Science.gov

Sample records for erisma uncinatum warm

  1. Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum.

    PubMed

    Spiering, Martin J; Moon, Christina D; Wilkinson, Heather H; Schardl, Christopher L

    2005-03-01

    Loline alkaloids are produced by mutualistic fungi symbiotic with grasses, and they protect the host plants from insects. Here we identify in the fungal symbiont, Neotyphodium uncinatum, two homologous gene clusters (LOL-1 and LOL-2) associated with loline-alkaloid production. Nine genes were identified in a 25-kb region of LOL-1 and designated (in order) lolF-1, lolC-1, lolD-1, lolO-1, lolA-1, lolU-1, lolP-1, lolT-1, and lolE-1. LOL-2 contained the homologs lolC-2 through lolE-2 in the same order and orientation. Also identified was lolF-2, but its possible linkage with either cluster was undetermined. Most lol genes were regulated in N. uncinatum and N. coenophialum, and all were expressed concomitantly with loline-alkaloid biosynthesis. A lolC-2 RNA-interference (RNAi) construct was introduced into N. uncinatum, and in two independent transformants, RNAi significantly decreased lolC expression (P < 0.01) and loline-alkaloid accumulation in culture (P < 0.001) compared to vector-only controls, indicating involvement of lolC in biosynthesis of lolines. The predicted LolU protein has a DNA-binding site signature, and the relationships of other lol-gene products indicate that the pathway has evolved from various different primary and secondary biosynthesis pathways.

  2. Coregulated expression of loline alkaloid-biosynthesis genes in Neotyphodium uncinatum cultures.

    PubMed

    Zhang, Dong-Xiu; Stromberg, Arnold J; Spiering, Martin J; Schardl, Christopher L

    2009-08-01

    Epichloë endophytes (holomorphic Epichloë spp. and anamorphic Neotyphodium spp.) are systemic, often heritable symbionts of cool-season grasses (subfamily Pooideae). Many epichloae provide protection to their hosts by producing anti-insect compounds. Among these are the loline alkaloids (LA), which are toxic and deterrent to a broad range of herbivorous insects but not to mammalian herbivores. LOL, a gene cluster containing nine genes, is associated with LA biosynthesis. We investigated coordinate regulation between LOL-gene expression and LA production in minimal medium (MM) cultures of Neotyphodium uncinatum. Expression of all LOL genes significantly fit temporal quadratic patterns during LA production. LOL-gene expression started before LA were detectable, and increased while LA accumulated. The highest gene expression level was reached at close to the time of most rapid LA accumulation, and gene expression declined to a very low level as amounts of LA plateaued. Temporal expression profiles of the nine LOL genes were tightly correlated with each other, but not as tightly correlated with proC and metE (genes for biosynthesis of precursor amino acids). Furthermore, the start days and peak days of expression significantly correlated with the order of the LOL-cluster genes in the genome. Hierarchical cluster analysis indicated three pairs of genes-lolA and lolC, lolO and lolD, and lolT and lolE-expression of which was especially tightly correlated. Of these, lolA and lolC tended to be expressed early, and lolT and lolE tended to be expressed late, in keeping with the putative roles of the respective gene products in the LA-biosynthesis pathway. Several common transcriptional binding sites were discovered in the LOL upstream regions. However, low expression of P(lolC2)uidA and P(lolA2)uidA in N. uncinatum transformants suggested induced expression of LOL genes might be subject to position effect at the LOL locus.

  3. Condensed tannin and saponin content of Vigna unguiculata (L.) Walp, Desmodium uncinatum, Stylosanthes guianensis and Stylosanthes scabra grown in Zimbabwe.

    PubMed

    Baloyi, J J; Ngongoni, N T; Topps, J H; Acamovic, T; Hamudikuwanda, H

    2001-02-01

    Samples of the tropical forage legumes Vigna unguiculata (L.) Walp (cowpea), Desmodium uncinatum (silverleaf desmodium), Stylosanthes guianensis (oxley fine stem stylo) and Stylosanthes scabra (fitzroy) and of natural pasture (veld) hay were analysed and ranked according to their proanthocyanidin (PA) and saponin content. Silverleaf desmodium and fitzroy leaf and stem samples of different ages were also separately analysed for the PA contents. All the samples analysed contained some PA but no saponins. High levels of PA were detected in silverleaf desmodium and very low levels in veld hay and cowpea. In all samples, more of the tannins were bound to protein or neutral detergent fibre (NDF) than were extractable, most being bound to proteins. The proportion of the unextractable PA was greater in younger than in mature materials.

  4. Global Warming.

    ERIC Educational Resources Information Center

    Hileman, Bette

    1989-01-01

    States the foundations of the theory of global warming. Describes methodologies used to measure the changes in the atmosphere. Discusses steps currently being taken in the United States and the world to slow the warming trend. Recognizes many sources for the warming and the possible effects on the earth. (MVL)

  5. Global Warming?

    ERIC Educational Resources Information Center

    Eichman, Julia Christensen; Brown, Jeff A.

    1994-01-01

    Presents information and data on an experiment designed to test whether different atmosphere compositions are affected by light and temperature during both cooling and heating. Although flawed, the experiment should help students appreciate the difficulties that researchers face when trying to find evidence of global warming. (PR)

  6. Global warming

    NASA Astrophysics Data System (ADS)

    Houghton, John

    2005-06-01

    'Global warming' is a phrase that refers to the effect on the climate of human activities, in particular the burning of fossil fuels (coal, oil and gas) and large-scale deforestation, which cause emissions to the atmosphere of large amounts of 'greenhouse gases', of which the most important is carbon dioxide. Such gases absorb infrared radiation emitted by the Earth's surface and act as blankets over the surface keeping it warmer than it would otherwise be. Associated with this warming are changes of climate. The basic science of the 'greenhouse effect' that leads to the warming is well understood. More detailed understanding relies on numerical models of the climate that integrate the basic dynamical and physical equations describing the complete climate system. Many of the likely characteristics of the resulting changes in climate (such as more frequent heat waves, increases in rainfall, increase in frequency and intensity of many extreme climate events) can be identified. Substantial uncertainties remain in knowledge of some of the feedbacks within the climate system (that affect the overall magnitude of change) and in much of the detail of likely regional change. Because of its negative impacts on human communities (including for instance substantial sea-level rise) and on ecosystems, global warming is the most important environmental problem the world faces. Adaptation to the inevitable impacts and mitigation to reduce their magnitude are both necessary. International action is being taken by the world's scientific and political communities. Because of the need for urgent action, the greatest challenge is to move rapidly to much increased energy efficiency and to non-fossil-fuel energy sources.

  7. Warm Up with Skill.

    ERIC Educational Resources Information Center

    Hoyle, R. J.; Smith, Robert F.

    1989-01-01

    Too little time is often spent on warm-up activities in the school or recreation class. Warm-ups are often perfunctory and unimaginative. Several suggestions are made for warm-up activities that incorporate both previously learned and new skills, while preparing the body for more vigorous activity. (IAH)

  8. Warm-Up Activities.

    ERIC Educational Resources Information Center

    Mingguang, Yang

    1999-01-01

    Discusses how warm-up activities can help to make the English-as-a-foreign-language classroom a lively and interesting place. Warm-up activities are games carried out at the beginning of each class to motivate students to make good use of class time. (Author/VWL)

  9. Global Warming Trends.

    ERIC Educational Resources Information Center

    Jones, Philip D.; Wigley, Tom M. L.

    1990-01-01

    Results from the analysis of land and marine records from the past century are presented. It is indicated that the planet earth has warmed about one-half of a degree celsius. The uncertainty of these measurements and future warming trends are discussed. (CW)

  10. Warm autoimmune hemolytic anemia.

    PubMed

    Naik, Rakhi

    2015-06-01

    Warm autoimmune hemolytic anemia (AIHA) is defined as the destruction of circulating red blood cells (RBCs) in the setting of anti-RBC autoantibodies that optimally react at 37°C. The pathophysiology of disease involves phagocytosis of autoantibody-coated RBCs in the spleen and complement-mediated hemolysis. Thus far, treatment is aimed at decreasing autoantibody production with immunosuppression or reducing phagocytosis of affected cells in the spleen. The role of complement inhibitors in warm AIHA has not been explored. This article addresses the diagnosis, etiology, and treatment of warm AIHA and highlights the role of complement in disease pathology.

  11. Warm and Cool Dinosaurs.

    ERIC Educational Resources Information Center

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  12. Reconciling Warming Trends

    NASA Technical Reports Server (NTRS)

    Schmidt, Gavin A.; Shindell, Drew T.; Tsigaridis, Konstantinos

    2014-01-01

    Climate models projected stronger warming over the past 15 years than has been seen in observations. Conspiring factors of errors in volcanic and solar inputs, representations of aerosols, and El NiNo evolution, may explain most of the discrepancy.

  13. Polar Warming Drivers

    NASA Astrophysics Data System (ADS)

    McDunn, T. L.; Bougher, S. W.; Mischna, M. A.; Murphy, J. R.

    2012-12-01

    Polar warming is a dynamically induced temperature enhancement over mid-to-high latitudes that results in a reversed (poleward) meridional temperature gradient. This phenomenon was recently characterized over the 40-90 km altitude region [1] based on nearly three martian years of Mars Climate Sounder observations [2, 3]. Here we investigate which forcing mechanisms affect the magnitude and distribution of the observed polar warming by conducting simulations with the Mars Weather Research and Forecasting General Circulation Model [4, 5]. We present simulations confirming the influence topography [6] and dust loading [e.g., 7] have upon polar warming. We then present simulations illustrating the modulating influence gravity wave momentum deposition exerts upon polar warming, consistent with previous modeling studies [e.g., 8]. The results of this investigation suggest the magnitude and distribution of polar warming in the martian middle atmosphere is modified by gravity wave activity and that the characteristics of the gravity waves that most significantly affect polar warming vary with season. References: [1] McDunn, et al., 2012 (JGR), [2]Kleinböhl, et al., 2009 (JGR), [3] Kleinböhl, et al., 2011 (JQSRT), [4] Richardson, et al., 2007 (JGR), [5] Mischna, et al., 2011 (Planet. Space Sci.), [6] Richardson and Wilson, 2002 (Nature), [7] Haberle, et al., 1982 (Icarus), [8] Barnes, 1990 (JGR).

  14. Global warming on trial

    SciTech Connect

    Broeker, W.S.

    1992-04-01

    Jim Hansen, a climatologist at NASA's Goddard Space Institute, is convinced that the earth's temperature is rising and places the blame on the buildup of greenhouse gases in the atmosphere. Unconvinced, John Sununu, former White House chief of staff, doubts that the warming will be great enough to produce serious threat and fears that measures to reduce the emissions would throw a wrench into the gears that drive the Unites States' troubled economy. During his three years at the White House, Sununu's view prevailed, and although his role in the debate has diminished, others continue to cast doubt on the reality of global warming. A new lobbying group called the Climate Council has been created to do just this. Burning fossil fuels is not the only problem; a fifth of emissions of carbon dioxide now come from clearing and burning forests. Scientists are also tracking a host of other greenhouse gases that emanate from a variety of human activities; the warming effect of methane, chlorofluorocarbons and nitrous oxide combined equals that of carbon dioxide. Although the current warming from these gases may be difficult to detect against the background noise of natural climate variation, most climatologists are certain that as the gases continue to accumulate, increases in the earth's temperature will become evident even to skeptics. If the reality of global warming were put on trial, each side would have trouble making its case. Jim Hansen's side could not prove beyond a reasonable doubt that carbon dioxide and other greenhouse gases have warmed the planet. But neither could John Sununu's side prove beyond a reasonable doubt that the warming expected from greenhouse gases has not occurred. To see why each side would have difficulty proving its case, this article reviews the arguments that might be presented in such a hearing.

  15. Warm and Cool Cityscapes

    ERIC Educational Resources Information Center

    Jubelirer, Shelly

    2012-01-01

    Painting cityscapes is a great way to teach first-grade students about warm and cool colors. Before the painting begins, the author and her class have an in-depth discussion about big cities and what types of buildings or structures that might be seen in them. They talk about large apartment and condo buildings, skyscrapers, art museums,…

  16. Warming Up to Communication.

    ERIC Educational Resources Information Center

    Garner, Lucia Caycedo; Rusch, Debbie

    Daily warm-up exercises are advocated as a means of bridging the gap between previously unrelated activities outside the classroom and immersion into the second language, relaxing the class, and establishing a mood for communication. Variety, careful preparation, assuring that the students understand the activity, feeling free to discontinue an…

  17. Global warming 'confirmed'

    NASA Astrophysics Data System (ADS)

    2011-12-01

    In October, the Berkeley Earth Surface Temperature project, funded in part by climate sceptics, concluded that the Earth is warming based on the most comprehensive review of the data yet. Nature Climate Change talks to the project's director, physicist Richard Muller.

  18. Greenhouse warming still coming

    SciTech Connect

    Kerr, R.A.

    1986-05-02

    The growing store of carbon dioxide in the earth's atmosphere from the burning of fossil fuels and deforestation is a far larger and more pervasive problem than acid rain. The predictions of the latest models that have been applied to the problem, called GCM-mixed-layer ocean models, predict a global temperature increase between 3.5 and 4.2 degrees Celsius. They predict that the warming will be larger near the poles than near the equator. They also predict increases and decreases in precipitation depending on location, the largest changes being between 30/sup 0/N and 30/sup 0/S. If CO/sub 2/ and trace gas concentrations continue to rise as projected and model calculations are essentially correct, the increasing global scale warming should become much more evident over the next few decades. 1 figure.

  19. Warm Little Inflaton.

    PubMed

    Bastero-Gil, Mar; Berera, Arjun; Ramos, Rudnei O; Rosa, João G

    2016-10-07

    We show that inflation can naturally occur at a finite temperature T>H that is sustained by dissipative effects, when the inflaton field corresponds to a pseudo Nambu-Goldstone boson of a broken gauge symmetry. Similar to the Little Higgs scenarios for electroweak symmetry breaking, the flatness of the inflaton potential is protected against both quadratic divergences and the leading thermal corrections. We show that, nevertheless, nonlocal dissipative effects are naturally present and are able to sustain a nearly thermal bath of light particles despite the accelerated expansion of the Universe. As an example, we discuss the dynamics of chaotic warm inflation with a quartic potential and show that the associated observational predictions are in very good agreement with the latest Planck results. This model constitutes the first realization of warm inflation requiring only a small number of fields; in particular, the inflaton is directly coupled to just two light fields.

  20. Warm Little Inflaton

    NASA Astrophysics Data System (ADS)

    Bastero-Gil, Mar; Berera, Arjun; Ramos, Rudnei O.; Rosa, João G.

    2016-10-01

    We show that inflation can naturally occur at a finite temperature T >H that is sustained by dissipative effects, when the inflaton field corresponds to a pseudo Nambu-Goldstone boson of a broken gauge symmetry. Similar to the Little Higgs scenarios for electroweak symmetry breaking, the flatness of the inflaton potential is protected against both quadratic divergences and the leading thermal corrections. We show that, nevertheless, nonlocal dissipative effects are naturally present and are able to sustain a nearly thermal bath of light particles despite the accelerated expansion of the Universe. As an example, we discuss the dynamics of chaotic warm inflation with a quartic potential and show that the associated observational predictions are in very good agreement with the latest Planck results. This model constitutes the first realization of warm inflation requiring only a small number of fields; in particular, the inflaton is directly coupled to just two light fields.

  1. Military Implications of Global Warming.

    DTIC Science & Technology

    2007-11-02

    U.S. environmental issues also have important global implications. This paper analyzes current U.S. Policy as it pertains to global warming and climate...for military involvement to reduce global warming . Global warming and other environmental issues are important to the U.S. military. As the United

  2. Global Warming And Meltwater

    NASA Astrophysics Data System (ADS)

    Bratu, S.

    2012-04-01

    In order to find new approaches and new ideas for my students to appreciate the importance of science in their daily life, I proposed a theme for them to debate. They had to search for global warming information and illustrations in the media, and discuss the articles they found in the classroom. This task inspired them to search for new information about this important and timely theme in science. I informed my students that all the best information about global warming and meltwater they found would be used in a poster that would help us to update the knowledge base of the Physics laboratory. I guided them to choose the most eloquent images and significant information. Searching and working to create this poster, the students arrived to better appreciate the importance of science in their daily life and to critically evaluate scientific information transmitted via the media. In the poster we created, one can find images, photos and diagrams and some interesting information: Global warming refers to the rising average temperature of the Earth's atmosphere and oceans and its projected evolution. In the last 100 years, the Earth's average surface temperature increased by about 0.8 °C with about two thirds of the increase occurring over just the last three decades. Warming of the climate system is unequivocal, and scientists are more than 90% certain most of it is caused by increasing concentrations of greenhouse gases produced by human activities such as deforestation and burning fossil fuel. They indicate that during the 21st century the global surface temperature is likely to rise a further 1.1 to 2.9 °C for the lowest emissions scenario and 2.4 to 6.4 °C for the highest predictions. An increase in global temperature will cause sea levels to rise and will change the amount and pattern of precipitation, and potentially result in expansion of subtropical deserts. Warming is expected to be strongest in the Arctic and would be associated with continuing decrease of

  3. Warm climate surprises

    SciTech Connect

    Overpeck, J.T.

    1996-03-29

    Over the last decade, paleoclimatic data from ice cores and sediments have shown that the climate system is capable of switching between significantly different modes, suggesting that climatic surprises may lie ahead. Most attention in the growing area of abrupt climatic change research continues to be focused on large changes observed during glacial periods. The weight of paleoclimatic evidence now suggests that conforting conclusions of benign warm climate variability may be incorrect. The article goes on to discuss the evidence for this. 17 refs.

  4. Is Global Warming Accelerating?

    NASA Astrophysics Data System (ADS)

    Shukla, J.; Delsole, T. M.; Tippett, M. K.

    2009-12-01

    A global pattern that fluctuates naturally on decadal time scales is identified in climate simulations and observations. This newly discovered component, called the Global Multidecadal Oscillation (GMO), is related to the Atlantic Meridional Oscillation and shown to account for a substantial fraction of decadal fluctuations in the observed global average sea surface temperature. IPCC-class climate models generally underestimate the variance of the GMO, and hence underestimate the decadal fluctuations due to this component of natural variability. Decomposing observed sea surface temperature into a component due to anthropogenic and natural radiative forcing plus the GMO, reveals that most multidecadal fluctuations in the observed global average sea surface temperature can be accounted for by these two components alone. The fact that the GMO varies naturally on multidecadal time scales implies that it can be predicted with some skill on decadal time scales, which provides a scientific rationale for decadal predictions. Furthermore, the GMO is shown to account for about half of the warming in the last 25 years and hence a substantial fraction of the recent acceleration in the rate of increase in global average sea surface temperature. Nevertheless, in terms of the global average “well-observed” sea surface temperature, the GMO can account for only about 0.1° C in transient, decadal-scale fluctuations, not the century-long 1° C warming that has been observed during the twentieth century.

  5. Warm waters, bleached corals

    SciTech Connect

    Roberts, L.

    1990-10-12

    Two researchers, Tom Goreau of the Discovery Laboratory in Jamaica and Raymond Hayes of Howard University, claim that they have evidence that nearly clinches the temperature connection to the bleached corals in the Caribbean and that the coral bleaching is an indication of Greenhouse warming. The incidents of scattered bleaching of corals, which have been reported for decades, are increasing in both intensity and frequency. The researchers based their theory on increased temperature of the seas measured by satellites. However, some other scientists feel that the satellites measure the temperature of only the top few millimeters of the water and that since corals lie on reefs perhaps 60 to 100 feet below the ocean surface, the elevated temperatures are not significant.

  6. Global warming challenge

    SciTech Connect

    Hengeveld, H. )

    1994-11-01

    Global warming will necessitate significant adjustments in Canadian society and its economy. In 1979, the Canadian federal government created its Canadian Climate Program (CCP) in collaboration with other agencies, institutions, and individuals. It sought to coordinate national efforts to understand global and regional climate, and to promote better use of the emerging knowledge. Much of the CCP-coordinated research into sources and sinks of greenhouse gases interfaces with other national and international programs. Other researchers have become involved in the Northern Wetlands Study, a cooperative United States-Canada initiative to understand the role of huge northern bogs and muskegs in the carbon cycle. Because of the need to understand how the whole, linked climate system works, climate modeling emerged as a key focus of current research. 35 refs., 4 figs.

  7. Competent and Warm?

    PubMed

    Hansen, Karolina; Rakić, Tamara; Steffens, Melanie C

    2017-01-01

    Most research on ethnicity has focused on visual cues. However, accents are strong social cues that can match or contradict visual cues. We examined understudied reactions to people whose one cue suggests one ethnicity, whereas the other cue contradicts it. In an experiment conducted in Germany, job candidates spoke with an accent either congruent or incongruent with their (German or Turkish) appearance. Based on ethnolinguistic identity theory, we predicted that accents would be strong cues for categorization and evaluation. Based on expectancy violations theory we expected that incongruent targets would be evaluated more extremely than congruent targets. Both predictions were confirmed: accents strongly influenced perceptions and Turkish-looking German-accented targets were perceived as most competent of all targets (and additionally most warm). The findings show that bringing together visual and auditory information yields a more complete picture of the processes underlying impression formation.

  8. Global Warming on Triton

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Hammel, H. B.; Wasserman, L. H.; Franz, O. G.; McDonald, S. W.; Person, M. J.; Olkin, C. B.; Dunham, E. J.; Spencer, J. R.; Stansberry, J. A.; Buie, M. W.; Pasachoff, J. M.; Babcock, B. A.; McConnochie, T. H.

    1998-01-01

    Triton, Neptune's largest moon, has been predicted to undergo significant seasonal changes that would reveal themselves as changes in its mean frost temperature. But whether this temperature should at the present time be increasing, decreasing or constant depends on a number of parameters (such as the thermal properties of the surface, and frost migration patterns) that are unknown. Here we report observations of a recent stellar occultation by Triton which, when combined with earlier results, show that Triton has undergone a period of global warming since 1989. Our most conservative estimates of the rate of temperature and surface-pressure increase during this period imply that the atmosphere is doubling in bulk every 10 years, significantly faster than predicted by any published frost model for Triton. Our result suggests that permanent polar caps on Triton play a c dominant role in regulating seasonal atmospheric changes. Similar processes should also be active on Pluto.

  9. Interacting warm dark matter

    SciTech Connect

    Cruz, Norman; Palma, Guillermo; Zambrano, David; Avelino, Arturo E-mail: guillermo.palma@usach.cl E-mail: avelino@fisica.ugto.mx

    2013-05-01

    We explore a cosmological model composed by a dark matter fluid interacting with a dark energy fluid. The interaction term has the non-linear λρ{sub m}{sup α}ρ{sub e}{sup β} form, where ρ{sub m} and ρ{sub e} are the energy densities of the dark matter and dark energy, respectively. The parameters α and β are in principle not constrained to take any particular values, and were estimated from observations. We perform an analytical study of the evolution equations, finding the fixed points and their stability properties in order to characterize suitable physical regions in the phase space of the dark matter and dark energy densities. The constants (λ,α,β) as well as w{sub m} and w{sub e} of the EoS of dark matter and dark energy respectively, were estimated using the cosmological observations of the type Ia supernovae and the Hubble expansion rate H(z) data sets. We find that the best estimated values for the free parameters of the model correspond to a warm dark matter interacting with a phantom dark energy component, with a well goodness-of-fit to data. However, using the Bayesian Information Criterion (BIC) we find that this model is overcame by a warm dark matter – phantom dark energy model without interaction, as well as by the ΛCDM model. We find also a large dispersion on the best estimated values of the (λ,α,β) parameters, so even if we are not able to set strong constraints on their values, given the goodness-of-fit to data of the model, we find that a large variety of theirs values are well compatible with the observational data used.

  10. Local warming: daily temperature change influences belief in global warming.

    PubMed

    Li, Ye; Johnson, Eric J; Zaval, Lisa

    2011-04-01

    Although people are quite aware of global warming, their beliefs about it may be malleable; specifically, their beliefs may be constructed in response to questions about global warming. Beliefs may reflect irrelevant but salient information, such as the current day's temperature. This replacement of a more complex, less easily accessed judgment with a simple, more accessible one is known as attribute substitution. In three studies, we asked residents of the United States and Australia to report their opinions about global warming and whether the temperature on the day of the study was warmer or cooler than usual. Respondents who thought that day was warmer than usual believed more in and had greater concern about global warming than did respondents who thought that day was colder than usual. They also donated more money to a global-warming charity if they thought that day seemed warmer than usual. We used instrumental variable regression to rule out some alternative explanations.

  11. Blodgett Forest Warming Experiment 1

    DOE Data Explorer

    Pries, Caitlin Hicks (ORCID:0000000308132211); Castanha, Cristina; Porras, Rachel; Torn, Margaret

    2017-03-24

    Carbon stocks and density fractions from soil pits used to characterize soils of the Blodgett warming experiment as well as gas well CO2, 13C, and 14C data from experimental plots. The experiment consisted of 3 control and heated plot pairs. The heated plots are warmed +4°C above the control from 10 to 100 cm.

  12. Consistency of warm k -inflation

    NASA Astrophysics Data System (ADS)

    Peng, Zhi-Peng; Yu, Jia-Ning; Zhu, Jian-Yang; Zhang, Xiao-Min

    2016-11-01

    We extend k -inflation which is a type of kinetically driven inflationary model under the standard inflationary scenario to a possible warm inflationary scenario. The dynamical equations of this warm k -inflation model are obtained. We rewrite the slow-roll parameters which are different from the usual potential driven inflationary models and perform a linear stability analysis to give the proper slow-roll conditions in warm k -inflation. Two cases, a power-law kinetic function and an exponential kinetic function, are studied, when the dissipative coefficient Γ =Γ0 and Γ =Γ (ϕ ), respectively. A proper number of e-folds is obtained in both concrete cases of warm k -inflation. We find a constant dissipative coefficient (Γ =Γ0) is not a workable choice for these two cases while the two cases with Γ =Γ (ϕ ) are self-consistent warm inflationary models.

  13. Explaining Warm Coronal Loops

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.; Karpen, Judy T.; Patsourakos, Spiros

    2008-01-01

    One of the great mysteries of coronal physics that has come to light in the last few years is the discovery that warn (- 1 INK) coronal loops are much denser than expected for quasi-static equilibrium. Both the excess densities and relatively long lifetimes of the loops can be explained with bundles of unresolved strands that are heated impulsively to very high temperatures. Since neighboring strands are at different stages of cooling, the composite loop bundle is multi-thermal, with the distribution of temperatures depending on the details of the "nanoflare storm." Emission hotter than 2 MK is predicted, but it is not clear that such emission is always observed. We consider two possible explanations for the existence of over-dense warm loops without corresponding hot emission: (1) loops are bundles of nanoflare heated strands, but a significant fraction of the nanoflare energy takes the form of a nonthermal electron beam rather then direct plasma heating; (2) loops are bundles of strands that undergo thermal nonequilibrium that results when steady heating is sufficiently concentrated near the footpoints. We present numerical hydro simulations of both of these possibilities and explore the observational consequences, including the production of hard X-ray emission and absorption by cool material in the corona.

  14. Warm dense crystallography

    NASA Astrophysics Data System (ADS)

    Valenza, Ryan A.; Seidler, Gerald T.

    2016-03-01

    The intense femtosecond-scale pulses from x-ray free electron lasers (XFELs) are able to create and interrogate interesting states of matter characterized by long-lived nonequilibrium semicore or core electron occupancies or by the heating of dense phases via the relaxation cascade initiated by the photoelectric effect. We address here the latter case of "warm dense matter" (WDM) and investigate the observable consequences of x-ray heating of the electronic degrees of freedom in crystalline systems. We report temperature-dependent density functional theory calculations for the x-ray diffraction from crystalline LiF, graphite, diamond, and Be. We find testable, strong signatures of condensed-phase effects that emphasize the importance of wide-angle scattering to study nonequilibrium states. These results also suggest that the reorganization of the valence electron density at eV-scale temperatures presents a confounding factor to achieving atomic resolution in macromolecular serial femtosecond crystallography (SFX) studies at XFELs, as performed under the "diffract before destroy" paradigm.

  15. How the West Was Warmed

    NASA Astrophysics Data System (ADS)

    Hoerling, M.; Eischeid, J.

    2006-05-01

    Is the West getting warmer? To be sure, the summer of 2005 was one of record heat in the West, and recent period of western US drought during 1998-2004 was also accompanied by unusual warmth. But warm conditions accompanied the Dust Bowl era of the 1930s and the 1950s. The question remains open whether recent western warming has been part of a externally forced climate trend, or whether other processes have been at play like urbanization or the inherent natural fluctuations of climate paterns? We perform analysis of the Fourth Assessment coupled ocean-atmosphere models for the period 1895-2005, together with atmospheric general circulation model experiments. These reveal that the recent warming of the West has very likely been a consequence of increasing greenhouse gases. In fact, no single member of 40 availabl GHG-forced simulations failed to warm the West during the past century. We further show that a warming of the tropical oceanic warm pool regions, itself a greenhouse gas forced response, has been a major contributor to the warming of the West since 1970.

  16. Recent warming of lake Kivu.

    PubMed

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  17. Recent Warming of Lake Kivu

    PubMed Central

    Katsev, Sergei; Aaberg, Arthur A.; Crowe, Sean A.; Hecky, Robert E.

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient. PMID:25295730

  18. Amplified Arctic warming by phytoplankton under greenhouse warming.

    PubMed

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  19. Weird Warm Spot on Exoplanet

    NASA Video Gallery

    This animation illustrates an unexpected warm spot on the surface of a gaseous exoplanet. NASA's Spitzer Space Telescope discovered that the hottest part of the planet, shown here as bright, orange...

  20. Global warming potentials of Hydrofluoroethers.

    PubMed

    Blowers, Paul; Moline, Dena Marie; Tetrault, Kyle Franklin; Wheeler, R'nld Ruth; Tuchawena, Shane Lee

    2008-02-15

    Global warming potentials are estimated for hydrofluoroethers, which are an emerging class of compounds for industrial use. Comparisons are made to the limited data previously available before observations about molecular design are discussed. We quantify how molecular structure can be manipulated to reduce environmental impacts due to global warming. We further highlight the need for additional research on this class of compounds so environmental performance can be assessed for green design.

  1. The Great Warming Brian Fagan

    NASA Astrophysics Data System (ADS)

    Fagan, B. M.

    2010-12-01

    The Great Warming is a journey back to the world of a thousand years ago, to the Medieval Warm Period. Five centuries of irregular warming from 800 to 1250 had beneficial effects in Europe and the North Atlantic, but brought prolonged droughts to much of the Americas and lands affected by the South Asian monsoon. The book describes these impacts of warming on medieval European societies, as well as the Norse and the Inuit of the far north, then analyzes the impact of harsh, lengthy droughts on hunting societies in western North America and the Ancestral Pueblo farmers of Chaco Canyon, New Mexico. These peoples reacted to drought by relocating entire communities. The Maya civilization was much more vulnerable that small-scale hunter-gatherer societies and subsistence farmers in North America. Maya rulers created huge water storage facilities, but their civilization partially collapsed under the stress of repeated multiyear droughts, while the Chimu lords of coastal Peru adapted with sophisticated irrigation works. The climatic villain was prolonged, cool La Niñalike conditions in the Pacific, which caused droughts from Venezuela to East Asia, and as far west as East Africa. The Great Warming argues that the warm centuries brought savage drought to much of humanity, from China to Peru. It also argues that drought is one of the most dangerous elements in today’s humanly created global warming, often ignored by preoccupied commentators, but with the potential to cause over a billion people to starve. Finally, I use the book to discuss the issues and problems of communicating multidisciplinary science to the general public.

  2. How warm days increase belief in global warming

    NASA Astrophysics Data System (ADS)

    Zaval, Lisa; Keenan, Elizabeth A.; Johnson, Eric J.; Weber, Elke U.

    2014-02-01

    Climate change judgements can depend on whether today seems warmer or colder than usual, termed the local warming effect. Although previous research has demonstrated that this effect occurs, studies have yet to explain why or how temperature abnormalities influence global warming attitudes. A better understanding of the underlying psychology of this effect can help explain the public's reaction to climate change and inform approaches used to communicate the phenomenon. Across five studies, we find evidence of attribute substitution, whereby individuals use less relevant but available information (for example, today's temperature) in place of more diagnostic but less accessible information (for example, global climate change patterns) when making judgements. Moreover, we rule out alternative hypotheses involving climate change labelling and lay mental models. Ultimately, we show that present temperature abnormalities are given undue weight and lead to an overestimation of the frequency of similar past events, thereby increasing belief in and concern for global warming.

  3. Distinguishing warming-induced drought from drought-induced warming

    NASA Astrophysics Data System (ADS)

    Roderick, M. L.; Yin, D.

    2015-12-01

    It is usually observed that temperatures, especially maximum temperatures are higher during drought. A very widely held public perception is that the increase in temperature is a cause of drought. This represents the warming-induced drought scenario. However, the agricultural and hydrologic scientific communities have a very different interpretation with drought being the cause of increasing temperature. In essence, those communities assume the warming is a surface feedback and their interpretation is for drought-induced warming. This is a classic cause-effect problem that has resisted definitive explanation due to the lack of radiative observations at suitable spatial and temporal scales. In this presentation we first summarise the observations and then use theory to untangle the cause-effect relationships that underlie the competing interpretations. We then show how satellite data (CERES, NASA) can be used to disentangle the cause-effect relations.

  4. Active Movement Warm-Up Routines

    ERIC Educational Resources Information Center

    Walter, Teri; Quint, Ashleigh; Fischer, Kim; Kiger, Joy

    2011-01-01

    This article presents warm-ups that are designed to physiologically and psychologically prepare students for vigorous physical activity. An active movement warm-up routine is made up of three parts: (1) active warm-up movement exercises, (2) general preparation, and (3) the energy system. These warm-up routines can be used with all grade levels…

  5. Warm Up to a Good Sound

    ERIC Educational Resources Information Center

    Tovey, David C.

    1977-01-01

    Most choral directors in schools today have been exposed to a variety of warm-up procedures. Yet, many do not use the warm-up time effectively as possible. Considers the factors appropriate to a warm-up exercise and three basic warm-up categories. (Author/RK)

  6. Global warming and infectious disease.

    PubMed

    Khasnis, Atul A; Nettleman, Mary D

    2005-01-01

    Global warming has serious implications for all aspects of human life, including infectious diseases. The effect of global warming depends on the complex interaction between the human host population and the causative infectious agent. From the human standpoint, changes in the environment may trigger human migration, causing disease patterns to shift. Crop failures and famine may reduce host resistance to infections. Disease transmission may be enhanced through the scarcity and contamination of potable water sources. Importantly, significant economic and political stresses may damage the existing public health infrastructure, leaving mankind poorly prepared for unexpected epidemics. Global warming will certainly affect the abundance and distribution of disease vectors. Altitudes that are currently too cool to sustain vectors will become more conducive to them. Some vector populations may expand into new geographic areas, whereas others may disappear. Malaria, dengue, plague, and viruses causing encephalitic syndromes are among the many vector-borne diseases likely to be affected. Some models suggest that vector-borne diseases will become more common as the earth warms, although caution is needed in interpreting these predictions. Clearly, global warming will cause changes in the epidemiology of infectious diseases. The ability of mankind to react or adapt is dependent upon the magnitude and speed of the change. The outcome will also depend on our ability to recognize epidemics early, to contain them effectively, to provide appropriate treatment, and to commit resources to prevention and research.

  7. [Passive nighttime warming (PNW) system, its design and warming effect].

    PubMed

    Chen, Jin; Yang, Fei; Zhang, Bin; Tian, Yun-lu; Dong, Wen-jun; Zhang, Wei-jian

    2010-09-01

    Based on the technique of passive nighttime warming (PNW), a convenient and energy-saving PNW facility was designed for a rice-wheat cropping system in Danyang, Jiangsu Province. The facility could guarantee 15.75 m2 effective sampling area, with a homogeneous amplitude of increased temperature, and making the nighttime canopy temperature during whole rice growth season increased averagely by 1.1 degrees C and the nighttime canopy temperature and 5 cm soil temperature during whole winter wheat growth period increased averagely by 1.3 degrees C and 0.8 degrees C, respectively. During the operation period of the facility, the variation trends of the canopy temperature and 5 cm soil temperature during the whole growth periods of rice and winter wheat in the warming plots were similar to those of the control. Though the facility slightly decreased the soil moisture content during winter wheat growth period, wheat growth was less impacted. The application of this facility in our main production areas of rice and winter wheat showed that the facility could advance the initial blossoming stages of rice and winter wheat averagely by 3 d and 5 d, respectively. In despite of the discrepancy in the warming effect among different regions and seasons, this energy-saving facility was reliable for the field research on crop responses to climate warming, when the homogeneity of increased temperature, the effective area, and the effects on crop growth period were taken into comprehensive consideration.

  8. Global warming at the summit

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    During the recent summit meeting between Russian President Vladimir Putin and U.S. President Bill Clinton, the two leaders reaffirmed their concerns about global warming and the need to continue to take actions to try to reduce the threat.In a June 4 joint statement, they stressed the need to develop flexibility mechanisms, including international emissions trading, under the Kyoto Protocol to the United Nations Framework Convention on Climate Change. They also noted that initiatives to reduce the risk of greenhouse warming, including specific mechanisms of the Kyoto Protocol, could potentially promote economic growth.

  9. Warming up to solar energy

    SciTech Connect

    Biondo, B.

    1996-07-01

    Increasingly alarmed by threats to their financial security posed by an escalating number of weather-related catastrophes, major insurance companaies, particularly those in Europe and Asia, are starting to support a variety of measures that would slowe the production of grenhouse gases worlwide. As the insurance and banking industries turn their attention to global warming, investments in solar energy take on growing appeal.

  10. Equatorial refuge amid tropical warming

    NASA Astrophysics Data System (ADS)

    Karnauskas, Kristopher B.; Cohen, Anne L.

    2012-07-01

    Upwelling across the tropical Pacific Ocean is projected to weaken in accordance with a reduction of the atmospheric overturning circulation, enhancing the increase in sea surface temperature relative to other regions in response to greenhouse-gas forcing. In the central Pacific, home to one of the largest marine protected areas and fishery regions in the global tropics, sea surface temperatures are projected to increase by 2.8°C by the end of this century. Of critical concern is that marine protected areas may not provide refuge from the anticipated rate of large-scale warming, which could exceed the evolutionary capacity of coral and their symbionts to adapt. Combining high-resolution satellite measurements, an ensemble of global climate models and an eddy-resolving regional ocean circulation model, we show that warming and productivity decline around select Pacific islands will be mitigated by enhanced upwelling associated with a strengthening of the equatorial undercurrent. Enhanced topographic upwelling will act as a negative feedback, locally mitigating the surface warming. At the Gilbert Islands, the rate of warming will be reduced by 0.7+/-0.3°C or 25+/-9% per century, or an overall cooling effect comparable to the local anomaly for a typical El Niño, by the end of this century. As the equatorial undercurrent is dynamically constrained to the Equator, only a handful of coral reefs stand to benefit from this equatorial island effect. Nevertheless, those that do face a lower rate of warming, conferring a significant advantage over neighbouring reef systems. If realized, these predictions help to identify potential refuges for coral reef communities from anticipated climate changes of the twenty-first century.

  11. Versions of the Waste Reduction Model (WARM)

    EPA Pesticide Factsheets

    This page provides a brief chronology of changes made to EPA’s Waste Reduction Model (WARM), organized by WARM version number. The page includes brief summaries of changes and updates since the previous version.

  12. Arctic climate change: Greenhouse warming unleashed

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten

    2016-04-01

    Human activity alters the atmospheric composition, which leads to global warming. Model simulations suggest that reductions in emission of sulfur dioxide from Europe since the 1970s could have unveiled rapid Arctic greenhouse gas warming.

  13. Waste Reduction Model (WARM) Resources for Students

    EPA Pesticide Factsheets

    This page provides a brief overview of how EPA’s Waste Reduction Model (WARM) can be used by students. The page includes a brief summary of uses of WARM for the audience and links to other resources.

  14. Global warming: Clouds cooled the Earth

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten

    2016-12-01

    The slow instrumental-record warming is consistent with lower-end climate sensitivity. Simulations and observations now show that changing sea surface temperature patterns could have affected cloudiness and thereby dampened the warming.

  15. Warming trends: Adapting to nonlinear change

    SciTech Connect

    Jonko, Alexandra K.

    2015-01-28

    As atmospheric carbon dioxide concentrations rise, some regions are expected to warm more than others. Research suggests that whether warming will intensify or slow down over time also depends on location.

  16. Documentation for the Waste Reduction Model (WARM)

    EPA Pesticide Factsheets

    This page describes the WARM documentation files and provides links to all documentation files associated with EPA’s Waste Reduction Model (WARM). The page includes a brief summary of the chapters documenting the greenhouse gas emission and energy factors.

  17. Trophic mismatch requires seasonal heterogeneity of warming.

    PubMed

    Straile, Dietmar; Kerimoglu, Onur; Peeters, Frank

    2015-10-01

    Climate warming has been shown to advance the phenology of species. Asynchronous changes in phenology between interacting species may disrupt feeding interactions (phenological mismatch), which could have tremendous consequences for ecosystem functioning. Long-term field observations have suggested asynchronous shifts in phenology with warming, whereas experimental studies have not been conclusive. Using proxy-based modeling of three trophic levels (algae, herbivores, and fish), we .show that asynchronous changes in phenology only occur if warming is seasonally heterogeneous, but not if warming is constant throughout the year. If warming is seasonally heterogeneous, the degree and even direction of asynchrony depends on the specific seasonality of the warming. Conclusions about phenological mismatches in food web interactions may therefore produce controversial results if the analyses do not distinguish between seasonally constant and seasonal specific warming. Furthermore, our results suggest that predicting asynchrony between interacting species requires reliable warming predictions that resolve sub-seasonal time scales.

  18. Multidecadal warming of Antarctic waters.

    PubMed

    Schmidtko, Sunke; Heywood, Karen J; Thompson, Andrew F; Aoki, Shigeru

    2014-12-05

    Decadal trends in the properties of seawater adjacent to Antarctica are poorly known, and the mechanisms responsible for such changes are uncertain. Antarctic ice sheet mass loss is largely driven by ice shelf basal melt, which is influenced by ocean-ice interactions and has been correlated with Antarctic Continental Shelf Bottom Water (ASBW) temperature. We document the spatial distribution of long-term large-scale trends in temperature, salinity, and core depth over the Antarctic continental shelf and slope. Warming at the seabed in the Bellingshausen and Amundsen seas is linked to increased heat content and to a shoaling of the mid-depth temperature maximum over the continental slope, allowing warmer, saltier water greater access to the shelf in recent years. Regions of ASBW warming are those exhibiting increased ice shelf melt.

  19. Hydrological consequences of global warming

    SciTech Connect

    Miller, Norman L.

    2009-06-01

    The 2007 Intergovernmental Panel for Climate Change indicates there is strong evidence that the atmospheric concentration of carbon dioxide far exceeds the natural range over the last 650,000 years, and this recent warming of the climate system is unequivocal, resulting in more frequent extreme precipitation events, earlier snowmelt runoff, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. The effects of recent warming has been well documented and climate model projections indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99 percent) of occurring with significant to severe consequences in response to a warmer lower atmosphere with an accelerating hydrologic cycle.

  20. MCCB warm adjustment testing concept

    NASA Astrophysics Data System (ADS)

    Erdei, Z.; Horgos, M.; Grib, A.; Preradović, D. M.; Rodic, V.

    2016-08-01

    This paper presents an experimental investigation in to operating of thermal protection device behavior from an MCCB (Molded Case Circuit Breaker). One of the main functions of the circuit breaker is to assure protection for the circuits where mounted in for possible overloads of the circuit. The tripping mechanism for the overload protection is based on a bimetal movement during a specific time frame. This movement needs to be controlled and as a solution to control this movement we choose the warm adjustment concept. This concept is meant to improve process capability control and final output. The warm adjustment device design will create a unique adjustment of the bimetal position for each individual breaker, determined when the testing current will flow thru a phase which needs to trip in a certain amount of time. This time is predetermined due to scientific calculation for all standard types of amperages and complies with the IEC 60497 standard requirements.

  1. Lagrangian description of warm plasmas

    NASA Technical Reports Server (NTRS)

    Kim, H.

    1970-01-01

    Efforts are described to extend the averaged Lagrangian method of describing small signal wave propagation and nonlinear wave interaction, developed by earlier workers for cold plasmas, to the more general conditions of warm collisionless plasmas, and to demonstrate particularly the effectiveness of the method in analyzing wave-wave interactions. The theory is developed for both the microscopic description and the hydrodynamic approximation to plasma behavior. First, a microscopic Lagrangian is formulated rigorously, and expanded in terms of perturbations about equilibrium. Two methods are then described for deriving a hydrodynamic Lagrangian. In the first of these, the Lagrangian is obtained by velocity integration of the exact microscopic Lagrangian. In the second, the expanded hydrodynamic Lagrangian is obtained directly from the expanded microscopic Lagrangian. As applications of the microscopic Lagrangian, the small-signal dispersion relations and the coupled mode equations are derived for all possible waves in a warm infinite, weakly inhomogeneous magnetoplasma, and their interactions are examined.

  2. Analysis of data from spacecraft (stratospheric warmings)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The details of the stratospheric warming processes as to time, area, and intensity were established, and the warmings with other terrestrial and solar phenomena occurring at satellite platform altitudes, or observable from satellite platforms, were correlated. Links were sought between the perturbed upper atmosphere (mesosphere and thermosphere) and the stratosphere that might explain stratospheric warmings.

  3. Global warming: Economic policy responses

    SciTech Connect

    Dornbusch, R.; Poterba, J.M.

    1991-01-01

    This volume contains the proceedings of a conference that brought together economic experts from Europe, the US, Latin America, and Japan to evaluate key issues in the policy debate in global warming. The following issues are at the center of debates on alternative policies to address global warming: scientific evidence on the magnitude of global warming and the extent to which it is due to human activities; availability of economic tools to control the anthropogenic emissions of greenhouse gases, and how vigorously should they be applied; and political economy considerations which influence the design of an international program for controlling greenhouse gases. Many perspectives are offered on the approaches to remedying environmental problems that are currently being pursued in Europe and the Pacific Rim. Deforestation in the Amazon is discussed, as well as ways to slow it. Public finance assessments are presented of both the domestic and international policy issues raised by plans to levy a tax on the carbon emissions from various fossil fuels. Nine chapters have been processed separately for inclusion in the appropriate data bases.

  4. The threat of global warming

    SciTech Connect

    1995-12-15

    If the scientific predictions of global warming hold true, there`s trouble ahead for much of the world`s fresh water - and for people living in low-lying areas. The phenomenon, first described in the 1980`s, attributes projected rises in global temperatures to the emission of carbon dioxide and other {open_quotes}greenhouse gases,{close_quotes} so called because they trap the sun`s solar energy close to the Earth`s surface, much as a glass roof helps keep a greenhouse warm. The overwhelming source of these emission is the burning of fossil fuels such as oil, gasoline, coal and natural gas, the principal power sources of modern industry and transportation. In 1988, the United Nations set up the Intergovernmental Panel on Climate Change (IPCC) to study the validity and potential effects of global warming. The panel, composed of an international group of climate scientists, issued a report in June 1990 predicting a nearly two-degree rise in the globe`s average temperature by 2020. At that unprecedented rate of increase, the panel found, humankind would be living in a hotter environment that ever before.

  5. The Discovery of Global Warming

    NASA Astrophysics Data System (ADS)

    MacCracken, Michael C.

    2004-07-01

    At the beginning of the twentieth century, the prospect of ``global warming'' as a result of human activities was thought to be far off, and in any case, likely to be beneficial. As we begin the twenty-first century, science adviser to the British government, Sir David King, has said that he considers global warming to be the world's most important problem, including terrorism. Yet, dealing with it has become the subject of a contentious international protocol, numerous conferences of international diplomats, and major scientific assessments and research programs. Spencer Weart, who is director of the Center for History of Physics of the American Institute of Physics, has taken on the challenge of explaining how this came to be. In the tradition of the Intergovernmental Panel on Climate Change (IPCC), which was established in 1988 to evaluate and assess the state of global warming science, this book is roughly equivalent to the Technical Summary, in terms of its technical level, being quite readable, but with substantive content about the main lines of evidence. Underpinning this relatively concise presentation, there is a well-developed-and still developing-Web site that, like the detailed chapters of the full IPCC assessment reports, provides vastly more information and linkages to a much wider set of reference materials (see http://www.aip.org/history/climate).

  6. Warm Dense Matter: An Overview

    SciTech Connect

    Kalantar, D H; Lee, R W; Molitoris, J D

    2004-04-21

    This document provides a summary of the ''LLNL Workshop on Extreme States of Materials: Warm Dense Matter to NIF'' which was held on 20, 21, and 22 February 2002 at the Wente Conference Center in Livermore, CA. The warm dense matter regime, the transitional phase space region between cold material and hot plasma, is presently poorly understood. The drive to understand the nature of matter in this regime is sparking scientific activity worldwide. In addition to pure scientific interest, finite temperature dense matter occurs in the regimes of interest to the SSMP (Stockpile Stewardship Materials Program). So that obtaining a better understanding of WDM is important to performing effective experiments at, e.g., NIF, a primary mission of LLNL. At this workshop we examined current experimental and theoretical work performed at, and in conjunction with, LLNL to focus future activities and define our role in this rapidly emerging research area. On the experimental front LLNL plays a leading role in three of the five relevant areas and has the opportunity to become a major player in the other two. Discussion at the workshop indicated that the path forward for the experimental efforts at LLNL were two fold: First, we are doing reasonable baseline work at SPLs, HE, and High Energy Lasers with more effort encouraged. Second, we need to plan effectively for the next evolution in large scale facilities, both laser (NIF) and Light/Beam sources (LCLS/TESLA and GSI) Theoretically, LLNL has major research advantages in areas as diverse as the thermochemical approach to warm dense matter equations of state to first principles molecular dynamics simulations. However, it was clear that there is much work to be done theoretically to understand warm dense matter. Further, there is a need for a close collaboration between the generation of verifiable experimental data that can provide benchmarks of both the experimental techniques and the theoretical capabilities. The conclusion of this

  7. Global warming and biological diversity

    SciTech Connect

    Peters, R.L.; Lovejoy, T.E.

    1992-01-01

    This book is based on presentations given at the World Wildlife Fund's Conference on Consequences of the Greenhouse Effect for Biological Diverisity in 1988, and includes updated literature citations. The general topics covered in the book include the following: overview; summary of past responses of plants to climatic change; general ecological and physiological responses; ecosystems in 4 specific regions (arctic marine, Alaskan North Slope, NW US forests, and Mediterranean); global warming's implications for conservation. Ideas and data from many ecosystems and information about the relationships between biodiversity and climatic change are brought together with a balance of factual information and defensible scientific prognostication.

  8. Warm/cold cloud processes

    NASA Technical Reports Server (NTRS)

    Bowdle, D. A.

    1979-01-01

    Technical assistance continued in support of the Atmospheric Cloud Physics Laboratory is discussed. A study of factors affecting warm cloud formation showed that the time of formation during an arbitrary expansion is independent of carrier gas composition for ideal gases and independent of aerosol concentration for low concentrations of very small aerosols. Equipment and procedures for gravimetric evaluation of a precision saturator were laboratory tested. A numerical feasibility study was conducted for the stable levitation of charged solution droplets by an electric field in a one-g static diffusion chamber. The concept, operating principles, applications, limits, and sensitivity of the levitation technique are discussed.

  9. Simulated sudden stratospheric warming - Synoptic evolution

    NASA Technical Reports Server (NTRS)

    Blackshear, W. T.; Grose, W. L.; Turner, R. E.

    1987-01-01

    An analysis is presented of a sudden stratospheric warming event which occurred spontaneously during a general circulation model simulation of the global atmospheric circulation. Two separate warming pulses exhibit the same dynamical evolution with a 'cycle' of about two weeks. Two distinct phases of the warming cycle are apparent: (1) the generation of an intense localized warm cell in conjunction with significant adiabatic heating associated with cross-isobar flow which has been induced by vertically propagating long wave disturbances; and (2) the northward transport of that warm cell via advection by the essentially geostrophic windfield corresponding to an intense, offset polar cyclone, in conjunction with a strong Aleutian anticyclone. During the first warming pulse in January, a moderate Aleutian anticyclone was in place prior to the warming cycle and was intensified by interaction with an eastward traveling anticyclone induced by the differential advection of the warm cell. The second warming pulse occurred in early February with a strong Aleutian anticyclone already established. In contrast to the January event, the warming in February culminated with reversal of the zonal westerlies to easterlies over a significant depth of the stratosphere.

  10. Warm gas TVC design study

    NASA Technical Reports Server (NTRS)

    Moorhead, S. B., Jr.

    1973-01-01

    A warm gas thrust vector control system was studied to optimize the injection geometry for a specific engine configuration, and an injection valve was designed capable of meeting the base line requirements. To optimize injection geometry, studies were made to determine the performance effects of varying injection location, angle, port size, and port configuration. Having minimized the injection flow rate required, a warm gas valve was designed to handle the required flow. A direct drive hydraulic servovalve capable of operating with highly contaminated hydraulic fluid was designed. The valve is sized to flow 15 gpm at 3000 psia and the direct drive feature is capable of applying a spool force of 200 pounds. The baseline requirements are the development of 6 deg of thrust vector control utilizing 2000 F (total temperature) gas for 180 seconds on a 1.37 million pound thrust engine burning LOX and RP-1 at a chamber pressure of 250 psia with a 155 inch long conical nozzle having a 68 inch diameter throat and a 153 inch diameter exit.

  11. Population growth and global warming.

    PubMed

    Short, R V

    2009-01-01

    When I was born in 1930, the human population of the world was a mere 2 billion. Today, it has already reached 6.8 billion, and is projected to reach 9.1 billion by 2050. That is unsustainable. It is slowly beginning to dawn on us that Global Warming is the result of increasing human CO2 emissions, and the more people there are in the world, the worse it will become. Ultimately, it is the sky that will prove to be the limit to our numbers. The developed countries of the world are the most affluent, and also the most effluent, so we must lead by example and contain our own population growth and per capita emissions. We also have a big debt to repay to former colonial territories in Africa, Asia and South America, who desperately need our help to contain their excessive rates of population growth. Belgian and Dutch obstetricians and gynaecologists can play a critical role in this endeavour. After all, we already have a pill that will stop global warming - the oral contraceptive pill.

  12. A sudden stratospheric warming compendium

    NASA Astrophysics Data System (ADS)

    Butler, Amy H.; Sjoberg, Jeremiah P.; Seidel, Dian J.; Rosenlof, Karen H.

    2017-02-01

    Major, sudden midwinter stratospheric warmings (SSWs) are large and rapid temperature increases in the winter polar stratosphere are associated with a complete reversal of the climatological westerly winds (i.e., the polar vortex). These extreme events can have substantial impacts on winter surface climate, including increased frequency of cold air outbreaks over North America and Eurasia and anomalous warming over Greenland and eastern Canada. Here we present a SSW Compendium (SSWC), a new database that documents the evolution of the stratosphere, troposphere, and surface conditions 60 days prior to and after SSWs for the period 1958-2014. The SSWC comprises data from six different reanalysis products: MERRA2 (1980-2014), JRA-55 (1958-2014), ERA-interim (1979-2014), ERA-40 (1958-2002), NOAA20CRv2c (1958-2011), and NCEP-NCAR I (1958-2014). Global gridded daily anomaly fields, full fields, and derived products are provided for each SSW event. The compendium will allow users to examine the structure and evolution of individual SSWs, and the variability among events and among reanalysis products. The SSWC is archived and maintained by NOAA's National Centers for Environmental Information (NCEI, doi:10.7289/V5NS0RWP).

  13. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    PubMed Central

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-01-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming. PMID:28317914

  14. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    NASA Astrophysics Data System (ADS)

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  15. Daytime warming has stronger negative effects on soil nematodes than night-time warming.

    PubMed

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-12-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  16. Warm-Ring Structures in Intense Hurricanes

    NASA Astrophysics Data System (ADS)

    Espinosa, F. I.; Gonzalez, A. O.; Slocum, C. J.; Schubert, W. H.

    2014-12-01

    Typical hurricanes have a warm-core structure such that the warmest temperatures occur in the center of the hurricane. However, weather reconnaissance aircraft data has observed warm-rings in intense hurricanes. A warm-ring structure results when the warmest temperature anomalies occur on the outer edge of the eye. Schubert et al. (2007) suggests the Eliassen transverse circulation equation can model intense hurricanes with a warm-core structure in the upper troposphere and also a warm-ring structure in the lower. Although the thermal wind equation was used in the derivation of the transverse circulation equation, the thermal wind equation has not been used explicitly in an attempt to create such a temperature field. This study derives the thermal wind equation from the hydrostatic and the gradient wind equations to analyze the temperature, tangential velocity, and the absolute vorticity fields. Using observed hurricanes, a warm-ring structure is simulated with the thermal wind equation as the basis. With a prescribed temperature profile, the calculated tangential velocity and absolute vorticity fields resemble those of a realistic hurricane. Thus, the thermal wind equation can be used to create a realistic, intense hurricane with a warm ring structure. Schubert et al. (2007) discusses subsidence as a mechanism that leads to the warm-ring but the tangential velocity and absolute vorticity fields suggest some influence of boundary layer processes that should be explored in future research for a further understanding of warm-rings.

  17. End Calorimeter Warm Tube Heater

    SciTech Connect

    Primdahl, K.; /Fermilab

    1991-08-06

    The Tevatron accelerator beam tube must pass through the End Calorimeter cryostats of the D-Zero Collider Detector. Furthermore, the End Calorimeter cryostats must be allowed to roll back forty inches without interruption of the vacuum system; hence, the Tev tube must slide through the End Calorimeter cryostat as it is rolled back. The Tev pass through the End Calorimeter can actually be thought of as a cluster of concentric tubes: Tev tube, warm (vacuum vessel) tube, IS layers of superinsulation, cold tube (argon vessel), and Inner Hadronic center support tube. M. Foley generated an ANSYS model to study the heat load. to the cryostat. during collider physics studies; that is, without operation of the heater. A sketch of the model is included in the appendix. The vacuum space and superinsulation was modeled as a thermal solid, with conductivity derived from tests performed at Fermilab. An additional estimate was done. by this author, using data supplied by NR-2. a superinsulation manufacturer. The ANSYS result and hand calculation are in close agreement. The ANSYS model was modified. by this author. to incorporate the effect of the heater. Whereas the earlier model studied steady state operation only. the revised model considers the heater-off steady state mode as the initial condition. then performs a transient analysis with a final load step for time tending towards infinity. Results show the thermal gradient as a function of time and applied voltage. It should be noted that M. Foley's model was generated for one half the warm tube. implying the tube to be symmetric. In reality. the downstream connection (relative to the collision point) attachment to the vacuum shell is via several convolutions of a 0.020-inch wall bellows; hence. a nearly adiabatic boundary condition. Accordingly. the results reported in the table reflect extrapolation of the curves to the downstream end of the tube. Using results from the ANSYS analysis, that is, tube temperature and

  18. DPIS for warm dense matter

    SciTech Connect

    Kondo, K.; Kanesue, T.; Horioka, K.; Okamura, M.

