pharmacogenetic markers in pharmacokinetic and pharmacodynamic candidate genes may be predictive for treatment outcome.
Exploratory analysis of ERCC2 DNA methylation in survival among pediatric medulloblastoma patients.
Banfield, Emilyn; Brown, Austin L; Peckham, Erin C; Rednam, Surya P; Murray, Jeffrey; Okcu, M Fatih; Mitchell, Laura E; Chintagumpala, Murali M; Lau, Ching C; Scheurer, Michael E; Lupo, Philip J
2016-10-01
Medulloblastoma is the most frequent malignant pediatric brain tumor. While survival rates have improved due to multimodal treatment including cisplatin-based chemotherapy, there are few prognostic factors for adverse treatment outcomes. Notably, genes involved in the nucleotide excision repair pathway, including ERCC2, have been implicated in cisplatin sensitivity in other cancers. Therefore, this study evaluated the role of ERCC2 DNA methylation profiles on pediatric medulloblastoma survival. The study population included 71 medulloblastoma patients (age <18years at diagnosis) and recruited from Texas Children's Cancer Center between 2004 and 2009. DNA methylation profiles were generated from peripheral blood samples using the Illumina Infinium Human Methylation 450 Beadchip. Sixteen ERCC2-associated CpG sites were evaluated in this analysis. Multivariable regression models were used to determine the adjusted association between DNA methylation and survival. Cox regression and Kaplan-Meier curves were used to compare 5-year overall survival between hyper- and hypo-methylation at each CpG site. In total, 12.7% (n=9) of the patient population died within five years of diagnosis. In our population, methylation of the cg02257300 probe (Hazard Ratio=9.33; 95% Confidence Interval: 1.17-74.64) was associated with death (log-rank p=0.01). This association remained suggestive after correcting for multiple comparisons (FDR p<0.2). No other ERCC2-associated CpG site was associated with survival in this population of pediatric medulloblastoma patients. These findings provide the first evidence that DNA methylation within the promoter region of the ERCC2 gene may be associated with survival in pediatric medulloblastoma. If confirmed in future studies, this information may lead to improved risk stratification or promote the development of novel, targeted therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.
van Vuuren, A J; Appeldoorn, E; Odijk, H; Yasui, A; Jaspers, N G; Bootsma, D; Hoeijmakers, J H
1993-01-01
Nucleotide excision repair (NER), one of the major cellular DNA repair systems, removes a wide range of lesions in a multi-enzyme reaction. In man, a NER defect due to a mutation in one of at least 11 distinct genes, can give rise to the inherited repair disorders xeroderma pigmentosum (XP), Cockayne's syndrome or PIBIDS, a photosensitive form of the brittle hair disease trichothiodystrophy. Laboratory-induced NER-deficient mutants of cultured rodent cells have been classified into 11 complementation groups (CGs). Some of these have been shown to correspond with human disorders. In cell-free extracts prepared from rodent CGs 1-5 and 11, but not in a mutant from CG6, we find an impaired repair of damage induced in plasmids by UV light and N-acetoxy-acetylaminofluorene. Complementation analysis in vitro of rodent CGs is accomplished by pairwise mixing of mutant extracts. The results show that mutants from groups 2, 3, 5 and XP-A can complement all other CGs tested. However, selective non-complementation in vitro was observed in mutual mixtures of groups 1, 4, 11 and XP-F, suggesting that the complementing activities involved somehow affect each other. Depletion of wild-type human extracts from ERCC1 protein using specific anti-ERCC1 antibodies concomitantly removed the correcting activities for groups 4, 11 and XP-F, but not those for the other CGs. Furthermore, we find that 33 kDa ERCC1 protein sediments as a high mol. wt species of approximately 120 kDa in a native glycerol gradient.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8253091
DNA repair gene polymorphisms and risk of cutaneous melanoma: a systematic review and meta-analysis.
Mocellin, Simone; Verdi, Daunia; Nitti, Donato
2009-10-01
Polymorphisms of DNA repair-related genes might modulate cancer predisposition. We performed a systematic review and meta-analysis of the available evidence regarding the relationship between these polymorphisms and the risk of developing cutaneous melanoma. Relevant studies were searched using PubMed, Medline, Embase, Cancerlit, Cochrane and ISI Web of Knowledge databases. Data were gathered according to the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) guidelines. The model-free approach was adopted to perform the meta-analysis of the retrieved data. We identified 20 original reports that describe the relationship between melanoma risk and the single-nucleotide polymorphisms (SNPs) of 16 genes (cases = 4195). For seven SNPs considered in at least two studies, the findings were heterogeneous. Data were suitable for meta-analysis only in the case of the XPD/ERCC2 SNP rs13181 (cases = 2308, controls = 3698) and demonstrated that the variant C allele is associated with increased melanoma risk (odds ratio = 1.12, 95% confidence interval = 1.03-1.21, P = 0.01; population attributable risk = 9.6%). This is the first meta-analysis suggesting that XPD/ERCC2 might represent a low-penetrance melanoma susceptibility gene. Much work is still to be done before definitive conclusions can be drawn on the role of DNA repair alterations in melanomagenesis since for the other genes involved in this highly complex process, the available information is scarce or null.
Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice.
Vermeij, W P; Dollé, M E T; Reiling, E; Jaarsma, D; Payan-Gomez, C; Bombardieri, C R; Wu, H; Roks, A J M; Botter, S M; van der Eerden, B C; Youssef, S A; Kuiper, R V; Nagarajah, B; van Oostrom, C T; Brandt, R M C; Barnhoorn, S; Imholz, S; Pennings, J L A; de Bruin, A; Gyenis, Á; Pothof, J; Vijg, J; van Steeg, H; Hoeijmakers, J H J
2016-09-15
Mice deficient in the DNA excision-repair gene Ercc1 (Ercc1 ∆/- ) show numerous accelerated ageing features that limit their lifespan to 4-6 months. They also exhibit a 'survival response', which suppresses growth and enhances cellular maintenance. Such a response resembles the anti-ageing response induced by dietary restriction (also known as caloric restriction). Here we report that a dietary restriction of 30% tripled the median and maximal remaining lifespans of these progeroid mice, strongly retarding numerous aspects of accelerated ageing. Mice undergoing dietary restriction retained 50% more neurons and maintained full motor function far beyond the lifespan of mice fed ad libitum. Other DNA-repair-deficient, progeroid Xpg -/- (also known as Ercc5 -/- ) mice, a model of Cockayne syndrome, responded similarly. The dietary restriction response in Ercc1 ∆/- mice closely resembled the effects of dietary restriction in wild-type animals. Notably, liver tissue from Ercc1 ∆/- mice fed ad libitum showed preferential extinction of the expression of long genes, a phenomenon we also observed in several tissues ageing normally. This is consistent with the accumulation of stochastic, transcription-blocking lesions that affect long genes more than short ones. Dietary restriction largely prevented this declining transcriptional output and reduced the number of γH2AX DNA damage foci, indicating that dietary restriction preserves genome function by alleviating DNA damage. Our findings establish the Ercc1 ∆/- mouse as a powerful model organism for health-sustaining interventions, reveal potential for reducing endogenous DNA damage, facilitate a better understanding of the molecular mechanism of dietary restriction and suggest a role for counterintuitive dietary-restriction-like therapy for human progeroid genome instability syndromes and possibly neurodegeneration in general.
Association between Promoter Methylation of Gene ERCC3 and Benzene Hematotoxicity.
Zheng, Min; Lin, Feiliang; Hou, Fenxia; Li, Guilan; Zhu, Caiying; Xu, Peiyu; Xing, Caihong; Wang, Qianfei
2017-08-16
Benzene is a primary industrial chemical and a ubiquitous environmental pollutant. ERCC3 is a key player in nucleotide excision repair. Recent studies suggested that site-specific methylation is a possible mechanism of the transcriptional dysregulation by blocking transcription factors binding. We previously found that the average promoter methylation level of ERCC3 was increased in benzene-exposed workers. In order to test whether specific CpG sites of ERCC3 play an important role in benzene-induced epigenetic changes and whether the specific methylation patterns are associated with benzene hematotoxicity, we analyzed the promoter methylation levels of individual CpG sites, transcription factor binding motif and the correlation between aberrant CpG methylation and hematotoxicity in 76 benzene-exposed workers and 24 unexposed controls in China. Out of all the CpGs analyzed, two CpG units located 43 bp upstream and 99 bp downstream of the transcription start site of ERCC3 (CpG 2-4 and CpG 17-18, respectively), showed the most pronounced increase in methylation levels in benzene-exposed workers, compared with unexposed controls (Mean ± SD: 5.86 ± 2.77% vs. 4.92 ± 1.53%, p = 0.032; 8.45 ± 4.09% vs. 6.79 ± 2.50%, p = 0.024, respectively). Using the JASPAR CORE Database, we found that CpG 2-4 and CpG 17-18 were bound by three putative transcription factors (TFAP2A, E2F4 and MZF1). Furthermore, the methylation levels for CpG 2-4 were correlated negatively with the percentage of neutrophils ( β = -0.676, p = 0.005) in benzene-exposed workers. This study demonstrates that CpG-specific DNA methylation in the ERCC3 promoter region may be involved in benzene-induced epigenetic modification and it may contribute to benzene-induced hematotoxicity.
Association between Promoter Methylation of Gene ERCC3 and Benzene Hematotoxicity
Lin, Feiliang; Hou, Fenxia; Li, Guilan; Zhu, Caiying; Xu, Peiyu; Xing, Caihong; Wang, Qianfei
2017-01-01
Benzene is a primary industrial chemical and a ubiquitous environmental pollutant. ERCC3 is a key player in nucleotide excision repair. Recent studies suggested that site-specific methylation is a possible mechanism of the transcriptional dysregulation by blocking transcription factors binding. We previously found that the average promoter methylation level of ERCC3 was increased in benzene-exposed workers. In order to test whether specific CpG sites of ERCC3 play an important role in benzene-induced epigenetic changes and whether the specific methylation patterns are associated with benzene hematotoxicity, we analyzed the promoter methylation levels of individual CpG sites, transcription factor binding motif and the correlation between aberrant CpG methylation and hematotoxicity in 76 benzene-exposed workers and 24 unexposed controls in China. Out of all the CpGs analyzed, two CpG units located 43 bp upstream and 99 bp downstream of the transcription start site of ERCC3 (CpG 2–4 and CpG 17–18, respectively), showed the most pronounced increase in methylation levels in benzene-exposed workers, compared with unexposed controls (Mean ± SD: 5.86 ± 2.77% vs. 4.92 ± 1.53%, p = 0.032; 8.45 ± 4.09% vs. 6.79 ± 2.50%, p = 0.024, respectively). Using the JASPAR CORE Database, we found that CpG 2–4 and CpG 17–18 were bound by three putative transcription factors (TFAP2A, E2F4 and MZF1). Furthermore, the methylation levels for CpG 2–4 were correlated negatively with the percentage of neutrophils (β = −0.676, p = 0.005) in benzene-exposed workers. This study demonstrates that CpG-specific DNA methylation in the ERCC3 promoter region may be involved in benzene-induced epigenetic modification and it may contribute to benzene-induced hematotoxicity. PMID:28813025
ERCC1 and TS Expression as Prognostic and Predictive Biomarkers in Metastatic Colon Cancer.
Choueiri, Michel B; Shen, John Paul; Gross, Andrew M; Huang, Justin K; Ideker, Trey; Fanta, Paul
2015-01-01
In patients with metastatic colon cancer, response to first line chemotherapy is a strong predictor of overall survival (OS). Currently, oncologists lack diagnostic tests to determine which chemotherapy regimen offers the greatest chance for response in an individual patient. Here we present the results of gene expression analysis for two genes, ERCC1 and TS, measured with the commercially available ResponseDX: Colon assay (Response Genetics, Los Angeles, CA) in 41 patients with de novo metastatic colon cancer diagnosed between July 2008 and August 2013 at the University of California, San Diego. In addition ERCC1 and TS expression levels as determined by RNAseq and survival data for patients in TCGA were downloaded from the TCGA data portal. We found that patients with low expression of ERCC1 (n = 33) had significantly longer median OS (36.0 vs. 10.1 mo, HR 0.29, 95% CI .095 to .84, log-rank p = 9.0x10-6) and median time to treatment to failure (TTF) following first line chemotherapy (14.1 vs. 2.4 mo, HR 0.17, 95% CI 0.048 to 0.58, log-rank p = 5.3x10-4) relative to those with high expression (n = 4). After accounting for the covariates age, sex, tumor grade and ECOG performance status in a Cox proportional hazard model the association of low ERCC1 with longer OS (HR 0.18, 95% CI 0.14 to 0.26, p = 0.0448) and TTF (HR 0.16, 95% CI 0.14 to 0.21, p = 0.0053) remained significant. Patients with low TS expression (n = 29) had significantly longer median OS (36.0 vs. 14.8 mo, HR 0.25, 95% CI 0.074 to 0.82, log-rank p = 0.022) relative to those with high expression (n = 12). The combined low expression of ERCC1/TS was predictive of response in patients treated with FOLFOX (40% vs. 91%, RR 2.3, Fisher's exact test p = 0.03, n = 27), but not with FOLFIRI (71% vs. 71%, RR 1.0, Fisher's exact test p = 1, n = 14). Overall, these findings suggest that measurement of ERCC1 and TS expression has potential clinical utility in managing patients with metastatic colorectal cancer.
The Effects of HSP27 on Gemcitabine-Resistant Pancreatic Cancer Cell Line Through Snail.
Zhang, Song; Zhang, Xiao-qi; Huang, Shu-ling; Chen, Min; Shen, Shan-shan; Ding, Xi-wei; Lv, Ying; Zou, Xiao-ping
2015-10-01
To evaluate the regulation mechanism of heat shock protein 27 (HSP27) on gemcitabine (GEM) resistance of pancreatic cancer cell. The expression vectors pEGFP-C1-HSP27 and the vectors of MicroRNA targeting Snail were introduced into GEM-sensitive pancreatic cancer SW1990 cells, and the vectors of small hairpin RNA targeting HSP27 were transfected into SW1990 and GEM-resistant SW1990/GEM cells. The expressions of HSP27, p-HSP27 (Ser82), Snail, ERCC1, and E-cadherin were evaluated by Western blotting. The sensitivity of transfected cells to GEM was detected by CCK-8 assay and Annexin V-FITC apoptosis assay. As compared to SW1990, SW1990/GEM showed significantly increased expressions of HSP27, p-HSP27, Snail and ERCC1 with decreased expression of E-cadherin. By increasing HSP27 expression, we found increase of Snail and ERCC1 with reduction of E-cadherin expressions, while reduction of HSP27 expression caused reduction of Snail and ERCC1 but increase of E-cadherin expressions. Downregulation of Snail resulted in the reduction of ERCC1 expression and increase of E-cadherin. Furthermore, downregulation of HSP27 or snail caused increased GEM sensitivity of pancreatic cancer cells, and upregulation of HSP27 showed the opposite results. There is an inverse correlation between HSP27 expression and GEM sensitivity of SW1990 cells, which might be realized by regulating E-cadherin and ERCC1 expressions through Snail.
White, Kristin L.; Vierkant, Robert A.; Fogarty, Zachary C.; Charbonneau, Bridget; Block, Matthew S.; Pharoah, Paul D.P.; Chenevix-Trench, Georgia; Rossing, Mary Anne; Cramer, Daniel W.; Pearce, C. Leigh; Schildkraut, Joellen M.; Menon, Usha; Kjaer, Susanne Kruger; Levine, Douglas A.; Gronwald, Jacek; Culver, Hoda Anton; Whittemore, Alice S.; Karlan, Beth Y.; Lambrechts, Diether; Wentzensen, Nicolas; Kupryjanczyk, Jolanta; Chang-Claude, Jenny; Bandera, Elisa V.; Hogdall, Estrid; Heitz, Florian; Kaye, Stanley B.; Fasching, Peter A.; Campbell, Ian; Goodman, Marc T.; Pejovic, Tanja; Bean, Yukie; Lurie, Galina; Eccles, Diana; Hein, Alexander; Beckmann, Matthias W.; Ekici, Arif B.; Paul, James; Brown, Robert; Flanagan, James; Harter, Philipp; du Bois, Andreas; Schwaab, Ira; Hogdall, Claus K.; Lundvall, Lene; Olson, Sara H.; Orlow, Irene; Paddock, Lisa E.; Rudolph, Anja; Eilber, Ursula; Dansonka-Mieszkowska, Agnieszka; Rzepecka, Iwona K.; Ziolkowska-Seta, Izabela; Brinton, Louise; Yang, Hannah; Garcia-Closas, Montserrat; Despierre, Evelyn; Lambrechts, Sandrina; Vergote, Ignace; Walsh, Christine; Lester, Jenny; Sieh, Weiva; McGuire, Valerie; Rothstein, Joseph H.; Ziogas, Argyrios; Lubiński, Jan; Cybulski, Cezary; Menkiszak, Janusz; Jensen, Allan; Gayther, Simon A.; Ramus, Susan J.; Gentry-Maharaj, Aleksandra; Berchuck, Andrew; Wu, Anna H.; Pike, Malcolm C.; Van Den Berg, David; Terry, Kathryn L.; Vitonis, Allison F.; Doherty, Jennifer A.; Johnatty, Sharon; deFazio, Anna; Song, Honglin; Tyrer, Jonathan; Sellers, Thomas A.; Phelan, Catherine M.; Kalli, Kimberly R.; Cunningham, Julie M.; Fridley, Brooke L.; Goode, Ellen L.
2013-01-01
Background Ovarian cancer is a leading cause of cancer-related death among women. In an effort to understand contributors to disease outcome, we evaluated single-nucleotide polymorphisms (SNPs) previously associated with ovarian cancer recurrence or survival, specifically in angiogenesis, inflammation, mitosis, and drug disposition genes. Methods Twenty-seven SNPs in VHL, HGF, IL18, PRKACB, ABCB1, CYP2C8, ERCC2, and ERCC1 previously associated with ovarian cancer outcome were genotyped in 10,084 invasive cases from 28 studies from the Ovarian Cancer Association Consortium with over 37,000 observed person-years and 4,478 deaths. Cox proportional hazards models were used to examine the association between candidate SNPs and ovarian cancer recurrence or survival with and without adjustment for key covariates. Results We observed no association between genotype and ovarian cancer recurrence or survival for any of the SNPs examined. Conclusions These results refute prior associations between these SNPs and ovarian cancer outcome and underscore the importance of maximally powered genetic association studies. Impact These variants should not be used in prognostic models. Alternate approaches to uncovering inherited prognostic factors, if they exist, are needed. PMID:23513043
Takayama, Koji; Kawakami, Yohei; Lavasani, Mitra; Mu, Xiaodong; Cummins, James H; Yurube, Takashi; Kuroda, Ryosuke; Kurosaka, Masahiro; Fu, Freddie H; Robbins, Paul D; Niedernhofer, Laura J; Huard, Johnny
2017-07-01
Mice expressing reduced levels of ERCC1-XPF (Ercc1 -/Δ mice) demonstrate premature onset of age-related changes due to decreased repair of DNA damage. Muscle-derived stem/progenitor cells (MDSPCs) isolated from Ercc1 -/Δ mice have an impaired capacity for cell differentiation. The mammalian target of rapamycin (mTOR) is a critical regulator of cell growth in response to nutrient, hormone, and oxygen levels. Inhibition of the mTOR pathway extends the lifespan of several species. Here, we examined the role of mTOR in regulating the MDSPC dysfunction that occurs with accelerated aging. We show that mTOR signaling pathways are activated in Ercc1 -/Δ MDSPCs compared with wild-type (WT) MDSPCs. Additionally, inhibiting mTOR with rapamycin promoted autophagy and improved the myogenic differentiation capacity of the Ercc1 -/Δ MDSPCs. The percent of apoptotic and senescent cells in Ercc1 -/Δ MDSPC cultures was decreased upon mTOR inhibition. These results establish that mTOR signaling contributes to stem cell dysfunction and cell fate decisions in response to endogenous DNA damage. Therefore, mTOR represents a potential therapeutic target for improving defective, aged stem cells. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1375-1382, 2017. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.
Han, Peng; Liu, Hongliang; Shi, Qiong; Liu, Zhensheng; Troy, Jesse D; Lee, Walter T; Zevallos, Jose P; Li, Guojun; Sturgis, Erich M; Wei, Qingyi
2018-06-01
Squamous cell carcinoma of head and neck (SCCHN) is one of the most common malignancies worldwide, and nucleotide excision repair (NER) is involved in SCCHN susceptibility. In this analysis of 349 newly diagnosed SCCHN patients and 295 cancer-free controls, we investigated whether expression levels of eight core NER proteins were associated with risk of SCCHN. We quantified NER protein expression levels in cultured peripheral lymphocytes using a reverse-phase protein microarray. Compared with the controls, SCCHN patients had statistically significantly lower expression levels of ERCC3 and XPA (P = 0.001 and 0.001, respectively). After dividing the subjects by controls' median values of expression levels, we found a dose-dependent association between an increased risk of SCCHN and low expression levels of ERCC3 (adjusted OR, 1.75, and 95% CI: 1.26-2.42; P trend = 0.008) and XPA (adjusted OR, 1.88; 95% CI, 1.35-2.60; P trend = 0.001). We also identified a significant multiplicative interaction between smoking status and ERCC3 expression levels (P = 0.014). Finally, after integrating demographic and clinical variables, we found that the addition of ERCC3 and XPA expression levels to the model significantly improved the sensitivity of the expanded model on SCCHN risk. In conclusion, reduced protein expression levels of ERCC3 and XPA were associated with an increased risk of SCCHN. However, these results need to be confirmed in additional large studies. © 2018 Wiley Periodicals, Inc.
Koken, M H; Vreeken, C; Bol, S A; Cheng, N C; Jaspers-Dekker, I; Hoeijmakers, J H; Eeken, J C; Weeda, G; Pastink, A
1992-01-01
Previously the human nucleotide excision repair gene ERCC3 was shown to be responsible for a rare combination of the autosomal recessive DNA repair disorders xeroderma pigmentosum (complementation group B) and Cockayne's syndrome (complementation group C). The human and mouse ERCC3 proteins contain several sequence motifs suggesting that it is a nucleic acid or chromatin binding helicase. To study the significance of these domains and the overall evolutionary conservation of the gene, the homolog from Drosophila melanogaster was isolated by low stringency hybridizations using two flanking probes of the human ERCC3 cDNA. The flanking probe strategy selects for long stretches of nucleotide sequence homology, and avoids isolation of small regions with fortuitous homology. In situ hybridization localized the gene onto chromosome III 67E3/4, a region devoid of known D.melanogaster mutagen sensitive mutants. Northern blot analysis showed that the gene is continuously expressed in all stages of fly development. A slight increase (2-3 times) of ERCC3Dm transcript was observed in the later stages. Two almost full length cDNAs were isolated, which have different 5' untranslated regions (UTR). The SD4 cDNA harbours only one long open reading frame (ORF) coding for ERCC3Dm. Another clone (SD2), however, has the potential to encode two proteins: a 170 amino acids polypeptide starting at the optimal first ATG has no detectable homology with any other proteins currently in the data bases, and another ORF beginning at the suboptimal second startcodon which is identical to that of SD4. Comparison of the encoded ERCC3Dm protein with the homologous proteins of mouse and man shows a strong amino acid conservation (71% identity), especially in the postulated DNA binding region and seven 'helicase' domains. The ERCC3Dm sequence is fully consistent with the presumed functions and the high conservation of these regions strengthens their functional significance. Microinjection and DNA transfection of ERCC3Dm into human xeroderma pigmentosum (c.g. B) fibroblasts and group 3 rodent mutants did not yield detectable correction. One of the possibilities to explain these negative findings is that the D.melanogaster protein may be unable to function in a mammalian repair context. Images PMID:1454518
Klein Douwel, Daisy; Hoogenboom, Wouter S; Boonen, Rick Acm; Knipscheer, Puck
2017-07-14
XPF-ERCC1 is a structure-specific endonuclease pivotal for several DNA repair pathways and, when mutated, can cause multiple diseases. Although the disease-specific mutations are thought to affect different DNA repair pathways, the molecular basis for this is unknown. Here we examine the function of XPF-ERCC1 in DNA interstrand crosslink (ICL) repair. We used Xenopus egg extracts to measure both ICL and nucleotide excision repair, and we identified mutations that are specifically defective in ICL repair. One of these separation-of-function mutations resides in the helicase-like domain of XPF and disrupts binding to SLX4 and recruitment to the ICL A small deletion in the same domain supports recruitment of XPF to the ICL, but inhibited the unhooking incisions most likely by disrupting a second, transient interaction with SLX4. Finally, mutation of residues in the nuclease domain did not affect localization of XPF-ERCC1 to the ICL but did prevent incisions on the ICL substrate. Our data support a model in which the ICL repair-specific function of XPF-ERCC1 is dependent on recruitment, positioning and substrate recognition. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Deficient expression of DNA repair enzymes in early progression to sporadic colon cancer
2012-01-01
Background Cancers often arise within an area of cells (e.g. an epithelial patch) that is predisposed to the development of cancer, i.e. a "field of cancerization" or "field defect." Sporadic colon cancer is characterized by an elevated mutation rate and genomic instability. If a field defect were deficient in DNA repair, DNA damages would tend to escape repair and give rise to carcinogenic mutations. Purpose To determine whether reduced expression of DNA repair proteins Pms2, Ercc1 and Xpf (pairing partner of Ercc1) are early steps in progression to colon cancer. Results Tissue biopsies were taken during colonoscopies of 77 patients at 4 different risk levels for colon cancer, including 19 patients who had never had colonic neoplasia (who served as controls). In addition, 158 tissue samples were taken from tissues near or within colon cancers removed by resection and 16 tissue samples were taken near tubulovillous adenomas (TVAs) removed by resection. 568 triplicate tissue sections (a total of 1,704 tissue sections) from these tissue samples were evaluated by immunohistochemistry for 4 DNA repair proteins. Substantially reduced protein expression of Pms2, Ercc1 and Xpf occurred in field defects of up to 10 cm longitudinally distant from colon cancers or TVAs and within colon cancers. Expression of another DNA repair protein, Ku86, was infrequently reduced in these areas. When Pms2, Ercc1 or Xpf were reduced in protein expression, then either one or both of the other two proteins most often had reduced protein expression as well. The mean inner colon circumferences, from 32 resections, of the ascending, transverse and descending/sigmoid areas were measured as 6.6 cm, 5.8 cm and 6.3 cm, respectively. When combined with other measurements in the literature, this indicates the approximate mean number of colonic crypts in humans is 10 million. Conclusions The substantial deficiencies in protein expression of DNA repair proteins Pms2, Ercc1 and Xpf in about 1 million crypts near cancers and TVAs suggests that the tumors arose in field defects that were deficient in DNA repair and that deficiencies in Pms2, Ercc1 and Xpf are early steps, often occurring together, in progression to colon cancer. PMID:22494821
Xue, Ping; Gao, Lin; Xiao, Sha; Zhang, Guopei; Xiao, Mingyang; Zhang, Qianye; Zheng, Xiao; Cai, Yuan; Jin, Cuihong; Yang, Jinghua; Wu, Shengwen; Lu, Xiaobo
2015-01-01
Individual variations in the capacity of DNA repair machinery to relieve benzene-induced DNA damage may be the key to developing chronic benzene poisoning (CBP), an increasingly prevalent occupational disease in China. ERCC1 (Excision repair cross complementation group 1) is located on chromosome 19q13.2-3 and participates in the crucial steps of Nucleotide Excision Repair (NER); moreover, we determined that one of its polymorphisms, ERCC1 rs11615, is a biomarker for CBP susceptibility in our previous report. Our aim is to further explore the deeper association between some genetic variations related to ERCC1 polymorphisms and CBP risk. Nine single nucleotide polymorphisms (SNPs) of XRCC1 (X-ray repair cross-complementing 1), CD3EAP (CD3e molecule, epsilon associated protein), PPP1R13L (protein phosphatase 1, regulatory subunit 13 like), XPB (Xeroderma pigmentosum group B), XPC (Xeroderma pigmentosum group C) and XPF (Xeroderma pigmentosum group F) were genotyped by the Snapshot and TaqMan-MGB® probe techniques, in a study involving 102 CBP patients and 204 controls. The potential interactions between these SNPs and lifestyle factors, such as smoking and drinking, were assessed using a stratified analysis. An XRCC1 allele, rs25487, was related to a higher risk of CBP (P<0.001) even after stratifying for potential confounders. Carriers of the TT genotype of XRCC1 rs1799782 who were alcohol drinkers (OR = 8.000; 95% CI: 1.316-48.645; P = 0.022), male (OR = 9.333; 95% CI: 1.593-54.672; P = 0.019), and had an exposure of ≤12 years (OR = 2.612; 95% CI: 1.048-6.510; P = 0.035) had an increased risk of CBP. However, the T allele in PPP1R13L rs1005165 (P<0.05) and the GA allele in CD3EAP rs967591 (OR = 0.162; 95% CI: 0039~0.666; P = 0.037) decreased the risk of CBP in men. The haplotype analysis of XRCC1 indicated that XRCC1 rs25487A, rs25489G and rs1799782T (OR = 15.469; 95% CI: 5.536-43.225; P<0.001) were associated with a high risk of CBP. The findings showed that the rs25487 and rs1799782 polymorphisms of XRCC1 may contribute to an individual's susceptibility to CBP and may be used as valid biomarkers. Overall, the genes on chromosome 19q13.2-3 may have a special significance in the development of CBP in occupationally exposed Chinese populations.
Xiao, Sha; Zhang, Guopei; Xiao, Mingyang; Zhang, Qianye; Zheng, Xiao; Cai, Yuan; Jin, Cuihong; Yang, Jinghua; Wu, Shengwen; Lu, Xiaobo
2015-01-01
Objectives Individual variations in the capacity of DNA repair machinery to relieve benzene-induced DNA damage may be the key to developing chronic benzene poisoning (CBP), an increasingly prevalent occupational disease in China. ERCC1 (Excision repair cross complementation group 1) is located on chromosome 19q13.2–3 and participates in the crucial steps of Nucleotide Excision Repair (NER); moreover, we determined that one of its polymorphisms, ERCC1 rs11615, is a biomarker for CBP susceptibility in our previous report. Our aim is to further explore the deeper association between some genetic variations related to ERCC1 polymorphisms and CBP risk. Methods Nine single nucleotide polymorphisms (SNPs) of XRCC1 (X-ray repair cross-complementing 1), CD3EAP (CD3e molecule, epsilon associated protein), PPP1R13L (protein phosphatase 1, regulatory subunit 13 like), XPB (Xeroderma pigmentosum group B), XPC (Xeroderma pigmentosum group C) and XPF (Xeroderma pigmentosum group F) were genotyped by the Snapshot and TaqMan-MGB® probe techniques, in a study involving 102 CBP patients and 204 controls. The potential interactions between these SNPs and lifestyle factors, such as smoking and drinking, were assessed using a stratified analysis. Results An XRCC1 allele, rs25487, was related to a higher risk of CBP (P<0.001) even after stratifying for potential confounders. Carriers of the TT genotype of XRCC1 rs1799782 who were alcohol drinkers (OR = 8.000; 95% CI: 1.316–48.645; P = 0.022), male (OR = 9.333; 95% CI: 1.593–54.672; P = 0.019), and had an exposure of ≤12 years (OR = 2.612; 95% CI: 1.048–6.510; P = 0.035) had an increased risk of CBP. However, the T allele in PPP1R13L rs1005165 (P<0.05) and the GA allele in CD3EAP rs967591 (OR = 0.162; 95% CI: 0039~0.666; P = 0.037) decreased the risk of CBP in men. The haplotype analysis of XRCC1 indicated that XRCC1 rs25487A, rs25489G and rs1799782T (OR = 15.469; 95% CI: 5.536–43.225; P<0.001) were associated with a high risk of CBP. Conclusions The findings showed that the rs25487 and rs1799782 polymorphisms of XRCC1 may contribute to an individual’s susceptibility to CBP and may be used as valid biomarkers. Overall, the genes on chromosome 19q13.2–3 may have a special significance in the development of CBP in occupationally exposed Chinese populations. PMID:26681190
Skjelbred, Camilla F; Saebø, Mona; Nexø, Bjørn A; Wallin, Håkan; Hansteen, Inger-Lise; Vogel, Ulla; Kure, Elin H
2006-07-03
The risk of sporadic colorectal cancer is mainly associated with lifestyle factors and may be modulated by several genetic factors of low penetrance. Genetic variants represented by single nucleotide polymorphisms in genes encoding key players in the adenoma carcinoma sequence may contribute to variation in susceptibility to colorectal cancer. In this study, we aimed to evaluate whether the recently identified haplotype encompassing genes of DNA repair and apoptosis, is associated with increased risk of colorectal adenomas and carcinomas. We used a case-control study design (156 carcinomas, 981 adenomas and 399 controls) to test the association between polymorphisms in the chromosomal region 19q13.2-3, encompassing the genes ERCC1, ASE-1 and RAI, and risk of colorectal adenomas and carcinomas in a Norwegian cohort. Odds ratio (OR) and 95% confidence interval (CI) were estimated by binary logistic regression model adjusting for age and gender. The ASE-1 polymorphism was associated with an increased risk of adenomas, OR of 1.39 (95% CI 1.06-1.81), which upon stratification was apparent among women only, OR of 1.66 (95% CI 1.15-2.39). The RAI polymorphism showed a trend towards risk reduction for both adenomas (OR of 0.70, 95% CI 0.49-1.01) and carcinomas (OR of 0.49, 95% CI 0.21-1.13) among women, although not significant. Women who were homozygous carriers of the high risk haplotype had an increased risk of colorectal cancer, OR of 2.19 (95% CI 0.95-5.04) compared to all non-carriers although the estimate was not statistically significant. We found no evidence that the studied polymorphisms were associated with risk of adenomas or colorectal cancer among men, but we found weak indications that the chromosomal region may influence risk of colorectal cancer and adenoma development in women.
Background: Chronic arsenic exposure has been associated with human cancers. The objective of this study was to investigate arsenic effects on a DNA nucleotide excision repair gene, ERCC1, expression in human blood cells. Material and Methods: Water and toe nail samples were coll...
Proposed methods for testing and selecting the ERCC external RNA controls
2005-01-01
The External RNA Control Consortium (ERCC) is an ad-hoc group with approximately 70 members from private, public, and academic organizations. The group is developing a set of external RNA control transcripts that can be used to assess technical performance in gene expression assays. The ERCC is now initiating the Testing Phase of the project, during which candidate external RNA controls will be evaluated in both microarray and QRT-PCR gene expression platforms. This document describes the proposed experiments and informatics process that will be followed to test and qualify individual controls. The ERCC is distributing this description of the proposed testing process in an effort to gain consensus and to encourage feedback from the scientific community. On October 4–5, 2005, the ERCC met to further review the document, clarify ambiguities, and plan next steps. A summary of this meeting and changes to the test plan are provided as an appendix to this manuscript. PMID:16266432
Beglyarova, Natalya; Banina, Eugenia; Zhou, Yan; Mukhamadeeva, Ramilia; Andrianov, Grigorii; Bobrov, Egor; Lysenko, Elena; Skobeleva, Natalya; Gabitova, Linara; Restifo, Diana; Pressman, Max; Serebriiskii, Ilya G.; Hoffman, John P.; Paz, Keren; Behrens, Diana; Khazak, Vladimir; Jablonski, Sandra A.; Golemis, Erica A.; Weiner, Louis M.; Astsaturov, Igor
2016-01-01
Purpose Even when diagnosed prior to metastasis, pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with almost 90% lethality, emphasizing the need for new therapies optimally targeting the tumors of individual patients. Experimental Design We first developed a panel of new physiological models for study of PDAC, expanding surgical PDAC tumor samples in culture using short-term culture and conditional reprogramming with the Rho kinase inhibitor Y-27632, and creating matched patient-derived xenografts (PDX). These were evaluated for sensitivity to a large panel of clinical agents, and promising leads further evaluated mechanistically. Results Only a small minority of tested agents was cytotoxic in minimally passaged PDAC cultures in vitro. Drugs interfering with protein turnover and transcription were among most cytotoxic. Among transcriptional repressors, triptolide, a covalent inhibitor of ERCC3, was most consistently effective in vitro and in vivo causing prolonged complete regression in multiple PDX models resistant to standard PDAC therapies. Importantly, triptolide showed superior activity in MYC-amplified PDX models, and elicited rapid and profound depletion of the oncoprotein MYC, a transcriptional regulator. Expression of ERCC3 and MYC was interdependent in PDACs, and acquired resistance to triptolide depended on elevated ERCC3 and MYC expression. TCGA analysis indicates ERCC3 expression predicts poor prognosis, particularly in CDKN2A-null, highly proliferative tumors. Conclusion This provides initial preclinical evidence for an essential role of MYC-ERCC3 interactions in PDAC, and suggests a new mechanistic approach for disruption of critical survival signaling in MYC-dependent cancers. PMID:27384421
2012-01-01
Background Occupational chromium exposure may induce DNA damage and lead to lung cancer and other work-related diseases. DNA repair gene polymorphisms, which may alter the efficiency of DNA repair, thus may contribute to genetic susceptibility of DNA damage. The aim of this study was to test the hypothesis that the genetic variations of 9 major DNA repair genes could modulate the hexavalent chromium (Cr (VI))-induced DNA damage. Findings The median (P25-P75) of Olive tail moment was 0.93 (0.58–1.79) for individuals carrying GG genotype of XRCC1 Arg399Gln (G/A), 0.73 (0.46–1.35) for GA heterozygote and 0.50 (0.43–0.93) for AA genotype. Significant difference was found among the subjects with three different genotypes (P = 0.048) after adjusting the confounding factors. The median of Olive tail moment of the subjects carrying A allele (the genotypes of AA and GA) was 0.66 (0.44–1.31), which was significantly lower than that of subjects with GG genotype (P = 0.043). The A allele conferred a significantly reduced risk of DNA damage with the OR of 0.39 (95% CI: 0.15–0.99, P = 0.048). No significant association was found between the XRCC1Arg194Trp, ERCC1 C8092A, ERCC5 His1104Asp, ERCC6 Gly399Asp, GSTP1 Ile105Val, OGG1 Ser326Cys, XPC Lys939Gln, XPD Lys751Gln and DNA damage. Conclusion The polymorphism of Arg399Gln in XRCC1 was associated with the Cr (VI)- induced DNA damage. XRCC1 Arg399Gln may serve as a genetic biomarker of susceptibility for Cr (VI)- induced DNA damage. PMID:22642904
ERCC1 and RRM1: ready for prime time?
Besse, Benjamin; Olaussen, Ken A; Soria, Jean-Charles
2013-03-10
The quest for markers of sensitivity to cytotoxic agents has been ongoing for decades. In non-small-cell lung cancer, platinum compounds represent the cornerstone of systemic therapy. They target DNA and induce damage that cancer cells struggle to overcome. Somatic excision repair cross-complementing rodent repair deficiency, complementation group 1 (ERCC1), and ribonucleotide reductase M1 (RRM1) expression levels have been extensively explored as markers of DNA repair capacity in tumor cells. Although low ERCC1 and/or RRM1 expression is generally associated with sensitivity to platinum, the results published in retrospective and prospective studies are not always consistent. Against this background, we will examine in this review the function of these two biomarkers as well as the tools available for their assessment and the associated technical issues. Their prognostic and predictive values will be summarized and considered in terms of customizing systemic therapy according to biomarker (ERCC1 and RRM1) expression levels. We will also discuss why the use of both markers should at this point be restricted to clinical research and underline that functional readouts of DNA repair will help boost future strategies for biomarker discovery in the field.
Ju, L-L; Zhao, C Y; Ye, K-F; Yang, H; Zhang, J
2016-05-01
The aim of the present study is to investigate the differential expression of Beclin1, HMGB1, p62, survivin, ERCC1 and BRCA1 protein in epithelial ovarian cancer (EOC) and to evaluate the relationship between autophagy and platinum resistance of EOC patients during platinum-based chemotherapy with the protein expression. Expression of Beclin1, HMGB1, p62, survivin, ERCC1 and BRCA1 were detected with immunohistochemistry in 60 patients, including 39 with epithelial ovarian cancer (EOC), 13 benign epithelial ovarian tumor tissue (BET) and 8 borderline ovarian tumor tissue. Beclin, p62 and ERCC1 expression was significantly higher in the EOC than the BET (p<0.05). No statistical significance was detected with HMGB1 or survivin expression among BET, borderline tumor and EOC (p>0.05). BRCA1 expression was lower in EOC than BET (p<0.05). The expression of Beclin, p62 and survivin significantly correlated with FIGO stage (p<0.05), while the expression of HMGB1 correlated with pathological type. For platinum-sensitive EOC patients, positive expression of Beclin1 and BRCA1 was lower, and positive P62 expression was higher than in platinum-resistant patients (p<0.05). BRCA1 expression was negatively correlated with Beclin1 and p62 expression (p<0.05). Inhibition of expression of beclin1 may suppress autophagy to enhance the efficiency of platinum-sensitive ovarian cancer. HMGB1, survivin and p62 are implicated in the development of ovarian cancer. ERCC1 might be a potential predictive marker for neoadjuvant treatment in the early stage of ovarian cancer, and BRCA1, Beclin1 and p62 as a biomarker to predict platinum resistance and prognosis of epithelial ovarian cancer.
Lin, Guo-fang; Du, Hui; Chen, Ji-gang; Lu, Hong-chao; Guo, Wei-chao; Golka, Klaus; Shen, Jian-hua
2010-01-01
More than 2,000 arsenic-related skin lesions (as at 2002) in a few villages of China's Southwest Guizhou Autonomous Prefecture represent a unique case of endemic arseniasis related with indoor combustion of high-arsenic coal. The skin lesion prevalence was significantly higher in ethnic Han villagers than in ethnic Hmong villagers. This study was focused on a possible involvement of XPD/ERCC2 G23591A and A35931C polymorphisms in risk modulation of skin lesions and in the body burden of As in this unique case of As exposure. G23591A and A35931C were genotyped by a PCR-based procedure. Total As contents in hair and urine samples as well as environmental samples of the homes of the two ethnic clans were analysed. A significant higher presentation of A/A35931 (homozygous wild) genotype in both clans was found in skin lesion patients, compared with their asymptomatic fellow villagers (67.1 vs. 46.3%, OR 2.36, 95% CI 1.35-4.14, P=0.002). Interestingly, the population frequencies of the A/A35931 genotype did not show significant differences between ethnic Han villagers and their Hmong neighbours (47.1 vs. 45.5%). Very low frequencies of homozygous and heterozygous variant genotypes of G23591A were recorded in the residents in target village. G/A23591 and A/A23591 were detected only in 3.2% (8/244) and 0.8% (2/244) of the villagers, respectively. The polymorphic status at the locus of A35931C might modulate the risk for arsenic-related skin lesions in the investigated groups.
Burazer, Marina Piljić; Mladinov, Suzana; Ćapkun, Vesna; Kuret, Sendi; Durdov, Merica Glavina
2017-01-01
Background The present study was carried out in order to evaluate our institutional experience with small biopsy in diagnosis and molecular testing of lung adenocarcinoma. Few specific and predictive markers have been evaluated and correlated with clinicopathologic characteristics and survival in patients with lung adenocarcinoma who received platinum-based chemotherapy. There have not been such reports from Croatia. Material/Methods A total of 142 cases of lung adenocarcinoma were retrospectively investigated in small biopsies for the immunohistochemical expression of TTF-1, napsin A, ERCC1, ALK, and the EGFR mutation by real-time polymerase chain reaction (rtPCR). Results TTF-1, napsin A, and ERCC1 expression was found in 81%, 78%, and 69% of patients, respectively, and the expressions were not significantly associated with subtype. Expression of ALK was found in 4% and EGFR mutation in 10% of patients. Exon 19 deletions were the most common. Longer survival was significantly associated with TTF-1 positivity (p=0.007) and napsin A positivity (p=0.026). Higher relative risk of death significantly correlated with positive expression of ERCC1 (p=0.041). Conclusions Positive TTF-1 and napsin A expressions in lung adenocarcinoma tissues were useful diagnostic and favorable prognostic parameters. Positive ERCC1 expression was identified as a negative prognostic marker in patients treated with platinum-based chemotherapy. The percentages of EGFR and ALK mutations corresponded to those in previously published reports for Caucasians. PMID:28128193
Terayama, Yui; Matsuura, Tetsuro; Ozaki, Kiyokazu
2016-01-01
Hyperplastic candidiasis is characterized by thickening of the mucosal epithelia with Candida albicans infection with occasional progression to squamous cell carcinoma (SCC). C. albicans is a critical factor in tumor development; however, the oncogenic mechanism is unclear. We have previously produced an animal model for hyperplastic candidiasis in the rat forestomach. In the present study, we investigate whether impaired DNA methylation and associated protein expression of tumor suppressor and DNA repair genes are involved in the SCC carcinogenesis process using this hyperplastic candidiasis model. Promoter methylation and protein expression were analyzed by methylation specific PCR and immunohistochemical staining, respectively, of 5 areas in the forestomachs of alloxan-induced diabetic rats with hyperplastic candidiasis: normal squamous epithelia, squamous hyperplasia, squamous hyperplasia adjacent to SCC, squamous hyperplasia transitioning to SCC, and SCC. We observed nuclear p16 overexpression despite increases in p16 gene promoter methylation during the carcinogenic process. TIMP3 and RAR-β2 promoter methylation progressed until the precancerous stage but disappeared upon malignant transformation. In comparison, TIMP3 protein expression was suppressed during carcinogenesis and RAR-β2 expression was attenuated in the cytoplasm but enhanced in nuclei. ERCC1 and BRCA1 promoters were not methylated at any stage; however, their protein expression disappeared beginning at hyperplasia and nuclear protein re-expression in SCC was observed only for ERCC1. These results suggest that aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 expression might occur that is inconsistent with the respective gene promoter methylation status, and that this overexpression might serve to promote the inflammatory carcinogenesis caused by C. albicans infection. PMID:27410681
Ju, Xingyan; Yu, Hongsheng; Liang, Donghai; Jiang, Tao; Liu, Yuanwei; Chen, Ling; Dong, Qing; Liu, Xiaoran
2018-06-01
Ovarian cancer is the most frequent cause of death resulting from malignant gynecological tumors. After surgical intervention, cisplatin (DDP) is a major chemotherapy drug for ovarian cancer, but the ovarian cancer cells tend to develop DDP resistance in the clinical setting. Tumor cells are sensitive to low-dose radiation (LDR). However, how the LDR therapy improves the effects of chemotherapy drugs on ovarian cancer is not well understood. This study aimed to explore this issue. The SKOV3/DDP cells were divided into 3 groups, including low-dose group, conventional-dose group, and control group (no radiation). Cell counting kit-8 assay was performed to measure cell proliferation. Flow cytometric analysis was then utilized to quantify the apoptosis with classical Annexin V/propidium iodide co-staining. And Real-time quantitative PCR and western blot were eventually used to analyze the mRNA and protein levels of excision repair cross complementing-group 1 (ERCC1), B-cell lymphoma 2 (Bcl-2), Survivin and Caspase-3, respectively. The IC50 value of DDP in the low-dose group was significantly lower compared with the other two groups. Compared with the conventional-dose group and control group, LDR treatment resulted in significantly more apoptosis. Besides, LDR treatment significantly decreased the mRNA and protein expression of ERCC1, Bcl-2, and Survivin, and enhanced the mRNA and protein expression of Caspase-3 compared with the other two groups. LDR reversed DDP resistance in SKOV3/DDP cells possibly by suppressing ERCC1, Bcl-2, and Survivin expressions, and increasing Caspase-3 expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Pine, P Scott; Munro, Sarah A; Parsons, Jerod R; McDaniel, Jennifer; Lucas, Anne Bergstrom; Lozach, Jean; Myers, Timothy G; Su, Qin; Jacobs-Helber, Sarah M; Salit, Marc
2016-06-24
Highly multiplexed assays for quantitation of RNA transcripts are being used in many areas of biology and medicine. Using data generated by these transcriptomic assays requires measurement assurance with appropriate controls. Methods to prototype and evaluate multiple RNA controls were developed as part of the External RNA Controls Consortium (ERCC) assessment process. These approaches included a modified Latin square design to provide a broad dynamic range of relative abundance with known differences between four complex pools of ERCC RNA transcripts spiked into a human liver total RNA background. ERCC pools were analyzed on four different microarray platforms: Agilent 1- and 2-color, Illumina bead, and NIAID lab-made spotted microarrays; and two different second-generation sequencing platforms: the Life Technologies 5500xl and the Illumina HiSeq 2500. Individual ERCC controls were assessed for reproducible performance in signal response to concentration among the platforms. Most demonstrated linear behavior if they were not located near one of the extremes of the dynamic range. Performance issues with any individual ERCC transcript could be attributed to detection limitations, platform-specific target probe issues, or potential mixing errors. Collectively, these pools of spike-in RNA controls were evaluated for suitability as surrogates for endogenous transcripts to interrogate the performance of the RNA measurement process of each platform. The controls were useful for establishing the dynamic range of the assay, as well as delineating the useable region of that range where differential expression measurements, expressed as ratios, would be expected to be accurate. The modified Latin square design presented here uses a composite testing scheme for the evaluation of multiple performance characteristics: linear performance of individual controls, signal response within dynamic range pools of controls, and ratio detection between pairs of dynamic range pools. This compact design provides an economical sample format for the evaluation of multiple external RNA controls within a single experiment per platform. These results indicate that well-designed pools of RNA controls, spiked into samples, provide measurement assurance for endogenous gene expression studies.
Five Polymorphisms and Breast Cancer Risk: Results from the Breast Cancer Association Consortium
Gaudet, Mia M.; Milne, Roger L.; Cox, Angela; Camp, Nicola J.; Goode, Ellen L.; Humphreys, Manjeet K.; Dunning, Alison M.; Morrison, Jonathan; Giles, Graham G.; Severi, Gianluca; Baglietto, Laura; English, Dallas R.; Couch, Fergus J.; Olson, Janet E.; Wang, Xianshu; Chang-Claude, Jenny; Flesch-Janys, Dieter; Abbas, Sascha; Salazar, Ramona; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Lindblom, Annika; Margolin, Sara; Heikkinen, Tuomas; Kämpjärvi, Kati; Aaltonen, Kirsimari; Nevanlinna, Heli; Bogdanova, Natalia; Coinac, Irina; Schürmann, Peter; Dörk, Thilo; Bartram, Claus R.; Schmutzler, Rita K.; Tchatchou, Sandrine; Burwinkel, Barbara; Brauch, Hiltrud; Torres, Diana; Hamann, Ute; Justenhoven, Christina; Ribas, Gloria; Arias, José I.; Benitez, Javier; Bojesen, Stig E.; Nordestgaard, Børge G.; Flyger, Henrik L.; Peto, Julian; Fletcher, Olivia; Johnson, Nichola; Silva, Isabel dos Santos; Fasching, Peter A.; Beckmann, Matthias W.; Strick, Reiner; Ekici, Arif B.; Broeks, Annegien; Schmidt, Marjanka K.; van Leeuwen, Flora E.; Van’t Veer, Laura J.; Southey, Melissa C.; Hopper, John L.; Apicella, Carmel; Haiman, Christopher A.; Henderson, Brian E.; Le Marchand, Loic; Kolonel, Laurence N.; Kristensen, Vessela; Alnæs, Grethe Grenaker; Hunter, David J.; Kraft, Peter; Cox, David G.; Hankinson, Susan E.; Seynaeve, Caroline; Vreeswijk, Maaike P.G.; Tollenaar, Rob A.E.M.; Devilee, Peter; Chanock, Stephen; Lissowska, Jolanta; Brinton, Louise; Peplonska, Beata; Czene, Kamila; Hall, Per; Li, Yuqing; Liu, Jianjun; Balasubramanian, Sabapathy; Rafii, Saeed; Reed, Malcolm W.R.; Pooley, Karen A.; Conroy, Don; Baynes, Caroline; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Ahn, Sei-Hyun; Shen, Chen-Yang; Wang, Hui-Chun; Yu, Jyh-Cherng; Wu, Pei-Ei; Anton-Culver, Hoda; Ziogoas, Argyrios; Egan, Kathleen; Newcomb, Polly; Titus-Ernstoff, Linda; Dietz, Amy Trentham; Sigurdson, Alice J.; Alexander, Bruce H.; Bhatti, Parveen; Allen-Brady, Kristina; Cannon-Albright, Lisa A.; Wong, Jathine; Chenevix-Trench, Georgia; Spurdle, Amanda B.; Beesley, Jonathan; Pharoah, Paul D.P.; Easton, Doug F.; Garcia-Closas, Montserrat
2009-01-01
Previous studies have suggested that minor alleles for ERCC4 rs744154, TNF rs361525, CASP10 rs13010627, PGR rs1042838, and BID rs8190315 may influence breast cancer risk, but the evidence is inconclusive due to their small sample size. These polymorphisms were genotyped in more than 30,000 breast cancer cases and 30,000 controls, primarily of European descent, from 30 studies in the Breast Cancer Association Consortium. We calculated odds ratios (OR) and 95% confidence intervals (95% CI) as a measure of association. We found that the minor alleles for these polymorphisms were not related to invasive breast cancer risk overall in women of European descent: ECCR4 per-allele OR (95% CI) = 0.99 (0.97–1.02), minor allele frequency = 27.5%; TNF 1.00 (0.95–1.06), 5.0%; CASP10 1.02 (0.98–1.07), 6.5%; PGR 1.02 (0.99–1.06), 15.3%; and BID 0.98 (0.86–1.12), 1.7%. However, we observed significant between-study heterogeneity for associations with risk for single-nucleotide polymorphisms (SNP) in CASP10, PGR, and BID. Estimates were imprecise for women of Asian and African descent due to small numbers and lower minor allele frequencies (with the exception of BID SNP). The ORs for each copy of the minor allele were not significantly different by estrogen or progesterone receptor status, nor were any significant interactions found between the polymorphisms and age or family history of breast cancer. In conclusion, our data provide persuasive evidence against an overall association between invasive breast cancer risk and ERCC4 rs744154, TNF rs361525, CASP10 rs13010627, PGR rs1042838, and BID rs8190315 genotypes among women of European descent. PMID:19423537
Tecza, Karolina; Pamula-Pilat, Jolanta; Lanuszewska, Joanna; Butkiewicz, Dorota; Grzybowska, Ewa
2018-01-01
The differences in patients’ response to the same medication, toxicity included, are one of the major problems in breast cancer treatment. Chemotherapy toxicity makes a significant clinical problem due to decreased quality of life, prolongation of treatment and reinforcement of negative emotions associated with therapy. In this study we evaluated the genetic and clinical risk factors of FAC chemotherapy-related toxicities in the group of 324 breast cancer patients. Selected genes and their polymorphisms were involved in FAC drugs transport (ABCB1, ABCC2, ABCG2,SLC22A16), metabolism (ALDH3A1, CBR1, CYP1B1, CYP2C19, DPYD, GSTM1, GSTP1, GSTT1, MTHFR,TYMS), DNA damage recognition, repair and cell cycle control (ATM, ERCC1, ERCC2, TP53, XRCC1). The multifactorial risk models that combine genetic risk modifiers and clinical characteristics were constructed for 12 toxic symptoms. The majority of toxicities was dependent on the modifications in components of more than one pathway of FAC drugs, while the impact level of clinical factors was comparable to the genetic ones. For the carriers of multiple high risk factors the chance of developing given symptom was significantly elevated which proved the factor-dosage effect. We found the strongest associations between concurrent presence of clinical factors - overall and recurrent anemia, nephrotoxicity and early nausea and genetic polymorphisms in genes responsible for DNA repair, drugs metabolism and transport pathways. These results indicate the possibility of selection of the patients with expected high tolerance to FAC treatment and consequently with high chance of chemotherapy completion without the dose reduction, treatment delays and decline in the quality of life. PMID:29507678
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamas, Maria J., E-mail: mlamasd@yahoo.es; Duran, Goretti; Gomez, Antonio
2012-01-01
Purpose: 5-Fluorouracil-based chemoradiotherapy before total mesorectal excision is currently the standard treatment of Stage II and III rectal cancer patients. We used known predictive pharmacogenetic biomarkers to identify the responders to preoperative chemoradiotherapy in our series. Methods and Materials: A total of 93 Stage II-III rectal cancer patients were genotyped using peripheral blood samples. The genes analyzed were X-ray cross-complementing group 1 (XRCC1), ERCC1, MTHFR, EGFR, DPYD, and TYMS. The patients were treated with 225 mg/m{sup 2}/d continuous infusion of 5-fluorouracil concomitantly with radiotherapy (50.4 Gy) followed by total mesorectal excision. The outcomes were measured by tumor regression grade (TRG)more » as a major response (TRG 1 and TRG 2) or as a poor response (TRG3, TRG4, and TRG5). Results: The major histopathologic response rate was 47.3%. XRCC1 G/G carriers had a greater probability of response than G/A carriers (odds ratio, 4.18; 95% confidence interval, 1.62-10.74, p = .003) Patients with polymorphisms associated with high expression of thymidylate synthase (2R/3G, 3C/3G, and 3G/3G) showed a greater pathologic response rate compared with carriers of low expression (odds ratio, 2.65; 95% confidence interval, 1.10-6.39, p = .02) No significant differences were seen in the response according to EGFR, ERCC1, MTHFR{sub C}677 and MTHFR{sub A}1298 expression. Conclusions: XRCC1 G/G and thymidylate synthase (2R/3G, 3C/3G, and 3G/3G) are independent factors of a major response. Germline thymidylate synthase and XRCC1 polymorphisms might be useful as predictive markers of rectal tumor response to neoadjuvant chemoradiotherapy with 5-fluorouracil.« less
Chen, Gang; Qiu, Hong; Ke, Shan-Dong; Hu, Shao-Ming; Yu, Shi-Ying; Zou, Sheng-Quan
2013-01-01
AIM: To investigate the molecular mechanisms underlying the reversal effect of emodin on platinum resistance in hepatocellular carcinoma. METHODS: After the addition of 10 μmol/L emodin to HepG2/oxaliplatin (OXA) cells, the inhibition rate (IR), 50% inhibitory concentration (IC50) and reversal index (IC50 in experimental group/IC50 in control group) were calculated. For HepG2, HepG2/OXA, HepG2/OXA/T, each cell line was divided into a control group, OXA group, OXA + fibroblast growth factor 7 (FGF7) group and OXA + emodin group, and the final concentrations of FGF7, emodin and OXA in each group were 5 ng/mL, 10 μg/mL and 10 μmol/L, respectively. Single-cell gel electrophoresis was conducted to detect DNA damage, and the fibroblast growth factor receptor 2 (FGFR2), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) and excision repair cross-complementing gene 1 (ERCC1) protein expression levels in each group were examined by Western blotting. RESULTS: Compared with the IC50 of 120.78 μmol/L in HepG2/OXA cells, the IC50 decreased to 39.65 μmol/L after treatment with 10 μmol/L emodin; thus, the reversal index was 3.05. Compared with the control group, the tail length and Olive tail length in the OXA group, OXA + FGF7 group and OXA + emodin group were significantly increased, and the differences were statistically significant (P < 0.01). The tail length and Olive tail length were lower in the OXA + FGF7 group than in the OXA group, and this difference was also statistically significant. Compared with the OXA + FGF7 group, the tail extent, the Olive tail moment and the percentage of tail DNA were significantly increased in the OXA + emodin group, and these differences were statistically significant (P < 0.01). In comparison with its parental cell line HepG2, the HepG2/OXA cells demonstrated significantly increased FGFR2, p-ERK1/2 and ERCC1 expression levels, whereas the expression of all three molecules was significantly inhibited in HepG2/OXA/T cells, in which FGFR2 was silenced by FGFR2 shRNA. In the examined HepG2 cells, the FGFR2, p-ERK1/2 and ERCC1 expression levels demonstrated increasing trends in the OXA group and OXA + FGF7 group. Compared with the OXA group and OXA + FGF7 group, the FGFR2, p-ERK1/2, and ERCC1 expression levels were significantly lower in the OXA + emodin group, and these differences were statistically significant. In the HepG2/OXA/T cell line that was transfected with FGFR2 shRNA, the FGFR2, p-ERK1/2 and ERCC1 expression levels were significantly inhibited, but there were no significant differences in these expression levels among the OXA, OXA + FGF7 and OXA + emodin groups. CONCLUSION: Emodin markedly reversed OXA resistance by enhancing OXA DNA damage in HepG2/OXA cells, and the molecular mechanism was related to the inhibitory effect on ERCC1 expression being mediated by the FGFR2/ERK1/2 signaling pathway. PMID:23674849
Fadda, Elisa
2015-07-01
Molecular recognition is a fundamental step in the coordination of biomolecular pathways. Understanding how recognition and binding occur between highly flexible protein domains is a complex task. The conformational selection theory provides an elegant rationalization of the recognition mechanism, especially valid in cases when unstructured protein regions are involved. The recognition of a poorly structured peptide, namely XPA67-80 , by its target receptor ERCC1, falls in this challenging study category. The microsecond molecular dynamics (MD) simulations, discussed in this work, show that the conformational propensity of the wild type XPA67-80 peptide in solution supports conformational selection as the key mechanism driving its molecular recognition by ERCC1. Moreover, all the mutations of the XPA67-80 peptide studied here cause a significant increase of its conformational disorder, relative to the wild type. Comparison to experimental data suggests that the loss of the recognized structural motifs at the microscopic time scale can contribute to the critical decrease in binding observed for one of the mutants, further substantiating the key role of conformational selection in recognition. Ultimately, because of the high sequence identity and analogy in binding, it is conceivable that the conclusions of this study on the XPA67-80 peptide also apply to the ERCC1-binding domain of the XPA protein. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flejter, W.L.; McDaniel, L.D.; Johns, D.
1992-01-01
Cultured cells from individuals afflicted with the genetically heterogeneous autosomal recessive disorder xeroderma pigmentosum (XP) exhibit sensitivity to UV radiation and defective nucleotide excision repair. Complementation of these mutant phenotypes after the introduction of single human chromosomes from repair-proficient cells into XP cells has provided a means of mapping the genes involved in this disease. The authors now report the phenotypic correction of XP cells from genetic complementation group D (XP-D) by a single human chromosome designated Tneo. Detailed molecular characterization of Tneo revealed a rearranged structure involving human chromosomes 16 and 19, including the excision repair cross-complementing 2 (ERCC2)more » gene from the previously described human DNA repair gene cluster at 19q13.2-q13.3. Direct transfer of a cosmid bearing the ERCC2 gene conferred UV resistance to XP-D cells.« less
Xeroderma Pigmentosum-Trichothiodystrophy overlap patient with novel XPD/ERCC2 mutation
Kralund, Henrik H.; Ousager, Lilian; Jaspers, Nicolaas G.; Raams, Anja; Pedersen, Erling B.; Gade, Else; Bygum, Anette
2013-01-01
Xeroderma Pigmentosum (XP), Trichothiodystrophy (TTD) and Cockayne Syndrome (CS) are rare, recessive disorders caused by mutational defects in the Nucleotide Excision Repair (NER) pathway and/or disruption of basic cellular DNA transcription. To date, a multitude of mutations in the XPD/ERCC2 gene have been described, many of which give rise to NER- and DNA transcription related diseases, which share certain diagnostic features and few overlap patients have been described. Despite increasing understanding of the roles of XPD/ERCC2 in mammalian cells, there is still weak predictability of somatic outcome from many of these mutations. We demonstrate a patient, believed to represent an overlap between XP and TTD/CS. In addition to other organ dysfunctions, the young man presented with Photosensitivity, Ichthyosis, Brittle hair, Impaired physical and mental development, Decreased fertility and Short stature (PIBIDS) suggestive of TTD, but lacking the almost patognomonic “tiger tail” banding of the hair under polarized light. Additionally, he developed basal cell carcinoma aged 28, as well as adult onset kidney failure, features normally not associated with TTD but rather XP/CS. His freckled appearance also suggested XP, but fibroblast cultures only demonstrated x2 UV-sensitivity with expected NER and TFIIH-activity decrease. Genetic sequencing of the XPD/ERCC2 gene established the patient as heterozygote compound with a novel, N-terminal Y18H mutation and a known C-terminal (TTD) mutation, A725P. The possible interplay between gene products and the patient phenotype is discussed. PMID:25002996
A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome
Taghdiri, Maryam; Dastsooz, Hassan; Fardaei, Majid; Mohammadi, Sanaz; Farazi Fard, Mohammad Ali; Faghihi, Mohammad Ali
2017-01-01
Cockayne syndrome (CS) is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C) in our patient. Another gene (ERCC6), which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family. PMID:28848724
A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome.
Taghdiri, Maryam; Dastsooz, Hassan; Fardaei, Majid; Mohammadi, Sanaz; Farazi Fard, Mohammad Ali; Faghihi, Mohammad Ali
2017-01-01
Cockayne syndrome (CS) is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C) in our patient. Another gene ( ERCC6 ), which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family.
Lambrechts, Sandrina; Lambrechts, Diether; Despierre, Evelyn; Van Nieuwenhuysen, Els; Smeets, Dominiek; Debruyne, Philip R; Renard, Vincent; Vroman, Philippe; Luyten, Daisy; Neven, Patrick; Amant, Frédéric; Leunen, Karin; Vergote, Ignace
2015-02-27
This study aimed to determine whether single nucleotide polymorphisms (SNPs) in genes involved in DNA repair or metabolism of taxanes or platinum could predict toxicity or response to first-line chemotherapy in ovarian cancer. Twenty-six selected SNPs in 18 genes were genotyped in 322 patients treated with first-line paclitaxel-carboplatin or carboplatin mono-therapy. Genotypes were correlated with toxicity events (anemia, neutropenia, thrombocytopenia, febrile neutropenia, neurotoxicity), use of growth factors and survival. The risk of anemia was increased for variant alleles of rs1128503 (ABCB1, C > T; p = 0.023, OR = 1.71, 95% CI = 1.07-2.71), rs363717 (ABCA1, A > G; p = 0.002, OR = 2.08, 95% CI = 1.32-3.27) and rs11615 (ERCC1, T > C; p = 0.031, OR = 1.61, 95% CI = 1.04-2.50), while it was decreased for variant alleles of rs12762549 (ABCC2, C > G; p = 0.004, OR = 0.51, 95% CI = 0.33-0.81). Likewise, increased risk of thrombocytopenia was associated with rs4986910 (CYP3A4, T > C; p = 0.025, OR = 4.99, 95% CI = 1.22-20.31). No significant correlations were found for neurotoxicity. Variant alleles of rs2073337 (ABCC2, A > G; p = 0.039, OR = 0.60, 95% CI = 0.37-0.98), rs1695 (ABCC1, A > G; p = 0.017, OR = 0.55, 95% CI 0.33-0.90) and rs1799793 (ERCC2, G > A; p = 0.042, OR = 0.63, 95% CI 0.41-0.98) associated with the use of colony stimulating factors (CSF), while rs2074087 (ABCC1, G > C; p = 0.011, OR = 2.09, 95% CI 1.18-3.68) correlated with use of erythropoiesis stimulating agents (ESAs). Homozygous carriers of the rs1799793 (ERCC2, G > A) G-allele had a prolonged platinum-free interval (p = 0.016). Our data reveal significant correlations between genetic variants of transport, hepatic metabolism, platinum related detoxification or DNA damage repair and toxicity or outcome in ovarian cancer.
Premature aging-related peripheral neuropathy in a mouse model of progeria.
Goss, James R; Stolz, Donna Beer; Robinson, Andria Rasile; Zhang, Mingdi; Arbujas, Norma; Robbins, Paul D; Glorioso, Joseph C; Niedernhofer, Laura J
2011-08-01
Peripheral neuropathy is a common aging-related degenerative disorder that interferes with daily activities and leads to increased risk of falls and injury in the elderly. The etiology of most aging-related peripheral neuropathy is unknown. Inherited defects in several genome maintenance mechanisms cause tissue-specific accelerated aging, including neurodegeneration. We tested the hypothesis that a murine model of XFE progeroid syndrome, caused by reduced expression of ERCC1-XPF DNA repair endonuclease, develops peripheral neuropathy. Nerve conduction studies revealed normal nerve function in young adult (8 week) Ercc1(-/Δ) mice, but significant abnormalities in 20 week-old animals. Morphologic and ultrastructural analysis of the sciatic nerve from mutant mice revealed significant alterations at 20 but not 8 weeks of age. We conclude that Ercc1(-/Δ) mice have accelerated spontaneous peripheral neurodegeneration that mimics aging-related disease. This provides strong evidence that DNA damage can drive peripheral neuropathy and offers a rapid and novel model to test therapies. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Jordheim, Lars Petter; Cros-Perrial, Emeline; Matera, Eva-Laure; Bouledrak, Karima; Dumontet, Charles
2014-10-01
Nucleotide excision repair (NER) is involved in the repair of DNA damage caused by platinum derivatives and has been shown to decrease the cytotoxic activity of these drugs. Because protein-protein interactions are essential for NER activity, we transfected human cancer cell lines (A549 and HCT116) with plasmids coding the amino acid sequences corresponding to the interacting domains between excision repair cross-complementation group 1 (ERCC1) and xeroderma pigmentosum, complementation group A (XPA), as well as ERCC1 and xeroderma pigmentosum, complementation group F (XPF), all NER proteins. Using the 3-(4,5-dimethyl-2 thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and annexin V staining, we showed that transfected A549 cells were sensitized 1.2-2.2-fold to carboplatin and that transfected HCT116 cells were sensitized 1.4-5.4-fold to oxaliplatin in vitro. In addition, transfected cells exhibited modified in vivo sensitivity to the same drugs. Finally, in particular cell models of the interaction between ERCC1 and XPF, DNA repair was decreased, as evidenced by increased phosphorylation of the histone 2AX after exposure to mitomycin C, and genomic instability was increased, as determined by comparative genomic hybridization studies. The results indicate that the interacting peptides act as dominant negatives and decrease NER activity through inhibition of protein-protein interactions. © 2014 Wiley Publishing Asia Pty Ltd.
Ren, Shengxiang; Chen, Xiaoxia; Kuang, Peng; Zheng, Limou; Su, Chunxia; Li, Jiayu; Li, Bing; Wang, Yongshen; Liu, Lu; Hu, Qiong; Zhang, Jie; Tang, Liang; Li, Xuefei; Zhou, Caicun; Schmid-Bindert, Gerald
2012-11-15
Epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) rearrangement may predict the outcome of targeted drug therapy and also are associated with the efficacy of chemotherapy in patients with nonsmall cell lung cancer (NSCLC). The authors of this report investigated the relation of EGFR mutation or ALK rearrangement status and the expression of DNA repair or synthesis genes, including excision repair cross-complementing 1 (ERCC1), ribonucleotide reductase subunit M1 (RRM1), thymidylate synthetase (TS), and breast cancer-early onset (BRCA1), as a potential explanation for these observations. In total, 104 resected lung adenocarcinomas from women who were nonsmokers were analyzed concurrently for EGFR mutations, ALK rearrangements, and mRNA expression of the ERCC1, RRM1, TS, and BRCA1 genes. EGFR mutations were detected with a proprietary detection kit, ALK rearrangements were detected by polymerase chain reaction analysis, and genetic mRNA expression was detected by real-time polymerase chain reaction analysis. Of 104 patients, 73 (70.2%) had EGFR mutations, and 10 (9.6%) had ALK rearrangements. ERCC1 mRNA levels in patients who had EGFR mutations were 3.44 ± 1.94 × 10(-3) , which were significantly lower than the levels in patients who were positive for ALK rearrangements and in patients who were negative for both biomarkers (4.60 ± 1.95 × 10(-3) and 4.95 ± 2.33 × 10(-3) , respectively; P = .010). However, TS mRNA levels were significantly lower in patients who had EGFR mutations (1.15 ± 1.38 × 10(-3) vs 2.69 ± 3.97 × 10(-3) ; P = .006) or ALK rearrangements (1.21 ± 0.78 × 10(-3) vs 2.69 ± 3.97 × 10(-3) ; P = .020) than in patients who were negative for both biomarkers. NSCLC specimens that harbored activating EGFR mutations were more likely to express low ERCC1 and TS mRNA levels, whereas patients with NSCLC who had ALK rearrangement were more likely to express low TS mRNA levels. Copyright © 2012 American Cancer Society.
Influence of Morinda citrifolia (Noni) on Expression of DNA Repair Genes in Cervical Cancer Cells.
Gupta, Rakesh Kumar; Bajpai, Deepti; Singh, Neeta
2015-01-01
Previous studies have suggested that Morinda citrifolia (Noni) has potential to reduce cancer risk. The purpose of this study was to investigate the effect of Noni, cisplatin, and their combination on DNA repair genes in the SiHa cervical cancer cell line. SiHa cells were cultured and treated with 10% Noni, 10 μg/dl cisplatin or their combination for 24 hours. Post culturing, the cells were pelleted, RNA extracted, and processed for investigating DNA repair genes by real time PCR. The expression of nucleotide excision repair genes ERCC1, ERCC2, and ERCC4 and base excision repair gene XRCC1 was increased 4 fold, 8.9 fold, 4 fold, and 5.5 fold, respectively, on treatment with Noni as compared to untreated controls (p<0.05). In contrast, expression was found to be decreased 22 fold, 13 fold, 16 fold, and 23 fold on treatment with cisplatin (p<0.05). However, the combination of Noni and cisplatin led to an increase of 2 fold, 1.6 fold, 3 fold, 1.2 fold, respectively (p<0.05). Noni enhanced the expression of DNA repair genes by itself and in combination with cisplatin. However, high expression of DNA repair genes at mRNA level only signifies efficient DNA transcription of the above mentioned genes; further investigations are needed to evaluate the DNA repair protein expression.
Jordheim, Lars Petter; Barakat, Khaled H; Heinrich-Balard, Laurence; Matera, Eva-Laure; Cros-Perrial, Emeline; Bouledrak, Karima; El Sabeh, Rana; Perez-Pineiro, Rolando; Wishart, David S; Cohen, Richard; Tuszynski, Jack; Dumontet, Charles
2013-07-01
The benefit of cancer chemotherapy based on alkylating agents is limited because of the action of DNA repair enzymes, which mitigate the damage induced by these agents. The interaction between the proteins ERCC1 and XPF involves two major components of the nucleotide excision repair pathway. Here, novel inhibitors of this interaction were identified by virtual screening based on available structures with use of the National Cancer Institute diversity set and a panel of DrugBank small molecules. Subsequently, experimental validation of the in silico screening was undertaken. Top hits were evaluated on A549 and HCT116 cancer cells. In particular, the compound labeled NSC 130813 [4-[(6-chloro-2-methoxy-9-acridinyl)amino]-2-[(4-methyl-1-piperazinyl)methyl
Priming of microglia in a DNA-repair deficient model of accelerated aging.
Raj, Divya D A; Jaarsma, Dick; Holtman, Inge R; Olah, Marta; Ferreira, Filipa M; Schaafsma, Wandert; Brouwer, Nieske; Meijer, Michel M; de Waard, Monique C; van der Pluijm, Ingrid; Brandt, Renata; Kreft, Karim L; Laman, Jon D; de Haan, Gerald; Biber, Knut P H; Hoeijmakers, Jan H J; Eggen, Bart J L; Boddeke, Hendrikus W G M
2014-09-01
Aging is associated with reduced function, degenerative changes, and increased neuroinflammation of the central nervous system (CNS). Increasing evidence suggests that changes in microglia cells contribute to the age-related deterioration of the CNS. The most prominent age-related change of microglia is enhanced sensitivity to inflammatory stimuli, referred to as priming. It is unclear if priming is due to intrinsic microglia ageing or induced by the ageing neural environment. We have studied this in Ercc1 mutant mice, a DNA repair-deficient mouse model that displays features of accelerated aging in multiple tissues including the CNS. In Ercc1 mutant mice, microglia showed hallmark features of priming such as an exaggerated response to peripheral lipopolysaccharide exposure in terms of cytokine expression and phagocytosis. Specific targeting of the Ercc1 deletion to forebrain neurons resulted in a progressive priming response in microglia exemplified by phenotypic alterations. Summarizing, these data show that neuronal genotoxic stress is sufficient to switch microglia from a resting to a primed state. Copyright © 2014 Elsevier Inc. All rights reserved.
Flores, Rafael R; Clauson, Cheryl L; Cho, Joonseok; Lee, Byeong-Chel; McGowan, Sara J; Baker, Darren J; Niedernhofer, Laura J; Robbins, Paul D
2017-06-01
With aging, there is progressive loss of tissue homeostasis and functional reserve, leading to an impaired response to stress and an increased risk of morbidity and mortality. A key mediator of the cellular response to damage and stress is the transcription factor NF-κB. We demonstrated previously that NF-κB transcriptional activity is upregulated in tissues from both natural aged mice and in a mouse model of a human progeroid syndrome caused by defective repair of DNA damage (ERCC1-deficient mice). We also demonstrated that genetic reduction in the level of the NF-κB subunit p65(RelA) in the Ercc1 -/∆ progeroid mouse model of accelerated aging delayed the onset of age-related pathology including muscle wasting, osteoporosis, and intervertebral disk degeneration. Here, we report that the largest fraction of NF-κB -expressing cells in the bone marrow (BM) of aged (>2 year old) mice (C57BL/6-NF-κB EGFP reporter mice) are Gr-1 + CD11b + myeloid-derived suppressor cells (MDSCs). There was a significant increase in the overall percentage of MDSC present in the BM of aged animals compared with young, a trend also observed in the spleen. However, the function of these cells appears not to be compromised in aged mice. A similar increase of MDSC was observed in BM of progeroid Ercc1 -/∆ and BubR1 H/H mice. The increase in MDSC in Ercc1 -/∆ mice was abrogated by heterozygosity in the p65/RelA subunit of NF-κB. These results suggest that NF-κB activation with aging, at least in part, drives an increase in the percentage of MDSCs, a cell type able to suppress immune cell responses. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Uncommon nucleotide excision repair phenotypes revealed by targeted high-throughput sequencing.
Calmels, Nadège; Greff, Géraldine; Obringer, Cathy; Kempf, Nadine; Gasnier, Claire; Tarabeux, Julien; Miguet, Marguerite; Baujat, Geneviève; Bessis, Didier; Bretones, Patricia; Cavau, Anne; Digeon, Béatrice; Doco-Fenzy, Martine; Doray, Bérénice; Feillet, François; Gardeazabal, Jesus; Gener, Blanca; Julia, Sophie; Llano-Rivas, Isabel; Mazur, Artur; Michot, Caroline; Renaldo-Robin, Florence; Rossi, Massimiliano; Sabouraud, Pascal; Keren, Boris; Depienne, Christel; Muller, Jean; Mandel, Jean-Louis; Laugel, Vincent
2016-03-22
Deficient nucleotide excision repair (NER) activity causes a variety of autosomal recessive diseases including xeroderma pigmentosum (XP) a disorder which pre-disposes to skin cancer, and the severe multisystem condition known as Cockayne syndrome (CS). In view of the clinical overlap between NER-related disorders, as well as the existence of multiple phenotypes and the numerous genes involved, we developed a new diagnostic approach based on the enrichment of 16 NER-related genes by multiplex amplification coupled with next-generation sequencing (NGS). Our test cohort consisted of 11 DNA samples, all with known mutations and/or non pathogenic SNPs in two of the tested genes. We then used the same technique to analyse samples from a prospective cohort of 40 patients. Multiplex amplification and sequencing were performed using AmpliSeq protocol on the Ion Torrent PGM (Life Technologies). We identified causative mutations in 17 out of the 40 patients (43%). Four patients showed biallelic mutations in the ERCC6(CSB) gene, five in the ERCC8(CSA) gene: most of them had classical CS features but some had very mild and incomplete phenotypes. A small cohort of 4 unrelated classic XP patients from the Basque country (Northern Spain) revealed a common splicing mutation in POLH (XP-variant), demonstrating a new founder effect in this population. Interestingly, our results also found ERCC2(XPD), ERCC3(XPB) or ERCC5(XPG) mutations in two cases of UV-sensitive syndrome and in two cases with mixed XP/CS phenotypes. Our study confirms that NGS is an efficient technique for the analysis of NER-related disorders on a molecular level. It is particularly useful for phenotypes with combined features or unusually mild symptoms. Targeted NGS used in conjunction with DNA repair functional tests and precise clinical evaluation permits rapid and cost-effective diagnosis in patients with NER-defects.
Andrew, Angeline S.; Burgess, Jefferey L.; Meza, Maria M.; Demidenko, Eugene; Waugh, Mary G.; Hamilton, Joshua W.; Karagas, Margaret R.
2006-01-01
The mechanism(s) by which arsenic exposure contributes to human cancer risk is unknown; however, several indirect cocarcinogenesis mechanisms have been proposed. Many studies support the role of As in altering one or more DNA repair processes. In the present study we used individual-level exposure data and biologic samples to investigate the effects of As exposure on nucleotide excision repair in two study populations, focusing on the excision repair cross-complement 1 (ERCC1) component. We measured drinking water, urinary, or toenail As levels and obtained cryopreserved lymphocytes of a subset of individuals enrolled in epidemiologic studies in New Hampshire (USA) and Sonora (Mexico). Additionally, in corroborative laboratory studies, we examined the effects of As on DNA repair in a cultured human cell model. Arsenic exposure was associated with decreased expression of ERCC1 in isolated lymphocytes at the mRNA and protein levels. In addition, lymphocytes from As-exposed individuals showed higher levels of DNA damage, as measured by a comet assay, both at baseline and after a 2-acetoxyacetylaminofluorene (2-AAAF) challenge. In support of the in vivo data, As exposure decreased ERCC1 mRNA expression and enhanced levels of DNA damage after a 2-AAAF challenge in cell culture. These data provide further evidence to support the ability of As to inhibit the DNA repair machinery, which is likely to enhance the genotoxicity and mutagenicity of other directly genotoxic compounds, as part of a cocarcinogenic mechanism of action. PMID:16882524
Mullane, Stephanie A; Werner, Lillian; Guancial, Elizabeth A; Lis, Rosina T; Stack, Edward C; Loda, Massimo; Kantoff, Philip W; Choueiri, Toni K; Rosenberg, Jonathan; Bellmunt, Joaquim
2016-08-01
Combination platinum chemotherapy is standard first-line therapy for metastatic urothelial carcinoma (mUC). Defining the platinum response biomarkers for patients with mUC could establish personalize medicine and provide insights into mUC biology. Although DNA repair mechanisms have been hypothesized to mediate the platinum response, we sought to analyze whether increased expression of DNA damage genes would correlate with worse overall survival (OS) in patients with mUC. We retrospectively identified a clinically annotated cohort of patients with mUC, who had been treated with first-line platinum combination chemotherapy. A tissue microarray was constructed from formalin-fixed paraffin-embedded tissue from the primary tumor before treatment. Immunohistochemical analysis of the following DNA repair proteins was performed: ERCC1, RAD51, BRCA1/2, PAR, and PARP-1. Nuclear and cytoplasmic expression was analyzed using multispectral imaging. Nuclear staining was used for the survival analysis. Cox regression analysis was used to evaluate the associations between the percentage of positive nuclear staining and OS in multivariable analysis, controlling for known prognostic variables. In a cohort of 104 patients with mUC, a greater percentage of nuclear staining of ERCC1 (hazard ratio [HR], 2.7; 95% confidence interval [CI], 1.5-4.9; P = .0007), RAD51 (HR, 5.6; 95% CI, 1.7-18.3; P = .005), and PAR (HR, 2.2; 95% CI, 1.1-4.4; P = .026) was associated with worse OS. BRCA1, BRCA2, and PARP-1 expression was not associated with OS (P = .76, P = .38, and P = .09, respectively). A greater percentage of combined ERCC1 and RAD51 nuclear staining was strongly associated with worse OS (P = .005). A high percentage of nuclear staining of ERCC1, RAD51, and PAR, assessed by immunohistochemistry, correlated with worse OS for patients with mUC treated with first-line platinum combination chemotherapy, supporting the evidence of the DNA repair pathways' role in the prognosis of mUC. We also report new evidence that RAD51 and PAR might play a role in the platinum response. Additional prospective studies are required to determine the prognostic or predictive nature of these biomarkers in mUC. Copyright © 2015 Elsevier Inc. All rights reserved.
Agalliu, Ilir; Kwon, Erika M; Salinas, Claudia A.; Koopmeiners, Joseph S.; Ostrander, Elaine A.; Stanford, Janet L.
2009-01-01
Objective DNA repair pathways are crucial to prevent accumulation of DNA damage and maintain genomic stability. Alterations of this pathway have been reported in many cancers. An increase in oxidative DNA damage or decrease of DNA repair capacity with aging or due to germline genetic variation may affect prostate cancer risk. Methods Pooled data from two population-based studies (1,457 cases and 1,351 controls) were analyzed to examine associations between 28 SNPs in 9 DNA repair genes (APEX1, BRCA2, ERCC2, ERCC4, MGMT, MUTYH, OGG1, XPC, and XRCC1) and prostate cancer risk. We also explored whether associations varied by smoking, by family history or clinical features of prostate cancer. Results There were no associations between these SNPs and overall risk of prostate cancer. Risks did not vary either by smoking or by family history of prostate cancer. Although, two SNPs in BRCA2 (rs144848, rs1801406) and two SNPs in ERCC2 (rs1799793, rs13181) showed stronger associations with high Gleason score or advanced stage tumors when comparing homozygous men carrying the minor vs. major allele, results were not statistically significantly different between clinically aggressive and non-aggressive tumors. Conclusion Overall this study found no associations between prostate cancer and the SNPs in DNA repair genes. Given the complexity of this pathway and its crucial role in maintenance of genomic stability a pathway-based analysis of all 150 genes in DNA repair pathways, as well as exploration of gene-environment interactions may be warranted. PMID:19902366
Mutation update for the CSB/ERCC6 and CSA/ERCC8 genes involved in Cockayne syndrome.
Laugel, V; Dalloz, C; Durand, M; Sauvanaud, F; Kristensen, U; Vincent, M C; Pasquier, L; Odent, S; Cormier-Daire, V; Gener, B; Tobias, E S; Tolmie, J L; Martin-Coignard, D; Drouin-Garraud, V; Heron, D; Journel, H; Raffo, E; Vigneron, J; Lyonnet, S; Murday, V; Gubser-Mercati, D; Funalot, B; Brueton, L; Sanchez Del Pozo, J; Muñoz, E; Gennery, A R; Salih, M; Noruzinia, M; Prescott, K; Ramos, L; Stark, Z; Fieggen, K; Chabrol, B; Sarda, P; Edery, P; Bloch-Zupan, A; Fawcett, H; Pham, D; Egly, J M; Lehmann, A R; Sarasin, A; Dollfus, H
2010-02-01
Cockayne syndrome is an autosomal recessive multisystem disorder characterized principally by neurological and sensory impairment, cachectic dwarfism, and photosensitivity. This rare disease is linked to mutations in the CSB/ERCC6 and CSA/ERCC8 genes encoding proteins involved in the transcription-coupled DNA repair pathway. The clinical spectrum of Cockayne syndrome encompasses a wide range of severity from severe prenatal forms to mild and late-onset presentations. We have reviewed the 45 published mutations in CSA and CSB to date and we report 43 new mutations in these genes together with the corresponding clinical data. Among the 84 reported kindreds, 52 (62%) have mutations in the CSB gene. Many types of mutations are scattered along the whole coding sequence of both genes, but clusters of missense mutations can be recognized and highlight the role of particular motifs in the proteins. Genotype-phenotype correlation hypotheses are considered with regard to these new molecular and clinical data. Additional cases of molecular prenatal diagnosis are reported and the strategy for prenatal testing is discussed. Two web-based locus-specific databases have been created to list all identified variants and to allow the inclusion of future reports (www.umd.be/CSA/ and www.umd.be/CSB/). (c) 2009 Wiley-Liss, Inc.
Kohan, Mahmoud; Rezaei-Adaryani, Morteza; Najaf-Yarandi, Akram; Hoseini, Fatemeh; Mohammad-Taheri, Nahid
2014-09-01
To investigate the effects of expiratory ribcage compression (ERCC) before endotracheal suctioning on the arterial blood gases (ABG) in patients receiving mechanical ventilation. Endotracheal suctioning is one of the most frequently used methods for airway clearance in patients receiving mechanical ventilation. Chest physiotherapy techniques such as ERCC before endotracheal suctioning can be used as a means to facilitate mobilizing and removing airway secretions and improving alveolar ventilation. A prospective, randomized, controlled cross-over design. A randomized controlled cross-over trial with a convenience sample of 70 mechanically ventilated patients was conducted from 2006 to 2007. The patients received endotracheal suctioning with (experiment-period) or without (control-period) an antecedent 5-min expiratory ribcage. All the patients experienced both periods with at least a 3-h washed-out interval between the two periods. ABG were measured 5 min before and 25 min after endotracheal suctioning. The statistical tests showed that the levels of partial pressure of oxygen (PaO2 )/fraction of inspired oxygen (FiO2 ), partial pressure of carbon dioxide (PaCO2 ) and arterial oxygen saturation (SaO2 ) in the experimental period at 25 min after the intervention were significantly different from the control period. The tests also revealed that the levels of these variables at 25 min after suctioning were also significantly different from baseline values. However, these differences were clinically significant only for PaO2 /FiO2 . By improving the levels of PaO2 /FiO2 , ERCC can reduce the patients' need for oxygen and hence it can at least reduce the side effects of oxygen therapy. Improving PaO2 /FiO2 levels means less need for oxygen therapy. Hence, by applying ERCC we can at least minimize the side effects of oxygen therapy. © 2014 British Association of Critical Care Nurses.
