Sample records for erisma uncinatum warm

  1. Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations

    NASA Astrophysics Data System (ADS)

    de Moura, Yhasmin Mendes; Galvão, Lênio Soares; Hilker, Thomas; Wu, Jin; Saleska, Scott; do Amaral, Cibele Hummel; Nelson, Bruce Walker; Lopes, Aline Pontes; Wiedeman, Kenia K.; Prohaska, Neill; de Oliveira, Raimundo Cosme; Machado, Carolyne Bueno; Aragão, Luiz E. O. C.

    2017-09-01

    The association between spectral reflectance and canopy processes remains challenging for quantifying large-scale canopy phenological cycles in tropical forests. In this study, we used a tower-mounted hyperspectral camera in an eastern Amazon forest to assess how canopy spectral signals of three species are linked with phenological processes in the 2012 dry season. We explored different approaches to disentangle the spectral components of canopy phenology processes and analyze their variations over time using 17 images acquired by the camera. The methods included linear spectral mixture analysis (SMA); principal component analysis (PCA); continuum removal (CR); and first-order derivative analysis. In addition, three vegetation indices potentially sensitive to leaf flushing, leaf loss and leaf area index (LAI) were calculated: the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and the entitled Green-Red Normalized Difference (GRND) index. We inspected also the consistency of the camera observations using Moderate Resolution Imaging Spectroradiometer (MODIS) and available phenological data on new leaf production and LAI of young, mature and old leaves simulated by a leaf demography-ontogeny model. The results showed a diversity of phenological responses during the 2012 dry season with related changes in canopy structure and greenness values. Because of the differences in timing and intensity of leaf flushing and leaf shedding, Erisma uncinatum, Manilkara huberi and Chamaecrista xinguensis presented different green vegetation (GV) and non-photosynthetic vegetation (NPV) SMA fractions; distinct PCA scores; changes in depth, width and area of the 681-nm chlorophyll absorption band; and variations over time in the EVI, GRND and NDVI. At the end of dry season, GV increased for Erisma uncinatum, while NPV increased for Chamaecrista xinguensis. For Manilkara huberi, the NPV first increased in the beginning of August and then decreased toward September with new foliage. Variations in red-edge position were not statistically significant between the species and across dates at the 95% confidence level. The camera data were affected by view-illumination effects, which reduced the SMA shade fraction over time. When MODIS data were corrected for these effects using the Multi-Angle Implementation of Atmospheric Correction Algorithm (MAIAC), we observed an EVI increase toward September that closely tracked the modeled LAI of mature leaves (3-5 months). Compared to the EVI, the GRND was a better indicator of leaf flushing because the modeled production of new leaves peaked in August and then declined in September following the GRND closely. While the EVI was more related to changes in mature leaf area, the GRND was more associated with new leaf flushing.

  2. Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Moura, Yhasmin Mendes; Galvão, Lênio Soares; Hilker, Thomas

    The association between spectral reflectance and canopy processes remains challenging for quantifying large-scale canopy phenological cycles in tropical forests. In this paper, we used a tower-mounted hyperspectral camera in an eastern Amazon forest to assess how canopy spectral signals of three species are linked with phenological processes in the 2012 dry season. We explored different approaches to disentangle the spectral components of canopy phenology processes and analyze their variations over time using 17 images acquired by the camera. The methods included linear spectral mixture analysis (SMA); principal component analysis (PCA); continuum removal (CR); and first-order derivative analysis. In addition, threemore » vegetation indices potentially sensitive to leaf flushing, leaf loss and leaf area index (LAI) were calculated: the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and the entitled Green-Red Normalized Difference (GRND) index. We inspected also the consistency of the camera observations using Moderate Resolution Imaging Spectroradiometer (MODIS) and available phenological data on new leaf production and LAI of young, mature and old leaves simulated by a leaf demography-ontogeny model. The results showed a diversity of phenological responses during the 2012 dry season with related changes in canopy structure and greenness values. Because of the differences in timing and intensity of leaf flushing and leaf shedding, Erisma uncinatum, Manilkara huberi and Chamaecrista xinguensis presented different green vegetation (GV) and non-photosynthetic vegetation (NPV) SMA fractions; distinct PCA scores; changes in depth, width and area of the 681-nm chlorophyll absorption band; and variations over time in the EVI, GRND and NDVI. At the end of dry season, GV increased for Erisma uncinatum, while NPV increased for Chamaecrista xinguensis. For Manilkara huberi, the NPV first increased in the beginning of August and then decreased toward September with new foliage. Variations in red-edge position were not statistically significant between the species and across dates at the 95% confidence level. The camera data were affected by view-illumination effects, which reduced the SMA shade fraction over time. When MODIS data were corrected for these effects using the Multi-Angle Implementation of Atmospheric Correction Algorithm (MAIAC), we observed an EVI increase toward September that closely tracked the modeled LAI of mature leaves (3–5 months). Compared to the EVI, the GRND was a better indicator of leaf flushing because the modeled production of new leaves peaked in August and then declined in September following the GRND closely. Finally, while the EVI was more related to changes in mature leaf area, the GRND was more associated with new leaf flushing.« less

  3. Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations

    DOE PAGES

    de Moura, Yhasmin Mendes; Galvão, Lênio Soares; Hilker, Thomas; ...

    2017-09-01

    The association between spectral reflectance and canopy processes remains challenging for quantifying large-scale canopy phenological cycles in tropical forests. In this paper, we used a tower-mounted hyperspectral camera in an eastern Amazon forest to assess how canopy spectral signals of three species are linked with phenological processes in the 2012 dry season. We explored different approaches to disentangle the spectral components of canopy phenology processes and analyze their variations over time using 17 images acquired by the camera. The methods included linear spectral mixture analysis (SMA); principal component analysis (PCA); continuum removal (CR); and first-order derivative analysis. In addition, threemore » vegetation indices potentially sensitive to leaf flushing, leaf loss and leaf area index (LAI) were calculated: the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and the entitled Green-Red Normalized Difference (GRND) index. We inspected also the consistency of the camera observations using Moderate Resolution Imaging Spectroradiometer (MODIS) and available phenological data on new leaf production and LAI of young, mature and old leaves simulated by a leaf demography-ontogeny model. The results showed a diversity of phenological responses during the 2012 dry season with related changes in canopy structure and greenness values. Because of the differences in timing and intensity of leaf flushing and leaf shedding, Erisma uncinatum, Manilkara huberi and Chamaecrista xinguensis presented different green vegetation (GV) and non-photosynthetic vegetation (NPV) SMA fractions; distinct PCA scores; changes in depth, width and area of the 681-nm chlorophyll absorption band; and variations over time in the EVI, GRND and NDVI. At the end of dry season, GV increased for Erisma uncinatum, while NPV increased for Chamaecrista xinguensis. For Manilkara huberi, the NPV first increased in the beginning of August and then decreased toward September with new foliage. Variations in red-edge position were not statistically significant between the species and across dates at the 95% confidence level. The camera data were affected by view-illumination effects, which reduced the SMA shade fraction over time. When MODIS data were corrected for these effects using the Multi-Angle Implementation of Atmospheric Correction Algorithm (MAIAC), we observed an EVI increase toward September that closely tracked the modeled LAI of mature leaves (3–5 months). Compared to the EVI, the GRND was a better indicator of leaf flushing because the modeled production of new leaves peaked in August and then declined in September following the GRND closely. Finally, while the EVI was more related to changes in mature leaf area, the GRND was more associated with new leaf flushing.« less

  4. Modern pollen-rain characteristics of tall terra firme moist evergreen forest, southern Amazonia

    NASA Astrophysics Data System (ADS)

    Gosling, William D.; Mayle, Francis E.; Tate, Nicholas J.; Killeen, Timothy J.

    2005-11-01

    The paucity of modern pollen-rain data from Amazonia constitutes a significant barrier to understanding the Late Quaternary vegetation history of this globally important tropical forest region. Here, we present the first modern pollen-rain data for tall terra firme moist evergreen Amazon forest, collected between 1999 and 2001 from artificial pollen traps within a 500 × 20 m permanent study plot (14°34'50″S, 60°49'48″W) in Noel Kempff Mercado National Park (NE Bolivia). Spearman's rank correlations were performed to assess the extent of spatial and inter-annual variability in the pollen rain, whilst statistically distinctive taxa were identified using Principal Components Analysis (PCA). Comparisons with the floristic and basal area data of the plot (stems ≥10 cm d.b.h.) enabled the degree to which taxa are over/under-represented in the pollen rain to be assessed (using R-rel values). Moraceae/Urticaceae dominates the pollen rain (64% median abundance) and is also an important constituent of the vegetation, accounting for 16% of stems ≥10 cm d.b.h. and ca. 11% of the total basal area. Other important pollen taxa are Arecaceae (cf. Euterpe), Melastomataceae/Combretaceae, Cecropia, Didymopanax, Celtis, and Alchornea. However, 75% of stems and 67% of the total basal area of the plot ≥10 cm d.b.h. belong to species which are unidentified in the pollen rain, the most important of which are Phenakospermum guianensis (a banana-like herb) and the key canopy-emergent trees, Erisma uncinatum and Qualea paraensis.

  5. Intraspecific genotypic variability determines concentrations of key truffle volatiles

    PubMed Central

    Splivallo, Richard; Valdez, Nayuf; Kirchhoff, Nina; Ona, Marta Castiella; Schmidt, Jean-Pierre; Feussner, Ivo; Karlovsky, Petr

    2012-01-01

    Aroma variability in truffles has been attributed to maturation (Tuber borchii), linked to environmental factors (Tuber magnatum), but the involvement of genetic factors has been ignored. We investigated aroma variability in Tuber uncinatum, a species with wide distribution. Our aim was to assess aroma variability at different spatial scales (i.e. trees, countries) and to quantify how aroma was affected by genotype, fruiting body maturity, and geographical origin. A volatile fingerprinting method was used to analyze the aroma of 223 T. uncinatum fruiting bodies from seven European countries. Maturity was estimated from spore melanization. Genotypic fingerprinting was performed by amplified fragment length polymorphism (AFLP). Discriminant analysis revealed that, regardless of the geographical origin of the truffles, most of the aroma variability was caused by eight-carbon-containing volatiles (C8-VOCs). In an orchard of T. uncinatum, truffles producing different concentrations of C8-VOCs clustered around distinct host trees. This clustering was not associated with maturity, but was associated with fungal genotype. These results indicate that the variation in C8-VOCs in truffles is most likely under genetic control. They exemplify that understanding the factors behind aroma variability requires a holistic approach. Furthermore, they also raise new questions regarding the ecological role of 1-octen-3-ol in truffles. PMID:22394027

  6. Isoflavanones from the allelopathic aqueous root exudate of Desmodium uncinatum.

    PubMed

    Tsanuo, Muniru K; Hassanali, Ahmed; Hooper, Antony M; Khan, Zeyaur; Kaberia, Festus; Pickett, John A; Wadhams, Lester J

    2003-09-01

    Three isoflavanones, 5,7,2',4'-tetrahydroxy-6-(3-methylbut-2-enyl)isoflavanone (1), 4",5"-dihydro-5,2',4'-trihydroxy-5"-isopropenylfurano-(2",3";7,6)-isoflavanone (2) and 4",5"-dihydro-2'-methoxy-5,4'-dihydroxy-5"-isopropenylfurano-(2",3";7,6)-isoflavanone (3) and a previously known isoflavone 5,7,4'-trihydroxyisoflavone [genistein (4)] were isolated and characterised spectroscopically from the root exudate of the legume Desmodium uncinatum (Jacq.) DC. We propose the names uncinanone A, B, and C for compounds 1, 2 and 3, respectively. Isolated fractions containing uncinanone B (2) induced germination of seeds from the parasitic weed Striga hermonthica (Del.) Benth. and fractions containing uncinanone C (3) moderately inhibited radical growth, the first example of a newly identified potential allelopathic mechanism to prevent S. hermonthica parasitism.