    2010-05-23

    Warm Dense Matter (WDM) offers an challenging problem because WDM, which is beyond ideal plasma, is in a low temperature and high density state with partially degenerate electrons and coupled ions. WDM is a common state of matter in astrophysical objects such as cores of giant planets and white dwarfs. The WDM studies require large energy deposition into a small target volume in a shorter time than the hydrodynamical time and need uniformity across the full thickness of the target. Since moderate energy ion beams ({approx} 0.3 MeV/u) can be useful tool for WDM physics, we propose WDM generation using Direct Plasma Injection Scheme (DPIS). In the DPIS, laser ion source is connected to the Radio Frequency Quadrupole (RFQ) linear accelerator directly without the beam transport line. DPIS with a realistic final focus and a linear accelerator can produce WDM.

  19. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    PubMed

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall).

  20. Warming: mechanism and latitude dependence

    NASA Astrophysics Data System (ADS)

    Barkin, Yury

    2010-05-01

    Introduction. In the work it is shown, that in present warming of climate of the Earth and in style of its display a fundamental role the mechanism of the forced swing and relative oscillations of eccentric core of the Earth and its mantle plays. Relative displacements of the centers of mass of the core and the mantle are dictated by the features of orbital motions of bodies of solar system and nonineriality of the Earth reference frame (or ot the mantle) at the motion of the Earth with respect to a baricenter of solar system and at rotation of the planet. As a result in relative translational displacements of the core and the mantle the frequencies characteristic for orbital motion of all bodies of solar system, and also their combination are shown. Methods of a space geodesy, gravimetry, geophysics, etc. unequivocally and clearly confirm phenomenon of drift of the center of mass of the Earth in define northern direction. This drift is characterized by the significant velocity in about 5 mm/yr. The unique opportunity of its explanation consists in the natural assumption of existence of the unidirectional relative displacement (drift) the center of mass of the core and the center of mass of the mantle of the Earth. And this displacement (at superfluous mass of the core in 16.7 % from the mass of full the Earth) is characterized still more significant velocity in 2.6 cm/yr and occurs on our geodynamic studies in a direction to Taimyr peninsula. The dynamic explanation to century drift for today does not exist. It is possible to note, however, that data of observations of last years, indirectly testifying that similar drifts of the centers of mass in present epoch occur on other bodies of Solar system have been obtain: the Sun, Mars, the Titan, Enceladus, the Neptune, etc. We connect with mentioned phenomena the observed secular variations of natural processes on this celestial bodies. I.e. it is possible to assume, that observable eccentric positions of the centers

  1. Efficient Warm-ups: Creating a Warm-up That Works.

    ERIC Educational Resources Information Center

    Lauffenburger, Sandra Kay

    1992-01-01

    Proper warm-up is important for any activity, but designing an effective warm-up can be time consuming. An alternative approach is to take a cue from Laban Movement Analysis (LMA) and consider movement design from the perspective of space and planes of motion. Efficient warm-up exercises using LMA are described. (SM)

  2. Global Warming: How Much and Why?

    ERIC Educational Resources Information Center

    Lanouette, William

    1990-01-01

    Summarizes the history of the study of global warming and includes a discussion of the role of gases, like carbon dioxide, methane, and chlorofluorocarbon (CFC). Discusses modern research on the global warming, including computer modelling and the super-greenhouse effect. (YP)

  3. Global Warming: Understanding and Teaching the Forecast.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1994-01-01

    A resource for the teaching of the history and causes of climate change. Discusses evidence of climate change from the Viking era, early ice ages, the most recent ice age, natural causes of climate change, human-made causes of climate change, projections of global warming, and unequal warming. (LZ)

  4. Global Warming: Understanding and Teaching the Forecast.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1995-01-01

    A resource for teaching about the consequences of global warming. Discusses feedback from the temperature increase, changes in the global precipitation pattern, effects on agriculture, weather extremes, effects on forests, effects on biodiversity, effects on sea levels, and actions which will help the global community cope with global warming. (LZ)

  5. Global Warming: Lessons from Ozone Depletion

    ERIC Educational Resources Information Center

    Hobson, Art

    2010-01-01

    My teaching and textbook have always covered many physics-related social issues, including stratospheric ozone depletion and global warming. The ozone saga is an inspiring good-news story that's instructive for solving the similar but bigger problem of global warming. Thus, as soon as students in my physics literacy course at the University of…

  6. Exploring the Sociopolitical Dimensions of Global Warming

    ERIC Educational Resources Information Center

    Sadler, Troy D.; Klosterman, Michelle L.

    2009-01-01

    The authors present an activity to help high school students conceptualize the sociopolitical complexity of global warming through an exploration of varied perspectives on the issue. They argue that socioscientific issues such as global warming present important contexts for learning science and that the social and political dimensions of these…

  7. Greenhouse warming and the tropical water budget

    NASA Technical Reports Server (NTRS)

    Betts, Alan K.

    1990-01-01

    The present work takes issue with some of the theses of Lindzen's (1990) work on global warming, arguing in particular that Lindzen's work is hampered by the use of oversimplified models. Lindzen then presents a detailed reply to these arguments, emphasizing the fundamental importance of the upper tropospheric water-vapor budget to the question of global warming.

  8. Turkish Students' Ideas about Global Warming

    ERIC Educational Resources Information Center

    Kilinc, Ahmet; Stanisstreet, Martin; Boyes, Edward

    2008-01-01

    A questionnaire was used to explore the prevalence of ideas about global warming in Year 10 (age 15-16 years) school students in Turkey. The frequencies of individual scientific ideas and misconceptions about the causes, consequences and "cures" of global warming were identified. In addition, several general findings emerged from this…

  9. Cryosphere: Warming ocean erodes ice sheets

    NASA Astrophysics Data System (ADS)

    Kusahara, Kazuya

    2016-01-01

    Antarctic ice sheets are a key player in sea-level rise in a warming climate. Now an ice-sheet modelling study clearly demonstrates that an Antarctic ice sheet/shelf system in the Atlantic Ocean will be regulated by the warming of the surrounding Southern Ocean, not by marine-ice-sheet instability.

  10. Warming of Water in a Glass

    ERIC Educational Resources Information Center

    Paulins, Paulis; Krauze, Armands; Ozolinsh, Maris; Muiznieks, Andris

    2016-01-01

    The article focuses on the process of water warming from 0 °C in a glass. An experiment is performed that analyzes the temperature in the top and bottom layers of water during warming. The experimental equipment is very simple and can be easily set up using devices available in schools. The temperature curves obtained from the experiment help us…

  11. Warm Disks from Giant Impacts

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    In the process of searching for exoplanetary systems, weve discovered tens of debris disks close around distant stars that are especially bright in infrared wavelengths. New research suggests that we might be looking at the late stages of terrestrial planet formation in these systems.Forming Terrestrial PlanetsAccording to the widely-accepted formation model for our solar-system, protoplanets the size of Mars formed within a protoplanetary disk around our Sun. Eventually, the depletion of the gas in the disk led the orbits of these protoplanets to become chaotically unstable. Finally, in the giant impact stage, many of the protoplanets collided with each other ultimately leading to the formation of the terrestrial planets and their moons as we know them today.If giant impact stages occur in exoplanetary systems, too leading to the formation of terrestrial exoplanets how would we detect this process? According to a study led by Hidenori Genda of the Tokyo Institute of Technology, we might be already be witnessing this stage in observations of warm debris disks around other stars. To test this, Genda and collaborators model giant impact stages and determine what we would expect to see from a system undergoing this violent evolution.Modeling CollisionsSnapshots of a giant impact in one of the authors simulations. The collision causes roughly 0.05 Earth masses of protoplanetary material to be ejected from the system. Click for a closer look! [Genda et al. 2015]The collaborators run a series of simulations evolving protoplanetary bodies in a solar system. The simulations begin 10 Myr into the lifetime of the solar system, i.e., after the gas from the protoplanetary disk has had time to be cleared and the protoplanetary orbits begin to destabilize. The simulations end when the protoplanets are done smashing into each other and have again settled into stable orbits, typically after ~100 Myr.The authors find that, over an average giant impact stage, the total amount of

  12. Global warming, insurance losses and financial industry

    SciTech Connect

    Low, N.C.

    1996-12-31

    Global warming causes extremely bad weather in the near term. They have already caught the attention of the insurance industry, as they suffered massive losses in the last decade. Twenty-one out of the 25 largest catastrophes in the US, mainly in the form of hurricanes have occurred in the last decade. The insurance industry has reacted by taking the risk of global warming in decisions as to pricing and underwriting decisions. But they have yet to take a more active role in regulating the factors that contributes to global warming. How global warming can impact the financial industry and the modern economy is explored. Insurance and modern financial derivatives are key to the efficient functioning of the modern economy, without which the global economy can still function but will take a giant step backward. Any risk as global warming that causes economic surprises will hamper the efficient working of the financial market and the modern economy.

  13. Urban warming reduces aboveground carbon storage.

    PubMed

    Meineke, Emily; Youngsteadt, Elsa; Dunn, Robert R; Frank, Steven D

    2016-10-12

    A substantial amount of global carbon is stored in mature trees. However, no experiments to date test how warming affects mature tree carbon storage. Using a unique, citywide, factorial experiment, we investigated how warming and insect herbivory affected physiological function and carbon sequestration (carbon stored per year) of mature trees. Urban warming increased herbivorous arthropod abundance on trees, but these herbivores had negligible effects on tree carbon sequestration. Instead, urban warming was associated with an estimated 12% loss of carbon sequestration, in part because photosynthesis was reduced at hotter sites. Ecosystem service assessments that do not consider urban conditions may overestimate urban tree carbon storage. Because urban and global warming are becoming more intense, our results suggest that urban trees will sequester even less carbon in the future.

  14. Warm storage for arc magmas

    NASA Astrophysics Data System (ADS)

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K.; Harrison, T. Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-01

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the “cold storage” model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  15. Global warming: The complete briefing

    SciTech Connect

    Houghton, J.

    1994-12-31

    John Houghton has drawn on the exhaustive efforts of the Intergovernmental Panel on Climate Change (IPCC) to produce a notably compact, impeccably complete and authoritative, meticulously balanced, and lucidly presented guide to the complex yet vital issue of global warming. Its subtitle is not mere hyperbole: this truly is a complete briefing. Certainly, one could not ask for a more authoritative brief: Houghton has led an imposing series of national and international efforts relating to climate, including the most recent scientific assessments of the IPCC. Citing many concrete examples, Houghton begins by convincing that climate truly is important to humankind and that climate is far from constant. He then elucidates the mechanisms that maintain the benign climate of our planet, providing in the process, for example, the most accurate explanation of the natural greenhouse effect that has yet appeared in print. He then treats the individual greenhouse gases responsible for maintaining the earth`s warmth and presents projections of their probable future concentrations as influenced by human activities. Further chapters deal with conclusions drawn from climate models, estimates of the impacts on human activities, and possible policies and actions to mitigate or alleviate the changes and their consequences.

  16. Warm storage for arc magmas.

    PubMed

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K; Harrison, T Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-06

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the "cold storage" model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  17. Global warming and reproductive health.

    PubMed

    Potts, Malcolm; Henderson, Courtney E

    2012-10-01

    The largest absolute numbers of maternal deaths occur among the 40-50 million women who deliver annually without a skilled birth attendant. Most of these deaths occur in countries with a total fertility rate of greater than 4. The combination of global warming and rapid population growth in the Sahel and parts of the Middle East poses a serious threat to reproductive health and to food security. Poverty, lack of resources, and rapid population growth make it unlikely that most women in these countries will have access to skilled birth attendants or emergency obstetric care in the foreseeable future. Three strategies can be implemented to improve women's health and reproductive rights in high-fertility, low-resource settings: (1) make family planning accessible and remove non-evidenced-based barriers to contraception; (2) scale up community distribution of misoprostol for prevention of postpartum hemorrhage and, where it is legal, for medical abortion; and (3) eliminate child marriage and invest in girls and young women, thereby reducing early childbearing.

  18. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Tim

    2016-04-01

    Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.

  19. Global metabolic impacts of recent climate warming.

    PubMed

    Dillon, Michael E; Wang, George; Huey, Raymond B

    2010-10-07

    Documented shifts in geographical ranges, seasonal phenology, community interactions, genetics and extinctions have been attributed to recent global warming. Many such biotic shifts have been detected at mid- to high latitudes in the Northern Hemisphere-a latitudinal pattern that is expected because warming is fastest in these regions. In contrast, shifts in tropical regions are expected to be less marked because warming is less pronounced there. However, biotic impacts of warming are mediated through physiology, and metabolic rate, which is a fundamental measure of physiological activity and ecological impact, increases exponentially rather than linearly with temperature in ectotherms. Therefore, tropical ectotherms (with warm baseline temperatures) should experience larger absolute shifts in metabolic rate than the magnitude of tropical temperature change itself would suggest, but the impact of climate warming on metabolic rate has never been quantified on a global scale. Here we show that estimated changes in terrestrial metabolic rates in the tropics are large, are equivalent in magnitude to those in the north temperate-zone regions, and are in fact far greater than those in the Arctic, even though tropical temperature change has been relatively small. Because of temperature's nonlinear effects on metabolism, tropical organisms, which constitute much of Earth's biodiversity, should be profoundly affected by recent and projected climate warming.

  20. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Tim

    2017-02-01

    Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.

  1. Climatic warming destabilizes forest ant communities

    PubMed Central

    Diamond, Sarah E.; Nichols, Lauren M.; Pelini, Shannon L.; Penick, Clint A.; Barber, Grace W.; Cahan, Sara Helms; Dunn, Robert R.; Ellison, Aaron M.; Sanders, Nathan J.; Gotelli, Nicholas J.

    2016-01-01

    How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable. PMID:27819044

  2. Significant warming of the Antarctic winter troposphere.

    PubMed

    Turner, J; Lachlan-Cope, T A; Colwell, S; Marshall, G J; Connolley, W M

    2006-03-31

    We report an undocumented major warming of the Antarctic winter troposphere that is larger than any previously identified regional tropospheric warming on Earth. This result has come to light through an analysis of recently digitized and rigorously quality controlled Antarctic radiosonde observations. The data show that regional midtropospheric temperatures have increased at a statistically significant rate of 0.5 degrees to 0.7 degrees Celsius per decade over the past 30 years. Analysis of the time series of radiosonde temperatures indicates that the data are temporally homogeneous. The available data do not allow us to unambiguously assign a cause to the tropospheric warming at this stage.

  3. Global Warming Estimation from MSU

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, Robert; Yoo, Jung-Moon

    1998-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz) from sequential, sun-synchronous, polar-orbiting NOAA satellites contain small systematic errors. Some of these errors are time-dependent and some are time-independent. Small errors in Ch 2 data of successive satellites arise from calibration differences. Also, successive NOAA satellites tend to have different Local Equatorial Crossing Times (LECT), which introduce differences in Ch 2 data due to the diurnal cycle. These two sources of systematic error are largely time independent. However, because of atmospheric drag, there can be a drift in the LECT of a given satellite, which introduces time-dependent systematic errors. One of these errors is due to the progressive chance in the diurnal cycle and the other is due to associated chances in instrument heating by the sun. In order to infer global temperature trend from the these MSU data, we have eliminated explicitly the time-independent systematic errors. Both of the time-dependent errors cannot be assessed from each satellite. For this reason, their cumulative effect on the global temperature trend is evaluated implicitly. Christy et al. (1998) (CSL). based on their method of analysis of the MSU Ch 2 data, infer a global temperature cooling trend (-0.046 K per decade) from 1979 to 1997, although their near nadir measurements yield near zero trend (0.003 K/decade). Utilising an independent method of analysis, we infer global temperature warmed by 0.12 +/- 0.06 C per decade from the observations of the MSU Ch 2 during the period 1980 to 1997.

  4. Chamberless residential warm air furnace design

    SciTech Connect

    Godfree, J.

    1996-07-01

    This brief paper is an introduction to the concept of designing residential warm air furnaces without combustion chambers. This is possible since some small burners do not require the thermal support of a combustion chamber to complete the combustion process.

  5. Carbon cycle: Global warming then and now

    NASA Astrophysics Data System (ADS)

    Stassen, Peter

    2016-04-01

    A rapid warming event 55.8 million years ago was caused by extensive carbon emissions. The rate of change of carbon and oxygen isotopes in marine shelf sediments suggests that carbon emission rates were much slower than anthropogenic emissions.

  6. Scaling Potential Evapotranspiration with Greenhouse Warming (Invited)

    NASA Astrophysics Data System (ADS)

    Scheff, J.; Frierson, D. M.

    2013-12-01

    Potential evapotranspiration (PET) is a supply-independent measure of the evaporative demand of a terrestrial climate, of basic importance in climatology, hydrology, and agriculture. Future increases in PET from greenhouse warming are often cited as key drivers of global trends toward drought and aridity. The present work computes recent and business-as-usual-future Penman-Monteith (i.e. physically-based) PET fields at 3-hourly resolution in 14 modern global climate models. The %-change in local annual-mean PET over the upcoming century is almost always positive, modally low double-digit in magnitude, usually increasing with latitude, yet quite divergent between models. These patterns are understood as follows. In every model, the global field of PET %-change is found to be dominated by the direct, positive effects of constant-relative-humidity warming (via increasing vapor pressure deficit and increasing Clausius-Clapeyron slope.) This direct-warming term very accurately scales as the PET-weighted (warm-season daytime) local warming, times 5-6% per degree (related to the Clausius-Clapeyron equation), times an analytic factor ranging from about 0.25 in warm climates to 0.75 in cold climates, plus a small correction. With warming of several degrees, this product is of low double-digit magnitude, and the strong temperature dependence gives the latitude dependence. Similarly, the inter-model spread in the amount of warming gives most of the spread in this term. Additional spread in the total change comes from strong disagreement on radiation, relative-humidity, and windspeed changes, which make smaller yet substantial contributions to the full PET %-change fields.

  7. Should we be concerned about global warming?

    PubMed

    Diaz, James H

    2006-01-01

    Accurate scientific predictions of the true human health outcomes of global climate change are significantly confounded by several effect modifiers that cannot be adjusted for analytically. Nevertheless, with the documented increase in average global surface temperature of 0.6 C. since 1975, there is uniform consensus in the international scientific community that the earth is warming from a variety of climatic effects, including cyclical re-warming and the cascading effects of greenhouse gas emissions to support human activities.

  8. The Tropical Western Hemisphere Warm Pool

    NASA Astrophysics Data System (ADS)

    Wang, C.; Enfield, D. B.

    2002-12-01

    The paper describes and examines variability of the tropical Western Hemisphere warm pool (WHWP) of water warmer than 28.5oC. The WHWP is the second-largest tropical warm pool on Earth. Unlike the Eastern Hemisphere warm pool in the western Pacific, which straddles the equator, the WHWP is entirely north of the equator. At various stages of development the WHWP extends over parts of the eastern North Pacific, the Gulf of Mexico, the Caribbean, and the western tropical North Atlantic. It has a large seasonal cycle and its interannual fluctuations of area and intensity are significant. Surface heat fluxes warm the WHWP through the boreal spring to an annual maximum of SST and WHWP area in the late summer/early fall, associated with eastern North Pacific and Atlantic hurricane activities and rainfall from northern South America to the southern tier of the United States. Observations suggest that a positive ocean-atmosphere feedback operating through longwave radiation and associated cloudiness seems to operate in the WHWP. During winter preceding large warm pool, there is an alteration of the Walker and Hadley circulation cells that serves as a "tropospheric bridge" for transferring Pacific ENSO effects to the Atlantic sector and inducing initial warming of warm pool. Associated with the warm SST anomalies is a decrease in sea level pressure anomalies and an anomalous increase in atmospheric convection and cloudiness. The increase in convective activity and cloudiness results in less net longwave radiation loss from the sea surface, which then reinforces SST anomalies.

  9. Global warming: a vicious circle.

    PubMed

    Sinclair, J

    1991-01-01

    The problem of global warming (GW) is larger than it was originally suspected. The release of carbon dioxide (CO2), methane (ME), and nitrous oxide (NO2) by the activities of humans will do more than simply raise the global temperature. It will also trigger a variety of feedback loops that will accelerate the GW process. The extent of these feedback loops is currently impossible to incorporate into the computer models because they are not fully understood. But, from what we do know, it is clear that reductions in greenhouse gas (GG) emissions must be halted immediately. We are already committed to regional droughts, storms, water shortages, fishery disruptions and plant and animal extinctions. But the response of the oceans, forest, and ice masses has not yet been incorporated into our predictions. Almost all the feedbacks identified promise to increase GG concentrations. The carbon cycle is going to be affected in a variety of ways. Plants and soil store almost 3 times the CO2 as found in the atmosphere. Increased temperatures will increase plant respiration, thus increasing CO2 emissions. Forests will die, permafrost will melt and the result will be increased releases of CO2 and ME. The oceans and plankton can not absorb as much CO2 as the water temperature rises. At present levels GG concentrations will double by 2025. Thus scientists are calling for an immediate 60-80% reduction in CO2 and other GG emissions. It is up to the industrialized nations to solve this problem since they are the ones who created it. 75% of all human made CO2 comes from these countries. They also have the ability to help developing nations to do the same. 20 nations have already announced plans to stabilize or reduce their GG emissions, but it is attitudes and lifestyles that must be changed. This is the largest problem to ever face the human race and never before have we acted as we now must act in order to avoid a worldwide catastrophe.

  10. Global warming and nuclear power

    SciTech Connect

    Wood, L., LLNL

    1998-07-10

    -fold reduction might be attained. Even the first such halving of carbon intensivity of stationary-source energy production world-wide might permit continued slow power-demand growth in the highly developed countries and rapid development of the other 80% of the world, both without active governmental suppression of fossil fuel usage - while also stabilizing carbon input-rates into the Earth`s atmosphere. The second two-fold reduction might obviate most global warming concerns.

  11. Analysis of warm prestress data

    SciTech Connect

    Macdonald, B.D.; Embley, G.T.; Irizarry-Quinones, H.; Smith, P.D.; Wuthrich, J.W.; McAfee, W.J.; McCabe, D.E.

    1995-06-01

    Loading a cracked structure at elevated temperature, or warm prestressing (WPS), enhances its fracture resistance at a lower temperature. Five data sets, comprising 119 unclad pressure vessel steel specimens, were combined to derive correlations for WPS-enhanced fracture toughness (K{sub Ifrac}) in the absence of ductile tearing. New WPS test results for 27 surface flawed specimens, eight subclad flawed specimens, and five strain-aged specimens are discussed. K{sub Ifrac} exceeded non-WPS fracture toughness, K{sub Ic}, for all experiments. The WPS data showed that no specimens failed while K was decreasing, and that at least an additional seven percent additional reloading from the minimum value of applied K{sub I} took place prior to final fracture. The data included complete and partial unloading after WPS prior to final fracture. Crack tip 3-dimensional elastic-plastic finite element (3DEPFE) analysis was performed to support statistical analysis of the data. Regression models were compared with the Chell WPS model. Crack tip 3DEPFE analysis indicated that partially unloaded and completely unloaded data should be treated separately, and that the amount of unloading is unimportant for partially unloaded data. The regression models, which use K{sub I} at WPS (K{sub Iwps}) and K{sub Ic} as independent variables, better represented the WPS benefit than did the more complicated Chell model. An adequate accounting was made for constraint in the WPS experiments. The subclad flaw data support the use of the partial unload regression model, provided that some care is taken to represent the effect of intact cladding if present. The effect of strain aging at or below 260 C (500 F) on WPS benefit was of no consequence for the pressure vessel steels and WPS temperatures used to derive the regression models. The presence of ductile tearing precludes the use of the regression models. The regression model for partial unloading accurately predicted the behavior of full scale

  12. Is global warming harmful to health?

    PubMed

    Epstein, P R

    2000-08-01

    Projections from computer models predict that global warming will expand the incidence and distribution of many serious medical disorders. Global warming, aside from indirectly causing death by drowning or starvation, promotes by various means the emergence, resurgence, and spread of infectious diseases. This article addresses the health effects of global warming and disrupted climate patterns in detail. Among the greatest health concerns are diseases transmitted by mosquitoes, such as malaria, dengue fever, yellow fever, and several kinds of encephalitis. Such disorders are projected to become increasingly prevalent because their insect carriers are very sensitive to meteorological conditions. In addition, floods and droughts resulting from global warming can each help trigger outbreaks by creating breeding grounds for insects whose desiccated eggs remain viable and hatch in still water. Other effects of global warming on health include the growth of opportunist populations and the increase of the incidence of waterborne diseases because of lack of clean water. In view of this, several steps are cited in order to facilitate the successful management of the dangers of global warming.

  13. Could cirrus clouds have warmed early Mars?

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses M.; Kasting, James F.

    2017-01-01

    The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming continues to be debated. One hypothesis is that Mars could have been kept warm by global cirrus cloud decks in a CO2sbnd H2O atmosphere containing at least 0.25 bar of CO2 (Urata and Toon, 2013). Initial warming from some other process, e.g., impacts, would be required to make this model work. Those results were generated using the CAM 3-D global climate model. Here, we use a single-column radioactive-convective climate model to further investigate the cirrus cloud warming hypothesis. Our calculations indicate that cirrus cloud decks could have produced global mean surface temperatures above freezing, but only if cirrus cloud cover approaches ∼75 - 100% and if other cloud properties (e.g., height, optical depth, particle size) are chosen favorably. However, at more realistic cirrus cloud fractions, or if cloud parameters are not optimal, cirrus clouds do not provide the necessary warming, suggesting that other greenhouse mechanisms are needed.

  14. The importance of warm season warming to western U.S. streamflow changes

    USGS Publications Warehouse

    Das, T.; Pierce, D.W.; Cayan, D.R.; Vano, J.A.; Lettenmaier, D.P.

    2011-01-01

    Warm season climate warming will be a key driver of annual streamflow changes in four major river basins of the western U.S., as shown by hydrological model simulations using fixed precipitation and idealized seasonal temperature changes based on climate projections with SRES A2 forcing. Warm season (April-September) warming reduces streamflow throughout the year; streamflow declines both immediately and in the subsequent cool season. Cool season (October-March) warming, by contrast, increases streamflow immediately, partially compensating for streamflow reductions during the subsequent warm season. A uniform warm season warming of 3C drives a wide range of annual flow declines across the basins: 13.3%, 7.2%, 1.8%, and 3.6% in the Colorado, Columbia, Northern and Southern Sierra basins, respectively. The same warming applied during the cool season gives annual declines of only 3.5%, 1.7%, 2.1%, and 3.1%, respectively. Copyright 2011 by the American Geophysical Union.

  15. Warming shifts `worming': effects of experimental warming on invasive earthworms in northern North America

    NASA Astrophysics Data System (ADS)

    Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A.; Rice, Karen; Rich, Roy; Reich, Peter B.

    2014-11-01

    Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration.

  16. Warming shifts 'worming': effects of experimental warming on invasive earthworms in northern North America.

    PubMed

    Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A; Rice, Karen; Rich, Roy; Reich, Peter B

    2014-11-03

    Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration.

  17. Can Global Warming be Stopped?

    NASA Astrophysics Data System (ADS)

    Luria, M.

    2013-12-01

    Earlier this year, the CO2 levels exceeded the 400 ppm level and there is no sign that the 1-2 ppm annual increase is going to slow down. Concerns regarding the danger of global warming have been reported in numerous occasions for more than a generation, ever since CO2 levels reached the 350 ppm range in the mid 1980's. Nevertheless, all efforts to slow down the increase have showed little if any effect. Mobile sources, including surface and marine transportation and aviation, consist of 20% of the global CO2 emission. The only realistic way to reduce the mobile sources' CO2 signature is by improved fuel efficiency. However, any progress in this direction is more than compensated by continuous increased demand. Stationary sources, mostly electric power generation, are responsible for the bulk of the global CO2 emission. The measurements have shown, that the effect of an increase in renewable sources, like solar wind and geothermal, combined with conversion from coal to natural gas where possible, conservation and efficiency improvement, did not compensate the increased demand mostly in developing countries. Increased usage of nuclear energy can provide some relief in carbon emission but has the potential of even greater environmental hazard. A major decrease in carbon emission can be obtained by either significant reduction in the cost of non-carbon based energy sources or by of carbon sequestration. The most economical way to make a significant decrease in carbon emission is to apply carbon sequestration technology at large point sources that use coal. Worldwide there are about 10,000 major sources that burn >7 billion metric tons of coal which generate the equivalent of 30 trillion kwh. There is a limited experience in CO2 sequestration of such huge quantities of CO2, however, it is estimated that the cost would be US$ 0.01-0.1 per kwh. The cost of eliminating this quantity can be estimated at an average of 1.5 trillion dollars annually. The major emitters, US

  18. 21 CFR 864.9205 - Blood and plasma warming device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is...

  19. 21 CFR 864.9205 - Blood and plasma warming device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is...

  20. 21 CFR 864.9205 - Blood and plasma warming device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is...

  1. 21 CFR 864.9205 - Blood and plasma warming device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is...

  2. 21 CFR 864.9205 - Blood and plasma warming device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is...

  3. Warm Absorber Diagnostics of AGN Dynamics

    NASA Astrophysics Data System (ADS)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  4. Warm Indian Ocean, Weak Asian Monsoon

    NASA Astrophysics Data System (ADS)

    Koll Roxy, Mathew; Ritika, Kapoor; Terray, Pascal; Murtugudde, Raghu; Ashok, Karumuri; Nath Goswami, Buphendra

    2015-04-01

    There are large uncertainties looming over the status and fate of the South Asian monsoon in a changing climate. Observations and climate models have suggested that anthropogenic warming in the past century has increased the moisture availability and the land-sea thermal contrast in the tropics, favoring an increase in monsoon rainfall. In contrast, we notice that South Asian subcontinent experienced a relatively subdued warming during this period. At the same time, the tropical Indian Ocean experienced a nearly monotonic warming, at a rate faster than the other tropical oceans. Using long-term observations and coupled model experiments, we suggest that the enhanced Indian Ocean warming along with the suppressed warming of the subcontinent weaken the land-sea thermal contrast throughout the troposphere, dampen the monsoon Hadley circulation, and reduce the rainfall over South Asia. As a result, the summer monsoon rainfall during 1901-2012 shows a significant weakening trend over South Asia, extending from Pakistan through central India to Bangladesh.

  5. Global warming without global mean precipitation increase?

    PubMed Central

    Salzmann, Marc

    2016-01-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K−1 decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge. PMID:27386558

  6. Global warming without global mean precipitation increase?

    PubMed

    Salzmann, Marc

    2016-06-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K(-1) decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge.

  7. Light accelerates plant responses to warming.

    PubMed

    De Frenne, Pieter; Rodríguez-Sánchez, Francisco; De Schrijver, An; Coomes, David A; Hermy, Martin; Vangansbeke, Pieter; Verheyen, Kris

    2015-08-17

    Competition for light has profound effects on plant performance in virtually all terrestrial ecosystems. Nowhere is this more evident than in forests, where trees create environmental heterogeneity that shapes the dynamics of forest-floor communities(1-3). Observational evidence suggests that biotic responses to both anthropogenic global warming and nitrogen pollution may be attenuated by the shading effects of trees and shrubs(4-9). Here we show experimentally that tree shade is slowing down changes in below-canopy communities due to warming. We manipulated levels of photosynthetically active radiation, temperature and nitrogen, alone and in combination, in a temperate forest understorey over a 3-year period, and monitored the composition of the understorey community. Light addition, but not nitrogen enrichment, accelerated directional plant community responses to warming, increasing the dominance of warmth-preferring taxa over cold-tolerant plants (a process described as thermophilization(6,10-12)). Tall, competitive plants took greatest advantage of the combination of elevated temperature and light. Warming of the forest floor did not result in strong community thermophilization unless light was also increased. Our findings suggest that the maintenance of locally closed canopy conditions could reduce, at least temporarily, warming-induced changes in forest floor plant communities.

  8. Warm heart surgery eliminates diaphragmatic paralysis.

    PubMed

    Maccherini, M; Davoli, G; Sani, G; Rossi, P; Giani, S; Lisi, G; Mazzesi, G; Toscano, M

    1995-05-01

    Since January 1992, we adopted a new method of myocardial protection: warm blood cardioplegia with continuous ante-retrograde combined delivery during normothermic cardiopulmonary bypass, (CPB) instead of cold blood intermittent cardioplegia plus topical ice slush in hypothermic CPB. We have compared postoperative chest X-rays of 50 patients who underwent elective coronary artery bypass with normothermic CPB to postoperative chest X-rays, of 50 patients operated upon with hypothermia. In the cold group transitory diaphragmatic paralysis, as well as pleural effusions and thoracentesis related to the hypothermia, and topical cooling, were statistically increased over that of warm group. The data suggest that topical cooling with slush ice is responsible for phrenic nerve injury and that warm heart surgery has no associated incidence of diaphragmatic injury.

  9. Vertical structure of recent Arctic warming.

    PubMed

    Graversen, Rune G; Mauritsen, Thorsten; Tjernström, Michael; Källén, Erland; Svensson, Gunilla

    2008-01-03

    Near-surface warming in the Arctic has been almost twice as large as the global average over recent decades-a phenomenon that is known as the 'Arctic amplification'. The underlying causes of this temperature amplification remain uncertain. The reduction in snow and ice cover that has occurred over recent decades may have played a role. Climate model experiments indicate that when global temperature rises, Arctic snow and ice cover retreats, causing excessive polar warming. Reduction of the snow and ice cover causes albedo changes, and increased refreezing of sea ice during the cold season and decreases in sea-ice thickness both increase heat flux from the ocean to the atmosphere. Changes in oceanic and atmospheric circulation, as well as cloud cover, have also been proposed to cause Arctic temperature amplification. Here we examine the vertical structure of temperature change in the Arctic during the late twentieth century using reanalysis data. We find evidence for temperature amplification well above the surface. Snow and ice feedbacks cannot be the main cause of the warming aloft during the greater part of the year, because these feedbacks are expected to primarily affect temperatures in the lowermost part of the atmosphere, resulting in a pattern of warming that we only observe in spring. A significant proportion of the observed temperature amplification must therefore be explained by mechanisms that induce warming above the lowermost part of the atmosphere. We regress the Arctic temperature field on the atmospheric energy transport into the Arctic and find that, in the summer half-year, a significant proportion of the vertical structure of warming can be explained by changes in this variable. We conclude that changes in atmospheric heat transport may be an important cause of the recent Arctic temperature amplification.

  10. Communicating the Dangers of Global Warming

    NASA Astrophysics Data System (ADS)

    Hansen, J. E.

    2006-12-01

    So far, in my opinion, we scientists have not done a good job of communicating the imminent threat posed by global warming, yet I believe there is still time for that if we work efficiently now to overcome existing obstacles. Several of those obstacles are illustrated by contrasting the roles of scientists, the media, special interests, politicians and the public in the ozone depletion and global warming crises. Scientists in America are further challenged by a decline in public science education, a perceived gap between science and religion, increasing politicization of public affairs offices in the government, and accumulation of power by a unitary executive. First order communication tasks are illustrated by a need for improved exchange and understanding, among scientists as well as with the public, of fundamental climate facts: (1) additional global warming exceeding 1C will yield large climate effects, (2) paleoclimate changes contain quantitatively specific information about climate sensitivity that is not widely appreciated, (3) carbon cycle facts, such as the substantial portion of carbon dioxide emissions that will remain in the air "forever", for practical purposes, (4) fossil fuel facts such as the dominant role of coal and unconventional fuels in all business-as-usual scenarios for future energy sources. The facts graphically illustrate the need for prompt actions to avoid disastrous climate change, yet they also reveal the feasibility of a course that minimizes global warming and yields other benefits. Perhaps the greatest challenge is posed by an inappropriate casting of the topic as a dichotomy between those who deny that there is a global warming problem and those who either are exceedingly pessimistic about the prospects for minimizing climate change or believe that solutions would be very expensive. Sensible evaluation of the situation, in my opinion, suggests a strategy for dealing with global warming that is not costly and has many subsidiary

  11. Winter warming from large volcanic eruptions

    SciTech Connect

    Robock, A.; Mao, J.

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95 percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  12. Winter warming from large volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  13. Is the climate warming or cooling?

    NASA Astrophysics Data System (ADS)

    Easterling, David R.; Wehner, Michael F.

    2009-04-01

    Numerous websites, blogs and articles in the media have claimed that the climate is no longer warming, and is now cooling. Here we show that periods of no trend or even cooling of the globally averaged surface air temperature are found in the last 34 years of the observed record, and in climate model simulations of the 20th and 21st century forced with increasing greenhouse gases. We show that the climate over the 21st century can and likely will produce periods of a decade or two where the globally averaged surface air temperature shows no trend or even slight cooling in the presence of longer-term warming.

  14. National Update: Discussions on global warming

    SciTech Connect

    Not Available

    1989-04-01

    The American Forestry Association (AFA) has launched a national campaign called Global Releaf to educate the public about global warming and the role of forestry in alleviating its effects. AFA executive vice-president R. Neil Sampson states that trees need to be intentionally grown and managed. More trees means less CO{sub 2} buildup, and the lack of trees is one of the causes of global warming. The AFA campaign included public service announcements, educational posters for schools, and material for all forms of media.

  15. Global warming: a public health concern.

    PubMed

    Afzal, Brenda M

    2007-05-31

    Over the last 100 years the average temperature on the Earth has risen approximately 1ºFahrenheit (F), increasing at a rate twice as fast as has been noted for any period in the last 1,000 years. The Arctic ice cap is shrinking, glaciers are melting, and the Arctic permafrost is thawing. There is mounting evidence that these global climate changes are already affecting human health. This article provides a brief overview of global warming and climate changes, discusses effects of climate change on health, considers the factors which contribute to climate changes, and reviews individual and collective efforts related to reducing global warming.

  16. The recent warming trend in North Greenland

    NASA Astrophysics Data System (ADS)

    Orsi, Anais; Kawamura, Kenji; Masson-Delmotte, Valerie; Landais, Amaelle; Severinghaus, Jeff

    2015-04-01

    The arctic is the fastest warming region on Earth, but it is also one where there is little historical data. Although summer warming causes melt, the annual temperature trend is dominated by the winter and fall season, which are much less well documented. In addition, the instrumental record relies principally on coastal weather stations, and there are very few direct temperature observations in the interior dating back more than 30 years, especially in North Greenland, where the current warming trend is the largest. Here, we present a temperature reconstruction from NEEM (51°W, 77°N), in North Greenland, for the last 100 years, which allows us to put the recent trend in the context of the longer term climate. We use a combination of two independent proxies to reconstruct the temperature history at NEEM: borehole temperature and inert gas isotope measurements in the firn. Borehole temperature takes advantage of the low temperature diffusivity of the snow and ice, which allows the temperature history to be preserved in the ice for several centuries. Temperature gradients in the firn (old snow above the ice) influence the gas isotopic composition: thermal fractionation causes heavy isotopes to concentrate on the cold end of the firn column. We measured the isotopes of inert gases (N2, Ar and Kr), which have a constant atmospheric composition through time, and use the thermal fractionation signal as an additional constraint on the temperature history at the site. We find that NEEM has been warming by 0.86±0.22°C/decade over the past 30 years, from -28.55±0.29°C for the 1900-1970 average to -26.77±0.16°C for the 2000-2010 average. The warming rate at NEEM is similar to that of Greenland Summit, and confirms the large warming trends in North Greenland (polar amplification) and high altitude sites (tropospheric rather than surface warming). Water isotopes show that the recent past has not met the level of the 1928 anomaly; but the average of the past 30 years has

  17. Timing the warm absorber in NGC 4051

    NASA Astrophysics Data System (ADS)

    Silva, C. V.; Uttley, P.; Costantini, E.

    2016-12-01

    We investigated, using spectral-timing analysis, the characterization of highly ionized outflows in Seyfert galaxies, the so-called warm absorbers. Here, we present our results of the extensive 600 ks of XMM-Newton archival observations of the bright and highly variable Seyfert 1 galaxy NGC 4051 whose spectrum has revealed a complex multicomponent wind. Making use of both RGS and EPIC-pn data, we performed a detailed analysis through a time-dependent photoionization code in combination with spectral and Fourier spectral-timing techniques. The source light curves and the warm absorber parameters obtained from the data were used to simulate the response of the gas to variations in the ionizing flux of the central source. The resulting time variable spectra were employed to predict the effects of the warm absorber on the time lags and coherence of the energy dependent light curves. We have found that, in the absence of any other lag mechanisms, a warm absorber with the characteristics of the one observed in NGC 4051, is able to produce soft lags, up to 100 s, on timescales of hours. The time delay is associated with the response of the gas to changes in the ionizing source, either by photoionization or radiative recombination, which is dependent on its density. The range of radial distances that, under our assumptions, yield longer time delays are distances r 0.3-1.0 × 1016 cm, and hence gas densities n 0.4-3.0 × 107 cm-3. Since these ranges are comparable to the existing estimates of the location of the warm absorber in NGC 4051, we suggest that it is likely that the observed X-ray time lags may carry a signature of the warm absorber response time to changes in the ionizing continuum. Our results show that the warm absorber in NGC 4051 does not introduce lags on the short timescales associated with reverberation, but will likely modify the hard continuum lags seen on longer timescales, which in this source have been measured to be on the order of 50 s. Hence, these

  18. Dynamic characteristics of observed sudden warmings

    NASA Technical Reports Server (NTRS)

    Dartt, D. G.; Venne, D. E.

    1986-01-01

    The planetary wave dynamics of stratospheric sudden warmings in the Northern Hemisphere for a large number of observed events that occurred during winters from 1970 to 1975 and 1978 to 1981 are investigated. The analysis describes wave propagation and zonal flow interaction from the troposphere upwards to near 50 km, and in some years to near 80 km. Three primary topics are covered here: (1) the interaction of zonally propagating and quasi-stationary planetary waves during warming events; (2) planetary wave influence on zonal flow near the stratopause; and (3) planetary wave propagation to near 80 km as seen from Stratospheric and Mesospheric Sounder (SAMS) data.

  19. Global warming and sexual plant reproduction.

    PubMed

    Hedhly, Afif; Hormaza, José I; Herrero, María

    2009-01-01

    The sexual reproductive phase in plants might be particularly vulnerable to the effects of global warming. The direct effect of temperature changes on the reproductive process has been documented previously, and recent data from other physiological processes that are affected by rising temperatures seem to reinforce the susceptibility of the reproductive process to a changing climate. But the reproductive phase also provides the plant with an opportunity to adapt to environmental changes. Understanding phenotypic plasticity and gametophyte selection for prevailing temperatures, along with possible epigenetic changes during this process, could provide new insights into plant evolution under a global-warming scenario.

  20. Can we delay a greenhouse warming

    SciTech Connect

    Perry, A.M.

    1983-01-01

    The author comments on the EPA report dated September 1983 Can We Delay A Greenhouse Warming. He takes exception to the widely-held interpretation that the answer is not much. The contribution of other greenhouse gases such as methane and nitrous oxide to the EPA scenarios is pointed out, and the lack of understanding of their role is emphasised. (ACR)

  1. The global warming hiatus: Slowdown or redistribution?

    NASA Astrophysics Data System (ADS)

    Yan, Xiao-Hai; Boyer, Tim; Trenberth, Kevin; Karl, Thomas R.; Xie, Shang-Ping; Nieves, Veronica; Tung, Ka-Kit; Roemmich, Dean

    2016-11-01

    Global mean surface temperatures (GMST) exhibited a smaller rate of warming during 1998-2013, compared to the warming in the latter half of the 20th Century. Although, not a "true" hiatus in the strict definition of the word, this has been termed the "global warming hiatus" by IPCC (2013). There have been other periods that have also been defined as the "hiatus" depending on the analysis. There are a number of uncertainties and knowledge gaps regarding the "hiatus." This report reviews these issues and also posits insights from a collective set of diverse information that helps us understand what we do and do not know. One salient insight is that the GMST phenomenon is a surface characteristic that does not represent a slowdown in warming of the climate system but rather is an energy redistribution within the oceans. Improved understanding of the ocean distribution and redistribution of heat will help better monitor Earth's energy budget and its consequences. A review of recent scientific publications on the "hiatus" shows the difficulty and complexities in pinpointing the oceanic sink of the "missing heat" from the atmosphere and the upper layer of the oceans, which defines the "hiatus." Advances in "hiatus" research and outlooks (recommendations) are given in this report.

  2. Desert Amplification in a Warming Climate

    PubMed Central

    Zhou, Liming

    2016-01-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950–2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor. PMID:27538725

  3. Is Europa's Subsurface Water Ocean Warm?

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.; Ekholm, A. G.; Showman, A. P.; Lorenz, R. D.

    2002-01-01

    Europa's subsurface water ocean may be warm: that is, at the temperature of water's maximum density. This provides a natural explanation of chaos melt-through events and leads to a correct estimate of the age of its surface. Additional information is contained in the original extended abstract.

  4. Global warming and extreme storm surges

    NASA Astrophysics Data System (ADS)

    Grinsted, Aslak

    2013-04-01

    I will show empirical evidence for how global warming has changed extreme storm surge statistics for different regions in the world. Are there any detectable changes beyond what we expect from sea level rise. What does this suggest about the future of hurricane surges such as from hurricane Katrina and superstorm Sandy?

  5. Microclimate moderates plant responses to macroclimate warming

    PubMed Central

    De Frenne, Pieter; Rodríguez-Sánchez, Francisco; Coomes, David Anthony; Baeten, Lander; Verstraeten, Gorik; Vellend, Mark; Bernhardt-Römermann, Markus; Brown, Carissa D.; Brunet, Jörg; Cornelis, Johnny; Decocq, Guillaume M.; Dierschke, Hartmut; Eriksson, Ove; Gilliam, Frank S.; Hédl, Radim; Heinken, Thilo; Hermy, Martin; Hommel, Patrick; Jenkins, Michael A.; Kelly, Daniel L.; Kirby, Keith J.; Mitchell, Fraser J. G.; Naaf, Tobias; Newman, Miles; Peterken, George; Petřík, Petr; Schultz, Jan; Sonnier, Grégory; Van Calster, Hans; Waller, Donald M.; Walther, Gian-Reto; White, Peter S.; Woods, Kerry D.; Wulf, Monika; Graae, Bente Jessen; Verheyen, Kris

    2013-01-01

    Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., “thermophilization” of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that “climatic lags” may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12–67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass—e.g., for bioenergy—may open forest canopies and accelerate thermophilization of temperate forest biodiversity. PMID:24167287

  6. Microclimate moderates plant responses to macroclimate warming.

    PubMed

    De Frenne, Pieter; Rodríguez-Sánchez, Francisco; Coomes, David Anthony; Baeten, Lander; Verstraeten, Gorik; Vellend, Mark; Bernhardt-Römermann, Markus; Brown, Carissa D; Brunet, Jörg; Cornelis, Johnny; Decocq, Guillaume M; Dierschke, Hartmut; Eriksson, Ove; Gilliam, Frank S; Hédl, Radim; Heinken, Thilo; Hermy, Martin; Hommel, Patrick; Jenkins, Michael A; Kelly, Daniel L; Kirby, Keith J; Mitchell, Fraser J G; Naaf, Tobias; Newman, Miles; Peterken, George; Petrík, Petr; Schultz, Jan; Sonnier, Grégory; Van Calster, Hans; Waller, Donald M; Walther, Gian-Reto; White, Peter S; Woods, Kerry D; Wulf, Monika; Graae, Bente Jessen; Verheyen, Kris

    2013-11-12

    Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., "thermophilization" of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that "climatic lags" may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12-67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass--e.g., for bioenergy--may open forest canopies and accelerate thermophilization of temperate forest biodiversity.

  7. Carbonyl sulfide: No remedy for global warming

    NASA Astrophysics Data System (ADS)

    Taubman, Steven J.; Kasting, James F.

    1995-04-01

    The enhancement of the stratospheric aerosol layer caused by the eruption of Mt. Pinatubo (June 15, 1991), and the subsequent cooling of the earth's lower atmosphere [Dutton and Christy, 1992; Minnis et al., 1993] shows that stratospheric aerosols can have a strong effect on the earth's climate. This supports the notion that the intentional enhancement of the stratospheric aerosol layer through increased carbonyl sulfide (OCS) emissions might be an effective means for counteracting global warming. Through the use of a one-dimensional photochemical model, we investigate what effect such a program might have on global average stratospheric ozone. In addition, we consider the impact of enhanced OCS emissions on rainwater acidity and on the overall health of both plants and animals. We find that while the warming produced by a single CO2 doubling (1 to 4°C) might be offset with ozone losses of less than 5%, any attempt to use carbonyl sulfide as a permanent solution to global warming could result in depletion of global average ozone by 30% or more. We estimate that in order to achieve cooling of 4°C rainwater pH would fall to between 3.5 and 3.8. Finally, a 4°C cooling at the surface will require that ambient near ground OCS levels rise to above 10 ppmv which is probably greater than the safe exposure limit for humans. Thus, enhanced OCS emissions do not provide an environmentally acceptable solution to the problem of global warming.

  8. Warm inflationary model in loop quantum cosmology

    SciTech Connect

    Herrera, Ramon

    2010-06-15

    A warm inflationary universe model in loop quantum cosmology is studied. In general we discuss the condition of inflation in this framework. By using a chaotic potential, V({phi}){proportional_to}{phi}{sup 2}, we develop a model where the dissipation coefficient {Gamma}={Gamma}{sub 0}=constant. We use recent astronomical observations for constraining the parameters appearing in our model.

  9. National contributions to observed global warming

    NASA Astrophysics Data System (ADS)

    Damon Matthews, H.; Graham, Tanya L.; Keverian, Serge; Lamontagne, Cassandra; Seto, Donny; Smith, Trevor J.

    2014-01-01

    There is considerable interest in identifying national contributions to global warming as a way of allocating historical responsibility for observed climate change. This task is made difficult by uncertainty associated with national estimates of historical emissions, as well as by difficulty in estimating the climate response to emissions of gases with widely varying atmospheric lifetimes. Here, we present a new estimate of national contributions to observed climate warming, including CO2 emissions from fossil fuels and land-use change, as well as methane, nitrous oxide and sulfate aerosol emissions While some countries’ warming contributions are reasonably well defined by fossil fuel CO2 emissions, many countries have dominant contributions from land-use CO2 and non-CO2 greenhouse gas emissions, emphasizing the importance of both deforestation and agriculture as components of a country’s contribution to climate warming. Furthermore, because of their short atmospheric lifetime, recent sulfate aerosol emissions have a large impact on a country’s current climate contribution We show also that there are vast disparities in both total and per-capita climate contributions among countries, and that across most developed countries, per-capita contributions are not currently consistent with attempts to restrict global temperature change to less than 2 °C above pre-industrial temperatures.

  10. Global Warming 'Pause' - Oceans Reshuffle Heat

    NASA Astrophysics Data System (ADS)

    Nieves, V.; Willis, J. K.; Patzert, W. C.

    2015-12-01

    Despite the fact that greenhouse gases are still increasing and all other indicators show warming-related change (+0.0064 °C/year since 1880 or +0.0077 °C/year during 1993-2002), surface temperatures stopped climbing steadily during the past decade at a rate of +0.0010 °C/year from 2003 to 2012. We show that in recent years, the heat was being trapped in the subsurface waters of the western Pacific and eastern Indian oceans between 100 and 300 m. The movement of warm Pacific water below the surface, also related to the Pacific Decadal Oscillation climatic pattern, temporarily affected surface temperatures and accounted for the global cooling trend in surface temperature. With the Pacific Decadal Oscillation possibly changing to a warm phase, it is likely that the oceans will drive a major surge in global surface warming sometime in the next decade or two. Reference: Nieves, V., Willis, J. K., and Patzert, W. C. (2015). Recent hiatus caused by decadal shift in Indo-Pacific heating. Science, aaa4521.

  11. Warm reactive autoantibodies: clinical and serologic correlations.

    PubMed

    Wheeler, Christine A; Calhoun, Loni; Blackall, Douglas P

    2004-11-01

    Warm reactive autoantibodies are encountered relatively frequently in tertiary care hospitals. We studied 100 consecutive patients with warm autoantibodies to correlate their clinical and serologic features. Study patients (56 male, 44 female) had various diagnoses and a mean age of 53.5 years (range, 3-90 years). Autoimmune hemolysis was documented in 29 patients; 20 patients (69%) in this subset had diseases classically associated with warm autoimmune hemolytic anemia (hematologic and autoimmune disorders). All study patients demonstrated IgG on their RBCs (direct antiglobulin test [DAT] reactivity range, microscopic to 4+); 49 also demonstrated C3 (reactivity range, microscopic to 3+). The DAT for IgG was 2+ or more in 25 (86%) of 29 patients with hemolysis; the DAT for IgG was 1+ or less in 45 (63%) of 71 patients without hemolysis. In patients with hemolysis, 21 (72%) of 29 had a DAT reactive for C3. These findings may be useful in determining the clinical significance of warm autoantibodies and the extent to which patients should be followed up for hemolysis.

  12. Temperature Data Shows Warming in 2001

    NASA Technical Reports Server (NTRS)

    2002-01-01

    TThe figure above depicts how much air temperatures near the Earth's surface changed relative to the global mean temperature from 1951 to 1980. NASA researchers used maps of urban areas derived from city lights data to account for the 'heat island' effect of cities. The red and orange colors show that temperatures are warmer in most regions of the world when compared to the 1951 to 1980 'normal' temperatures. Warming around the world has been widespread, but it is not present everywhere. The largest warming is in Northern Canada, Alaska and Siberia, as indicated by the deeper red colors. The lower 48 United States have become warmer recently, but only enough to make the temperatures comparable to what they were in the 1930s. The scale on the bottom of these temperature anomaly images represent degrees in Celsius. The negative numbers represent cooling and the positive numbers depict warming. Overall, the air temperature near the Earth's surface has warmed by 1oF (0.6oC) globally, on average, over the last century. For more information and additional images, read Satellites Shed Light on a Warmer World. Image courtesy Goddard Institute for Space Studies (GISS).

  13. Desert Amplification in a Warming Climate

    NASA Astrophysics Data System (ADS)

    Zhou, Liming

    2016-08-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950–2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor.

  14. Should Patients With Haemorrhage Be Kept Warm?

    DTIC Science & Technology

    2010-01-01

    and upward shift of the Starling relationship by way of a compensatory sympathetic excitation ( Braunwald et al. 1967). The resultant increase in...to volume status should be mandated in re-warming protocols. References Braunwald E, Ross J Jr & Sonnenblick EH (1967). N Engl J Med 277, 794–800

  15. Global warming and health: a review.

    PubMed

    Amofah, G K

    1996-08-01

    The paper looks at the phenomenon of global warming and its potential health effects and outlines a number of plausible response by the health sector in developing countries to its threat. It suggests that the health sector should facilitate an international effort at addressing this challenge, mainly through advocacy, epidemiological surveillance and awareness creation.

  16. Warm Hydroforming of Lightweight Metal Sheets

    SciTech Connect

    Aginagalde, A.; Orus, A.; Esnaola, J. A.; Torca, I.; Galdos, L.; Garcia, C.

    2007-05-17

    Hydroforming is well known in steel applications for automotive industry, where complicated shapes can be get with high strength to weight ratios. Nevertheless, the poor formability of light alloys at room temperature has limited the application of hydroforming technology for aluminum and magnesium parts. Increasing the temperature of these materials allows substantially greater elongation without fracture. Warm forming strategy is applied in conventional processes, such as rolling and forging, in order to get complex shapes, but still rare in hydroforming technology. This is the technical base of this research project: the development of the hydroforming process at warm working temperatures. The main tasks of the initial phases of the research were the material characterization, and the heated fluid and tooling system design and set up for warm hydroforming of lightweight alloys. Once these goals were accomplished the present paper shows the obtained results. The uniaxial tensile deformation of 5754H111, 6082-T6, 6082-O and AZ31B at the temperature range of 25 deg. C - 250 deg. C is presented as the output of the material characterization task. Both the system features and the results obtained for a bulge test geometry carried out with a warm hydroforming system are also presented. The selected alloys show an improvement in formability at the studied temperature range under both uniaxial and biaxial state of stress.

  17. Can Global Warming Heat Up Environmental Education?

    ERIC Educational Resources Information Center

    Mazzatenta, Claudio

    2008-01-01

    Bronx Community College (CUNY) launched "Global Warming Campus Awareness and Action Days" in celebration of Earth Day, 2007. The purpose of this program was to raise awareness of environmental issues in the college population, especially students. To let more students have a grasp of what Environmental Education (EE) is all about, the author…

  18. Abrupt warming of the Red Sea

    NASA Astrophysics Data System (ADS)

    Raitsos, D. E.; Hoteit, I.; Prihartato, P. K.; Chronis, T.; Triantafyllou, G.; Abualnaja, Y.

    2011-07-01

    Coral reef ecosystems, often referred to as “marine rainforests,” concentrate the most diverse life in the oceans. Red Sea reef dwellers are adapted in a very warm environment, fact that makes them vulnerable to further and rapid warming. The detection and understanding of abrupt temperature changes is an important task, as ecosystems have more chances to adapt in a slowly rather than in a rapid changing environment. Using satellite derived sea surface and ground based air temperatures, it is shown that the Red Sea is going through an intense warming initiated in the mid-90s, with evidence for an abrupt increase after 1994 (0.7°C difference pre and post the shift). The air temperature is found to be a key parameter that influences the Red Sea marine temperature. The comparisons with Northern Hemisphere temperatures revealed that the observed warming is part of global climate change trends. The hitherto results also raise additional questions regarding other broader climatic impacts over the area.

  19. Desert Amplification in a Warming Climate.

    PubMed

    Zhou, Liming

    2016-08-19

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950-2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor.

  20. Rangeland and warm-season forage grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Livestock ranchers depend on grassland grazing for a substantial part of their livestock management systems. Grassland forages make up to 85% of the feed supply for ruminant animal products, especially in warm climates. Grass breeding in general creates some unique breeding challenges ranging from...

  1. An apparent hiatus in global warming?

    NASA Astrophysics Data System (ADS)

    Trenberth, Kevin E.; Fasullo, John T.

    2013-12-01

    Global warming first became evident beyond the bounds of natural variability in the 1970s, but increases in global mean surface temperatures have stalled in the 2000s. Increases in atmospheric greenhouse gases, notably carbon dioxide, create an energy imbalance at the top-of-atmosphere (TOA) even as the planet warms to adjust to this imbalance, which is estimated to be 0.5-1 W m-2 over the 2000s. Annual global fluctuations in TOA energy of up to 0.2 W m-2 occur from natural variations in clouds, aerosols, and changes in the Sun. At times of major volcanic eruptions the effects can be much larger. Yet global mean surface temperatures fluctuate much more than these can account for. An energy imbalance is manifested not just as surface atmospheric or ground warming but also as melting sea and land ice, and heating of the oceans. More than 90% of the heat goes into the oceans and, with melting land ice, causes sea level to rise. For the past decade, more than 30% of the heat has apparently penetrated below 700 m depth that is traceable to changes in surface winds mainly over the Pacific in association with a switch to a negative phase of the Pacific Decadal Oscillation (PDO) in 1999. Surface warming was much more in evidence during the 1976-1998 positive phase of the PDO, suggesting that natural decadal variability modulates the rate of change of global surface temperatures while sea-level rise is more relentless. Global warming has not stopped; it is merely manifested in different ways.

  2. Frequency of Deep Convective Clouds and Global Warming

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Teixeira, Joao

    2008-01-01

    This slide presentation reviews the effect of global warming on the formation of Deep Convective Clouds (DCC). It concludes that nature responds to global warming with an increase in strong convective activity. The frequency of DCC increases with global warming at the rate of 6%/decade. The increased frequency of DCC with global warming alone increases precipitation by 1.7%/decade. It compares the state of the art climate models' response to global warming, and concludes that the parametrization of climate models need to be tuned to more closely emulate the way nature responds to global warming.