Adamczewski, J P; Rossignol, M; Tassan, J P; Nigg, E A; Moncollin, V; Egly, J M
1996-04-15
MAT1, cyclin H and cdk7 are part of TFIIH, a class II transcription factor which possesses numerous subunits of which several have been shown to be involved in processes other than transcription. Two of them, XPD (ERCC2) and XPB (ERCC3), are helicases involved in nucleotide excision repair (NER), whereas cdk7, cyclin H and MAT1 are thought to participate in cell cycle regulation. MAT1, cyclin H and cdk7 exist as a ternary complex either free or associated with TFIIH from which the latter can be dissociated at high salt concentration. MAT1 is strongly associated with cdk7 and cyclin H. Although not strictly required for the formation and activity of the complex, it stimulates its kinase activity. The kinase activity of TFIIH, which is constant during the cell cycle, is reduced after UV light irradiation.
Adamczewski, J P; Rossignol, M; Tassan, J P; Nigg, E A; Moncollin, V; Egly, J M
1996-01-01
MAT1, cyclin H and cdk7 are part of TFIIH, a class II transcription factor which possesses numerous subunits of which several have been shown to be involved in processes other than transcription. Two of them, XPD (ERCC2) and XPB (ERCC3), are helicases involved in nucleotide excision repair (NER), whereas cdk7, cyclin H and MAT1 are thought to participate in cell cycle regulation. MAT1, cyclin H and cdk7 exist as a ternary complex either free or associated with TFIIH from which the latter can be dissociated at high salt concentration. MAT1 is strongly associated with cdk7 and cyclin H. Although not strictly required for the formation and activity of the complex, it stimulates its kinase activity. The kinase activity of TFIIH, which is constant during the cell cycle, is reduced after UV light irradiation. Images PMID:8617234
Anurag, Meenakshi; Punturi, Nindo; Hoog, Jeremy; Bainbridge, Matthew N; Ellis, Matthew J; Haricharan, Svasti
2018-05-23
This study was undertaken to conduct a comprehensive investigation of the role of DNA damage repair (DDR) defects in poor outcome ER+ disease. Expression and mutational status of DDR genes in ER+ breast tumors were correlated with proliferative response in neoadjuvant aromatase inhibitor therapy trials (discovery data set), with outcomes in METABRIC, TCGA and Loi data sets (validation data sets), and in patient derived xenografts. A causal relationship between candidate DDR genes and endocrine treatment response, and the underlying mechanism, was then tested in ER+ breast cancer cell lines. Correlations between loss of expression of three genes: CETN2 (p<0.001) and ERCC1 (p=0.01) from the nucleotide excision repair (NER) and NEIL2 (p=0.04) from the base excision repair (BER) pathways were associated with endocrine treatment resistance in discovery data sets, and subsequently validated in independent patient cohorts. Complementary mutation analysis supported associations between mutations in NER and BER pathways and reduced endocrine treatment response. A causal role for CETN2, NEIL2 and ERCC1 loss in intrinsic endocrine resistance was experimentally validated in ER+ breast cancer cell lines, and in ER+ patient-derived xenograft models. Loss of CETN2, NEIL2 or ERCC1 induced endocrine treatment response by dysregulating G1/S transition, and therefore, increased sensitivity to CDK4/6 inhibitors. A combined DDR signature score was developed that predicted poor outcome in multiple patient cohorts. This report identifies DDR defects as a new class of endocrine treatment resistance drivers and indicates new avenues for predicting efficacy of CDK4/6 inhibition in the adjuvant treatment setting. Copyright ©2018, American Association for Cancer Research.
A critical re-assessment of DNA repair gene promoter methylation in non-small cell lung carcinoma
Do, Hongdo; Wong, Nicholas C.; Murone, Carmel; John, Thomas; Solomon, Benjamin; Mitchell, Paul L.; Dobrovic, Alexander
2014-01-01
DNA repair genes that have been inactivated by promoter methylation offer potential therapeutic targets either by targeting the specific repair deficiency, or by synthetic lethal approaches. This study evaluated promoter methylation status for eight selected DNA repair genes (ATM, BRCA1, ERCC1, MGMT, MLH1, NEIL1, RAD23B and XPC) in 56 non-small cell lung cancer (NSCLC) tumours and 11 lung cell lines using the methylation-sensitive high resolution melting (MS-HRM) methodology. Frequent methylation in NEIL1 (42%) and infrequent methylation in ERCC1 (2%) and RAD23B (2%) are reported for the first time in NSCLC. MGMT methylation was detected in 13% of the NSCLCs. Contrary to previous studies, methylation was not detected in ATM, BRCA1, MLH1 and XPC. Data from The Cancer Genome Atlas (TCGA) was consistent with these findings. The study emphasises the importance of using appropriate methodology for accurate assessment of promoter methylation. PMID:24569633
Ligia Cebotaru, Cristina; Zenovia Antone, Nicoleta; Diana Olteanu, Elena; Bejinariu, Nona; Buiga, Rares; Todor, Nicolae; Ioana Iancu, Dana; Eliade Ciuleanu, Tudor; Nagy, Viorica
2016-01-01
One half of high-risk germ cell tumor (HRGCT) patients relapse after standard chemotherapy. This phase II study evaluated prospectively the toxicity and efficacy in first-line of the paclitaxel-ifosfamide-cisplatin combination (TIP) in HRGCT patients and tried to identify biomarkers that may allow patient-tailored treatments. Between October 1997- September 2000, 28 chemo-naive HRGCT patients were enrolled. Patients received 4 cycles of TIP (paclitaxel 175 mg/m(2) day 1/; ifosfamide 1.2 g/m(2)/day, days 1-5; Mesna 1.2 g/m(2)/day, days 1-5; and cisplatin 20 mg/m(2)/day, days 1-5 every 3 weeks). A non-randomized comparison was made between HRGCT patients treated in the same period with first-line TIP and bleomycin-etoposide-cisplatin (BEP) (28 patients vs 20). In 17 HRGCT patients treated between 1998-2006, ERCC1, Topoisomerase 1 and 2A, p53 and HER-2 expression was retrospectively analysed by immunohistochemistry (IHC) (7 patients with TIP, 10 with BEP), and correlations were made with response to chemotherapy and survival. With a median follow-up of 72 months [range 48+...89+], 5-year disease free survival (DFS) was 55%, with 95% CI 36-72, and the overall survival (OS) was 63%, with 95% CI 44-78. In June 2015, with a median follow-up of 196.47 months (range 177.30-209.27) (>15 years), 12 [%?] patients were alive and disease-free, and 16 [%?] had died (12 specific causes). There was no significant correlation between the expression of ERCC1, Topoisomerase 1 and 2A, HER-2 and p53 and response to treatment. Long-term follow-up showed no difference in OS between TIP vs BEP as first-line therapy. Both regimens had mild toxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, E.; Prakash, L.; Guzder, S.N.
1992-12-01
Xeroderma pigmentosum (XP) patients are extremely sensitive to ultraviolet (UV) light and suffer from a high incidence of skin cancers, due to a defect in nucleotide excision repair. The disease is genetically heterogeneous, and seven complementation groups, A-G, have been identified. Homologs of human excision repair genes ERCC1, XPDC/ERCC2, and XPAC have been identified in the yeast Saccharomyces cerevisiae. Since no homolog of human XPBC/ERCC3 existed among the known yeast genes, we cloned the yeast homolog by using XPBC cDNA as a hybridization probe. The yeast homolog, RAD25 (SSL2), encodes a protein of 843 amino acids (M[sub r] 95,356). Themore » RAD25 (SSL2)- and XPCX-encoded proteins share 55% identical and 72% conserved amino acid residues, and the two proteins resemble one another in containing the conserved DNA helicase sequence motifs. A nonsense mutation at codon 799 that deletes the 45 C-terminal amino acid residues in RAD25 (SSL2) confers UV sensitivity. This mutation shows epistasis with genes in the excision repair group, whereas a synergistic increase in UN sensitivity occurs when it is combined with mutations in genes in other DNA repair pathways, indicating that RAD25 (SSL2) functions in excision repair but not in other repair pathways. We also show that RAD25 (SSL2) is an essential gene. A mutation of the Lys[sup 392] residue to arginine in the conserved Walker type A nucleotide-binding motif is lethal, suggesting an essential role of the putative RAD 25 (SSL2) ATPase/DNA helicase activity in viability. 40 refs., 3 figs., 1 tab.« less
da Silva, A F; Sartori, D; Macedo, F C; Ribeiro, L R; Fungaro, M H P; Mantovani, M S
2013-06-01
The polysaccharide β-glucan has biological properties that stimulate the immune system and can prevent chronic pathologies, including cancer. It has been shown to prevent damage to DNA caused by the chemical and physical agents to which humans are exposed. However, the mechanism of β-glucan remains poorly understood. The objective of the present study was to verify the protective effect of β-glucan on the expression of the genes ERCC5 (involved in excision repair of DNA damage), CASP9 (involved in apoptosis), and CYP1A1 (involved in the metabolism of xenobiotics) using real-time polymerase chain reaction and perform metabolic profile measurements on the HepG2 cells. Cells were exposed to only benzo[a]pyrene (B[a]P), β-glucan, or a combination of B[a]P with β-glucan. The results demonstrated that 50 µg/mL β-glucan significantly repressed the expression of the ERCC5 gene when compared with the untreated control cells in these conditions. No change was found in the CASP9 transcript level. However, the CYP1A1 gene expression was also induced by HepG2 cells exposed to B[a]P only or in association with β-glucan, showing its effective protector against damage caused by B[a]P, while HepG2 cells exposed to only β-glucan did not show CYP1A1 modulation. The metabolic profiles showed moderate bioenergetic metabolism with an increase in the metabolites involved in bioenergetic metabolism (alanine, glutamate, creatine and phosphocholine) in cells treated with β-glucan and to a lesser extent treated with B[a]P. Thus, these results demonstrate that the chemopreventive activity of β-glucan may modulate bioenergetic metabolism and gene expression.
Boyle, Jennifer; Ueda, Takahiro; Oh, Kyu-Seon; Imoto, Kyoko; Tamura, Deborah; Jagdeo, Jared; Khan, Sikandar G.; Nadem, Carine; DiGiovanna, John J.; Kraemer, Kenneth H.
2012-01-01
Patients with xeroderma pigmentosum (XP) have a 1,000-fold increase in ultraviolet (UV)-induced skin cancers while trichothiodystrophy (TTD) patients, despite mutations in the same genes, ERCC2 (XPD) or ERCC3 (XPB), are cancer-free. Unlike XP cells, TTD cells have a nearly normal rate of removal of UV-induced 6-4 photoproducts (6-4PP) in their DNA and low levels of the basal transcription factor, TFIIH. We examined seven XP, TTD, and XP/TTD complex patients and identified mutations in the XPD gene. We discovered large differences in nucleotide excision repair (NER) protein recruitment to sites of localized UV damage in TTD cells compared to XP or normal cells. XPC protein was rapidly localized in all cells. XPC was redistributed in TTD, and normal cells by 3 hr postirradiation, but remained localized in XP cells at 24-hr postirradiation. In XP cells recruitment of other NER proteins (XPB, XPD, XPG, XPA, and XPF) was also delayed and persisted at 24 hr (p < 0.001). In TTD cells with defects in the XPD, XPB, or GTF2H5 (TTDA) genes, in contrast, recruitment of these NER proteins was reduced compared to normals at early time points (p < 0.001) and remained low at 24 hr postirradiation. These data indicate that in XP persistence of NER proteins at sites of unrepaired DNA damage is associated with greatly increased skin cancer risk possibly by blockage of translesion DNA synthesis. In contrast, in TTD, low levels of unstable TFIIH proteins do not accumulate at sites of unrepaired photoproducts and may permit normal translesion DNA synthesis without increased skin cancer. PMID:18470933
Mok, Tony; Ladrera, Guia; Srimuninnimit, Vichien; Sriuranpong, Virote; Yu, Chong-Jen; Thongprasert, Sumitra; Sandoval-Tan, Jennifer; Lee, Jin Soo; Fuerte, Fatima; Shames, David S; Klughammer, Barbara; Truman, Matt; Perez-Moreno, Pablo; Wu, Yi-Long
2016-08-01
The FASTACT-2 study of intercalated erlotinib with chemotherapy in Asian patients found that EGFR mutations were the main driver behind the significant progression-free survival (PFS) benefit noted in the overall population. Further exploratory biomarker analyses were conducted to provide additional insight. This multicenter, randomized, placebo-controlled, double-blind, phase III study investigated intercalated first-line erlotinib or placebo with gemcitabine/platinum, followed by maintenance erlotinib or placebo, for patients with stage IIIB/IV non-small cell lung cancer (NSCLC). Provision of samples for biomarker analysis was encouraged but not mandatory. The following biomarkers were analyzed (in order of priority): EGFR mutation by cobas(®) test, KRAS mutation by cobas(®)KRAS test, HER2 by immunohistochemistry (IHC), HER3 by IHC, ERCC1 by IHC, EGFR gene copy number by fluorescence in-situ hybridization (FISH) and EGFR by IHC. All subgroups were assessed for PFS (primary endpoint), overall survival (OS), non-progression rate and objective response rate. Overall, 256 patients provided samples for analysis. Considerable overlap was noted among biomarkers, except for EGFR and KRAS mutations, which are mutually exclusive. Other than EGFR mutations (p<0.0001), no other biomarkers were significantly predictive of outcomes in a treatment-by-biomarker interaction test, although ERCC1 IHC-positive status was predictive of improved OS for the erlotinib arm versus placebo in EGFR wild-type patients (median 18.4 vs 9.5 months; hazard ratio [HR] HR=0.32, 95% confidence intervals [CI]: 0.14-0.69, p=0.0024). Activating EGFR mutations were predictive for improved treatment outcomes with a first-line intercalated regimen of chemotherapy and erlotinib in NSCLC. ERCC1 status may have some predictive value in EGFR wild-type disease, but requires further investigation. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Nucleotide excision repair is a potential therapeutic target in multiple myeloma
Szalat, R; Samur, M K; Fulciniti, M; Lopez, M; Nanjappa, P; Cleynen, A; Wen, K; Kumar, S; Perini, T; Calkins, A S; Reznichenko, E; Chauhan, D; Tai, Y-T; Shammas, M A; Anderson, K C; Fermand, J-P; Arnulf, B; Avet-Loiseau, H; Lazaro, J-B; Munshi, N C
2018-01-01
Despite the development of novel drugs, alkylating agents remain an important component of therapy in multiple myeloma (MM). DNA repair processes contribute towards sensitivity to alkylating agents and therefore we here evaluate the role of nucleotide excision repair (NER), which is involved in the removal of bulky adducts and DNA crosslinks in MM. We first evaluated NER activity using a novel functional assay and observed a heterogeneous NER efficiency in MM cell lines and patient samples. Using next-generation sequencing data, we identified that expression of the canonical NER gene, excision repair cross-complementation group 3 (ERCC3), significantly impacted the outcome in newly diagnosed MM patients treated with alkylating agents. Next, using small RNA interference, stable knockdown and overexpression, and small-molecule inhibitors targeting xeroderma pigmentosum complementation group B (XPB), the DNA helicase encoded by ERCC3, we demonstrate that NER inhibition significantly increases sensitivity and overcomes resistance to alkylating agents in MM. Moreover, inhibiting XPB leads to the dual inhibition of NER and transcription and is particularly efficient in myeloma cells. Altogether, we show that NER impacts alkylating agents sensitivity in myeloma cells and identify ERCC3 as a potential therapeutic target in MM. PMID:28588253
Hyper telomere recombination accelerates replicative senescence and may promote premature aging
Hagelstrom, R. Tanner; Blagoev, Krastan B.; Niedernhofer, Laura J.; Goodwin, Edwin H.; Bailey, Susan M.
2010-01-01
Werner syndrome and Bloom syndrome result from defects in the RecQ helicases Werner (WRN) and Bloom (BLM), respectively, and display premature aging phenotypes. Similarly, XFE progeroid syndrome results from defects in the ERCC1-XPF DNA repair endonuclease. To gain insight into the origin of cellular senescence and human aging, we analyzed the dependence of sister chromatid exchange (SCE) frequencies on location [i.e., genomic (G-SCE) vs. telomeric (T-SCE) DNA] in primary human fibroblasts deficient in WRN, BLM, or ERCC1-XPF. Consistent with our other studies, we found evidence of elevated T-SCE in telomerase-negative but not telomerase-positive backgrounds. In telomerase-negative WRN-deficient cells, T-SCE—but not G-SCE—frequencies were significantly increased compared with controls. In contrast, SCE frequencies were significantly elevated in BLM-deficient cells irrespective of genome location. In ERCC1-XPF-deficient cells, neither T- nor G-SCE frequencies differed from controls. A theoretical model was developed that allowed an in silico investigation into the cellular consequences of increased T-SCE frequency. The model predicts that in cells with increased T-SCE, the onset of replicative senescence is dramatically accelerated even though the average rate of telomere loss has not changed. Premature cellular senescence may act as a powerful tumor-suppressor mechanism in telomerase-deficient cells with mutations that cause T-SCE levels to rise. Furthermore, T-SCE-driven premature cellular senescence may be a factor contributing to accelerated aging in Werner and Bloom syndromes, but not XFE progeroid syndrome. PMID:20798040
Bukowski, Karol; Woźniak, Katarzyna
2018-03-09
Genetic polymorphism is associated with the occurrence of at least 2 different alleles in the locus with a frequency higher than 1% in the population. Among polymorphisms we can find single nucleotide polymorphism (SNP) and polymorphism of variable number of tandem repeats. The presence of certain polymorphisms in genes encoding DNA repair enzymes is associated with the speed and efficiency of DNA repair and can protect or expose humans to the effects provoked by xenobiotics. Chemicals, such as lead, arsenic pesticides are considered to exhibit strong toxicity. There are many different polymorphisms in genes encoding DNA repair enzymes, which determine the speed and efficiency of DNA damage repair induced by these xenobiotics. In the case of lead, the influence of various polymorphisms, such as APE1 (apurinic/apyrimidinic endonuclease 1) (rs1130409), hOGG1 (human 8-oxoguanine glycosylase) (rs1052133), XRCC1 (X-ray repair cross-complementing protein group 1) (rs25487), XRCC1 (rs1799782) and XRCC3 (X-ray repair cross-complementing protein group 3) (rs861539) were described. For arsenic polymorphisms, such as ERCC2 (excision repair cross-complementing) (rs13181), XRCC3 (rs861539), APE1 (rs1130409) and hOGG1 (rs1052133) were examined. As to pesticides, separate and combined effects of polymorphisms in genes encoding DNA repair enzymes, such as XRCC1 (rs1799782), hOGG1 (rs1052133), XRCC4 (X-ray repair cross-complementing protein group 4) (rs28360135) and the gene encoding the detoxification enzyme PON1 paraoxonase (rs662) were reported. Med Pr 2018;69(2):225-235. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Harley, H G; Brook, J D; Floyd, J; Rundle, S A; Crow, S; Walsh, K V; Thibault, M C; Harper, P S; Shaw, D J
1991-01-01
We have examined the linkage of two new polymorphic DNA markers (D19S62 and D19S63) and a previously unreported polymorphism with an existing DNA marker (ERCC1) to the myotonic dystrophy (DM) locus. In addition, we have used pulsed-field gel electrophoresis to obtain a fine-structure map of this region. The detection of linkage disequilibrium between DM and one of these markers (D19S63) is the first demonstration of this phenomenon in a heterogeneous DM population. The results suggest that at least 58% of DM patients in the British population, as well as those in a French-Canadian subpopulation, are descended from the same ancestral DM mutation. We discuss the implications of this finding in terms of strategies for cloning the DM gene, for a possible role in modification of risk for prenatal and presymptomatic testing, and we speculate on the origin and number of existing mutations which may result in a DM phenotype. PMID:2063878
Ono, Ryusuke; Masaki, Taro; Mayca Pozo, Franklin; Nakazawa, Yuka; Swagemakers, Sigrid M A; Nakano, Eiji; Sakai, Wataru; Takeuchi, Seiji; Kanda, Fumio; Ogi, Tomoo; van der Spek, Peter J; Sugasawa, Kaoru; Nishigori, Chikako
2016-07-01
Most patients with xeroderma pigmentosum complementation group D (XP-D) from Western countries suffer from neurological symptoms, whereas Japanese patients display only skin manifestations without neurological symptoms. We have previously suggested that these differences in clinical manifestations in XP-D patients are attributed partly to a predominant mutation in ERCC2, and the allele frequency of S541R is highest in Japan. We diagnosed a child with mild case of XP-D by the evaluation of DNA repair activity and whole-genome sequencing, and followed her ten years. Skin cancer, mental retardation, and neurological symptoms were not observed. Her minimal erythema dose was 41 mJ/cm(2) , which was slightly lower than that of healthy Japanese volunteers. The patient's cells showed sixfold hypersensitivity to UV in comparison with normal cells. Post-UV unscheduled DNA synthesis was 20.4%, and post-UV recovery of RNA synthesis was 58% of non-irradiated samples, which was lower than that of normal fibroblasts. Genome sequence analysis indicated that the patient harbored a compound heterozygous mutation of c.1621A>C and c.591_594del, resulting in p.S541R and p.Y197* in ERCC2: then, patient was diagnosed with XP-D. Y197* has not been described before. Her mild skin manifestations might be attributed to the mutational site on her genome and daily strict sun protection. c.1621A>C might be a founder mutation of ERCC2 among Japanese XP-D patients, as it was identified most frequently in Japanese XP-D patients and it has not been found elsewhere outside Japan. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Tao, Huan; Zhang, Yueyuan; Li, Qian; Chen, Jin
2017-11-01
To assess the methodological quality of systematic reviews (SRs) or meta-analysis concerning the predictive value of ERCC1 in platinum chemotherapy of non-small cell lung cancer. We searched the PubMed, EMbase, Cochrane library, international prospective register of systematic reviews, Chinese BioMedical Literature Database, China National Knowledge Infrastructure, Wan Fang and VIP database for SRs or meta-analysis. The methodological quality of included literatures was evaluated by risk of bias in systematic review (ROBIS) scale. Nineteen eligible SRs/meta-analysis were included. The most frequently searched databases were EMbase (74%), PubMed, Medline and CNKI. Fifteen SRs did additional retrieval manually, but none of them retrieved the registration platform. 47% described the two-reviewers model in the screening for eligible original articles, and seven SRs described the two reviewers to extract data. In methodological quality assessment, inter-rater reliability Kappa was 0.87 between two reviewers. Research question were well related to all SRs in phase 1 and the eligibility criteria was suitable for each SR, and rated as 'low' risk bias. But the 'high' risk bias existed in all the SRs regarding methods used to identify and/or select studies, and data collection and study appraisal. More than two-third of SRs or meta-analysis were finished with high risk of bias in the synthesis, findings and the final phase. The study demonstrated poor methodological quality of SRs/meta-analysis assessing the predictive value of ERCC1 in chemotherapy among the NSCLC patients, especially the high performance bias. Registration or publishing the protocol is recommended in future research.
Liu, Cheng-Ling; Lim, Yun-Ping; Hu, Miao-Lin
2013-01-01
Cisplain, a platinum-containing anticancer drug, has been shown to enhance DNA repair and to inhibit cell apoptosis, leading to drug resistance. Thus, the combination of anticancer drugs with nutritional factors is a potential strategy for improving the efficacy of cisplatin chemotherapy. In this study, we investigated the anti-proliferative effects of a combination of fucoxanthin, the major non-provitamin A carotenoid found in Undaria Pinnatifida, and cisplatin in human hepatoma HepG2 cells. We found that fucoxanthin (1–10 μΜ) pretreatment for 24 h followed by cisplatin (10 μΜ) for 24 h significantly decreased cell proliferation, as compared with cisplatin treatment alone. Mechanistically, we showed that fucoxanthin attenuated cisplatin-induced NFκB expression and enhanced the NFκB-regulated Bax/Bcl-2 mRNA ratio. Cisplatin alone induced mRNA expression of excision repair cross complementation 1 (ERCC1) and thymidine phosphorylase (TP) through phosphorylation of ERK, p38 and PI3K/AKT pathways. However, fucoxanthin pretreatment significantly attenuated cisplatin-induced ERCC1 and TP mRNA expression, leading to improvement of chemotherapeutic efficacy of cisplatin. The results suggest that a combined treatment with fucoxanthin and cisplatin could lead to a potentially important new therapeutic strategy against human hepatoma cells. PMID:23299493
Inefficient DNA Repair Is an Aging-Related Modifier of Parkinson's Disease.
Sepe, Sara; Milanese, Chiara; Gabriels, Sylvia; Derks, Kasper W J; Payan-Gomez, Cesar; van IJcken, Wilfred F J; Rijksen, Yvonne M A; Nigg, Alex L; Moreno, Sandra; Cerri, Silvia; Blandini, Fabio; Hoeijmakers, Jan H J; Mastroberardino, Pier G
2016-05-31
The underlying relation between Parkinson's disease (PD) etiopathology and its major risk factor, aging, is largely unknown. In light of the causative link between genome stability and aging, we investigate a possible nexus between DNA damage accumulation, aging, and PD by assessing aging-related DNA repair pathways in laboratory animal models and humans. We demonstrate that dermal fibroblasts from PD patients display flawed nucleotide excision repair (NER) capacity and that Ercc1 mutant mice with mildly compromised NER exhibit typical PD-like pathological alterations, including decreased striatal dopaminergic innervation, increased phospho-synuclein levels, and defects in mitochondrial respiration. Ercc1 mouse mutants are also more sensitive to the prototypical PD toxin MPTP, and their transcriptomic landscape shares important similarities with that of PD patients. Our results demonstrate that specific defects in DNA repair impact the dopaminergic system and are associated with human PD pathology and might therefore constitute an age-related risk factor for PD. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Singh, Amita; Compe, Emanuel; Le May, Nicolas; Egly, Jean-Marc
2015-01-01
Mutations in genes encoding the ERCC3 (XPB), ERCC2 (XPD), and GTF2H5 (p8 or TTD-A) subunits of the transcription and DNA-repair factor TFIIH lead to three autosomal-recessive disorders: xeroderma pigmentosum (XP), XP associated with Cockayne syndrome (XP/CS), and trichothiodystrophy (TTD). Although these diseases were originally associated with defects in DNA repair, transcription deficiencies might be also implicated. By using retinoic acid receptor beta isoform 2 (RARB2) as a model in several cells bearing mutations in genes encoding TFIIH subunits, we observed that (1) the recruitment of the TFIIH complex was altered at the activated RARB2 promoter, (2) TFIIH participated in the recruitment of nucleotide excision repair (NER) factors during transcription in a manner different from that observed during NER, and (3) the different TFIIH variants disturbed transcription by having distinct consequences on post-translational modifications of histones, DNA-break induction, DNA demethylation, and gene-loop formation. The transition from heterochromatin to euchromatin was disrupted depending on the variant, illustrating the fact that TFIIH, by contributing to NER factor recruitment, orchestrates chromatin remodeling. The subtle transcriptional differences found between various TFIIH variants thus participate in the phenotypic variability observed among XP, XP/CS, and TTD individuals. PMID:25620205
Zhao, Junhua; Wang, Guliang; Del Mundo, Imee M; McKinney, Jennifer A; Lu, Xiuli; Bacolla, Albino; Boulware, Stephen B; Zhang, Changsheng; Zhang, Haihua; Ren, Pengyu; Freudenreich, Catherine H; Vasquez, Karen M
2018-01-30
Sequences with the capacity to adopt alternative DNA structures have been implicated in cancer etiology; however, the mechanisms are unclear. For example, H-DNA-forming sequences within oncogenes have been shown to stimulate genetic instability in mammals. Here, we report that H-DNA-forming sequences are enriched at translocation breakpoints in human cancer genomes, further implicating them in cancer etiology. H-DNA-induced mutations were suppressed in human cells deficient in the nucleotide excision repair nucleases, ERCC1-XPF and XPG, but were stimulated in cells deficient in FEN1, a replication-related endonuclease. Further, we found that these nucleases cleaved H-DNA conformations, and the interactions of modeled H-DNA with ERCC1-XPF, XPG, and FEN1 proteins were explored at the sub-molecular level. The results suggest mechanisms of genetic instability triggered by H-DNA through distinct structure-specific, cleavage-based replication-independent and replication-dependent pathways, providing critical evidence for a role of the DNA structure itself in the etiology of cancer and other human diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Dhillon, Varinderpal S; Thomas, Philip; Iarmarcovai, G; Kirsch-Volders, Micheline; Bonassi, Stefano; Fenech, Michael
2011-01-01
The cytokinesis-block micronucleus cytome (CBMNCyt) assay is a widely used technique for measuring DNA damage in human populations. The formation of micronuclei (MN) in dividing cells can result from chromosome breakage due to unrepaired or mis-repaired DNA lesions or chromosome malsegregation due to mitotic malfunction. The sensitivity of the MN assay to polymorphisms in various genes involved in DNA repair, activation/deactivation of carcinogens/chemicals/drugs/alcohol, folate metabolism pathway and micronutrient transport has been extensively reported in the literature. MN frequency is also an important index for determining DNA repair efficiency phenotype (including mis-repair), response to environmental exposure and identifying various dietary factors required for optimal genome stability. The aim of the present study is to review the reported in vivo associations between genotype and MN frequency in humans taking into considerations the presence of interactions with nutrients levels and/or exposure to genotoxins. One hundred and eleven publications linking MN frequency in peripheral blood lymphocytes to gene polymorphism were retrieved from PubMed. After applying exclusion criteria, only 37 studies were evaluated in the present review. Polymorphisms in XRCC1 (Arg280His), ERCC2 (Lys751Gln), CYP2E1 (c1/c2) and MTR (A2756G) were consistently associated with the MN formation. These results contribute substantial evidence to the hypothesis that genotype may influence MN frequency in human cells.
ARISTOTLE (All Risk Integrated System TOwards The hoListic Early-warning)
NASA Astrophysics Data System (ADS)
Michelini, Alberto; Wotawa, Gerhard; Arnold-Arias, Delia
2017-04-01
The Emergency Response Coordination Centre (ERCC) is the EU coordination office for humanitarian aid and civil protection operations of DG ECHO (EU Humanitarian Aid and Civil Protection). ERCC needs rapidly authoritative multi-hazard scientific expertise and analysis on 24*7 basis since, when a disaster strikes, every minute counts for saving lives and immediate, coordinated and pre-planned response is essential. The EU is committed to providing disaster response in a timely and efficient manner and to ensure European assistance meets the real needs in the population affected, whether in Europe or beyond. The ARISTOTLE consortium was awarded the European Commission's DG ECHO "Pilot project in the area of Early Warning System for natural disasters" (OJ 2015 S/154-283349). The tender articulates the needs and expectations of DG ECHO in respect of the provision of multi-hazard advice to the Emergency Response & Coordination Centre in Brussels. Specifically, the tender aims to fill the gap in knowledge that exists in the: • first 3 hours immediately after an event that has the potential to require a country to call on international help • provision of longer term advice following an emergency • provision of advice when a potential hazardous event is starting to form; this will usually be restricted to severe weather and flooding events and when possible to volcanic events. The ARISTOTLE Consortium was awarded the tender and the project effectively started on February 1st, 2016, for a duration of 2 years. ARISTOTLE (aristotle.ingv.it) is a multi-hazard partnership created by combining expertise from of total of 5 hazard groups [4 main hazard groups plus a sub-hazard - Severe Weather, Floods, Volcanos (only for ashes and gases hazard deriving from eruptions), Earthquakes and the related Tsunamis as a sub-hazard given its peculiarities and potential huge impact]. Each Hazard Group brings together experts from the particular hazard domain to deliver a 'collective analysis' which is then fed into the partnership multi-hazard discussions. The hazards are very different and have very diverse timelines for phenomenological occurrence (Figure 1). The ARISTOTLE consortium includes 15 partner institutions (11 from EU Countries; 2 from non-EU countries and 2 European organizations) operating in the Meteorological and Geophysical domains. The project coordination is shared among INGV and ZAMG for the geophysical and meteorological communities, respectively. Primary target of the tender project is the prototyping and the implementation of a scalable system (in terms of number of partners and hazards) capable of providing to ERCC the "desiderata" above. To this end, the activities of the project have been focusing on the establishment of a multi-hazard operational board (MHOB) that is assigned the 24*7 operational duty regulated by a "Standard Operating Protocol". The presentation will illustrate the different modes of operation envisaged and the status and the solutions found by the project consortium to respond to the ERCC requirements.
Rasheed, Madiha; Shahzad, Shaheen; Zaeem, Afifa; Afzal, Imran; Gul, Asma; Khalid, Sumbal
2017-12-01
Syndromic ichthyosis is rare inherited disorders of cornification with varied disease complications. This disorder appears in seventeen subtypes associated with severe systematic manifestations along with medical, cosmetic and social problems. Syndromic ichthyosis with prominent hair abnormalities covers five major subtypes: Netherton syndrome, trichothiodystrophy, ichthyosis hypotrichosis syndrome, ichthyosis hypotrichosis sclerosing cholangitis and ichthyosis follicularis atrichia photophobia syndrome. These syndromes mostly prevail in high consanguinity states, with distinctive clinical features. The known pathogenic molecules involved in ichthyosis syndromes with prominent hair abnormalities include SPINK5, ERCC2, ERCC3, GTF2H5, MPLKIP, ST14, CLDN1 and MBTPS2. Despite underlying genetic origin, most of the health professionals solely rely on phenotypic expression of these disorders that leads to improper management of patients, hence making these patients living an orphanage life. After dermal features, association of other systems such as nervous system, skeletal system, hair abnormalities or liver problems may sometimes give clues for diagnosis but still leaving place for molecular screening for efficient diagnosis. In this paper, we have presented a review of ichthyosis syndrome with prominent hair abnormalities, with special emphasis on their updated genetic consequences and disease management. Additionally, we aim to update health professionals about the practice of molecular screening in ichthyosis syndromes for appropriate diagnosis and treatment.
Singh, Amita; Compe, Emanuel; Le May, Nicolas; Egly, Jean-Marc
2015-02-05
Mutations in genes encoding the ERCC3 (XPB), ERCC2 (XPD), and GTF2H5 (p8 or TTD-A) subunits of the transcription and DNA-repair factor TFIIH lead to three autosomal-recessive disorders: xeroderma pigmentosum (XP), XP associated with Cockayne syndrome (XP/CS), and trichothiodystrophy (TTD). Although these diseases were originally associated with defects in DNA repair, transcription deficiencies might be also implicated. By using retinoic acid receptor beta isoform 2 (RARB2) as a model in several cells bearing mutations in genes encoding TFIIH subunits, we observed that (1) the recruitment of the TFIIH complex was altered at the activated RARB2 promoter, (2) TFIIH participated in the recruitment of nucleotide excision repair (NER) factors during transcription in a manner different from that observed during NER, and (3) the different TFIIH variants disturbed transcription by having distinct consequences on post-translational modifications of histones, DNA-break induction, DNA demethylation, and gene-loop formation. The transition from heterochromatin to euchromatin was disrupted depending on the variant, illustrating the fact that TFIIH, by contributing to NER factor recruitment, orchestrates chromatin remodeling. The subtle transcriptional differences found between various TFIIH variants thus participate in the phenotypic variability observed among XP, XP/CS, and TTD individuals. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Yeo, Jiyoun; Crawford, Erin L; Zhang, Xiaolu; Khuder, Sadik; Chen, Tian; Levin, Albert; Blomquist, Thomas M; Willey, James C
2017-05-02
Annual low dose CT (LDCT) screening of individuals at high demographic risk reduces lung cancer mortality by more than 20%. However, subjects selected for screening based on demographic criteria typically have less than a 10% lifetime risk for lung cancer. Thus, there is need for a biomarker that better stratifies subjects for LDCT screening. Toward this goal, we previously reported a lung cancer risk test (LCRT) biomarker comprising 14 genome-maintenance (GM) pathway genes measured in normal bronchial epithelial cells (NBEC) that accurately classified cancer (CA) from non-cancer (NC) subjects. The primary goal of the studies reported here was to optimize the LCRT biomarker for high specificity and ease of clinical implementation. Targeted competitive multiplex PCR amplicon libraries were prepared for next generation sequencing (NGS) analysis of transcript abundance at 68 sites among 33 GM target genes in NBEC specimens collected from a retrospective cohort of 120 subjects, including 61 CA cases and 59 NC controls. Genes were selected for analysis based on contribution to the previously reported LCRT biomarker and/or prior evidence for association with lung cancer risk. Linear discriminant analysis was used to identify the most accurate classifier suitable to stratify subjects for screening. After cross-validation, a model comprising expression values from 12 genes (CDKN1A, E2F1, ERCC1, ERCC4, ERCC5, GPX1, GSTP1, KEAP1, RB1, TP53, TP63, and XRCC1) and demographic factors age, gender, and pack-years smoking, had Receiver Operator Characteristic area under the curve (ROC AUC) of 0.975 (95% CI: 0.96-0.99). The overall classification accuracy was 93% (95% CI 88%-98%) with sensitivity 93.1%, specificity 92.9%, positive predictive value 93.1% and negative predictive value 93%. The ROC AUC for this classifier was significantly better (p < 0.0001) than the best model comprising demographic features alone. The LCRT biomarker reported here displayed high accuracy and ease of implementation on a high throughput, quality-controlled targeted NGS platform. As such, it is optimized for clinical validation in specimens from the ongoing LCRT blinded prospective cohort study. Following validation, the biomarker is expected to have clinical utility by better stratifying subjects for annual lung cancer screening compared to current demographic criteria alone.
Yao, Ling; Chen, Ruifang; Wang, Pu; Zhang, Qi; Tang, Hailiang; Sun, Huaping
2016-01-01
Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) emerges as a prospective therapeutic angle in regenerative medicine and a tool for drug screening. Although increasing numbers of iPSCs from different sources have been generated, there has been limited progress in yield of iPSC. Here, we show that four Yamanaka factors Oct4, Sox2, Klf4 and c-Myc can convert human embryonic renal cortical cells (hERCCs) to pluripotent stem cells with a roughly 40-fold higher reprogramming efficiency compared with that of adult human dermal fibroblasts. These iPSCs show pluripotency in vitro and in vivo, as evidenced by expression of pluripotency associated genes, differentiation into three embryonic germ layers by teratoma tests, as well as neuronal fate specification by embryoid body formation. Moreover, the four exogenous genes are effectively silenced in these iPSCs. This study highlights the use of hERCCs to generate highly functional human iPSCs which may aid the study of genetic kidney diseases and accelerate the development of cell-based regenerative therapy.
Hairless Streaks in Cattle Implicate TSR2 in Early Hair Follicle Formation
Murgiano, Leonardo; Shirokova, Vera; Welle, Monika Maria; Jagannathan, Vidhya; Plattet, Philippe; Oevermann, Anna; Pienkowska-Schelling, Aldona; Gallo, Daniele; Gentile, Arcangelo; Mikkola, Marja; Drögemüller, Cord
2015-01-01
Four related cows showed hairless streaks on various parts of the body with no correlation to the pigmentation pattern. The stripes occurred in a consistent pattern resembling the lines of Blaschko. The non-syndromic hairlessness phenotype observed occurred across three generations of a single family and was compatible with an X-linked mode of inheritance. Linkage analysis and subsequent whole genome sequencing of one affected female identified two perfectly associated non-synonymous sequence variants in the critical interval on bovine chromosome X. Both variants occurred in complete linkage disequilibrium and were absent in more than 3900 controls. An ERCC6L missense mutation was predicted to cause an amino acid substitution of a non-conserved residue. Analysis in mice showed no specific Ercc6l expression pattern related to hair follicle development and therefore ERCC6L was not considered as causative gene. A point mutation at the 5'-splice junction of exon 5 of the TSR2, 20S rRNA accumulation, homolog (S. cerevisiae), gene led to the production of two mutant transcripts, both of which contain a frameshift and generate a premature stop codon predicted to truncate approximately 25% of the protein. Interestingly, in addition to the presence of both physiological TSR2 transcripts, the two mutant transcripts were predominantly detected in the hairless skin of the affected cows. Immunohistochemistry, using an antibody against the N-terminal part of the bovine protein demonstrated the specific expression of the TSR2 protein in the skin and the hair of the affected and the control cows as well as in bovine fetal skin and hair. The RNA hybridization in situ showed that Tsr2 was expressed in pre- and post-natal phases of hair follicle development in mice. Mammalian TSR2 proteins are highly conserved and are known to be broadly expressed, but their precise in vivo functions are poorly understood. Thus, by dissecting a naturally occurring mutation in a domestic animal species, we identified TSR2 as a regulator of hair follicle development. PMID:26203908
The Nucleotide Excision Repair Pathway Limits L1 Retrotransposition
Servant, Geraldine; Streva, Vincent A.; Derbes, Rebecca S.; Wijetunge, Madushani I.; Neeland, Marc; White, Travis B.; Belancio, Victoria P.; Roy-Engel, Astrid M.; Deininger, Prescott L.
2017-01-01
Long interspersed elements 1 (L1) are active mobile elements that constitute almost 17% of the human genome. They amplify through a “copy-and-paste” mechanism termed retrotransposition, and de novo insertions related to these elements have been reported to cause 0.2% of genetic diseases. Our previous data demonstrated that the endonuclease complex ERCC1-XPF, which cleaves a 3′ DNA flap structure, limits L1 retrotransposition. Although the ERCC1-XPF endonuclease participates in several different DNA repair pathways, such as single-strand annealing, or in telomere maintenance, its recruitment to DNA lesions is best characterized in the nucleotide excision repair (NER) pathway. To determine if the NER pathway prevents the insertion of retroelements in the genome, we monitored the retrotransposition efficiencies of engineered L1 elements in NER-deficient cells and in their complemented versions. Core proteins of the NER pathway, XPD and XPA, and the lesion binding protein, XPC, are involved in limiting L1 retrotransposition. In addition, sequence analysis of recovered de novo L1 inserts and their genomic locations in NER-deficient cells demonstrated the presence of abnormally large duplications at the site of insertion, suggesting that NER proteins may also play a role in the normal L1 insertion process. Here, we propose new functions for the NER pathway in the maintenance of genome integrity: limitation of insertional mutations caused by retrotransposons and the prevention of potentially mutagenic large genomic duplications at the site of retrotransposon insertion events. PMID:28049704
Ma, Xiao-Juan; Shang, Li; Zhang, Wei-Min; Wang, Ming-Rong; Zhan, Qi-Min
2016-04-10
Cellular response to DNA damage, including ionizing radiation (IR) and UV radiation, is critical for the maintenance of genomic fidelity. Defects of DNA repair often result in genomic instability and malignant cell transformation. Centrosomal protein Nlp (ninein-like protein) has been characterized as an important cell cycle regulator that is required for proper mitotic progression. In this study, we demonstrate that Nlp is able to improve nucleotide excision repair (NER) activity and protects cells against UV radiation. Upon exposure of cells to UVC, Nlp is translocated into the nucleus. The C-terminus (1030-1382) of Nlp is necessary and sufficient for its nuclear import. Upon UVC radiation, Nlp interacts with XPA and ERCC1, and enhances their association. Interestingly, down-regulated expression of Nlp is found to be associated with human skin cancers, indicating that dysregulated Nlp might be related to the development of human skin cancers. Taken together, this study identifies mitotic protein Nlp as a new and important member of NER pathway and thus provides novel insights into understanding of regulatory machinery involved in NER. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis.
Niedernhofer, Laura J; Garinis, George A; Raams, Anja; Lalai, Astrid S; Robinson, Andria Rasile; Appeldoorn, Esther; Odijk, Hanny; Oostendorp, Roos; Ahmad, Anwaar; van Leeuwen, Wibeke; Theil, Arjan F; Vermeulen, Wim; van der Horst, Gijsbertus T J; Meinecke, Peter; Kleijer, Wim J; Vijg, Jan; Jaspers, Nicolaas G J; Hoeijmakers, Jan H J
2006-12-21
XPF-ERCC1 endonuclease is required for repair of helix-distorting DNA lesions and cytotoxic DNA interstrand crosslinks. Mild mutations in XPF cause the cancer-prone syndrome xeroderma pigmentosum. A patient presented with a severe XPF mutation leading to profound crosslink sensitivity and dramatic progeroid symptoms. It is not known how unrepaired DNA damage accelerates ageing or its relevance to natural ageing. Here we show a highly significant correlation between the liver transcriptome of old mice and a mouse model of this progeroid syndrome. Expression data from XPF-ERCC1-deficient mice indicate increased cell death and anti-oxidant defences, a shift towards anabolism and reduced growth hormone/insulin-like growth factor 1 (IGF1) signalling, a known regulator of lifespan. Similar changes are seen in wild-type mice in response to chronic genotoxic stress, caloric restriction, or with ageing. We conclude that unrepaired cytotoxic DNA damage induces a highly conserved metabolic response mediated by the IGF1/insulin pathway, which re-allocates resources from growth to somatic preservation and life extension. This highlights a causal contribution of DNA damage to ageing and demonstrates that ageing and end-of-life fitness are determined both by stochastic damage, which is the cause of functional decline, and genetics, which determines the rates of damage accumulation and decline.
Normalization of RNA-seq data using factor analysis of control genes or samples
Risso, Davide; Ngai, John; Speed, Terence P.; Dudoit, Sandrine
2015-01-01
Normalization of RNA-seq data has proven essential to ensure accurate inference of expression levels. Here we show that usual normalization approaches mostly account for sequencing depth and fail to correct for library preparation and other more-complex unwanted effects. We evaluate the performance of the External RNA Control Consortium (ERCC) spike-in controls and investigate the possibility of using them directly for normalization. We show that the spike-ins are not reliable enough to be used in standard global-scaling or regression-based normalization procedures. We propose a normalization strategy, remove unwanted variation (RUV), that adjusts for nuisance technical effects by performing factor analysis on suitable sets of control genes (e.g., ERCC spike-ins) or samples (e.g., replicate libraries). Our approach leads to more-accurate estimates of expression fold-changes and tests of differential expression compared to state-of-the-art normalization methods. In particular, RUV promises to be valuable for large collaborative projects involving multiple labs, technicians, and/or platforms. PMID:25150836
NASA Astrophysics Data System (ADS)
Michelini, A.; Wotawa, G.; Arnold-Arias, D.
2017-12-01
ARISTOTLE (http://aristotle.ingv.it/) is a Pilot Project funded by the DG ECHO (EU Humanitarian Aid and Civil Protection) that provides expert scientific advice on natural disasters around the world that may cause a country to seek international help to the EU's Emergency Response Coordination Centre (ERCC) and, consequently, to the Union Civil Protection Mechanism Participating States. The EU is committed to providing disaster response in a timely and efficient manner and to ensure European assistance meets the real needs in the population affected, whether in Europe or beyond. When a disaster strikes, every minute counts for saving lives and rapid, coordinated and pre-planned response is essential. The ARISTOTLE consortium includes 15 partner institutions (11 from EU Countries; 2 from non-EU countries and 2 European organizations) operating in the Meteorological and Geophysical domains. The project coordination is shared among INGV and ZAMG for the geophysical and meteorological communities, respectively. ARISTOTLE harnesses operational expertise from across Europe to form a multi-hazard perspective on natural disasters related to volcanoes, earthquake (and resulting tsunami), severe weather and flooding. Each Hazard Group brings together experts from the particular hazard domain to deliver a `collective analysis' which is then fed into the partnership multi-hazard discussions. Primary target of the pilot project has been the prototyping and the implementation of a scalable system (in terms of number of partners and hazards) capable of providing to ERCC the sought advice. To this end, the activities of the project have been focusing on the establishment of a "Multi-Hazard Operational Board" that is assigned the 24*7 operational duty regulated by a "Standard Operating Protocol" and the implementation of a dedicated IT platform to assembly the resulting reports. The project has reached the point where the routine and emergency advice services are being provided and will continue until the end of the project in January 2018. The presentation will illustrate the different modes of operation envisaged and the status and the solutions found by the project consortium to respond to the ERCC requirements.
Alifrangis, Costi; Carter, Philip; Cereser, Biancastella; Chandrasinghe, Pramodh; Belluz, Lisa Del Bel; Lim, Eric; Moderau, Nina; Poyia, Fotini; Tabassum, Neha; Zhang, Hua; Krell, Jonathan; Stebbing, Justin
2018-02-27
In this study we utilized data on patient responses to guided treatments, and we evaluated their benefit for a non-small cell lung cancer cohort. The recommended therapies used were predicted using tumor molecular profiles that involved a range of biomarkers but primarily used immunohistochemistry markers. A dataset describing 91 lung non-small cell lung cancer patients was retrospectively split into two. The first group's drugs were consistent with a treatment plan whereby all drugs received agreed with their tumor's molecular profile. The second group each received one or more drug that was expected to lack benefit. We found that there was no significant difference in overall survival or mortality between the two groups. Patients whose treatments were predicted to be of benefit survived for an average of 402 days, compared to 382 days for those that did not ( P = 0.7934). In the matched treatment group, 48% of patients were deceased by the time monitoring had finished compared to 53% in the unmatched group ( P = 0.6094). The immunohistochemistry biomarker for the ERCC1 receptor was found to be a marker that could be used to predict future survival; ERCC1 loss was found to be predictive of poor survival.
Strom, Sara S; Estey, Elihu; Outschoorn, Ubaldo Martinez; Garcia-Manero, Guillermo
2010-04-01
In acute myeloid leukemia (AML), cytogenetics predicts treatment outcome for the favorable and poor subgroups but not for the intermediate subgroup. Polymorphisms within the nucleotide excision repair (NER) pathway may lead to interindividual differences in DNA repair capacity, influencing outcome. We studied the role of six polymorphisms (ERCC1 Gln504Lys, XPD Lys751Gln, XPC Ala499Val, XPC Lys939Gln, XPG Asp1104His, and CCNH Val270Ala) in overall and disease-free survival among 170 adult de novo patients with intermediate cytogenetics (diploid [n = 117]; non-diploid [n = 53]), treated with induction chemotherapy. Kaplan-Meier and Cox proportional hazards models were performed. Diploid patients with the XPD AC/CC genotype survived shorter than those with the wild-type genotype (median survival 22 vs. 40 months, p = 0.03). Diploid patients with XPC CT/TT genotype survived shorter than those with the wild-type genotype (median survival 15 vs. 30 months, p = 0.02). After adjusting for clinical and sociodemographic variables, patients carrying both XPD AC/CC and XPC CT/TT had a greater than two-fold increased risk of dying, compared to those with the wild-type genotypes (HR = 2.49; 95% CI: 1.06-5.85). No associations were observed for disease-free survival. This combined genotype may modulate treatment effect, decreasing overall survival. These findings could in the future help select treatments for patients with normal cytogenetics.
2013-01-01
Background A phase II clinical trial previously evaluated the sequential administration of erlotinib after chemotherapy for advanced non-small-cell lung cancer (NSCLC). This current pilot study assessed the feasibility of sequential induction therapy in patients with stage IIB to IIIA NSCLC adenocarcinoma. Methods Patients received gemcitabine 1,250 mg/m2 on days 1 and 8 and cisplatin 75 mg/m2 on day 1, followed by oral icotinib (125 mg, three times a day) on days 15 to 28. A repeatcomputed tomography(CT) scan evaluated the response to the induction treatment after two 4-week cycles and eligible patients underwent surgical resection. The primary objective was to assess the objective response rate (ORR), while EGFR and KRAS mutations and mRNA and protein expression levels of ERCC1 and RRM1 were analyzed in tumor tissues and blood samples. Results Eleven patients, most with stage IIIA disease, completed preoperative treatment. Five patients achieved partial response according to the Response Evaluation Criteria in Solid Tumors (RECIST) criteria (ORR=45%) and six patients underwent resection. Common toxicities included neutropenia, alanine transaminase (ALT) elevation, fatigue, dry skin, rash, nausea, alopecia and anorexia. No serious complications were recorded perioperatively. Three patients had exon 19 deletions and those with EGFR mutations were more likely to achieve a clinical response (P= 0.083). Furthermore, most cases who achieved a clinical response had low levels of ERCC1 expression and high levels of RRM1. Conclusions Two cycles of sequentially administered gemcitabine/cisplatin with icotinib as an induction treatment is a feasible and efficacious approach for stage IIB to IIIA NSCLC adenocarcinoma, which provides evidence for the further investigation of these chemotherapeutic and molecularly targeted therapies. PMID:23621919
Sergio, Luiz Philippe S; Lucinda, Leda M F; Reboredo, Maycon M; de Paoli, Flavia; Fonseca, Lídia M C; Pinheiro, Bruno V; Mencalha, Andre L; Fonseca, Adenilson S
2018-03-01
Purpose/Aim of the study: Patients suffering from chronic obstructive pulmonary disease (COPD) in association with acute respiratory distress syndrome (ARDS) present oxidative stress in lung cells, with production of free radicals and DNA lesions in pulmonary and adjacent cells. Once the DNA molecule is damaged, a set of enzymatic mechanisms are trigged to preserve genetic code integrity and cellular homeostasis. These enzymatic mechanisms include the base and the nucleotide excision repair pathways, as well as telomere regulation. Thus, the aim of this work was to evaluate the mRNA levels from APEX1, ERCC2, TP53, and TRF2 genes in lung tissue from Wistar rats affected by acute lung injury in response to sepsis and emphysema. Adult male Wistar rats were randomized into 4 groups (n = 6, for each group): control, emphysema, sepsis, and emphysema with sepsis. Pulmonary emphysema was induced by intratracheal instillation of elastase (12 IU/animal) and sepsis induced by intraperitoneal Escherichia coli lipopolysaccharide (LPS) injection (10 mg/kg). Lungs were removed, and samples were withdrawn for histological analysis and total RNA extraction, cDNA synthesis, and mRNA level evaluation by real time quantitative polymerase chain reaction. Data show acute lung injury by LPS and emphysema by elastase and that APEX1, ERCC2, TP53, and TRF2 mRNA levels are increased significantly (p < 0.01) in emphysema with sepsis group. Our results suggest that alteration in mRNA levels from DNA repair and genomic stability could be part of cell response to acute lung injury in response to emphysema and sepsis.
Predictive markers of chemoresistance in advanced stages epithelial ovarian carcinoma.
Bonneau, Claire; Rouzier, Roman; Geyl, Caroline; Cortez, Annie; Castela, Mathieu; Lis, Raphael; Daraï, Emile; Touboul, Cyril
2015-01-01
DNA repair mechanisms, environment-mediated drug resistance and cancer initiating cells (CIC) are three major research concepts that can explain the chemoresistance of epithelial ovarian cancer (EOC). The objective was to test if changes in the expression of potential markers associated with drug resistance before and after chemotherapy would correlate with platinum resistance, defined as a recurrence within the first year after chemotherapy cessation, and with survival, in advanced EOC. We included 32 patients with stage IIIC-IV EOC who underwent laparoscopy to evaluate the extent of carcinomatosis, neoadjuvant chemotherapy (carboplatin/taxol) and interval surgery. Biopsies taken during the initial laparoscopies and interval surgeries were evaluated using immunohistochemistry for the expression of 7 proteins: CD117, CD44 and ALDH1 to evaluate CIC; IL-6, IL-8 and BMP2 to evaluate environment-mediated drug resistance; and ERCC1 to evaluate DNA repair. Expression measurements were correlated with platin resistance and survival. The markers' relevance was confirmed in vitro using chemoresistance tests and flow cytometric measurements of the proportion of CD44+ cells. 17 patients were chemoresistant and 15 patients were chemosensitive. We observed increases in CD44, IL-6 and ERCC1 expression and stable ALDH1, CD117, IL-8, and BMP2 expression. Reduced expression of cancer initiating cell markers and increased expression of environment-mediated drug resistance markers were associated with poor prognosis. We also demonstrated that CD44+ cells had survival advantages in vitro. Changes in CD44 and IL-8 expression on tumor cells appeared to correlate with overall survival and should be further tested as predictors of chemoresistance using larger cohort. Copyright © 2014 Elsevier Inc. All rights reserved.
Kuschal, Christiane; Botta, Elena; Orioli, Donata; Digiovanna, John J.; Seneca, Sara; Keymolen, Kathelijn; Tamura, Deborah; Heller, Elizabeth; Khan, Sikandar G.; Caligiuri, Giuseppina; Lanzafame, Manuela; Nardo, Tiziana; Ricotti, Roberta; Peverali, Fiorenzo A.; Stephens, Robert; Zhao, Yongmei; Lehmann, Alan R.; Baranello, Laura; Levens, David; Kraemer, Kenneth H.; Stefanini, Miria
2016-01-01
The general transcription factor IIE (TFIIE) is essential for transcription initiation by RNA polymerase II (RNA pol II) via direct interaction with the basal transcription/DNA repair factor IIH (TFIIH). TFIIH harbors mutations in two rare genetic disorders, the cancer-prone xeroderma pigmentosum (XP) and the cancer-free, multisystem developmental disorder trichothiodystrophy (TTD). The phenotypic complexity resulting from mutations affecting TFIIH has been attributed to the nucleotide excision repair (NER) defect as well as to impaired transcription. Here, we report two unrelated children showing clinical features typical of TTD who harbor different homozygous missense mutations in GTF2E2 (c.448G>C [p.Ala150Pro] and c.559G>T [p.Asp187Tyr]) encoding the beta subunit of transcription factor IIE (TFIIEβ). Repair of ultraviolet-induced DNA damage was normal in the GTF2E2 mutated cells, indicating that TFIIE was not involved in NER. We found decreased protein levels of the two TFIIE subunits (TFIIEα and TFIIEβ) as well as decreased phosphorylation of TFIIEα in cells from both children. Interestingly, decreased phosphorylation of TFIIEα was also seen in TTD cells with mutations in ERCC2, which encodes the XPD subunit of TFIIH, but not in XP cells with ERCC2 mutations. Our findings support the theory that TTD is caused by transcriptional impairments that are distinct from the NER disorder XP. PMID:26996949
Usmani, Nawaid; Leong, Nelson; Martell, Kevin; Lan, Lanna; Ghosh, Sunita; Pervez, Nadeem; Pedersen, John; Yee, Don; Murtha, Albert; Amanie, John; Sloboda, Ron; Murray, David; Parliament, Matthew
2014-01-01
To identify clinical, dosimetric, and genetic factors that are associated with late urinary toxicity after a (125)I prostate brachytherapy implant. Genomic DNA from 296 men treated with (125)I prostate brachytherapy monotherapy was extracted from saliva samples for this study. A retrospective database was compiled including clinical, dosimetric, and toxicity data for this cohort of patients. Fourteen candidate single-nucleotide polymorphism (SNPs) from 13 genes (TP53, ERCC2, GSTP1, NOS, TGFβ1, MSH6, RAD51, ATM, LIG4, XRCC1, XRCC3, GSTA1, and SOD2) were tested in this cohort for correlations with toxicity. This study identified 217 men with at least 2 years of followup. Of these, 39 patients developed Grade ≥2 late urinary complications with a transurethral resection of prostate, urethral stricture, gross hematuria, or a sustained increase in their International Prostate Symptom Score. The only clinical or dosimetric factor that was associated with late urinary toxicity was age (p = 0.02). None of the 14 SNPs tested in this study were associated with late urinary toxicity in the univariate analysis. This study identified age as the only variable being associated with late urinary toxicity. However, the small sample size and the candidate gene approach used in this study mean that further investigations are essential. Genome-wide association studies are emerging as the preferred approach for future radiogenomic studies to overcome the limitations from a candidate gene approach. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Devonshire, Alison S; Elaswarapu, Ramnath; Foy, Carole A
2010-11-24
Gene expression profiling is an important approach for detecting diagnostic and prognostic biomarkers, and predicting drug safety. The development of a wide range of technologies and platforms for measuring mRNA expression makes the evaluation and standardization of transcriptomic data problematic due to differences in protocols, data processing and analysis methods. Thus, universal RNA standards, such as those developed by the External RNA Controls Consortium (ERCC), are proposed to aid validation of research findings from diverse platforms such as microarrays and RT-qPCR, and play a role in quality control (QC) processes as transcriptomic profiling becomes more commonplace in the clinical setting. Panels of ERCC RNA standards were constructed in order to test the utility of these reference materials (RMs) for performance characterization of two selected gene expression platforms, and for discrimination of biomarker profiles between groups. The linear range, limits of detection and reproducibility of microarray and RT-qPCR measurements were evaluated using panels of RNA standards. Transcripts of low abundance (≤ 10 copies/ng total RNA) showed more than double the technical variability compared to higher copy number transcripts on both platforms. Microarray profiling of two simulated 'normal' and 'disease' panels, each consisting of eight different RNA standards, yielded robust discrimination between the panels and between standards with varying fold change ratios, showing no systematic effects due to different labelling and hybridization runs. Also, comparison of microarray and RT-qPCR data for fold changes showed agreement for the two platforms. ERCC RNA standards provide a generic means of evaluating different aspects of platform performance, and can provide information on the technical variation associated with quantification of biomarkers expressed at different levels of physiological abundance. Distinct panels of standards serve as an ideal quality control tool kit for determining the accuracy of fold change cut-off threshold and the impact of experimentally-derived noise on the discrimination of normal and disease profiles.
Ouwe Missi Oukem-Boyer, Odile; Munung, Nchangwi Syntia; Tangwa, Godfrey B
2016-05-13
Research ethics review is a critical aspect of the research governance framework for human subjects research. This usually requires that research protocols be submitted to a research ethics committee (REC) for review and approval. This has led to very rapid developments in the domain of research ethics, as RECs proliferate all over the globe in rhyme with the explosion in human subjects research. The work of RECs has increasingly become elaborate, complex, and in many cases urgent, necessitating supporting rules and procedures of operation. Guidelines for elaborating standard operating procedures (SOPs) for the functioning of RECs have also been proposed. The SOPs of well-placed and well-resourced RECs have tended to pay much attention to details, resulting, as a consequence, in generally long, elaborate, intricate and complex SOPs; a model that can hardly be replicated by other committees, equally under ethics review pressures, but working under much more constraining conditions in resource-destitute environments. In this paper, we looked at the content and length of SOPs from African RECs and compared them to the World Health Organization (WHO)'s guidelines as the gold standard. We also looked at the SOPs from the Ethics Review and Consultancy Committee (ERCC) of the Cameroon Bioethics Initiative that we elaborated in a simplified way in 2013, and compared them to the WHO's guidelines and to the other SOPs. Sixteen SOPs from 14 African countries were collected from various sources. Their average length was of 30 pages. By comparison to the guidance of the WHO, only six of them were found acceptable with more than 70 % of the criteria from the gold standard that were fully described. Among those six, two of them were very long and detailed (65 and 102 pages), while the four remaining SOPs ranged from 16 to 24 pages. The ERCC SOPs are seven pages long but maintain all that is of essence for the rigorous, efficient and timely review of protocols. We are convinced that, because of their brevity, simplicity, clarity and user-friendliness, the ERCC SOPs recommend themselves as a model template to, at least, committees similarly situated and/or circumstanced as the ERCC of the Cameroon Bioethics Initiative is. In fact, brevity, clarity, simplicity and user-friendliness are recognized values. Whatever is brief and clear is better than what is not and saves time. What is simple and user-friendly is better than what is not even though the two have the same aims because it saves both time and mental energy. And if this be true in general, it is even truer of the context and its peculiar constraints that we are addressing.
Matsumura, Y; Nishigori, C; Yagi, T; Imamura, S; Takebe, H
1998-06-01
Xeroderma pigmentosum (XP) complementation group F was first reported in Japan and most XP-F patients reported to date are Japanese. The clinical features of XP-F patients are rather mild, including late onset of skin cancer. Recently a cDNA that corrects the repair deficiency of cultured XP-F cells was isolated. The XPF protein forms a tight complex with ERCC1 and this complex functions as a structure-specific endonuclease responsible for the 5' incision during DNA excision repair. Here we have identified XPF mRNA mutations and examined levels of the mRNA and protein expression in seven primary cell strains from Japanese XP-F patients. The XP-F cell strains were classified into three types in terms of the effect of the mutation on the predicted protein; (i) XPF proteins with amino acid substitutions; (ii) amino acid substituted and truncated XPF proteins; and (iii) truncated XPF protein only. A normal level of expression of XPF mRNA was observed in XP-F cells but XPF protein was extremely low. These results indicate that the detected mutations lead to unstable XPF protein, resulting in a decrease in formation of the ERCC1-XPF endonuclease complex. Slow excision repair of UV-induced DNA damage due to low residual endonuclease activity provides a plausible explanation for the typical mild phenotype of XP-F patients.
Applying a radiomics approach to predict prognosis of lung cancer patients
NASA Astrophysics Data System (ADS)
Emaminejad, Nastaran; Yan, Shiju; Wang, Yunzhi; Qian, Wei; Guan, Yubao; Zheng, Bin
2016-03-01
Radiomics is an emerging technology to decode tumor phenotype based on quantitative analysis of image features computed from radiographic images. In this study, we applied Radiomics concept to investigate the association among the CT image features of lung tumors, which are either quantitatively computed or subjectively rated by radiologists, and two genomic biomarkers namely, protein expression of the excision repair cross-complementing 1 (ERCC1) genes and a regulatory subunit of ribonucleotide reductase (RRM1), in predicting disease-free survival (DFS) of lung cancer patients after surgery. An image dataset involving 94 patients was used. Among them, 20 had cancer recurrence within 3 years, while 74 patients remained DFS. After tumor segmentation, 35 image features were computed from CT images. Using the Weka data mining software package, we selected 10 non-redundant image features. Applying a SMOTE algorithm to generate synthetic data to balance case numbers in two DFS ("yes" and "no") groups and a leave-one-case-out training/testing method, we optimized and compared a number of machine learning classifiers using (1) quantitative image (QI) features, (2) subjective rated (SR) features, and (3) genomic biomarkers (GB). Data analyses showed relatively lower correlation among the QI, SR and GB prediction results (with Pearson correlation coefficients < 0.5 including between ERCC1 and RRM1 biomarkers). By using area under ROC curve as an assessment index, the QI, SR and GB based classifiers yielded AUC = 0.89+/-0.04, 0.73+/-0.06 and 0.76+/-0.07, respectively, which showed that all three types of features had prediction power (AUC>0.5). Among them, using QI yielded the highest performance.
Guiraldelli, Michel F; Felberg, Anna; Almeida, Luciana P; Parikh, Aniruddha; de Castro, Rodrigo O; Pezza, Roberto J
2018-05-01
Chromosome segregation errors during meiosis result in the formation of aneuploid gametes and are the leading cause of pregnancy loss and birth defects in humans. Proper chromosome segregation requires pairwise associations of maternal and paternal homologous chromosomes. Chiasmata, which are the cytological manifestations of crossovers (COs), provide a physical link that holds the homologs together as a pair, facilitating their orientation on the spindle at meiosis I. Although CO-promoting activities ensure a balanced number and position of COs, their identity and mechanism of action in mammals remain understudied. Previous work in yeast and Arabidopsis has shown that Zip2 and Shoc1 are ortholog proteins with an important role in promoting the formation of COs. Our work is the first study in mammals showing the in vivo and in vitro function of mouse and human SHOC1. We show that purified recombinant human SHOC1, an XPF/MUS81 family member, preferentially binds branched DNA molecules but apparently lacks in vitro endonuclease activity, despite its conserved ERCC4-(HhH)2 core structure. Cytological observations suggest that initial steps of recombination are normal in a majority of spermatocytes from SHOC1 hypomorphic mice. However, late stages of recombination appear abnormal, as chromosomal localization of MLH1 is reduced. In agreement, chiasma formation is reduced, and cells arrest at metaphase I with a few lagging chromosomes and subsequent apoptosis. This analysis of SHOC1-deficient mice and the selective localization of SHOC1 to a subset of recombination sites show that SHOC1 acts at key mid-stage steps of the CO formation process. The formation of chromosome axial elements and homologous pairing are apparently normal, but synapsis is altered with SYCP1 frequently failing to extend the full length of the chromosome axes. Finally, we describe that SHOC1 interacts with TEX11, another protein important for the formation of COs, connecting SHOC1 to chromosome axis and structure.
Aung, Hsu Mon; Huangteerakul, Chananya; Panvongsa, Wittaya; Jensen, Amornrat N; Chairoungdua, Arthit; Sukrong, Suchada; Jensen, Laran T
2018-09-15
Plant materials used in this study were selected based on the ethnobotanical literature. Plants have either been utilized by Thai practitioners as alternative treatments for cancer or identified to exhibit anti-cancer properties. To screen ethnomedicinal plants using a yeast cell-based assay for synthetic lethal interactions with cells deleted for RAD1, the yeast homologue of human ERCC4 (XPF) MATERIALS AND METHODS: Ethanolic extracts from thirty-two species of medicinal plants utilized in Thai traditional medicine were screened for synthetic lethal/sick interactions using a yeast cell-based assay. Cell growth was compared between the parental strain and rad1∆ yeast following exposure to select for specific toxicity of plant extracts. Candidate extracts were further examined for the mode of action using genetic and biochemical approaches. Screening a library of ethanolic extracts from medicinal plants identified Bacopa monnieri and Colubrina asiatica as having synthetic lethal effects in the rad1∆ cells but not the parental strain. Synthetic lethal effects for B. monneiri extracts were more apparent and this plant was examined further. Genetic analysis indicates that pro-oxidant activities and defective excision repair pathways do not significantly contribute to enhanced sensitivity to B. monneiri extracts. Exposure to B. monneiri extracts resulted in nuclear fragmentation and elevated levels of ethidium bromide staining in rad1∆ yeast suggesting promotion of an apoptosis-like event. Growth inhibition also observed in the human Caco-2 cell line suggesting the effects of B. monnieri extracts on both yeast and human cells may be similar. B. monneiri extracts may have utility in treatment of colorectal cancers that exhibit deficiency in ERCC4 (XPF). Copyright © 2018 Elsevier B.V. All rights reserved.
Bohanes, Pierre; Rankin, Cathryn J.; Blanke, Charles D.; Winder, Thomas; Ulrich, Cornelia M.; Smalley, Stephen R.; Rich, Tyvin A.; Martensen, James A.; Benson, Al B.; Mayer, Robert J.; Cripps, Christine M.; Danenberg, Kathleen; Makar, Karen W.; Zhang, Wu; Benedetti, Jacqueline K.; Lenz, Heinz-Josef
2015-01-01
Purpose We tested whether 18 polymorphisms in 16 genes (GSTP1, COX2, IL-10, EGFR, EGF, FGFR4, CCDN1, VEGFR2, VEGF, CXCR2, IL-8, MMP3, ICAM1, ERCC1, RAD51 and XRCC3) would predict disease-free-survival (DFS), Overall survival (OS) and toxicity in the INT0144 trial, which was designed to investigate different postoperative regimen of 5-FU-based chemoradiation in locally advanced rectal cancers: Arm1 consisted of bolus 5-FU followed by 5-FU protracted venous infusion (PVI) with radiotherapy; Arm2 was induction and concomitant PVI 5-FU with radiotherapy Arm3 was induction and concomitant bolus 5-FU with radiotherapy. Patients and Methods DNA from 746 stage II/III rectal patients enrolled in the SWOG S9304 phase III trial was analyzed. Genomic DNA was extracted from FFPE tumor tissue. The polymorphisms were analyzed using direct DNA-sequencing or PCR-RFLP. Results GSTP1-Ile105Val (rs1695) was significantly associated with DFS and OS and its effect did not vary by treatment arm. The 5-year DFS and OS were 53% and 58%, respectively, for G/G, 66% and 72% for G/A and 57% and 66% for A/A patients. In Arm2, IL8-251A/A genotype (rs4073) was associated with a lower risk of toxicities (p=0.04). The VEGFR2 H472Q Q/Q genotype (rs1870377) was associated with a higher risk of grade 3–5 proximal upper gastrointestinal tract (PUGIT) mucositis (p=0.04) in Arm 2. However, in Arm 1 this genotype was associated with a lower risk of PUGIT mucositis (p=0.004). Conclusion rs1695 may be prognostic in patients with rectal cancer treated with adjuvant chemoradiation. rs4073 and rs1870377 may exhibit different associations with toxicity, according to the 5-FU schedule. PMID:25589620
A landscape of germ line mutations in a cohort of inherited bone marrow failure patients.
Bluteau, Olivier; Sebert, Marie; Leblanc, Thierry; Peffault de Latour, Régis; Quentin, Samuel; Lainey, Elodie; Hernandez, Lucie; Dalle, Jean-Hugues; Sicre de Fontbrune, Flore; Lengline, Etienne; Itzykson, Raphael; Clappier, Emmanuelle; Boissel, Nicolas; Vasquez, Nadia; Da Costa, Mélanie; Masliah-Planchon, Julien; Cuccuini, Wendy; Raimbault, Anna; De Jaegere, Louis; Adès, Lionel; Fenaux, Pierre; Maury, Sébastien; Schmitt, Claudine; Muller, Marc; Domenech, Carine; Blin, Nicolas; Bruno, Bénédicte; Pellier, Isabelle; Hunault, Mathilde; Blanche, Stéphane; Petit, Arnaud; Leverger, Guy; Michel, Gérard; Bertrand, Yves; Baruchel, André; Socié, Gérard; Soulier, Jean
2018-02-15
Bone marrow (BM) failure (BMF) in children and young adults is often suspected to be inherited, but in many cases diagnosis remains uncertain. We studied a cohort of 179 patients (from 173 families) with BMF of suspected inherited origin but unresolved diagnosis after medical evaluation and Fanconi anemia exclusion. All patients had cytopenias, and 12.0% presented ≥5% BM blast cells. Median age at genetic evaluation was 11 years; 20.7% of patients were aged ≤2 years and 36.9% were ≥18 years. We analyzed genomic DNA from skin fibroblasts using whole-exome sequencing, and were able to assign a causal or likely causal germ line mutation in 86 patients (48.0%), involving a total of 28 genes. These included genes in familial hematopoietic disorders ( GATA2 , RUNX1 ), telomeropathies ( TERC , TERT , RTEL1 ), ribosome disorders ( SBDS , DNAJC21 , RPL5 ), and DNA repair deficiency ( LIG4 ). Many patients had an atypical presentation, and the mutated gene was often not clinically suspected. We also found mutations in genes seldom reported in inherited BMF (IBMF), such as SAMD9 and SAMD9L (N = 16 of the 86 patients, 18.6%), MECOM/EVI1 (N = 6, 7.0%), and ERCC6L2 (N = 7, 8.1%), each of which was associated with a distinct natural history; SAMD9 and SAMD9L patients often experienced transient aplasia and monosomy 7, whereas MECOM patients presented early-onset severe aplastic anemia, and ERCC6L2 patients, mild pancytopenia with myelodysplasia. This study broadens the molecular and clinical portrait of IBMF syndromes and sheds light on newly recognized disease entities. Using a high-throughput sequencing screen to implement precision medicine at diagnosis can improve patient management and family counseling. © 2018 by The American Society of Hematology.
Zheng, Yun-Ling; Kosti, Ourania; Loffredo, Christopher; Bowman, Elise; Mechanic, Leah; Perlmutter, Donna; Jones, Raymond; Shields, Peter G.; Harris, Curtis
2010-01-01
Cell cycle checkpoints play critical roles in the maintenance of genomic integrity and inactivation of checkpoint genes, and are frequently perturbed in most cancers. In a case-control study of 299 non-small cell lung cancer cases and 550 controls in Maryland, we investigated the association between γ-radiation-induced G2/M arrest in cultured blood lymphocytes and lung cancer risk, and examined genotype-phenotype correlations between genetic polymorphisms of 20 genes involving in DNA repair and cell cycle control and γ-radiation-induced G2/M arrest. The study was specifically designed to examine race and gender differences in risk factors. Our data indicated that a less efficient DNA damage-induced G2/M checkpoint was associated with an increased risk of lung cancer in African American women with an adjusted odds ratio (OR) of 2.63 (95% CI = 1.01 – 7.26); there were no statistically significant associations for Caucasians, or African American men. When the African American women were categorized into quartiles, a significant reverse trend of decreased G2/M checkpoint function and increased lung cancer risk was present, with lowest-vs-highest quartile OR of 13.72 (95% CI = 2.30 – 81.92, Ptrend < 0.01). Genotype-phenotype correlation analysis indicated that polymorphisms in ATM, CDC25C, CDKN1A, BRCA2, ERCC6, TP53, and TP53BP1 genes were significantly associated with the γ-radiation-induced G2/M arrest phenotype. This study provides evidence that a less efficient G2/M checkpoint is significantly associated with lung cancer risk in African American women. The data also suggested that the function of G2/M checkpoint is modulated by genetic polymorphisms in genes involved in DNA repair and cell cycle control. PMID:19626602
Cloning and characterization of the mouse XPAC gene.
van Oostrom, C T; de Vries, A; Verbeek, S J; van Kreijl, C F; van Steeg, H
1994-01-01
Xeroderma Pigmentosum is a human disease, which is, among others, characterized by a high incidence of (sunlight induced) skin cancer, due to a defect in nucleotide excision repair (NER). The human DNA repair gene XPAC corrects this defect in cells isolated from Xeroderma Pigmentosum complementation group A (XP-A) patients. To enable the development of a transgenic mouse model for XP-A by gene targeting in embryonic stem cells, we cloned and characterized the mouse homologue of the XPAC gene. The mouse XPAC gene was found to consist of 6 exons, spanning approximately 21 kb. The nucleotide sequence of the exons is identical to that of the also cloned the mouse XPAC cDNA. Furthermore, the deduced amino acid sequence of the XPAC protein is the same as the one published previously by Tanaka et al. From CAT assay analysis, the promoter of the XPAC gene appeared to be located within 313 bp upstream of the assumed transcriptional start site. Like the promoters of other eukaryotic DNA repair genes (i.e. ERCC-1 and XPBC/ERCC-3), the mouse XPAC promoter region lacks classical promoter elements like TATA-, GC- and CAAT boxes. However, it contains an unique polypyrimidine-rich box, which is so far only found in genes encoding DNA repair enzymes. The function of this box in the regulation of transcription is still unclear. PMID:8127648
AML outcome: role of nucleotide excision repair polymorphisms in intermediate risk patients
Strom, Sara S; Estey, Elihu H; Outschoorn, Ubaldo Martinez; Guillermo, Garcia-Manero
2010-01-01
Purpose Acute Myeloid Leukemia (AML) is frequently associated with genetic abnormalities. Based on pre-treatment cytogenetics, patients are classified into favorable, intermediate and poor subgroups. Cytogenetics predicts treatment outcome for the favorable and poor subgroups but not for the intermediate subgroup. Polymorphisms within the nucleotide excision repair (NER) pathway may lead to inter-individual differences in DNA repair capacity (DRC) which could influence outcome. Methods We studied the role of 6 polymorphisms (ERCC1 Gln504Lys, XPD Lys751Gln, XPC Ala499Val, XPC Lys939Gln, XPG Asp1104His, and CCNH Val270Ala) within NER pathway on overall and disease-free survival among 170 adult de-novo AML patients with intermediate cytogenetics [diploid (n=117); non-diploid (n=53)], treated with induction chemotherapy. Kaplan-Meier methods and Cox proportional hazards models were performed. Results Diploid patients with the XPD AC/CC genotype survived shorter than those with the wild-type (AA) genotype (median survival 22 vs. 40 months, log-rank p = 0.03). Similarly diploid patients with XPC CT/TT genotype survived shorter than those with the wild-type (CC) genotype (median survival 15 vs. 30 months, log-rank p = 0.02). Among diploid patients, after adjusting for clinical and socio-demographic variables, patients carrying both XPD AC/CC and XPC CT/TT had a greater than two-fold increased risk of dying compared to those with the wild-type genotypes (HR=2.49; 95%CI: 1.06–5.85). No significant associations were observed for disease-free survival in AML patients. Conclusion By reduced DRC, this combined genotype may result in greater susceptibility to treatment effects decreasing overall survival. These findings could in the future help in selecting treatment strategies for patients with normal cytogenetics. PMID:20141440
Fogaça, Manoela Viar; Cândido-Bacani, Priscila de Matos; Benicio, Lucas Milanez; Zapata, Lara Martinelli; Cardoso, Priscilla de Freitas; de Oliveira, Marcelo Tempesta; Calvo, Tamara Regina; Varanda, Eliana Aparecida; Vilegas, Wagner; de Syllos Cólus, Ilce Mara
2017-12-01
Indigofera suffruticosa Miller (Fabaceae) and I. truxillensis Kunth produce compounds, such as isatin (ISA) and indirubin (IRN), which possess antitumour properties. Their effects in mammalian cells are still not very well understood. We evaluated the activities of ISA and/or IRN on cell viability and apoptosis in vitro, their genotoxic potentials in vitro and in vivo, and the IRN- and ISA-induced expression of ERCC1 or BAX genes. HeLa and/or CHO-K1 cell lines were tested (3 or 24 h) in the MTT, Trypan blue exclusion, acridine orange/ethidium bromide, cytokinesis-blocked micronucleus (CBMN) and comet (36, 24 and 72 h) tests after treatment with IRN (0.1 to 200 μM) or ISA (0.5 to 50 μM). Gene expression was measured by RT-qPCR in HeLa cells. Swiss albino mice received IRN (3, 4 or 24 h) by gavage (50, 100 and 150 mg/kg determined from the LD 50 - 1 g/kg b.w.) and submitted to comet assay in vivo. IRN reduced the viability of CHO-K1 (24 h; 5 to 200 μM) and HeLa cells (10 to 200 μM), and was antiproliferative in the CBMN test (CHO-K1: 0.5 to 10 μM; HeLa: 5 and 10 μM). The drug did not induce apoptosis, micronucleus neither altered gene expression. IRN and ISA were genotoxic for HeLa cells (3 and 24 h) at all doses tested. IRN (100 and 150 mg/kg) also induced genotoxicity in vivo (4 h). IRN and ISA have properties that make them candidates as chemotherapeutics for further pharmacological investigations.
Almeida, Luciana P.; Parikh, Aniruddha; de Castro, Rodrigo O.
2018-01-01
Chromosome segregation errors during meiosis result in the formation of aneuploid gametes and are the leading cause of pregnancy loss and birth defects in humans. Proper chromosome segregation requires pairwise associations of maternal and paternal homologous chromosomes. Chiasmata, which are the cytological manifestations of crossovers (COs), provide a physical link that holds the homologs together as a pair, facilitating their orientation on the spindle at meiosis I. Although CO-promoting activities ensure a balanced number and position of COs, their identity and mechanism of action in mammals remain understudied. Previous work in yeast and Arabidopsis has shown that Zip2 and Shoc1 are ortholog proteins with an important role in promoting the formation of COs. Our work is the first study in mammals showing the in vivo and in vitro function of mouse and human SHOC1. We show that purified recombinant human SHOC1, an XPF/MUS81 family member, preferentially binds branched DNA molecules but apparently lacks in vitro endonuclease activity, despite its conserved ERCC4-(HhH)2 core structure. Cytological observations suggest that initial steps of recombination are normal in a majority of spermatocytes from SHOC1 hypomorphic mice. However, late stages of recombination appear abnormal, as chromosomal localization of MLH1 is reduced. In agreement, chiasma formation is reduced, and cells arrest at metaphase I with a few lagging chromosomes and subsequent apoptosis. This analysis of SHOC1-deficient mice and the selective localization of SHOC1 to a subset of recombination sites show that SHOC1 acts at key mid-stage steps of the CO formation process. The formation of chromosome axial elements and homologous pairing are apparently normal, but synapsis is altered with SYCP1 frequently failing to extend the full length of the chromosome axes. Finally, we describe that SHOC1 interacts with TEX11, another protein important for the formation of COs, connecting SHOC1 to chromosome axis and structure. PMID:29742103
Galván Núñez, Pablo; Santander Barrios, María Dolores; Villa Álvarez, María Cristina; Castro Delgado, Rafael; Alonso Lorenzo, Julio C; Arcos González, Pedro
2016-06-01
To describe the reported incidents and adverse events in the emergency medical services of Asturias, Spain, and assess their consequences, delays caused, and preventability. Prospective, observational study of incidents reported by the staff of the emergency medical services of Asturias after implementation of a system devised by the researchers. Incident reports were received for 0.48% (95% CI, 0.41%-0.54%) of the emergencies attended. Patient safety was compromised in 74.7% of the reported incidents. Problems arising in the emergency response coordination center (ERCC) accounted for 37.6% of the incidents, transport problems for 13.4%, vehicular problems for 10.8%, and communication problems for 8.8%. Seventy percent of the reported incidents caused delays in care; 55% of the reported incidents that put patients at risk (according to severity assessment code ratings) corresponded to problems related to human or material resources. A total of 88.1% of the incidents reported were considered avoidable. Some type of intervention was required to attenuate the effects of 46.2% of the adverse events reported. The measures that staff members most often proposed to prevent adverse events were to increase human and material resources (28.3%), establish protocols (14.5%), and comply with quality of care recommendations (9.7%). It is important to promote a culture of safety and incident reporting among health care staff in Asturias given the number of serious adverse events. Reporting is necessary for understanding the errors made and taking steps to prevent them. The ERCC is the point in the system where incidents are particularly likely to appear and be noticed and reported.
Mechanism of cell death resulting from DNA interstrand cross-linking in mammalian cells
Osawa, T; Davies, D; Hartley, J A
2011-01-01
DNA interstrand cross-links (ICLs) are critical cytotoxic lesions produced by cancer chemotherapeutic agents such as the nitrogen mustards and platinum drugs; however, the exact mechanism of ICL-induced cell death is unclear. Here, we show a novel mechanism of p53-independent apoptotic cell death involving prolonged cell-cycle (G2) arrest, ICL repair involving HR, transient mitosis, incomplete cytokinesis, and gross chromosomal abnormalities resulting from ICLs in mammalian cells. This characteristic ‘giant' cell death, observed by using time-lapse video microscopy, was reduced in ICL repair ERCC1- and XRCC3-deficient cells. Collectively, the results illustrate the coordination of ICL-induced cellular responses, including cell-cycle arrest, DNA damage repair, and cell death. PMID:21814285
Oikonomopoulos, Spyros; Wang, Yu Chang; Djambazian, Haig; Badescu, Dunarel; Ragoussis, Jiannis
2016-08-24
To assess the performance of the Oxford Nanopore Technologies MinION sequencing platform, cDNAs from the External RNA Controls Consortium (ERCC) RNA Spike-In mix were sequenced. This mix mimics mammalian mRNA species and consists of 92 polyadenylated transcripts with known concentration. cDNA libraries were generated using a template switching protocol to facilitate the direct comparison between different sequencing platforms. The MinION performance was assessed for its ability to sequence the cDNAs directly with good accuracy in terms of abundance and full length. The abundance of the ERCC cDNA molecules sequenced by MinION agreed with their expected concentration. No length or GC content bias was observed. The majority of cDNAs were sequenced as full length. Additionally, a complex cDNA population derived from a human HEK-293 cell line was sequenced on an Illumina HiSeq 2500, PacBio RS II and ONT MinION platforms. We observed that there was a good agreement in the measured cDNA abundance between PacBio RS II and ONT MinION (rpearson = 0.82, isoforms with length more than 700bp) and between Illumina HiSeq 2500 and ONT MinION (rpearson = 0.75). This indicates that the ONT MinION can sequence quantitatively both long and short full length cDNA molecules.
Epistemology, Ethics, and Progress in Precision Medicine.
Hey, Spencer Phillips; Barsanti-Innes, Brianna
2016-01-01
The emerging paradigm of precision medicine strives to leverage the tools of molecular biology to prospectively tailor treatments to the individual patient. Fundamental to the success of this movement is the discovery and validation of "predictive biomarkers," which are properties of a patient's biological specimens that can be assayed in advance of therapy to inform the treatment decision. Unfortunately, research into biomarkers and diagnostics for precision medicine has fallen well short of expectations. In this essay, we examine the portfolio of research activities into the excision repair cross complement group 1 (ERCC1) gene as a predictive biomarker for precision lung cancer therapy as a case study in elucidating the epistemological and ethical obstacles to developing new precision medicines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbasi, Rashda; Efferth, Thomas; Kuhmann, Christine
2012-03-15
Targeting synthetic lethality in DNA repair pathways has become a promising anti-cancer strategy. However little is known about such interactions with regard to the nucleotide excision repair (NER) pathway. Therefore, cell lines with a defect in the NER genes ERCC6 or XPC and their normal counterparts were screened with 53 chemically defined phytochemicals isolated from plants used in traditional Chinese medicine for differential cytotoxic effects. The screening revealed 12 drugs that killed NER-deficient cells more efficiently than proficient cells. Five drugs were further analyzed for IC{sub 50} values, effects on cell cycle distribution, and induction of DNA damage. Ascaridol wasmore » the most effective compound with a difference of > 1000-fold in resistance between normal and NER-deficient cells (IC{sub 50} values for cells with deficiency in ERCC6: 0.15 μM, XPC: 0.18 μM, and normal cells: > 180 μM). NER-deficiency combined with ascaridol treatment led to G2/M-phase arrest, an increased percentage of subG1 cells, and a substantially higher DNA damage induction. These results were confirmed in a second set of NER-deficient and -proficient cell lines with isogenic background. Finally, ascaridol was characterized for its ability to generate oxidative DNA damage. The drug led to a dose-dependent increase in intracellular levels of reactive oxygen species at cytotoxic concentrations, but only NER-deficient cells showed a strongly induced amount of 8-oxodG sites. In summary, ascaridol is a cytotoxic and DNA-damaging compound which generates intracellular reactive oxidative intermediates and which selectively affects NER-deficient cells. This could provide a new therapeutic option to treat cancer cells with mutations in NER genes. -- Highlights: ► Thousand-fold higher Ascaridol activity in NER-deficient versus proficient cells. ► Impaired repair of Ascaridol-induced oxidative DNA damage in NER-deficient cells. ► Selective activity of Ascaridol opens new therapy options in NER-deficient tumors.« less
XPF expression correlates with clinical outcome in squamous cell carcinoma of the head and neck
Vaezi, Alec; Wang, XiaoZhe; Buch, Shama; Gooding, William; Wang, Lin; Seethala, Raja R.; Weaver, David T.; D’Andrea, Alan D.; Argiris, Athanassios; Romkes, Marjorie; Niedernhofer, Laura J.; Grandis, Jennifer R.