  7. An integrated approach to demonstrating the ANR pathway of proanthocyanidin biosynthesis in plants.

    PubMed

    Peng, Qing-Zhong; Zhu, Yue; Liu, Zhong; Du, Ci; Li, Ke-Gang; Xie, De-Yu

    2012-09-01

    Proanthocyanidins (PAs) are oligomers or polymers of plant flavan-3-ols and are important to plant adaptation in extreme environmental conditions. The characterization of anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) has demonstrated the different biogenesis of four stereo-configurations of flavan-3-ols. It is important to understand whether ANR and the ANR pathway widely occur in the plant kingdom. Here, we report an integrated approach to demonstrate the ANR pathway in plants. This includes different methods to extract native ANR from different tissues of eight angiosperm plants (Lotus corniculatus, Desmodium uncinatum, Medicago sativa, Hordeum vulgare, Vitis vinifera, Vitis bellula, Parthenocissus heterophylla, and Cerasus serrulata) and one fern plant (Dryopteris pycnopteroides), a general enzymatic analysis approach to demonstrate the ANR activity, high-performance liquid chromatography-based fingerprinting to demonstrate (-)-epicatechin and other flavan-3-ol molecules, and phytochemical analysis of PAs. Results demonstrate that in addition to leaves of M. sativa, tissues of other eight plants contain an active ANR pathway. Particularly, the leaves, flowers and pods of D. uncinatum, which is a model plant to study LAR and the LAR pathways, are demonstrated to express an active ANR pathway. This finding suggests that the ANR pathway involves PA biosynthesis in D. uncinatum. In addition, a sequence BLAST analysis reveals that ANR homologs have been sequenced in plants from both gymnosperms and angiosperms. These data show that the ANR pathway to PA biosynthesis occurs in both seed and seedless vascular plants.

  8. Multi-cropping edible truffles and sweet chestnuts: production of high-quality Castanea sativa seedlings inoculated with Tuber aestivum, its ecotype T. uncinatum, T. brumale, and T. macrosporum.

    PubMed

    Álvarez-Lafuente, Amaya; Benito-Matías, Luis F; Peñuelas-Rubira, Juan L; Suz, Laura M

    2018-01-01

    The plantation and management of sweet chestnut (Castanea sativa Mill.) orchards is a common and traditional land use system in many areas of Europe that offers the advantage of simultaneous production of nuts and timber. During the last decades, sweet chestnut has declined dramatically in many regions because of the profound social changes in rural areas coupled with pathogen attacks. Truffles, the hypogeous ascocarps of the ectomycorrhizal genus Tuber, are currently cultivated using host trees inoculated with these fungi for improving production in truffle orchards. The production of good forestry quality chestnut seedlings inoculated with European truffles in nurseries is essential for multi-cropping plantation establishment, but so far, it has not been implemented in agroforestry practices. Moreover, it is necessary to assess the physiological condition of the seedlings due to the high calcium amendment needed for the growth of Tuber spp. mycelium that can become toxic for the host plants. In this study, seedlings of C. sativa were inoculated with Tuber aestivum and its ecotypes T. uncinatum, T. brumale, and T. macrosporum and were grown in a greenhouse using culture conditions favorable for the production of high-quality plants for forestry purposes. At the end of the assay, levels of root colonization and morphological and physiological parameters of the seedlings were measured. The colonization of C. sativa with T. aestivum, its ecotype T. uncinatum, and T. brumale was successful, and the seedlings showed normal growth. Inoculation protocols with T. macrosporum need to be improved. Tuber species formed well-developed ectomycorrhizae on C. sativa in nursery conditions.

  9. A nature-based approach for managing the invasive weed species Gutenbergia cordifolia for sustainable rangeland management.

    PubMed

    Ngondya, Issakwisa B; Munishi, Linus K; Treydte, Anna C; Ndakidemi, Patrick A

    2016-01-01

    The invasive weed species Gutenbergia cordifolia has been observed to suppress native plants and to dominate more than half of the entire crater floor (250 km 2 ) in the Ngorongoro Conservation Area (NCA). As this species has been found to be toxic to ruminants it might strongly impact animal populations in this ecologically diverse ecosystem. Hence, a nature-based approach is urgently needed to manage its spread. We tested two Desmodium spp extracts applied to G. cordifolia and assessed the latter's germination rate, height, fresh weight and leaf total chlorophyll content after 30 days in both laboratory and screen house experiments. Seedling germination rate was halved by Desmodium uncinatum leaf extract (DuL), particularly under higher concentrations (≥75 %) rather than lower concentrations (≤62.5 %). Likewise, in both laboratory and screen house experiments, germination rate under DuL treatments declined with increasing concentrations. Seedling height, fresh weight and leaf total chlorophyll content (Chl) were also most strongly affected by DuL treatments rather than D. uncinatum root extract, Desmodium intortum leaf extract or D. intortum root extract treatments. Generally, seedlings treated with higher DuL concentrations were half as tall, had one-third the weight and half the leaf Chl content compared to those treated with lower concentrations. Our study shows a novel technique that can be applied where G. cordifolia may be driving native flora and fauna to local extinction. Our data further suggest that this innovative approach is both ecologically safe and effective and that D. uncinatum can be sustainably used to manage invasive plants, and thus, to improve rangeland productivity.

  10. New species and records of Lobrathium Mulsant & Rey (Coleoptera, Staphylinidae, Paederinae) from China

    PubMed Central

    Li, Wen-Rong; Zhao, Mei-Jun; Dai, Cong-Chao; Li, Li-Zhen

    2013-01-01

    Abstract Seven new species of the genus Lobrathium Mulsant & Rey from China are described and illustrated: Lobrathium anatinum Li & Li, sp. n. (Guangxi), Lobrathium diaoluoense Li & Li, sp. n. (Hainan), Lobrathium dufui Li & Li, sp. n. (Hubei), Lobrathium lirunyui Li & Li, sp. n. (Guizhou), Lobrathium pengi Li & Li, sp. n. (Guangxi), Lobrathium quyuani Li & Li, sp. n. (Hubei) and Lobrathium uncinatum Li & Li, sp. n. (Qinghai). A recent key to the species of mainland China is modified to accommodate the new species. New locality data are provided for eleven species. PMID:23794908

  11. A molecular docking study of phytochemical estrogen mimics from dietary herbal supplements.

    PubMed

    Powers, Chelsea N; Setzer, William N

    2015-01-01

    The purpose of this study is to use a molecular docking approach to identify potential estrogen mimics or anti-estrogens in phytochemicals found in popular dietary herbal supplements. In this study, 568 phytochemicals found in 17 of the most popular herbal supplements sold in the United States were built and docked with two isoforms of the estrogen receptor, ERα and ERβ (a total of 27 different protein crystal structures). The docking results revealed six strongly docking compounds in Echinacea, three from milk thistle (Silybum marianum), three from Gingko biloba, one from Sambucus nigra, none from maca (Lepidium meyenii), five from chaste tree (Vitex agnus-castus), two from fenugreek (Trigonella foenum-graecum), and two from Rhodiola rosea. Notably, of the most popular herbal supplements for women, there were numerous compounds that docked strongly with the estrogen receptor: Licorice (Glycyrrhiza glabra) had a total of 26 compounds strongly docking to the estrogen receptor, 15 with wild yam (Dioscorea villosa), 11 from black cohosh (Actaea racemosa), eight from muira puama (Ptychopetalum olacoides or P. uncinatum), eight from red clover (Trifolium pratense), three from damiana (Turnera aphrodisiaca or T. diffusa), and three from dong quai (Angelica sinensis). Of possible concern were the compounds from men's herbal supplements that exhibited strong docking to the estrogen receptor: Gingko biloba had three compounds, gotu kola (Centella asiatica) had two, muira puama (Ptychopetalum olacoides or P. uncinatum) had eight, and Tribulus terrestris had six compounds. This molecular docking study has revealed that almost all popular herbal supplements contain phytochemical components that may bind to the human estrogen receptor and exhibit selective estrogen receptor modulation. As such, these herbal supplements may cause unwanted side effects related to estrogenic activity.

  12. Interactive image analysis system to determine the motility and velocity of cyanobacterial filaments.

    PubMed

    Häder, D P; Vogel, K

    1991-01-01

    An interactive image analysis system has been developed to analyse and quantify the percentage of motile filaments and the individual linear velocities of organisms. The technique is based on the "difference" image between two digitized images taken from a time-lapse video recording 80 s apart which is overlaid on the first image. The bright lines in the difference image represent the paths along which the filaments have moved and are measured using a crosshair cursor controlled by the mouse. Even short exposure to solar ultraviolet radiation strongly impairs the motility of the gliding cyanobacterium Phormidium uncinatum, while its velocity is not likewise affected. These effects are not due to either type I (free radical formation) or type II (singlet oxygen production) photodynamic reactions, since specific quenchers and scavengers, indicative of these reactions, failed to be effective.

  13. Plants used traditionally to treat malaria in Brazil: the archives of Flora Medicinal

    PubMed Central

    Botsaris, Alexandros S

    2007-01-01

    The archives of Flora Medicinal, an ancient pharmaceutical laboratory that supported ethnomedical research in Brazil for more than 30 years, were searched for plants with antimalarial use. Forty plant species indicated to treat malaria were described by Dr. J. Monteiro da Silva (Flora Medicinal leader) and his co-workers. Eight species, Bathysa cuspidata, Cosmos sulphureus, Cecropia hololeuca, Erisma calcaratum, Gomphrena arborescens, Musa paradisiaca, Ocotea odorifera, and Pradosia lactescens, are related as antimalarial for the first time in ethnobotanical studies. Some species, including Mikania glomerata, Melampodium divaricatum, Galipea multiflora, Aspidosperma polyneuron, and Coutarea hexandra, were reported to have activity in malaria patients under clinical observation. In the information obtained, also, there were many details about the appropriate indication of each plant. For example, some plants are indicated to increase others' potency. There are also plants that are traditionally employed for specific symptoms or conditions that often accompany malaria, such as weakness, renal failure or cerebral malaria. Many plants that have been considered to lack activity against malaria due to absence of in vitro activity against Plasmodium can have other mechanisms of action. Thus researchers should observe ethnomedical information before deciding which kind of screening should be used in the search of antimalarial drugs. PMID:17472740

  14. Fungal growth inhibitory properties of new phytosphingolipid analogues.

    PubMed

    Mormeneo, D; Manresa, A; Casas, J; Llebaria, A; Delgado, A

    2008-04-01

    To study the growth inhibitory properties of a series of phytosphingosine (PHS) and phytoceramide (PHC) analogues. A panel of two yeast (Candida albicans and Saccharomyces cerevisiae) and six moulds (Aspergillus repens, Aspergillus niger, Penicillium chrysogenum, Cladosporium cladosporioides, Arthroderma uncinatum and Penicillium funiculosum) has been used in this study. A series of new PHS and PHC analogues differing at the sphingoid backbone and the functional group at C1 position were synthesized. Among PHS analogues, 1-azido derivative 1c, bearing the natural D-ribo stereochemistry, showed a promising growth inhibitory profile. Among PHC analogues, compound 12, with a bulky N-pivaloyl group and a Z double bond at C3 position of the sphingoid chain, was the most active growth inhibitor. Minimal inhibitory concentration values were in the range of 23-48 micromol l(-1) for 1c and 44-87 micromol l(-1) for 12. Only scattered data on the antifungal activity of phytosphingolipids have been reported in the literature. This is the first time that a series of analogues of this kind are tested and compared to discern their structural requirements for antifungal activity.