  3. Discrimination of a major stratospheric warming event in February-March 1984 from earlier minor warmings

    NASA Technical Reports Server (NTRS)

    Johnson, K. W.; Quiroz, R. S.; Gelman, M. E.

    1985-01-01

    As part of its responsibility for stratospheric monitoring, the Climate Analysis Center derives time trends of various dynamic parameters from NMC stratospheric analyses. Selected figures from this stratospheric monitoring data base are published in Climate Diagnostics Bulletin in March and October, after each hemispheric winter. During the Northern Hemisphere winter of December 1983-February 1984 several warming events may be seen in the plot of 60 deg. N zonal mean temperatures for 10 mb. Minor warmings may be noted in early December, late December, mid January and early February. A major warming with the 60 deg. N zonal mean temperatures reaching -40C is observed in late February, associated with a circulation reversal. In all of the minor warming episodes, there is a polarward movement of the Aleutian anticyclone; however, at 10 mb the North Pole remains in the cyclonic circulation of the stratospheric vortex which is not displaced far from its usual position. In the case of the later February major warming, the 10 mb circulation pattern over the North Pole is anticyclonic, and the cyclonic circulation has moved to the south and east with a considerable elongation. Cross sections of heat transport and momentum transport are not dramatically different for the minor and major warming episodes.

  4. Response of ocean ecosystems to climate warming

    NASA Astrophysics Data System (ADS)

    Sarmiento, J. L.; Slater, R.; Barber, R.; Bopp, L.; Doney, S. C.; Hirst, A. C.; Kleypas, J.; Matear, R.; Mikolajewicz, U.; Monfray, P.; Soldatov, V.; Spall, S. A.; Stouffer, R.

    2004-09-01

    We examine six different coupled climate model simulations to determine the ocean biological response to climate warming between the beginning of the industrial revolution and 2050. We use vertical velocity, maximum winter mixed layer depth, and sea ice cover to define six biomes. Climate warming leads to a contraction of the highly productive marginal sea ice biome by 42% in the Northern Hemisphere and 17% in the Southern Hemisphere, and leads to an expansion of the low productivity permanently stratified subtropical gyre biome by 4.0% in the Northern Hemisphere and 9.4% in the Southern Hemisphere. In between these, the subpolar gyre biome expands by 16% in the Northern Hemisphere and 7% in the Southern Hemisphere, and the seasonally stratified subtropical gyre contracts by 11% in both hemispheres. The low-latitude (mostly coastal) upwelling biome area changes only modestly. Vertical stratification increases, which would be expected to decrease nutrient supply everywhere, but increase the growing season length in high latitudes. We use satellite ocean color and climatological observations to develop an empirical model for predicting chlorophyll from the physical properties of the global warming simulations. Four features stand out in the response to global warming: (1) a drop in chlorophyll in the North Pacific due primarily to retreat of the marginal sea ice biome, (2) a tendency toward an increase in chlorophyll in the North Atlantic due to a complex combination of factors, (3) an increase in chlorophyll in the Southern Ocean due primarily to the retreat of and changes at the northern boundary of the marginal sea ice zone, and (4) a tendency toward a decrease in chlorophyll adjacent to the Antarctic continent due primarily to freshening within the marginal sea ice zone. We use three different primary production algorithms to estimate the response of primary production to climate warming based on our estimated chlorophyll concentrations. The three algorithms give

  5. OVERVIEW OF GOLD HILL MILL, ROAD, AND WARM SPRINGS CAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF GOLD HILL MILL, ROAD, AND WARM SPRINGS CAMP BUILDINGS, LOOKING SOUTH SOUTHEAST. THE FUNCTION OF THE FLAT AREA AT CENTER RIGHT IS UNKNOWN. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  6. Parameters of human discomfort in warm environments

    SciTech Connect

    Berglund, L.G.; Cunningham, D.J.

    1986-01-01

    The relationship between thermoregulatory responses during exposure to warm and hot environments and the associated subjective perceptions, e.g., comfort, thermal sensation, etc., have been studied by numerous investigators over a considerable span of time, i.e., roughly 50 years. Skin temperature, mean body temperature, sweating, and percent of skin wettedness have been shown to have a role in comfort, thermal sensation, and perception of skin moisture. This paper reviews studies concerned with the physical and physiological parameters relative to these subjective responses and their level of magnitude, with primary emphasis on warm discomfort and skin moisture. The review indicates that, while utilizing different methodologies for quantification of skin moisture under a wide range of ambient conditions and experimental protocols, the relationship between skin wettedness and discomfort or unpleasantness is consistent and experimentally supported.

  7. Isolating the anthropogenic component of Arctic warming

    NASA Astrophysics Data System (ADS)

    Chylek, Petr; Hengartner, Nicholas; Lesins, Glen; Klett, James D.; Humlum, Ole; Wyatt, Marcia; Dubey, Manvendra K.

    2014-05-01

    Structural equation modeling is used in statistical applications as both confirmatory and exploratory modeling to test models and to suggest the most plausible explanation for a relationship between the independent and the dependent variables. Although structural analysis cannot prove causation, it can suggest the most plausible set of factors that influence the observed variable. We apply structural model analysis to the annual mean Arctic surface air temperature from 1900 to 2012 to find the most effective set of predictors and to isolate the anthropogenic component of the recent Arctic warming by subtracting the effects of natural forcing and variability from the observed temperature. We find that anthropogenic greenhouse gases and aerosols radiative forcing and the Atlantic Multidecadal Oscillation internal mode dominate Arctic temperature variability. Our structural model analysis of observational data suggests that about half of the recent Arctic warming of 0.64 K/decade may have anthropogenic causes.

  8. Policies on global warming and ozone depletion

    SciTech Connect

    Green, B.

    1987-04-01

    The recent discovery of a dramatic seasonal drop in the amount of ozone over Antarctica has catalyzed concern for protection of stratospheric ozone, the layer of gas that shields the entire planet from excess ultraviolet radiation. Conservative scientific models predict about a 5% reduction in the amount of global ozone by the middle of the next century, with large local variations. The predicted global warming from increased emissions of greenhouse gases will also have differing effects on local climate and weather conditions and consequently on agriculture. Although numerous uncertainties are associated with both ozone depletion and a global warming, there is a consensus that world leaders need to address the problems. The US Congress is now beginning to take note of the task. In this article, one representative outlines some perceptions of the problems and the policy options available to Congress.

  9. Giant natural fluctuation models and anthropogenic warming

    NASA Astrophysics Data System (ADS)

    Lovejoy, S.; Rio Amador, L.; Hébert, R.; Lima, I.

    2016-08-01

    Explanations for the industrial epoch warming are polarized around the hypotheses of anthropogenic warming (AW) and giant natural fluctuations (GNFs). While climate sceptics have systematically attacked AW, up until now they have only invoked GNFs. This has now changed with the publication by D. Keenan of a sample of 1000 series from stochastic processes purporting to emulate the global annual temperature since 1880. While Keenan's objective was to criticize the International Panel on Climate Change's trend uncertainty analysis (their assumption that residuals are only weakly correlated), for the first time it is possible to compare a stochastic GNF model with real data. Using Haar fluctuations, probability distributions, and other techniques of time series analysis, we show that his model has unrealistically strong low-frequency variability so that even mild extrapolations imply ice ages every ≈1000 years. Helped by statistics, the GNF model can easily be scientifically rejected.

  10. Isolating the anthropogenic component of Arctic warming

    SciTech Connect

    Chylek, Petr; Hengartner, Nicholas; Lesins, Glen; Klett, James D.; Humlum, Ole; Wyatt, Marcia; Dubey, Manvendra K.

    2014-05-28

    Structural equation modeling is used in statistical applications as both confirmatory and exploratory modeling to test models and to suggest the most plausible explanation for a relationship between the independent and the dependent variables. Although structural analysis cannot prove causation, it can suggest the most plausible set of factors that influence the observed variable. Here, we apply structural model analysis to the annual mean Arctic surface air temperature from 1900 to 2012 to find the most effective set of predictors and to isolate the anthropogenic component of the recent Arctic warming by subtracting the effects of natural forcing and variability from the observed temperature. We also find that anthropogenic greenhouse gases and aerosols radiative forcing and the Atlantic Multidecadal Oscillation internal mode dominate Arctic temperature variability. Finally, our structural model analysis of observational data suggests that about half of the recent Arctic warming of 0.64 K/decade may have anthropogenic causes.

  11. Winter warming from large volcanic eruptions

    SciTech Connect

    Robock, A.; Jianping Mao )

    1992-12-24

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95% level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight. 21 refs., 2 figs., 1 tab.

  12. Management of drought risk under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Han, Lanying; Jia, Jianying; Song, Lingling; Wang, Jinsong

    2016-07-01

    Drought is a serious ecological problem around the world, and its impact on crops and water availability for humans can jeopardize human life. Although drought has always been common, the drought risk has become increasingly prominent because of the climatic warming that has occurred during the past century. However, it still does not comprehensively understand the mechanisms that determine the occurrence of the drought risk it poses to humans, particularly in the context of global climate change. In this paper, we summarize the progress of research on drought and the associated risk, introduce the principle of a drought "transition" from one stage to another, synthesize the characteristics of key factors and their interactions, discuss the potential effect of climatic warming on drought risk, and use this discussion to define the basic requirements for a drought risk management system. We also discuss the main measures that can be used to prevent or mitigate droughts in the context of a risk management strategy.

  13. Early Eocene climate warming increased petroleum production

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-04-01

    From the late Paleocene, about 58 million years ago, to the early Eocene, about 51 million years ago, Earth's surface temperatures warmed by about 5°-10°C. Also in the early Eocene, there was an increase of carbon-13-depleted carbon in the oceans that cannot be accounted for by changes in carbon cycling at the surface. To better understand the source of that carbon, Kroeger and Funnell modeled the thermal evolution of four sedimentary basins in the southwestern Pacific Ocean. The authors show that the rising surface temperatures of the early Eocene eventually led to warming of the sedimentary beds deep beneath the surface. Petroleum can be produced at only a certain range of temperatures; rising temperatures at greater depths would bring more potential source rocks into temperature conditions under which oil and gas can be produced and released.

  14. Isolating the anthropogenic component of Arctic warming

    DOE PAGES

    Chylek, Petr; Hengartner, Nicholas; Lesins, Glen; ...

    2014-05-28

    Structural equation modeling is used in statistical applications as both confirmatory and exploratory modeling to test models and to suggest the most plausible explanation for a relationship between the independent and the dependent variables. Although structural analysis cannot prove causation, it can suggest the most plausible set of factors that influence the observed variable. Here, we apply structural model analysis to the annual mean Arctic surface air temperature from 1900 to 2012 to find the most effective set of predictors and to isolate the anthropogenic component of the recent Arctic warming by subtracting the effects of natural forcing and variabilitymore » from the observed temperature. We also find that anthropogenic greenhouse gases and aerosols radiative forcing and the Atlantic Multidecadal Oscillation internal mode dominate Arctic temperature variability. Finally, our structural model analysis of observational data suggests that about half of the recent Arctic warming of 0.64 K/decade may have anthropogenic causes.« less

  15. AGN warm absorption with the ATHENA

    NASA Astrophysics Data System (ADS)

    Różańska, Agata; Gronkiewicz, Dominik; Hryniewicz, Krzysztof; Adhikari, Tek Prasad; Rataj, Mirosław; Skup, Konrad

    2016-06-01

    X-ray astronomy requires satellites to make progress in searching the distribution of hot matter in the Universe. Approximately 15 years period of time is needed for full construction of the flight instrument from the mission concept up to the launch. A new generation X-ray telescope ATHENA (the Advanced Telescope for High Energy Astrophysics) was approved by European Space Agency as a large mission with a launch foreseen in 2028. In this paper we show how microcalorimeter on the board of ATHENA will help us to study warm absorption observed in active galactic nuclei (AGN). We show that future observations will allow us to identify hundreds of lines from highly ionized elements and to measure Galactic warm absorption with very high precision.

  16. The winter anomaly and sudden stratospheric warmings

    NASA Astrophysics Data System (ADS)

    Lastovicka, J.

    1984-08-01

    Large-scale stratospheric warmings are examined on the basis of 22-year measurements of radio-wave absorption at the Panska Ves observatory. It is shown that these warmings, accompanied by the reversal of wind direction in the lower thermosphere, lead not to an increase but to a decrease in the radio-wave absorption in the lower ionosphere, i.e., to the disappearance of the winter anomaly. It is concluded that the absorption decrease is connected not only with cooling in the mesopause region but also with a total change in the dynamic conditions of the lower ionosphere. The behavior of the winter anomaly in the 1979-1980 and 1981-1982 periods is examined in detail.

  17. Latitudinal distribution of the recent Arctic warming

    SciTech Connect

    Chylek, Petr; Lesins, Glen K; Wang, Muyin

    2010-12-08

    Increasing Arctic temperature, disappearance of Arctic sea ice, melting of the Greenland ice sheet, sea level rise, increasing strength of Atlantic hurricanes are these impending climate catastrophes supported by observations? Are the recent data really unprecedented during the observational records? Our analysis of Arctic temperature records shows that the Arctic and temperatures in the 1930s and 1940s were almost as high as they are today. We argue that the current warming of the Arctic region is affected more by the multi-decadal climate variability than by an increasing concentration of carbon dioxide. Unfortunately, none of the existing coupled Atmosphere-Ocean General Circulation Models used in the IPCC 2007 cIimate change assessment is able to reproduce neither the observed 20th century Arctic cIimate variability nor the latitudinal distribution of the warming.

  18. Indian Ocean warming modulates Pacific climate change.

    PubMed

    Luo, Jing-Jia; Sasaki, Wataru; Masumoto, Yukio

    2012-11-13

    It has been widely believed that the tropical Pacific trade winds weakened in the last century and would further decrease under a warmer climate in the 21st century. Recent high-quality observations, however, suggest that the tropical Pacific winds have actually strengthened in the past two decades. Precise causes of the recent Pacific climate shift are uncertain. Here we explore how the enhanced tropical Indian Ocean warming in recent decades favors stronger trade winds in the western Pacific via the atmosphere and hence is likely to have contributed to the La Niña-like state (with enhanced east-west Walker circulation) through the Pacific ocean-atmosphere interactions. Further analysis, based on 163 climate model simulations with centennial historical and projected external radiative forcing, suggests that the Indian Ocean warming relative to the Pacific's could play an important role in modulating the Pacific climate changes in the 20th and 21st centuries.

  19. Warm Debris Disk Candidates from WISE

    NASA Technical Reports Server (NTRS)

    Padgett, Deborah; Stapelfeldt, Karl; Liu, Wilson; Leisawitz, David

    2011-01-01

    The Wide Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky survey in photometric bands at 3.4, 4.6, 12, and 22 microns. We report on a preliminary investigation of main sequence Hipparcos and Tycho catalog stars with 22 micron emission in excess of photospheric levels. This warm excess emission traces material in the circumstellar region likely to host terrestrial planets and is preferentially found in young systems with ages < 1 Gyr. Nearly a hundred new warm debris disk candidates are detected among FGK stars and 150 A stars within 120 pc. We are in the process of obtaining spectra to determine spectral types and activity level of these stars and are using HST, Herschel and Keck to characterize the dust, multiplicity, and substellar companions of these systems. In this contribution, we will discuss source selection methods and individual examples from among the WISE debris disk candidates.

  20. Cognitive Egocentrism Differentiates Warm and Cold People

    PubMed Central

    Boyd, Ryan L.; Bresin, Konrad; Ode, Scott; Robinson, Michael D.

    2012-01-01

    Warmth-coldness is a fundamental dimension of social behavior. Cold individuals are egocentric in their social relations, whereas warm individuals are not. Previous theorizing suggests that cognitive egocentrism underlies social egocentrism. It was hypothesized that higher levels of interpersonal coldness would predict greater cognitive egocentrism. Cognitive egocentrism was assessed in basic terms through tasks wherein priming a lateralized self-state biased subsequent visual perceptions in an assimilation-related manner. Such effects reflect a tendency to assume that the self's incidental state provides meaningful information concerning the external world. Cognitive egocentrism was evident at high, but not low, levels of interpersonal coldness. The findings reveal a basic difference between warm and cold people, encouraging future research linking cognitive egocentrism to variability in relationship functioning. PMID:23564985

  1. Cognitive Egocentrism Differentiates Warm and Cold People.

    PubMed

    Boyd, Ryan L; Bresin, Konrad; Ode, Scott; Robinson, Michael D

    2013-02-01

    Warmth-coldness is a fundamental dimension of social behavior. Cold individuals are egocentric in their social relations, whereas warm individuals are not. Previous theorizing suggests that cognitive egocentrism underlies social egocentrism. It was hypothesized that higher levels of interpersonal coldness would predict greater cognitive egocentrism. Cognitive egocentrism was assessed in basic terms through tasks wherein priming a lateralized self-state biased subsequent visual perceptions in an assimilation-related manner. Such effects reflect a tendency to assume that the self's incidental state provides meaningful information concerning the external world. Cognitive egocentrism was evident at high, but not low, levels of interpersonal coldness. The findings reveal a basic difference between warm and cold people, encouraging future research linking cognitive egocentrism to variability in relationship functioning.

  2. Environmental colonialism Leadership and global warming

    SciTech Connect

    Not Available

    1990-02-16

    The vast majority of the world's scientific community believes there is global warming and that it is global problem requiring international cooperation. But policy makers in industrialized countries are at a crossroads:Listen to the skeptics, who demand more proof and who fear economic consequences of an anti-greenhouse campaign, or take the more difficult path of commitment to attacking the problem. Meanwhile, poverty and debt keep. The Third world locked out of any active partnership. This issue of ED highlight their results of recently tapping documents and seminar findings on the subject of global warming. This issue also contains the following: (1) ED Refining Netback Data Series for the US Gulf and West Coasts, Rotterdam, and Singapore as of the February 9, 1990; and (2) ED Fuel Price/Tax Series for countries of the Western Hemisphere, February 1990 edition. 6 figs., 5 tabs.

  3. Viscous warm inflation: Hamilton-Jacobi formalism

    NASA Astrophysics Data System (ADS)

    Akhtari, L.; Mohammadi, A.; Sayar, K.; Saaidi, Kh.

    2017-04-01

    Using Hamilton-Jacobi formalism, the scenario of warm inflation with viscous pressure is considered. The formalism gives a way of computing the slow-rolling parameter without extra approximation, and it is well-known as a powerful method in cold inflation. The model is studied in detail for three different cases of the dissipation and bulk viscous pressure coefficients. In the first case where both coefficients are taken as constant, it is shown that the case could not portray warm inflationary scenario compatible with observational data even it is possible to restrict the model parameters. For other cases, the results shows that the model could properly predicts the perturbation parameters in which they stay in perfect agreement with Planck data. As a further argument, r -ns and αs -ns are drown that show the acquired result could stand in acceptable area expressing a compatibility with observational data.

  4. Robust warming of the global upper ocean.

    PubMed

    Lyman, John M; Good, Simon A; Gouretski, Viktor V; Ishii, Masayoshi; Johnson, Gregory C; Palmer, Matthew D; Smith, Doug M; Willis, Josh K

    2010-05-20

    A large ( approximately 10(23) J) multi-decadal globally averaged warming signal in the upper 300 m of the world's oceans was reported roughly a decade ago and is attributed to warming associated with anthropogenic greenhouse gases. The majority of the Earth's total energy uptake during recent decades has occurred in the upper ocean, but the underlying uncertainties in ocean warming are unclear, limiting our ability to assess closure of sea-level budgets, the global radiation imbalance and climate models. For example, several teams have recently produced different multi-year estimates of the annually averaged global integral of upper-ocean heat content anomalies (hereafter OHCA curves) or, equivalently, the thermosteric sea-level rise. Patterns of interannual variability, in particular, differ among methods. Here we examine several sources of uncertainty that contribute to differences among OHCA curves from 1993 to 2008, focusing on the difficulties of correcting biases in expendable bathythermograph (XBT) data. XBT data constitute the majority of the in situ measurements of upper-ocean heat content from 1967 to 2002, and we find that the uncertainty due to choice of XBT bias correction dominates among-method variability in OHCA curves during our 1993-2008 study period. Accounting for multiple sources of uncertainty, a composite of several OHCA curves using different XBT bias corrections still yields a statistically significant linear warming trend for 1993-2008 of 0.64 W m(-2) (calculated for the Earth's entire surface area), with a 90-per-cent confidence interval of 0.53-0.75 W m(-2).

  5. Response to Skeptics of Global Warming.

    NASA Astrophysics Data System (ADS)

    Kellogg, William W.

    1991-04-01

    The majority of the scientific community involved in climate research is convinced of the reality of a current and future global warming due to the greenhouse effect, a change that must be largely caused by human activities. However, a minority of scientists is still skeptical of the notion that mankind is significantly influencing the climate of the earth, and it therefore argues against taking certain measures to avert this alleged global warming. In recent years the media have given considerable coverage to the statements of these skeptics. Reasons for their statements range from a simple argument that we do not understand the earth's climate system well enough to predict the future, to more complex arguments involving negative feed-backs and changes of solar activity. They question whether the global temperature increase in this century of up to 0.6 K is primarily a result of worldwide burning of fossil fuels. The purpose of this article is to show that the statements of this skeptical school of thought need to be critically analyzed (and in some cases refuted) in the light of current understanding of the planetary system that determines our climate. There is also another school of thought that agrees about the reality of present and future global warming, and claims that this will be beneficial for most of mankind and that it should be encouraged. The policy implications of the latter view are in many respects similar to those of the group that are not convinced that a significant global warming will occur. Both schools of thought argue against taking immediate steps to slow the climate change.

  6. Likely cause found for global warming "hiatus"

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-08-01

    An Atlantic current may be the cause of the recent warming "hiatus" observed since the beginning of the 21st century, according to new research published last week in the journal Science (doi:10.1126/science.1254937). The conclusion is based on observations of deep-sea temperatures in the Atlantic Ocean, from floats that sample water down to 2000 meters deep and from looking at historical records from the mid- to late 20th century.

  7. Warm-intermediate inflationary universe model

    SciTech Connect

    Campo, Sergio del; Herrera, Ramon E-mail: ramon.herrera@ucv.cl

    2009-04-15

    Warm inflationary universe models in the context of intermediate expansion, between power law and exponential, are studied. General conditions required for these models to be realizable are derived and discussed. This study is done in the weak and strong dissipative regimes. The inflaton potentials considered in this study are negative-power-law and powers of logarithms, respectively. The parameters of our models are constrained from the WMAP three and five year data.

  8. The Effect of Arousal on Warm Up Decrement.

    ERIC Educational Resources Information Center

    Anshel, Mark H.

    1985-01-01

    This study examined whether particular strategies would enhance affective arousal and if these techniques would affect warm-up decrement during performance of a sport skill. One strategy eliminated warm-up decrement and two had no effect. Positive and negative arousal and the correlation of arousal level to warm-up decrement are explored.…

  9. Global Warming: Evidence from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.

    2001-01-01

    Observations made in Channel 2 (53.74 GHz) of the Microwave Sounding Unit (MSU) radiometer, flown on-board sequential, sun-synchronous, polar orbiting NOAA operational satellites, indicate that the mean temperature of the atmosphere over the globe increased during the period 1980 to 1999. In this study we have minimized systematic errors in the time series introduced by the satellite orbital drift in an objective manner. This is done with the help the onboard warm black body temperature, which is used in the calibration of the MSU radiometer. The corrected MSU Channel 2 observations of the NOAA satellite series reveal that the vertically weighted global mean temperature of the atmosphere, with a peak weight near the mid-troposphere, warmed at the rate of 0.13 K per decade (with an uncertainty of 0.05 K per decade) during 1980 to 1999. The global warming deduced from conventional meteorological data that have been corrected for urbanization effects agrees reasonably with this satellite deuced result.

  10. Seaweed communities in retreat from ocean warming.

    PubMed

    Wernberg, Thomas; Russell, Bayden D; Thomsen, Mads S; Gurgel, C Frederico D; Bradshaw, Corey J A; Poloczanska, Elvira S; Connell, Sean D

    2011-11-08

    In recent decades, global climate change [1] has caused profound biological changes across the planet [2-6]. However, there is a great disparity in the strength of evidence among different ecosystems and between hemispheres: changes on land have been well documented through long-term studies, but similar direct evidence for impacts of warming is virtually absent from the oceans [3, 7], where only a few studies on individual species of intertidal invertebrates, plankton, and commercially important fish in the North Atlantic and North Pacific exist. This disparity of evidence is precarious for biological conservation because of the critical role of the marine realm in regulating the Earth's environmental and ecological functions, and the associated socioeconomic well-being of humans [8]. We interrogated a database of >20,000 herbarium records of macroalgae collected in Australia since the 1940s and documented changes in communities and geographical distribution limits in both the Indian and Pacific Oceans, consistent with rapid warming over the past five decades [9, 10]. We show that continued warming might drive potentially hundreds of species toward and beyond the edge of the Australian continent where sustained retreat is impossible. The potential for global extinctions is profound considering the many endemic seaweeds and seaweed-dependent marine organisms in temperate Australia.

  11. The phenology of Arctic Ocean surface warming.

    PubMed

    Steele, Michael; Dickinson, Suzanne

    2016-09-01

    In this work, we explore the seasonal relationships (i.e., the phenology) between sea ice retreat, sea surface temperature (SST), and atmospheric heat fluxes in the Pacific Sector of the Arctic Ocean, using satellite and reanalysis data. We find that where ice retreats early in most years, maximum summertime SSTs are usually warmer, relative to areas with later retreat. For any particular year, we find that anomalously early ice retreat generally leads to anomalously warm SSTs. However, this relationship is weak in the Chukchi Sea, where ocean advection plays a large role. It is also weak where retreat in a particular year happens earlier than usual, but still relatively late in the season, primarily because atmospheric heat fluxes are weak at that time. This result helps to explain the very different ocean warming responses found in two recent years with extreme ice retreat, 2007 and 2012. We also find that the timing of ice retreat impacts the date of maximum SST, owing to a change in the ocean surface buoyancy and momentum forcing that occurs in early August that we term the Late Summer Transition (LST). After the LST, enhanced mixing of the upper ocean leads to cooling of the ocean surface even while atmospheric heat fluxes are still weakly downward. Our results indicate that in the near-term, earlier ice retreat is likely to cause enhanced ocean surface warming in much of the Arctic Ocean, although not where ice retreat still occurs late in the season.

  12. Atmospheric footprint of the recent warming slowdown

    PubMed Central

    Liu, Bo; Zhou, Tianjun

    2017-01-01

    Growing body of literature has developed to detect the role of ocean heat uptake and transport in the recent warming slowdown between 1998–2013; however, the atmospheric footprint of the slowdown in dynamical and physical processes remains unclear. Here, we divided recent decades into the recent hiatus period and the preceding warming period (1983–1998) to investigate the atmospheric footprint. We use a process-resolving analysis method to quantify the contributions of different processes to the total temperature changes. We show that the increasing rate of global mean tropospheric temperature was also reduced during the hiatus period. The decomposed trends due to physical processes, including surface albedo, water vapour, cloud, surface turbulent fluxes and atmospheric dynamics, reversed the patterns between the two periods. The changes in atmospheric heat transport are coupled with changes in the surface latent heat flux across the lower troposphere (below approximately 800 hPa) and with cloud-related processes in the upper troposphere (above approximately 600 hPa) and were underpinned by strengthening/weakening Hadley Circulation and Walker Circulation during the warming/hiatus period. This dynamical coupling experienced a phase transition between the two periods, reminding us of the importance of understanding the atmospheric footprint, which constitutes an essential part of internal climate variability. PMID:28084457

  13. Global warming and allergy in Asia Minor.

    PubMed

    Bajin, Munir Demir; Cingi, Cemal; Oghan, Fatih; Gurbuz, Melek Kezban

    2013-01-01

    The earth is warming, and it is warming quickly. Epidemiological studies have demonstrated that global warming is correlated with the frequency of pollen-induced respiratory allergy and allergic diseases. There is a body of evidence suggesting that the prevalence of allergic diseases induced by pollens is increasing in developed countries, a trend that is also evident in the Mediterranean area. Because of its mild winters and sunny days with dry summers, the Mediterranean area is different from the areas of central and northern Europe. Classical examples of allergenic pollen-producing plants of the Mediterranean climate include Parietaria, Olea and Cupressaceae. Asia Minor is a Mediterranean region that connects Asia and Europe, and it includes considerable coastal areas. Gramineae pollens are the major cause of seasonal allergic rhinitis in Asia Minor, affecting 1.3-6.4 % of the population, in accordance with other European regions. This article emphasizes the importance of global climate change and anticipated increases in the prevalence and severity of allergic disease in Asia Minor, mediated through worsening air pollution and altered local and regional pollen production, from an otolaryngologic perspective.

  14. Atmospheric footprint of the recent warming slowdown.

    PubMed

    Liu, Bo; Zhou, Tianjun

    2017-01-13

    Growing body of literature has developed to detect the role of ocean heat uptake and transport in the recent warming slowdown between 1998-2013; however, the atmospheric footprint of the slowdown in dynamical and physical processes remains unclear. Here, we divided recent decades into the recent hiatus period and the preceding warming period (1983-1998) to investigate the atmospheric footprint. We use a process-resolving analysis method to quantify the contributions of different processes to the total temperature changes. We show that the increasing rate of global mean tropospheric temperature was also reduced during the hiatus period. The decomposed trends due to physical processes, including surface albedo, water vapour, cloud, surface turbulent fluxes and atmospheric dynamics, reversed the patterns between the two periods. The changes in atmospheric heat transport are coupled with changes in the surface latent heat flux across the lower troposphere (below approximately 800 hPa) and with cloud-related processes in the upper troposphere (above approximately 600 hPa) and were underpinned by strengthening/weakening Hadley Circulation and Walker Circulation during the warming/hiatus period. This dynamical coupling experienced a phase transition between the two periods, reminding us of the importance of understanding the atmospheric footprint, which constitutes an essential part of internal climate variability.

  15. Forests: a tool to moderate global warming

    SciTech Connect

    Sedjo, R.A.

    1989-01-01

    Earth's climate may be growing warmer in response to atmospheric accumulation of greenhouse gases, predominantly but not exclusively stemming from human-induced emissions of carbon dioxide (CO/sub 2/) into the atmosphere. Once in the atmosphere, CO/sub 2/ traps heat that would otherwise radiate into space. Each year the Earth's atmosphere takes up approximately 2.9 billion tons of the 4.8 to 5.8 billion tons of carbon that are emitted from various sources. The rest is removed from the atmosphere by natural processes in carbon sinks - places like oceans or forests where carbon is removed from the atmosphere and stored. In addition, changes in land use that have eliminated terrestrial biomass, including tropical forests, have released into the atmosphere the carbon that was captive in the vegetation. Humankind can respond to the prospective global climate change by adapting to the warming, attempting to limit the warming by preventing or mitigating the buildup of atmospheric carbon, or by some combination of the above. Forests can play a critical role in any attempt to mitigate the warming because they are able to capture and store large amounts of carbon from the atmosphere.

  16. Atmospheric footprint of the recent warming slowdown

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Zhou, Tianjun

    2017-01-01

    Growing body of literature has developed to detect the role of ocean heat uptake and transport in the recent warming slowdown between 1998–2013 however, the atmospheric footprint of the slowdown in dynamical and physical processes remains unclear. Here, we divided recent decades into the recent hiatus period and the preceding warming period (1983–1998) to investigate the atmospheric footprint. We use a process-resolving analysis method to quantify the contributions of different processes to the total temperature changes. We show that the increasing rate of global mean tropospheric temperature was also reduced during the hiatus period. The decomposed trends due to physical processes, including surface albedo, water vapour, cloud, surface turbulent fluxes and atmospheric dynamics, reversed the patterns between the two periods. The changes in atmospheric heat transport are coupled with changes in the surface latent heat flux across the lower troposphere (below approximately 800 hPa) and with cloud-related processes in the upper troposphere (above approximately 600 hPa) and were underpinned by strengthening/weakening Hadley Circulation and Walker Circulation during the warming/hiatus period. This dynamical coupling experienced a phase transition between the two periods, reminding us of the importance of understanding the atmospheric footprint, which constitutes an essential part of internal climate variability.

  17. Scientists' views about attribution of global warming.

    PubMed

    Verheggen, Bart; Strengers, Bart; Cook, John; van Dorland, Rob; Vringer, Kees; Peters, Jeroen; Visser, Hans; Meyer, Leo

    2014-08-19

    Results are presented from a survey held among 1868 scientists studying various aspects of climate change, including physical climate, climate impacts, and mitigation. The survey was unique in its size, broadness and level of detail. Consistent with other research, we found that, as the level of expertise in climate science grew, so too did the level of agreement on anthropogenic causation. 90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), explicitly agreed with anthropogenic greenhouse gases (GHGs) being the dominant driver of recent global warming. The respondents' quantitative estimate of the GHG contribution appeared to strongly depend on their judgment or knowledge of the cooling effect of aerosols. The phrasing of the IPCC attribution statement in its fourth assessment report (AR4)-providing a lower limit for the isolated GHG contribution-may have led to an underestimation of the GHG influence on recent warming. The phrasing was improved in AR5. We also report on the respondents' views on other factors contributing to global warming; of these Land Use and Land Cover Change (LULCC) was considered the most important. Respondents who characterized human influence on climate as insignificant, reported having had the most frequent media coverage regarding their views on climate change.

  18. Effects of Global Warming on Vibrio Ecology.

    PubMed

    Vezzulli, Luigi; Pezzati, Elisabetta; Brettar, Ingrid; Höfle, Manfred; Pruzzo, Carla

    2015-06-01

    Vibrio-related infections are increasing worldwide both in humans and aquatic animals. Rise in global sea surface temperature (SST), which is approximately 1 °C higher now than 140 years ago and is one of the primary physical impacts of global warming, has been linked to such increases. In this chapter, major known effects of increasing SST on the biology and ecology of vibrios are described. They include the effects on bacterial growth rate, both in the field and in laboratory, culturability, expression of pathogenicity traits, and interactions with aquatic organisms and abiotic surfaces. Special emphasis is given to the effect of ocean warming on Vibrio interactions with zooplankters, which represent one of the most important aquatic reservoirs for these bacteria. The reported findings highlight the biocomplexity of the interactions between vibrios and their natural environment in a climate change scenario, posing the need for interdisciplinary studies to properly understand the connection between ocean warming and persistence and spread of vibrios in sea waters and the epidemiology of the diseases they cause.

  19. Global Warming: Evidence from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R.; Yoo, J.-M.; Dalu, G.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Observations made in Channel 2 (53.74 GHz) of the Microwave Sounding Unit (MSU) radiometer, flown onboard sequential, sun-synchronous, polar-orbiting NOAA (National Oceanic and Atmospheric Administration) operational satellites, indicate that the mean temperature of the atmosphere over the globe increased during the period 1980 to 1999. In this study, we have minimized systematic errors in the time series introduced by satellite orbital drift in an objective manner. This is done with the help of the onboard warm-blackbody temperature, which is used in the calibration of the MSU radiometer. The corrected MSU Channel 2 observations of the NOAA satellite series reveal that the vertically-weighted global-mean temperature of the atmosphere, with a peak weight near the mid troposphere, warmed at the rate of 0.13 +/- 0.05 K/decade during 1980 to 1999. The global warming deduced from conventional meteorological data that have been corrected for urbanization effects agrees reasonably with this satellite-deduced result.

  20. The phenology of Arctic Ocean surface warming

    PubMed Central

    Dickinson, Suzanne

    2016-01-01

    Abstract In this work, we explore the seasonal relationships (i.e., the phenology) between sea ice retreat, sea surface temperature (SST), and atmospheric heat fluxes in the Pacific Sector of the Arctic Ocean, using satellite and reanalysis data. We find that where ice retreats early in most years, maximum summertime SSTs are usually warmer, relative to areas with later retreat. For any particular year, we find that anomalously early ice retreat generally leads to anomalously warm SSTs. However, this relationship is weak in the Chukchi Sea, where ocean advection plays a large role. It is also weak where retreat in a particular year happens earlier than usual, but still relatively late in the season, primarily because atmospheric heat fluxes are weak at that time. This result helps to explain the very different ocean warming responses found in two recent years with extreme ice retreat, 2007 and 2012. We also find that the timing of ice retreat impacts the date of maximum SST, owing to a change in the ocean surface buoyancy and momentum forcing that occurs in early August that we term the Late Summer Transition (LST). After the LST, enhanced mixing of the upper ocean leads to cooling of the ocean surface even while atmospheric heat fluxes are still weakly downward. Our results indicate that in the near‐term, earlier ice retreat is likely to cause enhanced ocean surface warming in much of the Arctic Ocean, although not where ice retreat still occurs late in the season. PMID:27867789

  1. Wind changes above warm Agulhas Current eddies

    NASA Astrophysics Data System (ADS)

    Rouault, M.; Verley, P.; Backeberg, B.

    2016-04-01

    Sea surface temperature (SST) estimated from the Advanced Microwave Scanning Radiometer E onboard the Aqua satellite and altimetry-derived sea level anomalies are used south of the Agulhas Current to identify warm-core mesoscale eddies presenting a distinct SST perturbation greater than to 1 °C to the surrounding ocean. The analysis of twice daily instantaneous charts of equivalent stability-neutral wind speed estimates from the SeaWinds scatterometer onboard the QuikScat satellite collocated with SST for six identified eddies shows stronger wind speed above the warm eddies than the surrounding water in all wind directions, if averaged over the lifespan of the eddies, as was found in previous studies. However, only half of the cases showed higher wind speeds above the eddies at the instantaneous scale; 20 % of cases had incomplete data due to partial global coverage by the scatterometer for one path. For cases where the wind is stronger above warm eddies, there is no relationship between the increase in surface wind speed and the SST perturbation, but we do find a linear relationship between the decrease in wind speed from the centre to the border of the eddy downstream and the SST perturbation. SST perturbations range from 1 to 6 °C for a mean eddy SST of 15.9 °C and mean SST perturbation of 2.65 °C. The diameter of the eddies range from 100 to 250 km. Mean background wind speed is about 12 m s-1 (mostly southwesterly to northwesterly) and ranging mainly from 4 to 16 m s-1. The mean wind increase is about 15 %, which corresponds to 1.8 m s-1. A wind speed increase of 4 to 7 m s-1 above warm eddies is not uncommon. Cases where the wind did not increase above the eddies or did not decrease downstream had higher wind speeds and occurred during a cold front associated with intense cyclonic low-pressure systems, suggesting certain synoptic conditions need to be met to allow for the development of wind speed anomalies over warm-core ocean eddies. In many cases

  2. Arctic Warming Signals from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2005-01-01

    Global warming signals are expected to be amplified in the Arctic primarily because of ice-albedo feedback associated with the high reflectivity of ice and snow that blankets much of the region. The Arctic had been a poorly explored territory basically because of its general inaccessibility on account of extremely harsh weather conditions and the dominant presence of thick perennial ice in the region. The advent of satellite remote sensing systems since the 1960s, however, enabled the acquisition of synoptic data that depict in good spatial detail the temporal changes of many Arctic surface parameters. Among the surface parameters that have been studied using space based systems are surface temperature, sea ice concentration, snow cover, surface albedo and phytoplankton concentration. Associated atmospheric parameters, such as cloud cover, temperature profile, ozone concentration, and aerosol have also been derived. Recent observational and phenomenological studies have indeed revealed progressively changing conditions in the Arctic during the last few decades (e g , Walsh et al. 1996; Serreze et al 2000; Comiso and Parkinson 2004). The changes included declines in the extent and area of surfaces covered by sea ice and snow, increases in melt area over the Greenland ice sheets, thawing of the permafrost, warming in the troposphere, and retreat of the glaciers. These observations are consistent with the observed global warming that has been associated with the increasing concentration of greenhouse gases in the atmosphere (Karl and Trenberth 2003) and confirmed by modeling studies (Holland and Bitz, 2003). The Arctic system, however, is still not well understood complicated by a largely fluctuating wind circulation and atmospheric conditions (Proshutinsky and Johnson 1997) and controlled by what is now known as the Arctic Oscillation (AO) which provides a measure of the strength of atmospheric activities in the region (Thompson and Wallace 1998). Meanwhile, the

  3. Mechanisms of the warm-up phenomenon.

    PubMed

    Tomai, F; Crea, F; Danesi, A; Perino, M; Gaspardone, A; Ghini, A S; Cascarano, M T; Chiariello, L; Gioffrè, P A

    1996-07-01

    The warm-up phenomenon, described in patients with coronary artery disease, refers to the improved performance following a first exercise test. The aim of this study was to investigate the causes of the warm-up phenomenon. Fifteen patients with coronary artery disease and positive exercise test were enrolled. Patients were off treatment throughout the study. They underwent two consecutive treadmill exercise tests according to the Bruce protocol, with a recovery period of 10 min to re-establish baseline conditions. A third exercise test was then performed 2 h later. Before the onset of ischaemia, the rate-pressure product for a similar degree of workload was similar during the first and second exercise test, while it was lower during the third test (P < 0.05). Time to 1.5 mm ST-segment depression during the second and third exercise test was greater than during the first test (454 +/- 133 and 410 +/- 161 vs 354 +/- 127 s, P < 0.01, respectively). Similarly, the time to anginal pain onset was increased during the second and third exercise tests, compared to the first test (356 +/- 208 and 310 +/- 203 vs 257 +/- 204 s, P < 0.01, respectively). In contrast, rate-pressure product at 1.5 mm ST-segment depression during the second test was higher than that during the first test (232 +/- 47 vs 210 +/- 39 beats.min-1.mmHg.10(2), P < 0.01), while in the third test it was similar to that during the first (209 +/- 43 beats.min-1.mmHg.10(2), P = ns). The warm-up phenomenon observed a few minutes after exercise is characterized by an increase of both time to ischaemia and ischaemic threshold; this adaptation to ischaemia may be due to an improvement of myocardial perfusion or to preconditioning. Conversely, the warm-up phenomenon observed a few hours after repeated exercise is characterized by an increase of time to ischaemia but not of ischaemic threshold and is caused by a slower increase of cardiac workload. Thus, the mechanisms of the warm-up phenomenon may be different

  4. Can cirrus clouds warm early Mars?

    NASA Astrophysics Data System (ADS)

    Ramirez, R. M.

    2015-12-01

    The presence of the ancient valley networks on Mars indicates a climate 3.8 Ga that was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the origin of these enigmatic features is hotly debated and discussion of their formation has been focused on how warm such a climate may have been and for how long. Recent warm and wet solutions using single-column radiative convective models involve supplementing CO2-H2O atmospheres with other greenhouse gases, such as H2 (i.e. Ramirez et al., 2014; Batalha et al., 2015). An interesting recent proposal, using the CAM 3-D General Circulation model, argues that global cirrus cloud decks in CO2-H2O atmospheres with at least 0.25 bar of CO2 , consisting of 10-micron (and larger) sized particles, could have generated the above-freezing temperatures required to explain the early martian surface geology (Urata and Toon, 2013). Here, we use our single-column radiative convective climate model to check these 3-D results and analyze the likelihood that such warm atmospheres, with mean surface pressures of up to 3 bar, could have supported cirrus cloud decks at full and fractional cloud cover for sufficiently long durations to form the ancient valleys. Our results indicate that cirrus cloud decks could have provided the mean surface temperatures required, but only if cloud cover approaches 100%, in agreement with Urata and Toon (2013). However, even should cirrus cloud coverage approach 100%, we show that such atmospheres are likely to have been too short-lived to produce the volumes of water required to carve the ancient valleys. At more realistic early Mars cloud fractions (~50%, Forget et al., 2013), cirrus clouds do not provide the required warming. Batalha, N., Domagal-Goldman, S. D., Ramirez, R.M., & Kasting, J. F., 2015. Icarus, 258, 337-349. Forget, F., Wordsworth, R., Millour, E., Madeleine, J. B., Kerber, L., Leconte, J., ... & Haberle, R. M., 2013. Icarus, 222

  5. Warm-up and performance in competitive swimming.

    PubMed

    Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Marinho, Daniel A

    2014-03-01

    Warm-up before physical activity is commonly accepted to be fundamental, and any priming practices are usually thought to optimize performance. However, specifically in swimming, studies on the effects of warm-up are scarce, which may be due to the swimming pool environment, which has a high temperature and humidity, and to the complexity of warm-up procedures. The purpose of this study is to review and summarize the different studies on how warming up affects swimming performance, and to develop recommendations for improving the efficiency of warm-up before competition. Most of the main proposed effects of warm-up, such as elevated core and muscular temperatures, increased blood flow and oxygen delivery to muscle cells and higher efficiency of muscle contractions, support the hypothesis that warm-up enhances performance. However, while many researchers have reported improvements in performance after warm-up, others have found no benefits to warm-up. This lack of consensus emphasizes the need to evaluate the real effects of warm-up and optimize its design. Little is known about the effectiveness of warm-up in competitive swimming, and the variety of warm-up methods and swimming events studied makes it difficult to compare the published conclusions about the role of warm-up in swimming. Recent findings have shown that warm-up has a positive effect on the swimmer's performance, especially for distances greater than 200 m. We recommend that swimmers warm-up for a relatively moderate distance (between 1,000 and 1,500 m) with a proper intensity (a brief approach to race pace velocity) and recovery time sufficient to prevent the early onset of fatigue and to allow the restoration of energy reserves (8-20 min).

  6. Global warming 2007. An update to global warming: the balance of evidence and its policy implications.

    PubMed

    Keller, Charles F

    2007-03-09

    In the four years since my original review (Keller[25]; hereafter referred to as CFK03), research has clarified and strengthened our understanding of how humans are warming the planet. So many of the details highlighted in the IPCC's Third Assessment Report[21] and in CFK03 have been resolved that I expect many to be a bit overwhelmed, and I hope that, by treating just the most significant aspects of the research, this update may provide a road map through the expected maze of new information. In particular, while most of CFK03 remains current, there are important items that have changed: Most notable is the resolution of the conundrum that mid-tropospheric warming did not seem to match surface warming. Both satellite and radiosonde (balloon-borne sensors) data reduction showed little warming in the middle troposphere (4-8 km altitude). In the CFK03 I discussed potential solutions to this problem, but at that time there was no clear resolution. This problem has now been solved, and the middle troposphere is seen to be warming apace with the surface. There have also been advances in determinations of temperatures over the past 1,000 years showing a cooler Little Ice Age (LIA) but essentially the same warming during medieval times (not as large as recent warming). The recent uproar over the so-called "hockey stick" temperature determination is much overblown since at least seven other groups have made relatively independent determinations of northern hemisphere temperatures over the same time period and derived essentially the same results. They differ on how cold the LIA was but essentially agree with the Mann's hockey stick result that the Medieval Warm Period was not as warm as the last 25 years. The question of the sun's influence on climate continues to generate controversy. It appears there is a growing consensus that, while the sun was a major factor in earlier temperature variations, it is incapable of having caused observed warming in the past quarter

  7. Deep time evidence for climate sensitivity increase with warming

    NASA Astrophysics Data System (ADS)

    Shaffer, Gary; Huber, Matthew; Rondanelli, Roberto; Pepke Pedersen, Jens Olaf

    2016-06-01

    Future global warming from anthropogenic greenhouse gas emissions will depend on climate feedbacks, the effect of which is expressed by climate sensitivity, the warming for a doubling of atmospheric CO2 content. It is not clear how feedbacks, sensitivity, and temperature will evolve in our warming world, but past warming events may provide insight. Here we employ paleoreconstructions and new climate-carbon model simulations in a novel framework to explore a wide scenario range for the Paleocene-Eocene Thermal Maximum (PETM) carbon release and global warming event 55.8 Ma ago, a possible future warming analogue. We obtain constrained estimates of CO2 and climate sensitivity before and during the PETM and of the PETM carbon input amount and nature. Sensitivity increased from 3.3-5.6 to 3.7-6.5 K (Kelvin) into the PETM. When taken together with Last Glacial Maximum and modern estimates, this result indicates climate sensitivity increase with global warming.

  8. Simulation of future global warming scenarios in rice paddies with an open-field warming facility

    PubMed Central

    2011-01-01

    To simulate expected future global warming, hexagonal arrays of infrared heaters have previously been used to warm open-field canopies of upland crops such as wheat. Through the use of concrete-anchored posts, improved software, overhead wires, extensive grounding, and monitoring with a thermal camera, the technology was safely and reliably extended to paddy rice fields. The system maintained canopy temperature increases within 0.5°C of daytime and nighttime set-point differences of 1.3 and 2.7°C 67% of the time. PMID:22145582

  9. Simulation of future global warming scenarios in rice paddies with an open-field warming facility.

    PubMed

    Rehmani, Muhammad Ishaq Asif; Zhang, Jingqi; Li, Ganghua; Ata-Ul-Karim, Syed Tahir; Wang, Shaohua; Kimball, Bruce A; Yan, Chuan; Liu, Zhenghui; Ding, Yanfeng

    2011-12-06

    To simulate expected future global warming, hexagonal arrays of infrared heaters have previously been used to warm open-field canopies of upland crops such as wheat. Through the use of concrete-anchored posts, improved software, overhead wires, extensive grounding, and monitoring with a thermal camera, the technology was safely and reliably extended to paddy rice fields. The system maintained canopy temperature increases within 0.5°C of daytime and nighttime set-point differences of 1.3 and 2.7°C 67% of the time.

  10. Multishock Compression Properties of Warm Dense Argon

    PubMed Central

    Zheng, Jun; Chen, Qifeng; Yunjun, Gu; Li, Zhiguo; Shen, Zhijun

    2015-01-01

    Warm dense argon was generated by a shock reverberation technique. The diagnostics of warm dense argon were performed by a multichannel optical pyrometer and a velocity interferometer system. The equations of state in the pressure-density range of 20–150 GPa and 1.9–5.3 g/cm3 from the first- to fourth-shock compression were presented. The single-shock temperatures in the range of 17.2–23.4 kK were obtained from the spectral radiance. Experimental results indicates that multiple shock-compression ratio (ηi = ρi/ρ0) is greatly enhanced from 3.3 to 8.8, where ρ0 is the initial density of argon and ρi (i = 1, 2, 3, 4) is the compressed density from first to fourth shock, respectively. For the relative compression ratio (ηi’ = ρi/ρi-1), an interesting finding is that a turning point occurs at the second shocked states under the conditions of different experiments, and ηi’ increases with pressure in lower density regime and reversely decreases with pressure in higher density regime. The evolution of the compression ratio is controlled by the excitation of internal degrees of freedom, which increase the compression, and by the interaction effects between particles that reduce it. A temperature-density plot shows that current multishock compression states of argon have distributed into warm dense regime. PMID:26515505

  11. Punishments and Prizes for Explaining Global Warming

    NASA Astrophysics Data System (ADS)

    Somerville, R. C.

    2006-12-01

    Some few gifted scientists, the late Carl Sagan being an iconic example, are superbly skilled at communicating science clearly and compellingly to non-scientists. Most scientists, however, have serious shortcomings as communicators. The common failings include being verbose, addicted to jargon, caveat- obsessed and focused on details. In addition, it is far easier for a scientist to scoff at the scientific illiteracy of modern society than to work at understanding the viewpoints and concerns of journalists, policymakers and the public. Obstacles await even those scientists with the desire and the talent to communicate science well. Peer pressure and career disincentives can act as powerful deterrents, discouraging especially younger scientists from spending time on non-traditional activities. Scientists often lack mentors and role models to help them develop skills in science communication. Journalists also face real difficulties in getting science stories approved by editors and other gatekeepers. Climate change science brings its own problems in communication. The science itself is unusually wide- ranging and complex. The contentious policies and politics of dealing with global warming are difficult to disentangle from the science. Misinformation and disinformation about climate change are widespread. Intimidation and censorship of scientists by some employers is a serious problem. Polls show that global warming ranks low on the public's list of important issues. Despite all the obstacles, communicating climate change science well is critically important today. It is an art that can be learned and that brings its own rewards and satisfactions. Academic institutions and research funding agencies increasingly value outreach by scientists, and they provide resources to facilitate it. Society needs scientists who can clearly and authoritatively explain the science of global warming and its implications, while remaining objective and policy-neutral. This need will

  12. Indentifying the Molecular Origin of Global Warming

    NASA Astrophysics Data System (ADS)

    Bera, P. P.; Lee, T. J.; Francisco, J.

    2009-12-01

    Indentifying the Molecular Origin of Global Warming Partha P. Bera, Joseph S. Francisco and Timothy J. Lee NASA Ames Research Center, Space Science and Astrobiology Division, Moffett Field, California 94035, and Department of Chemistry and Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47907-1393 Abstract The physical characteristics of greenhouse gases (GHGs) have been investigated to assess which properties are most important in determining the radiative efficiency of a GHG. Chlorofluorcarbons (CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), hydrofluoroethers, fluoroethers, nitrogen fluorides, and various other known atmospheric trace molecules have been included in this study. Compounds containing the halogens F or Cl have in common very polar X-F or X-Cl bonds, particularly the X-F bonds. It is shown that as more F atoms bond to the same central atom, the bond dipoles become larger as a result of the central carbon atom becoming more positive. This leads to a linear increase in the total or integrated X-F bond dipole derivatives for the molecule, which leads to a non-linear (quadratic) increase in infrared (IR) intensity. Moreover, virtually all of the X-F bond stretches occur in the atmospheric IR window as opposed to X-H stretches, which do not occur in the atmospheric window. It is concluded that molecules possessing several F atoms will always have a large radiative forcing parameter in the calculation of their global warming potential. Some of the implications for global warming and climate change and a new design strategy for more environmentally friendly industrial materials from a molecular quantum chemistry perspective will be discussed.

  13. Automatic filament warm-up controller

    NASA Technical Reports Server (NTRS)

    Mccluskey, J.; Daeges, J.

    1979-01-01

    As part of the unattended operations objective of the Deep Space Network deep space stations, this filament controller serves as a step between manual operation of the station and complete computer control. Formerly, the operator was required to devote five to fifteen minutes of his time just to properly warm up the filaments on the klystrons of the high power transmitters. The filament controller reduces the operator's duty to a one-step command and is future-compatible with various forms of computer control.

  14. Does coral bleaching mean global warming

    SciTech Connect

    Miller, J.A.

    1991-02-01

    This article discusses the implications of global warming on the marine ecosystems. In recent hearings of the US Senate Committee on Commerce, Science and Transportation, plans were made to introduce legislation for control of greenhouse-gas emissions, conservation of biological diversity, forest conservation, world population planning, sustainable economic development , increased fuel efficiency, and increased research into Earth-system processes. Research is required to ascertain the meaning of coral bleaching, which is the mass expulsion of symbiotic algae, called zooxanthellae, which gives the coral its color. Many scientists think that the death of the algae is an early indicator for massive destruction of the marine ecosystem.

  15. Global warming and carbon dioxide through sciences.

    PubMed

    Florides, Georgios A; Christodoulides, Paul

    2009-02-01

    Increased atmospheric CO(2)-concentration is widely being considered as the main driving factor that causes the phenomenon of global warming. This paper attempts to shed more light on the role of atmospheric CO(2) in relation to temperature-increase and, more generally, in relation to Earth's life through the geological aeons, based on a review-assessment of existing related studies. It is pointed out that there has been a debate on the accuracy of temperature reconstructions as well as on the exact impact that CO(2) has on global warming. Moreover, using three independent sets of data (collected from ice-cores and chemistry) we perform a specific regression analysis which concludes that forecasts about the correlation between CO(2)-concentration and temperature rely heavily on the choice of data used, and one cannot be positive that indeed such a correlation exists (for chemistry data) or even, if existing (for ice-cores data), whether it leads to a "severe" or a "gentle" global warming. A very recent development on the greenhouse phenomenon is a validated adiabatic model, based on laws of physics, forecasting a maximum temperature-increase of 0.01-0.03 degrees C for a value doubling the present concentration of atmospheric CO(2). Through a further review of related studies and facts from disciplines like biology and geology, where CO(2)-change is viewed from a different perspective, it is suggested that CO(2)-change is not necessarily always a negative factor for the environment. In fact it is shown that CO(2)-increase has stimulated the growth of plants, while the CO(2)-change history has altered the physiology of plants. Moreover, data from palaeoclimatology show that the CO(2)-content in the atmosphere is at a minimum in this geological aeon. Finally it is stressed that the understanding of the functioning of Earth's complex climate system (especially for water, solar radiation and so forth) is still poor and, hence, scientific knowledge is not at a level to

  16. Scientists' Views about Attribution of Global Warming

    NASA Astrophysics Data System (ADS)

    Verheggen, Bart; Strengers, Bart; Cook, John; van Dorland, Rob; Vringer, Kees; Peters, Jeroen; Visser, Hans; Meyer, Leo

    2015-04-01

    What do scientists think? That is an important question when engaging in science communication, in which an attempt is made to communicate the scientific understanding to a lay audience. To address this question we undertook a large and detailed survey among scientists studying various aspects of climate change , dubbed "perhaps the most thorough survey of climate scientists ever" by well-known climate scientist and science communicator Gavin Schmidt. Among more than 1800 respondents we found widespread agreement that global warming is predominantly caused by human greenhouse gases. This consensus strengthens with increased expertise, as defined by the number of self-reported articles in the peer-reviewed literature. 90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), agreed that anthropogenic greenhouse gases are the dominant cause of recent global warming, i.e. having contributed more than half of the observed warming. With this survey we specified what the consensus position entails with much greater specificity than previous studies. The relevance of this consensus for science communication will be discussed. Another important result from our survey is that the main attribution statement in IPCC's fourth assessment report (AR4) may lead to an underestimate of the greenhouse gas contribution to warming, because it implicitly includes the lesser known masking effect of cooling aerosols. This shows the importance of the exact wording in high-profile reports such as those from IPCC in how the statement is perceived, even by fellow scientists. The phrasing was improved in the most recent assessment report (AR5). Respondents who characterized the human influence on climate as insignificant, reported having the most frequent media coverage regarding their views on climate change. This shows that contrarian opinions are amplified in the media in relation to their prevalence in the scientific community. This

  17. Warming Early Mars With CH4

    NASA Astrophysics Data System (ADS)

    Justh, H. L.; Kasting, J. F.

    2002-12-01

    The nature of the ancient climate of Mars remains one of the fundamental unresolved problems in martian research. While the present environment is hostile to life, images from the Mariner, Viking and Mars Global Surveyor missions, have shown geologic features on the martian surface that seem to indicate an earlier period of hydrologic activity. The fact that ancient valley networks and degraded craters have been seen on the martian surface indicates that the early martian climate may have been more Earth-like, with a warmer surface temperature. The presence of liquid water would require a greenhouse effect much larger than needed at present, as the solar constant, S0, was 25% lower 3.8 billion years ago when the channels are thought to have formed (1,2). Previous calculations have shown that gaseous CO2 and H2O alone could not have warmed the martian surface to the temperature needed to account for the presence of liquid water (3). It has been hypothesized that a CO2-H2O atmosphere could keep early Mars warm if it was filled with CO2 ice clouds in the upper martian troposphere (4). Obtaining mean martian surface temperatures above 273 K would require nearly 100% cloud cover, a condition that is unrealistic for condensation clouds on early Mars. Any reduction in cloud cover makes it difficult to achieve warm martian surface temperatures except at high pressures and CO2 clouds could cool the martian surface if they were low and optically thick (5). CO2 and CH4 have been suggested as important greenhouse gases on the early Earth. Our research focuses on the effects of increased concentrations of atmospheric greenhouse gases on the surface temperature of early Mars, with emphasis on the reduced greenhouse gas, CH4. To investigate the possible warming effect of CH4, we modified a one-dimensional, radiative-convective climate model used in previous studies of the early martian climate (5). New cloud-free temperature profiles for various surface pressures and CH4 mixing

  18. Warm inflation in presence of magnetic fields

    SciTech Connect

    Piccinelli, Gabriella; Ayala, Alejandro; Mizher, Ana Julia

    2013-07-23

    We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, magnetic fields seem to be present in the universe on all scales which rises de possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger's proper time method.

