Science.gov

Sample records for erectness improves plant

  1. Breeding erect plant type sweetpotato lines using cross breeding and gamma-ray irradiation.

    PubMed

    Kuranouchi, Toshikazu; Kumazaki, Tadashi; Kumagai, Toru; Nakatani, Makoto

    2016-06-01

    Few sweetpotato (Ipomoea batatas Lam.) cultivars with erect plant type are available despite their advantages over spreading type, such as simplicity of cultivation and ability to adapt to limited space. One of the reasons is insufficiency of their agronomic characteristics for table use. So, it is important to overcome these drawbacks of ER-type lines. We attempted to breed new erect plant type sweetpotato lines having good agronomic traits using cross breeding and mutation breeding with gamma-ray irradiation. With cross breeding we successfully developed new erect plant type lines with almost equal levels of yield as compared to 'Beniazuma', one of the leading cultivars in Japan. However, mutation breeding failed to develop any promising lines because we could not obtain distinct erect plant type lines. In the future larger numbers of plants should be used for mutation breeding, and irradiation methods should be improved. PMID:27436957

  2. Breeding erect plant type sweetpotato lines using cross breeding and gamma-ray irradiation

    PubMed Central

    Kuranouchi, Toshikazu; Kumazaki, Tadashi; Kumagai, Toru; Nakatani, Makoto

    2016-01-01

    Few sweetpotato (Ipomoea batatas Lam.) cultivars with erect plant type are available despite their advantages over spreading type, such as simplicity of cultivation and ability to adapt to limited space. One of the reasons is insufficiency of their agronomic characteristics for table use. So, it is important to overcome these drawbacks of ER-type lines. We attempted to breed new erect plant type sweetpotato lines having good agronomic traits using cross breeding and mutation breeding with gamma-ray irradiation. With cross breeding we successfully developed new erect plant type lines with almost equal levels of yield as compared to ‘Beniazuma’, one of the leading cultivars in Japan. However, mutation breeding failed to develop any promising lines because we could not obtain distinct erect plant type lines. In the future larger numbers of plants should be used for mutation breeding, and irradiation methods should be improved. PMID:27436957

  3. 42. U.S. NITRATE PLANT UNDER CONSTRUCTION, STEEL BEING ERECTED FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. U.S. NITRATE PLANT UNDER CONSTRUCTION, STEEL BEING ERECTED FOR THE CARBIDE MILL ROOM, APRIL 23, 1918. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  4. 43. U.S. NITRATE PLANT UNDER CONSTRUCTION, STEEL BEING ERECTED FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. U.S. NITRATE PLANT UNDER CONSTRUCTION, STEEL BEING ERECTED FOR THE MACHINE SHOP, FEBRUARY 28, 1918. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  5. Butea superba (Roxb.) improves penile erection in diabetic rats.

    PubMed

    Tocharus, C; Sooksaen, P; Shimbhu, D; Tocharus, J

    2012-05-01

    The objective of the present study was to investigate the effect of ethanolic extract of Butea superba (Roxb.) on erectile dysfunction in diabetic rats by the measurement of intracavernous pressure (ICP) and on cavernosal smooth muscle relaxation. Male Sprague-Dawley rats were induced to become diabetic by a single intravenous injection of Streptozotocin (55 mg kg(-1) body weight). The ethanolic extract at the concentration of 1, 10 and 100 mg kg(-1) BW was administered orally once a day to diabetic rats in each group for 4 weeks. Diabetic rats showed a significant decrease in both ICP and the relaxation of the cavernosal smooth muscle compared with the normal rats. The extract of B. superba significantly increased the ICP with the effective dose of 10 mg kg(-1) BW (61.00 ± 11.11 mmHg versus 39.61 ± 11.01 mmHg in the diabetic control group). Moreover, the B. superba-treated group also showed enhanced relaxation of the cavernosal smooth muscle with EC(50) of 1.17 mg ml(-1). These results suggest that the extract of B. superba enhanced penile erection in diabetic rats by increasing the ICP. This might be explained by the increased blood flow as a result of the relaxation of the cavernous smooth muscle.

  6. Population structure and association analysis of bolting, plant height, and leaf erectness in spinach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spinach (Spinacia oleracea L.) is an important vegetable worldwide with high nutritional and health-promoting compounds. Bolting is an important trait to consider in order to grow spinach in different seasons and regions. Plant height and leaf erectness are important traits for machine-harvesting. B...

  7. Clinically meaningful improvement on the quality of erection questionnaire in men with erectile dysfunction.

    PubMed

    Hvidsten, K; Carlsson, M; Stecher, V J; Symonds, T; Levinson, I

    2010-01-01

    Defining the minimal clinically meaningful improvement (MCMI) is crucial to understanding the treatment effects on health-status measures. We estimated the MCMI on the quality of erection questionnaire (QEQ), a validated measure specific to assess erectile quality during sexual intercourse. Data were from two controlled trials of an investigational phosphodiesterase type 5 inhibitor. Improvement on the Erectile Function domain of the International Index of Erectile Function was used as the anchor. For men who improved by exactly 1 erectile dysfunction severity category (anchor group (n=95)), clinically meaningful improvement (CMI, estimated with mean QEQ total change score from baseline to end of treatment) and MCMI (estimated with the lower limit of the 95% confidence interval of the mean) were 22.4 (s.d., 2.2) and 18.0 points, respectively. For the difference between the anchor group and men with no change in severity category (n=116), CMI and MCMI were 17.7 (s.d., 2.9) and 12 points, respectively. Distribution-based analyses (baseline s.e. of measurement (s.e.m.)=7.99, end-of-treatment s.e.m.=8.22 and s.e. of difference=11.46) supported a proposed MCMI of 12 points. Convergence of anchor-based and distribution-based criteria supports at least a 12-point difference in QEQ scores between treatments as clinically important.

  8. 26 CFR 1.109-1 - Exclusion from gross income of lessor of real property of value of improvements erected by lessee.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... property of value of improvements erected by lessee. 1.109-1 Section 1.109-1 Internal Revenue INTERNAL... property of value of improvements erected by lessee. (a) Income derived by a lessor of real property upon... which may be realized by the lessor upon the termination of the lease but not attributable to the...

  9. Short and erect rice (ser) mutant from 'Khao Dawk Mali' shapes plant architecture better

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant architecture includes branching (tillering) pattern, plant height, leaf shape and angle, and the structure of reproductive organs. These structures are of major agronomic importance as they determine the adaptability of a plant to various methods of cultivation, which in turn influence harves...

  10. Erected mirror optical switch

    DOEpatents

    Allen, James J.

    2005-06-07

    A microelectromechanical (MEM) optical switching apparatus is disclosed that is based on an erectable mirror which is formed on a rotatable stage using surface micromachining. An electrostatic actuator is also formed on the substrate to rotate the stage and mirror with a high angular precision. The mirror can be erected manually after fabrication of the device and used to redirect an incident light beam at an arbitrary angel and to maintain this state in the absence of any applied electrical power. A 1.times.N optical switch can be formed using a single rotatable mirror. In some embodiments of the present invention, a plurality of rotatable mirrors can be configured so that the stages and mirrors rotate in unison when driven by a single micromotor thereby forming a 2.times.2 optical switch which can be used to switch a pair of incident light beams, or as a building block to form a higher-order optical switch.

  11. 93. View showing erection traveler erecting 190 foot span over ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. View showing erection traveler erecting 190 foot span over Southern Pacific Company's main line track. This is the last span of the steel approach to the main bridge spans. - Carquinez Bridge, Spanning Carquinez Strait at Interstate 80, Vallejo, Solano County, CA

  12. General view of crane with legs erected temporary erection ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of crane with legs erected - temporary erection towers still in place. Taken June 20, 1940. Fourteenth Naval District Photo Collection Item No. 13779 - U.S. Naval Base, Pearl Harbor, Exterior Cranes, Bridge Gantry Crane No. 1, Welding slab along Third Street, near intersection with Avenue G, Pearl City, Honolulu County, HI

  13. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice.

    PubMed

    Sakamoto, Tomoaki; Morinaka, Yoichi; Ohnishi, Toshiyuki; Sunohara, Hidehiko; Fujioka, Shozo; Ueguchi-Tanaka, Miyako; Mizutani, Masaharu; Sakata, Kanzo; Takatsuto, Suguru; Yoshida, Shigeo; Tanaka, Hiroshi; Kitano, Hidemi; Matsuoka, Makoto

    2006-01-01

    New cultivars with very erect leaves, which increase light capture for photosynthesis and nitrogen storage for grain filling, may have increased grain yields. Here we show that the erect leaf phenotype of a rice brassinosteroid-deficient mutant, osdwarf4-1, is associated with enhanced grain yields under conditions of dense planting, even without extra fertilizer. Molecular and biochemical studies reveal that two different cytochrome P450s, CYP90B2/OsDWARF4 and CYP724B1/D11, function redundantly in C-22 hydroxylation, the rate-limiting step of brassinosteroid biosynthesis. Therefore, despite the central role of brassinosteroids in plant growth and development, mutation of OsDWARF4 alone causes only limited defects in brassinosteroid biosynthesis and plant morphology. These results suggest that regulated genetic modulation of brassinosteroid biosynthesis can improve crops without the negative environmental effects of fertilizers.

  14. Hemodynamics of erection in man

    SciTech Connect

    Shirai, M.; Ishii, N.

    1981-02-01

    Inquiry was made into the theory that closure of the efferent vein from the corpora cavernosa is essential for erection of the human penis. To determine whether the venous closure is indeed a prerequisite to human penile erection, two tests were carried out in men: (1) direct infusion in 133Xe into corpora cavernosa and (2) performance of carvernosography. In each case, penile erection was induced by providing the subject with sexual stimulation. The behavioral changes were studied through the 133Xe clearance curve and the contrast medium, respectively. When the penis remained flaccid, the 133Xe clearance curve followed a gentle path and the contrast medium could be noted within the penis for a relatively long period. However, on erection with sexual stimulation, the 133Xe clearance curve fell rapidly instead of following the gentle course expected in the case of venous closure. Also, the contrast medium quickly flowed out of the corpora cavernosa. The human penis therefore can well erect without closure of the efferent vein from the corpora cavernosa.

  15. ERECTING/MACHINE SHOP, CRANE ACCESS GANGWAY BETWEEN ERECTING (L) AND MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ERECTING/MACHINE SHOP, CRANE ACCESS GANGWAY BETWEEN ERECTING (L) AND MACHINE (R) SHOPS, LOOKING NORTH. - Southern Pacific, Sacramento Shops, Erecting Shop, 111 I Street, Sacramento, Sacramento County, CA

  16. Erecting a Sturdy Financial Structure.

    ERIC Educational Resources Information Center

    West, Jeffrey J.

    1998-01-01

    Explanation of the technological setting in which college and university financial systems have developed is provided for financial officers, to aid in devising a plan for the chart of accounts and erecting an efficient, logical, flexible financial structure. Topics include software/hardware advances, understanding the demand for financial…

  17. Neurophysiological basis of penile erection.

    PubMed

    Priviero, Fernanda B M; Leite, Romulo; Webb, R Clinton; Teixeira, Cleber E

    2007-06-01

    Penile erection involves a complex interaction between the central nervous system and local factors. It is a neurovascular event modulated by psychological and hormonal factors. The discovery of nitric oxide (NO) as an intercellular messenger or neurotransmitter paved the way for identifying important mechanisms underlying physiological and pathophysiological events in the penis, in addition to providing the knowledge for the development of new therapeutics based on a novel concept of molecule and cell interaction. Despite the fact that sinusoidal endothelial cells also produce and release NO in response to chemical and possibly physical stimuli, roles of neurogenic NO in penile erection appear to be more attractive and convincing, since the pharmacological neuromodulation represents an essential step to attaining penile erection. Erectile dysfunction (ED) is caused by a variety of pathogenic factors, particularly impaired formation and action of NO. Hence, a thorough knowledge of the physiology of erection is essential for future pharmacological innovations in the field of male ED, particularly targeting NO or intracellular cyclic GMP, which represent the most promising therapeutic approach to treat patients with ED.

  18. Higher photosynthetic capacity and different functional trait scaling relationships in erect bryophytes compared with prostrate species.

    PubMed

    Wang, Zhe; Liu, Xin; Bao, Weikai

    2016-02-01

    Ecophysiological studies of bryophytes have generally been conducted at the shoot or canopy scale. However, their growth forms are diverse, and knowledge of whether bryophytes with different shoot structures have different functional trait levels and scaling relationships is limited. We collected 27 bryophyte species and categorised them into two groups based on their growth forms: erect and prostrate species. Twenty-one morphological, nutrient and photosynthetic traits were quantified. Trait levels and bivariate trait scaling relationships across species were compared between the two groups. The two groups had similar mean values for shoot mass per area (SMA), light saturation point and mass-based nitrogen (N(mass)) and phosphorus concentrations. Erect bryophytes possessed higher values for mass-based chlorophyll concentration (Chl(mass)), light-saturated assimilation rate (A(mass)) and photosynthetic nitrogen/phosphorus use efficiency. N(mass), Chl(mass) and A(mass) were positively related, and these traits were negatively associated with SMA. Furthermore, the slope of the regression of N(mass) versus Chl(mass) was steeper for erect bryophytes than that for prostrate bryophytes, whereas this pattern was reversed for the relationship between Chl(mass) and A(mass). In conclusion, erect bryophytes possess higher photosynthetic capacities than prostrate species. Furthermore, erect bryophytes invest more nitrogen in chloroplast pigments to improve their light-harvesting ability, while the structure of prostrate species permits more efficient light capture. This study confirms the effect of growth form on the functional trait levels and scaling relationships of bryophytes. It also suggests that bryophytes could be good models for investigating the carbon economy and nutrient allocation of plants at the shoot rather than the leaf scale. PMID:26552378

  19. Higher photosynthetic capacity and different functional trait scaling relationships in erect bryophytes compared with prostrate species.

    PubMed

    Wang, Zhe; Liu, Xin; Bao, Weikai

    2016-02-01

    Ecophysiological studies of bryophytes have generally been conducted at the shoot or canopy scale. However, their growth forms are diverse, and knowledge of whether bryophytes with different shoot structures have different functional trait levels and scaling relationships is limited. We collected 27 bryophyte species and categorised them into two groups based on their growth forms: erect and prostrate species. Twenty-one morphological, nutrient and photosynthetic traits were quantified. Trait levels and bivariate trait scaling relationships across species were compared between the two groups. The two groups had similar mean values for shoot mass per area (SMA), light saturation point and mass-based nitrogen (N(mass)) and phosphorus concentrations. Erect bryophytes possessed higher values for mass-based chlorophyll concentration (Chl(mass)), light-saturated assimilation rate (A(mass)) and photosynthetic nitrogen/phosphorus use efficiency. N(mass), Chl(mass) and A(mass) were positively related, and these traits were negatively associated with SMA. Furthermore, the slope of the regression of N(mass) versus Chl(mass) was steeper for erect bryophytes than that for prostrate bryophytes, whereas this pattern was reversed for the relationship between Chl(mass) and A(mass). In conclusion, erect bryophytes possess higher photosynthetic capacities than prostrate species. Furthermore, erect bryophytes invest more nitrogen in chloroplast pigments to improve their light-harvesting ability, while the structure of prostrate species permits more efficient light capture. This study confirms the effect of growth form on the functional trait levels and scaling relationships of bryophytes. It also suggests that bryophytes could be good models for investigating the carbon economy and nutrient allocation of plants at the shoot rather than the leaf scale.

  20. [Hydrogen sulfide and penile erection].

    PubMed

    Huang, Yi-Ming; Cheng, Yong; Jiang, Rui

    2012-09-01

    Hydrogen sulfide (H2S) is the third type of active endogenous gaseous signal molecule following nitric oxide (NO) and carbon monoxide (CO). In mammalians, H2S is mainly synthesized by two proteases, cystathionine-beta-synthase (CBS) and cystathionine-gamma-lyase (CSE). H2S plays an essential function of physiological regulation in vivo, and promotes penile erection by acting on the ATP-sensitive potassium channels to relax the vascular smooth muscle as well as by the synergistic effect with testosterone and NO to relax the corpus cavernosum smooth muscle (CCSM). At present, the selective phosphodiesterase type 5 (PDE5) inhibitor is mainly used for the treatment of erectile dysfunction (ED), but some ED patients fail to respond. Therefore, further studies on the mechanism of H2S regulating penile erection may provide a new way for the management of erectile dysfunction.

  1. Registration of two allelic erect leaf mutants of sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two allelic sorghum [Sorghum bicolor (L.) Moench] erect leaf (erl) mutants were isolated from an Annotated Individually-pedigreed Mutagenized Sorghum (AIMS) mutant library developed at the Plant Stress and Germplasm Development Unit, at Lubbock, Texas. The two mutants, erl1-1 and erl1-2, were isol...

  2. Foldable self-erecting joint

    NASA Technical Reports Server (NTRS)

    Pelischek, T. E. (Inventor)

    1986-01-01

    The invention relates to a foldable self erecting joint which may be used to deploy the tetratruss frame of the proposed shuttle launched triangular space station. The frame must be folded into the payload bay of the space shuttle orbiter. To deploy the frame the tubes are automatically unfolded and once in position should remain safely. A pair of hinged, tubular members in which the hinging is located at corresponding portions of the members are used. The opposite edge portions are connected by spring-based toggle links which in the unfolded position of the members are nested against one of the members in substantial alignment and over-center for securely locking the joint in the unfolded position.

  3. Compounds and methods for improving plant performance

    DOEpatents

    Unkefer, Pat J.; Knight, Thomas Joseph

    2016-09-20

    The invention is directed to methods and compositions for increasing a growth characteristic of a plant, increasing nutrient use efficiency of a plant, or improving a plant's ability to overcome stress comprising applying a composition comprising ketosuccinamate, a derivative thereof, or a salt thereof, to the plant or to a propagation material of the plant.

  4. Potential of hypocotyl diameter in family selection aiming at plant architecture improvement of common bean.

    PubMed

    Oliveira, A M C; Batista, R O; Carneiro, P C S; Carneiro, J E S; Cruz, C D

    2015-09-28

    Cultivars of common bean with more erect plant architecture and greater tolerance to degree of lodging are required by producers. Thus, to evaluate the potential of hypocotyl diameter (HD) in family selection for plant architecture improvement of common bean, the HDs of 32 F2 plants were measured in 3 distinct populations, and the characteristics related to plant architecture were analyzed in their progenies. Ninety-six F2:3 families and 4 controls were evaluated in a randomized block design, with 3 replications, analyzing plant architecture grade, HD, and grain yield during the winter 2010 and drought 2011 seasons. We found that the correlation between the HD of F2 plants and traits related to plant architecture of F2:3 progenies were of low magnitude compared to the estimates for correlations considering the parents, indicating a high environmental influence on HD in bean plants. There was a predominance of additive genetic effects on the determination of hypocotyl diameter, which showed higher precision and accuracy compared to plant architecture grade. Thus, this characteristic can be used to select progenies in plant architecture improvement of common beans; however, selection must be based on the means of at least 39 plants in the plot, according to the results of repeatability analysis.

  5. [Methods for evaluation of penile erection hardness].

    PubMed

    Yuan, Yi-Ming; Zhou, Su; Zhang, Kai

    2010-07-01

    Penile erection hardness is one of the key factors for successful sexual intercourse, as well as an important index in the diagnosis and treatment of erectile dysfunction (ED). This article gives an overview on the component and impact factors of erection hardness, summarizes some commonly used evaluation methods, including those for objective indexes, such as Rigiscan, axial buckling test and color Doppler ultrasonography, and those for subjective indexes of ED patients, such as IIEF, the Erectile Function Domain of IIEF (IIEF-EF), and Erection Hardness Score (EHS), and discusses the characteristics of these methods.

  6. Molecular mechanisms of penile erection.

    PubMed

    Mas, Manuel

    2010-10-01

    The penis physiological states of flaccidity or erection, result from the contraction or relaxation, respectively, of smooth muscle cells in the corpora cavernosa (CSMCs). They result from the interaction of various inter and intracellular molecular signaling pathways. During the more usual state of flaccidity seems to predominate a tonic sympathetic activity, releasing noradrenaline (NA) and other agonists that generate contractile signals in the CSMCs, with the likely cooperation of endothelium-derived messengers. Through activation of membrane receptors in the CSMCs they raise the intracellular messengers inositol triphosphate (IP3) and diacylglycerol (DAG). This results in a transient increase in cytosolic calcium concentration [Ca2+]i that starts the contractile response which is further sustained by the parallel agonist-induced activation of a "calcium sensitizing" mechanism involving the RhoA/Rho-kinase pathway. Overexpression of the latter might contribute to several vascular disorders as hypertension, vasospasm or erectile dysfunction. On sexual stimulation the cavernous nerves release nitric oxide (NO) that starts the erectile response. They also release acetylcholine that stimulates the endothelium to generate a more sustained release of NO. NO diffuses into CSMCs and increases their intracellular levels of cyclic guanosin monophosphate (cGMP) which decreases [Ca2+]i and deactivates the calcium sensitizing mechanism, thus relaxing CSMCs. This main physiological pathway for CSMCs relaxation is helped by the cyclic adenosin monophosphate (cAMP) pathway activated by various intercellular messengers from neural or paracrine sources, including prostaglandins E (PGE). Different phosphodiesterase enzymes (PDEs) inactivate the cyclic nucleotides thereby limiting their erectogenic action. Indeed the pharmacological inhibition of PDEs, especially the cGMP-specific PDE5, greatly enhances the erectile responses. There are crosstalk mechanisms between the cGMP and c

  7. Steel erected at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Workers erect the first fabricated steel girders to arrive at the A-3 Test Stand at Stennis Space Center. Steel work began at the construction site Oct. 29 and is scheduled to continue into next spring.

  8. Experimental analysis of the self-erection mechanism of self-erecting cranes

    NASA Astrophysics Data System (ADS)

    Dima, M.; Frâncu, C.

    2016-08-01

    In this paper is presented the experimental analysis of the self-erection mechanism of the self-erecting cranes for the erection process from the transport to the building site state to the normal working state. The force in the rod of the erection hydraulic cylinder and the stress and strain on one of the mechanism's bars were determined experimentally. Measuring the stress and strain was carried out by using strain gauges bonded to the measured element and by using data acquisition equipment. The measurements were carried out in real working conditions on a Potain Igo 18 in a working building site.

  9. Erection of gasifier by Poland to begin in 1987

    SciTech Connect

    Not Available

    1986-09-01

    Erection of a coal gasification project in Poland is to resume in 1987. The plant is to be built by Krupp Koppers at Libiaz in southern Poland. Equipment for the plant has been stored at Libiaz for several years. The project, which began in 1980, has been stalled due to political difficulties in Poland. The Libiaz project will reportedly use approximately 1 million metric tons per year of high sulfur coal. Synthesis gas produced by the Koppers Totzek technology will be utilized to produce methanol.

  10. A comparison of subjective and physiological measures of mechanically produced and erotically produced erections (or, is an erection an erection?).

    PubMed

    Delizonna, L L; Wincze, J P; Litz, B T; Brown, T A; Barlow, D H

    2001-01-01

    The current investigation explores possible reasons for the poor overall success rates of medical techniques used in the treatment of erectile dysfunction. This is the first study to compare directly the psychological impact of a mechanically produced versus an erotically produced erection. Subjective and objective parameters of sexual arousal were used to compare the experience of a mechanically attained erection versus an erotically stimulated erection. Twenty-eight (28) men without sexual dysfunction were asked to reach a full erection during each of the following two conditions: (a) by using an ErecAid System and (b) by self-stimulating while watching an erotic video. The results of this study suggest that the penile vacuum device was a successful method for attaining penile tumescence; however, the presence of penile tumescence was not accompanied by a subjective state of physical or mental sexual arousal. Thus, the mere physical presence of an erection does not seem to evoke bodily or mental feelings of sexual arousal. It is important to note that these findings suggest that attention to the psychosexual components of the individual's sexual experience are critical to the subjective experience of sexual arousal and reflect once again the multimodal response systems involved in sexual arousal. These results suggest that more effective treatment approaches would be based on a clinical strategy that provides instruction both on the technical use of a mechanical device as well as on the importance of creating an appropriate psychosexual environment.

  11. Improving pulverized coal plant performance

    SciTech Connect

    Regan, J.W.; Borio, R.W.; Palkes, M.; Mirolli, M.; Wesnor, J.D.; Bender, D.J.

    1995-12-31

    A major deliverable of the U.S. Department of Energy (DOE) project ``Engineering Development of Advanced Coal-Fired Low-Emissions Boiler Systems`` (LEBS) is the design of a large, in this case 400 MWe, commercial generating unit (CGU) which will meet the Project objectives. The overall objective of the LEBS Project is to dramatically improve environmental performance of future pulverized coal fired power plants without adversely impacting efficiency or the cost of electricity. The DOE specified the use of near-term technologies, i.e., advanced technologies that partially developed, to reduce NO{sub x}, SO{sub 2} and particulate emissions to be substantially less than current NSPS limits. In addition, air toxics must be in compliance and waste must be reduced and made more disposable. The design being developed by the ABB Team is projected to meet all the contract objectives and to reduce emission of NO{sub x}, SO{sub 2} and particulates to one-fifth to one-tenth NSPS limits while increasing net station efficiency significantly and reducing the cost of electricity. This design and future work are described in the paper.

  12. Melanocortin Receptors, Melanotropic Peptides and Penile Erection

    PubMed Central

    King, Stephen H.; Mayorov, Alexander V.; Balse-Srinivasan, Preeti; Hruby, Victor J.; Vanderah, Todd W.; Wessells, Hunter

    2009-01-01

    Penile erection is a complex physiologic event resulting from the interactions of the nervous system on a highly specialized vascular organ. Activation of central nervous system melanocortinergic (MC) receptors with either endogenous or synthetic melanotropic ligands may initiate and/or facilitate spontaneous penile erection. While the CNS contains principally the MC3 and MC4 receptor subtypes, there is conflicting data as to which receptor mediates erection. Although the MC4R is emerging as the principle effector of MC induced erection, the role of the MC3R is poorly understood. Manipulation of each receptor subtype with newly synthesized receptor specific agonists and antagonists, as well as knockout mice, has elucidated their individual contributions. Novel data from our laboratories suggests that antagonism of forebrain MC3R may enhance melanocortin-induced erections. Furthermore, melanocortin agents may interact with better-studied systems such as oxytocinergic pathways at the hypothalamic, brainstem or spinal level. Current therapies for erectile dysfunction target end organ vascular tissue. Manipulation of MC receptors may provide an alternative, centrally mediated therapeutic approach for erectile and other sexual dysfunctions. The non-specific “superpotent” MC agonist, PT-141, which is the carboxylate derivative of MT-II, has reached phase II human trials. Through their centrally mediated activity, melanocortin agonists have potential to treat erectile dysfunction as well as possible applications to the unmet medical needs of decreased sexual motivation and loss of libido. PMID:17584130

  13. Melanocortin receptors, melanotropic peptides and penile erection.

    PubMed

    King, Stephen H; Mayorov, Alexander V; Balse-Srinivasan, Preeti; Hruby, Victor J; Vanderah, Todd W; Wessells, Hunter

    2007-01-01

    Penile erection is a complex physiologic event resulting from the interactions of the nervous system on a highly specialized vascular organ. Activation of central nervous system melanocortinergic (MC) receptors with either endogenous or synthetic melanotropic ligands may initiate and/or facilitate spontaneous penile erection. While the CNS contains principally the MC3 and MC4 receptor subtypes, there is conflicting data as to which receptor mediates erection. Although the MC4R is emerging as the principle effector of MC induced erection, the role of the MC3R is poorly understood. Manipulation of each receptor subtype with newly synthesized receptor specific agonists and antagonists, as well as knockout mice, has elucidated their individual contributions. Novel data from our laboratories suggests that antagonism of forebrain MC3R may enhance melanocortin-induced erections. Furthermore, melanocortin agents may interact with better-studied systems such as oxytocinergic pathways at the hypothalamic, brainstem or spinal level. Current therapies for erectile dysfunction target end organ vascular tissue. Manipulation of MC receptors may provide an alternative, centrally mediated therapeutic approach for erectile and other sexual dysfunctions. The non-specific "superpotent" MC agonist, PT-141, which is the carboxylate derivative of MT-II, has reached phase II human trials. Through their centrally mediated activity, melanocortin agonists have potential to treat erectile dysfunction as well as possible applications to the unmet medical needs of decreased sexual motivation and loss of libido.

  14. Perspectives on plant vulnerabilities & other plant and containment improvements

    SciTech Connect

    LaChance, J.; Kolaczkowski, A.; Kahn, J.

    1996-01-01

    The primary goal of the Individual Plant Examination (IPE) Program was for licensees to identify plant-unique vulnerabilities and actions to address these vulnerabilities. A review of these vulnerabilities and plant improvements that were identified in the IPEs was performed as part of the IPE Insights Program sponsored by the U.S. Nuclear Regulatory Commission (NRC). The purpose of this effort was to characterize the identified vulnerabilities and the impact of suggested plant improvements. No specific definition for {open_quotes}vulnerability{close_quotes} was provided in NRC Generic Letter 88-20 or in the subsequent NRC IPE submittal guidance documented in NUREG-1335. Thus licensees were left to use their own definitions. Only 20% of the plants explicitly stated that they had vulnerabilities. However, most licensees identified other plant improvements to address issues not explicitly classified as vulnerabilities, but pertaining to areas in which overall plant safety could potentially be increased. The various definitions of {open_quotes}vulnerability{close_quotes} used by the licensees, explicitly identified vulnerabilities, proposed plant improvements to address these vulnerabilities, and other plant improvements are summarized and discussed.

  15. Canopy Light Interception of a Conventional and an Erect Leaf Mutant Sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two sorghum lines, an erect leafed mutant sorghum and the wild type from which the mutant was generated, were field grown in rectilinear arrays at low (23 plants per square meter) and high (10 plants per square meter) population densities. Canopy light interception, biomass accretion and yield were ...

  16. Biomass Accretion and Yield of Erect Leafed and Conventional Sorghum at Low and High Population Densities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two sorghum isolines, a wild type (BTx 623) and an erect leaf mutant line (ERL 20) isolated from the wild type were field grown in rectilinear arrays at low (25 plants m-2) and high (12 plants/m-2) densities with sub-surface drip irrigation in an effort to eliminate confounding drought effects. Cano...

  17. View looking southeast to the Erecting Shop on the corner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking southeast to the Erecting Shop on the corner of Spruce Street and Market Street (similar to HAER No. NJ-3-A-2) - Rogers Locomotive & Machine Works, Erecting Shop, Spruce & Market Streets, Paterson, Passaic County, NJ

  18. ERECTING SHOP INTERIOR, WITH UNRESTORED SP 1771, 260 STEAM LOCOMOTVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ERECTING SHOP INTERIOR, WITH UNRESTORED SP 1771, 2-6-0 STEAM LOCOMOTVE IN FOREGROUND, LOOKING NORTHEAST. - Southern Pacific, Sacramento Shops, Erecting Shop, 111 I Street, Sacramento, Sacramento County, CA

  19. ERECTING SHOP, EAST SIDE, LOOKING SOUTH. LEFT FOREGROUND BREAK IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ERECTING SHOP, EAST SIDE, LOOKING SOUTH. LEFT FOREGROUND BREAK IN WALL IS FOR PASSAGE OF STEAM-POWERED BELTING FROM POWERHOUSE. - Southern Pacific, Sacramento Shops, Erecting Shop, 111 I Street, Sacramento, Sacramento County, CA

  20. Optimization at Wyoming gas plant improves profitability

    SciTech Connect

    Saha, L.E. ); Chontos, A.J. ); Hatch, D.R. )

    1990-05-28

    This paper reports on a computer-aided manufacturing system for on-line optimization implemented at the Painter complex (Wyoming) gas-processing plant. The system is based on rigorous process modeling techniques using real time data. Early results show significant potential for improving the plant's profitability.

  1. Power plant productivity improvement in New York

    SciTech Connect

    1981-03-01

    The New York Public Service Commission (PSC), under contract with the US Department of Energy (DOE), began a joint program in September 1978 to improve the productivity of coal and nuclear electric generating units in New York State. The project had dual objectives: to ensure that the utilities in New York State have or develop a systematic permanent, cost-effective productivity improvement program based on sound engineering and economic considerations, and to develop a model program for Power Plant Productivity Improvement, which, through DOE, can also be utilized by other regulatory commissions in the country. To accomplish these objectives, the program was organized into the following sequence of activities: compilation and analysis of power plant performance data; evaluation and comparison of utility responses to outage/derating events; power plant productivity improvement project cost-benefit analysis; and evaluation of regulatory procedures and policies for improving productivity. The program that developed for improving the productivity of coal units is substantially different than for nuclear units. Each program is presented, and recommendations are made for activities of both the utilities and regulatory agencies which will promote improved productivity.

  2. Foliage Plants for Improving Indoor Air Quality

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1988-01-01

    NASA's research with foliage houseplants during the past 10 years has produced a new concept in indoor air quality improvement. This new and exciting technology is quite simple. Both plant leaves and roots are utilized in removing trace levels of toxic vapors from inside tightly sealed buildings. Low levels of chemicals such as carbon monoxide and formaldehyde can be removed from indoor environments by plant leaves alone, while higher concentrations of numerous toxic chemicals can be removed by filtering indoor air through the plant roots surrounded by activated carbon. The activated carbon absorbs large quantities of the toxic chemicals and retains them until the plant roots and associated microorganisms degrade and assimilate these chemicals.

  3. Role of RNA interference in plant improvement

    NASA Astrophysics Data System (ADS)

    Jagtap, Umesh Balkrishna; Gurav, Ranjit Gajanan; Bapat, Vishwas Anant

    2011-06-01

    Research to alter crops for their better performance involving modern technology is underway in numerous plants, and achievements in transgenic plants are impacting crop improvements in unparalleled ways. Striking progress has been made using genetic engineering technology over the past two decades in manipulating genes from diverse and exotic sources, and inserting them into crop plants for inducing desirable characteristics. RNA interference (RNAi) has recently been identified as a natural mechanism for regulation of gene expression in all higher organisms from plants to humans and promises greater accuracy and precision to plant improvement. The expression of any gene can be down-regulated in a highly explicit manner exclusive of affecting the expression of any other gene by using RNAi technologies. Additional research in this field has been focused on a number of other areas including microRNAs, hairpin RNA, and promoter methylation. Manipulating new RNAi pathways, which generate small RNA molecules to amend gene expression in crops, can produce new quality traits and having better potentiality of protection against abiotic and biotic stresses. Nutritional improvement, change in morphology, or enhanced secondary metabolite synthesis are some of the other advantages of RNAi technology. In addition to its roles in regulating gene expression, RNAi is also used as a natural defense mechanism against molecular parasites such as jumping genes and viral genetic elements that affect genome stability. Even though much advancement has been made on the field of RNAi over the preceding few years, the full prospective of RNAi for crop improvement remains to be fully realized. The intricacy of RNAi pathway, the molecular machineries, and how it relates to plant development are still to be explained.

  4. 20. 'Erection Plan, Renewal of Bridge 210 C over Sacramento ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. 'Erection Plan, Renewal of Bridge 210 C over Sacramento River near Tehama, Calif., 3 140'-0' S. T. Riveted Thru Truss Spans, 17'-9' C. to C. Trusses, 31'-0' C. To C. Chords. U.S.S. P. Co. Pacific Coast Dept., Order No. SF 604, Southern Pacific Co., Order No. 51168-P-38428, 1925 Specifications, Scale in. ft., American Bridge Co., Ambridge Plant, Dwgs. made at Ambridge No. 5 in charge of Reehl, Detailed by W.F.R., Date, Checked by L.A.E., Date 1/5/29, Fld. conn. chk. by ENN, Date 3/9/29, Order No. F5659, Sheet No. E3.' - Southern Pacific Railroad Shasta Route, Bridge No. 210.52, Milepost 210.52, Tehama, Tehama County, CA

  5. Space station erectable manipulator placement system

    NASA Technical Reports Server (NTRS)

    Grimaldi, Margaret E. (Inventor)

    1988-01-01

    A habitable space station was proposed for low earth orbit, to be constructed from components which will be separately carried up from the earth and thereafter assembled. A suitable manipulating system having extraordinary manipulative capability is required. The invention is an erectable manipulator placement system for use on a space station and comprises an elongate, lattice-like boom having guide tracks attached thereto, a carriage-like assembly pivotally mounted on and extending from said dolly. The system further includes a turntable base pivotally interconnected with the proximal end of the boom and positioned either on a part of a transferring vehicle, or on another payload component being carried by the said transferring vehicle, or on the space station. Novelty resides in the use of a turntable base having a hinged boom with a dolly translatable therealong to carry the arm-like assembly, thus providing an additional 3 degrees of freedom to the arm.

  6. Efficiency improvement of thermal coal power plants

    SciTech Connect

    Hourfar, D.

    1996-12-31

    The discussion concerning an increase of the natural greenhouse effect by anthropogenic changes in the composition of the atmosphere has increased over the past years. The greenhouse effect has become an issue of worldwide debate. Carbon dioxide is the most serious emission of the greenhouse gases. Fossil-fired power plants have in the recent past been responsible for almost 30 % of the total CO{sub 2} emissions in Germany. Against this background the paper will describe the present development of CO{sub 2} emissions from power stations and present actual and future opportunities for CO{sub 2} reduction. The significance attached to hard coal as one of today`s prime sources of energy with the largest reserves worldwide, and, consequently, its importance for use in power generation, is certain to increase in the years to come. The further development of conventional power plant technology, therefore, is vital, and must be carried out on the basis of proven operational experience. The main incentive behind the development work completed so far has been, and continues to be, the achievement of cost reductions and environmental benefits in the generation of electricity by increasing plant efficiency, and this means that, in both the short and the long term, power plants with improved conventional technology will be used for environmentally acceptable coal-fired power generation.

  7. Idaho Chemical Processing Plant Process Efficiency improvements

    SciTech Connect

    Griebenow, B.

    1996-03-01

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond.

  8. Switchable Wettability of the Honeybee’s Tongue Surface Regulated by Erectable Glossal Hairs

    PubMed Central

    Chen, Ji; Wu, Jianing; Yan, Shaoze

    2015-01-01

    Various nectarivorous animals apply bushy-hair-equipped tongues to lap nectar from nectaries of flowers. A typical example is provided by the Italian honeybee (Apis mellifera ligustica), who protracts and retracts its tongue (glossa) through a temporary tube, and actively controls the erectable glossal hairs to load nectar. We first examined the microstructure of the honeybee’s glossal surface, recorded the kinematics of its glossal hairs during nectar feeding process and observed the rhythmical hair erection pattern clearly. Then we measured the wettability of the glossal surface under different erection angles (EA) in sugar water of the mass concentration from 25 to 45%, mimicked by elongating the glossa specimens. The results show that the EA in retraction approximately remains stable under different nectar concentrations. In a specific concentration (35, 45, or 55%), the contact angle decreases and glossal surface area increases while the EA of glossal hairs rises, the glossa therefore could dynamically alter the glossal surface and wettability in foraging activities, not only reducing the energy consumption for impelling the nectar during tongue protraction, but also improving the nectar-trapping volume for feeding during glossa retraction. The dynamic glossal surface with switchable wettability regulated by erectable hairs may reveal the effective adaptation of the honeybee to nectar intake activities. PMID:26643560

  9. Switchable Wettability of the Honeybee's Tongue Surface Regulated by Erectable Glossal Hairs.

    PubMed

    Chen, Ji; Wu, Jianing; Yan, Shaoze

    2015-01-01

    Various nectarivorous animals apply bushy-hair-equipped tongues to lap nectar from nectaries of flowers. A typical example is provided by the Italian honeybee (Apis mellifera ligustica), who protracts and retracts its tongue (glossa) through a temporary tube, and actively controls the erectable glossal hairs to load nectar. We first examined the microstructure of the honeybee's glossal surface, recorded the kinematics of its glossal hairs during nectar feeding process and observed the rhythmical hair erection pattern clearly. Then we measured the wettability of the glossal surface under different erection angles (EA) in sugar water of the mass concentration from 25 to 45%, mimicked by elongating the glossa specimens. The results show that the EA in retraction approximately remains stable under different nectar concentrations. In a specific concentration (35, 45, or 55%), the contact angle decreases and glossal surface area increases while the EA of glossal hairs rises, the glossa therefore could dynamically alter the glossal surface and wettability in foraging activities, not only reducing the energy consumption for impelling the nectar during tongue protraction, but also improving the nectar-trapping volume for feeding during glossa retraction. The dynamic glossal surface with switchable wettability regulated by erectable hairs may reveal the effective adaptation of the honeybee to nectar intake activities. PMID:26643560

  10. 74. ERECTION AND WELDING OF WEST BOILER CHAMBER, DECEMBER 21, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. ERECTION AND WELDING OF WEST BOILER CHAMBER, DECEMBER 21, 1955 (LOOKING NORTHEAST) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  11. 14. VIEW OF SOUTH FACE OF MST, FULLY ERECTED UMBILICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF SOUTH FACE OF MST, FULLY ERECTED UMBILICAL MAST, LAUNCHER, AND FLAME BUCKET - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. First Structural Steel Erected at NSLS-II

    SciTech Connect

    2009-09-14

    Ten steel columns were incorporated into the ever-growing framework for the National Synchrotron Light Source II last week, the first structural steel erected for the future 400,000-square-foot facility.

  13. 7. Detail of the Grant Locomotive Works Erecting Shop looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail of the Grant Locomotive Works Erecting Shop looking southwest showing ruined wall and entrance of a single story addition. - Grant Locomotive Works, Market & Spruce Streets, Paterson, Passaic County, NJ

  14. First Structural Steel Erected at NSLS-II

    ScienceCinema

    None

    2016-07-12

    Ten steel columns were incorporated into the ever-growing framework for the National Synchrotron Light Source II last week, the first structural steel erected for the future 400,000-square-foot facility.

  15. 23. LOOKING SOUTHEAST, ERECTING STEEL FRAMEWORK FOR SEAPLANE HANGAR (BLDG. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. LOOKING SOUTHEAST, ERECTING STEEL FRAMEWORK FOR SEAPLANE HANGAR (BLDG. 1). USN PHOTO, OCTOBER 3, 1940. - Quonset Point Naval Air Station, Roger Williams Way, North Kingstown, Washington County, RI

  16. 37. ERECTION ASSEMBLY FOR ATLAS H LAUNCH VEHICLE AT STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. ERECTION ASSEMBLY FOR ATLAS H LAUNCH VEHICLE AT STATION 124 OF MST, SOUTH SIDE - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. 26. PULLEY SYSTEM FOR ERECTION OF ATLAS H LAUNCH VEHICLES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. PULLEY SYSTEM FOR ERECTION OF ATLAS H LAUNCH VEHICLES AT SOUTH SIDE OF MST, FROM STATION 93 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. [Genetic analysis of dense and erect panicle 2 allele DEP2-1388 and its application in hybrid rice breeding].

    PubMed

    Hu, Yungao; Guo, Lianan; Yang, Guotao; Qin, Peng; Fan, Cunliu; Peng, Youlin; Yan, Wei; He, Hang; Li, Shigui

    2016-01-01

    Using ethyl methanesulfonate (EMS) mutagenesis, we isolated an erect panicle mutant, R1338, from indica heavy-panicle restorer Shuhui498. Compared with wild type control, the mutant displayed dwarfism, erect and short panicle, short primary panicle branch, increased grain density, short grain length and increased grain thickness. In addition, the erect panicle architecture of R1388 resulted in significant decreased bending moment and increased resistance to panicle bending. Histocytological analysis indicated that the diameter of uppermost internode, cellulose content and lignin content play important roles in resistance to panicle bending. Genetic analysis revealed that the mutant phenotype was controlled by a semi-dominant nuclear gene. With resequencing and MutMap analysis strategy, we found that one SNP from A to G at the seventh exon of DEP2 resulted in the 928(th) amino acid substitution from arginine (AGG) to glycine (GGG) in R1338 mutant. Considering the phenotype of other dep2 mutants, the phenotype of R1338 was likely to be caused by the SNP in DEP2. The mutant R1338 and wild type were crossed with several sterile lines which respectively had different panicle types, the combinations generated from R1338 and curve panicle sterile lines showed semi-erect panicle, higher seed setting percentage and heterosis, and the combinations generated from R1388 and erect panicle sterile line with DEP1 showed erect panicle by gene additive effect. Moreover, the combinations with semi-erect panicle had superior light transmittance and stronger light intensity, which improved efficiency of light utilization to intermediate and subjacent leaves compared to the combinations with curved panicle. This study provides a good strategy to solve the problem of population density in three-line hybrid rice. PMID:26787525

  19. Method to improve drought tolerance in plants

    SciTech Connect

    Schroeder, Julian I.; Kwak, June Myoung

    2003-10-21

    A method to increase drought resistance in plants is provided. The method comprises inhibiting or disabling inward-rectifying K.sup.+ (K.sup.+.sub.in) channels in the stomatal guard cells of the plant.

  20. Sleep-Related Painful Erections in a Patient With Obstructive Sleep Apnea Syndrome.

    PubMed

    Abouda, Maher; Jomni, Taieb; Yangui, Ferdaws; Charfi, Mohamed Ridha; Arnulf, Isabelle

    2016-01-01

    Sleep-related painful erection (SRPE) is a rare sleep disorder characterized by recurrent, painful penile erections occurring when awakening from rapid eye movement sleep, while erections are painless during wakefulness. Almost 35 cases have been reported worldwide, and only two of them had an associated obstructive sleep apnea syndrome (OSAS). We report a new case of a 61-year-old man suffering from SRPE associated with OSAS. The adequate treatment of respiratory events with continuous positive airway pressure did not alleviate the SRPE symptoms and excessive daytime sleepiness. The SRPE diagnosis was made by polysomnography coupled with video surveillance when the patient was referred to the sleep laboratory for residual excessive daytime sleepiness. The patient had 2-4 episodes of SRPE/night. Beta-blocker did not alleviate the SRPE, but a transient improvement was noted when the patient was treated with paroxetine. In contrast with the two previously published cases of SRPE plus OSAS, continuous positive airway treatment did not improve SRPE symptoms in our patient. PMID:26392186

  1. Biotechnological interventions to improve plant developmental traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developmental traits are coordinated at various levels in a plant and involve organ to organ communications via long distance signaling processes that integrate transcription, hormonal action and environmental cues. Thus, plant architecture, root-soil-microbe interactions, flowering, fruit (and seed...

  2. Improvement of water treatment at thermal power plants

    NASA Astrophysics Data System (ADS)

    Larin, B. M.; Bushuev, E. N.; Larin, A. B.; Karpychev, E. A.; Zhadan, A. V.

    2015-04-01

    Prospective and existing technologies for water treatment at thermal power plants, including pretreatment, ion exchange, and membrane method are considered. The results obtained from laboratory investigations and industrial tests of the proposed technologies carried out at different thermal power plants are presented. The possibilities of improving the process and environmental indicators of water treatment plants are shown.

  3. Clinical neuroanatomy and neurotransmitter-mediated regulation of penile erection.

    PubMed

    Jung, Junyang; Jo, Hyun Woo; Kwon, Hyunseob; Jeong, Na Young

    2014-06-01

    Erectile dysfunction (ED) has an adverse impact on men's quality of life. Penile erection, which is regulated by nerves that are innervated into the erectile tissue, can be affected by functional or anatomical trauma of the perineal region, including specific structures of the penis, causing ED. Penile erection is neurologically controlled by the autonomic nervous system. Therefore, it is of utmost importance to understand the neurogenic structure of the erectile tissue and the types of neurotransmitters involved in the penile erection process. Here, we highlight the basic clinical anatomy and erectile function of the penis. Understanding the clinical connotation of the relationship between penile erectile structure and function may provide fresh insights for identifying the main mechanisms involved in ED and help develop surgical techniques for the treatment of ED.

  4. Compositions and methods for improved plant feedstock

    SciTech Connect

    Shen, Hui; Chen, Fang; Dixon, Richard A

    2014-12-02

    The invention provides methods for modifying lignin content and composition in plants and achieving associated benefits therefrom involving altered expression of newly discovered MYB4 transcription factors. Nucleic acid constructs for modifying MYB4 transcription factor expression are described. By over-expressing the identified MYB4 transcription factors, for example, an accompanying decrease in lignin content may be achieved. Plants are provided by the invention comprising such modifications, as are methods for their preparation and use.

  5. ALA Pretreatment Improves Waterlogging Tolerance of Fig Plants

    PubMed Central

    An, Yuyan; Qi, Lin; Wang, Liangju

    2016-01-01

    5-aminolevulinic acid (ALA), a natural and environmentally friendly plant growth regulator, can improve plant tolerance to various environmental stresses. However, whether ALA can improve plant waterlogging tolerance is unknown. Here, we investigated the effects of ALA pretreatment on the waterlogging-induced damage of fig (Ficus carica Linn.) plants, which often suffer from waterlogging stress. ALA pretreatment significantly alleviated stress-induced morphological damage, increased leaf relative water content (RWC), and reduced leaf superoxide anion (O2⋅¯) production rate and malonaldehyde (MDA) content in fig leaves, indicating ALA mitigates waterlogging stress of fig plants. We further demonstrated that ALA pretreatment largely promoted leaf chlorophyll content, photosynthetic electron transfer ability, and photosynthetic performance index, indicating ALA significantly improves plant photosynthetic efficiency under waterlogging stress. Moreover, ALA pretreatment significantly increased activities of leaf superoxide dismutase (SOD) and peroxidase (POD), root vigor, and activities of root alcohol dehydrogenase (ADH), and lactate dehydrogenase (LDH), indicating ALA also significantly improves antioxidant ability and root function of fig plants under waterlogging stress. Taken together, ALA pretreatment improves waterlogging tolerance of fig plants significantly, and the promoted root respiration, leaf photosynthesis, and antioxidant ability may contribute greatly to this improvement. Our data firstly shows that ALA can improve plant waterlogging tolerance. PMID:26789407

  6. ALA Pretreatment Improves Waterlogging Tolerance of Fig Plants.

    PubMed

    An, Yuyan; Qi, Lin; Wang, Liangju

    2016-01-01

    5-aminolevulinic acid (ALA), a natural and environmentally friendly plant growth regulator, can improve plant tolerance to various environmental stresses. However, whether ALA can improve plant waterlogging tolerance is unknown. Here, we investigated the effects of ALA pretreatment on the waterlogging-induced damage of fig (Ficus carica Linn.) plants, which often suffer from waterlogging stress. ALA pretreatment significantly alleviated stress-induced morphological damage, increased leaf relative water content (RWC), and reduced leaf superoxide anion ([Formula: see text]) production rate and malonaldehyde (MDA) content in fig leaves, indicating ALA mitigates waterlogging stress of fig plants. We further demonstrated that ALA pretreatment largely promoted leaf chlorophyll content, photosynthetic electron transfer ability, and photosynthetic performance index, indicating ALA significantly improves plant photosynthetic efficiency under waterlogging stress. Moreover, ALA pretreatment significantly increased activities of leaf superoxide dismutase (SOD) and peroxidase (POD), root vigor, and activities of root alcohol dehydrogenase (ADH), and lactate dehydrogenase (LDH), indicating ALA also significantly improves antioxidant ability and root function of fig plants under waterlogging stress. Taken together, ALA pretreatment improves waterlogging tolerance of fig plants significantly, and the promoted root respiration, leaf photosynthesis, and antioxidant ability may contribute greatly to this improvement. Our data firstly shows that ALA can improve plant waterlogging tolerance. PMID:26789407

  7. ALA Pretreatment Improves Waterlogging Tolerance of Fig Plants.

    PubMed

    An, Yuyan; Qi, Lin; Wang, Liangju

    2016-01-01

    5-aminolevulinic acid (ALA), a natural and environmentally friendly plant growth regulator, can improve plant tolerance to various environmental stresses. However, whether ALA can improve plant waterlogging tolerance is unknown. Here, we investigated the effects of ALA pretreatment on the waterlogging-induced damage of fig (Ficus carica Linn.) plants, which often suffer from waterlogging stress. ALA pretreatment significantly alleviated stress-induced morphological damage, increased leaf relative water content (RWC), and reduced leaf superoxide anion ([Formula: see text]) production rate and malonaldehyde (MDA) content in fig leaves, indicating ALA mitigates waterlogging stress of fig plants. We further demonstrated that ALA pretreatment largely promoted leaf chlorophyll content, photosynthetic electron transfer ability, and photosynthetic performance index, indicating ALA significantly improves plant photosynthetic efficiency under waterlogging stress. Moreover, ALA pretreatment significantly increased activities of leaf superoxide dismutase (SOD) and peroxidase (POD), root vigor, and activities of root alcohol dehydrogenase (ADH), and lactate dehydrogenase (LDH), indicating ALA also significantly improves antioxidant ability and root function of fig plants under waterlogging stress. Taken together, ALA pretreatment improves waterlogging tolerance of fig plants significantly, and the promoted root respiration, leaf photosynthesis, and antioxidant ability may contribute greatly to this improvement. Our data firstly shows that ALA can improve plant waterlogging tolerance.

  8. 29. (Credit JTL) Low service pump pit in background erected ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. (Credit JTL) Low service pump pit in background erected in 1911-1912 on the banks of Cross Bayou (a Worthington compound duplex steam engine was placed inside this structure.) In the foreground is the receiving well (also erected in 1911-1912) which received water from the Red River siphon. After 1926 this well received water, instead, from Cross Lake via a 30-inch conduit. A concrete platform was installed in 1960 for #6 electric low service pump which has been superceded by newer 1977 installation. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  9. Possible function of the frenulum of prepuce in penile erection.

    PubMed

    Song, B; Cai, Z-M

    2012-02-01

    Fremulum of prepuce was the ruffle of foreskin while there was little about the function of fremulum. This study discusses the possible function of the frenulum of prepuce in penile erection. Twelve patients had premature ejaculation (PE) whose frenula were short. Two patients suffered unsatisfied intercourse whose frenula were damaged and departed 12 or 6 months earlier. We prolonged the short frenulum and reconstructed the ruptured frenulum. All patients reported satisfied sexual intercourse after 3-6 months. It is concluded that the frenulum is important in penile erection. PE might be treated by lengthening the frenulum.

  10. Astronaut Ross Approaches Assembly Concept for Construction of Erectable Space Structure (ACCESS)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross, perched on the Manipulator Foot Restraint (MFR) approaches the erected ACCESS. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  11. STS-61B Astronaut Ross Works on Assembly Concept for Construction of Erectable Space Structure

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo astronaut Ross, located on the Manipulator Foot Restraint (MFR) over the cargo bay, erects ACCESS. The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  12. RETENTION BASIN. ERECTING REINFORCING STEEL FOR CONCRETE DECK. STACK RISES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RETENTION BASIN. ERECTING REINFORCING STEEL FOR CONCRETE DECK. STACK RISES AT TOP LEFT. CAMERA FACES WEST. INL NEGATIVE NO. 2581. Unknown Photographer, 6/18/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. STEEL ERECTION. View of downstream of bridge, looking southeast from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STEEL ERECTION. View of downstream of bridge, looking southeast from confluence of Trinity and South Fork Trinity rivers. The old suspension bridge is in background - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA

  14. 6. AERIAL VIEW LOOKING NORTHWEST SHOWING SALVAGE ARCHAEOLOGY TRENCH, ERECTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. AERIAL VIEW LOOKING NORTHWEST SHOWING SALVAGE ARCHAEOLOGY TRENCH, ERECTING SHOP, ADMINISTRATION BUILDING, FITTING SHOP, MILLWRIGHT SHOP. DOLPHIN MANUFACTURING CO. AND BARBOUR FLAX SPINNING CO. IN LOWER LEFT, SUM HYDROELECTRIC IN UPPER RIGHT. - Rogers Locomotive & Machine Works, Spruce & Market Streets, Paterson, Passaic County, NJ

  15. 1. Historic American Buildings Survey Erected 1822. Built by Colonel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey Erected 1822. Built by Colonel William Rhodes. His wife Paulina Clay was the daughter of General Green Clay and sister of General Cassius Marcellus Clay, Ambassador to Russia under President Lincoln. - Woodlawn, Richmond, Madison County, KY

  16. 17. Photocopy of drawing, Erection Plan of Top Lateral Bracing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Photocopy of drawing, Erection Plan of Top Lateral Bracing of Bridge at South Norwalk for the N.Y., N.H. and H.R.R., dated June 12, 1895. Original on file with Metro North Commuter Railroad. - South Norwalk Railroad Bridge, South Main & Washington Streets, Norwalk, Fairfield County, CT

  17. 75 FR 27428 - Safety Standards for Steel Erection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... Labor's Order 5-2007 (72 FR 31160), and 29 CFR part 1911. Signed at Washington, DC, on May 4, 2010... (65 FR 50017), 5-2002 (67 FR 65008), and 5-2007 (72 FR 31160); and 29 CFR part 1911. 0 2. Amend Sec... Occupational Safety and Health Administration 29 CFR Part 1926 Safety Standards for Steel Erection...

  18. 18. Photocopy of drawing, Erection Plan, North Truss, Bridge at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photocopy of drawing, Erection Plan, North Truss, Bridge at Main and Washington Sts., Norwalk, Ct., Contract No. 3000, Berlin Iron Bridge Company, dated July 12, 1895. Original on file with Metro North Commuter Railroad. - South Norwalk Railroad Bridge, South Main & Washington Streets, Norwalk, Fairfield County, CT

  19. Methylphenidate-induced erections in a prepubertal child.

    PubMed

    Kelly, B D; Lundon, D J; McGuinness, D; Brady, C M

    2013-02-01

    Methylphenidate is a medication used routinely in the management of attention deficit hyperactivity disorder. We report a case of a prepubertal child who developed unwanted erections after commencing a response-adjusted dosing regimen of sustained release methylphenidate. Despite priapism being a rare adverse reaction associated with methylphenidate, physicians and parents need to be aware as it can have significant long-term complications.

  20. Molecular marker technologies for plant improvement.

    PubMed

    Winter, P; Kahl, G

    1995-07-01

    The exploitation of DNA polymorphisms by an ever-increasing number of molecular marker technologies has begun to have an impact on plant genome research and breeding. Restriction fragment length polymorphisms, micro- and mini-satellites and PCR-based approaches are used to determine inter- and intra-specific genetic diversity and construct molecular maps of crops using specially designed mapping populations. Resistance genes and other agronomically important loci are tagged with tightly linked DNA markers and the genes isolated by magabase DNA technology and cloning into yeast artificial chromosomes (YAC). This review discusses some recent developments and results in this field.

  1. Improving the Physical Plant and Residence-Life Department Relationship.

    ERIC Educational Resources Information Center

    Adams, Matthew C.

    1999-01-01

    Discusses the communication difficulties between educational-facility housing managers and plant management and ways to improve it so that maintenance problems can be resolved. Examples of successful housing and facility-management partnerships are highlighted. (GR)

  2. [Comparative study on the erect and fallen types of Platycodon grandiflorum (Jacq.) DC].

    PubMed

    Gao, W; Tang, X; Li, Z; Xiao, P

    1997-03-01

    Based on botanica characters, phenophase, yield and content of active constituents, the erect and fallen types of platycodon grandiflorum were compared. The results show that the comprehensive characters of erect type are better than those of fallen type and the erect type is therefore good for popularization. Some specific characters of the fallen type are better than those of the erect type, and the fallen type is therefore to be preserved as one of the germ plasm resources.

  3. Compressed Air System Improvements at an Automotive Plant

    SciTech Connect

    2000-10-01

    In 1998, the Ford Motor Company implemented a compressed air system improvement project at its Woodhaven Stamping plant in Woodhaven, Michigan. As a result of the system approach that it took towards improving the plant's compressed air system, the plant was able to take an 800-hp air compressor offline, shut down several high pressure satellite compressors, and operate the remaining compressors more efficiently.

  4. Quantification of risks from technology for improved plant reliability

    SciTech Connect

    Rode, D.M.

    1996-12-31

    One of the least understood and therefore appreciated threats to profitability are risks from power plant technologies such as steam generators, turbines, and electrical systems. To effectively manage technological risks, business decisions need to be based on knowledge. The scope of the paper describes a quantification or risk process that combines technical knowledge and judgments with commercial consequences. The three principle alternatives to manage risks as well as risk mitigation techniques for significant equipment within a power plant are reported. The result is to equip the decision maker with a comprehensive picture of the risk exposures enabling cost effective activities to be undertaken to improve a plant`s reliability.

  5. Development of assembly and joint concepts for erectable space structures

    NASA Technical Reports Server (NTRS)

    Jacquemin, G. G.; Bluck, R. M.; Grotbeck, G. H.; Johnson, R. R.

    1980-01-01

    The technology associated with the on-orbit assembly of tetrahedral truss platforms erected of graphite epoxy tapered columns is examined. Associated with the assembly process is the design and fabrication of nine member node joints. Two such joints demonstrating somewhat different technology were designed and fabricated. Two methods of automatic assembly using the node designs were investigated, and the time of assembly of tetrahedral truss structures up to 1 square km in size was estimated. The effect of column and node joint packaging on the Space Shuttle cargo bay is examined. A brief discussion is included of operating cost considerations and the selection of energy sources. Consideration was given to the design assembly machines from 5 m to 20 m. The smaller machines, mounted on the Space Shuttle, are deployable and restowable. They provide a means of demonstrating the capabilities of the concept and of erecting small specialized platforms on relatively short notice.

  6. Brain potentials related to the human penile erection.

    PubMed

    Ponseti, J; Kropp, P; Bosinski, H A

    2009-01-01

    The aim of this study was to elucidate the brain processes preceding penile responses. Electroencephalographic (EEG) potentials and penile circumference were recorded simultaneously while male subjects were exposed to visual sexual stimuli (VSS). The trials were sorted by the penile response of the subjects (erection, maintenance or detumescence). The corresponding EEG recordings were then subjected to independent component analysis. We found that 200 ms after VSS onset brain potentials differ according to the genital response to follow. Whereas early posterior negativity (EPN) was predominantly related to erection and maintenance, P3-like activity was found to precede detumescence. EPN indicates a more 'emotional' processing state of the brain, whereas P3-like activity related to detumescence indicates a more 'cognitive' processing state. The latter is assumed to reflect activity of the locus coeruleus-norepinephrine system. Further research should evaluate the contribution of P3-related brain activity to psychogenic erectile dysfunction.