  15. Are We Underestimating Benthic Cyanotoxins? Extensive Sampling Results from Spain

    PubMed Central

    Cantoral Uriza, Enrique A.; Asencio, Antonia D.; Aboal, Marina

    2017-01-01

    Microcystins (MCs) are potent hepatotoxins, and their presence in water bodies poses a threat to wildlife and human populations. Most of the available information refers to plankton, and much less is known about microcystins in other habitats. To broaden our understanding of the presence and environmental distribution of this group of toxins, we conducted extensive sampling throughout Spain, under a range of conditions and in distinct aquatic and terrestrial habitats. More than half of the tested strains were toxic; concentrations of the hepatotoxin were low compared with planktic communities, and the number of toxic variants identified in each sample of the Spanish strains ranged from 1–3. The presence of microcystins LF and LY (MC-LF and MC-LY) in the tested samples was significant, and ranged from 21.4% to 100% of the total microcystins per strain. These strains were only detected in cyanobacteria Oscillatoriales and Nostocales. We can report, for the first time, seven new species of microcystin producers in high mountain rivers and chasmoendolithic communities. This is the first report of these species in Geitlerinema and the confirmation of Anatoxin-a in Phormidium uncinatum. Our findings show that microcystins are widespread in all habitat types, including both aerophytic and endolithic peat bogs and that it is necessary to identify all the variants of microcystins in aquatic bodies as the commonest toxins sometimes represent a very low proportion of the total. PMID:29182536

  16. Are We Underestimating Benthic Cyanotoxins? Extensive Sampling Results from Spain.

    PubMed

    Cantoral Uriza, Enrique A; Asencio, Antonia D; Aboal, Marina

    2017-11-28

    Microcystins (MCs) are potent hepatotoxins, and their presence in water bodies poses a threat to wildlife and human populations. Most of the available information refers to plankton, and much less is known about microcystins in other habitats. To broaden our understanding of the presence and environmental distribution of this group of toxins, we conducted extensive sampling throughout Spain, under a range of conditions and in distinct aquatic and terrestrial habitats. More than half of the tested strains were toxic; concentrations of the hepatotoxin were low compared with planktic communities, and the number of toxic variants identified in each sample of the Spanish strains ranged from 1-3. The presence of microcystins LF and LY (MC-LF and MC-LY) in the tested samples was significant, and ranged from 21.4% to 100% of the total microcystins per strain. These strains were only detected in cyanobacteria Oscillatoriales and Nostocales. We can report, for the first time, seven new species of microcystin producers in high mountain rivers and chasmoendolithic communities. This is the first report of these species in Geitlerinema and the confirmation of Anatoxin-a in Phormidium uncinatum . Our findings show that microcystins are widespread in all habitat types, including both aerophytic and endolithic peat bogs and that it is necessary to identify all the variants of microcystins in aquatic bodies as the commonest toxins sometimes represent a very low proportion of the total.

  17. New perspectives on proanthocyanidin biochemistry and molecular regulation.

    PubMed

    Marles, M A Susan; Ray, Heather; Gruber, Margaret Y

    2003-09-01

    Our understanding of proanthocyanidin (syn. condensed tannin) synthesis has been recently extended by substantial developments concerning both structural and regulatory genes. A gene encoding leucoanthocyanidin reductase has been obtained from the tropical forage, Desmodium uncinatum, with the latter enzyme catalyzing formation of (+)-catechin. The BANYULS gene in Arabidopsis thaliana, previously proposed to encode leucoanthocyanidin reductase or to regulate proanthocyanidin biosynthesis, has been shown instead to encode anthocyanidin reductase, which in turn converts anthocyanidins (pelargonidin, cyanidin, or delphinidin) into 2,3-cis-2R,3R-flavan-3-ols (respectively, (-)-epiafzelechin, (-)-epicatechin and (-)-epigallocatechin). However, the enzyme which catalyzes the polymerization reaction remains unknown. Nevertheless, a vacuolar transmembrane protein TT12, defined by the Arabidopsis tt12 mutant, is involved in transport of proanthocyanidin polymer into the vacuole for accumulation. Six different types of regulatory elements, e.g. TFIIIA-like, WD-40-like, WRKY-like, MADS-box-like, myb-like, and bHLH (myc-like), have been cloned and identified using mutants from Arabidopsis (tt1, ttg1, ttg2, tt2, tt16, tt2, tt8) and two other species (Hordeum vulgare [ant13] and Lotus spp [tan1]). Accordingly, increases in proanthocyanidin levels have been induced in the the world's major forage, alfalfa. These advances may now lead to a detailed understanding of how PA synthesis is controlled and to useful alterations in proanthocyanidin concentration for the improvement of forage species, pulses, and other crop plants.

  18. Molecular tools for the identification of Tuber melanosporum in agroindustry.

    PubMed

    Séjalon-Delmas, N; Roux, C; Martins, M; Kulifaj, M; Bécard, G; Dargent, R

    2000-06-01

    Tuber melanosporum Vitt., Tuber magnatum Pico, and Tuber uncinatum Chat. can be differentiated by their morphological characters. Fraud problems have arisen recently with the importation to Europe of truffles from China. T. melanosporum is morphologically very close, but distinct from the Chinese species [Tuber indicum (Cooke and Massee) and T. himalayense BC (Zhang and Winter)]. We have optimized molecular tools to unequivocally identify T. melanosporum. DNA extraction from ascocarps of black truffles is not straightforward. Problems to obtain pure DNA are due to high contents of phenolic compounds, melanine, and various polymers (proteins, polysaccharides, etc). These compounds coprecipitate with the DNA during extraction and strongly inhibit the PCR reaction. We have developed an efficient and reliable protocol for DNA extraction from truffle ascocarps. It was used successfully for DNA extraction from mycorrhizal root tips as well as from canned preparations of T. melanosporum. Several approaches to identify T. melanosporum by PCR were developed. Two specific primers for T. melanosporum were designed after comparison of the ITS region of this species with those of three Chinese fungi. They proved to be efficient to specifically detect the presence of T. melanosporum by PCR. The mycorrhizal status of trees inoculated with T. melanosporum but unable to produce truffles was confirmed in a single-step PCR reaction. A multiplex PCR approach was also developed with three sets of primers (including a specific one for Chinese truffles) to detect, in one PCR reaction, the presence of any other Tuber species mixed with T. melanosporum ascocarps. This optimized protocol, in association with the specific primers we designed, is applicable to quality control in the truffle industry from the production stages to final commercial products.

  19. Daytime warming has stronger negative effects on soil nematodes than night-time warming.

    PubMed

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-07

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  20. Daytime warming has stronger negative effects on soil nematodes than night-time warming.

    PubMed

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-20

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  1. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    PubMed Central

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-01-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming. PMID:28317914

  2. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    NASA Astrophysics Data System (ADS)

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  3. A revision of Afrotropical Quasimodo flies (Diptera: Schizophora; Curtonotidae). Part IV—the continental Afrotropical species of Curtonotum Macquart, with descriptions of thirteen new species and a combined phylogenetic analysis of the Curtonotidae.

    PubMed

    Kirk-Spriggs, Ashley H; Wiegmann, Brian M

    2013-01-01

    A first comprehensive phylogeny of the entire family Curtonotidae is generated from molecular markers and morphology. The molecular data set comprises 33 taxa (30 in-group Curtonotidae; three out-groups: Camilla, Diastata, Drosophila) and 4 gene regions from 3 genes: 2 non-contiguous fragments from the CPSase (carbamoylphosphate synthetase) domain of the nuclear protein coding gene CAD (= CAD1 and CAD3); a fragment from the coding region of TPI (triosephosophate isomerase); and a fragment of the mitochondrial gene CO1 (cytochrome oxidase 1). We performed Bayesian like-lihood analyses in the program MrBayes 3.2; maximum likelihood analyses in the program Garli 2.0; and parsimony analysis in TNT on the concatenated genetic dataset. A data matrix of 62 discrete, morphological features of imagines was compiled from 75 taxa (70 in-group Curtonotidae taxa and five out-group exemplars: Amiota, Camilla, Diastata, Drosophila, Stegana), and these data are presented as Appendix II. For the combined morphological and molecular data a Bayes-ian likelihood analysis in the program MrBayes 3.2 and a parsimony analysis in TNT were performed, and for the morphological dataset a parsimony analysis was carried out in TNT. Results of the molecular and morphological analyses attest to the monophyly of the Curtonotidae and clearly indicate two primary clades, with Axinota + Curtonotum being sister to the remainder of the Curtonotidae. Curtonotum sensu stricto (sensu Klymko and Marshall 2011) is here adopted and ten newly-defined species-groups of the genus Curtonotum are recognised the: anus; boeny; campsiphallum; gonzo; platyphallum; rinhatinana; saheliense; striatifrons; stuckenbergi; and uncinatum species-groups. The following nomenclatorial changes are proposed: Cyrtona appendiculata Séguy, 1938 is formally reinstated as a valid species and is re-moved as a junior synonym of Cyrtona pictipennis (Thomson, 1869). The former variety name sublineata (Duda, 1939) is upgraded to a specific name, as Parapsinota sublineata (Duda, 1939). The continental Afrotropical fauna of the genus Curtonotum Macquart, 1844 is revised and a diagnosis of the genus is provided. Known biology, behaviour and published information on immature stages of the genus are briefly reviewed. Type material of 12 of the 13 named species (C. angolense Tsacas, C. campsiphallum Tsacas, C. cuthbertsoni Duda, C. herrero Tsacas, C. pauliani Tsacas, C. platyphallum Tsacas, C. quinquevittatum Curran, C. saheliense Tsacas, C. sao Tsacas, C. simile Tsacas, C. striatifrons Malloch and C. tigrinum Séguy), was studied and errors in previous interpretations and designation of type specimens are resolved. Curtonotum pauliani is the only species occurring on both the continental African mainland and Madagascar. The type spec-imen of C. maculiventris (Enderlein) is lost and a neotype is here designated. One species synonymy is proposed: C. tigrinum Séguy, 1933 = C. maculiventris (Enderlein, 1917), syn. n. Additional material of the aforementioned species is noted, substantially increasing their known distributions. Thirteen species are described as new, namely: C. bicuspis Kirk- Spriggs, sp. n., C. cimbebas Kirk-Spriggs, sp. n., C. constance Kirk-Spriggs, sp. n., C. freidberg Kirk-Spriggs, sp. n., C. gonzo Kirk-Spriggs, sp. n., C. hay Kirk-Spriggs, sp. n., C. litoralis Kirk-Spriggs, sp. n., C. marriott Kirk-Spriggs, sp. n., C. mcgregor Kirk-Spriggs, sp. n., C. moffatt Kirk-Spriggs, sp. n., C. tsacas Kirk-Spriggs, sp. n., C. uncinatum Kirk- Spriggs, sp. n. and C. unicuspis Kirk-Spriggs, sp. n. The head and thorax, frons, wing, fifth sternite and hypandrium of the male of the 25 named species are illustrated for the first time, as well as the highly diagnostic male phallus, from both the right and left sides laterally. A key to species based on male characters is provided, and species distributions are mapped and interpreted according to major vegetation types, topography and humidity zones. The biogeographical signif-icance of the continental Afrotropical species is discussed. Co-ordinates used to plot maps and a list of Major Habitat Types and Vegetation Types in which species occur are provided as Appendix III.

  4. The Effect of Traditional Singing Warm-Up Versus Semioccluded Vocal Tract Exercises on the Acoustic Parameters of Singing Voice.