  19. Photochemical aerosols in warm exoplanetary atmospheres

    NASA Astrophysics Data System (ADS)

    Imanaka, Hiroshi; Smith, Mark A.; McKay, Christopher P.; Cruikshank, Dale P.; Marley, Mark S.

    2016-10-01

    Recent transit observations of exoplanets have demonstrated the possibility of a wide prevalence of haze/cloud layers at high altitudes. Hydrocarbon photochemical haze could be the candidate for such haze particles on warm sub-Neptunes, but the lack of evidence for methane poses a puzzle for such hydrocarbon photochemical haze. The CH4/CO ratios in planetary atmospheres vary substantially from their temperature and dynamics. We have conducted a series of laboratory simulations to investigate how atmospheric compositions, specifically CH4/CO ratios, affect the haze production rates and their optical properties. The mass production rates in the H2-CH4-CO gas mixtures are rather insensitive to the CH4/CO ratios larger than at 0.3. Significant formation of solid material is observed in a H2-CO gas mixture even without CH4. The complex refractive indices of the aerosol analogue from the H2-CO gas mixture show strong absorption at the visible/near-IR wavelengths. These experimental facts imply that substantial carbonaceous aerosols may be generated in warm H2-CO-CH4 exoplanetary atmospheres, and that it might be responsible for the observed dark albedos at the visible wavelengths.

  20. Soil crusts to warm the planet

    NASA Astrophysics Data System (ADS)

    Garcia-Pichel, Ferran; Couradeau, Estelle; Karaoz, Ulas; da Rocha Ulisses, Nunes; Lim Hsiao, Chiem; Northen, Trent; Brodie, Eoin

    2016-04-01

    Soil surface temperature, an important driver of terrestrial biogeochemical processes, depends strongly on soil albedo, which can be significantly modified by factors such as plant cover. In sparsely vegetated lands, the soil surface can also be colonized by photosynthetic microbes that build biocrust communities. We used concurrent physical, biochemical and microbiological analyses to show that mature biocrusts can increase surface soil temperature by as much as 10 °C through the accumulation of large quantities of a secondary metabolite, the microbial sunscreen scytonemin, produced by a group of late-successional cyanobacteria. Scytonemin accumulation decreases soil albedo significantly. Such localized warming had apparent and immediate consequences for the crust soil microbiome, inducing the replacement of thermosensitive bacterial species with more thermotolerant forms. These results reveal that not only vegetation but also microorganisms are a factor in modifying terrestrial albedo, potentially impacting biosphere feedbacks on past and future climate, and call for a direct assessment of such effects at larger scales. Based on estimates of the global biomass of cyanobacteria in soil biocrusts, one can easily calculate that there must currently exist about 15 million metric tons of scytonemin at work, warming soil surfaces worldwide

  1. Identifying the molecular origin of global warming.

    PubMed

    Bera, Partha P; Francisco, Joseph S; Lee, Timothy J

    2009-11-12

    We have investigated the physical characteristics of greenhouse gases (GHGs) to assess which properties are most important in determining the efficiency of a GHG. Chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), nitrogen fluorides, and various other known atmospheric trace molecules have been included in this study. Compounds containing the halogens F or Cl have in common very polar X-F or X-Cl bonds, particularly the X-F bonds. It is shown that as more F atoms bond to the same central atom the bond dipoles become larger as a result of the central atom becoming more positive. This leads to a linear increase in the total or integrated X-F bond dipole derivatives for the molecule, which leads to a nonlinear (quadratic) increase in infrared (IR) intensity. Moreover, virtually all of the X-F bond stretches occur in the atmospheric IR window as opposed to X-H stretches, which do not occur in the atmospheric window. It is concluded that molecules possessing several F atoms will always have a large radiative forcing parameter in the calculation of their global warming potential. Some of the implications for global warming and climate change are discussed.

  2. Soft radiative strength in warm nuclei

    SciTech Connect

    Schiller, A; Voinov, A; Agvaanluvsan, U; Algin, E; Becker, J; Belgya, T; Bernstein, L; Chankova, R; Garrett, P E; Guttormsen, M; Mitchell, G E; Nelson, R O; Rekstad, J; Siem, S; Sunde, A C

    2005-09-29

    We present data on the soft (E{sub {gamma}} < 3-4 MeV) radiative strength function (RSF) for electromagnetic transitions between warm states (i.e. states several MeV above the yrast line) from two different types of experiments. The Oslo method provides data on the total level density and the sum (over all multipolarities) of all RSFs by sequential extraction from primary-{gamma} spectra. Measurements of two-step-decay spectra following neutron capture yields two-step-cascade (TSC) intensities which are roughly proportional to the product of two RSFs. Investigations on {sup 172}Yb and {sup 57}Fe have produced unexpected results. In the first case, a strong (B(M1 {up_arrow}) = 6.5 {mu}{sub N}{sup 2}) resonance at E = 3.3 MeV was identified. In the second case, a large (more than a factor of 10) enhancement compared to theoretical estimates of the very soft (E{sub {gamma}} {le} 3 MeV), summed RSF for transitions between warm states was observed. A somewhat weaker (factor {approx} 3) enhancement of the RSF in Mo isotopes observed within the Oslo method still awaits confirmation from TSC experiments.

  3. Global warming potential impact of bioenergy systems

    NASA Astrophysics Data System (ADS)

    Tonini, D.; Hamelin, L.; Wenzel, H.; Astrup, T.

    2012-10-01

    Reducing dependence on fossil fuels and mitigation of GHG emissions is a main focus in the energy strategy of many Countries. In the case of Demark, for instance, the long-term target of the energy policy is to reach 100% renewable energy system. This can be achieved by drastic reduction of the energy demand, optimization of production/distribution and substitution of fossil fuels with biomasses. However, a large increase in biomass consumption will finally induce conversion of arable and currently cultivated land into fields dedicated to energy crops production determining significant environmental consequences related to land use changes. In this study the global warming potential impact associated with six alternative bioenergy systems based on willow and Miscanthus was assessed by means of life-cycle assessment. The results showed that bioenergy production may generate higher global warming impacts than the reference fossil fuel system, when the impacts from indirect land use changes are accounted for. In a life-cycle perspective, only highly-efficient co-firing with fossil fuel achieved a (modest) GHG emission reduction.

  4. Identifying the Molecular Origin of Global Warming

    NASA Technical Reports Server (NTRS)

    Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2009-01-01

    We have investigated the physical characteristics of greenhouse gases (GHGs) to assess which properties are most important in determining the efficiency of a GHG. Chlorofluorcarbons (CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), nitrogen fluorides, and various other known atmospheric trace molecules have been included in this study. Compounds containing the halogens F or Cl have in common very polar X-F or X-Cl bonds, particularly the X-F bonds. It is shown that as more F atoms bond to the same central atom, the bond dipoles become larger as a result of the central atom becoming more positive. This leads to a linear increase in the total or integrated XF bond dipole derivatives for the molecule, which leads to a non-linear (quadratic) increase in infrared (IR) intensity. Moreover, virtually all of the X-F bond stretches occur in the atmospheric IR window as opposed to X-H stretches, which do not occur in the atmospheric window. It is concluded that molecules possessing several F atoms will always have a large radiative forcing parameter in the calculation of their global warming potential. Some of the implications for global warming and climate change are discussed.

  5. Global warming and thermohaline circulation stability.

    PubMed

    Wood, Richard A; Vellinga, Michael; Thorpe, Robert

    2003-09-15

    The Atlantic thermohaline circulation (THC) plays an important role in global climate. Theoretical and palaeoclimatic evidence points to the possibility of rapid changes in the strength of the THC, including a possible quasi-permanent shutdown. The climatic impacts of such a shutdown would be severe, including a cooling throughout the Northern Hemisphere, which in some regions is greater in magnitude than the changes expected from global warming in the next 50 years. Other climatic impacts would likely include a severe alteration of rainfall patterns in the tropics, the Indian subcontinent and Europe. Modelling the future behaviour of the THC focuses on two key questions. (i) Is a gradual weakening of the THC likely in response to global warming, and if so by how much? (ii) Are there thresholds beyond which rapid or irreversible changes in the THC are likely? Most projections of the response of the THC to increasing concentrations of greenhouse gases suggest a gradual weakening over the twenty-first century. However, there is a wide variation between different models over the size of the weakening. Rapid or irreversible THC shutdown is considered a low-probability (but high-impact) outcome; however, some climate models of intermediate complexity do show the possibility of such events. The question of the future of the THC is beset with conceptual, modelling and observational uncertainties, but some current and planned projects show promise to make substantial progress in tackling these uncertainties in future.

  6. Acting green elicits a literal warm glow

    NASA Astrophysics Data System (ADS)

    Taufik, Danny; Bolderdijk, Jan Willem; Steg, Linda

    2015-01-01

    Environmental policies are often based on the assumption that people only act environmentally friendly if some extrinsic reward is implicated, usually money. We argue that people might also be motivated by intrinsic rewards: doing the right thing (such as acting environmentally friendly) elicits psychological rewards in the form of positive feelings, a phenomenon known as warm glow. Given the fact that people's psychological state may affect their thermal state, we expected that this warm glow could express itself quite literally: people who act environmentally friendly may perceive the temperature to be higher. In two studies, we found that people who learned they acted environmentally friendly perceived a higher temperature than people who learned they acted environmentally unfriendly. The underlying psychological mechanism pertains to the self-concept: learning you acted environmentally friendly signals to yourself that you are a good person. Together, our studies show that acting environmentally friendly can be psychologically rewarding, suggesting that appealing to intrinsic rewards can be an alternative way to encourage pro-environmental actions.

  7. Recent Permafrost Warming in Northwest Canada

    NASA Astrophysics Data System (ADS)

    Burn, C.

    2002-12-01

    Ground temperature records, mostly collected by industry, are available for the Mackenzie delta area and western Arctic coast of Canada from the late 1960s and early 1970s. At Garry Island, the mean annual ground temperature (MAGT) is -6C, 2C warmer than previously. Similar data are available for northern Richards Island, and at the Illisarvik drained lake site, on Richards Island, MAGT in the early 1980s was -7C. At Herschel Island, the MAGT is -8C. There are no prior records from Herschel, but similar sites in the region distant from the Mackenzie River discharge plume previously recorded -9 to -10C. These data point to a relatively rapid response of near-surface permafrost temperatures to regional climate warming, due to the minimal phase change at these relatively cold temperatures in the continuous permafrost zone. In contrast, permafrost temperatures close to 0C in central and southern YT show relatively little response to climate warming due to the large amount of latent heat required for a small increase in ground temperature, and to the cooling achieved in separate winters with little or late snowfall.

  8. Global warming and cyanobacterial harmful algal blooms.

    PubMed

    Paul, Valerie J

    2008-01-01

    The Earth and the oceans have warmed significantly over the past four decades, providing evidence that the Earth is undergoing long-term climate change. Increasing temperatures and changing rainfall patterns have been documented. Cyanobacteria have a long evolutionary history, with their first occurrence dating back at least 2.7 billion years ago. Cyanobacteria often dominated the oceans after past mass extinction events. They evolved under anoxic conditions and are well adapted to environmental stress including exposure to UV, high solar radiation and temperatures, scarce and abundant nutrients. These environmental conditions favor the dominance of cyanobacteria in many aquatic habitats, from freshwater to marine ecosystems. A few studies have examined the ecological consequences of global warming on cyanobacteria and other phytoplankton over the past decades in freshwater, estuarine, and marine environments, with varying results. The responses of cyanobacteria to changing environmental patterns associated with global climate change are important subjects for future research. Results of this research will have ecological and biogeochemical significance as well as management implications.

  9. Environmental refugees in a globally warmed world

    SciTech Connect

    Myers, N.

    1993-12-01

    This paper examines the complex problem of environmental refugees as among the most serious of all the effects of global warming. Shoreline erosion, coastal flooding, and agricultural disruption from drought, soil erosion and desertification are factors now and in the future in creating a group of environmental refugees. Estimates are that at least 10 million such refugees exist today. A preliminary analysis is presented here as a first attempt to understand the full character and extent of the problem. Countries with large delta and coastal areas and large populations are at particular risk from sea-level rise of as little as .5 - 1 meter, compounded by storm surge and salt water intrusions. Bangladesh, Egypt, China, and India are discussed in detail along with Island states at risk. Other global warming effects such as shifts in monsoon systems and severe and persistent droughts make agriculture particularly vulnerable. Lack of soil moisture is during the growing season will probably be the primary problem. Additional and compounding environmental problems are discussed, and an overview of the economic, sociocultural and political consequences is given. 96 refs., 1 tab.

  10. Timing the warm absorber in NGC4051

    NASA Astrophysics Data System (ADS)

    Silva, C.; Uttley, P.; Costantini, E.

    2015-07-01

    In this work we have combined spectral and timing analysis in the characterization of highly ionized outflows in Seyfert galaxies, the so-called warm absorbers. Here, we present our results on the extensive ˜600ks of XMM-Newton archival observations of the bright and highly variable Seyfert 1 galaxy NGC4051, whose spectrum has revealed a complex multi-component wind. Working simultaneously with RGS and PN data, we have performed a detailed analysis using a time-dependent photoionization code in combination with spectral and Fourier timing techniques. This method allows us to study in detail the response of the gas due to variations in the ionizing flux of the central source. As a result, we will show the contribution of the recombining gas to the time delays of the most highly absorbed energy bands relative to the continuum (Silva, Uttley & Costantini in prep.), which is also vital information for interpreting the continuum lags associated with propagation and reverberation effects in the inner emitting regions. Furthermore, we will illustrate how this powerful method can be applied to other sources and warm-absorber configurations, allowing for a wide range of studies.

  11. Warming alters the metabolic balance of ecosystems.

    PubMed

    Yvon-Durocher, Gabriel; Jones, J Iwan; Trimmer, Mark; Woodward, Guy; Montoya, Jose M

    2010-07-12

    The carbon cycle modulates climate change, via the regulation of atmospheric CO(2), and it represents one of the most important services provided by ecosystems. However, considerable uncertainties remain concerning potential feedback between the biota and the climate. In particular, it is unclear how global warming will affect the metabolic balance between the photosynthetic fixation and respiratory release of CO(2) at the ecosystem scale. Here, we present a combination of experimental field data from freshwater mesocosms, and theoretical predictions derived from the metabolic theory of ecology to investigate whether warming will alter the capacity of ecosystems to absorb CO(2). Our manipulative experiment simulated the temperature increases predicted for the end of the century and revealed that ecosystem respiration increased at a faster rate than primary production, reducing carbon sequestration by 13 per cent. These results confirmed our theoretical predictions based on the differential activation energies of these two processes. Using only the activation energies for whole ecosystem photosynthesis and respiration we provide a theoretical prediction that accurately quantified the precise magnitude of the reduction in carbon sequestration observed experimentally. We suggest the combination of whole-ecosystem manipulative experiments and ecological theory is one of the most promising and fruitful research areas to predict the impacts of climate change on key ecosystem services.

  12. Multi-species collapses at the warm edge of a warming sea

    PubMed Central

    Rilov, Gil

    2016-01-01

    Even during the current biodiversity crisis, reports on population collapses of highly abundant, non-harvested marine species were rare until very recently. This is starting to change, especially at the warm edge of species’ distributions where populations are more vulnerable to stress. The Levant basin is the southeastern edge of distribution of most Mediterranean species. Coastal water conditions are naturally extreme, and are fast warming, making it a potential hotspot for species collapses. Using multiple data sources, I found strong evidence for major, sustained, population collapses of two urchins, one large predatory gastropod and a reef-building gastropod. Furthermore, of 59 molluscan species once-described in the taxonomic literature as common on Levant reefs, 38 were not found in the present-day surveys, and there was a total domination of non-indigenous species in molluscan assemblages. Temperature trends indicate an exceptional warming of the coastal waters in the past three decades. Though speculative at this stage, the fast rise in SST may have helped pushing these invertebrates beyond their physiological tolerance limits leading to population collapses and possible extirpations. If so, these collapses may indicate the initiation of a multi-species range contraction at the Mediterranean southeastern edge that may spread westward with additional warming. PMID:27853237

  13. Microbial communities respond to experimental warming, but site matters

    PubMed Central

    Sanders, Nathan J.; Dunn, Robert R.; Classen, Aimée T.

    2014-01-01

    Because microorganisms are sensitive to temperature, ongoing global warming is predicted to influence microbial community structure and function. We used large-scale warming experiments established at two sites near the northern and southern boundaries of US eastern deciduous forests to explore how microbial communities and their function respond to warming at sites with differing climatic regimes. Soil microbial community structure and function responded to warming at the southern but not the northern site. However, changes in microbial community structure and function at the southern site did not result in changes in cellulose decomposition rates. While most global change models rest on the assumption that taxa will respond similarly to warming across sites and their ranges, these results suggest that the responses of microorganisms to warming may be mediated by differences across the geographic boundaries of ecosystems. PMID:24795850

  14. The impact of global warming on Mount Everest.

    PubMed

    Moore, G W K; Semple, John L

    2009-01-01

    Global warming impacts a wide range of human activities and ecosystems. One unanticipated consequence of the warming is an increase in barometric pressure throughout the troposphere. Mount Everest's extreme height and resulting low barometric pressure places humans near its summit in an extreme state of hypoxia. Here we quantify the degree with which this warming is increasing the barometric pressure near Everest's summit and argue that it is of such a magnitude as to make the mountain, over time, easier to climb.

  15. Drought under Global Warming: A Review

    NASA Astrophysics Data System (ADS)

    Dai, A.

    2011-12-01

    One of the big concerns associated with global warming is the potential change to land surface moisture conditions that could have a huge impact on agriculture, freshwater resources, and many other aspects of our society and the environment. How drought has changed during recent past and how it might change in the coming decades is increasingly becoming a great concern as global warming continues and more severe droughts are reported in the media. In this presentation, I will provide an overview, based on my own and others' work, of how drought has changed in the last several centuries and during recent decades over many regions around the world based on historical records, and how it might change in the coming decades based on IPCC AR4 model-predicted climate changes. I will present results from analyses of changes in precipitation, streamflow, soil moisture, and (improved) Palmer Drought Severity Index (PDSI) to show that aridity has increased during the last 50-60 years over many land areas, and rapid warming since the 1980s has contributed significantly to this drying. The PDSI (with improved evapotranspiration estimates) calculated from the AR4 multi-model predicted future climate suggests severe drying in the next 20-50 years over most land areas except the northern high-latitudes and parts of Asia. This drying pattern is consistent with other analyses of model-predicted soil moisture and precipitation changes. Although the quantitative interpretation of the future PDSI values may need to be cautious, combined with the other analyses, the PDSI result points to a dire situation with more severe to extreme droughts in the coming decades over the continental U.S., most of Africa and South America, Australia, southern Europe, and western and southeastern Asia. Changes in precipitation play an important role over many land areas, but enhanced evaporation due to increased radiative heating is also a major factor for the model-predicted drying. For more details, see

  16. 100 LPW 800 Lm Warm White LED

    SciTech Connect

    Sun, Decai

    2010-10-31

    An illumination grade warm white (WW) LED, having correlated color temperature (CCT) between 2800 K and 3500K and capable of producing 800 lm output at 100 lm/W, has been developed in this program. The high power WW LED is an ideal source for use as replacement for incandescent, and Halogen reflector and general purpose lamps of similar lumen value. Over the two year period, we have made following accomplishments: developed a high power warm white LED product and made over 50% improvements in light output and efficacy. The new high power WW LED product is a die on ceramic surface mountable LED package. It has four 1x1 mm{sup 2} InGaN pump dice flip chip attached to a ceramic submount in 2x2 array, covered by warm white phosphor ceramic platelets called Lumiramica and an overmolded silicone lens encapsulating the LED array. The performance goal was achieved through breakthroughs in following key areas: (1) High efficiency pump LED development through pump LED active region design and epi growth quality improvement (funded by internal programs). (2) Increase in injection efficiency (IE) represented by reduction in forward voltage (V{sub f}) through the improvement of the silver-based p-contact and a reduction in spreading resistance. The injection efficiency was increased from 80% at the start of the program to 96% at the end of the program at 700 mA/mm{sup 2}. (3) Improvement in thermal design as represented by reduction in thermal resistance from junction to case, through improvement of the die to submount connection in the thin film flip chip (TFFC) LED and choosing the submount material of high thermal conductivity. A thermal resistance of 1.72 K/W was demonstrated for the high power LED package. (4) Improvement in extraction efficiency from the LED package through improvement of InGaN die level and package level optical extraction efficiency improvement. (5) Improvement in phosphor system efficiency by improving the lumen equivalent (LE) and phosphor package

  17. Deglacial Warming and Wetting of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Daniels, W.; Russell, J. M.; Longo, W. M.; Giblin, A. E.; Holland-Stergar, P.; Morrill, C.; Huang, Y.

    2015-12-01

    Aeolian sand dunes swept across northern Alaska during the last glacial maximum. Today, summer temperatures are moderate and soils can remain waterlogged all summer long. How did the transition from a cold and dry glacial to a warm and wet interglacial take place? To answer this question we reconstructed temperature and precipitation changes during the last deglaciation using biomarker hydrogen isotopes from a new 28,000 year-long sediment core from Lake E5, located in the central Brooks Range of Alaska. We use terrestrial leaf waxes (dDterr, C28-acid), informed by dD measurements of modern vegetation, to infer dD of precipitation, an indicator of relative temperature change. Biomarkers from aquatic organisms (dDaq, C18-acid) are used as a proxy for lake water isotopes. The offset between the two (eterr-aq) is used to infer relative changes in evaporative enrichment of lake water, and by extension, moisture balance. dDterr during the last glacial period was -282‰ compared to -258‰ during the Holocene, suggesting a 5.6 ± 2.7 °C increase in summer temperature using the modern local temperature-dD relationship. Gradual warming began at ~18.5 ka, and temperature increased abruptly at 11.5 ka, at the end of the Younger Dryas. Warming peaked in the early Holocene from 11.5 to 9.1 ka, indicating a Holocene thermal maximum associated with peak summer insolation. The eterr-aq supports a dry LGM and moist Holocene. Other sediment proxies (TIC, TOC, redox-sensitive elements) support the eterr-aq, and reveal a shift to more positive P-E beginning around 17 ka, suggesting rising temperature led increases in precipitation during the last deglaciation. Moreover, differing patterns of dDterr and eterr-aq during the deglaciation suggest that the relationship between temperature and precipitation changed through time. Such decoupling, likely due to regional atmospheric reorganization as the Laurentide ice sheet waned, illustrates the importance of atmospheric dynamics in

  18. Sustaining effect of soil warming on organic matter decomposition

    NASA Astrophysics Data System (ADS)

    Hou, Ruixing; Ouyang, Zhu; Dorodnikov, Maxim; Wilson, Glenn; Kuzyakov, Yakov

    2015-04-01

    Global warming affects various parts of carbon (C) cycle including acceleration of soil organic matter (SOM) decomposition with strong feedback to atmospheric CO2 concentration. Despite many soil warming studies showed changes of microbial community structure, only very few were focused on sustainability of soil warming on microbial activity associated with SOM decomposition. Two alternative hypotheses: 1) acclimation because of substrate exhaustion and 2) sustaining increase of microbial activity with accelerated decomposition of recalcitrant SOM pools were never proven under long term field conditions. This is especially important in the nowadays introduced no-till crop systems leading to redistribution of organic C at the soil surface, which is much susceptible to warming effects than the rest of the profile. We incubated soil samples from a four-year warming experiment with tillage (T) and no-tillage (NT) practices under three temperatures: 15, 21, and 27 °C, and related the evolved total CO2 efflux to changes of organic C pools. Warmed soils released significantly more CO2 than the control treatment (no warming) at each incubation temperature, and the largest differences were observed under 15 °C (26% increase). The difference in CO2 efflux from NT to T increase with temperature showing high vulnerability of C stored in NT to soil warming. The Q10 value reflecting the sensitivity of SOM decomposition to warming was lower for warmed than non-warmed soil indicating better acclimation of microbes or lower C availability during long term warming. The activity of three extracellular enzymes: β-glucosidase, chitinase, sulphatase, reflecting the response of C, N and S cycles to warming, were significantly higher under warming and especially under NT compared to two other respective treatments. The CO2 released during 2 months of incubation consisted of 85% from recalcitrant SOM and the remaining 15% from microbial biomass and extractable organic C based on the

  19. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport

    NASA Astrophysics Data System (ADS)

    Armour, Kyle C.; Marshall, John; Scott, Jeffery R.; Donohoe, Aaron; Newsom, Emily R.

    2016-07-01

    The Southern Ocean has shown little warming over recent decades, in stark contrast to the rapid warming observed in the Arctic. Along the northern flank of the Antarctic Circumpolar Current, however, the upper ocean has warmed substantially. Here we present analyses of oceanographic observations and general circulation model simulations showing that these patterns--of delayed warming south of the Antarctic Circumpolar Current and enhanced warming to the north--are fundamentally shaped by the Southern Ocean's meridional overturning circulation: wind-driven upwelling of unmodified water from depth damps warming around Antarctica; greenhouse gas-induced surface heat uptake is largely balanced by anomalous northward heat transport associated with the equatorward flow of surface waters; and heat is preferentially stored where surface waters are subducted to the north. Further, these processes are primarily due to passive advection of the anomalous warming signal by climatological ocean currents; changes in ocean circulation are secondary. These findings suggest the Southern Ocean responds to greenhouse gas forcing on the centennial, or longer, timescale over which the deep ocean waters that are upwelled to the surface are warmed themselves. It is against this background of gradual warming that multidecadal Southern Ocean temperature trends must be understood.

  20. Precompetition warm-up in elite and subelite rhythmic gymnastics.

    PubMed

    Guidetti, Laura; Di Cagno, Alessandra; Gallotta, Maria Chiara; Battaglia, Claudia; Piazza, Marina; Baldari, Carlo

    2009-09-01

    The aim of this study was to investigate which precompetition warm-up methodologies resulted in the best overall performance in rhythmic gymnastics. The coaches of national and international clubs (60 elite and 90 subelite) were interviewed. The relationship between sport performance and precompetition warm-up routines was examined. A total of 49% of the coaches interviewed spent more than 1 hour to prepare their athletes for the competition, including 45 minutes dedicated to warm-up exercises. In spite of previous studies' suggestions, the time between the end of warm-up and the beginning of competition was more than 5 minutes for 68% of those interviewed. A slow run was the activity of choice used to begin the warm-up (96%). Significant differences between elite and subelite gymnasts were found concerning the total duration of warm-up, duration of slow running, utilization of rhythmic steps and leaps during the warm-up, the use of dynamic flexibility exercises, competition performances repetition (p < 0.01), and utilization of imagery (p < 0.05). A precompetition warm-up in rhythmic gymnastics would include static stretching exercises at least 60 minutes prior to the competition starting time and the active stretching exercises alternated with analytic muscle strengthening aimed at increasing muscle temperature. Rhythmic gymnastics coaches at all levels can use this data as a review of precompetition warm-up practices and a possible source of new ideas.

  1. Plant community responses to experimental warming across the tundra biome.

    PubMed

    Walker, Marilyn D; Wahren, C Henrik; Hollister, Robert D; Henry, Greg H R; Ahlquist, Lorraine E; Alatalo, Juha M; Bret-Harte, M Syndonia; Calef, Monika P; Callaghan, Terry V; Carroll, Amy B; Epstein, Howard E; Jónsdóttir, Ingibjörg S; Klein, Julia A; Magnússon, Borgthór; Molau, Ulf; Oberbauer, Steven F; Rewa, Steven P; Robinson, Clare H; Shaver, Gaius R; Suding, Katharine N; Thompson, Catharine C; Tolvanen, Anne; Totland, Ørjan; Turner, P Lee; Tweedie, Craig E; Webber, Patrick J; Wookey, Philip A

    2006-01-31

    Recent observations of changes in some tundra ecosystems appear to be responses to a warming climate. Several experimental studies have shown that tundra plants and ecosystems can respond strongly to environmental change, including warming; however, most studies were limited to a single location and were of short duration and based on a variety of experimental designs. In addition, comparisons among studies are difficult because a variety of techniques have been used to achieve experimental warming and different measurements have been used to assess responses. We used metaanalysis on plant community measurements from standardized warming experiments at 11 locations across the tundra biome involved in the International Tundra Experiment. The passive warming treatment increased plant-level air temperature by 1-3 degrees C, which is in the range of predicted and observed warming for tundra regions. Responses were rapid and detected in whole plant communities after only two growing seasons. Overall, warming increased height and cover of deciduous shrubs and graminoids, decreased cover of mosses and lichens, and decreased species diversity and evenness. These results predict that warming will cause a decline in biodiversity across a wide variety of tundra, at least in the short term. They also provide rigorous experimental evidence that recently observed increases in shrub cover in many tundra regions are in response to climate warming. These changes have important implications for processes and interactions within tundra ecosystems and between tundra and the atmosphere.

  2. Mechanisms for stronger warming over drier ecoregions observed since 1979

    NASA Astrophysics Data System (ADS)

    Zhou, Liming; Chen, Haishan; Hua, Wenjian; Dai, Yongjiu; Wei, Nan

    2016-11-01

    Previous research found that the warming rate observed for the period 1979-2012 increases dramatically with decreasing vegetation greenness over land between 50°S and 50°N, with the strongest warming rate seen over the driest regions such as the Sahara desert and the Arabian Peninsula, suggesting warming amplification over deserts. To further this finding, this paper explores possible mechanisms for this amplification by analyzing observations, reanalysis data and historical simulations of global coupled atmosphere-ocean general circulation models. We examine various variables, related to surface radiative forcing, land surface properties, and surface energy and radiation budget, that control the warming patterns in terms of large-scale ecoregions. Our results indicate that desert amplification is likely attributable primarily to enhanced longwave radiative forcing associated with a stronger water vapor feedback over drier ecoregions in response to the positive global-scale greenhouse gas forcing. This warming amplification and associated downward longwave radiation at the surface are reproduced by historical simulations with anthropogenic and natural forcings, but are absent if only natural forcings are considered, pointing to new potential fingerprints of anthropogenic warming. These results suggest a fundamental pattern of global warming over land that depend on the dryness of ecosystems in mid- and low- latitudes, likely reflecting primarily the first order large-scale thermodynamic component of global warming linked to changes in the water and energy cycles over different ecosystems. This finding may have important implications in interpreting global warming patterns and assessing climate change impacts.

  3. Plant community responses to experimental warming across the tundra biome

    PubMed Central

    Walker, Marilyn D.; Wahren, C. Henrik; Hollister, Robert D.; Henry, Greg H. R.; Ahlquist, Lorraine E.; Alatalo, Juha M.; Bret-Harte, M. Syndonia; Calef, Monika P.; Callaghan, Terry V.; Carroll, Amy B.; Epstein, Howard E.; Jónsdóttir, Ingibjörg S.; Klein, Julia A.; Magnússon, Borgþór; Molau, Ulf; Oberbauer, Steven F.; Rewa, Steven P.; Robinson, Clare H.; Shaver, Gaius R.; Suding, Katharine N.; Thompson, Catharine C.; Tolvanen, Anne; Totland, Ørjan; Turner, P. Lee; Tweedie, Craig E.; Webber, Patrick J.; Wookey, Philip A.

    2006-01-01

    Recent observations of changes in some tundra ecosystems appear to be responses to a warming climate. Several experimental studies have shown that tundra plants and ecosystems can respond strongly to environmental change, including warming; however, most studies were limited to a single location and were of short duration and based on a variety of experimental designs. In addition, comparisons among studies are difficult because a variety of techniques have been used to achieve experimental warming and different measurements have been used to assess responses. We used metaanalysis on plant community measurements from standardized warming experiments at 11 locations across the tundra biome involved in the International Tundra Experiment. The passive warming treatment increased plant-level air temperature by 1-3°C, which is in the range of predicted and observed warming for tundra regions. Responses were rapid and detected in whole plant communities after only two growing seasons. Overall, warming increased height and cover of deciduous shrubs and graminoids, decreased cover of mosses and lichens, and decreased species diversity and evenness. These results predict that warming will cause a decline in biodiversity across a wide variety of tundra, at least in the short term. They also provide rigorous experimental evidence that recently observed increases in shrub cover in many tundra regions are in response to climate warming. These changes have important implications for processes and interactions within tundra ecosystems and between tundra and the atmosphere. PMID:16428292

  4. Global warming and neurodegenerative disorders: speculations on their linkage.

    PubMed

    Habibi, Laleh; Perry, George; Mahmoudi, Morteza

    2014-01-01

    Climate change is having considerable impact on biological systems. Eras of ice ages and warming shaped the contemporary earth and origin of creatures including humans. Warming forces stress conditions on cells. Therefore, cells evolved elaborate defense mechanisms, such as creation of heat shock proteins, to combat heat stress. Global warming is becoming a crisis and this process would yield an undefined increasing rate of neurodegenerative disorders in future decades. Since heat stress is known to have a degenerative effects on neurons and, conversely, cold conditions have protective effect on these cells, we hypothesize that persistent heat stress forced by global warming might play a crucial role in increasing neurodegenerative disorders.

  5. Global warming and neurodegenerative disorders: speculations on their linkage

    PubMed Central

    Habibi, Laleh; Perry, George; Mahmoudi, Morteza

    2014-01-01

    Climate change is having considerable impact on biological systems. Eras of ice ages and warming shaped the contemporary earth and origin of creatures including humans. Warming forces stress conditions on cells. Therefore, cells evolved elaborate defense mechanisms, such as creation of heat shock proteins, to combat heat stress. Global warming is becoming a crisis and this process would yield an undefined increasing rate of neurodegenerative disorders in future decades. Since heat stress is known to have a degenerative effects on neurons and, conversely, cold conditions have protective effect on these cells, we hypothesize that persistent heat stress forced by global warming might play a crucial role in increasing neurodegenerative disorders. PMID:25671171

  6. Status of warm fog dispersal research

    NASA Technical Reports Server (NTRS)

    Keller, V. W.

    1985-01-01

    A new concept for dispersing warm fog is presented. This brute force technique uses large volume recycled water sprays. Energy requirements for this technique are an order of magnitude less than those to operate a thermo-kinetic system. An important side benefit is the considerable emergency fire extinguishing capability it provides along the runway. Tests conducted to provide drop spectra measurements and temperature response measurements of suitable water sprays are described. Three mobile firefighting modules capable of spraying up to 630 l/s (10,000 gpm) to a height in excess of 50 m were utilized. Periodic operation of two parallel rows of nozzles in a heavy fog resulted in downwind-correlated increases in the visual range measured with a forward scatter visibility meter.

  7. The Warm-Hot Intergalactic Medium

    NASA Technical Reports Server (NTRS)

    Hayes, Jeffrey (Technical Monitor)

    2005-01-01

    This grant is associated to a 5-year LTSA grant, on "Studying the Largest Reservoir of Baryons in the Universe: The Warm-Hot Intergalactic Medium". The first year of work within this program has been very rich, and has already produced several important results, as detailed in this paper. Table 2 of our original proposal justification, listed the planned year-by-year program, divided into two sub-fields: (A) the study of the z=0 (or Local Group WHIM) system, and (B) the study of the z greater than 0 (i.e- intervening WHIM) systems. For each of the two sub-fields we had planned to analyze, in the first year, a number of archival (Chandra, XMM and FUSE) and new (if observed) sightlines. Moreover, the plan for the z=0 system included the search for new interesting sightlines. We have accomplished all these tasks.

  8. Does global warming make Triton blush?

    NASA Astrophysics Data System (ADS)

    Buratti, Bonnie J.; Hicks, Michael D.; Newburn, Ray L., Jr.

    1999-01-01

    Neptune's largest moon, Triton, is one of two satellites in the Solar System that are currently geologically active. At least two geyser-like plumes were observed by the Voyager 2 spacecraft in 1989, and dozens of streaky deposits hint at the existence of many more. Triton also exhibits complex seasonal changes in its 165-year journey about the Sun. Because Triton's atmosphere transports volatiles (primarily nitrogen and methane) during this seasonal cycle, its atmospheric pressure may fluctuate by up to an order of magnitude over decades. Photometric measurements of its albedo and colour over half a century show that seasonal volatile transport has occurred. There have also been indications that more extreme, short-lived changes, perhaps due to geological events, have occurred on Triton. An anomalously red spectrum was reported for Triton in 1977 (refs 5, 6), and global warming has now been observed.

  9. Global warming tugs at trophic interactions.

    PubMed

    Brook, Barry W

    2009-01-01

    Climate change impacts are becoming increasingly evident as 1 degree C warming above pre-industrial temperatures is approached. One of the signature biological effects is a shift towards earlier-timed reproduction. If individual species lack sufficient adaptive plasticity to alter phenology, they will have reduced fitness in a hotter world. Yet, a long-term study of an oak-caterpillar-songbird-sparrowhawk food web reveals that what could matter as much is if trophic interactions are disrupted. Multiple selective pressures may be triggered by climate change, leading to a tug-of-war between the need to stay in synchrony with the timing of maximum food, and the benefits of minimizing predation.

  10. Sea ice thickness and recent Arctic warming

    NASA Astrophysics Data System (ADS)

    Lang, Andreas; Yang, Shuting; Kaas, Eigil

    2017-01-01

    The climatic impact of increased Arctic sea ice loss has received growing attention in the last years. However, little focus has been set on the role of sea ice thickness, although it strongly determines surface heat fluxes. Here ensembles of simulations using the EC-Earth atmospheric model (Integrated Forecast System) are performed and analyzed to quantify the atmospheric impacts of Arctic sea ice thickness change since 1982 as revealed by the sea ice model assimilation Global Ice-Ocean Modeling and Assimilation System. Results show that the recent sea ice thinning has significantly affected the Arctic climate, while remote atmospheric responses are less pronounced owing to a high internal atmospheric variability. Locally, the sea ice thinning results in enhancement of near-surface warming of about 1°C per decade in winter, which is most pronounced over marginal sea ice areas with thin ice. This leads to an increase of the Arctic amplification factor by 37%.

  11. Seasonal flows on warm Martian slopes

    USGS Publications Warehouse

    McEwen, Alfred S.; Ojha, Lujendra; Dundas, Colin M.; Mattson, Sarah S.; Byrne, Shane; Wray, James J.; Cull, Selby C.; Murchie, Scott L.; Thomas, Nicolas; Gulick, Virginia C.

    2011-01-01

    Water probably flowed across ancient Mars, but whether it ever exists as a liquid on the surface today remains debatable. Recurring slope lineae (RSL) are narrow (0.5 to 5 meters), relatively dark markings on steep (25° to 40°) slopes; repeat images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment show them to appear and incrementally grow during warm seasons and fade in cold seasons. They extend downslope from bedrock outcrops, often associated with small channels, and hundreds of them form in some rare locations. RSL appear and lengthen in the late southern spring and summer from 48°S to 32°S latitudes favoring equator-facing slopes, which are times and places with peak surface temperatures from ~250 to 300 kelvin. Liquid brines near the surface might explain this activity, but the exact mechanism and source of water are not understood.

  12. Seasonal flows on warm Martian slopes

    USGS Publications Warehouse

    McEwen, A.S.; Ojha, L.; Dundas, C.M.; Mattson, S.S.; Byrne, S.; Wray, J.J.; Cull, S.C.; Murchie, S.L.; Thomas, N.; Gulick, V.C.

    2011-01-01

    Water probably flowed across ancient Mars, but whether it ever exists as a liquid on the surface today remains debatable. Recurring slope lineae (RSL) are narrow (0.5 to 5 meters), relatively dark markings on steep (25?? to 40??) slopes; repeat images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment show them to appear and incrementally grow during warm seasons and fade in cold seasons. They extend downslope from bedrock outcrops, often associated with small channels, and hundreds of them form in some rare locations. RSL appear and lengthen in the late southern spring and summer from 48??S to 32??S latitudes favoring equator-facing slopes, which are times and places with peak surface temperatures from ???250 to 300 kelvin. Liquid brines near the surface might explain this activity, but the exact mechanism and source of water are not understood.

  13. Mass loss from warm giants: Magnetic effects

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1980-01-01

    Among warm giant stars, rapid mass loss sets in along a well defined velocity dividing line (VDL). Hot corona also disappear close to the VDL and thermal pressure cannot drive the observed rapid mass loss in these stars. The VDL may be associated with magnetic fields changing from closed to open. Such a change is consistent with the lack of X-rays from late-type giants. A magnetic transition locus based on Pneuman's work on helmet streamer stability agrees well with the empirical VDL. The change from closed to open fields not only makes rapid mass loss possible, but also contributes to energizing the mass loss in the form of discrete bubbles.

  14. Ocean deoxygenation in a warming world.

    PubMed

    Keeling, Ralph E; Körtzinger, Arne; Gruber, Nicolas

    2010-01-01

    Ocean warming and increased stratification of the upper ocean caused by global climate change will likely lead to declines in dissolved O2 in the ocean interior (ocean deoxygenation) with implications for ocean productivity, nutrient cycling, carbon cycling, and marine habitat. Ocean models predict declines of 1 to 7% in the global ocean O2 inventory over the next century, with declines continuing for a thousand years or more into the future. An important consequence may be an expansion in the area and volume of so-called oxygen minimum zones, where O2 levels are too low to support many macrofauna and profound changes in biogeochemical cycling occur. Significant deoxygenation has occurred over the past 50 years in the North Pacific and tropical oceans, suggesting larger changes are looming. The potential for larger O2 declines in the future suggests the need for an improved observing system for tracking ocean 02 changes.

  15. Global warming and changes in ocean circulation

    SciTech Connect

    Duffy, P.B.; Caldeira, K.C.

    1998-02-01

    This final report provides an overview of the goals and accomplishments of this project. Modeling and observational work has raised the possibility that global warming may cause changes in the circulation of the ocean. If such changes would occur they could have important climatic consequences. The first technical goal of this project was to investigate some of these possible changes in ocean circulation in a quantitative way, using a state-of -the-art numerical model of the ocean. Another goal was to develop our ocean model, a detailed three-dimensional numerical model of the ocean circulation and ocean carbon cycles. A major non-technical goal was to establish LLNL as a center of excellence in modelling the ocean circulation and carbon cycle.

  16. Revaluating ocean warming impacts on global phytoplankton

    NASA Astrophysics Data System (ADS)

    Behrenfeld, Michael J.; O'Malley, Robert T.; Boss, Emmanuel S.; Westberry, Toby K.; Graff, Jason R.; Halsey, Kimberly H.; Milligan, Allen J.; Siegel, David A.; Brown, Matthew B.

    2016-03-01

    Global satellite observations document expansions of the low-chlorophyll central ocean gyres and an overall inverse relationship between anomalies in sea surface temperature and phytoplankton chlorophyll concentrations. These findings can provide an invaluable glimpse into potential future ocean changes, but only if the story they tell is accurately interpreted. Chlorophyll is not simply a measure of phytoplankton biomass, but also registers changes in intracellular pigmentation arising from light-driven (photoacclimation) and nutrient-driven physiological responses. Here, we show that the photoacclimation response is an important component of temporal chlorophyll variability across the global ocean. This attribution implies that contemporary relationships between chlorophyll changes and ocean warming are not indicative of proportional changes in productivity, as light-driven decreases in chlorophyll can be associated with constant or even increased photosynthesis. Extension of these results to future change, however, requires further evaluation of how the multifaceted stressors of a warmer, higher-CO2 world will impact plankton communities.

  17. Microwave sounding units and global warming

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L.; Keihm, Stephen J.

    1991-01-01

    A recent work of Spencer and Christy (1990) on precise monitoring of global temperature trends from satellites is critically examined. It is tentatively concluded in the present comment that remote sensing using satellite microwave radiometers can in fact provide a means for the monitoring of troposphere-averaged air temperature. However, for this to be successful more than one decade of data will be required to overcome the apparent inherent variability of global average air temperature. It is argued that the data set reported by Spencer and Christy should be subjected to careful review before it is interpreted as evidence of the presence or absence of global warming. In a reply, Christy provides specific responses to the commenters' objections.

  18. Ion beam driven warm dense matter experiments

    NASA Astrophysics Data System (ADS)

    Bieniosek, F. M.; Ni, P. A.; Leitner, M.; Roy, P. K.; More, R.; Barnard, J. J.; Kireeff Covo, M.; Molvik, A. W.; Yoneda, H.

    2007-11-01

    We report plans and experimental results in ion beam-driven warm dense matter (WDM) experiments. Initial experiments at LBNL are at 0.3-1 MeV K+ beam (below the Bragg peak), increasing toward the Bragg peak in future versions of the accelerator. The WDM conditions are envisioned to be achieved by combined longitudinal and transverse neutralized drift compression to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. Initial experiments include an experiment to study transient darkening at LBNL; and a porous target experiment at GSI heated by intense heavy-ion beams from the SIS 18 storage ring. Further experiments will explore target temperature and other properties such as electrical conductivity to investigate phase transitions and the critical point.

  19. Competitive advantage on a warming planet.

    PubMed

    Lash, Jonathan; Wellington, Fred

    2007-03-01

    Whether you're in a traditional smokestack industry or a "clean" business like investment banking, your company will increasingly feel the effects of climate change. Even people skeptical about global warming's dangers are recognizing that, simply because so many others are concerned, the phenomenon has wide-ranging implications. Investors already are discounting share prices of companies poorly positioned to compete in a warming world. Many businesses face higher raw material and energy costs as more and more governments enact policies placing a cost on emissions. Consumers are taking into account a company's environmental record when making purchasing decisions. There's also a burgeoning market in greenhouse gas emission allowances (the carbon market), with annual trading in these assets valued at tens of billions of dollars. Companies that manage and mitigate their exposure to the risks associated with climate change while seeking new opportunities for profit will generate a competitive advantage over rivals in a carbon-constrained future. This article offers a systematic approach to mapping and responding to climate change risks. According to Jonathan Lash and Fred Wellington of the World Resources Institute, an environmental think tank, the risks can be divided into six categories: regulatory (policies such as new emissions standards), products and technology (the development and marketing of climate-friendly products and services), litigation (lawsuits alleging environmental harm), reputational (how a company's environmental policies affect its brand), supply chain (potentially higher raw material and energy costs), and physical (such as an increase in the incidence of hurricanes). The authors propose a four-step process for responding to climate change risk: Quantify your company's carbon footprint; identify the risks and opportunities you face; adapt your business in response; and do it better than your competitors.

  20. Perihelion precession, polar ice and global warming

    NASA Astrophysics Data System (ADS)

    Steel, Duncan

    2013-03-01

    The increase in mean global temperature over the past 150 years is generally ascribed to human activities, in particular the rises in the atmospheric mixing ratios of carbon dioxide and other greenhouse gases since the Industrial Revolution began. Whilst it is thought that ice ages and interglacial periods are mainly initiated by multi-millennial variations in Earth's heliocentric orbit and obliquity, shorter-term orbital variations and consequent observable climatic effects over decadal/centurial timescales have not been considered significant causes of contemporary climate change compared to anthropogenic influences. Here it is shown that the precession of perihelion occurring over a century substantially affects the intra-annual variation of solar radiation influx at different locations, especially higher latitudes, with northern and southern hemispheres being subject to contrasting insolation changes. This north/south asymmetry has grown since perihelion was aligned with the winter solstice seven to eight centuries ago, and must cause enhanced year-on-year springtime melting of Arctic (but not Antarctic) ice and therefore feedback warming because increasing amounts of land and open sea are denuded of high-albedo ice and snow across boreal summer and into autumn. The accelerating sequence of insolation change now occurring as perihelion moves further into boreal winter has not occurred previously during the Holocene and so would not have been observed before by past or present civilisations. Reasons are given for the significance of this process having been overlooked until now. This mechanism represents a supplementary - natural - contribution to climate change in the present epoch and may even be the dominant fundamental cause of global warming, although anthropogenic effects surely play a role too.

  1. North Atlantic warming during Dansgaard-Oeschger events synchronous with Antarctic warming and out-of-phase with Greenland climate.

    PubMed

    Rasmussen, Tine L; Thomsen, Erik; Moros, Matthias

    2016-02-05

    The precise reason for the differences and out-of-phase relationship between the abrupt Dansgaard-Oeschger warmings in the Nordic seas and Greenland ice cores and the gradual warmings in the south-central Atlantic and Antarctic ice cores is poorly understood. Termed the bipolar seesaw, the differences are apparently linked to perturbations in the ocean circulation pattern. Here we show that surface and intermediate-depth water south of Iceland warmed gradually synchronously with the Antarctic warming and out of phase with the abrupt warming of the Nordic seas and over Greenland. The hinge line between areas showing abrupt and gradual warming was close to the Greenland-Scotland Ridge and the marine system appears to be a 'push-and-pull' system rather than a seesaw system. 'Pull' during the warm interstadials, when convection in the Nordic seas was active; 'push' during the cold stadials, when convection stopped and warm water from the south-central Atlantic pushed northward gradually warming the North Atlantic and Nordic seas.

  2. North Atlantic warming during Dansgaard-Oeschger events synchronous with Antarctic warming and out-of-phase with Greenland climate

    PubMed Central

    Rasmussen, Tine L.; Thomsen, Erik; Moros, Matthias

    2016-01-01

    The precise reason for the differences and out-of-phase relationship between the abrupt Dansgaard-Oeschger warmings in the Nordic seas and Greenland ice cores and the gradual warmings in the south-central Atlantic and Antarctic ice cores is poorly understood. Termed the bipolar seesaw, the differences are apparently linked to perturbations in the ocean circulation pattern. Here we show that surface and intermediate-depth water south of Iceland warmed gradually synchronously with the Antarctic warming and out of phase with the abrupt warming of the Nordic seas and over Greenland. The hinge line between areas showing abrupt and gradual warming was close to the Greenland-Scotland Ridge and the marine system appears to be a ‘push-and-pull’ system rather than a seesaw system. ‘Pull’ during the warm interstadials, when convection in the Nordic seas was active; ‘push’ during the cold stadials, when convection stopped and warm water from the south-central Atlantic pushed northward gradually warming the North Atlantic and Nordic seas. PMID:26847384

  3. How are large western hemisphere warm pools formed?

    NASA Astrophysics Data System (ADS)

    Enfield, David B.; Lee, Sang-Ki; Wang, Chunzai

    2006-08-01

    During the boreal summer the Western Hemisphere warm pool (WHWP) stretches from the eastern North Pacific to the tropical North Atlantic and is a key feature of the climate of the Americas and Africa. In the summers following nine El Niño events during 1950-2000, there have been five instances of extraordinarily large warm pools averaging about twice the climatological annual size. These large warm pools have induced a strengthened divergent circulation aloft and have been associated with rainfall anomalies throughout the western hemisphere tropics and subtropics and with more frequent hurricanes. However, following four other El Niño events large warm pools did not develop, such that the mere existence of El Niño during the boreal winter does not provide the basis for predicting an anomalously large warm pool the following summer. In this paper, we find consistency with the hypothesis that large warm pools result from an anomalous divergent circulation forced by sea surface temperature (SST) anomalies in the Pacific, the so-called atmospheric bridge. We also find significant explanations for why large warm pools do not always develop. If the El Niño event ends early in the eastern Pacific, the Pacific warm anomaly lacks the persistence needed to force the atmospheric bridge and the Atlantic portion of the warm pool remains normal. If SST anomalies in the eastern Pacific do not last much beyond February of the following year, then the eastern North Pacific portion of the warm pool remains normal. The overall strength of the Pacific El Niño does not appear to be a critical factor. We also find that when conditions favor a developing atmospheric bridge and the winter atmosphere over the North Atlantic conforms to a negative North Atlantic Oscillation (NAO) pattern (as in 1957-58 and 1968-69), the forcing is reinforced and the warm pool is stronger. On the other hand, if a positive NAO pattern develops the warm pool may remain normal even if other circumstances

  4. Human Milk Warming Temperatures Using a Simulation of Currently Available Storage and Warming Methods.

    PubMed

    Bransburg-Zabary, Sharron; Virozub, Alexander; Mimouni, Francis B

    2015-01-01

    Human milk handling guidelines are very demanding, based upon solid scientific evidence that handling methods can make a real difference in infant health and nutrition. Indeed, properly stored milk maintains many of its unique qualities and continues to be the second and third best infant feeding alternatives, much superior to artificial feeding. Container type and shape, mode of steering, amount of air exposure and storage temperature may adversely affect milk stability and composition. Heating above physiological temperatures significantly impacts nutritional and immunological properties of milk. In spite of this knowledge, there are no strict guidelines regarding milk warming. Human milk is often heated in electrical-based bottle warmers that can exceed 80°C, a temperature at which many beneficial human milk properties disappear. High temperatures can also induce fat profile variations as compared with fresh human milk. In this manuscript we estimate the amount of damage due to overheating during warming using a heat flow simulation of a regular water based bottle warmer. To do so, we carried out a series of warming simulations which provided us with dynamic temperature fields within bottled milk. We simulated the use of a hot water-bath at 80°C to heat bottled refrigerated milk (60 ml and 178 ml) to demonstrate that large milk portions are overheated (above 40°C). It seems that the contemporary storage method (upright feeding tool, i.e. bottle) and bottle warming device, are not optimize to preserve the unique properties of human milk. Health workers and parents should be aware of this problem especially when it relates to sick neonates and preemies that cannot be directly fed at the breast.

  5. Design and performance of B4WarmED, an aboveground and belowground free-air warming experiment at the temperate-boreal forest ecotone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conducting manipulative climate change experiments in forests is challenging, given their spatial heterogeneity and canopy complexity. One specific challenge involves warming both plants and soils to depth in ecosystems without much bare ground. We describe the design, implementation, and performanc...

  6. Effects of Warm-Up Stretching Exercises on Sprint Performance

    ERIC Educational Resources Information Center

    Makaruk, Hubert; Makaruk, Beata; Kedra, Stanislaw

    2008-01-01

    Study aim: To assess direct effects of warm-up consisting of static and dynamic stretching exercises on sprint results attained by students differing in sprint performance. Material and methods: A group of 24 male and 19 female physical education students, including 12 and 9 sprinters, respectively. They performed warm-ups consisting of dynamic…

  7. Artificial warming of arctic meadow under pollution stress: Experimental design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boreal and arctic terrestrial ecosystems are central to the climate change debate, notably because future warming is expected to be disproportionate as compared to world averages. Likewise, greenhouse gas (GHG) release from terrestrial ecosystems exposed to climate warming is expected to be the larg...

  8. Choral Warm-ups: Preparation To Sing, Listen, and Learn.

    ERIC Educational Resources Information Center

    Stegman, Sandra Frey

    2003-01-01

    Focuses on creating warm-up exercises for use with choral groups, offering tips for developing the exercises. Explains that a warm-up is useful for teaching students to sing, listen, and learn specific music concepts and activities. Provides a list of additional resources and example activities. (CMK)

  9. Opposing plant community responses to warming with and without herbivores

    PubMed Central

    Post, Eric; Pedersen, Christian

    2008-01-01

    If controls over primary productivity and plant community composition are mainly environmental, as opposed to biological, then global change may result in large-scale alterations in ecosystem structure and function. This view appears to be favored among investigations of plant biomass and community responses to experimental and observed warming. In far northern and arctic ecosystems, such studies predict increasing dominance of woody shrubs with future warming and emphasize the carbon (C)-sequestration potential and consequent atmospheric feedback potential of such responses. In contrast to previous studies, we incorporated natural herbivory by muskoxen and caribou into a 5-year experimental investigation of arctic plant community response to warming. In accordance with other studies, warming increased total community biomass by promoting growth of deciduous shrubs (dwarf birch and gray willow). However, muskoxen and caribou reduced total community biomass response, and responses of birch and willow, to warming by 19%, 46%, and 11%, respectively. Furthermore, under warming alone, the plant community shifted after 5 years away from graminoid-dominated toward dwarf birch-dominated. In contrast, where herbivores grazed, plant community composition on warmed plots did not differ from that on ambient plots after 5 years. These results highlight the potentially important and overlooked influences of vertebrate herbivores on plant community response to warming and emphasize that conservation and management of large herbivores may be an important component of mitigating ecosystem response to climate change. PMID:18719116

  10. Seagrass ecophysiological performance under ocean warming and acidification.

    PubMed

    Repolho, Tiago; Duarte, Bernardo; Dionísio, Gisela; Paula, José Ricardo; Lopes, Ana R; Rosa, Inês C; Grilo, Tiago F; Caçador, Isabel; Calado, Ricardo; Rosa, Rui

    2017-02-01

    Seagrasses play an essential ecological role within coastal habitats and their worldwide population decline has been linked to different types of anthropogenic forces. We investigated, for the first time, the combined effects of future ocean warming and acidification on fundamental biological processes of Zostera noltii, including shoot density, leaf coloration, photophysiology (electron transport rate, ETR; maximum PSII quantum yield, Fv/Fm) and photosynthetic pigments. Shoot density was severely affected under warming conditions, with a concomitant increase in the frequency of brownish colored leaves (seagrass die-off). Warming was responsible for a significant decrease in ETR and Fv/Fm (particularly under control pH conditions), while promoting the highest ETR variability (among experimental treatments). Warming also elicited a significant increase in pheophytin and carotenoid levels, alongside an increase in carotenoid/chlorophyll ratio and De-Epoxidation State (DES). Acidification significantly affected photosynthetic pigments content (antheraxanthin, β-carotene, violaxanthin and zeaxanthin), with a significant decrease being recorded under the warming scenario. No significant interaction between ocean acidification and warming was observed. Our findings suggest that future ocean warming will be a foremost determinant stressor influencing Z. noltii survival and physiological performance. Additionally, acidification conditions to occur in the future will be unable to counteract deleterious effects posed by ocean warming.

  11. Resonance Absorption of Laser Light by Warm and Cold Plasmas.

    DTIC Science & Technology

    1981-03-01

    34 Ponderomotive Force................38 Hot Electron Energy ................40 Validity bf Assumptions..............41 V. Conclusions...Indicated by Arrows) for the Warm and Cold Plasma Models ..... ................ 31 7 Cold Plasma: Fraction of Laser Energy Resonantly Absorbed as a...Function of Incident Angle .. ............ 35 8 Warm Plasma: Fraction of Laser Energy Resonantly Absorbed as a Function of Incident Angle (T = 637 ev and

  12. Seagrass ecophysiological performance under ocean warming and acidification

    PubMed Central

    Repolho, Tiago; Duarte, Bernardo; Dionísio, Gisela; Paula, José Ricardo; Lopes, Ana R.; Rosa, Inês C.; Grilo, Tiago F.; Caçador, Isabel; Calado, Ricardo; Rosa, Rui

    2017-01-01

    Seagrasses play an essential ecological role within coastal habitats and their worldwide population decline has been linked to different types of anthropogenic forces. We investigated, for the first time, the combined effects of future ocean warming and acidification on fundamental biological processes of Zostera noltii, including shoot density, leaf coloration, photophysiology (electron transport rate, ETR; maximum PSII quantum yield, Fv/Fm) and photosynthetic pigments. Shoot density was severely affected under warming conditions, with a concomitant increase in the frequency of brownish colored leaves (seagrass die-off). Warming was responsible for a significant decrease in ETR and Fv/Fm (particularly under control pH conditions), while promoting the highest ETR variability (among experimental treatments). Warming also elicited a significant increase in pheophytin and carotenoid levels, alongside an increase in carotenoid/chlorophyll ratio and De-Epoxidation State (DES). Acidification significantly affected photosynthetic pigments content (antheraxanthin, β-carotene, violaxanthin and zeaxanthin), with a significant decrease being recorded under the warming scenario. No significant interaction between ocean acidification and warming was observed. Our findings suggest that future ocean warming will be a foremost determinant stressor influencing Z. noltii survival and physiological performance. Additionally, acidification conditions to occur in the future will be unable to counteract deleterious effects posed by ocean warming. PMID:28145531

  13. Soil warming, carbon-nitrogen interactions, and forest carbon budgets.

    PubMed

    Melillo, Jerry M; Butler, Sarah; Johnson, Jennifer; Mohan, Jacqueline; Steudler, Paul; Lux, Heidi; Burrows, Elizabeth; Bowles, Francis; Smith, Rose; Scott, Lindsay; Vario, Chelsea; Hill, Troy; Burton, Andrew; Zhou, Yu-Mei; Tang, Jim

    2011-06-07

    Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming-induced increases in nitrogen availability. This study underscores the importance of incorporating carbon-nitrogen interactions in atmosphere-ocean-land earth system models to accurately simulate land feedbacks to the climate system.