  7. IMPROVING TACONITE PROCESSING PLANT EFFICIENCY BY COMPUTER SIMULATION, Final Report

    SciTech Connect

    William M. Bond; Salih Ersayin

    2007-03-30

    This project involved industrial scale testing of a mineral processing simulator to improve the efficiency of a taconite processing plant, namely the Minorca mine. The Concentrator Modeling Center at the Coleraine Minerals Research Laboratory, University of Minnesota Duluth, enhanced the capabilities of available software, Usim Pac, by developing mathematical models needed for accurate simulation of taconite plants. This project provided funding for this technology to prove itself in the industrial environment. As the first step, data representing existing plant conditions were collected by sampling and sample analysis. Data were then balanced and provided a basis for assessing the efficiency of individual devices and the plant, and also for performing simulations aimed at improving plant efficiency. Performance evaluation served as a guide in developing alternative process strategies for more efficient production. A large number of computer simulations were then performed to quantify the benefits and effects of implementing these alternative schemes. Modification of makeup ball size was selected as the most feasible option for the target performance improvement. This was combined with replacement of existing hydrocyclones with more efficient ones. After plant implementation of these modifications, plant sampling surveys were carried out to validate findings of the simulation-based study. Plant data showed very good agreement with the simulated data, confirming results of simulation. After the implementation of modifications in the plant, several upstream bottlenecks became visible. Despite these bottlenecks limiting full capacity, concentrator energy improvement of 7% was obtained. Further improvements in energy efficiency are expected in the near future. The success of this project demonstrated the feasibility of a simulation-based approach. Currently, the Center provides simulation-based service to all the iron ore mining companies operating in northern

  8. Doramectin reduces sexual behavior and penile erection in male rats.

    PubMed

    Ferri, R; Todon E Silva, A F S; Cabral, D; Moreira, N; Spinosa, H S; Bernardi, M M

    2013-01-01

    Doramectin (DOR) is an antiparasitic drug that is widely used in domestic animals. In mammals, DOR acts as a γ-aminobutyric acid receptor agonist. This neurotransmitter plays an important role in the regulation of sexual behavior. The present study investigated the effects of two medically relevant doses of DOR on sexual behavior in male rats. We also examined whether previous sexual experience modulates responses to DOR. General activity was first observed in an open field 24, 48, and 72 h after administration of 0.1 and 0.3 mg/kg DOR to determine the dose and time effects of the drug. Apomorphine-induced penile erection and sexual behavior in inexperienced male rats were then analyzed. The effects of previous sexual experience on subsequent sexual behavior in DOR-treated rats (0.3 mg/kg, 24 h prior to the test) were also assessed. The standard therapeutic dose (0.2 mg/kg) did not modify general activity or penile erection. A slightly concentrated dose of 0.3 mg/kg, which is still within the therapeutic range, decreased apomorphine-induced penile erection, whereas 0.2 mg/kg did not modify this behavior. Compared with controls, sexual behavior in inexperienced male rats was impaired after 0.3 mg/kg DOR. Previous sexual experience had little impact on the effects of 0.3 mg/kg DOR. In conclusion, the 0.2 mg/kg dose of DOR did not affect motor behavior or apomorphine-induced penile erection. At a more slightly higher dose level, the appetitive and consummatory phases of sexual behavior in inexperienced male rats were impaired. Previous sexual experience was unable to reverse this sexual impairment, suggesting that previous sexual experience does not exert a positive effect in attenuating sexual impairment produced by DOR treatment.

  9. 16. 'Erection Plan for 1 236' Single Tr. Thro' Draw ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. 'Erection Plan for 1 236' Single Tr. Thro' Draw Span over Sacramento River at Tehama Cal., Southern Pacific Co., The Phoenix Bridge Co., City Order: 952, Drawing No.: 2, Scale: 3/16' to 1', Engineer: F.G. Lippert, Drawn by: F.E. King, Date: May 20 98.' - Southern Pacific Railroad Shasta Route, Bridge No. 210.52, Milepost 210.52, Tehama, Tehama County, CA

  10. Physiology of penile erection and pathophysiology of erectile dysfunction.

    PubMed

    Dean, Robert C; Lue, Tom F

    2005-11-01

    This article reviews the physiology of penile erection, the components of erectile function, and the pathophysiology of erectile dysfunction. The molecular and clinical under-standing of erectile function continues to gain ground at a particularly fast rate. Advances in gene discovery have aided greatly in working knowledge of smooth muscle relaxation/contraction pathways. The understanding of the nitric oxide pathway has aided not only in the molecular understanding of the tumescence but also greatly in the therapy of erectile dysfunction.

  11. Deployable-erectable trade study for space station truss structures

    NASA Technical Reports Server (NTRS)

    Mikulas, M. M., Jr.; Wright, A. S., Jr.; Bush, H. G.; Watson, J. J.; Dean, E. B.; Twigg, L. T.; Rhodes, M. D.; Cooper, P. A.; Dorsey, J. T.; Lake, M. S.

    1985-01-01

    The results of a trade study on truss structures for constructing the space station are presented. Although this study was conducted for the reference gravity gradient space station, the results are generally applicable to other configurations. The four truss approaches for constructing the space station considered in this paper were the 9 foot single fold deployable, the 15 foot erectable, the 10 foot double fold tetrahedral, and the 15 foot PACTRUSS. The primary rational for considering a 9 foot single-fold deployable truss (9 foot is the largest uncollapsed cross-section that will fit in the Shuttle cargo bay) is that of ease of initial on-orbit construction and preintegration of utility lines and subsystems. The primary rational for considering the 15 foot erectable truss is that the truss bay size will accommodate Shuttle size payloads and growth of the initial station in any dimension is a simple extension of the initial construction process. The primary rational for considering the double-fold 10 foot tetrahedral truss is that a relatively large amount of truss structure can be deployed from a single Shuttle flight to provide a large number of nodal attachments which present a pegboard for attaching a wide variety of payloads. The 15 foot double-fold PACTRUSS was developed to incorporate the best features of the erectable truss and the tetrahedral truss.

  12. Role of hydrogen sulfide in the physiology of penile erection.

    PubMed

    Qiu, Xuefeng; Villalta, Jackie; Lin, Guiting; Lue, Tom F

    2012-01-01

    Hydrogen sulfide (H(2)S), which is a well-known toxic gas, has recently been recognized as a biological messenger that plays an important role in physiological and pathophysiological conditions. Relatively high levels of H(2)S have been discovered in mammalian tissues. It is mainly synthesized by 2 enzymes, including cystathionine β-synthase and cystathionine γ-lysase, which utilize L-cysteine as substrate to produce H(2)S. H(2)S has been demonstrated to exhibit potent vasodilator activity both in vitro and in vivo by relaxing vascular smooth muscle. Recently, H(2)S has been discovered in penile tissue with smooth muscle relaxant effects. Furthermore, other effects of H(2)S could play a role in the physiology of erection. Understanding H(2)S in the physiology of erection might provide alternative erectile dysfunction strategies for those patients with poor or no response to type 5 phosphodiesterase inhibitors. This review intends to present the H(2)S pathway in penile tissue and the potential role of H(2)S in the physiology of erections.

  13. Improved Austenitic Steels for Power Plant Applications

    SciTech Connect

    Alman, David E.; Dunning, John S.; Schrems, Karol K.; Rawers, James C.; Wilson, Rick D.; Hawk, Jeffrey A.; Petty, Arthur V., Jr.

    2002-08-06

    Using alloy design principles, an austenitic alloy, with base composition of Fe-16Cr-16Ni-2Mn-1Mo (in weight percent, wt%), was formulated to which up to 5 wt% Si and/or Al were added specifically to improve the oxidation resistance. Cyclic oxidation tests were carried out in air at 700 and 800 C for 1000 hours. For comparison, Fe-18Cr-8Ni type-304 stainless steel alloys was also tested. The results showed that at 700 C, all the alloys were twice as oxidation resistant as the type-304 alloy (i.e., the experimental alloys showed weight gains about half that of type-304). Surprisingly, at 800 C, alloys that contained both Al and Si additions were less oxidation resistant than the type-304 alloy. However, alloys containing only Si additions were significantly more oxidation resistant than the type 304 alloys (i.e., showed weight gains 4 times less than the type-304 alloy). Further, alloys with only Si additions pre-oxidized at 800 C, showed zero weight gain in subsequent testing for 1000 hours at 700 C. This implies the potential for producing in-situ protective coating for these alloys. Preliminary exposure tests (1%H2S at 700 C for 360 hrs) indicated that the Si-modified alloys are more sulfidation resistant than type-304 alloy. The mechanical properties of the alloys, modified with carbide forming elements, were also evaluated; and at 600, 700 and 800 C the yield stresses of the carbide modified alloys were twice that of type-304 stainless steel. In this temperature range, the tensile properties of these alloys were comparable to literature values for type-347 stainless steel. It should be emphasized that the microstructures of the carbide forming alloys were not optimized with respect to grain size, carbide size and/or carbide distribution. Also, presented are initial results of vari-strain weld tests used to determine parameters for joining these alloys.

  14. Guide for prioritizing power plant productivity improvement projects: handbook of availability improvement methodology

    SciTech Connect

    Not Available

    1981-09-15

    As part of its program to help improve electrical power plant productivity, the Department of Energy (DOE) has developed a methodology for evaluating productivity improvement projects. This handbook presents a simplified version of this methodology called the Availability Improvement Methodology (AIM), which provides a systematic approach for prioritizing plant improvement projects. Also included in this handbook is a description of data taking requirements necessary to support the AIM methodology, benefit/cost analysis, and root cause analysis for tracing persistent power plant problems. In applying the AIM methodology, utility engineers should be mindful that replacement power costs are frequently greater for forced outages than for planned outages. Equivalent availability includes both. A cost-effective ranking of alternative plant improvement projects must discern between those projects which will reduce forced outages and those which might reduce planned outages. As is the case with any analytical procedure, engineering judgement must be exercised with respect to results of purely mathematical calculations.

  15. Nutritional improvements in plants: time to bite on biofortified foods.

    PubMed

    Hirschi, Kendal

    2008-09-01

    Modern breeding, molecular genetic and biotechnology studies frequently describe changes in plant metabolism to improve nutritional content; however, this is often where the process of assessing biofortification ends. Ideally, these modified plants need to be used in controlled animal and human feeding studies to assess nutritional impact. Such bioavailability studies are crucial if any claims are to be made regarding health benefits and might be an important component in public acceptance of biofortified foods. PMID:18635389

  16. Improvement of wastewater treatment performance of the Fukashiba treatment plant.

    PubMed

    Hirose, K; Igarashi, T; Ochiai, E; Seya, H; Matsui, S

    2006-01-01

    The Fukashiba Treatment Plant Kashima Rinkai Specified Sewage Works has received wastewater from the petrochemical complex (90%) and public sewage of Kamisu and Hasaki town (10%). For this reason, the plant is facing many difficulties in producing good quality effluent. In order to solve these difficulties, we are reviewing the treatment performance and making efforts for its improvement with nitrification inhibition, control of bio-persistent substances and the PRTR approach.

  17. Opportunities for improving phosphorus-use efficiency in crop plants.

    PubMed

    Veneklaas, Erik J; Lambers, Hans; Bragg, Jason; Finnegan, Patrick M; Lovelock, Catherine E; Plaxton, William C; Price, Charles A; Scheible, Wolf-Rüdiger; Shane, Michael W; White, Philip J; Raven, John A

    2012-07-01

    Limitation of grain crop productivity by phosphorus (P) is widespread and will probably increase in the future. Enhanced P efficiency can be achieved by improved uptake of phosphate from soil (P-acquisition efficiency) and by improved productivity per unit P taken up (P-use efficiency). This review focuses on improved P-use efficiency, which can be achieved by plants that have overall lower P concentrations, and by optimal distribution and redistribution of P in the plant allowing maximum growth and biomass allocation to harvestable plant parts. Significant decreases in plant P pools may be possible, for example, through reductions of superfluous ribosomal RNA and replacement of phospholipids by sulfolipids and galactolipids. Improvements in P distribution within the plant may be possible by increased remobilization from tissues that no longer need it (e.g. senescing leaves) and reduced partitioning of P to developing grains. Such changes would prolong and enhance the productive use of P in photosynthesis and have nutritional and environmental benefits. Research considering physiological, metabolic, molecular biological, genetic and phylogenetic aspects of P-use efficiency is urgently needed to allow significant progress to be made in our understanding of this complex trait.

  18. Advanced thermometrics for fossil power plant process improvement

    SciTech Connect

    Shepard, R.L.; Weiss, J.M.; Holcomb, D.E.

    1996-04-30

    Improved temperature measurements in fossil power plants can reduce heat rate and uncertainties in power production efficiencies, extend the life of plant components, reduce maintenance costs, and lessen emissions. Conventional instruments for measurement of combustion temperatures, steam temperatures, and structural component temperatures can be improved by better specification, in situ calibration, signal processing, and performance monitoring. Innovative instruments can enhance, augment, or replace conventional instruments. Several critical temperatures can be accessed using new methods that were impossible with conventional instruments. Such instruments include high temperature resistance temperature detectors (RTDs), thermometric phosphors, inductive thermometry, and ultrasonic thermometry.

  19. Innovative applications of technology for nuclear power plant productivity improvements

    SciTech Connect

    Naser, J. A.

    2012-07-01

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  20. [Improving the nutritional value of plant foods through transgenic approaches].

    PubMed

    Wu, Yong-Mei; Mao, Xue; Wang, Shu-Jian; Li, Run-Zhi

    2004-07-01

    The most nutrients required in the human diet come from plants. The nutritional quality of plant products affects the human healthy. The advance of molecular cloning and transgenic technology has provided a new way to enhance the nutritional value of plant material. Transgenic modification of plant nutritional value has progressed greatly in the following aspects: improving the quality, composition and levels of protein, starch and fatty acid in different crops; increasing the levels of antioxidants (e.g. carotenoids and flavonoids); breeding the new type of plants with medical value for human. To date, many transgenic plants with nutritional enhancement have been developed. These transgenic plant products could be directly used as human diet or as valued materials in developing the "functional food" with especial nutritional quality and healthy effects after they are approved by a series of evaluations on their safety and nutritional efficiency for human being. We designed new zinc finger transcription factors (ZFP-TFs) that can specifically down-regulate the expression of the endogenous soybean FAD2-1 gene which catalyzes oleic acid to linoleic acid. Seed-specific expression of these ZFP-TFs in transgenic soybean somatic embryos repressed FAD2-1 transcription and increased significantly the levels of oleic acid, indicating that the engineered ZFP-TFs are capable of regulating fatty acid metabolism and modulating the expression of endogenous genes in plants.

  1. Integrating New Technology Solutions to Improve Plant Operations

    SciTech Connect

    HEAVIN, ERIC

    2004-06-29

    Continuing advancements in software and hardware technology are providing facilities the opportunity for improvements in the areas of safety, regulatory compliance, administrative control, data collection, and reporting. Implementing these changes to improve plant operating efficiency can also create many challenges which include but are not limited to: justifying cost, planning for scalability, implementing applications across varied platforms, integrating multitudes of proprietary vendor applications, and creating a common vision for diverse process improvement projects. The Defense Programs (DP) facility at the Savannah River Site meets these challenges on a daily basis. Like many other plants, DP, has room for improvement when it comes to effective and clear communication, data entry, data storage, and system integration. Specific examples of areas targeted for improvement include: shift turnover meetings using system status data one to two hours old, lockouts and alarm inhibits performed on points on the Distributed Control System (DCS) and tracked in a paper logbook, disconnected systems preventing preemptive correction of regulatory compliance issues, and countless examples of additional task and data duplication on independent systems. Investment of time, money, and careful planning addressing these issues are already providing returns in the form of increased efficiency, improved plant tracking and reduced cost of implementing the next process improvement. Specific examples of improving plant operations through thoroughly planned Rapid Application Development of new applications are discussed. Integration of dissimilar and independent data sources (NovaTech D/3 DCS, SQL Server, Access, Filemaker Pro, etc.) is also explored. The tangible benefits of the implementation of the different programs to solve the operational problems previously described are analyzed in an in-depth and comparative manner.

  2. 208. Several of these checking stations, erected for feecollection purposes ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    208. Several of these checking stations, erected for fee-collection purposes but never authorized to operate as such, were constructed on the parkway in the 1950's. They provided information on area accommodations. Locations included Rockfish Valley, Adney Gap, north and south of Roanoke, Asheville near Biltmore, and by the Oconaluftee River. All were removed by the 1980's, after cars ran into two structures and demolished them. The islands where these were located are now used for Pillar of Truth information displays. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  3. New catalyst improves sulfur recovery at Canadian plant

    SciTech Connect

    Nasato, E. ); MacDougall, R.S. ); Lagas, J.A. )

    1994-02-28

    Installation at Mobil Oil Canada Ltd.'s Lone Pine Creek, Alta., gas plant of a second-generation Superclaus catalyst has, combined with the first-generation catalyst, resulted in higher overall sulfur recovery at lower reactor temperatures. Superclaus reactor inlet temperatures have been reduced from 255 to 200 C. and as a result have saved on utility costs and reduced tail-gas flow and CO[sub 2] emissions. Initial results indicate overall plant sulfur recovery has improved to the 98.7--98.9% range, up from the 98.0--98.3% first-generation catalyst performance level. The enhanced second-generation catalyst has also proven more operationally flexible than the first-generation catalyst. The paper describes the improved catalyst, the Superclaus process, catalyst performance, catalyst loading, equipment modifications, and performance of the plant.

  4. Genomics Approaches For Improving Salinity Stress Tolerance in Crop Plants.

    PubMed

    Nongpiur, Ramsong Chantre; Singla-Pareek, Sneh Lata; Pareek, Ashwani

    2016-08-01

    Salinity is one of the major factors which reduces crop production worldwide. Plant responses to salinity are highly complex and involve a plethora of genes. Due to its multigenicity, it has been difficult to attain a complete understanding of how plants respond to salinity. Genomics has progressed tremendously over the past decade and has played a crucial role towards providing necessary knowledge for crop improvement. Through genomics, we have been able to identify and characterize the genes involved in salinity stress response, map out signaling pathways and ultimately utilize this information for improving the salinity tolerance of existing crops. The use of new tools, such as gene pyramiding, in genetic engineering and marker assisted breeding has tremendously enhanced our ability to generate stress tolerant crops. Genome editing technologies such as Zinc finger nucleases, TALENs and CRISPR/Cas9 also provide newer and faster avenues for plant biologists to generate precisely engineered crops. PMID:27499683

  5. Ross Works on the Assembly Concept for Construction of Erectable Space Structure (ACCESS) During

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross works on ACCESS high above the orbiter. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  6. Improving plant bioaccumulation science through consistent reporting of experimental data.

    PubMed

    Fantke, Peter; Arnot, Jon A; Doucette, William J

    2016-10-01

    Experimental data and models for plant bioaccumulation of organic contaminants play a crucial role for assessing the potential human and ecological risks associated with chemical use. Plants are receptor organisms and direct or indirect vectors for chemical exposures to all other organisms. As new experimental data are generated they are used to improve our understanding of plant-chemical interactions that in turn allows for the development of better scientific knowledge and conceptual and predictive models. The interrelationship between experimental data and model development is an ongoing, never-ending process needed to advance our ability to provide reliable quality information that can be used in various contexts including regulatory risk assessment. However, relatively few standard experimental protocols for generating plant bioaccumulation data are currently available and because of inconsistent data collection and reporting requirements, the information generated is often less useful than it could be for direct applications in chemical assessments and for model development and refinement. We review existing testing guidelines, common data reporting practices, and provide recommendations for revising testing guidelines and reporting requirements to improve bioaccumulation knowledge and models. This analysis provides a list of experimental parameters that will help to develop high quality datasets and support modeling tools for assessing bioaccumulation of organic chemicals in plants and ultimately addressing uncertainty in ecological and human health risk assessments.

  7. Improving plant bioaccumulation science through consistent reporting of experimental data.

    PubMed

    Fantke, Peter; Arnot, Jon A; Doucette, William J

    2016-10-01

    Experimental data and models for plant bioaccumulation of organic contaminants play a crucial role for assessing the potential human and ecological risks associated with chemical use. Plants are receptor organisms and direct or indirect vectors for chemical exposures to all other organisms. As new experimental data are generated they are used to improve our understanding of plant-chemical interactions that in turn allows for the development of better scientific knowledge and conceptual and predictive models. The interrelationship between experimental data and model development is an ongoing, never-ending process needed to advance our ability to provide reliable quality information that can be used in various contexts including regulatory risk assessment. However, relatively few standard experimental protocols for generating plant bioaccumulation data are currently available and because of inconsistent data collection and reporting requirements, the information generated is often less useful than it could be for direct applications in chemical assessments and for model development and refinement. We review existing testing guidelines, common data reporting practices, and provide recommendations for revising testing guidelines and reporting requirements to improve bioaccumulation knowledge and models. This analysis provides a list of experimental parameters that will help to develop high quality datasets and support modeling tools for assessing bioaccumulation of organic chemicals in plants and ultimately addressing uncertainty in ecological and human health risk assessments. PMID:27393944

  8. Conservation and restoration of indigenous plants to improve community livelihoods: the Useful Plants Project

    NASA Astrophysics Data System (ADS)

    Ulian, Tiziana; Sacandé, Moctar; Mattana, Efisio

    2014-05-01

    Kew's Millennium Seed Bank partnership (MSBP) is one of the largest ex situ plant conservation initiatives, which is focused on saving plants in and from regions most at risk, particularly in drylands. Seeds are collected and stored in seed banks in the country of origin and duplicated in the Millennium Seed Bank in the UK. The MSBP also strengthens the capacity of local communities to successfully conserve and sustainably use indigenous plants, which are important for their wellbeing. Since 2007, high quality seed collections and research information have been gathered on ca. 700 useful indigenous plant species that were selected by communities in Botswana, Kenya, Mali, Mexico and South Africa through Project MGU - The Useful Plants Project. These communities range from various farmer's groups and organisations to traditional healers, organic cotton/crop producers and primary schools. The information on seed conservation and plant propagation was used to train communities and to propagate ca. 200 species that were then planted in local gardens, and as species reintroduced for reforestation programmes and enriching village forests. Experimental plots have also been established to further investigate the field performance (plant survival and growth rate) of indigenous species, using low cost procedures. In addition, the activities support revenue generation for local communities directly through the sustainable use of plant products or indirectly through wider environmental and cultural services. This project has confirmed the potential of biodiversity conservation to improve food security and human health, enhance community livelihoods and strengthen the resilience of land and people to the changing climate. This approach of using indigenous species and having local communities play a central role from the selection of species to their planting and establishment, supported by complementary research, may represent a model for other regions of the world, where

  9. WindPACT Turbine Design Scaling Studies Technical Area 3 -- Self-Erecting Tower and Nacelle Feasibility: March 2000--March 2001

    SciTech Connect

    Global Energy Concepts, LLC

    2001-05-31

    The United States Department of Energy (DOE), through the National Renewable Energy Laboratory (NREL), has implemented the Wind Partnerships for Advanced Component Technologies (WindPACT) program to explore advanced technologies for improving the reliability and cost-effectiveness of wind energy technology. Global Energy Concepts (GEC) prepared this report on self-erecting towers as part of the WindPACT program. The objectives of the work were to identify potential methods for erecting wind turbine towers without the use of large conventional cranes, establish the most promising methods, and compare the costs of the most promising methods to the costs of conventional cranes.

  10. Improving geothermal power plants with a binary cycle

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  11. Improving fractionation lowers butane sulfur level at Saudi gas plant

    SciTech Connect

    Harruff, L.G.; Martinie, G.D.; Rahman, A.

    1998-10-12

    Increasing the debutanizer reflux/feed ratio to improve fractionation at an eastern Saudi Arabian NGL plant reduced high sulfur in the butane product. The sulfur resulted from dimethyl sulfide (DMS) contamination in the feed stream from an offshore crude-oil reservoir in the northern Arabian Gulf. The contamination is limited to two northeastern offshore gas-oil separation plants operated by Saudi Arabian Oil Co. (Saudi Aramco) and, therefore, cannot be transported to facilities outside the Eastern Province. Two technically acceptable solutions for removing this contaminant were investigated: 13X molecular-sieve adsorption of the DMS and increased fractionation efficiency. The latter would force DMS into the debutanizer bottoms.

  12. The economic valuation of improved process plant decision support technology.

    PubMed

    White, Douglas C

    2007-06-01

    How can investments that would potentially improve a manufacturing plant's decision process be economically justified? What is the value of "better information," "more flexibility," or "improved integration" and the technologies that provide these effects? Technology investments such as improved process modelling, new real time historians and other databases, "smart" instrumentation, better data analysis and visualization software, and/or improved user interfaces often include these benefits as part of their valuation. How are these "soft" benefits to be converted to a quantitative economic return? Quantification is important if rational management decisions are to be made about the correct amount of money to invest in the technologies, and which technologies to choose among the many available ones. Modelling the plant operational decision cycle-detect, analyse, forecast, choose and implement--provides a basis for this economic quantification. In this paper a new economic model is proposed for estimation of the value of decision support investments based on their effect upon the uncertainty in forecasting plant financial performance. This model leads to quantitative benefit estimates that have a realistic financial basis. An example is presented demonstrating the application of the method.

  13. Improving the Energy Efficiency of Pumped-Storage Power Plants

    SciTech Connect

    Artyukh, S. F.; Galat, V. V.; Kuz’min, V. V.; Chervonenko, I. I.; Shakaryan, Yu. G.; Sokur, P. V.

    2015-01-15

    Possible ways to improve the energy efficiency of hydroelectric generating sets of pumped-storage power plants (PSPPs) are studied. The Kiev PSPP is used as an example to show how its generating sets can be upgraded. It is concluded based on studies conducted that synchronous motor-generators should be replaced with asynchronized motor-generators. The feasibility of changing over the turbine to variable-speed operation is shown.

  14. Human penile erection and organic impotence: normal histology and histopathology.

    PubMed

    Conti, G; Virag, R

    1989-01-01

    A very large amount of human material (7 embryos, 12 stillborns, 12 penes of males aged between 2 and 86 years, as well as bioptical material from 80 subjects affected by impotence problems) has been examined so as to study the penis arterial and venous walls, the blood flow regulation mechanisms and the intracavernal trabecular morphology. The amount of muscle tissue and of collagenous connective tissue has been numerically quantified by computer-assisted methods. This study enables the authors to underline three fundamental facts: (a) it confirms the normal penile erection mechanism, and the consequent theory, (b) it confirms that vascular sclerosis is a systemic phenomenon correlated to age, and that the penis is not exempt, and (c) in the case of impotence problems, the same sclerosis phenomenon may appear at an earlier age, and therefore induce pathological impotence. PMID:2800066

  15. Compressed Air System Modifications Improve Efficiency at a Plastics Blow Molding Plant (Southeastern Container Plant)

    SciTech Connect

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the plastics blow molding plant project.

  16. 32 CFR 643.118 - Nonappropriated funds-Authority to permit erection of structures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... title status of each, is defined in AR 60-10 and AR 210-55. Use of existing space and structures for... erection of structures. 643.118 Section 643.118 National Defense Department of Defense (Continued... Nonappropriated funds—Authority to permit erection of structures. The authority of installation commanders...

  17. 29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... materials and the safe operation of the erector's equipment. (d) Pre-planning of overhead hoisting... HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION...) Approval to begin steel erection. Before authorizing the commencement of steel erection, the...

  18. 29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... materials and the safe operation of the erector's equipment. (d) Pre-planning of overhead hoisting... HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION...) Approval to begin steel erection. Before authorizing the commencement of steel erection, the...

  19. Improvements in plant growth rate using underwater discharge

    NASA Astrophysics Data System (ADS)

    Takaki, K.; Takahata, J.; Watanabe, S.; Satta, N.; Yamada, O.; Fujio, T.; Sasaki, Y.

    2013-03-01

    The drainage water from plant pots was irradiated by plasma and then recycled to irrigate plants for improving the growth rate by supplying nutrients to plants and inactivating the bacteria in the bed-soil. Brassica rapa var. perviridis (Chinese cabbage; Brassica campestris) plants were cultivated in pots filled with artificial soil, which included the use of chicken droppings as a fertiliser. The water was recycled once per day from a drainage water pool and added to the bed-soil in the pots. A magnetic compression type pulsed power generator was used to produce underwater discharge with repetition rate of 250 pps. The plasma irradiation times were set as 10 and 20 minutes per day over 28 days of cultivation. The experimental results showed that the growth rate increased significantly with plasma irradiation into the drainage water. The growth rate increased with the plasma irradiation time. The nitrogen concentration of the leaves increased as a result of plasma irradiation based on chlorophyll content analysis. The bacteria in the drainage water were inactivated by the plasma irradiation.

  20. Cyanobacterial-based approaches to improving photosynthesis in plants.

    PubMed

    Zarzycki, Jan; Axen, Seth D; Kinney, James N; Kerfeld, Cheryl A

    2013-01-01

    Plants rely on the Calvin-Benson (CB) cycle for CO(2) fixation. The key carboxylase of the CB cycle is ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). Efforts to enhance carbon fixation in plants have traditionally focused on RubisCO or on approaches that can help to remedy RubisCO's undesirable traits: its low catalytic efficiency and photorespiration. Towards reaching the goal of improving plant photosynthesis, cyanobacteria may be instrumental. Because of their evolutionary relationship to chloroplasts, they represent ideal model organisms for photosynthesis research. Furthermore, the molecular understanding of cyanobacterial carbon fixation provides a rich source of strategies that can be exploited for the bioengineering of chloroplasts. These strategies include the cyanobacterial carbon concentrating mechanism (CCM), which consists of active and passive transporter systems for inorganic carbon and a specialized organelle, the carboxysome. The carboxysome encapsulates RubisCO together with carbonic anhydrase in a protein shell, resulting in an elevated CO(2) concentration around RubisCO. Moreover, cyanobacteria differ from plants in the isoenzymes involved in the CB cycle and the photorespiratory pathways as well as in mechanisms that can affect the activity of RubisCO. In addition, newly available cyanobacterial genome sequence data from the CyanoGEBA project, which has more than doubled the amount of genomic information available for cyanobacteria, increases our knowledge on the CCM and the occurrence and distribution of genes of interest.

  1. Acclimation improves salt stress tolerance in Zea mays plants.

    PubMed

    Pandolfi, Camilla; Azzarello, Elisa; Mancuso, Stefano; Shabala, Sergey

    2016-08-20

    Plants exposure to low level salinity activates an array of processes leading to an improvement of plant stress tolerance. Although the beneficial effect of acclimation was demonstrated in many herbaceous species, underlying mechanisms behind this phenomenon remain poorly understood. In the present study we have addressed this issue by investigating ionic mechanisms underlying the process of plant acclimation to salinity stress in Zea mays. Effect of acclimation were examined in two parallel sets of experiments: a growth experiment for agronomic assessments, sap analysis, stomatal conductance, chlorophyll content, and confocal laser scanning imaging; and a lab experiment for in vivo ion flux measurements from root tissues. Being exposed to salinity, acclimated plants (1) retain more K(+) but accumulate less Na(+) in roots; (2) have better vacuolar Na(+) sequestration ability in leaves and thus are capable of accumulating larger amounts of Na(+) in the shoot without having any detrimental effect on leaf photochemistry; and (3) rely more on Na(+) for osmotic adjustment in the shoot. At the same time, acclimation affect was not related in increased root Na(+) exclusion ability. It appears that even in a such salt-sensitive species as maize, Na(+) exclusion from uptake is of a much less importance compared with the efficient vacuolar Na(+) sequestration in the shoot. PMID:27372277

  2. Plant exomics: Concepts, applications and methodologies in crop improvement

    PubMed Central

    Hashmi, Uzair; Shafqat, Samia; Khan, Faria; Majid, Misbah; Hussain, Harris; Kazi, Alvina Gul; John, Riffat; Ahmad, Parvaiz

    2015-01-01

    Molecular breeding has a crucial role in improvement of crops. Conventional breeding techniques have failed to ameliorate food production. Next generation sequencing has established new concepts of molecular breeding. Exome sequencing has proven to be a significant tool for assessing natural evolution in plants, studying host pathogen interactions and betterment of crop production as exons assist in interpretation of allelic variation with respect to their phenotype. This review covers the platforms for exome sequencing, next generation sequencing technologies that have revolutionized exome sequencing and led toward development of third generation sequencing. Also discussed in this review are the uses of these sequencing technologies to improve wheat, rice and cotton yield and how these technologies are used in exploring the biodiversity of crops, providing better understanding of plant-host pathogen interaction and assessing the process of natural evolution in crops and it also covers how exome sequencing identifies the gene pool involved in symbiotic and other co-existential systems. Furthermore, we conclude how integration of other methodologies including whole genome sequencing, proteomics, transcriptomics and metabolomics with plant exomics covers the areas which are left untouched with exomics alone and in the end how these integration will transform the future of crops. PMID:25482786

  3. Structure Determination and Improved Model of Plant Photosystem I*

    PubMed Central

    Amunts, Alexey; Toporik, Hila; Borovikova, Anna; Nelson, Nathan

    2010-01-01

    Photosystem I functions as a sunlight energy converter, catalyzing one of the initial steps in driving oxygenic photosynthesis in cyanobacteria, algae, and higher plants. Functionally, Photosystem I captures sunlight and transfers the excitation energy through an intricate and precisely organized antenna system, consisting of a pigment network, to the center of the molecule, where it is used in the transmembrane electron transfer reaction. Our current understanding of the sophisticated mechanisms underlying these processes has profited greatly from elucidation of the crystal structures of the Photosystem I complex. In this report, we describe the developments that ultimately led to enhanced structural information of plant Photosystem I. In addition, we report an improved crystallographic model at 3.3-Å resolution, which allows analysis of the structure in more detail. An improved electron density map yielded identification and tracing of subunit PsaK. The location of an additional ten β-carotenes as well as five chlorophylls and several loop regions, which were previously uninterpretable, are now modeled. This represents the most complete plant Photosystem I structure obtained thus far, revealing the locations of and interactions among 17 protein subunits and 193 non-covalently bound photochemical cofactors. Using the new crystal structure, we examine the network of contacts among the protein subunits from the structural perspective, which provide the basis for elucidating the functional organization of the complex. PMID:19923216

  4. Cyclic AMP-dependent phosphorylation of neuronal nitric oxide synthase mediates penile erection

    PubMed Central

    Hurt, K. Joseph; Sezen, Sena F.; Lagoda, Gwen F.; Musicki, Biljana; Rameau, Gerald A.; Snyder, Solomon H.; Burnett, Arthur L.

    2012-01-01

    Nitric oxide (NO) generated by neuronal NO synthase (nNOS) initiates penile erection, but has not been thought to participate in the sustained erection required for normal sexual performance. We now show that cAMP-dependent phosphorylation of nNOS mediates erectile physiology, including sustained erection. nNOS is phosphorylated by cAMP-dependent protein kinase (PKA) at serine(S)1412. Electrical stimulation of the penile innervation increases S1412 phosphorylation that is blocked by PKA inhibitors but not by PI3-kinase/Akt inhibitors. Stimulation of cAMP formation by forskolin also activates nNOS phosphorylation. Sustained penile erection elicited by either intracavernous forskolin injection, or augmented by forskolin during cavernous nerve electrical stimulation, is prevented by the NOS inhibitor l-NAME or in nNOS-deleted mice. Thus, nNOS mediates both initiation and maintenance of penile erection, implying unique approaches for treating erectile dysfunction. PMID:23012472

  5. Cyclic AMP-dependent phosphorylation of neuronal nitric oxide synthase mediates penile erection.

    PubMed

    Hurt, K Joseph; Sezen, Sena F; Lagoda, Gwen F; Musicki, Biljana; Rameau, Gerald A; Snyder, Solomon H; Burnett, Arthur L

    2012-10-01

    Nitric oxide (NO) generated by neuronal NO synthase (nNOS) initiates penile erection, but has not been thought to participate in the sustained erection required for normal sexual performance. We now show that cAMP-dependent phosphorylation of nNOS mediates erectile physiology, including sustained erection. nNOS is phosphorylated by cAMP-dependent protein kinase (PKA) at serine(S)1412. Electrical stimulation of the penile innervation increases S1412 phosphorylation that is blocked by PKA inhibitors but not by PI3-kinase/Akt inhibitors. Stimulation of cAMP formation by forskolin also activates nNOS phosphorylation. Sustained penile erection elicited by either intracavernous forskolin injection, or augmented by forskolin during cavernous nerve electrical stimulation, is prevented by the NOS inhibitor L-NAME or in nNOS-deleted mice. Thus, nNOS mediates both initiation and maintenance of penile erection, implying unique approaches for treating erectile dysfunction.

  6. Soil management systems to improve water availability for plants

    NASA Astrophysics Data System (ADS)

    Klik, A.; Rosner, J.

    2009-04-01

    Due to climate change it is expected that the air temperature will increase and the amount as well as the variability of rainfall will change drastically within this century. Higher temperatures and fewer rainy days with more extreme events will increase the risk of surface runoff and erosion. This will lead to reduced soil water storage and therefore to a lower water use efficiency of plants. Soil and land management systems need to be applied and adapted to improve the amount of water stored in the soil and to ensure crop productivity functions of soils under changing climatic conditions. In a 14-yr. long field experiment, the effects of three soil management systems have been studied at three sites in Austria with respect to surface runoff, soil erosion, losses of nutrients and pesticides. Eight years after beginning of the project soil samples have been taken from different depth throughout the root zone to investigate the effects on soil properties. The results show that soil management systems with reduced tillage intensity are able to improve infiltration and soil water storage. More soil water enables plant development during longer dry periods and decreases amounts of irrigation. Overall, the higher water retention in the landscape improves the regional water balance and reduces environmental problems like soil erosion and nutrient and pesticide losses

  7. PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database.

    PubMed

    Zhang, He; Jin, Jinpu; Tang, Liang; Zhao, Yi; Gu, Xiaocheng; Gao, Ge; Luo, Jingchu

    2011-01-01

    We updated the plant transcription factor (TF) database to version 2.0 (PlantTFDB 2.0, http://planttfdb.cbi.pku.edu.cn) which contains 53,319 putative TFs predicted from 49 species. We made detailed annotation including general information, domain feature, gene ontology, expression pattern and ortholog groups, as well as cross references to various databases and literature citations for these TFs classified into 58 newly defined families with computational approach and manual inspection. Multiple sequence alignments and phylogenetic trees for each family can be shown as Weblogo pictures or downloaded as text files. We have redesigned the user interface in the new version. Users can search TFs with much more flexibility through the improved advanced search page, and the search results can be exported into various formats for further analysis. In addition, we now provide web service for advanced users to access PlantTFDB 2.0 more efficiently.

  8. Improving hot gas filtration behavior in PFBC power plants

    SciTech Connect

    Romeo, L.M.; Gil, A.; Cortes, C.

    1999-07-01

    According to a previous paper, a laboratory-scale cold flow model of the hot gas filtration system in Escatron PFBC power plant has been built. The main objectives were to establish the validity of the scaling laws for cyclone separator systems (cyclone and dipleg) and to perform detailed room temperature studies in a rapid and cost effective manner. In Escatron PFBC power plant, the hot gas filtration equipment is a two-stage process performed in nine streams between the fluidized bed and the gas turbine. Due to the unsteadiness in the dipleg and the suction nozzle, and the effect of sintered deposit, the cyclone performance is modified. The performances of cyclone separator system and suction nozzle diplegs are scarcely reported in the open literature. This paper presents the results of a detailed research in which some important conclusions of well known studies about cyclones are verified. Also remarkable is the increase in cyclone efficiency and decrease in pressure drop when the solid load to the cyclone is increased. The possibility to check the fouling by means of pressure drop has not been previously addressed. Finally, the influences of gas input velocity to the cyclone, the transport gas to the ash conveying lines, the solid load and the cyclone fouling have been analyzed. This study has allowed characterizing the performance of the full-scale ash removal system, establishing safe limits of operation and testing design improvements as the two suction nozzle dipleg, pointing out important conclusions for the filtration process in PFBC power plants.

  9. Characterization of Rolled and Erect Leaf 1 in regulating leave morphology in rice

    PubMed Central

    Chen, Qiaoling; Xie, Qingjun; Gao, Ju; Wang, Wenyi; Sun, Bo; Liu, Bohan; Zhu, Haitao; Peng, Haifeng; Zhao, Haibing; Liu, Changhong; Wang, Jiang; Zhang, Jingliu; Zhang, Guiquan; Zhang, Zemin

    2015-01-01

    Leaf morphology, particularly in crop, is one of the most important agronomic traits because it influences the yield through the manipulation of photosynthetic capacity and transpiration. To understand the regulatory mechanism of leaf morphogenesis, an Oryza sativa dominant mutant, rolled and erect leaf 1 (rel1) has been characterized. This mutant has a predominant rolled leaf, increased leaf angle, and reduced plant height phenotype that results in a reduction in grain yield. Electron microscope observations indicated that the leaf incurvations of rel1 dominant mutants result from the alteration of the size and number of bulliform cells. Molecular cloning revealed that the rel1 dominant mutant phenotype is caused by the activation of the REL1 gene, which encodes a novel unknown protein, despite its high degree of conservation among monocot plants. Moreover, the downregulation of the REL1 gene in the rel1 dominant mutant restored the phenotype of this dominant mutant. Alternatively, overexpression of REL1 in wild-type plants induced a phenotype similar to that of the dominant rel1 mutant, indicating that REL1 plays a positive role in leaf rolling and bending. Consistent with the observed rel1 phenotype, the REL1 gene was predominantly expressed in the meristem of various tissues during plant growth and development. Nevertheless, the responsiveness of both rel1 dominant mutants and REL1-overexpressing plants to exogenous brassinosteroid (BR) was reduced. Moreover, transcript levels of BR response genes in the rel1 dominant mutants and REL1-overexpressing lines were significantly altered. Additionally, seven REL1-interacting proteins were also identified from a yeast two-hybrid screen. Taken together, these findings suggest that REL1 regulates leaf morphology, particularly in leaf rolling and bending, through the coordination of BR signalling transduction. PMID:26142419

  10. Characterization of Rolled and Erect Leaf 1 in regulating leave morphology in rice.

    PubMed

    Chen, Qiaoling; Xie, Qingjun; Gao, Ju; Wang, Wenyi; Sun, Bo; Liu, Bohan; Zhu, Haitao; Peng, Haifeng; Zhao, Haibing; Liu, Changhong; Wang, Jiang; Zhang, Jingliu; Zhang, Guiquan; Zhang, Zemin

    2015-09-01

    Leaf morphology, particularly in crop, is one of the most important agronomic traits because it influences the yield through the manipulation of photosynthetic capacity and transpiration. To understand the regulatory mechanism of leaf morphogenesis, an Oryza sativa dominant mutant, rolled and erect leaf 1 (rel1) has been characterized. This mutant has a predominant rolled leaf, increased leaf angle, and reduced plant height phenotype that results in a reduction in grain yield. Electron microscope observations indicated that the leaf incurvations of rel1 dominant mutants result from the alteration of the size and number of bulliform cells. Molecular cloning revealed that the rel1 dominant mutant phenotype is caused by the activation of the REL1 gene, which encodes a novel unknown protein, despite its high degree of conservation among monocot plants. Moreover, the downregulation of the REL1 gene in the rel1 dominant mutant restored the phenotype of this dominant mutant. Alternatively, overexpression of REL1 in wild-type plants induced a phenotype similar to that of the dominant rel1 mutant, indicating that REL1 plays a positive role in leaf rolling and bending. Consistent with the observed rel1 phenotype, the REL1 gene was predominantly expressed in the meristem of various tissues during plant growth and development. Nevertheless, the responsiveness of both rel1 dominant mutants and REL1-overexpressing plants to exogenous brassinosteroid (BR) was reduced. Moreover, transcript levels of BR response genes in the rel1 dominant mutants and REL1-overexpressing lines were significantly altered. Additionally, seven REL1-interacting proteins were also identified from a yeast two-hybrid screen. Taken together, these findings suggest that REL1 regulates leaf morphology, particularly in leaf rolling and bending, through the coordination of BR signalling transduction.

  11. Electrophysiological actions of the dopamine agonist apomorphine in the paraventricular nucleus during penile erection.

    PubMed

    Richards, Natalie; Wayman, Chris; Allers, Kelly A

    2009-11-20

    The ability to achieve and maintain penile erection is necessary for successful copulation. Studies have demonstrated that dopamine receptor stimulation in the paraventricular nucleus (PVN) of the hypothalamus induces penile erection in rodents, and the dopamine agonist apomorphine has been used to treat erectile dysfunction. The aim of this study was to determine the electrophysiological characteristics of PVN neuronal firing activity in anaesthetised rodents during apomorphine-induced erection. Our findings can be placed in two categories; those effects that occur immediately upon apomorphine administration and continue for up to several minutes prior to penile erection, deemed 'pre-erectile', and those effects that were only observed during penile erection and seminal emission. In the pre-erectile period, apomorphine acts on two different populations of PVN neurons to increase or decrease firing rates and increases alpha1 frequency band power in local field potentials. Decreased delta and increased theta frequency power in PVN local field potentials occur only during penile erection and seminal emission. These studies provide further understanding of the coordinated neuronal activity that occurs in the PVN during apomorphine-induced penile erection.

  12. Epithelioid haemangioma: a rare cause of painful erections and sleep deprivation.

    PubMed

    Lucky, M A; McGuinness, L A; Floyd, M S; Azhar, U; Shanks, J H; Li, C; Shenjere, P; Nonaka, D; Robinson, L Q; Parr, N J

    2014-09-01

    Epithelioid haemangioma of the penis is a rare condition which usually presents a solid single nodule. We report a case in a 43-year-old man who presented with painful erections and sleep disturbance with two palpable penile nodules. Magnetic resonance imaging with an artificially induced erection revealed these as individual lesions, and local excision was successfully undertaken. Pathological diagnosis of epithelioid haemangioma was confirmed with positive staining for CD31. Although rare, penile epithelioid haemangioma should be considered as a differential in an atypical penile mass. Induction in of an artificial erection prior to MRI can aid diagnosis and treatment is typically with surgical excision.

  13. Feasibility studies to improve plant availability and reduce total installed cost in IGCC plants

    SciTech Connect

    Sullivan, Kevin; Anasti, William; Fang, Yichuan; Subramanyan, Karthik; Leininger, Tom; Zemsky, Christine

    2015-03-30

    The main purpose of this project is to look at technologies and philosophies that would help reduce the costs of an Integrated Gasification Combined Cycle (IGCC) plant, increase its availability or do both. GE’s approach to this problem is to consider options in three different areas: 1) technology evaluations and development; 2) constructability approaches; and 3) design and operation methodologies. Five separate tasks were identified that fall under the three areas: Task 2 – Integrated Operations Philosophy; Task 3 – Slip Forming of IGCC Components; Task 4 – Modularization of IGCC Components; Task 5 – Fouling Removal; and Task 6 – Improved Slag Handling. Overall, this project produced results on many fronts. Some of the ideas could be utilized immediately by those seeking to build an IGCC plant in the near future. These include the considerations from the Integrated Operations Philosophy task and the different construction techniques of Slip Forming and Modularization (especially if the proposed site is in a remote location or has a lack of a skilled workforce). Other results include ideas for promising technologies that require further development and testing to realize their full potential and be available for commercial operation. In both areas GE considers this project to be a success in identifying areas outside the core IGCC plant systems that are ripe for cost reduction and ity improvement opportunities.

  14. 29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... concrete in the footings, piers and walls and the mortar in the masonry piers and walls has attained, on... erect steel unless it has received written notification that the concrete in the footings, piers...

  15. Manipulation of Carotenoid Content in Plants to Improve Human Health.

    PubMed

    Alós, Enriqueta; Rodrigo, Maria Jesús; Zacarias, Lorenzo

    2016-01-01

    Carotenoids are essential components for human nutrition and health, mainly due to their antioxidant and pro-vitamin A activity. Foods with enhanced carotenoid content and composition are essential to ensure carotenoid feasibility in malnourished population of many countries around the world, which is critical to alleviate vitamin A deficiency and other health-related disorders. The pathway of carotenoid biosynthesis is currently well understood, key steps of the pathways in different plant species have been characterized and the corresponding genes identified, as well as other regulatory elements. This enables the manipulation and improvement of carotenoid content and composition in order to control the nutritional value of a number of agronomical important staple crops. Biotechnological and genetic engineering-based strategies to manipulate carotenoid metabolism have been successfully implemented in many crops, with Golden rice as the most relevant example of β-carotene improvement in one of the more widely consumed foods. Conventional breeding strategies have been also adopted in the bio-fortification of carotenoid in staple foods that are highly consumed in developing countries, including maize, cassava and sweet potatoes, to alleviate nutrition-related problems. The objective of the chapter is to summarize major breakthroughs and advances in the enhancement of carotenoid content and composition in agronomical and nutritional important crops, with special emphasis to their potential impact and benefits in human nutrition and health. PMID:27485228

  16. Manipulation of Carotenoid Content in Plants to Improve Human Health.

    PubMed

    Alós, Enriqueta; Rodrigo, Maria Jesús; Zacarias, Lorenzo

    2016-01-01

    Carotenoids are essential components for human nutrition and health, mainly due to their antioxidant and pro-vitamin A activity. Foods with enhanced carotenoid content and composition are essential to ensure carotenoid feasibility in malnourished population of many countries around the world, which is critical to alleviate vitamin A deficiency and other health-related disorders. The pathway of carotenoid biosynthesis is currently well understood, key steps of the pathways in different plant species have been characterized and the corresponding genes identified, as well as other regulatory elements. This enables the manipulation and improvement of carotenoid content and composition in order to control the nutritional value of a number of agronomical important staple crops. Biotechnological and genetic engineering-based strategies to manipulate carotenoid metabolism have been successfully implemented in many crops, with Golden rice as the most relevant example of β-carotene improvement in one of the more widely consumed foods. Conventional breeding strategies have been also adopted in the bio-fortification of carotenoid in staple foods that are highly consumed in developing countries, including maize, cassava and sweet potatoes, to alleviate nutrition-related problems. The objective of the chapter is to summarize major breakthroughs and advances in the enhancement of carotenoid content and composition in agronomical and nutritional important crops, with special emphasis to their potential impact and benefits in human nutrition and health.

  17. Advanced control strategy for plant heat rate improvement

    SciTech Connect

    Schultz, P.; Frerichs, D.K.; Kyr, D.

    1995-12-31

    Florida Power & Light Company (FPL) supplies electricity to about half of the population of Florida, roughly 6.5 million people. The load base is largely residential/business with the obvious seasonal extremes due to the climate. FPL`s generating capacity is 16,320 MW composed of 70% traditional fossil cycle, 18% nuclear, and 12% gas turbine. The system load profile coupled with bulk power purchases is such that the 400 MW class units (9 Foster Wheeler drum type units comprising 24% of total capacity) are now forced to cycle daily all year, and to come off line on weekends during the winter months. The current economic realities of power generation force utility companies to seek methods to improve plant heat rate, and FPL is no exception. FPL believed it possible to achieve the goal of lower heat rate and follow the required load demand with the 400 MW class units through the use of an advanced control strategy implemented totally within the unit`s Distributed Control System (DCS). As of the writing of this paper, the project is still ongoing. This paper will present the theory and methodology of the advanced control strategy along with the current design and implementation status and results obtained to date.

  18. Compressed Air System Upgrade Improves Production at an Automotive Glass Plant

    SciTech Connect

    2003-02-01

    In 2000, The Visteon automotive glass plant improved its compressed air system at its automotive glass plant in Nashville, Tennessee. This improvement allowed Visteon to save $711,000 annually, reduce annual energy consumption by 7.9 million kilowatt-hours, reduce maintenance, improve system performance, and avoid $800,000 in asbestos abatement costs.

  19. Exploring high throughput phenotyping, plant architecture and plant-boll distribution for improving drought tolerance in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a pressing need to identify and understand the effects of different irrigation regimes on plant-boll distribution, seed cotton yield, and plant architecture for improving yield and fiber quality under stress and/or drought tolerance of cotton (Gossypium spp.) cultivars. To identify the impa...

  20. Improved stereo matching applied to digitization of greenhouse plants

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Xu, Lihong; Li, Dawei; Gu, Xiaomeng

    2015-03-01

    The digitization of greenhouse plants is an important aspect of digital agriculture. Its ultimate aim is to reconstruct a visible and interoperable virtual plant model on the computer by using state-of-the-art image process and computer graphics technologies. The most prominent difficulties of the digitization of greenhouse plants include how to acquire the three-dimensional shape data of greenhouse plants and how to carry out its realistic stereo reconstruction. Concerning these issues an effective method for the digitization of greenhouse plants is proposed by using a binocular stereo vision system in this paper. Stereo vision is a technique aiming at inferring depth information from two or more cameras; it consists of four parts: calibration of the cameras, stereo rectification, search of stereo correspondence and triangulation. Through the final triangulation procedure, the 3D point cloud of the plant can be achieved. The proposed stereo vision system can facilitate further segmentation of plant organs such as stems and leaves; moreover, it can provide reliable digital samples for the visualization of greenhouse tomato plants.

  1. Productivity improvement handbook for fossil steam power plants. Final report

    SciTech Connect

    Armor, A.F.; Wolk, R.H. |

    1998-09-01

    This book is written to help electric generation staff operate their plants more profitably in a competitive environment. Since responsibility for keeping the plant running falls directly on the shoulders of plant personnel, they want to understand what can go wrong, receive information on the current condition of equipment, and fix things when equipment fails or performs poorly. The information in this book is organized so a reader can quickly and easily grasp the current state-of-the-art in maintaining fossil steam units, obtain guidance on specific plant problems, and move ahead with solutions. Many reports and guidelines have been issued on boilers, turbines, generators, heat exchangers, and other plant equipment covering failure modes, causes, fixes, and maintenance practices. Liberal use has been made of these reports to extract the salient recommendations, and the citations and bibliographies acknowledge these sources. The reader is directed to the comprehensive list of reports and papers for further details on specific issues. The scope of this book does not permit a detailed and extensive treatment of each of the hundreds of potential in-plant problems, but does permit the reader to get a first assessment of likely symptoms and modes of failure, and enough information to do something about it. It`s a working handbook for fossil plant staff who are daily faced with protecting the integrity and reliability of the electric generation business.

  2. Crop Improvement through Modification of the Plant's Own Genome

    PubMed Central

    Rommens, Caius M.; Humara, Jaime M.; Ye, Jingsong; Yan, Hua; Richael, Craig; Zhang, Lynda; Perry, Rachel; Swords, Kathleen

    2004-01-01

    Plant genetic engineering has, until now, relied on the incorporation of foreign DNA into plant genomes. Public concern about the extent to which transgenic crops differ from their traditionally bred counterparts has resulted in molecular strategies and gene choices that limit, but not eliminate, the introduction of foreign DNA. Here, we demonstrate that a plant-derived (P-) DNA fragment can be used to replace the universally employed Agrobacterium transfer (T-) DNA. Marker-free P-DNAs are transferred to plant cell nuclei together with conventional T-DNAs carrying a selectable marker gene. By subsequently linking a positive selection for temporary marker gene expression to a negative selection against marker gene integration, 29% of derived regeneration events contain P-DNA insertions but lack any copies of the T-DNA. Further refinements are accomplished by employing Ω-mutated virD2 and isopentenyl transferase cytokinin genes to impair T-DNA integration and select against backbone integration, respectively. The presented methods are used to produce hundreds of marker-free and backbone-free potato (Solanum tuberosum) plants displaying reduced expression of a tuber-specific polyphenol oxidase gene in potato. The modified plants represent the first example of genetically engineered plants that only contain native DNA. PMID:15133156

  3. Bromeliad-living spiders improve host plant nutrition and growth.

    PubMed

    Romero, Gustavo Q; Mazzafera, Paulo; Vasconcellos-Neto, Joao; Trivelin, Paulo C O

    2006-04-01

    Although bromeliads are believed to obtain nutrients from debris deposited by animals in their rosettes, there is little evidence to support this assumption. Using stable isotope methods, we found that the Neotropical jumping spider Psecas chapoda (Salticidae), which lives strictly associated with the terrestrial bromeliad Bromelia balansae, contributed 18% of the total nitrogen of its host plant in a greenhouse experiment. In a one-year field experiment, plants with spiders produced leaves 15% longer than plants from which the spiders were excluded. This is the first study to show nutrient provisioning in a spider-plant system. Because several animal species live strictly associated with bromeliad rosettes, this type of facultative mutualism involving the Bromeliaceae may be more common than previously thought.

  4. Process energy efficiency improvement in Wisconsin cheese plants

    SciTech Connect

    Zehr, S.; Mitchell, J.; Reinemann, D.; Klein, S.; Reindl, D.

    1997-07-01

    Costs for the energy involved in cheese making has a major impact on profit. Although industrial cheese plants differ in size, production equipment, and the manner in which whey is processed, there are common elements in most plants. This paper evaluates several process integration opportunities at two representative cheese plants in Wisconsin. Pinch analysis is used to help assess the heat recovery potential for the major thermal processes in the plants. The potential of using packaged cheese as a thermal storage medium to allow electrical demand shifting in the cold storage warehouse is evaluated and shown to be feasible. Three major conservation measures are identified with a total cost savings of $130,000 to $160,000 annually.

  5. Root Traits and Phenotyping Strategies for Plant Improvement

    PubMed Central

    Paez-Garcia, Ana; Motes, Christy M.; Scheible, Wolf-Rüdiger; Chen, Rujin; Blancaflor, Elison B.; Monteros, Maria J.

    2015-01-01

    Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics) and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs. PMID:27135332

  6. Ways to Improve Russian Coal-Fired Power Plants

    SciTech Connect

    Tumanovskii, A. G. Olkhovsky, G. G.

    2015-07-15

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed.

  7. [Effects of RhoA/Rho-kinase in the regulation of penile erection].

    PubMed

    Xia, Chuan; Jiang, Rui

    2007-06-01

    The erectile response of the penis depends on a balance between vasoconstrictor agents, which cause cavernosal smooth muscle to contract limiting blood inflow, and vasodilators, which relax cavernosal smooth muscle leading to increased blood inflow and erection. This review emphasizes the role of the RhoA/Rho-kinase pathway in the cavernosal circulation. While it is widely held that the nitric oxide-cyclic GMP-protein kinase G(NO-cGMP-PKG) pathway mediates vasorelaxation and penile erection, the vasoconstrictor actions of endothelin ET-1 and NE are reported to be mediated by the RhoA/Rho-kinase pathway in the cavernosal circulation and NO relax cavernosal smooth by inhibition of Rho-kinase. The application of Rho-kinase inhibitor on the penile erection may represent a new and promising method of treatment for erectile dysfunction.

  8. Formosa Plastics Corporation: Plant-Wide Assessment of Texas Plant Identifies Opportunities for Improving Process Efficiency and Reducing Energy Costs

    SciTech Connect

    2005-01-01

    At Formosa Plastics Corporation's plant in Point Comfort, Texas, a plant-wide assessment team analyzed process energy requirements, reviewed new technologies for applicability, and found ways to improve the plant's energy efficiency. The assessment team identified the energy requirements of each process and compared actual energy consumption with theoretical process requirements. The team estimated that total annual energy savings would be about 115,000 MBtu for natural gas and nearly 14 million kWh for electricity if the plant makes several improvements, which include upgrading the gas compressor impeller, improving the vent blower system, and recovering steam condensate for reuse. Total annual cost savings could be $1.5 million. The U.S. Department of Energy's Industrial Technologies Program cosponsored this assessment.

  9. Resveratrol biosynthesis: plant metabolic engineering for nutritional improvement of food.

    PubMed

    Giovinazzo, Giovanna; Ingrosso, Ilaria; Paradiso, Annalisa; De Gara, Laura; Santino, Angelo

    2012-09-01

    The plant polyphenol trans-resveratrol (3, 5, 4'-trihydroxystilbene) mainly found in grape, peanut and other few plants, displays a wide range of biological effects. Numerous in vitro studies have described various biological effects of resveratrol. In order to provide more information regarding absorption, metabolism, and bioavailability of resveratrol, various research approaches have been performed, including in vitro, ex vivo, and in vivo models. In recent years, the induction of resveratrol synthesis in plants which normally do not accumulate such polyphenol, has been successfully achieved by molecular engineering. In this context, the ectopic production of resveratrol has been reported to have positive effects both on plant resistance to biotic stress and the enhancement of the nutritional value of several widely consumed fruits and vegetables. The metabolic engineering of plants offers the opportunity to change the content of specific phytonutrients in plant - derived foods. This review focuses on the latest findings regarding on resveratrol bioproduction and its effects on the prevention of the major pathological conditions in man.

  10. A natural plant growth promoter calliterpenone from a plant Callicarpa macrophylla Vahl improves the plant growth promoting effects of plant growth promoting rhizobacteria (PGPRs).

    PubMed

    Maji, Deepamala; Barnawal, Deepti; Gupta, Aakansha; King, Shikha; Singh, A K; Kalra, A

    2013-05-01

    Experiments were conducted to evaluate the efficacy of calliterpenone, a natural plant growth promoter from a shrub Callicarpa macrophylla Vahl., in enhancing the growth and yield promoting effects of plant growth promoting rhizobacteria (PGPRs), in menthol mint (Mentha arvensis L).This study is based on our previous results indicating the microbial growth promotion by calliterpenone and assumption that application of calliterpenone along with PGPRs will improve the population of PGPRs resulting in higher impacts on plant growth and yield. Of the 15 PGPRs (identified as potent ones in our laboratory), 25 μl of 0.01 mM calliterpenone (8.0 μg/100 ml) was found to be useful in improving the population of nine PGPRs in culture media. The five selected strains of PGPRs exhibiting synergy with calliterpenone in enhancing growth of maize compared to PGPR or calliterpenone alone were selected and tested on two cultivars (cvs. Kosi and Kushal) of M. arvensis. Of the five strains, Bacillus subtilis P-20 (16S rDNA sequence homologous to Accession No NR027552) and B. subtilis Daz-26 (16SrDNA sequence homologuos to Accession No GU998816) were found to be highly effective in improving the herb and essential oil yield in the cultivars Kushal and Kosi respectively when co-treated with calliterpenone. The results open up the possibilities of using a natural growth promoter along with PGPRs as a bio-agri input for sustainable and organic agriculture.

  11. Millwater Pumping System Optimization Improves Efficiency and Saves Energy at an Automotive Glass Plant

    SciTech Connect

    2003-03-01

    In 2001, the Visteon automotive glass plant in Nashville, Tennessee renovated its millwater pumping system. This improvement saved the plant $280,000 annually in energy and operating costs, reduced annual energy consumption by 3.2 million kilowatt-hours, reduced water consumption, improved system performance, and reduced use of water treatment chemicals.

  12. Lab to Farm: Applying Research on Plant Genetics and Genomics to Crop Improvement

    PubMed Central

    Ronald, Pamela C.

    2014-01-01

    Over the last 300 years, plant science research has provided important knowledge and technologies for advancing the sustainability of agriculture. In this Essay, I describe how basic research advances have been translated into crop improvement, explore some lessons learned, and discuss the potential for current and future contribution of plant genetic improvement technologies to continue to enhance food security and agricultural sustainability. PMID:24915201

  13. Reduced Wind Speed Improves Plant Growth in a Desert City

    PubMed Central

    Bang, Christofer; Sabo, John L.; Faeth, Stanley H.

    2010-01-01

    Background The often dramatic effects of urbanization on community and ecosystem properties, such as primary productivity, abundances, and diversity are now well-established. In most cities local primary productivity increases and this extra energy flows upwards to alter diversity and relative abundances in higher trophic levels. The abiotic mechanisms thought to be responsible for increases in urban productivity are altered temperatures and light regimes, and increased nutrient and water inputs. However, another abiotic factor, wind speed, is also influenced by urbanization and well known for altering primary productivity in agricultural systems. Wind effects on primary productivity have heretofore not been studied in the context of urbanization. Methodology/Principal Findings We designed a field experiment to test if increased plant growth often observed in cities is explained by the sheltering effects of built structures. Wind speed was reduced by protecting Encelia farinosa (brittlebush) plants in urban, desert remnant and outlying desert localities via windbreaks while controlling for water availability and nutrient content. In all three habitats, we compared E. farinosa growth when protected by experimental windbreaks and in the open. E. farinosa plants protected against ambient wind in the desert and remnant areas grew faster in terms of biomass and height than exposed plants. As predicted, sheltered plants did not differ from unprotected plants in urban areas where wind speed is already reduced. Conclusion/Significance Our results indicate that reductions in wind speed due to built structures in cities contribute to increased plant productivity and thus also to changes in abundances and diversity of higher trophic levels. Our study emphasizes the need to incorporate wind speed in future urban ecological studies, as well as in planning for green space and sustainable cities. PMID:20548790

  14. Neuronal Nitric Oxide Signaling Regulates Erection Recovery after Cavernous Nerve Injury

    PubMed Central

    Sezen, Sena F.; Lagoda, Gwen; Burnett, Arthur L.