2011-01-01
Purpose Tumor-specific biomarkers that predict resistance to DNA damaging agents may improve therapeutic outcomes by guiding the selection of effective therapies and limiting morbidity related to ineffective approaches. XPF (ERCC4) is an essential component of several DNA repair pathways and XPF-deficient cells are exquisitely sensitive to DNA damaging agents. The purpose of this study was to determine whether XPF expression levels predict clinical response to DNA damaging agents in head and neck squamous cell carcinoma (HNSCC). Experimental Design Quantitative immunohistochemistry was used to measure XPF expression in tumors from a cohort of 80 patients with newly diagnosed HNSCC treated with radiation therapy with or without platinum-based chemotherapy; samples were collected prospectively. Genomic DNA isolated from blood samples was analyzed for nine single nucleotide polymorphisms in the XPF gene using a custom array. The primary endpoint was progression-free survival (PFS). Results XPF expression was higher in tumors from the oral cavity than from the other sites (p<0.01). High XPF expression correlated with early time to progression both by univariate (HR =1.87, p=0.03) and multivariate analysis (HR =1.83, p=0.05). The one year PFS for high expressers was 47% (95% CI = 31% – 62%) compared to 72% (95% CI = 55% – 83%) for low expressers. In addition, we identified four XPF single nucleotide polymorphisms (SNPs) that demonstrated marginal association with treatment failure. Conclusions Expression level of XPF in HNSCC tumors correlates with clinical response to DNA damaging agents. XPF has potential to guide next-generation personalized cancer therapy. PMID:21737503
Li, Yang; Huang, He-Cheng; Chen, Long-Qi; Xu, Li-Yan; Li, En-Min; Zhang, Jian-Jun
2017-12-01
Esophageal cancer remains a major public health issue worldwide. In clinical practice, chemo(radio)therapy is an important approach to patients with esophageal cancer. Only the part of patients who respond to chemo(radio)therapy achieve better long-term outcome. In this case, predictive biomarkers for response of esophageal cancer patients treated with chemo(radio)therapy are of importance. Meta-analysis of P53 for predicting esophageal cancer response has been reported before and is not included in our study. We performed a systematic review and meta-analysis to summarize and evaluate the biomarkers for predicting response to chemo(radio)therapy. PubMed, Web of Science and the Ovid databases were searched to identify eligible studies published in English before March 2017. The risk ratio (or relative risk, RR) was retrieved in articles regarding biomarkers for predicting response of esophageal cancer patients treated with neoadjuvant therapy or chemo(radio)therapy. Fixed and random effects models were used to undertake the meta-analysis as appropriate. Forty-six articles reporting 56 biomarkers correlated with the response were finally included. Meta-analyses were carried out when there was more than one study related to the reported biomarker. Results indicated that low expression of (or IHC-negative) COX2, miR-200c, ERCC1 and TS was individually associated with prediction of response. The RR was 1.64 (n = 202, 95% CI 1.22-2.19, P < 0.001), 1.96 (n = 162, 95% CI 1.36-2.83, P < 0.001), 2.55 (n = 206, 95% CI 1.80-3.62, P < 0.001) and 1.69 (n = 144, 95% CI 1.10-2.61, P = 0.02), respectively. High expression of (or IHC-positive) CDC25B and p16 was individually related to prediction of response. The RR was 0.62 (n = 159, 95% CI 0.43-0.89, P = 0.01) and 0.62 (n = 142, 95% CI 0.43-0.91, P = 0.01), respectively. Low expression of (or IHC-negative) COX2, miR-200c, ERCC1 and TS, or high expression of (or IHC-positive) CDC25B and p16 are potential biomarkers for predicting the response of esophageal cancer patients treated with chemo(radio)therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structure of an XPF endonuclease with and without DNA suggests a model for substrate recognition
Newman, Matthew; Murray-Rust, Judith; Lally, John; Rudolf, Jana; Fadden, Andrew; Knowles, Philip P; White, Malcolm F; McDonald, Neil Q
2005-01-01
The XPF/Mus81 structure-specific endonucleases cleave double-stranded DNA (dsDNA) within asymmetric branched DNA substrates and play an essential role in nucleotide excision repair, recombination and genome integrity. We report the structure of an archaeal XPF homodimer alone and bound to dsDNA. Superposition of these structures reveals a large domain movement upon binding DNA, indicating how the (HhH)2 domain and the nuclease domain are coupled to allow the recognition of double-stranded/single-stranded DNA junctions. We identify two nonequivalent DNA-binding sites and propose a model in which XPF distorts the 3′ flap substrate in order to engage both binding sites and promote strand cleavage. The model rationalises published biochemical data and implies a novel role for the ERCC1 subunit of eukaryotic XPF complexes. PMID:15719018
Joshi, Amit D.; Corral, Román; Siegmund, Kimberly D.; Haile, Robert W.; Le Marchand, Loïc; Martínez, Maria Elena; Ahnen, Dennis J.; Sandler, Robert S.; Lance, Peter; Stern, Mariana C.
2009-01-01
Diets high in red meat have been consistently associated with colorectal cancer (CRC) risk and may result in exposure to carcinogens that cause DNA damage [i.e polycyclic aromatic hydrocarbons, heterocyclic amines (HCAs) and N-nitroso compounds]. Using a family-based study, we investigated whether polymorphisms in the nucleotide excision repair (NER) (ERCC1 3′ untranslated region (UTR) G/T, XPD Asp312Asn and Lys751Gln, XPC intron 11 C/A, XPA 5′ UTR C/T, XPF Arg415Gln and XPG Asp1104His) and mismatch repair (MLH1 Ile219Val and MSH2 Gly322Asp) pathways modified the association with red meat and poultry intake. We tested for gene–environment interactions using case-only analyses (n = 577) and compared the results using case-unaffected sibling comparisons (n = 307 sibships). Increased risk of CRC was observed for intake of more than or equal to three servings per week of red meat [odds ratio (OR) = 1.8, 95% confidence interval (CI) = 1.3–2.5)] or high-temperature cooked red meat (OR = 1.6, 95% CI = 1.1–2.2). Intake of red meat heavily brown on the outside or inside increased CRC risk only among subjects who carried the XPD codon 751 Lys/Lys genotype (case-only interaction P = 0.006 and P = 0.001, respectively, for doneness outside or inside) or the XPD codon 312 Asp/Asp genotype (case-only interaction P = 0.090 and P < 0.001, respectively). These interactions were stronger for rectal cancer cases (heterogeneity test P = 0.002 for XPD Asp312Asn and P = 0.03 for XPD Lys751Gln) and remained statistically significant after accounting for multiple testing. Case-unaffected sibling analyses were generally supportive of the case-only results. These findings highlight the possible contribution of diets high in red meat to the formation of lesions that elicit the NER pathway, such as carcinogen-induced bulky adducts. PMID:19029193
Xeroderma pigmentosum complementation group F: A rare cause of cerebellar ataxia with chorea.
Carré, G; Marelli, C; Anheim, M; Geny, C; Renaud, M; Rezvani, H R; Koenig, M; Guissart, C; Tranchant, C
2017-05-15
The complementation group F of Xeroderma pigmentosum (XP-F) is rare in the Caucasian population, and usually devoid of neurological symptoms. We report two cases, both Caucasian, who exhibited progressive cerebellar ataxia, chorea, a mild subcortical frontal cognitive impairment, and in one case severe polyneuropathy. Brain MRI demonstrated cerebellar (2/2) and cortical (1/2) atrophy. Both patients had only mild sunburn sensitivity and no skin cancer. Mini-exome sequencing approach revealed in ERCC4, two heterozygous mutations, one of which was never described (c.580-584+1delCCAAGG, exon 3), in the first case, and an already reported homozygous mutation, in the second case. These cases emphasize that XP-F is a rare cause of recessive cerebellar ataxia and can in some cases clinically mimic Huntington's disease due to chorea and executive impairment. The association of ataxia, chorea, and sun hypersensitivity are major guidance for the diagnosis, which should not be missed, in order to prevent skin neoplastic complications. Copyright © 2017 Elsevier B.V. All rights reserved.
PARP1 impact on DNA repair of platinum adducts: preclinical and clinical read-outs.
Olaussen, Ken A; Adam, Julien; Vanhecke, Elsa; Vielh, Philippe; Pirker, Robert; Friboulet, Luc; Popper, Helmut; Robin, Angélique; Commo, Fréderic; Thomale, Jürgen; Kayitalire, Louis; Filipits, Martin; Le Chevalier, Thierry; André, Fabrice; Brambilla, Elisabeth; Soria, Jean-Charles
2013-05-01
Evaluation of DNA repair proteins might provide meaningful information in relation to prognosis and chemotherapy efficacy in Non-Small Cell Lung Cancer (NSCLC) patients. The role of Poly(ADP-Ribose) Polymerase (PARP) in DNA repair of platinum adducts has not been firmly established. We used a DNA repair functional test based on antibody recognition of cisplatin intrastrand platinum adducts on DNA. We evaluated the effect of PARP inhibition on DNA repair functionality in a panel of cisplatin cell lines treated by the clinical-grade pharmacological inhibitor CEP8983 (a 4-methoxy-carbazole derivate) and the commercially available inhibitor PJ34 (phenanthridinone). We determined PARP1 protein expression in whole tumor sections from the International Adjuvant Lung cancer Trial (IALT)-bio study and tested a 3-marker PARP1/MSH2/ERCC1 algorithm combining PARP1 tumor status with previously published data. Chemosensitivity of cisplatin in NSCLC cell lines was correlated with the accumulation of cisplatin DNA adducts (P=0.0004). Further, the pharmacological inhibition of PARP induced a 1.7 to 2.3-fold increase in platinum adduct accumulation (24h) in A549 cell line suggesting a slow-down of platinum DNA-adduct repair capacity. In parallel, PARP1 inhibition increased the sensitivity to cisplatin treatment. In patient samples, PARP1 expression levels did not influence patient survival or the effect of platinum-based post-operative chemotherapy in the global IALT-bio population (interaction P=0.79). Among cases with high expression of all three markers (triple positive), untreated patients had prolonged survival with a median DFS of 7.8 years, (HR=0.34, 95%CI [0.19-0.61], adjusted P=0.0003) compared to triple negative patients (1.4 years). Remarkably, triple positive patients suffered from a detrimental effect (4.9-year reduction of median DFS) by post-operative cisplatin-based chemotherapy (HR=1.79, 95%CI [1.01-3.17], adjusted P=0.04, chemotherapy vs. control). Combinatorial sub-group analysis of the 3 markers further suggested that PARP1 tumor positivity might constitute a molecular context with high theranostic interest of ERCC1 and MSH2 in NSCLC. In conclusion, our data confirm that platinum DNA adduct accumulation is linked to chemosensitivity, which increase by pharmacological PARP inhibitors points to a role of PARP-dependent DNA repair in the process. We further suggest DNA repair biomarkers should be analyzed in a larger context of multiple DNA repair pathway regulation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Barsotti, Sara; Duncan, Melanie; Loughlin, Susan; Gísladóttir, Bryndis; Roberts, Matthew; Karlsdóttir, Sigrún; Scollo, Simona; Salerno, Giuseppe; Corsaro, Rosa Anna; Charalampakis, Marinos; Papadopoulos, Gerassimos
2017-04-01
The demand for timely analysis and advice on global volcanic activity from scientists is growing. At the same time, decision-makers require more than an understanding of hazards; they need to know what impacts to expect from ongoing and future events. ARISTOTLE (All Risk Integrated System TOwards Trans-boundary hoListic Early-warning) is a two-year EC funded pilot project designed to do just that. The Emergency Response Coordination Centre (ERCC) works to support and coordinate response to disasters both inside and outside Europe using resources from the countries participating in the European Union Civil Protection Mechanism. Led by INGV and ZAMG, the ARISTOTLE consortium comprises 15 institutions across Europe and aims to deliver multi-hazard advice on natural events, including their potential interactions and impact, both inside and outside of Europe to the ERCC. Where possible, the ERCC would like a pro-active provision of scientific advice by the scientific group. Iceland Met Office leads the volcanic hazards work, with BGS, INGV and NOA comprising the volcano observatory team. At this stage, the volcanology component of the project comprises mainly volcanic ash and gas dispersal and potential impact on population and ground-based critical infrastructures. We approach it by relying upon available and official volcano monitoring institutions' reporting of activity, existing assessments and global databases of past events, modelling tools, remote-sensing observational systems and official VAAC advisories. We also make use of global assessments of volcanic hazards, country profiles, exposure and proxy indicators of threat to livelihoods, infrastructure and economic assets (e.g. Global Volcano Model outputs). Volcanic ash fall remains the only hazard modelled at the global scale. Volcanic risk assessments remain in their infancy, owing to challenges related to the multitude of hazards, data availability and model representation. We therefore face a number of challenges in delivering pro-active scientific advice to ARISTOTLE, in addition to the main challenge of working within a multi-hazard framework. Here we present our methods for analysis and advice, along with the challenges we face, and hope to stimulate interesting discussion and receive constructive feedback, as well as explore how the global community can address the demand for scientific advice at the international level. The role of international networks and collaboration is clear; as is the critical role of volcano observatories, which are embedded in local communities and connected to the international community. We aim to enhance our approaches through the Global Volcano Model network (including IAVCEI, WOVO, GVP and VHub) and directly with volcano observatories, VAACs and civil protection agencies.
Schmid-Bindert, Gerald; Wang, Yongsheng; Jiang, Hongbin; Sun, Hui; Henzler, Thomas; Wang, Hao; Pilz, Lothar R.; Ren, Shengxiang; Zhou, Caicun
2013-01-01
Background Multiple biomarker testing is necessary to facilitate individualized treatment of lung cancer patients. More than 80% of lung cancers are diagnosed based on very small tumor samples. Often there is not enough tissue for molecular analysis. We compared three minimal invasive sampling methods with respect to RNA quantity for molecular testing. Methods 106 small biopsies were prospectively collected by three different methods forceps biopsy, endobronchial ultrasound (EBUS) guided transbronchial needle aspiration (TBNA), and CT-guided core biopsy. Samples were split into two halves. One part was formalin fixed and paraffin embedded for standard pathological evaluation. The other part was put in RNAlater for immediate RNA/DNA extraction. If the pathologist confirmed the diagnosis of non-small cell lung cancer(NSCLC), the following molecular markers were tested: EGFR mutation, ERCC1, RRM1 and BRCA1. Results Overall, RNA-extraction was possible in 101 out of 106 patients (95.3%). We found 49% adenocarcinomas, 38% squamouscarcinomas, and 14% non-otherwise-specified(NOS). The highest RNA yield came from endobronchial ultrasound guided needle aspiration, which was significantly higher than bronchoscopy (37.74±41.09 vs. 13.74±15.53 ng respectively, P = 0.005) and numerically higher than CT-core biopsy (37.74±41.09 vs. 28.72±44.27 ng respectively, P = 0.244). EGFR mutation testing was feasible in 100% of evaluable patients and its incidence was 40.8%, 7.9% and 14.3% in adenocarcinomas, squamouscarcinomas and NSCLC NOS subgroup respectively. There was no difference in the feasibility of molecular testing between the three sampling methods with feasibility rates for ERCC1, RRM1 and BRCA1 of 91%, 87% and 81% respectively. Conclusion All three methods can provide sufficient tumor material for multiple biomarkers testing from routinely obtained small biopsies in lung cancer patients. In our study EBUS guided needle aspiration provided the highest amount of tumor RNA compared to bronchoscopy or CT guided core biopsy. Thus EBUS should be considered as an acceptable option for tissue acquisition for molecular testing. PMID:24205040
Zeimet, A G; Reimer, D; Sopper, S; Boesch, M; Martowicz, A; Roessler, J; Wiedemair, A M; Rumpold, H; Untergasser, G; Concin, N; Hofstetter, G; Muller-Holzner, E; Fiegl, H; Marth, C; Wolf, D; Pesta, M; Hatina, J
2012-01-01
Because of its semi-solid character in dissemination and growth, advanced ovarian cancer with its hundreds of peritoneal tumor nodules and plaques appears to be an excellent in vivo model for studying the cancer stem cell hypothesis. The most important obstacle, however, is to adequately define and isolate these tumor-initiating cells endowed with the properties of anoikis-resistance and unlimited self-renewal. Until now, no universal single marker or marker constellation has been found to faithfully isolate (ovarian) cancer stem cells. As these multipotent cells are known to possess highly elaborated efflux systems for cytotoxic agents, these pump systems have been exploited to outline putative stem cells as a side-population (SP) via dye exclusion analysis. Furthermore, the cells in question have been isolated via flow cytometry on the basis of cell surface markers thought to be characteristic for stem cells.In the Vienna variant of the ovarian cancer cell line A2780 a proof-of-principle model with both a stable SP and a stable ALDH1A1+ cell population was established. Double staining clearly revealed that both cell fractions were not identical. Of note, A2780V cells were negative for expression of surface markers CD44 and CD117 (c-kit). When cultured on monolayers of healthy human mesothelial cells, green-fluorescence-protein (GFP)-transfected SP of A2780V exhibited spheroid-formation, whereas non-side-population (NSP) developed a spare monolayer growing over the healthy mesothelium. Furthermore, A2780V SP was found to be partially resistant to platinum. However, this resistance could not be explained by over-expression of the "excision repair cross-complementation group 1" (ERCC1) gene, which is essentially involved in the repair of platinated DNA damage. ERCC1 was, nonetheless, over-expressed in A2780V cells grown as spheres under stem cell-selective conditions as compared to adherent monolayers cultured under differentiating conditions. The same was true for the primary ovarian cancer cells B-57.In summary our investigations indicate that even in multi-passaged cancer cell lines hierarchic government of growth and differentiation is conserved and that the key cancer stem cell population may be composed of small overlapping cell fractions defined by various arbitrary markers.
Osthole inhibits the tumorigenesis of hepatocellular carcinoma cells.
Lin, Zhi-Kun; Liu, Jia; Jiang, Guo-Qiang; Tan, Guang; Gong, Peng; Luo, Hai-Feng; Li, Hui-Min; Du, Jian; Ning, Zhen; Xin, Yi; Wang, Zhong-Yu
2017-03-01
Hepatocellular carcinoma (HCC) accounts for approximately 90% of all cases of primary liver cancer, and the majority of patients with HCC are deprived of effective curative methods. Osthole is a Chinese herbal medicine which has been reported to possess various pharmacological functions, including hepatocellular protection. In the present study, we investigated the anticancer activity of osthole using HCC cell lines. We found that osthole inhibited HCC cell proliferation, induced cell cycle arrest, triggered DNA damage and suppressed migration in HCC cell lines. Furthermore, we demonstrated that osthole not only contributed to cell cycle G2/M phase arrest via downregulation of Cdc2 and cyclin B1 levels, but also induced DNA damage via an increase in ERCC1 expression. In addition, osthole inhibited the migration of HCC cell lines by significantly downregulating MMP-2 and MMP-9 levels. Finally, we demonstrated that osthole inhibited epithelial-mesenchymal transition (EMT) via increasing the expression of epithelial biomarkers E-cadherin and β-catenin, and significantly decreasing mesenchymal N-cadherin and vimentin protein expression. These results suggest that osthole may have potential chemotherapeutic activity against HCC.
Zhao, Xiao-Dong; Zhang, Yi
2006-12-01
Drug selection, the key for chemotherapy, is one of the most difficult decision-making in clinic for the treatment of malignant tumors. How to choose is undetermined. Here a new strategy--predictive molecule-targeted chemotherapy (PMTC)--is put forward to choose relatively sensitive chemotherapeutic drugs and to avoid relatively resistant traditional drugs according to the expression of predictive molecules in individual tumor tissue. For example, paclitaxel is regarded as a relatively sensitive drug and may be chosen for the tumors with high expression of p53, while it is predicted as relatively resistant drug and should be avoided for the tumors with high expression of P-glycoprotein (P-gp). Here, we reviewed the predictive values of a variety of molecules, such as p53, P-gp, topoisomerase-1, topoisomerase-2, MSI, BRCA-1, ERCC1, FANC, hMHL1/2, XPD, Bcl-2, ErbB-2, MGMT, dihydropyridine dehydrogenase (DPD), thymidylate synthetase (TS), deoxycytidine kinase (dCK), Ras, Bax, Cyclin A, tubulin proteins, and so on, for the efficacy of some traditional chemotherapeutic drugs, such as platinum, oxaliplatin, cyclophosphamide, ifosfamide, dacarbazine, methotrexate, 5-flurouracil, gemcitabine, vincristine, vinorelbine, paclitaxel, etoposide, irinotecan, topotecan, and so on.
Inherited MST1 deficiency underlies susceptibility to EV-HPV infections.
Crequer, Amandine; Picard, Capucine; Patin, Etienne; D'Amico, Aurelia; Abhyankar, Avinash; Munzer, Martine; Debré, Marianne; Zhang, Shen-Ying; de Saint-Basile, Geneviève; Fischer, Alain; Abel, Laurent; Orth, Gérard; Casanova, Jean-Laurent; Jouanguy, Emmanuelle
2012-01-01
Epidermodysplasia verruciformis (EV) is characterized by persistent cutaneous lesions caused by a specific group of related human papillomavirus genotypes (EV-HPVs) in otherwise healthy individuals. Autosomal recessive (AR) EVER1 and EVER2 deficiencies account for two thirds of known cases of EV. AR RHOH deficiency has recently been described in two siblings with EV-HPV infections as well as other infectious and tumoral manifestations. We report here the whole-exome based discovery of AR MST1 deficiency in a 19-year-old patient with a T-cell deficiency associated with EV-HPV, bacterial and fungal infections. MST1 deficiency has recently been described in seven patients from three unrelated kindreds with profound T-cell deficiency and various viral and bacterial infections. The patient was also homozygous for a rare ERCC3 variation. Our findings broaden the clinical range of infections seen in MST1 deficiency and provide a new genetic etiology of susceptibility to EV-HPV infections. Together with the recent discovery of RHOH deficiency, they suggest that T cells are involved in the control of EV-HPVs, at least in some individuals.
Inherited MST1 Deficiency Underlies Susceptibility to EV-HPV Infections
Crequer, Amandine; Picard, Capucine; Patin, Etienne; D’Amico, Aurelia; Abhyankar, Avinash; Munzer, Martine; Debré, Marianne; Zhang, Shen-Ying; de Saint-Basile, Geneviève; Fischer, Alain
2012-01-01
Epidermodysplasia verruciformis (EV) is characterized by persistent cutaneous lesions caused by a specific group of related human papillomavirus genotypes (EV-HPVs) in otherwise healthy individuals. Autosomal recessive (AR) EVER1 and EVER2 deficiencies account for two thirds of known cases of EV. AR RHOH deficiency has recently been described in two siblings with EV-HPV infections as well as other infectious and tumoral manifestations. We report here the whole-exome based discovery of AR MST1 deficiency in a 19-year-old patient with a T-cell deficiency associated with EV-HPV, bacterial and fungal infections. MST1 deficiency has recently been described in seven patients from three unrelated kindreds with profound T-cell deficiency and various viral and bacterial infections. The patient was also homozygous for a rare ERCC3 variation. Our findings broaden the clinical range of infections seen in MST1 deficiency and provide a new genetic etiology of susceptibility to EV-HPV infections. Together with the recent discovery of RHOH deficiency, they suggest that T cells are involved in the control of EV-HPVs, at least in some individuals. PMID:22952854
Kudo, Itsuhiro; Esumi, Mariko; Kida, Akihiro; Ikeda, Minoru
2010-10-01
To predict the efficacy of cisplatin and radiation therapy for maxillary squamous cell carcinoma, we examined the mRNA expression of 14 cisplatin-resistant genes and p53 mutation in specimens biopsied from patients prior to initiation of therapy. Five of 10 patients had mutations in the p53 gene, of whom four had residual tumors pathologically following chemoradiotherapy (p=0.0476). Of 14 genes examined, the mRNA expression of ATP7B was significantly lower in cases that were resistant to chemoradiotherapy. Six genes including multidrug resistance protein 1 (MDR-1), multidrug resistance associated protein 1 (MRP-1), Cu++ transporting, beta polypeptide (ATP7B), xeroderma pigmentosum, complementation group A (XPA), excision repair cross-complementing rodent repair deficiency, complementation group 1 (ERCC-1) and B-cell CLL/lymphoma 2 (BCL2) were down-regulated in cases of recurrent cancers. These results show that the evaluation of p53 mutation provides the most useful predictor of therapeutic effects. In responder cases, the drug-resistant genes that were determined in cell lines by culture do not necessarily translate into clinical relevance.
Usefulness of predictive tests for cancer treatment.
Rosell, R; Cuello, M; Cecere, F; Santarpia, M; Reguart, N; Felip, E; Taron, M
2006-08-01
This review highlights the numerous molecular biology findings in the field of lung cancer with potential therapeutic impact in both the near and distant future. At least six lines of research have recently emerged as potential contributors to changes in clinical practice. Abundant pre-clinical and clinical data indicate that BRCA1 mRNA expression is a differential modulator of chemotherapy sensitivity. Low levels predict cisplatin sensitivity and antimicrotubule drug resistance, and the opposite occurs with high levels. Secondly, single nucleotide polymorphisms in the ERCC1 gene influence survival and toxicity with cisplatin-based chemotherapy. The main core of recent research has centered on EGFR mutations and gene copy numbers. For the first time, EGFR mutations have been shown to predict dramatic responses in metastatic lung adenocarcinomas, with a threefold increase in time to progression and survival in patients receiving EGFR tyrosine kinase inhibitors. In contrast, K-ras mutations confer a negative effect in these patients. Evidence has also been accumulated on the crosstalk between estrogen and EGFR receptor pathways, paving the way for clinical trials of EGFR tyrosine kinase inhibitors plus aromatase inhibitors. microRNAs control the expression of cognate target genes, and downregulation of Dicer has been shown to be a strong predictor of relapse in surgically resected non-small-cell lung cancer patients. Finally, overexpression of the Wingless-type (Wnt) genes and methylation of Wnt antagonists like WIF and secreted frizzled related proteins have been documented in non-small-cell lung cancer and are believed to be an important mechanism of cancer stem cell maintenance.
Dato, Serena; Soerensen, Mette; De Rango, Francesco; Rose, Giuseppina; Christensen, Kaare; Christiansen, Lene; Passarino, Giuseppe
2018-06-01
In human longevity studies, single nucleotide polymorphism (SNP) analysis identified a large number of genetic variants with small effects, yet not easily replicable in different populations. New insights may come from the combined analysis of different SNPs, especially when grouped by metabolic pathway. We applied this approach to study the joint effect on longevity of SNPs belonging to three candidate pathways, the insulin/insulin-like growth factor signalling (IIS), DNA repair and pro/antioxidant. We analysed data from 1,058 tagging SNPs in 140 genes, collected in 1825 subjects (1,089 unrelated nonagenarians from the Danish 1905 Birth Cohort Study and 736 Danish controls aged 46-55 years) for evaluating synergic interactions by SNPsyn. Synergies were further tested by the multidimensional reduction (MDR) approach, both intra- and interpathways. The best combinations (FDR<0.0001) resulted those encompassing IGF1R-rs12437963 and PTPN1-rs6067484, TP53-rs2078486 and ERCC2-rs50871, TXNRD1-rs17202060 and TP53-rs2078486, the latter two supporting a central role of TP53 in mediating the concerted activation of the DNA repair and pro-antioxidant pathways in human longevity. Results were consistently replicated with both approaches, as well as a significant effect on longevity was found for the GHSR gene, which also interacts with partners belonging to both IIS and DNA repair pathways (PAPPA, PTPN1, PARK7, MRE11A). The combination GHSR-MREA11, positively associated with longevity by MDR, was further found influencing longitudinal survival in nonagenarian females (p = .026). Results here presented highlight the validity of SNP-SNP interactions analyses for investigating the genetics of human longevity, confirming previously identified markers but also pointing to novel genes as central nodes of additional networks involved in human longevity. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Shanbhag, Niraj M.; Geschwind, Michael D.; DiGiovanna, John J.; Groden, Catherine; Godfrey, Rena; Yousefzadeh, Matthew J.; Wade, Erin A.; Niedernhofer, Laura J.; Malicdan, May Christine V.; Kraemer, Kenneth H.; Gahl, William A.
2018-01-01
Objective To describe the features of 2 unrelated adults with xeroderma pigmentosum complementation group F (XP-F) ascertained in a neurology care setting. Methods We report the clinical, imaging, molecular, and nucleotide excision repair (NER) capacity of 2 middle-aged women with progressive neurodegeneration ultimately diagnosed with XP-F. Results Both patients presented with adult-onset progressive neurologic deterioration involving chorea, ataxia, hearing loss, cognitive deficits, profound brain atrophy, and a history of skin photosensitivity, skin freckling, and/or skin neoplasms. We identified compound heterozygous pathogenic mutations in ERCC4 and confirmed deficient NER capacity in skin fibroblasts from both patients. Conclusions These cases illustrate the role of NER dysfunction in neurodegeneration and how adult-onset neurodegeneration could be the major symptom bringing XP-F patients to clinical attention. XP-F should be considered by neurologists in the differential diagnosis of patients with adult-onset progressive neurodegeneration accompanied by global brain atrophy and a history of heightened sun sensitivity, excessive freckling, and skin malignancies. PMID:29892709
Lans, H; Lindvall, J M; Thijssen, K; Karambelas, A E; Cupac, D; Fensgård, O; Jansen, G; Hoeijmakers, J H J; Nilsen, H; Vermeulen, W
2013-12-01
Human-nucleotide-excision repair (NER) deficiency leads to different developmental and segmental progeroid symptoms of which the pathogenesis is only partially understood. To understand the biological impact of accumulating spontaneous DNA damage, we studied the phenotypic consequences of DNA-repair deficiency in Caenorhabditis elegans. We find that DNA damage accumulation does not decrease the adult life span of post-mitotic tissue. Surprisingly, loss of functional ERCC-1/XPF even further extends the life span of long-lived daf-2 mutants, likely through an adaptive activation of stress signaling. Contrariwise, NER deficiency leads to a striking transgenerational decline in replicative capacity and viability of proliferating cells. DNA damage accumulation induces severe, stochastic impairment of development and growth, which is most pronounced in NER mutants that are also impaired in their response to ionizing radiation and inter-strand crosslinks. These results suggest that multiple DNA-repair pathways can protect against replicative decline and indicate that there might be a direct link between the severity of symptoms and the level of DNA-repair deficiency in patients.
Next-generation sequencing in familial breast cancer patients from Lebanon.
Jalkh, Nadine; Chouery, Eliane; Haidar, Zahraa; Khater, Christina; Atallah, David; Ali, Hamad; Marafie, Makia J; Al-Mulla, Mohamed R; Al-Mulla, Fahd; Megarbane, Andre
2017-02-15
Familial breast cancer (BC) represents 5 to 10% of all BC cases. Mutations in two high susceptibility BRCA1 and BRCA2 genes explain 16-40% of familial BC, while other high, moderate and low susceptibility genes explain up to 20% more of BC families. The Lebanese reported prevalence of BRCA1 and BRCA2 deleterious mutations (5.6% and 12.5%) were lower than those reported in the literature. In the presented study, 45 Lebanese patients with a reported family history of BC were tested using Whole Exome Sequencing (WES) technique followed by Sanger sequencing validation. Nineteen pathogenic mutations were identified in this study. These 19 mutations were found in 13 different genes such as: ABCC12, APC, ATM, BRCA1, BRCA2, CDH1, ERCC6, MSH2, POLH, PRF1, SLX4, STK11 and TP53. In this first application of WES on BC in Lebanon, we detected six BRCA1 and BRCA2 deleterious mutations in seven patients, with a total prevalence of 15.5%, a figure that is lower than those reported in the Western literature. The p.C44F mutation in the BRCA1 gene appeared twice in this study, suggesting a founder effect. Importantly, the overall mutation prevalence was equal to 40%, justifying the urgent need to deploy WES for the identification of genetic variants responsible for familial BC in the Lebanese population.
Zhou, Shun; Bai, Zhou-Lan; Xia, Di; Zhao, Zhi-Jun; Zhao, Ren; Wang, Yan-Yang; Zhe, Hong
2018-05-01
The role of N 6 -methyladenosine (m 6 A) demethylase fat mass and obesity-associated protein (FTO) in the regulation of chemo-radiotherapy resistance remains largely unknown. Here, we show that the mRNA level of FTO is elevated in cervical squamous cell carcinoma (CSCC) tissues when compared with respective adjacent normal tissues. FTO enhances the chemo-radiotherapy resistance both in vitro and in vivo through regulating expression of β-catenin by reducing m 6 A levels in its mRNA transcripts and in turn increases excision repair cross-complementation group 1 (ERCC1) activity. Clinically, the prognostic value of FTO for overall survival is found to be dependent on β-catenin expression in human CSCC samples. Taken together, these findings uncover a critical function for FTO and its substrate m 6 A in the regulation of chemo-radiotherapy resistance, which may bear potential clinical implications for CSCC treatment. © 2018 Wiley Periodicals, Inc.
Van Veldhuizen, Peter J.; Hussey, Michael; Lara, Primo N.; Mack, Philip C.; Gandour-Edwards, Regina; Clark, Joseph I.; Lange, Marianne K.; Crawford, E. David
2010-01-01
Background Gemcitabine plus capecitabine has modest efficacy in patients with advanced RCC but has considerable toxicity. We evaluated the efficacy and toxicity of a modified dose-schedule of this doublet in patients with advanced unresectable or metastatic RCC. Methods Chemotherapy-naïve patients were treated with gemcitabine at 900mg/m2 on days 1,8,15 and capecitabine at 625mg/m2 twice daily on days 1 through 21, every 28 days. Eligible patients must have adequate performance status and end-organ function. The primary endpoint was tumor response rate (RR). No further evaluation of this regimen would be pursued if the RR was ≤ 5%. In an exploratory manner using archival specimens, we also evaluated potential markers of prognosis and treatment response including thymidylate synthase (TS) gene polymorphisms and tumor expression of p53, PTEN, pAKT, pmTOR, and ERCC1. Results Of 43 patients registered, 1 was ineligible and 2 were not analyzable. There was 1 confirmed complete response (CR) and three unconfirmed partial responses (PR), for an overall response rate of 10% (95% CI: 3, 24). Nineteen patients (48%) had stable disease (SD). The six-month freedom-from-treatment-failure and overall survival rates were 20% (95% CI: 8, 32) and 75% (95% CI: 62, 88), respectively. Median survival time was 23 months (95% CI: 10, 37). One patient each experienced Grade 4 neutropenia, fatigue, thrombocytopenia and hemolysis with renal failure. The most common Grade 3 toxicities were neutropenia (12 patients), fatigue (5), and leucopenia (4). Patients with a best response of stable disease or better were more likely to have a decrease in expression of PTEN and an increased expression of pmTOR. Conclusions Gemcitabine plus capecitabine at this reduced dose-schedule benefits a small percentage of patients with RCC with an acceptable toxicity profile. The combination of gemcitabine and capecitabine may serve as a base regimen for combination therapy with targeted agents in select RCC patients. PMID:19487915
Somatic mutations in early onset luminal breast cancer
de Lyra, Eduardo Carneiro; Hirata Katayama, Maria Lucia; Maistro, Simone; de Vasconcellos Valle, Pedro Wilson Mompean; de Lima Pereira, Gláucia Fernanda; Rodrigues, Lívia Munhoz; de Menezes Pacheco Serio, Pedro Adolpho; de Gouvêa, Ana Carolina Ribeiro Chaves; Geyer, Felipe Correa; Basso, Ricardo Alves; Pasini, Fátima Solange; del Pilar Esteves Diz, Maria; Brentani, Maria Mitzi; Guedes Sampaio Góes, João Carlos; Chammas, Roger; Boutros, Paul C.; Koike Folgueira, Maria Aparecida Azevedo
2018-01-01
Breast cancer arising in very young patients may be biologically distinct; however, these tumors have been less well studied. We characterized a group of very young patients (≤ 35 years) for BRCA germline mutation and for somatic mutations in luminal (HER2 negative) breast cancer. Thirteen of 79 unselected very young patients were BRCA1/2 germline mutation carriers. Of the non-BRCA tumors, eight with luminal subtype (HER2 negative) were submitted for whole exome sequencing and integrated with 29 luminal samples from the COSMIC database or previous literature for analysis. We identified C to T single nucleotide variants (SNVs) as the most common base-change. A median of six candidate driver genes was mutated by SNVs in each sample and the most frequently mutated genes were PIK3CA, GATA3, TP53 and MAP2K4. Potential cancer drivers affected in the present non-BRCA tumors include GRHL2, PIK3AP1, CACNA1E, SEMA6D, SMURF2, RSBN1 and MTHFD2. Sixteen out of 37 luminal tumors (43%) harbored SNVs in DNA repair genes, such as ATR, BAP1, ERCC6, FANCD2, FANCL, MLH1, MUTYH, PALB2, POLD1, POLE, RAD9A, RAD51 and TP53, and 54% presented pathogenic mutations (frameshift or nonsense) in at least one gene involved in gene transcription. The differential biology of luminal early-age onset breast cancer needs a deeper genomic investigation. PMID:29854292
Phosphorylation of XPB helicase regulates TFIIH nucleotide excision repair activity
Coin, Frédéric; Auriol, Jérome; Tapias, Angel; Clivio, Pascale; Vermeulen, Wim; Egly, Jean-Marc
2004-01-01
Nucleotide excision repair (NER) removes damage from DNA in a tightly regulated multiprotein process. The xeroderma pigmentosum group B (XPB) helicase subunit of TFIIH functions in NER and transcription. The serine 751 (S751) residue of XPB was found to be phosphorylated in vivo. This phosphorylation inhibits NER and the microinjection of a phosphomimicking XPB-S751E mutant is unable to correct the NER defect of XP-B cells. Conversely, XPB-S751 dephosphorylation or its substitution with alanine (S751A) restores NER both in vivo and in vitro. Surprisingly, phospho/dephosphorylation of S751 spares TFIIH-dependent transcription. Finally, the phosphorylation of XPB-S751 does not impair the TFIIH unwinding of the DNA around the lesion, but rather prevents the 5′ incision triggered by the ERCC1-XPF endonuclease. These data support an additional role for XPB in promoting the incision of the damaged fragment and reveal a point of NER regulation on TFIIH without interference in its transcription activity. PMID:15549133
Accelerated age-related cognitive decline and neurodegeneration, caused by deficient DNA repair.
Borgesius, Nils Z; de Waard, Monique C; van der Pluijm, Ingrid; Omrani, Azar; Zondag, Gerben C M; van der Horst, Gijsbertus T J; Melton, David W; Hoeijmakers, Jan H J; Jaarsma, Dick; Elgersma, Ype
2011-08-31
Age-related cognitive decline and neurodegenerative diseases are a growing challenge for our societies with their aging populations. Accumulation of DNA damage has been proposed to contribute to these impairments, but direct proof that DNA damage results in impaired neuronal plasticity and memory is lacking. Here we take advantage of Ercc1(Δ/-) mutant mice, which are impaired in DNA nucleotide excision repair, interstrand crosslink repair, and double-strand break repair. We show that these mice exhibit an age-dependent decrease in neuronal plasticity and progressive neuronal pathology, suggestive of neurodegenerative processes. A similar phenotype is observed in mice where the mutation is restricted to excitatory forebrain neurons. Moreover, these neuron-specific mutants develop a learning impairment. Together, these results suggest a causal relationship between unrepaired, accumulating DNA damage, and age-dependent cognitive decline and neurodegeneration. Hence, accumulated DNA damage could therefore be an important factor in the onset and progression of age-related cognitive decline and neurodegenerative diseases.
Resistance of hypoxic cells to ionizing radiation is influenced by homologous recombination status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprong, Debbie; Janssen, Hilde L.; Vens, Conchita
2006-02-01
Purpose: To determine the role of DNA repair in hypoxic radioresistance. Methods and Materials: Chinese hamster cell lines with mutations in homologous recombination (XRCC2, XRCC3, BRAC2, RAD51C) or nonhomologous end-joining (DNA-PKcs) genes were irradiated under normoxic (20% oxygen) and hypoxic (<0.1% oxygen) conditions, and the oxygen enhancement ratio (OER) was calculated. In addition, Fanconi anemia fibroblasts (complementation groups C and G) were compared with fibroblasts from nonsyndrome patients. RAD51 foci were studied using immunofluorescence. Results: All hamster cell lines deficient in homologous recombination showed a decrease in OER (1.5-2.0 vs. 2.6-3.0 for wild-types). In contrast, the OER for the DNA-PKcs-deficientmore » line was comparable to wild-type controls. The two Fanconi anemia cell strains also showed a significant reduction in OER. The OER for RAD51 foci formation at late times after irradiation was considerably lower than that for survival in wild-type cells. Conclusion: Homologous recombination plays an important role in determining hypoxic cell radiosensitivity. Lower OERs have also been reported in cells deficient in XPF and ERCC1, which, similar to homologous recombination genes, are known to play a role in cross-link repair. Because Fanconi anemia cells are also sensitive to cross-linking agents, this strengthens the notion that the capacity to repair cross-links determines hypoxic radiosensitivity.« less
NASA Astrophysics Data System (ADS)
Zhou, Zhiheng; Liu, Haibai; Wang, Caixia; Lu, Qian; Huang, Qinhai; Zheng, Chanjiao; Lei, Yixiong
2015-10-01
Increasing evidence suggests that long non-coding RNAs (lncRNAs) are involved in a variety of physiological and pathophysiological processes. Our study was to investigate whether lncRNAs as novel expression signatures are able to modulate DNA damage and repair in cadmium(Cd) toxicity. There were aberrant expression profiles of lncRNAs in 35th Cd-induced cells as compared to untreated 16HBE cells. siRNA-mediated knockdown of ENST00000414355 inhibited the growth of DNA-damaged cells and decreased the expressions of DNA-damage related genes (ATM, ATR and ATRIP), while increased the expressions of DNA-repair related genes (DDB1, DDB2, OGG1, ERCC1, MSH2, RAD50, XRCC1 and BARD1). Cadmium increased ENST00000414355 expression in the lung of Cd-exposed rats in a dose-dependent manner. A significant positive correlation was observed between blood ENST00000414355 expression and urinary/blood Cd concentrations, and there were significant correlations of lncRNA-ENST00000414355 expression with the expressions of target genes in the lung of Cd-exposed rats and the blood of Cd exposed workers. These results indicate that some lncRNAs are aberrantly expressed in Cd-treated 16HBE cells. lncRNA-ENST00000414355 may serve as a signature for DNA damage and repair related to the epigenetic mechanisms underlying the cadmium toxicity and become a novel biomarker of cadmium toxicity.
Zhou, Xiaolong; Khan, Sikandar G; Tamura, Deborah; Ueda, Takahiro; Boyle, Jennifer; Compe, Emmanuel; Egly, Jean-Marc; DiGiovanna, John J; Kraemer, Kenneth H
2013-08-01
XPD (ERCC2) is a DNA helicase involved in nucleotide excision repair and in transcription as a structural bridge tying the transcription factor IIH (TFIIH) core with the cdk-activating kinase complex, which phosphorylates nuclear receptors. Mutations in XPD are associated with several different phenotypes, including trichothiodystrophy (TTD), with sulfur-deficient brittle hair, bone defects, and developmental abnormalities without skin cancer, xeroderma pigmentosum (XP), with pigmentary abnormalities and increased skin cancer, or XP/TTD with combined features, including skin cancer. We describe the varied clinical features and mutations in nine patients examined at the National Institutes of Health who were compound heterozygotes for XPD mutations but had different clinical phenotypes: four TTD, three XP, and two combined XP/TTD. We studied TFIIH-dependent transactivation by nuclear receptor for vitamin D (VDR) and thyroid in cells from these patients. The vitamin D stimulation ratio of CYP24 and osteopontin was associated with specific pairs of mutations (reduced in 5, elevated in 1) but not correlated with distinct clinical phenotypes. Thyroid receptor stimulation ratio for KLF9 was not significantly different from normal. XPD mutations frequently were associated with abnormal VDR stimulation in compound heterozygote patients with TTD, XP, or XP/TTD.
Chronic lead exposure induces cochlear oxidative stress and potentiates noise-induced hearing loss.
Jamesdaniel, Samson; Rosati, Rita; Westrick, Judy; Ruden, Douglas M
2018-08-01
Acquired hearing loss is caused by complex interactions of multiple environmental risk factors, such as elevated levels of lead and noise, which are prevalent in urban communities. This study delineates the mechanism underlying lead-induced auditory dysfunction and its potential interaction with noise exposure. Young-adult C57BL/6 mice were exposed to: 1) control conditions; 2) 2 mM lead acetate in drinking water for 28 days; 3) 90 dB broadband noise 2 h/day for two weeks; and 4) both lead and noise. Blood lead levels were measured by inductively coupled plasma mass spectrometry analysis (ICP-MS) lead-induced cochlear oxidative stress signaling was assessed using targeted gene arrays, and the hearing thresholds were assessed by recording auditory brainstem responses. Chronic lead exposure downregulated cochlear Sod1, Gpx1, and Gstk1, which encode critical antioxidant enzymes, and upregulated ApoE, Hspa1a, Ercc2, Prnp, Ccl5, and Sqstm1, which are indicative of cellular apoptosis. Isolated exposure to lead or noise induced 8-12 dB and 11-25 dB shifts in hearing thresholds, respectively. Combined exposure induced 18-30 dB shifts, which was significantly higher than that observed with isolated exposures. This study suggests that chronic exposure to lead induces cochlear oxidative stress and potentiates noise-induced hearing impairment, possibly through parallel pathways. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Basis for molecular diagnostics and immunotherapy for esophageal cancer.
Abdo, Joe; Agrawal, Devendra K; Mittal, Sumeet K
2017-01-01
Esophageal cancer (EC) is an extremely aggressive neoplasm, diagnosed in about 17,000 Americans every year with a mortality rate of more than 80% within five years and a median overall survival of just 13 months. For decades, the go-to regimen for esophageal cancer patients has been the use of taxane and platinum-based chemotherapy regimens, which has yielded the field's most dire survival statistics. Areas covered: Combination immunotherapy and a more robust molecular diagnostic platform for esophageal tumors could improve patient management strategies and potentially extend lives beyond the current survival figures. Analyzing a panel of biomarkers including those affiliated with taxane and platinum resistance (ERCC1 and TUBB3) as well as immunotherapy effectiveness (PD-L1) would provide oncologists more information on how to optimize first-line therapy for EC. Expert commentary: Of the 12 FDA-approved therapies in EC, zero target the genome. A majority of the approved drugs either target or are effected by proteomic expression. Therefore, a broader understanding of diagnostic biomarkers could give more clarity and direction in treating esophageal cancer in concert with a greater use of immunotherapy.
Sequential and ordered assembly of a large DNA repair complex on undamaged chromatin
Ziani, Salim; Nagy, Zita; Alekseev, Sergey; Soutoglou, Evi; Egly, Jean-Marc
2014-01-01
In nucleotide excision repair (NER), damage recognition by XPC-hHR23b is described as a critical step in the formation of the preincision complex (PInC) further composed of TFIIH, XPA, RPA, XPG, and ERCC1-XPF. To obtain new molecular insights into the assembly of the PInC, we analyzed its formation independently of DNA damage by using the lactose operator/repressor reporter system. We observed a sequential and ordered self-assembly of the PInC operating upon immobilization of individual NER factors on undamaged chromatin and mimicking that functioning on a bona fide NER substrate. We also revealed that the recruitment of the TFIIH subunit TTDA, involved in trichothiodystrophy group A disorder (TTD-A), was key in the completion of the PInC. TTDA recruits XPA through its first 15 amino acids, depleted in some TTD-A patients. More generally, these results show that proteins forming large nuclear complexes can be recruited sequentially on chromatin in the absence of their natural DNA target and with no reciprocity in their recruitment. PMID:25154395
Ordered Conformational Changes in Damaged DNA Induced by Nucleotide Excision Repair Factors*
Tapias, Angels; Auriol, Jerome; Forget, Diane; Enzlin, Jacqueline H.; Schärer, Orlando D; Coin, Frederic; Coulombe, Benoit; Egly, Jean-Marc
2015-01-01
In response to genotoxic attacks, cells activate sophisticated DNA repair pathways such as nucleotide excision repair (NER), which consists of damage removal via dual incision and DNA resynthesis. Using permanganate footprinting as well as highly purified factors, we show that NER is a dynamic process that takes place in a number of successive steps during which the DNA is remodeled around the lesion in response to the various NER factors. XPC/HR23B first recognizes the damaged structure and initiates the opening of the helix from position −3 to +6. TFIIH is then recruited and, in the presence of ATP, extends the opening from position −6 to +6; it also displaces XPC downstream from the lesion, thereby providing the topological structure for recruiting XPA and RPA, which will enlarge the opening. Once targeted by XPG, the damaged DNA is further melted from position −19 to +8. XPG and XPF/ERCC1 endo-nucleases then cut the damaged DNA at the limit of the opened structure that was previously “labeled” by the positioning of XPC/HR23B and TFIIH. PMID:14981083
Mohni, Kareem N.; Thompson, Petria S.; Luzwick, Jessica W.; Glick, Gloria G.; Pendleton, Christopher S.; Lehmann, Brian D.; Pietenpol, Jennifer A.; Cortez, David
2015-01-01
The DNA damage response kinase ATR may be a useful cancer therapeutic target. ATR inhibition synergizes with loss of ERCC1, ATM, XRCC1 and DNA damaging chemotherapy agents. Clinical trials have begun using ATR inhibitors in combination with cisplatin. Here we report the first synthetic lethality screen with a combination treatment of an ATR inhibitor (ATRi) and cisplatin. Combination treatment with ATRi/cisplatin is synthetically lethal with loss of the TLS polymerase ζ and 53BP1. Other DNA repair pathways including homologous recombination and mismatch repair do not exhibit synthetic lethal interactions with ATRi/cisplatin, even though loss of some of these repair pathways sensitizes cells to cisplatin as a single-agent. We also report that ATRi strongly synergizes with PARP inhibition, even in homologous recombination-proficient backgrounds. Lastly, ATR inhibitors were able to resensitize cisplatin-resistant cell lines to cisplatin. These data provide a comprehensive analysis of DNA repair pathways that exhibit synthetic lethality with ATR inhibitors when combined with cisplatin chemotherapy, and will help guide patient selection strategies as ATR inhibitors progress into the cancer clinic. PMID:25965342
Torrezan, Giovana T; de Almeida, Fernanda G Dos Santos R; Figueiredo, Márcia C P; Barros, Bruna D de Figueiredo; de Paula, Cláudia A A; Valieris, Renan; de Souza, Jorge E S; Ramalho, Rodrigo F; da Silva, Felipe C C; Ferreira, Elisa N; de Nóbrega, Amanda F; Felicio, Paula S; Achatz, Maria I; de Souza, Sandro J; Palmero, Edenir I; Carraro, Dirce M
2018-01-01
Pathogenic variants in known breast cancer (BC) predisposing genes explain only about 30% of Hereditary Breast Cancer (HBC) cases, whereas the underlying genetic factors for most families remain unknown. Here, we used whole-exome sequencing (WES) to identify genetic variants associated to HBC in 17 patients of Brazil with familial BC and negative for causal variants in major BC risk genes ( BRCA1/2, TP53 , and CHEK2 c.1100delC). First, we searched for rare variants in 27 known HBC genes and identified two patients harboring truncating pathogenic variants in ATM and BARD1 . For the remaining 15 negative patients, we found a substantial vast number of rare genetic variants. Thus, for selecting the most promising variants we used functional-based variant prioritization, followed by NGS validation, analysis in a control group, cosegregation analysis in one family and comparison with previous WES studies, shrinking our list to 23 novel BC candidate genes, which were evaluated in an independent cohort of 42 high-risk BC patients. Rare and possibly damaging variants were identified in 12 candidate genes in this cohort, including variants in DNA repair genes ( ERCC1 and SXL4 ) and other cancer-related genes ( NOTCH2, ERBB2, MST1R , and RAF1 ). Overall, this is the first WES study applied for identifying novel genes associated to HBC in Brazilian patients, in which we provide a set of putative BC predisposing genes. We also underpin the value of using WES for assessing the complex landscape of HBC susceptibility, especially in less characterized populations.
Zhou, Xiaolong; Khan, Sikandar G; Tamura, Deborah; Ueda, Takahiro; Boyle, Jennifer; Compe, Emmanuel; Egly, Jean-Marc; DiGiovanna, John J; Kraemer, Kenneth H
2013-01-01
XPD (ERCC2) is a DNA helicase involved in nucleotide excision repair and in transcription as a structural bridge tying the transcription factor IIH (TFIIH) core with the cdk-activating kinase complex, which phosphorylates nuclear receptors. Mutations in XPD are associated with several different phenotypes, including trichothiodystrophy (TTD), with sulfur-deficient brittle hair, bone defects, and developmental abnormalities without skin cancer, xeroderma pigmentosum (XP), with pigmentary abnormalities and increased skin cancer, or XP/TTD with combined features, including skin cancer. We describe the varied clinical features and mutations in nine patients examined at the National Institutes of Health who were compound heterozygotes for XPD mutations but had different clinical phenotypes: four TTD, three XP, and two combined XP/TTD. We studied TFIIH-dependent transactivation by nuclear receptor for vitamin D (VDR) and thyroid in cells from these patients. The vitamin D stimulation ratio of CYP24 and osteopontin was associated with specific pairs of mutations (reduced in 5, elevated in 1) but not correlated with distinct clinical phenotypes. Thyroid receptor stimulation ratio for KLF9 was not significantly different from normal. XPD mutations frequently were associated with abnormal VDR stimulation in compound heterozygote patients with TTD, XP, or XP/TTD. PMID:23232694
Senescent intervertebral disc cells exhibit perturbed matrix homeostasis phenotype.
Ngo, Kevin; Patil, Prashanti; McGowan, Sara J; Niedernhofer, Laura J; Robbins, Paul D; Kang, James; Sowa, Gwendolyn; Vo, Nam
2017-09-01
Aging greatly increases the risk for intervertebral disc degeneration (IDD) as a result of proteoglycan loss due to reduced synthesis and enhanced degradation of the disc matrix proteoglycan (PG). How disc matrix PG homeostasis becomes perturbed with age is not known. The goal of this study is to determine whether cellular senescence is a source of this perturbation. We demonstrated that disc cellular senescence is dramatically increased in the DNA repair-deficient Ercc1 -/Δ mouse model of human progeria. In these accelerated aging mice, increased disc cellular senescence is closely associated with the rapid loss of disc PG. We also directly examine PG homeostasis in oxidative damage-induced senescent human cells using an in vitro cell culture model system. Senescence of human disc cells treated with hydrogen peroxide was confirmed by growth arrest, senescence-associated β-galactosidase activity, γH2AX foci, and acquisition of senescence-associated secretory phenotype. Senescent human disc cells also exhibited perturbed matrix PG homeostasis as evidenced by their decreased capacity to synthesize new matrix PG and enhanced degradation of aggrecan, a major matrix PG. of the disc. Our in vivo and in vitro findings altogether suggest that disc cellular senescence is an important driver of PG matrix homeostatic perturbation and PG loss. Published by Elsevier B.V.
Basis for molecular diagnostics and immunotherapy for esophageal cancer
Abdo, Joe; Agrawal, Devendra K.; Mittal, Sumeet K.
2017-01-01
Introduction Esophageal cancer is an extremely aggressive neoplasm, diagnosed in about 17,000 Americans every year with a mortality rate of more than 80% within five years and a median overall survival of just 13 months. For decades, the go-to regimen for esophageal cancer patients has been the use of taxane and platinum-based chemotherapy regimens, which has yielded the field’s most dire survival statistics. Areas covered Combination immunotherapy and a more robust molecular diagnostic platform for esophageal tumors could improve patient management strategies and potentially extend lives beyond the current survival figures. Analyzing a panel of biomarkers including those affiliated with taxane and platinum resistance (ERCC1 and TUBB3) as well as immunotherapy effectiveness (PD-L1) would provide oncologists more information on how to optimize first-line therapy for esophageal cancer. Expert commentary Of the 12 FDA-approved therapies in esophageal cancer, zero target the genome. A majority of the approved drugs either target or are effected by proteomic expression. Therefore, a broader understanding of diagnostic biomarkers could give more clarity and direction in treating esophageal cancer in concert with a greater use of immunotherapy. PMID:27838937
SIRT1 activation mediates heat-induced survival of UVB damaged Keratinocytes.
Calapre, Leslie; Gray, Elin S; Kurdykowski, Sandrine; David, Anthony; Descargues, Pascal; Ziman, Mel
2017-06-10
Exposure to heat stress after UVB irradiation induces a reduction of apoptosis, resulting in survival of DNA damaged human keratinocytes. This heat-mediated evasion of apoptosis appears to be mediated by activation of SIRT1 and inactivation of p53 signalling. In this study, we assessed the role of SIRT1 in the inactivation of p53 signalling and impairment of DNA damage response in UVB plus heat exposed keratinocytes. Activation of SIRT1 after multiple UVB plus heat exposures resulted in increased p53 deacetylation at K382, which is known to affect its binding to specific target genes. Accordingly, we noted decreased apoptosis and down regulation of the p53 targeted pro-apoptotic gene BAX and the DNA repair genes ERCC1 and XPC after UVB plus heat treatments. In addition, UVB plus heat induced increased expression of the cell survival gene Survivin and the proliferation marker Ki67. Notably, keratinocytes exposed to UVB plus heat in the presence of the SIRT1 inhibitor, Ex-527, showed a similar phenotype to those exposed to UV alone; i.e. an increase in p53 acetylation, increased apoptosis and low levels of Survivin. This study demonstrate that heat-induced SIRT1 activation mediates survival of DNA damaged keratinocytes through deacetylation of p53 after exposure to UVB plus heat.
Breast cancer in an 18-year-old female: A fatal case report and literature review.
Jóźwik, Maciej; Posmyk, Renata; Jóźwik, Marcin; Semczuk, Andrzej; Gogiel-Shields, Magdalena; Kuś-Słowińska, Marta; Garbowicz, Magdalena; Klukowski, Mark; Wojciechowicz, Jacek
2018-07-03
Breast cancer (BC) is the most frequent malignancy in both pre- and postmenopausal women. However, it is exceedingly rare in very young patients, and especially in adolescents. Herein, we report a case of an 18-year-old female diagnosed with invasive BC. The proband had been found to be negative for BC in close family members. A common BC genetic screening test for the Polish population did not detect any known founder mutations in the BRCA1 gene. Further evaluation identified a p.Ile157Thr (I157T) mutation in the CHEK2 gene, a p.Ala1991Val (A1991V) variant of unknown significance in the BRCA2 gene, p.Lys751Gln (K751Q) variant in the XPD (ERCC2) gene, and a homozygous p.Glu1008Ter (E1008*) mutation in the NOD2 gene. No other mutation had been found by next generation sequencing in major BC high-risk susceptibility genes BRCA1, BRCA2, as well as 92 other genes. To date, all these found alterations have been considered as low to moderate risk factors in the general population and moderate risk factors in younger women (<35 years of age). There are no previous articles relating low and moderate risk gene mutations to very young onset (below 20 years) BC with a fatal outcome. In our patient, a possible cumulative or synergistic risk effect for these 4 alterations, and a mutation in the NOD2 gene in particular, of which both presumably healthy parents were found to be carriers, is suggested.
Developments of the European Flood Awareness System (EFAS)
NASA Astrophysics Data System (ADS)
Thiemig, Vera; Olav Skøien, Jon; Salamon, Peter; Pappenberger, Florian; Wetterhall, Fredrik; Holst, Bo; Asp, Sara-Sophia; Garcia Padilla, Mercedes; Garcia, Rafael J.; Schweim, Christoph; Ziese, Markus
2017-04-01
EFAS (http://www.efas.eu) is an operational system for flood forecasting and early warning for the entire Europe, which is fully operational as part of the Copernicus Emergency Management Service since 2012. The prime aim of EFAS is to gain time for preparedness measures before major flood events - particularly in trans-national river basins - strike. This is achieved by providing complementary, added value information to the national and regional services holding the mandate for flood warning as well as to the ERCC (European Response and Coordination Centre). Using a coherent model for all of Europe forced with a range of deterministic and ensemble weather forecasts, the system can give a probabilistic flood forecast for a medium range lead time (up to 10 days) independent of country borders. The system is under continuous development, and we will present the basic set up, some prominent examples of recent and ongoing developments (such as the rapid impact assessment, seasonal outlook and the extended domain) and the future challenges.
Fathi, Zahra; Syn, Nicholas L; Zhou, Jian-Guo; Roudi, Raheleh
2018-04-18
Epidemiological studies undertaken over the past decades reveal a gradual but progressive increase in the incidence and mortality attributable to lung cancer in the Islamic Republic of Iran, a sovereign state geographically situated at the crossroads of Central Eurasia and Western Asia. We identified references published in English and Persian through searches of PubMed, EMBASE, Web of Science, Scopus, and the Scientific Information Database (SID)-a specialized Iranian database, which indexes Iranian scientific journals-between inception and 15 September 2017. Of 1475 references identified through electronic searches, we reviewed the full text of 88 studies, and included 38 studies in the review. Potentially druggable NSCLC targets, which have been studied in Iran include EGFR, ALK, ERBB2, and KIT; but no studies were found, which examined the impact of MET, ROS1, BRAF, PIK3CA, and FGFR1 aberrations. We were able to identify some literature on DNA repair genes and xenobiotic metabolism, including TP53, TP63, ERCC2, XRCC2, SIRT1, PTEN, CYP1A1, CYP1B1, GSTT1, and GSTM1. We also found an increasing amount of research performed in relation to the tumor microenvironment and immune contexture, including CTLA4, MAGE, FOXP3, IFN-γ, and various interleukins, chemokines, and transcription factors; but did not identify any publication concerning the expression of PD-1/PD-L1 in lung cancer. Our survey of research performed in Iran has revealed a dearth of studies in topics, which are otherwise highly pursued in developed countries, but nevertheless, has begun to hint at a distinct biology of lung cancer in this part of the world.
Structural Basis for Eukaryotic Transcription-Coupled DNA Repair Initiation
Xu, Jun; Lahiri, Indrajit; Wang, Wei; Wier, Adam; Cianfrocco, Michael A.; Chong, Jenny; Hare, Alissa A.; Dervan, Peter B.; DiMaio, Frank; Leschziner, Andres E.; Wang, Dong
2017-01-01
Eukaryotic transcription-coupled repair (TCR), or transcription-coupled nucleotide excision repair (TC-NER), is an important and well-conserved sub-pathway of nucleotide excision repair (NER) that preferentially removes DNA lesions from the template strand blocking RNA polymerase II (Pol II) translocation1,2. Cockayne syndrome group B protein in humans (CSB, or ERCC6), or its yeast orthologs (Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe), is among the first proteins to be recruited to the lesion-arrested Pol II during initiation of eukaryotic TCR1,3–10. Mutations in CSB are associated with Cockayne syndrome, an autosomal-recessive neurologic disorder characterized by progeriod features, growth failure, and photosensitivity1. The molecular mechanism of eukaryotic TCR initiation remains elusive, with several long-standing questions unanswered: How do cells distinguish DNA lesion-arrested Pol II from other forms of arrested Pol II? How does CSB interact with the arrested Pol II complex? What is the role of CSB in TCR initiation? The lack of structures of CSB or the Pol II-CSB complex have hindered our ability to answer those questions. Here we report the first structure of S. cerevisiae Pol II-Rad26 complex solved by cryo-electron microscopy (cryo-EM). The structure reveals that Rad26 binds to the DNA upstream of Pol II where it dramatically alters its path. Our structural and functional data suggest that the conserved Swi2/Snf2-family core ATPase domain promotes forward movement of Pol II and elucidate key roles for Rad26/CSB in both TCR and transcription elongation. PMID:29168508
Bol, S A; van Steeg, H; van Oostrom, C T; Tates, A D; Vrieling, H; de Groot, A J; Mullenders, L H; van Zeeland, A A; Jansen, J G
1999-05-01
The butylating agent N-n-butyl-N-nitrosourea (BNU) was employed to study the role of nucleotide excision repair (NER) in protecting mammalian cells against the genotoxic effects of monofunctional alkylating agents. The direct acting agent BNU was found to be mutagenic in normal and XPA mouse splenocytes after a single i.p. treatment in vivo. After 25 and 35 mg/kg BNU, but not after 75 mg/ kg, 2- to 3-fold more hprt mutants were detected in splenocytes from XPA mice than from normal mice. Using O6-alkylguanine-DNA alkyltransferase (AGT)-deficient hamster cells, it was found that NER-deficient CHO UV5 cells carrying a mutation in the ERCC-2 gene were 40% more mutable towards lesions induced by BNU when compared with parental NER-proficient CHO AA8 cells. UV5 cells were 1.4-fold more sensitive to the cytotoxic effects of BNU compared with AA8 cells. To investigate whether this increased sensitivity of NER-deficient cells is modulated by AGT activity, cell survival studies were performed in human and mouse primary fibroblasts as well. BNU was 2.7-fold more toxic for mouse XPA fibroblasts compared with normal mouse fibroblasts. Comparable results were found for human fibroblasts. Taken together these data indicate that the role of NER in protecting rodent cells against the mutagenic and cytotoxic effects of the alkylating agent BNU depends on AGT.
Profiles of Brain Metastases: Prioritization of Therapeutic Targets.
Ferguson, Sherise D; Zheng, Siyuan; Xiu, Joanne; Zhou, Shouhao; Khasraw, Mustafa; Brastianos, Priscilla K; Kesari, Santosh; Hu, Jethro; Rudnick, Jeremy; Salacz, Michael E; Piccioni, David; Huang, Suyun; Davies, Michael A; Glitza, Isabella C; Heymach, John V; Zhang, Jianjun; Ibrahim, Nuhad K; DeGroot, John F; McCarty, Joseph; O'Brien, Barbara J; Sawaya, Raymond; Verhaak, Roeland G W; Reddy, Sandeep K; Priebe, Waldemar; Gatalica, Zoran; Spetzler, David; Heimberger, Amy B
2018-06-19
We sought to compare the tumor profiles of brain metastases from common cancers with those of primary tumors and extracranial metastases in order to identify potential targets and prioritize rational treatment strategies. Tumor samples were collected from both the primary and metastatic sites of non-small cell lung cancer, breast cancer, and melanoma from patients in locations worldwide, and these were submitted to Caris Life Sciences for tumor multiplatform analysis, including gene sequencing (Sanger and next-generation sequencing with a targeted 47-gene panel), protein expression (assayed by immunohistochemistry), and gene amplification (assayed by in situ hybridization). The data analysis considered differential protein expression, gene amplification, and mutations among brain metastases, extracranial metastases, and primary tumors. The analyzed population included: 16,999 unmatched primary tumor and/or metastasis samples: 8178 non-small cell lung cancers (5098 primaries; 2787 systemic metastases; 293 brain metastases), 7064 breast cancers (3496 primaries; 3469 systemic metastases; 99 brain metastases), and 1757 melanomas (660 primaries; 996 systemic metastases; 101 brain metastases). TOP2A expression was increased in brain metastases from all 3 cancers, and brain metastases overexpressed multiple proteins clustering around functions critical to DNA synthesis and repair and implicated in chemotherapy resistance, including RRM1, TS, ERCC1, and TOPO1. cMET was overexpressed in melanoma brain metastases relative to primary skin specimens. Brain metastasis patients may particularly benefit from therapeutic targeting of enzymes associated with DNA synthesis, replication, and/or repair. This article is protected by copyright. All rights reserved. © 2018 UICC.
Van Veldhuizen, Peter J; Hussey, Michael; Lara, Primo N; Mack, Philip C; Gandour-Edwards, Regina; Clark, Joseph I; Lange, Marianne K; Crawford, David E
2009-10-01
Gemcitabine plus capecitabine has moderate efficacy in patients with advanced renal cell cancer (RCC) but has considerable toxicity. We evaluated the efficacy and toxicity of a modified dose-schedule of this doublet in patients with metastatic RCC. Chemotherapy-naive patients were treated with gemcitabine at 900 mg/m2 on days 1, 8, and 15 and with capecitabine at 625 mg/m2 twice daily on days 1 through 21, and every 28 days thereafter. The primary end point was response rate (RR). No further evaluation of this regimen would be pursued if the RR was ≤ 5%. In an exploratory analysis, we also evaluated potential markers of prognosis and treatment response, including thymidylate synthase, PTEN, pAKT, pmTOR, XRCC1, and ERCC1. Of 43 patients, 1 was ineligible and 2 were not analyzable. There was 1 complete response and 3 partial responses, for an overall RR of 10% (95% CI = 3, 24). Nineteen patients (48%) had stable disease. The 6-month freedom-from-treatment-failure and overall survival rates were 20% (95% CI = 8, 32) and 75% (95% CI = 62, 88), respectively. Median survival time was 23 months (95% CI = 10, 37). One patient each experienced grade 4 neutropenia, fatigue, thrombocytopenia, and hemolysis with renal failure. The most common grade 3 toxicities were neutropenia (12 patients), fatigue (5), and leucopenia (4). Patients with a best response of stable disease or better were more likely to have decreased expression of PTEN and increased expression of pmTOR. Gemcitabine plus capecitabine at this reduced dose-schedule benefits a small percentage of patients with RCC with an acceptable toxicity profile.
Ting, Aloysius Poh Leong; Low, Grace Kah Mun; Gopalakrishnan, Kalpana; Hande, M Prakash
2010-01-01
Abstract Xeroderma pigmentosum B (XPB/ERCC3/p89) is an ATP-dependent 3′→5′ directed DNA helicase involved in basal RNA transcription and the nucleotide excision repair (NER) pathway. While the role of NER in alleviating oxidative DNA damage has been acknowledged it remains poorly understood. To study the involvement of XPB in repair of oxidative DNA damage, we utilized primary fibroblasts from a patient suffering from XP with Cockayne syndrome and hydrogen peroxide (H2O2) to induce oxidative stress. Mutant cells retained higher viability and cell cycle dysfunction after H2O2 exposure. Cytokinesis blocked micronucleus assay revealed increased genome instability induced by H2O2. Single cell gel electrophoresis (comet) assay showed that the missense mutation caused a reduced repair capacity for oxidative DNA damage. Mutant fibroblasts also displayed decreased population doubling rate, increased telomere attrition rate and early emergence of senescent characteristics under chronic low dose exposure to H2O2. Fibroblasts from a heterozygous individual displayed intermediate traits in some assays and normal traits in others, indicating possible copy number dependence. The results show that a deficiency in functional XPB paradoxically renders cells more sensitive to the genotoxic effects of oxidative stress while reducing the cytotoxic effects. These findings have implications in the mechanisms of DNA repair, mutagenesis and carcinogenesis and ageing in normal physiological systems. PMID:19840190
Kondo, Daiki; Noguchi, Atsuko; Tamura, Hiroaki; Tsuchida, Satoko; Takahashi, Ikuko; Kubota, Hiroki; Yano, Tamami; Oyama, Chikako; Sawaishi, Yukio; Moriwaki, Shinichi; Takahashi, Tsutomu
2016-07-01
Nucleotide excision repair (NER) is an essential biological pathway protecting against ultraviolet light-induced DNA damage. Deficient NER causes a group of rare genetic disorders including two autosomal recessive diseases, xeroderma pigmentosum (XP) and Cockayne syndrome (CS). In addition to the cutaneous photosensitivity shared in XP and CS, CS is featured by growth failure, neurological deterioration, microcephaly, and deep sunken eyes. XP/CS complex is an extremely rare type of NER disorder with a distinct phenotype that is characterized by the skin and eye pathology of XP and the somatic and neurological abnormalities of CS. Some of CS cases have been reported to be complicated with renal failure, but the genetic background or the etiology of the renal failure has not been reported. We herein report a 1-year-old Japanese boy with XP/CS complex, complicated by nephrotic syndrome. Diagnosis was confirmed by the presence of compound heterozygous mutations, G47R (c.139G>A) and R616G (c.1846C>G), in the excision repair cross-complementation group 2 (ERCC2) gene. The kidney biopsies, performed at the age of 1 year and 2 months, revealed diffuse expansion of the mesangial matrix and segmental glomerulosclerosis under light microscopy, and diffused thin capillary walls with partially lamellated regions under electron microscopy. Notably, high levels of urinary 8-hydroxy-2'-deoxyguanosin, known as an oxidative stress marker, were observed during the clinical course. The patient died at the age of 1 year and 11 months because of renal failure. We suggest the involvement of oxidative stress in the pathogenesis of nephrotic syndrome in NER disorders.
Britto, S Mary; Shanthakumari, D; Agilan, B; Radhiga, T; Kanimozhi, G; Prasad, N Rajendra
2017-09-01
Exposure to solar ultraviolet-B (UVB) radiation leads to the formation of cyclobutane pyrimidine dimers (CPDs). We investigated the protective effect of apigenin against UVB-induced CPDs formation in human dermal fibroblasts cells (HDFa). For this purpose, HDFa cells were treated with apigenin (15μM) prior to UVB irradiation (20mJ/cm 2 ); DNA damage and subsequent molecular end points were observed. Exposure to UVB radiation increased significant CPDs formation in HDFa cells and the frequencies of CPDs were reduced by treatment with apigenin (15μM). UVB-induced CPDs downregulates the expression of nucleotide excision repair (NER) genes such as xeroderma pigmentosum complementation group C, B, G and F (XPC, XPB, XPG and XPF), transcription factor II human (TFIIH) and excision repair cross-complementation group 1 (ERCC1) in HDFa cells. Conversely, apigenin treatment restored UVB-induced loss of NER proteins in HDFa cells, which indicates its preventive effect against CPDs formation. Besides, single low dose UVB-exposure induced nuclear fragmentation, apoptotic frequency and apoptotic proteins expression (Bax and Caspase-3) have been prevented by the apigenin pretreatment. Furthermore, apigenin exhibits strong UV absorbance property and showed 10.08 SPF value. Thus, apigenin can protect skin cells against UVB-induced CPDs formation probably through its sunscreen effect. Hence, apigenin can be considered as an effective protective agent against UV induced skin damages. Copyright © 2017 Elsevier B.V. All rights reserved.
Coatti, Giuliana Castello; Marcarini, Juliana Cristina; Sartori, Daniele; Fidelis, Queli Cristina; Ferreira, Dalva Trevisan; Mantovani, Mário Sérgio
2016-08-01
Aspidospermine is an indole alkaloid with biological properties associated with combating parasites included in the genera Plasmodium, Leishmania and Trypanossoma. The present study evaluated the cytotoxicity (resazurin test), genotoxicity (comet assay) and mechanism of action (gene expression analysis via qRT-PCR) of this alkaloid in human HepG2 cells. The results demonstrated that treatment with aspidospermine was both cytotoxic (starting at 75 μM) and genotoxic (starting at 50 μM). There was no significant modulation of the expression of the following genes: GSTP1 and GPX1 (xenobiotic metabolism); CAT (oxidative stress); TP53 and CCNA2 (cell cycle); HSPA5, ERN1, EIF2AK3 and TRAF2 (endoplasmic reticulum stress); CASP8, CASP9, CASP3, CASP7, BCL-2, BCL-XL BAX and BAX (apoptosis); and PCBP4, ERCC4, OGG1, RAD21 and MLH1 (DNA repair). At a concentration of 50 μM (non-cytotoxic, but genotoxic), there was a significant increase in the expression of CYP1A1 (xenobiotic metabolism) and APC (cell cycle), and at a concentration of 100 μM, a significant increase in the expression of CYP1A1 (xenobiotic metabolism), GADD153 (endoplasmic reticulum stress) and SOD (oxidative stress) was detected, with repression of the expression of GR (xenobiotic metabolism and oxidative stress). The results of treatment with aspidospermine at a 100 μM concentration (the dose indicated in the literature to achieve 89 % reduction of the growth of L. amazonensis) suggest that increased oxidative stress and an unfolded protein response (UPR) occurred in HepG2 cells. For the therapeutic use of aspidospermine (antiparasitic), chemical alteration of the molecule to achieve a lower cytotoxicity/genotoxicity in host cells is recommended.
Yang, Daniel S
2014-01-01
The objectives of this study are (1) to develop a novel "moderation" model of drug chemosensitivity and (2) to investigate if miRNA expression moderates the relationship between gene expression and drug chemosensitivity, specifically for HSP90 inhibitors applied to human cancer cell lines. A moderation model integrating the interaction between miRNA and gene expressions was developed to examine if miRNA expression affects the strength of the relationship between gene expression and chemosensitivity. Comprehensive datasets on miRNA expressions, gene expressions, and drug chemosensitivities were obtained from National Cancer Institute's NCI-60 cell lines including nine different cancer types. A workflow including steps of selecting genes, miRNAs, and compounds, correlating gene expression with chemosensitivity, and performing multivariate analysis was utilized to test the proposed model. The proposed moderation model identified 12 significantly-moderating miRNAs: miR-15b*, miR-16-2*, miR-9, miR-126*, miR-129*, miR-138, miR-519e*, miR-624*, miR-26b, miR-30e*, miR-32, and miR-196a, as well as two genes ERCC2 and SF3B1 which affect chemosensitivities of Tanespimycin and Alvespimycin - both HSP90 inhibitors. A bootstrap resampling of 2,500 times validates the significance of all 12 identified miRNAs. The results confirm that certain miRNA and gene expressions interact to produce an effect on drug response. The lack of correlation between miRNA and gene expression themselves suggests that miRNA transmits its effect through translation inhibition/control rather than mRNA degradation. The results suggest that miRNAs could serve not only as prognostic biomarkers for cancer treatment outcome but also as interventional agents to modulate desired chemosensitivity.
XPD localizes in mitochondria and protects the mitochondrial genome from oxidative DNA damage.
Liu, Jing; Fang, Hongbo; Chi, Zhenfen; Wu, Zan; Wei, Di; Mo, Dongliang; Niu, Kaifeng; Balajee, Adayabalam S; Hei, Tom K; Nie, Linghu; Zhao, Yongliang
2015-06-23
Xeroderma pigmentosum group D (XPD/ERCC2) encodes an ATP-dependent helicase that plays essential roles in both transcription and nucleotide excision repair of nuclear DNA, however, whether or not XPD exerts similar functions in mitochondria remains elusive. In this study, we provide the first evidence that XPD is localized in the inner membrane of mitochondria, and cells under oxidative stress showed an enhanced recruitment of XPD into mitochondrial compartment. Furthermore, mitochondrial reactive oxygen species production and levels of oxidative stress-induced mitochondrial DNA (mtDNA) common deletion were significantly elevated, whereas capacity for oxidative damage repair of mtDNA was markedly reduced in both XPD-suppressed human osteosarcoma (U2OS) cells and XPD-deficient human fibroblasts. Immunoprecipitation-mass spectrometry analysis was used to identify interacting factor(s) with XPD and TUFM, a mitochondrial Tu translation elongation factor was detected to be physically interacted with XPD. Similar to the findings in XPD-deficient cells, mitochondrial common deletion and oxidative damage repair capacity in U2OS cells were found to be significantly altered after TUFM knock-down. Our findings clearly demonstrate that XPD plays crucial role(s) in protecting mitochondrial genome stability by facilitating an efficient repair of oxidative DNA damage in mitochondria. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Andrew, Angeline S; Karagas, Margaret R; Hamilton, Joshua W
2003-04-10
Arsenic is well established as a human carcinogen, but its precise mechanism of action remains unknown. Arsenic does not directly damage DNA, but may act as a carcinogen through inhibition of DNA repair mechanisms, leading indirectly to increased mutations from other DNA damaging agents. The molecular mechanism underlying arsenic inhibition of nucleotide excision repair after UV irradiation (Hartwig et al., Carcinogenesis 1997;18:399-405) is unknown, but could be due to decreased expression of critical genes involved in nucleotide excision repair of damaged DNA. This hypothesis was tested by analyzing expression of repair genes and arsenic exposure in a subset of 16 individuals enrolled in a population based case-control study investigating arsenic exposure and cancer risk in New Hampshire. Toenail arsenic levels were inversely correlated with expression of critical members of the nucleotide excision repair complex, ERCC1 (r(2) = 0.82, p < 0.0001), XPF (r(2) = 0.56, p < 0.002), and XPB (r(2) = 0.75, p < 0.0001). The internal dose marker, toenail arsenic level, was more strongly associated with changes in expression of these genes than drinking water arsenic concentration. Our findings, based on human exposure to arsenic in a US population, show an association between biomarkers of arsenic exposure and expression of DNA repair genes. Although our findings need verification in a larger study group, they are consistent with the hypothesis that inhibition of DNA repair capacity is a potential mechanism for the co-carcinogenic activity of arsenic. Copyright 2003 Wiley-Liss, Inc.
Endogenous formation and repair of oxidatively induced G[8-5 m]T intrastrand cross-link lesion
Wang, Jin; Cao, Huachuan; You, Changjun; Yuan, Bifeng; Bahde, Ralf; Gupta, Sanjeev; Nishigori, Chikako; Niedernhofer, Laura J.; Brooks, Philip J.; Wang, Yinsheng
2012-01-01
Exposure to reactive oxygen species (ROS) can give rise to the formation of various DNA damage products. Among them, d(G[8-5 m]T) can be induced in isolated DNA treated with Fenton reagents and in cultured human cells exposed to γ-rays, d(G[8-5m]T) can be recognized and incised by purified Escherichia coli UvrABC nuclease. However, it remains unexplored whether d(G[8-5 m]T) accumulates in mammalian tissues and whether it is a substrate for nucleotide excision repair (NER) in vivo. Here, we found that d(G[8-5 m]T) could be detected in DNA isolated from tissues of healthy humans and animals, and elevated endogenous ROS generation enhanced the accumulation of this lesion in tissues of a rat model of Wilson’s disease. Additionally, XPA-deficient human brain and mouse liver as well as various types of tissues of ERCC1-deficient mice contained higher levels of d(G[8-5 m]T) but not ROS-induced single-nucleobase lesions than the corresponding normal controls. Together, our studies established that d(G[8-5 m]T) can be induced endogenously in mammalian tissues and constitutes a substrate for NER in vivo. PMID:22581771
Reversal of platinum drug resistance by the histone deacetylase inhibitor belinostat.
To, Kenneth Kin-Wah; Tong, Wing-Sum; Fu, Li-Wu
2017-01-01
To investigate and elucidate the mechanism for the potentiation of cisplatin anticancer activity by belinostat in platinum (Pt)-resistant lung cancer cells. Combination of cisplatin and belinostat was investigated in two pairs of parental and cisplatin-resistant non-small cell lung cancer (NSCLC) cell lines. The Pt-resistant cell models exhibited overexpression of the efflux transporter ABCC2 and enhanced DNA repair capacity. Cellular accumulation of cisplatin and extent of DNA platination were measured by inductively coupled plasma optical emission spectrometer. Expression of Pt transporters and DNA repair gene were determined by quantitative real-time PCR. Inhibition of ABCC2 transport activity was examined by flow cytometric assay. Regulation of ABCC2 at the promoter level was studied by chromatin immunoprecipitation assay. In Pt-resistant lung cancer cells, belinostat apparently circumvent the resistance through inhibition of both ABCC2 and DNA repair-mediated mechanisms. The combination of belinostat and cisplatin were found to display synergistic cytotoxic effect in cisplatin-resistant lung cancer cell lines when the two drugs were added concomitantly or when belinostat was given before cisplatin. Upon the concomitant administration of belinostat, cellular accumulation of cisplatin and formation of DNA-Pt adducts were found to be increased whereas expression levels of the efflux transporter ABCC2 and the DNA repair gene ERCC1 were inhibited in Pt-resistant cells. Belinostat-mediated downregulation of ABCC2 was associated with an increase association of a transcriptional repressor (negative cofactor 2) but reduced association of a transcriptional activator (TFIIB) to the ABCC2 promoter. The data advocates the use of belinostat as a novel drug resistance reversal agent for use in combination cancer chemotherapeutic regimens. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klopp, Ann H.; Jhingran, Anuja; Ramdas, Latha
2008-05-01
Purpose: The purpose of this study was to investigate early gene expression changes after chemoradiation in a human solid tumor, allowing identification of chemoradiation-induced gene expression changes in the tumor as well as the tumor microenvironment. In addition we aimed to identify a gene expression profile that was associated with clinical outcome. Methods and Materials: Microarray experiments were performed on cervical cancer specimens obtained before and 48 h after chemoradiation from 12 patients with Stage IB2 to IIIB squamous cell carcinoma of the cervix treated between April 2001 and August 2002. Results: A total of 262 genes were identified thatmore » were significantly changed after chemoradiation. Genes involved in DNA repair were identified including DDB2, ERCC4, GADD45A, and XPC. In addition, significantly regulated cell-to-cell signaling pathways included insulin-like growth factor-1 (IGF-1), interferon, and vascular endothelial growth factor signaling. At a median follow-up of 41 months, 5 of 12 patients had experienced either local or distant failure. Supervised clustering analysis identified a 58-gene set from the pretreatment samples that were differentially expressed between patients with and without recurrence. Genes involved in integrin signaling and apoptosis pathways were identified in this gene set. Immortalization-upregulated protein (IMUP), IGF-2, and ARHD had particularly marked differences in expression between patients with and without recurrence. Conclusions: Genetic profiling identified genes regulated by chemoradiation including DNA damage and cell-to-cell signaling pathways. Genes associated with recurrence were identified that will require validation in an independent patient data set to determine whether the 58-gene set associated with clinical outcome could be useful as a prognostic assay.« less
NASA Technical Reports Server (NTRS)
Kumar, Akhilesh; Chatterjee, A.; Alwood, Joshua S.; Dvorochkin, Natalya; Almeida, Eduardo A. C.
2011-01-01
Six months post-IR, there were no notable changes in skeletal expression of 84 principal genes in the p53 signaling pathway due to low dose IR (0.5Gy), HU, or both. In contrast, numerous genes relevant to oxidative stress were regulated by the treatments, typically in a direction indicative of increased oxidative stress and impaired defense. IR and HU independently reduced (between 0.46 to 0.88 fold) expression levels of Noxa1, Gpx3, Prdx2, Prdx3, and Zmynd17. Surprisingly, transient HU alone (sham-irradiated) decreased expression of several redox-related genes (Gpx1,Gstk1, Prdx1, Txnrd2), which were not affected significantly by IR alone. Irradiation increased (1.13 fold) expression of a gene responsible for production of superoxides by neutrophils (NCF2). Of interest, only combined treatment with HU and IR led to increased expression levels of Ercc2, (1.19 fold), a DNA excision repair enzyme. Differences in gene expression levels may reflect a change in gene expression on a per cell basis, a shift in the repertoire of specific cell types within the tissue, or both. Serum nitrite/nitrate levels were elevated to comparable levels (1.6-fold) due to IR, HU or both, indicative of elevated systemic nitrosyl stress. CONCLUSIONS The magnitude of changes in skeletal expression of oxidative stress-related genes six months after irradiation and/or transient unloading tended to be relatively modest (0.46-1.15 fold), whereas the p53 pathway was not affected. The finding that many different oxidative stress-related genes differed from controls at this late time point implicates a generalized impairment of oxidative defense within skeletal tissue, which coincides with both profound radiation damage to osteoprogenitors/stem cells in bone marrow and impaired remodeling of mineralized tissue.