  14. Seagrass ecophysiological performance under ocean warming and acidification

    NASA Astrophysics Data System (ADS)

    Repolho, Tiago; Duarte, Bernardo; Dionísio, Gisela; Paula, José Ricardo; Lopes, Ana R.; Rosa, Inês C.; Grilo, Tiago F.; Caçador, Isabel; Calado, Ricardo; Rosa, Rui

    2017-02-01

    Seagrasses play an essential ecological role within coastal habitats and their worldwide population decline has been linked to different types of anthropogenic forces. We investigated, for the first time, the combined effects of future ocean warming and acidification on fundamental biological processes of Zostera noltii, including shoot density, leaf coloration, photophysiology (electron transport rate, ETR; maximum PSII quantum yield, Fv/Fm) and photosynthetic pigments. Shoot density was severely affected under warming conditions, with a concomitant increase in the frequency of brownish colored leaves (seagrass die-off). Warming was responsible for a significant decrease in ETR and Fv/Fm (particularly under control pH conditions), while promoting the highest ETR variability (among experimental treatments). Warming also elicited a significant increase in pheophytin and carotenoid levels, alongside an increase in carotenoid/chlorophyll ratio and De-Epoxidation State (DES). Acidification significantly affected photosynthetic pigments content (antheraxanthin, β-carotene, violaxanthin and zeaxanthin), with a significant decrease being recorded under the warming scenario. No significant interaction between ocean acidification and warming was observed. Our findings suggest that future ocean warming will be a foremost determinant stressor influencing Z. noltii survival and physiological performance. Additionally, acidification conditions to occur in the future will be unable to counteract deleterious effects posed by ocean warming.

  15. Waste Reduction Model (WARM) Resources for Small Businesses and Organizations

    EPA Pesticide Factsheets

    This page provides a brief overview of how EPA’s Waste Reduction Model (WARM) can be used by small businesses and organizations. The page includes a brief summary of uses of WARM for the audience and links to other resources.

  16. Situational Influences upon Children's Beliefs about Global Warming and Energy

    ERIC Educational Resources Information Center

    Devine-Wright, Patrick; Devine-Wright, Hannah; Fleming, Paul

    2004-01-01

    This paper explores children's beliefs about global warming and energy sources from a psychological perspective, focusing upon situational influences upon subjective beliefs, including perceived self-efficacy. The context of the research is one of growing concern at the potential impacts of global warming, yet demonstrably low levels of…

  17. Evaluation of the Warm Springs Career Exploration Project.

    ERIC Educational Resources Information Center

    Owens, Thomas R.

    The Warm Springs Career Exploration Project (WSCEP) is an adaptation of experience-based career education (EBCE) for Native Americans residing on the Warm Springs Indian Reservation. The project served as a full-time program for American Indian students aged 16-19 who had dropped out of school, and also served as a part-time career development…

  18. Water Availability in a Warming World

    NASA Astrophysics Data System (ADS)

    Aminzade, Jennifer

    As climate warms during the 21st century, the resultant changes in water availability are a vital issue for society, perhaps even more important than the magnitude of warming itself. Yet our climate models disagree in their forecasts of water availability, limiting our ability to plan accordingly. This thesis investigates future water availability projections from Coupled Ocean-Atmosphere General Circulation Models (GCMs), primarily using two water availability measures: soil moisture and the Supply Demand Drought Index (SDDI). Chapter One introduces methods of measuring water availability and explores some of the fundamental differences between soil moisture, SDDI and the Palmer Drought Severity Index (PDSI). SDDI and PDSI tend to predict more severe future drought conditions than soil moisture; 21st century projections of SDDI show conditions rivaling North American historic mega-droughts. We compare multiple potential evapotranspiration (EP) methods in New York using input from the GISS Model ER GCM and local station data from Rochester, NY, and find that they compare favorably with local pan evaporation measurements. We calculate SDDI and PDSI values using various EP methods, and show that changes in future projections are largest when using EP methods most sensitive to global warming, not necessarily methods producing EP values with the largest magnitudes. Chapter Two explores the characteristics and biases of the five GCMs and their 20th and 21st century climate projections. We compare atmospheric variables that drive water availability changes globally, zonally, and geographically among models. All models show increases in both dry and wet extremes for SDDI and soil moisture, but increases are largest for extreme drying conditions using SDDI. The percentage of gridboxes that agree on the sign of change of soil moisture and SDDI between models is very low, but does increase in the 21st century. Still, differences between models are smaller than differences

  19. Phenology and global warming research in Brazil

    NASA Astrophysics Data System (ADS)

    Morellato, L. P. C.

    2009-04-01

    A recent review on South American phenology research has shown an increase in phenology papers over the last two decades, especially in this new 21st century. Nevertheless, there is a lack of long term data sets or monitoring systems, or of papers addressing plant phenology and global warming. The IPCC AR4 report from 2007 has offered indisputable evidence of regional to global-scale change in seasonality, but it is supported by plant and animal phenological data from North Hemisphere and temperate species. Information from tropical regions in general and South America in particular are sparse or lacking. Here I summarize the recent outcomes of our ongoing tropical phenology research in Brazil and its potential contribution to integrate fields and understand the effects of global warming within the tropics. The Phenology Laboratory (UNESP) is located at Rio Claro, São Paulo State, Southeastern Brazil. We are looking for trends and shifts on tropical vegetation phenology, and are exploring different methods for collecting and analyzing phenology data. The phenological studies are developed in collaboration with graduate and undergraduate students, post-docs and researchers from Brazil and around the world. We established three long term monitoring programs on Southeastern Brazil from 2000 onwards: trees from an urban garden, semideciduous forest trees, and savanna cerrado woody vegetation, all based on direct weekly to monthly observation of marked plants. We have collected some discontinuous data from Atlantic rain forest trees ranging from 5 to 8 years long. I collaborate with the longest tropical wet forest phenology monitoring system in Central Amazon, and with another long term monitoring system on semi deciduous forest from South Brazil. All research programs aim, in the long run, to monitor and detect shifts on tropical plant phenology related to climatic changes. Our first preliminary findings suggest that: (i) flowering and leafing are more affected by

  20. Warming modifies trophic cascades and eutrophication in experimental freshwater communities.

    PubMed

    Kratina, Pavel; Greig, Hamish S; Thompson, Patrick L; Carvalho-Pereira, Ticiana S A; Shurin, Jonathan B

    2012-06-01

    Climate warming is occurring in concert with other anthropogenic changes to ecosystems. However, it is unknown whether and how warming alters the importance of top-down vs. bottom-up control over community productivity and variability. We performed a 16-month factorial experimental manipulation of warming, nutrient enrichment, and predator presence in replicated freshwater pond mesocosms to test their independent and interactive impacts. Warming strengthened trophic cascades from fish to primary producers, and it decreased the impact of eutrophication on the mean and temporal variation of phytoplankton biomass. These impacts varied seasonally, with higher temperatures leading to stronger trophic cascades in winter and weaker algae blooms under eutrophication in summer. Our results suggest that higher temperatures may shift the control of primary production in freshwater ponds toward stronger top-down and weaker bottom-up effects. The dampened temporal variability of algal biomass under eutrophication at higher temperatures suggests that warming may stabilize some ecosystem processes.

  1. Paleoanalogues of global warming in the 21st century

    NASA Astrophysics Data System (ADS)

    Velichko, A. A.; Borisova, O. K.

    2011-05-01

    On the basis of landscape-climatic reconstructions for warming periods in the past, likely scenarios of future global warming have been developed for various warming levels that might be reached during the current century. The paleoanalogue of global warming by 0.7-1°C is the Holocene climatic optimum (5.5-6 ka B.P.) and that by 1.7-2°C is the last interglacial optimum (about 125 ka B.P.). The complex analysis concerning response of the principal ecosystem components to the expected warming signifies that there will not be any shifts of vegetation zones during the 21st century; reconstruction will touch only the internal structure of vegetable associations and broadening of interzonal ecotones.

  2. Effects of sea surface warming on marine plankton.

    PubMed

    Lewandowska, Aleksandra M; Boyce, Daniel G; Hofmann, Matthias; Matthiessen, Birte; Sommer, Ulrich; Worm, Boris

    2014-05-01

    Ocean warming has been implicated in the observed decline of oceanic phytoplankton biomass. Some studies suggest a physical pathway of warming via stratification and nutrient flux, and others a biological effect on plankton metabolic rates; yet the relative strength and possible interaction of these mechanisms remains unknown. Here, we implement projections from a global circulation model in a mesocosm experiment to examine both mechanisms in a multi-trophic plankton community. Warming treatments had positive direct effects on phytoplankton biomass, but these were overcompensated by the negative effects of decreased nutrient flux. Zooplankton switched from phytoplankton to grazing on ciliates. These results contrast with previous experiments under nutrient-replete conditions, where warming indirectly reduced phytoplankton biomass via increased zooplankton grazing. We conclude that the effect of ocean warming on marine plankton depends on the nutrient regime, and provide a mechanistic basis for understanding global change in marine ecosystems.

  3. Recent warming at Summit, Greenland: Global context and implications

    NASA Astrophysics Data System (ADS)

    McGrath, Daniel; Colgan, William; Bayou, Nicolas; Muto, Atsuhiro; Steffen, Konrad

    2013-05-01

    at Summit, Greenland suggest that the annual mean near-surface air temperature increased at 0.09 ± 0.01°C/a over the 1982-2011 climatology period. This rate of warming, six times the global average, places Summit in the 99th percentile of all globally observed warming trends over this period. The rate of warming at Summit is increasing over time. During the instrumental period (1987-2011), warming has been greatest in the winter season, although the implications of summer warming are more acute. The annual maximum elevation of the equilibrium line and dry snow line has risen at 44 and 35 m/a over the past 15 and 18 years, respectively. Extrapolation of this observed trend now suggests, with 95% confidence intervals, that the dry snow facies of the Greenland Ice Sheet will inevitably transition to percolation facies. There is a 50% probability of this transition occurring by 2025.

  4. Tracking ocean heat uptake during the surface warming hiatus.

    PubMed

    Liu, Wei; Xie, Shang-Ping; Lu, Jian

    2016-03-30

    Ocean heat uptake is observed to penetrate deep into the Atlantic and Southern Oceans during the recent hiatus of global warming. Here we show that the deep heat penetration in these two basins is not unique to the hiatus but is characteristic of anthropogenic warming and merely reflects the depth of the mean meridional overturning circulation in the basin. We find, however, that heat redistribution in the upper 350 m between the Pacific and Indian Oceans is closely tied to the surface warming hiatus. The Indian Ocean shows an anomalous warming below 50 m during hiatus events due to an enhanced heat transport by the Indonesian throughflow in response to the intensified trade winds in the equatorial Pacific. Thus, the Pacific and Indian Oceans are the key regions to track ocean heat uptake during the surface warming hiatus.

  5. Warm Deuteration of Hydrogen Cyanide in Orion

    NASA Astrophysics Data System (ADS)

    Marcelino, N.; Tercero, B.; Cernicharo, J.; Roueff, E.; Palau, A.; Goicoechea, J. R.; Herschel HEXOS Team

    2011-05-01

    Deuterium fractionation has been observed both in cold molecular clouds and in star forming regions. In the latter it should be a remnant from the earlier cold prestellar phase where, after being frozen onto dust grains, deuterated species are released during the switch-on of the protostar. However this mechanism does not explain the large deuteration observed at moderately warm regions such as the Orion Bar and the molecular Ridge. Using HIFI data from the Guaranteed Time Key Program ``Herschel observations of EXtra-Ordinary Sources (HEXOS)'', we have detected high-J DCN transitions, up to J=17-16, toward Orion KL. On the other hand, DNC is not detected within the HIFI frequency range. Furthermore, the DCN J=2-1, 2x2' maps observed with the IRAM 30m telescope show extended emission along the molecular filament revealing the moderate and warm conditions under DCN seems to be produced (Extended and Compact Ridge, Hot Core and Orion-S). On the other hand, DNC J=2--1 emission is much less extended and it does not show an emission peak at the KL position, like DCN, but toward an offset (-20'',-25'') from IRc2. In our analysis we have combined the HIFI data with that of the Orion surveys performed at the 30m, thus including a wide range of excitation conditions. In order to reproduce the observed profiles and compute column densities, we have used the LVG approximation and a source model with a three layer stratification for the Compact Ridge, Plateau and Hot Core components. The abundance ratio DCN/HCN is found to be an order of magnitude higher than the DNC/HNC one for the Compact Ridge and the Hot Core components (Tkin=100-300 K) while the opposite behaviour is obtained for the Extended Ridge (Tkin=60 K), suggesting different deuteration pathways for these two isomers. This study demonstrates that observations covering a wide range of excitation conditions are mandatory to better constrain the physical properties in such a complex region as Orion. This was possible

  6. North Greenland's Ice Shelves and Ocean Warming

    NASA Astrophysics Data System (ADS)

    Muenchow, A.; Schauer, U.; Padman, L.; Melling, H.; Fricker, H. A.

    2014-12-01

    Rapid disintegration of ice shelves (the floating extensions of marine-terminating glaciers) can lead to increasing ice discharge, thinning upstream ice sheets, rising sea level. Pine Island Glacier, Antarctica, and Jacobshavn Isbrae, Greenland, provide prominent examples of these processes which evolve at decadal time scales. We here focus on three glacier systems north of 78 N in Greenland, each of which discharges more than 10 Gt per year of ice and had an extensive ice shelf a decade ago; Petermann Gletscher (PG), Niogshalvfjerdsfjorden (79N), and Zachariae Isstrom (ZI). We summarize and discuss direct observations of ocean and glacier properties for these systems as they have evolved in the northwest (PG) and northeast (79N and ZI) of Greenland over the last two decades. We use a combination of modern and historical snapshots of ocean temperature and salinity (PG, 79N, ZI), moored observations in Nares Strait (PG), and snapshots of temperature and velocity fields on the broad continental shelf off northeast Greenland (79N, ZI) collected between 1993 and 2014. Ocean warming adjacent to PG has been small relative to the ocean warming adjacent to 79N and ZI; however, ZI lost its entire ice shelf during the last decade while 79N, less than 70 km to the north of ZI, remained stable. In contrast, PG has thinned by about 10 m/y just prior to shedding two ice islands representing almost half its ice shelf area or a fifth by volume. At PG advective ice flux divergence explains about half of the dominantly basal melting while response to non-steady external forcing explains the other half. The observations at PG,79N, and ZI suggest that remotely sensed ambient surface ocean temperatures are poor proxies to explain ice shelf thinning and retreat. We posit that local dynamics of the subsurface ocean heat flux matters most. Ocean heat must first be delivered over the sill into the fjord and then within the ice shelf cavity to the base of the shelf near the grounding line

  7. Warm gas accretion onto the Galaxy

    NASA Astrophysics Data System (ADS)

    Bland-Hawthorn, J.

    2009-03-01

    We present evidence that the accretion of warm gas onto the Galaxy today is at least as important as cold gas accretion. For more than a decade, the source of the bright Hα emission (up to 750 mR†) along the Magellanic Stream has remained a mystery. We present a hydrodynamical model that explains the known properties of the Hα emission and provides new insights on the lifetime of the Stream clouds. The upstream clouds are gradually disrupted due to their interaction with the hot halo gas. The clouds that follow plough into gas ablated from the upstream clouds, leading to shock ionisation at the leading edges of the downstream clouds. Since the following clouds also experience ablation, and weaker Hα (100-200 mR) is quite extensive, a disruptive cascade must be operating along much of the Stream. In order to light up much of the Stream as observed, it must have a small angle of attack (≈ 20°) to the halo, and this may already find support in new Hi observations. Another prediction is that the Balmer ratio (Hα/Hβ) will be substantially enhanced due to the slow shock; this will soon be tested by upcoming WHAM observations in Chile. We find that the clouds are evolving on timescales of 100-200 Myr, such that the Stream must be replenished by the Magellanic Clouds at a fairly constant rate (≳ 0.1 M⊙ yr-1). The ablated material falls onto the Galaxy as a warm drizzle; diffuse ionized gas at 104 K is an important constituent of galactic accretion. The observed Hα emission provides a new constraint on the rate of disruption of the Stream and, consequently, the infall rate of metal-poor gas onto the Galaxy. We consider the stability of Hi clouds falling towards the Galactic disk and show that most of these must break down into smaller fragments that become partially ionized. The Galactic halo is expected to have huge numbers of smaller neutral and ionized fragments. When the ionized component of the infalling gas is accounted for, the rate of gas accretion is

  8. Global Warming and 21st Century Drying

    NASA Technical Reports Server (NTRS)

    Cook, Benjamin I.; Smerdun, Jason E.; Seager, Richard; Coats, Sloan

    2014-01-01

    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twentyfirst century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman- Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  9. Global Warming and Its Health Impact.

    PubMed

    Rossati, Antonella

    2017-01-01

    Since the mid-19th century, human activities have increased greenhouse gases such as carbon dioxide, methane, and nitrous oxide in the Earth's atmosphere that resulted in increased average temperature. The effects of rising temperature include soil degradation, loss of productivity of agricultural land, desertification, loss of biodiversity, degradation of ecosystems, reduced fresh-water resources, acidification of the oceans, and the disruption and depletion of stratospheric ozone. All these have an impact on human health, causing non-communicable diseases such as injuries during natural disasters, malnutrition during famine, and increased mortality during heat waves due to complications in chronically ill patients. Direct exposure to natural disasters has also an impact on mental health and, although too complex to be quantified, a link has even been established between climate and civil violence. Over time, climate change can reduce agricultural resources through reduced availability of water, alterations and shrinking arable land, increased pollution, accumulation of toxic substances in the food chain, and creation of habitats suitable to the transmission of human and animal pathogens. People living in low-income countries are particularly vulnerable. Climate change scenarios include a change in distribution of infectious diseases with warming and changes in outbreaks associated with weather extreme events. After floods, increased cases of leptospirosis, campylobacter infections and cryptosporidiosis are reported. Global warming affects water heating, rising the transmission of water-borne pathogens. Pathogens transmitted by vectors are particularly sensitive to climate change because they spend a good part of their life cycle in a cold-blooded host invertebrate whose temperature is similar to the environment. A warmer climate presents more favorable conditions for the survival and the completion of the life cycle of the vector, going as far as to speed it up

  10. 75 FR 57976 - Designation of Service Area for Confederated Tribes of the Warm Springs of Oregon

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... Bureau of Indian Affairs Designation of Service Area for Confederated Tribes of the Warm Springs of... Tribes of Warm Springs of Oregon, Warm Springs, Oregon (Warm Springs Tribe) for financial assistance and...: The Warm Springs Tribe submitted to BIA a request with supporting documentation to modify its...

  11. Ion Acoustic Modes in Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Hartley, Nicholas; Monaco, Guilio; White, Thomas; Gregori, Gianluca; Graham, Peter; Fletcher, Luke; Appel, Karen; Tschentscher, Thomas; Lee, Hae Ja; Nagler, Bob; Galtier, Eric; Granados, Eduardo; Heimann, Philip; Zastrau, Ulf; Doeppner, Tilo; Gericke, Dirk; Lepape, Sebastien; Ma, Tammy; Pak, Art; Schropp, Andreas; Glenzer, Siegfried; Hastings, Jerry

    2015-06-01

    We present results that, for the first time, show scattering from ion acoustic modes in warm dense matter, representing an unprecedented level of energy resolution in the study of dense plasmas. The experiment was carried out at the LCLS facility in California on an aluminum sample at 7 g/cc and 5 eV. Using an X-ray probe at 8 keV, shifted peaks at +/-150 meV were observed. Although the energy shifts from interactions with the acoustic waves agree with predicted values from DFT-MD models, a central (elastic) peak was also observed, which did not appear in modelled spectra and may be due to the finite timescale of the simulation. Data fitting with a hydrodynamic form has proved able to match the observed spectrum, and provide measurements of some thermodynamic properties of the system, which mostly agree with predicted values. Suggest for further experiments to determine the cause of the disparity are also given.

  12. Transient reducing greenhouse warming on early Mars

    NASA Astrophysics Data System (ADS)

    Wordsworth, R.; Kalugina, Y.; Lokshtanov, S.; Vigasin, A.; Ehlmann, B.; Head, J.; Sanders, C.; Wang, H.

    2017-01-01

    The evidence for abundant liquid water on early Mars despite the faint young Sun is a long-standing problem in planetary research. Here we present new ab initio spectroscopic and line-by-line climate calculations of the warming potential of reduced atmospheres on early Mars. We show that the strength of both CO2-H2 and CO2-CH4 collision-induced absorption (CIA) has previously been significantly underestimated. Contrary to previous expectations, methane could have acted as a powerful greenhouse gas on early Mars due to CO2-CH4 CIA in the critical 250-500 cm-1 spectral window region. In atmospheres of 0.5 bar CO2 or more, percent levels of H2 or CH4 raise annual mean surface temperatures by tens of degrees, with temperatures reaching 273 K for pressures of 1.25-2 bars and 2-10% of H2 and CH4. Methane and hydrogen produced following aqueous alteration of Mars' crust could have combined with volcanically outgassed CO2 to form transient atmospheres of this composition 4.5-3.5 Ga. Our results also suggest that inhabited exoplanets could retain surface liquid water at significant distances from their host stars.

  13. Halocarbon ozone depletion and global warming potentials

    NASA Technical Reports Server (NTRS)

    Cox, Richard A.; Wuebbles, D.; Atkinson, R.; Connell, Peter S.; Dorn, H. P.; Derudder, A.; Derwent, Richard G.; Fehsenfeld, F. C.; Fisher, D.; Isaksen, Ivar S. A.

    1990-01-01

    Concern over the global environmental consequences of fully halogenated chlorofluorocarbons (CFCs) has created a need to determine the potential impacts of other halogenated organic compounds on stratospheric ozone and climate. The CFCs, which do not contain an H atom, are not oxidized or photolyzed in the troposphere. These compounds are transported into the stratosphere where they decompose and can lead to chlorine catalyzed ozone depletion. The hydrochlorofluorocarbons (HCFCs or HFCs), in particular those proposed as substitutes for CFCs, contain at least one hydrogen atom in the molecule, which confers on these compounds a much greater sensitivity toward oxidation by hydroxyl radicals in the troposphere, resulting in much shorter atmospheric lifetimes than CFCs, and consequently lower potential for depleting ozone. The available information is reviewed which relates to the lifetime of these compounds (HCFCs and HFCs) in the troposphere, and up-to-date assessments are reported of the potential relative effects of CFCs, HCFCs, HFCs, and halons on stratospheric ozone and global climate (through 'greenhouse' global warming).

  14. Global Warming: The Threat to the Planet

    NASA Astrophysics Data System (ADS)

    Hansen, James

    2007-04-01

    Paleoclimate data show that the Earth's climate is remarkably sensitive to global forcings. Positive feedbacks predominate. This allows the entire planet to be whipsawed between climate states. One feedback, the `albedo flip' property of water substance, provides a powerful trigger mechanism. A climate forcing that `flips' the albedo of a sufficient portion of an ice sheet can spark a cataclysm. Ice sheet and ocean inertia provides only moderate delay to ice sheet disintegration and a burst of added global warming. Recent greenhouse gas (GHG) emissions place the Earth perilously close to dramatic climate change that could run out of our control, with great dangers for humans and other creatures. CO2 is the largest human-made climate forcing, but CH4, O3, N2O and black carbon (BC) are important. Only intense simultaneous efforts to slow CO2 emissions and reduce non-CO2 forcings can keep climate within or near the range of the past million years. Some forcings are especially effective at high latitudes, so concerted efforts to reduce their emissions could still ``save the Arctic,'' while also having major benefits for human health, agricultural productivity, and the global environment.

  15. Talking about Climate Change and Global Warming.

    PubMed

    Lineman, Maurice; Do, Yuno; Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined.

  16. Talking about Climate Change and Global Warming

    PubMed Central

    Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined. PMID:26418127

  17. The Tropical Warm Pool International Cloud Experiment

    SciTech Connect

    May, Peter T.; Mather, James H.; Vaughan, Geraint; Jakob, Christian; McFarquhar, Greg; Bower, Keith; Mace, Gerald G.

    2008-05-01

    One of the most complete data sets describing tropical convection ever collected will result from the upcoming Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the area around Darwin, Northern Australia in January and February 2006. The aims of the experiment, which will be operated in conjunction with the DOE Atmospheric Radiation Measurement (ARM) site in Darwin, will be to examine convective cloud systems from their initial stages through to the decay of the cirrus generated and to measure their impact on the environment. The experiment will include an unprecedented network of ground-based observations (soundings, active and passive remote sensors) combined with low, mid and high altitude aircraft for in-situ and remote sensing measurements. A crucial outcome of the experiment will be a data set suitable to provide the forcing and evaluation data required by cloud resolving and single column models as well as global climate models (GCMs) with the aim to contribute to parameterization development. This data set will provide the necessary link between the observed cloud properties and the models that are attempting to simulate them. The experiment is a large multi-agency experiment including substantial contributions from the United States DOE ARM program, ARM-UAV program, NASA, the Australian Bureau of Meteorology, CSIRO, EU programs and many universities.

  18. Potential effects on health of global warming

    SciTech Connect

    Haines, A. . Whittington Hospital); Parry, M. . Environmental Change Unit)

    1993-12-01

    Prediction of the impacts of global climate change on health is complicated by a number of factors. These include: the difficulty in predicting regional changes in climate, the capacity for adaptation to climate change, the interactions between the effects of global climate change and a number of other key determinants of health, including population growth and poverty, and the availability of adequate preventive and curative facilities for diseases that may be effected by climate change. Nevertheless, it is of importance to consider the potential health impacts of global climate change for a number of reasons. It is also important to monitor diseases which could be effected by climate change in order to detect changes in incidence as early as possible and study possible interactions with other factors. It seems likely that the possible impacts on health of climate change will be a major determinant of the degree to which policies aimed at reducing global warming are followed, as perceptions of the effect of climate change to human health and well-being are particularly likely to influence public opinion. The potential health impacts of climate change can be divided into direct (primary) and indirect (secondary and tertiary) effects. Primary effects are those related to the effect of temperature on human well-being and disease. Secondary effects include the impacts on health of changes in food production, availability of water and of sea level rise. A tertiary level of impacts can also be hypothesized.

  19. Title: Freshwater phytoplankton responses to global warming.

    PubMed

    Wagner, Heiko; Fanesi, Andrea; Wilhelm, Christian

    2016-09-20

    Global warming alters species composition and function of freshwater ecosystems. However, the impact of temperature on primary productivity is not sufficiently understood and water quality models need to be improved in order to assess the quantitative and qualitative changes of aquatic communities. On the basis of experimental data, we demonstrate that the commonly used photosynthetic and water chemistry parameters alone are not sufficient for modeling phytoplankton growth under changing temperature regimes. We present some new aspects of the acclimation process with respect to temperature and how contrasting responses may be explained by a more complete physiological knowledge of the energy flow from photons to new biomass. We further suggest including additional bio-markers/traits for algal growth such as carbon allocation patterns to increase the explanatory power of such models. Although carbon allocation patterns are promising and functional cellular traits for growth prediction under different nutrient and light conditions, their predictive power still waits to be tested with respect to temperature. A great challenge for the near future will be the prediction of primary production efficiencies under the global change scenario using a uniform model for phytoplankton assemblages.

  20. Responses of Antarctic Oscillation to global warming

    NASA Astrophysics Data System (ADS)

    Feng, S.

    2015-12-01

    The Antarctic Oscillation (AAO) is the major annular mode dominates the spatiotemporal variability of the atmospheric circulation in the Southern Hemisphere. This study examined the sensitivity of AAO to future warming by analyzing the outputs of 34 state-of-the-art climate models participating in phase 5 of the Coupled Model Intercomparion Project (CMIP5). The model simulations include the stabilized (RCP4.5) and business as usual (RCP8.5) scenarios as well as the idealized 1% per year increase in atmospheric CO2 to quadrupling (1pctCO2) and an instantaneous quadrupling of CO2 (abrupt4xCO2). We show that the CMIP5 models on average simulate increases in the AAO in every season by 2100 under the RCP4.5 and RCP8.5 scenarios. However, due to the impacts of ozone, aerosol and land use changes, the amplitudes of the projected changes in AAO to future climate scenarios are quit different on different seasons. After the impact of ozone, aerosol and land use changes were removed; it was found that the impact of greenhouse gases (GHGs) on AAO is similar on all seasons. The increases of AAO are accelerating following the increase of GHGs. Our results are also consistent with the simulations of 1pctCO2 and abrupt4xCO2.

  1. Sterile neutrinos as subdominant warm dark matter

    SciTech Connect

    Palazzo, A.; Cumberbatch, D.; Slosar, A.; Silk, J.

    2007-11-15

    In light of recent findings which seem to disfavor a scenario with (warm) dark matter entirely constituted of sterile neutrinos produced via the Dodelson-Widrow mechanism, we investigate the constraints attainable for this mechanism by relaxing the usual hypothesis that the relic neutrino abundance must necessarily account for all of the dark matter. We first study how to reinterpret the limits attainable from x-ray nondetection and Lyman-{alpha} forest measurements in the case that sterile neutrinos constitute only a fraction f{sub s} of the total amount of dark matter. Then, assuming that sterile neutrinos are generated in the early universe solely through the Dodelson-Widrow mechanism, we show how the x-ray and Lyman-{alpha} results jointly constrain the mass-mixing parameters governing their production. Furthermore, we show how the same data allow us to set a robust upper limit f{sub s} < or approx. 0.7 at the 2{sigma} level, rejecting the case of dominant dark matter (f{sub s}=1) at the {approx}3{sigma} level.

  2. Continental warming preceding the Palaeocene-Eocene thermal maximum.

    PubMed

    Secord, Ross; Gingerich, Philip D; Lohmann, Kyger C; Macleod, Kenneth G

    2010-10-21

    Marine and continental records show an abrupt negative shift in carbon isotope values at ∼55.8 Myr ago. This carbon isotope excursion (CIE) is consistent with the release of a massive amount of isotopically light carbon into the atmosphere and was associated with a dramatic rise in global temperatures termed the Palaeocene-Eocene thermal maximum (PETM). Greenhouse gases released during the CIE, probably including methane, have often been considered the main cause of PETM warming. However, some evidence from the marine record suggests that warming directly preceded the CIE, raising the possibility that the CIE and PETM may have been linked to earlier warming with different origins. Yet pre-CIE warming is still uncertain. Disentangling the sequence of events before and during the CIE and PETM is important for understanding the causes of, and Earth system responses to, abrupt climate change. Here we show that continental warming of about 5 °C preceded the CIE in the Bighorn Basin, Wyoming. Our evidence, based on oxygen isotopes in mammal teeth (which reflect temperature-sensitive fractionation processes) and other proxies, reveals a marked temperature increase directly below the CIE, and again in the CIE. Pre-CIE warming is also supported by a negative amplification of δ(13)C values in soil carbonates below the CIE. Our results suggest that at least two sources of warming-the earlier of which is unlikely to have been methane-contributed to the PETM.

  3. Value of extended warming in patients undergoing elective surgery.

    PubMed

    Wasfie, Tarik J; Barber, Kimberly R

    2015-01-01

    Perioperative temperature management is imperative for positive surgical outcomes. This study assessed the clinical and wellbeing benefits of extending normothermia by using a portable warming gown. A total of 94 patients undergoing elective surgery were enrolled. They were randomized pre-operatively to either a portable warming gown or the standard warming procedure. The warming gown stayed with patients from pre-op to operating room to postrecovery room discharge. Core temperature was tracked throughout the study. Patients also provided responses to a satisfaction and comfort status survey. The change in average core temperature did not differ significantly between groups (P = 0.23). A nonsignificant 48% relative decrease in hypothermic events was observed for the extended warming group (P = 0.12). Patients receiving the warming gown were more likely to report always having their temperature controlled (P = 0.04) and significantly less likely to request additional blankets for comfort (P = 0.006). Clinical outcomes and satisfaction were improved for patients with extended warming.

  4. Experimental warming effects on the bacterial community structure and diversity

    NASA Astrophysics Data System (ADS)

    Kim, W.; Han, S.; Adams, J.; Son, Y.

    2014-12-01

    The objective of this study is to investigate the responses of soil bacterial community to future temperature increase by conducting open-field warming experiment. We conducted an open-field experimental warming system using infra-red heater in 2011 and regulated the temperature of warmed plots by 3oC higher than that of control plots constantly. The seeds of Pinus densiflora, Abies holophylla, Abies koreana, Betula costata, Quercus variabilis, Fraxinus rhynchophylla, and Zelkova serrata were planted in each 1 m × 1 m plot (n=3) in April, 2012. We collected soil samples from the rhizosphere of 7 tree species. DNA was extracted and PCR-amplified for the bacterial 16S gene targeting V1-V3 region. The paired-end sequencing was performed at Beijing Genome Institute (BGI, Hong Kong, China) using 2× 100 bp Hiseq2000 (Illumina). This study aimed to answer the following prediction/hypothesis: 1) Experimental warming will change the structure of soil bacterial community, 2) There will be distinct 'indicator group' which response to warming treatment relatively more sensitive than other groups. 3) Warming treatment will enhance the microbial activity in terms of soil respiration. 4) The rhizoplane bacterial communities for each of 7 tree species will show different response pattern to warming treatment. Since the sequence data does not arrive before the submission deadline, therefore, we would like to present the results and discussions on December 2014, AGU Fall Meeting.

  5. Robust cloud feedback over tropical land in a warming climate

    NASA Astrophysics Data System (ADS)

    Kamae, Youichi; Ogura, Tomoo; Watanabe, Masahiro; Xie, Shang-Ping; Ueda, Hiroaki

    2016-03-01

    Cloud-related radiative perturbations over land in a warming climate are of importance for human health, ecosystem, agriculture, and industry via solar radiation availability and local warming amplification. However, robustness and physical mechanisms responsible for the land cloud feedback were not examined sufficiently because of the limited contribution to uncertainty in global climate sensitivity. Here we show that cloud feedback in general circulation models over tropical land is robust, positive, and is relevant to atmospheric circulation change and thermodynamic constraint associated with water vapor availability. In a warming climate, spatial variations in tropospheric warming associated with climatological circulation pattern result in a general weakening of tropical circulation and a dynamic reduction of land cloud during summer monsoon season. Limited increase in availability of water vapor also reduces the land cloud. The reduction of land cloud depends on global-scale oceanic warming and is not sensitive to regional warming patterns. The robust positive feedback can contribute to the warming amplification and drying over tropical land in the future.

  6. Small inner companions of warm Jupiters: Lifetimes and legacies

    SciTech Connect

    Van Laerhoven, Christa; Greenberg, Richard

    2013-12-01

    Although warm Jupiters are generally too far from their stars for tides to be important, the presence of an inner planetary companion to a warm Jupiter can result in tidal evolution of the system. Insight into the process and its effects comes form classical secular theory of planetary perturbations. The lifetime of the inner planet may be shorter than the age of the system, because the warm Jupiter maintains its eccentricity and hence promotes tidal migration into the star. Thus a warm Jupiter observed to be alone in its system might have previously cleared away any interior planets. Before its demise, even if an inner planet is of terrestrial scale, it may promote damping of the warm Jupiter's eccentricity. Thus any inferences of the initial orbit of an observed warm Jupiter must include the possibility of a greater initial eccentricity than would be estimated by assuming it had always been alone. Tidal evolution involving multiple planets also enhances the internal heating of the planets, which readily exceeds that of stellar radiation for the inner planet, and may be great enough to affect the internal structure of warm Jupiters. Secular theory gives insight into the tidal processes, providing, among other things, a way to constrain eccentricities of transiting planets based on estimates of the tidal parameter Q.

  7. Cold climate bioventing with soil warming in Alaska

    SciTech Connect

    Sayles, G.D.; Brenner, R.C.; Leeson, A.; Hinchee, R.E.; Vogel, C.M.; Miller, R.N.

    1995-12-31

    In the heart of Alaska, a 3-year field study was conducted of bioventing in conjunction with several soil warming methods. The contamination was JP-4 jet fuel. The soil warming methods evaluated, chosen for their apparent low cost, were (1) application of warm water at a low rate, (2) enhanced solar warming by covering the surface with clear plastic in the summer and covering the surface with insulation in the winter, and (3) buried heat pipe. The warm water and buried heat tape methods performed best, maintaining summer-like 10 to 20 C temperatures in the test plots year round, compared to the temperature of the unheated control plot, which dipped to {minus}1 C in the winter. The solar/insulation warming method showed a modest improvement in temperature over the unheated control test plot. The annual average temperatures of the warm water, heat tape, solar, and control plots were 16.9, 14.5, 6.1, and 3.5 C, respectively. The biodegradation rates, measured by in situ respirometry, were higher in plots with higher temperatures and followed the Arrhenius relationship. Despite the low temperature, significant biodegradation was observed in the unheated plot during the winter.

  8. Tropospheric circulation during the early twentieth century Arctic warming

    NASA Astrophysics Data System (ADS)

    Wegmann, Martin; Brönnimann, Stefan; Compo, Gilbert P.

    2016-06-01

    The early twentieth century Arctic warming (ETCAW) between 1920 and 1940 is an exceptional feature of climate variability in the last century. Its warming rate was only recently matched by recent warming in the region. Unlike recent warming largely attributable to anthropogenic radiative forcing, atmospheric warming during the ETCAW was strongest in the mid-troposphere and is believed to be triggered by an exceptional case of natural climate variability. Nevertheless, ultimate mechanisms and causes for the ETCAW are still under discussion. Here we use state of the art multi-member global circulation models, reanalysis and reconstruction datasets to investigate the internal atmospheric dynamics of the ETCAW. We investigate the role of boreal winter mid-tropospheric heat transport and circulation in providing the energy for the large scale warming. Analyzing sensible heat flux components and regional differences, climate models are not able to reproduce the heat flux evolution found in reanalysis and reconstruction datasets. These datasets show an increase of stationary eddy heat flux and a decrease of transient eddy heat flux during the ETCAW. Moreover, tropospheric circulation analysis reveals the important role of both the Atlantic and the Pacific sectors in the convergence of southerly air masses into the Arctic during the warming event. Subsequently, it is suggested that the internal dynamics of the atmosphere played a major role in the formation in the ETCAW.

  9. Changes in Extreme Warm and Cold Temperatures Associated with 20th Century Global Warming

    NASA Astrophysics Data System (ADS)

    Sardeshmukh, P. D.; Compo, G. P.; McColl, C.; Penland, C.

    2015-12-01

    Has 20thcentury global warming resulted in increases of extreme warm temperatures and decreases of extreme cold temperatures around the globe? One would certainly expect this to be so if the changes in the extreme temperature probabilities were determined only by the mean shift and not by changes in the width and/or shape of the temperature distribution. In reality, however, the latter two effects could also be important. Even ignoring changes of shape, it is easily shown that a 25% reduction of standard deviation, for example, can completely offset the effect of a mean positive shift of 0.5 standardized units on the probabilities of extreme positive values. A 25% increase of standard deviation can similarly offset the effect of the mean shift on the probabilities of extreme negative values. It is possible for such changes of standard deviation to occur in regions of large circulation and storminess changes associated with global warming. With this caveat in mind, we have investigated the change in probability of extreme weekly-averaged near-surface air temperatures, in both winter and summer, from the first half-century (1901-1950) to the last half-century (1960-2009) of the 1901 to 2009 period. We have done this using two newly available global atmospheric datasets (ERA-20C and 20CR-v2c) and large ensembles of global coupled climate model simulations of this period, plus very large ensembles of uncoupled atmospheric model simulations of our own. The results are revealing. In the tropics, the changes in the extreme warm and cold temperature probabilities are indeed generally consistent with those expected from the mean shift of the distribution. Outside the tropics, however, they are generally significantly inconsistent with the mean temperature shift, with many regions showing little or no change in the positive temperature extremes and in some instances even a decrease. In such regions, it is clear that the change in the temperature standard deviation is

  10. Warm-up affects diurnal variation in power output.

    PubMed

    Taylor, K; Cronin, J B; Gill, N; Chapman, D W; Sheppard, J M

    2011-03-01

    The purpose of this study was to examine whether time of day variations in power output can be accounted for by the diurnal fluctuations existent in body temperature. 8 recreationally trained males (29.8±5.2 yrs; 178.3±5.2 cm; 80.3±6.5 kg) were assessed on 4 occasions following a: (a) control warm-up at 8.00 am; (b) control warm-up at 4.00 pm; (c) extended warm-up at 8.00 am; and, (d) extended warm-up at 4.00 pm. The control warm-up consisted of dynamic exercises and practice jumps. The extended warm-up incorporated a 20 min general warm-up on a stationary bike prior to completion of the control warm-up, resulting in a whole body temperature increase of 0.3±0.2°C. Kinetic and kinematic variables were measured using a linear optical encoder attached to a barbell during 6 loaded counter-movement jumps. Results were 2-6% higher in the afternoon control condition than morning control condition. No substantial performance differences were observed between the extended morning condition and afternoon control condition where body temperatures were similar. Results indicate that diurnal variation in whole body temperature may explain diurnal performance differences in explosive power output and associated variables. It is suggested that warm-up protocols designed to increase body temperature are beneficial in reducing diurnal differences in jump performance.

  11. Establishing native warm season grasses on Eastern Kentucky strip mines

    SciTech Connect

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B.

    1998-12-31

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomass samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat.

  12. Quantifying global soil carbon losses in response to warming.

    PubMed

    Crowther, T W; Todd-Brown, K E O; Rowe, C W; Wieder, W R; Carey, J C; Machmuller, M B; Snoek, B L; Fang, S; Zhou, G; Allison, S D; Blair, J M; Bridgham, S D; Burton, A J; Carrillo, Y; Reich, P B; Clark, J S; Classen, A T; Dijkstra, F A; Elberling, B; Emmett, B A; Estiarte, M; Frey, S D; Guo, J; Harte, J; Jiang, L; Johnson, B R; Kröel-Dulay, G; Larsen, K S; Laudon, H; Lavallee, J M; Luo, Y; Lupascu, M; Ma, L N; Marhan, S; Michelsen, A; Mohan, J; Niu, S; Pendall, E; Peñuelas, J; Pfeifer-Meister, L; Poll, C; Reinsch, S; Reynolds, L L; Schmidt, I K; Sistla, S; Sokol, N W; Templer, P H; Treseder, K K; Welker, J M; Bradford, M A

    2016-11-30

    The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

  13. Quantifying global soil carbon losses in response to warming

    NASA Astrophysics Data System (ADS)

    Crowther, T. W.; Todd-Brown, K. E. O.; Rowe, C. W.; Wieder, W. R.; Carey, J. C.; Machmuller, M. B.; Snoek, B. L.; Fang, S.; Zhou, G.; Allison, S. D.; Blair, J. M.; Bridgham, S. D.; Burton, A. J.; Carrillo, Y.; Reich, P. B.; Clark, J. S.; Classen, A. T.; Dijkstra, F. A.; Elberling, B.; Emmett, B. A.; Estiarte, M.; Frey, S. D.; Guo, J.; Harte, J.; Jiang, L.; Johnson, B. R.; Kröel-Dulay, G.; Larsen, K. S.; Laudon, H.; Lavallee, J. M.; Luo, Y.; Lupascu, M.; Ma, L. N.; Marhan, S.; Michelsen, A.; Mohan, J.; Niu, S.; Pendall, E.; Peñuelas, J.; Pfeifer-Meister, L.; Poll, C.; Reinsch, S.; Reynolds, L. L.; Schmidt, I. K.; Sistla, S.; Sokol, N. W.; Templer, P. H.; Treseder, K. K.; Welker, J. M.; Bradford, M. A.

    2016-12-01

    The majority of the Earth’s terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

  14. Warm Oceans, Fast Glaciers: the connections

    NASA Astrophysics Data System (ADS)

    Truffer, M.; Fahnestock, M. A.; Amundson, J. M.

    2009-12-01

    Over the last decade many outlet glaciers from the Greenland Ice Sheet have accelerated and thinned, and in a number of cases their termini have retreated. There is much in common from glacier to glacier that emerges as these changes are studied, yet the actual physical mechanisms remain unclear. One can show that the spatial patterns and timing of outlet glacier changes around Greenland coincide with changes in sea surface temperature and length of the sea-ice-free season in the surrounding ocean, and that large glacier changes appear to initiate within one to a few years of shifts in these conditions. While ocean warming has a direct impact on rates of melting at the glacier ice/ocean interface, its impact on ice flow is less direct. The spatial and temporal coincidence between changing ocean conditions and speedup is compelling, but the causal link between warmer ocean water and rapid responses from outlet glaciers around Greenland is more complex. Observations of rapid calving retreats, the appearance of calving-related long-period seismicity at some large glaciers undergoing change, and the loss of floating ice tongues all suggest that the direct impact of ocean-driven change is on the stability of the lowest reach of these tidewater outlets. In glaciers with a floating tongue, enhanced basal melt may be destabilizing by thinning the tongue to below its structural integrity; at grounded termini this effect is lacking. However, rapid melt at the near-vertical face can play a significant role for slowly flowing systems. For large grounded glaciers with terminus flow rates of meters per day, the impact of increased melt in summer would seem less important. At such glaciers the link between ocean temperatures, sea ice cover and terminus stability manifests itself by the cessation of calving in fall and winter, which leads to terminus advance and the formation of a floating tongue. The loss of sea ice cover in early spring leads to a disintegration of the seasonal

  15. HS 1603+3820 and its Warm Absorber

    NASA Astrophysics Data System (ADS)

    Nikołajuk, M.; Różańska, A.; Czerny, B.; Dobrzycki, A.

    2009-07-01

    We use photoionization codes CLOUDY and TITAN to obtain physical conditions in the absorbing medium close to the nucleus of a distant quasar (z = 2.54) HS 1603+3820. We found that the total column density of this Warm Absorber is 2 x 1022 cm-2. Due to the softness of the quasars spectrum the modelling allowed us also to determine uniquely the volume hydrogen density of this warm gas (n = 1010 cm-3) which combined with the other quasar parameters leads to a distance determination to the Warm Absorber from the central source which is ~ 1.5 x 1016 cm.

  16. Global Warming in the 21st Century: An Alternate Scenario

    NASA Technical Reports Server (NTRS)

    Hansen, James E.

    2000-01-01

    Evidence on a broad range of time scales, from Proterozoic to the most recent periods, shows that the Earth's climate responds sensitively to global forcings. In the past few decades the Earth's surface has warmed rapidly, apparently in response to increasing anthropogenic greenhouse gases in the atmosphere. The conventional view is that the current global warming rate will continue or accelerate in the 21st century. I will describe an alternate scenario that would slow the rate of global warming and reduce the danger of dramatic climate change. But reliable prediction of future climate change requires improved knowledge of the carbon cycle and global observations that allow interpretation of ongoing climate change.

  17. The dynamics of the warming hiatus over the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Huang, Jianping; Xie, Yongkun; Guan, Xiaodan; Li, Dongdong; Ji, Fei

    2017-01-01

    A warming hiatus is a period of relatively little change in global mean surface air temperatures (SAT). Many studies have attributed the current warming hiatus to internal climate variability (ICV). But there is less work on discussion of the dynamics about how these ICV modes influence cooling over land in the Northern Hemisphere (NH). Here we demonstrate the warming hiatus was more significant over the continental NH. We explored the dynamics of the warming hiatus from a global perspective and investigated the mechanisms of the reversing from accelerated warming to hiatus, and how ICV modes influence SAT change throughout the NH land. It was found that these ICV modes and Arctic amplification can excite a decadal modulated oscillation (DMO), which enhances or suppresses the long-term trend on decadal to multi-decadal timescales. When the DMO is in an upward (warming) phase, it contributes to an accelerated warming trend, as in last 20 years of twentieth-century. It appears that there is a downward swing in the DMO occurring at present, which has balanced or reduced the radiative forced warming and resulted in the recent global warming hiatus. The DMO modulates the SAT, in particular, the SAT of boreal cold months, through changes in the asymmetric meridional and zonal thermal forcing (MTF and ZTF). The MTF represents the meridional temperature gradients between the mid- and high-latitudes, and the ZTF represents the asymmetry in temperatures between the extratropical large-scale warm and cold zones in the zonal direction. Via the different performance of combined MTF and ZTF, we found that the DMO's modulation effect on SAT was strongest when both weaker (stronger) MTF and stronger (weaker) ZTF occurred simultaneously. And the current hiatus is a result of a downward DMO combined with a weaker MTF and stronger ZTF, which stimulate both a weaker polar vortex and westerly winds, along with the amplified planetary waves, thereby facilitating southward invasion of

  18. Report nixes Geritol fix for global warming

    SciTech Connect

    Roberts, L.

    1991-09-27

    Several years ago John Martin of the Moss Landing Marine Laboratory in California suggested a quick fix to the greenhouse problem: dump iron into the Southern Ocean near Antarctica. That, he said, would trigger a massive bloom of the ocean's microscopic plants, which in turn would suck carbon dioxide out of the atmosphere and help reduce global warming. His idea ignited a firestorm of controversy that rages on today. While the idea quickly won supporters - including some prominent members of the National Academy of Sciences - much of the oceanographic community was incensed, arguing that you don't tinker with a perfectly health ecosystem to clean up humanity's mess. Now the American Society of Limnology and Oceanography (ASLO) has a report that represents the views of much of the oceanographic community. In the report, released in late summer, ASLO trounces the idea of fertilizing the oceans with iron as a greenhouse fix, as expected. But in an unexpected twist, the society endorses a small-scale experiment in which iron would be added to the open ocean. The idea isn't to engineer the oceans, but to test the hypothesis that might answer one of the longstanding puzzles in biological oceanography: why do the phytoplankton of the Southern Ocean, as well as those in parts of the subarctic and equatorial Pacific, grow so poorly, even though the waters are rich in nutrients such as phosphorus and nitrogen The answer could shed light not only on how the food web operates, but on the global carbon cycle as well.

  19. Heat waves and warm periods in Slovakia

    NASA Astrophysics Data System (ADS)

    Faško, Pavel; Bochníček, Oliver; Markovič, Ladislav; Švec, Marek

    2016-04-01

    The scenarios of climate change caused by human activity show that frequency of occurrence and extent of heat waves in the interior of Europe is increasing. Among the most exposed regions in this regard should the area of southeastern and eastern Austria and south-western Slovakia. The relatively faster increase in the number of heat waves in this area is related also to potential desertification in this region just east of the Alps, since during summer, weather fronts advancing from the west are consequently losing their original features and moderating influence. Summer weather patterns for this area should in the future more closely remind climate typical for some inland areas of southwestern, southern and southeastern Europe. A certain shift of climate zones from south to north should thus modify future climate and Slovakia. Despite the complex natural conditions the existing trends derived from results of meteorological measurements and observations are clear and they confirm warming of climate in this region. Observations and measurements in the recent years of the 21st century confirm, that heat waves are no longer rare phenomenon during summer, but are systematically appearing even in colder regions of northern Slovakia. What is very remarkable and will be necessary to pay more attention to, is the fact that these heat waves are expanding into previously unaffected areas, associated with the lack of rainfall and drought, on larger regional scale. In this study heat wave periods and individual heat events and days are statistically identified in the time series characteristics of air temperature at selected meteorological stations for the period from the mid-20th century until 2015, in case of available historical data even for longer period.

  20. Global Warming Estimation From Microwave Sounding Unit

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Dalu, G.

    1998-01-01

    Microwave Sounding Unit (MSU) Ch 2 data sets, collected from sequential, polar-orbiting, Sun-synchronous National Oceanic and Atmospheric Administration operational satellites, contain systematic calibration errors that are coupled to the diurnal temperature cycle over the globe. Since these coupled errors in MSU data differ between successive satellites, it is necessary to make compensatory adjustments to these multisatellite data sets in order to determine long-term global temperature change. With the aid of the observations during overlapping periods of successive satellites, we can determine such adjustments and use them to account for the coupled errors in the long-term time series of MSU Ch 2 global temperature. In turn, these adjusted MSU Ch 2 data sets can be used to yield global temperature trend. In a pioneering study, Spencer and Christy (SC) (1990) developed a procedure to derive the global temperature trend from MSU Ch 2 data. Such a procedure can leave unaccounted residual errors in the time series of the temperature anomalies deduced by SC, which could lead to a spurious long-term temperature trend derived from their analysis. In the present study, we have developed a method that avoids the shortcomings of the SC procedure, the magnitude of the coupled errors is not determined explicitly. Furthermore, based on some assumptions, these coupled errors are eliminated in three separate steps. Such a procedure can leave unaccounted residual errors in the time series of the temperature anomalies deduced by SC, which could lead to a spurious long-term temperature trend derived from their analysis. In the present study, we have developed a method that avoids the shortcomings of the SC procedures. Based on our analysis, we find there is a global warming of 0.23+/-0.12 K between 1980 and 1991. Also, in this study, the time series of global temperature anomalies constructed by removing the global mean annual temperature cycle compares favorably with a similar

  1. Experiments of water formation on warm silicates

    SciTech Connect

    He, Jiao; Vidali, Gianfranco

    2014-06-10

    When dust grains have a higher temperature than they would have in dense clouds, and when H, H{sub 2}, and O{sub 2} have a negligible residence time on grains, the formation of water should still be possible via the hydrogenation of OH and Eley-Rideal-type reactions. We determined that the OH desorption energy from an amorphous silicate surface is at least 143 meV (1656 K). This is 400 K higher than the value previously used in chemical models of the interstellar medium and is possibly as high as 410 meV (4760 K). This extends the temperature range for the efficient formation of water on grains from about 30 K to at least 50 K, and possibly over 100 K. We do not find evidence that water molecules leave the surface upon formation. Instead, through a thermal programmed desorption experiment, we find that water formed on the surface of an amorphous silicate desorbs at around 160 K. We also measured the cross-sections for the reaction of H and D with an O{sub 3} layer on an amorphous silicate surface at 50 K. The values of the cross-sections, σ{sub H} = 1.6 ± 0.27 Å{sup 2} and σ{sub D} = 0.94 ± 0.09 Å{sup 2}, respectively, are smaller than the size of an O{sub 3} molecule, suggesting the reaction mechanism is more likely Eley-Rideal than hot-atom. Information obtained through these experiments should help theorists evaluate the relative contribution of water formation on warm grains versus in the gas phase.

  2. Comparing new-technology passive warming versus traditional passive warming methods for optimizing perioperative body core temperature.

    PubMed

    Bender, Miriam; Self, Beverly; Schroeder, Ellen; Giap, Brandon

    2015-08-01

    Hypothermia puts surgical patients at risk for adverse outcomes. Traditional passive warming methods are mostly ineffective in reducing hypothermia. New-technology passive warming holds promise as an effective method for promoting and sustaining normothermia throughout surgery. The purpose of this retrospective cohort study was to compare the effectiveness of new-technology passive warming with traditional methods. We measured core body temperature at anesthesia induction and at the end of surgery for patients undergoing robotic-assisted prostatectomy/hysterectomy in the lithotomy position who received either new-technology passive warming (n = 30) or traditional linens and gel pads (n = 35). The traditionally warmed cohort had no change in temperature (35.9° C ± 0.6° C presurgery vs 35.9° C ± 0.7° C postsurgery; t = 0.47; P = .66). The intervention cohort showed a significant increase in temperature (35.75° C ± 0.52° C presurgery vs 36.30° C ± 0.53° C postsurgery; t = 4.64; P < .001). A repeated-measure analysis of variance adjusting for surgery duration and fluid administration confirmed the significance (F = 17.254; P < .001), suggesting that new-technology passive warming may effectively complement active warming to reduce perioperative hypothermia.

  3. Keeping warm and staying well: findings from the qualitative arm of the Warm Homes Project.

    PubMed

    Harrington, Barbara E; Heyman, Bob; Merleau-Ponty, Nick; Stockton, H; Ritchie, Neil; Heyman, Anna

    2005-05-01

    This paper presents findings from the qualitative arm of the Warm Homes Project, a programme of research concerned with the nature of fuel poverty, its alleviation and its relationship to family health. Much of the research into fuel poverty, which results from various combinations of low income and fuel inefficiency, has drawn upon quantitative paradigms. Experiences of, and coping with, fuel poverty have not been well explored. Data for the present study were obtained through qualitative interviews with household members about the above issues. The findings suggest that the expectations of those in fuel poverty about staying warm, and their beliefs about the relationship between warmth and health, vary considerably. Fuel poverty often had wider ramifications, impacting on quality of life in complex ways. The respondents took steps to alleviate cold, but their strategies varied. Coping was affected by informational limitations as well as cost constraints. Measures designed to alleviate fuel poverty should take into account its wider social meaning within the lives of household members.

  4. A global warming forum: Scientific, economic, and legal overview

    SciTech Connect

    Geyer, R.A.

    1993-01-01

    A Global Warming Forum covers in detail five general subject areas aimed at providing first, the scientific background and technical information available on global warming and second, a study and evaluation of the role of economic, legal, and political considerations in global warming. The five general topic areas discussed are the following: (1) The role of geophysical and geoengineering methods to solve problems related to global climatic change; (2) the role of oceanographic and geochemical methods to provide evidence for global climatic change; (3) the global assessment of greenhouse gas production including the need for additional information; (4) natural resource management needed to provide long-term global energy and agricultural uses; (5) legal, policy, and educational considerations required to properly evaluate global warming proposals.

  5. Earth's Long-Term Warming Trend, 1880-2015

    NASA Video Gallery

    This visualization illustrates Earth’s long-term warming trend, showing temperature changes from 1880 to 2015 as a rolling five-year average. Orange colors represent temperatures that are warmer th...

  6. The Climate Policy Narrative for a Dangerously Warming World

    SciTech Connect

    Sanford, Todd; Frumhoff, Peter; Luers, Amy; Gulledge, Jay

    2014-01-01

    It is time to acknowledge that global average temperatures will likely rise above the 2 C policy target and consider how that deeply troubling prospect should affect priorities for communicating and managing the risks of a dangerously warming climate.

  7. Prototyping of Processor Warm Redundancy in Critical Phases

    NASA Astrophysics Data System (ADS)

    Rigaud, O.; Villa, J.; Garcia, G.; Alison, B.; Renault, H.