    PubMed

    Duke, Emily; Plexico, Laura W; Sandage, Mary J; Hoch, Matthew

    2015-11-01

    This study investigated the effect of traditional vocal warm-up versus semioccluded vocal tract exercises on the acoustic parameters of voice through three questions: does vocal warm-up condition significantly alter the singing power ratio of the singing voice? Is singing power ratio dependent upon vowel? Is perceived phonatory effort affected by warm-up condition? Hypotheses were that vocal warm-up would alter the singing power ratio, and that semioccluded vocal tract warm-up would affect the singing power ratio more than no warm-up or traditional warm-up, that singing power ratio would vary across vowel, and that perceived phonatory effort would vary with warm-up condition. This study was a within-participant repeated measures design with counterbalanced conditions. Thirteen male singers were recorded under three different conditions: no warm-up, traditional warm-up, and semioccluded vocal tract exercise warm-up. Recordings were made of these singers performing the Star Spangled Banner, and singing power ratio (SPR) was calculated from four vowels. Singers rated their perceived phonatory effort (PPE) singing the Star Spangled Banner after each warm-up condition. Warm-up condition did not significantly affect SPR. SPR was significantly different for /i/ and /e/. PPE was not significantly different between warm-up conditions. The present study did not find significant differences in SPR between warm-up conditions. SPR differences for /i/, support previous findings. PPE did not differ significantly across warm-up condition despite the expectation that traditional or semioccluded warm-up would cause a decrease. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  5. Respiratory muscle specific warm-up and elite swimming performance.

    PubMed

    Wilson, Emma E; McKeever, Tricia M; Lobb, Claire; Sherriff, Tom; Gupta, Luke; Hearson, Glenn; Martin, Neil; Lindley, Martin R; Shaw, Dominick E

    2014-05-01

    Inspiratory muscle training has been shown to improve performance in elite swimmers, when used as part of routine training, but its use as a respiratory warm-up has yet to be investigated. To determine the influence of inspiratory muscle exercise (IME) as a respiratory muscle warm-up in a randomised controlled cross-over trial. A total of 15 elite swimmers were assigned to four different warm-up protocols and the effects of IME on 100 m freestyle swimming times were assessed.Each swimmer completed four different IME warm-up protocols across four separate study visits: swimming-only warm-up; swimming warm-up plus IME warm-up (2 sets of 30 breaths with a 40% maximum inspiratory mouth pressure load using the Powerbreathe inspiratory muscle trainer); swimming warm-up plus sham IME warm-up (2 sets of 30 breaths with a 15% maximum inspiratory mouth pressure load using the Powerbreathe inspiratory muscle trainer); and IME-only warm-up. Swimmers performed a series of physiological tests and scales of perception (rate of perceived exertion and dyspnoea) at three time points (pre warm-up, post warm-up and post time trial). The combined standard swimming warm-up and IME warm-up were the fastest of the four protocols with a 100 m time of 57.05 s. This was significantly faster than the IME-only warm-up (mean difference=1.18 s, 95% CI 0.44 to 1.92, p<0.01) and the swim-only warm-up (mean difference=0.62 s, 95% CI 0.001 to 1.23, p=0.05). Using IME combined with a standard swimming warm-up significantly improves 100 m freestyle swimming performance in elite swimmers.

  6. The importance of warm season warming to western U.S. streamflow changes

    USGS Publications Warehouse

    Das, T.; Pierce, D.W.; Cayan, D.R.; Vano, J.A.; Lettenmaier, D.P.

    2011-01-01

    Warm season climate warming will be a key driver of annual streamflow changes in four major river basins of the western U.S., as shown by hydrological model simulations using fixed precipitation and idealized seasonal temperature changes based on climate projections with SRES A2 forcing. Warm season (April-September) warming reduces streamflow throughout the year; streamflow declines both immediately and in the subsequent cool season. Cool season (October-March) warming, by contrast, increases streamflow immediately, partially compensating for streamflow reductions during the subsequent warm season. A uniform warm season warming of 3C drives a wide range of annual flow declines across the basins: 13.3%, 7.2%, 1.8%, and 3.6% in the Colorado, Columbia, Northern and Southern Sierra basins, respectively. The same warming applied during the cool season gives annual declines of only 3.5%, 1.7%, 2.1%, and 3.1%, respectively. Copyright 2011 by the American Geophysical Union.

  7. Responses of microbial biomass carbon and nitrogen to experimental warming: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Xu, W.; Yuan, W.

    2017-12-01

    Soil microbes play important roles in regulating terrestrial carbon and nitrogen cycling and strongly influence feedbacks of ecosystem to global warming. However, the inconsistent responses of microbial biomass carbon (MBC) and nitrogen (MBN) to experimental warming have been observed, and the response on ratio between MBC and MBN (MBC:MBN) has not been identified. This meta-analysis synthesized the warming experiments at 58 sites globally to investigate the responses of MBC:MBN to climate warming. Our results showed that warming significantly increased MBC by 3.61 ± 0.80% and MBN by 5.85 ± 0.90% and thus decreased the MBC:MBN by 3.34 ± 0.66%. MBC showed positive responses to warming but MBN exhibited negative responses to warming at low warming magnitude (<1°C); however, at high warming magnitude (>2°C) the results were inverted. The different effects of warming magnitude on microbial biomass resulted from the warming-induced decline in soil moisture and substrate supply. Moreover, MBC and MBN had strong positive responses to warming at the mid-term (3-4 years) or short-term (1-2 years) duration, but the responses tended to decrease at long-term (≥ 5 years) warming duration. This study fills the knowledge gap on the responses of MBC:MBN to warming and may benefit the development of coupled carbon and nitrogen models.

  8. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability

    NASA Astrophysics Data System (ADS)

    Tokinaga, Hiroki; Xie, Shang-Ping; Mukougawa, Hitoshi

    2017-06-01

    With amplified warming and record sea ice loss, the Arctic is the canary of global warming. The historical Arctic warming is poorly understood, limiting our confidence in model projections. Specifically, Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing. Here, we show that the concurrent phase shift of Pacific and Atlantic interdecadal variability modes is the major driver for the rapid early 20th-century Arctic warming. Atmospheric model simulations successfully reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early 20th-century Arctic warming is associated with positive SST anomalies over the tropical and North Atlantic and a Pacific SST pattern reminiscent of the positive phase of the Pacific decadal oscillation. Atmospheric circulation changes are important for the early 20th-century Arctic warming. The equatorial Pacific warming deepens the Aleutian low, advecting warm air into the North American Arctic. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. Coupled ocean-atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, negative-to-positive phase shift of the Pacific and Atlantic interdecadal modes. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region.

  9. Early 20th Century Arctic Warming Intensified by Pacific and Atlantic Multidecadal Variability

    NASA Astrophysics Data System (ADS)

    Tokinaga, H.; Xie, S. P.; Mukougawa, H.

    2017-12-01

    We investigate the influence of Pacific and Atlantic multidecadal variability on the Arctic temperature, with a particular focus on the early 20th century Arctic warming. Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing than at present. We find that the concurrent phase shift of Pacific and Atlantic multidecadal variability is the major driver for the early 20th century Arctic warming. Atmospheric model simulations reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early Arctic warming is associated with the cold-to-warm phase shifts of Atlantic and Pacific multidecadal variability modes, a SST pattern reminiscent of the positive phase of the Pacific decadal and Atlantic multidecadal oscillations. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. The equatorial Pacific warming deepens the Aleutian low, advecting warm air to the North American Arctic. Coupled ocean-atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, cold-to-warm phase shift of the Pacific and Atlantic multidecadal variability. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region.

  10. Responses of ecosystem CO 2 fluxes to short-term experimental warming and nitrogen enrichment in an Alpine meadow, northern Tibet Plateau.

    PubMed

    Zong, Ning; Shi, Peili; Jiang, Jing; Song, Minghua; Xiong, Dingpeng; Ma, Weiling; Fu, Gang; Zhang, Xianzhou; Shen, Zhenxi

    2013-01-01

    Over the past decades, the Tibetan Plateau has experienced pronounced warming, yet the extent to which warming will affect alpine ecosystems depends on how warming interacts with other influential global change factors, such as nitrogen (N) deposition. A long-term warming and N manipulation experiment was established to investigate the interactive effects of warming and N deposition on alpine meadow. Open-top chambers were used to simulate warming. N addition, warming, N addition × warming, and a control were set up. In OTCs, daytime air and soil temperature were warmed by 2.0°C and 1.6°C above ambient conditions, but soil moisture was decreased by 4.95 m(3) m(-3). N addition enhanced ecosystem respiration (Reco); nevertheless, warming significantly decreased Reco. The decline of Reco resulting from warming was cancelled out by N addition in late growing season. Our results suggested that N addition enhanced Reco by increasing soil N availability and plant production, whereas warming decreased Reco through lowering soil moisture, soil N supply potential, and suppression of plant activity. Furthermore, season-specific responses of Reco indicated that warming and N deposition caused by future global change may have complicated influence on carbon cycles in alpine ecosystems.

  11. Responses of Ecosystem CO2 Fluxes to Short-Term Experimental Warming and Nitrogen Enrichment in an Alpine Meadow, Northern Tibet Plateau

    PubMed Central

    Shi, Peili; Jiang, Jing; Song, Minghua; Xiong, Dingpeng; Ma, Weiling; Fu, Gang; Zhang, Xianzhou; Shen, Zhenxi

    2013-01-01

    Over the past decades, the Tibetan Plateau has experienced pronounced warming, yet the extent to which warming will affect alpine ecosystems depends on how warming interacts with other influential global change factors, such as nitrogen (N) deposition. A long-term warming and N manipulation experiment was established to investigate the interactive effects of warming and N deposition on alpine meadow. Open-top chambers were used to simulate warming. N addition, warming, N addition × warming, and a control were set up. In OTCs, daytime air and soil temperature were warmed by 2.0°C and 1.6°C above ambient conditions, but soil moisture was decreased by 4.95 m3 m−3. N addition enhanced ecosystem respiration (Reco); nevertheless, warming significantly decreased Reco. The decline of Reco resulting from warming was cancelled out by N addition in late growing season. Our results suggested that N addition enhanced Reco by increasing soil N availability and plant production, whereas warming decreased Reco through lowering soil moisture, soil N supply potential, and suppression of plant activity. Furthermore, season-specific responses of Reco indicated that warming and N deposition caused by future global change may have complicated influence on carbon cycles in alpine ecosystems. PMID:24459432

  12. A randomised single blinded study of the administration of pre-warmed fluid vs active fluid warming on the incidence of peri-operative hypothermia in short surgical procedures.

    PubMed

    Andrzejowski, J C; Turnbull, D; Nandakumar, A; Gowthaman, S; Eapen, G

    2010-09-01

    We compared the effect of delivering fluid warmed using two methods in 76 adult patients having short duration surgery. All patients received a litre of crystalloid delivered either at room temperature, warmed using an in-line warming device or pre-warmed in a warming cabinet for at least 8 h. The tympanic temperature of those receiving fluid at room temperature was 0.4 °C lower on arrival in recovery when compared with those receiving fluid from a warming cabinet (p = 0.008). Core temperature was below the hypothermic threshold of 36.0 °C in seven (14%) patients receiving either type of warm fluid, compared to eight (32%) patients receiving fluid at room temperature (p = 0.03). The administration of 1 l warmed fluid to patients having short duration general anaesthesia results in higher postoperative temperatures. Pre-warmed fluid, administered within 30 min of its removal from a warming cabinet, is as efficient at preventing peri-operative hypothermia as that delivered through an in-line warming system. © 2010 The Authors. Journal compilation © 2010 The Association of Anaesthetists of Great Britain and Ireland.