    2015-01-01

    Purpose NO is the major neuronal mediator of penile erection, but its role in EF status after CN injury is uncertain. This study aimed to determine the function of neuronal NO signaling in the pathobiology of EF recovery after partial CN injury using both genetic and pharmacologic mouse experimental paradigms. Materials and Methods EF was evaluated in WT and nNOS−/− mice (n=5–7/group) at 1, 3 and 7 days after UCI or sham injury and at day 7 in WT mice treated with the NO synthase inhibitor, L-NAME at baseline and for 6 days following UCI. Apoptosis in the penis was evaluated by Western blot analysis of p-Akt-S473, 3-NT, and caspase-3 expressions after BCI. Results ICP was significantly decreased at 1, 3 and 7 days in WT mice but only at day 1 in nNOS−/− mice after UCI compared with sham treatment values (p<0.05). L-NAME-treated WT mice had improved EF compared with the vehicle-treated group response at day 7 following UCI (p<0.05). p-Akt-S473 expression in penes was significantly decreased in vehicle-treated (p<0.05) but not L-NAME-treated WT mice. 3-NT expression in penes was significantly decreased in L-NAME-treated WT and vehicle-treated nNOS−/− mice (p<0.05). Caspase-3 expression in penes was significantly increased in vehicle-treated (p<0.05) but not L-NAME-treated WT mice and vehicle-treated nNOS−/− mice. Conclusions Neuronal NO signaling regulates EF recovery early after partial CN injury, exerting an inhibitory role via induction of apoptotic changes in penile tissue. Therapeutic strategies to improve EF recovery after RP may consider targeting pathogenic sites of NO neurobiology. PMID:22177198

  15. A synthetic erectile optogenetic stimulator enabling blue-light-inducible penile erection.

    PubMed

    Kim, Taeuk; Folcher, Marc; Doaud-El Baba, Marie; Fussenegger, Martin

    2015-05-11

    Precise spatiotemporal control of physiological processes by optogenetic devices inspired by synthetic biology may provide novel treatment opportunities for gene- and cell-based therapies. An erectile optogenetic stimulator (EROS), a synthetic designer guanylate cyclase producing a blue-light-inducible surge of the second messenger cyclic guanosine monophosphate (cGMP) in mammalian cells, enabled blue-light-dependent penile erection associated with occasional ejaculation after illumination of EROS-transfected corpus cavernosum in male rats. Photostimulated short-circuiting of complex psychological, neural, vascular, and endocrine factors to stimulate penile erection in the absence of sexual arousal may foster novel advances in the treatment of erectile dysfunction. PMID:25788334

  16. A synthetic erectile optogenetic stimulator enabling blue-light-inducible penile erection.

    PubMed

    Kim, Taeuk; Folcher, Marc; Doaud-El Baba, Marie; Fussenegger, Martin

    2015-05-11

    Precise spatiotemporal control of physiological processes by optogenetic devices inspired by synthetic biology may provide novel treatment opportunities for gene- and cell-based therapies. An erectile optogenetic stimulator (EROS), a synthetic designer guanylate cyclase producing a blue-light-inducible surge of the second messenger cyclic guanosine monophosphate (cGMP) in mammalian cells, enabled blue-light-dependent penile erection associated with occasional ejaculation after illumination of EROS-transfected corpus cavernosum in male rats. Photostimulated short-circuiting of complex psychological, neural, vascular, and endocrine factors to stimulate penile erection in the absence of sexual arousal may foster novel advances in the treatment of erectile dysfunction.

  17. Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants.

    PubMed

    Jacobsen, Evert; Schouten, Henk J

    2007-05-01

    There are two ways for genetic improvement in classical plant breeding: crossing and mutation. Plant varieties can also be improved through genetic modification; however, the present GMO regulations are based on risk assessments with the transgenes coming from non-crossable species. Nowadays, DNA sequence information of crop plants facilitates the isolation of cisgenes, which are genes from crop plants themselves or from crossable species. The increasing number of these isolated genes, and the development of transformation protocols that do not leave marker genes behind, provide an opportunity to improve plant breeding while remaining within the gene pool of the classical breeder. Compared with induced translocation and introgression breeding, cisgenesis is an improvement for gene transfer from crossable plants: it is a one-step gene transfer without linkage drag of other genes, whereas induced translocation and introgression breeding are multiple step gene transfer methods with linkage drag. The similarity of the genes used in cisgenesis compared with classical breeding is a compelling argument to treat cisgenic plants as classically bred plants. In the case of the classical breeding method induced translocation breeding, the insertion site of the genes is a priori unknown, as it is in cisgenesis. This provides another argument to treat cisgenic plants as classically bred plants, by exempting cisgenesis of plants from the GMO legislations.

  18. ERC product improvement activities for direct fuel cell power plants

    SciTech Connect

    Bentley, C.; Carlson, G.; Doyon, J.

    1995-08-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  19. ERC product improvement activities for direct fuel cell power plants

    SciTech Connect

    Maru, H.C.; Farooque, M.; Bentley, C.

    1995-12-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  20. Improved outage management techniques for better plant availability

    SciTech Connect

    Bemer, J.P.

    1989-01-01

    To maintain high availability of nuclear generating units is one of the most important management objectives. The duration of outages-whether planned or unplanned-is the main parameter impacting on plant availability, but the planned outages, and essentially the refueling outages, are the most important in this respect, and they also have a heavy impact on the economics of plant operation. The following factors influence the duration of the outages: (1) modifications; (2) preventive maintenance operations; and (3) corrective maintenance operations of generic faults. In this paper, the authors examine how the outage management organization of Electricite de France (EdF) plants is tending to optimize the solutions to the above-mentioned points.

  1. Automated construction of lightweight, simple, field-erected structures

    NASA Technical Reports Server (NTRS)

    Leonard, R. S.

    1980-01-01

    The feasibility of automation of construction processes which could result in mobile construction robots is examined. The construction of a large photovoltaic power plant with a peak power output of 100 MW is demonstrated. The reasons to automate the construction process, a conventional construction scenario as the reference for evaluation, and a list of potential cost benefits using robots are presented. The technical feasibility of using robots to construct SPS ground stations is addressed.

  2. Using plant canopy temperature to improve irrigated crop management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remotely sensed plant canopy temperature has long been recognized as having potential as a tool for irrigation management. However, a number of barriers have prevented its routine use in practice, such as the spatial and temporal resolution of remote sensing platforms, limitations in computing capac...

  3. Condom-associated erection problems: behavioural responses and attributions in young, heterosexual men

    PubMed Central

    Hill, Brandon J.; Sanders, Stephanie A.; Crosby, Richard A.; Ingelhart, Kara N.; Janssen, Erick

    2015-01-01

    Background Previous studies have associated men who experience condom-associated erection problems (CAEP) with incomplete condom use and/or foregoing using condoms altogether. However, how men respond to CAEP and what they attribute CAEP to, remains unclear. Understanding young men's CAEP responses and attributions could help improve sexually transmissible infections (STI)/HIV prevention programs and interventions. Methods Behavioural responses to, and attributions for, CAEP during application (CAEP-Application) and/or during penile-vaginal intercourse (CAEP-PVI) were reported using an online questionnaire by 295 young, heterosexual men (aged 18–24 years) who were recruited via social media websites and university Listservs across major cities in the Midwestern USA. Results Behavioural responses to CAEP-Application included receiving oral or manual stimulation, stimulating a partner, self-stimulation, foregoing condom use and applying the condom after starting intercourse. Attributions for CAEP-Application included: distraction, fit and feel problems, application taking too long and having consumed too much alcohol. Behavioural responses to CAEP-PVI included increasing the intensity of intercourse, removing the condom to receive oral or manual stimulation and removing condom and continuing intercourse. Attributions for CAEP-PVI included: lack of sensation, taking too long to orgasm, not being ‘turned on’ enough, fit and feel problems and partner-related factors. Conclusions Men who report CAEP respond with both STI/HIV risk-reducing and potentially risk-increasing behaviours (e.g. forgoing condom use). Men attribute their experiences to a wide range of individual- and partner-level factors. Addressing men's CAEP behavioural responses and attributions may increase the efficacious value of condom programs and STI/HIV prevention interventions – particularly among men who experience CAEP. PMID:26166025

  4. THIS 103FOOT SPAN MOSELY WROUGHTIRON BOWSTRING ARCHTRUSS BRIDGE ERECTED IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    THIS 103-FOOT SPAN MOSELY WROUGHT-IRON BOWSTRING ARCH-TRUSS BRIDGE ERECTED IN 1870 CARRIED EMPLOYEES AND MATERIALS ALONG WITH STEAM HEAT AND GAS LINES. IT IS VALUABLE AS A RARE SURVIVING EXAMPLE OF THIS TYPE OF BRIDGE AND IS AMONG THE EARLIEST OF ITS TYPE IN AMERICA. - Claremont Village Industrial District, Between B, Claremont, Sullivan County, NH

  5. 29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... concrete in the footings, piers and walls and the mortar in the masonry piers and walls has attained, on... erect steel unless it has received written notification that the concrete in the footings, piers and... controlling contractor shall ensure that the following is provided and maintained: (1) Adequate access...

  6. SPERTI Control Building (PER601). Preengineered metal frame building is erected, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I Control Building (PER-601). Pre-engineered metal frame building is erected, with metal siding on part of one side. Photographer: R.G. Larsen. Date: April 22, 1955. INEEL negative no. 55-1002 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  7. Portal Crane P51, 50ton Crane. Erecting side trusses and ladder. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Portal Crane P-51, 50-ton Crane. Erecting side trusses and ladder. Looking east. Taken April 12, 1920. 14th Naval District Photo Collection Item No. 3207 - U.S. Naval Base, Pearl Harbor, Exterior Cranes, Waterfront Crane Track System, Pearl City, Honolulu County, HI

  8. CONTROL HOUSE, TRA620. MASONS ERECT PUMICE BLOCK WALLS. BUILDING WILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTROL HOUSE, TRA-620. MASONS ERECT PUMICE BLOCK WALLS. BUILDING WILL CONTROL ACCESS TO MTR AND OTHER "HOT" AND CLASSIFIED AREAS. INL NEGATIVE NO. 577. Unknown Photographer, 9/11/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  9. 76 FR 33786 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Steel Erection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... Federal Register on March 2, 2011 (76 FR 11516). Interested parties are encouraged to send comments to the...; Steel Erection ACTION: Notice. SUMMARY: The Department of Labor (DOL) is submitting the Occupational Safety and Health Administration (OSHA) sponsored information collection request (ICR) titled,...

  10. 31. VIEW LOOKING AFT TOWARD WHEELHOUSE ERECTED IN THE 1940s. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW LOOKING AFT TOWARD WHEELHOUSE ERECTED IN THE 1940s. CREW MEMBER IS UNKNOWN. Original 3-1/2'x4-1/4' photograph taken c. 1930? - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA

  11. Genetic improvement of plants for enhanced bio-ethanol production.

    PubMed

    Saha, Sanghamitra; Ramachandran, Srinivasan

    2013-04-01

    The present world energy situation urgently requires exploring and developing alternate, sustainable sources for fuel. Biofuels have proven to be an effective energy source but more needs to be produced to meet energy goals. Whereas first generation biofuels derived from mainly corn and sugarcane continue to be used and produced, the contentious debate between "feedstock versus foodstock" continues. The need for sources that can be grown under different environmental conditions has led to exploring newer sources. Lignocellulosic biomass is an attractive source for production of biofuel, but pretreatment costs to remove lignin are high and the process is time consuming. Genetically modified plants that have increased sugar or starch content, modified lignin content, or produce cellulose degrading enzymes are some options that are being explored and tested. This review focuses on current research on increasing production of biofuels by genetic engineering of plants to have desirable characteristics. Recent patents that have been filed in this area are also discussed.

  12. Improvement of existing nightsoil treatment plant for nitrogen removal.

    PubMed

    Lim, B S; Kim, J U; Park, H D

    2004-01-01

    This study was performed to increase the treatment efficiency and to reduce operation and maintenance costs of the existing nightsoil treatment plant. The existing nightsoil plant was not established by the nitrogen removal process, and was operated ineffectively with deterioration of treatment efficiency rate, and according to the demand of many operators, the expenses of operation and maintenance have become excessive. Modified plant has been changed through two steps. The first step, liquid decayed tank using closed oxidation ditch is operated to increase retention time only for nitrification. The second step, modified liquid decayed tank including anoxic tank is operated, it has an excellent nitrogen removal rate. In first step, when HRT was increased from 10 days to 13 days in liquid decayed tank including aeration tank using closed oxidation ditch, TN concentration of effluent appeared below 51 mg/L less than discharge limit, 60 mg/L. In second step, when anoxic tank and oxic tank were installed, HRT has been increased to 13 days and 26 days, respectively. Then average TN concentration of effluent was detected less than 13 mg/L for over one year. The simple process modified the existing two processes resulted in the reduction of costs for operation and maintenance in the personnel, chemical, and filter change sphere.

  13. Stopwatch-assessed duration of erection: a new measure of the efficacy of erectile dysfunction treatments.

    PubMed

    Rosenberg, M T; Miner, M M; Barnes, A L; Janning, S W

    2011-01-01

    Results are reported from the first two adequate trials of the PDE-5 inhibitor vardenafil using a stopwatch to precisely measure erection duration in men with ED. Two randomized, multicenter, double-blind, placebo-controlled trials were conducted: a crossover 4-week treatment in men with ED (ENDURANCE) and a parallel group, 12-week treatment in men with ED and dyslipidemia (the dyslipidemia study). Stopwatch-assessed duration of erection leading to successful intercourse measured by Sexual Encounter Profile question-3 (SEP-3) was the primary end point in ENDURANCE and one of the secondary end points in the dyslipidemia study. Other efficacy end points included responses to SEP-2, SEP-3 and International Index of Erectile Function-Erectile Function (IIEF-EF) domain scores. Adverse events were recorded. Duration of erection (least squares mean ± s.e.) leading to successful intercourse was statistically superior in men receiving vardenafil versus placebo (12.8 ± 1.0 versus 5.5 ± 1.0 min; p<0.001 in ENDURANCE and 10.0 ± 0.8 versus 3.4 ± 0.8; p<0.001 in the dyslipidemia study), with a difference of 7.4 and 6.6 min, respectively, between treatment groups. Results for SEP-2, SEP-3 and IIEF-EF domain scores were consistent across studies and with stopwatch-assessed measures for duration of erection. Vardenafil was well tolerated. Duration of erection leading to successful intercourse is an important indicator of the efficacy of ED treatment. The stopwatch approach offers an alternative, precise and reproducible measure of efficacy. We propose this approach as a potential new paradigm for assessing the efficacy of ED treatments.

  14. Penile oxygen saturation in the flaccid and erect penis in men with and without erectile dysfunction.

    PubMed

    Padmanabhan, Priya; McCullough, Andrew R

    2007-01-01

    It is believed that a chronic state of corporal oxygen desaturation or hypoxemia secondary to the loss of nocturnal erections is a fundamental pathophysiological cause of erectile dysfunction (ED). Limited invasive blood gas measurements in human models have shown decreased oxygen tension in vasculogenic impotence. Normative data on flaccid and erect oxygen saturation (StO(2)) levels are lacking due to the invasive nature of blood gas determinations. Our objective was to determine StO(2) in the flaccid and erect penis in men with and without ED using a tissue oximeter. This FDA-approved instrument provides instantaneous, noninvasive, painless local tissue StO(2) measurements, which highly correlate to blood gas data. The study population included 171 men (18-90 years) who presented to one andrologist. They completed the Sexual Health Inventory for Men (SHIM) based on pharmacologically unassisted erectile function and had penile StO(2) measurements taken. 64 of these men had repeat measurements after PGE-1 induced erections. There are significant differences (P<.001) in corporal and glanular StO(2) in the flaccid (right corpora, 45.23%; left corpora, 52.50%) and erect state (right corpora, 76.58; left corpora, 80.42). Men with ED (right corpora, 45.04% vs 53.58%; P=.02; and left corpora, 50.95% vs 58.78%; P=.03) have significantly lower corporal penile StO(2). Future prospective data collection can correlate penile StO(2) in specific populations, such as diabetics and RRP patients. This may help further elucidate the relationship between corporal hypoxia and the development and progression of ED and possibly its treatment and prevention.

  15. Improved method for the isolation of RNA from plant tissues.

    PubMed

    Logemann, J; Schell, J; Willmitzer, L

    1987-05-15

    A fast and efficient method for the isolation of RNA from plant tissues is described. Tuber tissue is homogenized in a guanidine hydrochloride-containing buffer followed by direct extraction with phenol/chloroform. The RNA is precipitated from the aqueous phase, washed with 3 M sodium acetate and 70% ethanol, and finally dissolved in water. The yield of RNA is up to 500 micrograms/g of tissue and several tests indicate intact and nondegraded RNA. This method can be adapted to a small-scale version by the use of 1.5-ml tubes, allowing rapid isolation of RNA from a larger number of samples. Finally, this method is of particular use for isolating RNA from tissues with a high polysaccharide and nuclease content such as wounded potato tubers. PMID:2441623

  16. Edwin I. Hatch nuclear plant implementation of improved technical specifications

    SciTech Connect

    Mahler, S.R.; Pendry, D.

    1994-12-31

    Edwin I. Hatch nuclear plant consists of two General Electric boiling water reactor/4 units, with a common control room and a common refueling floor. In March 1993, Hatch began conversion of both units` technical specifications utilizing NUREG 1433. The technical specifications amendment request was submitted February 25, 1994. Issuance is scheduled for October 21, 1994, with implementation on March 15, 1994. The current unit-1 technical specifications are in the {open_quotes}custom{close_quotes} format, and the unit-2 technical specifications are in the old standard format. Hatch previously relocated the fire protection and radiological technical specifications requirements. The Hatch conversion will provide consistency between the two units, to the extent practicable.

  17. Novel enabling technologies of gene isolation and plant transformation for improved crop protection

    SciTech Connect

    Torok, Tamas

    2013-02-04

    Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

  18. Remote Sensing and Modeling for Improving Operational Aquatic Plant Management

    NASA Technical Reports Server (NTRS)

    Bubenheim, Dave

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California’s water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.

  19. Post-floral Erection of Stalks Provides Insight into the Evolution of Fruit Orientation and Its Effects on Seed Dispersal

    PubMed Central

    Niu, Yang; Zhou, Zhuo; Sha, Wen; Sun, Hang

    2016-01-01

    That stalks reorient after flowering to face upwards is a common phenomenon in many flowering plants, indicating the potential importance of fruit orientation on seed dispersal. But this idea has not been subject to an empirical test. We examined this hypothesis by analysing the evolutionary correlation between fruit orientation and other characters and by investigating the effects of fruit orientation on seed dispersal. We found that 1) in a sub-alpine plant community, upward fruit orientation strongly correlates with fruits that act as seed containers, which are often of dry type and are dispersed by non-animal vectors; 2) as exemplified by the Campanulaceae s. str., fruit orientation strongly correlates with dehiscence position. Upwardly-oriented capsules dehisce at the apex, whereas pendent ones dehisce at the base, in both cases ensuring that seeds are released from an upright position; 3) in manipulation experiments on Silene chungtienensis, upward fruits (the natural state) exhibit much greater dispersal distances and more dispersive pattern than pendent ones, and have a more even distribution of dispersal direction than horizontal ones. Our results suggest that fruit orientation may have important function in seed dispersal, which may be the reason why the phenomenon that stalk erection after flowering occurs widely. PMID:26832830

  20. Central control of penile erection: role of the paraventricular nucleus of the hypothalamus.

    PubMed

    Argiolas, Antonio; Melis, Maria Rosaria

    2005-05-01

    The paraventricular nucleus of the hypothalamus is an integration centre between the central and peripheral autonomic nervous systems. It is involved in numerous functions from feeding, metabolic balance, blood pressure and heart rate, to erectile function and sexual behaviour. In particular, a group of oxytocinergic neurons originating in this nucleus and projecting to extra-hypothalamic brain areas (e.g., hippocampus, medulla oblongata and spinal cord) control penile erection in male rats. Activation of these neurons by dopamine and its agonists, excitatory amino acids (N-methyl-D-aspartic acid) or oxytocin itself, or by electrical stimulation leads to penile erection, while their inhibition by gamma-amino-butyric acid (GABA) and its agonists or by opioid peptides and opiate-like drugs inhibits this sexual response. The activation of these neurons is secondary to the activation of nitric oxide synthase, which produces nitric oxide. Nitric oxide in turn causes, by a mechanism that is as yet unidentified, the release of oxytocin in extra-hypothalamic brain areas. Other compounds recently identified that facilitate penile erection by activating central oxytocinergic neurons are peptide analogues of hexarelin, a growth hormone releasing peptide, pro-VGF-derived peptides, endogenous peptides that may be released by neuronal nerve endings impinging on oxytocinergic cell bodies, SR 141716A, a cannabinoid CB1 receptor antagonist, and, less convincingly, adrenocorticotropin-melanocyte-stimulating hormone (ACTH-MSH)-related peptides. Paraventricular oxytocinergic neurons and similar mechanisms are also involved in penile erection occurring in physiological contexts, namely noncontact erections that occur in male rats in the presence of an inaccessible receptive female, and during copulation. These findings show that the paraventricular nucleus of the hypothalamus plays an important role in the control of erectile function and sexual activity. As the male rat is a model of

  1. Lubrication contributes to improved landfill cogeneration plant operation

    SciTech Connect

    1995-10-01

    The Prince George`s county, Maryland, cogeneration plant consists of three lean-burn, 12-cylinder, Waukesha 5790GL turbocharged gas engines, each powering an 850 kW Kato generator. Four Waukesha F1197G engines run gas compressors that draw and compress gas from the landfill, pumping an average of 28000 m{sup 3}/day at 6.2 bar from 29 wells. Landfill gas is 50% methane, 30% carbon dioxide, 10% nitrogen and 10% other gas constituents. These other gas constituents consist of 160 chemical compounds, many of which are very destructive to engines and other equipment. Probably the worst of these are the total organic halide expressed as chloride (TOH/CL), formed from the decomposition of household cleaning preparations and other materials containing chlorides. Landfill gas also contains an abundance of water, which combines not only with the TOH/CLs but with oxides of nitrogen, which are by-products of the combustion process, to form acids. To handle the highly contaminated landfill gas, the Waukesha Engine Division and people from Curtis Engine and Equipment modified the equipment and maintenance practices. One of the first changes was in lubrication. Curtis switched from a standard gas engine oil to Mobile Pegasus 446 oil, an SAE 40 oil that has a total base number (TBN) of 9.5, because of its extended acid-neutralizing capabilities.

  2. Improvement of growth rate of plants by bubble discharge in water

    NASA Astrophysics Data System (ADS)

    Takahata, Junichiro; Takaki, Koichi; Satta, Naoya; Takahashi, Katsuyuki; Fujio, Takuya; Sasaki, Yuji

    2015-01-01

    The effect of bubble discharge in water on the growth rate of plants was investigated experimentally for application to plant cultivation systems. Spinach (Spinacia oleracea), radish (Raphanus sativus var. sativus), and strawberry (Fragaria × ananassa) were used as specimens to clarify the effect of the discharge treatment on edible parts of the plants. The specimens were cultivated in pots filled with artificial soil, which included chicken manure charcoal. Distilled water was sprayed on the artificial soil and drained through a hole in the pots to a water storage tank. The water was circulated from the water storage tank to the cultivation pots after 15 or 30 min discharge treatment on alternate days. A magnetic compression-type pulsed power generator was used to produce the bubble discharge with a repetition rate of 250 pps. The plant height in the growth phase and the dry weight of the harvested plants were improved markedly by the discharge treatment in water. The soil and plant analyzer development (SPAD) value of the plants also improved in the growth phase of the plants. The concentration of nitrate nitrogen, which mainly contributed to the improvement of the growth rate, in the water increased with the discharge treatment. The Brix value of edible parts of Fragaria × ananassa increased with the discharge treatment. The inactivation of bacteria in the water was also confirmed with the discharge treatment.

  3. Engineering plants for animal feed for improved nutritional value.

    PubMed

    Williams, Peter E V

    2003-05-01

    Feed formulation to meet nutritional requirements of livestock is becoming increasingly challenging. Regulations have banned the use of traditional high-quality protein supplements such as meat-and-bone meal, pollution from animal excreta of N and P is an issue and antibiotics are no longer available as insurance against the impact of enteric infection and feed anti-nutritional factors. The improved genetic potential of livestock is increasing daily requirement for energy and protein (essential amino acids). To benefit from the enhanced growth potential of livestock diets with high nutrient density are needed that can be formulated from crops without increased cost. Genetic modification of commodity crops used to manufacture animal feed in order to improve the density and quality of available nutrients is a potential solution to some of these problems. Furthermore, crops may be used as biofactories to produce molecules and products used in animal feed with considerable reductions in manufacturing fixed costs. Nevertheless, there are considerable not insurmountable challenges, such as the creation of sufficient economic value to deliver benefit to all members in the feed production chain, which is an essential element of identity preserving and delivering the technology to livestock producers. Individual output traits in the major commodity crops may not provide sufficient value to adequately compensate all the members of the feed production chain. Successful adoption of output traits may rely on inserting combinations of agronomic input traits with specific quality traits or increasing the value proposition by inserting combinations of output traits. PMID:14506877

  4. Engineering plants for animal feed for improved nutritional value.

    PubMed

    Williams, Peter E V

    2003-05-01

    Feed formulation to meet nutritional requirements of livestock is becoming increasingly challenging. Regulations have banned the use of traditional high-quality protein supplements such as meat-and-bone meal, pollution from animal excreta of N and P is an issue and antibiotics are no longer available as insurance against the impact of enteric infection and feed anti-nutritional factors. The improved genetic potential of livestock is increasing daily requirement for energy and protein (essential amino acids). To benefit from the enhanced growth potential of livestock diets with high nutrient density are needed that can be formulated from crops without increased cost. Genetic modification of commodity crops used to manufacture animal feed in order to improve the density and quality of available nutrients is a potential solution to some of these problems. Furthermore, crops may be used as biofactories to produce molecules and products used in animal feed with considerable reductions in manufacturing fixed costs. Nevertheless, there are considerable not insurmountable challenges, such as the creation of sufficient economic value to deliver benefit to all members in the feed production chain, which is an essential element of identity preserving and delivering the technology to livestock producers. Individual output traits in the major commodity crops may not provide sufficient value to adequately compensate all the members of the feed production chain. Successful adoption of output traits may rely on inserting combinations of agronomic input traits with specific quality traits or increasing the value proposition by inserting combinations of output traits.

  5. Application of plant genomics for improved symbiotic nitrogen fixation in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because genome sequencing, transcript profiling, proteome analysis, metabolite profiling, mutant analysis, and comparative genomics have progressed at a logarithmic pace, we know more about the plant genes involved in symbiotic nitrogen fixation (SNF) than could have been imagined a decade ago. Howe...

  6. Design, construction, and utilization of a space station assembled from 5-meter erectable struts

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Bush, Harold G.

    1987-01-01

    The primary characteristics of the 5-meter erectable truss is presented, which was baselined for the Space Station. The relatively large 5-meter truss dimension was chosen to provide a deep beam for high bending stiffness yet provide convenient mounting locations for space shuttle cargo bay size payloads which are approx. 14.5 ft (4.4 m) in diameter. Truss nodes and quick attachment erectable joints are described which provide for evolutionary three dimensional growth and for simple maintenance and repair. A mobile remote manipulator system is described which is provided to assist in station construction and maintenance. A discussion is also presented of the construction of the Space Station and the associated extravehicular active (EVA) time.

  7. Recent advances in structural technology for large deployable and erectable spacecraft

    NASA Technical Reports Server (NTRS)

    Bush, H. G.; Heard, W. L., Jr.

    1980-01-01

    Ultra-low mass deployable and erectable truss structure designs for spacecraft are identified using computerized structural sizing techniques. Extremely slender strut proportions are shown to characterize minimum mass spacecraft which are designed for shuttle transport to orbit. Discrete element effects using a recently developed buckling theory for periodic lattice type structures are presented. An analysis of fabrication imperfection effects on the surface accuracy of four different antenna reflector structures is summarized. The tetrahedral truss has the greatest potential of the structures examined for application to accurate or large reflectors. A deployable module which can be efficiently transported is identified and shown to have significant potential for application to future antenna requirements. Investigations of erectable structure assembly are reviewed.

  8. [Action mechanisms of prolactin and its receptors on penile erection and ejaculation].

    PubMed

    Zhang, Jian-zhong; Xu, Ai-ming; Chen, Wei; Wang, Zeng-jun

    2015-12-01

    Prolactin is a polypeptide hormone which mainly acts on the reproductive system and plays an important role in penile erection and ejaculation. Prolactin receptors have a variety of short forms apart from the classic long form, which are widely expressed in male reproductive glands. High levels of prolactin can induce erectile dysfunction and results in secondary male infertility, which are mainly associated with the inhibition of dopaminergic activity, reduction of the testosterone level, and contraction of the cavernous smooth muscle. Moreover, low levels of prolactin can result in ejaculatory dysfunction. This article updates the views on the expressions of prolactin receptors in the male reproductive system, the effects of prolactin on penile erection and ejaculation, and its action mechanisms.

  9. Aquatic plant debris improve phosphorus sorption into sediment under anoxic condition.

    PubMed

    Jin, Chong-Wei; Du, Shao-Ting; Dong, Wu-Yuan; Wang, Jue-Hua; Shen, Cheng; Zhang, Yong-Song

    2013-11-01

    The effects of plant debris on phosphorus sorption by anoxic sediment were investigated. Addition of plant debris significantly enhanced the decrease of soluble relative phosphorus (SRP) in overlying water at both 10 and 30 °C during the 30-day investigation. Both cellulose and glucose, two typical plant components, also clearly enhanced the SRP decrease in anoxic overlying water. The measurement of phosphorus (P) fractions in sediment revealed that the levels of unstable P forms were decreased by plant debris addition, whereas the opposites were true for stable P forms. However, under sterilized condition, plant debris/glucose addition has no effect on the SRP decrease in overlying water. Overall, our results suggested that plant debris improve P sorption into sediment under anoxic condition through a microorganism-mediated mechanism. PMID:23686758

  10. Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway.

    PubMed

    Shi, Haitao; Chan, Zhulong

    2014-02-01

    Polyamines (mainly putrescine (Put), spermidine (Spd), and spermine (Spm)) have been widely found in a range of physiological processes and in almost all diverse environmental stresses. In various plant species, abiotic stresses modulated the accumulation of polyamines and related gene expression. Studies using loss-of-function mutants and transgenic overexpression plants modulating polyamine metabolic pathways confirmed protective roles of polyamines during plant abiotic stress responses, and indicated the possibility to improve plant tolerance through genetic manipulation of the polyamine pathway. Additionally, putative mechanisms of polyamines involved in plant abiotic stress tolerance were thoroughly discussed and crosstalks among polyamine, abscisic acid, and nitric oxide in plant responses to abiotic stress were emphasized. Special attention was paid to the interaction between polyamine and reactive oxygen species, ion channels, amino acid and carbon metabolism, and other adaptive responses. Further studies are needed to elucidate the polyamine signaling pathway, especially polyamine-regulated downstream targets and the connections between polyamines and other stress responsive molecules.

  11. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens.

    PubMed

    Lorito, M; Woo, S L; Garcia, I; Colucci, G; Harman, G E; Pintor-Toro, J A; Filippone, E; Muccifora, S; Lawrence, C B; Zoina, A; Tuzun, S; Scala, F; Fernandez, I G

    1998-07-01

    Disease resistance in transgenic plants has been improved, for the first time, by the insertion of a gene from a biocontrol fungus. The gene encoding a strongly antifungal endochitinase from the mycoparasitic fungus Trichoderma harzianum was transferred to tobacco and potato. High expression levels of the fungal gene were obtained in different plant tissues, which had no visible effect on plant growth and development. Substantial differences in endochitinase activity were detected among transformants. Selected transgenic lines were highly tolerant or completely resistant to the foliar pathogens Alternaria alternata, A. solani, Botrytis cinerea, and the soilborne pathogen Rhizoctonia solani. The high level and the broad spectrum of resistance obtained with a single chitinase gene from Trichoderma overcome the limited efficacy of transgenic expression in plants of chitinase genes from plants and bacteria. These results demonstrate a rich source of genes from biocontrol fungi that can be used to control diseases in plants.

  12. Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria.

    PubMed

    Ma, Ying; Rajkumar, Mani; Freitas, Helena

    2009-07-30

    In this study, among a collection of Ni-resistant bacterial strains isolated from the rhizosphere of Alyssum serpyllifolium and Phleum phleoides grown on serpentine soil, five plant growth-promoting bacteria (PGPB) were selected based on their ability to utilize 1-aminocyclopropane-1-carboxylate (ACC) as the sole N source and promote seedling growth. All of the strains tested positive for indole-3-acetic acid (IAA) production and phosphate solubilization. In addition, four of the strains exhibited significant levels of siderophores production. Further, the efficiency of PGPB in enhancing Ni solubilization in soils was analyzed. Compared with control treatment, inoculation of PGPB strains significantly increased the concentrations of bioavailable Ni. Furthermore, a pot experiment was conducted to elucidate the effects of inoculating Ni-resistant PGPB on the plant growth and the uptake of Ni by Brassica juncea and B. oxyrrhina in soil contaminated with 450 mg kg(-1) Ni. Psychrobacter sp. SRA2 significantly increased the fresh (351%) and dry biomass (285%) of the B. juncea test plants (p<0.05), whereas Psychrobacter sp. SRA1 and Bacillus cereus SRA10 significantly increased the accumulation of Ni in the root and shoot tissues of B. juncea compared with non-inoculated controls. This result indicates that the strains SRA1 and SRA10 facilitated the release of Ni from the non-soluble phases in the soil, thus enhancing the availability of Ni to plants. A significant increase, greater than that of the control, was also noted for growth parameters of the B. oxyrrhina test plants when the seeds were treated with strain SRA2. This effect can be attributed to the utilization of ACC, solubilization of phosphate and production of IAA. The results of the study revealed that the inoculation of Ni mobilizing strains Psychrobacter sp. SRA1 and B. cereus SRA10 increases the efficiency of phytoextraction directly by enhancing the metal accumulation in plant tissues and the efficient

  13. 12. 'Erection Plan, 1 180'01/4' c. to c. End ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. 'Erection Plan, 1 - 180'-0-1/4' c. to c. End Pins Sing. Tr. Thro' Span, 16th Crossing over Sacramento River, Pacific System, Southern Pacific Co., Phoenix Bridge Co., C.O. #842, Drawing #13, Scale 1/8' & 1' = 1'-0', Eng'r C. Scheidl, Draftsman D. Sharp, Scale 1' = 1'-0', May 1st 1901.' - Southern Pacific Railroad Shasta Route, Bridge No. 324.99, Milepost 324.99, Shasta Springs, Siskiyou County, CA

  14. 11. 'Erection Plan, 1 208'101/2' C. to C. End ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. 'Erection Plan, 1 - 208'-10-1/2' C. to C. End Pins S. Tr. Thro. Skew Span, 6th Crossing Sacramento River, Pacific System, Southern Pacific Company, The Phoenix Bridge Co., C.O. 836D, Drawing No. 13, Scale 1/8' = 1'0', Engineer, B.M. Krohn, Draftsman, W.L. Clegg, Date, May 25th 1901' - Southern Pacific Railroad Shasta Route, Bridge No. 301.85, Milepost 301.85, Pollard Flat, Shasta County, CA

  15. Phosphorylated endothelial nitric oxide synthase mediates vascular endothelial growth factor-induced penile erection.

    PubMed

    Musicki, Biljana; Palese, Michael A; Crone, Julie K; Burnett, Arthur L

    2004-02-01

    The objective of the present study was to evaluate whether vascular endothelial growth factor (VEGF)-induced penile erection is mediated by activation of endothelial nitric oxide synthase (eNOS) through its phosphorylation. We assessed the role of constitutively activated eNOS in VEGF-induced penile erection using wild-type (WT) and eNOS-knockout (eNOS(-/-)) mice with and without vasculogenic erectile dysfunction. Adult WT and eNOS(-/-) mice were subjected to sham operation or bilateral castration to induce vasculogenic erectile dysfunction. At the time of surgery, animals were injected intracavernosally with a replication-deficient adenovirus expressing human VEGF145 (10(9) particle units) or with empty virus (Ad.Null). After 7 days, erectile function was assessed in response to cavernous nerve electrical stimulation. Total and phosphorylated protein kinase B (Akt) as well as total and phosphorylated eNOS were quantitatively assessed in mice penes using Western immunoblot and immunohistochemistry. In intact WT mice, VEGF145 significantly increased erectile responses, and in WT mice after castration, it completely recovered penile erection. However, VEGF145 failed to increase erectile responses in intact eNOS(-/-) mice and only partially recovered erectile function in castrated eNOS(-/-) mice. In addition, VEGF145 significantly increased phosphorylation of eNOS at Serine 1177 by approximately 2-fold in penes of both intact and castrated WT mice. The data provide a molecular explanation for VEGF stimulatory effect on penile erection, which involves phosphorylated eNOS (Serine 1177) mediation. PMID:14522830

  16. 134. ARAII SL1 decontamination and lay down building (ARA614) erected ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    134. ARA-II SL-1 decontamination and lay down building (ARA-614) erected after accidental explosion of SL-1 reactor. Shows vicinity map, index of related drawings, plot plan and other detail. F.C. Torkelson Company 842-area/SL-1-101-U-2. Date: September 1962. Ineel index code no. 070-0101-65-851-150713. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  17. Clavulanic acid induces penile erection and yawning in male rats: comparison with apomorphine.

    PubMed

    Sanna, Fabrizio; Melis, Maria Rosaria; Angioni, Laura; Argiolas, Antonio

    2013-02-01

    The beta-lactamase inhibitor clavulanic acid induced penile erection and yawning in a dose dependent manner when given intraperitoneally (IP, 0.05-5mg/kg), perorally (OS, 0.1-5mg/kg) and intracereboventricularly (ICV, 0.01-5 μg/rat) to male rats. The effect resembles that of the dopamine receptor agonist apomorphine given subcutaneously (SC) (0.02-0.25mg/kg), although the responses of the latter followed a U inverted dose-response curve, disappearing at doses higher than 0.1mg/kg. Clavulanic acid responses were reduced by about 55% by haloperidol, a dopamine D2 receptor antagonist (0.1mg/kg IP), and by d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin, an oxytocin receptor antagonist (2 μg/rat ICV), both given 15 min before clavulanic acid. A higher reduction of clavulanic acid responses (more than 80%) was also found with morphine, an opioid receptor agonist (5mg/kg IP), and with mianserin, a serotonin 5HT(2c) receptor antagonist (0.2mg/kg SC). In contrast, no reduction was found with naloxone, an opioid receptor antagonist (1mg/kg IP). The ability of haloperidol, d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin and morphine to reduce clavulanic acid induced penile erection and yawning suggests that clavulanic acid induces these responses, at least in part, by increasing central dopaminergic neurotransmission. Dopamine in turn activates oxytocinergic neurotransmission and centrally released oxytocin induces penile erection and yawning. However, since both penile erection and yawning episodes were reduced not only by the blockade of central dopamine and oxytocin receptors and by the stimulation of opioid receptors, which inhibits oxytocinergic neurotransmission, but also by mianserin, an increase of central serotonin neurotransmission is also likely to participate in these clavulanic acid responses.

  18. 18. 'Erection Plan for 3 180'61/2' End Pins S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. 'Erection Plan for 3 - 180'-6-1/2' End Pins S. Track Thro. Spans, 10th, 11th & 13th Crossings of Sacramento River, Pacific Systems, Southern Pacific Co. Phoenix Bridge Co., C. O. #839, Drawing #9, Scale = 1/8' & 1' = 1 ft., Eng'r-Chas. Scheidl, Drafts. H. O. McG., April 16th, 1901.' - Southern Pacific Railroad Shasta Route, Bridge No. 310.58, Milepost 310.58, Sims, Shasta County, CA

  19. Phosphorylated endothelial nitric oxide synthase mediates vascular endothelial growth factor-induced penile erection.

    PubMed

    Musicki, Biljana; Palese, Michael A; Crone, Julie K; Burnett, Arthur L

    2004-02-01

    The objective of the present study was to evaluate whether vascular endothelial growth factor (VEGF)-induced penile erection is mediated by activation of endothelial nitric oxide synthase (eNOS) through its phosphorylation. We assessed the role of constitutively activated eNOS in VEGF-induced penile erection using wild-type (WT) and eNOS-knockout (eNOS(-/-)) mice with and without vasculogenic erectile dysfunction. Adult WT and eNOS(-/-) mice were subjected to sham operation or bilateral castration to induce vasculogenic erectile dysfunction. At the time of surgery, animals were injected intracavernosally with a replication-deficient adenovirus expressing human VEGF145 (10(9) particle units) or with empty virus (Ad.Null). After 7 days, erectile function was assessed in response to cavernous nerve electrical stimulation. Total and phosphorylated protein kinase B (Akt) as well as total and phosphorylated eNOS were quantitatively assessed in mice penes using Western immunoblot and immunohistochemistry. In intact WT mice, VEGF145 significantly increased erectile responses, and in WT mice after castration, it completely recovered penile erection. However, VEGF145 failed to increase erectile responses in intact eNOS(-/-) mice and only partially recovered erectile function in castrated eNOS(-/-) mice. In addition, VEGF145 significantly increased phosphorylation of eNOS at Serine 1177 by approximately 2-fold in penes of both intact and castrated WT mice. The data provide a molecular explanation for VEGF stimulatory effect on penile erection, which involves phosphorylated eNOS (Serine 1177) mediation.

  20. Erection of a new genus Biura gen. nov., of the subtribe Aolina (Hemiptera: Cicadidae: Cicadinae: Dundubiini).

    PubMed

    Lee, Young June; Sanborn, Allen F

    2015-11-20

    A new genus, Biura gen. nov., is erected within the subtribe Aolina Boulard, 2012, designating Haphsa bicolora Sanborn, 2009 as the type species. This new genus is distinguished from all other genera in Aolina by the light-colored body lacking prominent markings, non-infuscated wings, very small and short male operculum, thin and long uncal lobes, and distinctly prominent basal lobes of the pygofer.

  1. Insect stings to change gear for healthy plant: Improving maize drought tolerance by whitefly infestation.

    PubMed

    Park, Yong-Soon; Ryu, Choong-Min

    2016-05-01

    Since plants first appeared about 1.1 billion years ago, they have been faced with biotic and abiotic stresses in their environment. To overcome these stresses, plants developed defense strategies. Accumulating evidence suggests that the whitefly [Bemisia tabaci (Genn.)] affects the regulation of plant defenses and physiology. A recent study demonstrates that aboveground whitefly infestation positively modulates root biomass and anthocyanin pigmentation on brace roots of maize plants (Zea mays L.). In agreement with these observations, indole-3-acetic acid (IAA) and jasmonic acid (JA) contents and the expression of IAA- and JA-related genes are higher in whitefly-infested maize plants than in non-infected control plants. Interestingly, the fresh weight of whitefly-infested maize plants is approximately 20% higher than in non-infected control plants under water stress conditions. Further investigation has revealed that hydrogen peroxide (H2O2) accumulates in whitefly-infested maize plants after water stoppage. Taken together, these results suggest that activation of phytohormones- (i.e., IAA and JA) and H2O2-mediated maize signaling pathways triggered by aboveground whitefly infestation promotes drought resistance. They also provide an insight into how inter-kingdom interactions can improve drought tolerance in plants. PMID:27164447

  2. Genetic improvement of biofuel plants: recent progress and patents.

    PubMed

    Johnson, T Sudhakar; Badri, Jyothi; Sastry, R Kalpana; Shrivastava, Anshul; Kishor, P B Kavi; Sujatha, M

    2013-04-01

    Due to depleting reserves of fossil fuels, political uncertainties, increase in demand of energy needs and growing concerns of environmental effects, bioenergy as an alternative source of energy needs had taken centre stage globally. In this report, we review the progress made in lignocellulose, cellulose and fermentation based biofuels in addition to tree borne oil seeds. Algae as a source of feedstock for the biofuel has also been reviewed. Recent efforts in genome sequencing of biofuel crops and molecular breeding approaches have increased our understanding towards crop improvement of major feedstocks. Besides, patenting trends in bioenergy sector were assessed by patent landscape analysis. The results showed an increasing trend in published patents during the last decade which is maximum during 2011. A conceptual framework of "transgenesis in biofuels to industrial application" was developed based on the patent analytics viz., International Patent Classification (IPC) analysis and Theme Maps. A detailed claim analysis based on the conceptual framework assessed the patenting trends that provided an exhaustive dimension of the technology. The study emphasizes the current thrust in bioenergy sector by various public and private institutions to expedite the process of biofuel production.

  3. Current rehabilitation strategy: clinical evidence for erection recovery after radical prostatectomy

    PubMed Central

    2013-01-01

    Erectile function (EF) recovery remains a prominent functional outcome underachievement of radical prostatectomy (RP), despite the success of anatomic “nerve-sparing” technique and its recent refinements in the modern surgical era. Delayed (for as much as a few years) or incomplete (partial and unusable) EF recovery commonly occurs in many men still today undergoing this surgery. “Penile rehabilitation”, alternatively termed “EF rehabilitation”, originated formally as a therapeutic practice approximately 15 years ago for addressing post-RP erectile dysfunction (ED) beyond conventional ED management. Although the premise of this therapy is conceptually sound and generally accepted, in reference to the implementation of strategies for promoting EF recovery to a naturally functional level in the absence of erectile aids (distinct from the premise of conventional ED management), the optimal manner and efficacy of currently suggested therapeutic strategies are far less established. Such strategies include regimens of standard ED-specific therapies (e.g., oral, intracavernosal, and intraurethral pharmacotherapies; vacuum erection device therapy) and courses of innovative interventions (e.g., statins, erythropoietin, angiotensin receptor blockers). An endeavor in evolution, erection rehabilitation may ideally comprise an integrative program of sexual health management incorporating counseling, coaching, guidance toward general health optimization and application of demonstrably effective “rehabilitative” interventions. Ongoing intensive discovery and rigorous investigation are required to establish efficacy of therapeutic prospects that fulfill the intent of post-RP erection rehabilitation. PMID:26816720

  4. Detection of urethral incompetence. Erect studies using the fluid-bridge test.

    PubMed

    Sutherst, J R; Brown, M

    1981-08-01

    The fluid-bridge test (FBT) detects the entry of urine into the proximal urethra during coughing. In this study it was applied in the investigation of incontinent patients when they were first supine and then standing up. The test results in 76 women with urinary incontinence and 27 women with normal urinary control are reported. When the test was performed erect at 0.5 cm from the urethrovesical junction, it was positive in 68 (90%) of the study group and 4 (15%) of the controls. The difference between the results in the 2 groups is highly significant (P less than 0.001). In 12 (16%) of the incontinent group the test at 0.5 cm became positive only when the subject was standing up, indicating that erect testing adds to the diagnostic efficiency of the method. Erect testing seems more relevant to the investigation of stress urinary incontinence. This study has shown that this is possible using simple urodynamic apparatus. PMID:7196273

  5. Summary of LaRC 2-inch Erectable Joint Hardware Heritage Test Data

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Watson, Judith J.

    2016-01-01

    As the National Space Transportation System (STS, also known as the Space Shuttle) went into service during the early 1980's, NASA envisioned many missions of exploration and discovery that could take advantage of the STS capabilities. These missions included: large orbiting space stations, large space science telescopes and large spacecraft for manned missions to the Moon and Mars. The missions required structures that were significantly larger than the payload volume available on the STS. NASA Langley Research Center (LaRC) conducted studies to design and develop the technology needed to assemble the large space structures in orbit. LaRC focused on technology for erectable truss structures, in particular, the joint that connects the truss struts at the truss nodes. When the NASA research in large erectable space structures ended in the early 1990's, a significant amount of structural testing had been performed on the LaRC 2-inch erectable joint that was never published. An extensive set of historical information and data has been reviewed and the joint structural testing results from this historical data are compiled and summarized in this report.

  6. Effect of levitra on sustenance of erection (EROS): an open-label, prospective, multicenter, single-arm study to investigate erection duration measured by stopwatch with flexible dose vardenafil administered for 8 weeks in subjects with erectile dysfunction.

    PubMed

    Shin, Y S; Lee, S W; Park, K; Chung, W S; Kim, S W; Hyun, J S; Moon, D G; Yang, S-K; Ryu, J K; Yang, D Y; Moon, K H; Min, K S; Park, J K

    2015-01-01

    To investigate the change of erection duration measured by stopwatch with flexible dose vardenafil administered for 8 weeks in subjects with erectile dysfunction (ED). Effect of levitra on sustenance of erection was an open-label, prospective, multicenter and single-arm study designed to measure the duration of erection in men with ED receiving a flexible dose of vardenafil over an 8-week treatment period. Patients were instructed to take vardenafil 10 mg 60 min before attempting the intercourse. Vardenfil could be increased to 20 mg or decreased to 5 mg concerning patients' efficacy and safety. Following the initial screening, patients entered a 4-week treatment-free run-in phase and 8-week treatment period, during which they were instructed to attempt intercourse at least four times on four separate days. A total of 95 men were enrolled in 10 centers. After the 8 weeks treatment, the mean duration of erection leading to successful intercourse was statistically superior when patients were treated with vardenafil. After an 8-week treatment, the duration of erection leading to successful intercourse was 9.39 min. There were significant benefits with vardenafil in all domains of International Index of Erectile Function. Secondary efficacy end points included success rate of penetration, maintaining erection, ejaculation and satisfaction were superior when patients were treated with vardenafil. There was a significant correlation between duration of erection with other sexual factors. Also partner's sexual satisfaction was increased with vardenafil. Most adverse events were mild or moderate in severity. Vardenafil was safe and well tolerated. Vardenafil therapy provided a statistically superior duration of erection leading to successful intercourse in men with ED with female partner. PMID:25471318

  7. Effect of levitra on sustenance of erection (EROS): an open-label, prospective, multicenter, single-arm study to investigate erection duration measured by stopwatch with flexible dose vardenafil administered for 8 weeks in subjects with erectile dysfunction.

    PubMed

    Shin, Y S; Lee, S W; Park, K; Chung, W S; Kim, S W; Hyun, J S; Moon, D G; Yang, S-K; Ryu, J K; Yang, D Y; Moon, K H; Min, K S; Park, J K

    2015-01-01

    To investigate the change of erection duration measured by stopwatch with flexible dose vardenafil administered for 8 weeks in subjects with erectile dysfunction (ED). Effect of levitra on sustenance of erection was an open-label, prospective, multicenter and single-arm study designed to measure the duration of erection in men with ED receiving a flexible dose of vardenafil over an 8-week treatment period. Patients were instructed to take vardenafil 10 mg 60 min before attempting the intercourse. Vardenfil could be increased to 20 mg or decreased to 5 mg concerning patients' efficacy and safety. Following the initial screening, patients entered a 4-week treatment-free run-in phase and 8-week treatment period, during which they were instructed to attempt intercourse at least four times on four separate days. A total of 95 men were enrolled in 10 centers. After the 8 weeks treatment, the mean duration of erection leading to successful intercourse was statistically superior when patients were treated with vardenafil. After an 8-week treatment, the duration of erection leading to successful intercourse was 9.39 min. There were significant benefits with vardenafil in all domains of International Index of Erectile Function. Secondary efficacy end points included success rate of penetration, maintaining erection, ejaculation and satisfaction were superior when patients were treated with vardenafil. There was a significant correlation between duration of erection with other sexual factors. Also partner's sexual satisfaction was increased with vardenafil. Most adverse events were mild or moderate in severity. Vardenafil was safe and well tolerated. Vardenafil therapy provided a statistically superior duration of erection leading to successful intercourse in men with ED with female partner.

  8. Development, analysis and design of a 292 ft tall self-erecting flare tower for offshore application

    SciTech Connect

    Desai, V.; Srinivasan, N.

    1995-12-31

    This paper describes the development of a 292 ft tall flare tower applicable for large offshore production facilities. First of its kind in a flare tower design, an innovative but well proven self-erecting technique is used. The technique aimed eliminating the transportation and erection costs. The structural concept is known as Self-Erecting Flare Tower (SEFT). In SEFT concept, the tower is segmented into a number of small manageable sections. A jacket type bottom section is used to support telescoping the tower sections. The design erection procedure, technical and functional feasibility of SEFT concept are discussed. At the end of this paper, a cost comparison study with conventional flare tower is given.

  9. Archimede solar energy molten salt parabolic trough demo plant: Improvements and second year of operation

    NASA Astrophysics Data System (ADS)

    Maccari, Augusto; Donnola, Sandro; Matino, Francesca; Tamano, Shiro

    2016-05-01

    Since July 2013, the first stand-alone Molten Salt Parabolic Trough (MSPT) demo plant, which was built in collaboration with Archimede Solar Energy and Chiyoda Corporation, is in operation, located adjacent to the Archimede Solar Energy (ASE) manufacturing plant in Massa Martana (Italy). During the two year's operating time frame, the management of the demo plant has shown that MSPT technology is a suitable and reliable option. Several O&M procedures and tests have been performed, as Heat Loss and Minimum Flow Test, with remarkable results confirming that this technology is ready to be extended to standard size CSP plant, if the plant design takes into account molten salt peculiarities. Additionally, the plant has been equipped on fall 2014 with a Steam Generator system by Chiyoda Corporation, in order to test even this important MSPT plant subsystem and to extend the solar field active time, overcoming the previous lack of an adequate thermal load. Here, a description of the plant improvements and the overall plant operation figures will be presented.

  10. Erection problems

    MedlinePlus

    Erectile dysfunction; Impotence; Sexual dysfunction - male ... American Urological Association. Management of erectile dysfunction. Available at: www.auanet.org/content/guidelines-and-quality-care/clinical-guidelines.cfm?sub=ed . Accessed January 12, 2016. Burnett A. ...

  11. Decreased photosynthesis in the erect panicle 3 (ep3) mutant of rice is associated with reduced stomatal conductance and attenuated guard cell development

    PubMed Central

    Yu, Hongyang; Murchie, Erik H.; González-Carranza, Zinnia H.; Pyke, Kevin A.; Roberts, Jeremy A.

    2015-01-01

    The ERECT PANICLE 3 gene of rice encodes a peptide that exhibits more than 50% sequence identity with the Arabidopsis F-box protein HAWAIIAN SKIRT (HWS). Ectopic expression of the Os02g15950 coding sequence, driven by the HWS (At3g61950) promoter, rescued the hws-1 flower phenotype in Arabidopsis confirming that EP3 is a functional orthologue of HWS. In addition to displaying an erect inflorescence phenotype, loss-of-function mutants of Os02g15950 exhibited a decrease in leaf photosynthetic capacity and stomatal conductance. Analysis of a range of physiological and anatomical features related to leaf photosynthesis revealed no alteration in Rubisco content and no notable changes in mesophyll size or arrangement. However, both ep3 mutant plants and transgenic lines that have a T-DNA insertion within the Os02g15950 (EP3) gene exhibit smaller stomatal guard cells compared with their wild-type controls. This anatomical characteristic may account for the observed decrease in leaf photosynthesis and provides evidence that EP3 plays a role in regulating stomatal guard cell development. PMID:25582452

  12. Decreased photosynthesis in the erect panicle 3 (ep3) mutant of rice is associated with reduced stomatal conductance and attenuated guard cell development.

    PubMed

    Yu, Hongyang; Murchie, Erik H; González-Carranza, Zinnia H; Pyke, Kevin A; Roberts, Jeremy A

    2015-03-01

    The ERECT PANICLE 3 gene of rice encodes a peptide that exhibits more than 50% sequence identity with the Arabidopsis F-box protein HAWAIIAN SKIRT (HWS). Ectopic expression of the Os02g15950 coding sequence, driven by the HWS (At3g61950) promoter, rescued the hws-1 flower phenotype in Arabidopsis confirming that EP3 is a functional orthologue of HWS. In addition to displaying an erect inflorescence phenotype, loss-of-function mutants of Os02g15950 exhibited a decrease in leaf photosynthetic capacity and stomatal conductance. Analysis of a range of physiological and anatomical features related to leaf photosynthesis revealed no alteration in Rubisco content and no notable changes in mesophyll size or arrangement. However, both ep3 mutant plants and transgenic lines that have a T-DNA insertion within the Os02g15950 (EP3) gene exhibit smaller stomatal guard cells compared with their wild-type controls. This anatomical characteristic may account for the observed decrease in leaf photosynthesis and provides evidence that EP3 plays a role in regulating stomatal guard cell development.

  13. Circadian rhythms of hydraulic conductance and growth are enhanced by drought and improve plant performance.

    PubMed

    Caldeira, Cecilio F; Jeanguenin, Linda; Chaumont, François; Tardieu, François

    2014-11-05

    Circadian rhythms enable plants to anticipate daily environmental variations, resulting in growth oscillations under continuous light. Because plants daily transpire up to 200% of their water content, their water status oscillates from favourable during the night to unfavourable during the day. We show that rhythmic leaf growth under continuous light is observed in plants that experience large alternations of water status during an entrainment period, but is considerably buffered otherwise. Measurements and computer simulations show that this is due to oscillations of plant hydraulic conductance and plasma membrane aquaporin messenger RNA abundance in roots during continuous light. A simulation model suggests that circadian oscillations of root hydraulic conductance contribute to acclimation to water stress by increasing root water uptake, thereby favouring growth and photosynthesis. They have a negative effect in favourable hydraulic conditions. Climate-driven control of root hydraulic conductance therefore improves plant performances in both stressed and non-stressed conditions.

  14. Circadian rhythms of hydraulic conductance and growth are enhanced by drought and improve plant performance

    PubMed Central

    Caldeira, Cecilio F.; Jeanguenin, Linda; Chaumont, François; Tardieu, François

    2014-01-01

    Circadian rhythms enable plants to anticipate daily environmental variations, resulting in growth oscillations under continuous light. Because plants daily transpire up to 200% of their water content, their water status oscillates from favourable during the night to unfavourable during the day. We show that rhythmic leaf growth under continuous light is observed in plants that experience large alternations of water status during an entrainment period, but is considerably buffered otherwise. Measurements and computer simulations show that this is due to oscillations of plant hydraulic conductance and plasma membrane aquaporin messenger RNA abundance in roots during continuous light. A simulation model suggests that circadian oscillations of root hydraulic conductance contribute to acclimation to water stress by increasing root water uptake, thereby favouring growth and photosynthesis. They have a negative effect in favourable hydraulic conditions. Climate-driven control of root hydraulic conductance therefore improves plant performances in both stressed and non-stressed conditions. PMID:25370944

  15. Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and plant growth.

    PubMed

    Wilson, Robert H; Alonso, Hernan; Whitney, Spencer M

    2016-03-01

    In photosynthesis Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the often rate limiting CO2-fixation step in the Calvin cycle. This makes Rubisco both the gatekeeper for carbon entry into the biosphere and a target for functional improvement to enhance photosynthesis and plant growth. Encumbering the catalytic performance of Rubisco is its highly conserved, complex catalytic chemistry. Accordingly, traditional efforts to enhance Rubisco catalysis using protracted "trial and error" protein engineering approaches have met with limited success. Here we demonstrate the versatility of high throughput directed (laboratory) protein evolution for improving the carboxylation properties of a non-photosynthetic Rubisco from the archaea Methanococcoides burtonii. Using chloroplast transformation in the model plant Nicotiana tabacum (tobacco) we confirm the improved forms of M. burtonii Rubisco increased photosynthesis and growth relative to tobacco controls producing wild-type M. burtonii Rubisco. Our findings indicate continued directed evolution of archaeal Rubisco offers new potential for enhancing leaf photosynthesis and plant growth.

  16. An optimized procedure for plant recovery from somatic embryos significantly facilitates the genetic improvement of Vitis

    PubMed Central

    Li, Zhijian T; Kim, Kyung-Hee; Dhekney, Sadanand A; Jasinski, Jonathan R; Creech, Matthew R; Gray, Dennis J

    2014-01-01

    Plant regeneration from grapevine (Vitis spp.) via somatic embryogenesis typically is poor. Recovery of plants from Vitis rotundifolia Michx. (muscadine grape) is particularly problematic due to extremely low efficiency, including extended culture durations required for embryo–plant conversion. Poor plant recovery is an obstacle to the selection of improved genetically modified lines. Somatic embryos (SEs) of V. rotundifolia cultivar Delicious (Del-HS) and Vitis vinifera L cultivar Thompson Seedless (TS) were used to identify culture media and conditions that promoted embryo differentiation and plant conversion; this resulted in a two-step culture system. In comparative culture experiments, C2D medium containing 6% sucrose was the most effective, among four distinct formulae tested, for inducing precocious SE germination and cell differentiation. This medium, further supplemented with 4 µM 6-benzylaminopurine (C2D4B), was subsequently determined to enhance post-germinative growth of SE. MS medium supplemented with 0.5 µM 1-naphthaleneacetic acid (MSN) was then utilized to stimulate root and shoot growth of germinated SE. An average of 35% and 80% ‘Del-HS’ and ‘TS’ SE, respectively, developed into plants. All plants developed robust root and shoot systems and exhibited excellent survival following transfer to soil. Over 150 plants of ‘Del-HS’ were regenerated and established within 2.5 months, which is a dramatic reduction from the 6- to 12-month time period previously required. Similarly, 88 ‘TS’ plant lines were obtained within the same time period. Subsequently, seven out of eight Vitis cultivars exhibited significantly increased plant conversion percentages, demonstrating broad application of the two-step culture system to produce the large numbers of independent plant lines needed for selection of desired traits. PMID:26504540

  17. Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    SciTech Connect

    1994-01-21

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes will be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.

  18. HTRATE; Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    SciTech Connect

    Rabas, T.J.

    1990-06-01

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes will be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.

  19. Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    1994-01-21

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes willmore » be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.« less

  20. Trends in plant virus epidemiology: opportunities from new or improved technologies.

    PubMed

    Jones, R A C

    2014-06-24

    This review focuses on new or improved technologies currently being applied, or likely to be applied in the future, to worldwide research on plant virus epidemiology. Recent technological advances and innovations provide many opportunities to improve understanding of the way diverse types of plant virus epidemics develop and how to manage them. The review starts at the macro level by considering how recent innovations in remote sensing and precision agriculture can provide valuable information about (i) virus epidemics occurring at continental, regional or district scales (via satellites) and within individual crops (mostly via lightweight unmanned aerial vehicles), and (ii) exactly where to target control measures. It then considers recent improvements in information systems and innovations in modelling that improve (i) understanding of virus epidemics and ability to predict them, and (ii) delivery to end-users of critical advice on control measures, such as Internet-based Decision Support Systems. The review goes on to discuss how advances in analysis of spatiotemporal virus spread patterns within crops can help to enhance understanding of how virus epidemics develop and validate potentially useful virus control measures. At the micro level, the review then considers the many insights that advances in molecular epidemiology can provide about genetic variation within plant virus populations involved in epidemics, and how this variation drives what occurs at the macro level. Next, it describes how recent innovations in virus detection technologies are providing many opportunities to collect and analyse new types, and ever increasing amounts, of data about virus epidemics, and the genetic variability of the virus populations involved. Finally, the implications for plant virus epidemiology of technologies likely to be important in the future are considered. To address looming world food insecurity and threats to plant biodiversity resulting from climate change and

  1. Mechanisms of penile erection and basis for pharmacological treatment of erectile dysfunction.

    PubMed

    Andersson, K-E

    2011-12-01

    Erection is basically a spinal reflex that can be initiated by recruitment of penile afferents, both autonomic and somatic, and supraspinal influences from visual, olfactory, and imaginary stimuli. Several central transmitters are involved in the erectile control. Dopamine, acetylcholine, nitric oxide (NO), and peptides, such as oxytocin and adrenocorticotropin/α-melanocyte-stimulating hormone, have a facilitatory role, whereas serotonin may be either facilitatory or inhibitory, and enkephalins are inhibitory. The balance between contractant and relaxant factors controls the degree of contraction of the smooth muscle of the corpora cavernosa (CC) and determines the functional state of the penis. Noradrenaline contracts both CC and penile vessels via stimulation of α₁-adrenoceptors. Neurogenic NO is considered the most important factor for relaxation of penile vessels and CC. The role of other mediators, released from nerves or endothelium, has not been definitely established. Erectile dysfunction (ED), defined as the "inability to achieve or maintain an erection adequate for sexual satisfaction," may have multiple causes and can be classified as psychogenic, vasculogenic or organic, neurologic, and endocrinologic. Many patients with ED respond well to the pharmacological treatments that are currently available, but there are still groups of patients in whom the response is unsatisfactory. The drugs used are able to substitute, partially or completely, the malfunctioning endogenous mechanisms that control penile erection. Most drugs have a direct action on penile tissue facilitating penile smooth muscle relaxation, including oral phosphodiesterase inhibitors and intracavernosal injections of prostaglandin E₁. Irrespective of the underlying cause, these drugs are effective in the majority of cases. Drugs with a central site of action have so far not been very successful. There is a need for therapeutic alternatives. This requires identification of new

  2. Genetic Improvement of Switchgrass and Other Herbaceous Plants for Use as Biomass Fuel Feedstock

    SciTech Connect

    Vogel, K.P.