    2009-05-01

    Reliability of most data handling systems used for space mission is based on redundancy concept. In particular, in order to be robust to one failure, one classical solution is to use two redundant processor modules: One nominal used by default, and one backup used in case of failure of first one. This redundancy may be in cold, warm or hot configuration, each of these configurations presenting specific advantages and drawbacks. For ExoMars Carrier Module critical mission phases (before Descent Module separation), the warm redundancy has been chosen as a compromise between compliance with tight mission time constraints and system simplicity. This concept of warm redundancy had been previously tested and validated by Thales Alenia Space France through the realisation of a prototype in Cannes premises. The purpose of this paper is to present the principles of this warm redundancy prototyping and its main results.

  8. The Warm-Blooded Plant of the Swamps.

    ERIC Educational Resources Information Center

    Camazine, Scott

    1986-01-01

    Describes remarkable characteristics of the skunk cabbage (Symplocarpus foetidus) which make it an interesting swamp plant to study in February and March: its warm-blooded nature, unpleasant skunky odor, and peculiar root system. (NEC)

  9. Optimal Detection of Global Warming using Temperature Profiles

    NASA Technical Reports Server (NTRS)

    Leroy, Stephen S.

    1997-01-01

    Optimal fingerprinting is applied to estimate the amount of time it would take to detect warming by increased concentrations of carbon dioxide in monthly averages of temperature profiles over the Indian Ocean.

  10. Meridional heat transport at the onset of winter stratospheric warming

    NASA Technical Reports Server (NTRS)

    Conte, M.

    1981-01-01

    A continuous vertical flow of energy toward high altitude was verified. This process produced a dynamic instability of the stratospheric polar vortex. A meridional heat transport ws primed toward the north, which generated a warming trend.

  11. Maternal warming affects early life stages of an invasive thistle.

    PubMed

    Zhang, R; Gallagher, R S; Shea, K

    2012-09-01

    Maternal environment can influence plant offspring performance. Understanding maternal environmental effects will help to bridge a key gap in the knowledge of plant life cycles, and provide important insights for species' responses under climate change. Here we show that maternal warming significantly affected the early life stages of an invasive thistle, Carduus nutans. Seeds produced by plants grown in warmed conditions had higher germination percentages and shorter mean germination times than those produced by plants under ambient conditions; this difference was most evident at suboptimal germination temperatures. Subsequent seedling emergence was also faster with maternal warming, with no cost to seedling emergence percentage and seedling growth. Our results suggest that maternal warming may accelerate the life cycle of this species via enhanced early life-history stages. These maternal effects on offspring performance, together with the positive responses of the maternal generation, may exacerbate invasions of this species under climate change.

  12. Late-Flowering Species are Sensitive to Warming

    NASA Astrophysics Data System (ADS)

    Carter, D. L.; VanderWeide, B. L.

    2012-12-01

    Phenological advancement is one of the most prevalent responses of vegetation to warming. The prevailing view is that that early flowering species are particularly sensitive warming, with greater phenological advancement per °C warming relative to later flowering species. However, we observed a three to four month advancement of late flowering species to the extreme warmth of 2012, which motivated us to ask quantitatively whether late flowering species are indeed less sensitive to warming. We focused on responses to inter-annual variation in mean monthly, seasonal, and annual temperatures, using species for which we have ≥10 observations of first flowering near Manhattan, KS between 1891 and 2012 (n = 259). As many other studies have found, early flowering species advanced flowering with warmer temperatures during the year preceding flowering, while late flowering species appeared insensitive to warming during the year preceding flowering. At the seasonal time scale, however, both early and late flowering species responded similarly to spring warming, while late flowering species delayed flowering in response to summer warmth. This divergent response created the illusion that later flowering species were insensitive to temperatures during the year preceding flowering. When absolute values of sensitivities to temperature were summed across months, late flowering species exhibited greater sensitivity to temperature than early flowering species. Late-flowering species were also the most sensitive to variation in precipitation and advanced flowering when summers were wet. We therefore speculate that flowering for late species is delayed by warm, dry summers because both warmth and dryness exacerbate plant water stress and delay growth. Furthermore, warm spring temperatures might allow both early and late flowering species to more quickly attain size or developmental requirements for flowering. Advanced flowering in 2012 provides an extreme example of some typically

  13. Electron-ion temperature equilibration in warm dense tantalum

    NASA Astrophysics Data System (ADS)

    Hartley, N. J.; Belancourt, P.; Chapman, D. A.; Döppner, T.; Drake, R. P.; Gericke, D. O.; Glenzer, S. H.; Khaghani, D.; LePape, S.; Ma, T.; Neumayer, P.; Pak, A.; Peters, L.; Richardson, S.; Vorberger, J.; White, T. G.; Gregori, G.

    2015-03-01

    We present measurements of electron-ion temperature equilibration in proton-heated tantalum, under warm dense matter conditions. Our results agree with theoretical predictions for metals calculated using input data from ab initio simulations. However, the fast relaxation observed in the experiment contrasts with much longer equilibration times found in proton heated carbon, indicating that the energy flow pathways in warm dense matter are far from being fully understood.

  14. Anthropogenic Warming Has Increased Drought Risk In California

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, N. S.; Swain, D. L.; Touma, D. E.

    2015-12-01

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ˜100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm-dry conditions like those that have created the acute human and ecosystem impacts associated with the "exceptional" 2012-2014 drought in California.

  15. Geographical features of global water cycle during warm geological epochs

    SciTech Connect

    Georgiadi, A.G.

    1996-12-31

    The impact of global warming on the water cycle can be extremely complex and diverse. The goal of the investigation was to estimate the geographic features of the mean annual water budget of the world during climatic optimums of the Holocene and the Eemian interglacial periods. These geological epochs could be used as analogs of climatic warming on 1 degree, centigrade and 2 degrees, centigrade. The author used the results of climatic reconstructions based on a simplified version of a GCM.

  16. Warming and drought reduce temperature sensitivity of nitrogen transformations.

    PubMed

    Novem Auyeung, Dolaporn S; Suseela, Vidya; Dukes, Jeffrey S

    2013-02-01

    Shifts in nitrogen (N) mineralization and nitrification rates due to global changes can influence nutrient availability, which can affect terrestrial productivity and climate change feedbacks. While many single-factor studies have examined the effects of environmental changes on N mineralization and nitrification, few have examined these effects in a multifactor context or recorded how these effects vary seasonally. In an old-field ecosystem in Massachusetts, USA, we investigated the combined effects of four levels of warming (up to 4 °C) and three levels of precipitation (drought, ambient, and wet) on net N mineralization, net nitrification, and potential nitrification. We also examined the treatment effects on the temperature sensitivity of net N mineralization and net nitrification and on the ratio of C mineralization to net N mineralization. During winter, freeze-thaw events, snow depth, and soil freezing depth explained little of the variation in net nitrification and N mineralization rates among treatments. During two years of treatments, warming and altered precipitation rarely influenced the rates of N cycling, and there was no evidence of a seasonal pattern in the responses. In contrast, warming and drought dramatically decreased the apparent Q10 of net N mineralization and net nitrification, and the warming-induced decrease in apparent Q10 was more pronounced in ambient and wet treatments than the drought treatment. The ratio of C mineralization to net N mineralization varied over time and was sensitive to the interactive effects of warming and altered precipitation. Although many studies have found that warming tends to accelerate N cycling, our results suggest that warming can have little to no effect on N cycling in some ecosystems. Thus, ecosystem models that assume that warming will consistently increase N mineralization rates and inputs of plant-available N may overestimate the increase in terrestrial productivity and the magnitude of an important

  17. Measurement of Electron-Ion Relaxation in Warm Dense Copper

    PubMed Central

    Cho, B. I.; Ogitsu, T.; Engelhorn, K.; Correa, A. A.; Ping, Y.; Lee, J. W.; Bae, L. J.; Prendergast, D.; Falcone, R. W.; Heimann, P. A.

    2016-01-01

    Experimental investigation of electron-ion coupling and electron heat capacity of copper in warm and dense states are presented. From time-resolved x-ray absorption spectroscopy, the temporal evolution of electron temperature is obtained for non-equilibrium warm dense copper heated by an intense femtosecond laser pulse. Electron heat capacity and electron-ion coupling are inferred from the initial electron temperature and its decrease over 10 ps. Data are compared with various theoretical models. PMID:26733236

  18. Global warming forecasts may be built on hot air

    SciTech Connect

    Lochhead, C.

    1990-04-16

    Predictions of a catastrophic global warming have come under scrutiny in the scientific community. Data are discussed that suggest that ice sheets are not melting as predicted nor is there clear-cut evidence that Earth is warming. Climate models have proved to be unreliable because of computer limitations and the highly complex factors of the planet's weather. However, some scientists say there is still cause for concern.

  19. Plausible rice yield losses under future climate warming.

    PubMed

    Zhao, Chuang; Piao, Shilong; Wang, Xuhui; Huang, Yao; Ciais, Philippe; Elliott, Joshua; Huang, Mengtian; Janssens, Ivan A; Li, Tao; Lian, Xu; Liu, Yongwen; Müller, Christoph; Peng, Shushi; Wang, Tao; Zeng, Zhenzhong; Peñuelas, Josep

    2016-12-19

    Rice is the staple food for more than 50% of the world's population(1-3). Reliable prediction of changes in rice yield is thus central for maintaining global food security. This is an extraordinary challenge. Here, we compare the sensitivity of rice yield to temperature increase derived from field warming experiments and three modelling approaches: statistical models, local crop models and global gridded crop models. Field warming experiments produce a substantial rice yield loss under warming, with an average temperature sensitivity of -5.2 ± 1.4% K(-1). Local crop models give a similar sensitivity (-6.3 ± 0.4% K(-1)), but statistical and global gridded crop models both suggest less negative impacts of warming on yields (-0.8 ± 0.3% and -2.4 ± 3.7% K(-1), respectively). Using data from field warming experiments, we further propose a conditional probability approach to constrain the large range of global gridded crop model results for the future yield changes in response to warming by the end of the century (from -1.3% to -9.3% K(-1)). The constraint implies a more negative response to warming (-8.3 ± 1.4% K(-1)) and reduces the spread of the model ensemble by 33%. This yield reduction exceeds that estimated by the International Food Policy Research Institute assessment (-4.2 to -6.4% K(-1)) (ref. 4). Our study suggests that without CO2 fertilization, effective adaptation and genetic improvement, severe rice yield losses are plausible under intensive climate warming scenarios.

  20. Legacy Effects of Warming on Permafrost Carbon Release

    NASA Astrophysics Data System (ADS)

    Blok, D.; Faucherre, S.; Banyasz, I.; Michelsen, A.; Elberling, B.

    2015-12-01

    Warming in arctic tundra may thaw currently frozen upper permafrost layers, potentially releasing organic carbon (C) that was preserved by cold conditions for hundreds or thousands of years. Apart from the direct control of temperature on permafrost carbon dioxide (CO2) production, warming may alter permafrost CO2 production rates through changes in either permafrost C quality or changes in microbial communities. We incubated exogenous permafrost cores in four different warming experiments in NE-Greenland. The experiments were located in both Salix- and Cassiope-dominated sub-sites and were established in 2004 (old site) and 2007 (new site). Permafrost cores were buried as "open incubators" (free vertical water flow) at both 5-10cm depth (shallow) and 15-20cm depth (deep) in both non-manipulated (control) and warmed plots (warmed) and incubated for 2 years in the field. After retrieval from the field, permafrost cores were kept undisturbed in a lab fridge for three months, after which sub-samples were incubated at 5°C in glass vials. Permafrost CO2 production rates were subsequently measured after one week, four weeks and three months incubation in the lab. We measured the legacy effects of in situ conditions, including experimental warming in the field, on permafrost respiration under controlled laboratory conditions. We assessed the effects of plot type, vegetation type, experiment age, and incubation depth on permafrost CO2 production rates. After 3 months incubation in the lab, we measured a positive effect of warming on permafrost CO2 production rates for shallow-incubated cores, but not for deep-incubated cores. Production rates of CO2 were significantly higher for cores incubated in the old site compared to the new site. Our results suggest that warming may not only directly stimulate permafrost C release, but also indirectly through the effects of infiltrating water, nutrients and microbes from near-surface soil layers.

  1. Global Warming and Energy Transition: A Public Policy Imperative

    NASA Astrophysics Data System (ADS)

    Stone, G. T.

    2006-12-01

    The historic transition from fossil fuels to alternative energy resources has begun. This development is commonly attributed to increasing energy costs and the need for energy security. Looming ever larger, however, is the issue that will soon drive the third energy revolution: global warming. A preponderance of evidence documents accelerating warming, enlarging impacts, and human causes -- principally combustion of fossil fuels. The carbon dioxide (C02) content of Earth's atmosphere has increased more than 35 percent since the beginning of the industrial revolution and is the highest in 650,000 years. This dramatic rise of C02 and attendant positive feedbacks are already forcing significant impacts worldwide. These include atmospheric warming with shifting climatic and habitat zones, spreading tropical disease, and more extreme weather events; rapid ice loss at high latitude and high altitude; ocean warming and acidification with coral reef bleaching and intensifying tropical storms; rising sea level; and accelerating extinction rates. The 2007 draft report of the Intergovernmental Panel on Climate Change (IPCC) predicts greater warming than in previous models. A tipping point to abrupt climate change may be imminent. It is incumbent upon geoscientists and geoscience educators to assume leadership in addressing this challenge through public outreach and general education. The following topics should be integrated into all appropriate courses: the evidence of global warming and its causes; observed present and predicted future impacts of global warming; mitigation and adaptation strategies; and implications for energy policies and economic opportunities. New entry-level science and general education courses -- such as Climate Change Fundamentals and Energy in Nature, Technology, and Society -- are proving to be effective should be widely developed In addition, by workshops and presentations to civic and business organizations and by demonstrated examples of

  2. Measurement of electron-ion relaxation in warm dense copper

    DOE PAGES

    Cho, B. I.; Ogitsu, T.; Engelhorn, K.; ...

    2016-01-06

    Experimental investigation of electron-ion coupling and electron heat capacity of copper in warm and dense states are presented. From time-resolved x-ray absorption spectroscopy, the temporal evolution of electron temperature is obtained for non-equilibrium warm dense copper heated by an intense femtosecond laser pulse. Electron heat capacity and electron-ion coupling are inferred from the initial electron temperature and its decrease over 10 ps. As a result, data are compared with various theoretical models.

  3. Evaluating Arctic warming mechanisms in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Franzke, Christian L. E.; Lee, Sukyoung; Feldstein, Steven B.

    2016-07-01

    Arctic warming is one of the most striking signals of global warming. The Arctic is one of the fastest warming regions on Earth and constitutes, thus, a good test bed to evaluate the ability of climate models to reproduce the physics and dynamics involved in Arctic warming. Different physical and dynamical mechanisms have been proposed to explain Arctic amplification. These mechanisms include the surface albedo feedback and poleward sensible and latent heat transport processes. During the winter season when Arctic amplification is most pronounced, the first mechanism relies on an enhancement in upward surface heat flux, while the second mechanism does not. In these mechanisms, it has been proposed that downward infrared radiation (IR) plays a role to a varying degree. Here, we show that the current generation of CMIP5 climate models all reproduce Arctic warming and there are high pattern correlations—typically greater than 0.9—between the surface air temperature (SAT) trend and the downward IR trend. However, we find that there are two groups of CMIP5 models: one with small pattern correlations between the Arctic SAT trend and the surface vertical heat flux trend (Group 1), and the other with large correlations (Group 2) between the same two variables. The Group 1 models exhibit higher pattern correlations between Arctic SAT and 500 hPa geopotential height trends, than do the Group 2 models. These findings suggest that Arctic warming in Group 1 models is more closely related to changes in the large-scale atmospheric circulation, whereas in Group 2, the albedo feedback effect plays a more important role. Interestingly, while Group 1 models have a warm or weak bias in their Arctic SAT, Group 2 models show large cold biases. This stark difference in model bias leads us to hypothesize that for a given model, the dominant Arctic warming mechanism and trend may be dependent on the bias of the model mean state.

  4. Anthropogenic warming has increased drought risk in California.

    PubMed

    Diffenbaugh, Noah S; Swain, Daniel L; Touma, Danielle

    2015-03-31

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼ 100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm-dry conditions like those that have created the acute human and ecosystem impacts associated with the "exceptional" 2012-2014 drought in California.

  5. Non-gaussianity in the strong regime of warm inflation

    SciTech Connect

    Moss, Ian G.; Yeomans, Timothy E-mail: timothy.yeomans@ncl.ac.uk

    2011-08-01

    The bispectrum of scalar mode density perturbations is analysed for the strong regime of warm inflationary models. This analysis generalises previous results by allowing damping terms in the inflaton equation of motion that are dependent on temperature. A significant amount of non-gaussianity emerges with constant (or local) non-linearity parameter f{sub NL} ∼ 20, in addition to the terms with non-constant f{sub NL} which are characteristic of warm inflation.

  6. Unabated global surface temperature warming: evaluating the evidence

    NASA Astrophysics Data System (ADS)

    Karl, T. R.; Arguez, A.

    2015-12-01

    New insights related to time-dependent bias corrections in global surface temperatures have led to higher rates of warming over the past few decades than previously reported in the IPCC Fifth Assessment Report (2014). Record high global temperatures in the past few years have also contributed to larger trends. The combination of these factors and new analyses of the rate of temperature change show unabated global warming since at least the mid-Twentieth Century. New time-dependent bias corrections account for: (1) differences in temperatures measured from ships and drifting buoys; (2) improved corrections to ship measured temperatures; and (3) the larger rates of warming in polar regions (particularly the Arctic). Since 1951, the period over which IPCC (2014) attributes over half of the observed global warming to human causes, it is shown that there has been a remarkably robust and sustained warming, punctuated with inter-annual and decadal variability. This finding is confirmed through simple trend analysis and Empirical Mode Decomposition (EMD). Trend analysis however, especially for decadal trends, is sensitive to selection bias of beginning and ending dates. EMD has no selection bias. Additionally, it can highlight both short- and long-term processes affecting the global temperature times series since it addresses both non-linear and non-stationary processes. For the new NOAA global temperature data set, our analyses do not support the notion of a hiatus or slowing of long-term global warming. However, sub-decadal periods of little (or no warming) and rapid warming can also be found, clearly showing the impact of inter-annual and decadal variability that previously has been attributed to both natural and human-induced non-greenhouse forcings.

  7. Control optimization of the cryoplant warm compressor station for EAST

    SciTech Connect

    Zhuang, M.; Hu, L. B.; Zhou, Z. W.; Xia, G. H.

    2014-01-29

    The cryogenic control system for EAST (Experimental Advanced Superconducting Tokamak) was designed based on DeltaV DCS of Emerson Corporation. The automatic control of the cryoplant warm compressors has been implemented. However, with ever-degrading performance of critical equipment, the cryoplant operation in the partial design conditions makes the control system fluctuate and unstable. In this paper, the warm compressor control system was optimized to eliminate the pressure oscillation based on the expert PID theory.

  8. Electron-ion temperature equilibration in warm dense tantalum

    SciTech Connect

    Doppner, T; LePape, S.; Ma, T.; Pak, A.; Hartley, N. J.; Peters, L.; Gregori, G.; Belancourt, P.; Drake, R. P.; Chapman, D. A.; Richardson, S.; Gericke, D. O.; Glenzer, S. H.; Khaghani, D.; Neumayer, P.; Vorberger, J.; White, T. G.

    2014-11-05

    We present measurements of electron-ion temperature equilibration in proton-heated tantalum, under warm dense matter conditions. Our results agree with theoretical predictions for metals calculated using input data from ab initio simulations. Furthermore, the fast relaxation observed in the experiment contrasts with much longer equilibration times found in proton heated carbon, indicating that the energy flow pathways in warm dense matter are far from being fully understood.

  9. Electron-ion temperature equilibration in warm dense tantalum

    DOE PAGES

    Doppner, T; LePape, S.; Ma, T.; ...

    2014-11-05

    We present measurements of electron-ion temperature equilibration in proton-heated tantalum, under warm dense matter conditions. Our results agree with theoretical predictions for metals calculated using input data from ab initio simulations. Furthermore, the fast relaxation observed in the experiment contrasts with much longer equilibration times found in proton heated carbon, indicating that the energy flow pathways in warm dense matter are far from being fully understood.

  10. Global warming, energy use, and economic growth

    NASA Astrophysics Data System (ADS)

    Khanna, Neha

    The dissertation comprises four papers that explore the interactions between global warming, energy use, and economic growth. While the papers are separate entities, they share the underlying theme of highlighting national differences in the growth experience and their implications for long-term energy use and climate change. The first paper provides an overview of some key economic issues in the climate change literature. In doing so, the paper critically appraises the 1995 draft report of Working Group III of the Intergovernmental Panel on Climate Change. The focus is the choice of a pure rate of time preference in the economic modeling of climate change, abatement costs differentials between developed and developing countries, and contrasting implications of standard discount rates and value of life estimates for these two country groups. The second paper develops a global model that takes account of the depletion of oil resources in the context of a geo-economic model for climate change. It is found that in the presence of non-decreasing carbon and energy intensities and declining petroleum availability, the carbon emissions trajectory is much higher than that typically projected by other models of this genre. Furthermore, by introducing price and income sensitive demand functions for fossil fuels, the model provides a framework to assess the effectiveness of fuel specific carbon taxes in reducing the COsb2 emissions trajectory. Cross-price substitution effects necessitate unrealistically high tax rates in order to lower the projected emissions trajectory to the optimal level. The economic structure of five integrated assessment models for climate change is reviewed in the third paper, with a special focus on the macroeconomic and damage assessment modules. The final paper undertakes an econometric estimation of the changing shares of capital, labour, energy, and technical change in explaining the growth patterns of 38 countries. Production elasticities vary by

  11. Stronger warming effects on microbial abundances in colder regions

    DOE PAGES

    Chen, Ji; Luo, Yiqi; Xia, Jianyang; ...

    2015-12-10

    Soil microbes play critical roles in regulating terrestrial carbon (C) cycle and its feedback to climate change. However, it is still unclear how the soil microbial community and abundance respond to future climate change scenarios. In this meta-analysis, we synthesized the responses of microbial community and abundance to experimental warming from 64 published field studies. Our results showed that warming significantly increased soil microbial abundance by 7.6% on average. When grouped by vegetation or soil types, tundras and histosols had the strongest microbial responses to warming with increased microbial, fungal, and bacterial abundances by 15.0%, 9.5% and 37.0% in tundra,more » and 16.5%, 13.2% and 13.3% in histosols, respectively. We found significant negative relationships of the response ratios of microbial, fungal and bacterial abundances with the mean annual temperature, indicating that warming had stronger effects in colder than warmer regions. Moreover, the response ratios of microbial abundance to warming were positively correlated with those of soil respiration. Our results therefore indicate that the large quantities of C stored in colder regions are likely to be more vulnerable to climate warming than the soil C stored in other warmer regions.« less

  12. Diminished Response of Arctic Plants to Warming over Time

    PubMed Central

    Kremers, Kelseyann S.; Hollister, Robert D.; Oberbauer, Steven F.

    2015-01-01

    The goal of this study is to determine if the response of arctic plants to warming is consistent across species, locations and time. This study examined the impact of experimental warming and natural temperature variation on plants at Barrow and Atqasuk, Alaska beginning in 1994. We considered observations of plant performance collected from 1994–2000 “short-term” and those from 2007–2012 “long-term”. The plant traits reported are the number of inflorescences, inflorescence height, leaf length, and day of flower emergence. These traits can inform us about larger scale processes such as plant reproductive effort, plant growth, and plant phenology, and therefore provide valuable insight into community dynamics, carbon uptake, and trophic interactions. We categorized traits of all species monitored at each site into temperature response types. We then compared response types across traits, plant growth forms, sites, and over time to analyze the consistency of plant response to warming. Graminoids were the most responsive to warming and showed a positive response to temperature, while shrubs were generally the least responsive. Almost half (49%) of response types (across all traits, species, and sites combined) changed from short-term to long-term. The percent of plants responsive to warming decreased from 57% (short-term) to 46% (long-term). These results indicate that the response of plants to warming varies over time and has diminished overall in recent years. PMID:25767881

  13. Amplified warming at high elevation in the tropical Andes? (Invited)

    NASA Astrophysics Data System (ADS)

    Vuille, M. F.; Buytaert, W.; Zulkafli, Z.; Franquist, E.

    2013-12-01

    Theoretical and modeling studies suggest that adjustment of the moist-adiabatic lapse rate due to continued greenhouse gas radiative forcing will lead to accelerated warming of tropical high-elevation mountain regions in the 21st century. The scarcity of observational data at high-elevation sites in the tropics, however, has complicated the unambiguous detection and potential attribution of such a warming signal. Here we will focus on the tropical Andes, where such an enhanced warming is of special concern, given the important ecosystem services provided by wetlands and glaciers, both being very sensitive to enhanced warming and resulting changes in evaporation, melt rates, snow-rain ratios, etc. This presentation will review the potential of various feedbacks, such as snow-albedo feedback, water vapor feedback, lapse rate feedback and others to produce differential warming rates at different elevations in the Andes. These theoretical considerations will then be compared with the latest available observational and modeling results regarding evidence (or lack thereof) for enhanced warming at high elevation sites. Our analysis relies on an updated database of more than 850 stations from different elevations along the Andes, complemented by projections for several representative concentration pathways (RCP's) from the CMIP5 multi-model ensemble.

  14. Stronger warming effects on microbial abundances in colder regions

    SciTech Connect

    Chen, Ji; Luo, Yiqi; Xia, Jianyang; Jiang, Lifen; Zhou, Xuhui; Lu, Meng; Liang, Junyi; Shi, Zheng; Shelton, Shelby; Cao, Junji

    2015-12-10

    Soil microbes play critical roles in regulating terrestrial carbon (C) cycle and its feedback to climate change. However, it is still unclear how the soil microbial community and abundance respond to future climate change scenarios. In this meta-analysis, we synthesized the responses of microbial community and abundance to experimental warming from 64 published field studies. Our results showed that warming significantly increased soil microbial abundance by 7.6% on average. When grouped by vegetation or soil types, tundras and histosols had the strongest microbial responses to warming with increased microbial, fungal, and bacterial abundances by 15.0%, 9.5% and 37.0% in tundra, and 16.5%, 13.2% and 13.3% in histosols, respectively. We found significant negative relationships of the response ratios of microbial, fungal and bacterial abundances with the mean annual temperature, indicating that warming had stronger effects in colder than warmer regions. Moreover, the response ratios of microbial abundance to warming were positively correlated with those of soil respiration. Our results therefore indicate that the large quantities of C stored in colder regions are likely to be more vulnerable to climate warming than the soil C stored in other warmer regions.

  15. Tropospheric circulation during the early twentieth century Arctic warming

    NASA Astrophysics Data System (ADS)

    Wegmann, Martin; Brönnimann, Stefan; Compo, Gilbert P.

    2016-04-01

    The early twentieth century Arctic warming (ETCAW) between 1920-1940 is an exceptional feature of climate dynamics in the last century and its warming rate was only recently matched by anthropogenic global warming amplification in the Arctic region. However, atmospheric warming during the ETCAW was strongest in the mid-troposphere and is believed to be triggered by an exceptional case of natural climate variability. Nevertheless, ultimate mechanisms and causes for the ETCAW are still under discussion. Here we use state of the art multi member global circulation models, reanalysis and reconstruction datasets to investigate the internal atmospheric dynamics of the ETCAW. We use these gridded datasets to investigate the role of boreal winter mid-tropospheric heat transport and circulation in providing the energy for the large scale warming. Analysing heat flux components and regional differences, it was found that climate models are not able to reproduce the heat flux evolution shown by reanalysis and reconstruction datasets. These datasets compute an increase of stationary eddy heat flux and a decrease of transient eddy heat flux during the ETCAW. Moreover, tropospheric circulation analysis revealed the important role of both the Atlantic and the Pacific sectors in the convergence of southerly air masses into the Arctic during the warming event. Subsequently, it could be shown that the internal dynamics of the atmosphere played a major role in the formation in the ETCAW.

  16. Stronger warming effects on microbial abundances in colder regions.

    PubMed

    Chen, Ji; Luo, Yiqi; Xia, Jianyang; Jiang, Lifen; Zhou, Xuhui; Lu, Meng; Liang, Junyi; Shi, Zheng; Shelton, Shelby; Cao, Junji

    2015-12-10

    Soil microbes play critical roles in regulating terrestrial carbon (C) cycle and its feedback to climate change. However, it is still unclear how the soil microbial community and abundance respond to future climate change scenarios. In this meta-analysis, we synthesized the responses of microbial community and abundance to experimental warming from 64 published field studies. Our results showed that warming significantly increased soil microbial abundance by 7.6% on average. When grouped by vegetation or soil types, tundras and histosols had the strongest microbial responses to warming with increased microbial, fungal, and bacterial abundances by 15.0%, 9.5% and 37.0% in tundra, and 16.5%, 13.2% and 13.3% in histosols, respectively. We found significant negative relationships of the response ratios of microbial, fungal and bacterial abundances with the mean annual temperature, indicating that warming had stronger effects in colder than warmer regions. Moreover, the response ratios of microbial abundance to warming were positively correlated with those of soil respiration. Our findings therefore indicate that the large quantities of C stored in colder regions are likely to be more vulnerable to climate warming than the soil C stored in other warmer regions.

  17. Rationale for Implementation of Warm Cardiac Surgery in Pediatrics

    PubMed Central

    Durandy, Yves

    2016-01-01

    Cardiac surgery was developed thanks to the introduction of hypothermia and cardiopulmonary bypass in the early 1950s. The deep hypothermia protective effect has been essential to circulatory arrest complex cases repair. During the early times of open-heart surgery, a major concern was to decrease mortality and to improve short-term outcomes. Both mortality and morbidity dramatically decreased over a few decades. As a consequence, the drawbacks of deep hypothermia, with or without circulatory arrest, became more and more apparent. The limitation of hypothermia was particularly evident for the brain and regional perfusion was introduced as a response to this problem. Despite a gain in popularity, the results of regional perfusion were not fully convincing. In the 1990s, warm surgery was introduced in adults and proved to be safe and reliable. This option eliminates the deleterious effect of ischemia–reperfusion injuries through a continuous, systemic coronary perfusion with warm oxygenated blood. Intermittent warm blood cardioplegia was introduced later, with impressive results. We were convinced by the easiness, safety, and efficiency of warm surgery and shifted to warm pediatric surgery in a two-step program. This article outlines the limitations of hypothermic protection and the basic reasons that led us to implement pediatric warm surgery. After tens of thousands of cases performed across several centers, this reproducible technique proved a valuable alternative to hypothermic surgery. PMID:27200324

  18. Permafrost degradation stimulates carbon loss from experimentally warmed tundra.

    PubMed

    Natali, Susan M; Schuur, Edward A G; Webb, Elizabeth E; Pries, Caitlin E Hicks; Crummer, Kathryn G

    2014-03-01

    A large pool of organic carbon (C) has been accumulating in the Arctic for thousands of years because cold and waterlogged conditions have protected soil organic material from microbial decomposition. As the climate warms this vast and frozen C pool is at risk of being thawed, decomposed, and released to the atmosphere as greenhouse gasses. At the same time, some C losses may be offset by warming-mediated increases in plant productivity. Plant and microbial responses to warming ultimately determine net C exchange from ecosystems, but the timing and magnitude of these responses remain uncertain. Here we show that experimental warming and permafrost (ground that remains below 0 degrees C for two or more consecutive years) degradation led to a two-fold increase in net ecosystem C uptake during the growing season. However, warming also enhanced winter respiration, which entirely offset growing-season C gains. Winter C losses may be even higher in response to actual climate warming than to our experimental manipulations, and, in that scenario, could be expected to more than double overall net C losses from tundra to the atmosphere. Our results highlight the importance of winter processes in determining whether tundra acts as a C source or sink, and demonstrate the potential magnitude of C release from the permafrost zone that might be expected in a warmer climate.

  19. Consistency of the tachyon warm inflationary universe models

    SciTech Connect

    Zhang, Xiao-Min; Zhu, Jian-Yang E-mail: zhujy@bnu.edu.cn

    2014-02-01

    This study concerns the consistency of the tachyon warm inflationary models. A linear stability analysis is performed to find the slow-roll conditions, characterized by the potential slow-roll (PSR) parameters, for the existence of a tachyon warm inflationary attractor in the system. The PSR parameters in the tachyon warm inflationary models are redefined. Two cases, an exponential potential and an inverse power-law potential, are studied, when the dissipative coefficient Γ = Γ{sub 0} and Γ = Γ(φ), respectively. A crucial condition is obtained for a tachyon warm inflationary model characterized by the Hubble slow-roll (HSR) parameter ε{sub H}, and the condition is extendable to some other inflationary models as well. A proper number of e-folds is obtained in both cases of the tachyon warm inflation, in contrast to existing works. It is also found that a constant dissipative coefficient (Γ = Γ{sub 0}) is usually not a suitable assumption for a warm inflationary model.

  20. How warm was Greenland during the last interglacial period?

    NASA Astrophysics Data System (ADS)

    Landais, Amaelle; Masson-Delmotte, Valérie; Capron, Emilie; Langenbroeck, Petra; Bakker, Pepijn; Stone, Emma; Fischer, Hubertus; Vinther, Bo; Dahl-Jensen, Dorthe

    2016-04-01

    The last interglacial period (LIG, ~129-116 thousand years ago) provides the most recent evidence for the response of Greenland and Antarctic ice sheets to polar warming above pre-industrial level, and a valuable test bed for ice sheet models. Key constraints on past changes in both ice sheet topography and surface temperature are derived from Greenland ice cores. The large warming estimated from the recent NEEM ice core drilled in northwest Greenland (8 ±4°C above pre-industrial) together with the evidence for limited local ice thinning have led to the "NEEM paradox", suggesting more stability of the ice sheet than simulated by ice flow models in response to such large warming. Here, we provide a new assessment of the LIG warming using ice core air isotopic composition (d15N) together with available relationships for Greenland between accumulation rate and temperature. The temperature at the upstream NEEM deposition site is estimated to be between -20°C to -24°C which is consistent with the 8±4°C warming relative to pre-industrial previously determined from water isotopic records measured on the NEEM ice, although we feel the lower end of this range to be more likely. Moreover, we show that under such warm temperature, melting of snow probably led to a significant firn shrinking by 15 m. We show that confirmation of this high temperature range for the LIG in Greenland is difficult to reconcile with climate modeling experiments

  1. Soil warming alters microbial substrate use in alpine soils.

    PubMed

    Streit, Kathrin; Hagedorn, Frank; Hiltbrunner, David; Portmann, Magdalena; Saurer, Matthias; Buchmann, Nina; Wild, Birgit; Richter, Andreas; Wipf, Sonja; Siegwolf, Rolf T W

    2014-04-01

    Will warming lead to an increased use of older soil organic carbon (SOC) by microbial communities, thereby inducing C losses from C-rich alpine soils? We studied soil microbial community composition, activity, and substrate use after 3 and 4 years of soil warming (+4 °C, 2007-2010) at the alpine treeline in Switzerland. The warming experiment was nested in a free air CO2 enrichment experiment using depleted (13)CO2 (δ(13)C = -30‰, 2001-2009). We traced this depleted (13)C label in phospholipid fatty acids (PLFA) of the organic layer (0-5 cm soil depth) and in C mineralized from root-free soils to distinguish substrate ages used by soil microorganisms: fixed before 2001 ('old'), from 2001 to 2009 ('new') or in 2010 ('recent'). Warming induced a sustained stimulation of soil respiration (+38%) without decline in mineralizable SOC. PLFA concentrations did not reveal changes in microbial community composition due to soil warming, but soil microbial metabolic activity was stimulated (+66%). Warming decreased the amount of new and recent C in the fungal biomarker 18:2ω6,9 and the amount of new C mineralized from root-free soils, implying a shift in microbial substrate use toward a greater use of old SOC. This shift in substrate use could indicate an imbalance between C inputs and outputs, which could eventually decrease SOC storage in this alpine ecosystem.

  2. The effect of global warming on infectious diseases.

    PubMed

    Kurane, Ichiro

    2010-12-01

    Global warming has various effects on human health. The main indirect effects are on infectious diseases. Although the effects on infectious diseases will be detected worldwide, the degree and types of the effect are different, depending on the location of the respective countries and socioeconomical situations. Among infectious diseases, water- and foodborne infectious diseases and vector-borne infectious diseases are two main categories that are forecasted to be most affected. The effect on vector-borne infectious diseases such as malaria and dengue fever is mainly because of the expansion of the infested areas of vector mosquitoes and increase in the number and feeding activity of infected mosquitoes. There will be increase in the number of cases with water- and foodborne diarrhoeal diseases. Even with the strongest mitigation procedures, global warming cannot be avoided for decades. Therefore, implementation of adaptation measures to the effect of global warming is the most practical action we can take. It is generally accepted that the impacts of global warming on infectious diseases have not been apparent at this point yet in East Asia. However, these impacts will appear in one form or another if global warming continues to progress in future. Further research on the impacts of global warming on infectious diseases and on future prospects should be conducted.

  3. Indirect aerosol effect increases CMIP5 models projected Arctic warming

    SciTech Connect

    Chylek, Petr; Vogelsang, Timothy J.; Klett, James D.; Hengartner, Nicholas; Higdon, Dave; Lesins, Glen; Dubey, Manvendra K.

    2016-02-20

    Phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models’ projections of the 2014–2100 Arctic warming under radiative forcing from representative concentration pathway 4.5 (RCP4.5) vary from 0.9° to 6.7°C. Climate models with or without a full indirect aerosol effect are both equally successful in reproducing the observed (1900–2014) Arctic warming and its trends. However, the 2014–2100 Arctic warming and the warming trends projected by models that include a full indirect aerosol effect (denoted here as AA models) are significantly higher (mean projected Arctic warming is about 1.5°C higher) than those projected by models without a full indirect aerosol effect (denoted here as NAA models). The suggestion is that, within models including full indirect aerosol effects, those projecting stronger future changes are not necessarily distinguishable historically because any stronger past warming may have been partially offset by stronger historical aerosol cooling. In conclusion, the CMIP5 models that include a full indirect aerosol effect follow an inverse radiative forcing to equilibrium climate sensitivity relationship, while models without it do not.

  4. Indirect aerosol effect increases CMIP5 models projected Arctic warming

    DOE PAGES

    Chylek, Petr; Vogelsang, Timothy J.; Klett, James D.; ...

    2016-02-20

    Phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models’ projections of the 2014–2100 Arctic warming under radiative forcing from representative concentration pathway 4.5 (RCP4.5) vary from 0.9° to 6.7°C. Climate models with or without a full indirect aerosol effect are both equally successful in reproducing the observed (1900–2014) Arctic warming and its trends. However, the 2014–2100 Arctic warming and the warming trends projected by models that include a full indirect aerosol effect (denoted here as AA models) are significantly higher (mean projected Arctic warming is about 1.5°C higher) than those projected by models without a full indirect aerosolmore » effect (denoted here as NAA models). The suggestion is that, within models including full indirect aerosol effects, those projecting stronger future changes are not necessarily distinguishable historically because any stronger past warming may have been partially offset by stronger historical aerosol cooling. In conclusion, the CMIP5 models that include a full indirect aerosol effect follow an inverse radiative forcing to equilibrium climate sensitivity relationship, while models without it do not.« less

  5. Recent warming trend in the coastal region of Qatar

    NASA Astrophysics Data System (ADS)

    Cheng, Way Lee; Saleem, Ayman; Sadr, Reza

    2015-12-01

    The objective of this study was to analyze long-term temperature-related phenomena in the eastern portion of the Middle East, focusing on the coastal region of Qatar. Extreme temperature indices were examined, which were defined by the Expert Team on Climate Change Detection and Indices, for Doha, Qatar; these indices were then compared with those from neighboring countries. The trends were calculated for a 30-year period (1983-2012), using hourly data obtained from the National Climatic Data Center. The results showed spatially consistent warming trends throughout the region. For Doha, 11 of the 12 indices studied showed significant warming trends. In particular, the warming trends were represented by an increase in the number of warm days and nights and a decrease in the number of cool nights and days. The high-temperature extremes during the night have risen at more than twice the rate of their corresponding daytime extremes. The intensity and frequency of hot days have increased, and the minimum temperature indices exhibited a higher rate of warming. The climatic changes in Doha are consistent with the region-wide heat-up in recent decades across the Middle East. However, the rapid economic expansion, increase of population since the 1990s, and urban effects in the region are thought to have intensified the rapidly warming climate pattern observed in Doha since the turn of the century.

  6. Effect of warming and drought on grassland microbial communities.

    PubMed

    Sheik, Cody S; Beasley, William Howard; Elshahed, Mostafa S; Zhou, Xuhui; Luo, Yiqi; Krumholz, Lee R

    2011-10-01

    The soil microbiome is responsible for mediating key ecological processes; however, little is known about its sensitivity to climate change. Observed increases in global temperatures and alteration to rainfall patterns, due to anthropogenic release of greenhouse gases, will likely have a strong influence on soil microbial communities and ultimately the ecosystem services they provide. Therefore, it is vital to understand how soil microbial communities will respond to future climate change scenarios. To this end, we surveyed the abundance, diversity and structure of microbial communities over a 2-year period from a long-term in situ warming experiment that experienced a moderate natural drought. We found the warming treatment and soil water budgets strongly influence bacterial population size and diversity. In normal precipitation years, the warming treatment significantly increased microbial population size 40-150% but decreased diversity and significantly changed the composition of the community when compared with the unwarmed controls. However during drought conditions, the warming treatment significantly reduced soil moisture thereby creating unfavorable growth conditions that led to a 50-80% reduction in the microbial population size when compared with the control. Warmed plots also saw an increase in species richness, diversity and evenness; however, community composition was unaffected suggesting that few phylotypes may be active under these stressful conditions. Our results indicate that under warmed conditions, ecosystem water budget regulates the abundance and diversity of microbial populations and that rainfall timing is critical at the onset of drought for sustaining microbial populations.

  7. Variability and Expansion of the Tropical Ocean Warm Pool

    NASA Astrophysics Data System (ADS)

    Hoyos, C. D.; Webster, P. J.

    2007-12-01

    The tropical warm pool plays a determining role in the global climate since it acts as a sorce of thermodynamic forcing for the atmospheric general circulation. The warm pools (SST>28°C) extend from the Indian Ocean, across the Indonesian Archipelago into the western Pacific with a secondary area crossing Central America into the Caribbean and the central Atlantic ocean. The heating in the atmosphere above the warm pool influences climate over wide ranges of the planet. As there are zonal asymmetries in the extent of the warm pool, and hence variations in the locations of total heating of the atmospheric column, the warm pools also create centers of diabatic heating along the equator which set up the position and strength of the east-west Circulations which play integral roles in the coupled ocean-atmosphere tropical climate. In fact, almost all of the global vertically integrated heating resides over waters >27°C. The tropical warm pool is characterized by large-scale variations of SST on time scales that range from intraseasonal to interdecadal, considerably altering the forcing to the atmosphere. In addition to the existence of the large variability of the tropical warm pool SST, there is an upward trend in the tropical warm pool area, which is evident in the Atlantic, Indian and Pacific oceans with the area encompassed by the 28C isotherm groewing by 67% since 1920. Changes in the zonal and meridional circulation associated with the variability and expansion of the warm pool are studied using NCEP-NCAR and ERA40 reanalsysis. It is found that the impacts extend around the tropics and are associated with a slowing down of the Asian monsoon circulation and modulation of the of the equatorial Walker cells. Analysis of the IPCC-CMIP3 models for the 20th century show similar changes in the warm pool extent suggesting that changes that occur under different future emission scenarios may poossess credence. With greenhouse warming it is found that the warm pool

  8. Direct Imaging of Warm Extrasolar Planets

    SciTech Connect

    Macintosh, B

    2005-04-11

    One of the most exciting scientific discoveries in the last decade of the twentieth century was the first detection of planets orbiting a star other than our own. By now more than 130 extrasolar planets have been discovered indirectly, by observing the gravitational effects of the planet on the radial velocity of its parent star. This technique has fundamental limitations: it is most sensitive to planets close to their star, and it determines only a planet's orbital period and a lower limit on the planet's mass. As a result, all the planetary systems found so far are very different from our own--they have giant Jupiter-sized planets orbiting close to their star, where the terrestrial planets are found in our solar system. Such systems have overturned the conventional paradigm of planet formation, but have no room in them for habitable Earth-like planets. A powerful complement to radial velocity detections of extrasolar planets will be direct imaging--seeing photons from the planet itself. Such a detection would allow photometric measurements to determine the temperature and radius of a planet. Also, direct detection is most sensitive to planets in wide orbits, and hence more capable of seeing solar systems resembling our own, since a giant planet in a wide orbit does not preclude the presence of an Earth-like planet closer to the star. Direct detection, however, is extremely challenging. Jupiter is roughly a billion times fainter than our sun. Two techniques allowed us to overcome this formidable contrast and attempt to see giant planets directly. The first is adaptive optics (AO) which allows giant earth-based telescopes, such as the 10 meter W.M. Keck telescope, to partially overcome the blurring effects of atmospheric turbulence. The second is looking for young planets: by searching in the infrared for companions to young stars, we can see thermal emission from planets that are still warm with the heat of their formation. Together with a UCLA team that leads the

  9. Warming rays in cluster cool cores

    NASA Astrophysics Data System (ADS)

    Colafrancesco, S.; Marchegiani, P.

    2008-06-01

    Context: Cosmic rays are confined in the atmospheres of galaxy clusters and, therefore, they can play a crucial role in the heating of their cool cores. Aims: We discuss here the thermal and non-thermal features of a model of cosmic ray heating of cluster cores that can provide a solution to the cooling-flow problems. To this aim, we generalize a model originally proposed by Colafrancesco, Dar & DeRujula (2004) and we show that our model predicts specific correlations between the thermal and non-thermal properties of galaxy clusters and enables various observational tests. Methods: The model reproduces the observed temperature distribution in clusters by using an energy balance condition in which the X-ray energy emitted by clusters is supplied, in a quasi-steady state, by the hadronic cosmic rays, which act as “warming rays” (WRs). The temperature profile of the intracluster (IC) gas is strictly correlated with the pressure distribution of the WRs and, consequently, with the non-thermal emission (radio, hard X-ray and gamma-ray) induced by the interaction of the WRs with the IC gas and the IC magnetic field. Results: The temperature distribution of the IC gas in both cool-core and non cool-core clusters is successfully predicted from the measured IC plasma density distribution. Under this contraint, the WR model is also able to reproduce the thermal and non-thermal pressure distribution in clusters, as well as their radial entropy distribution, as shown by the analysis of three clusters studied in detail: Perseus, A2199 and Hydra. The WR model provides other observable features of galaxy clusters: a correlation of the pressure ratio (WRs to thermal IC gas) with the inner cluster temperature (P_WR/P_th) ˜ (kT_inner)-2/3, a correlation of the gamma-ray luminosity with the inner cluster temperature Lγ ˜ (kT_inner)4/3, a substantial number of cool-core clusters observable with the GLAST-LAT experiment, a surface brightness of radio halos in cool-core clusters

  10. Global crop yield losses from recent warming

    SciTech Connect

    Lobell, D; Field, C

    2006-06-02

    Global yields of the world-s six most widely grown crops--wheat, rice, maize, soybeans, barley, sorghum--have increased since 1961. Year-to-year variations in growing season minimum temperature, maximum temperature, and precipitation explain 30% or more of the variations in yield. Since 1991, climate trends have significantly decreased yield trends in all crops but rice, leading to foregone production since 1981 of about 12 million tons per year of wheat or maize, representing an annual economic loss of $1.2 to $1.7 billion. At the global scale, negative impacts of climate trends on crop yields are already apparent. Annual global temperatures have increased by {approx}0.4 C since 1980, with even larger changes observed in several regions (1). While many studies have considered the impacts of future climate changes on food production (2-5), the effects of these past changes on agriculture remain unclear. It is likely that warming has improved yields in some areas, reduced them in others, and had negligible impacts in still others; the relative balance of these effects at the global scale is unknown. An understanding of this balance would help to anticipate impacts of future climate changes, as well as to more accurately assess recent (and thereby project future) technologically driven yield progress. Separating the contribution of climate from concurrent changes in other factors--such as crop cultivars, management practices, soil quality, and atmospheric carbon dioxide (CO{sub 2}) levels--requires models that describe the response of yields to climate. Studies of future global impacts of climate change have typically relied on a bottom-up approach, whereby field scale, process-based models are applied to hundreds of representative sites and then averaged (e.g., ref 2). Such approaches require input data on soil and management conditions, which are often difficult to obtain. Limitations on data quality or quantity can thus limit the utility of this approach

  11. Temperature response of soil respiration largely unaltered with experimental warming

    USGS Publications Warehouse

    Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.; Kroeger, Kevin D.; Crowther, Thomas W.; Burton, Andrew J.; Dukes, Jeffrey S.; Emmett, Bridget; Frey, Serita D.; Heskel, Mary A.; Jiang, Lifen; Machmuller, Megan B.; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B.; Reinsch, Sabine; Wang, Xin; Allison, Steven D.; Bamminger, Chris; Bridgham, Scott; Collins, Scott L.; de Dato, Giovanbattista; Eddy, William C.; Enquist, Brian J.; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R.; Steenberg Larsen, Klaus; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M.; Penuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward B.; Reinmann, Andrew B.; Reynolds, Lorien L.; Schmidt, Inger K.; Shaver, Gaius R.; Strong, Aaron L.; Suseela, Vidya; Tietema, Albert

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  12. Anthropogenic warming has increased drought risk in California

    PubMed Central

    Diffenbaugh, Noah S.; Swain, Daniel L.; Touma, Danielle

    2015-01-01

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm–dry conditions like those that have created the acute human and ecosystem impacts associated with the “exceptional” 2012–2014 drought in California. PMID:25733875

  13. Temperature response of soil respiration largely unaltered with experimental warming.

    PubMed

    Carey, Joanna C; Tang, Jianwu; Templer, Pamela H; Kroeger, Kevin D; Crowther, Thomas W; Burton, Andrew J; Dukes, Jeffrey S; Emmett, Bridget; Frey, Serita D; Heskel, Mary A; Jiang, Lifen; Machmuller, Megan B; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B; Reinsch, Sabine; Wang, Xin; Allison, Steven D; Bamminger, Chris; Bridgham, Scott; Collins, Scott L; de Dato, Giovanbattista; Eddy, William C; Enquist, Brian J; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R; Larsen, Klaus Steenberg; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M; Peñuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward; Reinmann, Andrew B; Reynolds, Lorien L; Schmidt, Inger K; Shaver, Gaius R; Strong, Aaron L; Suseela, Vidya; Tietema, Albert

    2016-11-29

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  14. Thermal adaptation of decomposer communities in warming soils.

    PubMed

    Bradford, Mark A

    2013-11-12

    Temperature regulates the rate of biogeochemical cycles. One way it does so is through control of microbial metabolism. Warming effects on metabolism change with time as physiology adjusts to the new temperature. I here propose that such thermal adaptation is observed in soil microbial respiration and growth, as the result of universal evolutionary trade-offs between the structure and function of both enzymes and membranes. I review the basis for these trade-offs and show that they, like substrate depletion, are plausible mechanisms explaining soil respiration responses to warming. I argue that controversies over whether soil microbes adapt to warming stem from disregarding the evolutionary physiology of cellular metabolism, and confusion arising from the term thermal acclimation to represent phenomena at the organism- and ecosystem-levels with different underlying mechanisms. Measurable physiological adjustments of the soil microbial biomass reflect shifts from colder- to warmer-adapted taxa. Hypothesized declines in the growth efficiency of soil microbial biomass under warming are controversial given limited data and a weak theoretical basis. I suggest that energy spilling (aka waste metabolism) is a more plausible mechanism for efficiency declines than the commonly invoked increase in maintenance-energy demands. Energy spilling has many fitness benefits for microbes and its response to climate warming is uncertain. Modeled responses of soil carbon to warming are sensitive to microbial growth efficiency, but declines in efficiency mitigate warming-induced carbon losses in microbial models and exacerbate them in conventional models. Both modeling structures assume that microbes regulate soil carbon turnover, highlighting the need for a third structure where microbes are not regulators. I conclude that microbial physiology must be considered if we are to have confidence in projected feedbacks between soil carbon stocks, atmospheric CO2, and climate change.

  15. In situ observations of diurnal warming at the ocean surface

    NASA Astrophysics Data System (ADS)

    Gentemann, C. L.; Minnett, P. J.

    2007-05-01

    Observations of diurnal temperature variability at the ocean surface have been primarily available only from satellite SST retrievals themselves. Since most satellite observations revisit the same location only infrequently, determining how the ocean surface diurnal heating responds to variability in forcing (mainly insolation and wind speed) has been primarily addressed through theoretical modeling or extrapolation of results from in situ (buoy) observations measured 0.5 m to 1.5 m below the skin layer. Diurnal heating in the skin layer may be quite different than heating at 0.5 m as this layer responds very rapidly to changes in heat and momentum. The Explorer of the Seas, a cruise ship, makes weekly cruises on two alternating tracks through the Caribbean Sea. Measurements from the Marine Atmospheric Emitted Radiance Interferometer (M-AERI) carried on the Explorer of the Seas provide one of the few skin SST data sets, along with ancillary measurements necessary for diurnal investigations. Initial analyses show that the surface signature of diurnal warming in the skin layer is chiefly controlled by the wind speed. The daily peak in diurnal warming is directly related to the minimum wind speed during the day, causing the time of the peak to shift depending on when the minimum winds occur. Fluctuations in wind speed can result in multiple peaks in diurnal heating during a single afternoon. Wind speed is negatively lag-correlated with diurnal warming while insolation is positively lag-correlated. The maximum lag-correlation of wind speed (insolation) with diurnal warming is at a time lag of 30 (50) minutes. Several models of diurnal variability exist. A comparison of several models with each other reveals considerable differences in estimates of diurnal warming. Further validation of the models using M-AERI observed diurnal warming again reveals considerable differences in estimates of warming related to model forcing parameterizations.

  16. Evaluating the Dominant Components of Warming in Pliocene Climate Simulations

    NASA Technical Reports Server (NTRS)

    Hill, D. J.; Haywood, A. M.; Lunt, D. J.; Hunter, S. J.; Bragg, F. J.; Contoux, C.; Stepanek, C.; Sohl, L.; Rosenbloom, N. A.; Chan, W.-L.; Kamae, Y.; Zhang, Z.; Abe-Ouchi, A.; Chandler, M. A.; Jost, A.; Lohmann, G.; Otto-Bliesner, B. L.; Ramstein, G.; Ueda, H.

    2014-01-01

    The Pliocene Model Intercomparison Project (PlioMIP) is the first coordinated climate model comparison for a warmer palaeoclimate with atmospheric CO2 significantly higher than pre-industrial concentrations. The simulations of the mid-Pliocene warm period show global warming of between 1.8 and 3.6 C above pre-industrial surface air temperatures, with significant polar amplification. Here we perform energy balance calculations on all eight of the coupled ocean-atmosphere simulations within PlioMIP Experiment 2 to evaluate the causes of the increased temperatures and differences between the models. In the tropics simulated warming is dominated by greenhouse gas increases, with the cloud component of planetary albedo enhancing the warming in most of the models, but by widely varying amounts. The responses to mid-Pliocene climate forcing in the Northern Hemisphere midlatitudes are substantially different between the climate models, with the only consistent response being a warming due to increased greenhouse gases. In the high latitudes all the energy balance components become important, but the dominant warming influence comes from the clear sky albedo, only partially offset by the increases in the cooling impact of cloud albedo. This demonstrates the importance of specified ice sheet and high latitude vegetation boundary conditions and simulated sea ice and snow albedo feedbacks. The largest components in the overall uncertainty are associated with clouds in the tropics and polar clear sky albedo, particularly in sea ice regions. These simulations show that albedo feedbacks, particularly those of sea ice and ice sheets, provide the most significant enhancements to high latitude warming in the Pliocene.

  17. Thermal adaptation of decomposer communities in warming soils

    PubMed Central

    Bradford, Mark A.

    2013-01-01

    Temperature regulates the rate of biogeochemical cycles. One way it does so is through control of microbial metabolism. Warming effects on metabolism change with time as physiology adjusts to the new temperature. I here propose that such thermal adaptation is observed in soil microbial respiration and growth, as the result of universal evolutionary trade-offs between the structure and function of both enzymes and membranes. I review the basis for these trade-offs and show that they, like substrate depletion, are plausible mechanisms explaining soil respiration responses to warming. I argue that controversies over whether soil microbes adapt to warming stem from disregarding the evolutionary physiology of cellular metabolism, and confusion arising from the term thermal acclimation to represent phenomena at the organism- and ecosystem-levels with different underlying mechanisms. Measurable physiological adjustments of the soil microbial biomass reflect shifts from colder- to warmer-adapted taxa. Hypothesized declines in the growth efficiency of soil microbial biomass under warming are controversial given limited data and a weak theoretical basis. I suggest that energy spilling (aka waste metabolism) is a more plausible mechanism for efficiency declines than the commonly invoked increase in maintenance-energy demands. Energy spilling has many fitness benefits for microbes and its response to climate warming is uncertain. Modeled responses of soil carbon to warming are sensitive to microbial growth efficiency, but declines in efficiency mitigate warming-induced carbon losses in microbial models and exacerbate them in conventional models. Both modeling structures assume that microbes regulate soil carbon turnover, highlighting the need for a third structure where microbes are not regulators. I conclude that microbial physiology must be considered if we are to have confidence in projected feedbacks between soil carbon stocks, atmospheric CO2, and climate change. PMID

  18. Thai Youths and Global Warming: Media Information, Awareness, and Lifestyle Activities

    ERIC Educational Resources Information Center

    Chokriensukchai, Kanchana; Tamang, Ritendra

    2010-01-01

    This study examines the exposure of Thai youths to media information on global warming, the relationship between exposure to global warming information and awareness of global warming, and the relationship between that awareness and lifestyle activities that contribute to global warming. A focus group of eight Thai youths provided information that…

  19. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials Global Warming Potentials Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1 Methane 74-82-8 CH4...

  20. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials Global Warming Potentials Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1 Methane 74-82-8 CH4 a...

  1. Artificial Warming of Arctic Meadow under Pollution Stress: Experimental design

    NASA Astrophysics Data System (ADS)

    Moni, Christophe; Silvennoinen, Hanna; Fjelldal, Erling; Brenden, Marius; Kimball, Bruce; Rasse, Daniel

    2014-05-01

    Boreal and arctic terrestrial ecosystems are central to the climate change debate, notably because future warming is expected to be disproportionate as compared to world averages. Likewise, greenhouse gas (GHG) release from terrestrial ecosystems exposed to climate warming is expected to be the largest in the arctic. Artic agriculture, in the form of cultivated grasslands, is a unique and economically relevant feature of Northern Norway (e.g. Finnmark Province). In Eastern Finnmark, these agro-ecosystems are under the additional stressor of heavy metal and sulfur pollution generated by metal smelters of NW Russia. Warming and its interaction with heavy metal dynamics will influence meadow productivity, species composition and GHG emissions, as mediated by responses of soil microbial communities. Adaptation and mitigation measurements will be needed. Biochar application, which immobilizes heavy metal, is a promising adaptation method to promote positive growth response in arctic meadows exposed to a warming climate. In the MeadoWarm project we conduct an ecosystem warming experiment combined to biochar adaptation treatments in the heavy-metal polluted meadows of Eastern Finnmark. In summary, the general objective of this study is twofold: 1) to determine the response of arctic agricultural ecosystems under environmental stress to increased temperatures, both in terms of plant growth, soil organisms and GHG emissions, and 2) to determine if biochar application can serve as a positive adaptation (plant growth) and mitigation (GHG emission) strategy for these ecosystems under warming conditions. Here, we present the experimental site and the designed open-field warming facility. The selected site is an arctic meadow located at the Svanhovd Research station less than 10km west from the Russian mining city of Nikel. A splitplot design with 5 replicates for each treatment is used to test the effect of biochar amendment and a 3oC warming on the Arctic meadow. Ten circular

  2. Using Updated Climate Accounting to Slow Global Warming Before 2035

    NASA Astrophysics Data System (ADS)

    Schultz, T.