  13. Warm up I: potential mechanisms and the effects of passive warm up on exercise performance.

    PubMed

    Bishop, David

    2003-01-01

    Despite limited scientific evidence supporting their effectiveness, warm-up routines prior to exercise are a well-accepted practice. The majority of the effects of warm up have been attributed to temperature-related mechanisms (e.g. decreased stiffness, increased nerve-conduction rate, altered force-velocity relationship, increased anaerobic energy provision and increased thermoregulatory strain), although non-temperature-related mechanisms have also been proposed (e.g. effects of acidaemia, elevation of baseline oxygen consumption (.VO(2)) and increased postactivation potentiation). It has also been hypothesised that warm up may have a number of psychological effects (e.g. increased preparedness). Warm-up techniques can be broadly classified into two major categories: passive warm up or active warm up. Passive warm up involves raising muscle or core temperature by some external means, while active warm up utilises exercise. Passive heating allows one to obtain the increase in muscle or core temperature achieved by active warm up without depleting energy substrates. Passive warm up, although not practical for most athletes, also allows one to test the hypothesis that many of the performance changes associated with active warm up can be largely attributed to temperature-related mechanisms.

  14. Bud break responds more strongly to daytime than night-time temperature under asymmetric experimental warming.

    PubMed

    Rossi, Sergio; Isabel, Nathalie

    2017-01-01

    Global warming is diurnally asymmetric, leading to a less cold, rather than warmer, climate. We investigated the effects of asymmetric experimental warming on plant phenology by testing the hypothesis that daytime warming is more effective in advancing bud break than night-time warming. Bud break was monitored daily in Picea mariana seedlings belonging to 20 provenances from Eastern Canada and subjected to daytime and night-time warming in growth chambers at temperatures varying between 8 and 16 °C. The higher advancements of bud break and shorter times required to complete the phenological phases occurred with daytime warming. Seedlings responded to night-time warming, but still with less advancement of bud break than under daytime warming. No advancement was observed when night-time warming was associated with a daytime cooling. The effect of the treatments was uniform across provenances. Our observations realized under controlled conditions allowed to experimentally demonstrate that bud break can advance under night-time warming, but to a lesser extent than under daytime warming. Prediction models using daily timescales could neglect the diverging influence of asymmetric warming and should be recalibrated for higher temporal resolutions. © 2016 John Wiley & Sons Ltd.

  15. Physiological responses of Kobresia pygmaea to warming in Qinghai-Tibetan Plateau permafrost region

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Wang, G. X.; Yang, L. D.; Guo, J. Y.; Li, N.

    2012-02-01

    Kobresia pygmaea (C. B. Clarke) C. B. Clarke is one dominant herbaceous species in the alpine meadows of the Qinghai-Tibetan Plateau. From 2006 to 2009, a warming experiment was conducted in this permafrost region. Two 2-year warming treatments with an annual average warming of 2.1 °C and 4.4 °C, and one 4-year warming treatment with an annual average warming of 2.3 °C were established to examine physiological responses of K. pygmaea to warming. Our results indicated that 2-years of warming increased malondialdehyde and non-structural carbohydrates in the plants. There was no effect of 2-year warming on electrolyte leakage and free proline content. In the 2-year warming treatment, superoxide dismutase activity and peroxidase activity increased, ascorbate peroxidase activity and ascorbic acid only increased in 2-year high warming treatment, whereas in the 4-year warming treatment, active oxygen species, electrolyte leakage, UV-absorbing compounds and anthocyanins decreased. The 4-year warming treatment also significantly increased non-structural carbonhydrate and free proline accumulation for osmotic adjustment. The results of this study suggest that K. pygmaea could adapt to a warmer environment in the future.

  16. Warm-up effects from concomitant use of vibration and static stretching after cycling.

    PubMed

    Yang, Wen-Wen; Liu, Chiang; Shiang, Tzyy-Yuang

    2017-04-01

    Static stretch is routinely used in traditional warm-up but impaired muscle performance. Combining vibration with static stretching as a feasible component may be an alternative to static stretching after submaximal aerobic exercise to improve jumping as well as flexibility. Therefore, the purpose of this study was to investigate and compare the effects of aerobic exercise, static stretching, and vibration with static stretching on flexibility and vertical jumping performance. A repeated measures experimental design was used in this study. Twelve participants randomly underwent 5 different warm-ups including cycling alone (C warm-up), static stretching alone (S warm-up), combining vibration with static stretching (VS warm-up), cycling followed by S (C+S warm-up), and cycling followed by VS (C+VS warm-up) on 5 separate days. Sit-and-reach, squat jump (SJ), and counter movement jump (CMJ) were measured for pre- and post- tests. The sit-and-reach scores after the S, VS, C+S and C+VS warm-ups were significantly enhanced (P<0.001), and were significantly greater than that of the C warm-up (P<0.05). The jumping height of SJ and CMJ after the C and C+VS warm-ups were significantly increased (P<0.05), whereas a significant reduction was found after the S warm-up (P<0.05). Vibration combined with stretching after submaximal cycling exercise (C+VS warm-up) could be a feasible warm-up protocol to improve both flexibility and vertical jump performance, compared with the traditional warm-up (C+S warm-up).

  17. Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4

    DOE PAGES

    Sejas, Sergio A.; Albert, Oriene S.; Cai, Ming; ...

    2014-12-02

    One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heatmore » flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Furthermore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea.« less

  18. Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sejas, Sergio A.; Albert, Oriene S.; Cai, Ming

    One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heatmore » flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Furthermore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea.« less

  19. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability

    PubMed Central

    Tokinaga, Hiroki; Xie, Shang-Ping; Mukougawa, Hitoshi

    2017-01-01

    With amplified warming and record sea ice loss, the Arctic is the canary of global warming. The historical Arctic warming is poorly understood, limiting our confidence in model projections. Specifically, Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing. Here, we show that the concurrent phase shift of Pacific and Atlantic interdecadal variability modes is the major driver for the rapid early 20th-century Arctic warming. Atmospheric model simulations successfully reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early 20th-century Arctic warming is associated with positive SST anomalies over the tropical and North Atlantic and a Pacific SST pattern reminiscent of the positive phase of the Pacific decadal oscillation. Atmospheric circulation changes are important for the early 20th-century Arctic warming. The equatorial Pacific warming deepens the Aleutian low, advecting warm air into the North American Arctic. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. Coupled ocean–atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, negative-to-positive phase shift of the Pacific and Atlantic interdecadal modes. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region. PMID:28559341

  20. Impacts of different climate change regimes and extreme climatic events on an alpine meadow community

    PubMed Central

    Alatalo, Juha M.; Jägerbrand, Annika K.; Molau, Ulf

    2016-01-01

    Climate variability is expected to increase in future but there exist very few experimental studies that apply different warming regimes on plant communities over several years. We studied an alpine meadow community under three warming regimes over three years. Treatments consisted of (a) a constant level of warming with open-top chambers (ca. 1.9 °C above ambient), (b) yearly stepwise increases in warming (increases of ca. 1.0, 1.9 and 3.5 °C), and (c) pulse warming, a single first-year pulse event of warming (increase of ca. 3.5 °C). Pulse warming and stepwise warming was hypothesised to cause distinct first-year and third-year effects, respectively. We found support for both hypotheses; however, the responses varied among measurement levels (whole community, canopy, bottom layer, and plant functional groups), treatments, and time. Our study revealed complex responses of the alpine plant community to the different experimentally imposed climate warming regimes. Plant cover, height and biomass frequently responded distinctly to the constant level of warming, the stepwise increase in warming and the extreme pulse-warming event. Notably, we found that stepwise warming had an accumulating effect on biomass, the responses to the different warming regimes varied among functional groups, and the short-term perturbations had negative effect on species richness and diversity PMID:26888225

  1. Warm-up and performance in competitive swimming.

    PubMed

    Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Marinho, Daniel A

    2014-03-01

    Warm-up before physical activity is commonly accepted to be fundamental, and any priming practices are usually thought to optimize performance. However, specifically in swimming, studies on the effects of warm-up are scarce, which may be due to the swimming pool environment, which has a high temperature and humidity, and to the complexity of warm-up procedures. The purpose of this study is to review and summarize the different studies on how warming up affects swimming performance, and to develop recommendations for improving the efficiency of warm-up before competition. Most of the main proposed effects of warm-up, such as elevated core and muscular temperatures, increased blood flow and oxygen delivery to muscle cells and higher efficiency of muscle contractions, support the hypothesis that warm-up enhances performance. However, while many researchers have reported improvements in performance after warm-up, others have found no benefits to warm-up. This lack of consensus emphasizes the need to evaluate the real effects of warm-up and optimize its design. Little is known about the effectiveness of warm-up in competitive swimming, and the variety of warm-up methods and swimming events studied makes it difficult to compare the published conclusions about the role of warm-up in swimming. Recent findings have shown that warm-up has a positive effect on the swimmer's performance, especially for distances greater than 200 m. We recommend that swimmers warm-up for a relatively moderate distance (between 1,000 and 1,500 m) with a proper intensity (a brief approach to race pace velocity) and recovery time sufficient to prevent the early onset of fatigue and to allow the restoration of energy reserves (8-20 min).

  2. Effect of active warm-up duration on morning short-term maximal performance during Ramadan.

    PubMed

    Baklouti, Hana; Chtourou, Hamdi; Aloui, Asma; Chaouachi, Anis; Souissi, Nizar

    2015-01-01

    Purpose To examine the effect of active warm-up duration on short-term maximal performance assessed during Ramadan in the morning. Methods Twelve healthy active men performed four Wingate tests for measurement of peak power and mean power before and during Ramadan at 09:00 a.m. The tests were performed on separate days, after either a 5-min or a 15-min warm-up. The warm-up consisted in pedaling at 50% of the power output obtained at the last stage of a submaximal multistage cycling test. Oral temperature was measured at rest and after warming-up. Furthermore, ratings of perceived exertion were obtained immediately after the Wingate test. Results Oral temperature was higher after the 15-min warm-up than the 5-min warm-up throughout the study. Moreover, peak power and mean power were higher after the 15-min warm-up than the 5-min warm-up before Ramadan. However, during Ramadan, there was no significant difference between the two warm-up durations. In addition, ratings of perceived exertion were higher after the 15-min warm-up than the 5-min warm-up only during Ramadan. Conclusions There is no need to prolong the warm-up period before short-term maximal exercise performed during Ramadan in the morning.

  3. Effect of active warm-up duration on morning short-term maximal performance during Ramadan.

    PubMed

    Baklouti, Hana; Chtourou, Hamdi; Aloui, Asma; Chaouachi, Anis; Souissi, Nizar

    2015-01-01

    To examine the effect of active warm-up duration on short-term maximal performance assessed during Ramadan in the morning. Twelve healthy active men performed four Wingate tests for measurement of peak power and mean power before and during Ramadan at 09:00 a.m. The tests were performed on separate days, after either a 5-min or a 15-min warm-up. The warm-up consisted in pedaling at 50% of the power output obtained at the last stage of a submaximal multistage cycling test. Oral temperature was measured at rest and after warming-up. Furthermore, ratings of perceived exertion were obtained immediately after the Wingate test. Oral temperature was higher after the 15-min warm-up than the 5-min warm-up throughout the study. Moreover, peak power and mean power were higher after the 15-min warm-up than the 5-min warm-up before Ramadan. However, during Ramadan, there was no significant difference between the two warm-up durations. In addition, ratings of perceived exertion were higher after the 15-min warm-up than the 5-min warm-up only during Ramadan. There is no need to prolong the warm-up period before short-term maximal exercise performed during Ramadan in the morning.

  4. Effect of active warm-up duration on morning short-term maximal performance during Ramadan

    PubMed Central

    Baklouti, Hana; Chtourou, Hamdi; Aloui, Asma; Chaouachi, Anis; Souissi, Nizar

    2015-01-01

    Purpose To examine the effect of active warm-up duration on short-term maximal performance assessed during Ramadan in the morning. Methods Twelve healthy active men performed four Wingate tests for measurement of peak power and mean power before and during Ramadan at 09:00 a.m. The tests were performed on separate days, after either a 5-min or a 15-min warm-up. The warm-up consisted in pedaling at 50% of the power output obtained at the last stage of a submaximal multistage cycling test. Oral temperature was measured at rest and after warming-up. Furthermore, ratings of perceived exertion were obtained immediately after the Wingate test. Results Oral temperature was higher after the 15-min warm-up than the 5-min warm-up throughout the study. Moreover, peak power and mean power were higher after the 15-min warm-up than the 5-min warm-up before Ramadan. However, during Ramadan, there was no significant difference between the two warm-up durations. In addition, ratings of perceived exertion were higher after the 15-min warm-up than the 5-min warm-up only during Ramadan. Conclusions There is no need to prolong the warm-up period before short-term maximal exercise performed during Ramadan in the morning. PMID:25676856

  5. Flower power: its association with bee power and floral functional morphology in papilionate legumes

    PubMed Central

    Córdoba, Silvina A.; Cocucci, Andrea A.