Ghaskadbi, Saroj
2013-01-01
Xeroderma pigmentosum group A (XPA) is a protein that binds to damaged DNA, verifies presence of a lesion, and recruits other proteins of the nucleotide excision repair (NER) pathway to the site. Though its homologs from yeast, Drosophila, humans, and so forth are well studied, XPA has not so far been reported from protozoa and lower animal phyla. Hydra is a fresh-water cnidarian with a remarkable capacity for regeneration and apparent lack of organismal ageing. Cnidarians are among the first metazoa with a defined body axis, tissue grade organisation, and nervous system. We report here for the first time presence of XPA gene in hydra. Putative protein sequence of hydra XPA contains nuclear localization signal and bears the zinc-finger motif. It contains two conserved Pfam domains and various characterized features of XPA proteins like regions for binding to excision repair cross-complementing protein-1 (ERCC1) and replication protein A 70 kDa subunit (RPA70) proteins. Hydra XPA shows a high degree of similarity with vertebrate homologs and clusters with deuterostomes in phylogenetic analysis. Homology modelling corroborates the very close similarity between hydra and human XPA. The protein thus most likely functions in hydra in the same manner as in other animals, indicating that it arose early in evolution and has been conserved across animal phyla. PMID:24083246
Barve, Apurva; Ghaskadbi, Saroj; Ghaskadbi, Surendra
2013-01-01
Xeroderma pigmentosum group A (XPA) is a protein that binds to damaged DNA, verifies presence of a lesion, and recruits other proteins of the nucleotide excision repair (NER) pathway to the site. Though its homologs from yeast, Drosophila, humans, and so forth are well studied, XPA has not so far been reported from protozoa and lower animal phyla. Hydra is a fresh-water cnidarian with a remarkable capacity for regeneration and apparent lack of organismal ageing. Cnidarians are among the first metazoa with a defined body axis, tissue grade organisation, and nervous system. We report here for the first time presence of XPA gene in hydra. Putative protein sequence of hydra XPA contains nuclear localization signal and bears the zinc-finger motif. It contains two conserved Pfam domains and various characterized features of XPA proteins like regions for binding to excision repair cross-complementing protein-1 (ERCC1) and replication protein A 70 kDa subunit (RPA70) proteins. Hydra XPA shows a high degree of similarity with vertebrate homologs and clusters with deuterostomes in phylogenetic analysis. Homology modelling corroborates the very close similarity between hydra and human XPA. The protein thus most likely functions in hydra in the same manner as in other animals, indicating that it arose early in evolution and has been conserved across animal phyla.
Predictive models for customizing chemotherapy in advanced non-small cell lung cancer (NSCLC).
Bonanno, Laura
2013-06-01
The backbone of first-line treatment for Epidermal Growth Factor (EGFR) wild-type (wt) advanced Non-small cell lung cancer (NSCLC) patients is the use of a platinum-based chemotherapy combination. The treatment is characterized by great inter-individual variability in outcome. Molecular predictive markers are extremely needed in order to identify patients most likely to benefit from platinum-based treatment and resistant ones, thus optimizing chemotherapy approach in NSCLC. Several components of DNA repair response (DRR) have been investigated as potential predictive markers. Among them, high levels of expression of ERCC1, both at protein and mRNA levels, have been associated with resistance to cisplatin in NSCLC. In addition, low levels of expression of RRM1, a target for gemcitabine, have been associated with improved OS in advanced NSCLC patients treated with cisplatin and gemcitabine. Preclinical data and retrospective analyses showed that BRCA1 is able to induce resistance to cisplatin and sensitivity to antimicrotubule agents. In addition, the mRNA levels of expression of RAP80, encoding for a protein cooperating with BRCA1 in homologous recombination (HR), have demonstrated to further sub-classify low BRCA1 NSCLC tumors, improving the predictive model. On the basis of biological knowledge on DNA repair pathway and recent controversial results from clinical validation of potential molecular markers, integrated analysis of multiple DNA repair components could improve predictive information and pave the way to a new approach to customized chemotherapy clinical trials.
Effects of bisphosphonate treatment on DNA methylation in osteonecrosis of the jaw.
Polidoro, Silvia; Broccoletti, Roberto; Campanella, Gianluca; Di Gaetano, Cornelia; Menegatti, Elisa; Scoletta, Matteo; Lerda, Ennio; Matullo, Giuseppe; Vineis, Paolo; Berardi, Daniela; Scully, Crispian; Arduino, Paolo G
2013-10-09
Bisphosphonates are used in the treatment of hypocalcaemia, mainly in cancer and osteoporosis. Some patients experience adverse events, such as BP-related osteonecrosis of the jaw (BRONJ). DNA methylation plays a key role in gene regulation in many tissues, but its involvement in bone homeostasis is not well characterized, and no information is available regarding altered methylation in BRONJ. Using the Illumina Infinium HumanMethylation27 BeadChip assay, we performed an epigenome-wide association study in peripheral blood samples from 68 patients treated with nitrogenous BP, including 35 with BRONJ. Analysis of the estimated cumulative BP exposure distribution indicated that the exposure of the case group to BP was slightly higher than that of the control group; more severely affected cases (i.e., with BRONJ in both mandible and maxilla) were significantly more exposed to BP than were those with BRONJ only in the mandible or maxilla (one-sided Wilcoxon rank sum test, p=0.002). Logistic regression analysis confirmed the positive association between cumulative bisphosphonates exposure and risk of BRONJ (OR 1.015 per mg of cumulative exposure, 95% CI 1.004-1.032, p=0.036). Although no statistically significant differences were observed between case and control groups, methylation levels of probes mapping on three genes, ERCC8, LEPREL1 and SDC2, were strongly associated with cumulative BP exposure levels (p<1.31E-007). Enrichment analysis, combining differentially methylated genes with genes involved in the mevalonate pathway, showed that BP treatment can affect the methylation pattern of genes involved in extracellular matrix organization and inflammatory responses, leading to more frequent adverse effects such as BRONJ. Differences in DNA methylation induced by BP treatment could be involved in the pathogenesis of the bone lesion. Copyright © 2013 Elsevier B.V. All rights reserved.
Magliocco, Anthony; Zhang, Qiang; Wang, Dian; Klimowicz, Alex; Harris, Jonathan; Simko, Jeff; DeLaney, Thomas; Kraybill, William; Kirsch, David G.
2018-01-01
Background Sarcoma mortality remains high despite adjuvant chemotherapy. Biomarker predictors of treatment response and outcome could improve treatment selection. Methods Tissue microarrays (TMAs) were created using pre- and posttreatment tumor from two prospective trials (MGH pilot and RTOG 9514) of neoadjuvant/adjuvant MAID chemotherapy and preoperative radiation. Biomarkers were measured using automated computerized imaging (AQUA or ACIS). Expression was correlated with disease-free survival (DFS), distant disease-free survival (DDFS), and overall survival (OS). Results Specimens from 60 patients included 23 pretreatment (PRE), 40 posttreatment (POST), and 12 matched pairs (MPs). In the MP set, CAIX, GLUT1, and PARP1 expression significantly decreased following neoadjuvant therapy, but p53 nuclear/cytoplasmic (N/C) ratio increased. In the PRE set, no biomarker expression was associated with DFS, DDFS, or OS. In the POST set, increased p53 N/C ratio was associated with a significantly decreased DFS and DDFS (HR 4.13, p=0.017; HR 4.16, p=0.016), while increased ERCC1 and XPF expression were associated with an improved DFS and DDFS. No POST biomarkers were associated with OS. Conclusions PRE biomarker expression did not predict survival outcomes. Expression pattern changes after neoadjuvant chemoradiation supports the concepts of tumor reoxygenation, altered HIF-1α signaling, and a p53 nuclear accumulation DNA damage response. Clinical Trial Registration NRG Oncology RTOG 9514 is registered with ClinicalTrials.gov. The ClinicalTrials.gov Identifier is NCT00002791. PMID:29681762
Effects of mild ozonisation on gene expression and nuclear domains organization in vitro.
Scassellati, C; Costanzo, M; Cisterna, B; Nodari, A; Galiè, M; Cattaneo, A; Covi, V; Tabaracci, G; Bonvicini, C; Malatesta, M
2017-10-01
In the last two decades, the use of ozone (O 3 ) as a complementary medical approach has progressively been increasing; however, its application is still limited due to the numerous doubts about its possible toxicity, despite the low concentrations used in therapy. For an appropriate and safe clinical application of a potentially toxic agent such as O 3 , it is crucial to elucidate the cellular response to its administration. Molecular analyses and transmission electron microscopy were here combined to investigate in vitro the effects of O 3 administration on transcriptional activity and nuclear domains organization of cultured SH-SY5Y neuronal cells; low O 3 concentrations were used as those currently administered in clinical practice. Mild ozonisation did not affect cell proliferation or death, while molecular analyses showed an O 3 -induced modulation of some genes involved in the cell response to stress (HMOX1, ERCC4, CDKN1A) and in the transcription machinery (CTDSP1). Ultrastructural cytochemistry after experiments of bromouridine incorporation consistently demonstrated an increased transcriptional rate at both the nucleoplasmic (mRNA) and the nucleolar (rRNA) level. No ultrastructural alteration of nuclear domains was observed. Our molecular, ultrastructural and cytochemical data demonstrate that a mild toxic stimulus such as mild ozonisation stimulate cell protective pathways and nuclear transcription, without altering cell viability. This could possibly account for the positive effects observed in ozone-treated patients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Predictors of chemotherapy efficacy in non-small-cell lung cancer: a challenging landscape.
Olaussen, K A; Postel-Vinay, S
2016-11-01
Conventional cytotoxic chemotherapy (CCC) is the backbone of non-small-cell lung cancer (NSCLC) treatment since decades and still represents a key element of the therapeutic armamentarium. Contrary to molecularly targeted therapies and immune therapies, for which predictive biomarkers of activity have been actively looked for and developed in parallel to the drug development process ('companion biomarkers'), no patient selection biomarker is currently available for CCC, precluding customizing treatment. We reviewed preclinical and clinical studies that assessed potential predictive biomarkers of CCC used in NSCLC (platinum, antimetabolites, topoisomerase inhibitors, and spindle poisons). Biomarker evaluation method, analytical validity, and robustness are described and challenged for each biomarker. The best-validated predictive biomarkers for efficacy are currently ERCC1, RRM1, and TS for platinum agents, gemcitabine and pemetrexed, respectively. Other potential biomarkers include hENT1 for gemcitabine, class III β-tubulin for spindle poisons, TOP2A expression and CEP17 duplication (mostly studied for predicting anthracyclines efficacy) whose applicability concerning etoposide would deserve further evaluation. However, none of these biomarkers has till now been validated prospectively in an appropriately designed and powered randomised trial, and none of them is currently ready for implementation in routine clinical practice. The search for predictive biomarkers to CCC has been proven challenging. If a plethora of biomarkers have been evaluated either in the preclinical or in the clinical setting, none of them is ready for clinical implementation yet. Considering that most mechanisms of resistance or sensitivity to CCC are multifactorial, a combinatorial approach might be relevant and further efforts are required. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Tissue specific mutagenic and carcinogenic responses in NER defective mouse models.
Wijnhoven, Susan W P; Hoogervorst, Esther M; de Waard, Harm; van der Horst, Gijsbertus T J; van Steeg, Harry
2007-01-03
Several mouse models with defects in genes encoding components of the nucleotide excision repair (NER) pathway have been developed. In NER two different sub-pathways are known, i.e. transcription-coupled repair (TC-NER) and global-genome repair (GG-NER). A defect in one particular NER protein can lead to a (partial) defect in GG-NER, TC-NER or both. GG-NER defects in mice predispose to cancer, both spontaneous as well as UV-induced. As such these models (Xpa, Xpc and Xpe) recapitulate the human xeroderma pigmentosum (XP) syndrome. Defects in TC-NER in humans are associated with Cockayne syndrome (CS), a disease not linked to tumor development. Mice with TC-NER defects (Csa and Csb) are - except for the skin - not susceptible to develop (carcinogen-induced) tumors. Some NER factors, i.e. XPB, XPD, XPF, XPG and ERCC1 have functions outside NER, like transcription initiation and inter-strand crosslink repair. Deficiencies in these processes in mice lead to very severe phenotypes, like trichothiodystrophy (TTD) or a combination of XP and CS. In most cases these animals have a (very) short life span, display segmental progeria, but do not develop tumors. Here we will overview the available NER-related mouse models and will discuss their phenotypes in terms of (chemical-induced) tissue-specific tumor development, mutagenesis and premature aging features.
Transcriptional modulation of a human monocytic cell line exposed to PM(10) from an urban area.
Bastonini, Emanuela; Verdone, Loredana; Morrone, Stefania; Santoni, Angela; Settimo, Gaetano; Marsili, Giovanni; La Fortezza, Marco; Di Mauro, Ernesto; Caserta, Micaela
2011-08-01
Insight into the mechanisms by which ambient air particulate matter mediates adverse health effects is needed to provide biological plausibility to epidemiological studies demonstrating an association between PM(10) exposure and increased morbidity and mortality. In vitro studies of the effects of air pollution on human cells help to establish conditions for the analysis of cause-effect relationships. One of the major challenges is to test native atmosphere in its complexity, rather than the various components individually. We have developed an in vitro system in which human monocyte-macrophage U937 cells are directly exposed to filters containing different amounts of PM(10) collected in the city of Rome. Transcriptional profiling obtained after short exposure (1h) of cells to a filter containing 1666μg PM(10) (77.6μg/cm(2)) using a macroarray panel of 1176 genes reveals a significant change in the mRNA level (>2 fold) for 87 genes relative to cells exposed to a control filter. Overall, 9 out of 87 modulated genes were annotated as "lung cancer". qRT-PCR confirmed the induction of relevant genes involved in DNA repair and apoptosis, specifically: ERCC1, TDG, DAD1 and MCL1. In cells exposed for 10min, 1h and 3h to different amounts of PM(10), transcription of TNFα and TRAP1, which code for a key pro-inflammatory cytokine and a mitochondrial protein involved in cell protection from oxidative stress, respectively, was shown to be modulated in a time-dependent, but not a dose-dependent manner. Taken together, these data indicate that it is possible to analyze the effects of untreated particulate matter on human cells by the direct-exposure approach we have developed, possibly providing new clues to traffic-related health hazard. Copyright © 2011 Elsevier Inc. All rights reserved.
Structural basis for the initiation of eukaryotic transcription-coupled DNA repair.
Xu, Jun; Lahiri, Indrajit; Wang, Wei; Wier, Adam; Cianfrocco, Michael A; Chong, Jenny; Hare, Alissa A; Dervan, Peter B; DiMaio, Frank; Leschziner, Andres E; Wang, Dong
2017-11-30
Eukaryotic transcription-coupled repair (TCR) is an important and well-conserved sub-pathway of nucleotide excision repair that preferentially removes DNA lesions from the template strand that block translocation of RNA polymerase II (Pol II). Cockayne syndrome group B (CSB, also known as ERCC6) protein in humans (or its yeast orthologues, Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe) is among the first proteins to be recruited to the lesion-arrested Pol II during the initiation of eukaryotic TCR. Mutations in CSB are associated with the autosomal-recessive neurological disorder Cockayne syndrome, which is characterized by progeriod features, growth failure and photosensitivity. The molecular mechanism of eukaryotic TCR initiation remains unclear, with several long-standing unanswered questions. How cells distinguish DNA lesion-arrested Pol II from other forms of arrested Pol II, the role of CSB in TCR initiation, and how CSB interacts with the arrested Pol II complex are all unknown. The lack of structures of CSB or the Pol II-CSB complex has hindered our ability to address these questions. Here we report the structure of the S. cerevisiae Pol II-Rad26 complex solved by cryo-electron microscopy. The structure reveals that Rad26 binds to the DNA upstream of Pol II, where it markedly alters its path. Our structural and functional data suggest that the conserved Swi2/Snf2-family core ATPase domain promotes the forward movement of Pol II, and elucidate key roles for Rad26 in both TCR and transcription elongation.
Wang, Amy; Wolf, Douglas C; Sen, Banalata; Knapp, Geremy W; Holladay, Steven D; Huckle, William R; Caceci, Thomas; Robertson, John L
2009-06-01
Inorganic arsenic increases urinary bladder transitional cell carcinoma in humans. In F344 rats, dimethylarsinic acid (DMA[V]) increases transitional cell carcinoma. Arsenic-induced inhibition of DNA repair has been reported in cultured cell lines and in lymphocytes of arsenic-exposed humans, but it has not been studied in urinary bladder. Should inhibition of DNA damage repair in transitional epithelium occur, it may contribute to carcinogenesis or cocarcinogenesis. We investigated morphology and expression of DNA repair genes in F344 rat transitional cells following up to 100 ppm DMA(V) in drinking water for four weeks. Mitochondria were very sensitive to DMA(V), and swollen mitochondria appeared to be the main source of vacuoles in the transitional epithelium. Real-time reverse transcriptase polymerase chain reaction (Real-Time RT PCR) showed the mRNA levels of tested DNA repair genes, ataxia telangectasia mutant (ATM), X-ray repair cross-complementing group 1 (XRCC1), excision repair cross-complementing group 3/xeroderma pigmentosum B (ERCC3/XPB), and DNA polymerase beta (Polbeta), were not altered by DMA(V). These data suggested that either DMA(V) does not affect DNA repair in the bladder or DMA(V) affects DNA repair without affecting baseline mRNA levels of repair genes. The possibility remains that DMA(V) may lower damage-induced increases in repair gene expression or cause post-translational modification of repair enzymes.
Using patient-derived xenograft models of colorectal liver metastases to predict chemosensitivity.
Brown, Kai M; Xue, Aiqun; Julovi, Sohel M; Gill, Anthony J; Pavlakis, Nick; Samra, Jaswinder S; Smith, Ross C; Hugh, Thomas J
2018-07-01
Few in vivo models for colorectal cancer have been demonstrated to show external validity by accurately predicting clinical patient outcomes. Patient-derived xenograft (PDX) models of cancer have characteristics that might provide a form of translational research leading to personalized cancer care. The aim of this pilot study was to assess the feasibility of using PDXs as a platform for predicting patient colorectal liver metastases responses, in this case by correlating PDX and patient tumor responses to either folinic acid, fluorouracil plus oxaliplatin or folinic acid, fluorouracil plus irinotecan-based regimens. Sixteen patients underwent potentially curative resection of colorectal liver metastases, and tumors were grafted into NOD.CB17-Prkdc scid /Arc mice. Mice were divided into groups to determine relative tumor growth in response to treatment. Tumors were analyzed by immunohistochemistry for Ki67 and Excision repair cross-complementation group 1. An engraftment rate of 81% was achieved. Overall, there was a 67% positive match rate between eligible patient and PDX chemosensitivity profiles. There was a significant difference in relative decrease in Ki67 expression between sensitive/stable versus resistant PDXs for both treatment regimens. There was no statistically significant correlation between baseline ERCC1 expression and response to Oxaliplatin + 5-Fluorouracil in the PDXs. This pilot study supports the feasibility of using PDX models of advanced colorectal cancer in larger studies to potentially predict patient chemosensitivity profiles. Copyright © 2018 Elsevier Inc. All rights reserved.
Tentori, Lucio; Muzi, Alessia; Dorio, Annalisa Susanna; Dolci, Susanna; Campolo, Federica; Vernole, Patrizia; Lacal, Pedro Miguel; Praz, Françoise; Graziani, Grazia
2013-07-01
Defective expression of the mismatch repair protein MSH3 is frequently detected in colon cancer, and down-regulation of its expression was found to decrease sensitivity to platinum compounds or poly(ADP-ribose) polymerase inhibitors (PARPi) monotherapy. We have investigated whether MSH3 transfection in MSH3-deficient colon cancer cells confers resistance to oxaliplatin or PARPi and whether their combination restores chemosensitivity. MSH3-deficient/MLH1-proficient colon cancer HCT116(MLH1) cells were transfected with the MSH3 cDNA cloned into the pcDNA3.1(-) vector. MSH3/MLH1-deficient HCT116, carrying MLH1 and MSH3 mutations on chromosome 3 and 5, respectively, and HCT116 in which wild-type MLH1 (HCT116+3), MSH3 (HCT116+5) or both genes (HCT116+3+5) were introduced by chromosome transfer were also tested. Sensitivity to oxaliplatin and to PARPi was evaluated by analysis of clonogenic survival, cell proliferation, apoptosis and cell cycle. MSH3 transfection in HCT116 cells did not confer resistance to oxaliplatin or PARPi monotherapy. MSH3-proficient HCT116+5 or HCT116+3+5 cells, which were more resistant to oxaliplatin and PARPi in comparison with their MSH3-deficient counterparts, expressed higher levels of the nucleotide excision repair ERCC1 and XPF proteins, involved in the resistance to platinum compounds, and lower PARP-1 levels. In all cases, PARPi increased sensitivity to oxaliplatin. Restoring of MSH3 expression by cDNA transfection, rather than by chromosome transfer, did not affect colon cancer sensitivity to oxaliplatin or PARPi monotherapy; PARP-1 levels seemed to be more crucial for the outcome of PARPi monotherapy.
Duan, Shanzhou; Tsai, Ying; Keng, Peter; Chen, Yongbing; Lee, Soo Ok; Chen, Yuhchyau
2015-09-29
Cisplatin-based chemotherapy is currently the most effective treatment regimen for non-small cell lung cancer (NSCLC), but eventually tumor resistance develops which limits its success. The potential implication of IL-6 signaling in the cisplatin resistance of NSCLC was explored by testing whether NSCLC cells with different levels of intracellular IL-6 show different responses to the cytotoxic treatment of cisplatin. When the cisplatin cytotoxicity of the IL-6 knocked down human NSCLC cells (A549IL-6si and H157IL-6si) were compared with their corresponding scramble control cells (A549sc and H157sc), higher cisplatin cytotoxicity was found in IL-6 si cells than sc cells. Subcutaneous xenograft mouse models were developed using a pair of A549sc and A549IL-6si cells. When the tumor grew to about 400 mm2, mice were treated with cisplatin and tumor regression was monitored. Higher tumor regression was detected in the A549IL-6si xenografts compared to A549sc xenografts following cisplatin treatment. Immunostaining study results from tumor tissues also supported this finding. Expression of anti-apoptotic proteins Bcl-2 and Mcl-1 and DNA repair associated molecules ATM, CHK1, TP73, p53, and ERCC1 were significantly up regulated in cisplatin-treated A549sc and H157sc cells, but no increase was detected in A549IL-6si and H157IL-6si cells. Further inhibitor studies revealed that up regulation of these molecules by IL-6 may be through activation of IL-6 downstream signaling pathways like Akt, MAPK, Stat3, and Erk. These results provide potential for combining cisplatin and inhibitors of IL-6 signaling or its downstream signaling pathway as a future therapeutic approach in preventing development of cisplatin resistant NSCLC tumors.
Hijazi, H; Salih, M A; Hamad, M H A; Hassan, H H; Salih, S B M; Mohamed, K A; Mukhtar, M M; Karrar, Z A; Ansari, S; Ibrahim, N; Alkuraya, F S
2015-01-01
An extremely rare pellagra-like condition has been described, which was partially responsive to niacin and associated with a multisystem involvement. The condition was proposed to represent a novel autosomal recessive entity but the underlying mutation remained unknown for almost three decades. The objective of this study was to identify the causal mutation in the pellagra-like condition and investigate the mechanism by which niacin confers clinical benefit. Autozygosity mapping and exome sequencing were used to identify the causal mutation, and comet assay on patient fibroblasts before and after niacin treatment to assess its effect on DNA damage. We identified a single disease locus that harbors a novel mutation in ERCC5, thus confirming that the condition is in fact xeroderma pigmentosum/Cockayne syndrome (XP/CS) complex. Importantly, we also show that the previously described dermatological response to niacin is consistent with a dramatic protective effect against ultraviolet-induced DNA damage in patient fibroblasts conferred by niacin treatment. Our findings show the power of exome sequencing in reassigning previously described novel clinical entities, and suggest a mechanism for the dermatological response to niacin in patients with XP/CS complex. This raises interesting possibilities about the potential therapeutic use of niacin in XP. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Massuti, Bartomeu; Sanchez, Jose Miguel; Hernando-Trancho, Florentino; Karachaliou, Niki; Rosell, Rafael
2013-06-01
Lung cancer accounts for the majority of cancer-related deaths worldwide. At present, platinum-based therapy represents the standard of care in fit stage II and IIIA non-small cell lung cancer (NSCLC) patients following surgical resection. In advanced disease, personalized chemotherapy and targeted biologic therapy based on histological and molecular tumor profiling have already shown promise in terms of optimizing treatment efficacy. While disease stage is associated with outcome and is commonly used to determine adjuvant treatment eligibility, it is known that a subset of patients with early stage disease experience shorter survival than others with the same clinicopathological characteristics. Improved methods for identifying these individuals, at or near the time of initial diagnosis, may inform the decision to pursue adjuvant therapy options. Among the numerous candidate molecular biomarkers, only few gene-expression profiling signatures provide clinically relevant information, while real-time quantitative polymerase-chain reaction (RT-qPCR) strategy involving relatively small numbers of genes offers a practical alternative with high cross-platform performance. mRNA and/or protein expression levels of excision repair cross-complementation group 1 (ERCC1), ribonucleotide reductase M subunit 1 (RRM1) and breast cancer susceptibility gene 1 (BRCA1) are among the most promising potential biomarkers for early disease and their clinical utility is currently being evaluated in randomized phase II and III clinical trials. This review describes the most promising clinicopathological and molecular biomarkers with predictive and prognostic significance in lung cancer that have been identified through advanced research and which could influence adjuvant and neoadjuvant chemotherapy decisions for operable NSCLC in routine clinical practice.
Prioritization in comparative effectiveness research: the CANCERGEN Experience.
Thariani, Rahber; Wong, William; Carlson, Josh J; Garrison, Louis; Ramsey, Scott; Deverka, Patricia A; Esmail, Laura; Rangarao, Sneha; Hoban, Carolyn J; Baker, Laurence H; Veenstra, David L
2012-05-01
Systematic approaches to stakeholder-informed research prioritization are a central focus of comparative effectiveness research. Genomic testing in cancer is an ideal area to refine such approaches given rapid innovation and potentially significant impacts on patient outcomes. To develop and pilot test a stakeholder-informed approach to prioritizing genomic tests for future study in collaboration with the cancer clinical trials consortium SWOG. We conducted a landscape analysis to identify genomic tests in oncology using a systematic search of published and unpublished studies, and expert consultation. Clinically valid tests suitable for evaluation in a comparative study were presented to an external stakeholder group. Domains to guide the prioritization process were identified with stakeholder input, and stakeholders ranked tests using multiple voting rounds. A stakeholder group was created including representatives from patient-advocacy groups, payers, test developers, regulators, policy makers, and community-based oncologists. We identified 9 domains for research prioritization with stakeholder feedback: population impact; current standard of care, strength of association; potential clinical benefits, potential clinical harms, economic impacts, evidence of need, trial feasibility, and market factors. The landscape analysis identified 635 studies; of 9 tests deemed to have sufficient clinical validity, 6 were presented to stakeholders. Two tests in lung cancer (ERCC1 and EGFR) and 1 test in breast cancer (CEA/CA15-3/CA27.29) were identified as top research priorities. Use of a diverse stakeholder group to inform research prioritization is feasible in a pragmatic and timely manner. Additional research is needed to optimize search strategies, stakeholder group composition, and integration with existing prioritization mechanisms.
Trubicka, Joanna; Żemojtel, Tomasz; Hecht, Jochen; Falana, Katarzyna; Piekutowska-Abramczuk, Dorota; Płoski, Rafał; Perek-Polnik, Marta; Drogosiewicz, Monika; Grajkowska, Wiesława; Ciara, Elżbieta; Moszczyńska, Elżbieta; Dembowska-Bagińska, Bożenna; Perek, Danuta; Chrzanowska, Krystyna H; Krajewska-Walasek, Małgorzata; Łastowska, Maria
2017-04-04
The defects in DNA repair genes are potentially linked to development and response to therapy in medulloblastoma. Therefore the purpose of this study was to establish the spectrum and frequency of germline variants in selected DNA repair genes and their impact on response to chemotherapy in medulloblastoma patients. The following genes were investigated in 102 paediatric patients: MSH2 and RAD50 using targeted gene panel sequencing and NBN variants (p.I171V and p.K219fs*19) by Sanger sequencing. In three patients with presence of rare life-threatening adverse events (AE) and no detected variants in the analyzed genes, whole exome sequencing was performed. Based on combination of molecular and immunohistochemical evaluations tumors were divided into molecular subgroups. Presence of variants was tested for potential association with the occurrence of rare life-threatening AE and other clinical features. We have identified altogether six new potentially pathogenic variants in MSH2 (p.A733T and p.V606I), RAD50 (p.R1093*), FANCM (p.L694*), ERCC2 (p.R695C) and EXO1 (p.V738L), in addition to two known NBN variants. Five out of twelve patients with defects in either of MSH2, RAD50 and NBN genes suffered from rare life-threatening AE, more frequently than in control group (p = 0.0005). When all detected variants were taken into account, the majority of patients (8 out of 15) suffered from life-threatening toxicity during chemotherapy. Our results, based on the largest systematic study performed in a clinical setting, provide preliminary evidence for a link between defects in DNA repair genes and treatment related toxicity in children with medulloblastoma. The data suggest that patients with DNA repair gene variants could need special vigilance during and after courses of chemotherapy.
Hou, June Y; Baptiste, Caitlin; Hombalegowda, Radhika Bangalore; Tergas, Ana I; Feldman, Rebecca; Jones, Nathaniel L; Chatterjee-Paer, Sudeshna; Bus-Kwolfski, Ama; Wright, Jason D; Burke, William M
2017-04-15
Optimal treatments for vulvar and vaginal melanomas (VVMs) have not been identified. Herein, the authors compare molecular profiles between VVM and nongynecologic melanoma (NGM) subtypes with the objective of identifying novel, targetable biomarkers. In total, 2304 samples of malignant melanoma that were submitted to Caris Life Sciences between 2009 and 2015 were reviewed. In situ hybridization and immunohistochemistry were used to assess copy numbers and protein expression of selected genes. Sequenced variants were analyzed using a proprietary cancer panel. In total, 51 VVMs (14 vaginal and 37 vulvar melanomas) were compared with 2253 malignant NGMs, including 2127 cutaneous, 105 mucosal, and 21 acral melanomas. In VVMs, B-Raf proto-oncogene serine/threonine kinase (BRAF) was the most frequently mutated gene (26%) compared with 8.3% of mucosal NGMs (P = .008). In BRAF-mutated tumors, fewer VVMs (50%), compared with NGMs (82.1%), had a variant within the valine codon 600 (V600) domain. The KIT mutation rate was highest in VVMs (22%) compared with 3% in cutaneous (P < .001) and 8.8% in mucosal (P = .05) melanoma subtypes. NRAS mutations were rare in VVMs compared with cutaneous (25.9%; P = .009) and acral (40.6%; P = .002) melanoma subtypes. PD-L1 (56%) and PD-1 (75%) were frequently expressed in VVM, whereas PI3KCA pathway mutations and estrogen receptor/progesterone receptor expression were rare. Compared with VVMs that had KIT mutations, wild-type KIT VVMs were more likely to express molecular markers suggestive of platinum resistance (ERCC1), alkylating sensitivity (MGMT), and anthracycline sensitivity (TOP2A). The unique molecular features of VVM render this disease a distinct subtype of melanoma. Gene-based molecular therapy and immunotherapies may be promising and should be evaluated in clinical trials. Cancer 2017;123:1333-1344. © 2016 American Cancer Society. © 2016 American Cancer Society.
Li, Jie; Xing, Xiumei; Zhang, Xinjie; Liang, Boxuan; He, Zhini; Gao, Chen; Wang, Shan; Wang, Fangping; Zhang, Haiyan; Zeng, Shan; Fan, Junling; Chen, Liping; Zhang, Zhengbao; Zhang, Bo; Liu, Caixia; Wang, Qing; Lin, Weiwei; Dong, Guanghui; Tang, Huanwen; Chen, Wen; Xiao, Yongmei; Li, Daochuan
2018-03-01
In this study, we explore whether altered global histone modifications respond to low-level benzene exposure as well as their association with the hematotoxicity. We recruited 147 low-level benzene-exposed workers and 122 control workers from a petrochemical factory in Maoming City, Guangdong Province, China. The internal exposure marker level, urinary S-phenylmercapturic acid (SPMA), in benzene-exposed workers was 1.81-fold higher than that of the controls (P < 0.001). ELISA method was established to examine the specific histone modifications in human peripheral blood lymphocytes (PBLCs) of workers. A decrease in the counts of white blood cells (WBC), neutrophils, lymphocytes, and monocytes appeared in the benzene-exposed group (all P < 0.05) compared to the control group. Global trimethylated histone 3 lysine 4 (H3K4me3) modification was enhanced in the benzene-exposed group (P < 0.05) and was positively associated with the concentration of urinary SPMA (β = 0.103, P = 0.045) and the extent of DNA damage (% Tail DNA: β = 0.181, P = 0.022), but was negatively associated with the leukocyte count (WBC: β = -0.038, P = 0.023). The in vitro study revealed that H3K4me3 mark was enriched in the promoters of several DNA damage responsive (DDR) genes including CRY1, ERCC2, and TP53 in primary human lymphocytes treated with hydroquinone. Particularly, H3K4me3 modification was positively correlated with the expression of CRY1 in the PBLCs of benzene-exposed workers. These observations indicate that H3K4me3 modification might mediate the transcriptional regulation of DDR genes in response to low-dose benzene exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.
BRCA1: A Novel Prognostic Factor in Resected Non-Small-Cell Lung Cancer
Rosell, Rafael; Skrzypski, Marcin; Jassem, Ewa; Taron, Miquel; Bartolucci, Roberta; Sanchez, Jose Javier; Mendez, Pedro; Chaib, Imane; Perez-Roca, Laia; Szymanowska, Amelia; Rzyman, Witold; Puma, Francesco; Kobierska-Gulida, Grazyna; Farabi, Raffaele; Jassem, Jacek
2007-01-01
Background Although early-stage non-small-cell lung cancer (NSCLC) is considered a potentially curable disease following complete resection, patients have a wide spectrum of survival according to stage (IB, II, IIIA). Within each stage, gene expression profiles can identify patients with a higher risk of recurrence. We hypothesized that altered mRNA expression in nine genes could help to predict disease outcome: excision repair cross-complementing 1 (ERCC1), myeloid zinc finger 1 (MZF1) and Twist1 (which regulate N-cadherin expression), ribonucleotide reductase subunit M1 (RRM1), thioredoxin-1 (TRX1), tyrosyl-DNA phosphodiesterase (Tdp1), nuclear factor of activated T cells (NFAT), BRCA1, and the human homolog of yeast budding uninhibited by benzimidazole (BubR1). Methodology and Principal Findings We performed real-time quantitative polymerase chain reaction (RT-QPCR) in frozen lung cancer tissue specimens from 126 chemonaive NSCLC patients who had undergone surgical resection and evaluated the association between gene expression levels and survival. For validation, we used paraffin-embedded specimens from 58 other NSCLC patients. A strong inter-gene correlation was observed between expression levels of all genes except NFAT. A Cox proportional hazards model indicated that along with disease stage, BRCA1 mRNA expression significantly correlated with overall survival (hazard ratio [HR], 1.98 [95% confidence interval (CI), 1.11-6]; P = 0.02). In the independent cohort of 58 patients, BRCA1 mRNA expression also significantly correlated with survival (HR, 2.4 [95%CI, 1.01-5.92]; P = 0.04). Conclusions Overexpression of BRCA1 mRNA was strongly associated with poor survival in NSCLC patients, and the validation of this finding in an independent data set further strengthened this association. Since BRCA1 mRNA expression has previously been linked to differential sensitivity to cisplatin and antimicrotubule drugs, BRCA1 mRNA expression may provide additional information for customizing adjuvant antimicrotubule-based chemotherapy, especially in stage IB, where the role of adjuvant chemotherapy has not been clearly demonstrated. PMID:17987116
Reynaud, Enrique; Lomelí, Hilda; Vázquez, Martha; Zurita, Mario
1999-01-01
The XPD/ERCC2/Rad3 gene is required for excision repair of UV-damaged DNA and is an important component of nucleotide excision repair. Mutations in the XPD gene generate the cancer-prone syndrome, xeroderma pigmentosum, Cockayne’s syndrome, and trichothiodystrophy. XPD has a 5′- to 3′-helicase activity and is a component of the TFIIH transcription factor, which is essential for RNA polymerase II elongation. We present here the characterization of the Drosophila melanogaster XPD gene (DmXPD). DmXPD encodes a product that is highly related to its human homologue. The DmXPD protein is ubiquitous during development. In embryos at the syncytial blastoderm stage, DmXPD is cytoplasmic. At the onset of transcription in somatic cells and during gastrulation in germ cells, DmXPD moves to the nuclei. Distribution analysis in polytene chromosomes shows that DmXPD is highly concentrated in the interbands, especially in the highly transcribed regions known as puffs. UV-light irradiation of third-instar larvae induces an increase in the signal intensity and in the number of sites where the DmXPD protein is located in polytene chromosomes, indicating that the DmXPD protein is recruited intensively in the chromosomes as a response to DNA damage. This is the first time that the response to DNA damage by UV-light irradiation can be visualized directly on the chromosomes using one of the TFIIH components. PMID:10198066
van der Spek, P J; Eker, A; Rademakers, S; Visser, C; Sugasawa, K; Masutani, C; Hanaoka, F; Bootsma, D; Hoeijmakers, J H
1996-01-01
The xeroderma pigmentosum syndrome complementation group C (XP-C) is due to a defect in the global genome repair subpathway of nucleotide excision repair (NER). The XPC protein is complexed with HHR23B, one of the two human homologs of the yeast NER protein, RAD23 (Masutani at al. (1994) EMBO J. 8, 1831-1843). Using heparin chromatography, gel filtration and native gel electrophoresis we demonstrate that the majority of HHR23B is in a free, non-complexed form, and that a minor fraction is tightly associated with XPC. In contrast, we cannot detect any bound HHR23A. Thus the HHR23 proteins may have an additional function independent of XPC. The fractionation behaviour suggests that the non-bound forms of the HHR23 proteins are not necessary for the core of the NER reaction. Although both HHR23 proteins share a high level of overall homology, they migrate very differently on native gels, pointing to a difference in conformation. Gel filtration suggests the XPC-HHR23B heterodimer resides in a high MW complex. However, immunodepletion studies starting from repair-competent Manley extracts fall to reveal a stable association of a significant fraction of the HHR23 proteins or the XPC-HHR23B complex with the basal transcription/repair factor TFIIH, or with the ERCC1 repair complex. Consistent with a function in repair or DNA/chromatin metabolism, immunofluorescence studies show all XPC, HHR23B and (the free) HHR23A to reside in the nucleus. PMID:8692695
Prioritization in Comparative Effectiveness Research: The CANCERGEN Experience in Cancer Genomics
Thariani, Rahber; Wong, William; Carlson, Josh J; Garrison, Louis; Ramsey, Scott; Deverka, Patricia A; Esmail, Laura; Rangarao, Sneha; Hoban, Carolyn J; Baker, Laurence H; Veenstra, David L
2012-01-01
Background Systematic approaches to stakeholder-informed research prioritization are a central focus of comparative effectiveness research. Genomic testing in cancer is an ideal area to refine such approaches given rapid innovation and potentially significant impacts on patient outcomes. Objective To develop and pilot-test a stakeholder-informed approach to prioritizing genomic tests for future study in collaboration with the cancer clinical trials consortium SWOG. Methods We conducted a landscape-analysis to identify genomic tests in oncology using a systematic search of published and unpublished studies, and expert consultation. Clinically valid tests suitable for evaluation in a comparative study were presented to an external stakeholder group. Domains to guide the prioritization process were identified with stakeholder input, and stakeholders ranked tests using multiple voting rounds. Results A stakeholder group was created including representatives from patient-advocacy groups, payers, test developers, regulators, policy-makers, and community-based oncologists. We identified nine domains for research prioritization with stakeholder feedback: population impact; current standard of care, strength of association; potential clinical benefits, potential clinical harms, economic impacts, evidence of need, trial feasibility, and market factors. The landscape-analysis identified 635 studies; of 9 tests deemed to have sufficient clinical validity, 6 were presented to stakeholders. Two tests in lung cancer (ERCC1 and EGFR) and one test in breast cancer (CEA/CA15-3/CA27.29) were identified as top research priorities. Conclusions Use of a diverse stakeholder group to inform research prioritization is feasible in a pragmatic and timely manner. Additional research is needed to optimize search strategies, stakeholder group composition and integration with existing prioritization mechanisms. PMID:22274803
Porcine Tissue-Specific Regulatory Networks Derived from Meta-Analysis of the Transcriptome
Pérez-Montarelo, Dafne; Hudson, Nicholas J.; Fernández, Ana I.; Ramayo-Caldas, Yuliaxis; Dalrymple, Brian P.; Reverter, Antonio
2012-01-01
The processes that drive tissue identity and differentiation remain unclear for most tissue types. So are the gene networks and transcription factors (TF) responsible for the differential structure and function of each particular tissue, and this is particularly true for non model species with incomplete genomic resources. To better understand the regulation of genes responsible for tissue identity in pigs, we have inferred regulatory networks from a meta-analysis of 20 gene expression studies spanning 480 Porcine Affymetrix chips for 134 experimental conditions on 27 distinct tissues. We developed a mixed-model normalization approach with a covariance structure that accommodated the disparity in the origin of the individual studies, and obtained the normalized expression of 12,320 genes across the 27 tissues. Using this resource, we constructed a network, based on the co-expression patterns of 1,072 TF and 1,232 tissue specific genes. The resulting network is consistent with the known biology of tissue development. Within the network, genes clustered by tissue and tissues clustered by site of embryonic origin. These clusters were significantly enriched for genes annotated in key relevant biological processes and confirm gene functions and interactions from the literature. We implemented a Regulatory Impact Factor (RIF) metric to identify the key regulators in skeletal muscle and tissues from the central nervous systems. The normalization of the meta-analysis, the inference of the gene co-expression network and the RIF metric, operated synergistically towards a successful search for tissue-specific regulators. Novel among these findings are evidence suggesting a novel key role of ERCC3 as a muscle regulator. Together, our results recapitulate the known biology behind tissue specificity and provide new valuable insights in a less studied but valuable model species. PMID:23049964
Targeted RNA-Sequencing with Competitive Multiplex-PCR Amplicon Libraries
Blomquist, Thomas M.; Crawford, Erin L.; Lovett, Jennie L.; Yeo, Jiyoun; Stanoszek, Lauren M.; Levin, Albert; Li, Jia; Lu, Mei; Shi, Leming; Muldrew, Kenneth; Willey, James C.
2013-01-01
Whole transcriptome RNA-sequencing is a powerful tool, but is costly and yields complex data sets that limit its utility in molecular diagnostic testing. A targeted quantitative RNA-sequencing method that is reproducible and reduces the number of sequencing reads required to measure transcripts over the full range of expression would be better suited to diagnostic testing. Toward this goal, we developed a competitive multiplex PCR-based amplicon sequencing library preparation method that a) targets only the sequences of interest and b) controls for inter-target variation in PCR amplification during library preparation by measuring each transcript native template relative to a known number of synthetic competitive template internal standard copies. To determine the utility of this method, we intentionally selected PCR conditions that would cause transcript amplification products (amplicons) to converge toward equimolar concentrations (normalization) during library preparation. We then tested whether this approach would enable accurate and reproducible quantification of each transcript across multiple library preparations, and at the same time reduce (through normalization) total sequencing reads required for quantification of transcript targets across a large range of expression. We demonstrate excellent reproducibility (R2 = 0.997) with 97% accuracy to detect 2-fold change using External RNA Controls Consortium (ERCC) reference materials; high inter-day, inter-site and inter-library concordance (R2 = 0.97–0.99) using FDA Sequencing Quality Control (SEQC) reference materials; and cross-platform concordance with both TaqMan qPCR (R2 = 0.96) and whole transcriptome RNA-sequencing following “traditional” library preparation using Illumina NGS kits (R2 = 0.94). Using this method, sequencing reads required to accurately quantify more than 100 targeted transcripts expressed over a 107-fold range was reduced more than 10,000-fold, from 2.3×109 to 1.4×105 sequencing reads. These studies demonstrate that the competitive multiplex-PCR amplicon library preparation method presented here provides the quality control, reproducibility, and reduced sequencing reads necessary for development and implementation of targeted quantitative RNA-sequencing biomarkers in molecular diagnostic testing. PMID:24236095
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qi; Underwood, Tracy S.A.; Kung, Jong
2016-05-01
Purpose: Clinical proton beam therapy has been based on the use of a generic relative biological effectiveness (RBE) of ∼1.1. However, emerging data have suggested that Fanconi anemia (FA) and homologous recombination pathway defects can lead to a variable RBE, at least in vitro. We investigated the role of SLX4 (FANCP), which acts as a docking platform for the assembly of multiple structure-specific endonucleases, in the response to proton irradiation. Methods and Materials: Isogenic cell pairs for the study of SLX4, XPF/ERCC1, MUS81, and SLX1 were irradiated at the mid-spread-out Bragg peak of a clinical proton beam (linear energy transfer 2.5 keV/μm)more » or with 250 kVp x-rays, and the clonogenic survival fractions were determined. To estimate the RBE of the protons relative to cobalt-60 photons (Co60Eq), we assigned a RBE(Co60Eq) of 1.1 to x-rays to correct the physical dose measured. Standard DNA repair foci assays were used to monitor the damage responses, and the cell cycle distributions were assessed by flow cytometry. The poly(ADP-ribose) polymerase inhibitor olaparib was used for comparison. Results: Loss of SLX4 function resulted in an enhanced proton RBE(Co60Eq) of 1.42 compared with 1.11 for wild-type cells (at a survival fraction of 0.1; P<.05), which correlated with increased persistent DNA double-strand breaks in cells in the S/G{sub 2} phase. Genetic analysis identified the SLX4-binding partner MUS81 as a mediator of resistance to proton radiation. Both proton irradiation and olaparib treatment resulted in a similar prolonged accumulation of RAD51 foci in SLX4/MUS81-deficient cells, suggesting a common defect in the repair of DNA replication fork-associated damage. Conclusions: A defect in the FA pathway at the level of SLX4 results in hypersensitivity to proton radiation, which is, at least in part, due to impaired MUS81-mediated processing of replication forks that stall at clustered DNA damage. In vivo and clinical studies are needed to confirm these findings in human cancers.« less
Liu, Qi; Underwood, Tracy S A; Kung, Jong; Wang, Meng; Lu, Hsiao-Ming; Paganetti, Harald; Held, Kathryn D; Hong, Theodore S; Efstathiou, Jason A; Willers, Henning
2016-05-01
Clinical proton beam therapy has been based on the use of a generic relative biological effectiveness (RBE) of ∼1.1. However, emerging data have suggested that Fanconi anemia (FA) and homologous recombination pathway defects can lead to a variable RBE, at least in vitro. We investigated the role of SLX4 (FANCP), which acts as a docking platform for the assembly of multiple structure-specific endonucleases, in the response to proton irradiation. Isogenic cell pairs for the study of SLX4, XPF/ERCC1, MUS81, and SLX1 were irradiated at the mid-spread-out Bragg peak of a clinical proton beam (linear energy transfer 2.5 keV/μm) or with 250 kVp x-rays, and the clonogenic survival fractions were determined. To estimate the RBE of the protons relative to cobalt-60 photons (Co60Eq), we assigned a RBE(Co60Eq) of 1.1 to x-rays to correct the physical dose measured. Standard DNA repair foci assays were used to monitor the damage responses, and the cell cycle distributions were assessed by flow cytometry. The poly(ADP-ribose) polymerase inhibitor olaparib was used for comparison. Loss of SLX4 function resulted in an enhanced proton RBE(Co60Eq) of 1.42 compared with 1.11 for wild-type cells (at a survival fraction of 0.1; P<.05), which correlated with increased persistent DNA double-strand breaks in cells in the S/G2 phase. Genetic analysis identified the SLX4-binding partner MUS81 as a mediator of resistance to proton radiation. Both proton irradiation and olaparib treatment resulted in a similar prolonged accumulation of RAD51 foci in SLX4/MUS81-deficient cells, suggesting a common defect in the repair of DNA replication fork-associated damage. A defect in the FA pathway at the level of SLX4 results in hypersensitivity to proton radiation, which is, at least in part, due to impaired MUS81-mediated processing of replication forks that stall at clustered DNA damage. In vivo and clinical studies are needed to confirm these findings in human cancers. Copyright © 2016 Elsevier Inc. All rights reserved.
Sentinel-1 interferometry and modelling of the 2014 Fogo volcano crisis
NASA Astrophysics Data System (ADS)
Nikkhoo, Mehdi; Walter, Thomas R.; Prats-Iraola, Pau
2015-04-01
The Sentinel-1 mission is a European Space Agency's mission with the aim of earth surface monitoring on land and sea. Through the ESA project INSARAP, we aim at studying the Sentinel-1 InSAR performance for different study areas, and developing new routines for TOPS data analysis. Here we describe results achieved from Sentinel-1 acquisitions over Fogo Island, Cape Verdes. A new volcanic eruption occurred on Fogo volcano in November 2014, leading to a request for assistance communicated by the European ERCC (Emergency Response Coordination Centre). The eruption occurred after a 20 yr period of quiescence inside the Cha das Caldeiras, the embayment of a pre-historic giant landslide. The eruption affected populated areas and has lead to significant loss and destruction, forcing thousands of inhabitants to leave their homes. The timely acquisitions of Sentinel-1 data allows us the comparison of the amplitude and phase differences before and after the eruption. This is one of the first applications of Sentinel-1 data, allowing testing the system and accurate measurements of the deformation processes associated with the volcano eruption. Sentinel-1 InSAR results processed by us in ascending and descending geometry, allows developing numerical models to explain the deformation. To this aim we make use of a novel boundary element code that is based on the artifact free analytical solution of triangular dislocation elements (see Nikkhoo and Walter, 2015, Geophys. J. Int., doi:10.1093/gji/ggv035). The models consider topography and complex source geometries. We find that the magma dike is largely emplaced within the subaerial part of the volcano edifice, where the steep topography has large effects on InSAR results, the surface displacement, and the parameters of the models. Embedded in an inversion scheme, we could reproduce most of the deformation signals as determined in the Sentinel-1 InSAR data, although residuals remain in localized areas that might be associated to processes different than the considered dike. This work hence shows one of the first use of Sentinel-1 data in a volcanic crisis and helps assessing the magma path at depth and associated deformation complexities, relevant for preparation and designing monitoring networks for future eruptions.
Genotype-phenotype correlation of xeroderma pigmentosum in a Chinese Han population.
Sun, Z; Zhang, J; Guo, Y; Ni, C; Liang, J; Cheng, R; Li, M; Yao, Z
2015-04-01
Xeroderma pigmentosum (XP) is a rare autosomal recessive disorder characterized by extreme sensitivity to sunlight, freckle-like pigmentation and a greatly increased incidence of skin cancers. Genetic mutation detection and genotype-phenotype analysis of XP are rarely reported in the Chinese Han population. To investigate the mutational spectrum of XP in a Chinese Han population, to discover any genotype-phenotype correlation and, consequently, to propose a simple and effective tool for the molecular diagnosis of XP. This study was carried out on 12 unrelated Chinese families that included 13 patients with clinically suspected XP. Genomic DNA was extracted from peripheral blood samples. Mutation screening was performed by direct sequencing of exons and flanking intron-exon boundaries for the entire coding region of eight XP genes. In 12 patients, direct sequencing of the whole coding region of eight XP genes revealed pathogenic mutations, including seven compound heterozygous mutations, three homozygous mutations and a Japanese founder mutation. Thirteen mutations have not been previously identified. This cohort was composed of four patients with XP-C (XPC), two with XP-G (ERCC5), three with XP-A (XPA) and three with XP-V (POLH). This study identified 13 novel mutations and extended the mutation spectrum of XP in the Chinese Han population. In this cohort, we found that patients with XP-G have no neurological symptoms, and patients with XP-A and XP-V have a high incidence of malignancy. Furthermore, lack of stringent protection against sunlight, late diagnosis and long duration of disease play an important role. © 2014 British Association of Dermatologists.
Trapping-mediated dissociative chemisorption of C3H8 and C3D8 on Ir(110)
NASA Astrophysics Data System (ADS)
Kelly, D.; Weinberg, W. H.
1996-07-01
We have employed molecular beam techniques to investigate the molecular trapping and trapping-mediated dissociative chemisorption of C3H8 and C3D8 on Ir(110) at low beam translational energies, Ei≤5 kcal/mol, and surface temperatures, Ts, from 85 to 1200 K. For Ts=85 K, C3H8 is molecularly adsorbed on Ir(110) with a trapping probability, ξ, equal to 0.94 at Ei=1.6 kcal/mol and ξ=0.86 at Ei=5 kcal/mol. At Ei=1.9 kcal/mol and Ts=85 K, ξ of C3D8 is equal to 0.93. From 150 K to approximately 700 K, the initial probabilities of dissociative chemisorption of propane decrease with increasing Ts. For Ts from 700 to 1200 K, however, the initial probability of dissociative chemisorption maintains the essentially constant value of 0.16. These observations are explained within the context of a kinetic model which includes both C-H (C-D) and C-C bond cleavage. Below 450 K propane chemisorption on Ir(110) arises essentially solely from C-H (C-D) bond cleavage, an unactivated mechanism (with respect to a gas-phase energy zero) for this system, which accounts for the decrease in initial probabilities of chemisorption with increasing Ts. With increasing Ts, however, C-C bond cleavage, the activation energy of which is greater than the desorption energy of physically adsorbed propane, increasingly contributes to the measured probability of dissociative chemisorption. The activation energies, referenced to the bottom of the physically adsorbed molecular well, for C-H and C-C bond cleavage for C3H8 on Ir(110) are found to be Er,CH=5.3±0.3 kcal/mol and Er,CC=9.9±0.6 kcal/mol, respectively. The activation energies for C-D and C-C bond cleavage for C3D8 on Ir(110) are 6.3±0.3 kcal/mol and 10.5±0.6 kcal/mol, respectively. The desorption activation energy of propane from Ir(110) is approximately 9.5 kcal/mol. These activation energies are compared to activation energies determined recently for ethane and propane adsorption on Ir(111), Ru(001), and Pt(110)-(1×2), and ethane activation on Ir(110).
Efficacy of Exome-Targeted Capture Sequencing to Detect Mutations in Known Cerebellar Ataxia Genes.
Coutelier, Marie; Hammer, Monia B; Stevanin, Giovanni; Monin, Marie-Lorraine; Davoine, Claire-Sophie; Mochel, Fanny; Labauge, Pierre; Ewenczyk, Claire; Ding, Jinhui; Gibbs, J Raphael; Hannequin, Didier; Melki, Judith; Toutain, Annick; Laugel, Vincent; Forlani, Sylvie; Charles, Perrine; Broussolle, Emmanuel; Thobois, Stéphane; Afenjar, Alexandra; Anheim, Mathieu; Calvas, Patrick; Castelnovo, Giovanni; de Broucker, Thomas; Vidailhet, Marie; Moulignier, Antoine; Ghnassia, Robert T; Tallaksen, Chantal; Mignot, Cyril; Goizet, Cyril; Le Ber, Isabelle; Ollagnon-Roman, Elisabeth; Pouget, Jean; Brice, Alexis; Singleton, Andrew; Durr, Alexandra
2018-05-01
Molecular diagnosis is difficult to achieve in disease groups with a highly heterogeneous genetic background, such as cerebellar ataxia (CA). In many patients, candidate gene sequencing or focused resequencing arrays do not allow investigators to reach a genetic conclusion. To assess the efficacy of exome-targeted capture sequencing to detect mutations in genes broadly linked to CA in a large cohort of undiagnosed patients and to investigate their prevalence. Three hundred nineteen index patients with CA and without a history of dominant transmission were included in the this cohort study by the Spastic Paraplegia and Ataxia Network. Centralized storage was in the DNA and cell bank of the Brain and Spine Institute, Salpetriere Hospital, Paris, France. Patients were classified into 6 clinical groups, with the largest being those with spastic ataxia (ie, CA with pyramidal signs [n = 100]). Sequencing was performed from January 1, 2014, through December 31, 2016. Detected variants were classified as very probably or definitely causative, possibly causative, or of unknown significance based on genetic evidence and genotype-phenotype considerations. Identification of variants in genes broadly linked to CA, classified in pathogenicity groups. The 319 included patients had equal sex distribution (160 female [50.2%] and 159 male patients [49.8%]; mean [SD] age at onset, 27.9 [18.6] years). The age at onset was younger than 25 years for 131 of 298 patients (44.0%) with complete clinical information. Consanguinity was present in 101 of 298 (33.9%). Very probable or definite diagnoses were achieved for 72 patients (22.6%), with an additional 19 (6.0%) harboring possibly pathogenic variants. The most frequently mutated genes were SPG7 (n = 14), SACS (n = 8), SETX (n = 7), SYNE1 (n = 6), and CACNA1A (n = 6). The highest diagnostic rate was obtained for patients with an autosomal recessive CA with oculomotor apraxia-like phenotype (6 of 17 [35.3%]) or spastic ataxia (35 of 100 [35.0%]) and patients with onset before 25 years of age (41 of 131 [31.3%]). Peculiar phenotypes were reported for patients carrying KCND3 or ERCC5 variants. Exome capture followed by targeted analysis allows the molecular diagnosis in patients with highly heterogeneous mendelian disorders, such as CA, without prior assumption of the inheritance mode or causative gene. Being commonly available without specific design need, this procedure allows testing of a broader range of genes, consequently describing less classic phenotype-genotype correlations, and post hoc reanalysis of data as new genes are implicated in the disease.
A mutation in the XPB/ERCC3 DNA repair transcription gene, associated with trichothiodystrophy.
Weeda, G; Eveno, E; Donker, I; Vermeulen, W; Chevallier-Lagente, O; Taïeb, A; Stary, A; Hoeijmakers, J H; Mezzina, M; Sarasin, A
1997-01-01
Trichothiodystrophy (TTD) is a rare, autosomal recessive disorder characterized by sulfur-deficient brittle hair and nails, mental retardation, impaired sexual development, and ichthyosis. Photosensitivity has been reported in approximately 50% of the cases, but no skin cancer is associated with TTD. Virtually all photosensitive TTD patients have a deficiency in the nucleotide excision repair (NER) of UV-induced DNA damage that is indistinguishable from that of xeroderma pigmentosum (XP) complementation group D (XP-D) patients. DNA repair defects in XP-D are associated with two additional, quite different diseases; XP, a sun-sensitive and cancer-prone repair disorder, and Cockayne syndrome (CS), a photosensitive condition characterized by physical and mental retardation and wizened facial appearance. One photosensitive TTD case constitutes a new repair-deficient complementation group, TTD-A. Remarkably, both TTD-A and XP-D defects are associated with subunits of TFIIH, a basal transcription factor with a second function in DNA repair. Thus, mutations in TFIIH components may, on top of a repair defect, also cause transcriptional insufficiency, which may explain part of the non-XP clinical features of TTD. Besides XPD and TTDA, the XPB gene product is also part of TFIIH. To date, three patients with the remarkable conjunction of XP and CS but not TTD have been assigned to XP complementation group B (XP-B). Here we present the characterization of the NER defect in two mild TTD patients (TTD6VI and TTD4VI) and confirm the assignment to X-PB. The causative mutation was found to be a single base substitution resulting in a missense mutation (T119P) in a region of the XPB protein completely conserved in yeast, Drosophila, mouse, and man. These findings define a third TTD complementation group, extend the clinical heterogeneity associated with XP-B, stress the exclusive relationship between TTD and mutations in subunits of repair/transcription factor TFIIH, and strongly support the concept of "transcription syndromes." Images Figure 6 PMID:9012405
Monogenic and polygenic determinants of sarcoma risk: an international genetic study.
Ballinger, Mandy L; Goode, David L; Ray-Coquard, Isabelle; James, Paul A; Mitchell, Gillian; Niedermayr, Eveline; Puri, Ajay; Schiffman, Joshua D; Dite, Gillian S; Cipponi, Arcadi; Maki, Robert G; Brohl, Andrew S; Myklebost, Ola; Stratford, Eva W; Lorenz, Susanne; Ahn, Sung-Min; Ahn, Jin-Hee; Kim, Jeong Eun; Shanley, Sue; Beshay, Victoria; Randall, Robert Lor; Judson, Ian; Seddon, Beatrice; Campbell, Ian G; Young, Mary-Anne; Sarin, Rajiv; Blay, Jean-Yves; O'Donoghue, Seán I; Thomas, David M
2016-09-01
Sarcomas are rare, phenotypically heterogeneous cancers that disproportionately affect the young. Outside rare syndromes, the nature, extent, and clinical significance of their genetic origins are not known. We aimed to investigate the genetic basis for bone and soft-tissue sarcoma seen in routine clinical practice. In this genetic study, we included 1162 patients with sarcoma from four cohorts (the International Sarcoma Kindred Study [ISKS], 966 probands; Project GENESIS, 48 probands; Asan Bio-Resource Center, 138 probands; and kConFab, ten probands), who were older than 15 years at the time of consent and had a histologically confirmed diagnosis of sarcoma, recruited from specialist sarcoma clinics without regard to family history. Detailed clinical, pathological, and pedigree information was collected, and cancer diagnoses in probands and relatives were independently verified. Targeted exon sequencing using blood (n=1114) or saliva (n=48) samples was done on 72 genes (selected due to associations with increased cancer risk) and rare variants were stratified into classes approximating the International Agency for Research on Cancer (IARC) clinical classification for genetic variation. We did a case-control rare variant burden analysis using 6545 Caucasian controls included from three cohorts (ISKS, 235 controls; LifePool, 2010 controls; and National Heart, Lung, and Blood Institute Exome Sequencing Project [ESP], 4300 controls). The median age at cancer diagnosis in 1162 sarcoma probands was 46 years (IQR 29-58), 170 (15%) of 1162 probands had multiple primary cancers, and 155 (17%) of 911 families with informative pedigrees fitted recognisable cancer syndromes. Using a case-control rare variant burden analysis, 638 (55%) of 1162 sarcoma probands bore an excess of pathogenic germline variants (combined odds ratio [OR] 1·43, 95% CI 1·24-1·64, p<0·0001), with 227 known or expected pathogenic variants occurring in 217 individuals. All classes of pathogenic variants (known, expected, or predicted) were associated with earlier age of cancer onset. In addition to TP53, ATM, ATR, and BRCA2, an unexpected excess of functionally pathogenic variants was seen in ERCC2. Probands were more likely than controls to have multiple pathogenic variants compared with the combined control cohort group and the LifePool control cohort (OR 2·22, 95% CI 1·57-3·14, p=1·2 × 10(-6)) and the cumulative burden of multiple variants correlated with earlier age at cancer diagnosis (Mantel-Cox log-rank test for trend, p=0·0032). 66 of 1162 probands carried notifiable variants following expert clinical review (those recognised to be clinically significant to health and about which patients should be advised), whereas 293 (25%) probands carried variants with potential therapeutic significance. About half of patients with sarcoma have putatively pathogenic monogenic and polygenic variation in known and novel cancer genes, with implications for risk management and treatment. Rainbows for Kate Foundation, Johanna Sewell Research Foundation, Australian National Health and Medical Research Council, Cancer Australia, Sarcoma UK, National Cancer Institute, Liddy Shriver Sarcoma Initiative. Copyright © 2016 Elsevier Ltd. All rights reserved.
Duconge, Jorge; Cadilla, Carmen L; Windemuth, Andreas; Kocherla, Mohan; Gorowski, Krystyna; Seip, Richard L; Bogaard, Kali; Renta, Jessica Y; Piovanetti, Paola; D'Agostino, Darrin; Santiago-Borrero, Pedro J; Ruaño, Gualberto
2009-01-01
Polymorphisms in the cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1) genes significantly alter the effective warfarin dose. We determined the frequencies of alleles, single carriers, and double carriers of single nucleotide polymorphisms (SNPs) in the CYP2C9 and VKORC1 genes in a Puerto Rican cohort and gauged the impact of these polymorphisms on warfarin dosage using a published algorithm. A total of 92 DNA samples were genotyped using Luminex x-MAP technology. The polymorphism frequencies were 6.52%, 5.43% and 28.8% for CYP2C9 *2, *3 and VKORC1-1639 C>A polymorphisms, respectively. The prevalence of combinatorial genotypes was 16% for carriers of both the CYP2C9 and VKORC1 polymorphisms, 9% for carriers of CYP2C9 polymorphisms, 35% for carriers of the VKORC1 polymorphism, and the remaining 40% were non-carriers for either gene. Based on a published warfarin dosing algorithm, single, double and triple carriers of functionally deficient polymorphisms predict reductions of 1.0-1.6, 2.0-2.9, and 2.9-3.7 mg/day, respectively, in warfarin dose. Overall, 60% of the population carried at least a single polymorphism predicting deficient warfarin metabolism or responsiveness and 13% were double carriers with polymorphisms in both genes studied. Combinatorial genotyping of CYP2C9 and VKORC1 can allow for individualized dosing of warfarin among patients with gene polymorphisms, potentially reducing the risk of stroke or bleeding.
Duconge, Jorge; Cadilla, Carmen L.; Windemuth, Andreas; Kocherla, Mohan; Gorowski, Krystyna; Seip, Richard L.; Bogaard, Kali; Renta, Jessica Y.; Piovanetti, Paola; D’Agostino, Darrin; Santiago-Borrero, Pedro J.; Ruaño, Gualberto
2010-01-01
Polymorphisms in the cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1) genes significantly alter the effective warfarin dose. We determined the frequencies of alleles, single carriers, and double carriers of single nucleotide polymorphisms (SNPs) in the CYP2C9 and VKORC1 genes in a Puerto Rican cohort and gauged the impact of these polymorphisms on warfarin dosage using a published algorithm. A total of 92 DNA samples were genotyped using Luminex® x-MAP technology. The polymorphism frequencies were 6.52%, 5.43% and 28.8% for CYP2C9 *2, *3 and VKORC1-1639 G>A polymorphisms, respectively. The prevalence of combinatorial genotypes was 16% for carriers of both the CYP2C9 and VKORC1 polymorphisms, 9% for carriers of CYP2C9 polymorphisms, 35% for carriers of the VKORC1 polymorphism, and the remaining 40% were non-carriers for either gene. Based on a published warfarin dosing algorithm, single, double and triple carriers of functionally deficient polymorphisms predict reductions of 1.0–1.6, 2.0–2.9, and 2.9–3.7 mg/day, respectively, in warfarin dose. Overall, 60% of the population carried at least a single polymorphism predicting deficient warfarin metabolism or responsiveness and 13% were double carriers with polymorphisms in both genes studied. Combinatorial genotyping of CYP2C9 and VKORC1 can allow for individualized dosing of warfarin among patients with gene polymorphisms, potentially reducing the risk of stroke or bleeding. PMID:20073138
DRD2/ANKK1 gene polymorphisms in forensic autopsies of methamphetamine intoxication fatalities.
Matsusue, Aya; Ishikawa, Takaki; Ikeda, Tomoya; Tani, Naoto; Arima, Hisatomi; Waters, Brian; Hara, Kenji; Kashiwagi, Masayuki; Takayama, Mio; Ikematsu, Natsuki; Kubo, Shin-Ichi
2018-04-22
Dopamine D2 receptor/ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1) gene polymorphisms have been associated with responses to psychotropic drugs and addiction. We analyzed two DRD2/ANKK1 polymorphisms, Taq1A and -141C Ins/Del, in 37 fatal methamphetamine (MA) intoxication cases and 235 control cases in which MA and psychotropic drugs were not detected. The association among polymorphism, cause of death, and cerebrospinal fluid (CSF) dopamine concentration was evaluated. The Taq1A polymorphism distribution in the fatal MA intoxication cases differed from in the controls (P = 0.030) with a significantly high A1/A1 + A1/A2 genotype frequency. No significant associations were observed between -141C Ins/Del polymorphisms and MA intoxication cases or between DRD2/ANKK1 polymorphisms and CSF dopamine concentrations. Our findings suggest that the DRD2/ANKK1 Taq1A polymorphism is associated with susceptibility to fatal MA intoxication. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, Jixiang; Zhang, Jihui; Wu, Dandan; Wang, Jun; Dong, Weiguo
2014-12-01
Several polymorphisms have been identified in TNFSF15, while their roles in the incidence of ulcerative colitis (UC) and Crohn's disease (CD) are conflicting. This meta-analysis was aimed to clarify the impact of these polymorphisms on UC and CD risk. Databases were searched until 31 January 2014 for eligible studies on TNFSF15 polymorphisms. Data were extracted, and pooled odd ratios (ORs) as well as 95% confidence intervals (95% CIs) were calculated. Fifteen studies with 8903 CD patients, 4687 UC patients and 12 606 controls were included. Except for rs4263839 polymorphism, significant associations were found between the rest six TNFSF15 polymorphisms and CD risk (rs3810936: OR = 2.10, 95% CI, 1.47-3.00; rs6478108: OR = 2.19, 95% CI, 1.53-3.13; rs4979462: OR = 1.89, 95% CI, 1.42-2.52; rs6478109: OR = 2.00, 95% CI, 1.39-2.88; rs7848647: OR = 1.54, 95% CI, 1.15-2.06; rs7869487: OR = 1.51, 95% CI, 1.06-2.17). And we found rs3810936, rs6478108 and rs6478109 polymorphism were significantly associated with UC risk (rs3810936: OR = 1.19, 95% CI, 1.06-1.34; rs6478108: OR = 1.16, 95% CI, 1.06-1.26; rs6478109: OR = 1.16, 95% CI, 1.03-1.32). According to the subgroup analysis by ethnicity, except for rs4263839 in Caucasian and rs4979462 in Asian, all the rest investigated TNFSF15 polymorphisms were associated with CD risk and rs3810936 and rs7848647 polymorphism in Asian as well as rs6478108 polymorphism in Caucasian were associated with UC risk. This meta-analysis indicated that most of the seven TNFSF15 polymorphisms (except for rs4263839) were risk factors contributed to CD and UC susceptibility. The differences in ethnicity did not influence the risk obviously.
Sychev, Dmitrij Alekseevitch; Shuev, Grigorij Nikolaevich; Suleymanov, Salavat Shejhovich; Ryzhikova, Kristina Anatol’evna; Mirzaev, Karin Badavievich; Grishina, Elena Anatol’evna; Snalina, Natalia Evgenievna; Sozaeva, Zhannet Alimovna; Grabuzdov, Anton Mikhailovich; Matsneva, Irina Andreevna
2017-01-01
Background The efficiency and safety of drug therapy depends on the peculiarities of functioning of the P450 cytochrome group and transporting proteins. There are significant differences for single-nucleotide polymorphism (SNP) frequency. Materials and methods We studied the peculiarities of P450 cytochrome polymorphisms, SLCO1B1 transporting protein, and P-glycoprotein carriage in healthy volunteers in the Nanai ethnic group living in Russia, and compared them to the carriage of SNPs in the Russian population according to literature data. Results After performing the real-time polymerase chain reactions on the samples from 70 healthy volunteers from the Nanai group, for the CYP2C9*2C430T polymorphism we determined 70 CC-genotype carriers. As for the CYP2C9*3A1075C polymorphism, we found 62 AA-genotype carriers and eight AC-genotype carriers. For the CYP2C19*2G681A polymorphism, we determined 39 GG-genotype carriers and 28 GA-genotype carriers, for the CYP2C19*3G636A polymorphism 58 GG-genotype carriers and 12 GA-genotype carriers, and for the CYP2C19*17C806T polymorphism 67 CC-genotype carriers and three CT-genotype carriers. For the CYP2D6*4G1846A polymorphism, the GG genotype had 68 carriers, and the GA genotype two carriers. For the ABCB1*6C3435T polymorphism, there were 19 CC-genotype carriers and 39 CT-genotype carriers. For the SLCO1B1*5T521C polymorphism, the TT genotype had 41 carriers and the CT genotype 25 carriers. The distribution of genotypes fitted the Hardy–Weinberg equilibrium for all the polymorphisms, except those of CYP2C9*2. There were also significant differences in allele frequencies for some polymorphisms between the Nanais and the Russians. Conclusion In the Nanai population, there are polymorphisms connected with the decrease in safety and efficiency of drug therapy. Studying the ethnic differences might influence the determination of priority in the introduction of pharmacogenetic tests in clinical practice in different regions of Russia. PMID:28435307
Survivin -31 G/C polymorphism might contribute to colorectal cancer (CRC) risk: a meta-analysis.
Yao, Linhua; Hu, Yi; Deng, Zhongmin; Li, Jingjing
2015-01-01
Published data has shown inconsistent findings about the association of survivin -31 G/C polymorphism with the risk of colorectal cancer (CRC). This meta-analysis quantitatively assesses the results from published studies to provide a more precise estimate of the association between survivin -31 G/C polymorphism as a possible predictor of the risk of CRC. We conducted a literature search in the PubMed, Web of Science, and Cochrane Library databases. Stata 12 software was used to calculate the pooled odds ratios (ORs) with 95% confidence intervals (CIs) based on the available data from each article. Six studies including 1840 cases with CRC and 1804 controls were included in this study. Survivin -31 G/C polymorphism was associated with a significantly increased risk of CRC (OR = 1.78; 95% CI, 1.53-2.07; I(2) = 0%). In the race subgroup analysis, both Asians (OR = 1.72; 95% CI, 1.44-2.05; I(2) = 0%) and Caucasians (OR = 1.93; 95% CI, 1.46-2.55; I(2) = 0%) with survivin -31 G/C polymorphism had increased CRC risk. In the subgroup analysis according to site of CRC, survivin -31 G/C polymorphism was not associated with colon cancer risk (OR = 2.02; 95% CI, 0.79-5.22; I(2) = 82%). However, this polymorphism was significantly associated with rectum cancer risk (OR = 1.98; 95% CI, 1.42-2.74; I(2) = 0%). In the subgroup analysis by clinical stage, both early stage (I+II) and advanced stage (III+IV) were associated with survivin -31 G/C polymorphism (OR = 1.61; 95% CI, 1.20-2.16; I(2) = 0% and OR = 2.30; 95% CI, 1.70-3.13; I(2) = 0%, respectively). In the subgroup analysis by smoke status, both smokers and non-smokers with survivin -31 G/C polymorphism showed increased CRC risk (OR = 1.47; 95% CI, 1.01-2.13; I(2) = 60% and OR = 1.71; 95% CI, 1.28-2.30; I(2) = 0%, respectively). In the subgroup analysis by drink status, both drinkers and non-drinkers with survivin -31 G/C polymorphism showed increased CRC risk (OR = 1.58; 95% CI, 1.06-2.37; I(2) = 8% and OR = 1.61; 95% CI, 1.23-2.11; I(2) = 0%, respectively). In conclusion, this meta-analysis suggested that survivin -31 G/C polymorphism may be associated with the risk of CRC.
Uterine leiomyoma is associated with a polymorphism in the interleukin 1-beta gene.
Pietrowski, Detlef; Thewes, Roberta; Sator, Michael; Denschlag, Dominik; Keck, Christoph; Tempfer, Clemens
2009-08-01
To investigate whether polymorphisms in the interleukin-1beta (IL-1beta) gene are associated with uterine leiomyoma. Case-control study in a collective of 131 patients and 280 controls. Genotyping of the IL-1beta-511 and IL-1beta-3954 polymorphism was performed by PCR amplification and subsequent RFLP analysis. A significant difference in the allele frequencies of the IL-1beta-511 C
Luo, Yan; Liu, Qin; Lei, Xun; Wen, Yi; Yang, Ya-Lan; Zhang, Rui; Hu, Meng-Yao
2015-07-01
This study aims to estimate the association between ESR1 polymorphisms (PvuII and XbaI) and ESR2 polymorphisms (RsaI and AluI) with precocious puberty. Relevant studies published before March 2014 were retrieved by a electronic search among nine databases. Meta-analysis of the pooled odds ratios (ORs) with 95% confidence intervals (CIs) was calculated. Four eligible case-control studies including 491 precocious puberty patients and 370 healthy controls were identified. Three studies reported ESR1 PvuII and XbaI polymorphism and one study reported ESR2 RsaI and AluI polymorphism. Increment of precocious puberty risk was associated with PvuII polymorphism in the heterosis model ((CT) versus TT: OR 1.42, 95% CI: 1.05-1.91, p = 0.02). Risk of precocious puberty was associated with XbaI polymorphism in the dominant model (GG + GA versus AA: OR 1.48, 95% CI: 1.11-1.97, p = 0.007) and the heterosis model (GA versus AA: OR 1.68, 95% CI: 1.23-2.29, p = 0.001). This meta-analysis suggests that ESR1 XbaI and PvuII polymorphisms are associated with precocious puberty susceptibility, and the relationship between ESR2 RsaI and AluI polymorphism with precocious puberty remains to be further investigated. Well-designed studies with large sample size among different polymorphisms and ethnicities are in urgent need to provide and update reliable data for comprehensive and definite conclusion.
Kühne, Annett; Kaiser, Rolf; Schirmer, Markus; Heider, Ulrike; Muhlke, Sabine; Niere, Wiebke; Overbeck, Tobias; Hohloch, Karin; Trümper, Lorenz; Sezer, Orhan; Brockmöller, Jürgen
2007-07-01
Melphalan is widely used in the treatment of multiple myeloma. Pharmacokinetics of this alkylating drug shows high inter-individual variability. As melphalan is a phenylalanine derivative, the pharmacokinetic variability may be determined by genetic polymorphisms in the L-type amino acid transporters LAT1 (SLC7A5) and LAT2 (SLC7A8). Pharmacokinetics were analysed in 64 patients after first administration of intravenous melphalan. Severity of side effects was documented according to WHO criteria. Genomic DNA was analysed for polymorphisms in LAT1 and LAT2 by sequencing of the entire coding region, intron-exon boundaries and 2 kb upstream promoter region. Selected polymorphisms in the common heavy chain of both transporters, the protein 4F2hc (SLC3A2), were analysed by single nucleotide primer extension. Melphalan pharmacokinetics was highly variable with up to 6.2-fold differences in total clearance. A total of 44 polymorphisms were identified in LAT1 and 21 polymorphisms in LAT2. From all variants, only five were in the coding region and only one heterozygous non-synonymous polymorphism (Ala94Thr) was found in LAT2. Numerous polymorphisms were found in the LAT1 and LAT2 5'-flanking regions but did not correlate with expression of the respective genes. No significant correlations could be observed between the polymorphisms in 4F2hc, LAT1, and LAT2 with melphalan pharmacokinetics or with melphalan side effects. The study confirmed that these transporter genes are highly conserved, particularly in the coding sequences. Genetic variation in 4F2hc, LAT1, and LAT2 does not appear to be a major cause of inter-individual variability in pharmacokinetics and of adverse reactions to melphalan.
Functional polymorphisms in the sigma1 receptor gene associated with alcoholism.
Miyatake, Ryosuke; Furukawa, Aizo; Matsushita, Sachio; Higuchi, Susumu; Suwaki, Hiroshi
2004-01-01
Sigma1 receptors are involved in the pathogenesis of drug abuse. Two polymorphisms (GC-241-240TT and Gln2Pro) in the sigma1 receptor gene (SIGMAR1) have been identified. To investigate the role of SIGMAR1 in conveying susceptibility to alcoholism, we performed a functional analysis of polymorphisms in the SIGMAR1 and a case-control study. We initially screened for polymorphisms in the 5'-upstream region. The effects of the polymorphisms on transcriptional activity were determined using a gene reporter assay. The distribution of SIGMAR1 polymorphisms was analyzed in 307 alcoholic and 302 control subjects. A novel T-485A polymorphism was identified. The transcriptional activity of the A-485 allele and the TT-241-240 allele was significantly reduced compared with that of the T-485 allele and the GC-241-240 allele. The frequencies of the A-485 allele (chi2=5.575, df=1, p=.0205) and the TT-241-240/Pro2 haplotype (chi2=21.464, df=1, p<.0001) were significantly higher in control subjects compared with alcoholic subjects. The T-485A and the GC-241-240TT may be functional polymorphisms, and the A-485 allele and TT-241-240/Pro2 haplotype are possible protective factors for the development of alcoholism.
Albrechtsen, A; Grarup, N; Li, Y; Sparsø, T; Tian, G; Cao, H; Jiang, T; Kim, S Y; Korneliussen, T; Li, Q; Nie, C; Wu, R; Skotte, L; Morris, A P; Ladenvall, C; Cauchi, S; Stančáková, A; Andersen, G; Astrup, A; Banasik, K; Bennett, A J; Bolund, L; Charpentier, G; Chen, Y; Dekker, J M; Doney, A S F; Dorkhan, M; Forsen, T; Frayling, T M; Groves, C J; Gui, Y; Hallmans, G; Hattersley, A T; He, K; Hitman, G A; Holmkvist, J; Huang, S; Jiang, H; Jin, X; Justesen, J M; Kristiansen, K; Kuusisto, J; Lajer, M; Lantieri, O; Li, W; Liang, H; Liao, Q; Liu, X; Ma, T; Ma, X; Manijak, M P; Marre, M; Mokrosiński, J; Morris, A D; Mu, B; Nielsen, A A; Nijpels, G; Nilsson, P; Palmer, C N A; Rayner, N W; Renström, F; Ribel-Madsen, R; Robertson, N; Rolandsson, O; Rossing, P; Schwartz, T W; Slagboom, P E; Sterner, M; Tang, M; Tarnow, L; Tuomi, T; van't Riet, E; van Leeuwen, N; Varga, T V; Vestmar, M A; Walker, M; Wang, B; Wang, Y; Wu, H; Xi, F; Yengo, L; Yu, C; Zhang, X; Zhang, J; Zhang, Q; Zhang, W; Zheng, H; Zhou, Y; Altshuler, D; 't Hart, L M; Franks, P W; Balkau, B; Froguel, P; McCarthy, M I; Laakso, M; Groop, L; Christensen, C; Brandslund, I; Lauritzen, T; Witte, D R; Linneberg, A; Jørgensen, T; Hansen, T; Wang, J; Nielsen, R; Pedersen, O
2013-02-01
Human complex metabolic traits are in part regulated by genetic determinants. Here we applied exome sequencing to identify novel associations of coding polymorphisms at minor allele frequencies (MAFs) >1% with common metabolic phenotypes. The study comprised three stages. We performed medium-depth (8×) whole exome sequencing in 1,000 cases with type 2 diabetes, BMI >27.5 kg/m(2) and hypertension and in 1,000 controls (stage 1). We selected 16,192 polymorphisms nominally associated (p < 0.05) with case-control status, from four selected annotation categories or from loci reported to associate with metabolic traits. These variants were genotyped in 15,989 Danes to search for association with 12 metabolic phenotypes (stage 2). In stage 3, polymorphisms showing potential associations were genotyped in a further 63,896 Europeans. Exome sequencing identified 70,182 polymorphisms with MAF >1%. In stage 2 we identified 51 potential associations with one or more of eight metabolic phenotypes covered by 45 unique polymorphisms. In meta-analyses of stage 2 and stage 3 results, we demonstrated robust associations for coding polymorphisms in CD300LG (fasting HDL-cholesterol: MAF 3.5%, p = 8.5 × 10(-14)), COBLL1 (type 2 diabetes: MAF 12.5%, OR 0.88, p = 1.2 × 10(-11)) and MACF1 (type 2 diabetes: MAF 23.4%, OR 1.10, p = 8.2 × 10(-10)). We applied exome sequencing as a basis for finding genetic determinants of metabolic traits and show the existence of low-frequency and common coding polymorphisms with impact on common metabolic traits. Based on our study, coding polymorphisms with MAF above 1% do not seem to have particularly high effect sizes on the measured metabolic traits.
Bayés-García, Laura; Calvet, Teresa; Cuevas-Diarte, Miquel Àngel; Ueno, Satoru; Sato, Kiyotaka
2013-08-08
This study examined the influence of different thermal treatments on the crystallization and transformation of trioleoyl glycerol (OOO) and 1,2-dioleoyl-3-rac-linoleoyl glycerol (OOL). Two triacylglycerol (TAG) samples were cooled at 0.5-15 °C·min(-1) and heated at 2 and 15 °C·min(-1). The polymorphic characteristics of the two TAGs were analyzed in situ using differential scanning calorimetry, Raman spectroscopy, and synchrotron radiation X-ray diffraction. Multiple polymorphic forms were identified in OOO (α, β'2, β'1, β2, and β1) and OOL (α, β'2, and β'1). Larger quantities of more stable forms (e.g., β2 and β1 of OOO and β'1 of OOL) were obtained when the samples were slowly cooled and heated. In contrast, less stable polymorphs were obtained with increased cooling and heating rates. Polymorphic transformations occurred in either solid-state or melt-mediation and were influenced by heating rates. The results were analyzed by considering the activation energies for crystallization and transformation of stable and less stable polymorphic forms in comparison with previous studies on 1,3-dipalmitoyl-2-oleoyl-glycerol and 1, 3-dioleoyl-2-palmitoyl-glycerol.
Vasilyev, Filipp Filippovich; Danilova, Diana Aleksandrovna; Kaimonov, Vladimir Sergeevich; Chertovskih, Yana Valerievna; Maksimova, Nadezda Romanovna
2016-01-01
Allele frequencies of single nucleotide polymorphisms (SNPs) are variable among different populations; therefore the study of SNPs in ethnic groups is important for establishing the clinical significance of the screening of these polymorphisms. The main goal of the research is to study the polymorphisms of CYP2C9, CYP2C19, VKORC1, and SLCO1B1 in Yakuts. Genomic DNA from 229 Yakut subjects were analyzed by real-time polymerase chain reaction (PCR) (SLCO1B1 +521T > C, VKORC1 -1639G>A, CYP2C19 +681G>A, +636G>A, CYP2C9 +430С>T, +1075A>C). Genotype frequencies of polymorphisms in the population of the Yakuts were more characteristic of the Asian population. The results have been included in the software application "Lekgen" that we developed for the interpretation of pharmacogenetic testing. The data of our study obtained on frequency carriers of polymorphisms of genes SLCO1B1, CYP2C19, CYP2C9, VKORC1 among the Yakuts may be useful in developing recommendations for a personalized therapy.
Vasilyev, Filipp Filippovich; Danilova, Diana Aleksandrovna; Kaimonov, Vladimir Sergeevich; Chertovskih, Yana Valerievna; Maksimova, Nadezda Romanovna
2016-01-01
Allele frequencies of single nucleotide polymorphisms (SNPs) are variable among different populations; therefore the study of SNPs in ethnic groups is important for establishing the clinical significance of the screening of these polymorphisms. The main goal of the research is to study the polymorphisms of CYP2C9, CYP2C19, VKORC1, and SLCO1B1 in Yakuts. Genomic DNA from 229 Yakut subjects were analyzed by real-time polymerase chain reaction (PCR) (SLCO1B1 +521T > C, VKORC1 -1639G>A, CYP2C19 +681G>A, +636G>A, CYP2C9 +430С>T, +1075A>C). Genotype frequencies of polymorphisms in the population of the Yakuts were more characteristic of the Asian population. The results have been included in the software application “Lekgen” that we developed for the interpretation of pharmacogenetic testing. The data of our study obtained on frequency carriers of polymorphisms of genes SLCO1B1, CYP2C19, CYP2C9, VKORC1 among the Yakuts may be useful in developing recommendations for a personalized therapy. PMID:27499796
NASA Astrophysics Data System (ADS)
Njogu, Eric M.; Nyamori, Vincent O.; Omondi, Bernard
2018-02-01
The occurrence of concomitant polymorphism in 4‧-(isoquinolyl)-2,2‧:6‧,2″-terpyridine, 1a and 1b (2-quinterpy) and conformational polymorphism in 4‧-(4-quinolyl)-2,2‧:6‧,2″-terpyridine (4-quinterpy) has been identified to due to crystallization process and solvent, respectively. Crystallization of 2-quinterpy in acetone yielded the concomitant polymorphs 1a and 1b which crystallize in the monoclinic P21/c and the orthorhombic Pna21 space groups, respectively. The polymorph 2a was grown from bulk 4-quinterpy in dimethyl sulfoxide, crystallizes in the monoclinic P21/c space group, while 2b grown from acetonitrile or even acetone crystallizes in the monoclinic system but in P21/n space group.
NASA Astrophysics Data System (ADS)
Benarous, N.; Cherouana, A.; Aubert, Emmanuel; Durand, Pierrick; Dahaoui, S.
2016-02-01
Two new polymorphs of Schiff base, (E)-2-((2,6-dichlorobenzylidene)amino)benzonitrile, were prepared from the condensation of 4-amino-benzonitrile and 2,6-dichlorobenzaldehyde. The two polymorphs crystallize in two different space groups: P21/c for polymorph (I) with volume 1264.23(2) Å3 and Pbca for polymorph (II) with volume 2469.3(2) Å3. The two polymorphs have been characterized by FT-IR and UV-VIS spectroscopy. The crystal structures of both compounds were determined by single X-ray analysis. The difference between the two polymorphs was observed at the angle between the two phenyl rings which is 4.81° for the first one and 82.27° for the second one. Both crystal structures are built on the basis of moderate and weak hydrogen bonds. Theoretical calculations on isolated molecules at the MP2 cc-pVDZ level show that the two polymorphs correspond to two molecular conformations that are within less than 1 kJ mol-1 and DFT periodic calculations indicate that (II) is more stable than (I) by 4.1 kJ mol-1 of formula unit. Additionally, we performed TD-DFT calculation for free ligands to support the experimental data.