    2001-01-11

    It should be highly feasible to genetically modify the feedstock quality of switchgrass and other herbaceous plants using both conventional and molecular breeding techniques. Effectiveness of breeding to modify herbages of switchgrass and other perennial and annual herbaceous species has already been demonstrated. The use of molecular markers and transformation technology will greatly enhance the capability of breeders to modify the plant structure and cell walls of herbaceous plants. It will be necessary to monitor gene flow to remnant wild populations of plants and have strategies available to curtail gene flow if it becomes a potential problem. It also will be necessary to monitor plant survival and long-term productivity as affected by genetic changes that improve forage quality. Information on the conversion processes that will be used and the biomass characteristics that affect conversion efficiency and rate is absolutely essential as well as information on the relative economic value of specific traits. Because most forage or biomass quality characteristics are highly affected by plant maturity, it is suggested that plant material of specific maturity stages be used in research to determining desirable feedstock quality characteristics. Plant material could be collected at various stages of development from an array of environments and storage conditions that could be used in conversion research. The same plant material could be used to develop NIRS calibrations that could be used by breeders in their selection programs and also to develop criteria for a feedstock quality assessment program. Breeding for improved feedstock quality will likely affect the rate of improvement of biomass production per acre. If the same level of resources are used, multi-trait breeding simply reduces the selection pressure and hence the breeding progress that can be made for a single trait unless all the traits are highly correlated. Since desirable feedstock traits are likely

  3. The first stage of Lunar Prospector's LMLV is erected at Pad 46, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Workers erect the first stage of a Lockheed Martin Launch Vehicle-2 (LMLV-2) at Launch Complex 46 at Cape Canaveral Air Station, Fla. The Lunar Prospector spacecraft is scheduled to launch aboard the LMLV-2 in October for an 18-month mission that will orbit the Earth's Moon to collect data from the lunar surface. Designed for a low polar orbit investigation of the Moon, the Lunar Prospector will map the Moon's surface composition and possible polar ice deposits, measure magnetic and gravity fields, and study lunar outgassing events.

  4. The first stage of Lunar Prospector's LMLV is erected at Pad 46, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Workers erect the first stage of a Lockheed Martin Launch Vehicle-2 (LMLV-2) at Launch Complex 46 at Cape Canaveral Air Station, Fla. The Lunar Prospector spacecraft is scheduled to launch aboard the LMLV-2 in October for an 18-month mission that will orbit the Earth's Moon to collect data from the lunar surface. Scientific experiments to be conducted by the Prospector include locating water ice that may exist near the lunar poles, gathering data to understand the evolution of the lunar highland crust and the lunar magnetic field, finding radon outgassing events, and describing the lunar gravity field by means of Doppler tracking.

  5. Plant cell wall engineering: applications in biofuel production and improved human health.

    PubMed

    Burton, Rachel A; Fincher, Geoffrey B

    2014-04-01

    Plant cell walls consist largely of cellulose, non-cellulosic polysaccharides and lignin. Concerted attempts are underway to convert wall polysaccharides from crop plant residues into renewable transport fuels and other valuable products, and to exploit the dietary benefits of cereal grain wall polysaccharides in human health. Attempts to improve plant performance for these applications have involved the manipulation of the levels and structures of wall components. Some successes in altering non-cellulosic polysaccharides has been achieved, but it would appear that drastic changes in cellulose are more difficult to engineer. Nevertheless, future prospects for both genetically modified (GM) and non-GM technologies to modify plant cell wall composition and structure remain bright, and will undoubtedly find applications beyond the current focus on human health and biofuel production.

  6. Suggested improvements for the allergenicity assessment of genetically modified plants used in foods.

    PubMed

    Goodman, Richard E; Tetteh, Afua O

    2011-08-01

    Genetically modified (GM) plants are increasingly used for food production and industrial applications. As the global population has surpassed 7 billion and per capita consumption rises, food production is challenged by loss of arable land, changing weather patterns, and evolving plant pests and disease. Previous gains in quantity and quality relied on natural or artificial breeding, random mutagenesis, increased pesticide and fertilizer use, and improved farming techniques, all without a formal safety evaluation. However, the direct introduction of novel genes raised questions regarding safety that are being addressed by an evaluation process that considers potential increases in the allergenicity, toxicity, and nutrient availability of foods derived from the GM plants. Opinions vary regarding the adequacy of the assessment, but there is no documented proof of an adverse effect resulting from foods produced from GM plants. This review and opinion discusses current practices and new regulatory demands related to food safety.

  7. Improved method for HPLC analysis of polyamines, agmatine and aromatic monoamines in plant tissue

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Flores, H. E.; Galston, A. W.; Weinstein, L. H.

    1989-01-01

    The high performance liquid chromatographic (HPLC) method of Flores and Galston (1982 Plant Physiol 69: 701) for the separation and quantitation of benzoylated polyamines in plant tissues has been widely adopted by other workers. However, due to previously unrecognized problems associated with the derivatization of agmatine, this important intermediate in plant polyamine metabolism cannot be quantitated using this method. Also, two polyamines, putrescine and diaminopropane, also are not well resolved using this method. A simple modification of the original HPLC procedure greatly improves the separation and quantitation of these amines, and further allows the simulation analysis of phenethylamine and tyramine, which are major monoamine constituents of tobacco and other plant tissues. We have used this modified HPLC method to characterize amine titers in suspension cultured carrot (Daucas carota L.) cells and tobacco (Nicotiana tabacum L.) leaf tissues.

  8. Exploiting plant-microbe partnerships to improve biomass production and remediation

    SciTech Connect

    Weyens, N.; van der Lelie, D.; Taghavi, S.; Newman, L.; Vangronsveld, J.

    2009-10-01

    Although many plant-associated bacteria have beneficial effects on their host, their importance during plant growth and development is still underestimated. A better understanding of their plant growth-promoting mechanisms could be exploited for sustainable growth of food and feed crops, biomass for biofuel production and feedstocks for industrial processes. Such plant growth-promoting mechanisms might facilitate higher production of energy crops in a more sustainable manner, even on marginal land, and thus contribute to avoiding conflicts between food and energy production. Furthermore, because many bacteria show a natural capacity to cope with contaminants, they could be exploited to improve the efficiency of phytoremediation or to protect the food chain by reducing levels of agrochemicals in food crops.

  9. Improved Method for HPLC Analysis of Polyamines, Agmatine and Aromatic Monoamines in Plant Tissue

    PubMed Central

    Slocum, Robert D.; Flores, Hector E.; Galston, Arthur W.; Weinstein, Leonard H.

    1989-01-01

    The high performance liquid chromatographic (HPLC) method of Flores and Galston (1982 Plant Physiol 69: 701) for the separation and quantitation of benzoylated polyamines in plant tissues has been widely adopted by other workers. However, due to previously unrecognized problems associated with the derivatization of agmatine, this important intermediate in plant polyamine metabolism cannot be quantitated using this method. Also, two polyamines, putrescine and diaminopropane, also are not well resolved using this method. A simple modification of the original HPLC procedure greatly improves the separation and quantitation of these amines, and further allows the simulation analysis of phenethylamine and tyramine, which are major monoamine constituents of tobacco and other plant tissues. We have used this modified HPLC method to characterize amine titers in suspension cultured carrot (Daucus carota L.) cells and tobacco (Nicotiana tabacum L.) leaf tissues. Images Figure 4 Figure 5 PMID:11537449

  10. An overview of the US Department of Energy Plant Lifetime Improvement Program

    SciTech Connect

    Moonka, A.K.; Harrison, D.L.

    1995-08-01

    This paper provides a brief summary of the U.S. Department of Energy`s (USDOE`s) cooperative effort with the nuclear industry to develop technology to manage the effects of material degradation in systems, structures and components (SSCs) that impact plant safety or can significantly improve plant performance/economics and to establish and demonstrate the license renewal process. Also included are efforts to reduce decontamination/decommission costs, and reduce the uncertainty in long-term service-life decision making. During 1995, the Plant Lifetime Improvement (PLIM) Program was renamed the Commercial Operating Light Water Reactor (COLWR) Program activities are focused on sustaining the LWR option for domestic electricity generation by supporting operation of existing LWRs as long as they are safe, efficient, and economical. The status of the key projects is discussed in this paper.

  11. Value impact assessment: A preliminary assessment of improvement opportunities at the Quantico Central Heating Plant

    SciTech Connect

    Brambley, M.R.; Weakley, S.A.

    1990-09-01

    This report presents the results of a preliminary assessment of opportunities for improvement at the US Marine Corps (USMC) Quantico, Virginia, Central Heating Plant (CHP). This study is part of a program intended to provide the CHP staff with a computerized Artificial Intelligence (AI) decision support system that will assist in a more efficient, reliable, and safe operation of their plant. As part of the effort to provide the AI decision support system, a team of six scientists and engineers from the Pacific Northwest Laboratory (PNL) visited the plant to characterize the conditions and environment of the CHP. This assessment resulted in a list of potential performance improvement opportunities at the CHP. In this report, 12 of these opportunities are discussed and qualitatively analyzed. 70 refs., 7 figs., 6 tabs.

  12. Giprokoks proposals for improvement in air quality at coke battery 1A of Radlin coke plant

    SciTech Connect

    T.F. Trembach; A.G. Klimenko

    2009-07-15

    Coke battery 1A, which uses rammed batch, has gone into production at Radlin coke plant (Poland), on the basis of Giprokoks designs. Up-to-date dust-trapping methods are used for the first time within the aspiration systems in the coal-preparation shop and in improving dust collection within the production buildings.

  13. Coal flow aids reduce coke plant operating costs and improve production rates

    SciTech Connect

    Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

    2005-06-01

    Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

  14. Practical aspects of running DOE for improving growth media for in vitro plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments using DOE software to improve plant tissue culture growth medium are complicated and require complex setups. Once the experimental design is set and the treatment points calculated, media sheets and mixing charts must be developed. Since these experiments require three passages on the sa...

  15. Amending metal contaminated mine soil with biochars to sequester metals and improve plant growth cover

    EPA Science Inventory

    There are numerous mine spoil sites in the U.S. Pacific Northwest that contain highly acidic, heavy metal-laden soils, which limits establishment of a soil-stabilizing plant cover. Biochars may be a suitable soil amendment to reduce toxic metals, improve soil fertility, soil wa...

  16. Application of plant growth regulators, a simple technique for improving the establishment success of plant cuttings in coastal dune restoration

    NASA Astrophysics Data System (ADS)

    Balestri, Elena; Vallerini, Flavia; Castelli, Alberto; Lardicci, Claudio

    2012-03-01

    high survival potential and greater area cover. In contrast, a pre-treatment of cuttings of S. virginicus with Kinetin would achieve more acceptable plant survival rates. This easy and low cost-effective technique may be extended to other dune plant species and applied on a large scale to improve the chance of dune restoration success.

  17. Replace, reuse, recycle: improving the sustainable use of phosphorus by plants.

    PubMed

    Baker, Alison; Ceasar, S Antony; Palmer, Antony J; Paterson, Jaimie B; Qi, Wanjun; Muench, Stephen P; Baldwin, Stephen A

    2015-06-01

    The 'phosphorus problem' has recently received strong interest with two distinct strands of importance. The first is that too much phosphorus (P) is entering into waste water, creating a significant economic and ecological problem. Secondly, while agricultural demand for phosphate fertilizer is increasing to maintain crop yields, rock phosphate reserves are rapidly declining. Unravelling the mechanisms by which plants sense, respond to, and acquire phosphate can address both problems, allowing the development of crop plants that are more efficient at acquiring and using limited amounts of phosphate while at the same time improving the potential of plants and other photosynthetic organisms for nutrient recapture and recycling from waste water. In this review, we attempt to synthesize these important but often disparate parts of the debate in a holistic fashion, since solutions to such a complex problem require integrated and multidisciplinary approaches that address both P supply and demand. Rapid progress has been made recently in our understanding of local and systemic signalling mechanisms for phosphate, and of expression and regulation of membrane proteins that take phosphate up from the environment and transport it within the plant. We discuss the current state of understanding of such mechanisms involved in sensing and responding to phosphate stress. We also discuss approaches to improve the P-use efficiency of crop plants and future direction for sustainable use of P, including use of photosynthetic organisms for recapture of P from waste waters. PMID:25944926

  18. Biotechnological approach of improving plant salt tolerance using antioxidants as markers.

    PubMed

    Ashraf, M

    2009-01-01

    Salt stress causes multifarious adverse effects in plants. Of them, production of reactive oxygen species (ROS) is a common phenomenon. These ROS are highly reactive because they can interact with a number of cellular molecules and metabolites thereby leading to a number of destructive processes causing cellular damage. Plants possess to a variable extent antioxidant metabolites, enzymes and non-enzymes, that have the ability to detoxify ROS. In the present review, the emphasis of discussion has been on understanding the role of different antioxidants in plants defense against oxidative stress caused by salt stress. The role of different antioxidants as potential selection criteria for improving plant salt tolerance has been critically discussed. With the advances in molecular biology and availability of advanced genetic tools considerable progress has been made in the past two decades in improving salt-induced oxidative stress tolerance in plants by developing transgenic lines with altered levels of antioxidants of different crops. The potential of this approach in counteracting stress-induced oxidative stress has been discussed at length in this review.

  19. Advances in plant proteomics toward improvement of crop productivity and stress resistancex

    PubMed Central

    Hu, Junjie; Rampitsch, Christof; Bykova, Natalia V.

    2015-01-01

    Abiotic and biotic stresses constrain plant growth and development negatively impacting crop production. Plants have developed stress-specific adaptations as well as simultaneous responses to a combination of various abiotic stresses with pathogen infection. The efficiency of stress-induced adaptive responses is dependent on activation of molecular signaling pathways and intracellular networks by modulating expression, or abundance, and/or post-translational modification (PTM) of proteins primarily associated with defense mechanisms. In this review, we summarize and evaluate the contribution of proteomic studies to our understanding of stress response mechanisms in different plant organs and tissues. Advanced quantitative proteomic techniques have improved the coverage of total proteomes and sub-proteomes from small amounts of starting material, and characterized PTMs as well as protein–protein interactions at the cellular level, providing detailed information on organ- and tissue-specific regulatory mechanisms responding to a variety of individual stresses or stress combinations during plant life cycle. In particular, we address the tissue-specific signaling networks localized to various organelles that participate in stress-related physiological plasticity and adaptive mechanisms, such as photosynthetic efficiency, symbiotic nitrogen fixation, plant growth, tolerance and common responses to environmental stresses. We also provide an update on the progress of proteomics with major crop species and discuss the current challenges and limitations inherent to proteomics techniques and data interpretation for non-model organisms. Future directions in proteomics research toward crop improvement are further discussed. PMID:25926838

  20. Replace, reuse, recycle: improving the sustainable use of phosphorus by plants.

    PubMed

    Baker, Alison; Ceasar, S Antony; Palmer, Antony J; Paterson, Jaimie B; Qi, Wanjun; Muench, Stephen P; Baldwin, Stephen A

    2015-06-01

    The 'phosphorus problem' has recently received strong interest with two distinct strands of importance. The first is that too much phosphorus (P) is entering into waste water, creating a significant economic and ecological problem. Secondly, while agricultural demand for phosphate fertilizer is increasing to maintain crop yields, rock phosphate reserves are rapidly declining. Unravelling the mechanisms by which plants sense, respond to, and acquire phosphate can address both problems, allowing the development of crop plants that are more efficient at acquiring and using limited amounts of phosphate while at the same time improving the potential of plants and other photosynthetic organisms for nutrient recapture and recycling from waste water. In this review, we attempt to synthesize these important but often disparate parts of the debate in a holistic fashion, since solutions to such a complex problem require integrated and multidisciplinary approaches that address both P supply and demand. Rapid progress has been made recently in our understanding of local and systemic signalling mechanisms for phosphate, and of expression and regulation of membrane proteins that take phosphate up from the environment and transport it within the plant. We discuss the current state of understanding of such mechanisms involved in sensing and responding to phosphate stress. We also discuss approaches to improve the P-use efficiency of crop plants and future direction for sustainable use of P, including use of photosynthetic organisms for recapture of P from waste waters.

  1. Recent advances in structural technology for large deployable and erectable spacecraft

    NASA Technical Reports Server (NTRS)

    Bush, H. G.; Heard, W. L., Jr.

    1980-01-01

    Ultra-low mass deployable and erectable truss structure designs for spacecraft are identified using computerized structural sizing techniques. Extremely slender strut proportions are shown to characterize minimum mass spacecraft which are designed for Shuttle transport to orbit. Analytical results are presented which demonstrate discrete element effects using a recently developed buckling theory for periodic lattice type structures. An analysis of fabrication imperfection effects on the surface accuracy of four different antenna reflector structures is summarized. This study shows the tetrahedral truss to have the greatest potential of the structures examined for application to accurate or large reflectors. A deployable module which can be efficiently transported is identified and shown to have significant potential for application to future antenna requirements. Recent investigations of erectable structure assembly are reviewed. Initial experiments simulating astronaut assembly by extra-vehicular activity (EVA) show that a pair of astronauts can achieve assembly times of 2-5 min/strut. Studies indicate that an automated assembler can achieve times of less than 1 min/strut on an around-the-clock basis.

  2. Distribution of infective gastrointestinal helminth larvae in tropical erect grass under different feeding systems for lambs.

    PubMed

    Tontini, Jalise Fabíola; Poli, Cesar Henrique Espírito Candal; Bremm, Carolina; de Castro, Juliane Machado; Fajardo, Neuza Maria; Sarout, Bruna Nunes Marsiglio; Castilhos, Zélia Maria de Souza

    2015-08-01

    This study examined tropical pasture contamination dynamics under different feeding systems for finishing lambs. The experiment aimed to evaluate the vertical distribution of gastrointestinal helminth infective larvae (L3) in erect grass subjected to grazing and to assess the parasite load and its impact on lamb performance in three production systems. Three treatments based on Aruana grass (Panicum maximum cv. IZ-5) were as follows: T1, grass only; T2, grass with 1.5% of body weight (BW) nutrient concentrate supplementation; and T3, grass with 2.5% BW concentrate supplementation. The randomized block design had three replicates of three treatments, with six lambs per replicate. L3 were recovered from three pasture strata (upper, middle, and bottom), each representing one third of the sward height, and correlated with microclimatic data. Significant differences (P < 0.05) were observed among treatments in the L3 recovery. Despite different grass heights between treatments and microclimates within the sward, the L3 concentration generally did not differ significantly among the three strata within a treatment (P > 0.05). Pasture microclimate did not correlate with larval recovery. At the end of the experiment, the animal fecal egg count was similar among treatments (P > 0.05). The results indicated that different lamb feeding systems in a tropical erect grassland caused differences in grass height but did not affect the distribution of infective larvae among strata. Larvae were found from the base to the top of the grass sward.

  3. Angiography of the corpus cavernosum penis in the pony stallion during erection and quiescence.

    PubMed

    Bartels, J E; Beckett, S D; Brown, B G

    1984-07-01

    Serial arteriography was used to determine the vascular pattern and blood flow in the penis of the pony stallion. Ponies were anesthetized with pentobarbital sodium, and catheters were surgically introduced into the internal pudendal and obturator arteries. The vascular anatomy was visualized by angiography via image-intensified fluoroscopy and was recorded on 70-mm film at 3 frames/s or by direct radiography. Blood flow into the corpus cavernosum penis (CCP) was limited during quiescence because the blood was immediately shunted into the venous system. After vasodilation with mild stimulation from an electroejaculator, there was increased filling of the CCP and corpus spongiosum penis. Contrast medium injected into the internal pudendal artery entered the bulb of the penis during peak erection, but medium injected into the obturator artery could not enter the crus penis during peak erection. The contrast medium stopped in the obturator artery at the edge of the ischiocavernous muscles due to the occlusion of the deep arteries of the penis by contraction of these muscles. When contrast medium was injected directly into the CCP near the glans to outline the body of the penis, there was no evidence of venous outlets along the body.

  4. Design, analysis, and testing of the Phase 1 CSI Evolutionary Model erectable truss

    NASA Technical Reports Server (NTRS)

    Gronet, M. J.; Davis, D. A.; Kintis, D. H.; Brillhart, R. D.; Atkins, E. M.

    1992-01-01

    This report addressed the design, analysis, and testing of the erectable truss structure for the Phase 1 CSI Evolutionary Model (CEM) testbed. The Phase 1 CEM testbed is the second testbed to form part of an ongoing program of focused research at NASA/LaRC in the development of Controls-Structures Integration (CSI) technology. The Phase 1 CEM contains the same overall geometry, weight, and sensor locations as the Phase 0 CEM, but is based in an integrated controller and structure design, whereby both structure and controller design variables are sized simultaneously. The Phase 1 CEM design features seven truss sections composed of struts with tailored mass and stiffness properties. A common erectable joint is used and the strut stiffness is tailored by varying the cross-sectional area. To characterize the structure, static tests were conducted on individual struts and 10-bay truss assemblies. Dynamic tests were conducted on 10-bay truss assemblies as well as the fully-assembled CEM truss. The results indicate that the static and dynamic properties of the structure are predictable, well-characterized, and within the performance requirements established during the Phase 1 CEM integrated controller/structure design analysis.

  5. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    SciTech Connect

    Cohen Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-06-01

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O&M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O&M Improvement Program. O&M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O&M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O&M costs was achieved. Based on the lessons learned, an optimum solar- field O&M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O&M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts.

  6. Silicon moderated the K deficiency by improving the plant-water status in sorghum

    PubMed Central

    Chen, Daoqian; Cao, Beibei; Wang, Shiwen; Liu, Peng; Deng, Xiping; Yin, Lina; Zhang, Suiqi

    2016-01-01

    Although silicon (Si) has been widely reported to alleviate plant nutrient deficiency, the underlying mechanism in potassium (K) deficiency is poorly understood. In this study, sorghum seedlings were treated with Si under a K deficiency condition for 15 days. Under control conditions, plant growth was not affected by Si application. The growth and water status were reduced by K-deficient stress, but Si application significantly alleviated these decreases. The leaf gas exchanges, whole-plant hydraulic conductance (Kplant), and root hydraulic conductance (Lpr) were reduced by K deficiency, but Si application moderated the K-deficiency-induced reductions, suggesting that Si alleviated the plant hydraulic conductance. In addition, 29% of Si-alleviated transpiration was eliminated by HgCl2 treatment, suggesting that aquaporin was not the primary cause for the reversal of plant hydraulic conductance. Moreover, the K+ concentration in xylem sap was significantly increased and the xylem sap osmotic potential was decreased by Si application, suggesting that the major cause of Si-induced improvement in hydraulic conductance could be ascribed to the enhanced xylem sap K+ concentration, which increases the osmotic gradient and xylem hydraulic conductance. The results of this study show that Si mediates K+ accumulation in xylem, which ultimately alleviates the plant-water status under the K-deficient condition. PMID:26961070

  7. Ethylene resistance in flowering ornamental plantsimprovements and future perspectives

    PubMed Central

    Olsen, Andreas; Lütken, Henrik; Hegelund, Josefine Nymark; Müller, Renate

    2015-01-01

    Various strategies of plant breeding have been attempted in order to improve the ethylene resistance of flowering ornamental plants. These approaches span from conventional techniques such as simple cross-pollination to new breeding techniques which modify the plants genetically such as precise genome-editing. The main strategies target the ethylene pathway directly; others focus on changing the ethylene pathway indirectly via pathways that are known to be antagonistic to the ethylene pathway, e.g. increasing cytokinin levels. Many of the known elements of the ethylene pathway have been addressed experimentally with the aim of modulating the overall response of the plant to ethylene. Elements of the ethylene pathway that appear particularly promising in this respect include ethylene receptors as ETR1, and transcription factors such as EIN3. Both direct and indirect approaches seem to be successful, nevertheless, although genetic transformation using recombinant DNA has the ability to save much time in the breeding process, they are not readily used by breeders yet. This is primarily due to legislative issues, economic issues, difficulties of implementing this technology in some ornamental plants, as well as how these techniques are publically perceived, particularly in Europe. Recently, newer and more precise genome-editing techniques have become available and they are already being implemented in some crops. New breeding techniques may help change the current situation and pave the way toward a legal and public acceptance if products of these technologies are indistinguishable from plants obtained by conventional techniques. PMID:26504580

  8. The effect of mirodenafil on the penile erection and corpus cavernosum in the rat model of cavernosal nerve injury.

    PubMed

    Kim, H; Sohn, D W; Kim, S D; Hong, S-H; Suh, H J; Lee, C B; Kim, S W

    2010-01-01

    Impotence is one of the common complications after the radical prostatectomy. One of the main reasons of this complication is due to the dysfunction of the veins in corpus cavernosum. Recent studies have shown that the erectile function is improved after the long-term therapy of phosphodiesterase type 5 inhibitor among patients with post-prostatectomy erectile dysfunction. In this study, we evaluated the effects of mirodenafil on the penile erection and corpus cavernosum tissues in the rat model of cavernosal nerve injury. Rats were divided into four groups: (1) control group, (2) bilateral cavernosal nerve injury group, (3) mirodenafil 10 mg therapy group after the nerve injury and (4) mirodenafil 20 mg therapy group after the nerve injury. After we identified the nerve from the pelvic nerve complex on the lateral side of the prostate, the rats in the control group were sutured without causing any nerve injury and in other groups we damaged the nerve by compressing it with a vessel clamp. Then, 10 and 20 mg kg(-1) of mirodenafil were orally administered to two experimental groups. After 8 weeks, the intracavernosal pressure (ICP) was recorded. The immunohistochemical staining and western blot were performed, and the effect of mirodenafil on the expression of cyclic guanosine monophosphate (cGMP) was evaluated through enzyme-linked immunosorbent assay. The ICP of nerve-injured group was decreased compared with the control group; however, the ICP of the mirodenafil-administered groups was improved compared with the nerve-injured group. The Masson's trichrome staining confirmed that the smooth muscle (SM) component was increased in the mirodenafil-administered groups. The nitric oxide synthase expression and cGMP of mirodenafil-administered groups was increased compared with the nerve-injured group. Long-term therapy of mirodenafil may improve the erectile function after the radical prostatectomy by preserving the SM content and inhibiting the fibrosis of the corpus

  9. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.

    PubMed

    Trumbo, Jennifer Lynn; Zhang, Baohong; Stewart, Charles Neal

    2015-04-01

    Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts.

  10. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.

    PubMed

    Trumbo, Jennifer Lynn; Zhang, Baohong; Stewart, Charles Neal

    2015-04-01

    Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts. PMID:25707745

  11. 32 CFR 644.486 - Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... constructed under emergency plant facilities (EPF) or similar contracts. 644.486 Section 644.486 National... Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or similar... defined to mean plant equipment which: (1) Is held under a facilities contract of the Department; (2)...

  12. Supplemental Blue LED Lighting Array to Improve the Signal Quality in Hyperspectral Imaging of Plants

    PubMed Central

    Mahlein, Anne-Katrin; Hammersley, Simon; Oerke, Erich-Christian; Dehne, Heinz-Wilhelm; Goldbach, Heiner; Grieve, Bruce

    2015-01-01

    Hyperspectral imaging systems used in plant science or agriculture often have suboptimal signal-to-noise ratio in the blue region (400–500 nm) of the electromagnetic spectrum. Typically there are two principal reasons for this effect, the low sensitivity of the imaging sensor and the low amount of light available from the illuminating source. In plant science, the blue region contains relevant information about the physiology and the health status of a plant. We report on the improvement in sensitivity of a hyperspectral imaging system in the blue region of the spectrum by using supplemental illumination provided by an array of high brightness light emitting diodes (LEDs) with an emission peak at 470 nm. PMID:26039423

  13. Supplemental blue LED lighting array to improve the signal quality in hyperspectral imaging of plants.

    PubMed

    Mahlein, Anne-Katrin; Hammersley, Simon; Oerke, Erich-Christian; Dehne, Heinz-Wilhelm; Goldbach, Heiner; Grieve, Bruce

    2015-06-01

    Hyperspectral imaging systems used in plant science or agriculture often have suboptimal signal-to-noise ratio in the blue region (400-500 nm) of the electromagnetic spectrum. Typically there are two principal reasons for this effect, the low sensitivity of the imaging sensor and the low amount of light available from the illuminating source. In plant science, the blue region contains relevant information about the physiology and the health status of a plant. We report on the improvement in sensitivity of a hyperspectral imaging system in the blue region of the spectrum by using supplemental illumination provided by an array of high brightness light emitting diodes (LEDs) with an emission peak at 470 nm.

  14. Tilting Plant Metabolism for Improved Metabolite Biosynthesis and Enhanced Human Benefit.

    PubMed

    Ncube, Bhekumthetho; Van Staden, Johannes

    2015-07-13

    The immense chemical diversity of plant-derived secondary metabolites coupled with their vast array of biological functions has seen this group of compounds attract considerable research interest across a range of research disciplines. Medicinal and aromatic plants, in particular, have been exploited for this biogenic pool of phytochemicals for products such as pharmaceuticals, fragrances, dyes, and insecticides, among others. With consumers showing increasing interests in these products, innovative biotechnological techniques are being developed and employed to alter plant secondary metabolism in efforts to improve on the quality and quantity of specific metabolites of interest. This review provides an overview of the biosynthesis for phytochemical compounds with medicinal and other related properties and their associated biological activities. It also provides an insight into how their biosynthesis/biosynthetic pathways have been modified/altered to enhance production.

  15. Metabolic engineering of medicinal plants: transgenic Atropa belladonna with an improved alkaloid composition.

    PubMed Central

    Yun, D J; Hashimoto, T; Yamada, Y

    1992-01-01

    The tropane alkaloid scopolamine is a medicinally important anticholinergic drug present in several solanaceous plants. Hyoscyamine 6 beta-hydroxylase (EC 1.14.11.11) catalyzes the oxidative reactions in the biosynthetic pathway leading from hyoscyamine to scopolamine. We introduced the hydroxylase gene from Hyoscyamus niger under the control of the cauliflower mosaic virus 35S promoter into hyoscyamine-rich Atropa belladonna by the use of an Agrobacterium-mediated transformation system. A transgenic plant that constitutively and strongly expressed the transgene was selected, first by screening for kanamycin resistance and then by immunoscreening leaf samples with an antibody specific for the hydroxylase. In the primary transformant and its selfed progeny that inherited the transgene, the alkaloid contents of the leaf and stem were almost exclusively scopolamine. Such metabolically engineered plants should prove useful as breeding materials for obtaining improved medicinal components. Images PMID:1465402

  16. Improved Exact Enumerative Algorithms for the Planted (l, d)-Motif Search Problem.

    PubMed

    Tanaka, Shunji

    2014-01-01

    In this paper efficient exact algorithms are proposed for the planted ( l, d)-motif search problem. This problem is to find all motifs of length l that are planted in each input string with at most d mismatches. The "quorum" version of this problem is also treated in this paper to find motifs planted not in all input strings but in at least q input strings. The proposed algorithms are based on the previous algorithms called qPMSPruneI and qPMS7 that traverse a search tree starting from a l-length substring of an input string. To improve these previous algorithms, several techniques are introduced, which contribute to reducing the computation time for the traversal. In computational experiments, it will be shown that the proposed algorithms outperform the previous algorithms.

  17. Improvements to the HYLIFE-II inertial fusion power plant design

    SciTech Connect

    Moir, R.W.

    1994-06-01

    If the present research program is successful, heavy-ion beams can be used to ignite targets and to produce high gain for yields of about 350 MJ. HYLIFE-II is a power plant design based on surrounding such targets with thick liquid (Flibe, Li{sub 2}BeF{sub 4}) so that the chamber and other apparatus can not only stand up to these 350 MJ bursts of energy but do so without replacing components during the plant`s 30-year life. The capacity factor will be increased and the cost of component replacement will be decreased. Continuous improvements to the design are being made to increase safety, decrease the generation of radioactive material, and reduce the cost of electricity (COE). Improvements discussed in this paper decreased COE for each effect by the amount in parentheses: increased plant size (22%), increased capacity factor and reduced component replacement (20%), reduced remote maintenance equipment (3.2%), use of nonnuclear grade chamber, pumps and piping (2.9%), reduced tritium inventory by a factor of 2.4, reduced excess tritium production with attendant increase energy release in the blanket (1.8%), corrected treatment of Flibe inventory costs (3.4%).

  18. Utilizing clad piping to improve process plant piping integrity, reliability, and operations

    SciTech Connect

    Chakravarti, B.

    1996-07-01

    During the past four years carbon steel piping clad with type 304L (UNS S30403) stainless steel has been used to solve the flow accelerated corrosion (FAC) problem in nuclear power plants with exceptional success. The product is designed to allow ``like for like`` replacement of damaged carbon steel components where the carbon steel remains the pressure boundary and type 304L (UNS S30403) stainless steel the corrosion allowance. More than 3000 feet of piping and 500 fittings in sizes from 6 to 36-in. NPS have been installed in the extraction steam and other lines of these power plants to improve reliability, eliminate inspection program, reduce O and M costs and provide operational benefits. This concept of utilizing clad piping in solving various corrosion problems in industrial and process plants by conservatively selecting a high alloy material as cladding can provide similar, significant benefits in controlling corrosion problems, minimizing maintenance cost, improving operation and reliability to control performance and risks in a highly cost effective manner. This paper will present various material combinations and applications that appear ideally suited for use of the clad piping components in process plants.

  19. [Rhizospheria bacteria of Poplus euphratica improve resistance of wood plants to heavy metals].

    PubMed

    Chen, Wen; Ouyang, Li-ming; Kong, Pei-jun; Yang, Ze-yu; Wu, Wei; Zhu, Dong-lin; Zhang, Li-li

    2015-09-01

    Populus euphratica is a special kind of woody plant, which lives in desert area of northwestern China and is strongly resistant to multiple abiotic stresses. However, the knowledge about the ecology and physiological roles of microbes associated with P. euphratica is still not enough. In this paper, we isolated 72 strains resistant to heavy metals from rhizospheric soil of wild P. euphratica forest in Shaya County of Xinjiang. There were 50 strains conveying resistance to one of four heavy metals (Cu2+, Ni2+, Pb2+ or Zn2+), and 9 strains were resistant to at least three kinds of these heavy metals. Five of the multi-heavy metal resistant bacteria were inoculated to bamboo willow and the growth inhibition of plant under stresses of Cu2+ or Zn2+ was found to be alleviated to different extent. Among the 5 strains, Pseudomonas sp. Z30 and Cupriavidus sp. N8 significantly improved the growth of plant under stresses of both zinc and copper when compared to the uninoculated controls. The results showed the diversity of heavy metal resistant bacteria associated with P. euphratica which lived in a non-heavy metal polluted area and some of the multi-heavy metal resistant bacteria may greatly improve the growth of host plant under heavy metal.stress. The PGPB associated with P. euphratica has potential application in the xylophyte-microbe remediation of environmental heavy metal pollution. PMID:26785565

  20. Improving Compressed Air Energy Efficiency in Automotive Plants - Practical Examples and Implementation

    SciTech Connect

    Alkadi, Nasr E; Kissock, Professor Kelly

    2011-01-01

    The automotive industry is the largest industry in the United States in terms of the dollar value of production [1]. U.S. automakers face tremendous pressure from foreign competitors, which have an increasing manufacturing presence in this country. The Big Three North American Original Equipment Manufacturers (OEMs) General Motors, Ford, and Chrysler are reacting to declining sales figures and economic strain by working more efficiently and seeking out opportunities to reduce production costs without negatively affecting the production volume or the quality of the product. Successful, cost-effective investment and implementation of the energy efficiency technologies and practices meet the challenge of maintaining the output of high quality product with reduced production costs. Automotive stamping and assembly plants are typically large users of compressed air with annual compressed air utility bills in the range of $2M per year per plant. This paper focuses on practical methods that the authors have researched, analyzed and implemented to improve compressed air system efficiency in automobile manufacturing facilities. It describes typical compressed air systems in automotive stamping and assembly plants, and compares these systems to best practices. The paper then presents a series of examples, organized using the method of inside-out approach, which strategically identifies the energy savings in the compressed air system by first minimizing end-use demand, then minimizing distribution losses, and finally making improvements to primary energy conversion equipment, the air compressor plant.

  1. A Review on Plants Used for Improvement of Sexual Performance and Virility

    PubMed Central

    Chauhan, Nagendra Singh; Sharma, Vikas; Dixit, V. K.; Thakur, Mayank

    2014-01-01

    The use of plant or plant-based products to stimulate sexual desire and to enhance performance and enjoyment is almost as old as the human race itself. The present paper reviews the active, natural principles, and crude extracts of plants, which have been useful in sexual disorders, have potential for improving sexual behaviour and performance, and are helpful in spermatogenesis and reproduction. Review of refereed journals and scientific literature available in electronic databases and traditional literature available in India was extensively performed. The work reviews correlation of the evidence with traditional claims, elucidation, and evaluation of a plausible concept governing the usage of plants as aphrodisiac in total. Phytoconstituents with known structures have been classified in appropriate chemical groups and the active crude extracts have been tabulated. Data on their pharmacological activity, mechanism of action, and toxicity are reported. The present review provides an overview of the herbs and their active molecule with claims for improvement of sexual behaviour. A number of herbal drugs have been validated for their effect on sexual behavior and fertility and can therefore serve as basis for the identification of new chemical leads useful in sexual and erectile dysfunction. PMID:25215296

  2. High irradiance improves ammonium tolerance in wheat plants by increasing N assimilation.

    PubMed

    Setién, Igor; Fuertes-Mendizabal, Teresa; González, Azucena; Aparicio-Tejo, Pedro Ma; González-Murua, Carmen; González-Moro, María Begoña; Estavillo, José María

    2013-05-15

    Ammonium is a paradoxical nutrient ion. Despite being a common intermediate in plant metabolism whose oxidation state eliminates the need for its reduction in the plant cell, as occurs with nitrate, it can also result in toxicity symptoms. Several authors have reported that carbon enrichment in the root zone enhances the synthesis of carbon skeletons and, accordingly, increases the capacity for ammonium assimilation. In this work, we examined the hypothesis that increasing the photosynthetic photon flux density is a way to increase plant ammonium tolerance. Wheat plants were grown in a hydroponic system with two different N sources (10mM nitrate or 10mM ammonium) and with two different light intensity conditions (300 μmol photon m(-2)s(-1) and 700 μmol photon m(-2)s(-1)). The results show that, with respect to biomass yield, photosynthetic rate, shoot:root ratio and the root N isotopic signature, wheat behaves as a sensitive species to ammonium nutrition at the low light intensity, while at the high intensity, its tolerance is improved. This improvement is a consequence of a higher ammonium assimilation rate, as reflected by the higher amounts of amino acids and protein accumulated mainly in the roots, which was supported by higher tricarboxylic acid cycle activity. Glutamate dehydrogenase was a key root enzyme involved in the tolerance to ammonium, while glutamine synthetase activity was low and might not be enough for its assimilation.

  3. [Rhizospheria bacteria of Poplus euphratica improve resistance of wood plants to heavy metals].

    PubMed

    Chen, Wen; Ouyang, Li-ming; Kong, Pei-jun; Yang, Ze-yu; Wu, Wei; Zhu, Dong-lin; Zhang, Li-li

    2015-09-01

    Populus euphratica is a special kind of woody plant, which lives in desert area of northwestern China and is strongly resistant to multiple abiotic stresses. However, the knowledge about the ecology and physiological roles of microbes associated with P. euphratica is still not enough. In this paper, we isolated 72 strains resistant to heavy metals from rhizospheric soil of wild P. euphratica forest in Shaya County of Xinjiang. There were 50 strains conveying resistance to one of four heavy metals (Cu2+, Ni2+, Pb2+ or Zn2+), and 9 strains were resistant to at least three kinds of these heavy metals. Five of the multi-heavy metal resistant bacteria were inoculated to bamboo willow and the growth inhibition of plant under stresses of Cu2+ or Zn2+ was found to be alleviated to different extent. Among the 5 strains, Pseudomonas sp. Z30 and Cupriavidus sp. N8 significantly improved the growth of plant under stresses of both zinc and copper when compared to the uninoculated controls. The results showed the diversity of heavy metal resistant bacteria associated with P. euphratica which lived in a non-heavy metal polluted area and some of the multi-heavy metal resistant bacteria may greatly improve the growth of host plant under heavy metal.stress. The PGPB associated with P. euphratica has potential application in the xylophyte-microbe remediation of environmental heavy metal pollution.

  4. Evaluation and improvement of wastewater treatment plant performance using BioWin

    NASA Astrophysics Data System (ADS)

    Oleyiblo, Oloche James; Cao, Jiashun; Feng, Qian; Wang, Gan; Xue, Zhaoxia; Fang, Fang

    2015-03-01

    In this study, the activated sludge model implemented in the BioWin® software was validated against full-scale wastewater treatment plant data. Only two stoichiometric parameters ( Y p/acetic and the heterotrophic yield ( Y H)) required calibration. The value 0.42 was used for Y p/acetic in this study, while the default value of the BioWin® software is 0.49, making it comparable with the default values of the corresponding parameter (yield of phosphorus release to substrate uptake ) used in ASM2, ASM2d, and ASM3P, respectively. Three scenarios were evaluated to improve the performance of the wastewater treatment plant, the possibility of wasting sludge from either the aeration tank or the secondary clarifier, the construction of a new oxidation ditch, and the construction of an equalization tank. The results suggest that construction of a new oxidation ditch or an equalization tank for the wastewater treatment plant is not necessary. However, sludge should be wasted from the aeration tank during wet weather to reduce the solids loading of the clarifiers and avoid effluent violations. Therefore, it is recommended that the design of wastewater treatment plants (WWTPs) should include flexibility to operate the plants in various modes. This is helpful in selection of the appropriate operating mode when necessary, resulting in substantial reductions in operating costs.

  5. Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants.

    PubMed

    Rogalski, Marcelo; Carrer, Helaine

    2011-06-01

    The ability to manipulate plant fatty acid biosynthesis by using new biotechnological approaches has allowed the production of transgenic plants with unusual fatty acid profile and increased oil content. This review focuses on the production of very long chain polyunsaturated fatty acids (VLCPUFAs) and the increase in oil content in plants using molecular biology tools. Evidences suggest that regular consumption of food rich in VLCPUFAs has multiple positive health benefits. Alternative sources of these nutritional fatty acids are found in cold-water fishes. However, fish stocks are in severe decline because of decades of overfishing, and also fish oils can be contaminated by the accumulation of toxic compounds. Recently, there is also an increase in oilseed use for the production of biofuels. This tendency is partly associated with the rapidly rising costs of petroleum, increased concern about the environmental impact of fossil oil and the attractive need to develop renewable sources of fuel. In contrast to this scenario, oil derived from crop plants is normally contaminant free and less environmentally aggressive. Genetic engineering of the plastid genome (plastome) offers a number of attractive advantages, including high-level foreign protein expression, marker-gene excision and transgene containment because of maternal inheritance of plastid genome in most crops. Here, we describe the possibility to improve fatty acid biosynthesis in plastids, production of new fatty acids and increase their content in plants by genetic engineering of plastid fatty acid biosynthesis via plastid transformation.

  6. Effect of acute lithium administration on penile erection: involvement of nitric oxide system

    PubMed Central

    Sandoughdaran, Saleh; Sadeghipour, Hamed; Sadeghipour, Hamid Reza

    2016-01-01

    Background: Lithium has been the treatment of choice for bipolar disorder (BD) for many years. Although erectile dysfunction is a known adverse effect of this drug, the mechanism of action by which lithium affects erectile function is still unknown. Objective: The aim was to investigate the possible involvement of nitric oxide (NO) in modulatory effect of lithium on penile erection (PE). We further evaluated the possible role of Sildenafil in treatment of lithium-induced erectile dysfunction. Materials and Methods: Erectile function was determined using rat model of apomorphine-induced erections. For evaluating the effect of lithium on penile erection, rats received intraperitoneal injection of graded doses of lithium chloride 30 mins before subcutaneous injection of apomorphine. To determine the possible role of NO pathway, sub-effective dose of N (G)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor, was administered 15 min before administration of sub-effective dose of lithium chloride. In other separate experimental groups, sub- effective dose of the nitric oxide precursor, L-arginine, or Sildenafil was injected into the animals 15 min before administration of a potent dose of lithium. 30 min after administration of lithium chloride, animals were assessed in apomorphine test. Serum lithium levels were measured 30 min after administration of effective dose of lithium. Results: Lithium at 50 and 100 mg/kg significantly decreased number of PE (p<0.001), whereas at lower doses (5, 10 and 30 mg/kg) had no effect on apomorphine induced PE. The serum Li+ level of rats receiving 50 mg/kg lithium was 1±0.15 mmol/L which is in therapeutic range of lithium. The inhibitory effect of Lithium was blocked by administration of sub-effective dose of nitric oxide precursor L-arginine (100 mg/kg) (p<0.001) and sildenafil (3.5 mg/kg) (p<0.001) whereas pretreatment with a low and sub-effective dose of L-NAME (10mg/kg) potentiated sub-effective dose of

  7. Towards an Enhanced Understanding of Plant-Microbiome Interactions to Improve Phytoremediation: Engineering the Metaorganism.

    PubMed

    Thijs, Sofie; Sillen, Wouter; Rineau, Francois; Weyens, Nele; Vangronsveld, Jaco

    2016-01-01

    Phytoremediation is a promising technology to clean-up contaminated soils based on the synergistic actions of plants and microorganisms. However, to become a widely accepted, and predictable remediation alternative, a deeper understanding of the plant-microbe interactions is needed. A number of studies link the success of phytoremediation to the plant-associated microbiome functioning, though whether the microbiome can exist in alternative, functional states for soil remediation, is incompletely understood. Moreover, current approaches that target the plant host, and environment separately to improve phytoremediation, potentially overlook microbial functions and properties that are part of the multiscale complexity of the plant-environment wherein biodegradation takes place. In contrast, in situ studies of phytoremediation research at the metaorganism level (host and microbiome together) are lacking. Here, we discuss a competition-driven model, based on recent evidence from the metagenomics level, and hypotheses generated by microbial community ecology, to explain the establishment of a catabolic rhizosphere microbiome in a contaminated soil. There is evidence to ground that if the host provides the right level and mix of resources (exudates) over which the microbes can compete, then a competitive catabolic and plant-growth promoting (PGP) microbiome can be selected for as long as it provides a competitive superiority in the niche. The competition-driven model indicates four strategies to interfere with the microbiome. Specifically, the rhizosphere microbiome community can be shifted using treatments that alter the host, resources, environment, and that take advantage of prioritization in inoculation. Our model and suggestions, considering the metaorganism in its natural context, would allow to gain further knowledge on the plant-microbial functions, and facilitate translation to more effective, and predictable phytotechnologies. PMID:27014254

  8. Towards an Enhanced Understanding of Plant-Microbiome Interactions to Improve Phytoremediation: Engineering the Metaorganism.

    PubMed

    Thijs, Sofie; Sillen, Wouter; Rineau, Francois; Weyens, Nele; Vangronsveld, Jaco

    2016-01-01

    Phytoremediation is a promising technology to clean-up contaminated soils based on the synergistic actions of plants and microorganisms. However, to become a widely accepted, and predictable remediation alternative, a deeper understanding of the plant-microbe interactions is needed. A number of studies link the success of phytoremediation to the plant-associated microbiome functioning, though whether the microbiome can exist in alternative, functional states for soil remediation, is incompletely understood. Moreover, current approaches that target the plant host, and environment separately to improve phytoremediation, potentially overlook microbial functions and properties that are part of the multiscale complexity of the plant-environment wherein biodegradation takes place. In contrast, in situ studies of phytoremediation research at the metaorganism level (host and microbiome together) are lacking. Here, we discuss a competition-driven model, based on recent evidence from the metagenomics level, and hypotheses generated by microbial community ecology, to explain the establishment of a catabolic rhizosphere microbiome in a contaminated soil. There is evidence to ground that if the host provides the right level and mix of resources (exudates) over which the microbes can compete, then a competitive catabolic and plant-growth promoting (PGP) microbiome can be selected for as long as it provides a competitive superiority in the niche. The competition-driven model indicates four strategies to interfere with the microbiome. Specifically, the rhizosphere microbiome community can be shifted using treatments that alter the host, resources, environment, and that take advantage of prioritization in inoculation. Our model and suggestions, considering the metaorganism in its natural context, would allow to gain further knowledge on the plant-microbial functions, and facilitate translation to more effective, and predictable phytotechnologies.

  9. Projected techno-economic improvements for advanced solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Manvi, R.; Roschke, E. J.

    1979-01-01

    The projected characteristics of solar thermal power plants (with outputs up to 10 MWe) employing promising advanced technology subsystems/components are compared to current (or pre-1985) steam-Rankine systems. Improvements accruing to advanced technology development options are delineated. The improvements derived from advanced systems result primarily from achieving high efficiencies via solar collector systems which (1) capture a large portion of the available insolation and (2) concentrate this captured solar flux to attain high temperatures required for high heat engine/energy conversion performance. The most efficient solar collector systems employ two-axis tracking. Attractive systems include the central receiver/heliostat and the parabolic dish.

  10. PCS Nitrogen: Combustion Fan System Optimization Improves Performance and Saves Energy at a Chemical Plant

    SciTech Connect

    2005-01-01

    This U.S. Department of Energy Industrial Technologies Program case study describes how, in 2003, PCS Nitrogen, Inc., improved the efficiency of the combustion fan on a boiler at the company's chemical fertilizer plant in Augusta, Georgia. The project saved $420,000 and 76,400 million British thermal units (MBtu) per year. In addition, maintenance needs declined, because there is now less stress on the fan motor and bearings and less boiler feed water usage. This project was so successful that the company has implemented more efficiency improvements that should result in energy cost savings of nearly $1 million per year.

  11. Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works

    SciTech Connect

    Egorov, V.N.; Anikin, G.J.; Gross, M.

    1995-12-01

    Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

  12. Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and plant growth

    PubMed Central

    Wilson, Robert H.; Alonso, Hernan; Whitney, Spencer M.

    2016-01-01

    In photosynthesis Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the often rate limiting CO2-fixation step in the Calvin cycle. This makes Rubisco both the gatekeeper for carbon entry into the biosphere and a target for functional improvement to enhance photosynthesis and plant growth. Encumbering the catalytic performance of Rubisco is its highly conserved, complex catalytic chemistry. Accordingly, traditional efforts to enhance Rubisco catalysis using protracted “trial and error” protein engineering approaches have met with limited success. Here we demonstrate the versatility of high throughput directed (laboratory) protein evolution for improving the carboxylation properties of a non-photosynthetic Rubisco from the archaea Methanococcoides burtonii. Using chloroplast transformation in the model plant Nicotiana tabacum (tobacco) we confirm the improved forms of M. burtonii Rubisco increased photosynthesis and growth relative to tobacco controls producing wild-type M. burtonii Rubisco. Our findings indicate continued directed evolution of archaeal Rubisco offers new potential for enhancing leaf photosynthesis and plant growth. PMID:26926260

  13. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology

    PubMed Central

    Wang, Hongyan; Wang, Honglei; Shao, Hongbo; Tang, Xiaoli

    2016-01-01

    Agricultural production and quality are adversely affected by various abiotic stresses worldwide and this will be exacerbated by the deterioration of global climate. To feed a growing world population, it is very urgent to breed stress-tolerant crops with higher yields and improved qualities against multiple environmental stresses. Since conventional breeding approaches had marginal success due to the complexity of stress tolerance traits, the transgenic approach is now being popularly used to breed stress-tolerant crops. So identifying and characterizing the critical genes involved in plant stress responses is an essential prerequisite for engineering stress-tolerant crops. Far beyond the manipulation of single functional gene, engineering certain regulatory genes has emerged as an effective strategy now for controlling the expression of many stress-responsive genes. Transcription factors (TFs) are good candidates for genetic engineering to breed stress-tolerant crop because of their role as master regulators of many stress-responsive genes. Many TFs belonging to families AP2/EREBP, MYB, WRKY, NAC, bZIP have been found to be involved in various abiotic stresses and some TF genes have also been engineered to improve stress tolerance in model and crop plants. In this review, we take five large families of TFs as examples and review the recent progress of TFs involved in plant abiotic stress responses and their potential utilization to improve multiple stress tolerance of crops in the field conditions. PMID:26904044

  14. Organic amendments for improving biomass production and metal yield of Ni-hyperaccumulating plants.

    PubMed

    Álvarez-López, V; Prieto-Fernández, Á; Cabello-Conejo, M I; Kidd, P S

    2016-04-01

    Ni phytomining is a promising technology for Ni recovery from low-grade ores such as ultramafic soils. Metal-hyperaccumulators are good candidates for phytomining due to their extraordinary capacity for Ni accumulation. However, many of these plants produce a low biomass, which makes the use of agronomic techniques for improving their growth necessary. In this study, the Ni hyperaccumulators Alyssum serpyllifolium ssp. lusitanicum, A. serpyllifolium ssp. malacitanum, Alyssum bertolonii and Noccaea goesingense were evaluated for their Ni phytoextraction efficiency from a Ni-rich serpentine soil. Effects of soil inorganic fertilisation (100:100:125kgNPKha(-1)) and soil organic amendment addition (2.5, 5 or 10% compost) on plant growth and Ni accumulation were determined. All soil treatments greatly improved plant growth, but the highest biomass production was generally found after addition of 2.5 or 5% compost (w/w). The most pronounced beneficial effects were observed for N. goesingense. Total Ni phytoextracted from soils was significantly improved using both soil treatments (inorganic and organic), despite the decrease observed in soil Ni availability and shoot Ni concentrations in compost-amended soils. The most promising results were found using intermediate amount of compost, indicating that these types of organic wastes can be incorporated into phytomining systems. PMID:26803735

  15. Organic amendments for improving biomass production and metal yield of Ni-hyperaccumulating plants.

    PubMed

    Álvarez-López, V; Prieto-Fernández, Á; Cabello-Conejo, M I; Kidd, P S

    2016-04-01

    Ni phytomining is a promising technology for Ni recovery from low-grade ores such as ultramafic soils. Metal-hyperaccumulators are good candidates for phytomining due to their extraordinary capacity for Ni accumulation. However, many of these plants produce a low biomass, which makes the use of agronomic techniques for improving their growth necessary. In this study, the Ni hyperaccumulators Alyssum serpyllifolium ssp. lusitanicum, A. serpyllifolium ssp. malacitanum, Alyssum bertolonii and Noccaea goesingense were evaluated for their Ni phytoextraction efficiency from a Ni-rich serpentine soil. Effects of soil inorganic fertilisation (100:100:125kgNPKha(-1)) and soil organic amendment addition (2.5, 5 or 10% compost) on plant growth and Ni accumulation were determined. All soil treatments greatly improved plant growth, but the highest biomass production was generally found after addition of 2.5 or 5% compost (w/w). The most pronounced beneficial effects were observed for N. goesingense. Total Ni phytoextracted from soils was significantly improved using both soil treatments (inorganic and organic), despite the decrease observed in soil Ni availability and shoot Ni concentrations in compost-amended soils. The most promising results were found using intermediate amount of compost, indicating that these types of organic wastes can be incorporated into phytomining systems.

  16. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology.

    PubMed

    Wang, Hongyan; Wang, Honglei; Shao, Hongbo; Tang, Xiaoli

    2016-01-01

    Agricultural production and quality are adversely affected by various abiotic stresses worldwide and this will be exacerbated by the deterioration of global climate. To feed a growing world population, it is very urgent to breed stress-tolerant crops with higher yields and improved qualities against multiple environmental stresses. Since conventional breeding approaches had marginal success due to the complexity of stress tolerance traits, the transgenic approach is now being popularly used to breed stress-tolerant crops. So identifying and characterizing the critical genes involved in plant stress responses is an essential prerequisite for engineering stress-tolerant crops. Far beyond the manipulation of single functional gene, engineering certain regulatory genes has emerged as an effective strategy now for controlling the expression of many stress-responsive genes. Transcription factors (TFs) are good candidates for genetic engineering to breed stress-tolerant crop because of their role as master regulators of many stress-responsive genes. Many TFs belonging to families AP2/EREBP, MYB, WRKY, NAC, bZIP have been found to be involved in various abiotic stresses and some TF genes have also been engineered to improve stress tolerance in model and crop plants. In this review, we take five large families of TFs as examples and review the recent progress of TFs involved in plant abiotic stress responses and their potential utilization to improve multiple stress tolerance of crops in the field conditions.

  17. Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and plant growth.

    PubMed

    Wilson, Robert H; Alonso, Hernan; Whitney, Spencer M

    2016-01-01

    In photosynthesis Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the often rate limiting CO2-fixation step in the Calvin cycle. This makes Rubisco both the gatekeeper for carbon entry into the biosphere and a target for functional improvement to enhance photosynthesis and plant growth. Encumbering the catalytic performance of Rubisco is its highly conserved, complex catalytic chemistry. Accordingly, traditional efforts to enhance Rubisco catalysis using protracted "trial and error" protein engineering approaches have met with limited success. Here we demonstrate the versatility of high throughput directed (laboratory) protein evolution for improving the carboxylation properties of a non-photosynthetic Rubisco from the archaea Methanococcoides burtonii. Using chloroplast transformation in the model plant Nicotiana tabacum (tobacco) we confirm the improved forms of M. burtonii Rubisco increased photosynthesis and growth relative to tobacco controls producing wild-type M. burtonii Rubisco. Our findings indicate continued directed evolution of archaeal Rubisco offers new potential for enhancing leaf photosynthesis and plant growth. PMID:26926260

  18. Feasibility demonstration for electroplating ultra-thin polyimide film. [fabricating film for space erectable structures

    NASA Technical Reports Server (NTRS)

    Schneier, R.; Braswell, T. V.; Vaughn, R. W.

    1978-01-01

    The effect of electrodeposition variables on film thickness was investigated using a dilute polyimide solution as a bath into which aluminum (as foil or as a vapor deposited coating) was immersed. The electrodeposited film was dried for 2 hours at 93 C (primarily to remove solvent) and cured for 18 hours at 186 C. Infrared studies indicate that imide formation (curing) occurs at 149 C under vacuum. From a conceptual viewpoint, satisfactory film metallized on one side can be obtained by this method. The cured ultra thin polyimide film exhibits properties equivalent to those of commercial film, and the surface appearance of the strippable polyimide film compares favorably with that of a sample of commercial film of thicker gauge. The feasibility of manufacturing approximately one million sq m of ultra thin film capable of being joined to fabricate an 800 m by 9 800 m square from starting material 0.5 to 1 m wide for space erectable structures was demonstrated.

  19. MARS GLOBAL SURVEYOR SPACECRAFT ERECTION AT LC-17A AT CCAS

    NASA Technical Reports Server (NTRS)

    1996-01-01

    MARS GLOBAL SURVEYOR SPACECRAFT ERECTION AT LC-17A AT CCAS KSC-96C-11616.1 Workers at Launch Pad 17A on Cape Canaveral Air Station prepare to stack the Mars Global Surveyor spacecraft, mated to its upper stage booster, atop the Delta II launch vehicle that will loft the spacecraft on its interplanetary journey. In this view the Surveyor's solar array panels are clearly visible, as is the spacecraft's boom-mounted high-gain antenna at left. Both are stowed against the spacecraft bus for flight. The booster stage - - actually the third stage of the Delta II -- is lowermost. After stacking and integrated testing are complete, the fairing will be placed around the Surveyor in preparation for liftoff Nov. 6 at the beginning of a 20-day launch period.

  20. Noncholinergic penile erection in mice lacking the gene for endothelial nitric oxide synthase.

    PubMed

    Burnett, Arthur L; Chang, Alex G; Crone, Julie K; Huang, Paul L; Sezen, Sena E

    2002-01-01

    With the current understanding that nitric oxide (NO) mediates penile erection, the endothelial isoform of NO synthase (eNOS) has been implicated in this function. We undertook this study applying transgenic mice with targeted deletion of the eNOS gene (eNOS-/- mice) as an experimental approach to evaluate the importance of eNOS in cholinergically stimulated erectile function in vivo. Combined pharmacostimulation with intracavernosal carbachol (3 ng) administration and submaximal cavernous nerve (CN) electrical stimulation (16 Hz, 5 millisecond, 1 V) simultaneous with intracavernosal pressure (ICP) monitoring, and both biochemical assay of NO synthase activity and Western blot analysis of eNOS protein content in penile tissue, were performed on eNOS-/- mice and wild-type controls. Combined intracavernosal carbachol administration and submaximal CN electrical stimulation raised the recorded ICP, elicited by CN electrical stimulation alone in wild-type mice (from 35.7 +/- 2.7 to 48.1 +/- 5.5 mm Hg, P < .05) but not in eNOS-/ - mice (from 54.9 +/- 6.3 to 51.0 +/- 9.5 mm Hg, not significant [NS]). Pretreatment with the nonselective nitric oxide synthase inhibitor nitro-L-arginine methyl ester (L-NAME; 100 mg intracavernosally) blocked electrically stimulated ICP responses in eNOS-/- mice to baseline levels (37.8 +/- 4.4 vs 12.7 +/- 4.0 mm Hg, P < .05). In penes of eNOS-/- mice, approximately 60% NO synthase activity of wild-type penis levels was retained (NS), and eNOS protein was absent. We concluded that eNOS-/- mice preserve erectile function on the basis of a noncholinergic but NO-dependent mechanism and that eNOS physiologically mediates penile erection under cholinergic stimulation. PMID:11780929

  1. Distribution of infective gastrointestinal helminth larvae in tropical erect grass under different feeding systems for lambs.

    PubMed

    Tontini, Jalise Fabíola; Poli, Cesar Henrique Espírito Candal; Bremm, Carolina; de Castro, Juliane Machado; Fajardo, Neuza Maria; Sarout, Bruna Nunes Marsiglio; Castilhos, Zélia Maria de Souza

    2015-08-01

    This study examined tropical pasture contamination dynamics under different feeding systems for finishing lambs. The experiment aimed to evaluate the vertical distribution of gastrointestinal helminth infective larvae (L3) in erect grass subjected to grazing and to assess the parasite load and its impact on lamb performance in three production systems. Three treatments based on Aruana grass (Panicum maximum cv. IZ-5) were as follows: T1, grass only; T2, grass with 1.5% of body weight (BW) nutrient concentrate supplementation; and T3, grass with 2.5% BW concentrate supplementation. The randomized block design had three replicates of three treatments, with six lambs per replicate. L3 were recovered from three pasture strata (upper, middle, and bottom), each representing one third of the sward height, and correlated with microclimatic data. Significant differences (P < 0.05) were observed among treatments in the L3 recovery. Despite different grass heights between treatments and microclimates within the sward, the L3 concentration generally did not differ significantly among the three strata within a treatment (P > 0.05). Pasture microclimate did not correlate with larval recovery. At the end of the experiment, the animal fecal egg count was similar among treatments (P > 0.05). The results indicated that different lamb feeding systems in a tropical erect grassland caused differences in grass height but did not affect the distribution of infective larvae among strata. Larvae were found from the base to the top of the grass sward. PMID:26003429

  2. Hydrological management for improving nutrient assimilative capacity in plant-dominated wetlands: A modelling approach.