    2015-12-01

    The current and projected worsening of climate impacts make clear the urgency of limiting the global mean temperature to 2°C over preindustrial levels. But while mitigation policy today may slow global warming at the end of the century, it will not keep global warming within these limits. This failure arises in large part from the climate accounting system used to inform this policy, which does not factor in several scientific findings from the last two decades, including: The urgent need to slow global warming before 2035. This can postpone the time the +1.5°C limit is passed, and is the only way to avoid the most serious long-term climate disruptions. That while it may mitigate warming by the end of the century, reducing emissions of CO2 alone, according to UNEP/WMO[1], will do "little to mitigate warming over the next 20-30 years," and "may temporarily enhance near-term warming as sulfate [cooling] is reduced." That the only emissions reductions that can slow warming before 2035 are focused on short-lived climate pollutants. A small increase in current mitigation funding could fund these projects, the most promising of which target emissions in regional climate "hot spots" like the Arctic and India.[2] To ensure policies can effectively slow global warming before 2035, a new climate accounting system is needed. Such an updated system is being standardized in the USA,[3] and has been proposed for use in ISO standards. The key features of this updated system are: consideration of all climate pollutants and their multi-faceted climate effects; use of time horizons which prioritize mitigation of near-term warming; a consistent and accurate accounting for "biogenic" CO2; protocols ensuring that new scientific findings are incorporated; and a distinct accounting for emissions affecting regional "hot spots". This accounting system also considers environmental impacts outside of climate change, a feature necessary to identify "win-win" projects with climate benefits

  3. WARM-UP PROTOCOLS FOR HIGH SCHOOL STUDENTS.

    PubMed

    Chatzopoulos, Dimitris Eleytherios; Yiannakos, Athanasios; Kotzamanidou, Mariana; Bassa, Eleni

    2015-08-01

    The study compared the acute effects of three warm-up protocols on change-of-direction speed, reaction time, and movement time of upper extremities. Participants were 27 Greek high school students from an urban area (M age=17.2 yr., SD=0.2, range=16.5-18.0). All participants performed the following warm-up protocols on three different days: (a) 3 min. jogging followed by 5 min. static stretching, (b) 3 min. jogging followed by 5 min. dynamic stretching, and (c) 3 min. jogging followed by 5 min. of rest without stretching. At the end of each protocol, participants performed sprints of moderate to submaximal intensity. After the warm-up protocols, participants performed the following tests: "505-change-of-direction-speed," reaction time, and movement time (arm movements). There was no significant effect of protocols on the performance tests. Pre-exercise stretching may not be required for performance improvement in activities involving change-of-direction speed, reaction, and movement time if the final part of the warm-up involves sprinting. The advantage of a short duration warm-up is that it offers students more time to play in physical education lessons. However, it is generally important for students to learn the benefits of stretching and how to stretch for lifelong fitness.

  4. Long-term sensitivity of soil carbon turnover to warming.

    PubMed

    Knorr, W; Prentice, I C; House, J I; Holland, E A

    2005-01-20

    The sensitivity of soil carbon to warming is a major uncertainty in projections of carbon dioxide concentration and climate. Experimental studies overwhelmingly indicate increased soil organic carbon (SOC) decomposition at higher temperatures, resulting in increased carbon dioxide emissions from soils. However, recent findings have been cited as evidence against increased soil carbon emissions in a warmer world. In soil warming experiments, the initially increased carbon dioxide efflux returns to pre-warming rates within one to three years, and apparent carbon pool turnover times are insensitive to temperature. It has already been suggested that the apparent lack of temperature dependence could be an artefact due to neglecting the extreme heterogeneity of soil carbon, but no explicit model has yet been presented that can reconcile all the above findings. Here we present a simple three-pool model that partitions SOC into components with different intrinsic turnover rates. Using this model, we show that the results of all the soil-warming experiments are compatible with long-term temperature sensitivity of SOC turnover: they can be explained by rapid depletion of labile SOC combined with the negligible response of non-labile SOC on experimental timescales. Furthermore, we present evidence that non-labile SOC is more sensitive to temperature than labile SOC, implying that the long-term positive feedback of soil decomposition in a warming world may be even stronger than predicted by global models.

  5. Elevated CO2 further lengthens growing season under warming conditions.

    PubMed

    Reyes-Fox, Melissa; Steltzer, Heidi; Trlica, M J; McMaster, Gregory S; Andales, Allan A; LeCain, Dan R; Morgan, Jack A

    2014-06-12

    Observations of a longer growing season through earlier plant growth in temperate to polar regions have been thought to be a response to climate warming. However, data from experimental warming studies indicate that many species that initiate leaf growth and flowering earlier also reach seed maturation and senesce earlier, shortening their active and reproductive periods. A conceptual model to explain this apparent contradiction, and an analysis of the effect of elevated CO2--which can delay annual life cycle events--on changing season length, have not been tested. Here we show that experimental warming in a temperate grassland led to a longer growing season through earlier leaf emergence by the first species to leaf, often a grass, and constant or delayed senescence by other species that were the last to senesce, supporting the conceptual model. Elevated CO2 further extended growing, but not reproductive, season length in the warmed grassland by conserving water, which enabled most species to remain active longer. Our results suggest that a longer growing season, especially in years or biomes where water is a limiting factor, is not due to warming alone, but also to higher atmospheric CO2 concentrations that extend the active period of plant annual life cycles.

  6. Global warming: Perspectives from the Late Quaternary paleomammal record

    SciTech Connect

    Graham, R.W. )

    1993-03-01

    Global warming at the end of the Pleistocene caused significant environmental changes that directly and indirectly effected biotic communities. The biotic response to this global warming event can provide insights into the processes that might be anticipated for future climatic changes. The megafauna extinction may have been the most dramatic alteration of mammalian communities at the end of the Pleistocene. Late Quaternary warming also altered regional diversity patterns for some small mammal guilds without extinction. Reductions in body size for both small and large mammal species were also consequences of these environmental fluctuations. Geographic shifts in the distributions of individual mammal species resulted in changes in species composition of mammalian communities. The individualistic response of biota to environmental fluctuations define some boundary conditions for modeling communities. Understanding these boundary conditions is mandatory in planning for the preservation of biodiversity in the future. Finally, it is essential to determine how global warming will alter seasonal patterns because it is apparent from the paleobiological record that not all Quaternary warming events have been the same.

  7. Implication of climate warming for agricultural production in eastern China

    SciTech Connect

    Wang Futang

    1996-03-01

    According to the regional climate change scenarios for China estimated by the composite GCM, the potential impacts of climate warming on rice, winter wheat and corn production in eastern agricultural areas and cropping systems in China in future are simulated in this paper, using the weather-yield model and cropping system model. As a result, it is shown that under the current planting systems and agrotechniques the climate warming effect upon the corn production is the most significant, impact upon the winter wheat is the next one and the smallest one is that upon the rice. The regional and seasonal features of impacts on various crops are rather different. And also, there will be a substantial northward shift of the cropping patterns, such as the northern boundary of triple cropping area would shift from its current border at Yangtze River toward Yellow River. However, it is still difficult to draw a specific conclusion that climate warming will be advantageous or disadvantageous for farm in China, because of significant negative balance between precipitation and evapotranspiration increase and a lot of scientific uncertainties in the investigation of climate warming, GCM prediction and complex-various impact of climate warming on agricultural production.

  8. Negative elevation-dependent warming trend in the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Tudoroiu, M.; Eccel, E.; Gioli, B.; Gianelle, D.; Schume, H.; Genesio, L.; Miglietta, F.

    2016-04-01

    Mountain regions and the important ecosystem services they provide are considered to be very vulnerable to the current warming, and recent studies suggest that high-mountain environments experience more rapid changes in temperature than environments at lower elevations. Here we analysed weather records for the period 1975-2010 from the Eastern Italian Alps that show that warming occurred both at high and low elevations, but it was less pronounced at high elevations. This negative elevation-dependent trend was consistent for mean, maximum and minimum air temperature. Global radiation data measured at different elevations, surface energy fluxes measured above an alpine grassland and above a coniferous forest located at comparable elevations for nine consecutive years as well as remote sensing data (MODIS) for cloud cover and aerosol optical depth were analysed to interpret this observation. Increasing global radiation at low elevations turned out to be a potential driver of this negative elevation-dependent warming, but also contributions from land use and land cover changes at high elevations (abandonment of alpine pastures, expansion of secondary forest succession) were taken into account. We emphasise though, that a negative elevation-dependent warming is not universal and that future research and in particular models should not neglect the role of land use changes when determining warming rates over elevation.

  9. Surface measurements of global warming causing atmospheric constituents in Korea.

    PubMed

    Oh, S N; Youn, Y H; Park, K J; Min, H K; Schnell, R C

    2001-07-01

    The expansion of the industrial economy and the increase of population in Northeast Asian countries have caused much interest in climate monitoring related to global warming. However, new techniques and better platforms for the measurement of global warming and regional databases are still old-fashioned and are not being developed sufficiently. With respect to this agenda, since 1993, at the request of the World Meteorological Organization (WMO), to monitor functions of global warming, the Korea Meteorological Administration (KMA) has set up a Global Atmospheric Watch (GAW) Station on the western coast of Korea (Anmyun-do) and has been actively monitoring global warming over Northeast Asia. In addition, atmospheric carbon dioxide (CO2) has been measured for a similar KMA global warming program at Kosan, Cheju Island since 1990. Aerosol and radiation have also been measured at both sites as well as in Seoul. The observations have been analyzed using diagnostics of climate change in Northeast Asia and also have been internationally compared. Results indicate that greenhouse gases are in good statistic agreement with the NOAA/Climate Monitoring and Diagnostics Laboratory (CMDL) long-term trends of monthly mean concentrations and seasonal cycles. Atmospheric particulate matter has also been analyzed for particular Asian types in terms of optical depth, number concentration and size distribution.

  10. Warming can enhance invasion success through asymmetries in energetic performance.

    PubMed

    Penk, Marcin R; Jeschke, Jonathan M; Minchin, Dan; Donohue, Ian

    2016-03-01

    Both climate warming and biological invasions are prominent drivers of global environmental change and it is important to determine how they interact. However, beyond tolerance and reproductive thresholds, little is known about temperature dependence of invaders' performance, particularly in the light of competitive attributes of functionally similar native species. We used experimentally derived energy budgets and field temperature data to determine whether anticipated warming will asymmetrically affect the energy budgets of the globally invasive Ponto-Caspian mysid crustacean Hemimysis anomala and a functionally similar native competitor (Mysis salemaai) whose range is currently being invaded. In contrast to M. salemaai, which maintains a constant feeding rate with temperature leading to diminishing energy assimilation, we found that H. anomala increases its feeding rate with temperature in parallel with growing metabolic demand. This enabled the invader to maintain high energy assimilation rates, conferring substantially higher scope for growth compared to the native analogue at spring-to-autumn temperatures. Anticipated warming will likely exacerbate this energetic asymmetry and remove the winter overlap, which, given the seasonal limitation of mutually preferred prey, appears to underpin coexistence of the two species. These results indicate that temperature-dependent asymmetries in scope for growth between invaders and native analogues comprise an important mechanism determining invasion success under warming climates. They also highlight the importance of considering relevant spectra of ecological contexts in predicting successful invaders and their impacts under warming scenarios.

  11. Warming caused by cumulative carbon emissions towards the trillionth tonne.

    PubMed

    Allen, Myles R; Frame, David J; Huntingford, Chris; Jones, Chris D; Lowe, Jason A; Meinshausen, Malte; Meinshausen, Nicolai

    2009-04-30

    Global efforts to mitigate climate change are guided by projections of future temperatures. But the eventual equilibrium global mean temperature associated with a given stabilization level of atmospheric greenhouse gas concentrations remains uncertain, complicating the setting of stabilization targets to avoid potentially dangerous levels of global warming. Similar problems apply to the carbon cycle: observations currently provide only a weak constraint on the response to future emissions. Here we use ensemble simulations of simple climate-carbon-cycle models constrained by observations and projections from more comprehensive models to simulate the temperature response to a broad range of carbon dioxide emission pathways. We find that the peak warming caused by a given cumulative carbon dioxide emission is better constrained than the warming response to a stabilization scenario. Furthermore, the relationship between cumulative emissions and peak warming is remarkably insensitive to the emission pathway (timing of emissions or peak emission rate). Hence policy targets based on limiting cumulative emissions of carbon dioxide are likely to be more robust to scientific uncertainty than emission-rate or concentration targets. Total anthropogenic emissions of one trillion tonnes of carbon (3.67 trillion tonnes of CO(2)), about half of which has already been emitted since industrialization began, results in a most likely peak carbon-dioxide-induced warming of 2 degrees C above pre-industrial temperatures, with a 5-95% confidence interval of 1.3-3.9 degrees C.

  12. Repetitive mammalian dwarfing during ancient greenhouse warming events.

    PubMed

    D'Ambrosia, Abigail R; Clyde, William C; Fricke, Henry C; Gingerich, Philip D; Abels, Hemmo A

    2017-03-01

    Abrupt perturbations of the global carbon cycle during the early Eocene are associated with rapid global warming events, which are analogous in many ways to present greenhouse warming. Mammal dwarfing has been observed, along with other changes in community structure, during the largest of these ancient global warming events, known as the Paleocene-Eocene Thermal Maximum [PETM; ~56 million years ago (Ma)]. We show that mammalian dwarfing accompanied the subsequent, smaller-magnitude warming event known as Eocene Thermal Maximum 2 [ETM2 (~53 Ma)]. Statistically significant decrease in body size during ETM2 is observed in two of four taxonomic groups analyzed in this study and is most clearly observed in early equids (horses). During ETM2, the best-sampled lineage of equids decreased in size by ~14%, as opposed to ~30% during the PETM. Thus, dwarfing appears to be a common evolutionary response of some mammals during past global warming events, and the extent of dwarfing seems related to the magnitude of the event.

  13. Effects of perioperative hypothermia and warming in surgical practice.

    PubMed

    Kumar, Senthil; Wong, Peng Foo; Melling, Andrew Christian; Leaper, David John

    2005-09-01

    Perioperative hypothermia is common and adversely affects clinical outcomes due to its effect on a range of homeostatic functions. Many of these adverse consequences are preventable by the use of warming techniques. A literature search was conducted to identify relevant published articles on perioperative hypothermia and warming. The databases searched include MEDLINE (1966 to February 2005), EMBASE (1974 to February 2005), CINAHL, the Cochrane library and the health technology assessment database. Reference lists of key articles were also searched. The primary beneficial effects of warming are mediated through increased blood flow and oxygen tension at tissue level. Reduction in wound infection, blood loss and perioperative pain with warming is promising. However, more evidence from good-quality prospective randomised controlled trials is needed to evaluate the role of warming in improving overall morbidity, mortality and hospital stay as well as to clarify its role as an adjunct to resuscitation and during the pre-hospital transport phase of critically ill patients. Awareness of the risks of perioperative hypothermia is the key to prevention. Achieving normothermia throughout the patient's journey is a worthwhile goal in surgical patients.

  14. Tracking ocean heat uptake during the surface warming hiatus

    SciTech Connect

    Liu, Wei; Xie, Shang -Ping; Lu, Jian

    2016-03-30

    Ocean heat uptake is observed to penetrate deep during the recent hiatus1,2,3 of global warming in the Atlantic and Southern Ocean. This has been suggested to indicate that the two regions are the driver of the surface warming hiatus4. We show that the deep heat penetration in the Atlantic and Southern Ocean is not unique to the hiatus but common to the past four decades including the 1970s-90s epoch of accelerated surface warming. Our analyses of a large ensemble simulation5 confirm the deep heat penetration in the Atlantic and Southern Ocean in ensemble members with or without surface warming hiatus in the early 21th century. During the past four decades, the global ocean heat content (OHC) of upper 1500m is dominated by a warming trend, and the depth of anthropogenic heat penetration merely reflects the depth of the mean meridional overturning circulation in the basin. Furthermore, the heat penetration depth is not a valid basis to infer the hiatus mechanism.

  15. Tracking ocean heat uptake during the surface warming hiatus

    DOE PAGES

    Liu, Wei; Xie, Shang -Ping; Lu, Jian

    2016-03-30

    Ocean heat uptake is observed to penetrate deep during the recent hiatus1,2,3 of global warming in the Atlantic and Southern Ocean. This has been suggested to indicate that the two regions are the driver of the surface warming hiatus4. We show that the deep heat penetration in the Atlantic and Southern Ocean is not unique to the hiatus but common to the past four decades including the 1970s-90s epoch of accelerated surface warming. Our analyses of a large ensemble simulation5 confirm the deep heat penetration in the Atlantic and Southern Ocean in ensemble members with or without surface warming hiatusmore » in the early 21th century. During the past four decades, the global ocean heat content (OHC) of upper 1500m is dominated by a warming trend, and the depth of anthropogenic heat penetration merely reflects the depth of the mean meridional overturning circulation in the basin. Furthermore, the heat penetration depth is not a valid basis to infer the hiatus mechanism.« less

  16. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection

    PubMed Central

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-01-01

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection. PMID:26838053

  17. Is a global warming signature emerging in the tropical Pacific?

    NASA Astrophysics Data System (ADS)

    Ashok, K.; Sabin, T. P.; Swapna, P.; Murtugudde, R. G.

    2012-01-01

    The tropical pacific experienced a hitherto-unseen anomalous basinwide warming from May 2009 through April 2010 with the maximum warming to the east of the dateline, but for a weak anomalous cooling west of 140°E after early boreal fall. Our observed analysis and model experiments isolate the potential teleconnections from TP during the summer of 2009. Further, we show through an empirical orthogonal function analysis of the tropical Pacific SSTA that the anomalous conditions in TP during this period could have manifested as a canonical El Niño, but for a slowly intensifying background west-east gradient. This zonal SST gradient is subject to an increasing trend associated with global warming. A possible implication is that any further increase in global warming may result in more basinwide warm events in place of canonical El Niños, along with the occurrence of more intense La Niñas and El Niño Modokis.

  18. Forced-air patient warming blankets disrupt unidirectional airflow.

    PubMed

    Legg, A J; Hamer, A J

    2013-03-01

    We have recently shown that waste heat from forced-air warming blankets can increase the temperature and concentration of airborne particles over the surgical site. The mechanism for the increased concentration of particles and their site of origin remained unclear. We therefore attempted to visualise the airflow in theatre over a simulated total knee replacement using neutral-buoyancy helium bubbles. Particles were created using a Rocket PS23 smoke machine positioned below the operating table, a potential area of contamination. The same theatre set-up, warming devices and controls were used as in our previous study. This demonstrated that waste heat from the poorly insulated forced-air warming blanket increased the air temperature on the surgical side of the drape by > 5°C. This created convection currents that rose against the downward unidirectional airflow, causing turbulence over the patient. The convection currents increased the particle concentration 1000-fold (2 174 000 particles/m(3) for forced-air warming vs 1000 particles/m(3) for radiant warming and 2000 particles/m(3) for the control) by drawing potentially contaminated particles from below the operating table into the surgical site. Cite this article: Bone Joint J 2013;95-B:407-10.

  19. Global warming induced hybrid rainy seasons in the Sahel

    NASA Astrophysics Data System (ADS)

    Salack, Seyni; Klein, Cornelia; Giannini, Alessandra; Sarr, Benoit; Worou, Omonlola N.; Belko, Nouhoun; Bliefernicht, Jan; Kunstman, Harald

    2016-10-01

    The small rainfall recovery observed over the Sahel, concomitant with a regional climate warming, conceals some drought features that exacerbate food security. The new rainfall features include false start and early cessation of rainy seasons, increased frequency of intense daily rainfall, increasing number of hot nights and warm days and a decreasing trend in diurnal temperature range. Here, we explain these mixed dry/wet seasonal rainfall features which are called hybrid rainy seasons by delving into observed data consensus on the reduction in rainfall amount, its spatial coverage, timing and erratic distribution of events, and other atmospheric variables crucial in agro-climatic monitoring and seasonal forecasting. Further composite investigations of seasonal droughts, oceans warming and the regional atmospheric circulation nexus reveal that the low-to-mid-level atmospheric winds pattern, often stationary relative to either strong or neutral El-Niño-Southern-Oscillations drought patterns, associates to basin warmings in the North Atlantic and the Mediterranean Sea to trigger hybrid rainy seasons in the Sahel. More challenging to rain-fed farming systems, our results suggest that these new rainfall conditions will most likely be sustained by global warming, reshaping thereby our understanding of food insecurity in this region.

  20. Experimental Studies of the Transport Parameters of Warm Dense Matter

    SciTech Connect

    Chouffani, Khalid

    2014-12-01

    There is a need to establish fundamental properties of matter and energy under extreme physical conditions. Although high energy density physics (HEDP) research spans a wide range of plasma conditions, there is one unifying regime that is of particular importance and complexity: that of warm dense matter, the transitional state between solid state condensed matter and energetic plasmas. Most laboratory experimental conditions, including inertial confinement implosion, fall into this regime. Because all aspects of laboratory-created high-energy-density plasmas transition through the warm dense matter regime, understanding the fundamental properties to determine how matter and energy interact in this regime is an important aspect of major research efforts in HEDP. Improved understanding of warm dense matter would have significant and wide-ranging impact on HEDP science, from helping to explain wire initiation studies on the Sandia Z machine to increasing the predictive power of inertial confinement fusion modeling. The central goal or objective of our proposed research is to experimentally determine the electrical resistivity, temperature, density, and average ionization state of a variety of materials in the warm dense matter regime, without the use of theoretical calculations. Since the lack of an accurate energy of state (EOS) model is primarily due to the lack of experimental data, we propose an experimental study of the transport coefficients of warm dense matter.

  1. Anthropogenic warming has caused hot droughts more frequently in China

    NASA Astrophysics Data System (ADS)

    Chen, Huopo; Sun, Jianqi

    2017-01-01

    Historical records have indicated an increase in high-impact drought occurrences across China during recent decades, but whether this increase is due to natural variability or anthropogenic change remains unclear. Thus, the shift toward dry conditions and their associated attributions across China are discussed in this study, primarily regarding the standardized precipitation evapotranspiration index (SPEI). The results show that drought occurrences across China increased consistently during 1951-2014, especially during the recent twenty years. Most of the increased drought events happened under warm-dry conditions that coincided with relatively high temperature anomalies but without large anomalies in annual precipitation, implying an increase in hot drought events across China. Further analysis revealed that the change in drought occurrences were mainly due to the combined activity of external natural forcings and anthropogenic changes across China. However, external natural forcings were mainly responsible for the variability of droughts and anthropogenic influences for their increasing trends, suggesting that anthropogenic warming has increased hot drought occurrences, associated risks and impacts across China. With continued warming in the future, the impact of anthropogenic warming on the increased hot drought events will be further amplified. The probability of warm years is projected to significantly increase, and the occurrence probability of hot drought events (SPEI < -1.0) will increase to nearly 100% by the year 2050, even though the annual precipitation is projected to increase across China in the future.

  2. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection.

    PubMed

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-02-03

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection.

  3. Possible methane-induced polar warming in the early Eocene.

    PubMed

    Sloan, L C; Walker, J C; Moore, T C; Rea, D K; Zachos, J C

    1992-05-28

    Reconstructions of early Eocene climate depict a world in which the polar environments support mammals and reptiles, deciduous forests, warm oceans and rare frost conditions. At the same time, tropical sea surface temperatures are interpreted to have been the same as or slightly cooler than present values. The question of how to warm polar regions of Earth without noticeably warming the tropics remains unresolved; increased amounts of greenhouse gases would be expected to warm all latitudes equally. Oceanic heat transport has been postulated as a mechanism for heating high latitudes, but it is difficult to explain the dynamics that would achieve this. Here we consider estimates of Eocene wetland areas and suggest that the flux of methane, an important greenhouse gas, may have been substantially greater during the Eocene than at present. Elevated methane concentrations would have enhanced early Eocene global warming, and also might specifically have prevented severe winter cooling of polar regions because of the potential of atmospheric methane to promote the formation of optically thick, polar stratospheric ice clouds.

  4. Repetitive mammalian dwarfing during ancient greenhouse warming events

    PubMed Central

    D’Ambrosia, Abigail R.; Clyde, William C.; Fricke, Henry C.; Gingerich, Philip D.; Abels, Hemmo A.

    2017-01-01

    Abrupt perturbations of the global carbon cycle during the early Eocene are associated with rapid global warming events, which are analogous in many ways to present greenhouse warming. Mammal dwarfing has been observed, along with other changes in community structure, during the largest of these ancient global warming events, known as the Paleocene-Eocene Thermal Maximum [PETM; ~56 million years ago (Ma)]. We show that mammalian dwarfing accompanied the subsequent, smaller-magnitude warming event known as Eocene Thermal Maximum 2 [ETM2 (~53 Ma)]. Statistically significant decrease in body size during ETM2 is observed in two of four taxonomic groups analyzed in this study and is most clearly observed in early equids (horses). During ETM2, the best-sampled lineage of equids decreased in size by ~14%, as opposed to ~30% during the PETM. Thus, dwarfing appears to be a common evolutionary response of some mammals during past global warming events, and the extent of dwarfing seems related to the magnitude of the event. PMID:28345031

  5. Impacts of climate warming on terrestrial ectotherms across latitude

    PubMed Central

    Deutsch, Curtis A.; Tewksbury, Joshua J.; Huey, Raymond B.; Sheldon, Kimberly S.; Ghalambor, Cameron K.; Haak, David C.; Martin, Paul R.

    2008-01-01

    The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest. PMID:18458348

  6. Climate warming and disease risks for terrestrial and marine biota

    USGS Publications Warehouse

    Harvell, C.D.; Mitchell, C.E.; Ward, J.R.; Altizer, S.; Dobson, A.P.; Ostfeld, R.S.; Samuel, M.D.

    2002-01-01

    Infectious diseases can cause rapid population declines or species extinctions. Many pathogens of terrestrial and marine taxa are sensitive to temperature, rainfall, and humidity, creating synergisms that could affect biodiversity. Climate warming can increase pathogen development and survival rates, disease transmission, and host susceptibility. Although most host-parasite systems are predicted to experience more frequent or severe disease impacts with warming, a subset of pathogens might decline with warming, releasing hosts from disease. Recently, changes in El Niño–Southern Oscillation events have had a detectable influence on marine and terrestrial pathogens, including coral diseases, oyster pathogens, crop pathogens, Rift Valley fever, and human cholera. To improve our ability to predict epidemics in wild populations, it will be necessary to separate the independent and interactive effects of multiple climate drivers on disease impact.

  7. Laboratory measurements of the resistivity of warm dense plasmas

    NASA Astrophysics Data System (ADS)

    Booth, Nicola; Robinson, Alex; Hakel, Peter; Gregori, Ginaluca; Rajeev, Pattathil; Woolsey, Nigel

    2015-11-01

    In this talk we will present a method for studying material resistivity in warm dense plasmas in the laboratory in which we interrogate the microphysics of the low energy electron distributions associated with an anisotropic return current. Through experimental measurements of the polarization of the Ly- α doublet emission (2s1 / 2-2p1 / 2,3/2 transitions) of sulphur, we determine the resistivity of a sulphur-doped plastic target heated to warm dense conditions by an ultra-intense laser at relativistic intensities, I ~ 5 ×1020 Wcm-2. We describe a method of exploiting classical x-ray scattering to separately measure both the π- and σ- polarizations of Ly-α1 spectral emission in a single shot. These measurements make it possible to explore fundamental material properties such as resistivity in warm and hot dense plasmas through matching plasma physics modelling to atomic physics calculations of the experimentally measured large, positive, polarisation.

  8. Effect of respiratory warm-up on anaerobic power.

    PubMed

    Özdal, Mustafa; Bostanci, Özgür; Dağlioğlu, Önder; Ağaoğlu, Seydi Ahmet; Kabadayi, Menderes

    2016-07-01

    [Purpose] The aim of the present study was to examine the effects of respiratory muscle warm-up on anaerobic power. [Subjects and Methods] Thirty male field hockey players (age, 20.5 ± 2.0 years) each participated in a control (CAN) trial and an experimental (EAN) trial. The EAN trial involved respiratory muscle warm-up, while the CAN trial did not. Anaerobic power was measured using the Wingate protocol. Paired sample t-tests were used to compare the EAN and CAN trials. [Results] There were significant increases in peak power and relative peak power, and decreases in the time to peak after the EAN trial by 8.9%, 9.6%, and 28.8% respectively. [Conclusion] Respiratory muscle warm-up may positively affect anaerobic power due to faster attainment of peak power.

  9. Changes in Terrestrial Water Availability under Global Warming

    NASA Astrophysics Data System (ADS)

    Lan, C. W.; Lo, M. H.; Chou, C.

    2014-12-01

    Under global warming, the annual range of precipitation is widening (Chou and Lan, 2012; Chou et al., 2013) and the frequency of precipitation extreme events also increases. Due to nonlinear responses of land hydrological process to precipitation extremes, runoff can increase exponentially, and on the hard hand, soil water storage may decline. In addition, IPCC AR5 indicates that soil moisture decreases in most areas under the global warming scenario. In this study, we use NCAR Community Land Model version 4 (CLM4) to simulate changes in terrestrial available water (TAW, defined as the precipitation minus evaporation minus runoff, and then divided by the precipitation) under global warming. Preliminary results show that the TAW has clear seasonal variations. Compared to previous studies, which do not include the runoff in the calculations of the available water, our estimates on the TAW has much less available water in high latitudes through out the year, especially under extreme precipitation events.

  10. Stratospheric warmings: Synoptic, dynamic and general-circulation aspects

    NASA Technical Reports Server (NTRS)

    Mcinturff, R. M. (Editor)

    1978-01-01

    Synoptic descriptions consist largely of case studies, which involve a distinction between major and minor warmings. Results of energetics studies show the importance of tropospheric-stratospheric interaction, and the significance of the pressure-work term near the tropopause. Theoretical studies have suggested the role of wave-zonal flow interaction as well as nonlinear interaction between eddies, chemical and photochemical reactions, boundary forcing, and other factors. Numerical models have been based on such considerations, and these are discussed under various categories. Some indication is given as to why some of the models have been more successful than others in simulating warnings. The question of ozone and its role in warmings is briefly discussed. Finally, a broad view is taken of stratospheric warmings in relation to man's activities.

  11. Effect of respiratory warm-up on anaerobic power

    PubMed Central

    Özdal, Mustafa; Bostanci, Özgür; Dağlioğlu, Önder; Ağaoğlu, Seydi Ahmet; Kabadayi, Menderes

    2016-01-01

    [Purpose] The aim of the present study was to examine the effects of respiratory muscle warm-up on anaerobic power. [Subjects and Methods] Thirty male field hockey players (age, 20.5 ± 2.0 years) each participated in a control (CAN) trial and an experimental (EAN) trial. The EAN trial involved respiratory muscle warm-up, while the CAN trial did not. Anaerobic power was measured using the Wingate protocol. Paired sample t-tests were used to compare the EAN and CAN trials. [Results] There were significant increases in peak power and relative peak power, and decreases in the time to peak after the EAN trial by 8.9%, 9.6%, and 28.8% respectively. [Conclusion] Respiratory muscle warm-up may positively affect anaerobic power due to faster attainment of peak power. PMID:27512273

  12. Climate Warming and Disease Risks for Terrestrial and Marine Biota

    NASA Astrophysics Data System (ADS)

    Harvell, C. Drew; Mitchell, Charles E.; Ward, Jessica R.; Altizer, Sonia; Dobson, Andrew P.; Ostfeld, Richard S.; Samuel, Michael D.

    2002-06-01

    Infectious diseases can cause rapid population declines or species extinctions. Many pathogens of terrestrial and marine taxa are sensitive to temperature, rainfall, and humidity, creating synergisms that could affect biodiversity. Climate warming can increase pathogen development and survival rates, disease transmission, and host susceptibility. Although most host-parasite systems are predicted to experience more frequent or severe disease impacts with warming, a subset of pathogens might decline with warming, releasing hosts from disease. Recently, changes in El Niño-Southern Oscillation events have had a detectable influence on marine and terrestrial pathogens, including coral diseases, oyster pathogens, crop pathogens, Rift Valley fever, and human cholera. To improve our ability to predict epidemics in wild populations, it will be necessary to separate the independent and interactive effects of multiple climate drivers on disease impact.

  13. Structural Evolution of a Warm Frontal Precipitation Band During GCPEx

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Naeger, Aaron; Molthan, Andrew; Nesbitt, Stephen

    2015-01-01

    A warm frontal precipitation band developed over a few hours 50-100 km to the north of a surface warm front. The 3-km WRF was able to realistically simulate band development, although the model is somewhat too weak. Band genesis was associated with weak frontogenesis (deformation) in the presence of weak potential and conditional instability feeding into the band region, while it was closer to moist neutral within the band. As the band matured, frontogenesis increased, while the stability gradually increased in the banding region. Cloud top generating cells were prevalent, but not in WRF (too stable). The band decayed as the stability increased upstream and the frontogenesis (deformation) with the warm front weakened. The WRF may have been too weak and short-lived with the band because too stable and forcing too weak (some micro issues as well).

  14. Fifty-year record of north polar temperatures shows warming

    NASA Astrophysics Data System (ADS)

    Kahl, Jonathan D. W.; Jansen, Mark; Pulrang, Martin A.

    2001-01-01

    The Arctic Ocean has long been at the center of the global warming debate, since a significant reduction in sea ice could alter the Earth's radiation balance, as well as modify global atmospheric circulation. According to an August 19, 2000, report in The New York Times, passengers aboard a Russian icebreaker-turned-cruise ship observed a "mile-wide" patch of ice-free ocean at the pole. This observation immediately prompted speculation that global warming is already melting the polar icecap. Two types of open water commonly occur throughout the Arctic pack ice. The linear features, called leads, and curvilinear features, called polynyas, are not necessarily cause for concern. However, the overall extent of Arctic sea ice has decreased in recent decades and, hence, the issue of polar warming is of broad environmental interest.

  15. Constraining Mid Pliocene North Atlantic Warming Using a Multiproxy Approach

    NASA Astrophysics Data System (ADS)

    Dowsett, H.; Robinson, M.; Dwyer, G.; Cronin, T.; Chandler, M.

    2005-12-01

    Relatively high sea surface temperature during the mid Pliocene (~3.0 Ma) has been documented in many oceanic regions. Constraining the magnitude, variability, and regional extent of warming is critical for modeling experiments being undertaken based upon reconstruction of mid Pliocene conditions. A comprehensive re-evaluation of the mid Pliocene of the North Atlantic region using a multiproxy approach that includes quantitative planktic foraminifer analysis, and Mg:Ca paleothermometry on Neogloboquadrina pachyderma and Globigerina bulloides yields new insights into conditions occurring 3 million years ago. While the overall pattern of warming documented by the PRISM (Pliocene Research, Interpretation, and Synoptic Mapping) Project remains unchanged, mean regional warming in the North Atlantic may have been underestimated in earlier reconstructions. Model simulations using maximum and minimum probable SST reconstructions provide a more useful measure of the spatial variability of mid-Pliocene warmth and should produce more realistic model simulations.

  16. The impact of global warming on agriculture: A Ricardian analysis

    SciTech Connect

    Mendelsohn, R.; Nordaus, W.D.; Daigee Shaw

    1994-09-01

    We measure the economic impact of climate on land prices. Using cross-sectional data on climate, farmland prices, and other economic and geophysical data for almost 3,000 counties in the United States, we find that higher temperatures in all seasons except autumn reduce average farm values, while more precipitation outside of autumn increases farm values. Applying the model to a global-warming scenario shows a significantly lower estimated impact of global warming on U.S. agriculture than the traditional production-function approach and, in one case, suggests that, even without CO{sub 2} fertilization, global warming may have economic benefits for agriculture. 16 refs., 5 figs., 5 tabs.

  17. Recent decrease in typhoon destructive potential and global warming implications

    PubMed Central

    Lin, I-I; Chan, Johnny C.L.

    2015-01-01

    Typhoons (tropical cyclones) severely impact the half-billion population of the Asian Pacific. Intriguingly, during the recent decade, typhoon destructive potential (Power Dissipation Index, PDI) has decreased considerably (by ∼35%). This decrease, paradoxically, has occurred despite the increase in typhoon intensity and ocean warming. Using the method proposed by Emanuel (in 2007), we show that the stronger negative contributions from typhoon frequency and duration, decrease to cancel the positive contribution from the increasing intensity, controlling the PDI. Examining the typhoons' environmental conditions, we find that although the ocean condition became more favourable (warming) in the recent decade, the atmospheric condition ‘worsened' at the same time. The ‘worsened' atmospheric condition appears to effectively overpower the ‘better' ocean conditions to suppress PDI. This stronger negative contribution from reduced typhoon frequency over the increased intensity is also present under the global warming scenario, based on analysis of the simulated typhoon data from high-resolution modelling. PMID:25990561

  18. CFC Destruction of Ozone - Major Cause of Recent Global Warming!

    NASA Astrophysics Data System (ADS)

    Ashworth, R. A.

    2008-12-01

    There has been a lot of discussion about global warming. Some say anthropogenic carbon dioxide (CO2) emissions caused the earth to warm. Others say there is no abnormality at all, that it is just natural warming. As you will see from the data presented and analyzed, a greater than normal warming did occur in recent times but no measurements confirm an increase in CO2, whether anthropogenic or natural, had any effect on global temperatures. There is however, strong evidence that anthropogenic emissions of chlorofluorocarbons (CFCs) were the major cause of the recent abnormal warming. CFCs have created both unnatural atmospheric cooling and warming based on these facts: CFCs have destroyed ozone in the lower stratosphere/ upper troposphere causing these zones in the atmosphere to cool 1.37°C from 1966 to 1998. This time span was selected to eliminate the effect of the natural solar irradiance (cooling-warming) cycle effect on the earth's temperature. The loss of ozone allowed more UV light to pass through the stratosphere at a sufficient rate to warm the lower troposphere plus 8-3/4" of the earth by 0.48°C (1966 to 1998). Mass and energy balances show that the energy that was absorbed in the lower stratosphere and upper troposphere hit the lower troposphere/earth at a sustainable level of 1.69 × 10 18 Btu more in 1998 than it did in 1966. Greater ozone depletion in the Polar Regions has caused these areas to warm some two and one-half (2 1/2) times that of the average earth temperature -1.2°C versus 0.48°C. This has caused permafrost to melt, which is releasing copious quantities of methane, estimated at 100 times that of manmade CO2 release, to the atmosphere. Methane in the atmosphere slowly converts to CO2 and water vapor and its release has contributed to higher CO2 concentrations in the atmosphere. There is a temperature anomaly in Antarctica. The Signey Island landmass further north, warmed like the rest of the Polar Regions; but south at Vostok, there has

  19. Ocean's response to a CO/sub 2/-induced warming

    SciTech Connect

    Bryan, K.; Spelman, M.J.

    1985-11-20

    The effect of a large increase in atmospheric CO/sub 2/ on world climate was studied using a coupled ocean-atmosphere model. In particular, the predicted response of the ocean on the warming episode was considered. It was found that a fourfold increase in atmospheric CO/sub 2/ causes a warming effect of over 4 C, sufficient to produce a partial collapse of the thermohaline circulation (THC) of the ocean. It was inferred that as a result of the partial collapse of the THC the thermocline is able to sequester twice as much heat as would be predicted under normal climatic conditions, producing a negative feedback for greenhouse warming. However, the THC collapse would also affect the carbon cycle, possibly producing a feedback opposite to the effect of an increased heat uptake.

  20. Ion-ion dynamic structure factor of warm dense mixtures

    DOE PAGES

    Gill, N. M.; Heinonen, R. A.; Starrett, C. E.; ...

    2015-06-25

    In this study, the ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ionmore » dynamical structure factor and sound speed of a warm dense mixture—equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.« less

  1. Ion-ion dynamic structure factor of warm dense mixtures

    SciTech Connect

    Gill, N. M.; Heinonen, R. A.; Starrett, C. E.; Saumon, D.

    2015-06-25

    In this study, the ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ion dynamical structure factor and sound speed of a warm dense mixture—equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.

  2. Calcium ions facilitate body heat emission response to warming.

    PubMed

    Tkachenko, E Ya; Khramova, G M; Kozyreva, T V

    2015-01-01

    Involvement of various areas of the body surface in heat emission response to warming is characterized by a certain succession. The first response preceding the deep body temperature rise is dilation of ear skin vessels. Then, an increase in deep body temperature is counterbalanced by vascular reaction in the tail region, which plays the leading role in up-regulation of heat emission. Calcium ions accelerate the vascular response to warming in both regions, although they produce no effect on the maximum level of heat emission. Our findings confirm the involvement of Ca(2+)-dependent mechanisms in activation of the processes aimed at stabilization of body temperature in warm-blooded animals. The role of heat-sensitive TRPV1 ion channels determining modality of the temperature signal and direction of effector reactions is discussed.

  3. Atmospheric sulfur hexafluoride - Sources, sinks and greenhouse warming

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Sze, Nien D.; Wang, Wei-Chyung; Shia, George; Goldman, Aaron; Murcray, Frank J.; Murcray, David G.; Rinsland, Curtis P.

    1993-01-01

    An estimate is obtained of worldwide production of SF6, from which a global emission rate is derived and extrapolated for the next 20 years. The atmospheric lifetime of SF6 is then estimated based on a known mechanism (e.g., photolysis and atmospheric oxidation) and/or on the mass balance method. Finally, the radiative forcing of SF6 is calculated based on recent laboratory IR absorption data, and the expected warming over the time period 1950-2010 is computed for several emission scenarios. Calculations showed that SF6 is 3 times more effective as a greenhouse gas compared to CFC 11 on a per-molecule basis. However, based on projected emission scenarios, the expected warming from SF6 through 2010 is small (0.004 C), compared to the warming from CO2 and other trace gases (0.8 C).

  4. Early emergence in a butterfly causally linked to anthropogenic warming.

    PubMed

    Kearney, Michael R; Briscoe, Natalie J; Karoly, David J; Porter, Warren P; Norgate, Melanie; Sunnucks, Paul

    2010-10-23

    There is strong correlative evidence that human-induced climate warming is contributing to changes in the timing of natural events. Firm attribution, however, requires cause-and-effect links between observed climate change and altered phenology, together with statistical confidence that observed regional climate change is anthropogenic. We provide evidence for phenological shifts in the butterfly Heteronympha merope in response to regional warming in the southeast Australian city of Melbourne. The mean emergence date for H. merope has shifted -1.5 days per decade over a 65-year period with a concurrent increase in local air temperatures of approximately 0.16°C per decade. We used a physiologically based model of climatic influences on development, together with statistical analyses of climate data and global climate model projections, to attribute the response of H. merope to anthropogenic warming. Such mechanistic analyses of phenological responses to climate improve our ability to forecast future climate change impacts on biodiversity.

  5. Direct impacts of recent climate warming on insect populations.

    PubMed

    Robinet, Christelle; Roques, Alain

    2010-06-01

    Effects of recent climate change have already been detected in many species, and, in particular, in insects. The present paper reviews the key impacts of global warming on insect development and dispersal. The effects of climate change appear to be much more complex than a simple linear response to an average increase in temperature. They can differ between seasons and bioclimatic regions. Earlier flight periods, enhanced winter survival and acceleration of development rates are the major insect responses. Differential response of insects and hosts to warming up might also lead to disruption of their phenological synchrony, but adaptive genetic processes are likely to quickly restore this synchrony. In a number of cases, warming results in removing or relocating the barriers that limit present species' ranges. It is also likely to facilitate the establishment and spread of invasive alien species. Finally, knowledge gaps are identified and future research interests are suggested.

  6. Decreased structural defence of an invasive thistle under warming.

    PubMed

    Zhang, R; Leshak, A; Shea, K

    2012-01-01

    Plant structural defences play a key role in preventing fitness loss due to herbivory. However, how structural defences are affected by potential climate change is rarely examined. We examined how leaf morphological traits that relate to the structural defence of an invasive thistle, Carduus nutans, change in a warmer climate. We manipulated warming using open-top chambers (OTCs) and examined the morphology of leaves at three different positions (the 5th, 10th and 15th leaves, counted from the top of the plant) in two destructive summer censuses. We found that structural defence traits were different under ambient versus warmed conditions. Prickle densities (both the number of prickles per leaf area and the number of prickles per leaf mass) were significantly lower in plants grown in a warmer climate. Our results suggest that plant structural defences may be reduced under warming, and therefore should be considered when examining species' responses to climate change.

  7. Climate warming and disease risks for terrestrial and marine biota.

    PubMed

    Harvell, C Drew; Mitchell, Charles E; Ward, Jessica R; Altizer, Sonia; Dobson, Andrew P; Ostfeld, Richard S; Samuel, Michael D

    2002-06-21

    Infectious diseases can cause rapid population declines or species extinctions. Many pathogens of terrestrial and marine taxa are sensitive to temperature, rainfall, and humidity, creating synergisms that could affect biodiversity. Climate warming can increase pathogen development and survival rates, disease transmission, and host susceptibility. Although most host-parasite systems are predicted to experience more frequent or severe disease impacts with warming, a subset of pathogens might decline with warming, releasing hosts from disease. Recently, changes in El Niño-Southern Oscillation events have had a detectable influence on marine and terrestrial pathogens, including coral diseases, oyster pathogens, crop pathogens, Rift Valley fever, and human cholera. To improve our ability to predict epidemics in wild populations, it will be necessary to separate the independent and interactive effects of multiple climate drivers on disease impact.

  8. How warm was Greenland during the last interglacial period?

    NASA Astrophysics Data System (ADS)

    Landais, Amaelle; Masson-Delmotte, Valérie; Capron, Emilie; Langebroek, Petra M.; Bakker, Pepijn; Stone, Emma J.; Merz, Niklaus; Raible, Christoph C.; Fischer, Hubertus; Orsi, Anaïs; Prié, Frédéric; Vinther, Bo; Dahl-Jensen, Dorthe

    2016-09-01

    The last interglacial period (LIG, ˜ 129-116 thousand years ago) provides the most recent case study of multimillennial polar warming above the preindustrial level and a response of the Greenland and Antarctic ice sheets to this warming, as well as a test bed for climate and ice sheet models. Past changes in Greenland ice sheet thickness and surface temperature during this period were recently derived from the North Greenland Eemian Ice Drilling (NEEM) ice core records, northwest Greenland. The NEEM paradox has emerged from an estimated large local warming above the preindustrial level (7.5 ± 1.8 °C at the deposition site 126 kyr ago without correction for any overall ice sheet altitude changes between the LIG and the preindustrial period) based on water isotopes, together with limited local ice thinning, suggesting more resilience of the real Greenland ice sheet than shown in some ice sheet models. Here, we provide an independent assessment of the average LIG Greenland surface warming using ice core air isotopic composition (δ15N) and relationships between accumulation rate and temperature. The LIG surface temperature at the upstream NEEM deposition site without ice sheet altitude correction is estimated to be warmer by +8.5 ± 2.5 °C compared to the preindustrial period. This temperature estimate is consistent with the 7.5 ± 1.8 °C warming initially determined from NEEM water isotopes but at the upper end of the preindustrial period to LIG temperature difference of +5.2 ± 2.3 °C obtained at the NGRIP (North Greenland Ice Core Project) site by the same method. Climate simulations performed with present-day ice sheet topography lead in general to a warming smaller than reconstructed, but sensitivity tests show that larger amplitudes (up to 5 °C) are produced in response to prescribed changes in sea ice extent and ice sheet topography.

  9. Conservation Planning for Coral Reefs Accounting for Climate Warming Disturbances

    PubMed Central

    Magris, Rafael A.; Heron, Scott F.; Pressey, Robert L.

    2015-01-01

    Incorporating warming disturbances into the design of marine protected areas (MPAs) is fundamental to developing appropriate conservation actions that confer coral reef resilience. We propose an MPA design approach that includes spatially- and temporally-varying sea-surface temperature (SST) data, integrating both observed (1985–2009) and projected (2010–2099) time-series. We derived indices of acute (time under reduced ecosystem function following short-term events) and chronic thermal stress (rate of warming) and combined them to delineate thermal-stress regimes. Coral reefs located on the Brazilian coast were used as a case study because they are considered a conservation priority in the southwestern Atlantic Ocean. We show that all coral reef areas in Brazil have experienced and are projected to continue to experience chronic warming, while acute events are expected to increase in frequency and intensity. We formulated quantitative conservation objectives for regimes of thermal stress. Based on these objectives, we then evaluated if/how they are achieved in existing Brazilian MPAs and identified priority areas where additional protection would reinforce resilience. Our results show that, although the current system of MPAs incorporates locations within some of our thermal-stress regimes, historical and future thermal refugia along the central coast are completely unprotected. Our approach is applicable to other marine ecosystems and adds to previous marine planning for climate change in two ways: (i) by demonstrating how to spatially configure MPAs that meet conservation objectives for warming disturbance using spatially- and temporally-explicit data; and (ii) by strategically allocating different forms of spatial management (MPA types) intended to mitigate warming impacts and also enhance future resistance to climate warming. PMID:26535586

  10. Warming experiments underpredict plant phenological responses to climate change.

    PubMed

    Wolkovich, E M; Cook, B I; Allen, J M; Crimmins, T M; Betancourt, J L; Travers, S E; Pau, S; Regetz, J; Davies, T J; Kraft, N J B; Ault, T R; Bolmgren, K; Mazer, S J; McCabe, G J; McGill, B J; Parmesan, C; Salamin, N; Schwartz, M D; Cleland, E E

    2012-05-02

    Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

  11. Warming experiments underpredict plant phenological responses to climate change

    USGS Publications Warehouse

    Wolkovich, Elizabeth M.; Cook, Benjamin I.; Allen, Jenica M.; Crimmins, Theresa M.; Betancourt, Julio L.; Travers, Steven E.; Pau, Stephanie; Regetz, James; Davies, T. Jonathan; Kraft, Nathan J.B.; Ault, Toby R.; Bolmgren, Kjell; Mazer, Susan J.; McCabe, Gregory J.; McGill, Brian J.; Parmesan, Camille; Salamin, Nicolas; Schwartz, Mark D.; Cleland, Elsa E.

    2012-01-01

    Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

  12. Warming Experiments Underpredict Plant Phenological Responses to Climate Change

    NASA Technical Reports Server (NTRS)

    Wolkovich, E. M.; Cook, B. I.; Allen, J. M.; Crimmins, T. M.; Betancourt, J. L.; Travers, S. E.; Pau, S.; Regetz, J.; Davies, T. J.; Kraft, N. J. B.; Ault, T. R.; Bolmgren, K.; Mazer, S. J.; McCabe, G. J.; McGill, B. J.; Parmesan, C.; Salamin, N.; Schwartz, M. D.; Cleland, E. E.

    2012-01-01

    Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

  13. Global warming: knowledge and views of Iranian students.

    PubMed

    Yazdanparast, Taraneh; Salehpour, Sousan; Masjedi, Mohammad Reza; Seyedmehdi, Seyed Mohammad; Boyes, Eddie; Stanisstreet, Martin; Attarchi, Mirsaeed

    2013-04-06

    Study of students' knowledge about global warming can help authorities to have better imagination of this critical environmental problem. This research examines high school students' ideas about greenhouse effect and the results may be useful for the respective authorities to improve cultural and educational aspects of next generation. In this cross-sectional study, a 42 question questionnaire with mix of open and closed questions was used to evaluate high school students' view about the mechanism, consequences, causes and cures of global warming. To assess students' knowledge, cognitive score was also calculated. 1035 students were randomly selected from 19 educational districts of Tehran. Sampling method was multi stage. Only 5.1% of the students could explain greenhouse effect correctly and completely. 88.8% and 71.2% respectively believed "if the greenhouse effect gets bigger the Earth will get hotter" and "incidence of more skin cancers is a consequence of global warming". 69.6% and 68.8% respectively thought "the greenhouse effect is made worse by too much carbon dioxide" and "presence of ozone holes is a cause of greenhouse effect". 68.4% believed "not using cars so much is a cure for global warming". While a student's 'cognitive score' could range from -36 to +36, Students' mean cognitive score was equal to +1.64. Mean cognitive score of male students and grade 2 & 3 students was respectively higher than female ones (P<0.01) and grade 1 students (P<0.001) but there was no statistically significant difference between students of different regions (P>0.05). In general, students' knowledge about global warming was not acceptable and there were some misconceptions in the students' mind, such as supposing ozone holes as a cause and more skin cancer as a consequence of global warming. The Findings of this survey indicate that, this important stratum of society have been received no sufficient and efficient education and sensitization on this matter.

  14. Body heat transfer during hip surgery using active core warming.

    PubMed

    Kulkarni, P; Webster, J; Carli, F

    1995-07-01

    The purpose of this study was to evaluate the effect of core warming on heat redistribution from the core to the periphery as manifested by changes in core, mean skin temperature and mean body heat, investigated in a group of 30 patients undergoing total hip replacement. The control group (n = 10) had no active warming. Core warming was achieved in the humidifier group (n = 10) by using humidified and warmed gases at 40 degrees C, whilst in the oesophageal group (n = 10), an oesophageal heat exchanger was used to achieve active warming. Operating room temperature and relative humidity was standardised. Aural canal and skin temperatures (15 sites) were measured before induction of anaesthesia, at the end of surgery and one hour of recovery after anaesthesia. Mean skin temperatures were calculated for a weighted four and unweighted 15 points, and mean body heat were calculated to quantify the distribution of body heat. Core temperature decreased in the control and the oesophageal groups, but not in the humidifier group at the end of surgery; by mean values +/- SD of 1.9 degrees C +/- 0.6, 1.2 degrees C +/- 0.6 and 0.4 degree C +/- 0.2 degree C, respectively (P < 0.01). Mean skin temperature (MST15) decreased in the control group by 1.0 degree C +/- 1.0, but not in the actively warmed groups where the mean increased by 0.1 degree C +/- 1.4 and 0.2 degree C +/- 0.2 in the oesophageal and humidifier groups, respectively (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Component analysis report: Line shaft pump bushings, Warm Springs State Hospital, Warm Springs, Montana

    SciTech Connect

    McAlpin, Ron

    1981-03-01

    On 29 January 1981, the Failure Analysis Laboratory at Radian Corporation received two spider bushings from the State Hospital at Warm Springs, Montana, for metallurgical analysis. The bushings are from a 19 stage, 200 hp Worthington line shaft vertical turbine pump. The pump was set at 830 feet to test a low temperature geothermal well. One bushing was originally set near the top of the well; the other bushing had been set deep in the well. The bushings were reportedly manufactured from bronze sleeve-bearing material. After approximately 50 hours of intermittent operation, the pump began to experience severe vibration. The vibration appeared random in that it sometimes occurred immediately upon start up and other times occurred after several hours of operation. A Worthington service engineer tested the pump and made several recommendations to alleviate the problem. He concluded that excessive packing box friction, overloading, and shaft unscrewing caused the vibration. He also adjusted the vertical shaft and impeller clearances. The purposes of this analysis is to examine the shaft bushings for evidence of mechanical or corrosion damage that might have been related to the vibration problem.

  16. Quantifying global warming from the retreat of glaciers

    SciTech Connect

    Oerlemans, J. )

    1994-04-08

    Records of glacier fluctuations compiled by the World Glacier Monitoring Service can be used to derive an independent estimate of global warming during the last 100 years. Records of different glaciers are made comparable by a two-step scaling procedure; one allowing for differences in glacier geometry, the other for differences in climate sensitivity. The retreat of glaciers during the last 100 years appears to be coherent over the globe. On the basis of modeling of the climate sensitivity of glaciers, the observed glacier retreat can be explained by a linear warming trend of 0.66 kelvin per century.

  17. CLIMATE CHANGE: The Causes of 20th Century Warming.

    PubMed

    Zwiers, F W; Weaver, A J

    2000-12-15

    Global air surface temperatures increased by about 0.6 degrees C during the 20th century, but as Zwiers and Weaver discuss in their Perspective, the warming was not continuous. Two distinct periods of warming, from 1910 to 1945 and since 1976, were separated by a period of very gradual cooling. The authors highlight the work by Stott et al., who have performed the most comprehensive simulation of 20th century climate to date. The agreement between observed and simulated temperature variations strongly suggests that forcing from anthropogenic activities, moderated by variations in solar and volcanic forcing, has been the main driver of climate change during the past century.

  18. Quantifying global warming from the retreat of glaciers.

    PubMed

    Oerlemans, J

    1994-04-08

    Records of glacier fluctuations compiled by the World Glacier Monitoring Service can be used to derive an independent estimate of global warming during the last 100 years. Records of different glaciers are made comparable by a two-step scaling procedure: one allowing for differences in glacier geometry, the other for differences in climate sensitivity. The retreat of glaciers during the last 100 years appears to be coherent over the globe. On the basis of modeling of the climate sensitivity of glaciers, the observed glacier retreat can be explained by a linear warming trend of 0.66 kelvin per century.

  19. Optically thin cirrus clouds - Radiative impact on the warm pool

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Kratz, D. P.; Yoo, J.-M.; Dalu, G.; Vernekar, A.

    1993-01-01

    The role of the radiative effects of thin cirrus clouds in the energy balance of the 'warm pool' region is examined with reference to data obtained by the Infrared Interferometer Spectrometer (IRIS) flown on the Nimbus 4 satellite in 1970. First, the IRIS observations and a method for deriving the thin cirrus information are briefly discussed. A simple radiative energy balance model is then developed which is applicable to the mesoscale convective systems in the 'warm pool'. The radiative energy balance model, which does not explicitly account for the transports, is used to demonstrate the net radiative heating produced by the thin cirrus clouds.

  20. Singular perturbation methods and the warm plasma model

    NASA Technical Reports Server (NTRS)

    Lee, S. W.; Deschamps, G. A.

    1971-01-01

    The application of techniques of the singular perturbation theory to the analysis of warm plasma is discussed. Typically, the cold plasma model can be applied over wide ranges of parameters and only over narrow ranges forming so-called boundary layers is the warm plasma model used. Simplified equations can be used and the solutions matched on both sides of the layer's boundary. Simple examples to illustrate the solution are presented. The analysis confirms that some results are highly sensitive to the values of: (1) wire radius or gap size for an antenna, (2) temperature of the medium, and (3) incident angle of a plane wave.

  1. Global warming description using Daisyworld model with greenhouse gases.

    PubMed

    Paiva, Susana L D; Savi, Marcelo A; Viola, Flavio M; Leiroz, Albino J K

    2014-11-01

    Daisyworld is an archetypal model of the earth that is able to describe the global regulation that can emerge from the interaction between life and environment. This article proposes a model based on the original Daisyworld considering greenhouse gases emission and absorption, allowing the description of the global warming phenomenon. Global and local analyses are discussed evaluating the influence of greenhouse gases in the planet dynamics. Numerical simulations are carried out showing the general qualitative behavior of the Daisyworld for different scenarios that includes solar luminosity variations and greenhouse gases effect. Nonlinear dynamics perspective is of concern discussing a way that helps the comprehension of the global warming phenomenon.