Effects of human SAMHD1 polymorphisms on HIV-1 susceptibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Tommy E.; Brandariz-Nuñez, Alberto; Valle-Casuso, Jose Carlos
SAMHD1 is a human restriction factor that prevents efficient infection of macrophages, dendritic cells and resting CD4+ T cells by HIV-1. Here we explored the antiviral activity and biochemical properties of human SAMHD1 polymorphisms. Our studies focused on human SAMHD1 polymorphisms that were previously identified as evolving under positive selection for rapid amino acid replacement during primate speciation. The different human SAMHD1 polymorphisms were tested for their ability to block HIV-1, HIV-2 and equine infectious anemia virus (EIAV). All studied SAMHD1 variants block HIV-1, HIV-2 and EIAV infection when compared to wild type. We found that these variants did notmore » lose their ability to oligomerize or to bind RNA. Furthermore, all tested variants were susceptible to degradation by Vpx, and localized to the nuclear compartment. We tested the ability of human SAMHD1 polymorphisms to decrease the dNTP cellular levels. In agreement, none of the different SAMHD1 variants lost their ability to reduce cellular levels of dNTPs. Finally, we found that none of the tested human SAMHD1 polymorphisms affected the ability of the protein to block LINE-1 retrotransposition. - Highlights: • Human SAMHD1 single-nucleotide polymorphisms block HIV-1 and HIV-2 infection. • SAMHD1 polymorphisms do not affect its ability to block LINE-1 retrotransposition. • SAMHD1 polymorphisms decrease the cellular levels of dNTPs.« less
Lu, XiaoCheng; Tang, Linjun; Li, Kai; Zheng, JinYu; Zhao, Penglai; Tao, Yi; Li, Li-Xin
2014-01-01
Polymorphisms in NKX2-3 gene have been inconsistently associated with Crohn's disease (CD) and ulcerative colitis (UC). To generate large-scale evidence on whether NKX2-3 polymorphisms are associated with CD or UC susceptibility we have conducted a meta-analysis of 17 studies involving 17329 patients and 18029 controls. A significantly increased CD or UC risk was observed in persons carrying a G allele at rs10883365 polymorphism (A/G) compared with those with a A allele. (OR = 1.226, 95%CI: 1.177–1.277 and OR = 1.274, 95%CI: 1.175–1.382 respectively). In the subgroup analysis, a significantly increased CD risk was found in both Europeans and Asians. For rs11190140 polymorphism (C/T) and CD risk, the risk estimate for the allele contrast was OR = 1.201 (1.136–1.269). This meta-analysis provided a robust result that persons with a G or T allele may have a moderately increased risk of CD, and suggested that rs10883365 polymorphism was also a candidate gene polymorphism for UC susceptibility. PMID:24473197
López-Ríos, Laura; Nóvoa, Francisco J; Chirino, Ricardo; Varillas, Francisco; Boronat-Cortés, Mauro; Wägner, Ana M
2011-01-01
Diabetic dyslipidaemia is common in type 2 diabetes (T2D) and insulin resistance and often precedes the onset of T2D. The Taq1B polymorphism in CETP (B1 and B2 alleles) (rs708272) and the G-250A polymorphism in LIPC (rs2070895) are associated with changes in enzyme activity and lipid concentrations. Our aim was to assess the effects of both polymorphisms on the risk of T2D. In a case-control study from the population-based Telde cohort, both polymorphisms were analysed by PCR-based methods. Subjects were classified, according to an oral glucose tolerance test, into diabetic (N = 115) and pre-diabetic (N = 116); 226 subjects with normal glucose tolerance, matched for age and gender, were included as controls. Chi-square (comparison between groups) and logistic regression (identification of independent effects) were used for analysis. The B1B1 Taq1B CETP genotype frequency increased with worsening glucose metabolism (42.5%, 46.1% and 54.3% in control, IGR and diabetic group; p = 0.042). This polymorphism was independently associated with an increased risk of diabetes (OR: 1.828; IC 95%: 1.12-2.99; p = 0.016), even after adjusting by confounding variables, whereas the LIPC polymorphism was not. Regarding the interaction between both polymorphisms, in the B1B1 genotype carriers, the absence of the minor (A) allele of the LIPC polymorphism increased the risk of having diabetes. The presence of the B1B1 Taq1B CETP genotype contributes to the presence of diabetes, independently of age, sex, BMI and waist. However, among carriers of B1B1, the presence of GG genotype of the -250 LIPC polymorphism increases this risk further.
Kim, Soon Ae; Kim, Jong-Woo; Song, Ji-Young; Park, Sunny; Lee, Hee Jae; Chung, Joo-Ho
2004-01-01
Findings obtained from several studies indicate that ethanol enhances the activity of alpha4beta2 neuronal nicotinic acetylcholine receptor and support the possibility that a polymorphism of the nicotinic acetylcholine receptor alpha4 subunit gene (CHRNA4) modulates enhancement of nicotinic receptor function by ethanol. To identify the association between the CfoI polymorphism of the CHRNA4 and alcoholism, we examined distribution of genotypes and allele frequencies in Korean patients diagnosed with alcoholism (n = 127) and Korean control subjects without alcoholism (n = 185) with polymerase chain reaction-restriction fragment length polymorphism methods. We were able to detect the association between the CfoI polymorphism of the CHRNA4 and alcoholism in Korean patients (genotype P = .023; allele frequency P = .047). The genotypes and allele frequencies of known polymorphisms in other alcoholism candidate genes, such as alcohol metabolism-related genes [alcohol dehydrogenase 2 (ADH2), aldehyde dehydrogenase 2 (ALDH2), alcohol dehydrogenase 3 (ADH3), and cytochrome P450 2E1 (CYP2E1)] and mu-opioid receptor gene (OPRM1), were studied. The polymorphisms of ADH2, ALDH2, and CYP2E1 were significantly different in Korean patients with alcoholism and Korean control subjects without alcoholism, but ADH3 and OPRM1 did not differ between the two groups.
Mastan, Shaik G; Rathore, Mangal S; Bhatt, Vacha D; Chikara, J; Ghosh, A
2014-12-01
We investigated DNA methylation and polymorphism in the methylated DNA using AFLP based methylation-sensitive amplification polymorphism (MS-AFLP) markers in ecotypes of Jatropha curcas L. growing in similar and different geo-ecological conditions. Three ecotypes growing in different geo-ecological conditions with environmental heterogeneity (Group-1) and five ecotypes growing in similar environmental conditions (Group-2) were assessed. In ecotypes growing in group-1, 44.32 % DNA was methylated and of which 93.59 % DNA was polymorphic. While in group-2, 32.27 % DNA was methylated, of which 51.64 % DNA was polymorphic. In site 1 and site 2 of group-1, overall methylation was 18.94 and 22.44 % respectively with difference of 3.5 %, while overall polymorphism was 41.14 and 39.23 % with a difference of 1.91 %. In site 1 and site 2 of group-2, overall methylation was 24.68 and 24.18 % respectively with difference of 0.5 %, while overall polymorphism was 12.19 and 12.65 % with a difference of 0.46 %. The difference of methylation percentage and percentage of methylation polymorphism throughout the genome of J. curcas at site 1 and 2 of group-1 is higher than that of J. curcas at site 1 and 2 of group-2. These results correlated the physico-chemical properties of soil at these sites. The variations of physico-chemical properties of soil at Chorwadla (site 1 in group-1 and site 2 in group-2) compared to the soil at Brahmapur (site 2 in group-1) is higher than that of soil at Neswad (site 1 in group-2). The study suggests that these homologous nucleotide sequences probably play important role in ecotype adaptation to environmental heterogeneity by creating epiallelic variations hence in evolution of ecotypes/clines or forms of species showing phenotypic/genotypic differences in different geographical areas.
TLR-4 polymorphisms and leukocyte TLR-4 expression in febrile UTI and renal scarring.
Bayram, Meral Torun; Soylu, Alper; Ateş, Halil; Kızıldağ, Sefa; Kavukçu, Salih
2013-09-01
In this study, we aimed to determine the relation of TLR-4 Asp299Gly and Thr399Ile polymorphisms and monocyte/neutrophil TLR-4 expression to febrile urinary tract infection (UTI) and renal scar development in children. The study was performed in children with a history of febrile UTI. Patients with and without renal scarring were classified as group 1 and group 2, respectively, while the control cases in our previous study were used as the control group (group 3). All three groups were compared for the rate of TLR-4 Asp299Gly and Thr399Ile polymorphisms, and for basal and lipopolysaccharide-stimulated monocyte/neutrophil TLR-4 expression levels. There were 168 patients (86 in group 1, 82 in group 2) and 120 control cases. Monocyte/neutrophil TLR-4 expression levels were similar in groups 1 and 2. However, both groups had lower TLR-4 expression than group 3. The rate of TLR-4 Asp299Gly polymorphism was not different in all groups. TLR-4 Thr399Ile polymorphism was higher in groups 1 and 2 than in group 3 (14.0, 12.2, and 2.0 %, respectively), while group 1 and group 2 were not different. Furthermore, monocyte TLR-4 expression level was lower in those having TLR-4 Thr399Ile polymorphism than in those without this polymorphism. Patients with febrile UTI had more frequent TLR-4 Thr399Ile polymorphism and lower monocyte/neutrophil TLR-4 expression. These findings indicate that children carrying TLR-4 Thr399Ile polymorphism and/or having low level of monocyte/neutrophil TLR-4 expression have a tendency to develop febrile UTI. However, we could not show the association of TLR-4 polymorphisms and of TLR-4 expression level to renal scarring.
Liang, Xia; Zhang, Yong-jing; Liu, Bing; Ni, Qin; Jin, Ming-juan; Ma, Xin-yuan; Yao, Kai-yan; Li, Qi-long; Chen, Kun
2009-06-01
To explore the distribution of HER-2 genetic polymorphism at codon 655 and its association with susceptibility of colorectal cancer in Chinese. A population-based case-control study was carried out. 292 patients with colorectal cancer and 842 healthy controls were interviewed. Meanwhile, the genetic polymorphism of HRE-2 was detected using polymerase chain reaction-restriction fragment length polymorphism. The frequencies of Ile/Val+Val/Val genotypes and Val allele were both higher in cases (25.34% and 13.36%) than those in controls (18.41% and 9.74%) (P<0.05). Compared with Ile/Ile genotype, Ile/Val+Val/Val genotypes were significantly associated with colorectal cancer [ORadjusted=1.54, 95% CI: 1.11-2.14]. The adjusted odds ratio of interactions between this polymorphism and smoking, alcohol drinking were 1.43 (95%CI: 0.88-2.30) and 1.29 (95%CI: 0.73-2.29), respectively. The present findings suggest that HER-2 genetic polymorphism at codon 655 may be associated with the risk of colorectal cancer in Chinese. In addition, there are no interactions between this polymorphism and smoking, alcohol drinking, respectively.
Ramos, Lucero Rengifo; Arias, Duverney Gaviria; Salazar, Liliana Salazar; Vélez, Juan Pablo; Pardo, Stella Lozano
2012-03-01
The indel polymorphisms in the promoting region and the 2(nd) intron polymorphisms in the serotonin transporter gene (SLC6A4) have been associated to bipolar disorder 1 (BD1) in several population studies. The objective was to analyze the genotypic and allelic frequencies in both gene regions in a study of cases and controls with individuals from Risaralda and Quindío (Colombia) so as to establish possible associations to BD1, and compare results with previous and similar studies. 133 patients and 120 controls were studied. L and S indel polymorphisms in the promoting region were analyzed by PCR, together with VNTR STin2.10 and STin 2.12 VNTRs polymorphisms in the 2(nd) intron of the SL-C6A4 gene Genotypic and allelic frequencies for the S and L polymorphisms were similar both in cases and controls. However, the LL genotype was significantly increased both in BD1 population (OR=1.89; CI95%=1.1-3.68), and when discriminated by gender. This particular genotype in general population is OR=2.22; IC95%=1.04-5.66 for women, and OR=1.62; IC 95%=0.71-4.39 for men. No significant genotypic and allelic differences were found for VNTR STin2.10 and STin 2.12. polymorphisms. No association was found between polymorphisms of 5-HTTLPR polymorphisms and the 2(nd) intron of the serotonin transporting gene in general patients with BD1, nor when compared by gender. Our results are similar to those reported for Caucasian populations and differ from those of Asian and Brazilian populations. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
Valenta, M; Slechta, V; Slechtová, V; Kálal, L
1977-01-01
Isoenzyme patterns and the polymorphism of lactate dehydrogenase (LDH) were investigated in 3 fish species of family Cyprinidae, i.e. tench (Tinca tinca), crucian carp (Carassius carassius) and carp (Cyprinus carpio). The isoenzyme patterns were tissue and species specific. In crucian carp subunits with different electrophoretic mobility are present, which are genetically controlled from the B1, B2, A1, A2 and C loci, while the set of loci in carp is B1, B2, A, C1 and C2 and in tench B, A, C. The locus B of LDH in tench, the locus B2 in crucian carp, and the loci B1, C1 and C2 in carp are polymorphic and have two different alleles in each case. The polymorphism did not affect the total LDH activity in the tissues. All the populations investigated were in Hardy-Weinberg equilibrium. The genetic control of the polymorphism in B1 and C1 loci in carp was proved by test matings. The polymorphism in B loci tested in erythrocytes may be utilized as genetic markers in the fish breeding.
Ge, Yu-Zheng; Xu, Lu-Wei; Jia, Rui-Peng; Xu, Zheng; Li, Wen-Cheng; Wu, Ran; Liao, Sheng; Gao, Fei; Tan, Si-Jia; Song, Qun; Xin, Hui
2014-05-01
Estrogens play an important role in male reproduction via interacting with estrogen receptors (ERs), whose expression can be regulated by the polymorphisms in different regions of ESR1 and ESR2 genes. However, results from published studies on the association between four well-characterized polymorphisms (PvuII, XbaI, RsaI, and AluI) in the gene of ERs (ESR1 and ESR2) and male infertility risk are inconclusive. To investigate the strength of relationship of PvuII and XbaI in ESR1 and RsaI and AluI in ESR2 with male infertility, we conducted a meta-analysis of 12 eligible studies with odds ratio (OR) and its corresponding 95 % confidence intervals (95 % CI). Overall, ESR1 PvuII and ESR2 RsaI polymorphisms were significantly associated with male infertility risk. The subgroup analyses by ethnicities demonstrated that in Asians, ESR1 PvuII, XbaI and ESR2 RsaI polymorphisms were significantly associated with a decreased infertility risk, while in Caucasians both ESR1 PvuII and ESR2 RsaI polymorphisms increased the susceptibility to male infertility. As for ESR2 AluI polymorphism, no significant association was detected in either overall analysis or subgroup analyses by ethnicities/genotyping methods. This meta-analysis suggested that polymorphisms in the genes of ERs (ESR1 and ESR2) may have differential roles in the predisposition to male infertility according to the different ethnic backgrounds. Further well-designed and unbiased studies with larger sample size and diverse ethnic backgrounds should be conducted to verify our findings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffon, N.; Pilon, C.; Martres, M.P.
1996-02-16
DNA fragments from a genomic library were used to establish the partial structure of the human dopamine D{sub 3} receptor gene (DRD3). Its coding sequence contains 6 exons and stretches over 40,000 base pairs. The complete DRD3 transcript and three shorter variants, in which the second and/or third exon are deleted, were detected in similar proportions in brains from four controls and three psychiatric patients. The Msp I polymorphism was localized in the fifth intron of the gene, 40,000 base pairs downstream the Bal I polymorphism and a PCR-based method was developed for genotyping this polymorphism. The distributions of themore » Msp I and Bal I genotypes were not independent in 297 individuals ({chi}{sup 2} = 10.5, df = 4, P = 0.03), but only a weak association was found between allele 1 of the Bal I polymorphism and allele 2 of the Msp I polymorphism ({chi}{sup 2} = 3.99, df = 1, P = 0.04). The previously reported association between homozygosity at both alleles of the Bal I polymorphism and schizophrenia was presently maintained in an extended sample, comprising 119 DSM-III-R chronic schizophrenics and 85 controls ({chi}{sup 2}= 5.3, df = 1, P = 0.02) and found more important in males than in females. The presence of the Bal I allele 2 is associated with an early age at onset, particularly in males (df = 35, t value = 2.6, P = 0.014). In the same sample, allelic frequencies, genotype counts, and proportion of homozygotes for the Msp I polymorphism did not differ between schizophrenics and controls ({chi}{sup 2}= 0.06, df = 1, P = 0.80, {chi}{sup 2} = 0.22, df = 1, P = 0.90 and {chi}{sup 2} = 0.16, df = 1, P = 0.69, respectively). The large distance of the Msp I polymorphism from the Bal I polymorphism and its localization in the 3{prime} part of the gene may explain the discrepant results obtained with the two polymorphisms. 36 refs., 2 figs., 4 tabs.« less
Niu, Yu-Ming; Du, Xin-Ya; Cai, Heng-Xing; Zhang, Chao; Yuan, Rui-Xia; Zeng, Xian-Tao; Luo, Jie
2015-11-27
Molecular epidemiological research suggests that interleukin-10 (IL-10) polymorphisms may be associated with an increased risk of head and neck cancer (HNC), but results remain controversial. To derive a more precise evaluation, we performed a meta-analysis focused on genetic polymorphisms of IL-10. PubMed, Embase, CNKI and Wanfang databases were searched for studies that examined the relationship between IL-10 polymorphisms or haplotypes and HNC risk. The odds ratio (OR) and 95% confidence interval (CI) were applied to assess the relationship strength. Publication bias, sensitivity and cumulative analyses were conducted to measure the robustness of our findings. Overall, nine related studies involving 2,258 patients and 2,887 control samples were analyzed. Significant associations between the IL-10-1082A > G polymorphism and HNC risk were observed (G vs. A: OR = 1.56, 95% CI = 1.27-1.92, P < 0.01, I(2) = 69.4%; AG vs. AA: OR = 1.64, 95% CI = 1.32-2.05, P < 0.01, I(2) = 55.6%; GG vs. AA: OR = 2.24, 95% CI = 1.69-2.97, P < 0.01, I(2) = 38.5%; AG + GG vs. AA: OR = 1.70, 95% CI = 1.36-2.14, P = 0.02, I(2) = 61.8%; GG vs. AA + AG: OR = 1.89, 95% CI = 1.23-2.90, P = 0.01, I(2) = 46.3%) in the total population, as well as in subgroup analysis. Moreover, increased HNC risks were also associated with the IL-10 -819T > C polymorphism and the GCC haplotype. In conclusion, our meta-analyses suggest that IL-10 polymorphisms, specifically the -1082A > G polymorphism, may be associated with increased risk of HNC development.
The association between PAI-1 -675 4G/5G polymorphism and type 2 diabetes mellitus.
Chen, L; Li, S-Y; Liu, M
2017-08-15
In this study, we aimed to analyze the association between plasminogen activator inhibitor 1 (PAI-1) -675 4G/5G polymorphism and type 2 diabetes mellitus (T2DM) risk. We included in 187 T2DM patients and 186 heathy controls between 2014 and 2017 from Tianjin Gong An Hospital, China. All patients and controls were ethnically Chinese Han population. The primers and polymerase chain reaction (PCR) conditions were performed. Results from this case-control study suggested that PAI-1 -675 4G/5G polymorphism was not associated with T2DM risk in four genetic models. Additionally, PAI-1 -675 4G/5G polymorphism was not associated with clinical and laboratory characteristics, such as age, gender, body mass index, systolic blood pressure, diastolic blood pressure, total cholesterol, triglycerides, and HbA1c. In conclusion, this case-control study suggested that PAI-1 -675 4G/5G polymorphism was not associated with T2DM risk in this population.
Quteineh, Lina; Preisig, Martin; Rivera, Margarita; Milaneschi, Yuri; Castelao, Enrique; Gholam-Rezaee, Mehdi; Vandenberghe, Frederik; Saigi-Morgui, Nuria; Delacrétaz, Aurélie; Cardinaux, Jean-René; Willemsen, Gonneke; Boomsma, Dorret I; Penninx, Brenda W J H; Ching-López, Ana; Conus, Philippe; Eap, Chin B
2016-07-01
Psychiatric disorders have been hypothesized to share common etiological pathways with obesity, suggesting related neurobiological bases. We aimed to examine whether CRTC1 polymorphisms were associated with major depressive disorder (MDD) and to test the association of these polymorphisms with obesity markers in several large case-control samples with MDD. The association between CRTC1 polymorphisms and MDD was investigated in three case-control samples with MDD (PsyCoLaus n1=3,362, Radiant n2=3,148 and NESDA/NTR n3=4,663). The effect of CRTC1 polymorphisms on obesity markers was then explored. CRTC1 polymorphisms were not associated with MDD in the three samples. CRTC1 rs6510997C>T was significantly associated with fat mass in the PsyCoLaus study. In fact, a protective effect of this polymorphism was found in MDD cases (n=1,434, β=-1.32%, 95% CI -2.07 to -0.57, p<0.001), but not in controls. In the Radiant study, CRTC1 polymorphisms were associated with BMI, exclusively in individuals with MDD (n=2,138, β=-0.75kg/m(2), 95% CI -1.30 to -0.21, p=0.007), while no association with BMI was found in the NESDA/NTR study. Estimated fat mass using bioimpedance that capture more accurately adiposity was only present in the PsyCoLaus sample. CRTC1 polymorphisms seem to play a role with obesity markers in individuals with MDD rather than non-depressive individuals. Therefore, the weak association previously reported in the population-based samples was driven by cases diagnosed with lifetime MDD. However, CRTC1 seems not to be implicated directly in the development of psychiatric diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Mlynarsky, Liat; Bejarano-Achache, Idit; Muszkat, Mordechai; Caraco, Yoseph
2012-05-01
Warfarin responsiveness is characterized by marked interindividual variability. A major portion of this variability is attributed to CYP2C9 and VKORC1 polymorphisms, but almost 50% is still unaccounted for. This paper reports the first prospective study on the association between factor VII R353Q polymorphism and warfarin responsiveness during induction. Genotyping for factor VII R353Q and 323D/I polymorphisms was performed in a cohort consisting of 374 patients (198 CYP2C9*1/*1) treated with warfarin who were prospectively followed from warfarin initiation. Compared with *1/*1-R/R and *1/*1-R/Q genotype carriers, *1/*1-Q/Q homozygotes achieved higher International Normalized Ratio (INR) values while consuming lower warfarin doses. The greater sensitivity was illustrated by 82.1% higher Warfarin Sensitivity Index During Induction (WSIDI) (0.14 ± 0.11 vs. 0.08 ± 0.50 mg⁻¹ Mann-Whitney, P = 0.043). Multiple regression analysis consisting of both genetic and nongenetic factors explained 26% of WSIDI variability, with R353Q genetic polymorphism having a modest yet significant effect and accounting for 1.7% of the overall variability. Moreover, the incidence of overanticoagulation (i.e., INR > 4) was 6.94-fold higher among *1/*1-Q/Q vs. *1/*1-R/R&R/Q carriers during warfarin induction (Pearson chi-square, P = 0.005). These findings were not accounted for by a chance difference in the distribution of VKORC1 genotypes. Analysis of these parameters among the entire cohort, including CYP2C9*2 and CYP2C9*3 variant allele carriers, did not reach statistical significance. Warfarin responsiveness during induction was unrelated to factor VII 323D/I genetic polymorphism. The response to warfarin during induction is influenced by factor VII R353Q polymorphism. The prospective use of this polymorphism, along with CYP2C9 and VKORC1, may enhance the accuracy of warfarin loading. However, the impact of R353Q polymorphism on overall warfarin response is subtle, and it is therefore unlikely that its use would be of clinical importance.
Hacker, U T; Erhardt, S; Tschöp, K; Jelinek, T; Endres, S
2001-09-01
The inflammatory response in infectious and autoimmune diseases is regulated by the balance between pro- and anti-inflammatory cytokines. The IL-1 complex contains polymorphic genes coding for IL-1alpha, IL-1beta and IL-1Ra. The IL-1Ra (variable number of tanden repeat) VNTR polymorphism has been shown to influence the capacity to produce IL-1beta and IL-1Ra after in vitro stimulation. Allele 2 of this polymorphism is associated with a number of inflammatory diseases. To determine the impact of the IL-1Ra polymorphism on in vivo human cytokine synthesis, we used a yellow fever vaccination model for the induction of cytokine synthesis in healthy volunteers. Two different yellow fever vaccines were used. After administration of the RKI vaccine (34 volunteers), plasma TNF-alpha concentration increased from 13.4 +/- 0.9 pg/ml to 23.3 +/- 1.1 pg/ml (P < 0.001), and plasma IL-1Ra concentration increased from 308 +/- 25 pg/ml to 1019 +/- 111 pg/ml (P < 0.001), on day 2. Using Stamaril vaccine, no increase in the plasma concentrations of either TNF-alpha or IL-1Ra could be detected (n = 17). Only the RKI vaccine induced TNF-alpha synthesis after in vitro stimulation of MNC. Carriers of allele 2 of the IL-1Ra polymorphism had increased baseline concentrations of IL-1Ra (350 +/- 32 pg/ml) compared with non-carriers (222 +/- 18 pg/ml, P < 0.001), and decreased concentrations of IL-1beta (0.9 +/- 0.2 pg/ml for carriers versus 2.8 +/- 0.7 pg/ml for non-carriers, P = 0.017). After yellow fever vaccination (RKI vaccine), no significant differences in the increase of IL-1Ra plasma levels were detected between carriers and non-carriers of allele 2 of the IL-1Ra gene polymorphism. This is the first study to examine the influence of this genetic polymorphism on in vivo-induced human IL-1beta and IL-1Ra synthesis. Baseline concentrations of IL-1Ra and IL-1beta were significantly influenced by the IL-1Ra polymorphism. No influence of the IL-1Ra polymorphism on the in vivo-induced production of IL-1Ra and IL-1beta could be detected.
A meta-analysis of eNOS and ACE gene polymorphisms and risk of pre-eclampsia in women.
Shaik, A P; Sultana, A; Bammidi, V K; Sampathirao, K; Jamil, K
2011-10-01
A meta-analyses of endothelial nitric oxide synthase (eNOS) and angiotensin-converting enzyme (ACE) gene polymorphisms in pre-eclampsia was performed. We shortlisted 33 studies (17 for ACE; 16 for eNOS gene polymorphisms), of which 29 articles (16 for ACE and 15 for eNOS) were analysed. Overall, 1,620 cases with pre-eclampsia and 2,158 controls were analysed for intron 16 insertion-deletion polymorphism in ACE gene. A total of 1,610 subjects with pre-eclampsia and 2,875 controls were analysed for the Glu298Asp in eNOS gene. Overall, the random-effects odds ratio (OR) with Glu298Asp in eNOS gene was 0.958 (95% confidence intervals, CI 0.747-1.228, p > 0.05), and for the insertion-deletion/ACE polymorphism was 0.987 (95% CI 0.698-1.395, p > 0.05). Significant heterogeneity was observed in the studies that evaluated polymorphisms in ACE (Q value = 55.6; I(2) = 73; p value = 0.000); and eNOS (Q value = 37.2; I(2) = 62.4; p value = 0.001) polymorphisms. No significant risk of pre-eclampsia was observed in both eNOS and ACE genes with these polymorphisms.
Miranda-Lora, América Liliana; Cruz, Miguel; Aguirre-Hernández, Jesús; Molina-Díaz, Mario; Gutiérrez, Jorge; Flores-Huerta, Samuel; Klünder-Klünder, Miguel
2017-07-01
To evaluate the association of 64 obesity-related polymorphisms with pediatric-onset type 2 diabetes and other glucose- and insulin-related traits in Mexican children. Case-control and case-sibling designs were followed. We studied 99 patients with pediatric-onset type 2 diabetes, their siblings (n = 101) without diabetes, 83 unrelated pediatric controls and 137 adult controls. Genotypes were determined for 64 single nucleotide polymorphisms, and a possible association was examined between those genotypes and type 2 diabetes and other quantitative traits, after adjusting for age, sex and body mass index. In the case-pediatric control and case-adult control analyses, five polymorphisms were associated with increased likelihood of pediatric-onset type 2 diabetes; only one of these polymorphisms (CADM2/rs1307880) also showed a consistent effect in the case-sibling analysis. The associations in the combined analysis were as follows: ADORA1/rs903361 (OR 1.9, 95% CI 1.2; 3.0); CADM2/rs13078807 (OR 2.2, 95% CI 1.2; 4.0); GNPDA2/rs10938397 (OR 2.2, 95% CI 1.4; 3.7); VEGFA/rs6905288 (OR 1.4, 95% CI 1.1; 2.1) and FTO/rs9939609 (OR 1.8, 95% CI 1.0; 3.2). We also identified 16 polymorphisms nominally associated with quantitative traits in participants without diabetes. ADORA/rs903361, CADM2/rs13078807, GNPDA2/rs10938397, VEGFA/rs6905288 and FTO/rs9939609 are associated with an increased risk of pediatric-onset type 2 diabetes in the Mexican population.
Rife, Terrie; Rasoul, Bareza; Pullen, Nicholas; Mitchell, David; Grathwol, Kristen; Kurth, Janice
2009-08-01
Transcriptional changes of the enzyme nitric oxide synthase I (NOS1) are believed to play a role in the development of many diseases. The gene for NOS1 has 12 alternative first exons (1A-1L). The 1F exon is one of the most highly utilized first exons in the brain and has a polymorphism ((TG)(m)TA(TG)(n)) located in its promoter region. The polymorphism's length has been suggested to affect NOS1 transcription and play a role in Parkinson's disease (PD); however, the actual influence of the polymorphism on NOS1 transcription has not been studied. To better characterize the links of the polymorphism with PD, a genotyping study was done comparing polymorphism length among 170 PD patients and 150 age-matched controls. The pattern of changes between the two group's allele frequencies shows statistical significance (P = 0.0359). The smallest polymorphism sizes are more predominant among PD patients than controls. To study the effects of this polymorphism on NOS1 gene transcription, reporter gene constructs were made by cloning the NOS1 1F promoter with polymorphism lengths of either 42, 54, or 62 bp in front of the luciferase gene and transfecting them into HeLa or Sk-N-MC cells. NOS1-directed reporter gene constructs with the 62-bp polymorphism increased transcription of luciferase 2.2-fold in HeLa and 1.8-fold in Sk-N-MC cells compared with reporter gene constructs with the 42-bp polymorphism. These data suggest that if smaller polymorphism size contributes to the higher NOS1 levels in PD patients, an as yet unknown transcriptional mechanism is required. Copyright 2009 Wiley-Liss, Inc.
Ma, Mu-yuan; Ma, Zhi-bin; Xu, Hong-yu; Zhao, Jing-bo; Li, Ying; Gao, Meng
2013-03-01
To investigate the associations between polymorphisms of organic cation transporter OCTN1/2 (organic cation transporter 1/2) and the susceptibility of Crohn's disease (CD) through a meta-analysis. Databases of PubMed, EMBASE, MedLine, and CNKI (Chinese), Wanfang (Chinese) were searched for published case control studies on the association between polymorphisms of OCTN1/2 gene and the susceptibility of CD which were published before September 2012. The meta-analysis was applied with Review Manager 4.2 software and Stata 10.0 software. Nineteen eligible studies, including 14 from Europeans, 3 from Asians, 1 from Oceania, and 1 from the US were included in the meta-analysis. In total, significant associations were found between OCTN1/2 polymorphisms and the susceptibility of CD for all genetic models. In subgroup analyses, significant associations were found in the European population for OCTN1/2. Associations were not significant in the non-European population for OCTN1 (TT vs. CT: OR = 1.25, 95%CI: 0.75 - 1.98, P = 0.34; TT vs. CC + CT: OR = 1.48, 95%CI: 0.95 - 2.29, P = 0.08) and for OCTN2 (CC vs. GC: OR = 1.03, 95%CI: 0.68 - 1.56, P = 0.89; CC vs. GG + GC: OR = 1.23, 95%CI: 0.83 - 1.82, P = 0.31). However, there were significant associations found between OCTN1/2 (TT vs. CC, TT + CT vs. CC, CC vs. GG, CC + GC vs. GG) polymorphisms and the susceptibility of CD found in the non-European population. Results from this meta-analysis suggested that OCTN1/2 polymorphisms were associated with the susceptibility of CD in the European population. Associations between OCTN1/2 polymorphisms and the susceptibility of CD in the non-European population required searching for large samples to confirm the findings.
MBL, P2X7, and SLC11A1 gene polymorphisms in patients with oropharyngeal tularemia.
Somuk, Battal Tahsin; Koc, Sema; Ates, Omer; Göktas, Göksel; Soyalic, Harun; Uysal, Ismail Onder; Gurbuzler, Levent; Sapmaz, Emrah; Sezer, Saime; Eyibilen, Ahmet
2016-11-01
A significant association was found of oropharyngeal tularemia with SLC11A1 allele polymorphism (INT4 G/C) and MBL2 C + 4T (P/Q). These results indicate C allele and Q allele might be a risk factor for the development of oropharyngeal tularemia. This study aimed to investigate the relationship of SLC11A1, MBL, and P2X 7 gene polymorphism with oropharyngeal tularemia. The study included totally 120 patients who were diagnosed with oropharyngeal tularemia. Frequencies of polymorphisms in the following genes were analyzed both in the patient and control groups in the study: SLC11A1 (5'(GT) n Allele 2/3, Int4 G/C, 3' UTR, D543N G/A), MBL (MBL2 C + 4T (P/Q), and P2X 7 (-762 C/T and 1513 A/C). Among all polymorphisms that were investigated in this study, SLC11A1 gene showed a significance in the distriburtion of polymorphism allelle frequency at the INT4 region. Frequency of C allele was 54 (28%) in patients with oropharyngeal tularemia, and 31 (13%) in the control group (p = 0.006 and OR = 1.96 (1.21-3.20)). An association was detected between MBL2 C + 4T (P/Q) gene polymorphism and oropharyngeal tularemia (p < 0.005 and OR = 0.30 (0.19-0.48)). No significant relation was found between P2X 7 (-762 C/T and 1513 A/C) gene polymorphism and oropharyngeal tularemia in this study (p > 0.05).
Deng, Rui; Zhao, Fengyan; Zhong, Xiaoyun
2017-05-01
Polymorphisms in ADAM33 gene have been implicated in susceptibility to the risk of childhood asthma. However, the results remain controversial. We performed meta-analyses to clarify the relationship between them. Relevant articles were searched in PubMed, Embase, Wanfang, and China National Knowledge Infrastructure. The Odds ratio (OR) with 95% confidence interval (CI) was used to assess the strength of the associations. Fourteen studies with five ADAM33 polymorphisms (F + 1, T1, T2, S2, and V4) were identified, involving 2687 cases and 2996 controls. ADAM33 F + 1, T2, and T1 polymorphisms showed significant associations with asthma risks in the overall and Caucasian children, Asian children, and Caucasian and Chinese children, respectively; however, these significant results were unstable in sensitivity analysis. T1 revealed significant and stable associations with asthma risks among Asian children in the dominant (OR = 2.00, 95% CI = 1.40-2.87, P = 0.0002) and codominant (OR = 3.06, 95% CI = 1.71-5.50, P = 0.0002) models; in cumulative meta-analyses, these significant results were robust. Concerning S2 or V4 polymorphism, no significant associations were observed. These findings demonstrate that ADAM33 T1 polymorphism might be a potential susceptible predictor of asthma for Asian children. Further functional studies between this polymorphism and asthma risks are warranted.
Fan, Yaofu; Wang, Kun; Xu, Shuhang; Chen, Guofang; Di, Hongjie; Cao, Meng; Liu, Chao
2014-01-01
Recently, a number of studies have reported the association between the single nucleotide polymorphisms (SNPs) +45T>G polymorphism in the adiponectin (ADIPOQ) gene and type 2 diabetes mellitus (T2DM) risk, though the results are inconsistent. In order to obtain a more precise estimation of the relationship, a meta-analysis was performed. In this current study, the Medline, Embase, Pubmed, ISI Web of Knowledge, Ovid, Science Citation Index Expanded Database, Wanfang Database, and China National Knowledge Infrastructure were searched for eligible studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to estimate the strength of association. Forty-five publications were included in the final meta-analysis with 9986 T2DM patients and 16,222 controls for ADIPOQ +45T>G polymorphism according to our inclusion and exclusion criteria. The +45T>G polymorphism was associated with an overall significantly increased risk of T2DM (G vs. T: OR = 1.18, 95% CI = 1.06–1.32; The dominant model: OR = 1.18, 95% CI = 1.03–1.33; The recessive model: OR = 1.47, 95% CI = 1.20–1.78; The homozygous model: OR = 1.62, 95% CI = 1.25–2.09; Except the heterozygous model: OR = 1.11, 95% CI = 0.98–1.24). Subgroup analysis revealed a significant association between the +45T>G polymorphism and T2D in an Asian population. Thus, this meta-analysis indicates that the G allele of the ADIPOQ +45T>G polymorphisms associated with a significantly increased risk of T2DM in the Asian population. PMID:25561226
Zhao, Kun; Yang, Ming; Lu, Yanxia; Sun, Shusen; Li, Wei; Li, Xingang; Zhao, Zhigang
2018-05-23
Some studies have reported an association between P2Y12 gene polymorphisms and clopidogrel adverse outcomes with inconsistent results. We aimed to explore the relationship between P2Y12 polymorphisms and the risk of adverse clinical events in patients treated with clopidogrel through a meta-analysis. A systematic search of PubMed, Web of Science and the Cochrane Library was conducted. Retrieved articles were comprehensively reviewed and eligible studies were included, and the relevant data was extracted for this meta-analysis. All statistical tests were performed by the Review Manager 5.3 software. A total of 14 studies involving 8,698 patients were included. In the Han Chinese population, ischemic events were associated with P2Y12 T744C polymorphism in the CC vs TT+CT genetic model (OR=3.32, 95%CI=1.62-6.82, P =0.001), and the events were associated with P2Y12 C34T polymorphism in the TT+TC vs CC genetic model (OR=1.70, 95%CI=1.22-2.36, P =0.002). However, ischemic events were not related to P2Y12 G52T polymorphism (TT+TG vs GG: OR=1.13, 95%CI=0.76-1.68, P =0.56; TT vs GG+TG: OR=2.02, 95%CI=0.65-6.28, P =0.22). The associations between the P2Y12 polymorphism and ischemic events were not significant in T744C, G52T and C34T genotype for another subgroup of the Caucasian population ( P >0.05). Only two studies referring to bleeding events were included in this analysis of C34T polymorphism, and no significant association was found (TT+TC vs CC: OR=1.07, 95%CI=0.37-3.15, P =0.90). In the Caucasian population, P2Y12 gene polymorphisms are not associated with clinical events. However, in the Chinese Han population, P2Y12 T744C and C34T polymorphisms are significantly associated with adverse clinical events. © Georg Thieme Verlag KG Stuttgart · New York.
Choudhry, Shweta; Baskin, Laurence S; Lammer, Edward J; Witte, John S; Dasgupta, Sudeshna; Ma, Chen; Surampalli, Abhilasha; Shen, Joel; Shaw, Gary M; Carmichael, Suzan L
2015-05-01
Estrogenic endocrine disruptors acting via estrogen receptors α (ESR1) and β (ESR2) have been implicated in the etiology of hypospadias, a common congenital malformation of the male external genitalia. We determined the association of single nucleotide polymorphisms in ESR1 and ESR2 genes with hypospadias in a racially/ethnically diverse study population of California births. We investigated the relationship between hypospadias and 108 ESR1 and 36 ESR2 single nucleotide polymorphisms in 647 cases and 877 population based nonmalformed controls among infants born in selected California counties from 1990 to 2003. Subgroup analyses were performed by race/ethnicity (nonHispanic white and Hispanic subjects) and by hypospadias severity (mild to moderate and severe). Odds ratios for 33 of the 108 ESR1 single nucleotide polymorphisms had p values less than 0.05 (p = 0.05 to 0.007) for risk of hypospadias. However, none of the 36 ESR2 single nucleotide polymorphisms was significantly associated. In stratified analyses the association results were consistent by disease severity but different sets of single nucleotide polymorphisms were significantly associated with hypospadias in nonHispanic white and Hispanic subjects. Due to high linkage disequilibrium across the single nucleotide polymorphisms, haplotype analyses were conducted and identified 6 haplotype blocks in ESR1 gene that had haplotypes significantly associated with an increased risk of hypospadias (OR 1.3 to 1.8, p = 0.04 to 0.00001). Similar to single nucleotide polymorphism analysis, different ESR1 haplotypes were associated with risk of hypospadias in nonHispanic white and Hispanic subjects. No significant haplotype association was observed for ESR2. The data provide evidence that ESR1 single nucleotide polymorphisms and haplotypes influence the risk of hypospadias in white and Hispanic subjects, and warrant further examination in other study populations. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Polymorphs and polymorphic cocrystals of temozolomide.
Babu, N Jagadeesh; Reddy, L Sreenivas; Aitipamula, Srinivasulu; Nangia, Ashwini
2008-07-07
Crystal polymorphism in the antitumor drug temozolomide (TMZ), cocrystals of TMZ with 4,4'-bipyridine-N,N'-dioxide (BPNO), and solid-state stability were studied. Apart from a known X-ray crystal structure of TMZ (form 1), two new crystalline modifications, forms 2 and 3, were obtained during attempted cocrystallization with carbamazepine and 3-hydroxypyridine-N-oxide. Conformers A and B of the drug molecule are stabilized by intramolecular amide N--HN(imidazole) and N--HN(tetrazine) interactions. The stable conformer A is present in forms 1 and 2, whereas both conformers crystallized in form 3. Preparation of polymorphic cocrystals I and II (TMZBPNO 1:0.5 and 2:1) were optimized by using solution crystallization and grinding methods. The metastable nature of polymorph 2 and cocrystal II is ascribed to unused hydrogen-bond donors/acceptors in the crystal structure. The intramolecularly bonded amide N-H donor in the less stable structure makes additional intermolecular bonds with the tetrazine C==O group and the imidazole N atom in stable polymorph 1 and cocrystal I, respectively. All available hydrogen-bond donors and acceptors are used to make intermolecular hydrogen bonds in the stable crystalline form. Synthon polymorphism and crystal stability are discussed in terms of hydrogen-bond reorganization.
Lee, Y H; Bae, S-C
2016-10-01
This study aimed to explore whether TYK2 polymorphisms are associated with susceptibility to autoimmune rheumatic diseases. We conducted a meta-analysis on the association between TYK2 polymorphisms and autoimmune rheumatic diseases. Twelve studies with a total of 16,335 patients and 30,065 controls were included in the meta-analysis. Meta-analysis revealed an association between rheumatic diseases and the 2 allele of the TYK2 rs2304256 (OR = 0.885, 95% CI = 0.802-0.978, p = 0.016). Furthermore, stratification by ethnicity identified a significant association between this polymorphism and rheumatic diseases in Caucasians (OR = 0.822, 95% CI = 0.706-0.889, p = 9.5 × 10(-7)), but not in Asians (OR = 1.127, 95% CI = 0.835-1.522, p = 0.434). Meta-analysis by rheumatic disease type revealed a significant association between the 2 allele of the TYK2 rs2304256 and SLE in Caucasians (OR = 0.737, 95% CI = 0.673-0.808, p < 1.0 × 10(-8)) but not in Asians (OR = 1.211, 95% CI = 0.813-1.804, p = 0.347). Meta-analysis revealed that the rs12720356 polymorphism was associated with susceptibility to rheumatic diseases in Caucasians (OR = 0.812, 95% CI = 0.661-0.997, p = 0.046) but not in Asians. Interestingly, the rs280519 polymorphism was significantly associated with susceptibility to SLE both in Caucasians and Asians. However, no associations were found between the rs12720270, rs280500, rs280523 and rs8108236 polymorphisms and susceptibility to rheumatic diseases. This meta-analysis demonstrates that the TYK2 rs2304256 and rs12720356 polymorphisms are associated with susceptibility to rheumatic diseases, rs2304256 polymorphism is associated with SLE in Caucasians, and rs280519 polymorphism is associated with SLE in Caucasians and Asians. © The Author(s) 2016.
Sen, HM; Silan, F; Silan, C; Degirmenci, Y; Ozisik Kamaran, HI
2014-01-01
The CY2C19 and P2Y12 gene polymorphisms are responsible for resistance to clopidogrel, known as drug unresponsiveness. In this study we researched the effect of gene polymorphism on clinical results of patients who began clopidogrel therapy after acute ischemic cerebrovascular disease. The study included 51 patients. The patient group included patients who had begun prophylactic clopidogrel due to acute ischemic cerebrovascular disease in the last 2 years. All patients were monitored by the Neurology Outpatient Clinic at Çanakkale Onsekiz Mart Üniversity Research Hospital, Çanakkale, Turkey, and only those monitored for at least 1 year were included in the study. When the *1, *2 and *3 alleles of the CYP2C19 gene polymorphism were evaluated, two patients were homozygotes for *2/*2, 13 patients were heterozygous for *1/*2 and 36 patients were homozygotes for the wild type *1/*1. No patient had the *3 allele. Three heterozygous patients, one for *2/*2 and two for *1/*2, stopped clopidogrel therapy due to repeated strokes and began taking warfarin. When evaluating P2Y12 52 (G>T) and 34 (C>T) polymorphisms, all alleles were of the wild type. The CYP2C19 and P2Y12 gene polymorphisms may cause recurring strokes linked to insufficient response to treatment of ischemic cerebrovascular disease. In our patient group, three patients suffered repeated strokes and these patients had the CYP2C19*2 gene polymorphism. As a result, before medication use, genetic testing is important for human life, quality of life and economic burden. PMID:25937796
Arg753gln and Arg677 Trp Polymorphisms of Toll-Like Receptor 2 In Acute Apical Abscess
Miri-Moghaddam, Ebrahim; Farhad Mollashahi, Narges; Naghibi, Nava; Garme, Yasaman; Bazi, Ali
2018-01-01
Statement of the Problem: Genetic polymorphisms can alter immunity response against pathogens, which in turn influence individuals’ susceptibility to certain infections. Purpose: Our aim was to determine the association of Arg753Gln (rs5743708) and Arg677Trp (rs12191786) polymorphisms of toll like receptor-2 gene with the two clinical forms of apical periodontitis: acute apical abscess (AAA) and asymptomatic apical periodontitis (AAP). Materials and Method: There were 50 patients with AAA as case group and 50 with AAP as control group. Genotyping was done using Tetra-ARMS (amplification refractory mutation system) PCR. Results: Heterozygous genotype of Arg677Trp polymorphism was associated with risk of AAA (OR=1.9, 95% CI: 0.7-5.5, p= 0.05). Although statistically insignificant, Arg677Trp polymorphism promoted the risk of AAA in dominant model (OR=2.1, 95% CI: 0.7-5.9, p> 0.05). The frequency of mutant allele (T) of Arg677Trp polymorphism was higher in AAA (14%) than AAP (7%) subjects (OR=1.7, 95% CI: 0.6-4.7). For Arg753Gln polymorphism, wild homozygous (GG) represented the dominant genotype in both cases (96%) and controls (100%). Variant allele (A) of Arg753Gln polymorphism was identified in 2% of AAA, while no individual represented with this allele in AAP subjects. Individuals with Arg753Gln; Arg677Trp (GG; TC) combination showed an elevated risk of AAA (OR=1.6, 95% CI: 0.5- 4.2, p> 0.05). Conclusion: Arg677Trp polymorphism of TLR-2 rendered a higher risk for the development of abscesses in apical periodontitis. It is recommended to explore role of this polymorphism in other populations. PMID:29854884
Arg753gln and Arg677 Trp Polymorphisms of Toll-Like Receptor 2 In Acute Apical Abscess.
Miri-Moghaddam, Ebrahim; Farhad Mollashahi, Narges; Naghibi, Nava; Garme, Yasaman; Bazi, Ali
2018-06-01
Genetic polymorphisms can alter immunity response against pathogens, which in turn influence individuals' susceptibility to certain infections. Our aim was to determine the association of Arg753Gln (rs5743708) and Arg677Trp (rs12191786) polymorphisms of toll like receptor-2 gene with the two clinical forms of apical periodontitis: acute apical abscess (AAA) and asymptomatic apical periodontitis (AAP). There were 50 patients with AAA as case group and 50 with AAP as control group. Genotyping was done using Tetra-ARMS (amplification refractory mutation system) PCR. Heterozygous genotype of Arg677Trp polymorphism was associated with risk of AAA (OR=1.9, 95% CI: 0.7-5.5, p = 0.05). Although statistically insignificant, Arg677Trp polymorphism promoted the risk of AAA in dominant model (OR=2.1, 95% CI: 0.7-5.9, p > 0.05). The frequency of mutant allele (T) of Arg677Trp polymorphism was higher in AAA (14%) than AAP (7%) subjects (OR=1.7, 95% CI: 0.6-4.7). For Arg753Gln polymorphism, wild homozygous (GG) represented the dominant genotype in both cases (96%) and controls (100%). Variant allele (A) of Arg753Gln polymorphism was identified in 2% of AAA, while no individual represented with this allele in AAP subjects. Individuals with Arg753Gln; Arg677Trp (GG; TC) combination showed an elevated risk of AAA (OR=1.6, 95% CI: 0.5- 4.2, p > 0.05). Arg677Trp polymorphism of TLR-2 rendered a higher risk for the development of abscesses in apical periodontitis. It is recommended to explore role of this polymorphism in other populations.
Zhang, Wu; Gordon, Michael; Press, Oliver A; Rhodes, Katrin; Vallböhmer, Daniel; Yang, Dong Yun; Park, David; Fazzone, William; Schultheis, Anne; Sherrod, Andy E; Iqbal, Syma; Groshen, Susan; Lenz, Heinz-Josef
2006-07-01
The study aimed to investigate whether polymorphisms in genes of the EGFR signaling pathway are associated with clinical outcome in advanced colorectal cancer (CRC) patients treated with single-agent Cetuximab. Polymorphisms of interest in the EGFR pathway include: cyclin D1 (CCND1) A870G, cyclooxygenase 2 (Cox-2) G-765C, epidermal growth factor (EGF) A61G, epidermal growth factor receptor (EGFR) codon R497 K, EGFR CA dinucleotide repeat in intron 1, interleukin (IL)-8 T-251A and vascular endothelial growth factor (VEGF) C936 T gene polymorphisms. Thirty-nine metastatic CRC patients were enrolled in the IMCL-0144 trial and treated with single-agent Cetuximab. Using the polymerase chain reaction-restriction fragment length polymorphism method, gene polymorphisms of CCND1, COX-2, EGF, EGFR, IL-8 and VEGF were assessed from genomic DNA extracted from blood samples. A significant association was found between the CCND1 A870G polymorphism and overall survival in our 39 CRC subjects. Patients with the AA homozygous genotype survived for a median of 2.3 months [95% confidence interval (CI)=2.1-5.7], whereas those with any G allele (AG, GG genotype) survived for a median of 8.7 months (95% CI=4.4-13.5) (P=0.019, log-rank test). When we analysed the cyclin D1 and EGF polymorphisms together, patients with favourable genotypes (EGF any A allele and CCND1 any G allele) showed a median survival time of 12 months (95% CI=4.8-15.2), whereas patients with any two unfavourable genotypes (EGF GG or CCND1 AA) showed a median survived time of 4.4 months (95% CI=2.1-5.7) (P=0.004, log-rank test). The findings of this pilot study suggest that the cyclin D1 A870G and the EGF A61G polymorphisms may be useful molecular markers for predicting clinical outcome in CRC patients treated with single-agent Cetuximab.
Goh, Lucky Poh Wah; Chong, Eric Tzyy Jiann; Chua, Kek Heng; Chuah, Jitt Aun; Lee, Ping-Chin
2014-01-01
CYP2E1 PstI polymorphism G-1259C (rs3813867) genotype distributions vary significantly among different populations and are associated with both diseases, like cancer, and adverse drug effects. To date, there have been limited genotype distributions and allele frequencies of this polymorphism reported in the three major indigenous ethnic groups (KadazanDusun, Bajau, and Rungus) in Sabah, also known as North Borneo. The aim of this study was to investigate the genotype distributions and allele frequencies of the CYP2E1 PstI polymorphism G-1259C in these three major indigenous peoples in Sabah. A total of 640 healthy individuals from the three dominant indigenous groups were recruited for this study. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) at G-1259C polymorphic site of CYP2E1 gene was performed using the Pst I restriction enzyme. Fragments were analyzed using agarose gel electrophoresis and confirmed by direct sequencing. Overall, the allele frequencies were 90.3% for c1 allele and 9.7% for c2 allele. The genotype frequencies for c1/c1, c1/c2 and c2/c2 were observed as 80.9%, 18.8%, and 0.3%, respectively. A highly statistical significant difference (p<0.001) was observed in the genotype distributions between indigenous groups in Sabah with all Asian and non-Asian populations. However, among these three indigenous groups, there was no statistical significant difference (p>0.001) in their genotype distributions. The three major indigenous ethnic groups in Sabah show unique genotype distributions when compared with other populations. This finding indicates the importance of establishing the genotype distributions of CYP2E1 PstI polymorphism in the indigenous populations.
NASA Astrophysics Data System (ADS)
Awwadi, Firas F.; Hodali, Hamdallah A.
2018-02-01
Syntheses and crystal structures of two polymorphs of the complex [Co(II)(L)], where H2L = 2,2'-[cis-1,2-diaminocyclohexanediylbis (nitrilo-methylidyne)]bis (5-dimethyl-amino]phenol, have been studied. The two polymorphs concomitantly crystallized by vapour diffusion of solvent. The first polymorph (I) crystallized as a racemate in the centrosymmetric tetragonal I41/a space group. The second polymorph (II) crystallized in the chiral orthorhombic space group P212121. The chiral conformers of symmetrical cis-1,2-disubstituted cyclohexane molecules cannot be resolved in the liquid or gas phases, due to the rapid ring inversion. In the present study, the two chiral conformers are present in crystals of polymorph I, whereas, only one chiral conformer is present in crystals of polymorph II. Crystal structure analysis indicated that the formation of two different polymorphs of [Co(II)(L)] complex can be rationalized based on Csbnd H⋯Co anagostic interactions. Density Functional Theory (DFT) calculations indicated that Csbnd H⋯Co interactions are due to HOMO-LUMO interactions.
Fabijanić, Ivana; Matković-Čalogović, Dubravka; Pilepić, Viktor; Sanković, Krešimir
2017-12-01
The crystallization and characterization of a new polymorph of 2-thiouracil by single-crystal X-ray diffraction, Hirshfeld surface analysis and periodic density functional theory (DFT) calculations are described. The previously published polymorph (A) crystallizes in the triclinic space group P\\overline{1}, while that described herein (B) crystallizes in the monoclinic space group P2 1 /c. Periodic DFT calculations showed that the energies of polymorphs A and B, compared to the gas-phase geometry, were -108.8 and -29.4 kJ mol -1 , respectively. The two polymorphs have different intermolecular contacts that were analyzed and are discussed in detail. Significant differences in the molecular structure were found only in the bond lengths and angles involving heteroatoms that are involved in hydrogen bonds. Decomposition of the Hirshfeld fingerprint plots revealed that O...H and S...H contacts cover over 50% of the noncovalent contacts in both of the polymorphs; however, they are quite different in strength. Hydrogen bonds of the N-H...O and N-H...S types were found in polymorph A, whereas in polymorph B, only those of the N-H...O type are present, resulting in a different packing in the unit cell. QTAIM (quantum theory of atoms in molecules) computational analysis showed that the interaction energies for these weak-to-medium strength hydrogen bonds with a noncovalent or mixed interaction character were estimated to fall within the ranges 5.4-10.2 and 4.9-9.2 kJ mol -1 for polymorphs A and B, respectively. Also, the NCI (noncovalent interaction) plots revealed weak stacking interactions. The interaction energies for these interactions were in the ranges 3.5-4.1 and 3.1-5.5 kJ mol -1 for polymorphs A and B, respectively, as shown by QTAIM analysis.
Du, Zhongliang; Jiao, Yukun; Shi, Lianting
2016-10-31
BACKGROUND This study aimed to analyze the relationship of UGT2B7 and UGT1A4 polymorphisms with metabolism of valproic acid (VPA) and lamotrigine (LTG) in epileptic children. MATERIAL AND METHODS We administered VPA (102) and LTG (102) to 204 children with epilepsy. Blood samples were collected before the morning dose. Serum concentration of LTG was measured by high-performance liquid chromatography (HPLC). Serum VPA concentration was tested by fluorescence polarization immunoassay. UGT2B7 A268G, C802T, and G211T polymorphisms, as well as UGT1A4 L48V polymorphism, were assayed by direct automated DNA sequencing after PCR. Evaluation of efficacy was conducted using the Engel method. RESULTS The adjusted serum concentration of VPA was 4.26 μg/mL per mg/kg and LTG was 1.56 μg/mL per mg/kg. Multiple linear regression analysis revealed that VPA or LTG adjusted concentration showed a good linear relation with sex and age. UGT2B7 A268G and C802T polymorphisms were demonstrated to affect the serum concentration of VPA (F=3.147, P=0.047; F=22.754, P=0.000). UGT1A4 L48V polymorphism was not related with the serum concentration of LTG (F=5.328, P=0.006). In the efficacy analysis, we found that C802T polymorphism exerted strong effects on efficacy of VPA (χ²=9.265, P=0.010). L48V polymorphism also showed effects on efficacy of LTG (χ²=17.397, P=0.001). CONCLUSIONS UGT2B7, UGT1A4 polymorphisms play crucial roles in metabolism of VPA and LTG.
HFE p.H63D polymorphism does not influence ALS phenotype and survival.
Chiò, Adriano; Mora, Gabriele; Sabatelli, Mario; Caponnetto, Claudia; Lunetta, Christian; Traynor, Bryan J; Johnson, Janel O; Nalls, Mike A; Calvo, Andrea; Moglia, Cristina; Borghero, Giuseppe; Monsurrò, Maria Rosaria; La Bella, Vincenzo; Volanti, Paolo; Simone, Isabella; Salvi, Fabrizio; Logullo, Francesco O; Nilo, Riva; Giannini, Fabio; Mandrioli, Jessica; Tanel, Raffaella; Murru, Maria Rita; Mandich, Paola; Zollino, Marcella; Conforti, Francesca L; Penco, Silvana; Brunetti, Maura; Barberis, Marco; Restagno, Gabriella
2015-10-01
It has been recently reported that the p.His63Asp polymorphism of the HFE gene accelerates disease progression both in the SOD1 transgenic mouse and in amyotrophic lateral sclerosis (ALS) patients. We have evaluated the effect of HFE p.His63Asp polymorphism on the phenotype in 1351 Italian ALS patients (232 of Sardinian ancestry). Patients were genotyped for the HFE p.His63Asp polymorphism (CC, GC, and GG). All patients were also assessed for C9ORF72, TARDBP, SOD1, and FUS mutations. Of the 1351 ALS patients, 363 (29.2%) were heterozygous (GC) for the p.His63Asp polymorphism and 30 (2.2%) were homozygous for the minor allele (GG). Patients with CC, GC, and GG polymorphisms did not significantly differ by age at onset, site of onset of symptoms, and survival; however, in SOD1 patients with CG or GG polymorphism had a significantly longer survival than those with a CC polymorphism. Differently from what observed in the mouse model of ALS, the HFE p.His63Asp polymorphism has no effect on ALS phenotype in this large series of Italian ALS patients. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, H; Liu, C
2012-11-01
This meta-analysis investigated the association of C677T polymorphism in MTHFR gene with bone mineral density (BMD) and fracture risk. The results suggested that C677T polymorphism was marginally associated with fracture risk. In addition, this polymorphism was modestly associated with BMD of lumbar spine, femoral neck, total hip, and total body, respectively. The methylenetetrahydrofolate reductase (MTHFR) gene has been implicated in the regulation of BMD and, thus, may serve as a potential risk factor for the development of fracture. However, results have been inconsistent. In this study, a meta-analysis was performed to clarify the association of C677T polymorphism in MTHFR gene with BMD and fracture risk. Published literature from PubMed and EMBASE were searched for eligible publications. Pooled odds ratio (OR) or weighted mean difference (WMD) and 95% confidence interval (CI) were calculated using a fixed- or random-effects model. Twenty studies (3,525 cases and 17,909 controls) were included in this meta-analysis. The TT genotype of C677T polymorphism was marginally associated with an increased risk of fracture under recessive model (TT vs. TC + CC: OR = 1.23, 95% CI 1.04-1.47). Using this model, similar results were found among East Asians (OR = 1.40, 95% CI 1.07-1.83), female subpopulation (1.27, 95% CI 1.04-1.55), cohort studies (OR = 1.24, 95% CI 1.08-1.44), and subjects younger than aged 60 years (OR = 1.51, 95% CI 1.10-2.07). In addition, under homogeneous co-dominant model, there was a modest association of C677T polymorphism with BMD of lumbar spine (WMD = -0.017 g/cm(2); 95%CI, -0.030-(-0.005) g/cm(2)), femoral neck (WMD = -0.010 g/cm(2); 95% CI -0.017-(-0.003) g/cm(2)), total hip (WMD = -0.013 g/cm(2), 95% CI -0.022-(-0.004) g/cm(2)), and total body (WMD = -0.020 g/cm(2); 95% CI -0.027-(-0.013) g/cm(2)), respectively. This meta-analysis suggested that C677T polymorphism was marginally associated with fracture risk. In addition, this polymorphism was modestly associated with BMD of lumbar spine, femoral neck, total hip, and total body, respectively.
Inoue, Kazuyuki; Suzuki, Eri; Yazawa, Rei; Yamamoto, Yoshiaki; Takahashi, Toshiki; Takahashi, Yukitoshi; Imai, Katsumi; Koyama, Seiichi; Inoue, Yushi; Tsuji, Daiki; Hayashi, Hideki; Itoh, Kunihiko
2014-06-01
Valproic acid (VPA) is widely used to treat various types of epilepsy. Interindividual variability in VPA pharmacokinetics may arise from genetic polymorphisms of VPA-metabolizing enzymes. This study aimed to examine the relationships between plasma VPA concentrations and the -161C>T single nucleotide polymorphism in uridine diphosphate glucuronosyltransferase (UGT) 2B7 genes in pediatric epilepsy patients. This study included 78 pediatric epilepsy patients carrying the cytochrome P450 (CYP) 2C9*1/*1 genotype and who were not treated with the enzyme inducers (phenytoin, phenobarbital, and carbamazepine), lamotrigine, and/or topiramate. CYP2C9*3 and UGT2B7 -161C>T polymorphisms were identified using methods based on polymerase chain reaction-restriction fragment length polymorphism. Blood samples were drawn from each patient under steady-state conditions, and plasma VPA concentrations were measured. Significant differences in adjusted plasma VPA concentrations were observed between carriers of CC, CT, and TT genotypes in the UGT2B7 -161C>T polymorphism (P = 0.039). Patients with the CC genotype had lower adjusted plasma VPA concentrations than those with CT or TT genotype (P = 0.028). These data suggest that the UGT2B7 -161C>T polymorphism in pediatric epilepsy patients carrying the CYP2C9*1/*1 genotype affects VPA concentration.
Hajizadeh, Yasamin Sayed; Emami, Elina; Nottagh, Marina; Amini, Zahra; Maroufi, Nazila Fathi; Azimian, Saba Haj; Isazadeh, Alireza
2017-05-26
Objective Recurrent pregnancy loss (RPL) is a heterogeneous disease which is defined as two or more consecutive fetal losses during early pregnancy. Interleukin-1 receptor antagonist (IL-1Ra) is a anti-inflammatory cytokine, which inhibits IL-1 activity by binding to its receptors. The aim of this study was to investigate the association between RPL and IL-1Ra intron 2 polymorphism (86 bp VNTR) in Iranian women. Materials and methods In this case control study, genetic polymorphism was studied in 140 RPL patients and 140 healthy women as controls. Genomic DNA was extracted from the blood samples and polymorphism analysis was performed using the polymerase chain reaction (PCR) method. Finally, the data obtained were analyzed by statistical software. Results We found an increased frequency of the IL-1Ra 1/1 genotype in the case group compared to the control group. Whereas, the frequency of IL-1Ra genotype 1/2 was higher in control group than in the case group. However, we did not observe an association between IL-1Ra 86 bp VNTR polymorphism in intron 2 and RPL patients (p > 0.05). Conclusion IL-1Ra VNTR polymorphism may not be a genetic factor for RPL. However, investigation of IL-1Ra polymorphism was recommended in other populations and patients with recurrent pregnancy loss.
Yamada, Yoshiji; Sakuma, Jun; Takeuchi, Ichiro; Yasukochi, Yoshiki; Kato, Kimihiko; Oguri, Mitsutoshi; Fujimaki, Tetsuo; Horibe, Hideki; Muramatsu, Masaaki; Sawabe, Motoji; Fujiwara, Yoshinori; Taniguchi, Yu; Obuchi, Shuichi; Kawai, Hisashi; Shinkai, Shoji; Mori, Seijiro; Arai, Tomio; Tanaka, Masashi
2017-10-06
We performed exome-wide association studies to identify single nucleotide polymorphisms that either influence fasting plasma glucose level or blood hemoglobin A 1c content or confer susceptibility to type 2 diabetes mellitus in Japanese. Exome-wide association studies were performed with the use of Illumina Human Exome-12 DNA Analysis or Infinium Exome-24 BeadChip arrays and with 11,729 or 8635 subjects for fasting plasma glucose level or blood hemoglobin A 1c content, respectively, or with 14,023 subjects for type 2 diabetes mellitus (3573 cases, 10,450 controls). The relation of genotypes of 41,265 polymorphisms to fasting plasma glucose level or blood hemoglobin A 1c content was examined by linear regression analysis. After Bonferroni's correction, 41 and 17 polymorphisms were significantly ( P < 1.21 × 10 -6 ) associated with fasting plasma glucose level or blood hemoglobin A 1c content, respectively, with two polymorphisms (rs139421991, rs189305583) being associated with both. Examination of the relation of allele frequencies to type 2 diabetes mellitus with Fisher's exact test revealed that 87 polymorphisms were significantly ( P < 1.21 × 10 -6 ) associated with type 2 diabetes mellitus. Subsequent multivariable logistic regression analysis with adjustment for age and sex showed that four polymorphisms (rs138313632, rs76974938, rs139012426, rs147317864) were significantly ( P < 1.44 × 10 -4 ) associated with type 2 diabetes mellitus, with rs138313632 and rs139012426 also being associated with fasting plasma glucose and rs76974938 with blood hemoglobin A 1c . Five polymorphisms-rs139421991 of CAT , rs189305583 of PDCL2 , rs138313632 of RUFY1 , rs139012426 of LOC100505549 , and rs76974938 of C21orf59 -may be novel determinants of type 2 diabetes mellitus.
The effect of polymorphic metabolism enzymes on serum phenytoin level.
Ozkaynakci, Aydan; Gulcebi, Medine Idrizoglu; Ergeç, Deniz; Ulucan, Korkut; Uzan, Mustafa; Ozkara, Cigdem; Guney, Ilter; Onat, Filiz Yilmaz
2015-03-01
Phenytoin has a widespread use in epilepsy treatment and is mainly metabolized by hepatic cytochrome P450 enzymes (CYP). We have investigated CYP2C9*2, CYP2C9*3, CYP2C19*2 and CYP2C19*3 allelic variants in a Turkish population of patients on phenytoin therapy. Patients on phenytoin therapy (n = 102) for the prevention of epileptic seizures were included. Polymorphic alleles were analyzed by restriction fragment length polymorphism method. Serum concentrations of phenytoin were measured by fluorescence polarization immune assay method. The most frequent genotype was detected for CYP2C9 wild-type alleles (78.43 %), whereas CYP2C19*2/*2 (5.88 %) was the least frequent genotype group. According to the classification made with both enzyme polymorphisms, CYP2C9*1/*1-CYP2C19*1/*1 (G1: 41.17 %) genotype group was the most frequent whereas CYP2C9*1/*2-CYP2C19*1/*3 (G7: 0.98 %) was the least frequent one. The highest mean phenytoin level (27.95 ± 1.85 µg/ml) was detected in the G8 genotype group (CYP2C9*1/*3-CYP2C19*2/*3) and the G1 genotype group showed the lowest mean phenytoin level (7.43 ± 0.73 µg/ml). The mean serum concentration of phenytoin of the polymorphic patients with epilepsy was higher than that for the wild-type alleles both in the monotherapy and polytherapy patients. These results show the importance of the genetic polymorphism analysis of the main metabolizing enzyme groups of phenytoin for the dose adjustment.
López-Mejías, Raquel; Corrales, Alfonso; Vicente, Esther; Robustillo-Villarino, Montserrat; González-Juanatey, Carlos; Llorca, Javier; Genre, Fernanda; Remuzgo-Martínez, Sara; Dierssen-Sotos, Trinidad; Miranda-Filloy, José A; Huaranga, Marco A Ramírez; Pina, Trinitario; Blanco, Ricardo; Alegre-Sancho, Juan J; Raya, Enrique; Mijares, Verónica; Ubilla, Begoña; Ferraz-Amaro, Iván; Gómez-Vaquero, Carmen; Balsa, Alejandro; López-Longo, Francisco J; Carreira, Patricia; González-Álvaro, Isidoro; Ocejo-Vinyals, J Gonzalo; Rodríguez-Rodríguez, Luis; Fernández-Gutiérrez, Benjamín; Castañeda, Santos; Martín, Javier; González-Gay, Miguel A
2017-01-06
A genetic component influences the development of atherosclerosis in the general population and also in rheumatoid arthritis (RA). However, genetic polymorphisms associated with atherosclerosis in the general population are not always involved in the development of cardiovascular disease (CVD) in RA. Accordingly, a study in North-American RA patients did not show the association reported in the general population of coronary artery disease with a series of relevant polymorphisms (TCF21, LPA, HHIPL1, RASD1-PEMT, MRPS6, CYP17A1-CNNM2-NT5C2, SMG6-SRR, PHACTR1, WDR12 and COL4A1-COL4A2). In the present study, we assessed the potential association of these polymorphisms with CVD in Southern European RA patients. We also assessed if polymorphisms implicated in the increased risk of subclinical atherosclerosis in non-rheumatic Caucasians (ZHX2, PINX1, SLC17A4, LRIG1 and LDLR) may influence the risk for CVD in RA. 2,609 Spanish patients were genotyped by TaqMan assays. Subclinical atherosclerosis was determined in 1,258 of them by carotid ultrasonography (assessment of carotid intima media thickness and presence/absence of carotid plaques). No statistically significant differences were found when each polymorphism was assessed according to the presence/absence of cardiovascular events and subclinical atherosclerosis, after adjustment for potential confounder factors. Our results do not show an association between these 15 polymorphisms and atherosclerosis in RA.
López-Mejías, Raquel; Corrales, Alfonso; Vicente, Esther; Robustillo-Villarino, Montserrat; González-Juanatey, Carlos; Llorca, Javier; Genre, Fernanda; Remuzgo-Martínez, Sara; Dierssen-Sotos, Trinidad; Miranda-Filloy, José A.; Huaranga, Marco A. Ramírez; Pina, Trinitario; Blanco, Ricardo; Alegre-Sancho, Juan J.; Raya, Enrique; Mijares, Verónica; Ubilla, Begoña; Ferraz-Amaro, Iván; Gómez-Vaquero, Carmen; Balsa, Alejandro; López-Longo, Francisco J.; Carreira, Patricia; González-Álvaro, Isidoro; Ocejo-Vinyals, J. Gonzalo; Rodríguez-Rodríguez, Luis; Fernández-Gutiérrez, Benjamín; Castañeda, Santos; Martín, Javier; González-Gay, Miguel A.
2017-01-01
A genetic component influences the development of atherosclerosis in the general population and also in rheumatoid arthritis (RA). However, genetic polymorphisms associated with atherosclerosis in the general population are not always involved in the development of cardiovascular disease (CVD) in RA. Accordingly, a study in North-American RA patients did not show the association reported in the general population of coronary artery disease with a series of relevant polymorphisms (TCF21, LPA, HHIPL1, RASD1-PEMT, MRPS6, CYP17A1-CNNM2-NT5C2, SMG6-SRR, PHACTR1, WDR12 and COL4A1-COL4A2). In the present study, we assessed the potential association of these polymorphisms with CVD in Southern European RA patients. We also assessed if polymorphisms implicated in the increased risk of subclinical atherosclerosis in non-rheumatic Caucasians (ZHX2, PINX1, SLC17A4, LRIG1 and LDLR) may influence the risk for CVD in RA. 2,609 Spanish patients were genotyped by TaqMan assays. Subclinical atherosclerosis was determined in 1,258 of them by carotid ultrasonography (assessment of carotid intima media thickness and presence/absence of carotid plaques). No statistically significant differences were found when each polymorphism was assessed according to the presence/absence of cardiovascular events and subclinical atherosclerosis, after adjustment for potential confounder factors. Our results do not show an association between these 15 polymorphisms and atherosclerosis in RA. PMID:28059143
A meta-analysis of data associating DRD4 gene polymorphisms with schizophrenia.
Xu, Feng-Ling; Wu, Xue; Zhang, Jing-Jing; Wang, Bao-Jie; Yao, Jun
2018-01-01
To explore the association between DRD4 polymorphisms and schizophrenia risk, a meta-analysis was carried out with 41 case-control articles. Specifically, we included 28 articles (5,735 cases and 5,278 controls) that pertained to the 48 bp variable number tandem repeat (VNTR) polymorphism, nine articles (1,517 cases and 1,746 controls) that corresponded to the 12 bp tandem repeat (TR), six articles (1,912 cases and 1,836 controls) that addressed the 120 bp TR, 10 articles (2,927 cases and 2,938 controls) that entailed the -521 C>T polymorphism, six articles (1,735 cases and 1,724 controls) that pertained to the -616 C>G polymorphism, and four articles (1,191 cases and 1,215 controls) that involved the -376 C>T polymorphism. Pooled analysis, subgroup analysis, and sensitivity analysis were performed, and the data were visualized by means of forest and funnel plots. Results of pooled analysis indicated that the -521 CC variant ( P z =0.009, odds ratio [OR] =1.218, 95% confidence interval [CI] =1.050-1.413) and genotype L/L (ie, long allele) of the 120 bp TR were risk factors of schizophrenia ( P z =0.004, OR =1.275, 95% CI =1.081-1.504). The 48 bp VNTR, the 12 bp TR, the -616 C>G polymorphism, and the -376 C>T polymorphism were not associated with schizophrenia. Additional research is warranted to explore the association between polymorphisms of DRD4 and schizophrenia risk.
Li, Xuejiao; Liu, Yukun; Zhang, Rui; Tan, Jianping; Chen, Libin; Liu, Yinglin
2015-04-11
The association between plasminogen activator inhibitor-1 (PAI-1) 4G/5G polymorphism and recurrent pregnancy loss (RPL) risk is still contradictory. We thus performed a meta-analysis. Relevant studies were searched for in PubMed, Web of Science, Embase, and Cochrane Library. An odds ratio (OR) with a 95% confidence interval (CI) was used to assess the association between PAI-1 4G/5G polymorphism and RPL risk. A total of 22 studies with 4306 cases and 3076 controls were included in this meta-analysis. We found that PAI-1 4G/5G polymorphism was significantly associated with an increased RPL risk (OR=1.89; 95% CI 1.34-2.67; P=0.0003). In the subgroup analysis by race, PAI-1 4G/5G polymorphism was significantly associated with an increased RPL risk in Caucasians (OR=2.23; 95% CI 1.44-3.46; P=0.0003). However, no significant association was observed in Asians (OR=1.47; 95% CI 0.84-2.59; P=0.18). In conclusion, this meta-analysis suggests that PAI-1 4G/5G polymorphism might be associated with RPL development in Caucasians.
Lewis, Lionel D; Miller, Antonius A; Owzar, Kouros; Bies, Robert R; Markova, Svetlana; Jiang, Chen; Kroetz, Deanna L; Egorin, Merrill J; McLeod, Howard L; Ratain, Mark J
2013-01-01
Docetaxel-related neutropenia was associated with polymorphisms in the drug transporters ABCC2 and SLCO1B3 in Japanese cancer patients. We hypothesized that this association is because of reduced docetaxel clearance, associated with polymorphisms in those genes. We studied 64 US cancer patients who received a single cycle of 75 mg/m of docetaxel monotherapy. We found that the ABCC2 polymorphism at rs-12762549 trended to show a relationship with reduced docetaxel clearance (P=0.048), but not with neutropenia. There was no significant association of the SLCO1B3 polymorphisms with docetaxel clearance or neutropenia. We conclude that the relationship between docetaxel-associated neutropenia and polymorphisms in drug transporters identified in Japanese patients was not confirmed in this cohort of US cancer patients. © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Zhang, Huifeng; Dong, Pingshuan; Yang, Xuming; Liu, Zhenghao
2014-01-01
The aim of the current study was to evaluate the association of PAI-1 4G/5G polymorphism with coronary artery disease (CAD) risk using a meta-analysis. All eligible studies were identified through a search of PubMed, EMBASE, China National Knowledge Infrastructure (CNKI), Database of Chinese Scientific and Technical Periodicals, and China Biology Medical literature database (CBM) before June 2014. The association between the PAI-1 4G/5G polymorphism and CAD risk was estimated by odds ratio (OR) and 95% confidence interval (CI). A total of 72 studies including 23557 cases and 21526 controls were eventually collected. The PAI-1 4G/5G polymorphism was significant associated with CAD risk in overall population (OR=1.19, 95% CI 1.10-1.28, P < 0.00001). The combination of adjusted ORs for CAD was 1.20 (95% CI 1.03-1.40, P=0.02). This polymorphism was associated with CAD risk in Caucasians (OR=1.10, 95% CI 1.02-1.19, P=0.01) and Asians (OR=1.46, 95% CI 1.21-1.75, P < 0.0001). This polymorphism significantly increased MI risk (OR=1.15, 95% CI 1.06-1.25, P=0.001). In the subgroup analysis by age, this polymorphism was significantly associated with early-onset CAD risk (OR=1.21, 95% CI 1.02-1.43, P=0.03). In the gender subgroup analyses, a statistically significant association was found in male CAD patients (OR=1.10, 95% CI 1.01-1.20, P=0.04). Both T2DM patients and non-T2DM patients carrying 4G allele showed increased CAD risks (OR=2.23, 95% CI 1.27-3.92, P=0.005 and OR=1.64, 95% CI 1.19-2.25, P=0.002, respectively). This meta-analysis suggested that PAI-1 4G/5G polymorphism was a risk factor for CAD.
Genetic Polymorphism of SUMO-Specific Cysteine Proteases - SENP1 and SENP2 in Breast Cancer.
Mirecka, Alicja; Morawiec, Zbigniew; Wozniak, Katarzyna
2016-10-01
SENP proteases take part in post-translational modification of proteins known as sumoylation. They catalyze three distinct processes during sumoylation: processing of SUMO protein, deconjugation of SUMO from the target protein, and chain editing which mentions to the dismantling of SUMO chain. Many proteins that are involved in the basic processes of cells, such as regulation of transcription, DNA repair or cell cycle control, are sumoylated. The aim of these studies was to investigate an association between polymorphic variants (SNPs) of the SENP1 gene (c.1691 + 36C > T, rs12297820) and SENP2 gene (c.902C > A, p.Thr301Lys, rs6762208) and a risk of breast cancer occurrence. We performed a case-control study in 324 breast cancer cases and 335 controls using PCR-RLFP. In the case of the SENP1 gene polymorphism we did not find any association between this polymorphism and breast cancer risk. In the case of SENP2 gene polymorphism we observed higher risk of breast cancer for carriers of the A allele (OR =1.33; 95 % CI 1.04-1.69). Our analysis also showed the genotype C/C (OR =0.67, 95 % CI 0.48-0.93) and the allele C (OR =0.75, 95 % CI 0.59-0.69) of this polymorphism decrease a risk of breast cancer. We also checked the distribution of genotypes and frequency of alleles of the SENP1 and SENP2 genes polymorphisms in groups of patients with different hormone receptor status, patients with positive and negative lymph node status and patients with different tumor grade. Odds ratio analysis showed a higher risk of metastases in women with the genotype C/C (OR =2.07, 95 % CI 1.06-4.05) and allele C (OR =2.10 95 % CI 1.10-4.01) of the c.1691 + 36C > T SENP1 gene polymorphism. Moreover, we observed reduced risk in women with the allele T (OR =0.48, 95 % CI 0.25-0.91) in this polymorphic site. In the case of SENP2 gene polymorphism we observed that the A/A genotype correlated with the lack of estrogen receptor (OR =1.94, 95 % CI 1.04-3.62). Our results suggest that the variability of the SENP1 and SENP2 genes may play a role in breast cancer occurrence. Further studies are needed to clarify their biological functions in breast cancer.
Abbas, Shania; Raza, Syed Tasleem; Chandra, Anu; Rizvi, Saliha; Ahmed, Faisal; Eba, Ale; Mahdi, Farzana
2015-01-01
Hypertension has a multi-factorial background based on genetic and environmental interactive factors. ACE, FABP2 and GST genes have been suggested to be involved in the development of hypertension. However, the results have been inconsistent. The present study was carried out to investigate the association of ACE (rs4646994), FABP2 (rs1799883) and GST (GSTM1 null or positive genotype and GSTT1 null or positive genotype) genes polymorphism with essential HTN cases and controls. This study includes 138 essential hypertension (HTN) patients and 116 age-, sex- and ethnicity-matched control subjects. GST (GSTM1 null or positive genotype and GSTT1 null or positive genotype) genes polymorphisms were evaluated by multiplex PCR, ACE (rs4646994) gene polymorphisms by PCR and FABP2 (rs1799883) gene polymorphisms by PCR-RFLP method. Significant differences were obtained in the frequencies of ACE DD, II genotype (p = 0.006, 0.003), GSTT1 null, GSTM1 positive genotype (p = 0.048, 0.010) and FABP2 Ala54/Ala54 genotype (p = 0.049) between essential HTN cases and controls. It is concluded that ACE (rs 4646994), FABP2 (rs1799883) and GST (GSTM1 null or positive genotype and GSTT1 null or positive genotype) genes polymorphism are associated with HTN. Further investigation with a larger sample size may be required to validate this study.
Polymorphisms in BRCA1 and BRCA2 and risk of epithelial ovarian cancer.
Wenham, Robert M; Schildkraut, Joellen M; McLean, Kia; Calingaert, Brian; Bentley, Rex C; Marks, Jeffrey; Berchuck, Andrew
2003-10-01
Because inherited BRCA1 or BRCA2 mutations strikingly increase ovarian cancer risk, polymorphisms in these genes could represent low penetrance susceptibility alleles. Previous studies of the BRCA2 N372H polymorphism suggested that HH homozygotes have a modestly increased risk of both breast and ovarian cancer. We have examined whether BRCA2 N372H or common amino acid-changing polymorphisms in BRCA1 predispose to ovarian cancer. A population-based, case control study of ovarian cancer was performed in North Carolina. Cases included 312 women with ovarian cancer (76% invasive and 24% borderline) and 401 age- and race-matched controls. Blood DNA from subjects was genotyped for BRCA2 N372H and BRCA1 Q356R and P871L. There was no association between BRCA2 N372H and risk of borderline or invasive epithelial ovarian cancer. The overall odds ratio (OR) for HH homozygotes was 0.8 [95% confidence interval (CI) = 0.4-1.5] and was similar in all subsets, including invasive serous cases. In addition, neither the BRCA1 Q356R (OR = 0.9, 95% CI 0.5-1.4) nor P871L (OR = 0.9, 95% CI 0.6-1.9) polymorphisms were associated with ovarian cancer risk. There was a significant racial difference in allele frequencies of the P871L polymorphism (P = 0.64 in Caucasians, L = 0.76 in African-Americans, P < 0.0001). In this population-based, case control study, common amino acid changing BRCA1 and 2 polymorphisms were not found to affect the risk of developing ovarian cancer.
Murillo-Zamora, Efrén; Moreno-Macías, Hortensia; Ziv, Elad; Romieu, Isabelle; Lazcano-Ponce, Eduardo; Ángeles-Llerenas, Angélica; Pérez-Rodríguez, Edelmiro; Vidal-Millán, Silvia; Fejerman, Laura; Torres-Mejía, Gabriela
2014-01-01
Background and Aims The rs2981582 single nucleotide polymorphism in the Fibroblast Growth Factor Receptor 2 gene has been consistently associated with an increased risk of breast cancer. We evaluated the effect of rs2981582 polymorphism in the FGFR2 gene on the risk of breast cancer and its interaction with non-genetic risk factors. Methods A population based case control study was conducted in Mexico. Data from 687 cases and 907 controls were analyzed. Results The T allele of the rs2981582 polymorphism was associated with an increased risk of breast cancer (OR per allele =1.24, 95% CI 1.06 – 1.46). There was also an interaction between this polymorphism and alcohol consumption (p = 0.043); the effect of alcohol consumption on the risk of breast cancer varied according to the allelic variants of the rs2981582 polymorphism in the FGFR2 gene: OR = 3.97 (95% CI 2.10 – 7.49), OR = 2.01 (95% CI 1.23 − 3.29) and OR = 1.21 (95% CI 0.48 − 3.05) for genotypes CC, CT and TT, respectively. Conclusions This is the first study exploring the association between rs2981582 polymorphism in the FGFR2 gene and breast cancer risk in Mexican women. The interaction found may be of great public health interest, since alcohol consumption is a modifiable breast cancer risk factor. Therefore, replication of this finding is of foremost importance. PMID:24054997
Chehaibi, Khouloud; Hrira, Mohamed Yahia; Nouira, Samir; Maatouk, Faouzi; Ben Hamda, Khaldoun; Slimane, Mohamed Naceur
2014-07-15
Matrix metalloproteinases (MMPs) play an important role in early atherosclerosis, extracellular matrix remodeling, plaque rupture and myocardial infarction. MMP gene polymorphisms contribute to the risk of developing cardiovascular diseases. In this study, we investigated, for the first time, the association between MMP-1-16071G/2G, MMP-12 -82A/G and MMP-12 1082A/G genotypes and haplotypes and the risk of ischemic stroke (IS) among patients with type 2 diabetes mellitus (T2DM). To examine whether these genetic polymorphisms are associated with susceptibility to IS, 196 patients with IS and 192 controls were examined by PCR-based RFLP. When the analyses were adjusted for multiple risk factors, no interaction between T2DM and MMP-1-1607 1G/2G polymorphism on the risk of ischemic stroke was found (p=0.074). However, MMP-12 polymorphisms genotypes were associated with the higher risk of IS in diabetic patients compared with total patients. The -82G-1082G haplotype of MMP-12 polymorphisms was associated with higher risk of ischemic stroke in diabetic patients [AOR=2.33; 95% CI (1.25-3.62), P=0.032]. These findings showed that there was an important joint effect of the MMP-12 polymorphisms and T2DM on the risk of IS and therefore it can be considered as a potential marker of cerebrovascular disorders in diabetic patients. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, L; Mei, Q; Li, Q S; Hu, Y M; Xu, J M
2010-12-01
Genetic polymorphism of interleukin (IL)-1β and IL-1 receptor antagonist (IL-1rα) are associated with efficacy of acid suppression, whereas cytochrome P (CYP) 2C19 polymorphism influences the metabolism of proton pump inhibitor family. Thus, CYP2C19 and IL-1 polymorphisms may affect the efficacy of H. pylori eradication therapy. We compared the efficacies of omeprazole and rabeprazole on eradication of H. pylori in relation to CYP2C19, IL-1B and IL-1RN genotypes in Chinese people. Two hundred and forty Chinese with peptic ulcer disease were randomly assigned to the following regimens: amoxicillin and clarithromycin together with omeprazole (OAC) or rabeprazole (RAC). CYP2C19*2 and *3, IL1B-511, IL1B-31, IL1B+ 3954 and intron 2 of the IL-1RN genotypes were analyzed by polymerase chain reaction-restriction fragment length polymorphism. The intention-to-treat-based cure rate of the OAC regimen was significantly lower than that of the RAC regimen in the CYP2C19 wild-type homozygotes (P = 0·014). No significant differences in the cure rates were observed among the IL-1RN and the IL-1B genotype groups. The rabeprazole-based triple regimen was better than the omeprazole in Chinese patients with the CYP2C19 extensive metabolizer genotype. The effectiveness of the PPI/AC regimen is unrelated to IL-1B and IL1-RN genetic polymorphism. © 2010 Blackwell Publishing Ltd.