    PubMed

    Xu, Zhihao; Yang, Zhifeng; Yin, Xinan; Cai, Yanpeng; Sun, Tao

    2016-07-15

    Wetland eutrophication is a global environmental problem. Besides reducing pollutant emissions, improving nutrient assimilative capacity in wetlands is also significant for preventing eutrophication. Hydrological management can improve nutrient assimilative capacity in wetlands through physical effects on the dilution capacity of water body and ecological effects on wetland nutrient cycles. The ecological effects are significant while were rarely considered in previous research. This study focused on the ecological effects of hydrological management on two crucial nutrient removal processes, plant uptake and biological denitrification, in plant-dominated wetlands. A dual-objective optimization model for hydrological management was developed to improve wetland nitrogen and phosphorus assimilative capacities, using upstream reservoir release as water regulating measure. The model considered the interactions between ecological processes and hydrological cycles in wetlands, and their joint effects on nutrient assimilative capacity. Baiyangdian Wetland, the largest freshwater wetland in northern China, was chosen as a case study. The results found that the annual total assimilative capacity of nitrogen (phosphorus) was 4754 (493) t under the optimal scheme for upstream reservoir operation. The capacity of nutrient removal during the summer season accounted for over 80% of the annual total removal capacity. It was interesting to find that the relationship between water inflow and nutrient assimilative capacity in a plant-dominated wetland satisfied a dose-response relationship commonly describing the response of an organism to an external stressor in the medical field. It illustrates that a plant-dominated wetland shows similar characteristics to an organism. This study offers a useful tool and some fresh implications for future management of wetland eutrophication prevention. PMID:27085151

  3. Exogenous treatments with phytohormones can improve growth and nickel yield of hyperaccumulating plants.

    PubMed

    Cabello-Conejo, M I; Prieto-Fernández, A; Kidd, P S

    2014-10-01

    The application of plant growth regulators (PGRs) or phytohormones could be an interesting option for stimulating biomass production of hyperaccumulating plants and, consequently, their metal phytoextraction capacity. The effect of exogenous applications of phytohormones (PGR) on the Ni phytoextraction capacity of four Ni hyperaccumulating species (Alyssum corsicum, Alyssum malacitanum, Alyssum murale and Noccaea goesingense) was evaluated. Four different commercially available phytohormones (B, C, K and P) based on gibberellins, cytokinins and auxins were applied to the plant aerial tissues. Each product was applied at three different concentrations (B1-3, C1-3, K1-3 and P1-3). The effect on biomass production was dependent on the species, the PGR type and the concentration at which it was applied. Two of the four products (K and P) consistently increased biomass production compared to untreated control plants in all four plant species. On the other hand, all four products led to a significant increase in the number of branches (and leaves in the case of N. goesingense) of all four species compared to control plants. Application of phytohormones generally led to a reduction in shoot Ni concentration. Nonetheless, in some cases as a consequence of the increase observed in biomass after the application of phytohormones a significant increase in the Ni phytoextraction efficiency was also observed (but this was species- and PGR type-dependent). The results show that PGRs can be successfully used to improve the growth and biomass production of hyperaccumulating species such as Alyssum and Noccaea. However, an increase in biomass did not always lead to a higher Ni removal, and the most effective PGR for increasing Ni removal was the IAA-based product. PMID:25016589

  4. Improved Predictions of the Geographic Distribution of Invasive Plants Using Climatic Niche Models.

    PubMed

    Ramírez-Albores, Jorge E; Bustamante, Ramiro O; Badano, Ernesto I

    2016-01-01

    Climatic niche models for invasive plants are usually constructed with occurrence records taken from literature and collections. Because these data neither discriminate among life-cycle stages of plants (adult or juvenile) nor the origin of individuals (naturally established or man-planted), the resulting models may mispredict the distribution ranges of these species. We propose that more accurate predictions could be obtained by modelling climatic niches with data of naturally established individuals, particularly with occurrence records of juvenile plants because this would restrict the predictions of models to those sites where climatic conditions allow the recruitment of the species. To test this proposal, we focused on the Peruvian peppertree (Schinus molle), a South American species that has largely invaded Mexico. Three climatic niche models were constructed for this species using high-resolution dataset gathered in the field. The first model included all occurrence records, irrespective of the life-cycle stage or origin of peppertrees (generalized niche model). The second model only included occurrence records of naturally established mature individuals (adult niche model), while the third model was constructed with occurrence records of naturally established juvenile plants (regeneration niche model). When models were compared, the generalized climatic niche model predicted the presence of peppertrees in sites located farther beyond the climatic thresholds that naturally established individuals can tolerate, suggesting that human activities influence the distribution of this invasive species. The adult and regeneration climatic niche models concurred in their predictions about the distribution of peppertrees, suggesting that naturally established adult trees only occur in sites where climatic conditions allow the recruitment of juvenile stages. These results support the proposal that climatic niches of invasive plants should be modelled with data of

  5. Improved Predictions of the Geographic Distribution of Invasive Plants Using Climatic Niche Models

    PubMed Central

    Ramírez-Albores, Jorge E.; Bustamante, Ramiro O.

    2016-01-01

    Climatic niche models for invasive plants are usually constructed with occurrence records taken from literature and collections. Because these data neither discriminate among life-cycle stages of plants (adult or juvenile) nor the origin of individuals (naturally established or man-planted), the resulting models may mispredict the distribution ranges of these species. We propose that more accurate predictions could be obtained by modelling climatic niches with data of naturally established individuals, particularly with occurrence records of juvenile plants because this would restrict the predictions of models to those sites where climatic conditions allow the recruitment of the species. To test this proposal, we focused on the Peruvian peppertree (Schinus molle), a South American species that has largely invaded Mexico. Three climatic niche models were constructed for this species using high-resolution dataset gathered in the field. The first model included all occurrence records, irrespective of the life-cycle stage or origin of peppertrees (generalized niche model). The second model only included occurrence records of naturally established mature individuals (adult niche model), while the third model was constructed with occurrence records of naturally established juvenile plants (regeneration niche model). When models were compared, the generalized climatic niche model predicted the presence of peppertrees in sites located farther beyond the climatic thresholds that naturally established individuals can tolerate, suggesting that human activities influence the distribution of this invasive species. The adult and regeneration climatic niche models concurred in their predictions about the distribution of peppertrees, suggesting that naturally established adult trees only occur in sites where climatic conditions allow the recruitment of juvenile stages. These results support the proposal that climatic niches of invasive plants should be modelled with data of

  6. Improved Predictions of the Geographic Distribution of Invasive Plants Using Climatic Niche Models.

    PubMed

    Ramírez-Albores, Jorge E; Bustamante, Ramiro O; Badano, Ernesto I

    2016-01-01

    Climatic niche models for invasive plants are usually constructed with occurrence records taken from literature and collections. Because these data neither discriminate among life-cycle stages of plants (adult or juvenile) nor the origin of individuals (naturally established or man-planted), the resulting models may mispredict the distribution ranges of these species. We propose that more accurate predictions could be obtained by modelling climatic niches with data of naturally established individuals, particularly with occurrence records of juvenile plants because this would restrict the predictions of models to those sites where climatic conditions allow the recruitment of the species. To test this proposal, we focused on the Peruvian peppertree (Schinus molle), a South American species that has largely invaded Mexico. Three climatic niche models were constructed for this species using high-resolution dataset gathered in the field. The first model included all occurrence records, irrespective of the life-cycle stage or origin of peppertrees (generalized niche model). The second model only included occurrence records of naturally established mature individuals (adult niche model), while the third model was constructed with occurrence records of naturally established juvenile plants (regeneration niche model). When models were compared, the generalized climatic niche model predicted the presence of peppertrees in sites located farther beyond the climatic thresholds that naturally established individuals can tolerate, suggesting that human activities influence the distribution of this invasive species. The adult and regeneration climatic niche models concurred in their predictions about the distribution of peppertrees, suggesting that naturally established adult trees only occur in sites where climatic conditions allow the recruitment of juvenile stages. These results support the proposal that climatic niches of invasive plants should be modelled with data of

  7. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology.

    PubMed

    Brooker, Rob W; Bennett, Alison E; Cong, Wen-Feng; Daniell, Tim J; George, Timothy S; Hallett, Paul D; Hawes, Cathy; Iannetta, Pietro P M; Jones, Hamlyn G; Karley, Alison J; Li, Long; McKenzie, Blair M; Pakeman, Robin J; Paterson, Eric; Schöb, Christian; Shen, Jianbo; Squire, Geoff; Watson, Christine A; Zhang, Chaochun; Zhang, Fusuo; Zhang, Junling; White, Philip J

    2015-04-01

    Intercropping is a farming practice involving two or more crop species, or genotypes, growing together and coexisting for a time. On the fringes of modern intensive agriculture, intercropping is important in many subsistence or low-input/resource-limited agricultural systems. By allowing genuine yield gains without increased inputs, or greater stability of yield with decreased inputs, intercropping could be one route to delivering ‘sustainable intensification’. We discuss how recent knowledge from agronomy, plant physiology and ecology can be combined with the aim of improving intercropping systems. Recent advances in agronomy and plant physiology include better understanding of the mechanisms of interactions between crop genotypes and species – for example, enhanced resource availability through niche complementarity. Ecological advances include better understanding of the context-dependency of interactions, the mechanisms behind disease and pest avoidance, the links between above- and below-ground systems, and the role of microtopographic variation in coexistence. This improved understanding can guide approaches for improving intercropping systems, including breeding crops for intercropping. Although such advances can help to improve intercropping systems, we suggest that other topics also need addressing. These include better assessment of the wider benefits of intercropping in terms of multiple ecosystem services, collaboration with agricultural engineering, and more effective interdisciplinary research.

  8. Rhizobacterial Strain Bacillus megaterium BOFC15 Induces Cellular Polyamine Changes that Improve Plant Growth and Drought Resistance

    PubMed Central

    Zhou, Cheng; Ma, Zhongyou; Zhu, Lin; Xiao, Xin; Xie, Yue; Zhu, Jian; Wang, Jianfei

    2016-01-01

    Plant-growth-promoting rhizobacteria can improve plant growth, development, and stress adaptation. However, the underlying mechanisms are still largely unclear. We investigated the effects of Bacillus megaterium BOFC15 on Arabidopsis plants. BOFC15 produced and secreted spermidine (Spd), a type of polyamine (PA) that plays an important role in plant growth. Moreover, BOFC15 induced changes in the cellular PAs of plants that promoted an increase of free Spd and spermine levels. However, these effects were remarkably abolished by the addition of dicyclohexylamine (DCHA), a Spd biosynthetic inhibitor. Additionally, the inoculation with BOFC15 remarkably increased plant biomass, improved root system architecture, and augmented photosynthetic capacity. Inoculated plants also displayed stronger ability to tolerate drought stress than non-inoculated (control) plants. Abscisic acid (ABA) content was notably higher in the inoculated plants than in the control plants under drought stress and polyethylene glycol (PEG)-induced stress conditions. However, the BOFC15-induced ABA synthesis was markedly inhibited by DCHA. Thus, microbial Spd participated in the modulation of the ABA levels. The Spd-producing BOFC15 improved plant drought tolerance, which was associated with altered cellular ABA levels and activated adaptive responses. PMID:27338359

  9. Rhizobacterial Strain Bacillus megaterium BOFC15 Induces Cellular Polyamine Changes that Improve Plant Growth and Drought Resistance.

    PubMed

    Zhou, Cheng; Ma, Zhongyou; Zhu, Lin; Xiao, Xin; Xie, Yue; Zhu, Jian; Wang, Jianfei

    2016-01-01

    Plant-growth-promoting rhizobacteria can improve plant growth, development, and stress adaptation. However, the underlying mechanisms are still largely unclear. We investigated the effects of Bacillus megaterium BOFC15 on Arabidopsis plants. BOFC15 produced and secreted spermidine (Spd), a type of polyamine (PA) that plays an important role in plant growth. Moreover, BOFC15 induced changes in the cellular PAs of plants that promoted an increase of free Spd and spermine levels. However, these effects were remarkably abolished by the addition of dicyclohexylamine (DCHA), a Spd biosynthetic inhibitor. Additionally, the inoculation with BOFC15 remarkably increased plant biomass, improved root system architecture, and augmented photosynthetic capacity. Inoculated plants also displayed stronger ability to tolerate drought stress than non-inoculated (control) plants. Abscisic acid (ABA) content was notably higher in the inoculated plants than in the control plants under drought stress and polyethylene glycol (PEG)-induced stress conditions. However, the BOFC15-induced ABA synthesis was markedly inhibited by DCHA. Thus, microbial Spd participated in the modulation of the ABA levels. The Spd-producing BOFC15 improved plant drought tolerance, which was associated with altered cellular ABA levels and activated adaptive responses. PMID:27338359

  10. Selenium (Se) improves drought tolerance in crop plants--a myth or fact?

    PubMed

    Ahmad, Rashid; Waraich, Ejaz Ahmad; Nawaz, Fahim; Ashraf, Muhammad Y; Khalid, Muhammad

    2016-01-30

    Climate change has emerged as one of the most complex challenges of the 21st century and has become an area of interest in the past few decades. Many countries of the world have become extremely vulnerable to the impacts of climate change. The scarcity of water is a serious concern for food security of these countries and climate change has aggravated the risks of extreme events like drought. Oxidative stress, caused by a variety of active oxygen species formed under drought stress, damages many cellular constituents, such as carbohydrates, lipids, nucleic acids and proteins, which ultimately reduces plant growth, respiration and photosynthesis. Se has become an element of interest to many biologists owing to its physiological and toxicological importance. It plays a beneficial role in plants by enhancing growth, reducing damage caused by oxidative stress, enhancing chlorophyll content under light stress, stimulating senesce to produce antioxidants and improving plant tolerance to drought stress by regulating water status. Researchers have adopted different strategies to evaluate the role of selenium in plants under drought stress. Some of the relevant work available regarding the role of Se in alleviating adverse effect of drought stress is discussed in this paper.

  11. An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane.

    PubMed

    Kinkema, Mark; Geijskes, R Jason; Shand, Kylie; Coleman, Heather D; De Lucca, Paulo C; Palupe, Anthony; Harrison, Mark D; Jepson, Ian; Dale, James L; Sainz, Manuel B

    2014-03-01

    Chemically inducible gene switches can provide precise control over gene expression, enabling more specific analyses of gene function and expanding the plant biotechnology toolkit beyond traditional constitutive expression systems. The alc gene expression system is one of the most promising chemically inducible gene switches in plants because of its potential in both fundamental research and commercial biotechnology applications. However, there are no published reports demonstrating that this versatile gene switch is functional in transgenic monocotyledonous plants, which include some of the most important agricultural crops. We found that the original alc gene switch was ineffective in the monocotyledonous plant sugar cane, and describe a modified alc system that is functional in this globally significant crop. A promoter consisting of tandem copies of the ethanol receptor inverted repeat binding site, in combination with a minimal promoter sequence, was sufficient to give enhanced sensitivity and significantly higher levels of ethanol inducible gene expression. A longer CaMV 35S minimal promoter than was used in the original alc gene switch also substantially improved ethanol inducibility. Treating the roots with ethanol effectively induced the modified alc system in sugar cane leaves and stem, while an aerial spray was relatively ineffective. The extension of this chemically inducible gene expression system to sugar cane opens the door to new opportunities for basic research and crop biotechnology.

  12. Development of an improved ground-based prototype of space plant-growing facility

    NASA Astrophysics Data System (ADS)

    Guo, S.; Liu, X.; Ai, W.; Tang, Y.; Zhu, J.; Wang, X.; Wei, M.; Qin, L.; Yang, Y.

    Based on a formerly developed ground-based prototype of space plant-growing facility, the development of its improved prototype has been finished, so as to make its operating principle better adapt to the space microgravity environment. According to the developing experience of its first generation prototype and detailed demonstration and design of technique plan, its blueprint design and machining of related components, whole facility installment, debugging and trial operations were all done gradually. Its growing chamber contains a volume of about 0.5 m3 and a growing area of approximate 0.5 m2; the atmospheric environmental parameters in the growing chamber and water content in the growing media were controlled totally and effectively; lighting source is a combination of both red and blue light emitting diodes (LED). The following demonstrating results showed that the entire system design of the prototype is reasonable and its operating principle can nearly meet the requirements of space microgravity environment. Therefore, our plant-growing technique in space was advanced further, which laid an important foundation for next development of the space plant-growing facility and plant-cultivating experimental research in space microgravity condition.

  13. An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane.

    PubMed

    Kinkema, Mark; Geijskes, R Jason; Shand, Kylie; Coleman, Heather D; De Lucca, Paulo C; Palupe, Anthony; Harrison, Mark D; Jepson, Ian; Dale, James L; Sainz, Manuel B

    2014-03-01

    Chemically inducible gene switches can provide precise control over gene expression, enabling more specific analyses of gene function and expanding the plant biotechnology toolkit beyond traditional constitutive expression systems. The alc gene expression system is one of the most promising chemically inducible gene switches in plants because of its potential in both fundamental research and commercial biotechnology applications. However, there are no published reports demonstrating that this versatile gene switch is functional in transgenic monocotyledonous plants, which include some of the most important agricultural crops. We found that the original alc gene switch was ineffective in the monocotyledonous plant sugar cane, and describe a modified alc system that is functional in this globally significant crop. A promoter consisting of tandem copies of the ethanol receptor inverted repeat binding site, in combination with a minimal promoter sequence, was sufficient to give enhanced sensitivity and significantly higher levels of ethanol inducible gene expression. A longer CaMV 35S minimal promoter than was used in the original alc gene switch also substantially improved ethanol inducibility. Treating the roots with ethanol effectively induced the modified alc system in sugar cane leaves and stem, while an aerial spray was relatively ineffective. The extension of this chemically inducible gene expression system to sugar cane opens the door to new opportunities for basic research and crop biotechnology. PMID:24142380

  14. Silicon application increases drought tolerance of kentucky bluegrass by improving plant water relations and morphophysiological functions.

    PubMed

    Saud, Shah; Li, Xin; Chen, Yang; Zhang, Lu; Fahad, Shah; Hussain, Saddam; Sadiq, Arooj; Chen, Yajun

    2014-01-01

    Drought stress encumbers the growth of turfgrass principally by disrupting the plant-water relations and physiological functions. The present study was carried out to appraise the role of silicon (Si) in improving the drought tolerance in Kentucky bluegrass (Poa pratensis L.). Drought stress and four levels (0, 200, 400, and 800 mg L(-1)) of Si (Na2SiO3·9H2O) were imposed after 2 months old plants cultured under glasshouse conditions. Drought stress was found to decrease the photosynthesis, transpiration rate, stomatal conductance, leaf water content, relative growth rate, water use efficiency, and turf quality, but to increase in the root/shoot and leaf carbon/nitrogen ratio. Such physiological interferences, disturbances in plant water relations, and visually noticeable growth reductions in Kentucky bluegrass were significantly alleviated by the addition of Si after drought stress. For example, Si application at 400 mg L(-1) significantly increased the net photosynthesis by 44%, leaf water contents by 33%, leaf green color by 42%, and turf quality by 44% after 20 days of drought stress. Si application proved beneficial in improving the performance of Kentucky bluegrass in the present study suggesting that manipulation of endogenous Si through genetic or biotechnological means may result in the development of drought resistance in grasses.

  15. Small RNAs in plants: recent development and application for crop improvement.

    PubMed

    Kamthan, Ayushi; Chaudhuri, Abira; Kamthan, Mohan; Datta, Asis

    2015-01-01

    The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits and vegetables. It has also been applied for developing resistance against various biotic (bacteria, fungi, viruses, nematodes, insects) and abiotic stresses (drought, salinity, cold, etc.). Nutritional improvements of crops have also been achieved by enriching the crops with essential amino acids, fatty acids, antioxidants and other nutrients beneficial for human health or by reducing allergens or anti-nutrients. microRNAs are key regulators of important plant processes like growth, development, and response to various stresses. In spite of similarity in size (20-24 nt), miRNA differ from siRNA in precursor structures, pathway of biogenesis, and modes of action. This review also highlights the miRNA based genetic modification technology where various miRNAs/artificial miRNAs and their targets can be utilized for improving several desirable plant traits. microRNA based strategies are much efficient than siRNA-based RNAi strategies due to its specificity and less undesirable off target effects. As per the FDA guidelines, small RNA (sRNA) based transgenics are much safer for consumption than those over-expressing proteins. This review thereby summarizes the emerging advances and achievement in the field of sRNAs and its application for crop improvement. PMID:25883599

  16. Small RNAs in plants: recent development and application for crop improvement

    PubMed Central

    Kamthan, Ayushi; Chaudhuri, Abira; Kamthan, Mohan; Datta, Asis

    2015-01-01

    The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits and vegetables. It has also been applied for developing resistance against various biotic (bacteria, fungi, viruses, nematodes, insects) and abiotic stresses (drought, salinity, cold, etc.). Nutritional improvements of crops have also been achieved by enriching the crops with essential amino acids, fatty acids, antioxidants and other nutrients beneficial for human health or by reducing allergens or anti-nutrients. microRNAs are key regulators of important plant processes like growth, development, and response to various stresses. In spite of similarity in size (20–24 nt), miRNA differ from siRNA in precursor structures, pathway of biogenesis, and modes of action. This review also highlights the miRNA based genetic modification technology where various miRNAs/artificial miRNAs and their targets can be utilized for improving several desirable plant traits. microRNA based strategies are much efficient than siRNA-based RNAi strategies due to its specificity and less undesirable off target effects. As per the FDA guidelines, small RNA (sRNA) based transgenics are much safer for consumption than those over-expressing proteins. This review thereby summarizes the emerging advances and achievement in the field of sRNAs and its application for crop improvement. PMID:25883599

  17. Improving the turbine district heating installations of single-circuit nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kondurov, E. P.; Kruglikov, P. A.; Smolkin, Yu. V.

    2015-10-01

    Ways for improving the turbine district heating installations of single-circuit nuclear power plants are considered as a possible approach to improving the nuclear power plant energy efficiency. The results of thermal tests carried out at one of single-circuit NPPs in Russia with a view to reveal the possibilities of improving the existing heat-transfer equipment of the turbine district heating installation without making significant investments in it were taken as a basis for the analysis. The tests have shown that there is certain energy saving potential in some individual units and elements in the turbine district heating installation's process circuit. A significant amount of thermal energy can be obtained only by decreasing the intermediate circuit temperature at the inlet to the heater of the first district-heating extraction. The taking of this measure will also lead to an additional amount of generated electricity because during operation with the partially loaded first heater, the necessary amount of heat has to be obtained from the peaking heater by reducing live steam. An additional amount of thermal energy can also be obtained by eliminating leaks through the bypass control valves. The possibility of achieving smaller consumption of electric energy for power plant auxiliaries by taking measures on reducing the available head in the intermediate circuit installation's pump unit is demonstrated. Partial cutting of pump impellers and dismantling of control valves are regarded to be the most efficient methods. The latter is attributed to qualitative control of the turbine district heating installation's thermal load. Adjustment of the noncondensable gas removal system will make it possible to improve the performance of the turbine district heating installation's heat-transfer equipment owing to bringing the heat-transfer coefficients in the heaters to the design level. The obtained results can be used for estimating the energy saving potential at other

  18. A New Interpretation of the Transport and Erection of Large Obelisks by Ancient Egyptian Engineers or Englebach Revisited.

    ERIC Educational Resources Information Center

    Spry, William J.

    In the teaching of archaeology at the university level there is often conflict between the engineer and the humanist when looking at archaeological evidence. Nowhere is this more clear than in considering the very old puzzle of how ancient Egyptian engineers transported and erected huge stone obelisks using only human labor. The humanist, whose…

  19. Manipulating photorespiration to increase plant productivity: recent advances and perspectives for crop improvement.

    PubMed

    Betti, Marco; Bauwe, Hermann; Busch, Florian A; Fernie, Alisdair R; Keech, Olivier; Levey, Myles; Ort, Donald R; Parry, Martin A J; Sage, Rowan; Timm, Stefan; Walker, Berkley; Weber, Andreas P M

    2016-05-01

    Recycling of the 2-phosphoglycolate generated by the oxygenase reaction of Rubisco requires a complex and energy-consuming set of reactions collectively known as the photorespiratory cycle. Several approaches aimed at reducing the rates of photorespiratory energy or carbon loss have been proposed, based either on screening for natural variation or by means of genetic engineering. Recent work indicates that plant yield can be substantially improved by the alteration of photorespiratory fluxes or by engineering artificial bypasses to photorespiration. However, there is also evidence indicating that, under certain environmental and/or nutritional conditions, reduced photorespiratory capacity may be detrimental to plant performance. Here we summarize recent advances obtained in photorespiratory engineering and discuss prospects for these advances to be transferred to major crops to help address the globally increasing demand for food and biomass production. PMID:26951371

  20. Improving planting stock quality: The humboldt experience. Forest Service general technical report (Final)

    SciTech Connect

    Jenkinson, J.L.; Nelson, J.A.; Huddleston, M.E.

    1993-05-01

    A seedling testing program was developed to improve the survival and growth potential of planting stock produced in the USDA Forest Service Humboldt Nursery, situated on the Pacific Coast in northern California. Coastal and inland seed sources of Douglas-fir and eight other conifers in the Pacific Slope forests of western Oregon and northern California were assessed in both nursery and field studies. Seedling top and root growth capacities were evaluated just after lifting and after cold storage, and stored seedlings were tested for suvival and growth on cleared planting sites in the seed zones of origin. Safe lifting and cold storage schedules were defined, and seedling cultural regimes were formulated to produce successful 1-0, 1-1, and 2-0 stock types. Testing deomonstrated the critical elements of reforestation and proved that rapid establishment is attainable on diverse sites. Accomplishments of the Humboldt program recommended similar programs for other forest nurseries and their service regions.

  1. Using game technologies to improve the safety of construction plant operations.

    PubMed

    Guo, Hongling; Li, Heng; Chan, Greg; Skitmore, Martin

    2012-09-01

    Many accidents occur world-wide in the use of construction plant and equipment, and safety training is considered by many to be one of the best approaches to their prevention. However, current safety training methods/tools are unable to provide trainees with the hands-on practice needed. Game technology-based safety training platforms have the potential to overcome this problem in a virtual environment. One such platform is described in this paper - its characteristics are analysed and its possible contribution to safety training identified. This is developed and tested by means of a case study involving three major pieces of construction plant, which successfully demonstrates that the platform can improve the process and performance of the safety training involved in their operation. This research not only presents a new and useful solution to the safety training of construction operations, but illustrates the potential use of advanced technologies in solving construction industry problems in general.

  2. Optical fiber sensors to improve the safety of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Ferdinand, P.; Magne, S.; Laffont, G.

    2013-09-01

    Safety must always prevail in Nuclear Power Plants (NPPs), as shown at Fukushima-Daiichi. So, innovations are clearly needed to strengthen instrumentations, which went inoperative during this nuclear accident as a consequence of power supply losses. Possible improvements concern materials and structures, which may be remotely monitored thanks to Optical Fiber Sensors (OFS). We detail topics involving OFS helpful for monitoring, in nominal conditions as well as during a severe accident. They include distributed sensing (Rayleigh, Raman, Brillouin) for both temperature sensing and structure monitoring as well as H2 concentration and ionizing radiation monitoring. For future plants, Fiber Bragg Grating (FBG) sensors are considered up to high temperature for sodium-cooled fast reactor monitoring. These applications can benefit from fiber advantages: sensor multiplexing, multi-km range, no risk-to-people, no common failure mode with other technologies, remote sensing, and the ability to operate in case of power supply lost in the NPP.

  3. Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index

    NASA Astrophysics Data System (ADS)

    Chen, Jing M.; Cihlar, Josef

    1995-09-01

    Optical instruments currently available for measuring the leaf-area index (LAI) of a plant canopy all utilize only the canopy gap-fraction information. These instruments include the Li-Cor LAI-2000 Plant Canopy Analyzer, Decagon, and Demon. The advantages of utilizing both the canopy gap-fraction and gap-size information are shown. For the purpose of measuring the canopy gap size, a prototype sunfleck-LAI instrument named Tracing Radiation and Architecture of Canopies (TRAC), has been developed and tested in two pure conifer plantations, red pine (Pinus resinosa Ait.) and jack pine (Pinus banksiana Lamb). A new gap-size-analysis theory is presented to quantify the effect of canopy architecture on optical measurements of LAI based on the gap-fraction principle. The theory is an improvement on that of Lang and Xiang [Agric. For. Meteorol. 37, 229 (1986)]. In principle, this theory can be used for any heterogeneous canopies.

  4. Manipulating photorespiration to increase plant productivity: recent advances and perspectives for crop improvement.

    PubMed

    Betti, Marco; Bauwe, Hermann; Busch, Florian A; Fernie, Alisdair R; Keech, Olivier; Levey, Myles; Ort, Donald R; Parry, Martin A J; Sage, Rowan; Timm, Stefan; Walker, Berkley; Weber, Andreas P M

    2016-05-01

    Recycling of the 2-phosphoglycolate generated by the oxygenase reaction of Rubisco requires a complex and energy-consuming set of reactions collectively known as the photorespiratory cycle. Several approaches aimed at reducing the rates of photorespiratory energy or carbon loss have been proposed, based either on screening for natural variation or by means of genetic engineering. Recent work indicates that plant yield can be substantially improved by the alteration of photorespiratory fluxes or by engineering artificial bypasses to photorespiration. However, there is also evidence indicating that, under certain environmental and/or nutritional conditions, reduced photorespiratory capacity may be detrimental to plant performance. Here we summarize recent advances obtained in photorespiratory engineering and discuss prospects for these advances to be transferred to major crops to help address the globally increasing demand for food and biomass production.

  5. Extracellular peptidase hunting for improvement of protein production in plant cells and roots.

    PubMed

    Lallemand, Jérôme; Bouché, Frédéric; Desiron, Carole; Stautemas, Jennifer; de Lemos Esteves, Frédéric; Périlleux, Claire; Tocquin, Pierre

    2015-01-01

    Plant-based recombinant protein production systems have gained an extensive interest over the past few years, because of their reduced cost and relative safety. Although the first products are now reaching the market, progress are still needed to improve plant hosts and strategies for biopharming. Targeting recombinant proteins toward the extracellular space offers several advantages in terms of protein folding and purification, but degradation events are observed, due to endogenous peptidases. This paper focuses on the analysis of extracellular proteolytic activities in two production systems: cell cultures and root-secretion (rhizosecretion), in Arabidopsis thaliana and Nicotiana tabacum. Proteolytic activities of extracellular proteomes (secretomes) were evaluated in vitro against two substrate proteins: bovine serum albumin (BSA) and human serum immunoglobulins G (hIgGs). Both targets were found to be degraded by the secretomes, BSA being more prone to proteolysis than hIgGs. The analysis of the proteolysis pH-dependence showed that target degradation was mainly dependent upon the production system: rhizosecretomes contained more peptidase activity than extracellular medium of cell suspensions, whereas variations due to plant species were smaller. Using class-specific peptidase inhibitors, serine, and metallopeptidases were found to be responsible for degradation of both substrates. An in-depth in silico analysis of genomic and transcriptomic data from Arabidopsis was then performed and led to the identification of a limited number of serine and metallo-peptidases that are consistently expressed in both production systems. These peptidases should be prime candidates for further improvement of plant hosts by targeted silencing.

  6. Extracellular peptidase hunting for improvement of protein production in plant cells and roots.

    PubMed

    Lallemand, Jérôme; Bouché, Frédéric; Desiron, Carole; Stautemas, Jennifer; de Lemos Esteves, Frédéric; Périlleux, Claire; Tocquin, Pierre

    2015-01-01

    Plant-based recombinant protein production systems have gained an extensive interest over the past few years, because of their reduced cost and relative safety. Although the first products are now reaching the market, progress are still needed to improve plant hosts and strategies for biopharming. Targeting recombinant proteins toward the extracellular space offers several advantages in terms of protein folding and purification, but degradation events are observed, due to endogenous peptidases. This paper focuses on the analysis of extracellular proteolytic activities in two production systems: cell cultures and root-secretion (rhizosecretion), in Arabidopsis thaliana and Nicotiana tabacum. Proteolytic activities of extracellular proteomes (secretomes) were evaluated in vitro against two substrate proteins: bovine serum albumin (BSA) and human serum immunoglobulins G (hIgGs). Both targets were found to be degraded by the secretomes, BSA being more prone to proteolysis than hIgGs. The analysis of the proteolysis pH-dependence showed that target degradation was mainly dependent upon the production system: rhizosecretomes contained more peptidase activity than extracellular medium of cell suspensions, whereas variations due to plant species were smaller. Using class-specific peptidase inhibitors, serine, and metallopeptidases were found to be responsible for degradation of both substrates. An in-depth in silico analysis of genomic and transcriptomic data from Arabidopsis was then performed and led to the identification of a limited number of serine and metallo-peptidases that are consistently expressed in both production systems. These peptidases should be prime candidates for further improvement of plant hosts by targeted silencing. PMID:25705212

  7. Improving recombinant Rubisco biogenesis, plant photosynthesis and growth by coexpressing its ancillary RAF1 chaperone.

    PubMed

    Whitney, Spencer M; Birch, Rosemary; Kelso, Celine; Beck, Jennifer L; Kapralov, Maxim V

    2015-03-17

    Enabling improvements to crop yield and resource use by enhancing the catalysis of the photosynthetic CO2-fixing enzyme Rubisco has been a longstanding challenge. Efforts toward realization of this goal have been greatly assisted by advances in understanding the complexities of Rubisco's biogenesis in plastids and the development of tailored chloroplast transformation tools. Here we generate transplastomic tobacco genotypes expressing Arabidopsis Rubisco large subunits (AtL), both on their own (producing tob(AtL) plants) and with a cognate Rubisco accumulation factor 1 (AtRAF1) chaperone (producing tob(AtL-R1) plants) that has undergone parallel functional coevolution with AtL. We show AtRAF1 assembles as a dimer and is produced in tob(AtL-R1) and Arabidopsis leaves at 10-15 nmol AtRAF1 monomers per square meter. Consistent with a postchaperonin large (L)-subunit assembly role, the AtRAF1 facilitated two to threefold improvements in the amount and biogenesis rate of hybrid L8(A)S8(t) Rubisco [comprising AtL and tobacco small (S) subunits] in tob(AtL-R1) leaves compared with tob(AtL), despite >threefold lower steady-state Rubisco mRNA levels in tob(AtL-R1). Accompanying twofold increases in photosynthetic CO2-assimilation rate and plant growth were measured for tob(AtL-R1) lines. These findings highlight the importance of ancillary protein complementarity during Rubisco biogenesis in plastids, the possible constraints this has imposed on Rubisco adaptive evolution, and the likely need for such interaction specificity to be considered when optimizing recombinant Rubisco bioengineering in plants. PMID:25733857

  8. Extracellular peptidase hunting for improvement of protein production in plant cells and roots

    PubMed Central

    Lallemand, Jérôme; Bouché, Frédéric; Desiron, Carole; Stautemas, Jennifer; de Lemos Esteves, Frédéric; Périlleux, Claire; Tocquin, Pierre

    2015-01-01

    Plant-based recombinant protein production systems have gained an extensive interest over the past few years, because of their reduced cost and relative safety. Although the first products are now reaching the market, progress are still needed to improve plant hosts and strategies for biopharming. Targeting recombinant proteins toward the extracellular space offers several advantages in terms of protein folding and purification, but degradation events are observed, due to endogenous peptidases. This paper focuses on the analysis of extracellular proteolytic activities in two production systems: cell cultures and root-secretion (rhizosecretion), in Arabidopsis thaliana and Nicotiana tabacum. Proteolytic activities of extracellular proteomes (secretomes) were evaluated in vitro against two substrate proteins: bovine serum albumin (BSA) and human serum immunoglobulins G (hIgGs). Both targets were found to be degraded by the secretomes, BSA being more prone to proteolysis than hIgGs. The analysis of the proteolysis pH-dependence showed that target degradation was mainly dependent upon the production system: rhizosecretomes contained more peptidase activity than extracellular medium of cell suspensions, whereas variations due to plant species were smaller. Using class-specific peptidase inhibitors, serine, and metallopeptidases were found to be responsible for degradation of both substrates. An in-depth in silico analysis of genomic and transcriptomic data from Arabidopsis was then performed and led to the identification of a limited number of serine and metallo-peptidases that are consistently expressed in both production systems. These peptidases should be prime candidates for further improvement of plant hosts by targeted silencing. PMID:25705212

  9. Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2010-06-01

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents

  10. Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities

    PubMed Central

    Carlson, Bradley Z.; Choler, Philippe; Renaud, Julien; Dedieu, Jean-Pierre; Thuiller, Wilfried

    2015-01-01

    Background and Aims Quantifying relationships between snow cover duration and plant community properties remains an important challenge in alpine ecology. This study develops a method to estimate spatial variation in energy availability in the context of a topographically complex, high-elevation watershed, which was used to test the explanatory power of environmental gradients both with and without snow cover in relation to taxonomic and functional plant diversity. Methods Snow cover in the French Alps was mapped at 15-m resolution using Landsat imagery for five recent years, and a generalized additive model (GAM) was fitted for each year linking snow to time and topography. Predicted snow cover maps were combined with air temperature and solar radiation data at daily resolution, summed for each year and averaged across years. Equivalent growing season energy gradients were also estimated without accounting for snow cover duration. Relationships were tested between environmental gradients and diversity metrics measured for 100 plots, including species richness, community-weighted mean traits, functional diversity and hyperspectral estimates of canopy chlorophyll content. Key Results Accounting for snow cover in environmental variables consistently led to improved predictive power as well as more ecologically meaningful characterizations of plant diversity. Model parameters differed significantly when fitted with and without snow cover. Filtering solar radiation with snow as compared without led to an average gain in R2 of 0·26 and reversed slope direction to more intuitive relationships for several diversity metrics. Conclusions The results show that in alpine environments high-resolution data on snow cover duration are pivotal for capturing the spatial heterogeneity of both taxonomic and functional diversity. The use of climate variables without consideration of snow cover can lead to erroneous predictions of plant diversity. The results further indicate that

  11. Nitrogen fertilizer improves boron phytoextraction by Brassica juncea grown in contaminated sediments and alleviates plant stress.

    PubMed

    Giansoldati, Virginia; Tassi, Eliana; Morelli, Elisabetta; Gabellieri, Edi; Pedron, Francesca; Barbafieri, Meri

    2012-06-01

    In this study we evaluated the effect of different fertilizer treatments on Brassica plants grown on boron-contaminated sediments. Experiments were conducted in the laboratory and on the lysimeter scale. At laboratory scale (microcosm), five different fertilizers were tested for a 35-d period. On the lysimeter scale, nitrogen fertilization was tested at three different doses and plants were allowed to grow until the end of the vegetative phase (70 d). Results showed that nitrogen application had effectively increased plant biomass production, while B uptake was not affected. Total B phytoextracted increased three-fold when the highest nitrogen dose was applied. Phytotoxicity on Brassica was evaluated by biochemical parameters. In plants grown in unfertilized B-contaminated sediments, the activity of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and pyrogallol peroxidase (PPX) increased, whereas catalase (CAT) decreased with respect to control plants. Addition of N progressively mitigated the alteration of enzymatic activity, thus suggesting that N can aid in alleviating B-induced oxidative stress. SOD activity was restored to control levels just at the lowest N treatment, whereas the CAT inhibition was partially restored only at the highest one. N application also lowered the B-induced increase in APX and PPX activities. Increased glutathione reductase activity indicated the need to restore the oxidative balance of glutathione. Data also suggest a role of glutathione and phytochelatins in B defense mechanisms. Results suggest that the nitrogen fertilizer was effective in improving B phytoextraction by increasing Brassica biomass and by alleviating B-induced oxidative stress. PMID:22382070

  12. The improvement of removal effects on organic pollutants in Wastewater Treatment Plants (WWTP)

    NASA Astrophysics Data System (ADS)

    Marincas, O.; Petrov, P.; Ternes, T.; Avram, V.; Moldovan, Z.

    2009-08-01

    Purpose of this study is to improve the efficiency of removal in wastewater treatment plants of some organic pollutants like pharmaceuticals, antioxidants, pesticides (triazines, phenylurea herbicides), personal care products (PCPs) musk fragrances (galaxolide and tonalide) and estrogens using zeolites with excellent absorption capacity. The zeolite selected for all experiments was Szedimentin-MW. The experiment took place in three stages: no zeolite addition, zeolite added at the end of the bioreactor and zeolite added at the start of the bioreactor. The water samples were pre-concentrated with solid phase extraction (SPE) procedure and analyzed with analytical system Gas Chromatography/Mass Spectrometry (GC/MS).

  13. Using a plant hormone and a thioligand to improve phytoremediation of Hg-contaminated soil from a petrochemical plant.

    PubMed

    Cassina, L; Tassi, E; Pedron, F; Petruzzelli, G; Ambrosini, P; Barbafieri, M

    2012-09-15

    Mercury-contaminated soils from a petrochemical plant in southern Italy were investigated to assess the phytoextraction efficiency of crop plants treated with the phytohormone, cytokinine (CK foliar treatment), and with the thioligand, ammonium thiosulfate (TS, soil application). Plant biomass, evapotranspiration, Hg uptake and distribution in plant tissues following treatment were compared. Results indicate the effectiveness of CK in increasing plant biomass and the evapotranspiration rate while TS treatment promoted soil Hg solubility and availability. The simultaneous addition of CK and TS treatments increased Hg uptake and translocation in both tested plants with up to 248 and 232% in Brassica juncea (Indian mustard) and Helianthus annuus (sunflower) respectively. B. juncea was more effective in Hg uptake, whereas H. annuus gave better response regarding plant biomass production. The effectiveness of the treatments was confirmed by the calculation of Hg phytoextraction and evaluation of labile-Hg residue in the soil after plant growth. In one growing cycle the plants subject to simultaneous CK and TS treatment significantly reduced labile-Hg pools that were characterized by the soil sequential extraction, but did not significantly affect the pseudototal metal content in the soil. Results support the use of plant growth regulators in the assisted phytoextraction process for Hg-contaminated soils.

  14. A coordinated MIMO control design for a power plant using improved sliding mode controller.

    PubMed

    Ataei, Mohammad; Hooshmand, Rahmat-Allah; Samani, Siavash Golmohammadi

    2014-03-01

    For the participation of the steam power plants in regulating the network frequency, boilers and turbines should be co-ordinately controlled in addition to the base load productions. Lack of coordinated control over boiler-turbine may lead to instability; oscillation in producing power and boiler parameters; reduction in the reliability of the unit; and inflicting thermodynamic tension on devices. This paper proposes a boiler-turbine coordinated multivariable control system based on improved sliding mode controller (ISMC). The system controls two main boiler-turbine parameters i.e., the turbine revolution and superheated steam pressure of the boiler output. For this purpose, a comprehensive model of the system including complete and exact description of the subsystems is extracted. The parameters of this model are determined according to our case study that is the 320MW unit of Islam-Abad power plant in Isfahan/Iran. The ISMC method is simulated on the power plant and its performance is compared with the related real PI (proportional-integral) controllers which have been used in this unit. The simulation results show the capability of the proposed controller system in controlling local network frequency and superheated steam pressure in the presence of load variations and disturbances of boiler. PMID:24112644

  15. A coordinated MIMO control design for a power plant using improved sliding mode controller.

    PubMed

    Ataei, Mohammad; Hooshmand, Rahmat-Allah; Samani, Siavash Golmohammadi

    2014-03-01

    For the participation of the steam power plants in regulating the network frequency, boilers and turbines should be co-ordinately controlled in addition to the base load productions. Lack of coordinated control over boiler-turbine may lead to instability; oscillation in producing power and boiler parameters; reduction in the reliability of the unit; and inflicting thermodynamic tension on devices. This paper proposes a boiler-turbine coordinated multivariable control system based on improved sliding mode controller (ISMC). The system controls two main boiler-turbine parameters i.e., the turbine revolution and superheated steam pressure of the boiler output. For this purpose, a comprehensive model of the system including complete and exact description of the subsystems is extracted. The parameters of this model are determined according to our case study that is the 320MW unit of Islam-Abad power plant in Isfahan/Iran. The ISMC method is simulated on the power plant and its performance is compared with the related real PI (proportional-integral) controllers which have been used in this unit. The simulation results show the capability of the proposed controller system in controlling local network frequency and superheated steam pressure in the presence of load variations and disturbances of boiler.

  16. 32 CFR 644.486 - Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... constructed under emergency plant facilities (EPF) or similar contracts. 644.486 Section 644.486 National... Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or similar contracts. Procedure for the disposal of property constructed under a facilities contract on lands...

  17. Suppression of Tla1 gene expression for improved solar conversion efficiency and photosynthetic productivity in plants and algae

    DOEpatents

    Melis, Anastasios; Mitra, Mautusi

    2010-06-29

    The invention provides method and compositions to minimize the chlorophyll antenna size of photosynthesis by decreasing TLA1 gene expression, thereby improving solar conversion efficiencies and photosynthetic productivity in plants, e.g., green microalgae, under bright sunlight conditions.

  18. Ford Van Dyke: Compressed Air Management Program Leads to Improvements that Reduce Energy Consumption at an Automotive Transmission Plant

    SciTech Connect

    2010-06-25

    Staff at the Ford Van Dyke Transmission Plant in Sterling Heights, Michigan, have increased the efficiency of the plant’s compressed air system to enhance its performance while saving energy and improving production.

  19. Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms.

    PubMed

    Zhou, Cheng; Guo, Jiansheng; Zhu, Lin; Xiao, Xin; Xie, Yue; Zhu, Jian; Ma, Zhongyou; Wang, Jianfei

    2016-08-01

    Despite the high abundance of iron (Fe) in most earth's soils, Fe is the major limiting factor for plant growth and development due to its low bioavailability. With an increasing recognition that soil microbes play important roles in plant growth, several strains of beneficial rhizobactria have been applied to improve plant nutrient absorption, biomass, and abiotic or biotic stress tolerance. In this study, we report the mechanisms of microbe-induced plant Fe assimilation, in which the plant growth promoting rhizobacteria (PGPR) Paenibacillus polymyxa BFKC01 stimulates plant's Fe acquisition machinery to enhance Fe uptake in Arabidopsis plants. Mechanistic studies show that BFKC01 transcriptionally activates the Fe-deficiency-induced transcription factor 1 (FIT1), thereby up-regulating the expression of IRT1 and FRO2. Furthermore, BFKC01 has been found to induce plant systemic responses with the increased transcription of MYB72, and the biosynthetic pathways of phenolic compounds are also activated. Our data reveal that abundant phenolic compounds are detected in root exudation of the BFKC01-inoculated plants, which efficiently facilitate Fe mobility under alkaline conditions. In addition, BFKC01 can secret auxin and further improved root systems, which enhances the ability of plants to acquire Fe from soils. As a result, BFKC01-inoculated plants have more endogenous Fe and increased photosynthetic capacity under alkaline conditions as compared to control plants. Our results demonstrate the potential roles of BFKC01 in promoting Fe acquisition in plants and underline the intricate integration of microbial signaling in controlling plant Fe acquisition. PMID:27105423

  20. Osmotin-expressing transgenic tea plants have improved stress tolerance and are of higher quality.

    PubMed

    Bhattacharya, Amita; Saini, Uksha; Joshi, Robin; Kaur, Devinder; Pal, Awadhesh Kumar; Kumar, Nitish; Gulati, Ashu; Mohanpuria, Prashant; Yadav, Sudesh Kumar; Kumar, Sanjay; Ahuja, Paramvir Singh

    2014-04-01

    Drought is a major stress that affects the yield and quality of tea, a widely consumed beverage crop grown in more than 20 countries of the world. Therefore, osmotin gene-expressing transgenic tea plants produced using earlier optimized conditions were evaluated for their tolerance of drought stress and their quality. Improved tolerance of polyethylene glycol-induced water stress and faster recovery from stress were evident in transgenic lines compared with the normal phenotype. Significant improvements in growth under in-vitro conditions were also observed. Besides enhanced reactive oxygen species-scavenging enzyme activity, the transgenic lines contained significantly higher levels of flavan-3-ols and caffeine, key compounds that govern quality and commercial yield of the beverage. The selected transgenic lines have the potential to meet the demands of the tea industry for stress-tolerant plants with higher yield and quality. These traits of the transgenic lines can be effectively maintained for generations because tea is commercially cultivated through vegetative propagation only.

  1. RADIO FREQUENCY IDENTIFICATION DEVICES: EFFECTIVENESS IN IMPROVING SAFEGUARDS AT GAS-CENTRIFUGE URANIUM-ENRICHMENT PLANTS.

    SciTech Connect

    JOE,J.

    2007-07-08

    Recent advances in radio frequency identification devices (RFIDs) have engendered a growing interest among international safeguards experts. Potentially, RFIDs could reduce inspection work, viz. the number of inspections, number of samples, and duration of the visits, and thus improve the efficiency and effectiveness of international safeguards. This study systematically examined the applications of RFIDs for IAEA safeguards at large gas-centrifuge enrichment plants (GCEPs). These analyses are expected to help identify the requirements and desirable properties for RFIDs, to provide insights into which vulnerabilities matter most, and help formulate the required assurance tests. This work, specifically assesses the application of RFIDs for the ''Option 4'' safeguards approach, proposed by Bruce Moran, U. S. Nuclear Regulatory Commission (NRC), for large gas-centrifuge uranium-enrichment plants. The features of ''Option 4'' safeguards include placing RFIDs on all feed, product and tails (F/P/T) cylinders, along with WID readers in all FP/T stations and accountability scales. Other features of Moran's ''Option 4'' are Mailbox declarations, monitoring of load-cell-based weighing systems at the F/P/T stations and accountability scales, and continuous enrichment monitors. Relevant diversion paths were explored to evaluate how RFIDs improve the efficiency and effectiveness of safeguards. Additionally, the analysis addresses the use of RFIDs in conjunction with video monitoring and neutron detectors in a perimeter-monitoring approach to show that RFIDs can help to detect unidentified cylinders.

  2. Use of collaboration software to improve nuclear power plant outage management

    SciTech Connect

    Germain, Shawn

    2015-02-01

    Nuclear Power Plant (NPP) refueling outages create some of the most challenging activities the utilities face in both tracking and coordinating thousands of activities in a short period of time. Other challenges, including nuclear safety concerns arising from atypical system configurations and resource allocation issues, can create delays and schedule overruns, driving up outage costs. Today the majority of the outage communication is done using processes that do not take advantage of advances in modern technologies that enable enhanced communication, collaboration and information sharing. Some of the common practices include: runners that deliver paper-based requests for approval, radios, telephones, desktop computers, daily schedule printouts, and static whiteboards that are used to display information. Many gains have been made to reduce the challenges facing outage coordinators; however; new opportunities can be realized by utilizing modern technological advancements in communication and information tools that can enhance the collective situational awareness of plant personnel leading to improved decision-making. Ongoing research as part of the Light Water Reactor Sustainability Program (LWRS) has been targeting NPP outage improvement. As part of this research, various applications of collaborative software have been demonstrated through pilot project utility partnerships. Collaboration software can be utilized as part of the larger concept of Computer-Supported Cooperative Work (CSCW). Collaborative software can be used for emergent issue resolution, Outage Control Center (OCC) displays, and schedule monitoring. Use of collaboration software enables outage staff and subject matter experts (SMEs) to view and update critical outage information from any location on site or off.

  3. Marble wastes and pig slurry improve the environmental and plant-relevant properties of mine tailings.

    PubMed

    Kabas, S; Faz, A; Acosta, J A; Arocena, J M; Zornoza, R; Martínez-Martínez, S; Carmona, D M

    2014-02-01

    Poor soil fertility is often the biggest challenge to the establishment of vegetation in mine wastes deposits. We conducted field trials in the El Gorguel and El Lirio sites in SE Spain, two representative tailing ponds of similar properties except for pH, to understand the environmental and plant-relevant benefits of marble waste (MW) and pig slurry (PS) applications to mine tailings. Low pH (5.4) tailings (El Lirio) exhibit reduction of up to fourfold in bio-availability of metals as shown by the DTPA-Zn, Pb, water-soluble Zn, Pb and up to 3× for water-soluble Cd. Tailings in El Gorguel have high pH (7.4) and did not exhibit significant trends in the reductions of water-extractable Zn, Pb, Cd and Cu. Improvements to the edaphic (plant-relevant) properties of tailings after the amendments are not as sensitive to pH compared to the environmental characteristics. The two sites had increases in aggregate stability, organic matter (total N and organic C) although total N is higher in the El Gorguel (up to 212 μg N kg(-1)) than the El Lirio (up to 26 μg N kg(-1)). However, cation exchange capacities are similar in both sites at 15.2 cmol(+) kg(-1). We conclude that the characteristics, especially pH, of tailing materials significantly influence the fate of metals but not improvements to plant-relevant properties such as cation exchange capacity and aggregate stability 1 year after the application of MW and PS amendments.

  4. Does Salicylic Acid (SA) Improve Tolerance to Salt Stress in Plants? A Study of SA Effects On Tomato Plant Growth, Water Dynamics, Photosynthesis, and Biochemical Parameters.

    PubMed

    Mimouni, Hajer; Wasti, Salma; Manaa, Arafet; Gharbi, Emna; Chalh, Abdellah; Vandoorne, Bertrand; Lutts, Stanley; Ben Ahmed, Hela

    2016-03-01

    Environmental stresses such as salinity directly impact crop growth, and by extension, world food supply and societal prosperity. It is estimated that over 800 million hectares of land throughout the world are salt-affected. In arid and semi-arid regions, salt concentration can be close to that in the seawater. Hence, there are intensive efforts to improve plant tolerance to salinity and other environmental stressors. Salicylic acid (SA) is an important signal molecule for modulating plant responses to stress. In the present study, we examined, on multiple plant growth related endpoints, whether SA applied through the rooting medium could mitigate the adverse effects of salinity on tomato (Solanum lycopersicum) cv. Marmande. The latter is a hitherto understudied tomato plant from the above perspective; it is a classic variety that produces the large ribbed tomatoes in the Mediterranean and consumed worldwide. We found salt stress negatively affected the growth of cv. Marmande tomato plants. However, the SA-treated plants had greater shoot and root dry mass, leaf area compared to untreated plants when exposed to salt stress. Application of SA restores photosynthetic rates and photosynthetic pigment levels under salt (NaCl) exposure. Leaf water, osmotic potential, stomatal conductance transpiration rate, and biochemical parameters were also ameliorated in SA-treated plants under saline stress conditions. Overall, these data illustrate that SA increases cv. Marmande tomato growth by improving photosynthesis, regulation and balance of osmotic potential, induction of compatible osmolyte metabolism, and alleviating membrane damage. We suggest salicylic acid might be considered as a potential growth regulator to improve tomato plant salinity stress resistance, in the current era of global climate change.

  5. Does Salicylic Acid (SA) Improve Tolerance to Salt Stress in Plants? A Study of SA Effects On Tomato Plant Growth, Water Dynamics, Photosynthesis, and Biochemical Parameters.

    PubMed

    Mimouni, Hajer; Wasti, Salma; Manaa, Arafet; Gharbi, Emna; Chalh, Abdellah; Vandoorne, Bertrand; Lutts, Stanley; Ben Ahmed, Hela

    2016-03-01

    Environmental stresses such as salinity directly impact crop growth, and by extension, world food supply and societal prosperity. It is estimated that over 800 million hectares of land throughout the world are salt-affected. In arid and semi-arid regions, salt concentration can be close to that in the seawater. Hence, there are intensive efforts to improve plant tolerance to salinity and other environmental stressors. Salicylic acid (SA) is an important signal molecule for modulating plant responses to stress. In the present study, we examined, on multiple plant growth related endpoints, whether SA applied through the rooting medium could mitigate the adverse effects of salinity on tomato (Solanum lycopersicum) cv. Marmande. The latter is a hitherto understudied tomato plant from the above perspective; it is a classic variety that produces the large ribbed tomatoes in the Mediterranean and consumed worldwide. We found salt stress negatively affected the growth of cv. Marmande tomato plants. However, the SA-treated plants had greater shoot and root dry mass, leaf area compared to untreated plants when exposed to salt stress. Application of SA restores photosynthetic rates and photosynthetic pigment levels under salt (NaCl) exposure. Leaf water, osmotic potential, stomatal conductance transpiration rate, and biochemical parameters were also ameliorated in SA-treated plants under saline stress conditions. Overall, these data illustrate that SA increases cv. Marmande tomato growth by improving photosynthesis, regulation and balance of osmotic potential, induction of compatible osmolyte metabolism, and alleviating membrane damage. We suggest salicylic acid might be considered as a potential growth regulator to improve tomato plant salinity stress resistance, in the current era of global climate change. PMID:26909467

  6. Changes in concentration levels of selected VOCs in newly erected and remodelled building in Gdansk.

    PubMed

    Zabiegała, B; Namieśnik, J; Przyk, E; Przyjazny, A

    1999-11-01

    Volatile organic compounds such as benzene, toluene, butyl acetate, ethylbenzene, m-xylene, styrene and m-dichlorobenzene were measured in three newly erected and remodelled dwellings. The present study also attempted to examine the time dependence of concentrations of selected VOCs in each investigated dwelling. This was accomplished by at least triplicate measurements of the IAQ. To collect a series of air samples the active and passive methods were used. In both cases activated charcoal was applied as a sorption medium. The samples were recovered by solvent extraction, and analysed by capillary column gas chromatography, employing a flame ionisation detector. The experimental results showed that MAC values for analysed VOCs were exceeded (even a few orders of magnitude) for the measurements made before inhabiting of the occupants, in every investigated dwelling. The concentrations of the investigated VOCs decreased significantly with time, which should be expected, although in some cases the levels of selected VOCs remained still high. Our experience indicates that parallel application of two different indoor air sampling techniques to determine analytes of interest, though more laborious and time consuming, can lead to significant conclusions concerning indoor air quality in monitored spaces. PMID:10576105

  7. The use of erection enhancing medication and party drugs among men living with HIV in Europe.

    PubMed

    De Ryck, Iris; Van Laeken, David; Noestlinger, Christiana; Platteau, Tom; Colebunders, Robert

    2013-08-01

    Studies have shown more erectile dysfunction (ED) in men living with HIV (MLHIV), relative to age matched HIV-negative men. Erection enhancing medication (EEM) is more frequently used by HIV-positive men than in the general male population. Increased sexually transmitted infection has been described in HIV-positive men with ED using EEM. This study investigated the use of EEM and party drugs (methyleendioxymethamfetamine (XTC), gammahydroxybutyrate (GHB) "fluid XTC" and alkyl nitrites "poppers") among MLHIV. Self-administered questionnaires were distributed consecutively to all patients attending 17 European HIV treatment centers. The sample included 1118 HIV-positive men, among whom 74.5% men having sex with men (MSM). The use of EEM was more frequent in MSM than in heterosexual men (odds ratio (OR) 3.33, p<0.001) and was associated with increased sexual risk behavior (OR 3.27, p<0.001). Nonmedically indicated use of EEM was linked to increased use of party drugs (OR 2.30, p=0.01). Physicians taking care of MLHIV need to be aware of the high prevalence of (nonmedical) use of EEM and party drugs. Medical provision of EEM should be combined with a discussion on safer sex behavior and the risk related to concomitant use of party drugs and illegal EEM.

  8. AVE 0991, a non-peptide Mas-receptor agonist, facilitates penile erection.

    PubMed

    da Costa Gonçalves, Andrey C; Fraga-Silva, Rodrigo A; Leite, Romulo; Santos, Robson A S

    2013-03-01

    The renin-angiotensin system plays a crucial role in erectile function. It has been shown that elevated levels of angiotensin II contribute to the development of erectile dysfunction both in humans and in aminals. On the contrary, the heptapeptide angiotensin-(1-7) appears to mediate penile erection by activation of the Mas receptor. Recently, we have shown that the erectile function of Mas gene-deleted mice was substantially reduced, which was associated with a marked increase in fibrous tissue in the corpus cavernosum. We have hypothesized that the synthetic non-peptide Mas agonist, AVE 0991, would potentiate penile erectile function. We showed that intracavernosal injection of AVE 0991 potentiated the erectile response of anaesthetized Wistar rats, measured as the ratio between corpus cavernosum pressure and mean arterial pressure, upon electrical stimulation of the major pelvic ganglion. The facilitatory effect of AVE 0991 on erectile function was dose dependent and completely blunted by the nitric oxide synthesis inhibitor, l-NAME. Importantly, concomitant intracavernosal infusion of the specific Mas receptor blocker, A-779, abolished the effect of AVE 0991. We demonstrated that AVE 0991 potentiates the penile erectile response through Mas in an NO-dependent manner. Importantly, these results suggest that Mas agonists, such as AVE 0991, might have significant therapeutic benefits for the treatment of erectile dysfunction.

  9. Experimental investigation of the visual field dependency in the erect and supine positions

    NASA Technical Reports Server (NTRS)

    Lichtenstein, J. H.; Saucer, R. T.

    1972-01-01

    The increasing utilization of simulators in many fields, in addition to aeronautics and space, requires the efficient use of these devices. It seemed that personnel highly influenced by the visual scene would make desirable subjects, particularly for those simulators without sufficient motion cues. In order to evaluate this concept, some measure of the degree of influence of the visual field on the subject in necessary. As part of this undertaking, 37 male and female subjects, including eight test pilots, were tested for their visual field dependency or independency. A version of Witkin's rod and frame apparatus was used for the tests. The results showed that nearly all the test subjects exhibited some degree of field dependency, the degree varying from very high field dependency to nearly zero field dependency in a normal distribution. The results for the test pilots were scattered throughout a range similar to the results for the bulk of male subjects. The few female subjects exhibited a higher field dependency than the male subjects. The male subjects exhibited a greater field dependency in the supine position than in the erect position, whereas the field dependency of the female subjects changed only slightly.

  10. Overexpression of the Wheat Expansin Gene TaEXPA2 Improved Seed Production and Drought Tolerance in Transgenic Tobacco Plants

    PubMed Central

    Chen, Yanhui; Han, Yangyang; Zhang, Meng; Zhou, Shan; Kong, Xiangzhu; Wang, Wei

    2016-01-01

    Expansins are cell wall proteins that are grouped into two main families, α-expansins and β-expansins, and they are implicated in the control of cell extension via the disruption of hydrogen bonds between cellulose and matrix glucans. TaEXPA2 is an α-expansin gene identified in wheat. Based on putative cis-regulatory elements in the TaEXPA2 promoter sequence and the expression pattern induced when polyethylene glycol (PEG) is used to mimic water stress, we hypothesized that TaEXPA2 is involved in plant drought tolerance and plant development. Through transient expression of 35S::TaEXPA2-GFP in onion epidermal cells, TaEXPA2 was localized to the cell wall. Constitutive expression of TaEXPA2 in tobacco improved seed production by increasing capsule number, not seed size, without having any effect on plant growth patterns. The transgenic tobacco exhibited a significantly greater tolerance to water-deficiency stress than did wild-type (WT) plants. We found that under drought stress, the transgenic plants maintained a better water status. The accumulated content of osmotic adjustment substances, such as proline, in TaEXPA2 transgenic plants was greater than that in WT plants. Transgenic plants also displayed greater antioxidative competence as indicated by their lower malondialdehyde (MDA) content, relative electrical conductivity, and reactive oxygen species (ROS) accumulation than did WT plants. This result suggests that the transgenic plants suffer less damage from ROS under drought conditions. The activities of some antioxidant enzymes as well as expression levels of several genes encoding key antioxidant enzymes were higher in the transgenic plants than in the WT plants under drought stress. Collectively, our results suggest that ectopic expression of the wheat expansin gene TaEXPA2 improves seed production and drought tolerance in transgenic tobacco plants. PMID:27073898

  11. Overexpression of the Wheat Expansin Gene TaEXPA2 Improved Seed Production and Drought Tolerance in Transgenic Tobacco Plants.