    2011-01-01

    Background and Aims A test was made of the hypothesis that papilionate legume flowers filter pollinators according to their ability to exert strength to open flowers to access rewards. In addition, interactions with pollen vectors were expected to explain the structural complexity of the architecture of these flowers since operative flower strength may be determined by a combination of morphological traits which form part of an intrafloral functional module. Methods Six papilionate species were studied: Collaea argentina, Desmodium uncinatum, Galactia latisiliqua, Lathyrus odoratus, Spartium junceum and Tipuana tipu. Measurements were made of the strength needed to open keels and the strength that pollinators were capable of exerting. Morphological traits of all petals were also measured to determine which of them could be either mutually correlated or correlated with operative strength and moment of strength and participated in a functional module. Key Results It was observed that pollinators were capable in all cases of exerting forces higher and often several times higher than that needed to access floral rewards, and no association could be detected between floral operative strength and strength exerted by the corresponding pollinators. On the other hand, strong and significant correlations were found among morphometric traits and, of these, with operative strength and moment. This was particularly evident among traits of the keel and the wings, presumably involved in the functioning of the floral moveable mechanism. Conclusions Though visitors are often many times stronger than the operative strength of the flowers they pollinate, exceptionally weak bees such as Apis mellifera cannot open the strongest flowers. On the other hand, strong correlations among certain petal morphometric traits (particularly between the keel and wings) give support to the idea that an intrafloral module is associated with the functioning of the mechanism of these legume flowers. In addition, the highly significant correlations found across petals support the view of functional phenotypic integration transcending the ontogenetic organization of flower structure. PMID:21821623

  6. Accelerated increase in the Arctic tropospheric warming events surpassing stratospheric warming events during winter: Accelerated Increase in Arctic Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S. -Y. Simon; Lin, Yen-Heng; Lee, Ming-Ying

    In January 2016, a robust reversal of the Arctic Oscillation (AO) took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March-April. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as well as those documented in previous studies. Our results indicate a recent and accelerated increasemore » in the tropospheric warming type versus a flat trend in stratospheric warming type. Given that tropospheric warming events occur twice as fast than the stratospheric warming type, the noted increase in the former implies further intensification in midlatitude winter weather extremes similar to those experienced in early 2016. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated impact on the anomalously cold Siberia.« less

  7. Why tropical forest lizards are vulnerable to climate warming

    PubMed Central

    Huey, Raymond B.; Deutsch, Curtis A.; Tewksbury, Joshua J.; Vitt, Laurie J.; Hertz, Paul E.; Álvarez Pérez, Héctor J.; Garland, Theodore

    2009-01-01

    Biological impacts of climate warming are predicted to increase with latitude, paralleling increases in warming. However, the magnitude of impacts depends not only on the degree of warming but also on the number of species at risk, their physiological sensitivity to warming and their options for behavioural and physiological compensation. Lizards are useful for evaluating risks of warming because their thermal biology is well studied. We conducted macrophysiological analyses of diurnal lizards from diverse latitudes plus focal species analyses of Puerto Rican Anolis and Sphaerodactyus. Although tropical lowland lizards live in environments that are warm all year, macrophysiological analyses indicate that some tropical lineages (thermoconformers that live in forests) are active at low body temperature and are intolerant of warm temperatures. Focal species analyses show that some tropical forest lizards were already experiencing stressful body temperatures in summer when studied several decades ago. Simulations suggest that warming will not only further depress their physiological performance in summer, but will also enable warm-adapted, open-habitat competitors and predators to invade forests. Forest lizards are key components of tropical ecosystems, but appear vulnerable to the cascading physiological and ecological effects of climate warming, even though rates of tropical warming may be relatively low. PMID:19324762

  8. Effect of Common Cryoprotectants on Critical Warming Rates and Ice Formation in Aqueous Solutions

    PubMed Central

    Hopkins, Jesse B.; Badeau, Ryan; Warkentin, Matthew; Thorne, Robert E.

    2012-01-01

    Ice formation on warming is of comparable or greater importance to ice formation on cooling in determining survival of cryopreserved samples. Critical warming rates required for ice-free warming of vitrified aqueous solutions of glycerol, dimethyl sulfoxide, ethylene glycol, polyethylene glycol 200 and sucrose have been measured for warming rates of order 10 to 104 K/s. Critical warming rates are typically one to three orders of magnitude larger than critical cooling rates. Warming rates vary strongly with cooling rates, perhaps due to the presence of small ice fractions in nominally vitrified samples. Critical warming and cooling rate data spanning orders of magnitude in rates provide rigorous tests of ice nucleation and growth models and their assumed input parameters. Current models with current best estimates for input parameters provide a reasonable account of critical warming rates for glycerol solutions at high concentrations/low rates, but overestimate both critical warming and cooling rates by orders of magnitude at lower concentrations and larger rates. In vitrification protocols, minimizing concentrations of potentially damaging cryoprotectants while minimizing ice formation will require ultrafast warming rates, as well as fast cooling rates to minimize the required warming rates. PMID:22728046

  9. Why tropical forest lizards are vulnerable to climate warming.

    PubMed

    Huey, Raymond B; Deutsch, Curtis A; Tewksbury, Joshua J; Vitt, Laurie J; Hertz, Paul E; Alvarez Pérez, Héctor J; Garland, Theodore

    2009-06-07

    Biological impacts of climate warming are predicted to increase with latitude, paralleling increases in warming. However, the magnitude of impacts depends not only on the degree of warming but also on the number of species at risk, their physiological sensitivity to warming and their options for behavioural and physiological compensation. Lizards are useful for evaluating risks of warming because their thermal biology is well studied. We conducted macrophysiological analyses of diurnal lizards from diverse latitudes plus focal species analyses of Puerto Rican Anolis and Sphaerodactyus. Although tropical lowland lizards live in environments that are warm all year, macrophysiological analyses indicate that some tropical lineages (thermoconformers that live in forests) are active at low body temperature and are intolerant of warm temperatures. Focal species analyses show that some tropical forest lizards were already experiencing stressful body temperatures in summer when studied several decades ago. Simulations suggest that warming will not only further depress their physiological performance in summer, but will also enable warm-adapted, open-habitat competitors and predators to invade forests. Forest lizards are key components of tropical ecosystems, but appear vulnerable to the cascading physiological and ecological effects of climate warming, even though rates of tropical warming may be relatively low.

  10. Effects of Short or Long Warm-up on Intermediate Running Performance.

    PubMed

    van den Tillaar, Roland; Vatten, Tormod; von Heimburg, Erna

    2017-01-01

    van den Tillaar, R, Vatten, T, and von Heimburg, E. Effects of short or long warm-up on intermediate running performance. J Strength Cond Res 31(1): 37-44, 2017-The aim of the study was to compare the effects of a long warm-up (general + specific) and a short warm-up (specific) on intermediate running performance (3-minute run). Thirteen experienced endurance-trained athletes (age 23.2 ± 2.3 years, body mass 79.8 ± 8.2 kg, body height 1.82 ± 0.05 m) conducted 2 types of warm-ups in a crossover design with 1 week in between: a long warm-up (10 minutes, 80% maximal heart rate, and 8 × 60 m sprint with increasing intensity and 1 minute rest in between) and a short warm-up (8 × 60 m sprint with increasing intensity and 1 minute rest in between). Each warm-up was followed by a 3-minute running test on a nonmotorized treadmill. Total running distance, running velocity at each 30 seconds, heart rate, blood lactate concentration, oxygen uptake, and rate of perceived exertion were measured. No significant differences in running performance variables and physiological parameters were found between the 2 warm-up protocols, except for the rate of perceived exertion and heart rate, which were higher after the long warm-up and after the 3-minute running test compared with the short warm-up. It was concluded that a short warm-up is as effective as a long warm-up for intermediate performance. Therefore, athletes can choose for themselves if they want to include a general part in their warm-up routines, even though it would not enhance their running performance more compared with only using a short, specific warm-up. However, to increase efficiency of time for training or competition, these short, specific warm-ups should be performed instead of long warm-ups.

  11. Accelerated increase in the Arctic tropospheric warming events surpassing stratospheric warming events during winter

    NASA Astrophysics Data System (ADS)

    Wang, S.-Y. Simon; Lin, Yen-Heng; Lee, Ming-Ying; Yoon, Jin-Ho; Meyer, Jonathan D. D.; Rasch, Philip J.

    2017-04-01

    In January 2016, a robust reversal of the Arctic Oscillation took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as documented in previous studies. The analysis indicates a recent and seemingly accelerated increase in the tropospheric warming type versus a flat trend in stratospheric warming type. The shorter duration and more rapid transition of tropospheric warming events may connect to the documented increase in midlatitude weather extremes, more so than the route of stratospheric warming type. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated remarkable strengthening of the cold Siberian high manifest in 2016.

  12. Effect of Passive, Active and Combined Warm up on Lower Limb Muscle Performance and Dynamic Stability in Recreational Sports Players.

    PubMed

    Gogte, Kedar; Srivastav, Prateek; Miyaru, Ganesh Balthillaya

    2017-03-01

    Warm up is an activity that is done before a sports activity. The warm up can be done actively and passively. The preferred mode is active warm up in athletes. There are inconclusive effects of passive warm up compared with an active warm up on short term muscle performance. The cumulative effect of passive and active warm up on muscle performance and dynamic stability is not known. To find out the effects of passive, active and combined warm up on lower limb muscle performance and dynamic stability in recreational sports players. A randomized crossover study was done on 19 recreational lower limb dominant sports players. Three different warm ups were included in the study passive, active and combined. Active warm up included series of activities like cycling, leg press, jump squats, squat jumps while passive warm up included application of moist heat for a period of 20 minutes on lower limb muscles. Combined warm up included both passive and active warm up. Six different sequences were made from these three warm ups. Subjects were screened and allotted into different groups based on the six warm up sequences after sequence randomization with 48 hours wash out period. After every warm up session Vertical Jump Test (VJT) and Star Excursion Balance Test (SEBT) was performed and results were recorded. Study duration was one year and six months. There was no difference noticed in both the outcome measures. Mean and SD values for passive, active and combined warm up are 47.62±9.64, 48.50±10.16 and 48.87±10.70 respectively in Vertical Jump Test (VJT) and 85.43±8.61, 85.17±8.60 and 85.17±8.38 respectively for SEBT. The p-value for mean difference between passive-active, active-combined, combined-passive are 0.67, 1.00, 0.51 respectively, for VJT and 1.00, 1.00, 1.00 respectively for SEBT. All warm ups are equally effective in short term sports performance.