Katsarou, Martha-Spyridoula; Latsi, Rosana; Papasavva, Maria; Demertzis, Nikolaos; Kalogridis, Thodoris; Tsatsakis, Aristides M; Spandidos, Demetrios A; Drakoulis, Nikolaos
2016-07-01
Hereditary hemochromatosis (HH) is an autosomal recessive genetic disease, characterized by increased dietary iron absorption. Due to the absence of an effective excretory mechanism, the excess iron in the body may accumulate resulting in toxic effects. The HFE gene also affects the activity of hepcidin, a hormone which acts as a negative regulator of iron metabolism. In this study, we performed a population-based analysis of the distribution of three hemochromatosis-related polymorphisms in the HFE gene (rs1800562, rs1799945 and rs1800730). DNA from 1,446 non‑related individuals of Greek ethnicity was collected and analyzed, either from whole blood or buccal swabs. The frequency distribution of these HFE gene polymorphisms was then determined. The results revealed that in our Greek population cohort (gr) the frequencies of each polymorphism were as follows: rs1800562: GG (wild‑type)=97.0%, GA=1.5%, AA=1.5%; rs1799945: CC (wild‑type)=74.4%, CG=23.4%, GG=2.2%; rs1800730: AA (wild‑type)=98.1%, AT=1.5% and TT=0.4%. No association between the HFE polymorphisms rs1800562, rs1799945 and rs1800730 and gender could be established. As regards the rs1800562 polymorphism, the A allele (mutant) was ~1.8‑fold more frequent in the European population (eur) than in the Greek population [(gr)=2,3%<(eur)=4%]. As for the rs1799945 polymorphism, the G allele (mutant) was 1.2‑fold more frequent in the European population than in the Greek population [(gr)=13,9%<(eur)=17%]. As regards the rs1800730 polymorphism, the T allele (mutant) was ~1.7‑fold more frequent in the European population than in the Greek population [(gr)=1.2%<(eur)=2%]. However, these pathogenic mutations were found more frequently in the Greek population compared to the global population (gl) [rs1800562: (gl)=1%<(gr)=2,3%; rs1799945: (gl)=7%<(gr)=13,9%; rs1800730: (gl)=<1%<(gr)=1.2%]. This suggests that the Greek population may differ genetically from the northern European population, due to influences from neighboring Asian and African populations. These findings also suggest that there is no gender-associated inheritance of these polymorphisms, and gender-specific symptoms appear as a result of independent biological processes. Thus, the early detection of the tendency towards iron accumulation may be achieved by the genotypic analysis of the polymorphisms that may contribute to the development of the hemochromatosis.
Bei, Thalia; Tilkeridis, Constantinos; Garantziotis, Stavros; Boikos, Sosipatros A.; Kazakos, Konstantinos; Simopoulos, Constantinos; Stratakis, Constantine A.
2011-01-01
OBJECTIVE We recently reported the association of the Sp1 site polymorphism of the COL1A1 gene with lumbar disk disease (LDD). In the present study we searched for a different polymorphism of the COL1A1 gene (which is usually not in linkage disequilibrium with the Sp1 site) in subjects with LDD. DESIGN Blood was collected from 24 Greek army recruits, aged 29±7.6 years, with LDD, and 66 healthy men, aged 26±4.38 years, matched for body mass index (BMI) and age, with normal BMD and with no history of trauma or fractures, who served as controls. DNA was extracted and the COL1A1 gene was sequenced. Of the control subjects, 12 were army recruits and 54 were selected from the general population. RESULTS The four base-pair insertion polymorphism in the COL1A1 gene analyzed by polymerase chain reaction amplification of DNA produces two different fragments (alleles A1 and A2): 14 patients (58.3%) were homozygous for A2A2, versus 35 controls (53%), while 3 patients (12.5%) were A1A1, and 8 of the control subjects (12%) had this genotype. There were no statistically significant differences in the presence of the two alleles of this polymorphism between patients with LDD and control subjects. CONCLUSIONS A four base-pair insertion polymorphism of the COL1A1 gene is not associated with the presence of LDD in young males, unlike the Sp1 site polymorphism of the same gene. These data reinforce the association between LDD and the functional polymorphisms of the Sp1 site by showing that other polymorphic sites of the of the COL1A1 gene in the same population of patients are not linked to the disease. PMID:18694864
Li, Xiaolei
2018-06-01
The purpose of the present study was to investigate distribution of monocyte chemoattractant protein-1 (MCP-1) -2518A/G and vascular endothelial growth factor (VEGF) -634G/C polymorphisms in type 2 diabetes melitus patients (T2DM) presenting diabetic foot ulcer (DFU). Additionally, we evaluated the effects of these 2 polymorphisms on serum levels of MCP-1 and VEGF in the study population.Patients diagnosed with T2DM without or with DFU were recruited in the study. The distribution of MCP-1 -2518A/G and VEGF -634G/C polymorphisms was investigated by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Enzyme-linked immunosorbent assay (ELISA) was applied to detect the protein levels of MCP-1 and VEGF. The comparisons of protein levels in DFU patients were performed by student t test according to their genotypes.The frequencies of GG genotype and G allele of MCP-1 -2518A/G was increased in DFU patients, compared with T2DM patients (odds ratio [OR] = 2.60, 95% confidence interval [CI] = 1.23-5.50, P = .011 and OR = 1.72, 95% CI = 1.18-2.50, P = .005, respectively). Moreover, the increased frequency of GG was significantly associated with up-regulated MCP-1 level in DFU patients (P < .001). Analysis for VEGF -634G/C polymorphisms indicated that the prevalence of CC genotype and C allele of the polymorphisms was decreased in DFU patients, compared with T2DM patients (OR = 0.36, 95% CI = 0.17-0.77, P = .008 and OR = 0.63, 95% CI = 0.43-0.91, P = .015, respectively). DFU patients carrying CC genotype had a higher level of VEGF than those with other genotypes (P = .007).MCP-1 -2518A/G and VEGF -634G/C polymorphisms may involve in occurrence and progress of DFU through regulating transcription activity of the genes.
Iemitsu, Motoyuki; Maeda, Seiji; Otsuki, Takeshi; Sugawara, Jun; Tanabe, Takumi; Jesmin, Subrina; Kuno, Shinya; Ajisaka, Ryuichi; Miyauchi, Takashi; Matsuda, Mitsuo
2006-05-01
Increase in arterial stiffness is associated with aging, which is improved by regular exercise. Endothelin (ET) system has crucial roles in regulating vascular tone and in the progression of atherosclerosis. We hypothesized that molecular variations (ie, gene polymorphisms) in ET-related gene might affect exercise-induced improvement in arterial stiffness with age in human subjects. The present study provides a cross-sectional investigation of 191 healthy middle-aged and older (65+/-1 years) human subjects to clarify the relationship between the regular exercise-induced improvement of arterial stiffness and the gene polymorphisms of ET converting enzyme (ECE)-1, ECE-2, ET-A receptor (ET-A), and ET-B receptor (ET-B). The study subjects were divided into active and inactive groups based on the median value (186 kcal/d) of energy expenditure. Brachial-ankle arterial pulse wave velocity (baPWV) was used to evaluate arterial stiffness. All individuals were genotyped for 4 different polymorphisms of the ET system: 2013(+289)A/G in intron 17 of ECE-1, 669(+17)T/C in intron 5 of ECE-2, 958A/G in exon 6 of ET-A, and 831A/G in exon 4 of ET-B. The baseline baPWV was significantly lower in the active group without any change in blood pressure. Polymorphisms in ECE-1 influenced basal blood pressure. Polymorphisms in ECE-1 and ECE-2 had no effect on baPWV between active and inactive groups. However, polymorphisms in both ET-A and ET-B affected baPWV in the 2 groups. The present results suggest that differences in ET-A and ET-B polymorphisms may influence the response of the vascular wall to exercise whereas ECE-1 polymorphisms may affect basal blood pressure.
Associations of polymorphisms in the Pit-1 gene with growth and carcass traits in Angus beef cattle.
Zhao, Q; Davis, M E; Hines, H C
2004-08-01
The Pit-1 gene was studied as a candidate for genetic markers of growth and carcass traits. Angus beef cattle that were divergently selected for high- or low-blood serum IGF-I concentration were used in this study. The single-strand conformation polymorphism method was used to identify polymorphism in the Pit-1 gene including regions from intron 2 to exon 6. Two polymorphisms, Pit1I3H (HinfI) and Pit1I3NL (NlaIII), were detected in intron 3 of the Pit-1 gene. One polymorphism, Pit1I4N (BstNI), was found in intron 4, and a single nucleotide polymorphism, Pit1I5, was found in intron 5. The previously reported polymorphism in exon 6, Pit1E6H (HinfI), was also studied in 416 Angus beef cattle. Associations of the polymorphisms with growth traits, carcass traits, and IGF-I concentration were analyzed using a general linear model procedure. No significant associations were observed between these polymorphisms and growth and carcass traits.
Conformational polymorphs of a novel TCNQ derivative carrying an acetylene group
NASA Astrophysics Data System (ADS)
Iida, Yuki; Kataoka, Makoto; Okuno, Tsunehisa
2018-01-01
TCNQ is one of the most important organic acceptors and lots of its derivatives have been prepared. However the reports on their crystal polymorphs are limited to their complexes, and simple polymorphs of TCNQ derivatives are uncommon. We succeeded in preparation of a novel TCNQ derivative, 2,2'-(2-(prop-2-yn-1-yloxy)cyclohexa-2,5-diene-1,4-diylidene)dimalononitrile, having a propynyloxy group on a substituent. This compound was found to have two crystal polymorphs depending on a solvent for recrystallization. In polymorph I, dimeric hydrogen bonds are formed between acetylenic hydrogens and cyano nitrogens with the molecule in an inversion symmetry. While, in polymorph II, the molecules make intermolecular hydrogen bonds between acetylenic hydrogens and cyano nitrogens with the molecule in 21 symmetry, forming a hydrogen bonded molecular helix along the b axis. Besides patterns of the intermolecular hydrogen bonds, difference was recognized in conformation of propynyloxy group. The molecule has an anti conformation in polymorph I and a gauche conformation in polymorph II. DFT calculation indicates that the anti conformer is less stable than the gauche one. But a solvation model suggests the anti conformer is estimated to be more stable in a toluene solution.
Wu, Yi-Le; Yang, Hui-Yun; Ding, Xiu-Xiu; Zhao, Xue; Chen, Jian; Bi, Peng; Sun, Ye-Huan
2014-06-01
Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism has been implicated as a potential risk factor for epilepsy. To date, many case-control studies have investigated the association between MTHFR C677T polymorphism and epilepsy susceptibility. However, those findings were inconsistent. The objective of this study is to evaluate the precise association between MTHFR C677T polymorphism and epilepsy. An electronic search of PubMed, EMBASE for papers on the MTHFR C677T polymorphism and epilepsy susceptibility was performed. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess the association. Ten case-control studies containing 1713 cases and 1867 controls regarding MTHFR C677T polymorphism were selected. A significant association between the MTHFR C677T polymorphism and epilepsy susceptibility was revealed in this meta-analysis (for T vs. C: OR=1.19, 95% CI=1.08-1.32; for TT+CT vs. CC: OR=1.20, 95% CI=1.05-1.38; for TT vs. CC: OR=1.48, 95% CI=1.20-1.83; for TT vs. CT+CC: OR=1.35, 95% CI=1.12-1.64). In subgroup analysis by ethnicity, the results also indicated the association between the MTHFR C677T polymorphism and epilepsy susceptibility within the Asian populations (for T vs. C: OR=1.55, 95% CI=1.15-2.07; for TT+CT vs. CC: OR=1.67, 95% CI=1.08-2.59; for TT vs. CC: OR=2.33, 95% CI=1.30-4.20; for TT vs. CT+CC: OR=1.89, 95% CI=1.12-3.18). The results indicated that MTHFR C677T polymorphism was associated with an increased risk of epilepsy. However, further studies in various regions are needed to confirm the findings from this meta-analysis. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Do estrogen receptor alpha polymorphisms have any impact on the outcome in an ART program?
Anagnostou, Elli; Malamas, Fotodotis; Mavrogianni, Despina; Dinopoulou, Vasiliki; Drakakis, Peter; Kallianidis, Konstantinos; Loutradis, Dimitris
2013-04-01
To investigate two of the most studied estrogen receptor alpha polymorphisms (PvuII and XbaI) in combination, in order to evaluate their impact on an ART program outcome. 203 normally ovulating women who underwent IVF or ICSI treatment were genotyped for PvuII and XbaI polymorphisms in ESR1 intron 1 using Real-Time PCR. The relationship between the presence of polymorphic alleles and the ovulation induction parameters and outcome was examined. Women were grouped according to the number of polymorphic alleles they carried in two groups (0-2 versus 3-4 polymorphic alleles). The presence of 3 or more polymorphic alleles was associated with significantly lower E2 levels on the day of hCG administration and a significantly lower rate of good quality embryos. There is an association between ESR1 polymorphisms and some ART parameters such as the level of E2 on the day of hCG administration and the quality of the embryos. These results underline the importance of ESR1 as a candidate gene for the prediction of ovarian response to IVF/ICSI protocols. Future research work concerning several more genes is necessary for a better evaluation of patients before entering an IVF/ICSI program.
Amini, Sabrieh; Javanmardi, Mitra; Mokarizadeh, Aram; Maroofi, Farzad; Jalali, Chiya; Azadi, Namam-Ali; Mohammadi, Hamid; Abdi, Mohammad
2016-06-01
Given the growing rate of patients with type 2 diabetes mellitus, uncovering the effects of gene polymorphism on diabetes pathogenesis has attracted a lot of attention. Because glucose transporter 1 is involved in glucose uptake, the polymorphism of this gene may be an important risk factor in type 2 diabetes mellitus or in the progression of diabetes complications such as diabetic nephropathy. As far as the authors are concerned, this study is the first one aiming at evaluating the probable effects of solute carrier family 2 facilitated glucose transporter member 1 (SLC2A1) HaeIII polymorphism on clinical and laboratory outcomes of Kurdish patients with type 2 diabetes mellitus. This study was conducted involving 126 diabetic nephropathy patients and 150 diabetic patients without renal involvement. Serum levels of Cystatin C, fasting blood glucose, creatinine and urinary albumin; levels of glycated hemoglobin and estimated glomerular filtration rate were measured. Moreover, the Hae III polymorphism of SLC2A1 gene was determined by PCR-restriction fragment length polymorphism (RFLP). The rate of CC genotype was higher (37%) in patients with diabetic nephropathy compared with controls. There were a significant correlation between the CC genotype and risk of diabetic nephropathy. There were significant correlations between genotypes, serum Cystatin C and estimated glomerular filtration rate in patients with diabetic nephropathy. The results demonstrated the high frequency of C allele of SLC2A1 HaeIII in Kurdish patients with diabetic nephropathy. It was also found that this polymorphism is a significant risk factor for diabetic nephropathy. The effect of this polymorphism on clinical and laboratory characteristics of diabetic nephropathy patients was significant. © The Author 2015. Published by Oxford University Press on behalf of the Association of Physicians. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dong, Jing; Dai, Juncheng; Zhang, Mingfeng; Hu, Zhibin; Shen, Hongbing
2010-06-01
Three potentially functional polymorphisms: -765G>C, -1195G>A, and 8473T>C in the cyclooxygenase-2 (COX-2) gene were identified and proposed to be associated with cancer susceptibility. The aim of this meta-analysis was to evaluate the association between these three polymorphisms and the risk of cancer in diverse populations. All case-control studies published up to November 2009 on the association between the three polymorphisms of COX-2 and cancer risk were identified by searching PubMed. The cancer risk associated with the three polymorphisms of the COX-2 gene was estimated for each study by OR together with its 95% confidence interval (CI), respectively. A total of 47 case-control studies were included, and variant genotypes GA/AA of -1195G>A were associated with a significantly increased cancer risk (GA/AA vs GG: odds ratio [OR], 1.29; 95% CI, 1.18-1.41; P(heterogeneity) = 0.113), and this significant association was mainly observed within cancers of the digestive system (e.g. colorectal, gastric, esophageal, oral, biliary tract, gallbladder, and pancreatic) without between-study heterogeneity (GA/AA vs GG: OR, 1.36; 95% CI; 1.23-1.51; P(heterogeneity) = 0.149). Furthermore, a stratification analysis showed that the risk of COX-2-1195G>A associated with cancers in the digestive system was more evident among Asians than Caucasians. However, for COX-2-765G>C and 8473T>C, no convincing association between the two polymorphisms and risk of cancer or cancer type was observed. The effect of three potentially functional polymorphisms (-765G>C, -1195G>A, and 8473T>C) in the COX-2 gene on cancer risk provided evidence that the COX-2-1195G>A polymorphism was significantly associated with increased risk of digestive system cancers, especially among Asian populations.
Teruya, Tsuyoshi; Nakachi, Atsushi; Shimabukuro, Nobuhiro; Toritsuka, Daisuke; Azuma, Yasuharu; Hanashiro, Kiyotoshi; Nishiki, Takehiro; Ota, Morihito; Shimabuku, Masamori; Shiroma, Hiroshi
2015-05-01
Irinotecan is an effective drug in the treatment of colorectal cancer. However, there are reports of an association between certain UGT1A1 genetic polymorphisms and the development of adverse reactions(such as neutropenia)related to irinotecan metabolism. We retrospectively investigated UGT1A1 genetic polymorphisms and the occurrences of irinotecan-induced neutropenia in 25 patients of colorectal cancer at our hospital. Analysis of UGT1A1 genetic polymorphisms in these patients yielded the following classifications: a wild-type group( *1/*1)comprising 13 patients(52%), a heterozygous group(*1/ *28, *1/*6)of 10 patients(40%), and a homozygous group(*28/*28, *6/*6)of 2 patients(8%). The frequency of neutropenia was 15.4%(2/13)in the wild-type group, 30%(3/10)in the heterozygous group, and 100%(2/2)in the homozygous group. Grade 4 neutropenia only occurred in the homozygous group. These results suggest that a dose reduction of irinotecan should be considered for patients who fall into the homozygous group upon analysis of their UGT1A1 genetic polymorphisms, as such patients might be susceptible to grade 4 neutropenia.
Ahern, Thomas P.; Christensen, Mariann; Cronin-Fenton, Deirdre P.; Lunetta, Kathryn L.; Søiland, Håvard; Gjerde, Jennifer; Garne, Jens Peter; Rosenberg, Carol L.; Silliman, Rebecca A.; Sørensen, Henrik Toft; Lash, Timothy L.; Hamilton-Dutoit, Stephen
2011-01-01
Background Tamoxifen is oxidized by cytochrome-P450 enzymes (e.g., CYP2D6) to two active metabolites, which are eliminated via glucuronidation by UDP-glucuronosyltransferases (UGTs). We measured the association between functional polymorphisms in key UGTs (UGT2B15*2, UGT2B7*2, and UGT1A8*3) and the recurrence rate among breast cancer survivors. Methods We used the Danish Breast Cancer Cooperative Group registry to identify 541 cases of recurrent breast cancer among women with estrogen receptor-positive tumors treated with tamoxifen for at least one year (ER+/TAM+), and 300 cases of recurrent breast cancer among women with estrogen receptor-negative tumors who were not treated with tamoxifen (ER−/TAM−). We matched 1 control to each case on ER status, menopausal status, stage, calendar period, and county. UGT polymorphisms were genotyped from archived primary tumors. We estimated the recurrence odds ratio for the UGT polymorphisms using logistic regression models, with and without stratification on CYP2D6*4 genotype. Results No UGT polymorphism was associated with breast cancer recurrence in either the ER+/TAM+ or ER-/TAM- groups [in the ER+TAM+ group, compared with two normal alleles: adjusted OR for two UGT2B15*2 variant alleles = 1.0 (95% CI: 0.70, 1.5); adjusted OR for two for UGT2B7*2 variant alleles = 0.91 (95% CI: 0.65, 1.3); adjusted OR for 1 or 2 UGT1A8*3 variant alleles = 0.75 (0.41, 1.4)]. Associations were similar within strata of CYP2D6*4 genotype. Conclusions Functional polymorphisms in key tamoxifen-metabolizing enzymes were not associated with breast cancer recurrence risk. Impact Our results do not support the genotyping of key metabolic enzyme polymorphisms to predict response to tamoxifen therapy. PMID:21750172
Wu, Guangliang; Cai, Haiyan; Cai, Haobin; Chen, Zhao; Tan, Lei; Qin, Xiurong; Cai, Yefeng
2016-09-01
Many studies have investigated the association between the cyclooxygenase-2 (COX-2) gene polymorphism and ischemic stroke. However, results of these studies still remain controversial. To better explain the association between COX-2 polymorphisms (-765G/C and -1195G/A) and ischemic stroke risk, a meta-analysis was performed. Relevant studies were identified from 4 Chinese databases (Chinese Biological Medical Literature database, Chinese National Knowledge Infrastructure database, Chongqing VIP database, and Chinese WANFANG database), PUBMED and EMBASE prior to December 2015. The strength of association between COX-2 polymorphism and ischemic stroke was evaluated by the odds ratio (OR) with 95% confidence interval (CI). Inconsistency index (I(2)) and the Cochran's Q statistic were used to check heterogeneity. Publication bias was evaluated by funnel plots and Egger's regression test. A total of 4086 ischemic stroke cases and 4747 controls were identified. Significant association between COX-2 -765G/C polymorphism and the risk of ischemic stroke was found in Brazilians and the African-Americans. The OR of (CC+GC versus GG) for the Brazilians and African-Americans were (6.328, 95% CI = 2.295-17.448) and (1.644, 95% CI = 1.060-2.551). In addition, the recessive model of the Brazilians gave an OR of 3.621 (95% CI: 1.519-8.630). Furthermore, the (GC versus GG) and the allele model of the African-Americans were (OR: 1.615, 95% CI = 1.015-2.572) and (OR: 1.422, 95% CI = 1.033-1.957). Significant association was also observed for COX-2 -1195G/A polymorphism in the subtypes of small vessel disease (SVD) of ischemic stroke. Our study suggests that COX-2 -765G/C and -1195G/A polymorphisms may contribute to susceptibility of ischemic stroke, specifically in Brazilians and the African-Americans, and those of SVD. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Zhang, Ji-Xiang; He, Jian-Hua; Wang, Jun; Song, Jia; Lei, Hong-Bo; Wang, Jing; Dong, Wei-Guo
2014-01-01
Ulcerative colitis (UC) and Crohn's disease (CD) result from an interaction between genetic and environmental factors. Though several polymorphisms have been identified in PTPN2, their roles in the incidence of UC and CD are conflicting. This meta-analysis was aimed to clarify the impact of these polymorphisms on UC and CD risk. PubMed, EMBASE, Cochrane Library and CBM were searched until 23 July 2013 for eligible studies on three PTPN2 polymorphisms: rs2542151, rs1893217 and rs7234029. Data were extracted, and pooled odd ratios (ORs) as well as 95 % confidence intervals (95 % CIs) were calculated. The meta-analysis indicated that rs2542151, rs1893217 and rs1893217 were associated with increased CD risk, while the former was associated with increased UC risk. The differences in age of onset and ethnic groups may influence the associations. Gene-gene and gene-environment interactions should be investigated in the future. Seventeen studies with 18,308 cases and 20,406 controls were included. Significant associations were found between rs2542151 polymorphism and CD susceptibility (OR = 1.22, 95 % CI, 1.15-1.30, I (2) = 32 %), as well as between rs2542151 and UC susceptibility (OR = 1.16, 95 % CI, 1.07-1.25, I (2) = 39 %). A similar result was found in Caucasians, but not in Asians. Moreover, a significant increase in CD risk for all carriers of the minor allele of rs1893217 (OR = 1.45, 95 % CI, 1.23-1.70, I (2) = 0 %) and rs7234029 (OR = 1.36, 95 % CI, 1.16-1.59, I (2) = 0 %) were found. For children, the rs1893217 polymorphism appeared to confer susceptibility to CD (OR = 1.56, 95 % CI, 1.28-1.89, I (2) = 0 %).
Bylińska, Aleksandra; Wilczyńska, Karolina; Malejczyk, Jacek; Milewski, Łukasz; Wagner, Marta; Jasek, Monika; Niepiekło-Miniewska, Wanda; Wiśniewski, Andrzej; Płoski, Rafał; Barcz, Ewa; Roszkowski, Piotr; Kamiński, Paweł; Malinowski, Andrzej; Wilczyński, Jacek R; Radwan, Paweł; Radwan, Michał; Kuśnierczyk, Piotr; Nowak, Izabela
2018-06-01
Endometriosis is a disease in which endometriotic tissue occurs outside the uterus. Its pathogenesis is still unknown. The most widespread hypothesis claims that ectopic endometrium appears as a result of retrograde menstruation and its insufficient elimination by immunocytes. Some reports have shown expression of non-classical HLA-G molecules on ectopic endometrium. HLA-G is recognized by KIR2DL4, LILRB1 and LILRB2 receptors on natural killer (NK) and other cells. These receptors are polymorphic, which may affect their activity. In this study we investigated whether HLA-G, KIR2DL4, LILRB1 and LILRB2 polymorphisms may influence susceptibility to endometriosis and disease progression. We used polymerase chain reaction (PCR), PCR-restriction fragment length polymorphism (PCR-RFLP) and allelic discrimination methods with TaqMan SNP Genotyping Assays for typing of 276 patients with endometriosis and 314 healthy fertile women. The HLA-G rs1632947:GG genotype was associated with protection against the disease and its severe stages; HLA-G rs1233334:CT protected against progression; LILRB1 rs41308748:AA and LILRB2 rs383369:AG predisposed to the disease and its progression. No effect of KIR2DL4 polymorphism was observed. These results support the role of polymorphisms of HLA-G and its receptors LILRB1 and LILRB2 in susceptibility to endometriosis and its progression.
Associations between SLC2A9 polymorphisms and gout susceptibility : A meta-analysis.
Lee, Y H; Seo, Y H; Kim, J-H; Choi, S J; Ji, J D; Song, G G
2017-02-01
The aim of this study was to determine whether polymorphisms in solute carrier family 2 and facilitated glucose transporter member 9 (SLC2A9) are associated with susceptibility to gout. A meta-analysis was conducted on associations between the rs12510549, rs16890979, and rs1014290 polymorphisms of SLC2A9 and gout susceptibility using fixed and random effects models. Eleven comparative studies comprising 1,472 patients and 3,269 controls from Caucasian and Asian populations were included in this meta-analysis. The meta-analysis identified a significant negative association between gout and allele 2 (minor) of the rs12510549 polymorphism in the overall population (OR = 0.641, 95 % CI = 0.540-0.761, P = 4.1 × 10 -7 ). Stratification by ethnicity identified a significant negative association between this polymorphism and gout in Caucasians (OR = 0.647, 95 % CI = 0.542-0.771, P = 1.2 × 10 -6 ) but not in Asians (OR = 0.515, 95 % CI = 0.214-1.236, P = 0.137). The meta-analysis showed a significant negative association between gout and allele 2 of the rs16890979 polymorphism in all study subjects (OR = 0.229, 95 % CI = 0.084-0.628, P = 0.004). Stratification by ethnicity identified a significant negative association between this polymorphism and gout in Caucasians (OR = 0.469, 95 % CI = 0.317-0.695, P = 1.6 × 10 -6 ) and in Asians (OR = 0.192, 95 % CI = 0.072-0.513, P = 0.001). A significant negative association was found between allele 2 of the rs1014290 polymorphism and gout susceptibility in Asians (OR = 0.597, 95 % CI = 0.478-0.746, P = 5.4 × 10 -6 ) but not in Caucasians (OR = 0.778, 95 % CI = 0.595-1.043, P = 0.095). This meta-analysis shows that the rs12510549, rs16890979, and rs1014290 polymorphisms of SLC2A9 protect against the development of gout in Caucasians and/or Asians.
A second ortho-rhom-bic polymorph of (Z)-3-(9-anthr-yl)-1-(2-thien-yl)prop-2-en-1-one.
Chantrapromma, Suchada; Suwunwong, Thitipone; Boonnak, Nawong; Fun, Hoong-Kun
2010-01-09
The title heteroaryl chalcone, C(21)H(14)OS, is a second ortho-rhom-bic polymorph which crystallizes in the space group P2(1)2(1)2(1). The structure was previously reported [Fun et al. (2009 ▶). Acta Cryst. E65, o2168-o2169] in the space group Pna2(1). The bond distances and angles are similar in both structures. In contrast, the overall crystal packing is different from that in the first ortho-rhom-bic Pna2(1) polymorph in which mol-ecules were stacked into columns along the b axis and the thio-phene units of two adjacent columns were stacked in a head to tail fashion. In the present polymorph, mol-ecules are found to dimerize through a weak S⋯S inter-action [3.6513 (7) Å] and these dimers are arranged into sheets parallel to the bc plane. There are no classical hydrogen bonds in the packing which features short C⋯O [3.2832 (2)-3.6251 (9) Å], C⋯S [3.4879 (17)-3.6251 (19) Å] and S⋯O [2.9948 (16) Å] contacts, together with C-H⋯π inter-actions. Similar contacts were found in the other polymorph.
2010-01-01
Background Gastric cancer can progress from a chronic inflammation of the gastric mucosa resulting from Helicobacter pylori infection that activates the inflammatory response of the host. Therefore, polymorphisms in genes involved in the inflammatory response, such as inducible nitric oxide synthase (NOS2), have been implicated in gastric carcinogenesis. The aim of this study was to evaluate the association of NOS2 polymorphisms Ser608Leu (rs2297518) in exon 16, -954G/C and -1173C/T, both in the promoter region, with gastric cancer and chronic gastritis and the association of cancer with risk factors such as smoking, alcohol intake and H. pylori infection. Methods We conducted a population-based case-control study in 474 Southeast Brazilian individuals (150 with gastric cancer, 160 with chronic gastritis, and 164 healthy individuals), in which we performed NOS2 genotyping by PCR-RFLP. Results SNP Ser608Leu was not associated with risk of chronic gastritis or gastric cancer. The polymorphic allele -1173T was not found in the studied population. However, the frequency of -954GC+CC genotypes was significantly higher (p < 0.01) in the cancer group (48.7%) than in both the gastritis (28.1%) and the control (29.9%) groups. Multivariate logistic regression showed that the NOS2 SNP -954G/C was associated with higher risk of gastric cancer (OR = 1.87; 95% CI = 1.12-3.13). We also observed an association with risk factors such as smoking and alcohol intake in both the gastric cancer (OR = 2.68; 95% CI = 1.58-4.53; OR = 3.60; 95% CI = 2.05-6.32, respectively) and the chronic gastritis (OR = 1.93; 95% CI = 1.19-3.13; OR = 2.79; 95% CI = 1.55-5.02, respectively) groups. This is the first report of increased risk of gastric cancer in association with the -954G/C polymorphism. These findings show that several polymorphisms in the promoter region of the NOS2 gene may contribute to the susceptibility to gastric cancer. Conclusions Polymorphism NOS2 -954 G/C, along with alcohol intake and tobacco smoking, is associated with gastric cancer. However, the NOS2 Ser608Leu polymorphism was not associated with gastric carcinogenesis. The NOS2 -1173C/T polymorphism was absent in the studied population. PMID:20565800
Shen, Chunhong; Zhang, Bijun; Liu, Zhirong; Tang, Yelei; Zhang, Yinxi; Wang, Shan; Guo, Yi; Ding, Yao; Wang, Shuang; Ding, Meiping
2017-10-01
The aim of the study is to investigate the effects of ABCB1, ABCC2, UGT2B7 and HNF4α genetic polymorphisms on plasma oxcarbazepine (OXC) concentrations and therapeutic efficacy in Han Chinese patients with epilepsy. We recruited 116 Han Chinese patients with epilepsy who were receiving OXC monotherapy. Blood samples were taken and OXC levels were measured. The polymorphisms of ABCB1 rs1045642, ABCC2 rs2273697, UGT2B7 rs7439366, and HNF4α rs2071197 were determined. The therapeutic efficacy of OXC at the 1-year time-point was assessed. Data analysis was performed using IBM SPSS Statistics 22.0. The genetic polymorphism of ABCB1 rs1045642 was found to be associated with normalized OXC concentration and therapeutic efficacy in patients with epilepsy (P<0.05). As for UGT2B7 rs7439366, the allele polymorphism exhibited a correlation with treatment outcome, but not OXC concentration. The polymorphisms of ABCC2 rs2273697 and HNF4α rs2071197 was not associated with OXC concentrations and therapeutic efficacy. These results suggested that ABCB1 rs1045642 and UGT2B7 rs7439366 may affect OXC pharmacokinetics and therapeutic efficacy in Han Chinese patients with epilepsy. However, further studies in larger populations and other ethnic groups are required. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
An Angiopoietin-2 gene polymorphism in unexplained intrauterine fetal death: a multi-center study.
Huber, Ambros; Grimm, Christoph; Pietrowski, Detlef; Zeillinger, Robert; Bettendorf, Hertha; Husslein, Peter; Hefler, Lukas
2005-02-01
Angiopoietin-2 (Ang-2) is a potent regulator of angiogenesis and vascular tone. As vascular processes have been proposed to be involved in the pathogenesis of pregnancy associated complications such as late unexplained intrauterine fetal death (IUFD), we determined whether a common G/A polymorphism of the Ang-2 gene (ANGPT2) is associated with this condition. In a multicenter case-control study, we evaluated the common G/A polymorphism within exon 4 of the ANGPT2 gene using PCR in 90 women with IUFD and 90 healthy women with at least one uncomplicated full term pregnancy and no history of IUFD. Genotype (p=0.2; OR=1.4 [0.8-2.6]) and allele frequencies (p=0.1; OR=1.4 [0.9-2.1]) of the ANGPT2 polymorphism did not differ between women with IUFD and healthy women. A multivariate regression analysis with smoking habits and preexisting diabetes as covariates did not change the results. We are the first to report on a common polymorphism of the ANGPT2 gene in patients with late IUFD. The investigated ANGPT2 poylmorphism does not seem to be a candidate gene for IUFD in Caucasian women.
Effects of genetic polymorphisms on the OCT1 and OCT2-mediated uptake of ranitidine.
Meyer, Marleen Julia; Seitz, Tina; Brockmöller, Jürgen; Tzvetkov, Mladen Vassilev
2017-01-01
Ranitidine (Zantac®) is a H2-receptor antagonist commonly used for the treatment of acid-related gastrointestinal diseases. Ranitidine was reported to be a substrate of the organic cation transporters OCT1 and OCT2. The hepatic transporter OCT1 is highly genetically variable. Twelve major alleles confer partial or complete loss of OCT1 activity. The effects of these polymorphisms are highly substrate-specific and therefore difficult to predict. The renal transporter OCT2 has a common polymorphism, Ala270Ser, which was reported to affect OCT2 activity. In this study we analyzed the effects of genetic polymorphisms in OCT1 and OCT2 on the uptake of ranitidine and on its potency to inhibit uptake of other drugs. We characterized ranitidine uptake using HEK293 and CHO cells stably transfected to overexpress wild type OCT1, OCT2, or their naturally occurring allelic variants. Ranitidine was transported by wild-type OCT1 with a Km of 62.9 μM and a vmax of 1125 pmol/min/mg protein. Alleles OCT1*5, *6, *12, and *13 completely lacked ranitidine uptake. Alleles OCT1*2, *3, *4, and *10 had vmax values decreased by more than 50%. In contrast, OCT1*8 showed an increase of vmax by 25%. The effects of OCT1 alleles on ranitidine uptake strongly correlated with the effects on morphine uptake suggesting common interaction mechanisms of both drugs with OCT1. Ranitidine inhibited the OCT1-mediated uptake of metformin and morphine at clinically relevant concentrations. The inhibitory potency for morphine uptake was affected by the OCT1*2 allele. OCT2 showed only a limited uptake of ranitidine that was not significantly affected by the Ala270Ser polymorphism. We confirmed ranitidine as an OCT1 substrate and demonstrated that common genetic polymorphisms in OCT1 strongly affect ranitidine uptake and modulate ranitidine's potential to cause drug-drug interactions. The effects of the frequent OCT1 polymorphisms on ranitidine pharmacokinetics in humans remain to be analyzed.
Effects of genetic polymorphisms on the OCT1 and OCT2-mediated uptake of ranitidine
Meyer, Marleen Julia; Seitz, Tina; Brockmöller, Jürgen
2017-01-01
Background Ranitidine (Zantac®) is a H2-receptor antagonist commonly used for the treatment of acid-related gastrointestinal diseases. Ranitidine was reported to be a substrate of the organic cation transporters OCT1 and OCT2. The hepatic transporter OCT1 is highly genetically variable. Twelve major alleles confer partial or complete loss of OCT1 activity. The effects of these polymorphisms are highly substrate-specific and therefore difficult to predict. The renal transporter OCT2 has a common polymorphism, Ala270Ser, which was reported to affect OCT2 activity. Aim In this study we analyzed the effects of genetic polymorphisms in OCT1 and OCT2 on the uptake of ranitidine and on its potency to inhibit uptake of other drugs. Methods and results We characterized ranitidine uptake using HEK293 and CHO cells stably transfected to overexpress wild type OCT1, OCT2, or their naturally occurring allelic variants. Ranitidine was transported by wild-type OCT1 with a Km of 62.9 μM and a vmax of 1125 pmol/min/mg protein. Alleles OCT1*5, *6, *12, and *13 completely lacked ranitidine uptake. Alleles OCT1*2, *3, *4, and *10 had vmax values decreased by more than 50%. In contrast, OCT1*8 showed an increase of vmax by 25%. The effects of OCT1 alleles on ranitidine uptake strongly correlated with the effects on morphine uptake suggesting common interaction mechanisms of both drugs with OCT1. Ranitidine inhibited the OCT1-mediated uptake of metformin and morphine at clinically relevant concentrations. The inhibitory potency for morphine uptake was affected by the OCT1*2 allele. OCT2 showed only a limited uptake of ranitidine that was not significantly affected by the Ala270Ser polymorphism. Conclusions We confirmed ranitidine as an OCT1 substrate and demonstrated that common genetic polymorphisms in OCT1 strongly affect ranitidine uptake and modulate ranitidine’s potential to cause drug-drug interactions. The effects of the frequent OCT1 polymorphisms on ranitidine pharmacokinetics in humans remain to be analyzed. PMID:29236753
Association between ADH1C and ALDH2 polymorphisms and alcoholism in a Turkish sample.
Ayhan, Yavuz; Gürel, Şeref Can; Karaca, Özgür; Zoto, Teuta; Hayran, Mutlu; Babaoğlu, Melih; Yaşar, Ümit; Bozkurt, Atilla; Dilbaz, Nesrin; Uluğ, Berna Diclenur; Demir, Başaran
2015-04-01
Polymorphisms in the genes encoding alcohol metabolizing enzymes are associated with alcohol dependence. To evaluate the association between the alcohol dehydrogenase 1C (ADH1C) Ile350Val and aldehyde dehydrogenase 2 (ALDH2) Glu504Lys polymorphisms and alcohol dependence in a Turkish sample. 235 individuals (115 alcohol-dependent patients and 120 controls) were genotyped for ADH1C and ALDH2 with PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism). Association between the polymorphisms and family history, daily and maximum amount of alcohol consumed was investigated. The associations between alcohol dependence, severity of consumption and family history and the polymorphisms were analyzed by chi-square or Fisher's exact test where necessary. Relationship between genotypes and dependence related features was evaluated using analysis of variance (ANOVA). The -350Val allele for ADH1C (ADH1C*2) was increased in alcohol-dependent patients (P = 0.05). In individuals with a positive family history, the genotype distribution differed significantly (P = 0.031) and more patients carried the Val allele compared with controls (P = 0.025). Genotyping of 162 participants did not reveal the -504Lys allele in ALDH2. These findings suggest that ADH1C*2 is associated with alcohol dependence in the Turkish population displaying a dominant inheritance model. ADH1C*2 allele may contribute to the variance in heritability of alcohol dependence. The ALDH2 -504Lys/Lys or Glu/Lys genotypes were not present in alcohol-dependent patients, similar to that seen in European populations and in contrast to the findings in the Asian populations.
Han, Zhi-Gang; Tao, Jie; Yu, Ting-Ting; Shan, Li
2017-04-26
BACKGROUND Gene polymorphisms are associated with sensitivity to platinum drugs. This study aimed to investigate the polymorphisms of GSTP1 rs1695 locus and ABCC2 rs717620 locus, and the sensitivity of patients with advanced non-small cell lung cancer (NSCLC) to platinum drugs in a Xinjiang Uygur population. MATERIAL AND METHODS The gene polymorphisms of GSTP1 rs1695 and ABCC2 rs717620 of Uygur NSCLC patients were assessed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The relationship between the prognosis of advanced NSCLC Uygur patients and the gene polymorphisms of GSTP1 rs1695 and ABCC2 rs717620 was analyzed using progression-free survival (PFS) and overall survival (OS) as the major outcome indicators. RESULTS The median PFS of patients with advanced NSCLC was 6.9 months and the OS of Uygur patients with advanced NSCLC was 10.8 months. Kaplan-Meier survival analysis indicated that survival time of patients with GSTP1 AG + GG was significantly longer than in patients with AA gene (P<0.05), and survival time of patients with ABCC2 CT + TT was significantly longer than in patients with the CC gene (P<0.05). CONCLUSIONS Polymorphisms of GSTP1 rs1695 and ABCC2 rs717620 can be used to predict the outcomes of Uygur patients with advanced NSCLC who have received platinum-based chemotherapy. Additionally, this information could be used to guide the individualized treatment of Uygur patients with advanced NSCLC.
Huang, X Y; Yang, Q L; Yuan, J H; Gun, S B
2015-09-08
In this study, 290 Chinese native Yantai black pig piglets were investigated to identify gene polymorphisms, for haplotype reconstruction, and to determine the association between piglet diarrhea and swine leukocyte antigen (SLA) class II DQA exons 2, 3, and 4 by polymerase chain reaction-single stranded conformational polymorphism and cloning sequencing. The results showed that the 5, 8, and 7 genotypes were identified from SLA-DQA exon 2, 3, and 4, respectively, based on the single-stranded conformational polymorphism banding patterns and found a novel allele D in exon 2 and 2 novel mutational sites of allele C (c.4828T>C) and allele F (c.4617T>C) in exon 3. Polymorphism information content testing showed that exon 2 was moderately polymorphic and that exons-3 and -4 loci were highly polymorphic. The piglet diarrhea scores for genotypes AB (1.40 ± 0.14) and AC (1.54 ± 0.17) in exon 2, AA (1.22 ± 0.32), BC (1.72 ± 0.13), DD (1.67 ± 0.35), and CF (1.22 ± 0.45) in exon 3, and AD (2.35 ± 0.25) in exon 4 were significantly higher than those for the other genotypes (P ≤ 0.05) in DQA exons. There were 14 reconstructed haplotypes in the 3 exons from 290 individuals and Hap12 may be the diarrhea-resistant gene. Haplotype distribution was extremely uneven, and the SLA-DQA gene showed genetic linkage. In this study, we identified molecular genetic markers and provided a theoretical foundation for future pig anti-disease resistance breeding.
Li, Xuejiao; Liu, Yukun; Zhang, Rui; Tan, Jianping; Chen, Libin; Liu, Yinglin
2015-01-01
Background The association between plasminogen activator inhibitor-1 (PAI-1) 4G/5G polymorphism and recurrent pregnancy loss (RPL) risk is still contradictory. We thus performed a meta-analysis. Material/Methods Relevant studies were searched for in PubMed, Web of Science, Embase, and Cochrane Library. An odds ratio (OR) with a 95% confidence interval (CI) was used to assess the association between PAI-1 4G/5G polymorphism and RPL risk. Results A total of 22 studies with 4306 cases and 3076 controls were included in this meta-analysis. We found that PAI-1 4G/5G polymorphism was significantly associated with an increased RPL risk (OR=1.89; 95% CI 1.34–2.67; P=0.0003). In the subgroup analysis by race, PAI-1 4G/5G polymorphism was significantly associated with an increased RPL risk in Caucasians (OR=2.23; 95% CI 1.44–3.46; P=0.0003). However, no significant association was observed in Asians (OR=1.47; 95% CI 0.84–2.59; P=0.18). Conclusions In conclusion, this meta-analysis suggests that PAI-1 4G/5G polymorphism might be associated with RPL development in Caucasians. PMID:25862335
HSP90, HSPA8, HIF-1 alpha and HSP70-2 polymorphisms in breast cancer: a case-control study.
Zagouri, Flora; Sergentanis, Theodoros N; Gazouli, Maria; Tsigginou, Alexandra; Dimitrakakis, Constantine; Papaspyrou, Irene; Eleutherakis-Papaiakovou, Evaggelos; Chrysikos, Dimosthenis; Theodoropoulos, George; Zografos, George C; Antsaklis, Aris; Dimopoulos, Athanassios-Meletios; Papadimitriou, Christos A
2012-12-01
This case control study aims to investigate the role of HSP90 Gln488His (C > G), HSP70-2 P1/P2, HIF-1 alpha C1772T and HSPA8 intronic 1541-1542delGT polymorphisms as potential risk factors and/or prognostic markers for breast cancer. 113 consecutive incident cases of histologically confirmed ductal breast cancer and 124 healthy cases were recruited. The above mentioned polymorphisms were genotyped; multivariate logistic regression was performed. HSP90 GG (His/His) genotype was associated with elevated breast cancer risk. Similarly, the allele dose-response model pointed to increase in breast cancer risk per G allele. HSP70-2 P1/P2, HSPA8 intronic 1541-1542delGT and HIF-1 alpha polymorphisms were not associated with breast cancer risk, as evidenced by the dose-response allele models. The positive association between HSP90 G allele and breast cancer risk seemed to pertain to both premenopausal and postmenopausal women. With respect to survival analysis, none of the aforementioned polymorphisms was associated with either disease-free survival or overall survival. HSP90α Gln488His polymorphism seems to be a risk factor for breast cancer. On the other hand, our study did not point to excess risk conferred by HSPA8 1541-1542delGT, Hsp70-2 P1/P2 and HIF-1α C1772T.
Xu, Longqiang; Zheng, Lanlan; Ma, Jianhua; Su, Nailun; Liu, Yujun; Ma, Xu; Zhang, Xinhua; Liu, Shiguo
2016-03-01
Our purpose is to investigate whether polymorphisms of 102 T/C and -1438A/G in 5HTR2A are associated with Tourette syndrome (TS) in Chinese Han population. A total of 178 TS trios were recruited in this study. After the allelic and genotypic distributions of two polymorphisms were genotyped using polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP), we compared their genetic distributions with what is expected with Hardy-Weinberg to explore whether there might be an association of these polymorphisms with TS by haplotype relative risk (HRR) and transmission disequilibrium test (TDT) statistics. Our results showed that no significant associations were found between the HTR2A 102 T/C and -1438A/G polymorphisms and TS (for HTR2A 102 T/C: TDT = 2.041, df = 1, P = 0.175; HRR = 1.468, χ(2) = 1.905, P = 0.168, 95% confidence interval: 0.850-2.535; for HTR2A: -1438A/G, TDT = 0.093, df = 1, P = 0.819; HRR = 0.965, χ(2) = 0.018, P = 0.894, 95% confidence interval: 0.574-1.624). Our study suggested that the HTR2A 102T/C and -1438A/G polymorphisms may not be associated with susceptibility to TS, and thus do not play a major role in the development of TS in the Chinese Han population. However, these results need to be confirmed in a larger sample collected from different populations. © 2015 Wiley Publishing Asia Pty Ltd.
Ghafouri, Houshiyar; Ghaderi, Bayazid; Amini, Sabrieh; Nikkhoo, Bahram; Abdi, Mohammad; Hoseini, Abdolhakim
2016-06-01
The possible interaction between gene polymorphisms and risk of cancer progression is very interesting. Polymorphisms in multi-drug resistance genes have an important role in response to anti-cancer drugs. The present study was aimed to evaluate the possible effects of ABCB1 C3435T and ABCG2 C421A single nucleotide polymorphisms on clinical and pathological outcomes of Kurdish patients with breast cancer. One hundred breast cancer patients and 200 healthy controls were enrolled in this case-control study. Clinical and pathological findings of all individuals were reported, and immunohistochemistry staining was used to assess the tissue expression of specific breast cancer proteins. The ABCB1 C3435T and ABCG2 C421 genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP). The distribution of different genotypes between patient and control groups was only significant for ABCG2 C421A. A allele of ABCG2 C421A polymorphisms were significantly higher in patients than in controls. Patients with AA genotype of ABCG2 C421A were at higher risk of progressing breast cancer. Patients with A allele of ABCG2 had complete response to chemotherapeutic agents. There was no statistically significant association between ABCB1 C3435T and ABCG2 C421A polymorphisms and tissue expression of ER, PR, Her2/neu, and Ki67. The ABCB1 C3435T has no correlation with clinical findings and treatment with chemotherapy drugs. The A allele of ABCG2 C421A may be a risk factor for progression of breast cancer in Kurdish patients. In addition, breast cancer patients with C allele of this polymorphism have weaker response to treatments with anthracyclines and Paclitaxol.
Polymorphism of heat shock protein 70-2 and enterocutaneous fistula in Chinese population
Chen, Jun; Ren, Jian-An; Han, Gang; Gu, Guo-Sheng; Wang, Ge-Fei; Wu, Xiu-Wen; Zhou, Bo; Hu, Dong; Wu, Yin; Zhao, Yun-Zhao; Li, Jie-Shou
2014-01-01
AIM: To investigate whether the heat shock protein 70-2 (HSP70-2) polymorphism is associated with enterocutaneous fistulas in a Chinese population. METHODS: This study included 131 patients with enterocutaneous/enteroatmospheric fistulas. Patients with inflammatory bowel disease or other autoimmune diseases were excluded from this study. All patients with enterocutaneous/enteroatmospheric fistulas were followed up for three months to observe disease recurrence. In addition, a total of 140 healthy controls were also recruited from the Jinling Hospital, matched according to the sex and age of the patient population. Genomic DNA was extracted from peripheral blood from each participant. The HSP70-2 restriction fragment length polymorphism related to the polymorphic PstI site at position 1267 was characterized by polymerase chain reaction (PCR). First PCR amplification was carried out, and then PCR products were digested with PstI restriction enzyme. The DNA lacking the polymorphic PstI site within HSP70-2 generates a product of 1117 bp in size (allele A), whereas the HSP70-2 PstI polymorphism produces two fragments of 936 bp and 181 bp in size (allele B). RESULTS: The frequency of the HSP70-2 PstI polymorphism did not differ between patients and controls; however, the A allele was more predominant in patients with enterocutaneous fistulas than in controls (60.7% vs 51.4%, P = 0.038, OR = 1.425, 95%CI: 1.019-1.994). Sixty-one patients were cured by a definitive operation, drainage operation, or percutaneous drainage while 52 patients were cured by nonsurgical treatment. There was no significant difference in the frequency of the HSP70-2 PstI polymorphism between the patients who had surgery compared to those who did not (P = 0.437, OR = 1.237, 95%CI: 0.723-2.117). Moreover, 11 patients refused any treatment for economic reasons or tumor burden, and 7 patients with enterocutaneous fistulas (5.8%) died during the follow-up period. However, there was no significant difference in the frequency of the HSP70-2 PstI polymorphism between the patients who survived compared to those who died (P = 0.403, OR = 0.604, 95%CI: 0.184-1.986). CONCLUSION: The A allele of the HSP70-2 PstI polymorphism was associated with enterocutaneous fistulas in this Chinese population. PMID:25253958
Aly, Dalia Gamal; Salem, Samar Abdallah; Amr, Khalda Sayed; El-Hamid, Mahmoud Fawzy Abd
2018-01-01
The association of glutathione S-transferases M1/T1 (GSTM1/T1) null polymorphisms with vitiligo was proposed in several studies including two Egyptian studies with contradictory results. The aim here was to assess the association between GSTM1/T1 null polymorphisms and the susceptibility to vitiligo in a larger sample of Egyptian patients with generalized vitiligo. This study included 122 vitiligo patients and 200 healthy controls that were age, and gender matched. Assessment of GSTM1/T1 gene polymorphisms was done using a multiplex polymerase chain reaction (PCR). Increased odds of generalized vitiligo was observed with the null genotypes of GSTM1 and GSTT1 polymorphisms (P<0.05). Controls with GSTM1 null/GSTT1+ heterozygosis presented with a 2.97 odds protection from having generalized vitiligo (OR=2.97, 95%CI=1.1-7.7) (P=0.02) compared with patients. Small sample size of patients. This study showed a significant trend towards an association with the combination of the GSTM1/GSTT1 double null polymorphism and generalized vitiligo. Individuals with GSTM1 null/GSTT1+ heterozygosis have a 2.97 odds protection from having generalized vitiligo compared with patients. It was is the first time, to our knowledge, that such an association has been reported.
Genetic polymorphism in postoperative sepsis after open heart surgery in infants.
Fakhri, Dicky; Djauzi, Samsuridjal; Murni, Tri Wahyu; Rachmat, Jusuf; Harahap, Alida Roswita; Rahayuningsih, Sri Endah; Mansyur, Muchtaruddin; Santoso, Anwar
2016-05-01
Sepsis is one of the complications following open heart surgery. Toll-like receptor 2 and toll-interacting protein polymorphism influence the immune response after open heart surgery. This study aimed to assess the genetic distribution of toll-like receptor 2 N199N and toll-interacting protein rs5743867 polymorphism in the development of postoperative sepsis. A prospective cohort study was conducted in 108 children <1-year old who underwent open heart surgery with a Basic Aristotle score ≥6. Patients with an accompanying congenital anomaly, human immunodeficiency virus infection, or history of previous open heart surgery were excluded. The patients' nutritional status and genetic polymorphism were assessed prior to surgery. The results of genetic polymorphism were obtained through genotyping. Patients' ages on the day of surgery and cardiopulmonary bypass times were recorded. The diagnosis of sepsis was established according to Surviving Sepsis Campaign criteria. Postoperative sepsis was observed in 21% of patients. There were 92.6% patients with toll-like receptor 2 N199N polymorphism and 52.8% with toll-interacting protein rs5743867 polymorphism. Toll-like receptor 2 N199N polymorphism tends to increase the risk of sepsis (odds ratio = 1.974; 95% confidence interval: 0.23-16.92; p = 0.504), while toll-interacting protein rs5743867 polymorphism tends to decrease the risk of sepsis (odds ratio = 0.496; 95% confidence interval: 0.19-1.27; p = 0.139) in infants <1-year old undergoing complex open heart surgery. © The Author(s) 2016.
Mismatch repair gene MSH3 polymorphism is associated with the risk of sporadic prostate cancer.
Hirata, Hiroshi; Hinoda, Yuji; Kawamoto, Ken; Kikuno, Nobuyuki; Suehiro, Yutaka; Okayama, Naoko; Tanaka, Yuichiro; Dahiya, Rajvir
2008-05-01
The mismatch repair system is a DNA repair mechanism that corrects mispaired bases during DNA replication errors. Cancer cells deficient in MMR proteins have a 10(2) to 10(3)-fold increase in the mutation rate. Single nucleotide polymorphisms of mismatch repair genes have been shown to cause a decrease in DNA repair activity. We hypothesized that mismatch repair gene polymorphism could be a risk factor for prostate cancer and p53 Pro/Pro genotype carriers could influence MSH3 and MSH6 polymorphisms. DNA samples from 110 patients with prostate cancer and 110 healthy controls were analyzed by single strand conformational polymorphism and polymerase chain reaction-restriction fragment length polymorphism to determine the genotypic frequency of 5 polymorphic loci on 2 MMR genes (MSH3 and MSH6) and p53 codon72. The chi-square test was applied to compare genotype frequency between patients and controls. A significant increase in the G/A+A/A genotype of MSH3 Pro222Pro was observed in patients compared to controls (OR 1.87, 95% CI 1.0-3.5). The frequency of A/G + G/G genotypes of MSH3 exon23 Thr1036Ala also tended to increase in patients (OR 1.57, 95% CI 0.92-2.72). In p53 codon72 Arg/Pro + Pro/Pro carriers the frequency of the AG + GG genotype of MSH3 exon23 was significantly increased in patients compared to controls (OR 2.1, 95% CI 1.05-4.34). To our knowledge this is the first report of the association of MSH3 gene polymorphisms in prostate cancer. These results suggest that the MSH3 polymorphism may be a risk factor for prostate cancer.
Zhang, Ya-nan; Cui, Wei; Han, Mei; Zheng, Bin; Liu, Fan; Xie, Rui-qin; Yang, Xiao-hong; Gu, Guo-qiang; Zheng, Hong-mei; Wen, Jin-kun
2010-02-01
To investigate the distribution of gene polymorphism of CYP450 2C9 and VKORC1-1639A/G in the Chinese population as well as the difference of genetic polymorphism between Chinese Han population and other ethnic populations. Contribution of CYP2C9 and VKORC1 genotype to the maintenance doses on warfarin was also studied. The genotype and allele frequencies were calculated and compared with those in other populations. One hundred and one patients with stable anticoagulation with warfarin under a target international normalized ratio (INR) of 2.0 to 3.0 were enrolled for studying the relationship between the CYP2C9 and VKORC1 gene polymorphism and the warfarin maintaining dosage. CYP450 2C9*3 + 1075C/A allele frequencies were:AA in 449 cases (92.2%), AC in 36 cases (7.4%) and CC in 2 cases (0.4%), respectively. VKORC1 -1639A/G allele frequencies were AA in 415 cases (85.2%), GA in 72 cases (14.8%), but GG in no case (0.0%), respectively. When linear stepwise regression analysis was used to identify factors contributing to warfarin stable dose, the final equation was: ln (D) = 0.346 + 0.017 (weight) - 0.376 (CYP450 2C9*3 + 1075C/A) + 0.148 (VKORC1-1639A/G) - 0.002 (age) (r = 0.827, P = 0.02). There existed significant gene polymorphism CYP450 2C9*3 + 1075C/A and VKORC1-1639A/G in the Chinese Han population. Both Gene polymorphisms of CYP450 2C9*3 + 1075C/A and VKORC1-1639A/G were significantly affecting the maintaining dose of warfarin in the Chinese population.
Qiu, Y H; Xu, Y L; Zhang, W H
2016-06-03
We investigate the role of the GSTM1, GSTT1, and GSTP1 IIe105Val genetic polymorphisms in the susceptibility to gestational diabetes mellitus. A total of 223 pregnant women with gestational diabetes mellitus and 265 healthy pregnant women were examined at The Second Affiliated Hospital of Shaanxi University of Chinese Medicine from May 2013 to November 2013. Genotyping for detection of GSTM1, GSTT1, and GSTP1 IIe105Val polymorphisms was conducted using the restriction fragment length polymorphism-polymerase chain reaction. There were statistically significant differences between patients with gestational diabetes mellitus and control subjects in terms of age (χ(2) = 6.68, P = 0.01) and BMI (t = 7.56, P < 0.001) levels of HDL-C (t = 2.62, P = 0.005) and LDL-C (t = 3.98, P < 0.001). By the chi-square test, we found significant differences between the present and null genotype distributions of GSTM1 (χ(2) = 10.95, P = 0.0009). Null genotype of GSTM1 could influence the susceptibility to gestational diabetes mellitus compared to the present genotype [adjusted OR (95%CI) = 1.85 (1.26-2.72)]. However, the unconditional logistic analysis revealed that GSTT1 and GSTP1 IIe105Val polymorphisms could not influence the risk of gestational diabetes mellitus in a Chinese population. In summary, we suggest that the GSTM1 gene polymorphism could influence the susceptibility to gestational diabetes mellitus in a Chinese population.
Deng, Yu; Tan, Xin-Ti; Wu, Qiang; Wang, Xin
2017-02-01
This case-control study was designed to evaluate the association of three COL2A1 single nucleotide polymorphism (SNPs) (rs1793953, rs2276454, and rs1793937) and Aggrecan variable number of tandem repeat (VNTR) polymorphisms with the risk and clinicopathological features of intervertebral disc degeneration (IVDD) in a Chinese Han population. Data from 295 IVDD patients (case group) and 324 healthy volunteers (control group) were collected between January 2012 and December 2014. Magnetic resonance examinations were conducted on all included subjects. The frequency distributions of the COL2A1 and Aggrecan polymorphisms were detected using direct sequencing and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, respectively. The genotype and allele frequencies of the COL2A1 genetic polymorphisms (rs1793953 and rs2276454) and the Aggrecan VNTR polymorphisms differed significantly between the case group and the control group (all p < 0.05). The haplotype analysis indicated that the frequencies of ACGL (L, long) and GTCL haplotypes were lower in the case group than in the control group (both p < 0.05). In the case group, the genotype and allele frequencies of the COL2A1 genes, rs1793953 and rs2276454, and Aggrecan VNTR significantly differed in terms of Pfirrmann grades III, IV, and V (all p < 0.05). Personal history of spine sprain or crush injury, history of IVDD in a first-degree relative, and COL2A1 rs2276454 and Aggrecan VNTR presence may be independent risk factors of IVDD (all p < 0.05, odds ratio [OR] >1), whereas tea drinking habit, part-time sports participation, and COL2A1 rs1793953 presence may be protective factors of IVDD (all p < 0.05, OR <1). Our study provides evidence that COL2A1 and Aggrecan genetic polymorphisms may be correlated with the risk and clinicopathological features of IVDD in a Chinese Han population, and ACGL and GTCL haplotypes may be protective factors of IVDD.
Raffo, Pablo A; Suárez, Sebastián; Fantoni, Adolfo C; Baggio, Ricardo; Cukiernik, Fabio D
2017-09-01
After reporting the structure of a new polymorph of 1,3,5-trifluoro-2,4,6-triiodobenzene (denoted BzF3I3), C 6 F 3 I 3 , (I), which crystallized in the space group P2 1 /c, we perform a comparative analysis with the already reported P2 1 /n polymorph, (II) [Reddy et al. (2006). Chem. Eur. J. 12, 2222-2234]. In polymorph (II), type-II I...I halogen bonds and I...π interactions connect molecules in such a way that a three-dimensional structure is formed; however, the way in which molecules are connected in polymorph (I), through type-II I...I halogen bonds and π-π interactions, gives rise to an exfoldable lamellar structure, which looks less tightly bound than that of (II). In agreement with this structural observation, both the melting point and the melting enthalpy of (I) are lower than those of (II).
SCN1A, ABCC2 and UGT2B7 gene polymorphisms in association with individualized oxcarbazepine therapy.
Ma, Chun-Lai; Wu, Xun-Yi; Jiao, Zheng; Hong, Zhen; Wu, Zhi-Yuan; Zhong, Ming-Kang
2015-01-01
Associations between the effects of SCN1A, SCN2A, ABCC2 and UGT2B7 genetic polymorphisms and oxcarbazepine (OXC) maintenance doses in Han Chinese epileptic patients were investigated. Genetic polymorphisms were detected in 184 epileptic patients receiving OXC monotherapy by high-resolution melting curve and TaqMan method. Carriers of the SCN1A IVS5-91G>A, UGT2B7 c.802T>C and ABCC2 c.1249G>A variant alleles required significantly higher OXC maintenance doses than noncarriers (p < 0.05). Corresponding relative ln (concentration-dose ratios) values for SCN1A IVS5-91 variants differed by the genotypic order GG > GA > AA. SCN1A, UGT2B7 and ABCC2 genetic polymorphisms are associated with OXC maintenance doses and may be useful for the personalization of OXC therapy in epileptic patients. Further studies are needed. Original submitted 6 June 2014; Revision submitted 5 September 2014.
Martínez-Rodríguez, Nancy; Posadas-Romero, Carlos; Villarreal-Molina, Teresa; Vallejo, Maite; Del-Valle-Mondragón, Leonardo; Ramírez-Bello, Julian; Valladares, Adan; Cruz-López, Miguel; Vargas-Alarcón, Gilberto
2013-01-01
Aim To explore the role of the ACE gene polymorphisms in the risk of essential hypertension in Mexican Mestizo individuals and evaluate the correlation between these polymorphisms and the serum ACE levels. Methods Nine ACE gene polymorphisms were genotyped by 5′ exonuclease TaqMan genotyping assays and polymerase chain reaction (PCR) in 239 hypertensive and 371 non- hypertensive Mexican individuals. Haplotypes were constructed after linkage disequilibrium analysis. ACE serum levels were determined in selected individuals according to different haplotypes. Results Under a dominant model, rs4291 rs4335, rs4344, rs4353, rs4362, and rs4363 polymorphisms were associated with an increased risk of hypertension after adjusting for age, gender, BMI, triglycerides, alcohol consumption, and smoking. Five polymorphisms (rs4335, rs4344, rs4353, rs4362 and rs4363) were in strong linkage disequilibrium and were included in four haplotypes: H1 (AAGCA), H2 (GGATG), H3 (AGATG), and H4 (AGACA). Haplotype H1 was associated with decreased risk of hypertension, while haplotype H2 was associated with an increased risk of hypertension (OR = 0.77, P = 0.023 and OR = 1.41, P = 0.004 respectively). According to the codominant model, the H2/H2 and H1/H2 haplotype combinations were significantly associated with risk of hypertension after adjusted by age, gender, BMI, triglycerides, alcohol consumption, and smoking (OR = 2.0; P = 0.002 and OR = 2.09; P = 0.011, respectively). Significant elevations in serum ACE concentrations were found in individuals with the H2 haplotype (H2/H2 and H2/H1) as compared to H1/H1 individuals (P = 0.0048). Conclusion The results suggest that single nucleotide polymorphisms and the “GGATG” haplotype of the ACE gene are associated with the development of hypertension and with increased ACE enzyme levels. PMID:23741507
Martínez-Rodríguez, Nancy; Posadas-Romero, Carlos; Villarreal-Molina, Teresa; Vallejo, Maite; Del-Valle-Mondragón, Leonardo; Ramírez-Bello, Julian; Valladares, Adan; Cruz-López, Miguel; Vargas-Alarcón, Gilberto
2013-01-01
To explore the role of the ACE gene polymorphisms in the risk of essential hypertension in Mexican Mestizo individuals and evaluate the correlation between these polymorphisms and the serum ACE levels. Nine ACE gene polymorphisms were genotyped by 5' exonuclease TaqMan genotyping assays and polymerase chain reaction (PCR) in 239 hypertensive and 371 non- hypertensive Mexican individuals. Haplotypes were constructed after linkage disequilibrium analysis. ACE serum levels were determined in selected individuals according to different haplotypes. Under a dominant model, rs4291 rs4335, rs4344, rs4353, rs4362, and rs4363 polymorphisms were associated with an increased risk of hypertension after adjusting for age, gender, BMI, triglycerides, alcohol consumption, and smoking. Five polymorphisms (rs4335, rs4344, rs4353, rs4362 and rs4363) were in strong linkage disequilibrium and were included in four haplotypes: H1 (AAGCA), H2 (GGATG), H3 (AGATG), and H4 (AGACA). Haplotype H1 was associated with decreased risk of hypertension, while haplotype H2 was associated with an increased risk of hypertension (OR = 0.77, P = 0.023 and OR = 1.41, P = 0.004 respectively). According to the codominant model, the H2/H2 and H1/H2 haplotype combinations were significantly associated with risk of hypertension after adjusted by age, gender, BMI, triglycerides, alcohol consumption, and smoking (OR = 2.0; P = 0.002 and OR = 2.09; P = 0.011, respectively). Significant elevations in serum ACE concentrations were found in individuals with the H2 haplotype (H2/H2 and H2/H1) as compared to H1/H1 individuals (P = 0.0048). The results suggest that single nucleotide polymorphisms and the "GGATG" haplotype of the ACE gene are associated with the development of hypertension and with increased ACE enzyme levels.
Zhou, Wei; Yuan, Weiming; Huang, Longguang; Wang, Ping; Rong, Xiao; Tang, Juan
2015-07-01
The aim of the present study was to investigate the association of neonatal necrotizing enterocolitis (NEC) with myeloid differentiation-(MD-2) and GM2 activator protein (GM2A) genetic polymorphisms. Gene resequencing of the MD-2 and GM2A gene exons was performed on 42 neonates, diagnosed with NEC (NEC group), as well as in the rs11465996 locus, located in the MD-2 gene promoter region. The aim was to detect the genetic polymorphisms present in the neonates with NEC and compare the functional polymorphic loci with 83 neonates without NEC (control group), who had been born during the same period. A polymorphic locus with abnormal frequency was detected in the exon region of the MD-2 gene. In the NEC group, the frequency of genotypes carrying the low frequency allele (G) in the rs11465996 locus (MD-2 promoter region) was significantly higher compared with the control group (χ(2)=4.388, P=0.036). Furthermore, the frequencies of genotypes carrying the low frequency A and C alleles in the rs1048719 (GM2A gene exon 1) and rs2075783 loci (GM2A intron), respectively, were significantly higher in the NEC group compared with the control group (χ(2)=4.316, P=0.038; and χ(2)=13.717, P=0.000, respectively). In addition, the rs11465996 polymorphism in the MD-2 gene promoter region was found to be associated with the severity of NEC. Furthermore, the rs2075783 polymorphism in the GM2A gene exon 1 and the rs1048719 polymorphism in the intron region of this gene, were associated with the occurrence of NEC. The present study demonstrated that gene polymorphisms of MD-2 and GM2A were associated with the occurrence or severity of NEC; however, further in-depth exploration is required to clarify the associations between genetic predispositions to polymorphisms, and NEC.
Tong, Xiang; Ma, Yao; Niu, Xundong; Yan, Zhipeng; Liu, Sitong; Peng, Bo; Peng, Shifeng; Fan, Hong
2016-07-01
The butyrophilin-like 2 (BTNL2) G16071A gene polymorphism has been implicated in the susceptibility to granulomatous diseases, but the results were inconclusive. The objective of the current study was to precisely explore the relationship between BTNL2 G16071A gene polymorphism and granulomatous disease susceptibility by the meta-analysis including false-positive report probability (FPRP) test. A systematic literature search in the PubMed, Embase, and Wanfang databases, China National Knowledge Internet, and commercial Internet search engines was conducted to identify studies published up to April 1, 2016. The odds ratio (OR) with 95% confidence interval (CI) was used to assess the effect size. Statistical analysis was conducted using the STATA 12.0 software and FPRP test sheet. In total, all 4324 cases and 4386 controls from 14 eligible studies were included in the current meta-analysis. By the overall meta-analysis, we found a significant association between BTNL2 G16071A gene polymorphism and granulomatous disease susceptibility (A vs G: OR = 1.25, 95% CI = 1.07-1.45, P = 0.005). The meta-regression analyses showed that a large proportion of the between-study heterogeneity was significantly attributed to the ethnicity (A vs G, P = 0.013) and the types of granulomatous diseases (A vs G, P = 0.002). By the subgroup meta-analysis, the BTNL2 G16071A gene polymorphism was associated with granulomatous disease susceptibility in Caucasians (A vs G: OR = 1.37, 95% CI = 1.18-1.58, P < 0.001). Moreover, a significant relationship between the BTNL2 G16071A gene polymorphism and sarcoidosis susceptibility (A vs G: OR = 1.52, 95% CI = 1.39-1.66, P < 0.001) was found. However, to avoid the "false-positive report," we further investigated the significant associations observed in the present meta-analysis by the FPRP test. Interestingly, the results of FPRP test indicated that the BTNL2 G16071A gene polymorphism was truly associated with sarcoidosis susceptibility (A vs G, FPRP < 0.001). Additionally, the FPRP test confirmed that the BTNL2 G16071A gene polymorphism was associated only with granulomatous disease susceptibility among Caucasians (A vs G, FPRP < 0.001) at the level of a prior probability, which was 0.001. The meta-analysis indicated that BTNL2 G16071A gene polymorphism may as a likelihood factor contributed to granulomatous disease susceptibility, especially increasing the sarcoidosis susceptibility. In addition, the polymorphism may be greatly associated with likelihood of granulomatous diseases among Caucasians.
The BTNL2 G16071A gene polymorphism increases granulomatous disease susceptibility
Tong, Xiang; Ma, Yao; Niu, Xundong; Yan, Zhipeng; Liu, Sitong; Peng, Bo; Peng, Shifeng; Fan, Hong
2016-01-01
Abstract Objective: The butyrophilin-like 2 (BTNL2) G16071A gene polymorphism has been implicated in the susceptibility to granulomatous diseases, but the results were inconclusive. The objective of the current study was to precisely explore the relationship between BTNL2 G16071A gene polymorphism and granulomatous disease susceptibility by the meta-analysis including false-positive report probability (FPRP) test. Methods: A systematic literature search in the PubMed, Embase, and Wanfang databases, China National Knowledge Internet, and commercial Internet search engines was conducted to identify studies published up to April 1, 2016. The odds ratio (OR) with 95% confidence interval (CI) was used to assess the effect size. Statistical analysis was conducted using the STATA 12.0 software and FPRP test sheet. Results: In total, all 4324 cases and 4386 controls from 14 eligible studies were included in the current meta-analysis. By the overall meta-analysis, we found a significant association between BTNL2 G16071A gene polymorphism and granulomatous disease susceptibility (A vs G: OR = 1.25, 95% CI = 1.07–1.45, P = 0.005). The meta-regression analyses showed that a large proportion of the between-study heterogeneity was significantly attributed to the ethnicity (A vs G, P = 0.013) and the types of granulomatous diseases (A vs G, P = 0.002). By the subgroup meta-analysis, the BTNL2 G16071A gene polymorphism was associated with granulomatous disease susceptibility in Caucasians (A vs G: OR = 1.37, 95% CI = 1.18–1.58, P < 0.001). Moreover, a significant relationship between the BTNL2 G16071A gene polymorphism and sarcoidosis susceptibility (A vs G: OR = 1.52, 95% CI = 1.39–1.66, P < 0.001) was found. However, to avoid the “false-positive report,” we further investigated the significant associations observed in the present meta-analysis by the FPRP test. Interestingly, the results of FPRP test indicated that the BTNL2 G16071A gene polymorphism was truly associated with sarcoidosis susceptibility (A vs G, FPRP < 0.001). Additionally, the FPRP test confirmed that the BTNL2 G16071A gene polymorphism was associated only with granulomatous disease susceptibility among Caucasians (A vs G, FPRP < 0.001) at the level of a prior probability, which was 0.001. Conclusion: The meta-analysis indicated that BTNL2 G16071A gene polymorphism may as a likelihood factor contributed to granulomatous disease susceptibility, especially increasing the sarcoidosis susceptibility. In addition, the polymorphism may be greatly associated with likelihood of granulomatous diseases among Caucasians. PMID:27472712
Ribeiro, Magali Silveira Monteiro; Pacheco, Renata Botelho Antunes; Fischer, Ricardo Guimarães; Macedo, Jacyara Maria Brito
2016-01-01
Although the interleukin-1 (IL-1) plays a critical role in the pathogenesis of periodontitis, associations between IL1 gene cluster polymorphisms and the disease remains unclear. To investigate the importance of IL1B-511C>T (rs16944), IL1B +3954C>T (rs1143634), and IL1RN intron 2 variable number tandem repeat (VNTR) (rs2234663) polymorphisms, individually or in combination, as the risk factors of periodontitis in a Southeastern Brazilian population with a high degree of miscegenation. A total of 145 individuals, with aggressive (aggressive periodontitis [AgP], n = 43) and chronic (chronic periodontitis [CP], n = 52) periodontitis, and controls (n = 50) were genotyped by polymerase chain reaction (PCR) (IL1RN intron 2 VNTR) or PCR-restriction fragment length polymorphism (PCR-RFLP) (IL1B-511 C>T and IL1B + 3954C>T) techniques. The independent t-test, Chi-square, and Fisher's exact tests were used. The SNPStats program was used for haplotype estimation and multiplicative interaction analyses. The IL1B +3954T allele represented risk for CP (odds ratio [OR] = 2.84), particularly in smokers (OR = 4.43) and females (OR = 6.00). The minor alleles IL1RN*2 and *3 increased the risk of AgP (OR = 2.18), especially the IL1RN*2*2 genotype among white Brazilians (OR = 7.80). Individuals with the combinations of the IL1B + 3954T and IL1RN*2 or *3-containing genotypes were at increased risk of developing CP (OR = 4.50). Considering the three polymorphisms (rs16944, rs1143634, and rs2234663), the haplotypes TC2 and CT1 represented risk for AgP (OR = 3.41) and CP (OR = 6.39), respectively. Our data suggest that the IL1B +3954C>T and IL1RN intron 2 VNTR polymorphisms are potential candidates for genetic biomarkers of periodontitis, particularly in specific groups of individuals.
CYP1A1, GSTM1, GSTT1 and NQO1 polymorphisms and colorectal adenomas in Japanese men
Hamachi, Tadamichi; Tajima, Osamu; Uezono, Kousaku; Tabata, Shinji; Abe, Hiroshi; Ohnaka, Keizo; Kono, Suminori
2013-01-01
AIM: To investigate the role of functional genetic polymorphisms of metabolic enzymes of tobacco carcinogens in the development of colorectal adenomas. METHODS: The study subjects were 455 patients with colorectal adenomas and 1052 controls with no polyps who underwent total colonoscopy in a preretirement health examination at two Self Defense Forces hospitals. The genetic polymorphisms studied were CYP1A1*2A (rs 4646903), CYP1A1*2C (rs 1048943), GSTM1 (null or non-null genotype), GSTT1 (null or non-null genotype) and NQO1 C609T (rs 1800566). Genotypes were determined by the polymerase chain reaction (PCR)-restriction fragment length polymorphism or PCR method using genomic DNA extracted from the buffy coat. Cigarette smoking and other lifestyle factors were ascertained by a self-administered questionnaire. The associations of the polymorphisms with colorectal adenomas were examined by means of OR and 95%CI, which were derived from logistic regression analysis. Statistical adjustment was made for smoking, alcohol use, body mass index and other factors. The gene-gene interaction and effect modification of smoking were evaluated by the likelihood ratio test. RESULTS: None of the five polymorphisms showed a significant association with colorectal adenomas, nor was the combination of GSTM1 and GSTT1. A borderline significant interaction was observed for the combination of CYP1A1*2C and NQO1 (P = 0.051). The OR associated with CYP1A1*2C was significantly lower than unity among individuals with the NQO1 609CC genotype. The adjusted OR for the combination of the CYP1A1*2C allele and NQO1 609CC genotype was 0.61 (95%CI: 0.42-0.91). Although the interaction was not statistically significant (P = 0.24), the OR for individuals carrying the CYP1A1*2C allele and GSTT1 null genotype decreased significantly compared with those who had neither CYP1A1*2C allele nor GSTT1 null genotype (adjusted OR: 0.69, 95%CI: 0.49-0.97). Smoking did not modify the associations of the individual polymorphisms with colorectal adenomas. There was no measurable effect modification of smoking even regarding the combination of the genetic polymorphisms of the phase I and phase II enzymes. CONCLUSION: Combination of the CYP1A1*2C and NQO1 609CC genotypes was associated with a decreased risk of colorectal adenomas regardless of smoking status. PMID:23840148
Roy, Subhadip; Oyarzabal, Itziar; Vallejo, Julia; Cano, Joan; Colacio, Enrique; Bauza, Antonio; Frontera, Antonio; Kirillov, Alexander M; Drew, Michael G B; Das, Subrata
2016-09-06
A mononuclear cobalt(II) complex [Co(3,5-dnb)2(py)2(H2O)2] {3,5-Hdnb = 3,5-dinitrobenzoic acid; py = pyridine} was isolated in two polymorphs, in space groups C2/c (1) and P21/c (2). Single-crystal X-ray diffraction analyses reveal that 1 and 2 are not isostructural in spite of having equal formulas and ligand connectivity. In both structures, the Co(II) centers adopt octahedral {CoN2O4} geometries filled by pairs of mutually trans terminal 3,5-dnb, py, and water ligands. However, the structures of 1 and 2 disclose distinct packing patterns driven by strong intermolecular O-H···O hydrogen bonds, leading to their 0D→2D (1) or 0D→1D (2) extension. The resulting two-dimensional layers and one-dimensional chains were topologically classified as the sql and 2C1 underlying nets, respectively. By means of DFT theoretical calculations, the energy variations between the polymorphs were estimated, and the binding energies associated with the noncovalent interactions observed in the crystal structures were also evaluated. The study of the direct-current magnetic properties, as well as ab initio calculations, reveal that both 1 and 2 present a strong easy-plane magnetic anisotropy (D > 0), which is larger for the latter polymorph (D is found to exhibit values between +58 and 117 cm(-1) depending on the method). Alternating current dynamic susceptibility measurements show that these polymorphs exhibit field-induced slow relaxation of the magnetization with Ueff values of 19.5 and 21.1 cm(-1) for 1 and 2, respectively. The analysis of the whole magnetic data allows the conclusion that the magnetization relaxation in these polymorphs mainly takes place through a virtual excited state (Raman process). It is worth noting that despite the notable difference between the supramolecular networks of 1 and 2, they exhibit almost identical magnetization dynamics. This fact suggests that the relaxation process is intramolecular in nature and that the virtual state involved in the two-phonon Raman process lies at a similar energy in polymorphs 1 and 2 (∼20 cm(-1)). Interestingly, this value is recurrent in Co(II) single-ion magnets, even for those displaying different coordination number and geometry.
Mocellin, Simone; Nitti, Donato
2008-11-01
It has been hypothesized that polymorphisms in the vitamin D receptor (VDR) gene affect the risk of developing melanoma. However, results often are conflicting, and no meta-analysis has been performed to date on published data. Six studies (cases, 2152; controls, 2410) that investigated the association between 5 VDR polymorphisms (TaqI, FokI, BsmI, EcoRV, and Cdx2) and the risk of melanoma were retrieved and analyzed. The model-free approach was applied to meta-analyze these molecular association studies. Available data suggested a significant association between the BsmI VDR polymorphism and melanoma risk (pooled odds ratio [OR], 1.30; 95% confidence interval [CI], 1.11-1.53; P= .002; heterogeneity Cochran Q test, P> .1), and the population-attributable risk was 9.2%. In contrast, the FokI polymorphism did not appear to be associated with such risk (OR, 1.09; 95% CI, 0.99-1.21; P= .07; heterogeneity Cochran Q test, P> .1). For the TaqI and the EcoRV polymorphisms, significant between-study heterogeneity did not support genotype data pooling. Only 1 study investigated the Cdx2 variant, and the findings were negative. Current evidence is in favor of an association between 1 VDR gene polymorphism (BsmI) and the risk of developing melanoma. The current findings prompt further investigation on this subject and indirectly support the hypothesis that sun exposure may have an antimelanoma effect through activation of the vitamin D system.
Zhang, Huifeng; Dong, Pingshuan; Yang, Xuming; Liu, Zhenghao
2014-01-01
Background: The aim of the current study was to evaluate the association of PAI-1 4G/5G polymorphism with coronary artery disease (CAD) risk using a meta-analysis. Methods: All eligible studies were identified through a search of PubMed, EMBASE, China National Knowledge Infrastructure (CNKI), Database of Chinese Scientific and Technical Periodicals, and China Biology Medical literature database (CBM) before June 2014. The association between the PAI-1 4G/5G polymorphism and CAD risk was estimated by odds ratio (OR) and 95% confidence interval (CI). Results: A total of 72 studies including 23557 cases and 21526 controls were eventually collected. The PAI-1 4G/5G polymorphism was significant associated with CAD risk in overall population (OR=1.19, 95% CI 1.10-1.28, P < 0.00001). The combination of adjusted ORs for CAD was 1.20 (95% CI 1.03-1.40, P=0.02). This polymorphism was associated with CAD risk in Caucasians (OR=1.10, 95% CI 1.02-1.19, P=0.01) and Asians (OR=1.46, 95% CI 1.21-1.75, P < 0.0001). This polymorphism significantly increased MI risk (OR=1.15, 95% CI 1.06-1.25, P=0.001). In the subgroup analysis by age, this polymorphism was significantly associated with early-onset CAD risk (OR=1.21, 95% CI 1.02-1.43, P=0.03). In the gender subgroup analyses, a statistically significant association was found in male CAD patients (OR=1.10, 95% CI 1.01-1.20, P=0.04). Both T2DM patients and non-T2DM patients carrying 4G allele showed increased CAD risks (OR=2.23, 95% CI 1.27-3.92, P=0.005 and OR=1.64, 95% CI 1.19-2.25, P=0.002, respectively). Conclusions: This meta-analysis suggested that PAI-1 4G/5G polymorphism was a risk factor for CAD. PMID:25419432
Serrano, M; Cabrera-Marante, O; Martínez-Flores, J A; Morales, P; Pérez, D; Mora, S; García, F; González, E; Paz-Artal, E; Morales, J M; Serrano, A
2016-11-01
Immunoglobulin (Ig)A anti-β 2 -glycoprotein I (aB2GP1) antibodies are associated with thrombotic events, cardiovascular morbidity, and death in dialysis patients. About 30% of patients with chronic renal disease are positive for IgA aB2GP1; however, the origin of these antibodies is unknown. It has been speculated that dialysis membranes, age, or etiology of renal base disease are possible precipitating factors, although these factors do not appear to be the source of antibodies. B2GP1 is a protein of 326 amino acids grouped into five domains. Eight polymorphisms have been described; the most important are Val/Leu 247 , which appears to predispose aB2GP1 antibody production in patients with anti-phospholipid syndrome, and Trp/Ser 316 , which appears to have protective antibody production of aB2GP1. DNA samples from 92 patients with renal failure on hemodialysis were randomly collected with a 1:1 ratio for the positivity for IgA aB2GP1. Forty-six samples were positive for IgA aB2GP1 (group 1) and 46 negative for IgA aB2GP1 (group 2). All samples were anonymized to study polymorphism Val/Leu 247 and polymorphism Trp/Ser 316 . No significant differences were observed between those who were positive or negative for IgA aB2GP1 in patients with renal failure treated with hemodialysis and the polymorphism located in codons 247 and 316. The two groups of patients have the same prevalence in polymorphisms 247 and 316, and therefore there appears not to be a genetic predisposition in our population. New trigger factors must be studied. Copyright © 2016 Elsevier Inc. All rights reserved.
Xu, Xiaowei; Li, Jiejie; Sheng, Wenli; Liu, Lin
2008-01-01
The aim of this study was to confirm the nature and number of genes contributing to stroke risk and qualify the genetic risk of each susceptibility gene in the Han Chinese population. After collecting all case-control studies related to DNA polymorphism of any candidate gene for ischemic stroke in Han Chinese, strict selection criteria and exclusion criteria were determined and different effect models were used according to the difference in heterogeneity. Meta-analyses were carried out by Revman 4.0 software and the publication bias was further evaluated through calculation of fail-safe numbers in the included gene polymorphisms. Seventy-six studies were included in the meta-analyses which were all published in mainland China and referred to 6 candidate genes and 7 polymorphisms. Among the gene polymorphisms tested in the study, association of gene polymorphisms with increasing risk of ischemic stroke was confirmed in 6 polymorphisms including angiotensin-converting enzyme insertion/deletion (ACE I/D; OR = 1.87, 95% CI = 1.45-2.42), methylenetetrahydrofolate reductase (MTHFR) C677T (OR = 1.55, 95% CI = 1.26-1.90), plasminogen activator inhibitor 1 (PAI-1) 4G/5G (OR = 1.79, 95% CI = 1.20-2.67), beta-fibrinogen (beta-Fg) -455A/G (OR = 1.48, 95% CI = 1.14-1.92), beta-Fg -148T/C (OR = 1.72, 95% CI = 1.42-2.07), apolipoprotein E (ApoE) epsilon2-4 (OR = 2.39, 95% CI = 1.94-2.95). Because of the obvious publication bias, the association between paraoxonase 1 (PON-1) polymorphisms and stroke risk was not established although the OR of the meta-analysis suggested a positive result (OR = 1.14, 95% CI = 1.01-1.35). ACE D/I, MTHFR C677T, beta-Fg -455A/G, beta-Fg -148T/C, PAI-1 4G/5G, and ApoE epsilon2-4 were associated with risk of ischemic stroke in Han Chinese. (c) 2008 S. Karger AG, Basel
Wollinger, L M; Dal Bosco, S M; Rempe, C; Almeida, S E M; Berlese, D B; Castoldi, R P; Arndt, M E; Contini, V; Genro, J P
2015-12-29
The aim of the current study was to investigate the association between the InDel polymorphism in the angiotensin I-converting enzyme gene (ACE) and the rs699 polymorphism in the angiotensinogen gene (AGT) and diabetes mellitus type 2 (DM2) in a sample population from Southern Brazil. A case-control study was conducted with 228 patients with DM2 and 183 controls without DM2. The ACE InDel polymorphism was genotyped by polymerase chain reaction (PCR) with specific primers, followed by electrophoresis on 1.5% agarose gel. The AGT rs699 polymorphism was genotyped using a real-time PCR assay. No significant association between the ACE InDel polymorphism and DM2 was detected (P = 0.97). However, regarding the AGT rs699 polymorphism, DM2 patients had a significantly higher frequency of the AG genotype and lower frequency of the GG genotype when compared to the controls (P = 0.03). Our results suggest that there is an association between the AGT rs699 polymorphism and DM2 in a Brazilian sample.
Alves De Souza, Clinio; Queiroz Alves De Souza, Argos; Queiroz Alves De Souza, Maria do Socorro; Dias Leite, José Alberto; Silva De Morais, Maíra; Barem Rabenhorst, Sílvia Helena
2017-10-01
Background and purpose - Treatment failure of osteomyelitis can result from genetic susceptibility, highlighting polymorphisms of the interleukin-1 (IL-1) family members, central mediators of innate immunity and inflammation. Polymorphisms are DNA sequence variations that are common in the population (1% or more) and represent multiple forms of a single gene. We investigated the association of IL1RNVNTR (rs2234663) and IL1B-511C > T (rs16944) polymorphisms with osteomyelitis development in patients operated on because of bone trauma. Patients and methods - 153 patients who fulfilled the inclusion criteria were enrolled from a referral public hospital for trauma. All the patients were followed up daily until hospital discharge and, after this, on an outpatient basis. Patients were treated with prophylactic antimicrobials and surgery according to traumatology service protocol. The IL1RNVNTR and the IL1B-511C > T polymorphisms were determined by PCR and PCR-RFLP, respectively. Results - The IL1RN*2/*2 genotype was associated (OR: 7; p < 0.001) with a higher risk of osteomyelitis and was also significantly associated with Staphylococcus aureus infection. The haplotypes (combination of different markers) *2-C and *2-T were also associated with osteomyelitis development. Interpretation - IL1B-511C > T and IL1RNVNTR polymorphisms were associated with osteomyelitis development, which may have implications for patients with bone traumas. These data may be relevant for new therapeutic strategies for this disease.