    PubMed

    Chen, Yanhui; Han, Yangyang; Zhang, Meng; Zhou, Shan; Kong, Xiangzhu; Wang, Wei

    2016-01-01

    Expansins are cell wall proteins that are grouped into two main families, α-expansins and β-expansins, and they are implicated in the control of cell extension via the disruption of hydrogen bonds between cellulose and matrix glucans. TaEXPA2 is an α-expansin gene identified in wheat. Based on putative cis-regulatory elements in the TaEXPA2 promoter sequence and the expression pattern induced when polyethylene glycol (PEG) is used to mimic water stress, we hypothesized that TaEXPA2 is involved in plant drought tolerance and plant development. Through transient expression of 35S::TaEXPA2-GFP in onion epidermal cells, TaEXPA2 was localized to the cell wall. Constitutive expression of TaEXPA2 in tobacco improved seed production by increasing capsule number, not seed size, without having any effect on plant growth patterns. The transgenic tobacco exhibited a significantly greater tolerance to water-deficiency stress than did wild-type (WT) plants. We found that under drought stress, the transgenic plants maintained a better water status. The accumulated content of osmotic adjustment substances, such as proline, in TaEXPA2 transgenic plants was greater than that in WT plants. Transgenic plants also displayed greater antioxidative competence as indicated by their lower malondialdehyde (MDA) content, relative electrical conductivity, and reactive oxygen species (ROS) accumulation than did WT plants. This result suggests that the transgenic plants suffer less damage from ROS under drought conditions. The activities of some antioxidant enzymes as well as expression levels of several genes encoding key antioxidant enzymes were higher in the transgenic plants than in the WT plants under drought stress. Collectively, our results suggest that ectopic expression of the wheat expansin gene TaEXPA2 improves seed production and drought tolerance in transgenic tobacco plants.

  12. Overexpression of the Wheat Expansin Gene TaEXPA2 Improved Seed Production and Drought Tolerance in Transgenic Tobacco Plants.

    PubMed

    Chen, Yanhui; Han, Yangyang; Zhang, Meng; Zhou, Shan; Kong, Xiangzhu; Wang, Wei

    2016-01-01

    Expansins are cell wall proteins that are grouped into two main families, α-expansins and β-expansins, and they are implicated in the control of cell extension via the disruption of hydrogen bonds between cellulose and matrix glucans. TaEXPA2 is an α-expansin gene identified in wheat. Based on putative cis-regulatory elements in the TaEXPA2 promoter sequence and the expression pattern induced when polyethylene glycol (PEG) is used to mimic water stress, we hypothesized that TaEXPA2 is involved in plant drought tolerance and plant development. Through transient expression of 35S::TaEXPA2-GFP in onion epidermal cells, TaEXPA2 was localized to the cell wall. Constitutive expression of TaEXPA2 in tobacco improved seed production by increasing capsule number, not seed size, without having any effect on plant growth patterns. The transgenic tobacco exhibited a significantly greater tolerance to water-deficiency stress than did wild-type (WT) plants. We found that under drought stress, the transgenic plants maintained a better water status. The accumulated content of osmotic adjustment substances, such as proline, in TaEXPA2 transgenic plants was greater than that in WT plants. Transgenic plants also displayed greater antioxidative competence as indicated by their lower malondialdehyde (MDA) content, relative electrical conductivity, and reactive oxygen species (ROS) accumulation than did WT plants. This result suggests that the transgenic plants suffer less damage from ROS under drought conditions. The activities of some antioxidant enzymes as well as expression levels of several genes encoding key antioxidant enzymes were higher in the transgenic plants than in the WT plants under drought stress. Collectively, our results suggest that ectopic expression of the wheat expansin gene TaEXPA2 improves seed production and drought tolerance in transgenic tobacco plants. PMID:27073898

  13. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants.

    PubMed

    Armada, E; Probanza, A; Roldán, A; Azcón, R

    2016-03-15

    This study evaluates the responses of Lavandula dentata under drought conditions to the inoculation with single autochthonous arbuscular mycorrhizal (AM) fungus (five fungal strains) or with their mixture and the effects of these inocula with a native Bacillus thuringiensis (endophytic bacteria). These microorganisms were drought tolerant and in general, increased plant growth and nutrition. Particularly, the AM fungal mixture and B. thuringiensis maximized plant biomass and compensated drought stress as values of antioxidant activities [superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase APX)] shown. The AMF-bacteria interactions highly reduced the plant oxidative damage of lipids [malondialdehyde (MDA)] and increased the mycorrhizal development (mainly arbuscular formation representative of symbiotic functionality). These microbial interactions explain the highest potential of dually inoculated plants to tolerate drought stress. B. thuringiensis "in vitro" under osmotic stress does not reduce its PGPB (plant growth promoting bacteria) abilities as indole acetic acid (IAA) and ACC deaminase production and phosphate solubilization indicating its capacity to improve plant growth under stress conditions. Each one of the autochthonous fungal strains maintained their particular interaction with B. thuringiensis reflecting the diversity, intrinsic abilities and inherent compatibility of these microorganisms. In general, autochthonous AM fungal species and particularly their mixture with B. thuringiensis demonstrated their potential for protecting plants against drought and helping plants to thrive in semiarid ecosystems. PMID:26796423

  14. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants.

    PubMed

    Armada, E; Probanza, A; Roldán, A; Azcón, R

    2016-03-15

    This study evaluates the responses of Lavandula dentata under drought conditions to the inoculation with single autochthonous arbuscular mycorrhizal (AM) fungus (five fungal strains) or with their mixture and the effects of these inocula with a native Bacillus thuringiensis (endophytic bacteria). These microorganisms were drought tolerant and in general, increased plant growth and nutrition. Particularly, the AM fungal mixture and B. thuringiensis maximized plant biomass and compensated drought stress as values of antioxidant activities [superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase APX)] shown. The AMF-bacteria interactions highly reduced the plant oxidative damage of lipids [malondialdehyde (MDA)] and increased the mycorrhizal development (mainly arbuscular formation representative of symbiotic functionality). These microbial interactions explain the highest potential of dually inoculated plants to tolerate drought stress. B. thuringiensis "in vitro" under osmotic stress does not reduce its PGPB (plant growth promoting bacteria) abilities as indole acetic acid (IAA) and ACC deaminase production and phosphate solubilization indicating its capacity to improve plant growth under stress conditions. Each one of the autochthonous fungal strains maintained their particular interaction with B. thuringiensis reflecting the diversity, intrinsic abilities and inherent compatibility of these microorganisms. In general, autochthonous AM fungal species and particularly their mixture with B. thuringiensis demonstrated their potential for protecting plants against drought and helping plants to thrive in semiarid ecosystems.

  15. Chiller plant CFC, energy and operational improvements{hor_ellipsis} or, killing three birds with one stone

    SciTech Connect

    Waltz, J.P.

    1996-05-01

    This paper explores the hidden opportunities that exist when planning CFC abatement or modernization projects for central cooling plants, both small and large. It is critically important to perform an in-depth, comprehensive, and integrated re-evaluation of the entire cooling plant, its auxiliaries and its distribution system. By doing so, numerous system improvements can be identified and implemented which will reduce operating costs, simplify maintenance, improve plant operations, enhance plant reliability and even improve building comfort. Among the improvement measures are more efficient chillers, cooling tower replacement and optimization, plant re-sizing, optimizing, primary and auxiliary equipment {open_quotes}mix{close_quotes}chilled water variable flow conversion, multiple-plant integration, installation of dedicated cooling systems and fuel substitution. These measures can all independently, or concurrently, contribute to dramatically improved cooling operations. The paper refers to numerous actual projects that have already employed these techniques and also discusses the major CFC abatement compliance dates. The hidden opportunities presented and explained in this paper can do much to take the{open_quote}sting{close_quote} out of an otherwise onerous regulatory {open_quotes}predicament{close_quotes} and, perhaps most significantly, help to secure funding from management for much-needed projects sooner rather than later.

  16. Recent Improvements in Interface Management for Hanford's Waste Treatment and Immobilization Plant - 13263

    SciTech Connect

    Arm, Stuart T.; Van Meighem, Jeffery S.; Duncan, Garth M.; Pell, Michael J.; Harrington, Christopher C.

    2013-07-01

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which includes the Hanford Site tank farms operations and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities by 2047. The WTP is currently being designed and constructed by Bechtel National Inc. (BNI) for DOE-ORP. BNI relies on a number of technical services from other Hanford contractors for WTP's construction and commissioning. These same services will be required of the future WTP operations contractor. Partly in response to a DNFSB recommendation, the WTP interface management process managing these technical services has recently been improved through changes in organization and issue management. The changes are documented in an Interface Management Plan. The organizational improvement is embodied in the One System Integrated Project Team that was formed by integrating WTP and tank farms staff representing interfacing functional areas into a single organization. A number of improvements were made to the issue management process but most notable was the formal appointment of technical, regulatory and safety subject matter experts to ensure accurate identification of issues and open items. Ten of the thirteen active WTP Interface Control Documents have been revised in 2012 using the improved process with the remaining three in progress. The value of the process improvements is reflected by the ability to issue these documents on schedule and accurately identify technical, regulatory and safety issues and open items. (authors)

  17. Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones.

    PubMed

    Kang, Sang-Mo; Khan, Abdul Latif; Hamayun, Muhammad; Hussain, Javid; Joo, Gil-Jae; You, Young-Hyun; Kim, Jong-Guk; Lee, In-Jung

    2012-12-01

    Plant growth-promoting rhizobacteria (PGPR) producing gibberellins (GAs) can be beneficial to plant growth and development. In the present study, we isolated and screened a new strain of Promicromonospora sp., SE188, isolated from soil. Promicromonospora sp. SE188 secreted GAs into its growth medium and exhibited phosphate solubilization potential. The PGPR produced physiologically active (GA(1) and GA(4)) and inactive (GA(9), GA(12), GA(19), GA(20), GA(24), GA(34), and GA(53)) GAs in various quantities detected by GC/MS-SIM. Solanum lycopersicum (tomato) plants inoculated with Promicromonospora sp. SE188 showed a significantly higher shoot length and biomass as compared to controls where PGPR-free nutrient broth (NB) and distilled water (DW) were applied to plants. The presence of Promicromonospora sp. SE188 significantly up-regulated the non C-13 hydroxylation GA biosynthesis pathway (GA(12)→GA(24)→GA(9)→GA(4)→ GA(34)) in the tomato plants as compared to the NB and DW control plants. Abscisic acid, a plant stress hormone, was significantly down-regulated in the presence of Promicromonospora sp. SE188. Contrarily, salicylic acid was significantly higher in the tomato plant after Promicromonospora sp. SE188 inoculation as compared to the controls. Promicromonospora sp. SE188 showed promising stimulation of tomato plant growth. From the results it appears that Promicromonospora sp. SE188 has potential as a bio-fertilizer and should be more broadly tested in field trials for higher crop production in eco-friendly farming systems.

  18. Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones.

    PubMed

    Kang, Sang-Mo; Khan, Abdul Latif; Hamayun, Muhammad; Hussain, Javid; Joo, Gil-Jae; You, Young-Hyun; Kim, Jong-Guk; Lee, In-Jung

    2012-12-01

    Plant growth-promoting rhizobacteria (PGPR) producing gibberellins (GAs) can be beneficial to plant growth and development. In the present study, we isolated and screened a new strain of Promicromonospora sp., SE188, isolated from soil. Promicromonospora sp. SE188 secreted GAs into its growth medium and exhibited phosphate solubilization potential. The PGPR produced physiologically active (GA(1) and GA(4)) and inactive (GA(9), GA(12), GA(19), GA(20), GA(24), GA(34), and GA(53)) GAs in various quantities detected by GC/MS-SIM. Solanum lycopersicum (tomato) plants inoculated with Promicromonospora sp. SE188 showed a significantly higher shoot length and biomass as compared to controls where PGPR-free nutrient broth (NB) and distilled water (DW) were applied to plants. The presence of Promicromonospora sp. SE188 significantly up-regulated the non C-13 hydroxylation GA biosynthesis pathway (GA(12)→GA(24)→GA(9)→GA(4)→ GA(34)) in the tomato plants as compared to the NB and DW control plants. Abscisic acid, a plant stress hormone, was significantly down-regulated in the presence of Promicromonospora sp. SE188. Contrarily, salicylic acid was significantly higher in the tomato plant after Promicromonospora sp. SE188 inoculation as compared to the controls. Promicromonospora sp. SE188 showed promising stimulation of tomato plant growth. From the results it appears that Promicromonospora sp. SE188 has potential as a bio-fertilizer and should be more broadly tested in field trials for higher crop production in eco-friendly farming systems. PMID:23274975

  19. Improved conversion of herbaceous biomass to biofuels: Potential for modification of key plant characteristics

    SciTech Connect

    Sladden, S.E.; Bransby, D.I. . Dept. of Agronomy and Soils)

    1989-10-01

    Biomass crops are converted to fuels via biochemical and thermochemical processes. The process preferred depends on properties and cost of available feedstocks, and on the specific products desired. Since most mature biomass crops are composed of up to 80% cell wall fibers, the properties of these fibers determine, to a large degree, the conversion potential of the crop. However, biomass crops also contain small amounts of proteins, soluble carbohydrates and interfering materials (e.g., tannins and silica) which also influence the desirability of the feedstock in specific conversion processes. Fortunately, wide variation exists in the chemical composition of potential biomass crops. Although the chemical composition of feedstocks can be influenced significantly with judicious management has species selection, some traits are sufficiently heritable to permit breeding for improved feedstock composition. In addition to breeding for specific compositional traits directly, selection for in vitro digestibility or for easily-measured canopy or physiological traits may lead to more rapid and efficient progress in feedstock improvement, provided those measurements are highly-correlated with desirable feedstock composition. At the same time breeders must improve, or at least avoid damaging, stand longevity, tendency of plants to lodge, and establishment traits (e.g., disease resistance and seedling vigor). 46 refs., 8 tabs.

  20. Recent Improvements In Interface Management For Hanfords Waste Treatment And Immobilization Plant - 13263

    SciTech Connect

    Arm, Stuart T.; Pell, Michael J.; Van Meighem, Jeffery S.; Duncan, Garth M.; Harrington, Christopher C.

    2012-11-20

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which comprises both the Hanford Site tank farms operations and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities by 2047. The WTP is currently being designed and constructed by Bechtel National Inc. (BNI) for DOE-ORP. BNI relies on a number oftechnical services from other Hanford contractors for WTP's construction and commissioning. These same services will be required of the future WTP operations contractor. The WTP interface management process has recently been improved through changes in organization and technical issue management documented in an Interface Management Plan. Ten of the thirteen active WTP Interface Control Documents (ICDs) have been revised in 2012 using the improved process with the remaining three in progress. The value of the process improvements is reflected by the ability to issue these documents on schedule.

  1. Recurrent mistakes in power plant design, construction, and operation

    SciTech Connect

    Kautz, H.R.

    1995-12-31

    The mistakes made during planning and design (calculation), erection, and operation of power plants will be discussed in detail. The erection time, state of the regulatory guides and of the art are decisive for plant design. Errors with respect to materials selection, manufacturing, and welding are critical for the service life. Frequently, errors during examinations for maintenance purposes and for assessing the remaining life are due to mistakes at the beginning of the service life of a component. Last, but not least, plant cycle chemistry errors and operating errors will be discussed by examples.

  2. Dopamine agonist-induced penile erection and yawning: a comparative study in outbred Roman high- and low-avoidance rats.

    PubMed

    Sanna, Fabrizio; Corda, Maria Giuseppa; Melis, Maria Rosaria; Piludu, Maria Antonietta; Löber, Stefan; Hübner, Harald; Gmeiner, Peter; Argiolas, Antonio; Giorgi, Osvaldo

    2013-08-01

    The effects on penile erection and yawning of subcutaneous (SC) injections of the mixed dopamine D1/D2-like agonist apomorphine (0.02-0.2 mg/kg) were studied in outbred Roman high- (RHA) and low-avoidance (RLA) male rats, two lines selectively bred for their respectively rapid versus poor acquisition of the active avoidance response in the shuttle-box, and compared with the effects observed in male Sprague-Dawley (SD) rats. Apomorphine dose-response curves were bell-shaped in all rat lines/strains. Notably, more penile erections and yawns were recorded mainly in the ascending part of these curves (e.g., apomorphine 0.02-0.08 mg/kg) in both RLA and RHA rats compared to SD rats, with RLA rats showing the higher response (especially for yawning) with respect to RHA rats. Similar results were found with PD-168,077 (0.02-0.2 mg/kg SC), a D4 receptor agonist, which induced penile erection but not yawning. In all rat lines/strains, apomorphine responses were markedly reduced by the D2 antagonist L-741,626, but not by the D3 antagonist, SB277011A, whereas the D4 antagonists L-745,870 and FAUC213 elicited a partial, yet statistically significant, inhibitory effect. In contrast, the pro-erectile effect of PD-168,077 was completely abolished by L-745,870 and FAUC213, as expected. The present study confirms and extends previously reported differences in dopamine transmission between RLA and RHA rats and between the SD strain and the Roman lines. Moreover, it confirms previous studies supporting the view that dopamine receptors of the D2 subtype play a predominant role in the pro-yawning and pro-erectile effect of apomorphine, and that the selective stimulation of D4 receptors induces penile erection.

  3. Eukaryotic class II cyclobutane pyrimidine dimer photolyase structure reveals basis for improved ultraviolet tolerance in plants.

    PubMed

    Hitomi, Kenichi; Arvai, Andrew S; Yamamoto, Junpei; Hitomi, Chiharu; Teranishi, Mika; Hirouchi, Tokuhisa; Yamamoto, Kazuo; Iwai, Shigenori; Tainer, John A; Hidema, Jun; Getzoff, Elizabeth D

    2012-04-01

    Ozone depletion increases terrestrial solar ultraviolet B (UV-B; 280-315 nm) radiation, intensifying the risks plants face from DNA damage, especially covalent cyclobutane pyrimidine dimers (CPD). Without efficient repair, UV-B destroys genetic integrity, but plant breeding creates rice cultivars with more robust photolyase (PHR) DNA repair activity as an environmental adaptation. So improved strains of Oryza sativa (rice), the staple food for Asia, have expanded rice cultivation worldwide. Efficient light-driven PHR enzymes restore normal pyrimidines to UV-damaged DNA by using blue light via flavin adenine dinucleotide to break pyrimidine dimers. Eukaryotes duplicated the photolyase gene, producing PHRs that gained functions and adopted activities that are distinct from those of prokaryotic PHRs yet are incompletely understood. Many multicellular organisms have two types of PHR: (6-4) PHR, which structurally resembles bacterial CPD PHRs but recognizes different substrates, and Class II CPD PHR, which is remarkably dissimilar in sequence from bacterial PHRs despite their common substrate. To understand the enigmatic DNA repair mechanisms of PHRs in eukaryotic cells, we determined the first crystal structure of a eukaryotic Class II CPD PHR from the rice cultivar Sasanishiki. Our 1.7 Å resolution PHR structure reveals structure-activity relationships in Class II PHRs and tuning for enhanced UV tolerance in plants. Structural comparisons with prokaryotic Class I CPD PHRs identified differences in the binding site for UV-damaged DNA substrate. Convergent evolution of both flavin hydrogen bonding and a Trp electron transfer pathway establish these as critical functional features for PHRs. These results provide a paradigm for light-dependent DNA repair in higher organisms. PMID:22170053

  4. Isoprene improves photochemical efficiency and enhances heat dissipation in plants at physiological temperatures.

    PubMed

    Pollastri, Susanna; Tsonev, Tsonko; Loreto, Francesco

    2014-04-01

    Isoprene-emitting plants are better protected against thermal and oxidative stresses. Isoprene may strengthen membranes avoiding their denaturation and may quench reactive oxygen and nitrogen species, achieving a similar protective effect. The physiological role of isoprene in unstressed plants, up to now, is not understood. It is shown here, by monitoring the non-photochemical quenching (NPQ) of chlorophyll fluorescence of leaves with chemically or genetically altered isoprene biosynthesis, that chloroplasts of isoprene-emitting leaves dissipate less energy as heat than chloroplasts of non-emitting leaves, when exposed to physiologically high temperatures (28-37 °C) that do not impair the photosynthetic apparatus. The effect was especially remarkable at foliar temperatures between 30 °C and 35 °C, at which isoprene emission is maximized and NPQ is quenched by about 20%. Isoprene may also allow better stability of photosynthetic membranes and a more efficient electron transfer through PSII at physiological temperatures, explaining most of the NPQ reduction and the slightly higher photochemical quenching that was also observed in isoprene-emitting leaves. The possibility that isoprene emission helps in removing thermal energy at the thylakoid level is also put forward, although such an effect was calculated to be minimal. These experiments expand current evidence that isoprene is an important trait against thermal and oxidative stresses and also explains why plants invest resources in isoprene under unstressed conditions. By improving PSII efficiency and reducing the need for heat dissipation in photosynthetic membranes, isoprene emitters are best fitted to physiologically high temperatures and will have an evolutionary advantage when adapting to a warming climate. PMID:24676032

  5. Improving power plant efficiency and safety through better knowledge of flow-rates: The EDF approach

    SciTech Connect

    Piguet, M.

    1998-07-01

    The flow-rate is an important parameter in power plant operation for both performance and safety purposes. As an example, in nuclear and fossil power plants, the uncertainty concerning thermal and electrical powers is directly connected to the uncertainty of the feedwater flow. In real conditions, the flow-rate is often incorrectly determined due to various phenomena among which are incorrect installation conditions, wrong calibrations and drift, erosion or fouling of the flowmeters. These phenomena may lead to systematic errors which can represent several percents of the measured value and which can induce a critical loss of profit. This paper presents the strategy and means of EDF's R and D Division to improve actual accuracy of flowmeters used in power plants. The experimental approach has always been an efficient way to investigate and make a diagnosis of real situations. The EVEREST loop is a dedicated rig within EDF for the study of liquid flow metering problems. It enables to calibrate industrial flowmeters, evaluate prototypes and study the specific installation conditions of flowmeters. It is often noticed that flowmeters do not respect the standards in terms of straight lengths upstream from the meter. A practical example (1,300 MW unit feedwater flow) illustrates the possibility the EVEREST loop offers to reproduce the geometry of the hydraulic circuit and flow conditions. The impact of the actual installation conditions on the flowmeter accuracy can be thus determined and the flowmeter can be possibly recalibrated in order to reduce or correct a systematic bias. The EDF tool is presented with examples of accuracy and experimental and numerical modeling.

  6. Recognizing critical mine spoil health characteristics to design biochars for site improvement to promote stabilizing plant growth

    EPA Science Inventory

    Biochar can be used as an amendment to remediate metal-contaminated mine spoils for improved site phytostabilization. For successful phytostabilization to occur, biochar amendments must improve mine spoil health with respect to plant rooting plus uptake of water and nutrients. ...

  7. Improving depth maps of plants by using a set of five cameras

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Adam L.

    2015-03-01

    Obtaining high-quality depth maps and disparity maps with the use of a stereo camera is a challenging task for some kinds of objects. The quality of these maps can be improved by taking advantage of a larger number of cameras. The research on the usage of a set of five cameras to obtain disparity maps is presented. The set consists of a central camera and four side cameras. An algorithm for making disparity maps called multiple similar areas (MSA) is introduced. The algorithm was specially designed for the set of five cameras. Experiments were performed with the MSA algorithm and the stereo matching algorithm based on the sum of sum of squared differences (sum of SSD, SSSD) measure. Moreover, the following measures were included in the experiments: sum of absolute differences (SAD), zero-mean SAD (ZSAD), zero-mean SSD (ZSSD), locally scaled SAD (LSAD), locally scaled SSD (LSSD), normalized cross correlation (NCC), and zero-mean NCC (ZNCC). Algorithms presented were applied to images of plants. Making depth maps of plants is difficult because parts of leaves are similar to each other. The potential usability of the described algorithms is especially high in agricultural applications such as robotic fruit harvesting.

  8. Mathematical literacy in Plant Physiology undergraduates: results of interventions aimed at improving students' performance

    NASA Astrophysics Data System (ADS)

    Vila, Francisca; Sanz, Amparo

    2013-09-01

    The importance of mathematical literacy in any scientific career is widely recognized. However, various studies report lack of numeracy and mathematical literacy in students from various countries. In the present work, we present a detailed study of the mathematical literacy of Spanish undergraduate students of Biology enrolled in a Plant Physiology course. We have performed individual analyses of results obtained during the period 2000-2011, for questions in the examinations requiring and not requiring mathematical skills. Additionally, we present the outcome of two interventions introduced with the aim of helping students improve their prospects for success in the course. Our results confirm previous research showing students' deficiencies in mathematical skills. However, the scores obtained for mathematical questions in the examinations are good predictors of the final grades attained in Plant Physiology, as there are strong correlations at the individual level between results for questions requiring and not requiring mathematical skills. The introduction of a laboratory session devoted to strengthening the application of students' previously acquired mathematical knowledge did not change significantly the results obtained for mathematical questions. Since mathematical abilities of students entering university have declined in recent years, this intervention may have helped to maintain students' performance to a level comparable to that of previous years. The outcome of self-assessment online tests indicates that although Mathematics anxiety is lower than during examinations, the poor results obtained for questions requiring mathematical skills are, at least in part, due to a lack of self-efficacy.

  9. An improved cucumber mosaic virus-based vector for efficient decoying of plant microRNAs

    PubMed Central

    Liao, Qiansheng; Tu, Yifei; Carr, John P.; Du, Zhiyou

    2015-01-01

    We previously devised a cucumber mosaic virus (CMV)-based vector system carrying microRNA target mimic sequences for analysis of microRNA function in Arabidopsis thaliana. We describe an improved version in which target mimic cloning is achieved by annealing two partly-overlapping complementary DNA oligonucleotides for insertion into an infectious clone of CMV RNA3 (LS strain) fused to the cauliflower mosaic virus-derived 35S promoter. LS-CMV variants carrying mimic sequences were generated by co-infiltrating plants with Agrobacterium tumefaciens cells harboring engineered RNA3 with cells carrying RNA1 and RNA2 infectious clones. The utility of using agroinfection to deliver LS-CMV-derived microRNA target mimic sequences was demonstrated using a miR165/166 target mimic and three solanaceous hosts: Nicotiana benthamiana, tobacco (N. tabacum), and tomato (Solanum lycopersicum). In all three hosts the miR165/166 target mimic induced marked changes in developmental phenotype. Inhibition of miRNA accumulation and increased target mRNA (HD-ZIP III) accumulation was demonstrated in tomato. Thus, a CMV-derived target mimic delivered via agroinfection is a simple, cheap and powerful means of launching virus-based miRNA mimics and is likely to be useful for high-throughput investigation of miRNA function in a wide range of plants. PMID:26278008

  10. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    SciTech Connect

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the study

  11. Optimizing municipal wastewater treatment plants using an improved multi-objective optimization method.

    PubMed

    Zhang, Rui; Xie, Wen-Ming; Yu, Han-Qing; Li, Wen-Wei

    2014-04-01

    An improved multi-objective optimization (MOO) model was established and used for simultaneously optimizing the treatment cost and multiple effluent quality indexes (including effluent COD, NH4(+)-N, NO3(-)-N) of a municipal wastewater treatment plant (WWTP). Compared with previous models that were mainly based on the use of fixed decision factors and did not taken into account the treatment cost, this model introduces a relationship model based on back propagation algorithm to determine the set of decision factors according to the expected optimization targets. Thus, a more flexible and precise optimization of the treatment process was allowed. Moreover, a MOO of conflicting objectives (i.e., treatment cost and effluent quality) was achieved. Applying this method, an optimal balance between operating cost and effluent quality of a WWTP can be found. This model may offer a useful tool for optimized design and control of practical WWTPs.

  12. Systems Level Engineering of Plant Cell Wall Biosynthesis to Improve Biofuel Feedstock Quality

    SciTech Connect

    Hazen, Samuel

    2013-09-27

    Our new regulatory model of cell wall biosynthesis proposes original network architecture with several newly incorporated components. The mapped set of protein-DNA interactions will serve as a foundation for 1) understanding the regulation of a complex and integral plant component and 2) the manipulation of crop species for biofuel and biotechnology purposes. This study revealed interesting and novel aspects of grass growth and development and further enforce the importance of a grass model system. By functionally characterizing a suite of genes, we have begun to improve the sparse model for transcription regulation of biomass accumulation in grasses. In the process, we have advanced methodology and brachy molecular genetic tools that will serve as valuable community resource.

  13. Recreational use of erectile dysfunction medication may decrease confidence in ability to gain and hold erections in young males.

    PubMed

    Santtila, P; Sandnabba, N K; Jern, P; Varjonen, M; Witting, K; von der Pahlen, B

    2007-01-01

    We aimed to estimate the frequency of recreational use of erectile dysfunction medication (EDM) and to identify any adverse effects on confidence in gaining and holding erections resulting from such use. In addition, we explored differences in erectile function and sexual behavior between recreational and medicinal users of EDM to control for the possibility of recreational users having but not admitting erectile dysfunction. A subset from the Genetics of Sex and Aggression population-based sample of 4428 males with a mean age of 29.51 (s.d.=6.77) years provided information on their use of EDM, erectile function during first intercourse and currently, sexual behavior and confidence in their ability to gain and hold erections. There were 2.6% (n=115) recreational and 0.9% (n=39) medicinal users of EDM. Recreational users had currently significantly lower confidence in their erectile ability than non-users even though they had significantly better erectile function and significantly more unrestricted sexual behavior as well as had more confidence when initiating sexual activity. More frequent use of EDM was associated with significantly less confidence in erectile ability among the recreational users. We conclude that recreational users of EDM may be vulnerable for becoming psychologically dependent on pharmacologically induced erection.

  14. Enhanced understanding of the relationship between erection and satisfaction in ED treatment: application of a longitudinal mediation model.

    PubMed

    Bushmakin, A G; Cappelleri, J C; Symonds, T; Stecher, V J

    2014-01-01

    To apportion the direct effect and the indirect effect (through erections) that sildenafil (vs placebo) has on individual satisfaction and couple satisfaction over time, longitudinal mediation modeling was applied to outcomes on the Sexual Experience Questionnaire. The model included data from weeks 4 and 10 (double-blind phase) and week 16 (open-label phase) of a controlled study. Data from 167 patients with erectile dysfunction (ED) were available for analysis. Estimation of statistical significance was based on bootstrap simulations, which allowed inferences at and between time points. Percentages (and corresponding 95% confidence intervals) for direct and indirect effects of treatment were calculated using the model. For the individual satisfaction and couple satisfaction domains, direct treatment effects were negligible (not statistically significant) whereas indirect treatment effects via the erection domain represented >90% of the treatment effects (statistically significant). Week 4 vs week 10 percentages of direct and indirect effects were not statistically different, indicating that the mediation effects are longitudinally invariant. As there was no placebo arm in the open-label phase, mediation effects at week 16 were not estimable. In conclusion, erection has a crucial role as a mediator in restoring individual satisfaction and couple satisfaction in men with ED treated with sildenafil. PMID:23759829

  15. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption.

    PubMed

    Chen, Wei; Yao, Xiaoqin; Cai, Kunzheng; Chen, Jining

    2011-07-01

    Drought is a major constraint for rice production in the rainfed lowlands in China. Silicon (Si) has been verified to play an important role in enhancing plant resistance to environmental stress. Two near-isogenic lines of rice (Oryza sativa L.), w-14 (drought susceptible) and w-20 (drought resistant), were selected to study the effects of exogenous Si application on the physiological traits and nutritional status of rice under drought stress. In wet conditions, Si supply had no effects on growth and physiological parameters of rice plants. Drought stress was found to reduce dry weight, root traits, water potential, photosynthetic parameters, basal quantum yield (F(v)/F(0)), and maximum quantum efficiency of PSII photochemistry (F(v)/F(m)) in rice plants, while Si application significantly increased photosynthetic rate (Pr), transpiration rate (Tr), F(v)/F(0), and F(v)/F(m) of rice plants under drought stress. In addition, water stress increased K, Na, Ca, Mg, Fe content of rice plants, but Si treatment significantly reduced these nutrient level. These results suggested that silicon application was useful to increase drought resistance of rice through the enhancement of photochemical efficiency and adjustment of the mineral nutrient absorption in rice plants.

  16. Potassium chloride and rare earth elements improve plant growth and increase the frequency of the Agrobacterium tumefaciens-mediated plant transformation.

    PubMed

    Boyko, Alex; Matsuoka, Aki; Kovalchuk, Igor

    2011-04-01

    Plant transformation efficiency depends on the ability of the transgene to successfully interact with plant host factors. Our previous work and the work of others showed that manipulation of the activity of host factors allows for increased frequency of transformation. Recently we reported that exposure of tobacco plants to increased concentrations of ammonium nitrate increases the frequency of both homologous recombination and plant transgenesis. Here we tested the influence of KCl and salts of rare earth elements, Ce and La on the efficiency of Agrobacterium-mediated plant transformation. We found that exposure to KCl, CeCl(3) and LaCl(3) leads to an increase in recombination frequency in Arabidopsis and tobacco. Plants grown in the presence of CeCl(3) and LaCl(3) had higher biomass, longer roots and greater root number. Analysis of transformation efficiency showed that exposure of tobacco plants to 50 mM KCl resulted in ~6.0-fold increase in the number of regenerated calli and transgenic plants as compared to control plants. Exposure to various concentrations of CeCl(3) showed a maximum increase of ~3.0-fold in both the number of calli and transgenic plants. Segregation analysis showed that exposure to KCl and cerium (III) chloride leads to more frequent integrations of the transgene at a single locus. Analysis of transgene intactness showed better preservation of right T-DNA border during transgene integration. Our data suggest that KCl and CeCl(3) can be effectively used to improve quantity and quality of transgene integrations.

  17. 77 FR 27490 - Plant-Specific Adoption, Revision 4 of the Improved Standard Technical Specifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ... Electric Plants, BWR/4,'' and NUREG-1434, ``Standard Technical Specifications, General Electric Plants, BWR... ML12104A193 (Bases), and NUREG-1434, ``Standard Technical Specifications, General Electric Plants, BWR/6... ML12104A193 Specifications, General Electric BWR/4 Plants'' NUREG-1434, ``Standard Technical...

  18. Guide for prioritizing power plant productivity improvement projects: modification and simplification of the DOE/MRI methodology

    SciTech Connect

    Not Available

    1981-03-01

    In recent years, the subject of public utility power plant productivity and reliability has received significant attention from both federal and state agencies and from within the utilities. One study was a FEA-sponsored program that had as its purpose the development of improved techniques for assessing cause of power plant unavailability. The results of this study have become widely known as the DOE/MRI methodology for calculating increased power plant equivalent availability resulting from instituting improvement projects. To further the development of the DOE/MRI methodology for assessing and quantifying the effect of improvement projects, the DOE initiated studies with two states to demonstrate the methodology in operating plants. These studies were focused on applying the methodology to specific power plants (fossil-fueled and nuclear) and on identifying any difficulties in using the method. In the course of these investigations, several problems were uncovered. Various recommendations were made for both eliminating the identified deficiencies in the methodology and for simplifying several of the calculations needed to evaluate proposed plant improvements. The information provided here describes four major modifications to the DOE/MRI methodology which eliminate previously uncovered deficiencies and simplify calculational methods.

  19. Advances in RNA interference technology and its impact on nutritional improvement, disease and insect control in plants.

    PubMed

    Katoch, Rajan; Thakur, Neelam

    2013-03-01

    This review highlights the advances in the knowledge of RNA interference (RNAi) and discusses recent progress on the functionality of different components RNAi machinery operating in the organisms. The silencing of genes by RNA interference has become the technology of choice for investigation of gene functions in different organisms. The refinement in the knowledge of the endogenous RNAi pathways in plants along with the development of new strategies and applications for the improvement of nutritional value of important agricultural crops through suppression of genes in different plants have opened new vistas for nutritional security. The improvement in the nutritional status of the plants and reduction in the level of toxins or antinutrients was desired for long, but the available technology was not completely successful in achieving the tissue specific regulation of some genes. In the recent years, a number of economically important crop plants have been tested successfully for improving plant nutritional value through metabolic engineering using RNAi. The implications of this technology for crop improvement programs, including nutritional enrichment, reduction of antinutrients, disease, and insect control have been successfully tested in variety of crops with commercial considerations. The enhancement of the nutraceutical traits for the desired health benefits in common crop plants through manipulation of gene expression has been elaborated in this article. The tremendous potential with RNAi technology is expected to revolutionize the modern agriculture for meeting the growing challenges is discussed.

  20. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model.

    PubMed

    Shi, Mingjie; Fisher, Joshua B; Brzostek, Edward R; Phillips, Richard P

    2016-03-01

    Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition - C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity-optimized nutrient acquisition model - the Fixation and Uptake of Nitrogen Model - into one of the most widely used TBMs, the Community Land Model. Global plant nitrogen (N) uptake is dynamically simulated in the coupled model based on the C costs of N acquisition from mycorrhizal roots, nonmycorrhizal roots, N-fixing microbes, and retranslocation (from senescing leaves). We find that at the global scale, plants spend 2.4 Pg C yr(-1) to acquire 1.0 Pg N yr(-1) , and that the C cost of N acquisition leads to a downregulation of global net primary production (NPP) by 13%. Mycorrhizal uptake represented the dominant pathway by which N is acquired, accounting for ~66% of the N uptake by plants. Notably, roots associating with arbuscular mycorrhizal (AM) fungi - generally considered for their role in phosphorus (P) acquisition - are estimated to be the primary source of global plant N uptake owing to the dominance of AM-associated plants in mid- and low-latitude biomes. Overall, our coupled model improves the representations of NPP downregulation globally and generates spatially explicit patterns of belowground C allocation, soil N uptake, and N retranslocation at the global scale. Such model improvements are critical for predicting how plant responses to altered N availability (owing to N deposition, rising atmospheric CO2 , and warming temperatures) may impact the land C sink.

  1. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model.

    PubMed

    Shi, Mingjie; Fisher, Joshua B; Brzostek, Edward R; Phillips, Richard P

    2016-03-01

    Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition - C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity-optimized nutrient acquisition model - the Fixation and Uptake of Nitrogen Model - into one of the most widely used TBMs, the Community Land Model. Global plant nitrogen (N) uptake is dynamically simulated in the coupled model based on the C costs of N acquisition from mycorrhizal roots, nonmycorrhizal roots, N-fixing microbes, and retranslocation (from senescing leaves). We find that at the global scale, plants spend 2.4 Pg C yr(-1) to acquire 1.0 Pg N yr(-1) , and that the C cost of N acquisition leads to a downregulation of global net primary production (NPP) by 13%. Mycorrhizal uptake represented the dominant pathway by which N is acquired, accounting for ~66% of the N uptake by plants. Notably, roots associating with arbuscular mycorrhizal (AM) fungi - generally considered for their role in phosphorus (P) acquisition - are estimated to be the primary source of global plant N uptake owing to the dominance of AM-associated plants in mid- and low-latitude biomes. Overall, our coupled model improves the representations of NPP downregulation globally and generates spatially explicit patterns of belowground C allocation, soil N uptake, and N retranslocation at the global scale. Such model improvements are critical for predicting how plant responses to altered N availability (owing to N deposition, rising atmospheric CO2 , and warming temperatures) may impact the land C sink. PMID:26473512

  2. Percutaneous Perineal Electrostimulation Induces Erection: Clinical Significance in Patients With Spinal Cord Injury and Erectile Dysfunction

    PubMed Central

    Shafik, Ahmed; Shafik, Ali A; Shafik, Ismail A; Sibai, Olfat El

    2008-01-01

    Objectives: Approximately one third to one half of the penis is embedded in the pelvis and can be felt through the scrotum and in the perineum. The main arteries and nerves enter the penis through this perineal part of the penis, which seems to represent a highly sensitive area. We investigated the hypothesis that percutaneous perineal stimulation evokes erection in patients with neurogenic erectile dysfunction. Methods: Percutaneous electrostimulation of the perineum (PESP) with synchronous intracorporeal pressure (ICP) recording was performed in 28 healthy volunteers (age 36.3 ± 7.4 y) and 18 patients (age 36.6 ± 6.8 y) with complete neurogenic erectile dysfunction (NED). Current was delivered in a sine wave summation fashion. Average maximal voltages and number of stimulations delivered per session were 15 to 18 volts and 15 to 25 stimulations, respectively. Results: PESP of healthy volunteers effected an ICP increase (P < 0.0001), which returned to the basal value upon stimulation cessation. The latent period recorded was 2.5 ± 0.2 seconds. Results were reproducible on repeated PESP in the same subject but with an increase of the latent period. Patients with NED recorded an ICP increase that was lower (P < 0.05) and a latent period that was longer (P < 0.0001) than those of healthy volunteers. Conclusion: PESP effected ICP increase in the healthy volunteers and patients with NED. The ICP was significantly higher and latent period shorter in the healthy volunteers than in the NED patients. PESP may be of value in the treatment of patients with NED, provided that further studies are performed to reproduce these results. PMID:18533410

  3. Prospects for optimizing soil microbial functioning to improve plant nutrient uptake and soil carbon sequestration under elevated CO2

    NASA Astrophysics Data System (ADS)

    Nie, M.; Pendall, E. G.

    2013-12-01

    Potential to mitigate climate change through increasing plant productivity and its carbon (C) input to soil may be limited by soil nitrogen (N) availability. Using a novel 13C-CO2 and 15N-soil dual labeling method, we investigated whether plant growth-promoting bacteria would interact with atmospheric CO2 concentration to alter plant productivity and soil C storage. We grew Bouteloua gracilis under ambient (380 ppm) or elevated CO2 (700 ppm) in climate-controlled chambers, and plant individuals were grown with or without Pseudomonas fluorescens inoculum, which can produce N catabolic enzymes. We observed that both eCO2 and P. fluorescens increased plant productivity and its C allocation to soil. P. fluorescens relative to eCO2 enhanced plant N uptake from soil organic matter, which highly correlated with soil N enzyme activities and rhizosphere exudate C. More importantly, P. fluorescens increased microbial biomass and deceased specific microbial respiration in comparison with eCO2. These results indicate that application of plant growth-promoting bacteria can increase microbial C utilization efficiency with subsequent N mineralization from soil organic matter, and may improve plant N availability and soil C sequestration. Together, our findings highlight the potential of plant growth-promoting bacteria for global change mitigation by terrestrial ecosystems.

  4. Continuous Improvement and the Safety Case for the Waste Isolation Pilot Plant Geologic Repository - 13467

    SciTech Connect

    Van Luik, Abraham; Patterson, Russell; Nelson, Roger; Leigh, Christi

    2013-07-01

    The Waste Isolation Pilot Plant (WIPP) is a geologic repository 2150 feet (650 m) below the surface of the Chihuahuan desert near Carlsbad, New Mexico. WIPP permanently disposes of transuranic waste from national defense programs. Every five years, the U.S. Department of Energy (DOE) submits an application to the U.S. Environmental Protection Agency (EPA) to request regulatory-compliance re-certification of the facility for another five years. Every ten years, DOE submits an application to the New Mexico Environment Department (NMED) for the renewal of its hazardous waste disposal permit. The content of the applications made by DOE to the EPA for re-certification, and to the NMED for permit-renewal, reflect any optimization changes made to the facility, with regulatory concurrence if warranted by the nature of the change. DOE points to such changes as evidence for its having taken seriously its 'continuous improvement' operations and management philosophy. Another opportunity for continuous improvement is to look at any delta that may exist between the re-certification and re-permitting cases for system safety and the consensus advice on the nature and content of a safety case as being developed and published by the Nuclear Energy Agency's Integration Group for the Safety Case (IGSC) expert group. DOE at WIPP, with the aid of its Science Advisor and teammate, Sandia National Laboratories, is in the process of discerning what can be done, in a reasonably paced and cost-conscious manner, to continually improve the case for repository safety that is being made to the two primary regulators on a recurring basis. This paper will discuss some aspects of that delta and potential paths forward to addressing them. (authors)

  5. Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants.

    PubMed

    Yang, Yang; Tang, Ren-Jie; Jiang, Chun-Mei; Li, Bei; Kang, Tao; Liu, Hua; Zhao, Nan; Ma, Xu-Jun; Yang, Lei; Chen, Shao-Liang; Zhang, Hong-Xia

    2015-09-01

    In higher plants, the salt overly sensitive (SOS) signalling pathway plays a crucial role in maintaining ion homoeostasis and conferring salt tolerance under salinity condition. Previously, we functionally characterized the conserved SOS pathway in the woody plant Populus trichocarpa. In this study, we demonstrate that overexpression of the constitutively active form of PtSOS2 (PtSOS2TD), one of the key components of this pathway, significantly increased salt tolerance in aspen hybrid clone Shanxin Yang (Populus davidiana × Populus bolleana). Compared to the wild-type control, transgenic plants constitutively expressing PtSOS2TD exhibited more vigorous growth and produced greater biomass in the presence of high concentrations of NaCl. The improved salt tolerance was associated with a decreased Na(+) accumulation in the leaves of transgenic plants. Further analyses revealed that plasma membrane Na(+) /H(+) exchange activity and Na(+) efflux in transgenic plants were significantly higher than those in the wild-type plants. Moreover, transgenic plants showed improved capacity in scavenging reactive oxygen species (ROS) generated by salt stress. Taken together, our results suggest that PtSOS2 could serve as an ideal target gene to genetically engineer salt-tolerant trees.

  6. Plant Maintenance and Improvement Experiences for Control System in UCN 5 and 6

    SciTech Connect

    Choi, D.R.; Lee, K.B.; Kim, C.J.; Chung, Y.M.

    2006-07-01

    The Plant Control System (PCS) in Korean Standard Nuclear Power Plant (KSNP) is designed to perform data acquisition and transfer function via communication data links to control most of the field components such as pumps, fans, valves, dampers and circuit breakers. The PCS installed at UCN 5 and 6 for both safety related and non -safety related functions is microprocessor based system supplied by HF Controls. Safety related functions are provided by redundant trains of microprocessor based single loop controllers with direct connections to the field input/output instruments but non-safety related functions utilize a similar construction with the input/output boards to be remotely located in cabinet arrangements near the field components. Whatever the functions, the signals to control and monitor field devices are processed through communication master (CM), HFC distributed control system, which uses Multibus I back-plane design to accommodate the requirement of multiple processors. The complex programmable logic device (CPLD) mounted on the A233 back-plane of the CM controls the processors for an adequate access to the bus so that 16 microprocessor based circuitries acting as bus masters share the public memory properly through the common bus. The bus occupation of each processor should not affect overall system response time to keep appropriate system performance. This paper discusses the comparison evaluation between the difference priority techniques and hardware change on A233 back-plane to improve the communication methods, etc., as to the bus arbitration schemes of communication master(CM) applied to UCN site based on the waveform data acquired from A233 CPLD and HFC bus design specification. (authors)

  7. Improving the efficiency of phytoremediation using electrically charged plant and chelating agents.

    PubMed

    Tahmasbian, Iman; Safari Sinegani, Ali Akbar

    2016-02-01

    The low efficiency of phytoremediation is a considerable problem that limits the application of this environmentally friendly method on heavy metal-polluted soils. The combination of chelate-assisted phytoextraction and electrokinetic remediation could offer new opportunities to improve the effectiveness of phytoextraction. The current experiment aims to investigate the effects of electrical fields and chelating agents on phytoremediation efficiency. In a pot experiment using mine soil, poultry manure extract (PME), cow manure extract (CME), and ethylenediaminetetraacetic acid (EDTA) were applied to soil as chelating agents (2 g kg(-1)) at the beginning of the flowering stage. A week later, Helianthus annuus (sunflower) was negatively charged by inserting a stainless steel needle with 10 and 30 V DC electricity in the lowest part of the stems for 1 h each day for a 14-day period. At the end of the experiment, the shoot and root dry weight, lead (Pb) concentration in plant organs, translocation factor (TF), metal uptake index (UI), and soil available Pb (diethylene triamine pentaacetic acid (DTPA) extractable) were detected. Results indicated that the application of electrical fields had no significant impact on the shoot and root dry weights, while Pb concentration and UI increased in the 10-V EDTA treatment by 500 % compared to control. There was no significant difference between UI in 30- and 10-V EDTA treatments. Soil available Pb significantly increased in the 30-V treated soil. A positive correlation was observed between the available Pb in soil near the root and Pb concentration in shoot, its TF, and UI. In conclusion, a negatively charged plant along with the application of EDTA significantly increased the phytoremediation efficiency.

  8. An improved gate valve for critical applications in nuclear power plants

    SciTech Connect

    Kalsi, M.S.; Alvarez, P.D.; Wang, J.K.; Somagyi, D.

    1996-12-01

    U.S. Nuclear Regulatory Commission Generic Letters 89-10 for motor-operated valves (MOVs) and 95-07 for all power-operated valves document in detail the problems related to the performance of the safety-related valves in nuclear power plants. The problems relate to lack of reliable operation under design basis conditions including higher than anticipated stem thrust, unpredictable valve behavior, damage to the valve internals under blowdown/high flow conditions, significant degradation of performance when cycled under AP and flow, thermal binding, and pressure locking. This paper describes an improved motor-operated flexible wedge gate valve design, the GE Sentinel Valve, which is the outcome of a comprehensive and systematic development effort undertaken to resolve the issues identified in the NRC Generic Letters 89-10 and 95-07. The new design provides a reliable, long-term, low maintenance cost solution to the nuclear power industry. One of the key features incorporated in the disc permits the disc flexibility to be varied independently of the disc thickness (pressure boundary) dictated by the ASME Section III Pressure Vessel & Piping Code stress criteria. This feature allows the desired flexibility to be incorporated in the disc, thus eliminating thermal binding problems. A matrix of analyses was performed using finite element and computational fluid dynamics approaches to optimize design for stresses, flexibility, leak-tightness, fluid flow, and thermal effects. The design of the entire product line was based upon a consistent set of analyses and design rules which permit scaling to different valve sizes and pressure classes within the product line. The valve meets all of the ASME Section III Code design criteria and the N-Stamp requirements. The performance of the valve was validated by performing extensive separate effects and plant in-situ tests. This paper summarizes the key design features, analyses, and test results.

  9. Improving the efficiency of phytoremediation using electrically charged plant and chelating agents.

    PubMed

    Tahmasbian, Iman; Safari Sinegani, Ali Akbar

    2016-02-01

    The low efficiency of phytoremediation is a considerable problem that limits the application of this environmentally friendly method on heavy metal-polluted soils. The combination of chelate-assisted phytoextraction and electrokinetic remediation could offer new opportunities to improve the effectiveness of phytoextraction. The current experiment aims to investigate the effects of electrical fields and chelating agents on phytoremediation efficiency. In a pot experiment using mine soil, poultry manure extract (PME), cow manure extract (CME), and ethylenediaminetetraacetic acid (EDTA) were applied to soil as chelating agents (2 g kg(-1)) at the beginning of the flowering stage. A week later, Helianthus annuus (sunflower) was negatively charged by inserting a stainless steel needle with 10 and 30 V DC electricity in the lowest part of the stems for 1 h each day for a 14-day period. At the end of the experiment, the shoot and root dry weight, lead (Pb) concentration in plant organs, translocation factor (TF), metal uptake index (UI), and soil available Pb (diethylene triamine pentaacetic acid (DTPA) extractable) were detected. Results indicated that the application of electrical fields had no significant impact on the shoot and root dry weights, while Pb concentration and UI increased in the 10-V EDTA treatment by 500 % compared to control. There was no significant difference between UI in 30- and 10-V EDTA treatments. Soil available Pb significantly increased in the 30-V treated soil. A positive correlation was observed between the available Pb in soil near the root and Pb concentration in shoot, its TF, and UI. In conclusion, a negatively charged plant along with the application of EDTA significantly increased the phytoremediation efficiency. PMID:26423283

  10. Proteinase inhibitor gene families: strategies for transformation to improve plant defenses against herbivores.

    PubMed

    Ryan, C A

    1989-01-01

    Recent evidence indicates that the presence of serine proteinase inhibitors in plant leaves can reduce predation by insects. Plants can now be transformed with proteinase inhibitor genes with strong promoters to express the inhibitor proteins in relatively high levels at specific times. Inhibitors having variable specificities against digestive proteinases of insects and pathogens can now be assessed for their possible role(s) in natural plant defense and for their potential usefulness in protecting crop plants against herbivores.

  11. Genetic engineering of plants for improved crop production. (Latest citations from the Biobusiness data base). Published Search

    SciTech Connect

    Not Available

    1992-05-01

    The bibliography contains citations concerning the use of genetic engineering to improve crop production. Genetic alterations of plants to provide insect protection, herbicide resistance, disease resistance, improved quality, and higher yield are discussed. Methods used to develop environmentally tolerant crops that are able to withstand extremes of temperature, reduced water consumption, and reduced fertilizer requirements are examined. Genetic engineering of microorganisms that are beneficial to plants is discussed in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

  12. Integrating Botany with Chemistry & Art to Improve Elementary School Children's Awareness of Plants

    ERIC Educational Resources Information Center

    Çil, Emine

    2015-01-01

    Students need to be aware of plants in order to learn about, appreciate, care for, and protect them. However, research has found that many children are not aware of the plants in their environment. A way to address this issue might be integration of plants with various disciplines. I investigated the effectiveness of an instructional approach…

  13. Erection of Ibirhynchus gen. nov. (Acanthocephala: Polymorphidae), based on molecular and morphological data.

    PubMed

    García-Varela, Martín; de León, Gerardo Pérez-Ponce; Aznar, Francisco J; Nadler, Steven A

    2011-02-01

    of spines (S. dimorpha) versus 2 fields (S. hispida) on the anterior region of the trunk in females. Based on the phylogenetic position of S. dimorpha within Polymorphidae, coupled with levels of genetic divergence and, more importantly, the morphological and ecological (host specificity) differences, we propose the erection of a new genus to accommodate S. dimorpha.

  14. Improved nuclear power plant operations and safety through performance-based safety regulation.

    PubMed

    Golay, M W

    2000-01-01

    This paper illustrates some of the promise and needed future work for risk-informed, performance-based regulation (RIPBR). RIPBR is an evolving alternative to the current prescriptive method of nuclear safety regulation. Prescriptive regulation effectively constitutes a long, fragmented checklist of requirements that safety-related systems in a plant must satisfy. RIPBR, instead, concentrates upon satisfying negotiated performance goals and incentives for judging and rewarding licensee behavior to improve safety and reduce costs. In a project reported here, a case study was conducted concerning a pressurized water reactor (PWR) emergency diesel generator (EDG). Overall, this work has shown that the methods of RIPBR are feasible to use, and capable of justifying simultaneous safety and economic nuclear power improvements. However, it also reveals several areas where the framework of RIPBR should be strengthened. First, researchers need better data and understanding regarding individual component-failure modes that may cause components to fail. Not only are more data needed on failure rates, but more data and understanding are needed to enable analysts to evaluate whether these failures become more likely as the interval between tests is increased. This is because the current state of failure data is not sufficiently finely detailed to define the failure rates of individual component failure modes; such knowledge is needed when changing component-specific regulatory requirements. Second, the role of component testing, given that a component has failed, needs to be strengthened within the context of RIPBR. This includes formulating requirements for updating the prior probability distribution of a component failure rate and conducting additional or more frequent testing. Finally, as a means of compensating for unavoidable uncertainty as an obstacle to regulatory decision-making, limits to knowledge must be treated explicitly and formally. This treatment includes the

  15. Inbreeding compromises host plant defense gene expression and improves herbivore survival.

    PubMed

    Portman, Scott L; Kariyat, Rupesh R; Johnston, Michelle A; Stephenson, Andrew G; Marden, James H

    2015-01-01

    Inbreeding commonly occurs in flowering plants and often results in a decline in the plant's defense response. Insects prefer to feed and oviposit on inbred plants more than outbred plants--suggesting that selecting inbred host plants offers them fitness benefits. Until recently, no studies have examined the effects of host plant inbreeding on insect fitness traits such as growth and dispersal ability. In a recent article, we documented that tobacco hornworm (Manduca sexta L.) larvae that fed on inbred horsenettle (Solanum carolinense L.) plants exhibited accelerated larval growth and increased adult flight capacity compared to larvae that fed on outbred plants. Here we report that M. sexta mortality decreased by 38.2% when larvae were reared on inbred horsenettle plants compared to larvae reared on outbreds. Additionally, inbred plants showed a notable reduction in the average relative expression levels of lipoxygenease-D (LoxD) and 12-oxophytodienoate reductase-3 (OPR3), two genes in the jasmonic acid signaling pathway that are upregulated in response to herbivore damage. Our study presents evidence that furthers our understanding of the biochemical mechanism responsible for differences in insect performance on inbred vs. outbred host plants. PMID:26039489

  16. Inbreeding compromises host plant defense gene expression and improves herbivore survival

    PubMed Central

    Portman, Scott L; Kariyat, Rupesh R; Johnston, Michelle A; Stephenson, Andrew G; Marden, James H

    2015-01-01

    Inbreeding commonly occurs in flowering plants and often results in a decline in the plant's defense response. Insects prefer to feed and oviposit on inbred plants more than outbred plants – suggesting that selecting inbred host plants offers them fitness benefits. Until recently, no studies have examined the effects of host plant inbreeding on insect fitness traits such as growth and dispersal ability. In a recent article, we documented that tobacco hornworm (Manduca sexta L.) larvae that fed on inbred horsenettle (Solanum carolinense L.) plants exhibited accelerated larval growth and increased adult flight capacity compared to larvae that fed on outbred plants. Here we report that M. sexta mortality decreased by 38.2% when larvae were reared on inbred horsenettle plants compared to larvae reared on outbreds. Additionally, inbred plants showed a notable reduction in the average relative expression levels of LIPOXYGENEASE-D (LoxD) and 12-OXOPHYTODIENOATE REDUCTASE-3 (OPR3), two genes in the jasmonic acid signaling pathway that are upregulated in response to herbivore damage. Our study presents evidence that furthers our understanding of the biochemical mechanism responsible for differences in insect performance on inbred vs. outbred host plants. PMID:26039489

  17. Dietary and plant polyphenols exert neuroprotective effects and improve cognitive function in cerebral ischemia.

    PubMed

    Panickar, Kiran S; Jang, Saebyeol

    2013-08-01

    Cerebral ischemia is caused by an interruption of blood flow to the brain which generally leads to irreversible brain damage. Ischemic injury is associated with vascular leakage, inflammation, tissue injury, and cell death. Cellular changes associated with ischemia include impairment of metabolism, energy failure, free radical production, excitotoxicity, altered calcium homeostasis, and activation of proteases all of which affect brain functioning and also contribute to longterm disabilities including cognitive decline. Inflammation, mitochondrial dysfunction, increased oxidative/nitrosative stress, and intracellular calcium overload contribute to brain injury including cell death and brain edema. However, there is a paucity of agents that can effectively reduce cerebral damage and hence considerable attention has focused on developing newer agents with more efficacy and fewer side-effects. Polyphenols are natural compounds with variable phenolic structures and are rich in vegetables, fruits, grains, bark, roots, tea, and wine. Most polyphenols have antioxidant, anti-inflammatory, and anti-apoptotic properties and their protective effects on mitochondrial functioning, glutamate uptake, and regulating intracellular calcium levels in ischemic injury in vitro have been demonstrated. This review will assess the current status of the potential effects of polyphenols in reducing cerebral injury and improving cognitive function in ischemia in animal and human studies. In addition, the review will also examine available patents in nutrition and agriculture that relates to cerebral ischemic injury with an emphasis on plant polyphenols.

  18. Plant growth improvement mediated by nitrate capture in co-composted biochar.

    PubMed

    Kammann, Claudia I; Schmidt, Hans-Peter; Messerschmidt, Nicole; Linsel, Sebastian; Steffens, Diedrich; Müller, Christoph; Koyro, Hans-Werner; Conte, Pellegrino; Joseph, Stephen; Stephen, Joseph

    2015-01-01

    Soil amendment with pyrogenic carbon (biochar) is discussed as strategy to improve soil fertility to enable economic plus environmental benefits. In temperate soils, however, the use of pure biochar mostly has moderately-negative to -positive yield effects. Here we demonstrate that co-composting considerably promoted biochars' positive effects, largely by nitrate (nutrient) capture and delivery. In a full-factorial growth study with Chenopodium quinoa, biomass yield increased up to 305% in a sandy-poor soil amended with 2% (w/w) co-composted biochar (BC(comp)). Conversely, addition of 2% (w/w) untreated biochar (BC(pure)) decreased the biomass to 60% of the control. Growth-promoting (BC(comp)) as well as growth-reducing (BC(pure)) effects were more pronounced at lower nutrient-supply levels. Electro-ultra filtration and sequential biochar-particle washing revealed that co-composted biochar was nutrient-enriched, particularly with the anions nitrate and phosphate. The captured nitrate in BC(comp) was (1) only partly detectable with standard methods, (2) largely protected against leaching, (3) partly plant-available, and (4) did not stimulate N2O emissions. We hypothesize that surface ageing plus non-conventional ion-water bonding in micro- and nano-pores promoted nitrate capture in biochar particles. Amending (N-rich) bio-waste with biochar may enhance its agronomic value and reduce nutrient losses from bio-wastes and agricultural soils.

  19. Microbial inoculants and organic amendment improves plant establishment and soil rehabilitation under semiarid conditions.