  13. Effect of Passive, Active and Combined Warm up on Lower Limb Muscle Performance and Dynamic Stability in Recreational Sports Players

    PubMed Central

    Gogte, Kedar; Miyaru, Ganesh Balthillaya

    2017-01-01

    Introduction Warm up is an activity that is done before a sports activity. The warm up can be done actively and passively. The preferred mode is active warm up in athletes. There are inconclusive effects of passive warm up compared with an active warm up on short term muscle performance. The cumulative effect of passive and active warm up on muscle performance and dynamic stability is not known. Aim To find out the effects of passive, active and combined warm up on lower limb muscle performance and dynamic stability in recreational sports players. Materials and Methods A randomized crossover study was done on 19 recreational lower limb dominant sports players. Three different warm ups were included in the study passive, active and combined. Active warm up included series of activities like cycling, leg press, jump squats, squat jumps while passive warm up included application of moist heat for a period of 20 minutes on lower limb muscles. Combined warm up included both passive and active warm up. Six different sequences were made from these three warm ups. Subjects were screened and allotted into different groups based on the six warm up sequences after sequence randomization with 48 hours wash out period. After every warm up session Vertical Jump Test (VJT) and Star Excursion Balance Test (SEBT) was performed and results were recorded. Study duration was one year and six months. Results There was no difference noticed in both the outcome measures. Mean and SD values for passive, active and combined warm up are 47.62±9.64, 48.50±10.16 and 48.87±10.70 respectively in Vertical Jump Test (VJT) and 85.43±8.61, 85.17±8.60 and 85.17±8.38 respectively for SEBT. The p-value for mean difference between passive-active, active-combined, combined-passive are 0.67, 1.00, 0.51 respectively, for VJT and 1.00, 1.00, 1.00 respectively for SEBT. Conclusion All warm ups are equally effective in short term sports performance. PMID:28511496

  14. Sustained acceleration of soil carbon decomposition observed in a 6-year warming experiment in a warm-temperate forest in southern Japan.

    PubMed

    Teramoto, Munemasa; Liang, Naishen; Takagi, Masahiro; Zeng, Jiye; Grace, John

    2016-10-17

    To examine global warming's effect on soil organic carbon (SOC) decomposition in Asian monsoon forests, we conducted a soil warming experiment with a multichannel automated chamber system in a 55-year-old warm-temperate evergreen broadleaved forest in southern Japan. We established three treatments: control chambers for total soil respiration, trenched chambers for heterotrophic respiration (R h ), and warmed trenched chambers to examine warming effect on R h . The soil was warmed with an infrared heater above each chamber to increase soil temperature at 5 cm depth by about 2.5 °C. The warming treatment lasted from January 2009 to the end of 2014. The annual warming effect on R h (an increase per °C) ranged from 7.1 to17.8% °C -1 . Although the warming effect varied among the years, it averaged 9.4% °C -1 over 6 years, which was close to the value of 10.1 to 10.9% °C -1 that we calculated using the annual temperature-efflux response model of Lloyd and Taylor. The interannual warming effect was positively related to the total precipitation in the summer period, indicating that summer precipitation and the resulting soil moisture level also strongly influenced the soil warming effect in this forest.

  15. Warm Up to a Good Sound

    ERIC Educational Resources Information Center

    Tovey, David C.

    1977-01-01

    Most choral directors in schools today have been exposed to a variety of warm-up procedures. Yet, many do not use the warm-up time effectively as possible. Considers the factors appropriate to a warm-up exercise and three basic warm-up categories. (Author/RK)

  16. Differential responses of invasive and native plants to warming with simulated changes in diurnal temperature ranges

    PubMed Central

    Chen, Bao-Ming; Gao, Yang; Liao, Hui-Xuan

    2017-01-01

    Abstract Although many studies have documented the effects of global warming on invasive plants, little is known about whether the effects of warming on plant invasion differ depending on the imposed change in different diurnal temperature ranges (DTR). We tested the impact of warming with DTR change on seed germination and seedling growth of eight species in the family Asteraceae. Four of these are invasive (Eupatorium catarium, Mikania micrantha, Biodens pilosa var. radiate, Ageratum conyzoides) in China, and four are native (Sonchus arvensis, Senecios candens, Pterocypsela indica, Eupatorium fortunei). Four temperature treatments were set in growth chambers (three warming by 3 °C with different DTRs and control), and experiments were run to mimic wintertime and summertime conditions. The control treatment (Tc) was set to the mean temperature for the corresponding time of year, and the three warming treatments were symmetric (i.e. equal night-and-day) (DTRsym), asymmetric warming with increased (DTRinc) and decreased (DTRdec) DTR. The warming treatments did not affect seed germination of invasive species under any of the conditions, but DTRsym and DTRinc increased seed germination of natives relative to the control, suggesting that warming may not increase success of these invasive plant species via effects on seed germination of invasive plants relative to native plants. The invasive plants had higher biomass and greater stem allocation than the native ones under all of the warming treatments. Wintertime warming increased the biomass of the invasive and wintertime DTRsym and DTRinc increased that of the native plants, whereas summertime asymmetric warming decreased the biomass of the invasives but not the natives. Therefore, warming may not facilitate invasion of these invasive species due to the suppressive effects of summertime warming (particularly the asymmetric warming) on growth. Compared with DTRsym, DTRdec decreased the biomass of both the invasive and native plants, while the asymmetric summer warming treatments (DTRinc and DTRdec) decreased the biomass of the invasive but not the native plants. In addition, wintertime DTRinc did not enhance the biomass of all the plants relative to DTRsym. Our results were obtained in an unrealistic setting; the growth conditions in chambers (e.g. low light, low herbivory, no competition) are quite different from natural conditions (high light, normal herbivory and competition), which may influence the effects of warming on the seedling establishment and growth of both invasive and native plants. Nonetheless, our work highlights the importance of asymmetric warming, particularly in regards to the comparison with the effects of symmetric warming on both invasive and native plants. Conclusions regarding the effects of future warming should be made cautiously because warming with different DTRs may suggest different implications for invasion, and effects of warming may be different in different seasons. PMID:28775830

  17. Acute Effect of Whole-Body Vibration Warm-up on Footspeed Quickness.

    PubMed

    Donahue, Ryan B; Vingren, Jakob L; Duplanty, Anthony A; Levitt, Danielle E; Luk, Hui-Ying; Kraemer, William J

    2016-08-01

    Donahue, RB, Vingren, JL, Duplanty, AA, Levitt, DE, Luk, H-Y, and Kraemer, WJ. Acute effect of whole-body vibration warm-up on footspeed quickness. J Strength Cond Res 30(8): 2286-2291, 2016-The warm-up routine preceding a training or athletic event can affect the performance during that event. Whole-body vibration (WBV) can increase muscle performance, and thus the inclusion of WBV to the warm-up routine might provide additional performance improvements. The purpose of this investigation was to examine the acute effect of a WBV warm-up, using a vertical oscillating platform and a more traditional warm-up protocol on feet quickness in physically active men. Twenty healthy and physically active men (18-25 years, 22 ± 3 years, 176.8 ± 6.4 cm, 84.4 ± 11.5 kg, 10.8 ± 1.4% body fat) volunteered for this study. A 2 × 2 factorial design was used to examine the effect of 4 warm-up scenarios (no warm-up, traditional warm-up only, WBV warm-up only, and combined traditional and WBV warm-up) on subsequent 3-second Quick feet count test (QFT) performance. The traditional warm-up consisted of static and dynamic exercises and stretches. The WBV warm-up consisted of 60 seconds of vertical sinusoidal vibration at a frequency of 35 Hz and amplitude of 4 mm on a vibration platform. The WBV protocol significantly (p ≤ 0.0005, η = 0.581) augmented QFT performance (WBV: 37.1 ± 3.4 touches; no-WBV: 35.7 ± 3.4 touches). The results demonstrate that WBV can enhance the performance score on the QFT. The findings of this study suggest that WBV warm-up should be included in warm-up routines preceding training and athletic events which include very fast foot movements.

  18. Global warming and obesity: a systematic review.

    PubMed

    An, R; Ji, M; Zhang, S

    2018-02-01

    Global warming and the obesity epidemic are two unprecedented challenges mankind faces today. A literature search was conducted in the PubMed, Web of Science, EBSCO and Scopus for articles published until July 2017 that reported findings on the relationship between global warming and the obesity epidemic. Fifty studies were identified. Topic-wise, articles were classified into four relationships - global warming and the obesity epidemic are correlated because of common drivers (n = 21); global warming influences the obesity epidemic (n = 13); the obesity epidemic influences global warming (n = 13); and global warming and the obesity epidemic influence each other (n = 3). We constructed a conceptual model linking global warming and the obesity epidemic - the fossil fuel economy, population growth and industrialization impact land use and urbanization, motorized transportation and agricultural productivity and consequently influences global warming by excess greenhouse gas emission and the obesity epidemic by nutrition transition and physical inactivity; global warming also directly impacts obesity by food supply/price shock and adaptive thermogenesis, and the obesity epidemic impacts global warming by the elevated energy consumption. Policies that endorse deployment of clean and sustainable energy sources, and urban designs that promote active lifestyles, are likely to alleviate the societal burden of global warming and obesity. © 2017 World Obesity Federation.

  19. Passive warming reduces stress and shifts reproductive effort in the Antarctic moss, Polytrichastrum alpinum

    PubMed Central

    Shortlidge, Erin E.; Eppley, Sarah M.; Kohler, Hans; Rosenstiel, Todd N.; Zúñiga, Gustavo E.; Casanova-Katny, Angélica

    2017-01-01

    Background and Aims The Western Antarctic Peninsula is one of the most rapidly warming regions on Earth, and many biotic communities inhabiting this dynamic region are responding to these well-documented climatic shifts. Yet some of the most prevalent organisms of terrestrial Antarctica, the mosses, and their responses to warming have been relatively overlooked and understudied. In this research, the impacts of 6 years of passive warming were investigated using open top chambers (OTCs), on moss communities of Fildes Peninsula, King George Island, Antarctica. Methods The effects of experimental passive warming on the morphology, sexual reproductive effort and stress physiology of a common dioicous Antarctic moss, Polytrichastrum alpinum, were tested, gaining the first species-specific mechanistic insight into moss responses to warming in the Antarctic. Additionally community analyses were conducted examining the impact of warming on overall moss percentage cover and sporophyte production in intact Antarctic moss communities. Key Results Our results show a generally greater percentage moss cover under warming conditions as well as increased gametangia production in P. alpinum. Distinct morphological and physiological shifts in P. alpinum were found under passive warming compared with those without warming: warmed mosses reduced investment in cellular stress defences, but invested more towards primary productivity and gametangia development. Conclusions Taken together, results from this study of mosses under passive warming imply that in ice-free moss-dominated regions, continued climate warming will probably have profound impacts on moss biology and colonization along the Western Antarctic Peninsula. Such findings highlight the fundamental role that mosses will play in influencing the terrestrialization of a warming Antarctica. PMID:27794516

  20. Warm-Up Strategies for Sport and Exercise: Mechanisms and Applications.

    PubMed

    McGowan, Courtney J; Pyne, David B; Thompson, Kevin G; Rattray, Ben

    2015-11-01

    It is widely accepted that warming-up prior to exercise is vital for the attainment of optimum performance. Both passive and active warm-up can evoke temperature, metabolic, neural and psychology-related effects, including increased anaerobic metabolism, elevated oxygen uptake kinetics and post-activation potentiation. Passive warm-up can increase body temperature without depleting energy substrate stores, as occurs during the physical activity associated with active warm-up. While the use of passive warm-up alone is not commonplace, the idea of utilizing passive warming techniques to maintain elevated core and muscle temperature throughout the transition phase (the period between completion of the warm-up and the start of the event) is gaining in popularity. Active warm-up induces greater metabolic changes, leading to increased preparedness for a subsequent exercise task. Until recently, only modest scientific evidence was available supporting the effectiveness of pre-competition warm-ups, with early studies often containing relatively few participants and focusing mostly on physiological rather than performance-related changes. External issues faced by athletes pre-competition, including access to equipment and the length of the transition/marshalling phase, have also frequently been overlooked. Consequently, warm-up strategies have continued to develop largely on a trial-and-error basis, utilizing coach and athlete experiences rather than scientific evidence. However, over the past decade or so, new research has emerged, providing greater insight into how and why warm-up influences subsequent performance. This review identifies potential physiological mechanisms underpinning warm-ups and how they can affect subsequent exercise performance, and provides recommendations for warm-up strategy design for specific individual and team sports.