Li, Yao; Liu, Ya; Wang, Zuoguang; Liu, Kuo; Wu, Hai; Niu, Qiuli; Gu, Wei; Guo, Yanhong; Li, Zhizhong; Wen, Shaojun
2011-01-01
Background The β2-adrenergic receptor (ADRB2) gene has been widely researched as a candidate gene for essential hypertension (EH), but no consensus has been reached in different ethnicities. The aim of the present study was to evaluate the possible association between the ADRB2 gene polymorphisms and the EH risk in the Northern Han Chinese population. Methodology/Principal Findings This study included 747 hypertensive subjects and 390 healthy volunteers as control subjects in the Northern Han Chinese. Genotyping was performed to identify the C-47T, A46G and C79G polymorphisms of the ADRB2 gene. G allelic frequency of A46G polymorphism was significantly higher in hypertensive subjects (P = 0.011, OR = 1.287, 95%CI [1.059–1.565]) than that in controls. Significant association could also be found in dominant genetic model (GG+AG vs. AA, P = 0.006, OR = 1.497, 95%CI [1.121–1.998]), in homozygote comparison (GG vs. AA, P = 0.025, OR = 1.568, 95%CI [1.059–2.322]), and in additive genetic model (GG vs. AG vs. AA, P = 0.012, OR = 1.282, 95%CI [1.056–1.555]). Subgroup analyses performed by gender suggested that this association could be found in male, but not in female. Stratification analyses by obesity showed that A46G polymorphism was related to the prevalence of hypertension in the obese population (GG vs. AG vs. AA, P<0.001, OR = 1.645, 95%CI [1.258–2.151]). Significant interaction was found between A46G genotypes and body mass index on EH risk. No significant association could be found between C-47T or C79G polymorphism and EH risk. Linkage disequilibrium was detected between the C-47T, A46G and C79G polymorphisms. Haplotype analyses observed that the T-47-A46-C79 haplotype was a protective haplotype for EH, while the T-47-G46-C79 haplotype increased the risk. Conclusions/Significances We revealed that the ADRB2 A46G polymorphism might increase the risk for EH in the Northern Han Chinese population. PMID:21483652
Epistatic interaction between FCRL3 and NFκB1 genes in Spanish patients with rheumatoid arthritis
Martínez, A; Sánchez, E; Valdivia, A; Orozco, G; López‐Nevot, M A; Pascual‐Salcedo, D; Balsa, A; Fernández‐Gutiérrez, B; de la Concha, E G; García‐Sánchez, A; Koeleman, B P C; Urcelay, E; Martín, J
2006-01-01
Background A Japanese study has described a strong association between rheumatoid arthritis and several polymorphisms located in the Fc receptor‐like 3 (FCRL3) gene, a member of a family of genes related to Fc receptors located on chromosome 1q21–23. Objectives To evaluate the association between rheumatoid arthritis and FCLR3 polymorphisms in a large cohort of Caucasian patients with rheumatoid arthritis and healthy controls of Spanish origin. Owing to the described functional link between the FCRL3 polymorphisms and the transcription factor nuclear factor κB (NFκB), a functional polymorphism located in the NFκB1 gene was included. Methods 734 patients with rheumatoid arthritis from Madrid and Granada, Spain, were included in the study, along with 736 healthy controls. Polymorphisms in the FCRL3 gene were studied by TaqMan technology. The −94ins/delATTG NFκB1 promoter polymorphism was analysed by fragment analysis after polymerase chain reaction with labelled primers. Genotypes were compared using 3×2 contingency tables and χ2 values. Results No overall differences were found in any of the FCRL3 polymorphisms and in the NFκB1 promoter polymorphism when patients were compared with controls. However, when stratified according to NFκB1 genotypes, a susceptibility effect of FCRL3 polymorphisms was observed in patients who were heterozygotes for NFκB1 (pc = 0.003). Conclusions The FCRL3 polymorphisms associated with rheumatoid arthritis in a Japanese population are not associated per se with rheumatoid arthritis in a Spanish population. A genetic interaction was found between NFκB1 and FCRL3 in Spanish patients with rheumatoid arthritis. These findings may provide a general rationale for divergent genetic association results in different populations. PMID:16476711
Życzkowski, Marcin; Żywiec, Joanna; Nowakowski, Krzysztof; Paradysz, Andrzej; Grzeszczak, Władyslaw; Gumprecht, Janusz
2017-03-01
Etiopathogenesis of VUR is composite and not fully understood. Many data indicate the importance of genetic predisposition. The aim of this study was to establish the relationship of selected polymorphisms: 14094 polymorphism of the ACE, polymorphism rs1800469 of TGFβ-1, rs5443 gene polymorphism of the GNB3 and receptor gene polymorphism rs5186 type 1 AGTR1 with the occurrence of the primary vesicoureteral reflux. The study included 190 children: 90 with the primary VUR confirmed with the voiding cystourethrogram and excluded secondary VUR and a control group of 100 children without a history of the diseases of the genitourinary tract. The study was planned in the scheme: "tested case versus control." Genomic DNA was isolated from the leukocytes of peripheral blood samples. The results were statistically analyzed in the Statistica 10 using χ 2 test and analysis of the variance Anova. Any of the four studied polymorphisms showed no difference in the distribution of genotypes between patients with primary vesicoureteral reflux and the control group. In patients with VUR and TT genotype polymorphism rs5443 GNB3 gene, the glomerular filtration rate was significantly higher than in patients with genotype CC or CT. (1) No relationship was found between the studied polymorphisms (14094 ACE gene, rs1800469 gene TGFβ1, GNB3 gene rs5443, rs5186 AGTR1 gene) and the occurrence of primary vesicoureteral reflux. (2) TT genotype polymorphism rs5443 GNB3 gene may be a protective factor for the improved renal function in patients with primary vesicoureteral reflux in patients with genotype CC or CT.
Yang, Yi; Luo, Yunyao; Yuan, Jing; Tang, Yidan; Xiong, Lang; Xu, MangMang; Rao, XuDong; Liu, Hao
2016-06-01
Numerous studies have investigated the associations between methylenetetrahydrofolate reductase (MTHFR) gene C677T and A1298C polymorphisms and risk of recurrent pregnancy loss (RPL); however, the results remain controversial. The aim of this study is to drive a more precise estimation of association between MTHFR gene polymorphisms and risk of RPL. We searched PubMed, EMBASE, Cochrane library, Web of Science and China Knowledge Resource Integrated Database for papers on MTHFR gene C677T and A1298C polymorphisms and RPL risk. The pooled odds ratios (ORs) with 95 % confidence intervals (CIs) were used to assess the strength of association in the homozygous model, heterozygous model, dominant model, recessive model and an additive model. The software STATA (Version 13.0) was used for statistical analysis. Overall, 57 articles were included in the final meta-analysis. In maternal group the MTHFR C677T polymorphism showed pooled odds ratios for the homozygous comparison [OR = 2.285, 95 % CI (1.702, 3.067)] and the MTHFR A1298C polymorphism showed pooled odds ratios for recessive model [OR = 1.594, 95 % CI (1.136, 2.238)]. In fetal group the MTHFR C677T polymorphism showed pooled odds ratios for dominant model [OR = 1.037, 95 % CI (0.567, 1.894)] and the MTHFR A1298C polymorphism showed pooled odds ratios for dominant model [OR = 1.495, 95 % CI (1.102, 2.026)]. In summary, the results of our meta-analysis indicate that maternal and paternal MTHFR gene C677T and A1298C polymorphisms are associated with RPL. We also observed a significant association between fetal MTHFR A1298C polymorphism and RPL but not C677T.
Zhang, Ji-Xiang; Song, Jia; Wang, Jun; Dong, Wei-Guo
2014-06-01
In this meta-analysis, we aimed to clarify the impact of Janus kinase 2 (JAK2) rs10758669 polymorphisms on ulcerative colitis (UC) and Crohn's disease (CD) risk. Data were extracted, and pooled odd ratios (ORs) as well as 95% confidence intervals (95%CIs) were calculated. Eleven studies with 7009 CD patients, 7929 UC patients, and 19235 controls were included. The results showed that JAK2 rs10758669 polymorphism was associated with CD (AC vs. AA, OR = 1.16, 95%CI, 1.08-1.24; CC vs. AA, OR = 1.29, 95%CI, 1.17-1.43; AC + CC vs. AA, OR = 1.19, 95%CI, 1.11-1.27; CC vs. AA + AC, OR = 1.19, 95%CI, 1.09-1.31; C vs. A, OR = 1.14, 95%CI, 1.09-1.20) and UC susceptibility (AC vs. AA, OR = 1.14, 95%CI, 1.06-1.22; CC vs. AA, OR = 1.33, 95%CI, 1.20-1.47; AC + CC vs. AA, OR = 1.18, 95%CI, 1.10-1.27; CC vs. AA + AC, OR = 1.24, 95%CI, 1.12-1.36; C vs. A, OR = 1.15, 95%CI, 1.10-1.21). But no significant association was found between JAK2 rs10758669 polymorphism with CD in Asian. Either in adult-onset group or multi-age group, hospital-based group or population-based group, JAK2 rs10758669 polymorphism was associated with CD and UC susceptibility. This meta-analysis indicated that JAK2 rs10758669 polymorphism was a risk factor both for CD and UC, especially in Caucasian. The differences in age of onset and study design did not influence the associations obviously. Gene-gene and gene-environment interactions should be investigated in the future.
Association of Genetic Variation in Calmodulin and Left Ventricular Mass in Full-Term Newborns
Gorący, Iwona; Gorący, Jarosław; Skonieczna-Żydecka, Karolina; Kaczmarczyk, Mariusz; Dawid, Grażyna; Ciechanowicz, Andrzej
2013-01-01
Calmodulin II (CALM2) gene polymorphism might be responsible for the variation in the left ventricular mass amongst healthy individuals. The aim was to evaluate the correlation between left ventricular mass (LVM) and g.474955027G>A (rs7565161) polymorphism adjacent to the CALM2 gene. Healthy Polish newborns (n = 206) were recruited. Two-dimensional M-mode echocardiography was used to assess LVM. Polymorphisms were determined by polymerase chain reaction-restriction fragment length polymorphism and sequencing analyses. The carriers of the G allele of the CALM2 polymorphism had significantly higher left ventricular mass/weight (LVM/BW) values, when compared with newborns homozygous for the A allele (3.1 g/m2 versus 2.5 g/m2, P adjusted = 0.036). The AG genotype of CALM2 was associated with the highest values of LVM/BW, exhibiting a pattern of overdominance (2.9 g/kg versus 3.1 g/kg versus 2.5 g/kg, P adjusted = 0.037). The results of this study suggest that G>A CALM2 polymorphism may account for subtle variation in LVM at birth. PMID:24298550
Wang, Jing; Li, Jun; Peng, Kang; Fu, Zi-Ying; Tang, Jia; Yang, Ming-Jian; Chen, Qi-Cai
Currently, there is limited information about the relationship between manganese superoxide dismutase (sod2) c47t polymorphism and susceptibility to noise-induced hearing loss (NIHL). The aim of this meta-analysis was to clarify the association between SOD2 C47T polymorphism and NIHL. A search in PubMed and Web of Science was performed to collect data. All full-text, English-written studies containing sufficient and complete case-and-control data about the relationship between SOD2 C47T polymorphism and NIHL were included. Three eligible studies, comprising 1094 subjects, were identified. pooled odds ratios (ORs) and 95% confidence intervals (CI) were calculated to evaluate the strength of the association between SOD2 C47T polymorphism and NIHL. No significant association between C47T polymorphism and risk of NIHL was found with the following combinations: T vs. C (OR=0.83; 95% CI=0.63-1.09); TT vs. CC (OR=0.49; 95% CI=0.22-1.09); CT vs. CC (OR=0.54; 95% CI=0.25-1.17); TT vs. CC+CT (OR=0.82; 95% CI=0.50-1.32); CC vs. TT+TC (OR=0.49; 95% CI=0.23-1.04). However, in subgroup analysis, a significant association was found for TT vs. CC+CT (OR=0.77; 95% CI=0.42-1.41) in the Chinese population. The present meta-analysis suggests that SOD2 C47T polymorphism is significantly associated with increased risk of NIHL in the Chinese population. Further large and well-designed studies are needed to confirm this association. Copyright © 2016. Published by Elsevier Editora Ltda.
Sabet, Eliza Eskafi; Salehi, Zivar; Khodayari, Siamak; Zarafshan, Samin Sabouhi; Zahiri, Ziba
2014-10-01
About 10%-15% of conceptions are lost spontaneously prior to 20 weeks. Apart from the clinical problems, genetic variations have also been proposed as a susceptibility factor to miscarriage. Glutathione peroxidase 1 (GPX1) and catalase (CAT) encode two antioxidant enzymes that detoxify H2O2 and protect the cells from oxidative damage. A functional polymorphism at codon 198 of the GPX1 gene causes a C/T substitution in exon 2, which encodes for either proline or leucine (Pro198Leu). The CAT gene has a polymorphic site in the promoter region at position -262 (C-262T) which alters the expression and enzyme blood levels, leading to some pathological clinical conditions. In this study, we evaluated the association of these two polymorphisms with the risk of spontaneous abortion. Genomic DNA from 105 cases with spontaneous abortion and 90 healthy women were genotyped using allele-specific PCR (AS-PCR) and polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP). The genetic distributions for GPX1 did not differ significantly between cases and controls (p = 0.680). However, C-262T polymorphism was significantly associated with the risk of the disease (OR, 5.50; 95% CI, 1.43-21.09; p = 0.012). In conclusion, this study indicates that CAT -262T/T genotype confers less susceptibility to spontaneous abortion, while GPX1 Pro198Leu polymorphism may not be correlated with the disease.
Zhao, Dong-Dong; Yu, Dan-Dan; Ren, Qiong-Qiong; Dong, Bao; Zhao, Feng; Sun, Ye-Huan
2017-04-01
As for the association of vitamin D receptor (VDR) gene polymorphisms with susceptibility to pediatric asthma, results of published studies yielded conflicts. A systematic review was conducted on the relationship between childhood asthma and VDR gene polymorphisms, including ApaI (rs7975232), BsmI (rs1544410), FokI (rs2228570), and TaqI (rs731236). PubMed, Web of Science, CBM (Chinese Biomedical Database), CNKI (China National Knowledge Infrastructure), and Wanfang (Chinese) database were searched for relevant studies. Pooled odds ratios (OR) with 95% confidence interval (CI) were calculated. Overall results suggested that there was a statistically significant association between ApaI polymorphism and childhood asthma in homozygote model (OR = 1.674, 95%CI = 1.269-2.208, P < 0.001) and allele model (OR = 1.221, 95%CI = 1.084-1.375, P = 0.001). Stratification by ethnicity revealed a statistical association in Asians (OR = 1.389, 95%CI = 1.178-1.638, P < 0.001). There was some evidence of an association between BsmI polymorphism and childhood asthma in the homozygote (OR = 1.462, 95%CI = 1.016-2.105, P = 0.041) and allele models (OR = 1.181, 95%CI = 1.006-1.386, P = 0.042). This association reached significance only in the Caucasian group (OR = 1.236, 95%CI = 1.029-1.485, P = 0.023). For FokI, a statistical association was detected in dominant model (OR = 1.281, 95%CI = 1.055-1.555, P = 0.012); this association was significant in allele model (OR = 1.591, 95%CI = 1.052-2.405, P = 0.028) in Caucasian. ApaI polymorphism plays a particular role in childhood asthma in Asians. FokI polymorphism may be connected with pediatric asthma in Caucasian population. And BsmI polymorphism marginally contributes to childhood asthma susceptibility, while there might be no association between TaqI polymorphism and childhood asthma risk. Pediatr Pulmonol. 2017;52:423-429. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
D'Amora, Paulo; Sato, Hélio; Girão, Manoel J B C; Silva, Ismael D C G; Schor, Eduardo
2006-09-01
To study possible correlation between the prevalence of polymorphisms in the type I interleukin-1 receptor gene and pelvic endometriosis. Genotypes of 223 women were analyzed: 109 women with surgically and histologically confirmed endometriosis and 114 healthy women. Distributions of two single-base polymorphisms of the human interleukin-1 receptor type I (IL-1RI) gene were evaluated: PstI, due to a C-->T transition in exon 1B and BsrBI a C-->A transition at position 52 in exon 1C. Polymorphisms were detected by polymerase chain reaction (PCR) followed by restriction fragment length polymorphism analysis (RFLP) resolved on 3% agarose gels stained with ethidium bromide. Genotypes for PstI polymorphisms did not differ significantly among control and endometriosis (P = 0.058). However, in relation to BsrBI polymorphism, protective risk was observed for the development of endometriosis [OR 0.39-IC 95% (0.2-0.9)]. BsrBI heterozygote genotype (C/A) showed protective effect against endometriosis development.
Pinés Corrales, Pedro José; López Garrido, María P; Aznar Rodríguez, Silvia; Louhibi Rubio, Lynda; López Jiménez, Luz M; Lamas Oliveira, Cristina; Alfaro Martínez, Jose J; Lozano García, Jose J; Hernández López, Antonio; Requejo Castillo, Ramón; Escribano Martínez, Julio; Botella Romero, Francisco
2010-01-01
The aim of our study was to describe and evaluate the clinical and metabolic characteristics of patients with MODY-3, MODY-2 or type 2 diabetes who presented I27L polymorphism in the HNF1alpha gene. The study included 31 previously diagnosed subjects under follow-up for MODY-3 (10 subjects from 5 families), MODY-2 (15 subjects from 9 families), or type 2 diabetes (6 subjects) with I27L polymorphism in the HNF1alpha gene. The demographic, clinical, metabolic, and genetic characteristics of all patients were analyzed. No differences were observed in distribution according to sex, age of onset, or form of diagnosis. All patients with MODY-2 or MODY-3 had a family history of diabetes. In contrast, 33.3% of patients with type 2 diabetes mellitus and I27L polymorphism in the HNF1alpha gene had no family history of diabetes (p < 0.05). No differences were observed in body mass index, prevalence of hypertension, or microvascular or macrovascular complications. Drug therapy was required by 100% of MODY-3 patients, but not required by 100% of MODY-2 patients or 16.7% of patients with type 2 diabetes mellitus and I27L polymorphism in the HNF1alpha gene (p < 0.05). Occasional difficulties may be encountered when classifying patients with MODY-2, MODY-3 or type 2 diabetes of atypical characteristics, in this case patients who present I27L polymorphism in the HNF1alpha gene. Copyright 2010 Sociedad Española de Endocrinología y Nutrición. Published by Elsevier Espana. All rights reserved.
García-Bañuelos, Jesús; Panduro, Arturo; Gordillo-Bastidas, Daniela; Gordillo-Bastidas, Elizabeth; Muñoz-Valle, José Francisco; Gurrola-Díaz, Carmen M; Sánchez-Enríquez, Sergio; Ruiz-Madrigal, Bertha; Bastidas-Ramírez, Blanca Estela
2012-03-01
Alcoholic cirrhosis constitutes a major public health problem in the world where ADH1B, ALDH2, and CYP2E1 polymorphisms could be playing an important role. We determined ADH1B*2, ALDH2*2, and CYP2E1*c2 allele frequencies in healthy control individuals (C) and patients with alcoholic cirrhosis (AC) from western Mexico. Ninety C and 41 patients with AC were studied. Genotype and allele frequency were determined through polymerase chain reaction-restriction fragment length polymorphisms. Polymorphic allele distribution in AC was 1.6%ADH1B*2, 0.0%ALDH2*2, and 19.5%CYP2E1*c2; in C: 6.1%ADH1B*2, 0%ALDH2*2, and 10.6%CYP2E1*c2. CYP2E1*c2 polymorphic allele and c1/c2 genotype frequency were significantly higher (p < 0.05 and p < 0.01, respectively) in patients with AC when compared to C. Patients with AC, carrying the CYP2E1*c2 allele, exhibited more decompensated liver functioning evaluated by total bilirubin and prothrombin time, than c1 allele carrying patients (p < 0.05). Cirrhosis severity, assessed by Child's Pugh score and mortality, was higher in patients carrying the c2 allele, although not statistically significant. In this study, CYP2E1*c2 allele was associated with susceptibility to AC; meanwhile, ADH1B*2 and ALDH2*2 alleles were not. CYP2E1*c2 allele was associated with AC severity, which could probably be attributed to the oxidative stress promoted by this polymorphic form. Further studies to clearly establish CYP2E1*c2 clinical relevance in the development of alcohol-induced liver damage and its usefulness as a probable prognostic marker, should be performed. Also, increasing the number of patients and including a control group conformed by alcoholic patients free of liver damage may render more conclusive results. These findings contribute to the understanding of the influence of gene variations in AC development among populations, alcohol metabolism, and pharmacogenetics. Copyright © 2011 by the Research Society on Alcoholism.
Haghani, Karimeh; Bakhtiyari, Salar
2012-11-01
An association between the IRS-1 Gly972Arg and IRS-2 Gly1057Asp polymorphisms and type 2 diabetes mellitus (T2DM) in different ethnic groups is controversial. We aimed to identify the association of these polymorphisms with T2DM in the Kurdish ethnic group of Iran. Study groups included 336 T2DM and 341 normoglycemic subjects. Genotyping was determined by polymerase chain reaction-restriction fragment length polymorphism. Genotypic and allelic frequencies were then evaluated. GR and RR genotypes of IRS-1 Gly972Arg variant gave a higher risk for T2DM (odds ratios [OR]=1.76 and OR=3.86, respectively). IRS-1 Gly972Arg polymorphism was found to be significantly associated with T2DM (OR=1.63) for the dominant model (GG vs. GR+RR). GD genotypes of the IRS-2 Gly1057Asp variant gave a higher risk for T2DM (OR=1.63). The dominant model analysis of the IRS-2 Gly1057Asp genotypes (GG vs. GD+DD) also showed an enhanced association with T2DM (OR=1.69). Among several combinations, GR/GD gave the highest risk for T2DM (OR=3.1). Other combinations were also significantly associated with T2DM, including, GR/GG (OR=1.86), RR/GG (OR=1.76), GG/GD (OR=1.83), and GG/DD (OR=2.35). HbA1c, serum triglyceride, and systolic blood pressure were higher in the control subjects with GR+RR genotypes compared with the GG genotype. Among the T2DM subjects, fasting plasma glucose was significantly lower in subjects with the GG genotype in relation to those with the GR+RR genotypes. Normoglycemic subjects carrying GD+DD genotypes of IRS-2 Gly1057Asp variation had a significantly higher fasting plasma glucose and total cholesterol, as compared with those with the GG genotype. Our findings revealed that IRS-1 Gly972Arg and IRS-2 Gly1057Asp polymorphisms are associated with T2DM in the Kurdish ethnic group.
Ramos Neto, E S; Mágulas, J O; Sousa, J J S; Moura, A C M; Pinto, G R; Yoshioka, F K N; Canalle, R; Motta, F J N
2014-10-20
Previous studies have revealed a genetic component, including genetic polymorphisms in the serotonergic pathway, particularly in the serotonin receptor gene (5-HT2A). The aim of this study was to investigate associations of the T102C (rs6313) and A-1438G (rs6311) polymorphisms with tobacco use in a population from northeastern Brazil. We evaluated these polymorphisms in 135 nonsmokers and 135 smokers using polymerase chain reaction-restricted fragment length polymorphism. The distribution of allele and genotype frequencies and associations of polymorphisms with smoking were assessed with the chi-squared (χ(2)) test, the Fisher exact test, and odds ratio (OR) with a 95% confidence interval (CI). There were no differences in the distribution of genotype and allele frequencies between nonsmokers and smokers for A-1438G (P = 0.80) and T102C (P = 0.35). However, these polymorphisms were significantly associated with habit frequency (A/G: P = 0.02, OR = 6.87, 95%CI = 1.23-38.31, P = 0.04; A/G+G/G: P = 0.04, OR = 3.67, 95%CI = 1.06-12.75, P = 0.07), age of onset (C/C: P = 0.02, OR = 3.26, 95%CI = 1.17-9.07, P = 0.03, and nicotine dependence level (A/G: P = 0.02, OR = 3.28, 95%CI = 1.17-9.18, P = 0.04; A/G+G/G: P = 0.04, OR = 2.81, 95%CI = 1.13-6.99, P = 0.04; T/C: P = 0.03, OR = 3.12, 95%CI = 1.13-8.57, P = 0.04; T/C+C/C: P = 0.02, OR = 3.06, 95%CI = 1.22-7.70, P = 0.02). Therefore, these polymorphisms may not contribute significantly to smoking initiation, they do appear to be associated with habit maintenance.
AL-HARRAS, MOHAMMAD F.; HOUSSEN, MAHA E.; SHAKER, MOHAMED E.; FARAG, KAMEL; FAROUK, OMAR; MONIR, REHAN; EL-MAHDY, RASHA; ABO-HASHEM, EKBAL M.
2016-01-01
Polymorphisms in antioxidant enzymes and innate immune receptors have been implicated in the development of various types of cancer. The present study aimed to investigate whether polymorphisms of glutathione S-transferase π 1 (GSTP1) and toll-like receptors (TLRs) 2 and 9 are associated with susceptibility to breast cancer among females. The study was conducted on 72 Egyptian female patients with breast cancer, along with 100 healthy volunteers. Polymorphisms of GSTP1 (codon 105 Ile/Val) and TLR9 rs187084 (1237T/C) genes were assessed by polymerase chain reaction (PCR)-restriction fragment length polymorphism, while the −196 to −174 deletion/insertion (del/ins) polymorphism of TLR2 was detected by PCR. The results indicated a decrease in GSTP1 Val allele frequency in breast cancer patients compared with healthy controls, at rates of 22.9 vs. 32.5%, respectively. In addition, the breast cancer group demonstrated a decreased TLR9 C allele frequency compared with the control group, at rates of 36.1 vs. 51.5%, respectively (P=0.0047). A non-significant difference was detected in the frequency of the TLR2 −196 to −174 del allele in breast cancer patients when compared to normal controls. In conclusion, these results suggested that the GSTP1 Val and TLR9 1237C alleles, but not TLR2 −196 to −174 del, are likely to be associated with breast cancer development among females. PMID:26998146
Al-Harras, Mohammad F; Houssen, Maha E; Shaker, Mohamed E; Farag, Kamel; Farouk, Omar; Monir, Rehan; El-Mahdy, Rasha; Abo-Hashem, Ekbal M
2016-03-01
Polymorphisms in antioxidant enzymes and innate immune receptors have been implicated in the development of various types of cancer. The present study aimed to investigate whether polymorphisms of glutathione S-transferase π 1 (GSTP1) and toll-like receptors (TLRs) 2 and 9 are associated with susceptibility to breast cancer among females. The study was conducted on 72 Egyptian female patients with breast cancer, along with 100 healthy volunteers. Polymorphisms of GSTP1 (codon 105 Ile/Val) and TLR9 rs187084 (1237T/C) genes were assessed by polymerase chain reaction (PCR)-restriction fragment length polymorphism, while the -196 to -174 deletion/insertion (del/ins) polymorphism of TLR2 was detected by PCR. The results indicated a decrease in GSTP1 Val allele frequency in breast cancer patients compared with healthy controls, at rates of 22.9 vs. 32.5%, respectively. In addition, the breast cancer group demonstrated a decreased TLR9 C allele frequency compared with the control group, at rates of 36.1 vs. 51.5%, respectively (P=0.0047). A non-significant difference was detected in the frequency of the TLR2 -196 to -174 del allele in breast cancer patients when compared to normal controls. In conclusion, these results suggested that the GSTP1 Val and TLR9 1237C alleles, but not TLR2 -196 to -174 del, are likely to be associated with breast cancer development among females.
Corsetti, James P.; Salzman, Peter; Ryan, Dan; Moss, Arthur J.; Zareba, Wojciech; Sparks, Charles E.
2013-01-01
The objective of this work was to investigate whether fibrinolysis plays a role in establishing recurrent coronary event risk in a previously identified group of postinfarction patients. This group of patients was defined as having concurrently high levels of high-density lipoprotein cholesterol (HDL-C) and C-reactive protein (CRP) and was previously demonstrated to be at high-risk for recurrent coronary events. Potential risk associations of a genetic polymorphism of plasminogen activator inhibitor-2 (PAI-2) were probed as well as potential modulatory effects on such risk of a polymorphism of low-density lipoprotein receptor related protein (LRP-1), a scavenger receptor known to be involved in fibrinolysis in the context of cellular internalization of plasminogen activator/plansminogen activator inhibitor complexes. To this end, Cox multivariable modeling was performed as a function of genetic polymorphisms of PAI-2 (SERPINB, rs6095) and LRP-1 (LRP1, rs1800156) as well as a set of clinical parameters, blood biomarkers, and genetic polymorphisms previously demonstrated to be significantly and independently associated with risk in the study population including cholesteryl ester transfer protein (CETP, rs708272), p22phox (CYBA, rs4673), and thrombospondin-4 (THBS4, rs1866389). Risk association was demonstrated for the reference allele of the PAI-2 polymorphism (hazard ratio 0.41 per allele, 95% CI 0.20-0.84, p=0.014) along with continued significant risk associations for the p22phox and thrombospondin-4 polymorphisms. Additionally, further analysis revealed interaction of the LRP-1 and PAI-2 polymorphisms in generating differential risk that was illustrated using Kaplan-Meier survival analysis. We conclude from the study that fibrinolysis likely plays a role in establishing recurrent coronary risk in postinfarction patients with concurrently high levels of HDL-C and CRP as manifested by differential effects on risk by polymorphisms of several genes linked to key actions involved in the fibrinolytic process. PMID:23874812
Bandegi, Ahmad Reza; Firoozrai, Mohsen; Akbari Eidgahi, Mohammad Reza; Kokhaei, Parviz
2011-01-01
Objective(s) The Sst-I polymorphic site on the 3' untranslated region of the apo CIII gene, has been previously reported to be associated with hypertriglyceridemia. The aim of the present study was to explore the association between Sst-I polymorphism with plasma lipid and lipoprotein levels in hyperlipidemic (HLP) patients from Semnan province, Iran. Materials and Methods Genomic DNA was prepared from 76 patients with HLP and 75 matched healthy subjects. DNA samples were amplified by polymerase chain reaction. The samples were analyzed by restriction fragment length polymorphism (RFLP) method using SstI enzyme. Results The genotype and allelic frequencies for this polymorphism were significantly different between HLP and normolipidemic groups (P< 0.002). Plasma triglyceride (TG) level was higher in both groups, in S2S2 genotype was more than in the S1S1and S1S2 genotypes, however, there was no significant difference in comparison with the control group. Subjects with S1S2 + S2S2 genotypes in compare to S1S1 genotype had odd ratio of 2.8 (95% CI: 1.41-5.56, P< 0.003) for developing hypertriglyceridemia. Conclusion The results showed that the presence of rare S2 allele was associated with change in TG level in the selected population. PMID:23493241
Zhao, Xu; Qin, Shengying; Shi, Yongyong; Zhang, Aiping; Zhang, Jing; Bian, Li; Wan, Chunling; Feng, Guoyin; Gu, Niufan; Zhang, Guangqi; He, Guang; He, Lin
2007-07-01
Several studies have suggested the dysfunction of the GABAergic system as a risk factor in the pathogenesis of schizophrenia. In the present study, case-control association analysis was conducted in four GABAergic genes: two glutamic acid decarboxylase genes (GAD1 and GAD2), a GABA(A) receptor subunit beta2 gene (GABRB2) and a GABA(B) receptor 1 gene (GABBR1). Using a universal DNA microarray procedure we genotyped a total of 20 SNPs on the above four genes in a study involving 292 patients and 286 controls of Chinese descent. Statistically significant differences were observed in the allelic frequencies of the rs187269C/T polymorphism in the GABRB2 gene (P=0.0450, chi(2)=12.40, OR=1.65) and the -292A/C polymorphism in the GAD1 gene (P=0.0450, chi(2)=14.64 OR=1.77). In addition, using an electrophoretic mobility shift assay (EMSA), we discovered differences in the U251 nuclear protein binding to oligonucleotides representing the -292 SNP on the GAD1 gene, which suggests that the -292C allele has reduced transcription factor binding efficiency compared with the 292A allele. Using the multifactor-dimensionality reduction method (MDR), we found that the interactions among the rs187269C/T polymorphism in the GABRB2 gene, the -243A/G polymorphism in the GAD2 gene and the 27379C/T and 661C/T polymorphisms in the GAD1 gene revealed a significant association with schizophrenia (P<0.001). These findings suggest that the GABRB2 and GAD1 genes alone and the combined effects of the polymorphisms in the four GABAergic system genes may confer susceptibility to the development of schizophrenia in the Chinese population.
Bayés-García, L; Calvet, T; Cuevas-Diarte, M A; Ueno, S
2017-09-01
The polymorphic crystallization and transformation behavior of extra virgin olive oil (EVOO) was examined by using differential scanning calorimetry (DSC) and X-ray diffraction with both laboratory-scale (XRD) and synchrotron radiation source (SR-XRD). The complex behavior observed was studied by previously analyzing mixtures composed by its main 2 to 6 triacylglycerol (TAG) components. Thus, component TAGs were successively added to simulate EVOO composition, until reaching a 6 TAGs mixture, composed by trioleoyl glycerol (OOO), 1-palmitoyl-2,3-dioleoyl glycerol (POO), 1,2-dioleoyl-3-linoleoyl glycerol (OOL), 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol (POL), 1,2-dipalmitoyl-3-oleoyl glycerol (PPO) and 1-stearoyl-2,3-dioleoyl glycerol (SOO). Molten samples were cooled from 25°C to -80°C at a controlled rate of 2°C/min and subsequently heated at the same rate. The polymorphic behavior observed in multicomponent TAG mixtures was interpreted by considering three main groups of TAGs with different molecular structures: triunsaturated OOO and OOL, saturated-unsaturated-unsaturated POO, POL and SOO, and saturated-saturated-unsaturated PPO. As confirmed by our previous work, TAGs belonging to the same structural group displayed a highly similar polymorphic behavior. EVOO exhibited two different β'-2L polymorphic forms (β' 2 -2L and β' 1 -2L), which transformed into β'-3L when heated. Equivalent polymorphic pathways were detected when the same experimental conditions were applied to the 6 TAG components mixture. Hence, minor components may not exert a strong influence in this case. Copyright © 2017 Elsevier Ltd. All rights reserved.
Association of paraoxonase-1 gene polymorphisms with insulin resistance in South Indian population.
Gomathi, Panneerselvam; Iyer, Anandi Chandramouli; Murugan, Ponniah Senthil; Sasikumar, Sundaresan; Raj, Nancy Bright Arul Joseph; Ganesan, Divya; Nallaperumal, Sivagnanam; Murugan, Maruthamuthu; Selvam, Govindan Sadasivam
2018-04-15
Insulin resistance plays a crucial role in the pathogenesis of type 2 diabetes and cardiovascular diseases. Recently, paraoxonase-1(PON1) is reported to have an ability to reduce insulin resistance by promoting glucose transporter-4 (GLUT-4) expression in vitro. Single nucleotide polymorphism (SNP) in PON1 is associated with variability in enzyme activity and concentration. Based on this we aimed to investigate the association of PON1 (Q192R and L55M) polymorphisms with the risk of developing insulin resistance in adult South Indian population. Two hundred and eighty seven (287) Type 2 diabetes patients and 293 healthy controls were enrolled in this study. All the study subjects were genotyped for PON1 (Q192R and L55M) missense polymorphisms using polymerase chain reaction-restriction fragment length polymorphism (PCRRFLP) method. Fasting serum insulin level was measured by ELISA. The distribution of QR/RR and LM/MM genotypes were significantly higher in type 2 diabetes patients compared with healthy controls. Moreover, the R and M alleles were significantly associated with type 2 diabetes with an Odds Ratio of 1.68 (P < 0.005) and 2.24 (P < 0.005) respectively. SNP 192 Q > R genotypes were found to be significantly associated with higher BMI, cholesterol, triglycerides, LDL, fasting serum insulin and HOMA-IR. Further, the mutant allele or genotypes of PON1 L55M were associated with higher BMI, triglycerides, VLDL, fasting serum insulin and HOMA-IR among adult type 2 diabetes patients. PON1 (Q192R and L55M) polymorphisms may play a crucial role in pathogenesis and susceptibility of insulin resistance thus leads to the development of type 2 diabetes in South Indian population. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, P; Dong, P; Yang, X
2016-10-31
Some studies investigated the association of antisense non-coding RNA in the INK4 locus (ANRIL) rs2383207 polymorphism with coronary artery disease (CAD) risk. However, the result was still inconsistent. The aim of this study was to investigate whether there is an association between the ANRIL rs2383207 polymorphism and CAD risk. We carried out a PubMed (Medline), EMBASE database search covering all published articles. The strength of association between ANRIL rs2383207 polymorphism and CAD risk was assessed by calculating OR with 95% CI. A total of 13 case-control studies involving 6796 cases and 9956 controls were included in this meta-analysis. ANRIL rs2383207polymorphism was associated with a significantly an increased risk of CAD (OR=1.47; 95%CI, 1.33-1.62). We also found that this polymorphism increased CAD risk in Caucasians (OR=1.51; 95%CI, 1.28-1.77) and Asians (OR=1.42; 95%CI, 1.26-1.61). In the subgroup analysis according to gender, both women and men were significantly associated with the increased risk of CAD (OR=1.36; 95%CI, 1.03-1.79 and OR=1.58; 95%CI, 1.20-2.09). In the subgroup analysis by age, ANRIL rs2383207 polymorphism showed significant results in old CAD patients and young CAD patients (OR=1.32; 95%CI, 1.20-1.44 and OR=1.53; 95%CI, 1.32-1.77). Furthermore, this polymorphism also influenced myocardial infarction risk (OR=1.75; 95%CI, 1.24-2.47). Even the studies with adjustment for age, gender, smoking were included, the significant association was also observed (OR=1.43; 95%CI, 1.26-1.62). In conclusion, this meta-analysis suggested that ANRIL rs2383207 polymorphism is associated with CAD risk.
Plasminogen activator inhibitor-1 4G/5G polymorphism is associated with type 2 diabetes risk
Zhao, Luqian; Huang, Ping
2013-01-01
A number of studies were performed to assess the association between plasminogen activator inhibitor-1 (PAI-1) 4G/5G polymorphism and susceptibility to type 2 diabetes (T2DM). However, the results were inconsistent and inconclusive. In the present study, the possible association was investigated by a meta-analysis. Eligible articles were identified for the period up to June 2013. Pooled odds ratios (OR) with 95% confidence intervals (CI) were appropriately derived from random-effects models or fixed-effects models. Fourteen case-control studies with a total of 2487 cases and 3538 controls were eligible. In recessive model, PAI-1 4G/5G polymorphism was associated with T2DM risk (OR = 1.23; 95% CI 1.07-1.41; P = 0.004). In the subgroup analysis by ethnicity, a significant association was found among Asians (OR = 1.27; 95% CI 1.08-1.51; P = 0.005). This meta-analysis suggested that PAI-1 4G/5G polymorphism may be associated with T2DM development. PMID:24040470
Kim, Kyoung-Ah; Song, Wan-Geun; Lee, Hae-Mi; Joo, Hyun-Jin; Park, Ji-Young
2014-11-01
Warfarin is an anticoagulant that is difficult to administer because of the wide variation in dose requirements to achieve a therapeutic effect. CYP2C9, VKROC1, and CYP4F2 play important roles in warfarin metabolism, and their genetic polymorphisms are related to the variability in dose determination. In this study we describe a new multiplex pyrosequencing method to identify CYP2C9*3 (rs1057910), VKORC1*2 (rs9923231), and CYP4F2*3 (rs2108661) simultaneously. A multiplex pyrosequencing method to simultaneously detect CYP2C9*3, VKORC1*2, and CYP4F2*3 alleles was designed. We assessed the allele frequencies of the polymorphisms in 250 Korean subjects using the multiplex pyrosequencing method. The results showed 100 % concordance between single and multiplex pyrosequencing methods, and the polymorphisms identified by pyrosequencing were also validated with the direct sequencing method. The allele frequencies of these polymorphisms in this population were as follows: 0.040 for CYP2C9*3, 0.918 for VKORC1*2, and 0.416 for CYP4F2*3. Although the allele frequencies of the CYP2C9*3 and VKROC1*2 were comparable to those in Japanese and Chinese populations, their frequencies in this Korean population differed from those in other ethnic groups; the CYP4F2*3 frequency was the highest among other ethnic populations including Chinese and Japanese populations. The pyrosequencing methods developed were rapid and reliable for detecting CYP2C9*3, VKORC1*2, and CYP4F2*3. Large ethnic differences in the frequency of these genetic polymorphisms were noted among ethnic groups. CYP4F2*3 exhibited its highest allele frequency among other ethnic populations compared to that in a Korean population.
Galaktionova, D Iu; Gareeva, A E; Khusnutdinova, E K; Nasedkina, T V
2014-01-01
We have developed a biochip for the analysis of polymorphisms in candidate genes for schizophrenia: DISC1, RELN, ZNF804A, PLXNA2, COMT, SLC18A41, CACNA1C, ANK3, TPH1, PLAA and SNAP-25. Using biochip the allele and genotype frequencies in 198 patients with schizophrenia and 192 healthy individuals have been obtained. For SLC18A1 polymorphism rs2270641 A>C, the frequencies of A allele (p = 0.007) and AA genotype (p = 0.002) were lower in patients compared with healthy individuals. A significant association was found between AA genotype (p = 0.036) of the TPH1 polymorphism rs1800532 C>A and schizophrenia. The C allele (p = 0.039) of the RELNpolymorphism rs7341475 C>T were lower in patients with schizophrenia compared with healthy individuals in a tatar population. Genotype AA of the TPH1 polymorphism rs1800532 C>A were more frequent in patients with schizophrenia compared with healthy individuals. Ithas been shown that the C allele (p = 0.0001) and GC (p = = 0.0001) genotype of the PLXNA2 polymorphism rs1327175 G>C are associated with the family history in patients with paranoid schizophrenia. The obtained data suggest that SLC18A1, TPH1 and RELN gene polymorphisms are associated with the risk of paranoid schizophrenia.
Association of TLR1, TLR2, TLR4, TLR6, and TIRAP polymorphisms with disease susceptibility.
Noreen, Mamoona; Arshad, Muhammad
2015-06-01
Toll like receptors (TLRs) play a crucial role in regulation of innate as well as adaptive immunity. TLRs recognize a distinct but limited repertoire of conserved microbial products. Ligand binding to TLRs activates the signaling cascade and results in activation of multiple inflammatory genes. Variation in this immune response is under genetic control. Polymorphisms in genes associated with inflammatory pathway especially influence the outcome of diseases. TLR2 makes heterodimer with TLR1 or TLR6 and recognizes a wide variety of microbial ligands. In this review, we summarize studies of polymorphisms in genes encoding TLR1, TLR2, TLR4, TLR6, and most polymorphic adaptor protein, Mal/TIRAP, revealing their effect on susceptibility to diseases.
2012-01-01
Background Several association studies have shown that -844 G/A and HindIII C/G PAI-1 polymorphisms are related with increase of PAI-1 levels, obesity, insulin resistance, glucose intolerance, hypertension and dyslipidemia, which are components of metabolic syndrome. The aim of this study was to analyze the allele and genotype frequencies of these polymorphisms in PAI-1 gene and its association with metabolic syndrome and its components in a sample of Mexican mestizo children. Methods This study included 100 children with an age range between 6-11 years divided in two groups: a) 48 children diagnosed with metabolic syndrome and b) 52 children metabolically healthy without any clinical and biochemical alteration. Metabolic syndrome was defined as the presence of three or more of the following criteria: fasting glucose levels ≥ 100 mg/dL, triglycerides ≥ 150 mg/dL, HDL-cholesterol < 40 mg/dL, obesity BMI ≥ 95th percentile, systolic blood pressure (SBP) and diastolic blood pressure (DBP) ≥ 95th percentile and insulin resistance HOMA-IR ≥ 2.4. The -844 G/A and HindIII C/G PAI-1 polymorphisms were analyzed by PCR-RFLP. Results For the -844 G/A polymorphism, the G/A genotype (OR = 2.79; 95% CI, 1.11-7.08; p = 0.015) and the A allele (OR = 2.2; 95% CI, 1.10-4.43; p = 0.015) were associated with metabolic syndrome. The -844 G/A and A/A genotypes were associated with increase in plasma triglycerides levels (OR = 2.6; 95% CI, 1.16 to 6.04; p = 0.02), decrease in plasma HDL-cholesterol levels (OR = 2.4; 95% CI, 1.06 to 5.42; p = 0.03) and obesity (OR = 2.6; 95% CI, 1.17-5.92; p = 0.01). The C/G and G/G genotypes of the HindIII C/G polymorphism contributed to a significant increase in plasma total cholesterol levels (179 vs. 165 mg/dL; p = 0.02) in comparison with C/C genotype. Conclusions The -844 G/A PAI-1 polymorphism is related with the risk of developing metabolic syndrome, obesity and atherogenic dyslipidemia, and the HindIII C/G PAI-1 polymorphism was associated with the increase of total cholesterol levels in Mexican children. PMID:22459021
De la Cruz-Mosso, Ulises; Muñoz-Valle, José F; Salgado-Goytia, Lorenzo; García-Carreón, Adrián; Illades-Aguiar, Berenice; Castañeda-Saucedo, Eduardo; Parra-Rojas, Isela
2012-03-29
Several association studies have shown that -844 G/A and HindIII C/G PAI-1 polymorphisms are related with increase of PAI-1 levels, obesity, insulin resistance, glucose intolerance, hypertension and dyslipidemia, which are components of metabolic syndrome. The aim of this study was to analyze the allele and genotype frequencies of these polymorphisms in PAI-1 gene and its association with metabolic syndrome and its components in a sample of Mexican mestizo children. This study included 100 children with an age range between 6-11 years divided in two groups: a) 48 children diagnosed with metabolic syndrome and b) 52 children metabolically healthy without any clinical and biochemical alteration. Metabolic syndrome was defined as the presence of three or more of the following criteria: fasting glucose levels ≥ 100 mg/dL, triglycerides ≥ 150 mg/dL, HDL-cholesterol < 40 mg/dL, obesity BMI ≥ 95th percentile, systolic blood pressure (SBP) and diastolic blood pressure (DBP) ≥ 95th percentile and insulin resistance HOMA-IR ≥ 2.4. The -844 G/A and HindIII C/G PAI-1 polymorphisms were analyzed by PCR-RFLP. For the -844 G/A polymorphism, the G/A genotype (OR = 2.79; 95% CI, 1.11-7.08; p = 0.015) and the A allele (OR = 2.2; 95% CI, 1.10-4.43; p = 0.015) were associated with metabolic syndrome. The -844 G/A and A/A genotypes were associated with increase in plasma triglycerides levels (OR = 2.6; 95% CI, 1.16 to 6.04; p = 0.02), decrease in plasma HDL-cholesterol levels (OR = 2.4; 95% CI, 1.06 to 5.42; p = 0.03) and obesity (OR = 2.6; 95% CI, 1.17-5.92; p = 0.01). The C/G and G/G genotypes of the HindIII C/G polymorphism contributed to a significant increase in plasma total cholesterol levels (179 vs. 165 mg/dL; p = 0.02) in comparison with C/C genotype. The -844 G/A PAI-1 polymorphism is related with the risk of developing metabolic syndrome, obesity and atherogenic dyslipidemia, and the HindIII C/G PAI-1 polymorphism was associated with the increase of total cholesterol levels in Mexican children.
Herr, D; Bettendorf, H; Denschlag, D; Keck, C; Pietrowski, D
2006-10-01
To investigate the association between the occurrence of uterine leiomyoma and two SNPs of the CYP 2A13 and CYP 1A1 genes. Prospective case control study with 132 women with clinically and surgically diagnosed uterine leiomyoma and 260 controls. Genotyping was performed by polymerase chain reaction (PCR) based amplification of CYP 2A13 and CYP 1A1 genes, and restriction fragment length polymorphism (RFLP) analysis. Comparing women with uterine leiomyoma and controls, we demonstrate statistical significant differences of allele frequency and genotype distribution for the CYP 1A1 polymorphism (P = 0.025 and P = 0.046, respectively). Furthermore, for the CYP 2A13 polymorphism we found a significant difference concerning allele frequency (P = 0.033). However, for the genotype distribution, only borderline significance was observed (P = 0.064). The CYP 2A13 and CYP 1A1 SNPs are associated with uterine leiomyoma in a Caucasian population and may contribute to the understanding of the pathogenic mechanisms of uterine leiomyoma.
Lin, Liming; Liu, Honglong
2017-01-01
Previous studies have found that the polymorphisms of tumor necrosis factor-α induced protein 3 (TNFAIP3) were associated with several autoimmune diseases. However, the role of TNFAIP3 polymorphisms in type-1 autoimmune hepatitis (AIH-1) remained unclear. The present study aimed to clarify the association of TNFAIP3 polymorphisms with AIH-1 risk in a Chinese Han population. The TaqMan SNP genotyping assay was used to determine the distribution of TNFAIP3 polymorphisms in 432 AIH-1 patients and 500 healthy controls. The association of TNFAIP3 polymorphisms and clinical characteristic was further evaluated. Five TNFAIP3 polymorphisms (rs2230926, rs5029939, rs10499194, rs6920220, rs582757) were analyzed in the present study. No significant association could be observed between rs2230926, rs5029939, rs6920220, rs582757 and the susceptibility to AIH-1 in Chinese Han population. Compared with wild-type genotype CC at rs10499194, individuals carrying CT genotype had a significantly increased risk for developing AIH-1 (OR = 2.32, 95%CI 1.44–3.74). Under a dominant model, CT/TT carriers have a 140% increased risk of AIH-1 than CC carriers (OR = 2.40, 95%CI 1.50–3.87). The rs10499194 T allele was also found to be significantly associated with AIH-1 risk (OR = 2.41, 95%CI 1.51–3.82). In addition, higher serum ALT, AST levels and more common cirrhosis were observed in AIH-1 patients with T allele (CT/TT) than those with CC genotype. In conclusion, TNFAIP3 rs10499194 T allele and CT genotype were associated with an increased risk for AIH-1, suggesting rs10499194 polymorphism as a candidate of susceptibility locus to AIH-1. PMID:28448618
NFE2L2 pathway polymorphisms and lung function decline in chronic obstructive pulmonary disease
Malhotra, Deepti; Boezen, H. Marike; Siedlinski, Mateusz; Postma, Dirkje S.; Wong, Vivien; Akhabir, Loubna; He, Jian-Qing; Connett, John E.; Anthonisen, Nicholas R.; Paré, Peter D.; Biswal, Shyam
2012-01-01
An oxidant-antioxidant imbalance in the lung contributes to the development of chronic obstructive pulmonary disease (COPD) that is caused by a complex interaction of genetic and environmental risk factors. Nuclear erythroid 2-related factor 2 (NFE2L2 or NRF2) is a critical molecule in the lung's defense mechanism against oxidants. We investigated whether polymorphisms in the NFE2L2 pathway affected the rate of decline of lung function in smokers from the Lung Health Study (LHS)(n = 547) and in a replication set, the Vlagtwedde-Vlaardingen cohort (n = 533). We selected polymorphisms in NFE2L2 in genes that positively or negatively regulate NFE2L2 transcriptional activity and in genes that are regulated by NFE2L2. Polymorphisms in 11 genes were significantly associated with rate of lung function decline in the LHS. One of these polymorphisms, rs11085735 in the KEAP1 gene, was previously shown to be associated with the level of lung function in the Vlagtwedde-Vlaardingen cohort but not with decline of lung function. Of the 23 associated polymorphisms in the LHS, only rs634534 in the FOSL1 gene showed a significant association in the Vlagtwedde-Vlaardingen cohort with rate of lung function decline, but the direction of the association was not consistent with that in the LHS. In summary, despite finding several nominally significant polymorphisms in the LHS, none of these associations were replicated in the Vlagtwedde-Vlaardingen cohort, indicating lack of effect of polymorphisms in the NFE2L2 pathway on the rate of decline of lung function. PMID:22693272
NFE2L2 pathway polymorphisms and lung function decline in chronic obstructive pulmonary disease.
Sandford, Andrew J; Malhotra, Deepti; Boezen, H Marike; Siedlinski, Mateusz; Postma, Dirkje S; Wong, Vivien; Akhabir, Loubna; He, Jian-Qing; Connett, John E; Anthonisen, Nicholas R; Paré, Peter D; Biswal, Shyam
2012-08-01
An oxidant-antioxidant imbalance in the lung contributes to the development of chronic obstructive pulmonary disease (COPD) that is caused by a complex interaction of genetic and environmental risk factors. Nuclear erythroid 2-related factor 2 (NFE2L2 or NRF2) is a critical molecule in the lung's defense mechanism against oxidants. We investigated whether polymorphisms in the NFE2L2 pathway affected the rate of decline of lung function in smokers from the Lung Health Study (LHS)(n = 547) and in a replication set, the Vlagtwedde-Vlaardingen cohort (n = 533). We selected polymorphisms in NFE2L2 in genes that positively or negatively regulate NFE2L2 transcriptional activity and in genes that are regulated by NFE2L2. Polymorphisms in 11 genes were significantly associated with rate of lung function decline in the LHS. One of these polymorphisms, rs11085735 in the KEAP1 gene, was previously shown to be associated with the level of lung function in the Vlagtwedde-Vlaardingen cohort but not with decline of lung function. Of the 23 associated polymorphisms in the LHS, only rs634534 in the FOSL1 gene showed a significant association in the Vlagtwedde-Vlaardingen cohort with rate of lung function decline, but the direction of the association was not consistent with that in the LHS. In summary, despite finding several nominally significant polymorphisms in the LHS, none of these associations were replicated in the Vlagtwedde-Vlaardingen cohort, indicating lack of effect of polymorphisms in the NFE2L2 pathway on the rate of decline of lung function.
Dong, Q Y; Liu, X M; Liang, C G; Du, W H; Wang, Y L; Li, W X; Gao, G Q
2016-08-29
Type 2 diabetes mellitus is the most common form of endocrine disease in humans; genetic factors are known to contribute to the development of this disease. In this case-control study, we investigated the relationship between the -1082G/A, -819C/T, and -592C/A polymorphisms in interleukin 10 (IL-10) and the pathogenesis of type 2 diabetes mellitus in a Chinese population. Patients with type 2 diabetes mellitus (N = 228) and control subjects (N = 240) were recruited from the Department of Endocrinology at the People's Hospital of Linyi City, between September 2013 and April 2015. The IL-10 -1082G/A, -819C/T, and -592C/A polymorphisms were genotyped by polymerase chain reaction-restriction fragment length polymorphism. Multivariate logistic regression analyses revealed that patients carrying the AA genotype of IL-10 -592C/A were at a higher risk of developing type 2 diabetes mellitus compared to those carrying the CC genotype [adjusted odds ratio (OR) = 1.74; 95% confidence interval (CI) = 1.03-2.95]. In addition, individuals carrying the A allele of IL-10 -592C/A showed a 1.34-fold higher risk of developing type 2 diabetes mellitus compared to those carrying the C allele (adjusted OR = 1.34; 95%CI = 1.03- 1.75). There was no significant correlation between the IL-10 -1082G/ A and -819C/T polymorphisms and risk of type 2 diabetes mellitus. In conclusion, this study shows that the -1082G/A polymorphism of IL-10 contributes to the onset of type 2 diabetes mellitus, and may be considered a biomarker for early screening of type 2 diabetes mellitus in the Chinese population studied here.
Takemoto, Y; Sakatani, M; Takami, S; Tachibana, T; Higaki, J; Ogihara, T; Miki, T; Katsuya, T; Tsuchiyama, T; Yoshida, A; Yu, H; Tanio, Y; Ueda, E
1998-06-01
Serum angiotensin converting enzyme (SACE) is considered to reflect disease activity in sarcoidosis. SACE activity is increased in many patients with active sarcoid lesions. The mechanism for the increased SACE activity in this disease has not been clarified. ACE insertion/deletion (I/D) gene polymorphism has been reported to have an association with SACE levels in sarcoidosis, but no evidence of an association between angiotensin II receptor gene polymorphism and SACE in this disease has been found. A study of the association of angiotensin II receptor gene polymorphisms with sarcoidosis was therefore undertaken. ACE (I/D), angiotensin II type 1 receptor (AGTR1), and angiotensin II type 2 receptor (AGTR2) gene polymorphisms were investigated by polymerase chain reaction (PCR) and SACE levels were measured in three groups of patients: those with sarcoidosis or tuberculosis and normal controls. There was no difference in allele frequency of AGTR1 and AGTR2 polymorphism among the three groups. Neither AGTR1 nor AGTR2 polymorphisms were associated with sarcoidosis. SACE activity was higher in patients with sarcoidosis with the AGTR1 A/C genotype than in others. However, this tendency was not detected in patients with tuberculosis. The AGTR1 allele C is associated with high activity of SACE in patients with sarcoidosis. It is another predisposing factor for high levels of SACE in patients with sarcoidosis and is considered to be an independent factor from the ACE D allele for high levels of SACE in sarcoidosis. This fact could be one of the explanations for the increased SACE activity in sarcoidosis.
Trifa, Adrian P; Bănescu, Claudia; Bojan, Anca S; Voina, Cristian M; Popa, Ștefana; Vișan, Simona; Ciubean, Alina D; Tripon, Florin; Dima, Delia; Popov, Viola M; Vesa, Ștefan C; Andreescu, Mihaela; Török-Vistai, Tünde; Mihăilă, Romeo G; Berbec, Nicoleta; Macarie, Ioan; Coliţă, Andrei; Iordache, Maria; Cătană, Alina C; Farcaș, Marius F; Tomuleasa, Ciprian; Vasile, Kinga; Truică, Cristina; Todincă, Adriana; Pop-Muntean, Lavinia; Manolache, Raluca; Bumbea, Horia; Vlădăreanu, Ana-Maria; Gaman, Mihaela; Ciufu, Cristina M; Popp, Radu A
2018-01-01
Polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF) are classical myeloproliferative neoplasms (MPN), characterized by specific somatic mutations in JAK2, CALR or MPL genes. JAK2 46/1 and TERT rs2736100 polymorphisms are known to significantly predispose to MPN. This study aimed to establish the additional contribution of the recently described MECOM rs2201862, HBS1L-MYB rs9376092 and THRB-RARB rs4858647 polymorphisms to the occurrence of MPN. These three polymorphisms, along with JAK2 46/1 and TERT rs2736100 were genotyped in 939 MPN patients (454 with ET, 337 with PV and 148 with PMF) and 483 controls. MECOM rs2201862 associated significantly with each MPN entity, except for ET, and with all major molecular sub-types, especially those CALR-mutated (OR = 1.4; 95% CI = 1.1-1.8; P-value = .005). HBS1L-MYB rs9376092 associated only with JAK2 V617F-mutated ET (OR = 1.4; 95% CI = 1.1-1.7; P-value = .003). THRB-RARB rs4858647 had a weak association with PMF only (OR = 1.5; 95% CI = 1-2.1; P-value = .04). Surprisingly, JAK2 46/1 haplotype was associated significantly not only with JAK2 V617F-mutated MPN, but also with CALR-mutated MPN (OR = 1.4; 95% CI = 1.1-1.8; P-value = .01). TERT rs2736100 was associated equally strong with all MPN, regardless of phenotype or molecular sub-type. In conclusion, JAK2 46/1, TERT rs2736100 and MECOM rs2201862 are the chief predisposing polymorphisms to MPN. © 2017 Wiley Periodicals, Inc.
Schneider, Martina; Matiqi, Teresa; Kundi, Michael; Rieder, Franz JJ; Andreas, Martin; Strassl, Robert; Zuckermann, Andreas; Jungbauer, Christof; Steininger, Christoph
2017-01-01
Background The Toll-like receptor 2 (TLR2) is a significant component of innate immunity against cytomegalovirus (CMV) infection but information on the clinical significance of the most common single nucleotide polymorphism (SNP) (R753Q) is conflicting. Objectives The inconsistent observations of the immunological and clinical significance of the TLR2 R753Q polymorphism for CMV infection indicates the influence of confounders. Study design The presence of the TLR2 polymorphism was determined by a genotyping assay of 175 HTX patients and 281 healthy blood donors and evaluated in relation to selected virological and clinical parameters. Results Relative frequency of TLR2 polymorphism was similar in HTX patients and blood donors (homozygous wild-type, 94.3% vs. 94.0%; heterozygous, 5.1% vs. 5.7%; homozygous mutated, <1%). CMV viremia was detectable in 108 (61.7%) of HTX patients. The TLR2 polymorphism was neither associated with occurrence or level of CMV infection nor with survival, graft failure or rejection, or CMV serostatus of patient before transplantation. Nevertheless, CMV viremia occurred in 83.1% of R+/D+, 77.1% of R+/D-, and 64.3% of R-/D+ patients. Time of first CMV viremia was in R-/D+ patients later than in CMV-seropositive patients (median, 182 days versus 23 days; P<0.001) corresponding to the duration of antiviral prophylaxis in R-/D+ patients. Conclusions The TLR2 R753Q polymorphism is extremely rare in the general population and HTX patients. Screening for this risk factor of CMV disease may not be cost-effective in contrast to testing for CMV viremia. PMID:27723526
Bhat, Vinayak; Gopan, Gopika; Nair, Nanditha G; Hariharan, Mahesh
2018-04-06
The introduction of the trialkylsilylethynyl group to the acene core is known to predominantly transform the herringbone structure of pentacene to a slip-stacked packing. However, herein, the occurrence of an unforeseen polymorph of 6,13-bis(trimethylsilylethynyl)pentacene (TMS-pentacene), with an atypical γ-herringbone packing arrangement, is reported. Intermolecular noncovalent interactions in the γ-herringbone polymorph are determined from Hirshfeld surface and quantum theory of atoms-in-molecules (QTAIM) analyses. Furthermore, a comparative truncated symmetry-adapted perturbation theory (SAPT(0)) energy decomposition analysis discloses the role of exchange repulsions that govern molecular packing in the γ-herringbone polymorph. Moreover, the computationally predicted electronic coupling and anisotropic mobility reveal the possibility of enhanced hole transport (μ h =3.7 cm 2 V -1 s -1 ) in the γ-herringbone polymorph, in contrast to the reported polymorph with a hole mobility of μ h =0.1 cm 2 V -1 s -1 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mismatch repair polymorphisms and the risk of colorectal cancer.
Berndt, Sonja I; Platz, Elizabeth A; Fallin, M Daniele; Thuita, Lucy W; Hoffman, Sandra C; Helzlsouer, Kathy J
2007-04-01
Rare germline variants in mismatch repair genes have been linked to hereditary nonpolyposis colorectal cancer; however, it is unknown whether common polymorphisms in these genes alter the risk of colorectal cancer. To examine the association between common variants in mismatch repair genes and colorectal cancer, we conducted a case-cohort study within the CLUE II cohort. Four single nucleotide polymorphisms in 3 mismatch repair genes (MSH3 R940Q, MSH3 T1036A, MSH6 G39E and MLH1 I219V) were genotyped in 237 colorectal cancer cases and a subcohort of 2,189 participants. Incidence rate ratios (RRs) and 95% confidence intervals (95% CIs) for each polymorphism were estimated. The MSH3 1036A variant was found to be associated with an increased risk of colorectal cancer (RR=1.28, 95% CI: 0.94-1.74 and RR=1.65, 95% CI: 1.01-2.70 for the AT and TT genotypes, respectively, with p(trend)=0.02), particularly proximal colon cancer. Although the MSH3 940Q variant was only weakly associated with colorectal cancer overall (p(trend)=0.07), it was associated with a significant increased risk of proximal colon cancer (RR=1.69, 95% CI: 1.10-2.61 and RR=2.68, 95% CI: 0.96-7.47 for the RQ and QQ genotypes, respectively with p(trend)=0.005). Processed meat intake appeared to modify the association between the MSH3 polymorphisms and colorectal cancer (p(interaction) < 0.10 for both). No association was observed with the MSH6 and MLH1 polymorphisms overall. This study suggests that common polymorphisms in the mismatch repair gene, MSH3, may increase the risk of colorectal cancer, especially proximal colon cancer. (c) 2006 Wiley-Liss, Inc.
Bansal, Savita; Chawla, Diwesh; Banerjee, Basu Dev; Madhu, Sri Venkata; Tripathi, Ashok Kumar
2013-09-10
Sustained interaction of advanced glycation end products (AGEs) with their receptor RAGE and subsequent signaling plays an important role in the development of diabetic complications. Genetic variation of RAGE gene may be associated with the development of vascular complications in type 2 diabetes mellitus (T2DM). The present study aimed to explore the possible association of RAGE gene polymorphisms namely -374T/A, -429T/C and G82S with serum level of AGEs, paraoxonase (PON1) activity and macro-vascular complications (MVC) in Indian type 2 diabetes mellitus patients (T2DM). A total of 265 diabetic patients, including DM without any complications (n=135), DM-MVC (n=130) and 171 healthy individuals were enrolled. Genotyping of RAGE variants were assessed by polymerase chain reaction-restriction fragment length polymorphism. Serum AGEs were estimated by ELISA and fluorometrically. and PON1 activity was assessed spectrophotometrically. Of the three examined SNPs, association of -429T/C polymorphism with MVC in T2DM was observed (OR=3.001, p=0.001) in the dominant model. Allele 'A' of -374T/A polymorphism seems to confer better cardiac outcome in T2DM. Patients carrying C allele (-429T/C) and S allele (G82S) had significantly higher AGEs levels. -429T/C polymorphism was also found to be associated with low PON1 activity. Interaction analysis revealed that the risk of development of MVC was higher in T2DM patients carrying both a CC genotype of -429T/C polymorphism and a higher level of AGEs (OR=1.343, p=0.040). RAGE gene polymorphism has a significant effect on AGEs level and PON1 activity in diabetic subjects compared to healthy individuals. Diabetic patients with a CC genotype of -429T/C are prone to develop MVC, more so if AGEs levels are high and PON1 activity is low. Copyright © 2013 Elsevier B.V. All rights reserved.
[Genomics of type I diabetes mellitus and its late complications].
Nosikov, V V
2004-01-01
In ethnic Russians, MHC (HLA) was shown to be the major locus determining the predisposition to type 1 diabetes mellitus (T1DM). To map the regions linked to T1DM, families with concordant or discordant sib pairs were selected from the Russian population of Moscow. With these families, linkage to T1DM was demonstrated for CTLA4 (IDDM12, 2q32.1-q33), which codes for a T-cell surface antigen, and PDCD2 (IDDM8, 6q25-q27), which is homologous to the mouse programmed cell death activator gene. With polymorphic microsatellites, regions 3q21-q25 (IDDM9) and 10p12.2 (IDDM10) were also linked to T1DM. Case/control and family studies of the polymorphic markers from region 11p13 revealed a new T1DM-associated locus in the vicinity of the catalase gene (CAT); linkage to this locus was not reported earlier for other populations. Diabetic polyneuropathy (DPN) proved to be associated with single-nucleotide polymorphisms Ala(-9)Val (SOD2), Arg213Gly (SOD3), and T(-262)C (CAT) and with a polymorphic microsatellite of the NOS2 promoter. Hence oxidative stress, which results from hyperglycemia, increased mitochondrial production of superoxide radicals, and insufficient activities of antioxidative enzymes, was assumed to play an important part in DPN development in T1DM. Diabetic nephropathy (DN) showed no association with the antioxidative enzyme genes. However, the association was observed for the insertion/deletion (I/D) polymorphism of ACE and the ecNOS34a/4b polymorphism of NOS3, two genes involved in controlling vascular tonicity, and for the I/D polymorphism of APOB and the epsilon 2/epsilon 3/epsilon 4 polymorphism of APOE, two genes involved in lipid transport. In addition, polymorphic microsatellites of chromosome 3q21-q25 proved to be closely associated with DN. The tightest association was established for D3S1550, carriers of allele 12 or genotype 12/14 having high risk of DN (OR = 4.85 and 6.25, respectively). Region 3q21-q25 was assumed to contain a major gene determining DN development, while the other DN-associated genes mostly affect the progression of DN.
Wang, Peng; Yang, Yanjie; Yang, Xiuxian; Qiu, Xiaohui; Qiao, Zhengxue; Wang, Lin; Zhu, Xiongzhao; Sui, Hong; Ma, Jingsong
2015-01-01
Major depressive disorder (MDD) is one of the most severe psychiatric disorders. The objective of this study was to explore the effects of CREB1 gene polymorphisms on risk of developing MDD and the joint effects of gene-environment interactions. Genotyping was performed by Taqman allelic discrimination assay among 586 patients and 586 healthy controls. A significant impact on rs6740584 genotype distribution was found for childhood trauma (P = 0.015). We did not find an association of CREB1 polymorphisms with MDD susceptibility. However, we found a significantly increased risk associated with the interactions of CREB1 polymorphisms and drinking (OR = 11.67, 95% CI = 2.52-54.18; OR = 11.52, 95% CI = 2.55-51.95 for rs11904814; OR = 4.18, 95% CI = 1.87-9.38; OR = 5.02, 95% CI = 2.27-11.14 for rs6740584; OR = 7.58, 95% CI = 2.05-27.98; OR = 7.59, 95% CI = 2.12-27.14 for rs2553206; OR = 8.37, 95% CI = 3.02-23.23; OR = 7.84, 95% CI = 2.93-20.98 for rs2551941). We also noted that CREB polymorphisms combined with family harmony and childhood trauma conferred increased susceptibility for MDD. In conclusion, polymorphisms in the CREB gene may not be independently associated with MDD risk, but they are likely to confer increased susceptibility by interacting with environmental risk factors in the Chinese population. PMID:25755794
Genotyping and expression analysis of IDO2 in human pancreatic cancer: a novel, active target.
Witkiewicz, Agnieszka K; Costantino, Christina L; Metz, Richard; Muller, Alexander J; Prendergast, George C; Yeo, Charles J; Brody, Jonathan R
2009-05-01
The recently discovered indoleamine 2,3-dioxygenase-2 (IDO2) gene has 2 functional polymorphisms that abolish its enzymatic activity. We hypothesize that expression of the IDO2 enzyme in primary pancreatic ductal adenocarcinomas (PDA) can help cancer cells evade immune detection. Because the IDO2 enzyme might be the preferential target of d-1-methyl-tryptophan, a clinical lead inhibitor of IDO currently being evaluated in phase I trials, we sequenced IDO2 in 36 pancreatic specimens and evaluated its expression. We found that 58% (21 of 36) of cases were heterozygous for the R248W polymorphism; 28% (10 of 36) were homozygous wild-type; and only 14% (5 of 36) were homozygous for the functionally inactive polymorphism. As for the Y359STOP polymorphism, we found that 27% (10 of 36) of cases were heterozygous, 62% (22 of 36) were homozygous wild-type, and only 11% (4 of 36) were homozygous for this functionally inactive allele. Ruling out the possibility of compound polymorphic variants, we estimated 75% of our resected patient cohort had an active IDO2 enzyme, with a conservative estimate that 58% of the patients had at least 1 functional allele. IDO2 was expressed in PDA tissue from each genetically polymorphic subgroup. We also detected IDO2 protein expression in the genetically distinct pancreatic cancer cell lines after exposure with interferon-gamma. This is the first study to report IDO2 expression in PDA and related cancers indicating that IDO2 genetic polymorphisms do not negate interferon-gamma-inducible protein expression. Taken together, our data strongly suggest that the clinical lead compound d-1-methyl-tryptophan might be useful in treatment of PDA.
Mahjoubi, Imen; Kallel, Amani; Sbaï, Mohamed Hédi; Ftouhi, Bochra; ben Halima, Meriam; Jemaa, Zeineb; Feki, Moncef; Slimane, Hedia; Jemaa, Riadh; Kaabachi, Naziha
2016-01-01
Background & objectives: The impact of several environmental and genetic factors on diabetes is well documented. Though the association between the vitamin D receptor (VDR) gene polymorphisms and type 2 diabetes mellitus (T2DM) has been analyzed in different ethnic groups, the results have been inconsistent. The aim of this study was to evaluate the possible association between VDR FokI polymorphism and genetic susceptibility to T2DM in Tunisian population. Methods: A total of 439 unrelated patients with T2DM and 302 healthy controls were included in the study. Genomic DNA was extracted from blood and genotyped for the single nucleotide polymorphism (SNP) of FokI (T/C: (rs2228570) by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) analysis. Results: The genotype distribution and the relative allelic frequencies for the FokI polymorphism were not significantly different between T2DM and controls: in T2DM patients the frequencies of the CC, CT, and TT genotypes were 52.6, 41.0, and 6.1 per cent, respectively, and in controls the genotype frequencies were 55.6, 38.7, and 5.6 per cent, respectively. In our study, the TT genotype of the FokI polymorphism was not associated with T2DM (OR =1.19, 95% CI 0.63 - 2.25, P=0.577). Interpretation & conclusions: Our study showed no significant association of the FokI polymorphism in the vitamin D receptor gene with type 2 diabetes mellitus in Tunisian population. PMID:27834325
Gouda, Heba Mahmoud; Khorshied, Mervat Mamdooh; El Sissy, Maha Hamdi; Shaheen, Iman Abdel Mohsen; Mohsen, Mohsen Mokhtar Abdel
2014-08-01
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases capable of extracellular matrix degradation. MMP2 is the key molecule that control invasion, tumor growth, and metastasis, and has been associated with poor prognosis in several tumors. Several epidemiological studies have focused on the associations between MMP2 promoter polymorphisms and cancer susceptibility; however, little is known about their role in hematological malignancies. The present study aimed to investigate the association of MMP2 -735C/T and -1306C/T promoter polymorphisms with B-NHL susceptibility and their clinicopathological characteristics. The study included 100 B-NHL patients and 100 healthy controls. Genotyping of MMP2 -735C/T and MMP2 -1306C/T was done by polymerase chain reaction restricted fragment length polymorphism (PCR-RFLP) technique. MMP2 -735C/T heteromutant genotype (CT) was detected in 23 % of patients, and the homomutant genotype (TT) was detected in 7 % of patients. The polymorphic allele, T allele, was associated with susceptibility to B-NHL (OR = 2.8:95 %CI = 1.48-5.28). For MMP2 -1306C/T, the frequencies of the polymorphic variants were 5 % for the heteromutant genotype (CT) and 3 % for the homomutant genotype (TT). The polymorphic allele, T allele, conferred almost fourfold increased risk of B-NHL (OR = 3.8, 95 %CI = 1.05-13.9), and the risk elevated to be almost eight folds when confined to diffuse large B-cell lymphoma (DLBCL) (OR = 7.9, 95 %CI = 1.67-32.27). MMP2 -735C/T polymorphic genotypes were correlated with advanced clinical stages of the disease (stages III and IV). In conclusion, the study revealed that the variant alleles of MMP2 -735C/T and MMP2 -1306C/T can be considered as molecular risk factors for B-NHL among Egyptians.
Reyes-Mandujano, Ivonne F; Olivera-García, José E; Taboada-Vega, Manuel; Galvan-Sanchez, Patricia; Azcarza-Acuña, Amilcar; M Yactayo-Flores, Aldo; Zuñiga-Ccoicca, Luis A; Leiva-Pachas, Evelyn V; Paccori-García, Efraín
2018-01-01
. To determine the connection between polymorphism IL-1B C(+3953/4)T and chronic periodontitis in adults. . Case and control study. Individuals between 18 and 64 years of age were included; they were recruited through healthcare campaigns carried out in 2012 in different areas of the city of Lima with similar socio-economic characteristics. Dentists specialized in periodontics performed the diagnosis of the periodontal state of participants; genotyping was made through the PCR-RFLP technique. The data were analyzed by logistic regression. . The factors associated with chronic periodontitis were: age over 46 years (OR: 7.50, CI 95%: 1.85-6.37), higher education level achieved (OR: 0.43, CI 95%: 0.27-0.98), the presence of allele 2 in the polymorphism of IL-1B. The positive genotype (2-2) was associated with the presence of chronic periodontitis (OR: 2.06, CI 95%: 1.01-4.21). . The presence of allele 2 in the polymorphism of IL-1B and the positive genotype (2-2) confers greater risk for the development of chronic periodontitis in the population of Peruvian adults under study.
C282Y polymorphism in the HFE gene is associated with risk of breast cancer.
Liu, Xiaoyan; Lv, Chunlei; Luan, Xiaorong; Lv, Ming
2013-10-01
The C282Y and H63D polymorphisms in the HFE gene have been implicated in susceptibility of breast cancer, but a number of studies have reported inconclusive results. The aim of this study is to investigate the association between the C282Y and H63D polymorphisms in the HFE gene and breast cancer risk by meta-analysis. We searched PubMed and Embase databases, covering all related studies until March 2, 2013. Statistical analysis was performed using STATA 10.0. A total of 7 studies including 1,720 cases and 18,296 controls for HFE C282Y polymorphism and 5 studies including 942 cases and 1,571 controls for HFE H63D polymorphism were included in the meta-analysis. The results showed that HFE C282Y polymorphism was significantly associated with increased risk of breast cancer under homozygotes vs. wild-type model (OR = 2.06, 95%CI = 1.19-3.58) and recessive model (OR = 1.98, 95%CI = 1.14-3.44) but not under heterozygotes vs. wild-type model (OR = 0.97, 95%CI = 0.70-1.35), dominant model (OR = 1.00, 95%CI = 0.72-1.40) and multiplicative model (OR = 1.04, 95%CI = 0.76-1.42). However, we did not find any association between HFE H63D polymorphism and breast cancer risk under all genetic models. This current meta-analysis suggested that C282Y polymorphism rather than H63D might be associated with increased risk of breast cancer.
Buraczynska, Monika; Buraczynska, Kinga; Zukowski, Pawel; Ksiazek, Andrzej
2018-02-01
Diabetic peripheral neuropathy (DPN) is one of late complications of diabetes mellitus. The aim of this study was to evaluate the association between variable number tandem repeat (VNTR) polymorphism in intron 3 of interleukin-4 gene and risk of DPN. We examined 926 T2DM patients and 420 healthy controls. In the patient group, 44% had DPN. Genomic DNA was isolated from all subjects and genotyped for the IL-4 VNTR polymorphism by polymerase chain reaction (PCR). No significant difference was observed in the frequency of minor P1 allele between T2DM patients and controls (OR 1.00, 95% CI 0.81-1.23, p = 0.988). The distribution of IL-4 VNTR polymorphism was compared between patients with DPN and those without it. The polymorphism was not significantly associated with DPN in studied subjects. In comparison of 406 T2DM patients with DPN and 520 patients without it, the OR (95% CI) for P1 allele was 0.82 (0.65-1.04), p = 0.10 and for P1P1 genotype 1.00 (0.53-1.89), p = 0.991. When two subgroups of patients with DPN, those with cardiovascular disease (CVD) and without CVD, were compared, subgroup with coexisting CVD had significantly higher frequency of P1 allele than patients without CVD, with odds ratio for the P1 allele 3.27 (95% CI 1.83-5.83), p = 0.0001. Our results demonstrated that VNTR polymorphism in the IL-4 gene is associated with DPN in type 2 diabetes patients with coexisting CVD.
Rallidis, Loukianos S; Gialeraki, Argyri; Merkouri, Efrosyni; Liakos, George; Dagres, Nikolaos; Sionis, Dimitrios; Travlou, Anthi; Lekakis, John; Kremastinos, Dimitrios T
2010-05-01
There are limited and controversial data regarding the impact of 4G/5G polymorphism of the plasminogen activator inhibitor-1 (PAI-1) gene in the pathogenesis of premature myocardial infarction (MI). We explored whether 4G/5G polymorphism of the PAI-1 gene is associated with the development of MI
PNPLA3 polymorphism increases risk for and severity of chronic hepatitis C liver disease
Salameh, Habeeb; Masadeh, Maen; Al Hanayneh, Muhannad; Petros, Vincent; Maslonka, Matthew; Nanda, Arjun; Singal, Ashwani K
2016-01-01
AIM To examine the association of PNPLA3 polymorphisms in chronic hepatitis C patients and development of liver disease spectrum. METHODS Literature was searched systematically from PubMed/MEDLINE, EMBASE, and Cochrane search engines for full-length articles written in English that examined PNPLA3 polymorphism in chronic hepatitis C (CHC) patients. Studies evaluating the association of PNPLA3 polymorphism spectrum (fatty liver, steatohepatitis, cirrhosis, and hepatocellular carcinoma) of CHC were included. Pooled data are reported as OR with 95%CI. Our study endpoint was the risk of the entire liver disease spectrum including: Steatosis/fatty liver, cirrhosis, and hepatocellular carcinoma in CHC patients with PNPLA3 polymorphisms. RESULTS Of 380 studies identified, a total of 53 studies were included for full-text review. Nineteen on chronic hepatitis C were eligible for analysis. Pooled ORs for rs738409 GG compared to CC and CG among patients with fatty liver was 2.214 (95%CI: 1.719-2.853). ORs among advanced fibrosis/cirrhosis were 1.762 (95%CI: 1.258-2.468). Similar odds ratios among hepatocellular carcinoma patients were 2.002 (95%CI: 1.519-2.639). Pooled ORs for rs738409 GG and CG compared to CC among patients with fatty liver were 1.750 (95%CI: 1.542-1.986). Pooled ORs for advanced fibrosis/cirrhosis patients were 1.613 (95%CI: 1.211-2.147). All analyses were homogenous and without publication bias except one. The associations were maintained after adjusting for publication bias and heterogeneity. CONCLUSION PNPLA3 polymorphisms have strong association with increased risk and severity of the liver disease spectrum in CHC patients. PMID:28050240
PNPLA3 polymorphism increases risk for and severity of chronic hepatitis C liver disease.
Salameh, Habeeb; Masadeh, Maen; Al Hanayneh, Muhannad; Petros, Vincent; Maslonka, Matthew; Nanda, Arjun; Singal, Ashwani K
2016-12-18
To examine the association of PNPLA3 polymorphisms in chronic hepatitis C patients and development of liver disease spectrum. Literature was searched systematically from PubMed/MEDLINE, EMBASE, and Cochrane search engines for full-length articles written in English that examined PNPLA3 polymorphism in chronic hepatitis C (CHC) patients. Studies evaluating the association of PNPLA3 polymorphism spectrum (fatty liver, steatohepatitis, cirrhosis, and hepatocellular carcinoma) of CHC were included. Pooled data are reported as OR with 95%CI. Our study endpoint was the risk of the entire liver disease spectrum including: Steatosis/fatty liver, cirrhosis, and hepatocellular carcinoma in CHC patients with PNPLA3 polymorphisms. Of 380 studies identified, a total of 53 studies were included for full-text review. Nineteen on chronic hepatitis C were eligible for analysis. Pooled ORs for rs738409 GG compared to CC and CG among patients with fatty liver was 2.214 (95%CI: 1.719-2.853). ORs among advanced fibrosis/cirrhosis were 1.762 (95%CI: 1.258-2.468). Similar odds ratios among hepatocellular carcinoma patients were 2.002 (95%CI: 1.519-2.639). Pooled ORs for rs738409 GG and CG compared to CC among patients with fatty liver were 1.750 (95%CI: 1.542-1.986). Pooled ORs for advanced fibrosis/cirrhosis patients were 1.613 (95%CI: 1.211-2.147). All analyses were homogenous and without publication bias except one. The associations were maintained after adjusting for publication bias and heterogeneity. PNPLA3 polymorphisms have strong association with increased risk and severity of the liver disease spectrum in CHC patients.
Kilpeläinen, Tuomas O; Lakka, Timo A; Laaksonen, David E; Mager, Ursula; Salopuro, Titta; Kubaszek, Agata; Todorova, Boryana; Laukkanen, Olli; Lindström, Jaana; Eriksson, Johan G; Hämäläinen, Helena; Aunola, Sirkka; Ilanne-Parikka, Pirjo; Keinänen-Kiukaanniemi, Sirkka; Tuomilehto, Jaako; Laakso, Markku; Uusitupa, Matti
2008-03-01
Single nucleotide polymorphisms (SNPs) in the ADRB2, ADRB3, TNF, IL6, IGF1R, LIPC, LEPR, and GHRL genes were associated with the conversion from impaired glucose tolerance (IGT) to type 2 diabetes mellitus (T2D) in the Finnish Diabetes Prevention Study (DPS). In this study, we determined whether polymorphisms in these genes modified the effect of changes in physical activity (PA) on the risk of T2D in the DPS. Moreover, we assessed whether the polymorphisms modified the effect of changes in PA on changes in measures of body fat, serum lipids, and blood pressure during the first year of the follow-up of the DPS. Overweight subjects with IGT (n = 487) were followed for an average of 4.1 years, and PA was assessed annually with a questionnaire. The interactions of the polymorphisms with changes in total and moderate-to-vigorous PA on the conversion to T2D during the 4.1-year follow-up were assessed using Cox regression with adjustments for the other components of the intervention (dietary changes, weight reduction). Univariate analysis of variance was used to assess interactions on changes in continuous variables during the first year of the follow-up. No interaction between the polymorphisms and PA on the conversion to T2D was found. The Leu72Met (rs696217) polymorphism in GHRL modified the effect of moderate-to-vigorous PA on changes in weight and waist circumference, the -501A/C (rs26802) polymorphism in GHRL modified the effect of total and moderate-to-vigorous PA on change in high-density lipoprotein cholesterol, and the Lys109Arg (rs1137100) polymorphism in LEPR modified the effect of total PA on change in blood pressure. In conclusion, genetic variation may modify the magnitude of the beneficial effects of PA on characteristics of the metabolic syndrome in persons with IGT.
Coplanar semiconductor-metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy
NASA Astrophysics Data System (ADS)
Sung, Ji Ho; Heo, Hoseok; Si, Saerom; Kim, Yong Hyeon; Noh, Hyeong Rae; Song, Kyung; Kim, Juho; Lee, Chang-Soo; Seo, Seung-Young; Kim, Dong-Hwi; Kim, Hyoung Kug; Yeom, Han Woong; Kim, Tae-Hwan; Choi, Si-Young; Kim, Jun Sung; Jo, Moon-Ho
2017-11-01
Crystal polymorphism selectively stabilizes the electronic phase of atomically thin transition-metal dichalcogenides (TMDCs) as metallic or semiconducting, suggesting the potential to integrate these polymorphs as circuit components in two-dimensional electronic circuitry. Developing a selective and sequential growth strategy for such two-dimensional polymorphs in the vapour phase is a critical step in this endeavour. Here, we report on the polymorphic integration of distinct metallic (1T‧) and semiconducting (2H) MoTe2 crystals within the same atomic planes by heteroepitaxy. The realized polymorphic coplanar contact is atomically coherent, and its barrier potential is spatially tight-confined over a length of only a few nanometres, with a lowest contact barrier height of ∼25 meV. We also demonstrate the generality of our synthetic integration approach for other TMDC polymorph films with large areas.
Ajaz, Sadia; Khaliq, Shagufta; Abid, Aiysha; Hassan, Asad Shehzad; Hashmi, Altaf; Sultan, Gauhar; Mohsin, Rehan; Mubarrak, Mohammad; Naqvi, Syed Ali Anwar; Rizvi, Syed Adib-ul-Hasan; Mehdi, Syed Qasim
2011-09-01
Vascular endothelial growth factor (VEGF) protein plays an important role in tumor development and progression. Polymorphisms in the VEGF gene may lead to over- or underexpression of the protein and may be associated with either risk or progression of malignancy. The aim of this case-control study is to identify and quantify the correlation between VEGF polymorphisms and renal cell carcinoma (RCC). Restriction fragment length polymorphism methods were used for the analysis of VEGF polymorphisms at -2578 and +936 positions in the promoter and 3'-untranslated regions, respectively. The VEGF -2578 A-allele was associated with an increased risk of RCC (odds ratio: 1.6; 95% CI: 1.2-2.3) and A-carrier genotypes were strongly correlated (odds ratio: 2.7; 95% CI: 1.5-4.7) with higher risk. Comparison of VEGF +936 C/T polymorphism between patient and control groups revealed no association with renal carcinoma. Both VEGF -2578 C/A and VEGF +936 C/T polymorphisms showed no significant association with the histopathological parameters of RCC. This study shows that VEGF -2578 A-allele and A-carrier genotypes are associated with an increased risk of RCC. In groups with higher incidence of RCC, a screening test for this polymorphism may be recommended in conjunction with other established markers.