    PubMed

    Mengual, Carmen; Schoebitz, Mauricio; Azcón, Rosario; Roldán, Antonio

    2014-02-15

    The re-establishment of autochthonous shrub species is an essential strategy for recovering degraded soils under semiarid Mediterranean conditions. A field assay was carried out to determine the combined effects of the inoculation with native rhizobacteria (Bacillus megaterium, Enterobacter sp, Bacillus thuringiensis and Bacillus sp) and the addition of composted sugar beet (SB) residue on physicochemical soil properties and Lavandula dentata L. establishment. One year after planting, Bacillus sp. and B. megaterium + SB were the most effective treatments for increasing shoot dry biomass (by 5-fold with respect to control) and Enterobacter sp + SB was the most effective treatments for increasing dry root biomass. All the treatments evaluated significantly increased the foliar nutrient content (NPK) compared to control values (except B. thuringiensis + SB). The organic amendment had significantly increased available phosphorus content in rhizosphere soil by 29% respect to the control. Enterobacter sp combined with sugar beet residue improved total N content in soil (by 46% respect to the control) as well as microbiological and biochemical properties. The selection of the most efficient rhizobacteria strains and their combined effect with organic residue seems to be a critical point that drives the effectiveness of using these biotechnological tools for the revegetation and rehabilitation of degraded soils under semiarid conditions. PMID:24463051

  20. Plant growth improvement mediated by nitrate capture in co-composted biochar.

    PubMed

    Kammann, Claudia I; Schmidt, Hans-Peter; Messerschmidt, Nicole; Linsel, Sebastian; Steffens, Diedrich; Müller, Christoph; Koyro, Hans-Werner; Conte, Pellegrino; Joseph, Stephen; Stephen, Joseph

    2015-01-01

    Soil amendment with pyrogenic carbon (biochar) is discussed as strategy to improve soil fertility to enable economic plus environmental benefits. In temperate soils, however, the use of pure biochar mostly has moderately-negative to -positive yield effects. Here we demonstrate that co-composting considerably promoted biochars' positive effects, largely by nitrate (nutrient) capture and delivery. In a full-factorial growth study with Chenopodium quinoa, biomass yield increased up to 305% in a sandy-poor soil amended with 2% (w/w) co-composted biochar (BC(comp)). Conversely, addition of 2% (w/w) untreated biochar (BC(pure)) decreased the biomass to 60% of the control. Growth-promoting (BC(comp)) as well as growth-reducing (BC(pure)) effects were more pronounced at lower nutrient-supply levels. Electro-ultra filtration and sequential biochar-particle washing revealed that co-composted biochar was nutrient-enriched, particularly with the anions nitrate and phosphate. The captured nitrate in BC(comp) was (1) only partly detectable with standard methods, (2) largely protected against leaching, (3) partly plant-available, and (4) did not stimulate N2O emissions. We hypothesize that surface ageing plus non-conventional ion-water bonding in micro- and nano-pores promoted nitrate capture in biochar particles. Amending (N-rich) bio-waste with biochar may enhance its agronomic value and reduce nutrient losses from bio-wastes and agricultural soils. PMID:26057083

  1. Plant growth improvement mediated by nitrate capture in co-composted biochar

    PubMed Central

    Kammann, Claudia I.; Schmidt, Hans-Peter; Messerschmidt, Nicole; Linsel, Sebastian; Steffens, Diedrich; Müller, Christoph; Koyro, Hans-Werner; Conte, Pellegrino; Stephen, Joseph

    2015-01-01

    Soil amendment with pyrogenic carbon (biochar) is discussed as strategy to improve soil fertility to enable economic plus environmental benefits. In temperate soils, however, the use of pure biochar mostly has moderately-negative to -positive yield effects. Here we demonstrate that co-composting considerably promoted biochars’ positive effects, largely by nitrate (nutrient) capture and delivery. In a full-factorial growth study with Chenopodium quinoa, biomass yield increased up to 305% in a sandy-poor soil amended with 2% (w/w) co-composted biochar (BCcomp). Conversely, addition of 2% (w/w) untreated biochar (BCpure) decreased the biomass to 60% of the control. Growth-promoting (BCcomp) as well as growth-reducing (BCpure) effects were more pronounced at lower nutrient-supply levels. Electro-ultra filtration and sequential biochar-particle washing revealed that co-composted biochar was nutrient-enriched, particularly with the anions nitrate and phosphate. The captured nitrate in BCcomp was (1) only partly detectable with standard methods, (2) largely protected against leaching, (3) partly plant-available, and (4) did not stimulate N2O emissions. We hypothesize that surface ageing plus non-conventional ion-water bonding in micro- and nano-pores promoted nitrate capture in biochar particles. Amending (N-rich) bio-waste with biochar may enhance its agronomic value and reduce nutrient losses from bio-wastes and agricultural soils. PMID:26057083

  2. Plant growth improvement mediated by nitrate capture in co-composted biochar

    NASA Astrophysics Data System (ADS)

    Kammann, Claudia I.; Schmidt, Hans-Peter; Messerschmidt, Nicole; Linsel, Sebastian; Steffens, Diedrich; Müller, Christoph; Koyro, Hans-Werner; Conte, Pellegrino; Stephen, Joseph

    2015-06-01

    Soil amendment with pyrogenic carbon (biochar) is discussed as strategy to improve soil fertility to enable economic plus environmental benefits. In temperate soils, however, the use of pure biochar mostly has moderately-negative to -positive yield effects. Here we demonstrate that co-composting considerably promoted biochars’ positive effects, largely by nitrate (nutrient) capture and delivery. In a full-factorial growth study with Chenopodium quinoa, biomass yield increased up to 305% in a sandy-poor soil amended with 2% (w/w) co-composted biochar (BCcomp). Conversely, addition of 2% (w/w) untreated biochar (BCpure) decreased the biomass to 60% of the control. Growth-promoting (BCcomp) as well as growth-reducing (BCpure) effects were more pronounced at lower nutrient-supply levels. Electro-ultra filtration and sequential biochar-particle washing revealed that co-composted biochar was nutrient-enriched, particularly with the anions nitrate and phosphate. The captured nitrate in BCcomp was (1) only partly detectable with standard methods, (2) largely protected against leaching, (3) partly plant-available, and (4) did not stimulate N2O emissions. We hypothesize that surface ageing plus non-conventional ion-water bonding in micro- and nano-pores promoted nitrate capture in biochar particles. Amending (N-rich) bio-waste with biochar may enhance its agronomic value and reduce nutrient losses from bio-wastes and agricultural soils.

  3. The use of agrobiodiversity for plant improvement and the intellectual property paradigm: institutional fit and legal tools for mass selection, conventional and molecular plant breeding.

    PubMed

    Batur, Fulya; Dedeurwaerdere, Tom

    2014-12-01

    Focused on the impact of stringent intellectual property mechanisms over the uses of plant agricultural biodiversity in crop improvement, the article delves into a systematic analysis of the relationship between institutional paradigms and their technological contexts of application, identified as mass selection, controlled hybridisation, molecular breeding tools and transgenics. While the strong property paradigm has proven effective in the context of major leaps forward in genetic engineering, it faces a systematic breakdown when extended to mass selection, where innovation often displays a collective nature. However, it also creates partial blockages in those innovation schemes rested between on-farm observation and genetic modification, i.e. conventional plant breeding and upstream molecular biology research tools. Neither overly strong intellectual property rights, nor the absence of well delineated protection have proven an optimal fit for these two intermediary socio-technological systems of cumulative incremental innovation. To address these challenges, the authors look at appropriate institutional alternatives which can create effective incentives for in situ agrobiodiversity conservation and the equitable distribution of technologies in plant improvement, using the flexibilities of the TRIPS Agreement, the liability rules set forth in patents or plant variety rights themselves (in the form of farmers', breeders' and research exceptions), and other ad hoc reward regimes.

  4. The involvement of expansins in responses to phosphorus availability in wheat, and its potentials in improving phosphorus efficiency of plants.

    PubMed

    Han, Yang-yang; Zhou, Shan; Chen, Yan-hui; Kong, Xiangzhu; Xu, Ying; Wang, Wei

    2014-05-01

    Phosphorus (P) is a critical macronutrient required for numerous functions in plants and is one of the limiting factors for plant growth. Phosphate availability has a strong effect on root system architecture. Expansins are encoded by a superfamily of genes that are organized into four families, and growing evidence has demonstrated that expansins are involved in almost all aspects of plant development, especially root development. In the current study, we demonstrate that expansins may be involved in increasing phosphorus availability by regulating the growth and development of plant roots. Multiple expansins (five α- and nine β-expansin genes) were up- or down-regulated in response to phosphorus and showed different expression patterns in wheat. Meanwhile, the expression level of TaEXPB23 was up-regulated at excess-P condition, suggesting the involvement of TaEXPB23 in phosphorus adaptability. Overexpression of the TaEXPB23 resulted in improved phenotypes, particularly improved root system architecture, as indicated by the increased number of lateral roots in transgenic tobacco plants under excess-P and low-P conditions. Thus, these transgenic plants maintained better photosynthetic gas exchange ability than the control under both P-sufficient and P-deficient conditions.

  5. A critical review on the improvement of photosynthetic carbon assimilation in C3 plants using genetic engineering.

    PubMed

    Ruan, Cheng-Jiang; Shao, Hong-Bo; Teixeira da Silva, Jaime A

    2012-03-01

    Global warming is one of the most serious challenges facing us today. It may be linked to the increase in atmospheric CO2 and other greenhouse gases (GHGs), leading to a rise in sea level, notable shifts in ecosystems, and in the frequency and intensity of wild fires. There is a strong interest in stabilizing the atmospheric concentration of CO2 and other GHGs by decreasing carbon emission and/or increasing carbon sequestration. Biotic sequestration is an important and effective strategy to mitigate the effects of rising atmospheric CO2 concentrations by increasing carbon sequestration and storage capacity of ecosystems using plant photosynthesis and by decreasing carbon emission using biofuel rather than fossil fuel. Improvement of photosynthetic carbon assimilation, using transgenic engineering, potentially provides a set of available and effective tools for enhancing plant carbon sequestration. In this review, firstly different biological methods of CO2 assimilation in C3, C4 and CAM plants are introduced and three types of C4 pathways which have high photosynthetic performance and have evolved as CO2 pumps are briefly summarized. Then (i) the improvement of photosynthetic carbon assimilation of C3 plants by transgenic engineering using non-C4 genes, and (ii) the overexpression of individual or multiple C4 cycle photosynthetic genes (PEPC, PPDK, PCK, NADP-ME and NADP-MDH) in transgenic C3 plants (e.g. tobacco, potato, rice and Arabidopsis) are highlighted. Some transgenic C3 plants (e.g. tobacco, rice and Arabidopsis) overexpressing the FBP/SBPase, ictB and cytochrome c6 genes showed positive effects on photosynthetic efficiency and growth characteristics. However, over the last 28 years, efforts to overexpress individual, double or multiple C4 enzymes in C3 plants like tobacco, potato, rice, and Arabidopsis have produced mixed results that do not confirm or eliminate the possibility of improving photosynthesis of C3 plants by this approach. Finally, a prospect

  6. Neural pathway for aggressive display in Betta splendens: midbrain and hindbrain control of gill-cover erection behavior.

    PubMed

    Gorlick, D L

    1990-01-01

    Horseradish peroxidase (HRP) was used to identify parts of the presumptive neural pathway for gill cover erection, a behavioral display pattern performed by Siamese fighting fish (Betta splendens) during aggressive interactions. Motor, motor integration and sensory areas were identified in the medulla and mesencephalon. Motor neurons of the dilator operculi muscle, the effector muscle for gill cover erection, are located in the lateral and medial parts of the caudal trigeminal motor nucleus. Iontophoretic injections of HRP into the lateral trigeminal motor nucleus resulted in labeled cell bodies in two motor areas (medial part of the trigeminal motor nucleus, anterior part of the motor nucleus of cranial nerve IX-X), two parts of the reticular formation (medial and inferior reticular areas), and two nuclei of the octavolateralis system (nucleus medialis, magnocellular octaval nucleus). The HRP injections in the medial part of the caudal trigeminal motor nucleus resulted in labeled cells in the lateral part of the nucleus and in the medial reticular nucleus. Discrete injections of HRP into nucleus medialis revealed a strong axonal projection that terminated in the torus semicircularis. The medial reticular area and both of the octavolateralis nuclei received projections from their contralateral counterparts. Connections between motor areas, and between parts of the reticular formation, may coordinate the performance of gill cover erection with other behavioral patterns used during aggressive display. Connections with the octavolateralis system may provide information on the strength of an opponent's tail beats via the lateral-line system, as well as vestibular information about the fish's own orientation during aggressive display. The organization of inputs to the trigeminal motor nucleus in Betta, a perciform fish, was found to differ from that reported in the common carp, a cypriniform fish. These differences may underlie the different behavioral capabilities of

  7. Neural pathway for aggressive display in Betta splendens: midbrain and hindbrain control of gill-cover erection behavior.

    PubMed

    Gorlick, D L

    1990-01-01

    Horseradish peroxidase (HRP) was used to identify parts of the presumptive neural pathway for gill cover erection, a behavioral display pattern performed by Siamese fighting fish (Betta splendens) during aggressive interactions. Motor, motor integration and sensory areas were identified in the medulla and mesencephalon. Motor neurons of the dilator operculi muscle, the effector muscle for gill cover erection, are located in the lateral and medial parts of the caudal trigeminal motor nucleus. Iontophoretic injections of HRP into the lateral trigeminal motor nucleus resulted in labeled cell bodies in two motor areas (medial part of the trigeminal motor nucleus, anterior part of the motor nucleus of cranial nerve IX-X), two parts of the reticular formation (medial and inferior reticular areas), and two nuclei of the octavolateralis system (nucleus medialis, magnocellular octaval nucleus). The HRP injections in the medial part of the caudal trigeminal motor nucleus resulted in labeled cells in the lateral part of the nucleus and in the medial reticular nucleus. Discrete injections of HRP into nucleus medialis revealed a strong axonal projection that terminated in the torus semicircularis. The medial reticular area and both of the octavolateralis nuclei received projections from their contralateral counterparts. Connections between motor areas, and between parts of the reticular formation, may coordinate the performance of gill cover erection with other behavioral patterns used during aggressive display. Connections with the octavolateralis system may provide information on the strength of an opponent's tail beats via the lateral-line system, as well as vestibular information about the fish's own orientation during aggressive display. The organization of inputs to the trigeminal motor nucleus in Betta, a perciform fish, was found to differ from that reported in the common carp, a cypriniform fish. These differences may underlie the different behavioral capabilities of

  8. Lignin engineering through laccase modification: a promising field for energy plant improvement.

    PubMed

    Wang, Jinhui; Feng, Juanjuan; Jia, Weitao; Chang, Sandra; Li, Shizhong; Li, Yinxin

    2015-01-01

    Laccase (p-diphenol:dioxygen oxidoreductase, EC 1.10.3.2) is a member of the multicopper oxidases and catalyzes the one-electron oxidation of a wide range of substrates, coupled with the reduction of oxygen to water. It is widely distributed in bacteria, fungi, plants and insects. Laccases are encoded by multigene family, and have been characterized mostly from fungi till now, with abundant industrial applications in pulp and paper, textile, food industries, organic synthesis, bioremediation and nanobiotechnology, while limited researches have been performed in plants, and no application has been reported. Plant laccases share the common molecular architecture and reaction mechanism with fungal ones, despite of difference in redox potential and pH optima. Plant laccases are implicated in lignin biosynthesis since genetic evidence was derived from the Arabidopsis LAC4 and LAC17. Manipulation of plant laccases has been considered as a promising and innovative strategy in plant biomass engineering for desirable lignin content and/or composition, since lignin is the major recalcitrant component to saccharification in biofuel production from lignocellulose, and therefore directly limits the fermentation yields. Moreover, plant laccases have been reported to be involved in wound healing, maintenance of cell wall structure and integrity, and plant responses to environmental stresses. Here, we summarize the properties and functions of plant laccase, and discuss the potential of biotechnological application, thus providing a new insight into plant laccase, an old enzyme with a promising beginning in lignocellulose biofuel production. PMID:26379777

  9. Improvement on the thermal stability and activity of plant cytosolic ascorbate peroxidase 1 by tailing hyper-acidic fusion partners.

    PubMed

    Zhang, Mengru; Gong, Ming; Yang, Yumei; Li, Xujuan; Wang, Haibo; Zou, Zhurong

    2015-04-01

    Cytosolic ascorbate peroxidase 1 (APX1) plays a crucial role in regulating the level of plant cellular reactive oxygen species and its thermolability is proposed to cause plant heat-susceptibility. Herein, several hyper-acidic fusion partners, such as the C-terminal peptide tails, were evaluated for their effects on the thermal stability and activity of APX1 from Jatropha curcas and Arabidopsis. The hyper-acidic fusion partners efficiently improved the thermostability and prevented thermal inactivation of APX1 in both plant species with an elevated heat tolerance of at least 2 °C. These hyper-acidified thermostable APX1 fusion variants are of considerable biotechnological potential and can provide a new route to enhance the heat tolerance of plant species especially of inherent thermo-sensitivity.

  10. An examination of heat rate improvements due to waste heat integration in an oxycombustion pulverized coal power plant

    NASA Astrophysics Data System (ADS)

    Charles, Joshua M.

    Oxyfuel, or oxycombustion, technology has been proposed as one carbon capture technology for coal-fired power plants. An oxycombustion plant would fire coal in an oxidizer consisting primarily of CO2, oxygen, and water vapor. Flue gas with high CO2 concentrations is produced and can be compressed for sequestration. Since this compression generates large amounts of heat, it was theorized that this heat could be utilized elsewhere in the plant. Process models of the oxycombustion boiler, steam cycle, and compressors were created in ASPEN Plus and Excel to test this hypothesis. Using these models, heat from compression stages was integrated to the flue gas recirculation heater, feedwater heaters, and to a fluidized bed coal dryer. All possible combinations of these heat sinks were examined, with improvements in coal flow rate, Qcoal, net power, and unit heat rate being noted. These improvements would help offset the large efficiency impacts inherent to oxycombustion technology.

  11. The effects of cyproterone acetate on sleeping and waking penile erections in pedophiles: possible implications for treatment.

    PubMed

    Cooper, A J; Cernovovsky, Z

    1992-02-01

    This study reports the short term effects in five pedophiles of the antiandrogenic drug cyproterone acetate (CPA) on nocturnal penile tumescence (NPT); penile responses to erotic stimuli in the laboratory; and sex hormones (testosterone, LH, FSH and prolactin). During the administration of CPA, NPT, laboratory arousal and hormone measures (except prolactin) all decreased. Waking laboratory measures were influenced less and were more variable (one subject showed greater arousal) than NPT measures. The changes in NPT closely paralleled the reduction in testosterone. The results are discussed with reference to the known psycho-neuroendocrinology of sleeping and waking erections.

  12. Advanced regulatory control and coordinated plant-wide control strategies for IGCC targeted towards improving power ramp-rates

    SciTech Connect

    Mahapatra, P.; Zitney, S.

    2012-01-01

    As part of ongoing R&D activities at the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training & Research (AVESTAR™) Center, this paper highlights strategies for enhancing low-level regulatory control and system-wide coordinated control strategies implemented in a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with carbon capture. The underlying IGCC plant dynamic model contains 20 major process areas, each of which is tightly integrated with the rest of the power plant, making individual functionally-independent processes prone to routine disturbances. Single-loop feedback control although adequate to meet the primary control objective for most processes, does not take into account in advance the effect of these disturbances, making the entire power plant undergo large offshoots and/or oscillations before the feedback action has an opportunity to impact control performance. In this paper, controller enhancements ranging from retuning feedback control loops, multiplicative feed-forward control and other control techniques such as split-range control, feedback trim and dynamic compensation, applicable on various subsections of the integrated IGCC plant, have been highlighted and improvements in control responses have been given. Compared to using classical feedback-based control structure, the enhanced IGCC regulatory control architecture reduces plant settling time and peak offshoots, achieves faster disturbance rejection, and promotes higher power ramp-rates. In addition, improvements in IGCC coordinated plant-wide control strategies for “Gasifier-Lead”, “GT-Lead” and “Plantwide” operation modes have been proposed and their responses compared. The paper is concluded with a brief discussion on the potential IGCC controller improvements resulting from using advanced process control, including model predictive control (MPC), as a supervisory control layer.

  13. ß-amylase1 mutant Arabidopsis plants show improved drought tolerance due to reduced starch breakdown in guard cells.

    PubMed

    Prasch, Christian Maximilian; Ott, Kirsten Verena; Bauer, Hubert; Ache, Peter; Hedrich, Rainer; Sonnewald, Uwe

    2015-09-01

    In plants, drought stress is a major growth limiting factor causing cell water loss through open stomata. In this study, guard cell-specific transcripts from drought-stressed Arabidopsis plants were analysed and a down-regulation of β-amylase 1 (BAM1) was found. In previous studies, BAM1 was shown to be involved in stomatal starch degradation under ambient conditions. Impaired starch breakdown of bam1 mutant plants was accompanied by decreased stomatal opening. Here, it is shown that drought tolerance of bam1 mutant plants is improved as compared with wild-type controls. Microarray analysis of stomata-specific transcripts from bam1 mutant plants revealed a significant down-regulation of genes encoding aquaporins, auxin- and ethylene-responsive factors, and cell-wall modifying enzymes. This expression pattern suggests that reduced water uptake and limited cell wall extension are associated with the closed state of stomata of bam1 mutant plants. Together these data suggest that regulation of stomata-specific starch turnover is important for adapting stomata opening to environmental needs and its breeding manipulation may result in drought tolerant crop plants.

  14. Optimisation of Noosa BNR plant to improve performance and reduce operating costs.

    PubMed

    Thomas, M; Wright, P; Blackall, L; Urbain, V; Keller, J

    2003-01-01

    Noosa WWTP is publicly owned and privately operated by Australian Water Services. The process includes primary sedimentation, raw sludge fermentation, biological nutrient removal (BNR), sand filtration and ultraviolet (UV) disinfection. An innovative feature of the plant is the supplementary carbon dosing facility to avoid the use of metal salts (alum or ferric) for phosphorus removal. The average flow treated during 2000 was 9.0 ML/d. The annual 50 percentile effluent quality requirements for nutrients are total N < 5 mg/L and total P < 1 mg/L. The objectives of this project were to: determine the cause of variability in phosphorus removal; develop a strategy to control the variability in phosphorus removal; and minimise the operating cost of supplementary carbon dosing while achieving the effluent quality requirements. An investigation of chemical and microbiological parameters was implemented and it was concluded that there were several factors causing variability in phosphorus removal, rather than a single cause. The following four major causes were identified, and the control strategies that were adopted resulted in the plant achieving annual 50 percentile effluent total P = 0.37 mg/L and total N = 3.0 mg/L during 2001. First, phosphorus removal was limited by the available VFA supply due to consumption of VFA by other organisms competing with phosphate accumulating organisms (PAO), and due to diurnal variations in the sewage VFA and phosphate concentrations. Therefore, supplementary carbon dosing was essential to make allowance for competing reactions. Second, increasing the fermenter VFA yield via supplementary carbon dosing with molasses was found to be an effective and economic way of ensuring reliable phosphorus removal. Third, nitrate in the RAS resulted in consumption of VFA by denitrifying bacteria, particularly with process configurations where the RAS was recycled directly into the anaerobic zone. Incorporating a RAS denitrification zone into the

  15. Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti.

    PubMed

    Bianco, Carmen; Defez, Roberto

    2010-07-01

    Nitrogen (N) and phosphorus (P) are the most limiting factors for plant growth. Some microorganisms improve the uptake and availability of N and P, minimizing chemical fertilizer dependence. It has been published that the RD64 strain, a Sinorhizobium meliloti 1021 strain engineered to overproduce indole-3-acetic acid (IAA), showed improved nitrogen fixation ability compared to the wild-type 1021 strain. Here, we present data showing that RD64 is also highly effective in mobilizing P from insoluble sources, such as phosphate rock (PR). Under P-limiting conditions, the higher level of P-mobilizing activity of RD64 than of the 1021 wild-type strain is connected with the upregulation of genes coding for the high-affinity P transport system, the induction of acid phosphatase activity, and the increased secretion into the growth medium of malic, succinic, and fumaric acids. Medicago truncatula plants nodulated by RD64 (Mt-RD64), when grown under P-deficient conditions, released larger amounts of another P-solubilizing organic acid, 2-hydroxyglutaric acid, than plants nodulated by the wild-type strain (Mt-1021). It has already been shown that Mt-RD64 plants exhibited higher levels of dry-weight production than Mt-1021 plants. Here, we also report that P-starved Mt-RD64 plants show significant increases in both shoot and root fresh weights when compared to P-starved Mt-1021 plants. We discuss how, in a Rhizobium-legume model system, a balanced interplay of different factors linked to bacterial IAA overproduction rather than IAA production per se stimulates plant growth under stressful environmental conditions and, in particular, under P starvation. PMID:20511434

  16. Energy saving on wastewater treatment plants through improved online control: case study wastewater treatment plant Antwerp-South.

    PubMed

    De Gussem, Kris; Fenu, Alessio; Wambecq, Tom; Weemaes, Marjoleine

    2014-01-01

    This work provides a case study on how activated sludge modelling and computational fluid dynamics (CFD) can help to optimize the energy consumption of a treatment plant that is already equipped with an advanced control based on online nutrient measurements. Currently, aeration basins on wastewater treatment plant Antwerp-South are operated sequentially while flow direction and point of inflow and outflow vary as a function of time. Activated sludge modelling shows that switching from the existing alternating flow based control to a simultaneous parallel feeding of all aeration tanks saves 1.3% energy. CFD calculations also illustrate that the water velocity is still sufficient if some impellers in the aeration basins are shutdown. The simulations of the Activated Sludge Model No. 2d indicate that the coupling of the aeration control with the impeller control, and automatically switching off some impellers when the aeration is inactive, can save 2.2 to 3.3% of energy without affecting the nutrient removal efficiency. On the other hand, all impellers are needed when the aeration is active to distribute the oxygen.

  17. Configuration management manual as a tool for improving plant change controls

    SciTech Connect

    Craig, L.L. )

    1991-01-01

    Early vintage plants, such as Turkey Point at Florida Power and Light (FP and L) Company, were not provided with as much design documentation as later plants. At FP and L, programs were initiated to reconstruct the design bases, correct and update drawings at Turkey Point, and develop an overall configuration management program for both Turkey Point and St. Lucie plants. This paper discusses the Configuration Management Manual developed by plant and engineering personnel, which is used to train personnel to a common language and achieve better understanding of individual impact on configuration management.

  18. Rohm and Haas: Furnace Replacement Project Saves Energy and Improves Production at a Chemical Plant

    SciTech Connect

    Not Available

    2006-02-01

    This DOE Industrial Technologies Program spotlight describes how Rohm and Haas's Deer Park, Texas, chemical plant reduced natural gas usage and energy costs by replacing inefficient furnace equipment.

  19. Improved growth, productivity and quality of tomato (Solanum lycopersicum L.) plants through application of shikimic acid

    PubMed Central

    Al-Amri, Salem M.

    2013-01-01

    A field experiment was conducted to investigate the effect of seed presoaking of shikimic acid (30, 60 and 120 ppm) on growth parameters, fruit productivity and quality, transpiration rate, photosynthetic pigments and some mineral nutrition contents of tomato plants. Shikimic acid at all concentrations significantly increased fresh and dry weights, fruit number, average fresh and dry fruit yield, vitamin C, lycopene, carotenoid contents, total acidity and fruit total soluble sugars of tomato plants when compared to control plants. Seed pretreatment with shikimic acid at various doses induces a significant increase in total leaf conductivity, transpiration rate and photosynthetic pigments (Chl. a, chl. b and carotenoids) of tomato plants. Furthermore, shikimic acid at various doses applied significantly increased the concentration of nitrogen, phosphorus and potassium in tomato leaves as compared to control non-treated tomato plants. Among all doses of shikimic acid treatment, it was found that 60 ppm treatment caused a marked increase in growth, fruit productivity and quality and most studied parameters of tomato plants when compared to other treatments. On the other hand, no significant differences were observed in total photosynthetic pigments, concentrations of nitrogen and potassium in leaves of tomato plants treated with 30 ppm of shikimic acid and control plants. According to these results, it could be suggested that shikimic acid used for seed soaking could be used for increasing growth, fruit productivity and quality of tomato plants growing under field conditions. PMID:24235870

  20. Improvement of the growth and yield of lettuce plants by non-uniform magnetic fields.

    PubMed

    De Souza, Angel; Sueiro, Lilita; González, Luis Manuel; Licea, Luis; Porras, Elia Porras; Gilart, Fidel

    2008-01-01

    Influence of pre-sowing magnetic treatments on plant growth and final yield of lettuce (cv. Black Seeded Simpson) were studied under organoponic conditions. Lettuce seeds were exposed to full-wave rectified sinusoidal non uniform magnetic fields (MFs) induced by an electromagnet at 120 mT (rms) for 3 min, 160 mT (rms) for 1 min, and 160 mT (rms) for 5 min. Non treated seeds were considered as controls. Plants were grown in experimental stonemasons (25.2 m(2)) of an organoponic and cultivated according to standard agricultural practices. During nursery and vegetative growth stages, samples were collected at regular intervals for growth analyses. At physiological maturity, the plants were harvested from each stonemason and the final yield and yield parameters were determined. In the nursery stage, the magnetic treatments induced a significant increase of root length and shoot height in plants derived from magnetically treated seeds. In the vegetative stage, the relative growth rates of plants derived from magnetically exposed seeds were greater than those shown by the control plants. At maturity stage, all magnetic treatments increased significantly (p < 0.05)--plant height, leaf area per plant, final yield per area, and fresh mass per plant--in comparison with the controls. Pre-sowing magnetic treatments would enhance the growth and final yield of lettuce crop. PMID:18568935

  1. Erection capability is potentiated by long-term sildenafil treatment: role of blood flow-induced endothelial nitric-oxide synthase phosphorylation.

    PubMed

    Musicki, Biljana; Champion, Hunter C; Becker, Robyn E; Liu, Tongyun; Kramer, Melissa F; Burnett, Arthur L

    2005-07-01

    Despite demonstrated clinical efficacy of sildenafil for the temporary treatment of erectile dysfunction, the possibility that sildenafil used long-term durably augments erectile ability remains unclear. We investigated whether continuous long-term administration of sildenafil at clinically relevant levels to aged rats "primes" the penis for improved erectile ability and involves nitric oxide (NO) or RhoA/Rho-kinase signaling pathways. In aged, but not young rats, sildenafil prolonged erection and increased the protein expressions of phosphorylated endothelial NO synthase (eNOS) at serine-1177 and phosphorylated Akt at serine-473 in penes. Only in the young rat penis, protein expressions of phosphodiesterase-5 and phosphomyosin phosphatase target subunit 1, a marker of Rho-kinase activity, were increased by sildenafil. Sildenafil inhibited phosphodiesterase-5 activity in penes of young and aged rats coincident with assayed free plasma levels of the drug equivalent to clinically therapeutic measurements. We conclude that erectile ability can be enhanced under preconditions of erectile impairment by long-term inhibition of phosphodiesterase-5 and that the effect is mediated by Akt-dependent eNOS phosphorylation. The lack of erectile ability enhancement in young rats by long-term phosphodiesterase-5 inhibition may relate to restrained NO signaling by phosphodiesterase-5 up-regulation, lack of incremental Akt and eNOS phosphorylation, and heightened Rho-kinase signaling in the penis. PMID:15851653

  2. Improvement of plant growth and seed yield in Jatropha curcas by a novel nitrogen-fixing root associated Enterobacter species

    PubMed Central

    2013-01-01

    Background Jatropha curcas L. is an oil seed producing non-leguminous tropical shrub that has good potential to be a fuel plant that can be cultivated on marginal land. Due to the low nutrient content of the targeted plantation area, the requirement for fertilizer is expected to be higher than other plants. This factor severely affects the commercial viability of J. curcas. Results We explored the feasibility to use endophytic nitrogen-fixing bacteria that are native to J. curcas to improve plant growth, biomass and seed productivity. We demonstrated that a novel N-fixing endophyte, Enterobacter sp. R4-368, was able to colonize in root and stem tissues and significantly promoted early plant growth and seed productivity of J. curcas in sterilized and non-sterilized soil. Inoculation of young seedling led to an approximately 57.2% increase in seedling vigour over a six week period. At 90 days after planting, inoculated plants showed an average increase of 25.3%, 77.7%, 27.5%, 45.8% in plant height, leaf number, chlorophyll content and stem volume, respectively. Notably, inoculation of the strain led to a 49.0% increase in the average seed number per plant and 20% increase in the average single seed weight when plants were maintained for 1.5 years in non-sterilized soil in pots in the open air. Enterobacter sp. R4-368 cells were able to colonize root tissues and moved systemically to stem tissues. However, no bacteria were found in leaves. Promotion of plant growth and leaf nitrogen content by the strain was partially lost in nifH, nifD, nifK knockout mutants, suggesting the presence of other growth promoting factors that are associated with this bacterium strain. Conclusion Our results showed that Enterobacter sp. R4-368 significantly promoted growth and seed yield of J. curcas. The application of the strains is likely to significantly improve the commercial viability of J. curcas due to the reduced fertilizer cost and improved oil yield. PMID:24083555

  3. Microcystin-tolerant Rhizobium protects plants and improves nitrogen assimilation in Vicia faba irrigated with microcystin-containing waters.

    PubMed

    Lahrouni, Majida; Oufdou, Khalid; El Khalloufi, Fatima; Benidire, Loubna; Albert, Susann; Göttfert, Michael; Caviedes, Miguel A; Rodriguez-Llorente, Ignacio D; Oudra, Brahim; Pajuelo, Eloísa

    2016-05-01

    Irrigation of crops with microcystins (MCs)-containing waters-due to cyanobacterial blooms-affects plant productivity and could be a way for these potent toxins entering the food chain. This study was performed to establish whether MC-tolerant rhizobia could benefit growth, nodulation, and nitrogen metabolism of faba bean plants irrigated with MC-containing waters. For that, three different rhizobial strains-with different sensitivity toward MCs-were used: RhOF96 (most MC-sensitive strain), RhOF125 (most MC-tolerant strain), or Vicz1.1 (reference strain). As a control, plants grown without rhizobia and fertilized by NH4NO3 were included in the study. MC exposure decreased roots (30-37 %) and shoots (up to 15 %) dry weights in un-inoculated plants, whereas inoculation with rhizobia protects plants toward the toxic effects of MCs. Nodulation and nitrogen content were significantly impaired by MCs, with the exception of plants inoculated with the most tolerant strain RhOF125. In order to deep into the effect of inoculation on nitrogen metabolism, the nitrogen assimilatory enzymes (glutamine synthetase (GS) and glutamate synthase (GOGAT)) were investigated: Fertilized plants showed decreased levels (15-30 %) of these enzymes, both in shoots and roots. By contrast, inoculated plants retained the levels of these enzymes in shoots and roots, as well as the levels of NADH-GOGAT activity in nodules. We conclude that the microcystin-tolerant Rhizobium protects faba bean plants and improves nitrogen assimilation when grown in the presence of MCs. PMID:26865488

  4. [Phylo- and ontogenetic aspects of erect posture and walking in developmental neurology].

    PubMed

    Berényi, Marianne; Katona, Ferenc; Sanchez, Carmen; Mandujano, Mario

    2011-07-30

    The group or profile of elementary neuromotor patterns is different from the primitive reflex group which is now called the "primitive reflex profile." All these elementary neuromotor patterns are characterized by a high degree of organization, persistence, and stereotypy. In many regards, these patterns are predecessors or precursors of from them the specific human motor patterns which appear spontaneously later as crawling, creeping, sitting, and walking with erect posture. On the basis of our experiences it can be stated that the elementary neuromotor patterns can be activated in all neonates and young infants as congenital motor functions. With regards to their main properties and functional forms, the normal patterns can be divided into two main groups: (1) One group is characterized by lifting of the head and complex chains of movements which are directed to the verticalization of the body; (2) The other group is characterized by complex movements directed to locomotion and change of body position. The neuromotor patterns can be activated by placing the human infant in specific body positions that trigger the vestibulospinal and the reticulospinal systems, the archicerebellum and the basal gangliae. Most of these systems display early myelinisation and are functioning very soon. Many of the elementary neuromotor patterns reflect the most important - spontaneously developing forms of human movements such as sitting upright in space and head elevation crawling and walking. The majority of the human neuromotor patterns are human specific. When the infant is put in an activating position, crawling, sitting up, and walking begin and last as long as the activating position is maintained. Each elementary neuromotor pattern is a repeated, continuous train of complex movements in response to a special activating position. The brainstem is not sufficient to organize these complex movements, the integrity of the basal ganglia is also necessary. Elementary sensorimotor

  5. [Phylo- and ontogenetic aspects of erect posture and walking in developmental neurology].

    PubMed

    Berényi, Marianne; Katona, Ferenc; Sanchez, Carmen; Mandujano, Mario

    2011-07-30

    The group or profile of elementary neuromotor patterns is different from the primitive reflex group which is now called the "primitive reflex profile." All these elementary neuromotor patterns are characterized by a high degree of organization, persistence, and stereotypy. In many regards, these patterns are predecessors or precursors of from them the specific human motor patterns which appear spontaneously later as crawling, creeping, sitting, and walking with erect posture. On the basis of our experiences it can be stated that the elementary neuromotor patterns can be activated in all neonates and young infants as congenital motor functions. With regards to their main properties and functional forms, the normal patterns can be divided into two main groups: (1) One group is characterized by lifting of the head and complex chains of movements which are directed to the verticalization of the body; (2) The other group is characterized by complex movements directed to locomotion and change of body position. The neuromotor patterns can be activated by placing the human infant in specific body positions that trigger the vestibulospinal and the reticulospinal systems, the archicerebellum and the basal gangliae. Most of these systems display early myelinisation and are functioning very soon. Many of the elementary neuromotor patterns reflect the most important - spontaneously developing forms of human movements such as sitting upright in space and head elevation crawling and walking. The majority of the human neuromotor patterns are human specific. When the infant is put in an activating position, crawling, sitting up, and walking begin and last as long as the activating position is maintained. Each elementary neuromotor pattern is a repeated, continuous train of complex movements in response to a special activating position. The brainstem is not sufficient to organize these complex movements, the integrity of the basal ganglia is also necessary. Elementary sensorimotor

  6. 25 CFR 91.8 - Sale or mortgage of improvements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Sale or mortgage of improvements. 91.8 Section 91.8... VILLAGES, OSAGE RESERVATION, OKLAHOMA § 91.8 Sale or mortgage of improvements. No improvements located... erection of new improvements. Such mortgages shall be made with acceptable lending agencies and shall...

  7. A New and Improved Carbon Dioxide Isotope Analyzer for Understanding Soil-Plant-Atmosphere Interactions

    NASA Astrophysics Data System (ADS)

    Huang, Y. W.; Berman, E. S.; Owano, T. G.; Verfaillie, J. G.; Oikawa, P. Y.; Baldocchi, D. D.; Still, C. J.; Gardner, A.; Baer, D. S.; Rastogi, B.

    2015-12-01

    Stable CO2 isotopes provide information on biogeochemical processes that occur at the soil-plant-atmosphere interface. While δ13C measurement can provide information on the sources of the CO2, be it photosynthesis, natural gas combustion, other fossil fuel sources, landfills or other sources, δ18O, and δ17O are thought to be determined by the hydrological cycling of the CO2. Though researchers have called for analytical tools for CO2 isotope measurements that are reliable and field-deployable, developing such instrument remains a challenge. The carbon dioxide isotope analyzer developed by Los Gatos Research (LGR) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This new and improved analyzer measures CO2 concentration as well as δ13C, δ18O, and δ17O from CO2 at natural abundance (150-2500 ppm). The laboratory precision is ±200 ppb (1σ) in CO2 at 1 s, with a long-term (2 min) precision of ±20 ppb. The 1-second precision for both δ13C and δ18O is 0.7 ‰, and for δ17O is 1.8 ‰. The long-term (2 min) precision for both δ13C and δ18O is 0.08 ‰, and for δ17O is 0.18 ‰. The instrument has improved precision, stability and user interface over previous LGR CO2 isotope instruments and can be easily programmed for periodic referencing and sampling from different sources when coupled with LGR's multiport inlet unit (MIU). We have deployed two of these instruments at two different field sites, one at Twitchell Island in Sacramento County, CA to monitor the CO2 isotopic fluxes from an alfalfa field from 6/29/2015-7/13/2015, and the other at the Wind River Experimental Forest in Washington to monitor primarily the oxygen isotopes of CO2 within the canopy from 8/4/2015 through mid-November 2015. Methodology, laboratory development and testing and field performance are presented.

  8. Improved Performance of an Air Cooled Condenser (ACC) Using SPX Wind Guide Technology at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2010-12-31

    This project added a new airflow enhancement technology to an existing ACC cooling process at a selected coal power plant. Airflow parameters and efficiency improvement for the main plant cooling process using the applied technology were determined and compared with the capabilities of existing systems. The project required significant planning and pre-test execution in order to reach the required Air Cooled Condenser system configuration for evaluation. A host Power Plant ACC system had to be identified, agreement finalized, and addition of the SPX ACC Wind Guide Technology completed on that site. Design of the modification, along with procurement, fabrication, instrumentation, and installation of the new airflow enhancement technology were executed. Baseline and post-modification cooling system data was collected and evaluated. The improvement of ACC thermal performance after SPX wind guide installation was clear. Testing of the improvement indicates there is a 5% improvement in heat transfer coefficient in high wind conditions and 1% improvement at low wind speed. The benefit increased with increasing wind speed. This project was completed on schedule and within budget.

  9. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity

    PubMed Central

    2014-01-01

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers. PMID:24885352

  10. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity.

    PubMed

    Bhardwaj, Deepak; Ansari, Mohammad Wahid; Sahoo, Ranjan Kumar; Tuteja, Narendra

    2014-05-08

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers.

  11. Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions

    PubMed Central

    Yanagisawa, Shuichi; Akiyama, Ai; Kisaka, Hiroaki; Uchimiya, Hirofumi; Miwa, Tetuya

    2004-01-01

    Utilization of transcription factors might be a powerful approach to modification of metabolism for a generation of crops having superior characteristics because a single transcription factor frequently regulates coordinated expression of a set of key genes for respective pathways. Here, we apply the plant-specific Dof1 transcription factor to improve nitrogen assimilation, the essential metabolism including the primary assimilation of ammonia to carbon skeletons to biosynthesize amino acids and other organic compounds involving nitrogen in plants. Expressing Dof1 induced the up-regulation of genes encoding enzymes for carbon skeleton production, a marked increase of amino acid contents, and a reduction of the glucose level in transgenic Arabidopsis. The results suggest cooperative modification of carbon and nitrogen metabolisms on the basis of their intimate link. Furthermore, elementary analysis revealed that the nitrogen content increased in the Dof1 transgenic plants (≈30%), indicating promotion of net nitrogen assimilation. Most significantly, the Dof1 transgenic plants exhibit improved growth under low-nitrogen conditions, an agronomically important trait. These results highlight the great utility of transcription factors in engineering metabolism in plants. PMID:15136740

  12. Paramagnetic cellulose DNA isolation improves DNA yield and quality among diverse plant taxa1

    PubMed Central

    Moeller, Jackson R.; Moehn, Nicholas R.; Waller, Donald M.; Givnish, Thomas J.

    2014-01-01

    • Premise of the study: The chemical diversity of land plants ensures that no single DNA isolation method results in high yield and purity with little effort for all species. Here we evaluate a new technique originally developed for forensic science, based on MagnaCel paramagnetic cellulose particles (PMC), to determine its efficacy in extracting DNA from 25 plant species representing 21 families and 15 orders. • Methods and Results: Yield and purity of DNA isolated by PMC, DNeasy Plant Mini Kit (silica column), and cetyltrimethylammonium bromide (CTAB) methods were compared among four individuals for each of 25 plant species. PMC gave a twofold advantage in average yield, and the relative advantage of the PMC method was greatest for samples with the lowest DNA yields. PMC also produced more consistent sample purity based on absorbance ratios at 260:280 and 260:230 nm. • Conclusions: PMC technology is a promising alternative for plant DNA isolation. PMID:25309836

  13. Changes in operational procedures to improve spaceflight experiments in plant biology in the European Modular Cultivation System

    NASA Astrophysics Data System (ADS)

    Kiss, John Z.; Aanes, Gjert; Schiefloe, Mona; Coelho, Liz H. F.; Millar, Katherine D. L.; Edelmann, Richard E.

    2014-03-01

    The microgravity environment aboard orbiting spacecraft has provided a unique laboratory to explore topics in basic plant biology as well as applied research on the use of plants in bioregenerative life support systems. Our group has utilized the European Modular Cultivation System (EMCS) aboard the International Space Station (ISS) to study plant growth, development, tropisms, and gene expression in a series of spaceflight experiments. The most current project performed on the ISS was termed Seedling Growth-1 (SG-1) which builds on the previous TROPI (for tropisms) experiments performed in 2006 and 2010. Major technical and operational changes in SG-1 (launched in March 2013) compared to the TROPI experiments include: (1) improvements in lighting conditions within the EMCS to optimize the environment for phototropism studies, (2) the use of infrared illumination to provide high-quality images of the seedlings, (3) modifications in procedures used in flight to improve the focus and overall quality of the images, and (4) changes in the atmospheric conditions in the EMCS incubator. In SG-1, a novel red-light-based phototropism in roots and hypocotyls of seedlings that was noted in TROPI was confirmed and now can be more precisely characterized based on the improvements in procedures. The lessons learned from sequential experiments in the TROPI hardware provide insights to other researchers developing space experiments in plant biology.

  14. The pericyte as a cellular regulator of penile erection and a novel therapeutic target for erectile dysfunction.

    PubMed

    Yin, Guo Nan; Das, Nando Dulal; Choi, Min Ji; Song, Kang-Moon; Kwon, Mi-Hye; Ock, Jiyeon; Limanjaya, Anita; Ghatak, Kalyan; Kim, Woo Jean; Hyun, Jae Seog; Koh, Gou Young; Ryu, Ji-Kan; Suh, Jun-Kyu

    2015-06-05

    Pericytes are known to play critical roles in vascular development and homeostasis. However, the distribution of cavernous pericytes and their roles in penile erection is unclear. Herein we report that the pericytes are abundantly distributed in microvessels of the subtunical area and dorsal nerve bundle of mice, followed by dorsal vein and cavernous sinusoids. We further confirmed the presence of pericytes in human corpus cavernosum tissue and successfully isolated pericytes from mouse penis. Cavernous pericyte contents from diabetic mice and tube formation of cultured pericytes in high glucose condition were greatly reduced compared with those in normal conditions. Suppression of pericyte function with anti-PDGFR-β blocking antibody deteriorated erectile function and tube formation in vivo and in vitro diabetic condition. In contrast, enhanced pericyte function with HGF protein restored cavernous pericyte content in diabetic mice, and significantly decreased cavernous permeability in diabetic mice and in pericytes-endothelial cell co-culture system, which induced significant recovery of erectile function. Overall, these findings showed the presence and distribution of pericytes in the penis of normal or pathologic condition and documented their role in the regulation of cavernous permeability and penile erection, which ultimately explore novel therapeutics of erectile dysfunction targeting pericyte function.

  15. Designer labels for plant metabolism: statistical design of isotope labeling experiments for improved quantification of flux in complex plant metabolic networks.

    PubMed

    Nargund, Shilpa; Sriram, Ganesh

    2013-01-27

    Metabolic fluxes are powerful indicators of cell physiology and can be estimated by isotope-assisted metabolic flux analysis (MFA). The complexity of the compartmented metabolic networks of plants has constrained the application of isotope-assisted MFA to them, principally because of poor identifiability of fluxes from the measured isotope labeling patterns. However, flux identifiability can be significantly improved by a priori design of isotope labeling experiments (ILEs). This computational design involves evaluating the effect of different isotope label and isotopomer measurement combinations on flux identifiability, and thereby identifying optimal labels and measurements toward evaluating the fluxes of interest with the highest confidence. This article reports ILE designs for two major, compartmented plant metabolic pathways - the pentose phosphate pathway (PPP) and γ-aminobutyric acid (GABA) shunt. Together, these pathways represent common motifs in plant metabolism including duplication of pathways in different subcellular compartments, reversible reactions and cyclic carbon flow. To compare various ILE designs, we employed statistical A- and D-optimality criteria. Our computations showed that 1,2-(13)C Glc is a powerful and robust label for the plant PPPs, given currently popular isotopomer measurement techniques (single quadrupole mass spectrometry [MS] and 2-D nuclear magnetic resonance [NMR]). Further analysis revealed that this label can estimate several PPP fluxes better than the popular label 1-(13)C Glc. Furthermore, the concurrent measurement of the isotopomers of hexose and pentose moieties synthesized exclusively in the cytosol or the plastid compartments (measurable through intracellular glucose or sucrose, starch, RNA ribose and histidine) considerably improves the identifiability of PPP fluxes in the individual compartments. Additionally, MS-derived isotopomer measurements outperform NMR-derived measurements in identifying PPP fluxes. The

  16. The interrelationship between environmental goals, productivity improvement, and increased energy efficiency in integrated paper and steel plants

    SciTech Connect

    1997-06-01

    This report presents the results of an investigation into the interrelationships between plant-level productivity, energy efficiency, and environmental improvements for integrated pulp and paper mills and integrated steel mills in the US. Integrated paper and steel plants are defined as those facilities that use some form of onsite raw material to produce final products (for example, paper and paperboard or finished steel). Fully integrated pulp and paper mills produce onsite the pulp used to manufacture paper from virgin wood fiber, secondary fiber, or nonwood fiber. Fully integrated steel mills process steel from coal, iron ore, and scrap inputs and have onsite coke oven facilities.

  17. LysM receptor-like kinases to improve plant defense response against fungal pathogens

    DOEpatents

    Wan, Jinrong; Stacey, Gary; Stacey, Minviluz; Zhang, Xuecheng

    2013-10-15

    Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.

  18. LysM receptor-like kinases to improve plant defense response against fungal pathogens

    DOEpatents

    Wan, Jinrong; Stacey, Gary; Stacey, Minviluz; Zhang, Xuecheng

    2012-01-17

    Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.

  19. Improving Energy Efficiency at U.S. Plastics Manufacturing Plants: Summary Report and Case Studies

    SciTech Connect

    Not Available

    2005-09-01

    Industrial Technologies Programs BestPractices report based on a comprehensive plant assessment project with ITP's Industrial Assessment Center, The Society of the Plastics Industry, Inc., and several of its member companies.

  20. Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects

    SciTech Connect

    Sumner, Lloyd W.; Lei, Zhentian; Nikolau, Basil J.; Saito, Kazuki

    2014-10-24

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This study highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR for metabolite identifications, and x-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.

  1. Improving Energy Efficiency at U.S. Plastics Manufacturing Plants Summary Report and Case Studies

    SciTech Connect

    none,

    2010-06-25

    Industrial Technologies Program’s BestPractices report based on a comprehensive plant assessment project with ITP’s Industrial Assessment Center, The Society of the Plastics Industry, Inc., and several of its member companies.

  2. Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects.

    PubMed

    Sumner, Lloyd W; Lei, Zhentian; Nikolau, Basil J; Saito, Kazuki

    2015-02-01

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This review covers the approximate period of 2000 to 2014, and highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR for metabolite identifications, and X-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.

  3. Rohm and Haas: Furnace Replacement Project Saves Energy and Improves Production at a Chemical Plant

    SciTech Connect

    2006-02-01

    This DOE Industrial Technologies Program spotlight describes how Rohm and Haas’s Deer Park, Texas, chemical plant reduced natural gas usage and energy costs by replacing inefficient furnace equipment.

  4. Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects

    DOE PAGES

    Sumner, Lloyd W.; Lei, Zhentian; Nikolau, Basil J.; Saito, Kazuki

    2014-10-24

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This study highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR formore » metabolite identifications, and x-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.« less

  5. Improvement of corn stover bioconversion efficiency by using plant glycoside hydrolase.

    PubMed

    Han, Yejun; Chen, Hongzhang

    2011-04-01

    Plant cell wall is the most abundant substrate for bioethanol production, and plants also represent a key resource for glycoside hydrolase (GH). To exploit efficient way for bioethanol production with lower cellulase loading, the potential of plant GH for lignocellulose bioconversion was evaluated. The GH activity for cell wall proteins (CWPs) was detected from fresh corn stover (FCS), and the synergism of which with Trichoderma reesei cellulase was also observed. The properties for the GH of FCS make it a promising enzyme additive for lignocellulose biodegradation. To make use of the plant GH, novel technology for hydrolysis and ethanol fermentation was developed with corn stover as substrate. Taking steam-exploded corn stover as substrate for hydrolysis and ethanol fermentation, compared with T. reesei cellulase loaded alone, the final glucose and ethanol accumulation increased by 60% and 63% respectively with GH of FCS as an addition.

  6. A detailed analysis of entropy production and improvement of the thermodynamic cycle of an adsorption refrigerating plant

    NASA Astrophysics Data System (ADS)

    Okunev, B. N.; Safonov, M. S.

    2006-07-01

    A thermodynamic analysis of an adsorption refrigerating plant with closed loops for a working substance and auxiliary liquid heat carrier has been carried out in application to the adsorption pair “water-CaCl2 impregnated into the pores of a silica gel.” Using the obtained periodic solutions of the system of energy-balance equations for the heat carrier and the sorbent layer, the most thermodynamically effective modes of operation of the refrigerating plant have been determined as functions of governing parameters. The entropy production in various modules of the plant is calculated, and the main sources of entropy generation are revealed. This made it possible to suggest an improved scheme of an adsorption refrigerating cycle with regenerative heat exchangers connected at the inlet and outlet from the adsorbers. The possibility of a considerable increase in the coefficient of thermodynamic efficiency in such a system has been justified.

  7. General mechanisms of drought response and their application in drought resistance improvement in plants.

    PubMed

    Fang, Yujie; Xiong, Lizhong

    2015-02-01

    Plants often encounter unfavorable environmental conditions because of their sessile lifestyle. These adverse factors greatly affect the geographic distribution of plants, as well as their growth and productivity. Drought stress is one of the premier limitations to global agricultural production due to the complexity of the water-limiting environment and changing climate. Plants have evolved a series of mechanisms at the morphological, physiological, biochemical, cellular, and molecular levels to overcome water deficit or drought stress conditions. The drought resistance of plants can be divided into four basic types-drought avoidance, drought tolerance, drought escape, and drought recovery. Various drought-related traits, including root traits, leaf traits, osmotic adjustment capabilities, water potential, ABA content, and stability of the cell membrane, have been used as indicators to evaluate the drought resistance of plants. In the last decade, scientists have investigated the genetic and molecular mechanisms of drought resistance to enhance the drought resistance of various crops, and significant progress has been made with regard to drought avoidance and drought tolerance. With increasing knowledge to comprehensively decipher the complicated mechanisms of drought resistance in model plants, it still remains an enormous challenge to develop water-saving and drought-resistant crops to cope with the water shortage and increasing demand for food production in the future. PMID:25336153

  8. Criteria for determining alternative plants to improve the resource recovery efficiency in constructed wetlands.

    PubMed

    Chiarawatchai, N; Heers, M; Otterpohl, R

    2008-01-01

    The aim of this study is to find the macrophytes that possess high resource recovery efficiency in subsurface-flow constructed wetlands (SFCWs) while not pose any negative effects to the treatment performance. Five criteria were included in this analysis. The suitable alternative plants were proposed according to their availabilities in each climate zone. For their potentials as an energy sources, they are related to plants' productivity as well as growth rate. Concerning the utilization options, plants that possess high economical value and/or versatilities were encouraged. Among the options are handicrafts, fertilizers, animal feeds, construction materials, paper making, and pharmaceutical products. In term of nutrient uptakes, in most cases they were relatively minor comparing to other removal mechanisms in SFCWs. No significant differences in term of treatment efficiency could be found. The proposed species have to be able to tolerate the municipal wastewater. The cost differences of plant propagules between each species are marginal, hence they should not be considered as the main selection criteria. Based on an investigation of 45 species worldwide, the recommendation table is developed with 13 suitable species that fit all the criteria. It appears that there are more than one "most appropriate plant species" in each climatic region. To perform the selection, the operators should weight their preferences on each criteria and the availability of plants in the area.

  9. A chimeric NST repressor has the potential to improve glucose productivity from plant cell walls.

    PubMed

    Iwase, Akira; Hideno, Akihiro; Watanabe, Keiji; Mitsuda, Nobutaka; Ohme-Takagi, Masaru

    2009-07-15

    Bioethanol might be produced more economically and with less ecological impact (with reduced exploitation of food crops) if we could increase the production of glucose from the cellulosic materials in plant cell walls. However, plant cell walls are relatively resistant to enzymatic and physicochemical hydrolysis and, therefore, it is necessary to develop methods for reducing such resistance. Changes in plant cell wall materials, by genetic engineering, that render them more easily hydrolyzable to glucose might be a valuable approach to this problem. We showed previously that, in Arabidopsis, NAC secondary wall thickening-promoting factor1 (NST1) and NST3 are key regulators of secondary wall formation. We report here that transgenic Arabidopsis plants that expressed a chimeric repressor derived from NST1 produced cell wall materials that were twice as susceptible to both enzymatic and physicochemical hydrolysis as those from wild-type plants. The yields of glucose from both fresh and dry biomass were increased in the chimeric repressor lines. Use of the NST1 chimeric repressor might enhance production of glucose from plant cell walls, by changing the nature of the cell walls themselves.

  10. Biotechnological approaches for conservation and improvement of rare and endangered plants of Saudi Arabia.

    PubMed

    Khan, Salim; Al-Qurainy, Fahad; Nadeem, Mohammad

    2012-01-01

    Genetic variation is believed to be a prerequisite for the short-and long-term survival of the plant species in their natural habitat. It depends on many environmental factors which determine the number of alleles on various loci in the genome. Therefore, it is important to understand the genetic composition and structure of the rare and endangered plant species from their natural habitat to develop successful management strategies for their conservation. However, rare and endangered plant species have low genetic diversity due to which their survival rate is decreasing in the wilds. The evaluation of genetic diversity of such species is very important for their conservation and gene manipulation. However, plant species can be conserved by in situ and in vitro methods and each has advantages and disadvantages. DNA banking can be considered as a means of complimentary method for the conservation of plant species by preserving their genomic DNA at low temperatures. Such approach of preservation of biological information provides opportunity for researchers to search novel genes and its products. Therefore, in this review we are describing some potential biotechnological approaches for the conservation and further manipulation of these rare and endangered plant species to enhance their yield and quality traits.

  11. General mechanisms of drought response and their application in drought resistance improvement in plants.

    PubMed

    Fang, Yujie; Xiong, Lizhong

    2015-02-01

    Plants often encounter unfavorable environmental conditions because of their sessile lifestyle. These adverse factors greatly affect the geographic distribution of plants, as well as their growth and productivity. Drought stress is one of the premier limitations to global agricultural production due to the complexity of the water-limiting environment and changing climate. Plants have evolved a series of mechanisms at the morphological, physiological, biochemical, cellular, and molecular levels to overcome water deficit or drought stress conditions. The drought resistance of plants can be divided into four basic types-drought avoidance, drought tolerance, drought escape, and drought recovery. Various drought-related traits, including root traits, leaf traits, osmotic adjustment capabilities, water potential, ABA content, and stability of the cell membrane, have been used as indicators to evaluate the drought resistance of plants. In the last decade, scientists have investigated the genetic and molecular mechanisms of drought resistance to enhance the drought resistance of various crops, and significant progress has been made with regard to drought avoidance and drought tolerance. With increasing knowledge to comprehensively decipher the complicated mechanisms of drought resistance in model plants, it still remains an enormous challenge to develop water-saving and drought-resistant crops to cope with the water shortage and increasing demand for food production in the future.

  12. Biotechnological approaches for conservation and improvement of rare and endangered plants of Saudi Arabia

    PubMed Central

    Khan, Salim; Al-Qurainy, Fahad; Nadeem, Mohammad

    2011-01-01

    Genetic variation is believed to be a prerequisite for the short-and long-term survival of the plant species in their natural habitat. It depends on many environmental factors which determine the number of alleles on various loci in the genome. Therefore, it is important to understand the genetic composition and structure of the rare and endangered plant species from their natural habitat to develop successful management strategies for their conservation. However, rare and endangered plant species have low genetic diversity due to which their survival rate is decreasing in the wilds. The evaluation of genetic diversity of such species is very important for their conservation and gene manipulation. However, plant species can be conserved by in situ and in vitro methods and each has advantages and disadvantages. DNA banking can be considered as a means of complimentary method for the conservation of plant species by preserving their genomic DNA at low temperatures. Such approach of preservation of biological information provides opportunity for researchers to search novel genes and its products. Therefore, in this review we are describing some potential biotechnological approaches for the conservation and further manipulation of these rare and endangered plant species to enhance their yield and quality traits. PMID:23961155

  13. Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants.

    PubMed

    Rodríguez-Salazar, Julieta; Suárez, Ramón; Caballero-Mellado, Jesús; Iturriaga, Gabriel

    2009-07-01

    Bacteria of the genus Azospirillum increase the grain yield of several grass crops. In this work the effect of inoculating maize plants with genetically engineered Azospirillum brasilense for trehalose biosynthesis was determined. Transformed bacteria with a plasmid harboring a trehalose biosynthesis gene-fusion from Saccharomyces cerevisiae were able to grow up to 0.5 M NaCl and to accumulate trehalose, whereas wild-type A. brasilense did not tolerate osmotic stress or accumulate significant levels of the disaccharide. Moreover, 85% of maize plants inoculated with transformed A. brasilense survived drought stress, in contrast with only 55% of plants inoculated with the wild-type strain. A 73% increase in biomass of maize plants inoculated with transformed A. brasilense compared with inoculation with the wild-type strain was found. In addition, there was a significant increase of leaf and root length in maize plants inoculated with transformed A. brasilense. Therefore, inoculation of maize plants with A. brasilense containing higher levels of trehalose confers drought tolerance and a significant increase in leaf and root biomass. This work opens the possibility that A. brasilense modified with a chimeric trehalose biosynthetic gene from yeast could increase the biomass, grain yield and stress tolerance in other relevant crops.

  14. Use of prolines for improving growth and other properties of plants and algae

    DOEpatents

    Unkefer, Pat J.; Knight, Thomas J.; Martinez, Rodolfo A.

    2004-12-14

    Increasing the concentration of prolines, such as 2-hydroxy-5-oxoproline, in the foliar portions of plants has been shown to cause an increase in carbon dioxide fixation, growth rate, dry weight, nutritional value (amino acids), nodulation and nitrogen fixation, photosynthetically derived chemical energy, and resistance to insect pests over the same properties for wild type plants. This can be accomplished in four ways: (1) the application of a solution of the proline directly to the foliar portions of the plant by spraying these portions; (2) applying a solution of the proline to the plant roots; (3) genetically engineering the plant and screening to produce lines that over-express glutamine synthetase in the leaves which gives rise to increased concentration of the metabolite, 2-hydroxy-5-oxoproline (this proline is also known as 2-oxoglutaramate); and (4) impairing the glutamine synthetase activity in the plant roots which causes increased glutamine synthetase activity in the leaves which gives rise to increased concentration of 2-hydroxy-5-oxoproline. Prolines have also been found to induce similar effects in algae.

  15. Use of prolines for improving growth and other properties of plants and algae

    DOEpatents

    Unkefer, Pat J.; Knight, Thomas J.; Martinez, Rodolfo A.

    2003-07-15

    Increasing the concentration of prolines, such as 2-hydroxy-5-oxoproline, in the foliar portions of plants has been shown to cause an increase in carbon dioxide fixation, growth rate, dry weight, nutritional value (amino acids), nodulation and nitrogen fixation, photosynthetically derived chemical energy, and resistance to insect pests over the same properties for wild type plants. This can be accomplished in four ways: (1) the application of a solution of the proline directly to the foliar portions of the plant by spraying these portions; (2) applying a solution of the proline to the plant roots; (3) genetically engineering the plant and screening to produce lines that over-express glutamine synthetase in the leaves which gives rise to increased concentration of the metabolite, 2-hydroxy-5-oxoproline (this proline is also known as 2-oxoglutaramate); and (4) impairing the glutamine synthetase activity in the plant roots which causes increased glutamine synthetase activity in the leaves which gives rise to increased concentration of 2-hydroxy-5-oxoproline. Prolines have also been found to induce similar effects in algae.

  16. Use of prolines for improving growth and other properties of plants and algae

    DOEpatents

    Unkefer, Pat J.; Knight, Thomas J.; Martinez, Rodolfo A.

    2003-04-29

    Increasing the concentration of prolines such as 2-hydroxy-5-oxoproline, in the foliar portions of plants has been shown to cause an increase in carbon dioxide fixation, growth rate, dry weight, nutritional value (amino acids), nodulation and nitrogen fixation, photosynthetically derived chemical energy, and resistance to insect pests over the same properties for wild type plants. This can be accomplished in four ways: (1) the application of a solution of the proline directly to the foliar portions of the plant by spraying these portions; (2) applying a solution of the proline to the plant roots; (3) genetically engineering the plant and screening to produce lines that overexpress glutamine synthetase in the leaves which gives rise to increased concentration of the metabolite, 2-hydroxy-5-oxoproline (this proline is also known as 2-oxoglutaramnate); and (4) impairing the glutamine synthetase activity in the plant roots which causes increased glutamine synthetase activity in the leaves which gives rise to increased concentration of 2-hydroxy-5-oxoproline. Prolines have also been found to induce similar effects in algae.

  17. Modeling the carbon cost of plant nitrogen acquisition: Mycorrhizal trade-offs and multipath resistance uptake improve predictions of retranslocation

    NASA Astrophysics Data System (ADS)

    Brzostek, Edward R.; Fisher, Joshua B.; Phillips, Richard P.

    2014-08-01

    Accurate projections of the future land carbon (C) sink by terrestrial biosphere models depend on how nutrient constraints on net primary production are represented. While nutrient limitation is nearly universal, current models do not have a C cost for plant nutrient acquisition. Also missing are symbiotic mycorrhizal fungi, which can consume up to 20% of net primary production and supply up to 50% of a plant's nitrogen (N) uptake. Here we integrate simultaneous uptake and mycorrhizae into a cutting-edge plant N model—Fixation and Uptake of Nitrogen (FUN)—that can be coupled into terrestrial biosphere models. The C cost of N acquisition varies as a function of mycorrhizal type, with plants that support arbuscular mycorrhizae benefiting when N is relatively abundant and plants that support ectomycorrhizae benefiting when N is strongly limiting. Across six temperate forested sites (representing arbuscular mycorrhizal- and ectomycorrhizal-dominated stands and 176 site years), including multipath resistance improved the partitioning of N uptake between aboveground and belowground sources. Integrating mycorrhizae led to further improvements in predictions of N uptake from soil (R2 = 0.69 increased to R2 = 0.96) and from senescing leaves (R2 = 0.29 increased to R2 = 0.73) relative to the original model. On average, 5% and 9% of net primary production in arbuscular mycorrhizal- and ectomycorrhizal-dominated forests, respectively, was needed to support mycorrhizal-mediated acquisition of N. To the extent that resource constraints to net primary production are governed by similar trade-offs across all terrestrial ecosystems, integrating these improvements to FUN into terrestrial biosphere models should enhance predictions of the future land C sink.