  2. A note on antenna models in a warm isotropic plasma

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1980-01-01

    The electron-transparent and electron-reflecting models of antennas in a warm isotropic plasma are reexamined. It is shown that a purely electrical treatment of both the models without an explicit use of the boundary condition on electron velocity yields the same results as those previously obtained through an electromechanical treatment. The essential difference between the two models is that for the electron-reflecting model, fields are nonzero only in the exterior region, while for the electron-transparent model, they are nonzero both in the exterior and interior regions of the antenna. This distinction helps in clarifying some misconceptions about these models of antennas in warm isotropic plasma.

  3. Theory of non-Gaussianity in warm inflation

    SciTech Connect

    Bastero-Gil, Mar; Berera, Arjun; Moss, Ian G.; Ramos, Rudnei O. E-mail: ab@ph.ed.ac.uk E-mail: rudnei@uerj.br

    2014-12-01

    The theory and methodology is developed to compute the bispectrum in warm inflation, leading to results for the non-linearity parameter and the shape of the bispectrum. Particular attention is paid to the study of the bispectrum in the regime of weak dissipation and how stochastic fluctuations affect the bispectrum. It is shown that, in contrast to the strong dissipative regime, the amplitude of non-Gaussianity is strongly dependent on the parameters governing the microscopic physics in the intermediate and weak dissipation warm inflation regimes. The most important results concern the shape of the bispectrum, which has two different, but distinct, forms in the weak and strong dissipative regimes.

  4. Warm Water and Cool Nests Are Best. How Global Warming Might Influence Hatchling Green Turtle Swimming Performance

    PubMed Central

    Booth, David T.; Evans, Andrew

    2011-01-01

    For sea turtles nesting on beaches surrounded by coral reefs, the most important element of hatchling recruitment is escaping predation by fish as they swim across the fringing reef, and as a consequence hatchlings that minimize their exposure to fish predation by minimizing the time spent crossing the fringing reef have a greater chance of surviving the reef crossing. One way to decrease the time required to cross the fringing reef is to maximize swimming speed. We found that both water temperature and nest temperature influence swimming performance of hatchling green turtles, but in opposite directions. Warm water increases swimming ability, with hatchling turtles swimming in warm water having a faster stroke rate, while an increase in nest temperature decreases swimming ability with hatchlings from warm nests producing less thrust per stroke. PMID:21826236

  5. Recent high mountain rockfalls and warm daily temperature extremes

    NASA Astrophysics Data System (ADS)

    Allen, S. K.; Huggel, C.

    2012-04-01

    Linkages between longer term warming of the climate, related changes in the cryosphere, and destabilisation of high mountain rockwalls have been documented in several studies. Although understanding is far from complete, a range of physical processes related to longer term warming are understood to have an effect on slope stability. More recently, some attention has turned to the possible influence of much shorter periods of extremely warm temperatures, as a contributing factor, or even trigger of slope failures. So far, studies have not extended beyond highlighting one or a few individual events, and no common approach to quantifying the 'extremity' of the prevailing temperatures has been used. In the current study, we integrate established practices used in the climatology community in the analyses of climate extremes, together with an inventory of ca. 20 recent rock failures (1987 - 2010) in the central European Alps, to assess temporal relationships between daily air temperature extremes and rock failure occurrence. Using data from three high elevation recording sites across Switzerland, we focus on daily maximum temperatures in the 4 weeks immediately prior to each rockfall occurrence, where an extremely warm day is defined as exceeding the 95th percentile during the climatological reference period of 1971 - 2000. The 95th percentile is calculated in a 21 day moving window, so that extreme temperatures are considered relative to the time of year, and not on an annual basis. In addition, rock failures from the Southern Alps of New Zealand are analysed, although high elevation climate data are limited from this region. Results from the European Alps show that a majority of recent slope failures have been preceded by one or more extreme, unseasonably warm days, most notably in the week immediately prior to the failure. For example, for 9 slope failures in the Valais - Mt Blanc region (based on Grand St Bernhard climate data), 6 were proceeded by extremely warm

  6. Climate warming and precipitation redistribution modify tree-grass interactions and tree species establishment in a warm-temperate savanna.

    PubMed

    Volder, Astrid; Briske, David D; Tjoelker, Mark G

    2013-03-01

    Savanna tree-grass interactions may be particularly sensitive to climate change. Establishment of two tree canopy dominants, post oak (Quercus stellata) and eastern redcedar (Juniperus virginiana), grown with the dominant C4 perennial grass (Schizachyrium scoparium) in southern oak savanna of the United States were evaluated under four climatic scenarios for 6 years. Tree-grass interactions were examined with and without warming (+1.5 °C) in combination with a long-term mean rainfall treatment and a modified rainfall regime that redistributed 40% of summer rainfall to spring and fall, intensifying summer drought. The aim was to determine: (1) the relative growth response of these species, (2) potential shifts in the balance of tree-grass interactions, and (3) the trajectory of juniper encroachment into savannas, under these anticipated climatic conditions. Precipitation redistribution reduced relative growth rate (RGR) of trees grown with grass. Warming increased growth of J. virginiana and strongly reduced Q. stellata survival. Tiller numbers of S. scoparium plants were unaffected by warming, but the number of reproductive tillers was increasingly suppressed by intensified drought each year. Growth rates of J. virginiana and Q. stellata were suppressed by grass presence early, but in subsequent years were higher when grown with grass. Quercus stellata had overall reduced RGR, but enhanced survival when grown with grass, while survival of J. virginiana remained near 100% in all treatments. Once trees surpassed a threshold height of 1.1 m, both tiller number and survival of S. scoparium plants were drastically reduced by the presence of J. virginiana, but not Q. stellata. Juniperus virginiana was the only savanna dominant in which neither survival nor final aboveground mass were adversely affected by the climate scenario of warming and intensified summer drought. These responses indicate that climate warming and altered precipitation patterns will further

  7. Effect of various warm-up protocols on jump performance in college football players.

    PubMed

    Pagaduan, Jeffrey C; Pojskić, Haris; Užičanin, Edin; Babajić, Fuad

    2012-12-01

    The purpose of this study was to identify the effects of warm-up strategies on countermovement jump performance. Twenty-nine male college football players (age: 19.4 ± 1.1 years; body height: 179.0 ± 5.1 cm; body mass: 73.1 ± 8.0 kg; % body fat: 11.1 ± 2.7) from the Tuzla University underwent a control (no warm-up) and different warm-up conditions: 1. general warm-up; 2. general warm-up with dynamic stretching; 3. general warm-up, dynamic stretching and passive stretching; 4. passive static stretching; 5. passive static stretching and general warm-up; and, 6. passive static stretching, general warm-up and dynamic stretching. Countermovement jump performance was measured after each intervention or control. Results from one way repeated measures ANOVA revealed a significant difference on warm-up strategies at F (4.07, 113.86) = 69.56, p < 0.001, eta squared = 0.72. Bonferonni post hoc revealed that a general warm-up and a general warm-up with dynamic stretching posted the greatest gains among all interventions. On the other hand, no warm-up and passive static stretching displayed the least results in countermovement jump performance. In conclusion, countermovement jump performance preceded by a general warm-up or a general warm-up with dynamic stretching posted superior gains in countermovement jump performance.

  8. Sustained acceleration of soil carbon decomposition observed in a 6-year warming experiment in a warm-temperate forest in southern Japan.

    PubMed

    Teramoto, Munemasa; Liang, Naishen; Takagi, Masahiro; Zeng, Jiye; Grace, John

    2016-10-17

    To examine global warming's effect on soil organic carbon (SOC) decomposition in Asian monsoon forests, we conducted a soil warming experiment with a multichannel automated chamber system in a 55-year-old warm-temperate evergreen broadleaved forest in southern Japan. We established three treatments: control chambers for total soil respiration, trenched chambers for heterotrophic respiration (Rh), and warmed trenched chambers to examine warming effect on Rh. The soil was warmed with an infrared heater above each chamber to increase soil temperature at 5 cm depth by about 2.5 °C. The warming treatment lasted from January 2009 to the end of 2014. The annual warming effect on Rh (an increase per °C) ranged from 7.1 to17.8% °C(-1). Although the warming effect varied among the years, it averaged 9.4% °C(-1) over 6 years, which was close to the value of 10.1 to 10.9% °C(-1) that we calculated using the annual temperature-efflux response model of Lloyd and Taylor. The interannual warming effect was positively related to the total precipitation in the summer period, indicating that summer precipitation and the resulting soil moisture level also strongly influenced the soil warming effect in this forest.

  9. Choral Warm-Ups for Changing Adolescent Voices

    ERIC Educational Resources Information Center

    Freer, Patirck K.

    2009-01-01

    During two decades of observing and leading middle school choral rehearsals, the author has observed that teachers frequently repeat exactly the warm-ups they present to their young adolescent choirs at every rehearsal. If teachers know one thing about middle school students, they know that they are constantly changing--physically, intellectually,…

  10. Vocal Warm-Ups: From the Sublime to the Ridiculous.

    ERIC Educational Resources Information Center

    Briggs, Robert

    2000-01-01

    Recommends using "activation exercises," or warm-ups, to awaken students' voices, minds, and breathing mechanisms when singing choral music. Describes three activation exercises: (1) plainchant melodies; (2) the five-note scale; and (3) tongue twisters sung to melodies or scale patterns. Explains why the first and third exercises work.…

  11. Becoming Warm Demanders: Perspectives and Practices of First Year Teachers

    ERIC Educational Resources Information Center

    Bondy, Elizabeth; Ross, Dorene D.; Hambacher, Elyse; Acosta, Melanie

    2013-01-01

    In the literature on culturally responsive pedagogy "warm demanders" are teachers who embrace values and enact practices that are central to their students' success. Few scholars have examined the experience of novice teachers who attempt to enact this stance. In this study of two first-year, female, European American teachers who attempted to be…

  12. Non-linear Langmuir waves in a warm quantum plasma

    SciTech Connect

    Dubinov, Alexander E. Kitaev, Ilya N.

    2014-10-15

    A non-linear differential equation describing the Langmuir waves in a warm quantum electron-ion plasma has been derived. Its numerical solutions of the equation show that ordinary electronic oscillations, similar to the classical oscillations, occur along with small-scale quantum Langmuir oscillations induced by the Bohm quantum force.

  13. The pad readout electronics of the SLD Warm Iron Calorimeter

    SciTech Connect

    Burrows, P.N.; Busza, W.; Cartwright, S.L.; Friedman, J.I.; Fuess, S.; Gonzalez, S.; Hansl-Kozanecka, T.; Kendall, H.W.; Lath, A.; Lyons, T.; Osborne, L.S.; Rosenson, L.; Schneekloth, U.; Taylor, F.E.; Verdier, R.; Wadsworth, B.; Williams, D.C.; Yamartino, J.M. ); Byers, B.L.; Escalera, J.; Gioumousis, A.; Gray, R.; Horelick, D.; Kharakh, D.; Messner, R.L.; Moss, J.; Zdark

    1990-08-01

    The design of the pad readout electronics of the Warm Iron Calorimeter for the SLD detector at SLAC, consisting of about 9000 analog channels, is described. Results of various tests performed during the construction, installation and commissioning of the electronics mounted on the detector are presented. 10 refs., 12 figs.

  14. A Massive Warm Baryonic Halo in the Coma Cluster

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimiliano; Joy, Marshall K.; Lieu, Richard

    2003-01-01

    Several deep PSPC observations of the Coma Cluster reveal a very large scale halo of soft X-ray emission, substantially in excess of the well-known radiation from the hot intracluster medium. The excess emission, previously reported in the central region of the cluster using lower sensitivity Extreme Ultraviolet Explorer (EUVE) and ROSAT data, is now evident out to a radius of 2.6 Mpc, demonstrating that the soft excess radiation from clusters is a phenomenon of cosmological significance. The X-ray spectrum at these large radii cannot be modeled nonthermally but is consistent with the original scenario of thermal emission from warm gas at approx. 10(exp 6) K. The mass of the warm gas is on par with that of the hot X-ray-emitting plasma and significantly more massive if the warm gas resides in low-density filamentary structures. Thus, the data lend vital support to current theories of cosmic evolution, which predict that at low redshift approx. 30%-40% of the baryons reside in warm filaments converging at clusters of galaxies.

  15. Greenhouse warming: The uncertainties and the mitigation challenge

    SciTech Connect

    Princiotta, F.T.

    1995-12-31

    The authors attempt to shed light on several of the key issues associated with greenhouse warming. Using a relatively simple, but instructive, model, and information from a variety of credible sources, a number of issues are discussed: The model (Glowarm 3.0) that the author has developed to help evaluate these questions is a spreadsheet (Lotus 1-2-3) model which calculates global concentrations and their associated global warming contributions for all the major greenhouse gases: CO{sub 2}, CH{sub 4}, ozone precursors, nitrous oxide (N{sub 2}O), CFCs, and their substitutes. The model calculates atmospheric concentrations of greenhouse gases based on projected emissions in 10-year increments. For CO{sub 2}, look-up tables are used to relate the fraction of CO{sub 2} remaining in the atmosphere as a function of time after emission for two alternative CO{sub 2} life cycles. For the other gases, an inputed lifetime value is used. Average global equilibrium temperatures are calculated using lifetimes and radiative forcing functions described in Intergovernmental Panel on Climate Change (IPCC), 1990. Realized (or actual) temperature is estimated using an empirical correlation algorithm the authors developed based on general circulation model (GCM) results presented in IPCC, 1992. This approach uses a correlation which relates the rate of equilibrium warming over the period between the target year and 1980 to the ratio of actual to equilibrium warming. There are 16 figures included.

  16. Add Yoga to Your Singing Warm-Ups

    ERIC Educational Resources Information Center

    Kuhn, Ivana Pinho

    2006-01-01

    Yoga has much to contribute to singing. The main physical disciplines of yoga are strength, flexibility, alignment, body awareness through breath control, and concentration. These basics also constitute the core of good singing. With instruction incorporated into the regular warm-up, one can introduce beginning yoga ideas into choir practice. Yoga…

  17. Global warming and the regions in the Middle East

    SciTech Connect

    Alvi, S.H.; Elagib, N.

    1996-12-31

    The announcement of NASA scientist James Hansen made at a United States Senate`s hearing in June 1988 about the onset of global warming ignited a whirlwind of public concern in United States and elsewhere in the world. Although the temperature had shown only a slight shift, its warming has the potential of causing environmental catastrophe. According to atmosphere scientists, the effect of higher temperatures will change rainfall patterns--some areas getting drier, some much wetter. The phenomenon of warming in the Arabian Gulf region was first reported by Alvi for Bahrain and then for Oman. In the recent investigations, the authors have found a similar warming in other regions of the Arabian Gulf and in several regions of Sudan in Africa. The paper will investigate the observed data on temperature and rainfall of Seeb in Oman, Bahrain, International Airport in Kuwait as index stations for the Arabian Gulf and Port Sudan, Khartoum and Malakal in the African Continent of Sudan. Based on various statistical methods, the study will highlight a drying of the regions from the striking increase in temperature and decline of rainfall amount. Places of such environmental behavior are regarded as desertifying regions. Following Hulme and Kelly, desertification is taken to mean land degradation in dryland regions, or the permanent decline in the potential of the land to support biological activity, and hence human welfare. The paper will also, therefore, include the aspect of desertification for the regions under consideration.

  18. Waste Reduction Model (WARM) Material Descriptions and Data Sources

    EPA Pesticide Factsheets

    This page provides a summary of the materials included in EPA’s Waste Reduction Model (WARM). The page includes a list of materials, a description of the material as defined in the primary data source, and citations for primary data sources.

  19. Changes in aridity in response to the global warming hiatus

    NASA Astrophysics Data System (ADS)

    Guan, Xiaodan; Huang, Jianping; Guo, Ruixia

    2017-02-01

    The global warming slowdown or warming hiatus, began around the year 2000 and has persisted for nearly 15 years. Most studies have focused on the interpretation of the hiatus in temperature. In this study, changes in a global aridity index (AI) were analyzed by using a newly developed dynamical adjustment method that can successfully identify and separate dynamically induced and radiatively forced aridity changes in the raw data. The AI and Palmer Drought Severity Index produced a wetting zone over the mid-to-high latitudes of the Northern Hemisphere in recent decades. The dynamical adjustment analysis suggested that this wetting zone occurred in response to the global warming hiatus. The dynamically induced AI (DAI) played a major role in the AI changes during the hiatus period, and its relationships with the North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO) also indicated that different phases of the NAO, PDO, and AMO contributed to different performances of the DAI over the Northern Hemisphere. Although the aridity wetting over the mid-to-high latitudes may relieve long-term drying in certain regions, the hiatus is temporary, and so is the relief. Accelerated global warming will return when the NAO, PDO, and AMO revert to their opposite phases in the future, and the wetting zone is likely to disappear.

  20. Model finds bigger, stronger tropical cyclones with warming seas

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2014-03-01

    In the wake of powerful tropical cyclones such as Hurricanes Sandy and Katrina and Typhoon Haiyan, questions about the likely effect of climate change on tropical cyclone activity are on the public's mind. The interactions between global warming and cyclone activity, however, are complex, with rising sea surface temperatures, changing energy distributions, and altered atmospheric dynamics all having some effect.

  1. Global Warming: Discussion for EOS Science Writers Workshop

    NASA Technical Reports Server (NTRS)

    Hansen, James E

    1999-01-01

    The existence of global warming this century is no longer an issue of scientific debate. But there are many important questions about the nature and causes of long-term climate change, th roles of nature and human-made climate forcings and unforced (chaotic) climate variability, the practical impacts of climate change, and what, if anything, should be done to reduce global warming, Global warming is not a uniform increase of temperature, but rather involves at complex geographically varying climate change. Understanding of global warming will require improved observations of climate change itself and the forcing factors that can lead to climate change. The NASA Terra mission and other NASA Earth Science missions will provide key measurement of climate change and climate forcings. The strategy to develop an understanding of the causes and predictability of long-term climate change must be based on combination of observations with models and analysis. The upcoming NASA missions will make important contributions to the required observations.

  2. Cooling and Warming Laws: An Exact Analytical Solution

    ERIC Educational Resources Information Center

    Besson, Ugo

    2010-01-01

    This paper deals with temperature variations over time of objects placed in a constant-temperature environment in the presence of thermal radiation. After a historical introduction, the paper discusses cooling and warming laws, by taking into account first solely object-environment energy exchange by thermal radiation, and then adding…

  3. Warm-Polytropic Cosmology with and Without Bulk Viscosity

    NASA Astrophysics Data System (ADS)

    Saadat, Hassan

    2014-12-01

    In this paper we consider warm-polytropic cosmology including bulk viscosity and study cosmological parameters. We can obtain effect of viscosity on the important cosmological parameters such as Hubble expansion, deceleration and scale factor parameters. We compare our results with observational data and fix our solution. We find that the bulk viscosity increases both energy density and Hubble expansion parameter.

  4. Tolerance limit for fish growth exceeded by warming waters

    NASA Astrophysics Data System (ADS)

    Neuheimer, A. B.; Thresher, R. E.; Lyle, J. M.; Semmens, J. M.

    2011-05-01

    Climate change can affect organisms both directly, by affecting their physiology, growth, and behaviour, and indirectly, for example through effects on ecosystem structure and function. For ectotherms, or `cold-blooded' animals, warming will directly affect their metabolism, with growth rates in temperate species predicted to increase initially as temperatures rise, but then decline as individuals struggle to maintain cardiac function and respiration in the face of increased metabolic demands. We provide evidence consistent with this prediction for a marine fish (Cheilodactylus spectabilis) in the Tasman Sea; one of the most rapidly warming regions of the Southern Hemisphere ocean. We estimated changes in the species' growth rate over a 90-year period using otoliths--bony structures that fish use for orientation and detection of movement--and compared these changes to temperature trends across the species' distribution. Increasing temperatures coincide with increased growth for populations in the middle of the species range, but with reduced growth for those at the warm northern edge of the species' distribution, indicating that temperatures may have already reached levels associated with increased metabolic costs. If warming continues, the direct metabolic effects of increasing temperatures on this species may lead to declining productivity and range contraction.

  5. North Pacific deglacial hypoxic events linked to abrupt ocean warming.

    PubMed

    Praetorius, S K; Mix, A C; Walczak, M H; Wolhowe, M D; Addison, J A; Prahl, F G

    2015-11-19

    Marine sediments from the North Pacific document two episodes of expansion and strengthening of the subsurface oxygen minimum zone (OMZ) accompanied by seafloor hypoxia during the last deglacial transition. The mechanisms driving this hypoxia remain under debate. We present a new high-resolution alkenone palaeotemperature reconstruction from the Gulf of Alaska that reveals two abrupt warming events of 4-5 degrees Celsius at the onset of the Bølling and Holocene intervals that coincide with sudden shifts to hypoxia at intermediate depths. The presence of diatomaceous laminations and hypoxia-tolerant benthic foraminiferal species, peaks in redox-sensitive trace metals, and enhanced (15)N/(14)N ratio of organic matter, collectively suggest association with high export production. A decrease in (18)O/(16)O values of benthic foraminifera accompanying the most severe deoxygenation event indicates subsurface warming of up to about 2 degrees Celsius. We infer that abrupt warming triggered expansion of the North Pacific OMZ through reduced oxygen solubility and increased marine productivity via physiological effects; following initiation of hypoxia, remobilization of iron from hypoxic sediments could have provided a positive feedback on ocean deoxygenation through increased nutrient utilization and carbon export. Such a biogeochemical amplification process implies high sensitivity of OMZ expansion to warming.

  6. Human-caused Indo-Pacific warm pool expansion

    PubMed Central

    Weller, Evan; Min, Seung-Ki; Cai, Wenju; Zwiers, Francis W.; Kim, Yeon-Hee; Lee, Donghyun

    2016-01-01

    The Indo-Pacific warm pool (IPWP) has warmed and grown substantially during the past century. The IPWP is Earth’s largest region of warm sea surface temperatures (SSTs), has the highest rainfall, and is fundamental to global atmospheric circulation and hydrological cycle. The region has also experienced the world’s highest rates of sea-level rise in recent decades, indicating large increases in ocean heat content and leading to substantial impacts on small island states in the region. Previous studies have considered mechanisms for the basin-scale ocean warming, but not the causes of the observed IPWP expansion, where expansion in the Indian Ocean has far exceeded that in the Pacific Ocean. We identify human and natural contributions to the observed IPWP changes since the 1950s by comparing observations with climate model simulations using an optimal fingerprinting technique. Greenhouse gas forcing is found to be the dominant cause of the observed increases in IPWP intensity and size, whereas natural fluctuations associated with the Pacific Decadal Oscillation have played a smaller yet significant role. Further, we show that the shape and impact of human-induced IPWP growth could be asymmetric between the Indian and Pacific basins, the causes of which remain uncertain. Human-induced changes in the IPWP have important implications for understanding and projecting related changes in monsoonal rainfall, and frequency or intensity of tropical storms, which have profound socioeconomic consequences. PMID:27419228

  7. Climatic warming and the future of bison as grazers

    PubMed Central

    Craine, Joseph M.; Towne, E. Gene; Miller, Mary; Fierer, Noah

    2015-01-01

    Climatic warming is likely to exacerbate nutritional stress and reduce weight gain in large mammalian herbivores by reducing plant nutritional quality. Yet accurate predictions of the effects of climatic warming on herbivores are limited by a poor understanding of how herbivore diet varies along climate gradients. We utilized DNA metabarcoding to reconstruct seasonal variation in the diet of North American bison (Bison bison) in two grasslands that differ in mean annual temperature by 6 °C. Here, we show that associated with greater nutritional stress in warmer climates, bison consistently consumed fewer graminoids and more shrubs and forbs, i.e. eudicots. Bison in the warmer grassland consumed a lower proportion of C3 grass, but not a greater proportion of C4 grass. Instead, bison diet in the warmer grassland had a greater proportion of N2-fixing eudicots, regularly comprising >60% of their protein intake in spring and fall. Although bison have been considered strict grazers, as climatic warming reduces grass protein concentrations, bison may have to attempt to compensate by grazing less and browsing more. Promotion of high-protein, palatable eudicots or increasing the protein concentrations of grasses will be critical to minimizing warming-imposed nutritional stress for bison and perhaps other large mammalian herbivores. PMID:26567987

  8. Deep Arctic Ocean warming during the last glacial cycle

    USGS Publications Warehouse

    Cronin, T. M.; Dwyer, G.S.; Farmer, J.; Bauch, H.A.; Spielhagen, R.F.; Jakobsson, M.; Nilsson, J.; Briggs, W.M.; Stepanova, A.

    2012-01-01

    In the Arctic Ocean, the cold and relatively fresh water beneath the sea ice is separated from the underlying warmer and saltier Atlantic Layer by a halocline. Ongoing sea ice loss and warming in the Arctic Ocean have demonstrated the instability of the halocline, with implications for further sea ice loss. The stability of the halocline through past climate variations is unclear. Here we estimate intermediate water temperatures over the past 50,000 years from the Mg/Ca and Sr/Ca values of ostracods from 31 Arctic sediment cores. From about 50 to 11 kyr ago, the central Arctic Basin from 1,000 to 2,500 m was occupied by a water mass we call Glacial Arctic Intermediate Water. This water mass was 1–2 °C warmer than modern Arctic Intermediate Water, with temperatures peaking during or just before millennial-scale Heinrich cold events and the Younger Dryas cold interval. We use numerical modelling to show that the intermediate depth warming could result from the expected decrease in the flux of fresh water to the Arctic Ocean during glacial conditions, which would cause the halocline to deepen and push the warm Atlantic Layer into intermediate depths. Although not modelled, the reduced formation of cold, deep waters due to the exposure of the Arctic continental shelf could also contribute to the intermediate depth warming.

  9. Did the tropical pacific drive the world's warming

    SciTech Connect

    Kerr, R.A.

    1994-10-28

    The tropical Pacific slipped into its warm mode in the winter of 1976-77 and has never quite shaken it off. The persistent warm spell in the ocean, computer climate modelers are finding, may have triggered the global climate shift that brought record-breaking warmth to the globe in the 1980's. Some climate researchers suspect that heat was an early sign of global warming from greenhouse gases. If so and if studies by the computer modelers are correct, the tropical Pacific may be a key link in the mechanism of climate change from one decade to the next. This would be a big boost to researchers attempting to understand climatic change as it would allow them to focus on one small, intensively studied region. However, uncertainty continues as a different climatic model identifies a very different ocean source for interdecadal climate change: a regular oscillation in the winds and currents of the North Pacific Ocean that could be masquerading temperarily as greenhouse warming. This article discusses the implications of these different ideas.

  10. Climatic irregular staircases: generalized acceleration of global warming

    PubMed Central

    De Saedeleer, Bernard

    2016-01-01

    Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr — not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth’s climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates — except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature. PMID:26813867

  11. Broadband AC Conductivity of XUV Excited Warm Dense Gold

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Tsui, Y.; Toleikis, S.; Hering, P.; Brown, S.; Curry, C.; Tanikawa, T.; Hoeppner, H.; Levy, M.; Goede, S.; Ziaja-Motyka, B.; Rethfeld, B.; Recoules, Vanina; Ng, A.; Glenzer, S.

    2015-11-01

    The properties of ultrafast laser excited warm dense gold have been extensively studied in the past decade. In those studies, a 400nm ultrashort laser pulse was used to excite the 5 d electrons in gold to 6s/p state. Here we will present our recent study of warm dense gold with 245eV, 70fs pulses to selectively excite 4 f electrons using the XUV-FEL at FLASH. The AC conductivity of the warm dense gold was measured at different wavelengths (485nm, 520nm, 585nm, 640nm and 720nm) to cover the range from 5 d-6 s / p interband transitions to 6 s/ p intraband transitions. Preliminary result suggests that the onset of 5 d-6 s / p band transition shifts from 2.3eV to ~ 2eV, which is in agreement with the study of 400nm laser pulse excited warm dense gold. More detailed analysis of our data will also be presented.

  12. Global Warming: If You Can't Stand the Heat

    ERIC Educational Resources Information Center

    Baird, Stephen L.

    2005-01-01

    Global warming is the progressive, gradual rise of the earth's average surface temperature, thought to be caused in part by increased concentrations of "greenhouse" gases (GHGs) in the atmosphere. According to the National Academy of Sciences, the Earth's temperature has risen by about one degree Fahrenheit in the past century, with accelerated…

  13. Microstructural characterization of a warm-deformed microalloyed steel

    SciTech Connect

    Eghbali, B.

    2008-04-15

    A warm deformation process using torsion testing was carried out on a low carbon Nb-microalloyed steel. The physical processes that occur during deformation were studied by analyzing the warm flow curves. The mechanisms of fine ferrite grain formation were studied by means of optical microscopy and an electron back-scattering diffraction technique. The results show that warm flow curves of ferrite are similar to those affected only by dynamic softening events. Microstructural analysis shows that, with increasing strain, the new fine equiaxed ferrite grains surrounded by high-angle boundaries are generated at the initial boundaries. During the early stages of deformation, as strain increases the grain size decreases and the grain aspect ratio rapidly increases. A further increase of the strain also leads to continuous decreases of both the grain size and the grain aspect ratio. The dynamic softening mechanism and dynamical formation of new fine grains, observed during warm deformation, were verified to be due to continuous dynamic recrystallization.

  14. Climatic warming and the future of bison as grazers

    NASA Astrophysics Data System (ADS)

    Craine, Joseph M.; Towne, E. Gene; Miller, Mary; Fierer, Noah

    2015-11-01

    Climatic warming is likely to exacerbate nutritional stress and reduce weight gain in large mammalian herbivores by reducing plant nutritional quality. Yet accurate predictions of the effects of climatic warming on herbivores are limited by a poor understanding of how herbivore diet varies along climate gradients. We utilized DNA metabarcoding to reconstruct seasonal variation in the diet of North American bison (Bison bison) in two grasslands that differ in mean annual temperature by 6 °C. Here, we show that associated with greater nutritional stress in warmer climates, bison consistently consumed fewer graminoids and more shrubs and forbs, i.e. eudicots. Bison in the warmer grassland consumed a lower proportion of C3 grass, but not a greater proportion of C4 grass. Instead, bison diet in the warmer grassland had a greater proportion of N2-fixing eudicots, regularly comprising >60% of their protein intake in spring and fall. Although bison have been considered strict grazers, as climatic warming reduces grass protein concentrations, bison may have to attempt to compensate by grazing less and browsing more. Promotion of high-protein, palatable eudicots or increasing the protein concentrations of grasses will be critical to minimizing warming-imposed nutritional stress for bison and perhaps other large mammalian herbivores.

  15. Gas hydrate contribution to Late Permian global warming

    NASA Astrophysics Data System (ADS)

    Majorowicz, J.; Grasby, S. E.; Safanda, J.; Beauchamp, B.

    2014-05-01

    Rapid gas hydrate release (the “clathrate gun” hypothesis) has been invoked as a cause for the rapid global warming and associated negative carbon isotope excursion observed during the Latest Permian Extinction (LPE). We modeled the stability of gas hydrates through a warming Middle to Late Permian world, considering three settings for methane reservoirs: 1) terrestrial hydrates, 2) hydrates on exposed continental shelves during glacial sea level drop, and 3) hydrates in deep marine settings. Model results show that terrestrial hydrates would rapidly destabilize over ∼400 ky after deglaciation for moderate heatflow (40 mW/m2), and more rapidly for higher heat flow values. Exposed continental shelves would lose hydrates even more rapidly, after being flooded due to loss of ice storage on land. These two major hydrate reservoirs would thus have destabilized during the Middle to Late Permian climate warming, well prior to the LPE event. However, they may have contributed to the >2‰ negative C-isotopic shift during the late Middle Permian. Deep marine hydrates would have remained stable until LPE time. Rapid warming of deep marine waters during this time could have triggered destabilization of this reservoir, however given the configuration of one super continent, Pangea, hydrate bearing continental slopes would have been less extensive than modern day. This suggests that any potential gas hydrate release would have had only a minor contributing impact to the runaway greenhouse during the Latest Permian extinction.

  16. Climatic warming and the future of bison as grazers.

    PubMed

    Craine, Joseph M; Towne, E Gene; Miller, Mary; Fierer, Noah

    2015-11-16

    Climatic warming is likely to exacerbate nutritional stress and reduce weight gain in large mammalian herbivores by reducing plant nutritional quality. Yet accurate predictions of the effects of climatic warming on herbivores are limited by a poor understanding of how herbivore diet varies along climate gradients. We utilized DNA metabarcoding to reconstruct seasonal variation in the diet of North American bison (Bison bison) in two grasslands that differ in mean annual temperature by 6 °C. Here, we show that associated with greater nutritional stress in warmer climates, bison consistently consumed fewer graminoids and more shrubs and forbs, i.e. eudicots. Bison in the warmer grassland consumed a lower proportion of C3 grass, but not a greater proportion of C4 grass. Instead, bison diet in the warmer grassland had a greater proportion of N2-fixing eudicots, regularly comprising >60% of their protein intake in spring and fall. Although bison have been considered strict grazers, as climatic warming reduces grass protein concentrations, bison may have to attempt to compensate by grazing less and browsing more. Promotion of high-protein, palatable eudicots or increasing the protein concentrations of grasses will be critical to minimizing warming-imposed nutritional stress for bison and perhaps other large mammalian herbivores.

  17. Ant-mediated seed dispersal in a warmed world.

    PubMed

    Stuble, Katharine L; Patterson, Courtney M; Rodriguez-Cabal, Mariano A; Ribbons, Relena R; Dunn, Robert R; Sanders, Nathan J

    2014-01-01

    Climate change affects communities both directly and indirectly via changes in interspecific interactions. One such interaction that may be altered under climate change is the ant-plant seed dispersal mutualism common in deciduous forests of eastern North America. As climatic warming alters the abundance and activity levels of ants, the potential exists for shifts in rates of ant-mediated seed dispersal. We used an experimental temperature manipulation at two sites in the eastern US (Harvard Forest in Massachusetts and Duke Forest in North Carolina) to examine the potential impacts of climatic warming on overall rates of seed dispersal (using Asarum canadense seeds) as well as species-specific rates of seed dispersal at the Duke Forest site. We also examined the relationship between ant critical thermal maxima (CTmax) and the mean seed removal temperature for each ant species. We found that seed removal rates did not change as a result of experimental warming at either study site, nor were there any changes in species-specific rates of seed dispersal. There was, however, a positive relationship between CTmax and mean seed removal temperature, whereby species with higher CTmax removed more seeds at hotter temperatures. The temperature at which seeds were removed was influenced by experimental warming as well as diurnal and day-to-day fluctuations in temperature. Taken together, our results suggest that while temperature may play a role in regulating seed removal by ants, ant plant seed-dispersal mutualisms may be more robust to climate change than currently assumed.

  18. Models of warm and cold regimes of the winter stratosphere

    NASA Astrophysics Data System (ADS)

    Guryanov, Vladimir

    Research of fields of geopotential height, temperature, zonal and meridional wind in stratosphere was carried out using the Met Office data for winter seasons from 1991/1992 to 2006-2007. The above analyzes shows that change within season thermodynamic values at high latitudes during the winter is higher than seasonal or longitudinal change. Hence the average models of the cold periods of high latitudes and average monthly values have a limited applicability. In 1982 International Standard Organization (ISO) also acknowledged the necessity for creating of special models for "warm" and "cold" regimes of the high latitude winter stratosphere. Warm and cold stratosphere states were distinguished by the presence or absence of stratospheric warmings of variable intensity exceeding 10 hPa. Special maps and latitude-longitude cuts of mean values and mean square deviations of the geopotential height, temperature, zonal and meridional wind have been created for these regimes. Models of "warm" and "cold" regimes also included zonal harmonics with wave numbers 1 and 2 for all observed meteorological fields

  19. Carbon Dioxide and Global Warming: A Failed Experiment

    ERIC Educational Resources Information Center

    Ribeiro, Carla

    2014-01-01

    Global warming is a current environmental issue that has been linked to an increase in anthropogenic carbon dioxide in the atmosphere. To raise awareness of the problem, various simple experiments have been proposed to demonstrate the effect of carbon dioxide on the planet's temperature. This article describes a similar experiment, which…

  20. Warming will affect phytoplankton differently: evidence through a mechanistic approach.

    PubMed

    Huertas, I Emma; Rouco, Mónica; López-Rodas, Victoria; Costas, Eduardo

    2011-12-07

    Although the consequences of global warming in aquatic ecosystems are only beginning to be revealed, a key to forecasting the impact on aquatic communities is an understanding of individual species' vulnerability to increased temperature. Despite their microscopic size, phytoplankton support about half of the global primary production, drive essential biogeochemical cycles and represent the basis of the aquatic food web. At present, it is known that phytoplankton are important targets and, consequently, harbingers of climate change in aquatic systems. Therefore, investigating the capacity of phytoplankton to adapt to the predicted warming has become a relevant issue. However, considering the polyphyletic complexity of the phytoplankton community, different responses to increased temperature are expected. We experimentally tested the effects of warming on 12 species of phytoplankton isolated from a variety of environments by using a mechanistic approach able to assess evolutionary adaptation (the so-called ratchet technique). We found different degrees of tolerance to temperature rises and an interspecific capacity for genetic adaptation. The thermal resistance level reached by each species is discussed in relation to their respective original habitats. Our study additionally provides evidence on the most resistant phytoplankton groups in a future warming scenario.

  1. A Noted Physicist's Contrarian View of Global Warming

    ERIC Educational Resources Information Center

    Goldstein, Evan R., Comp.

    2008-01-01

    According to Freeman Dyson, an emeritus professor of physics at the Institute for Advanced Study, the debate about global warming has become too narrow and opinions have become too entrenched. Relying on a computer model designed by the Yale University economist William D. Nordhaus, Dyson compared the effectiveness and economic feasibility of…

  2. Comprehensive Studies of Ultrafast Laser Excited Warm Dense Gold

    NASA Astrophysics Data System (ADS)

    Chen, Zhijiang; Mo, Mianzhen; Russell, Brandon; Tsui, Ying; Wang, Xijie; Ng, Andrew; Glenzer, Siegfried

    2016-10-01

    Isochoric excitation of solids by ultrafast laser pulses is an important approach to generate warm dense matter in laboratory. Electrical conductivity, structural dynamics and lattice stabilities are the most important properties in ultrafast laser excited warm dense matter. To investigate these properties, we have developed multiple advanced capabilities at SLAC recently, including the measurement of semi-DC electrical conductivity with ultrafast THz radiation, the study of solid and liquid structural dynamics by ultrafast electron diffraction (UED), and the investigation of lattice stability using frequency domain interferometry (FDI) on both front and rear surfaces. Due to the non-reversible nature in exciting solid to warm dense matter, all these diagnostics are implemented with single-shot approaches, reducing the uncertainties due to shot-to-shot fluctuations. In this talk, we will introduce these novel capabilities and present some highlighted studies in warm dense gold, which was uniformly excited by ultrafast laser pulses at 400nm. We appreciate the supports from DOE FES under FWP #100182.

  3. Net global warming potential and greenhouse gas intensity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various methods exist to calculate global warming potential (GWP) and greenhouse gas intensity (GHG) as measures of net greenhouse gas (GHG) emissions from agroecosystems. Little is, however, known about net GWP and GHGI that account for all sources and sinks of GHG emissions. Sources of GHG include...

  4. Promotion of Scientific Literacy on Global Warming by Process Drama

    ERIC Educational Resources Information Center

    Pongsophon, Pongprapan; Yutakom, Naruemon; Boujaoude, Saouma B.

    2010-01-01

    This project aims to investigate how process drama promotes scientific literacy in the context of global warming. Thirty-one lower (n = 24) and upper (n = 7) secondary students of one secondary school in Bangkok, Thailand participated in a seven-day workshop which process drama strategy was implemented. In the workshop, the students were actively…

  5. Turkish Prospective Teachers' Understanding and Misunderstanding on Global Warming

    ERIC Educational Resources Information Center

    Ocal, A.; Kisoglu, M.; Alas, A.; Gurbuz, H.

    2011-01-01

    The key objective of this study is to determine the Turkish elementary prospective teachers' opinions on global warming. It is also aimed to establish prospective teachers' views about the environmental education in Turkish universities. A true-false type scale was administered to 564 prospective teachers from science education, social studies…

  6. Climatic irregular staircases: generalized acceleration of global warming.

    PubMed

    De Saedeleer, Bernard

    2016-01-27

    Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr - not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth's climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates - except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature.

  7. Global warming triggers the loss of a key Arctic refugium.

    PubMed

    Rühland, K M; Paterson, A M; Keller, W; Michelutti, N; Smol, J P

    2013-12-07

    We document the rapid transformation of one of the Earth's last remaining Arctic refugia, a change that is being driven by global warming. In stark contrast to the amplified warming observed throughout much of the Arctic, the Hudson Bay Lowlands (HBL) of subarctic Canada has maintained cool temperatures, largely due to the counteracting effects of persistent sea ice. However, since the mid-1990s, climate of the HBL has passed a tipping point, the pace and magnitude of which is exceptional even by Arctic standards, exceeding the range of regional long-term variability. Using high-resolution, palaeolimnological records of algal remains in dated lake sediment cores, we report that, within this short period of intense warming, striking biological changes have occurred in the region's freshwater ecosystems. The delayed and intense warming in this remote region provides a natural observatory for testing ecosystem resilience under a rapidly changing climate, in the absence of direct anthropogenic influences. The environmental repercussions of this climate change are of global significance, influencing the huge store of carbon in the region's extensive peatlands, the world's southern-most polar bear population that depends upon Hudson Bay sea ice and permafrost for survival, and native communities who rely on this landscape for sustenance.

  8. Seventh Grade Students' Conceptions of Global Warming and Climate Change

    ERIC Educational Resources Information Center

    Shepardson, Daniel P.; Niyogi, Dev; Choi, Soyoung; Charusombat, Umarporn

    2009-01-01

    The purpose of this study was to investigate seventh grade students' conceptions of global warming and climate change. The study was descriptive in nature and involved the collection of qualitative data from 91 seventh grade students from three different schools in the Midwest, USA. An open response and draw and explain assessment instrument was…

  9. Signature of ocean warming in global fisheries catch.

    PubMed

    Cheung, William W L; Watson, Reg; Pauly, Daniel

    2013-05-16

    Marine fishes and invertebrates respond to ocean warming through distribution shifts, generally to higher latitudes and deeper waters. Consequently, fisheries should be affected by 'tropicalization' of catch (increasing dominance of warm-water species). However, a signature of such climate-change effects on global fisheries catch has so far not been detected. Here we report such an index, the mean temperature of the catch (MTC), that is calculated from the average inferred temperature preference of exploited species weighted by their annual catch. Our results show that, after accounting for the effects of fishing and large-scale oceanographic variability, global MTC increased at a rate of 0.19 degrees Celsius per decade between 1970 and 2006, and non-tropical MTC increased at a rate of 0.23 degrees Celsius per decade. In tropical areas, MTC increased initially because of the reduction in the proportion of subtropical species catches, but subsequently stabilized as scope for further tropicalization of communities became limited. Changes in MTC in 52 large marine ecosystems, covering the majority of the world's coastal and shelf areas, are significantly and positively related to regional changes in sea surface temperature. This study shows that ocean warming has already affected global fisheries in the past four decades, highlighting the immediate need to develop adaptation plans to minimize the effect of such warming on the economy and food security of coastal communities, particularly in tropical regions.

  10. Hot Water and Warm Homes from Sunlight. Teacher's Guide.

    ERIC Educational Resources Information Center

    Gould, Alan

    A basic understanding of the potential of solar energy is increasingly relevant given the pollution caused by the burning of fossil fuel, health problems associated with that pollution, the possibility of global warming, and the complex issues raised by the dependence of industrialized nations on oil and natural gas. This teacher's guide presents…

  11. Warming Can Boost Denitrification Disproportionately Due to Altered Oxygen Dynamics

    PubMed Central

    Veraart, Annelies J.; de Klein, Jeroen J. M.; Scheffer, Marten

    2011-01-01

    Background Global warming and the alteration of the global nitrogen cycle are major anthropogenic threats to the environment. Denitrification, the biological conversion of nitrate to gaseous nitrogen, removes a substantial fraction of the nitrogen from aquatic ecosystems, and can therefore help to reduce eutrophication effects. However, potential responses of denitrification to warming are poorly understood. Although several studies have reported increased denitrification rates with rising temperature, the impact of temperature on denitrification seems to vary widely between systems. Methodology/Principal Findings We explored the effects of warming on denitrification rates using microcosm experiments, field measurements and a simple model approach. Our results suggest that a three degree temperature rise will double denitrification rates. By performing experiments at fixed oxygen concentrations as well as with oxygen concentrations varying freely with temperature, we demonstrate that this strong temperature dependence of denitrification can be explained by a systematic decrease of oxygen concentrations with rising temperature. Warming decreases oxygen concentrations due to reduced solubility, and more importantly, because respiration rates rise more steeply with temperature than photosynthesis. Conclusions/Significance Our results show that denitrification rates in aquatic ecosystems are strongly temperature dependent, and that this is amplified by the temperature dependencies of photosynthesis and respiration. Our results illustrate the broader phenomenon that coupling of temperature dependent reactions may in some situations strongly alter overall effects of temperature on ecological processes. PMID:21483809

  12. Warming will affect phytoplankton differently: evidence through a mechanistic approach

    PubMed Central

    Huertas, I. Emma; Rouco, Mónica; López-Rodas, Victoria; Costas, Eduardo

    2011-01-01

    Although the consequences of global warming in aquatic ecosystems are only beginning to be revealed, a key to forecasting the impact on aquatic communities is an understanding of individual species' vulnerability to increased temperature. Despite their microscopic size, phytoplankton support about half of the global primary production, drive essential biogeochemical cycles and represent the basis of the aquatic food web. At present, it is known that phytoplankton are important targets and, consequently, harbingers of climate change in aquatic systems. Therefore, investigating the capacity of phytoplankton to adapt to the predicted warming has become a relevant issue. However, considering the polyphyletic complexity of the phytoplankton community, different responses to increased temperature are expected. We experimentally tested the effects of warming on 12 species of phytoplankton isolated from a variety of environments by using a mechanistic approach able to assess evolutionary adaptation (the so-called ratchet technique). We found different degrees of tolerance to temperature rises and an interspecific capacity for genetic adaptation. The thermal resistance level reached by each species is discussed in relation to their respective original habitats. Our study additionally provides evidence on the most resistant phytoplankton groups in a future warming scenario. PMID:21508031

  13. When could global warming reach 4°C?

    PubMed

    Betts, Richard A; Collins, Matthew; Hemming, Deborah L; Jones, Chris D; Lowe, Jason A; Sanderson, Michael G

    2011-01-13

    The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) assessed a range of scenarios of future greenhouse-gas emissions without policies to specifically reduce emissions, and concluded that these would lead to an increase in global mean temperatures of between 1.6°C and 6.9°C by the end of the twenty-first century, relative to pre-industrial. While much political attention is focused on the potential for global warming of 2°C relative to pre-industrial, the AR4 projections clearly suggest that much greater levels of warming are possible by the end of the twenty-first century in the absence of mitigation. The centre of the range of AR4-projected global warming was approximately 4°C. The higher end of the projected warming was associated with the higher emissions scenarios and models, which included stronger carbon-cycle feedbacks. The highest emissions scenario considered in the AR4 (scenario A1FI) was not examined with complex general circulation models (GCMs) in the AR4, and similarly the uncertainties in climate-carbon-cycle feedbacks were not included in the main set of GCMs. Consequently, the projections of warming for A1FI and/or with different strengths of carbon-cycle feedbacks are often not included in a wider discussion of the AR4 conclusions. While it is still too early to say whether any particular scenario is being tracked by current emissions, A1FI is considered to be as plausible as other non-mitigation scenarios and cannot be ruled out. (A1FI is a part of the A1 family of scenarios, with 'FI' standing for 'fossil intensive'. This is sometimes erroneously written as A1F1, with number 1 instead of letter I.) This paper presents simulations of climate change with an ensemble of GCMs driven by the A1FI scenario, and also assesses the implications of carbon-cycle feedbacks for the climate-change projections. Using these GCM projections along with simple climate-model projections, including uncertainties in carbon

  14. Three Smoking Guns Prove Falsity of Green house Warming

    NASA Astrophysics Data System (ADS)

    Fong, P.

    2001-12-01

    Three observed facts: 1, the cloud coverage increased 4.1% in 50 years; 2. the precipitation increased 7.8% in 100 years; 3. the two rates are the same. {Interpretation}. 1, By the increased albedo of the clouds heat dissipation is increased 3.98 W/m2 by 2XCO2 time, canceling out greenhouse warming of 4 W/m{2}. Thus no global warming. 2, The precipitation increase show the increased release of latent heat of vaporization, which turns out to be equal to that absorbed by ocean due to increased evaporation by the greenhouse forcing. This all greenhouse heat is used up in evaporation and the warming of the earth is zero. 3, The identity of the two rates double-checked the two independent proofs. Therefore experimentally no greenhouse warming is triply proved. A new branch of science Pleistocene Climatology is developed to study the theoretical origin of no greenhouse warming. Climatology, like mechanics of a large number of particles, is of course complex and unwieldy. If totally order-less then there is no hope. However, if some regularity appears, then a systematic treatment can be done to simplify the complexity. The rigid bodies are subjected to a special simplifying condition (the distances between all particles are constant) and only 6 degrees of freedom are significant, all others are sidetracked. To study the spinning top there is no need to study the dynamics of every particle of the top by Newton's laws through super-computer. It only needs to solve the Euler equations without computer. In climate study the use of super-computer to study all degrees of freedom of the climate is as untenable as the study of the spinning top by super-computer. Yet in spite of the complexity there is strict regularity as seen in the ice ages, which works as the simplifying conditions to establish a new science Pleistocene climatology. See my book Greenhouse Warming and Nuclear Hazards just published (www.PeterFongBook.com). This time the special condition is the presence of a

  15. The Effects of Local Warming on Surgical Site Infection

    PubMed Central

    Dellinger, E. Patchen; Weber, James; Swenson, Ron Edward; Kent, Christopher D.; Swanson, Paul E.; Harmon, Kurt; Perrin, Margot

    2015-01-01

    Abstract Background: Surgical site infections (SSI) account for a major proportion of hospital-acquired infections. They are associated with longer hospital stay, readmissions, increased costs, mortality, and morbidity. Reducing SSI is a goal of the Surgical Care Improvement Project and identifying interventions that reduce SSI effectively is of interest. In a single-blinded randomized controlled trial (RCT) we evaluated the effect of localized warming applied to surgical incisions on SSI development and selected cellular (immune, endothelial) and tissue responses (oxygenation, collagen). Methods: After Institutional Review Board approval and consent, patients having open bariatric, colon, or gynecologic-oncologic related operations were enrolled and randomly assigned to local incision warming (6 post-operative treatments) or non-warming. A prototype surgical bandage was used for all patients. The study protocol included intra-operative warming to maintain core temperature ≥36°C and administration of 0.80 FIO2. Patients were followed for 6 wks for the primary outcome of SSI determined by U.S. Centers for Disease Control (CDC) criteria and ASEPSIS scores (additional treatment; presence of serous discharge, erythema, purulent exudate, and separation of the deep tissues; isolation of bacteria; and duration of inpatient stay). Tissue oxygen (PscO2) and samples for cellular analyses were obtained using subcutaneous polytetrafluoroethylene (ePTFE) tubes and oxygen micro-electrodes implanted adjacent to the incision. Cellular and tissue ePTFE samples were evaluated using flow cytometry, immunohistochemistry, and Sircol™ collagen assay (Biocolor Ltd., Carrickfergus, United Kingdom). Results: One hundred forty-six patients participated (n=73 per group). Study groups were similar on demographic parameters and for intra-operative management factors. The CDC defined rate of SSI was 18%; occurrence of SSI between groups did not differ (p=0.27). At 2 wks, warmed

  16. Can climate-effective land management reduce regional warming?

    NASA Astrophysics Data System (ADS)

    Hirsch, A. L.; Wilhelm, M.; Davin, E. L.; Thiery, W.; Seneviratne, S. I.

    2017-02-01

    Limiting global warming to well below 2°C is an imminent challenge for humanity. However, even if this global target can be met, some regions are still likely to experience substantial warming relative to others. Using idealized global climate simulations, we examine the potential of land management options in affecting regional climate, with a focus on crop albedo enhancement and irrigation (climate-effective land management). The implementation is performed over all crop regions globally to provide an upper bound. We find that the implementation of both crop albedo enhancement and irrigation can reduce hot temperature extremes by more than 2°C in North America, Eurasia, and India over the 21st century relative to a scenario without management application. The efficacy of crop albedo enhancement scales with the magnitude, where a cooling response exceeding 0.5°C for hot temperature extremes was achieved with a large (i.e., ≥0.08) change in crop albedo. Regional differences were attributed to the surface energy balance response with temperature changes mostly explained by latent heat flux changes for irrigation and net shortwave radiation changes for crop albedo enhancement. However, limitations do exist, where we identify warming over the winter months when climate-effective land management is temporarily suspended. This was associated with persistent cloud cover that enhances longwave warming. It cannot be confirmed if the magnitude of this feedback is reproducible in other climate models. Our results overall demonstrate that regional warming of hot extremes in our climate model can be partially mitigated when using an idealized treatment of climate-effective land management.

  17. SOFIA Observations of S106: Dynamics of the Warm Gas

    NASA Technical Reports Server (NTRS)

    Simon, R.; Schneider, N.; Stutzki, J.; Gusten, R.; Graf, U. U.; Hartogh, P.; Guan, X.; Staguhn, J. G.; Benford, D. J.

    2012-01-01

    Context The H II region/PDR/molecular cloud complex S106 is excited by a single O-star. The full extent of the warm and dense gas close to the star has not been mapped in spectrally resolved high-J CO or [C II] lines, so the kinematics of the warm. partially ionized gas, are unknown. Whether the prominent dark lane bisecting the hourglass-shaped nebula is due solely to the shadow cast by a small disk around the exciting star or also to extinction in high column foreground gas was an open question until now. Aims. To disentangle the morphology and kinematics of warm neutral and ionized gas close to the star, study their relation to the bulk of the molecular gas. and to investigate the nature of the dark lane. Methods. We use the heterodyne receiver GREAT on board SOFIA to observe velocity resolved spectral lines of [C II] and CO 11 yields 10 in comparison with so far unpublished submm continuum data at 350 micron (8HARC-Il) and complementary molecular line data. Results. The high angular and spectral resolution observations show a very complex morphology and kinematics of the inner S106 region, with many different components at different excitation conditions contributing to the observed emission. The [C II] lines are found to be bright and very broad. tracing high velocity gas close to the interface of molecular cloud and H II region. CO 11 yields 10 emission is more confined.. both spatially and in velocity, to the immediate surroundings of S 106 IR showing the presence of warm, high density (clumpy) gas. Our high angular resolution submm continuum observations rule out the scenario where the dark lane separating the two lobes is due solely to the shadow cast by a small disk close to the star. The lane is clearly seen also as warm, high column density gas at the boundary of the molecular cloud and H II region.

  18. Progression of Recent Warming Trends Across the Continents and Oceans

    NASA Astrophysics Data System (ADS)

    Abram, N.

    2014-12-01

    As part of the PAGES (Past Global Changes) Ocean2k project1-2 we examine the features of recent sea surface temperature trends in ocean regions where palaeoclimate data allow for moderate to high-resolution reconstructions that extend back over several centuries. Centennial-scale resolution marine observations independently suggest that the global ocean cooling trend observed from 0-1800 CE was reversed in the last two centuries. Building on the results of earlier continental-scale temperature reconstructions from the PAGES 2k community3, we compare the initiation point for recent significant warming between various land and ocean regions. Preliminary results suggest recent significant warming in the tropical oceans was near synchronous with warming of the Northern Hemisphere land masses, in contrast with a potential poleward lag in warming of the Southern Hemisphere land masses. Multi-model climate simulations are used to assess where there is high fidelity between recent warming trends determined by palaeoclimate observations and simulations, and to examine regions of data-model divergence. References: 1. Tierney, J.E., Abram, N.J., Anchukaitis, K.J., Evans, M.N., Giry, C., Kilbourne, K.H., Saenger, C.P., Wu, H.C., Zinke, J. (in prep). Tropical sea-surface temperatures for the past 400 years reconstructed from coral archives. 2. PAGES Ocean2k LR Group (in prep.) Robust global ocean cooling trend for the pre-industrial Common Era. 3. PAGES 2k Consortium (2013). Continental-scale temperature variability during the last two millennia. doi: 10.1038/NGEO1797 Website: http://www.pages-igbp.org/workinggroups/ocean2k

  19. Pacific Sea Level Rise Pattern and Global Warming Hiatus

    NASA Astrophysics Data System (ADS)

    Peyser, C.; Yin, J.; Landerer, F. W.

    2014-12-01

    Two important topics in current climate research are the global warming hiatus and the seesaw pattern of sea level rise (SLR) in the Pacific Ocean. We use ocean temperature and sea-level observations along with CMIP5 climate modelling data to investigate the relationship between the warming hiatus and sea-level variability in the Pacific Ocean. We analyse ocean heat content (OHC) trend by basin and layer for the full record (1945-2012) as well as the hiatus period (1998-2012). The result confirms the importance of the Pacific for heat uptake during the hiatus. Notably, the subsurface layer of the Pacific shows significant increase in OHC during the hiatus and a strong east-west compensation. This is mainly responsible for and reflected by the seesaw pattern of the Pacific sea level through thermosteric effect. The control simulations from 38 CMIP5 models indicate that the seesaw pattern of SLR in the Pacific is mainly a feature of decadal to multidecadal variability. Most CMIP5 models can capture this variability, especially in the Pacific Decadal Oscillation region (poleward of 20°N). The CMIP5 control runs show that during periods of negative trends of global temperatures (analogous to hiatus decades in a warming world), sea level increases in the western Pacific and decreases in the eastern Pacific. The opposite is true during periods of positive temperature trend (accelerated warming). These results suggest that a possible flip of the Pacific SLR seesaw would imply a resumption of surface warming and a SLR acceleration along the U.S. West Coast.

  20. King penguin population threatened by Southern Ocean warming.

    PubMed

    Le Bohec, Céline; Durant, Joël M; Gauthier-Clerc, Michel; Stenseth, Nils C; Park, Young-Hyang; Pradel, Roger; Grémillet, David; Gendner, Jean-Paul; Le Maho, Yvon

    2008-02-19

    Seabirds are sensitive indicators of changes in marine ecosystems and might integrate and/or amplify the effects of climate forcing on lower levels in food chains. Current knowledge on the impact of climate changes on penguins is primarily based on Antarctic birds identified by using flipper bands. Although flipper bands have helped to answer many questions about penguin biology, they were shown in some penguin species to have a detrimental effect. Here, we present for a Subantarctic species, king penguin (Aptenodytes patagonicus), reliable results on the effect of climate on survival and breeding based on unbanded birds but instead marked by subcutaneous electronic tags. We show that warm events negatively affect both breeding success and adult survival of this seabird. However, the observed effect is complex because it affects penguins at several spatio/temporal levels. Breeding reveals an immediate response to forcing during warm phases of El Niño Southern Oscillation affecting food availability close to the colony. Conversely, adult survival decreases with a remote sea-surface temperature forcing (i.e., a 2-year lag warming taking place at the northern boundary of pack ice, their winter foraging place). We suggest that this time lag may be explained by the delay between the recruitment and abundance of their prey, adjusted to the particular 1-year breeding cycle of the king penguin. The derived population dynamic model suggests a 9% decline in adult survival for a 0.26 degrees C warming. Our findings suggest that king penguin populations are at heavy extinction risk under the current global warming predictions.