Bayés-García, L; Calvet, T; Cuevas-Diarte, M A; Ueno, S
2016-07-01
We examined the influence of dynamic thermal treatment (variation of cooling/heating rates) on the polymorphic crystallization and transformation pathways of 1-palmitoyl-2,3-dioleoyl glycerol (POO), 1-stearoyl-2,3-dioleoyl glycerol (SOO), and 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol (POL), which are major saturated-unsaturated-unsaturated (SUU) triacylglycerols (TAGs) of vegetable oils and animal fats (e.g., palm oil, olive oil, and Iberian ham fat). Using mainly a combination of differential scanning calorimetry (DSC) and synchrotron radiation X-ray diffraction (SR-XRD), we analyzed the polymorphic behavior of TAGs when high (15°Cmin -1 ), intermediate (2°Cmin -1 ), and low (0.5°Cmin -1 ) cooling and heating rates were applied. Multiple polymorphic forms were detected in POO, SOO, and POL (sub-α, α, β' 2 , and β' 1 ). Transient disordered phases, defined as kinetic liquid crystal (KLC) phases, were determined in POO and SOO for the first time. The results demonstrated that more stable forms were directly obtained from the melt by decreasing the cooling rates, whereas less stable forms predominated at high cooling rates, as confirmed in our previous work. Regarding heating rate variation, we confirmed that the nature of the polymorphic transformations observed (solid-state, transformation through KLC phase, or melt-mediation) depended largely on the heating rate. These results were discussed considering the activation energies involved in each process and compared with previous studies on TAGs with different saturated-unsaturated structures (1,3-dioleoyl-2-palmitoylglycerol, 1,3-dipalmitoyl-2-oleoyl-glycerol, trioleoyl glycerol, and 1,2-dioleoyl-3-linoleoyl glycerol). Copyright © 2016 Elsevier Ltd. All rights reserved.
Kamada, Anselmo J; Bianco, Anna M; Zupin, Luisa; Girardelli, Martina; Matte, Maria C C; Medeiros, Rúbia Marília de; Almeida, Sabrina Esteves de Matos; Rocha, Marineide M; Segat, Ludovica; Chies, José A B; Kuhn, Louise; Crovella, Sergio
2016-07-01
Bone marrow stromal cell antigen-2 (BST-2)/Tetherin is a restriction factor that prevents Human immunodeficiency virus type 1 (HIV-1) release from infected cells and mediates pro-inflammatory cytokine production. This study investigated the risk conferred by single nucleotide polymorphisms (rs919266, rs9192677, and rs9576) at BST-2 coding gene (BST2) in HIV-1 mother-to-child transmission and in disease progression. Initially, 101 HIV-1+ pregnant women and 331 neonates exposed to HIV-1 from Zambia were enrolled. Additional BST2 single nucleotide polymorphism analyses were performed in 2 cohorts with acquired immunodeficiency syndrome (AIDS) progression: an adult Brazilian cohort (37 rapid, 30 chronic and 21 long-term non-progressors) and an Italian pediatric cohort (21 rapid and 67 slow progressors). The rs9576A allele was nominally associated with protection during breastfeeding (P = 0.019) and individuals carrying rs919266 GA showed slower progression to AIDS (P = 0.033). Despite the influence of rs919266 and rs9576 on BST2 expression being still undetermined, a preventive role by BST2 polymorphisms was found during HIV-1 infection.
Miyamae, A; Kitamura, S; Tada, T; Koda, S; Yasuda, T
1991-10-01
The polymorphism of (E)-6-(3,4-dimethoxyphenyl)-1-ethyl-4-mesitylimino-3-methyl-3,4-di hydro- 2(1 H)-pyrimidinone (FK664; 1) was characterized by using X-ray powder diffractometry, differential scanning calorimetry (DSC), and IR spectroscopy. Structures of two polymorphs (Forms A and B) were determined by X-ray crystallographic analysis. Form A crystallized in the monoclinic space group P2(1)/c, with a = 13.504(2), b = 6.733(1), c = 24.910(8) A, beta = 96.55(4) degrees, z = 4, and dcal = 1.203 g/cm3, while Form B crystallized in the same space group, with a = 8.067(2), b = 15.128(4), c = 18.657(4) A, beta = 102.34(3) degrees, z = 4, and dcal = 1.216 g/cm3. The conformational features of 1 were very similar between the two polymorphs. Compound 1, in both crystal forms, took an energetically reasonable conformation in three rigid planes, such as 2-pyrimidone, trimethylphenyl, and dimethoxyphenyl rings, but the molecules were packed in different ways between the two polymorphs. In the Form B crystal, a short contact was possible, to form pi-pi interactions between two dimethoxyphenyl groups related with the inversion center in the crystal lattice; this interaction seems to contribute to stabilizing the crystal structure of Form B. Both Forms A and B showed only one endothermic peak due to fusion at 115 and 140 degrees C, respectively, on the DSC thermograms; therefore, it is suggested that there are no transition points between the two polymorphs. The heats of fusion obtained from the DSC thermograms were 33.2(2) kJ/mol for Form A and 36.8(1) kJ/mol for Form B.(ABSTRACT TRUNCATED AT 250 WORDS)
Cowan, Graeme J. M.; Creasey, Alison M.; Dhanasarnsombut, Kelwalin; Thomas, Alan W.; Remarque, Edmond J.; Cavanagh, David R.
2011-01-01
Polymorphic parasite antigens are known targets of protective immunity to malaria, but this antigenic variation poses challenges to vaccine development. A synthetic MSP-1 Block 2 construct, based on all polymorphic variants found in natural Plasmodium falciparum isolates has been designed, combined with the relatively conserved Block 1 sequence of MSP-1 and expressed in E.coli. The MSP-1 Hybrid antigen has been produced with high yield by fed-batch fermentation and purified without the aid of affinity tags resulting in a pure and extremely thermostable antigen preparation. MSP-1 hybrid is immunogenic in experimental animals using adjuvants suitable for human use, eliciting antibodies against epitopes from all three Block 2 serotypes. Human serum antibodies from Africans naturally exposed to malaria reacted to the MSP-1 hybrid as strongly as, or better than the same serum reactivities to individual MSP-1 Block 2 antigens, and these antibody responses showed clear associations with reduced incidence of malaria episodes. The MSP-1 hybrid is designed to induce a protective antibody response to the highly polymorphic Block 2 region of MSP-1, enhancing the repertoire of MSP-1 Block 2 antibody responses found among immune and semi-immune individuals in malaria endemic areas. The target population for such a vaccine is young children and vulnerable adults, to accelerate the acquisition of a full range of malaria protective antibodies against this polymorphic parasite antigen. PMID:22073118
Fan, Wen-Ying; Liu, Ning-Pu
2015-01-01
AIM To collectively evaluate the association of intercellular adhesion molecule-1 (ICAM-1) gene K469E polymorphism (rs5498) with diabetic retinopathy (DR) in patients with type 2 diabetic mellitus (T2DM). METHODS Overall review of available literatures relating K469E polymorphism to the risk of DR was conducted on 4 electronic databases. Meta-analysis was performed by Stata 12.0 to calculate pooled odds ratios (ORs). Potential sources of heterogeneity and bias were explored. RESULTS Seven studies with genotype frequency data including 1120 cases with DR and 956 diabetic controls free of DR were included. Meta-analysis did not show significant association of K469E polymorphism with DR (P>0.05). A statistically significant association was detected between the K469E polymorphism and proliferative diabetic retinopathy (PDR) in Asians only in dominant model (GG+AG vs AA) with pooled OR of 0.729 (95%CI: 0.564-0.942, P=0.016, Pheterogeneity=0.143), however, this association was not detected in recessive model (GA+AA vs GG; OR=1.178, 95%CI: 0.898-1.545, P=0.236, Pheterogeneity=0.248) or allelic model (G vs A; OR=0.769, 95% CI: 0.576-1.026, P=0.074, Pheterogeneity=0.094). No publication bias was found by Funnel plot, Begg's and Egger's test. CONCLUSION This research found no statistically significant association between ICAM-1 gene K469E polymorphism and DR in patients with T2DM, but showed significant association of the K469E polymorphism with PDR in Asian diabetic patients only in dominant model. Further investigation would be required to consolidate the conclusion. PMID:26086016
Hnatyszyn, Andrzej; Wielgus, Karolina; Kaczmarek-Rys, Marta; Skrzypczak-Zielinska, Marzena; Szalata, Marlena; Mikolajczyk-Stecyna, Joanna; Stanczyk, Jerzy; Dziuba, Ireneusz; Mikstacki, Adam; Slomski, Ryszard
2013-12-01
Epidemiological investigations indicated association of the Helicobacter pylori infections with the occurrence of inflammatory conditions of the gastric mucosa and development of chronic gastritis and intestinal type of gastric cancer. IL1A and IL1B genes have been proposed as key factors in determining risk of gastritis and malignant transformation. The aim of this paper was to evaluate association of interleukin-1 gene polymorphisms with chronic gastritis, atrophy, intestinal metaplasia, dysplasia and intestinal type of gastric cancer in H. pylori-infected patients. Patients subjected to analysis represent group of 144 consecutive cases that suffered from dyspepsia with coexisting infection of H. pylori and chronic gastritis, chronic atrophic gastritis, intestinal metaplasia, dysplasia or gastric cancer. Molecular studies involved analysis of -889C>T polymorphism of IL1A gene and +3954C>T polymorphism of IL1B gene. Statistical analysis of association of polymorphism -889C>T of gene IL1A with changes in gastric mucosa showed lack of significance, whereas +3954C>T polymorphism of IL1B gene showed significant association. Frequency of allele T of +3954C>T polymorphism of IL1B gene was higher in group of patients with chronic gastritis, atrophy, intestinal metaplasia, dysplasia or intestinal type of gastric cancer (32.1 %) as compared with population group (23 %), χ(2) = 4.61 and p = 0.03. This corresponds to odds ratio: 1.58, 95 % CI: 1.04-2.4. Our results indicate that +3954C>T polymorphism of IL1B gene increase susceptibility to inflammatory response of gastric mucosa H. pylori-infected patients and plays a significant role in the development of chronic gastritis, atrophy, intestinal metaplasia, dysplasia and the initiation of carcinogenesis.
Neutron diffraction and μ SR studies of two polymorphs of nickel niobate NiNb 2 O 6
Munsie, T. J. S.; Wilson, M. N.; Millington, A.; ...
2017-10-13
Neutron diffraction and muon spin relaxation (μSR) studies are presented in this paper for the newly characterized polymorph of NiNb 2O 6 (β-NiNb 2O 6) with space group P4 2/n and μSR data only for the previously known columbite structure polymorph with space group Pbcn. The magnetic structure of the P4 2/n form was determined from neutron diffraction using both powder and single-crystal data. Powder neutron diffraction determined an ordering wave vector →k=( 1/ 2, 1/ 2, 1/ 2). Single-crystal data confirmed the same →k vector and showed that the correct magnetic structure consists of antiferromagnetically coupled chains running alongmore » the a or b axis in adjacent Ni 2+ layers perpendicular to the c axis, which is consistent with the expected exchange interaction hierarchy in this system. The refined magnetic structure is compared with the known magnetic structures of the closely related trirutile phases, NiSb 2O 6 and NiTa 2O 6. μSR data finds a transition temperature of T N~15K for this system, while the columbite polymorph exhibits a lower T N=5.7(3) K. Our μSR measurements also allowed us to estimate the critical exponent of the order parameter β for each polymorph. We found β =0.25(3) and 0.16(2) for the β and columbite polymorphs, respectively. The single-crystal neutron scattering data give a value for the critical exponent β =0.28(3) for β-NiNb 2O 6, in agreement with the μSR value. While both systems have β values less than 0.3, which is indicative of reduced dimensionality, this effect appears to be much stronger for the columbite system. Finally, in other words, although both systems appear to be well described by S=1 spin chains, the interchain interactions in the β polymorph are likely much larger.« less
Neutron diffraction and μ SR studies of two polymorphs of nickel niobate NiNb2O6
NASA Astrophysics Data System (ADS)
Munsie, T. J. S.; Wilson, M. N.; Millington, A.; Thompson, C. M.; Flacau, R.; Ding, C.; Guo, S.; Gong, Z.; Aczel, A. A.; Cao, H. B.; Williams, T. J.; Dabkowska, H. A.; Ning, F.; Greedan, J. E.; Luke, G. M.
2017-10-01
Neutron diffraction and muon spin relaxation (μ SR ) studies are presented for the newly characterized polymorph of NiNb2O6 (β -NiNb2O6) with space group P4 2/n and μ SR data only for the previously known columbite structure polymorph with space group P b c n . The magnetic structure of the P4 2/n form was determined from neutron diffraction using both powder and single-crystal data. Powder neutron diffraction determined an ordering wave vector k ⃗=(1/2 ,1/2 ,1/2 ) . Single-crystal data confirmed the same k ⃗ vector and showed that the correct magnetic structure consists of antiferromagnetically coupled chains running along the a or b axis in adjacent Ni2 + layers perpendicular to the c axis, which is consistent with the expected exchange interaction hierarchy in this system. The refined magnetic structure is compared with the known magnetic structures of the closely related trirutile phases, NiSb2O6 and NiTa2O6 . μ SR data finds a transition temperature of TN˜15 K for this system, while the columbite polymorph exhibits a lower TN=5.7 (3 ) K. Our μ SR measurements also allowed us to estimate the critical exponent of the order parameter β for each polymorph. We found β =0.25 (3 ) and 0.16(2) for the β and columbite polymorphs, respectively. The single-crystal neutron scattering data give a value for the critical exponent β =0.28 (3 ) for β -NiNb2O6 , in agreement with the μ SR value. While both systems have β values less than 0.3, which is indicative of reduced dimensionality, this effect appears to be much stronger for the columbite system. In other words, although both systems appear to be well described by S =1 spin chains, the interchain interactions in the β polymorph are likely much larger.
Neutron diffraction and μ SR studies of two polymorphs of nickel niobate NiNb 2 O 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munsie, T. J. S.; Wilson, M. N.; Millington, A.
Neutron diffraction and muon spin relaxation (μSR) studies are presented in this paper for the newly characterized polymorph of NiNb 2O 6 (β-NiNb 2O 6) with space group P4 2/n and μSR data only for the previously known columbite structure polymorph with space group Pbcn. The magnetic structure of the P4 2/n form was determined from neutron diffraction using both powder and single-crystal data. Powder neutron diffraction determined an ordering wave vector →k=( 1/ 2, 1/ 2, 1/ 2). Single-crystal data confirmed the same →k vector and showed that the correct magnetic structure consists of antiferromagnetically coupled chains running alongmore » the a or b axis in adjacent Ni 2+ layers perpendicular to the c axis, which is consistent with the expected exchange interaction hierarchy in this system. The refined magnetic structure is compared with the known magnetic structures of the closely related trirutile phases, NiSb 2O 6 and NiTa 2O 6. μSR data finds a transition temperature of T N~15K for this system, while the columbite polymorph exhibits a lower T N=5.7(3) K. Our μSR measurements also allowed us to estimate the critical exponent of the order parameter β for each polymorph. We found β =0.25(3) and 0.16(2) for the β and columbite polymorphs, respectively. The single-crystal neutron scattering data give a value for the critical exponent β =0.28(3) for β-NiNb 2O 6, in agreement with the μSR value. While both systems have β values less than 0.3, which is indicative of reduced dimensionality, this effect appears to be much stronger for the columbite system. Finally, in other words, although both systems appear to be well described by S=1 spin chains, the interchain interactions in the β polymorph are likely much larger.« less
Hashemi, Mohammad; Hanafi Bojd, Hamideh; Eskandari Nasab, Ebrahim; Bahari, Ali; Hashemzehi, Noor Allah; Shafieipour, Sara; Narouie, Behzad; Taheri, Mohsen; Ghavami, Saeid
2013-01-01
Background Genetic and environmental factors are important for the development of nonalcoholic fatty liver disease (NAFLD). Adiponectin is a white and brown adipose tissue hormone, and have been found to play essential roles in the regulation of energy homoeostasis. Recent reports have identified a possible role of adiponectin in NAFLD via PPARγ pathway. Objectives The present study was designed to find out the impact of adiponectin rs1501299 (276G/T) and rs266729 (-11377C/G) gene polymorphisms in NAFLD. Patients and Methods Eighty-three patients with diagnosis of NAFLD, and 93 healthy subjects were included in the study. Tetra ARMS-PCR was designed to detect single nucleotide polymorphisms. Results A significant difference was found between NAFLD and control group regarding the rs266729 polymorphism (χ2 = 7.35, P = 0.025). The rs266729 polymorphism increased the risk of NAFLD in codominant (CC vs. CG: OR = 2.18, 95% CI = 1.16 - 4.12, P = 0.016) and dominant (CC vs. CG/GG: OR = 2.31, 95% CI = 1.25 - 4.27; P = 0.008) inheritance tested models. The G allele increased the risk of NAFLD (OR = 1.63, 95% CI = 1.03 - 2.57, P = 0.037) in comparison with C allele. No significant difference was found between the groups concerning adiponectin rs1501299 gene polymorphism (χ2 = 0.70, P = 0.697). Conclusions adiponectin rs266729 polymorphism might be a candidate gene, which determines the susceptibility to NAFLD. Larger studies are necessary to confirm these findings in various populations. PMID:23922565
Jiménez-Osorio, Angélica Saraí; González-Reyes, Susana; García-Niño, Wylly Ramsés; Moreno-Macías, Hortensia; Rodríguez-Arellano, Martha Eunice; Vargas-Alarcón, Gilberto; Zúñiga, Joaquín; Barquera, Rodrigo; Pedraza-Chaverri, José
2016-01-01
The nuclear factor-erythroid 2- (NF-E2-) related factor 2 (Nrf2) is abated and its ability to reduce oxidative stress is impaired in type 2 diabetes and obesity. Thus, the aim of this study was to explore if polymorphisms in Nrf2 and target genes are associated with diabetes and obesity in Mexican mestizo subjects. The rs1800566 of quinone oxidoreductase 1 (NQO1) gene, rs7211 of thioredoxin interacting protein (TXNIP) gene, rs2071749 of heme oxygenase-1 (HMOX1) gene, and the rs6721961 and the rs2364723 from Nrf2 gene were genotyped in 627 diabetic subjects and 1020 controls. The results showed that the rs7211 polymorphism is a protective factor against obesity in nondiabetic subjects (CC + CT versus TT, OR = 0.40, P = 0.005) and in women (CC versus CT + TT, OR = 0.7, P = 0.016). TT carriers had lower high-density lipoprotein cholesterol levels and lower body mass index. The rs2071749 was positively associated with obesity (AA versus AG + GG, OR = 1.25, P = 0.026). Finally, the rs6721961 was negatively associated with diabetes in men (CC versus CA + AA, OR = 0.62, P = 0.003). AA carriers showed lower glucose concentrations. No association was found for rs1800566 and rs2364723 polymorphisms. In conclusion, the presence of Nrf2 and related genes polymorphisms are associated with diabetes and obesity in Mexican patients.
Salameh, Habeeb; Raff, Evan; Erwin, Angelika; Seth, Devanshi; Nischalke, Hans Dieter; Falleti, Edmondo; Burza, Maria Antonella; Leathert, Julian; Romeo, Stefano; Molinaro, Antonio; Corradini, Stefano Ginanni; Toniutto, Pierluigi; Spengler, Ulrich; Ulrich, Spengler; Daly, Ann; Day, Christopher P; Kuo, Yong-Fang; Singal, Ashwani K
2015-06-01
The genetic polymorphism with an isoleucine-to-methionine substitution at position 148 (rs738409 C>G) in the patatin-like phospholipase domain protein 3 (PNPLA3) gene confers risk of steatosis. PNPLA3 polymorphism is shown to be associated with alcoholic liver disease (ALD). We performed a systematic review and meta-analysis to examine association of this genetic polymorphism with ALD spectrum and its severity. Medline, Embase, and Cochrane Library were searched for studies on association of PNPLA3 polymorphism and ALD spectrum: alcoholic fatty liver (AFL), alcoholic liver injury (ALI), alcoholic cirrhosis (AC), and hepatocellular carcinoma (HCC). Pooled data are reported as odds ratio (OR) with 95% confidence interval. Heterogeneity was assessed using the I(2) statistics and publication bias using Egger's test and Begg and Mazumdar's test. Individual participant data obtained from five studies were used for subgroup analyses. Among 10 studies included in this pooled analysis, compared with controls, OR for rs738409 CG and GG among ALI patients was 1.45 (1.24-1.69) and 2.22 (1.50-3.28), respectively, compared with CC. Respective OR among AC patients was 2.09 (1.79-2.44) and 3.37 (2.49-4.58) and among AC patients with HCC was 2.87 (1.61-5.10) and 12.41 (6.99-22.03). Data for AFL were inconsistent. Among ALD patients, OR of CG and GG genotypes was 2.62 (1.73-3.97) and 8.45 (2.52-28.37), respectively, for AC compared with fatty liver (FL) patients. Similar OR for AC compared with ALI was 1.98 (1.24-3.17) and 3.86 (1.18-12.60). The OR for CG and GG genotypes among AC patients for HCC occurrence was 1.43 (0.76-2.72) and 2.81 (1.57-5.01), respectively. Individual participant data analysis showed age to predispose to AC among ALI patients. PNPLA3 genetic polymorphism (rs738409 C>G) is associated with increased risk for the entire spectrum of ALD among drinkers including ALI, AC, and HCC. Studies are needed to clarify association of PNPLA3 polymorphism and steatosis in alcoholics. PNPLA3 gene may potentially be a therapeutic target in ALD.
Vicente, Ana I; Ferreira, Liliana P; Carvalho, Maria de Deus; Rodrigues, Vítor H N; Dîrtu, Marinela M; Garcia, Yann; Calhorda, Maria José; Martinho, Paulo N
2018-05-08
Two polymorphic species of the [Fe(5-Br-salEen)2]ClO4 compound were obtained, each of them being selectively recovered after evaporation of the solvent at a controlled rate. While polymorph 1a is formed during slow evaporation, fast evaporation favors polymorph 1b. The importance of the evaporation rate was recognized after detailed studies of the reaction temperature, solvent evaporation rate and crystallization temperature effects. The complex in the new polymorphic form 1a showed an abrupt spin crossover at 172 K with a small 1 K hysteresis window and over a narrow 10 K range. 57Fe Mössbauer spectroscopy and differential scanning calorimetry, complemented by X-ray studies for both the high-spin and low-spin forms, were used to further characterize the new polymorphic phase 1a. Both polymorphs are based on the same Fe(iii) complex cation hydrogen bonded to the perchlorate anion. These units are loosely bound in the crystals via weak interactions. In the new polymorph 1a, the hydrogen bonds are stronger, while the weak hydrogen and halogen bonds, as well as π-π stacking, create a cooperative network, not present in 1b, responsible for the spin transition profile.
Rocha, Natália Galito; Neves, Fabricia Junqueira; Silva, Bruno Moreira; Sales, Allan Robson Kluser; Nóbrega, Antonio Claudio
2012-03-01
Nitric oxide is the primary mediator of vasodilation during mental stress. Since genetic polymorphisms in the nitric oxide synthase (eNOS) gene seem to impair the production of NO, this study aimed to evaluate the effect of an exercise bout on hemodynamic responses to mental stress in subjects with the 894G>T polymorphism of eNOS. Subjects without (wild-type group; n = 16) or with (polymorphic-type group; n = 19) the 894G>T polymorphism underwent a mental stress challenge before and after a maximal cardiopulmonary exercise test. Blood pressure was measured by auscultation and forearm blood flow by venous occlusion plethysmography. The groups were similar regarding anthropometric, metabolic, resting blood pressure and exercise variables. Before exercise, systolic blood pressure response during mental stress was higher in the polymorphic-type group (∆wild-type: 8.0 ± 2.0% vs. ∆polymorphic-type: 12.5 ± 1.8%, P = 0.01), while the increase in forearm vascular conductance was similar between the groups (∆wild-type 90.8 ± 26.4% vs. ∆polymorphic-type: 86.3 ± 24.1%, P = 0.44). After exercise, the systolic blood pressure at baseline and during mental stress was lower than before exercise in the whole group (P < 0.05), but the pressure response during mental stress was still higher in the polymorphic-type group (∆wild-type: 5.8 ± 1.5% vs. ∆polymorphic-type: 10.2 ± 1.4%, P = 0.01). The increase in forearm vascular conductance was inhibited only in the polymorphic-type group (∆before exercise 86.3 ± 24.1% vs. ∆after exercise: 41.5 ± 12.6%, P = 0.04). In conclusion, these results suggest the 894G>T eNOS polymorphism is associated with altered hemodynamic responses to mental stress both before and after a single bout of dynamic exercise with potential clinical implications.
Cruz, M; Valladares-Salgado, A; Garcia-Mena, J; Ross, K; Edwards, M; Angeles-Martinez, J; Ortega-Camarillo, C; de la Peña, J Escobedo; Burguete-Garcia, A I; Wacher-Rodarte, N; Ambriz, R; Rivera, R; D'artote, A L; Peralta, J; Parra, Esteban J; Kumate, J
2010-05-01
Type 2 diabetes (T2D) is influenced by diverse environmental and genetic risk factors. Metabolic syndrome (MS) increases the risk of cardiovascular disease and diabetes. We analysed 14 cases of polymorphisms located in 10 candidate loci, in a sample of patients with T2D and controls from Mexico City. We analysed the association of 14 polymorphisms located within 10 genes (TCF7L2, ENPP1, ADRB3, KCNJ11, LEPR, PPARgamma, FTO, CDKAL1, SIRT1 and HHEX) with T2D and MS. The analysis included 519 subjects with T2D defined according to the ADA criteria, 389 with MS defined according to the AHA/NHLBI criteria and 547 controls. Association was tested with the program ADMIXMAP including individual ancestry, age, sex, education and in some cases body mass index (BMI), in a logistic regression model. The two markers located within the TCF7L2 gene showed strong associations with T2D (rs7903146, T allele, odd ratio (OR) = 1.76, p = 0.001 and rs12255372, T allele, OR = 1.78, p = 0.002), but did not show significant association with MS. The non-synonymous rs4994 polymorphism of the ADRB3 gene was associated with T2D (Trp allele, OR = 0.62, p = 0.001) and MS (Trp allele, OR = 0.74, p = 0.018). Nominally significant associations were also observed between T2D and the SIRT1 rs3758391 SNP and MS and the HHEX rs5015480 polymorphism. Variants located within the gene TCF7L2 are strongly associated with T2D but not with MS, providing support to previous evidence indicating that polymorphisms at the TCF7L2 gene increase T2D risk. In contrast, the non-synonymous ADRB3 rs4994 polymorphism is associated with T2D and MS.
A case-based evaluation of SRD5A1, SRD5A2, AR, and ADRA1A as candidate genes for severity of BPH.
Klotsman, M; Weinberg, C R; Davis, K; Binnie, C G; Hartmann, K E
2004-01-01
In men with a clinical diagnosis of benign prostatic hyperplasia (BPH), polytomous logistic regression analysis was conducted to evaluate associations between two silent polymorphisms in SRD5A1 (codon positions 30 and 116), two polymorphisms in SRD5A2 (Val89Leu substitution and C to T transition in intron 1), a trinucleotide (CAG)n repeat in androgen receptor (AR), and an Arg492Cys substitution in ADRA1A and clinical parameters that characterize severity of BPH. Candidate gene selection was based on two mechanistic pathways targeted by pharmacotherapy for BPH: (1) androgen metabolic loci contributing to prostate growth (static obstruction); and (2) factors affecting smooth muscle tone (dynamic obstruction). Polymorphisms in SRD5A2 were not associated with severity of BPH; however, SRD5A1 polymorphisms were associated with severity of BPH. The process(es) in which these silent single-nucleotide polymorphisms (SNPs) influence BPH phenotypes is unknown and additional studies will be needed to assess whether these SNPs have direct functional consequences. The characterization of additional molecular factors that contribute to static and dynamic obstruction may help predict response to pharmacotherapy and serve to identify novel drug targets for the clinical management of BPH.
Le Hello, Claire; Fradin, Sabine; Morello, Rémy; Coffin, Olivier; Maïza, Dominique; Hamon, Martial
2011-04-01
Angiotensin-converting enzyme insertion/deletion (rs4340) and angiotensin II type 1 receptor A1166C (rs5186) gene polymorphisms may be involved in coronary heart disease (CHD). This study was designed to evaluate potential relationships between these polymorphisms and the risk of long-term all-cause mortality and major adverse cardiovascular events (MACE) in patients requiring revascularization for atherothrombotic disease (ATD) lesions. This prospective observational study concerned patients referred for supra-aortic vessel disease (SVD), CHD, peripheral artery occlusive disease (PAOD) or visceral artery disease (VAD). Collected data included ATD referral site, ATD symptoms, personal and familial medical histories, ATD extent, vascular risk factors, biological values, medication use and rs4340 and rs5186 polymorphisms. The primary end point was all-cause mortality. The secondary end point, MACE, included cardiovascular death, clinical ischemic event related to SVD, CHD, PAOD or VAD. The cohort comprised 956 patients of whom 872 (91.2%) were genotyped and followed for 21.1 ± 9.9 months. Patients were referred for SVD (25.9%), CHD (42.3%), PAOD (35.2%) or VAD (1.6%). All-cause mortality and MACE rates were 7.6 and 27.2%, respectively. When comparing I/D + D/D vs. I/I genotypes, rs4340 polymorphism was associated with higher all-cause mortality rates according to uni- and multivariate analyses (p=0.008 and 0.011, respectively). Other differences were not significant (rs4340 polymorphism and MACE, rs5186 polymorphism and all-cause mortality and MACE). No interaction was found between the polymorphisms. Other independent predictors of all-cause mortality included PAOD history, SVD history, body mass index <25 kg/m(2), HbA(1c) ≥6.5%, absence of dyslipidemia and no use of aspirin. rs4340 polymorphism is associated with long-term all-cause mortality in advanced ATD patients requiring revascularization, whereas rs5186 polymorphism does not. Copyright © 2011 IMSS. Published by Elsevier Inc. All rights reserved.
Epitaxial stabilization and phase instability of VO2 polymorphs
NASA Astrophysics Data System (ADS)
Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; Lee, Ho Nyung
2016-01-01
The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices.
Epitaxial stabilization and phase instability of VO2 polymorphs.
Lee, Shinbuhm; Ivanov, Ilia N; Keum, Jong K; Lee, Ho Nyung
2016-01-20
The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices.
Epitaxial stabilization and phase instability of VO2 polymorphs
Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; Lee, Ho Nyung
2016-01-01
The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices. PMID:26787259
Fang, F; Pan, J; Su, G H; Xu, L X; Li, G; Li, Z H; Zhao, H; Wang, J
2015-11-30
Numerous studies have focused on the relationship be-tween alcohol dehydrogenase 1C gene (ADH1C) *1/*2 polymorphism (Ile350Val, rs698, also known as ADH1C *1/*2) and pancreatitis risk, but the results have been inconsistent. Thus, we conducted a meta-anal-ysis to more precisely estimate this association. Relevant publications were searched in several widely used databases and 9 eligible studies were included in the meta-analysis. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the association. Significant associations between ADH1C *1/*2 poly-morphism and pancreatitis risk were observed in both overall meta-analysis for 12 vs 22 (OR = 1.53, 95%CI = 1.12-2.10) and 11 + 12 vs 22 (OR = 1.44, 95%CI = 1.07-1.95), and the chronic alcoholic pancre-atitis subgroup for 12 vs 22 (OR = 1.64, 95%CI = 1.17-2.29) and 11 + 12 vs 22 (OR = 1.53, 95%CI = 1.11-2.11). Significant pancreatitis risk variation was also detected in Caucasians for 11 + 12 vs 22 (OR = 1.45, 95%CI = 1.07-1.98). In conclusion, the ADH1C *1/*2 polymorphism is likely associated with pancreatitis risk, particularly chronic alcoholic pancreatitis risk, with the *1 allele functioning as a risk factor.
Posadas-Sánchez, Rosalinda; López-Uribe, Ángel René; Posadas-Romero, Carlos; Pérez-Hernández, Nonanzit; Rodríguez-Pérez, José Manuel; Ocampo-Arcos, Wendy Angélica; Fragoso, José Manuel; Cardoso-Saldaña, Guillermo; Vargas-Alarcón, Gilberto
2017-10-01
The aim of this study was to evaluate the potential use of the I148M/PNPLA3 (rs738409) gene polymorphism as a susceptibility marker for premature coronary artery disease (pCAD) and/or cardiovascular risk factors in Mexican type 2 diabetes mellitus patients (T2DM). The polymorphism was genotyped by 5' exonuclease TaqMan assays in a group of 2572 subjects (1103 with pCAD and 1469 healthy controls) belonging to the Genetics of Atherosclerotic Disease (GEA) Mexican Study. Anthropometric and biochemical measurements were performed in all individuals. The association between the I148M/PNPLA3 (rs738409) gene polymorphism with pCAD and other metabolic and cardiovascular risk factors was evaluated using logistic regression analysis under different statistical approaches including dominant, recessive, heterozygous, additive, and co-dominant models. The polymorphism was not associated with pCAD in the whole group of participants, however, when patients and controls were divided into those with and without T2DM, under additive model, the polymorphism was associated with the presence of pCAD only in patients with T2DM (OR=1.20, 95% CI: 1.01-1.42, P add =0.042). On the other hand, under several models adjusted for age, gender, body mass index and T2DM, the polymorphism was associated with increased risk of fatty liver and elevated levels of alanine transaminase (ALT) in the whole group of pCAD patients and controls. In the control group, the polymorphism was associated with insulin resistance and coronary artery calcification (CAC) score≥10 under several models. The results suggest that the I148M/PNPLA3 (rs738409) polymorphism is associated with the presence of pCAD in T2DM patients and with some cardiometabolic parameters. The association detected with CAC in the control group indicates that this polymorphism could be a marker for subclinical atherosclerosis. Copyright © 2016 Elsevier GmbH. All rights reserved.
Mackie, Nicola E; Dunn, David T; Dolling, David; Garvey, Lucy; Harrison, Linda; Fearnhill, Esther; Tilston, Peter; Sabin, Caroline; Geretti, Anna M
2013-09-10
HIV-1 genetic variability may influence antiretroviral therapy (ART) outcomes. The study aim was to determine the impact of polymorphisms in regions known to harbor major nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance mutations (codons 90-108, 135-138, 179-190, 225-348) on virologic responses to first-line NNRTI-based ART. Reverse transcriptase sequences from ART-naive individuals who commenced efavirenz (EFV) or nevirapine (NVP) with at least two nucleos(t)ide reverse transcriptase inhibitors (NRTIs) without major drug resistance mutations were analyzed. The impact of polymorphisms on week 4 viral load decrease and time to virologic failure was measured over a median 97 weeks. Among 4528 patients, most were infected with HIV-1 subtype B (67%) and commenced EFV-based ART (84%). Overall, 2598 (57%) had at least one polymorphism, most frequently at codons 90, 98, 101, 103, 106, 135, 138, 179, and 238. Virologic failure rates were increased in patients with two (n = 597) or more than two (n = 72) polymorphisms [adjusted hazard ratio 1.43; 95% confidence interval (CI) 1.07-1.92; P = 0.016]. Polymorphisms associated with virologic failure occurred at codons 90 (mostly V90I), 98 (mostly A98S), and 103 (mostly K103R), with adjusted hazard ratios of 1.78 (1.15-2.73; P = 0.009), 1.55 (1.16-2.08; P = 0.003), and 1.75 (1.00-3.05: P = 0.049), respectively. Polymorphisms at codon 179, especially V179D/E/T, predicted reduced week 4 responses (P = 0.001) but not virologic failure. The occurrence of multiple polymorphisms, though uncommon, was associated with a small increase in the risk of NNRTI treatment failure; significant effects were seen with polymorphisms at codon 90, 98, and 103. The mechanisms underlying the slower suppression seen with V179D/E/T deserve further investigation.
Marcos, Miguel; Pastor, Isabel; González-Sarmiento, Rogelio; Laso, Francisco Javier
2009-11-01
The genetic basis for the predisposition to alcoholic liver cirrhosis (ALC) remains unknown. Increasing evidence supports a role for the nuclear factor (NF)-kappaB, the NF-kappaB inhibitor alpha (NFKBIA), and the peroxisome proliferator-activated receptor (PPAR)-gamma in the pathogenesis of alcoholic liver disease, raising the possibility that common polymorphisms in genes encoding these molecules may confer susceptibility to ALC. The objective of this study was to analyze the relationship between common polymorphisms in NFKB1, NFKBIA, and PPARG2 genes and the presence of ALC. A total of 258 male alcoholics (161 without liver disease and 97 with ALC) and 101 healthy controls were genotyped for the -94ins/delATTG NFKB1, 3'-UTR+126G>A NFKBIA, and 34C>G PPARG2 polymorphisms. The association of these genetic variants with ALC was tested in alcoholic patients with alcohol abuse and alcohol dependence. A logistic regression analysis was further performed to analyze the model of inheritance. We found an association between the presence of the deletion allele in NFKB1 polymorphism and ALC in patients with alcohol dependence. We found no association between NFKBIA and PPARG2 polymorphisms and the presence of ALC. The deletion allele of the -94ins/del NFKB1 polymorphism could be associated with a higher risk of developing ALC through an increase in inflammation, as supported by previous data.
Tong, Junwang; Wang, Ying; Yuan, Juxiang; Yang, Jingbo; Wang, Zhaoyang; Zheng, Yao; Chai, Feng; Li, Xiangwen
2017-04-01
This study aimed to analyze the interaction of Angiotensin II type 1 receptor (AT1R) gene polymorphism and occupational noise on the occurrence of essential hypertension (EH) in steel and iron enterprise men workers. A case control study of 935 iron and steel enterprise men workers was conducted, which included 312 cases of hypertension and 623 cases without hypertension. The noise at the workplace was assessed. Polymorphism of AT1R of the workers was examined using polymerase chain reaction - restriction fragment length polymorphism. Polymorphism of AT1R (AC+CC vs. AA, odds ratio [OR] = 1.760, 95% confidence interval [CI]: 1.061∼2.920) and noise (greater than or equal to 85 dB(A),OR = 1.641, 95%CI: 1.225∼2.198) were independent determinants of EH using multivariate Logistic regression. Compared with AA carriers without noise, AC+CC interacted with noise (OR = 2.519, 95%CI: 1.254∼5.062) based on the multiplied model. AC+CC genotype of AT1R and noise were the risky factors of EH. These factors also interacted with each other.
Tong, Junwang; Wang, Ying; Yuan, Juxiang; Yang, Jingbo; Wang, Zhaoyang; Zheng, Yao; Chai, Feng; Li, Xiangwen
2017-01-01
Objective: This study aimed to analyze the interaction of Angiotensin II type 1 receptor (AT1R) gene polymorphism and occupational noise on the occurrence of essential hypertension (EH) in steel and iron enterprise men workers. Methods: A case control study of 935 iron and steel enterprise men workers was conducted, which included 312 cases of hypertension and 623 cases without hypertension. The noise at the workplace was assessed. Polymorphism of AT1R of the workers was examined using polymerase chain reaction - restriction fragment length polymorphism. Results: Polymorphism of AT1R (AC+CC vs. AA, odds ratio [OR] = 1.760, 95% confidence interval [CI]: 1.061∼2.920) and noise (greater than or equal to 85 dB(A),OR = 1.641, 95%CI: 1.225∼2.198) were independent determinants of EH using multivariate Logistic regression. Compared with AA carriers without noise, AC+CC interacted with noise (OR = 2.519, 95%CI: 1.254∼5.062) based on the multiplied model. Conclusions: AC+CC genotype of AT1R and noise were the risky factors of EH. These factors also interacted with each other. PMID:28157766
Gene analysis of steroid 5 alpha-reductase 1 in hyperandrogenic women.
Eminović, Izet; Komel, Radovan; Prezelj, Janez; Karamehić, Jasenko; Gavrankapetanović, Faris; Heljić, Becir
2005-08-01
To examine the gene encoding for 5alpha-reductase type 1 in hyperandrogenic women, and assess the association of its eventual mutations or polymorphisms with the development of the hyperandrogenic female pattern. Sixteen hyperandrogenic women were included in the study. Single-stranded conformation polymorphism analysis (SSCP) and DNA sequencing were performed after polymerase chain reaction amplification of each of the 5 exons of the SRD5A1 gene in both hyperandrogenic and control group (16 participants). Sequence analysis identified the existence of many polymorphisms; in codon 24 of exon 1, GGC (Gly) into GAC (Asp); in codon 30 of exon 1, CGG (Arg) into CGC (Arg); in exon 3 codon 169, ACA to ACG (both encoding for threonine); in exon 5, AGA to AGG (both encoding for arginine, codon 260); and T/C polymorphism in intron 2. Polymorphisms were found in both groups. Polymorphisms of SRD5A1 gene were the same in both hyperandrogenic and healthy women, indicating no significant associations of genetic polymorphisms/variations of SRD5A1 gene with clinical manifestations of hyperandrogenic disorders in women.
Cifuentes, Ricardo A; Murillo-Rojas, Juan; Avella-Vargas, Esperanza
2016-03-03
In the search to prevent hemorrhages associated with anticoagulant therapy, a major goal is to validate predictors of sensitivity to warfarin. However, previous studies in Colombia that included polymorphisms in the VKORC1 and CYP2C9 genes as predictors reported different algorithm performances to explain dose variations, and did not evaluate the prediction of sensitivity to warfarin. To determine the accuracy of the pharmacogenetic analysis, which includes the CYP2C9 *2 and *3 and VKORC1 1639G>A polymorphisms in predicting patients' sensitivity to warfarin at the Hospital Militar Central, a reference center for patients born in different parts of Colombia. Demographic and clinical data were obtained from 130 patients with stable doses of warfarin for more than two months. Next, their genotypes were obtained through a melting curve analysis. After verifying the Hardy-Weinberg equilibrium of the genotypes from the polymorphisms, a statistical analysis was done, which included multivariate and predictive approaches. A pharmacogenetic model that explained 52.8% of dose variation (p<0.001) was built, which was only 4% above the performance resulting from the same data using the International Warfarin Pharmacogenetics Consortium algorithm. The model predicting the sensitivity achieved an accuracy of 77.8% and included age (p=0.003), polymorphisms *2 and *3 (p=0.002) and polymorphism 1639G>A (p<0.001) as predictors. These results in a mixed population support the prediction of sensitivity to warfarin based on polymorphisms in VKORC1 and CYP2C9 as a valid approach in Colombian patients.
2014-01-01
Background Previous studies reported the relation between MTLRP genetic polymorphism and type 2 diabetes, however, the conclusion were conflicting. In the present study, we performed a meta-analysis to reveal this association. Methods Literature retrieval, selection and assessment, data extraction, and meta-analyses were performed according to the RevMan 5.0 guidelines. In the meta-analysis, we utilized random-effect model or fixed-effect model to pool the Odds ratio (OR) according to the test of heterogeneity. Results A total of nine case–control studies included 4460 type 2 diabetes patients and 4114 healthy control subjects were analyzed. We did not found association between the MTLRP polymorphism and type 2 diabetes risk in the overall population (CC vs CA + AA: OR = 1.02; 95% CI: 0.89-1.17, P = 0.77; A vs C: OR = 1.02; 95% CI: 0.84-0.96, P = 0.62). However, in subgroup analyses stratified by ethnicity, we found significant association of MTLRP polymorphism with type 2 diabetes in Caucasians (CC vs CA + AA: OR = 1.27; 95% CI: 1.02-1.57, P = 0.03; A vs C: OR = 0.74, 95% CI: 0.60–0.91, P = 0.005). Conclusion The MTLRP polymorphism was associated with type 2 diabetes in Caucasians. PMID:25095788
Chen, Li-Li; Han, Song-Mei; Tang, Fei-Fei; Li, Qiang
2014-08-05
Previous studies reported the relation between MTLRP genetic polymorphism and type 2 diabetes, however, the conclusion were conflicting. In the present study, we performed a meta-analysis to reveal this association. Literature retrieval, selection and assessment, data extraction, and meta-analyses were performed according to the RevMan 5.0 guidelines. In the meta-analysis, we utilized random-effect model or fixed-effect model to pool the Odds ratio (OR) according to the test of heterogeneity. A total of nine case-control studies included 4460 type 2 diabetes patients and 4114 healthy control subjects were analyzed. We did not found association between the MTLRP polymorphism and type 2 diabetes risk in the overall population (CC vs CA + AA: OR = 1.02; 95% CI: 0.89-1.17, P = 0.77; A vs C: OR = 1.02; 95% CI: 0.84-0.96, P = 0.62). However, in subgroup analyses stratified by ethnicity, we found significant association of MTLRP polymorphism with type 2 diabetes in Caucasians (CC vs CA + AA: OR = 1.27; 95% CI: 1.02-1.57, P = 0.03; A vs C: OR = 0.74, 95% CI: 0.60-0.91, P = 0.005). The MTLRP polymorphism was associated with type 2 diabetes in Caucasians.
Takemoto, Y.; Sakatani, M.; Takami, S.; Tachibana, T.; Higaki, J.; Ogihara, T.; Miki, T.; Katsuya, T.; Tsuchiyama, T.; Yoshida, A.; Yu, H.; Tanio, Y.; Ueda, E.
1998-01-01
BACKGROUND—Serum angiotensin converting enzyme (SACE) is considered to reflect disease activity in sarcoidosis. SACE activity is increased in many patients with active sarcoid lesions. The mechanism for the increased SACE activity in this disease has not been clarified. ACE insertion/deletion (I/D) gene polymorphism has been reported to have an association with SACE levels in sarcoidosis, but no evidence of an association between angiotensin II receptor gene polymorphism and SACE in this disease has been found. A study of the association of angiotensin II receptor gene polymorphisms with sarcoidosis was therefore undertaken. METHODS—ACE (I/D), angiotensin II type 1 receptor (AGTR1), and angiotensin II type 2 receptor (AGTR2 ) gene polymorphisms were investigated by polymerase chain reaction (PCR) and SACE levels were measured in three groups of patients: those with sarcoidosis or tuberculosis and normal controls. RESULTS—There was no difference in allele frequency of AGTR1 and AGTR2 polymorphism among the three groups. Neither AGTR1 nor AGTR2 polymorphisms were associated with sarcoidosis. SACE activity was higher in patients with sarcoidosis with the AGTR1 A/C genotype than in others. However, this tendency was not detected in patients with tuberculosis. CONCLUSIONS—The AGTR1 allele C is associated with high activity of SACE in patients with sarcoidosis. It is another predisposing factor for high levels of SACE in patients with sarcoidosis and is considered to be an independent factor from the ACE D allele for high levels of SACE in sarcoidosis. This fact could be one of the explanations for the increased SACE activity in sarcoidosis. PMID:9713444
Yang, Lin; Hu, Xin; Xu, Luhang
2012-10-01
The associations between methylenetetrahydrofolate reductase (MTHFR) polymorphism and methotrexate (MTX)-induced toxicities in patients with acute lymphoblastic leukemia (ALL) have been evaluated in various populations, with the results remained conflicting. Therefore, we conducted a meta-analysis by combining available data to derive a more precise estimation of the association. PubMed, Embase, and China National Knowledge Infrastructure were searched until 21 September 2011 to identify eligible studies. A total of 14 studies were included, with all studies investigating MTHFR C677T polymorphism while nine of them investigating MTHFR A1298C polymorphism only. Results suggested that MTHFR C677T polymorphism was associated with significantly increased risk of MTX-induced toxicity, specifically liver toxicity (TT/CT vs. CC: odds ratio (OR) = 1.70, 95 % confidence interval (CI) = 1.05-2.75), myelosuppression (TT vs. CT/CC: OR = 2.82, 95 %CI = 1.25-6.34), oral mucositis (TT/CT vs. CC: OR = 3.68, 95 %CI = 1.73-7.85), gastrointestinal toxicity (TT/CT vs. CC: OR = 2.36, 95 %CI = 1.36-4.11), and skin toxicity (T vs. C: OR = 2.26, 95 %CI = 1.07-4.74). MTHFR A1298C polymorphism was found to be associated with decreased risk of skin toxicity (CC/AC vs. AA: OR = 0.11, 95 %CI = 0.01-0.85). Genotyping of MTHFR polymorphism, C677T particularly, prior to treatment for ALL is likely to be useful with the aim of tailoring MTX therapy and thus reducing the MTX-related toxicities. However, further studies with larger data set and well-designed models are required to validate our findings.
Li, Chen; Yichao, Jin; Jiaxin, Lin; Yueting, Zhang; Qin, Lu; Tonghua, Yang
2015-01-01
Reported evidence supports a role for methylenetetrahydrofolate reductase (MTHFR) in the risk of chronic myelogenous leykemia (CML). However, these reports arrived at non-conclusive and even conflicting results regarding the association between two common MTHFR polymorphisms (C677T and A1298C) and CML risk. Thus, a meta-analysis was carried out to clarify a more precise association between these two polymorphisms and the CML risk by updating the available publications. Pooled odds ratios (OR) with corresponding 95% confidence interval (95% CI) and stratification analysis were performed to estimate the relationship between MTHFR polymorphisms and the risk of CML under different genetic comparison models. Data from the meta-analysis showed no significant association between MTHFR C677T polymorphism and CML risk. However, significant associations were found between MTHFR A1298C variants and CML risk under homozygous comparison model (CC vs AA, OR=1.62, 95% CI=1.11-2.36, p=0.01) and dominant comparison model (CC+AC vs AA, OR=1.68, 95% CI=1.17-2.43, p=0.005) in overall population; especially more obvious impacts were noticed for Asian populations in subgroup analysis for homozygous model (CC vs AA, OR=2.00, 95% CI=1.25-3.21, p=0.004) and dominant model (CC+AC vs AA, OR=2.49, 95% CI=1.42-4.36, p=0.001), but this did not apply in Caucasian populations. The results of this meta-analysis suggested no significant association between MTHFR C677T polymorphism and CML risk, while an increased CML risk was noticed for 1298C variant carriers, especially in Asian populations but not in Caucasian populations, which suggested ethnicity differences between MTHFR A1298C polymorphisms and risk of CML.
Cusato, Jessica; Nicolò, Amedeo De; Boglione, Lucio; Favata, Fabio; Ariaudo, Alessandra; Pinna, Simone Mornese; Carcieri, Chiara; Guido, Federica; Cariti, Giuseppe; Perri, Giovanni Di; D'Avolio, Antonio
2018-06-01
Vitamin D (VD) influences genetic expression through its receptor (VDR). VD pathway gene polymorphisms seem to influence antiviral drug pharmacokinetics and therapeutic outcome/toxicity. We investigated the association between daclatasvir (DCV) plasma concentrations and genetic variants (SNPs) associated with the VD pathway. Chronic hepatitis C patients treated with DCV from 2014 to 2016 were included. Genotypes were assessed through real-time PCR and plasma concentrations through liquid chromatography. A total of 52 patients were analyzed. DCV levels were influenced by CYP24A1 rs2248359T>C polymorphism at 2 weeks and VDR Cdx2 A>G at 1 month of treatment. Linear regression analysis showed baseline BMI, alanine aminotransferase and hematocrit as significant predictors of DCV concentrations at 2 weeks, BMI and hematocrit at baseline, VDR Cdx2 AG/GG and FokI TC/CC at 1 month. These results showed a possible role of VD pathway gene polymorphisms in influencing DCV plasma concentrations, but further studies are required.
Cheng, Timothy H T; Thompson, Deborah; Painter, Jodie; O'Mara, Tracy; Gorman, Maggie; Martin, Lynn; Palles, Claire; Jones, Angela; Buchanan, Daniel D; Win, Aung Ko; Hopper, John; Jenkins, Mark; Lindor, Noralane M; Newcomb, Polly A; Gallinger, Steve; Conti, David; Schumacher, Fred; Casey, Graham; Giles, Graham G; Pharoah, Paul; Peto, Julian; Cox, Angela; Swerdlow, Anthony; Couch, Fergus; Cunningham, Julie M; Goode, Ellen L; Winham, Stacey J; Lambrechts, Diether; Fasching, Peter; Burwinkel, Barbara; Brenner, Hermann; Brauch, Hiltrud; Chang-Claude, Jenny; Salvesen, Helga B; Kristensen, Vessela; Darabi, Hatef; Li, Jingmei; Liu, Tao; Lindblom, Annika; Hall, Per; de Polanco, Magdalena Echeverry; Sans, Monica; Carracedo, Angel; Castellvi-Bel, Sergi; Rojas-Martinez, Augusto; Aguiar Jnr, Samuel; Teixeira, Manuel R; Dunning, Alison M; Dennis, Joe; Otton, Geoffrey; Proietto, Tony; Holliday, Elizabeth; Attia, John; Ashton, Katie; Scott, Rodney J; McEvoy, Mark; Dowdy, Sean C; Fridley, Brooke L; Werner, Henrica M J; Trovik, Jone; Njolstad, Tormund S; Tham, Emma; Mints, Miriam; Runnebaum, Ingo; Hillemanns, Peter; Dörk, Thilo; Amant, Frederic; Schrauwen, Stefanie; Hein, Alexander; Beckmann, Matthias W; Ekici, Arif; Czene, Kamila; Meindl, Alfons; Bolla, Manjeet K; Michailidou, Kyriaki; Tyrer, Jonathan P; Wang, Qin; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Annibali, Daniela; Depreeuw, Jeroen; Al-Tassan, Nada A; Harris, Rebecca; Meyer, Brian F; Whiffin, Nicola; Hosking, Fay J; Kinnersley, Ben; Farrington, Susan M; Timofeeva, Maria; Tenesa, Albert; Campbell, Harry; Haile, Robert W; Hodgson, Shirley; Carvajal-Carmona, Luis; Cheadle, Jeremy P; Easton, Douglas; Dunlop, Malcolm; Houlston, Richard; Spurdle, Amanda; Tomlinson, Ian
2015-12-01
High-risk mutations in several genes predispose to both colorectal cancer (CRC) and endometrial cancer (EC). We therefore hypothesised that some lower-risk genetic variants might also predispose to both CRC and EC. Using CRC and EC genome-wide association series, totalling 13,265 cancer cases and 40,245 controls, we found that the protective allele [G] at one previously-identified CRC polymorphism, rs2736100 near TERT, was associated with EC risk (odds ratio (OR) = 1.08, P = 0.000167); this polymorphism influences the risk of several other cancers. A further CRC polymorphism near TERC also showed evidence of association with EC (OR = 0.92; P = 0.03). Overall, however, there was no good evidence that the set of CRC polymorphisms was associated with EC risk, and neither of two previously-reported EC polymorphisms was associated with CRC risk. A combined analysis revealed one genome-wide significant polymorphism, rs3184504, on chromosome 12q24 (OR = 1.10, P = 7.23 × 10(-9)) with shared effects on CRC and EC risk. This polymorphism, a missense variant in the gene SH2B3, is also associated with haematological and autoimmune disorders, suggesting that it influences cancer risk through the immune response. Another polymorphism, rs12970291 near gene TSHZ1, was associated with both CRC and EC (OR = 1.26, P = 4.82 × 10(-8)), with the alleles showing opposite effects on the risks of the two cancers.
Impact of genomic polymorphism on arterial hypertension after aortic coarctation repair.
Hager, Alfred; Bildau, Judith; Kreuder, Joachim; Kaemmerer, Harald; Hess, John
2011-08-18
Even after repair of aortic coarctation without restenosis there is a high incidence of arterial hypertension. This study was performed to assess the contribution of several inherited gene polymorphisms, which are known to be related to essential hypertension. 122 patients aged 17-72 years, 46 women, and 2-27 years after repair of isolated aortic coarctation without restenosis were investigated. Genomic polymorphism of angiotensin converting enzyme (ACE I/D), angiotensinogen (AGT, c.704C>T), angiotensin II receptor type 1 (AGTR1, c.1166A>C), aldosterone synthase (CYP11B2, c.-344C>T), endothelin 1 (EDN1, EDN1/ex5-c.5665G>T), G protein (GNB3, c.825C>T), G protein-coupled receptor kinase 4 (GRK4, c.679C>T), fibrillin 1 (FBN1, VNTR(TAAA)) and two polymorphisms each of the ß1 adrenoreceptor (ADRB1, c.145G>A and c.1165C>G), ß2 adrenoreceptor (ADRB2, c.46A>G and c.79C>G), and endothelial NO synthase (NOS3, intron 4 I/D and NOS3, c.894G>T) were determined by PCR amplification and fragment length analysis. Patients were classified "normotensive", if they were not on antihypertensive drugs and showed normal blood pressure both on ambulatory measurement and exercise test. None of the investigated genomic polymorphism could be related to hypertension. Only patients with the ACE I/I genotype had a less pronounced nocturnal dipping and patients with a ADRB1 c.1165 C/C genotype had a higher systolic and mean blood pressure at night. Development of late hypertension after aortic coarctation repair could not be related to the investigated genomic polymorphism. The correlation of the ACE I/D and the ADRB1 c.1165C>G polymorphism to nocturnal dipping and blood pressure at nighttime needs further confirmation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Ahmadi, Slahadin; Rostamzadeh, Jalal; Khosravi, Darya; Shariati, Parvin; Shakiba, Nadia
2013-12-15
Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) has an inhibitory function on T cells and is critical for the induction of peripheral tolerance. CTLA-4 +49 G allele affects the CTLA-4 function and has been reported to be correlated with a higher risk of various autoimmune diseases including type 1 diabetes (T1D). The present study was conducted to investigate the association between the polymorphism of the CTLA-4 exon 1+49 A/G and susceptibility to TID and type 2 diabetes (T2D) in Kurds living in Iranian Kurdistan. The+49 A/G polymorphism was analyzed in 60 patients with T1D, 56 patients with T2D and 107 control subjects using PCR Single-strand Conformation Polymorphism (SSCP) and restriction fragment length polymorphism methods. All studied populations (T1D, T2D and Controls) were in Hardy-Weinberg equilibrium (p, 0.39, 0.94 and 0.89, respectively). Both+49 G allele (p = 0. 015, OR = 1.86) and +49 A/G genotype frequencies (p = 0. 012, OR = 2.31) were significantly higher in T1D patients than control. There was significant over-representation of the G allele in female T1D patients. No significant differences in +49 G allele and +49 A/G genotype frequencies were found between T2D and control subjects. SSCP analysis did not show new mutation in the amplified segment. The results of this study indicate that CTLA-4+49 A/G gene polymorphism confers genetic susceptibility to T1D but not T2D in the Kurdish population living in Iranian Kurdistan and women carrying the +49 G allele are at greater risk of getting T1D than men having the G allele.
Ling, Yan; Lin, Huandong; Aleteng, Qiqige; Ma, Hui; Pan, Baishen; Gao, Jian; Gao, Xin
2016-05-15
The aim of the current study was to examine the relationship between Cdx-2 polymorphism in the promoter region of the VDR gene and serum 25-hydroxyvitamin D (25(OH)D) levels, bone mineral density (BMD) and fracture in Chinese population. This was a cross-sectional study, which included 738 individuals (428 women and 310 men) aged 45 years or older. In women, the association of Cdx-2 polymorphism with serum 25(OH)D levels was significant adjusting for age, BMI, estimated glomerular filtration rate, menopausal status and season of blood collection (P = 0.002). Cdx-2 polymorphism was associated with lumbar spine BMD adjusted for age, BMI, menopausal status and serum 25(OH)D in women (P = 0.005). But it was not associated with femoral neck BMD or total hip BMD in women. In women, Cdx-2 polymorphism was also associated with fracture adjusted for age, BMI, menopausal status, serum 25(OH)D and total hip BMD (P = 0.03). Carriers of AA and AG genotypes was associated with a higher odds of fracture compared with the carriers of GG genotype (OR = 2.14, 95% CI 1.04-4.42 and OR = 1.90, 95% CI 1.03-3.51). In men, Cdx-2 polymorphism was not associated with serum 25(OH)D levels, BMD or fracture. Our results indicate that the association of Cdx-2 polymorphism in the VDR gene with serum 25(OH)D levels, BMD and fracture may have sex differences. Cdx-2 polymorphism in the VDR gene may affect the serum 25(OH)D concentrations and the risk of osteoporosis and fracture in middle-aged and elderly Chinese women. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Denschlag, Dominik; Bettendorf, Herta; Watermann, Dirk; Keck, Christoph; Tempfer, Clemens; Pietrowski, Detlef
2005-07-01
To evaluate the association between the presence of uterine leiomyoma and two single nuclear polymorphisms of the p53 tumor suppressor and the angiopoietin-2 (ANGPT2) genes. Prospective case control study. Academic research institution. One hundred thirty-two women with clinically and surgically diagnosed uterine leiomyomas and 280 controls. Peripheral venous puncture. Genotyping was performed by polymerase chain reaction-based amplification of the Arg and Pro variants at codon 72 of the p53 gene and by restriction fragment length polymorphism analysis of the G/G and G/A alleles in exon 4 of the ANGPT2 gene. Comparing women with uterine leiomyomas and controls, no statistically significant difference with respect to allele frequency and genotype distribution were ascertained for the ANGPT2 polymorphism (P=.2 and P=.5, respectively). However, for the p53 tumor suppressor gene polymorphism, statistically significant differences in terms of a higher Pro allele frequency and a higher prevalence of the Pro/Pro genotype among women with uterine leiomyoma (32.0% vs. 16.0%, respectively, and 21.3% vs. 4.7%, respectively) were ascertained (P=.001, OR 1.74; 95% CI 1.24-2.45, P=.001; OR 3.84, 95% CI 1.81-8.14; respectively). Carriage of the p53 polymorphism at codon 72 predicts the susceptibility to leiomyoma in a Caucasian population and may contribute to the pathogenesis of uterine leiomyoma.
Haptoglobin gene polymorphisms in peri-implantitis and chronic periodontitis.
Ebadian, Ahmad R; Kadkhodazadeh, Mahdi; Naghavi, Seyed Hamid Hosseini; Torshabi, Maryam; Tamizi, Mahmood
2014-05-01
The haptoglobin-hemoglobin (Hp-Hb) complex plays a significant role in regulating immune responses and acts as a bacteriostatic agent. Haptoglobin polymorphisms result in different Hb binding affinities. This study sought to assess whether Hp 2-2 could be a genetic determinant for increasing the risk of peri-implantitis and chronic periodontitis. Of the Iranian subjects referred to the Department of Periodontics, Shahid Beheshti University, Tehran, 203 were entered into the study, including 117 patients and 86 periodontally healthy individuals. Polymerase chain reaction (PCR) was performed for genotyping. Data were analyzed by Kruskal-Wallis test using the SPSS statistics software package. The prevalence of Hp 2-2, 2-1, and 1-1 did not differ significantly between patients and healthy subjects (P > 0.05). The highest frequencies of Hp 1-1, 2-1, and 2-2 genotypes were seen in the control (7%), peri-implantitis (51%) and periodontitis (64%) groups, respectively. Haptoglobin polymorphisms may not play a role in development of peri-implantitis or chronic periodontitis among Iranians but we strongly suggest researchers to evaluate this polymorphism in further studies on larger sample sizes, different populations, and other types of periodontitis. © 2013 Wiley Publishing Asia Pty Ltd.
Yao, J.; Aggrey, S. E.; Zadworny, D.; Hayes, J. F.; Kuhnlein, U.
1996-01-01
Sequence variations in the bovine growth hormone (GH) gene were investigated by single strand conformation polymorphism (SSCP) analysis of seven amplified fragments covering almost the entire gene (2.7 kb). SSCPs were detected in four of these fragments and a total of six polymorphisms were found in a sample of 128 Holstein bulls. Two polymorphisms, a T->C transition in the third intron (designated GH4.1) and an A->C transversion in the fifth exon (designated GH6.2), were shown to be associated with milk production traits. GH4.1(c)/GH4.1(c) bulls had higher milk yield than GH4.1(c)/GH4.1(t) (P <= 0.005) and GH4.1(t)/GH4.1(t) (P <= 0.0022) bulls. GH4.1(c)/GH4.1(c) bulls had higher kg fat (P <= 0.0076) and protein (P <= 0.0018) than GH4.1(c)/GH4.1(t) bulls. Similar effects on milk production traits with the GH6.2 polymorphism were observed with the GH6.2(a) allele being the favorable allele. The average effects of the gene substitution for GH4.1 and GH6.2 are similar, with +/-300 kg for milk yield, +/-8 kg for fat content and +/-7 kg for protein content per lactation. The positive association of GH4.1(c) and GH6.2(a) with milk production traits may be useful for improving milk performance in dairy cattle. PMID:8978066
MSH6 G39E Polymorphism and CpG Island Methylator Phenotype in Colon Cancer
Curtin, Karen; Samowitz, Wade S.; Wolff, Roger K.; Caan, Bette J.; Ulrich, Cornelia M.; Potter, John D.; Slattery, Martha L.
2010-01-01
The MSH6 G39E germline polymorphism is not associated with an increased risk of either microsatellite stable or unstable sporadic colorectal cancer. Other than microsatellite instability, however, most genetic and epigenetic changes of tumors associated with this common variant have not been studied. The objective of our investigation was to evaluate associations between the MSH6 G39E (116G>A) polymorphism and CpG island methylator phenotype (CIMP) and BRAF V600E mutations in tumors from a sample of 1048 individuals with colon cancer and 1964 controls from Utah, Northern California, and Minnesota. The G39E polymorphism (rs1042821) was determined by the five prime nuclease assay. CIMP was determined by methylation-specific polymerase chain reaction (PCR) of CpG islands in MLH1, methylated in tumors (MINT)1, MINT2, MINT31, and CDKN2A. The BRAF V600E mutation was determined by sequencing exon 15. In microsatellite stable tumors, homozygous carriers of the G39E polymorphism had an increased risk of CIMP+ colon cancer (odds ratio (OR) 2.2, 95% confidence interval (CI) 1.1, 4.2) and BRAF V600E mutation (OR 3.1, 95% CI 1.01, 9.7) in a case–control comparison. This finding was not observed in unstable tumors; however, power may have been low to detect an association. Age at diagnosis, family history, and alcohol use did not interact with MSH6 G39E and CIMP. The MSH6 G39E germline polymorphism may be associated with CIMP+ colon cancer. PMID:19582761
Peddireddy, Vidyullatha; Badabagni, Siva Prasad; Sulthana, Shehnaz; Kolla, Venkata Karunakar; Gundimeda, Sandhya Devi; Mundluru, Hemaprasad
2016-10-01
Cytokine-mediated inflammation is important in the pathogenesis of non-small cell lung cancer (NSCLC). Genetic polymorphisms in cytokine genes and their association with lung cancer in the Indian population have not been reported. For the first time, we analyzed genetic polymorphisms of TNFα -308 , IFNγ +874 , and IL10 -1082 genes in 246 NSCLC patients and 250 healthy controls in the South Indian population from Telangana using ARMS PCR. IFNγ +874 A/T and IL10 -1082 G/G gene polymorphisms were found to be significantly associated with NSCLC with 1.56- and 1.68-fold disease risk, respectively. There was no association between the risk of NSCLC and TNFα -308 polymorphism. Gene polymorphisms stratified according to smoking revealed that IFNγ +874 A/T polymorphisms in smokers increased the disease risk by 2.91 fold. IL10 -1082 G/G polymorphisms showed 2-fold increased risk among patients who were smokers when compared to the controls. However, there was no association between TNFα -308 , IFNγ +874 , and IL10 -1082 gene polymorphism and the stage of the NSCLC patients. The overall risk associated with the combination of these polymorphisms indicated that the TNFα -308 G/A + IFNγ +874 A/T + IL10 -1082 G/G genotype increased the risk by 1.5 fold. The results of our study indicate an association between cytokine gene polymorphisms and the risk of NSCLC in an Indian population.
Wu, Lei; He, Yao; Zhang, Di
2015-11-01
To systematically evaluate the association between single nucleotide polymorphism of rs2231142 genetic susceptibility and gout in East Asian population. The literature retrieval was conducted by using English databases (Medline, EMbase), Chinese databases (CNKI, Vip, Wanfang, SinaMed) and others to collect the published papers on the association between single nucleotide polymorphism of rs2231142 genetic susceptibility and gout by the end of December 2014. Meta-analysis was performed with software Stata 12.0. Nine studies were included. There were significant associations between increased risk of gout and single nucleotide polymorphism of rs2231142, the combined OR was 2.04 (95%CI: 1.82-2.28) for A allele and C allele, 1.97 (95%CI: 1.57-2.48) for CA and CC, 3.71 (95%CI: 3.07-4.47) for AA and CC. Sex and region specific subgroup analysis showed less heterogeneity. There is significant association between gout and single nucleotide polymorphism of rs2231142 in East Asian population, and A allele is a high risk gene for gout.
Tandia, Mahamadou; Mhiri, Asma; Paule, Bernard; Saffroy, Raphaël; Cailliez, Valérie; Noé, Gaëlle; Farinotti, Robert; Bonhomme-Faivre, Laurence
2017-04-01
We studied the relation between the polymorphism of P-glycoprotein (P-gp) and of breast cancer resistance protein (BCRP), encoded by ABCB1 and ABCG2 genes, respectively, and the pharmacokinetic variability and clinical response during the treatment with sorafenib of hepatocellular carcinoma. At the Paul Brousse Hospital in Villejuif, France, 47 consecutive patients with advanced HCC treated with a single agent sorafenib, were enrolled. Sorafenib exposure was measured by its plasma concentration 3 h after oral administration of 400 mg (bid) by liquid chromatography. All enrolled patients were genotyped for ABCB1 (rs2032582; rs1045642) and ABCG2 (rs2231137; rs2231142; rs2622604) by blood genomic DNA extraction and Mass ARRAY genotyping. The clinical response was evaluated after 3months of treatment according to the RECIST criteria. Significant associations between sorafenib exposure and the studied polymorphisms were observed for ABCB1 3435C>T, ABCG2 34G>A, ABCG2 1143C>T and ABCG2 421C>A, but not for ABCB1 2677G>TA SNP. In heterozygous patients for ABCB1 3435 C>T, ABCG2 34 G>A and ABCG2 1143 C>T polymorphisms were significantly associated with the lowest sorafenib plasma levels. Those patients presented a tendency to have the best clinical evolution. Heterozygous forms of the studied polymorphisms could be associated with a better therapeutic response.
Lee, Young Ho; Song, Gwan Gyu
2014-04-01
The aim of this study was to explore whether the plasminogen activator inhibitor-1 (PAI-1) 4G/5G and the methylenetetrahydrofolate reductase (MTHFR) 677C/T polymorphisms are associated with susceptibility to polycystic ovary syndrome (PCOS). Meta-analyses were conducted to determine the association between the PAI-1 4G/5G and MTHFR 677C/T polymorphisms and PCOS using: (1) allele contrast (2) homozygote contrast, (3) recessive, and (4) dominant models. For meta-analysis, nine studies of the PAI-1 4G/5G polymorphism with 2384 subjects (PCOS, 1615; controls, 769) and eight studies of the MTHFR 677C/T polymorphism with 1270 study subjects were included. Meta-analysis of all study subjects showed no association between PCOS and the PAI-1 4G allele (OR=0.949, 95% CI=0.671-1.343, p=0.767). Stratification by ethnicity, however, indicated a significant association between the PAI-1 4G allele and PCOS in Turkish and Asian populations (OR=0.776, 95% CI=0.602-0.999, p=0.049; OR=1.749, 95% CI=1.297-2.359, p=2.5×10(-5) respectively). In addition, meta-analysis indicated an association between PCOS and the PAI-1 4G4G+4G5G genotype in Europeans (OR=1.406, 95% CI=1.025-1.928, p=0.035). However, meta-analysis of all study subjects showed no association between PCOS and the MTHFR 677T allele (OR=0.998, 95% CI=0.762-1.307, p=0.989), including Europeans (OR=0.806, 95% CI=0.610-1.063, p=0.126). Meta-analysis showed no association between PCOS and the MTHFR 677C/T polymorphism using homozygote contrast, and recessive and dominant models. In conclusion, meta-analysis suggests the PAI-1 4G/5G polymorphism is associated with susceptibility to PCOS in European, Turkish, and Asian populations, but the MTHFR 677C/T polymorphism is not associated with susceptibility to PCOS in Europeans. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
HIF-1α P582S and A588T polymorphisms and digestive system cancer risk-a meta-analysis.
Yang, Xi; Zhang, Chi; Zhu, Hong-Cheng; Qin, Qin; Zhao, Lian-Jun; Liu, Jia; Xu, Li-Ping; Zhang, Qu; Cai, Jing; Ma, Jian-Xin; Cheng, Hong-Yan; Sun, Xin-Chen
2014-03-01
Hypoxia-inducible factor-1 (HIF-1) influences cancer progression and metastasis through various mechanisms, and HIF-1α polymorphisms are reportedly associated with many cancers; however, the associations of HIF-1α P582S and A588T polymorphisms with the risk of digestive system cancer remain inconclusive. To understand the role of HIF-1α P582S and A588T genotypes in digestive cancer development, we conducted a comprehensive meta-analysis involving 1,517 cases and 3,740 controls. Overall, the P582S polymorphism was not significantly associated with digestive system cancers in all genotypes. By contrast, the A588T polymorphism was significantly associated with digestive system cancers in the dominant model (TT/AT vs. AA: OR = 3.17, 95% CI: 1.21, 8.25; P heterogeneity < 0.001). In subgroup analysis for cancer types, the two polymorphisms were only associated with increased risk of pancreatic cancer (P582S: SS vs. PP: OR = 2.51, 95% CI: 1.31, 4.81; SS vs. OR = 8.73, 95% CI: 1.33, 57.1; A588T: TT vs. AA: OR = 9.30, 95% CI: 1.12, 77.6; P heterogeneity = 0.478; TT vs. OR = 3.14, 95% CI: 1.99, 4.97; P heterogeneity = 0.098; TT/AT vs. AA: OR = 8.65, 95% CI: 1.05, 71.6; P heterogeneity = 0.418). According to the source of ethnicity, the P582S and the A588T polymorphisms are both significantly associated with an increased risk of cancer among Caucasians in the homozygote model (SS vs. PP: OR = 2.41, 95% CI: 1.24, 4.691; P heterogeneity = 0.010; TT vs. AA: OR = 98.6, 95% CI: 4.37, 2,224; P heterogeneity = 0.040) and the recessive model (SS vs. OR = 9.48, 95% CI: 1.12, 80.3; P heterogeneity < 0.001; TT vs. OR = 82.7, 95% CI: 3.79, 1,802; P heterogeneity = 0.041). Our findings suggest that the HIF-1α A588T polymorphism is significantly associated with higher cancer risk and the P582S polymorphism is significantly associated with pancreatic cancer risk. Furthermore, the effect of both polymorphisms on digestive system cancer is more pronounced among Caucasians than that among Asians.
Ferrier, V; Gasser, F; Jaylet, A; Cayrol, C
1983-06-01
The existence of four peptidases was demonstrated by starch gel electrophoresis in Pleurodeles waltlii: PEP-1, PEP-2, PEP-3, and PEP-4. Peptidases-3 and -4 are monomorphic, and peptidases-1 and -2 are polymorphic. The heredity of the polymorphisms was studied using individuals arising from crosses or of gynogenetic origin. Peptidase-1 is dimeric; its polymorphism depends on a pair of codominant alleles, Pep-1A and Pep-1B, which are situated on the Z and W sex chromosomes, respectively, in close proximity to, or even within, the sex differential segment. As the differential segment is very close to the centromere, the PEP-1 locus therefore also appears to be closely linked to it. Expression of the PEP-1 locus was shown to be independent of the sex hormone environment. This locus is the first case reported in amphibians of an enzyme marker linked to the genetic sex. It allows the sex of PLeurodeles to be determined before they reach sexual maturity. Peptidase-2 is monomeric. Its polymorphism depends on a pair of codominant alleles on an autosomal PEP-2 locus. The high proportion of heterozygous animals in the gynogenetic offspring of females heterozygous for the PEP-2 locus indicates segregation which is independent of the centromere. Analysis of the offspring of doubly heterozygous females (i.e., for two of the loci--LDH-B, G6PDH, PEP-1, and PEP-2) shows that the four loci are independent.
Tripathi, G.; Rangaswamy, D.; Borkar, M.; Prasad, N.; Sharma, R. K.; Sankhwar, S. N.; Agrawal, S.
2015-01-01
We evaluated whether polymorphisms in interleukin (IL-1) gene cluster (IL-1 alpha [IL-1A], IL-1 beta [IL-1B], and IL-1 receptor antagonist [IL-1RN]) are associated with end stage renal disease (ESRD). A total of 258 ESRD patients and 569 ethnicity matched controls were examined for IL-1 gene cluster. These were genotyped for five single-nucleotide gene polymorphisms in the IL-1A, IL-1B and IL-1RN genes and a variable number of tandem repeats (VNTR) in the IL-1RN. The IL-1B − 3953 and IL-1RN + 8006 polymorphism frequencies were significantly different between the two groups. At IL-1B, the T allele of − 3953C/T was increased among ESRD (P = 0.0001). A logistic regression model demonstrated that two repeat (240 base pair [bp]) of the IL-1Ra VNTR polymorphism was associated with ESRD (P = 0.0001). The C/C/C/C/C/1 haplotype was more prevalent in ESRD = 0.007). No linkage disequilibrium (LD) was observed between six loci of IL-1 gene. We further conducted a meta-analysis of existing studies and found that there is a strong association of IL-1 RN VNTR 86 bp repeat polymorphism with susceptibility to ESRD (odds ratio = 2.04, 95% confidence interval = 1.48-2.82; P = 0.000). IL-1B − 5887, +8006 and the IL-1RN VNTR polymorphisms have been implicated as potential risk factors for ESRD. The meta-analysis showed a strong association of IL-1RN 86 bp VNTR polymorphism with susceptibility to ESRD. PMID:25684870
Low level of efavirenz in HIV-1-infected Thai adults is associated with the CYP2B6 polymorphism.
Sukasem, C; Manosuthi, W; Koomdee, N; Santon, S; Jantararoungtong, T; Prommas, S; Chamnanphol, M; Puangpetch, A; Sungkanuparph, S
2014-06-01
Human immunodeficiency virus type 1 (HIV-1) infections with a plasma efavirenz concentration of <1,000 ng/mL appear to have a high risk for the emergence of drug resistance. In the present study, we assessed the influence of the CYP2B6 polymorphism on the plasma efavirenz level. CYP2B6 T18492C (rs2279345) in 149 HIV-infected Thai adults were genotyped. Plasma efavirenz concentrations 12 h after dosing were measured using a validated high-performance liquid chromatography. The relationship between the plasma efavirenz level and the CYP2B6 T18492C polymorphism were analysed. Among the 149 patients, the frequency of T18492C heterozygous (T/C) and homozygous mutant (C/C) was 38.26 % (n = 57) and 6.04 % (n = 9), respectively. In the entire cohort, the median efavirenz plasma concentration was 2,410 ng/mL [interquartile range (IQR) 1,460-4,120 ng/mL]. The plasma efavirenz concentration for patients with 18492CC (1,200 ng/mL, IQR 1,050-1,990 ng/mL) or 18492TC (1,900 ng/mL, IQR 1,320-2,510 ng/mL) genotypes were significantly lower than those with homozygous wild type (3,380 ng/mL, IQR 2,040-5,660 ng/mL), P-value < 0.001. The CYP2B6 T18492C polymorphism was significantly associated with lower efavirenz concentrations compared to those with homozygous wild type in HIV-1 infections. The genetic polymorphism CYP2B6 T18492C may be useful for the optimised efavirenz dose. Further studies in the clinical setting will need to be conducted before such an approach can be recommended for widespread use.
Three related forms of phenol sulfotransferase (PSULT), thermostable ST1A2 (SULT1A2hum) and ST1A3 (SULT1A1hum) and a thermolabile TL-PST (SULT1A3hum), are known to exist in human livers. Thermostable forms, whose activities are polymorphically distributed, hav...
Lemas, Dominick J; Klimentidis, Yann C; Aslibekyan, Stella; Wiener, Howard W; O'Brien, Diane M; Hopkins, Scarlett E; Stanhope, Kimber L; Havel, Peter J; Allison, David B; Fernandez, Jose R; Tiwari, Hemant K; Boyer, Bert B
2016-12-01
n-3 polyunsaturated fatty acid (n-3 PUFA) intake is associated with protection from obesity; however, the mechanisms of protection remain poorly characterized. The stearoyl CoA desaturase (SCD), insulin-sensitive glucose transporter (SLC2A4), and sterol regulatory element binding protein (SREBF1) genes are transcriptionally regulated by n-3 PUFA intake and harbor polymorphisms associated with obesity. The present study investigated how consumption of n-3 PUFA modifies associations between SCD, SLC2A4, and SREBF1 polymorphisms and anthropometric variables and metabolic phenotypes. Anthropometric variables and metabolic phenotypes were measured in a cross-sectional sample of Yup'ik individuals (n = 1135) and 33 polymorphisms were tested for main effects and interactions using linear models that account for familial correlations. n-3 PUFA intake was estimated using red blood cell nitrogen stable isotope ratios. SCD polymorphisms were associated with ApoA1 concentration and n-3 PUFA interactions with SCD polymorphisms were associated with reduced fasting cholesterol levels and waist-to-hip ratio. SLC2A4 polymorphisms were associated with hip circumference, high-density lipoprotein and ApoA1 concentrations. SREBF1 polymorphisms were associated with low-density lipoprotein and HOMA-IR and n-3 PUFA interactions were associated with reduced fasting insulin and HOMA-IR levels. The results suggest that an individual's genotype may interact with dietary n-3 PUFAs in ways that are associated with protection from obesity-related diseases in Yup'ik people. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lemas, Dominick J.; Klimentidis, Yann C.; Aslibekyan, Stella; Wiener, Howard W.; O’Brien, Diane M.; Hopkins, Scarlett E.; Stanhope, Kimber L.; Havel, Peter J.; Allison, David B.; Fernandez, Jose R.; Tiwari, Hemant K.; Boyer, Bert B.
2016-01-01
Scope n-3 polyunsaturated fatty acid (n-3 PUFA) intake is associated with protection from obesity, however, the mechanisms of protection remain poorly characterized. The stearoyl CoA desaturase (SCD), insulin sensitive glucose transporter (SLC2A4), and sterol regulatory element binding protein (SREBF1) genes are transcriptionally regulated by n-3 PUFA intake and harbor polymorphisms associated with obesity. The present study investigated how consumption of n-3 PUFA modifies associations between SCD, SLC2A4, and SREBF1 polymorphisms and anthropometric variables and metabolic phenotypes. Materials and Methods Anthropometric variables and metabolic phenotypes were measured in a cross-sectional sample of Yup’ik individuals (n=1135) and thirty-three polymorphisms were tested for main effects and interactions using linear models that account for familial correlations. n-3 PUFA intake was estimated using red blood cell nitrogen stable isotope ratios. SCD polymorphisms were associated with ApoA1 concentration and n-3 PUFA interactions with SCD polymorphisms were associated with reduced fasting cholesterol levels and waist-to-hip ratio. SLC2A4 polymorphisms were associated with hip circumference, high-density lipoprotein and ApoA1 concentrations. SREBF1 polymorphisms were associated with low-density lipoprotein and HOMA-IR and n-3 PUFA interactions were associated with reduced fasting insulin and HOMA-IR levels. Conclusion These results suggest that an individual’s genotype may interact with dietary n-3 PUFAs in ways that are associated with protection from obesity-related diseases in Yup’ik people. PMID:27467133
Ajaz, Sadia; Khaliq, Shagufta; Hashmi, Altaf; Naqvi, Syed Ali Anwar; Rizvi, Syed Adib-ul-Hassan; Mehdi, Syed Qasim
2012-05-01
Two single nucleotide polymorphisms in the methylene tetrahydrofolate reductase (MTHFR) gene, 677C/T and 1298A/C, encode the thermolabile isoforms of the MTHFR enzyme that adversely affect the folic acid metabolic pathway. In the present study, these polymorphisms were investigated for their associations with the risk and prognosis of the renal cell carcinomas (RCCs) in Pakistani patients. The study included 168 RCC patients and 178 controls. The polymorphisms were analyzed by the polymerase chain reaction-restriction fragment length polymorphism method. Statistical analysis revealed that the C-allele and homozygous C genotype of the MTHFR 1298A/C polymorphism were significantly correlated with the risk of RCCs (odds ratio [OR]=1.60; 95% confidence interval [CI]=1.1-2.34 and OR=3.26; 95% CI=1.27-8.37, respectively). The combined genotype analysis showed that the 677CC+1298CC combination greatly increased the susceptibility to RCCs (OR=8.34; 95% CI=2.7-25.7). The 677CT+1298AA and 677CC+1298CA combinations were also associated with an increased risk of RCC (OR=3.21; 95% CI=1.3-7.8 and OR=2.45; 95% CI=1.3-4.6, respectively). The combined genotype effects were also evident in a semiparametric expectation-maximization-based haplotype analysis. The results presented here indicate that the two MTHFR gene polymorphisms are significantly associated with the risk of RCCs in a cohort of Pakistani patients and may be useful as susceptibility markers in other populations of the world as well.
Vatansever, Sezgin; Tekin, Fatih; Salman, Esin; Altintoprak, Ender; Coskunol, Hakan; Akarca, Ulus Salih
2015-05-17
No data exists regarding the alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) gene polymorphisms in Turkish alcoholic cirrhotics. We studied the polymorphisms of ADH1B, ADH1C and ALDH2 genes in alcoholic cirrhotics and compared the results with non-cirrhotic alcoholics and healthy volunteers. Overall, 237 subjects were included for the study: 156 alcoholic patients (78 cirrhotics, 78 non-cirrhotic alcoholics) and 81 healthy volunteers. Three different single-nucleotide-polymorphism genotyping methods were used. ADH1C genotyping was performed using a polymerase chain reaction-restriction fragment length polymorphism method. The identified ADH1C genotypes were named according to the presence or absence of the enzyme restriction sites. ADH1B (Arg47Hys) genotyping was performed using the allele specific primer extension method, and ALDH2 (Glu487Lys) genotyping was performed by a multiplex polymerase chain reaction using two allele-specific primer pairs. For ADH1B, the frequency of allele *1 in the cirrhotics, non-cirrhotic alcoholics and healthy volunteers was 97.4%, 94.9% and 99.4%, respectively. For ADH1C, the frequency of allele *1 in the cirrhotics, non-cirrhotic alcoholics and healthy volunteers was 47%, 36.3% and 45%, respectively. There was no statistical difference between the groups for ADH1B and ADH1C (p>0.05). All alcoholic and non-alcoholic subjects (100%) had the allele *1 for ALDH2. The obtained results for ADH1B, ADH1C, and ALDH gene polymorphisms in the present study are similar to the results of Caucasian studies. ADH1B and ADH1C genetic variations are not related to the development of alcoholism or susceptibility to alcoholic cirrhosis. ALDH2 gene has no genetic variation in the Turkish population.
Pineda-Belmontes, Cristina P; Hernández-Ramírez, Raúl U; Hernández-Alcaraz, César; Cebrián, Mariano E; López-Carrillo, Lizbeth
2016-04-01
To evaluate whether the presence of polymorphisms of peroxisome proliferator-activated receptor gamma PPARγ (Pro 1 2Ala) and PPARGC1B (Ala203Pro) modifies the association between the inorganic arsenic (iAs) methylation capacity and breast cancer (BC). Mexican women were interviewed, and blood and urine samples were collected from them (cases/controls= 197/220). The concentration of urinary arsenic species and the polymorphisms of interest were determined by high-performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and polymerase chain reaction (PCR), respectively. In women with a high %MMA (urinary monomethyl arsenic) and high primary methylation ratio (PM = MMA/iAs), the risk of BC was increased (odds ratio [OR]%MMA T3 vs.T1= 3.60: 95% confidence interval [CI] 2.02-6.41, ORPMI T3 vs.T1= 3.47: 95%CI 1.95-6.17), which was maintained after adjusting for polymorphisms. No significant interactions were observed between the polymorphisms and the arsenic variables on the risk of BC. Pro 12Ala and Ala203Pro polymorphisms did not modify the association between the iAs methylation capacity and BC.
Qadeer, Muhammad Imran; Amar, Ali; Mann, J John; Hasnain, Shahida
2017-01-01
Genetic factors contribute to antisocial and criminal behavior. Dopamine transporter DAT-1 (SLC6A3) and DRD2 gene for the dopamine-2 receptor are dopaminergic system genes that regulate dopamine reuptake and signaling, and may be part of the pathogenesis of psychiatric disorders including antisocial behaviors and traits. No previous studies have analyzed DAT-1 and DRD2 polymorphisms in convicted murderers, particularly from Indian subcontinent. In this study we investigated the association of 40 bp VNTR polymorphism of DAT-1 and Taq1 variant of DRD2 gene (rs1800479) with criminal behavior and self-reported aggression in 729 subjects, including 370 men in Pakistani prisons convicted of first degree murder(s) and 359 control men without any history of violence or criminal tendency. The 9R allele of DAT-1 VNTR polymorphism was more prevalent in convicted murderers compared with control samples, for either one or two risk alleles (OR = 1.49 and 3.99 respectively, P = 0.003). This potential association of DAT-1 9R allele polymorphism with murderer phenotype was confirmed assuming different genetic models of inheritance. However, no genetic association was found for DRD2 Taq1 polymorphism. In addition, a combined haplotype (9R-A2) of DAT-1 and DRD2 genes was associated with this murderer phenotype. Further, 9R allele of DAT-1 was also associated with response to verbal abuse and parental marital complications, but not with other measures pertinent to self-reported aggression. These results suggest that 9R allele, which may influence levels of intra-synaptic dopamine in the brain, may contribute to criminal tendency in this sample of violent murderers of Pakistani origin. Future studies are needed to replicate this finding in other populations of murderers and see if this finding extends to other forms of violence and lesser degrees of aggression.