  18. A hybrid fuzzy logic and extreme learning machine for improving efficiency of circulating water systems in power generation plant

    NASA Astrophysics Data System (ADS)

    Aziz, Nur Liyana Afiqah Abdul; Siah Yap, Keem; Afif Bunyamin, Muhammad

    2013-06-01

    This paper presents a new approach of the fault detection for improving efficiency of circulating water system (CWS) in a power generation plant using a hybrid Fuzzy Logic System (FLS) and Extreme Learning Machine (ELM) neural network. The FLS is a mathematical tool for calculating the uncertainties where precision and significance are applied in the real world. It is based on natural language which has the ability of "computing the word". The ELM is an extremely fast learning algorithm for neural network that can completed the training cycle in a very short time. By combining the FLS and ELM, new hybrid model, i.e., FLS-ELM is developed. The applicability of this proposed hybrid model is validated in fault detection in CWS which may help to improve overall efficiency of power generation plant, hence, consuming less natural recourses and producing less pollutions.

  19. Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2 induces penile erection via brain and spinal melanocortin receptors.

    PubMed

    Wessells, H; Hruby, V J; Hackett, J; Han, G; Balse-Srinivasan, P; Vanderah, T W

    2003-01-01

    Penile erection induced by alpha-melanocyte-stimulating hormone and melanocortin receptors (MC-R) in areas of the spinal cord and periphery has not been demonstrated. To elucidate sites of the proerectile action of melanocortin peptides, in awake male rats we administered the MC-R agonist Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH(2) (MT-II) i.c.v., intrathecal (i.th.) and i.v. and scored penile erection and yawning. Injection of the MC-R antagonist Ac-Nle-c[Asp-His-DNal(2')-Arg-Trp-Lys]-NH(2) (SHU-9119) i.c.v. or i.th. in combination with i.th. MT-II differentiated spinal from supraspinal effects. To exclude a site of action in the penis, we recorded intracavernous pressure responses to intracavernosal injection of MT-II in the anesthetized rat.I.c.v., i.th., and i.v. MT-II induced penile erections in a dose-dependent fashion. Yawning was observed with i.c.v. and i.v. MT-II, while spinal injection did not produce this behavior. Intrathecal delivery of MT-II to the lumbosacral spinal cord was more efficacious in inducing erections than i.c.v. or i.v. administration; SHU-9119 blocked the erectile responses to i.th. MT-II when injected i.th. but not i.c.v. Intracavernosal MT-II neither increased intracavernous pressure nor augmented neurostimulated erectile responses. We confirmed the central proerectile activity of MT-II and demonstrated that in addition to a site of action in the brain, the distal spinal cord contains melanocortin receptors that can initiate penile erection independent of higher centers. These results provide new insight into the central melanocortinergic pathways that mediate penile erection and may allow for more efficacious melanotropin-based therapy for erectile dysfunction.

  20. Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils.

    PubMed

    Mesa, Jennifer; Mateos-Naranjo, Enrique; Caviedes, Miguel A; Redondo-Gómez, Susana; Pajuelo, Eloisa; Rodríguez-Llorente, Ignacio D

    2015-01-01

    Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilization, and production of indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18, and Salinicola peritrichatus SMJ30) were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favored intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes. PMID:26733985

  1. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait.

    PubMed

    Rolli, Eleonora; Marasco, Ramona; Vigani, Gianpiero; Ettoumi, Besma; Mapelli, Francesca; Deangelis, Maria Laura; Gandolfi, Claudio; Casati, Enrico; Previtali, Franco; Gerbino, Roberto; Pierotti Cei, Fabio; Borin, Sara; Sorlini, Claudia; Zocchi, Graziano; Daffonchio, Daniele

    2015-02-01

    Although drought is an increasing problem in agriculture, the contribution of the root-associated bacterial microbiome to plant adaptation to water stress is poorly studied. We investigated if the culturable bacterial microbiome associated with five grapevine rootstocks and the grapevine cultivar Barbera may enhance plant growth under drought stress. Eight isolates, over 510 strains, were tested in vivo for their capacity to support grapevine growth under water stress. The selected strains exhibited a vast array of plant growth promoting (PGP) traits, and confocal microscopy observation of gfp-labelled Acinetobacter and Pseudomonas isolates showed their ability to adhere and colonize both the Arabidopsis and grapevine rhizoplane. Tests on pepper plants fertilized with the selected strains, under both optimal irrigation and drought conditions, showed that PGP activity was a stress-dependent and not a per se feature of the strains. The isolates were capable of increasing shoot and leaf biomass, shoot length, and photosynthetic activity of drought-challenged grapevines, with an enhanced effect in drought-sensitive rootstock. Three isolates were further assayed for PGP capacity under outdoor conditions, exhibiting the ability to increase grapevine root biomass. Overall, the results indicate that PGP bacteria contribute to improve plant adaptation to drought through a water stress-induced promotion ability. PMID:24571749

  2. Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils

    PubMed Central

    Mesa, Jennifer; Mateos-Naranjo, Enrique; Caviedes, Miguel A.; Redondo-Gómez, Susana; Pajuelo, Eloisa; Rodríguez-Llorente, Ignacio D.

    2015-01-01

    Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilization, and production of indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18, and Salinicola peritrichatus SMJ30) were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favored intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes. PMID:26733985

  3. The sunflower transcription factor HaHB11 improves yield, biomass and tolerance to flooding in transgenic Arabidopsis plants.

    PubMed

    Cabello, Julieta V; Giacomelli, Jorge I; Piattoni, Claudia V; Iglesias, Alberto A; Chan, Raquel L

    2016-03-20

    HaHB11 is a member of the sunflower homeodomain-leucine zipper I subfamily of transcription factors. The analysis of a sunflower microarray hybridized with RNA from HaHB11-transformed leaf-disks indicated the regulation of many genes encoding enzymes from glycolisis and fermentative pathways. A 1300bp promoter sequence, fused to the GUS reporter gene, was used to transform Arabidopsis plants showing an induction of expression after flooding treatments, concurrently with HaHB11 regulation by submergence in sunflower. Arabidopsis transgenic plants expressing HaHB11 under the control of the CaMV 35S promoter and its own promoter were obtained and these plants exhibited significant increases in rosette and stem biomass. All the lines produced more seeds than controls and particularly, those of high expression level doubled seeds yield. Transgenic plants also showed tolerance to flooding stress, both to submergence and waterlogging. Carbohydrates contents were higher in the transgenics compared to wild type and decreased less after submergence treatments. Finally, transcript levels of selected genes involved in glycolisis and fermentative pathways as well as the corresponding enzymatic activities were assessed both, in sunflower and transgenic Arabidopsis plants, before and after submergence. Altogether, the present work leads us to propose HaHB11 as a biotechnological tool to improve crops yield, biomass and flooding tolerance.

  4. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize.

    PubMed

    Shi, Jinrui; Habben, Jeffrey E; Archibald, Rayeann L; Drummond, Bruce J; Chamberlin, Mark A; Williams, Robert W; Lafitte, H Renee; Weers, Ben P

    2015-09-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. PMID:26220950

  5. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize.

    PubMed

    Shi, Jinrui; Habben, Jeffrey E; Archibald, Rayeann L; Drummond, Bruce J; Chamberlin, Mark A; Williams, Robert W; Lafitte, H Renee; Weers, Ben P

    2015-09-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions.

  6. An evaluation of EDTA additions for improving the phytoremediation efficiency of different plants under various cultivation systems.

    PubMed

    Luo, Jie; Qi, Shihua; Gu, X W Sophie; Wang, Jinji; Xie, Xianming

    2016-05-01

    Previous studies have shown that phytoremediation usually requires soil amendments, such as chelates, to mobilize low bioavailability heavy metals for better plant absorption and, consequently, for remediation efficiency. A total dry biomass of 3.39 and 0.0138 kg per plant was produced by a phytoremediator, Eucalyptus globulus, and a nitrogen fixing crop, Cicer arietinum (chickpea), respectively. The accumulation of Pb in E. globulus and chickpea reached 1170.61 and 1.33 mg per plant (700 and 324 mg kg(-1)), respectively, under an ethylene diamine tetraacetic acid (EDTA) treatment, which was a five and sixfold increase over the value in untreated experiments, respectively. EDTA enhanced the phytoremediation efficiency and increased the heavy metal concentration in the soil solution. In pot experiments, approximately 27 % of the initial Pb leached from the spiked soil after EDTA and 25 mm artificial precipitation additions into soil without plants, which was considerably larger than the value under the same conditions without EDTA application (7 %). E. globulus planted in a mixed culture had higher water use efficiency than monocultures of either species in field experiments, and E. globulus intercepted almost all of the artificial precipitation in the pot experiments. This study demonstrates that E. globulus can maximize the potential of EDTA for improving the phytoremediation efficiency and minimizing its negative effects to the environment simultaneously by absorbing the metal-rich leachate, especially in a mixed culture of E. globulus and chickpeas. PMID:26846211

  7. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait.

    PubMed

    Rolli, Eleonora; Marasco, Ramona; Vigani, Gianpiero; Ettoumi, Besma; Mapelli, Francesca; Deangelis, Maria Laura; Gandolfi, Claudio; Casati, Enrico; Previtali, Franco; Gerbino, Roberto; Pierotti Cei, Fabio; Borin, Sara; Sorlini, Claudia; Zocchi, Graziano; Daffonchio, Daniele

    2015-02-01

    Although drought is an increasing problem in agriculture, the contribution of the root-associated bacterial microbiome to plant adaptation to water stress is poorly studied. We investigated if the culturable bacterial microbiome associated with five grapevine rootstocks and the grapevine cultivar Barbera may enhance plant growth under drought stress. Eight isolates, over 510 strains, were tested in vivo for their capacity to support grapevine growth under water stress. The selected strains exhibited a vast array of plant growth promoting (PGP) traits, and confocal microscopy observation of gfp-labelled Acinetobacter and Pseudomonas isolates showed their ability to adhere and colonize both the Arabidopsis and grapevine rhizoplane. Tests on pepper plants fertilized with the selected strains, under both optimal irrigation and drought conditions, showed that PGP activity was a stress-dependent and not a per se feature of the strains. The isolates were capable of increasing shoot and leaf biomass, shoot length, and photosynthetic activity of drought-challenged grapevines, with an enhanced effect in drought-sensitive rootstock. Three isolates were further assayed for PGP capacity under outdoor conditions, exhibiting the ability to increase grapevine root biomass. Overall, the results indicate that PGP bacteria contribute to improve plant adaptation to drought through a water stress-induced promotion ability.

  8. The sunflower transcription factor HaHB11 improves yield, biomass and tolerance to flooding in transgenic Arabidopsis plants.

    PubMed

    Cabello, Julieta V; Giacomelli, Jorge I; Piattoni, Claudia V; Iglesias, Alberto A; Chan, Raquel L

    2016-03-20

    HaHB11 is a member of the sunflower homeodomain-leucine zipper I subfamily of transcription factors. The analysis of a sunflower microarray hybridized with RNA from HaHB11-transformed leaf-disks indicated the regulation of many genes encoding enzymes from glycolisis and fermentative pathways. A 1300bp promoter sequence, fused to the GUS reporter gene, was used to transform Arabidopsis plants showing an induction of expression after flooding treatments, concurrently with HaHB11 regulation by submergence in sunflower. Arabidopsis transgenic plants expressing HaHB11 under the control of the CaMV 35S promoter and its own promoter were obtained and these plants exhibited significant increases in rosette and stem biomass. All the lines produced more seeds than controls and particularly, those of high expression level doubled seeds yield. Transgenic plants also showed tolerance to flooding stress, both to submergence and waterlogging. Carbohydrates contents were higher in the transgenics compared to wild type and decreased less after submergence treatments. Finally, transcript levels of selected genes involved in glycolisis and fermentative pathways as well as the corresponding enzymatic activities were assessed both, in sunflower and transgenic Arabidopsis plants, before and after submergence. Altogether, the present work leads us to propose HaHB11 as a biotechnological tool to improve crops yield, biomass and flooding tolerance. PMID:26876611

  9. Enhanced production of resveratrol derivatives in tobacco plants by improving the metabolic flux of intermediates in the phenylpropanoid pathway.

    PubMed

    Jeong, Yu Jeong; An, Chul Han; Woo, Su Gyeong; Park, Ji Hye; Lee, Ki-Won; Lee, Sang-Hoon; Rim, Yeonggil; Jeong, Hyung Jae; Ryu, Young Bae; Kim, Cha Young

    2016-09-01

    The biosynthesis of flavonoids such as anthocyanin and stilbenes has attracted increasing attention because of their potential health benefits. Anthocyanins and stilbenes share common phenylpropanoid precursor pathways. We previously reported that the overexpression of sweetpotato IbMYB1a induced anthocyanin pigmentation in transgenic tobacco (Nicotiana tabacum) plants. In the present study, transgenic tobacco (Nicotiana tabacum SR1) plants (STS-OX and ROST-OX) expressing the RpSTS gene encoding stilbene synthase from rhubarb (Rheum palmatum L. cv. Jangyeop) and the RpSTS and VrROMT genes encoding resveratrol O-methyltransferase from frost grape (Vitis riparia) were generated under the control of 35S promoter. Phenotypic alterations in floral organs, such as a reduction in floral pigments and male sterility, were observed in STS-OX transgenic tobacco plants. However, we failed to obtain STS-OX and ROST-OX plants with high levels of resveratrol compounds. Therefore, to improve the production of resveratrol derivatives in plants, we cross-pollinated flowers of STS-OX or ROST-OX and IbMYB1a-OX transgenic lines (SM and RSM). Phenotypic changes in vegetative and reproductive development of SM and RSM plants were observed. Furthermore, by HPLC and LC-MS analyses, we found enhanced production of resveratrol derivatives such as piceid, piceid methyl ether, resveratrol methyl ether O-hexoside, and 5-methyl resveratrol-3,4'-O-β-D-diglucopyranoside in SM and RSM cross-pollinated lines. Here, total contents of trans- and cis-piceids ranged from approximately 104-240 µg/g fresh weight in SM (F2). Collectively, we suggest that coexpression of RpSTS and IbMYB1a via cross-pollination can induce enhanced production of resveratrol compounds in plants by increasing metabolic flux into stilbenoid biosynthesis.

  10. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  11. Engineering Plant Shikimate Pathway for Production of Tocotrienol and Improving Herbicide Resistance1

    PubMed Central

    Rippert, Pascal; Scimemi, Claire; Dubald, Manuel; Matringe, Michel

    2004-01-01

    Tocochromanols (tocopherols and tocotrienols), collectively known as vitamin E, are essential antioxidant components of both human and animal diets. Because of their potential health benefits, there is a considerable interest in plants with increased or customized vitamin E content. Here, we have explored a new strategy to reach this goal. In plants, phenylalanine is the precursor of a myriad of secondary compounds termed phenylpropanoids. In contrast, much less carbon is incorporated into tyrosine that provides p-hydroxyphenylpyruvate and homogentisate, the aromatic precursors of vitamin E. Therefore, we intended to increase the flux of these two compounds by deriving their synthesis directly at the level of prephenate. This was achieved by the expression of the yeast (Saccharomyces cerevisiae) prephenate dehydrogenase gene in tobacco (Nicotiana tabacum) plants that already overexpress the Arabidopsis p-hydroxyphenylpyruvate dioxygenase coding sequence. A massive accumulation of tocotrienols was observed in leaves. These molecules, which were undetectable in wild-type leaves, became the major forms of vitamin E in the leaves of the transgenic lines. An increased resistance of the transgenic plants toward the herbicidal p-hydroxyphenylpyruvate dioxygenase inhibitor diketonitril was also observed. This work demonstrates that the synthesis of p-hydroxyphenylpyruvate is a limiting step for the accumulation of vitamin E in plants. PMID:14684842

  12. Beneficial native bacteria improve survival and mycorrhization of desert truffle mycorrhizal plants in nursery conditions.

    PubMed

    Navarro-Ródenas, Alfonso; Berná, Luis Miguel; Lozano-Carrillo, Cecilia; Andrino, Alberto; Morte, Asunción

    2016-10-01

    Sixty-four native bacterial colonies were isolated from mycorrhizal roots of Helianthemum almeriense colonized by Terfezia claveryi, mycorrhizosphere soil, and peridium of T. claveryi to evaluate their effect on mycorrhizal plant production. Based on the phylogenetic analysis of the 16S rDNA partial sequence, 45 different strains from 17 genera were gathered. The largest genera were Pseudomonas (40.8 % of the isolated strains), Bacillus (12.2 % of isolated strains), and Varivorax (8.2 % of isolated strains). All the bacteria were characterized phenotypically and by their plant growth-promoting rhizobacteria (PGPR) traits (auxin and siderophore production, phosphate solubilization, and ACC deaminase activity). Only bacterial combinations with several PGPR traits or Pseudomonas sp. strain 5, which presents three different PGPR traits, had a positive effect on plant survival and growth. Particularly relevant were the bacterial treatments involving auxin release, which significantly increased the root-shoot ratio and mycorrhizal colonization. Moreover, Pseudomonas mandelii strain 29 was able to considerably increase mycorrhizal colonization but not plant growth, and could be considered as mycorrhiza-helper bacteria. Therefore, the mycorrhizal roots, mycorrhizosphere soil, and peridium of desert truffles are environments enriched in bacteria which may be used to increase the survival and mycorrhization in the desert truffle plant production system at a semi-industrial scale.

  13. Manipulation of Host Quality and Defense by a Plant Virus Improves Performance of Whitefly Vectors.

    PubMed

    Su, Qi; Preisser, Evan L; Zhou, Xiao Mao; Xie, Wen; Liu, Bai Ming; Wang, Shao Li; Wu, Qing Jun; Zhang, You Jun

    2015-02-01

    Pathogen-mediated interactions between insect vectors and their host plants can affect herbivore fitness and the epidemiology of plant diseases. While the role of plant quality and defense in mediating these tripartite interactions has been recognized, there are many ecologically and economically important cases where the nature of the interaction has yet to be characterized. The Bemisia tabaci (Gennadius) cryptic species Mediterranean (MED) is an important vector of tomato yellow leaf curl virus (TYLCV), and performs better on virus-infected tomato than on uninfected controls. We assessed the impact of TYLCV infection on plant quality and defense, and the direct impact of TYLCV infection on MED feeding. We found that although TYLCV infection has a minimal direct impact on MED, the virus alters the nutritional content of leaf tissue and phloem sap in a manner beneficial to MED. TYLCV infection also suppresses herbivore-induced production of plant defensive enzymes and callose deposition. The strongly positive net effect on TYLCV on MED is consistent with previously reported patterns of whitefly behavior and performance, and provides a foundation for further exploration of the molecular mechanisms responsible for these effects and the evolutionary processes that shape them. PMID:26470098

  14. Utilization of starch films plasticized with urea as fertilizer for improvement of plant growth.

    PubMed

    Rychter, Piotr; Kot, Marta; Bajer, Krzysztof; Rogacz, Diana; Šišková, Alena; Kapuśniak, Janusz

    2016-02-10

    The utilization of starch films, obtained by extrusion of potato starch with urea as plasticizer, for the fertilization of plants has been undertaken. Release rate of urea from the starch films was conducted in water conditions. The molecular weight distribution, surface erosion and weight loss of the starch samples have been determined. The evaluation of efficiency of urea as a fertilizer in the process of release from the starch films was performed under laboratory conditions based on the plant growth test proposed by OECD 208 Guideline and the PN-ISO International Standard using oat and common radish. Although among extruded starch-based films, those that contain the highest amount of fertilizer hold the most promise for a delayed release system, the time of release of fertilizer from obtained films in undertaken study was not satisfactory. All the same, in the present study effort has been made to utilize extruded samples as a fertilizer for agriculture or horticulture purposes. Urea-plasticized starch was successfully used as a fertilizer. Plant growth assessment, including determination of such parameters as fresh and dry matter of plants and their visual evaluation, has proved the stimulating effect of using extruded films on the growth and development of cultivated plants.

  15. Beneficial native bacteria improve survival and mycorrhization of desert truffle mycorrhizal plants in nursery conditions.

    PubMed

    Navarro-Ródenas, Alfonso; Berná, Luis Miguel; Lozano-Carrillo, Cecilia; Andrino, Alberto; Morte, Asunción

    2016-10-01

    Sixty-four native bacterial colonies were isolated from mycorrhizal roots of Helianthemum almeriense colonized by Terfezia claveryi, mycorrhizosphere soil, and peridium of T. claveryi to evaluate their effect on mycorrhizal plant production. Based on the phylogenetic analysis of the 16S rDNA partial sequence, 45 different strains from 17 genera were gathered. The largest genera were Pseudomonas (40.8 % of the isolated strains), Bacillus (12.2 % of isolated strains), and Varivorax (8.2 % of isolated strains). All the bacteria were characterized phenotypically and by their plant growth-promoting rhizobacteria (PGPR) traits (auxin and siderophore production, phosphate solubilization, and ACC deaminase activity). Only bacterial combinations with several PGPR traits or Pseudomonas sp. strain 5, which presents three different PGPR traits, had a positive effect on plant survival and growth. Particularly relevant were the bacterial treatments involving auxin release, which significantly increased the root-shoot ratio and mycorrhizal colonization. Moreover, Pseudomonas mandelii strain 29 was able to considerably increase mycorrhizal colonization but not plant growth, and could be considered as mycorrhiza-helper bacteria. Therefore, the mycorrhizal roots, mycorrhizosphere soil, and peridium of desert truffles are environments enriched in bacteria which may be used to increase the survival and mycorrhization in the desert truffle plant production system at a semi-industrial scale. PMID:27262434

  16. Overexpression of AtABCG25 enhances the abscisic acid signal in guard cells and improves plant water use efficiency.

    PubMed

    Kuromori, Takashi; Fujita, Miki; Urano, Kaoru; Tanabata, Takanari; Sugimoto, Eriko; Shinozaki, Kazuo

    2016-10-01

    In addition to improving drought tolerance, improvement of water use efficiency is a major challenge in plant physiology. Due to their trade-off relationships, it is generally considered that achieving stress tolerance is incompatible with maintaining stable growth. Abscisic acid (ABA) is a key phytohormone that regulates the balance between intrinsic growth and environmental responses. Previously, we identified AtABCG25 as a cell-membrane ABA transporter that export ABA from the inside to the outside of cells. AtABCG25-overexpressing plants showed a lower transpiration phenotype without any growth retardation. Here, we dissected this useful trait using precise phenotyping approaches. AtABCG25 overexpression stimulated a local ABA response in guard cells. Furthermore, AtABCG25 overexpression enhanced drought tolerance, probably resulting from maintenance of water contents over the common threshold for survival after drought stress treatment. Finally, we observed enhanced water use efficiency by overexpression of AtABCG25, in addition to drought tolerance. These results were consistent with the function of AtABCG25 as an ABA efflux transporter. This unique trait may be generally useful for improving the water use efficiency and drought tolerance of plants.

  17. Overexpression of AtABCG25 enhances the abscisic acid signal in guard cells and improves plant water use efficiency.

    PubMed

    Kuromori, Takashi; Fujita, Miki; Urano, Kaoru; Tanabata, Takanari; Sugimoto, Eriko; Shinozaki, Kazuo

    2016-10-01

    In addition to improving drought tolerance, improvement of water use efficiency is a major challenge in plant physiology. Due to their trade-off relationships, it is generally considered that achieving stress tolerance is incompatible with maintaining stable growth. Abscisic acid (ABA) is a key phytohormone that regulates the balance between intrinsic growth and environmental responses. Previously, we identified AtABCG25 as a cell-membrane ABA transporter that export ABA from the inside to the outside of cells. AtABCG25-overexpressing plants showed a lower transpiration phenotype without any growth retardation. Here, we dissected this useful trait using precise phenotyping approaches. AtABCG25 overexpression stimulated a local ABA response in guard cells. Furthermore, AtABCG25 overexpression enhanced drought tolerance, probably resulting from maintenance of water contents over the common threshold for survival after drought stress treatment. Finally, we observed enhanced water use efficiency by overexpression of AtABCG25, in addition to drought tolerance. These results were consistent with the function of AtABCG25 as an ABA efflux transporter. This unique trait may be generally useful for improving the water use efficiency and drought tolerance of plants. PMID:27593465

  18. Computer simulation of industrial power systems for improving plant design and energy management

    SciTech Connect

    Delfino, B.; Denegri, G.B.; Pinceti, P.

    1987-01-01

    The growing size and complexity of industrial power systems, plus the requirements of more and more reliable operation, particularly in continuous process plants, call for the utilization of structured approaches which make use of off-line computer programs both at design and control stages. As a general rule, the use of such computer programs has been restricted to the analysis of the load-flow and fault conditions without taking into account the dynamic behavior of the system. The aim of the paper is to introduce the dynamic simulation in industrial power system analysis and to point out the fall- out on the design and management of such plants. In particular, reference is made to a large steel plant, supplied from the electrical utility in connection with in-site generation; knowledge of dynamic performance of the system is shown to provide the engineer the essential information to optimize system protection and operating reliability.

  19. Improving low-temperature performance of surface flow constructed wetlands using Potamogeton crispus L. plant.

    PubMed

    Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Yin, Xiaole

    2016-10-01

    In this study, enhanced organics and nitrogen removal efficiency in SFCWs by different submerged plants for polluted river water treatment under cold temperature was evaluated. High average removal efficiencies of COD (92.45%), NH4(+)-N (93.70%) and TN (55.62%) were achieved in experimental SFCWs with Potamogeton crispus compared with SFCWs with other plants. SFCWs with underground Phragmites australis root also presented better performance than the unplanted systems, indicating its positive role of contamination removal in winter. The results of this study indicated SFCWs with hardy submerged plant P. crispus could be a more effective and sustainable strategy for removing organics and nitrogen in shallow nutrient enriched river water ecosystems under cold climate. PMID:27381001

  20. Improving low-temperature performance of surface flow constructed wetlands using Potamogeton crispus L. plant.

    PubMed

    Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Yin, Xiaole

    2016-10-01

    In this study, enhanced organics and nitrogen removal efficiency in SFCWs by different submerged plants for polluted river water treatment under cold temperature was evaluated. High average removal efficiencies of COD (92.45%), NH4(+)-N (93.70%) and TN (55.62%) were achieved in experimental SFCWs with Potamogeton crispus compared with SFCWs with other plants. SFCWs with underground Phragmites australis root also presented better performance than the unplanted systems, indicating its positive role of contamination removal in winter. The results of this study indicated SFCWs with hardy submerged plant P. crispus could be a more effective and sustainable strategy for removing organics and nitrogen in shallow nutrient enriched river water ecosystems under cold climate.

  1. Scaffolding is erected around the PMA-1 in the SSPF prior to its attachment to Node 1

    NASA Technical Reports Server (NTRS)

    1997-01-01

    International Space Station (ISS) contractors erect access scaffolding around the Pressurized Mating Adapter-1 (PMA-1) for the ISS in KSC's Space Station Processing Facility. A PMA is a cone-shaped connector that will be attached to Node 1, the space station's structural building block, during ground processing. The white flight cables around PMA-1 will assist in connecting the node to the U.S.-financed, Russian-built Functional Cargo Block, a component that supplies early power and propulsion systems for the station. Node 1 with two adapters attached will be the first element of the station to be launched aboard the Space Shuttle Endeavour on STS-88 in July 1998.

  2. Improvements in the operation of SO2 scrubbers in China's coal power plants.

    PubMed

    Xu, Yuan

    2011-01-15

    China has deployed the world's largest fleet of sulfur dioxide (SO(2)) scrubbers (flue gas desulfurization systems), and most of them now appear to be operating properly. Although many plant managers avoided using their SO(2) scrubbers in the past, recent evidence, based on a series of field interviews conducted by the author, suggests that managers of coal power plants now have incentives to operate their scrubbers properly. China's new policy incentives since 2007 appear well designed to overcome the hurdle of high operation and maintenance costs of SO(2) scrubbers. Furthermore, it is now far more likely that offenders will be caught and punished. Continuous emission monitoring systems have played a key role in this change of attitudes. Plant inspections have become much more common, facilitated by a significant increase in the number of inspectors and the fact that the 461,000-megawatt SO(2) scrubbers at the end of 2009 were located in only 503 coal power plants, making frequent inspections little constrained by the shortage of inspectors. Because SO(2) is the precursor of sulfate particles believed to cause significant cooling effects on climate, China's SO(2) mitigation may make it more urgent to control the world's greenhouse gas emissions.

  3. Take advantage of mycorrhizal fungi for improved soil fertility and plant health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arbuscular mycorrhizal [AM] fungi are naturally-occurring soil fungi that form a beneficial symbiosis with the roots of most crops. The plants benefit because the symbiosis increases mineral nutrient uptake, drought resistance, and disease resistance. These characteristics make utilization of AM f...

  4. Total Soluble Protein Extraction for Improved Proteomic Analysis of Transgenic Rice Plant Roots.

    PubMed

    Raorane, Manish L; Narciso, Joan O; Kohli, Ajay

    2016-01-01

    With the advent of high-throughput platforms, proteomics has become a powerful tool to search for plant gene products of agronomic relevance. Protein extractions using multistep protocols have been shown to be effective to achieve better proteome profiles than simple, single-step extractions. These protocols are generally efficient for above ground tissues such as leaves. However, each step leads to loss of some amount of proteins. Additionally, compounds such as proteases in the plant tissues lead to protein degradation. While protease inhibitor cocktails are available, these alone do not seem to suffice when roots are included in the plant sample. This is obvious given the lack of high molecular weight (HMW) proteins obtained from samples that include root tissue. For protein/proteome analysis of transgenic plant roots or of seedlings, which include root tissue, such pronounced protein degradation is especially undesirable. A facile protein extraction protocol is presented, which ensures that despite the inclusion of root tissues there is minimal loss in total protein components.

  5. The Design of Management Practices To Improve the Physical Plant Maintenance of Southwest Texas Junior College.

    ERIC Educational Resources Information Center

    Box, Wilford Winston

    A study was conducted of the physical plant maintenance department (PPMD) of Southwest Texas Junior College (SWTJC), in order to determine if the department was structured as a functional organization, if maintenance control procedures were in place, and if efficient management practices were being used. Consultations with the director of the PPMD…

  6. Engineering flax plants to increase their antioxidant capacity and improve oil composition and stability.

    PubMed

    Zuk, Magdalena; Prescha, Anna; Stryczewska, Monika; Szopa, Jan

    2012-05-16

    The composition of polyunsaturated fatty acids in the tissues is very important to human health and strongly depends on dietary intake. Since flax seeds are the richest source of polyunsaturated acids, their consumption might be beneficial for human health. Unfortunately, they are highly susceptible to auto-oxidation, which generates toxic derivatives. The main goal of this study was the generation of genetically modified flax plants with increased antioxidant potential and stable and healthy oil production. Since among phenylpropanoid compounds those belonging to the flavonoid route have the lowest antioxidant capacity, the approach was to inhibit this route of the pathway, which might result in accumulation of other compounds more effective in antioxidation. The suppression of the chalcone synthase gene resulted in hydrolyzable tannin accumulation and thus increased antioxidant status of seeds of the transgenic plant. This was due to the partial redirecting of substrates for flavonoid biosynthesis to the other routes of the phenylpropanoid pathway. Consequently, transgenic plants produced more (20-45%) polyunsaturated fatty acids than the control and mainly α-linolenic acid. Thus, increasing the antioxidant potential of flax plants has benefits in terms of the yield of suitable oil for human dietary consumption.

  7. Laser Peening of Alloy 600 to Improve Intergranular Stress Corrosion Cracking Resistance in Power Plants

    SciTech Connect

    Chen, H; Rankin, J; Hackel, L; Frederick, G; Hickling, J; Findlan, S

    2004-04-20

    Laser peening is an emerging modern process that impresses a compressive stress into the surface of metals or alloys. This treatment can reduce the rate of intergranular stress corrosion cracking and fatigue cracking in structural metals or Alloy 600 needed for nuclear power plants.

  8. Manipulating photorespiration to increase plant productivity. Recent advances and perspectives for crop improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recycling of the 2-phosphoglycolate generated by the oxygenase reaction of Rubisco requires a complex and energy-consuming set of reactions collectively known as the photorespiratory cycle. Several approaches have been proposed with the aim of producing plants with reduced rates of photorespiratory ...

  9. Plant functional traits improve diversity-based predictions of temporal stability of grassland productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aboveground net primary productivity (ANPP) varies in response to temporal fluctuations in weather. Temporal stability (mean/standard deviation) of community ANPP may be increased, on average, by increasing plant species richness, but stability also may differ widely at a given richness level imply...

  10. Dietary plant phenolic improves survival of bacterial infection in Manduca sexta caterpillars.

    PubMed

    Del Campo, Marta L; Halitschke, Rayko; Short, Sarah M; Lazzaro, Brian P; Kessler, André

    2013-03-01

    Plant phenolics are generally thought to play significant roles in plant defense against herbivores and pathogens. Many plant taxa, including Solanaceae, are rich in phenolic compounds and some insect herbivores have been shown to acquire phenolics from their hosts to use them as protection against their natural enemies. Here we demonstrate that larvae of an insect specialist on Solanaceae, the tobacco hornworm, Manduca sexta L. (Lepidoptera: Sphingidae), acquire the plant phenolic chlorogenic acid (CA), and other caffeic acid derivatives as they feed on one of their hosts, Nicotiana attenuata L. (Solanaceae), and on artificial diet supplemented with CA. We test the hypothesis that larvae fed on CA-supplemented diet would have better resistance against bacterial infection than larvae fed on a standard CA-free diet by injecting bacteria into the hemocoel of fourth instars. Larvae fed CA-supplemented diet show significantly higher survival of infection with Enterococcus faecalis (Andrewes & Horder) Schleifer & Kilpper-Bälz, but not of infection with the more virulent Pseudomonas aeruginosa (Schroeter) Migula. Larvae fed on CA-supplemented diet possess a constitutively higher number of circulating hemocytes than larvae fed on the standard diet, but we found no other evidence of increased immune system activity, nor were larvae fed on CA-supplemented diet better able to suppress bacterial proliferation early in the infection. Thus, our data suggest an additional defensive function of CA to the direct toxic inhibition of pathogen proliferation in the gut.

  11. IMPROVING PLANT GENETIC ENGINEERING BY MANIPULATING THE HOST. (R829479C001)

    EPA Science Inventory

    Agrobacterium-mediated transformation is a major technique for the genetic engineering of plants. However, there are many economically important crop and tree species that remain highly recalcitrant to Agrobacterium infection. Although attempts have been made to ...

  12. A temporary social parasite of tropical plant-ants improves the fitness of a myrmecophyte

    NASA Astrophysics Data System (ADS)

    Dejean, Alain; Leroy, Céline; Corbara, Bruno; Céréghino, Régis; Roux, Olivier; Hérault, Bruno; Rossi, Vivien; Guerrero, Roberto J.; Delabie, Jacques H. C.; Orivel, Jérôme; Boulay, Raphaël

    2010-10-01

    Myrmecophytes offer plant-ants a nesting place in exchange for protection from their enemies, particularly defoliators. These obligate ant-plant mutualisms are common model systems for studying factors that allow horizontally transmitted mutualisms to persist since parasites of ant-myrmecophyte mutualisms exploit the rewards provided by host plants whilst providing no protection in return. In pioneer formations in French Guiana, Azteca alfari and Azteca ovaticeps are known to be mutualists of myrmecophytic Cecropia ( Cecropia ants). Here, we show that Azteca andreae, whose colonies build carton nests on myrmecophytic Cecropia, is not a parasite of Azteca- Cecropia mutualisms nor is it a temporary social parasite of A. alfari; it is, however, a temporary social parasite of A. ovaticeps. Contrarily to the two mutualistic Azteca species that are only occasional predators feeding mostly on hemipteran honeydew and food bodies provided by the host trees, A. andreae workers, which also attend hemipterans, do not exploit the food bodies. Rather, they employ an effective hunting technique where the leaf margins are fringed with ambushing workers, waiting for insects to alight. As a result, the host trees’ fitness is not affected as A. andreae colonies protect their foliage better than do mutualistic Azteca species resulting in greater fruit production. Yet, contrarily to mutualistic Azteca, when host tree development does not keep pace with colony growth, A. andreae workers forage on surrounding plants; the colonies can even move to a non- Cecropia tree.

  13. Increasing vitamin C content in plant foods to improve their nutritional value-successes and challenges.

    PubMed

    Gallie, Daniel R

    2013-09-01

    Vitamin C serves as a cofactor in the synthesis of collagen needed to support cardiovascular function, maintenance of cartilage, bones, and teeth, as well as being required in wound healing. Although vitamin C is essential, humans are one of the few mammalian species unable to synthesize the vitamin and must obtain it through dietary sources. Only low levels of the vitamin are required to prevent scurvy but subclinical vitamin C deficiency can cause less obvious symptoms such as cardiovascular impairment. Up to a third of the adult population in the U.S. obtains less than the recommended amount of vitamin C from dietary sources of which plant-based foods constitute the major source. Consequently, strategies to increase vitamin C content in plants have been developed over the last decade and include increasing its synthesis as well as its recycling, i.e., the reduction of the oxidized form of ascorbic acid that is produced in reactions back into its reduced form. Increasing vitamin C levels in plants, however, is not without consequences. This review provides an overview of the approaches used to increase vitamin C content in plants and the successes achieved. Also discussed are some of the potential limitations of increasing vitamin C and how these may be overcome. PMID:23999762

  14. DEVELOPMENT OF AN IMPROVED PCR-BASED TECHNIQUE FOR DETECTION OF PHYTOPHTHORA CACTORUM IN STRAWBERRY PLANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Specific and rapid plant pathogen detection methods can aid in strawberry disease management decisions. PCR-based diagnostics for Phytophthora cactorum and other strawberry pathogens are hindered by PCR inhibitors and lack of species-specific PCR primers. We developed a DNA extraction and purificati...

  15. Valencia Peanut Response to Single, Twin and Diamond Planting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, most Valencia peanuts are grown in single rows on 36 to 40 inch beds. Because of their bunch-type and erect growth habit, Valencia peanuts do not spread over the whole bed and have the opportunity to benefit from multiple row planting arrangements. This study was conducted near Clovis, ...

  16. An improved, low-cost, hydroponic system for growing Arabidopsis and other plant species under aseptic conditions

    PubMed Central

    2014-01-01

    Background Hydroponics is a plant growth system that provides a more precise control of growth media composition. Several hydroponic systems have been reported for Arabidopsis and other model plants. The ease of system set up, cost of the growth system and flexibility to characterize and harvest plant material are features continually improved in new hydroponic system reported. Results We developed a hydroponic culture system for Arabidopsis and other model plants. This low cost, proficient, and novel system is based on recyclable and sterilizable plastic containers, which are readily available from local suppliers. Our system allows a large-scale manipulation of seedlings. It adapts to different growing treatments and has an extended growth window until adult plants are established. The novel seed-holder also facilitates the transfer and harvest of seedlings. Here we report the use of our hydroponic system to analyze transcriptomic responses of Arabidopsis to nutriment availability and plant/pathogen interactions. Conclusions The efficiency and functionality of our proposed hydroponic system is demonstrated in nutrient deficiency and pathogenesis experiments. Hydroponically grown Arabidopsis seedlings under long-time inorganic phosphate (Pi) deficiency showed typical changes in root architecture and high expression of marker genes involved in signaling and Pi recycling. Genome-wide transcriptional analysis of gene expression of Arabidopsis roots depleted of Pi by short time periods indicates that genes related to general stress are up-regulated before those specific to Pi signaling and metabolism. Our hydroponic system also proved useful for conducting pathogenesis essays, revealing early transcriptional activation of pathogenesis-related genes. PMID:24649917

  17. LCA as a decision support tool for the environmental improvement of the operation of a municipal wastewater treatment plant.

    PubMed

    Pasqualino, Jorgelina C; Meneses, Montse; Abella, Montserrat; Castells, Francesc

    2009-05-01

    Life cycle assessment (LCA) methodology is used to evaluate the environmental profile of a product or process from its origin to its final destination. In this paper we used LCA to evaluate the current situation of a wastewater treatment plant and identify improvement alternatives. Currently, the highest environmental impacts are caused by the stages of the plant with the highest energy consumption, the use of biogas from anaerobic digestion (95% burned in torch) and the final destination of the sludge (98.6% for agricultural use and 1.4% for compost). We propose four alternatives for biogas applications and five alternatives for sludge applications and compare them to the current situation. The alternatives were incorporated in a decision support system to identify and prioritize the most positive environmental option. Using biogas to produce electricity or a combination of electricity and heat provided the best environmental options since the energy produced would be enough to supply all the stages of the plant, thus reducing their environmental impact. The best environmental option for the final destination of the sludge is to combine the current situation (fertilizer replacement) with use of the sludge in a cement plant (as a replacement for fuel and raw material). PMID:19534150

  18. Review of nuclear power plant safety cable aging studies with recommendations for improved approaches and for future work.

    SciTech Connect

    Gillen, Kenneth Todd; Bernstein, Robert

    2010-11-01

    Many U. S. nuclear power plants are approaching 40 years of age and there is a desire to extend their life for up to 100 total years. Safety-related cables were originally qualified for nuclear power plant applications based on IEEE Standards that were published in 1974. The qualifications involved procedures to simulate 40 years of life under ambient power plant aging conditions followed by simulated loss of coolant accident (LOCA). Over the past 35 years or so, substantial efforts were devoted to determining whether the aging assumptions allowed by the original IEEE Standards could be improved upon. These studies led to better accelerated aging methods so that more confident 40-year lifetime predictions became available. Since there is now a desire to potentially extend the life of nuclear power plants way beyond the original 40 year life, there is an interest in reviewing and critiquing the current state-of-the-art in simulating cable aging. These are two of the goals of this report where the discussion is concentrated on the progress made over the past 15 years or so and highlights the most thorough and careful published studies. An additional goal of the report is to suggest work that might prove helpful in answering some of the questions and dealing with some of the issues that still remain with respect to simulating the aging and predicting the lifetimes of safety-related cable materials.

  19. Improving Light Distribution by Zoom Lens for Electricity Savings in a Plant Factory with Light-Emitting Diodes.

    PubMed

    Li, Kun; Li, Zhipeng; Yang, Qichang

    2016-01-01

    The high energy consumption of a plant factory is the biggest issue in its rapid expansion, especially for lighting electricity, which has been solved to a large extent by light-emitting diodes (LED). However, the remarkable potential for further energy savings remains to be further investigated. In this study, an optical system applied just below the LED was designed. The effects of the system on the growth and photosynthesis of butterhead lettuce (Lactuca sativa var. capitata) were examined, and the performance of the optical improvement in energy savings was evaluated by comparison with the traditional LED illumination mode. The irradiation patterns used were LED with zoom lenses (Z-LED) and conventional non-lenses LED (C-LED). The seedlings in both treatments were exposed to the same light environment over the entire growth period. The improvement saved over half of the light source electricity, while prominently lowering the temperature. Influenced by this, the rate of photosynthesis sharply decreased, causing reductions in plant yield and nitrate content, while having no negative effects on morphological parameters and photosynthetic pigment contents. Nevertheless, the much higher light use efficiency of Z-LEDs makes this system a better approach to illumination in a plant factory with artificial lighting. PMID:26904062

  20. Early antibiotic selection and efficient rooting and acclimatization improve the production of transgenic plum plants (Prunus domestica L.).

    PubMed

    Gonzalez Padilla, I M; Webb, K; Scorza, R

    2003-08-01

    We describe here an improved system for routinely developing transgenic plum plants (Prunus domestica L.) through the use of Agrobacterium tumefaciens. The production of non-transformed "escapes" has been virtually eliminated, and rates of plant establishment in the greenhouse have been dramatically improved. The system is based on the regeneration of shoots from hypocotyls extracted from mature seed. The shoot regeneration medium is Murashige and Skoog (MS) salts and vitamins supplemented with 7.5 microM thidiazuron and 0.25 microM indole-butyric acid. Transferring the explants after co-cultivation to shoot regeneration medium containing 80 mg l(-1) of kanamycin and 300 mg l(-1) of Timentin reduced the total number of regenerated shoots without affecting the transformation rate. Transformation rates using the described system averaged 1.2% of the hypocotyl slices producing transgenic plants, with a range of 0-4.2%. The transgenic shoots rooted at a rate of 90% on half-strength MS salts and vitamins supplemented with 5 microM alpha-naphthaleneacetic acid and 0.01 microM kinetin. Plantlets were transferred to a greenhouse directly from culture tubes with a 90% average survival.

  1. Improving Light Distribution by Zoom Lens for Electricity Savings in a Plant Factory with Light-Emitting Diodes

    PubMed Central

    Li, Kun; Li, Zhipeng; Yang, Qichang

    2016-01-01

    The high energy consumption of a plant factory is the biggest issue in its rapid expansion, especially for lighting electricity, which has been solved to a large extent by light-emitting diodes (LED). However, the remarkable potential for further energy savings remains to be further investigated. In this study, an optical system applied just below the LED was designed. The effects of the system on the growth and photosynthesis of butterhead lettuce (Lactuca sativa var. capitata) were examined, and the performance of the optical improvement in energy savings was evaluated by comparison with the traditional LED illumination mode. The irradiation patterns used were LED with zoom lenses (Z-LED) and conventional non-lenses LED (C-LED). The seedlings in both treatments were exposed to the same light environment over the entire growth period. The improvement saved over half of the light source electricity, while prominently lowering the temperature. Influenced by this, the rate of photosynthesis sharply decreased, causing reductions in plant yield and nitrate content, while having no negative effects on morphological parameters and photosynthetic pigment contents. Nevertheless, the much higher light use efficiency of Z-LEDs makes this system a better approach to illumination in a plant factory with artificial lighting. PMID:26904062

  2. Improving Light Distribution by Zoom Lens for Electricity Savings in a Plant Factory with Light-Emitting Diodes.

    PubMed

    Li, Kun; Li, Zhipeng; Yang, Qichang

    2016-01-01

    The high energy consumption of a plant factory is the biggest issue in its rapid expansion, especially for lighting electricity, which has been solved to a large extent by light-emitting diodes (LED). However, the remarkable potential for further energy savings remains to be further investigated. In this study, an optical system applied just below the LED was designed. The effects of the system on the growth and photosynthesis of butterhead lettuce (Lactuca sativa var. capitata) were examined, and the performance of the optical improvement in energy savings was evaluated by comparison with the traditional LED illumination mode. The irradiation patterns used were LED with zoom lenses (Z-LED) and conventional non-lenses LED (C-LED). The seedlings in both treatments were exposed to the same light environment over the entire growth period. The improvement saved over half of the light source electricity, while prominently lowering the temperature. Influenced by this, the rate of photosynthesis sharply decreased, causing reductions in plant yield and nitrate content, while having no negative effects on morphological parameters and photosynthetic pigment contents. Nevertheless, the much higher light use efficiency of Z-LEDs makes this system a better approach to illumination in a plant factory with artificial lighting.

  3. Potential applications of cryogenic technologies to plant genetic improvement and pathogen eradication.

    PubMed

    Wang, Biao; Wang, Ren-Rui; Cui, Zhen-Hua; Bi, Wen-Lu; Li, Jing-Wei; Li, Bai-Quan; Ozudogru, Elif Aylin; Volk, Gayle M; Wang, Qiao-Chun

    2014-01-01

    Rapid increases in human populations provide a great challenge to ensure that adequate quantities of food are available. Sustainable development of agricultural production by breeding more productive cultivars and by increasing the productive potential of existing cultivars can help meet this demand. The present paper provides information on the potential uses of cryogenic techniques in ensuring food security, including: (1) long-term conservation of a diverse germplasm and successful establishment of cryo-banks; (2) maintenance of the regenerative ability of embryogenic tissues that are frequently the target for genetic transformation; (3) enhancement of genetic transformation and plant regeneration of transformed cells, and safe, long-term conservation for transgenic materials; (4) production and maintenance of viable protoplasts for transformation and somatic hybridization; and (5) efficient production of pathogen-free plants. These roles demonstrate that cryogenic technologies offer opportunities to ensure food security. PMID:24681087

  4. Oxygen plant breadboard design, and techniques for improving mission figure-of-merit

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar

    1991-01-01

    A breadboard oxygen plant to process anaerobic carbon dioxide is designed and constructed; the objective is not only to produce a key propellant component extraterrestrially, but also to develop the important technologies that are necessary for a successful operation of in-situ materials utilization hardware. The solid electrolytic cells are supplied to specifications by an established vendor. The cell thermal control, electrical control, and flow control are installed after detailed designs. Extensive data are obtained that characterize the operation of the plant as the input parameters are varied. The initial mass, energy, and volume-needs provide the input to a figure-of-merit software program to calculate the impact of various candidate technologies upon the overall mission. The desirability of studies on storage and high-density propellants is shown. This task dovetails into other tasks that are evaluating alternative cell materials, catalysis for compactness, and smart sensors for effective control.

  5. Improvement of the EPR detection of irradiated dry plants using microwave saturation and thermal treatment

    NASA Astrophysics Data System (ADS)

    Yordanov, Nicola D.; Aleksieva, Katerina; Mansour, Issa

    2005-05-01

    The reported EPR studies on the dependence of the microwave saturation behavior as a function of temperature (up to 60 °C) and heating time of some dry plants demonstrate the possibility to distinguish naturally present from radiation induced EPR signals independently of the fact that they have equal g-factors in X- and Q-band spectra. Using these properties of the dry plants a new approach for identification of their previous radiation processing is considered. It is based on the fact that the intensity of the EPR line appearing after irradiation increases at high microwave power (for example 100 mW) and decreases at low microwave power (for example 1 mW) when the irradiated sample is recorded after thermal treatment (up to 60 °C, 60 min). The intensity of the naturally present EPR signal observed in non-irradiated samples remains, meanwhile, unchanged.

  6. Stress-induced chromatin changes in plants: of memories, metabolites and crop improvement.

    PubMed

    Vriet, Cécile; Hennig, Lars; Laloi, Christophe

    2015-04-01

    Exposure of plants to adverse environmental conditions leads to extensive transcriptional changes. Genome-wide approaches and gene function studies have revealed the importance of chromatin-level control in the regulation of stress-responsive gene expression. Advances in understanding chromatin modifications implicated in plant stress response and identifying proteins involved in chromatin-mediated transcriptional responses to stress are briefly presented in this review. We then highlight how chromatin-mediated gene expression changes can be coupled to the metabolic status of the cell, since many of the chromatin-modifying proteins involved in transcriptional regulation depend on cofactors and metabolites that are shared with enzymes in basic metabolism. Lastly, we discuss the stability and heritability of stress-induced chromatin changes and the potential of chromatin-based strategies for increasing stress tolerance of crops.

  7. Significant improvements in the area of stroke timing of motor-operated valves for nuclear plants

    SciTech Connect

    Wohld, P.R. ); Newsome, R.C. )

    1990-01-01

    This paper reports on valve stroke timing test equipment developed and tested for use in a nuclear power plant main control room that can provide significant advantages to the user for valve surveillance testing required by the Nuclear Regulatory Commission. The equipment is particularly suitable for Motor-Operated Valves (MOVs) because of its accuracy and repeatability that is necessary to detect the effects of small changes in actuator motor RPM.

  8. Improving methods to evaluate the impacts of plant invasions: lessons from 40 years of research.

    PubMed

    Stricker, Kerry Bohl; Hagan, Donald; Flory, S Luke

    2015-03-30

    Methods used to evaluate the ecological impacts of biological invasions vary widely from broad-scale observational studies to removal experiments in invaded communities and experimental additions in common gardens and greenhouses. Different methods provide information at diverse spatial and temporal scales with varying levels of reliability. Thus, here we provide a synthetic and critical review of the methods used to evaluate the impacts of plant invasions and provide recommendations for future research. We review the types of methods available and report patterns in methods used, including the duration and spatial scale of studies and plant functional groups examined, from 410 peer-reviewed papers published between 1971 and 2011. We found that there has been a marked increase in papers published on plant invasion impacts since 2003 and that more than half of all studies employed observational methods while <5 % included predictive modelling. Most of the studies were temporally and spatially restricted with 51 % of studies lasting <1 year and almost half of all studies conducted in plots or mesocosms <1 m(2). There was also a bias in life form studied: more than 60 % of all studies evaluated impacts of invasive forbs and graminoids while <16 % focused on invasive trees. To more effectively quantify invasion impacts, we argue that longer-term experimental research and more studies that use predictive modelling and evaluate impacts of invasions on ecosystem processes and fauna are needed. Combining broad-scale observational studies with experiments and predictive modelling may provide the most insight into invasion impacts for policy makers and land managers seeking to reduce the effects of plant invasions.

  9. Use of plant extracts in summer and winter season butter oxidative stability improvement.

    PubMed

    Gramza-Michalowska, Anna; Korczak, Jozef; Regula, Julita

    2007-01-01

    Edible fats and fat containing products undergo oxidation, both during production and storage, causing a sequence of unfavorable changes. Enrichment of lipids with plant polyphenols can profitably influence their oxidative stability, additional introduction to human body can also decrease the degenerative diseases morbidity. Two seasons butter quality were analysed: winter and summer season. Oxidative stability of butter was conducted on Rancimat and Oxidograph test conditions (110oC). To evaluate antioxidant activity of different plant extracts lipid samples were enriched with green tea and rosemary extracts, alpha-tocopherol and BHT at concentration of 0.02%, counted over lipid content. It was found that pure winter butter was more stable than pure butter from summer season in Rancimat test conditions (p<0.05). No statistical differences between samples in Oxidograph test were found. Summer season butter oxidative stability was highest in sample with addition of green tea extract: 71.22h for Rancimat and 81.23h for Oxidograph test. Best antioxidative activity in winter butter showed green tea extract, where induction period was 66.5 h for Rancimat and 64.0 h for Oxidograph test. Also rosemary extract and tocopherol showed strong antioxidative activity, weaker however than green tea extract. BHT, strong synthetic antioxidant showed much lower activity. Study indicated strong antioxidant activity of examined plant extracts in lipid systems. PMID:17392082

  10. Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality.

    PubMed

    Galili, Gad; Amir, Rachel

    2013-02-01

    Humans, as well as farm animals, cannot synthesize a number of essential amino acids, which are critical for their survival. Hence, these organisms must obtain these essential amino acids from their diets. Cereal and legume crops, which represent the major food and feed sources for humans and livestock worldwide, possess limiting levels of some of these essential amino acids, particularly Lys and Met. Extensive efforts were made to fortify crop plants with these essential amino acids using traditional breeding and mutagenesis. However, aside from some results obtained with maize, none of these approaches was successful. Therefore, additional efforts using genetic engineering approaches concentrated on increasing the synthesis and reducing the catabolism of these essential amino acids and also on the expression of recombinant proteins enriched in them. In the present review, we discuss the basic biological aspects associated with the synthesis and accumulation of these amino acids in plants and also describe recent developments associated with the fortification of crop plants with essential amino acids by genetic engineering approaches.

  11. Recent developments in plant zinc homeostasis and the path toward improved biofortification and phytoremediation programs

    PubMed Central

    Rouached, Hatem

    2013-01-01

    Zinc (Zn) is an essential micronutrient for all living organisms. Plants serve as a major entry point for this element into the food chain. Zn deficiency has become a widespread nutritional condition, which mirror the inadequate Zn reserves in significant proportion of the earth's arable land. A recent assessment by the World Health Organization revealed that one third of the world's population is at risk of Zn deficiency. To counter this alarming situation, substantial efforts have been made to increase Zn content and availability in staple crops and grains. Nevertheless, the absence of fundamental information has held back progress in this field. Developing a better understanding of how Zn homeostasis is regulated in plants, such as Zn transporters at loading bottlenecks, is of primary interest to biofortification and phytoremediation programs. Many reviews have been published on this subject, and here we briefly summarize the regulation of one limiting step in Zn distribution within plants — the loading of Zn into root xylem. PMID:23221755

  12. Central administration of oxytocin differentially increases yawning, penile erections and scratching in high- (HY) and low-yawning (LY) sublines of Sprague-Dawley rats.

    PubMed

    Eguibar, Jose R; Cortes, Carmen; Isidro, O; Ugarte, A

    2015-07-01

    Central administration of oxytocin has been shown to induce yawning, penile erection, grooming and scratching. Yawning and penile erections are due to activation of oxytocinergic neurons in the paraventricular nucleus of the hypothalamus. We selectively bred two sublines from Sprague-Dawley rats, one with a high-yawning frequency (HY) of 20yawns/h, and one with a low-yawning (LY) frequency of 2yawns/h. The aim of the current study was to analyze the behavioral effects of centrally-administered oxytocin [15ng-10μg; intracerebroventricularly (i.c.v.)] on yawning, penile erections, grooming and scratching in adult male rats from both sublines. Oxytocin produced a dose-dependent increase in yawning and penile erection frequencies and this effect was significantly higher in the HY, compared to the LY, subline. However, the number of oxytocin-induced scratching bouts was significantly higher in the LY, compared to the HY group. In conclusion, these sublines represent a suitable model for detailed analysis of behavior induced by oxytocin and other neuropeptides in animals with different spontaneous expression of behavioral traits.

  13. 29 CFR Appendix A to Subpart R of... - Guidelines for Establishing the Components of a Site-specific Erection Plan: Non-mandatory...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Guidelines for Establishing the Components of a Site-specific Erection Plan: Non-mandatory Guidelines for Complying With § 1926.752(e) A Appendix A to Subpart R of Part 1926 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED)...

  14. 29 CFR Appendix A to Subpart R of... - Guidelines for Establishing the Components of a Site-specific Erection Plan: Non-mandatory...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Guidelines for Establishing the Components of a Site-specific Erection Plan: Non-mandatory Guidelines for Complying With § 1926.752(e) A Appendix A to Subpart R of Part 1926 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED)...

  15. 29 CFR Appendix A to Subpart R of... - Guidelines for Establishing the Components of a Site-specific Erection Plan: Non-mandatory...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Guidelines for Establishing the Components of a Site-specific Erection Plan: Non-mandatory Guidelines for Complying With § 1926.752(e) A Appendix A to Subpart R of Part 1926 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED)...

  16. 29 CFR Appendix A to Subpart R of... - Guidelines for Establishing the Components of a Site-specific Erection Plan: Non-mandatory...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Guidelines for Establishing the Components of a Site-specific Erection Plan: Non-mandatory Guidelines for Complying With § 1926.752(e). A Appendix A to Subpart R of Part 1926 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED)...

  17. 29 CFR Appendix A to Subpart R of... - Guidelines for Establishing the Components of a Site-specific Erection Plan: Non-mandatory...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Guidelines for Establishing the Components of a Site-specific Erection Plan: Non-mandatory Guidelines for Complying With § 1926.752(e) A Appendix A to Subpart R of Part 1926 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED)...

  18. Genetic improvement of leaf photosynthesis and intrinsic water use efficiency in C3 plants: Why so much little success?

    PubMed

    Flexas, J

    2016-10-01

    There is an urgent need for simultaneously increasing photosynthesis/yields and water use efficiency (WUE) in C3 crops. Potentially, this can be achieved by genetic manipulation of the key traits involved. However, despite significant efforts in the past two decades very limited success has been achieved. Here I argue that this is mostly due to the fact that single gene/single trait approaches have been used thus far. Photosynthesis models demonstrate that only limited improving of photosynthesis can be expected by large improvements of any of its single limiting factors, i.e. stomatal conductance, mesophyll conductance, and the biochemical capacity for photosynthesis, the latter co-limited by Rubisco and the orchestrated activity of thylakoid electron transport and the Calvin cycle enzymes. Accordingly, only limited improvements of photosynthesis have been obtained by genetic manipulation of any of these single factors. In addition, improving photosynthesis by genetic manipulation in general reduced WUE, and vice-versa, and in many cases pleiotropic effects appear that cancel out some of the expected benefits. I propose that success in genetic manipulation for simultaneous improvement of photosynthesis and WUE efficiency may take longer than suggested in previous reports, and that it can be achieved only by joint projects addressing multi-gene manipulation for simultaneous alterations of all the limiting factors of photosynthesis, including the often neglected phloem capacity for loading and transport the expected surplus of carbohydrates in plants with improved photosynthesis. PMID:27593473

  19. Genetic improvement of leaf photosynthesis and intrinsic water use efficiency in C3 plants: Why so much little success?

    PubMed

    Flexas, J

    2016-10-01

    There is an urgent need for simultaneously increasing photosynthesis/yields and water use efficiency (WUE) in C3 crops. Potentially, this can be achieved by genetic manipulation of the key traits involved. However, despite significant efforts in the past two decades very limited success has been achieved. Here I argue that this is mostly due to the fact that single gene/single trait approaches have been used thus far. Photosynthesis models demonstrate that only limited improving of photosynthesis can be expected by large improvements of any of its single limiting factors, i.e. stomatal conductance, mesophyll conductance, and the biochemical capacity for photosynthesis, the latter co-limited by Rubisco and the orchestrated activity of thylakoid electron transport and the Calvin cycle enzymes. Accordingly, only limited improvements of photosynthesis have been obtained by genetic manipulation of any of these single factors. In addition, improving photosynthesis by genetic manipulation in general reduced WUE, and vice-versa, and in many cases pleiotropic effects appear that cancel out some of the expected benefits. I propose that success in genetic manipulation for simultaneous improvement of photosynthesis and WUE efficiency may take longer than suggested in previous reports, and that it can be achieved only by joint projects addressing multi-gene manipulation for simultaneous alterations of all the limiting factors of photosynthesis, including the often neglected phloem capacity for loading and transport the expected surplus of carbohydrates in plants with improved photosynthesis.

  20. An update: improvements in imaging perfluorocarbon-mounted plant leaves with implications for studies of plant pathology, physiology, development and cell biology.

    PubMed

    Littlejohn, George R; Mansfield, Jessica C; Christmas, Jacqueline T; Witterick, Eleanor; Fricker, Mark D; Grant, Murray R; Smirnoff, Nicholas; Everson, Richard M; Moger, Julian; Love, John

    2014-01-01

    Plant leaves are optically complex, which makes them difficult to image by light microscopy. Careful sample preparation is therefore required to enable researchers to maximize the information gained from advances in fluorescent protein labeling, cell dyes and innovations in microscope technologies and techniques. We have previously shown that mounting leaves in the non-toxic, non-fluorescent perfluorocarbon (PFC), perfluorodecalin (PFD) enhances the optical properties of the leaf with minimal impact on physiology. Here, we assess the use of the PFCs, PFD, and perfluoroperhydrophenanthrene (PP11) for in vivo plant leaf imaging using four advanced modes of microscopy: laser scanning confocal microscopy (LSCM), two-photon fluorescence microscopy, second harmonic generation microscopy, and stimulated Raman scattering (SRS) microscopy. For every mode of imaging tested, we observed an improved signal when leaves were mounted in PFD or in PP11, compared to mounting the samples in water. Using an image analysis technique based on autocorrelation to quantitatively assess LSCM image deterioration with depth, we show that PP11 outperformed PFD as a mounting medium by enabling the acquisition of clearer images deeper into the tissue. In addition, we show that SRS microscopy can be used to image PFCs directly in the mesophyll and thereby easily delimit the "negative space" within a leaf, which may have important implications for studies of leaf development. Direct comparison of on and off resonance SRS micrographs show that PFCs do not to form intracellular aggregates in live plants. We conclude that the application of PFCs as mounting media substantially increases advanced microscopy image quality of living mesophyll and leaf vascular bundle cells.