  1. The effects of warmed intravenous fluids, combined warming (warmed intravenous fluids with humid-warm oxygen), and pethidine on the severity of shivering in general anesthesia patients in the recovery room

    PubMed Central

    Nasiri, Ahmad; Akbari, Ayob; Sharifzade, GholamReza; Derakhshan, Pooya

    2015-01-01

    Background: Shivering is a common complication of general and epidural anesthesia. Warming methods and many drugs are used for control of shivering in the recovery room. The present study is a randomized clinical trial aimed to investigate the effects of two interventions in comparison with pethidine which is the routine treatment on shivering in patients undergoing abdominal surgery with general anesthesia. Materials and Methods: Eighty-seven patients undergoing abdominal surgery by general anesthesia were randomly assigned to three groups (two intervention groups in comparison with pethidine as routine). Patients in warmed intravenous fluids group received pre-warmed Ringer serum (38°C), patients in combined warming group received pre-warmed Ringer serum (38°C) accompanied by humid-warm oxygen, and patients in pethidine group received intravenous pethidine routinely. The elapsed time of shivering and some hemodynamic parameters of the participants were assessed for 20 min postoperatively in the recovery room. Then the collected data were analyzed by software SPSS (v. 16) with the significance level being P < 0.05. Results: The mean of elapsed time in the warmed intravenous serum group, the combined warming group, and the pethidine group were 7 (1.5) min, 6 (1.5) min, and 2.8 (0.7) min, respectively, which was statistically significant (P < 0.05). The body temperatures in both combined warming and pethidine groups were increased significantly (P < 0.05). Conclusions: Combined warming can be effective in controlling postoperative shivering and body temperature increase. PMID:26793258

  2. Does increasing active warm-up duration affect afternoon short-term maximal performance during Ramadan?

    PubMed

    Baklouti, Hana; Aloui, Asma; Chtourou, Hamdi; Briki, Walid; Chaouachi, Anis; Souissi, Nizar

    2015-01-01

    The purpose of this study was to examine the effect of active warm-up duration on short-term maximal performance assessed during Ramadan in the afternoon. Twelve healthy active men took part in the study. The experimental design consisted of four test sessions conducted at 5 p.m., before and during Ramadan, either with a 5-minute or a 15-minute warm-up. The warm-up consisted in pedaling at 50% of the power output obtained at the last stage of a submaximal multistage cycling test. During each session, the subjects performed two vertical jump tests (squat jump and counter movement jump) for measurement of vertical jump height followed by a 30-second Wingate test for measurement of peak and mean power. Oral temperature was recorded at rest and after warming-up. Moreover, ratings of perceived exertion were obtained immediately after the Wingate test. Oral temperature was higher before Ramadan than during Ramadan at rest, and was higher after the 15-minute warm-up than the 5-minute warm-up both before and during Ramadan. In addition, vertical jump heights were not significantly different between the two warm-up conditions before and during Ramadan, and were lower during Ramadan than before Ramadan after both warm-up conditions. Peak and mean power were not significantly different between the two warm-up durations before Ramadan, but were significantly higher after the 5-minute warm-up than the 15-minute warm-up during Ramadan. Moreover, peak and mean power were lower during Ramadan than before Ramadan after both warm-up conditions. Furthermore, ratings of perceived exertion were higher after the 15-minute warm-up than the 5-minute warm-up only during Ramadan. The prolonged active warm-up has no effect on vertical jump height but impairs anaerobic power assessed during Ramadan in the afternoon.

  3. Does Increasing Active Warm-Up Duration Affect Afternoon Short-Term Maximal Performance during Ramadan?

    PubMed Central

    Baklouti, Hana; Aloui, Asma; Chtourou, Hamdi; Briki, Walid; Chaouachi, Anis; Souissi, Nizar

    2015-01-01

    Aim The purpose of this study was to examine the effect of active warm-up duration on short-term maximal performance assessed during Ramadan in the afternoon. Methods Twelve healthy active men took part in the study. The experimental design consisted of four test sessions conducted at 5 p.m., before and during Ramadan, either with a 5-minute or a 15-minute warm-up. The warm-up consisted in pedaling at 50% of the power output obtained at the last stage of a submaximal multistage cycling test. During each session, the subjects performed two vertical jump tests (squat jump and counter movement jump) for measurement of vertical jump height followed by a 30-second Wingate test for measurement of peak and mean power. Oral temperature was recorded at rest and after warming-up. Moreover, ratings of perceived exertion were obtained immediately after the Wingate test. Results Oral temperature was higher before Ramadan than during Ramadan at rest, and was higher after the 15-minute warm-up than the 5-minute warm-up both before and during Ramadan. In addition, vertical jump heights were not significantly different between the two warm-up conditions before and during Ramadan, and were lower during Ramadan than before Ramadan after both warm-up conditions. Peak and mean power were not significantly different between the two warm-up durations before Ramadan, but were significantly higher after the 5-minute warm-up than the 15-minute warm-up during Ramadan. Moreover, peak and mean power were lower during Ramadan than before Ramadan after both warm-up conditions. Furthermore, ratings of perceived exertion were higher after the 15-minute warm-up than the 5-minute warm-up only during Ramadan. Conclusion The prolonged active warm-up has no effect on vertical jump height but impairs anaerobic power assessed during Ramadan in the afternoon. PMID:25646955

  4. 21 CFR 864.9205 - Blood and plasma warming device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...

  5. 21 CFR 864.9205 - Blood and plasma warming device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...

  6. 21 CFR 864.9205 - Blood and plasma warming device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...

  7. 21 CFR 864.9205 - Blood and plasma warming device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...

  8. 21 CFR 864.9205 - Blood and plasma warming device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...

  9. Frequency of Deep Convective Clouds and Global Warming

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Teixeira, Joao

    2008-01-01

    This slide presentation reviews the effect of global warming on the formation of Deep Convective Clouds (DCC). It concludes that nature responds to global warming with an increase in strong convective activity. The frequency of DCC increases with global warming at the rate of 6%/decade. The increased frequency of DCC with global warming alone increases precipitation by 1.7%/decade. It compares the state of the art climate models' response to global warming, and concludes that the parametrization of climate models need to be tuned to more closely emulate the way nature responds to global warming.

  10. Global Warming: A Reduced Threat?.

    NASA Astrophysics Data System (ADS)

    Michaels, Patrick J.; Stooksbury, David E.

    1992-10-01

    One popular and apocalyptic vision of the world influenced by increasing concentrations of infrared-absorbing trace gases is that of ecological disaster brought about by rapidly rising temperatures, sea level, and evaporation rates. This vision developed from a suite of climate models that have since considerably changed in both their dynamics and their estimates of prospective warming. Observed temperatures indicate that much more warming should already have taken place than predicted by earlier models in the Northern Hemisphere, and that night, rather than day, readings in that hemisphere show a relative warming. A high-latitude polar-night warming or a general night warming could be either benign or beneficial. A large number of plant species show both increased growth and greater water-use efficiency under enhanced carbon dioxide.An extensive body of evidence now indicates that anthropo-generated sulfate emissions are mitigating some of the warming, and that increased cloudiness as a result of these emissions will further enhance night, rather than day, warming. The sulfate emissions, though, are not sufficient to explain all of the night warming. However, the sensitivity of climate to anthropogenerated aerosols, and the general lack of previously predicted warming, could drastically alter the debate on global warming in favor of less expensive policies.

  11. Accelerated Increase in the Arctic Tropospheric Warming Events Surpassing StratosphericWarming Events During Winter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Simon; Lin, Yen-Heng; Lee, Ming-Ying

    2017-04-22

    In January 2016, a robust reversal of the Arctic Oscillation (AO) took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March-April. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as well as those documented in previous studies. Our results indicate a recent and accelerated increasemore » in the tropospheric warming type versus a flat trend in stratospheric warming type. Given that tropospheric warming events occur twice as fast than the stratospheric warming type, the noted increase in the former implies further intensification in midlatitude winter weather extremes similar to those experienced in early 2016. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated impact on the anomalously cold Siberia.« less

  12. Mechanism of non-appearance of hiatus in Tibetan Plateau.

    PubMed

    Ma, Jieru; Guan, Xiaodan; Guo, Ruixia; Gan, Zewen; Xie, Yongkun

    2017-06-30

    In the recent decade, hiatus is the hottest issue in the community of climate change. As the area of great importance, the Tibetan Plateau (TP), however, did not appear to have any warming stoppage in the hiatus period. In fact, the TP showed a continuous warming in the recent decade. To explore why the TP did not show hiatus, we divide the surface air temperature into dynamically-induced temperature (DIT) and radiatively-forced temperature (RFT) by applying the dynamical adjustment method. Our results show that DIT displayed a relatively uniform warming background in the TP, with no obvious correlations with dynamic factors. Meanwhile, as the major contribution to warming, the RFT effect over the TP played the dominant role. The warming role is illustrated using the temperature change between perturbed and control simulation responses to CO 2 or black carbon (BC) forcing via Community Earth System Model (CESM). It shows that an obvious warming in the TP is induced by the CO 2 warming effect, and BC exhibits an amplifying effect on the warming. Therefore, the continuous warming in the TP was a result of uniform DIT warming over a large scale and enhanced RFT warming at a regional scale.

  13. Experimental evaluation of reproductive response to climate warming in an oviparous skink.

    PubMed

    Lu, Hongliang; Wang, Yong; Tang, Wenqi; DU, Weiguo

    2013-06-01

    The impact of climate warming on organisms is increasingly being recognized. The experimental evaluation of phenotypically plastic responses to warming is a critical step in understanding the biological effects and adaptive capacity of organisms to future climate warming. Oviparous Scincella modesta live in deeply-shaded habitats and they require low optimal temperatures during embryonic development, which makes them suitable subjects for testing the effects of warming on reproduction. We raised adult females and incubated their eggs under different thermal conditions that mimicked potential climate warming. Female reproduction, embryonic development and hatchling traits were monitored to evaluate the reproductive response to warming. Experimental warming induced females to lay eggs earlier, but it did not affect the developmental stage of embryos at oviposition or the reproductive output. The high temperatures experienced by gravid females during warming treatments reduced the incubation period and increased embryonic mortality. The locomotor performance of hatchlings was not affected by the maternal thermal environment, but it was affected by the warming treatment during embryonic development. Our results suggest that climate warming might have a profound effect on fitness-relevant traits both at embryonic and post-embryonic stages in oviparous lizards. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  14. Warming shifts ‘worming': effects of experimental warming on invasive earthworms in northern North America

    PubMed Central

    Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A.; Rice, Karen; Rich, Roy; Reich, Peter B.

    2014-01-01

    Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration. PMID:25363633

  15. Warming shifts 'worming': effects of experimental warming on invasive earthworms in northern North America.

    PubMed

    Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A; Rice, Karen; Rich, Roy; Reich, Peter B

    2014-11-03

    Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration.

  16. Thermosensory processing in the Drosophila brain

    PubMed Central

    Liu, Wendy W.; Mazor, Ofer; Wilson, Rachel I.

    2014-01-01

    In Drosophila, just as in vertebrates, changes in external temperature are encoded by bidirectional opponent thermoreceptor cells: some cells are excited by warming and inhibited by cooling, whereas others are excited by cooling and inhibited by warming1,2. The central circuits that process these signals are not understood. In Drosophila, a specific brain region receives input from thermoreceptor cells2,3. Here we show that distinct genetically-identified projection neurons (PNs) in this brain region are excited by cooling, warming, or both. The PNs excited by cooling receive mainly feedforward excitation from cool thermoreceptors. In contrast, the PNs excited by warming (“warm-PNs”) receive both excitation from warm thermoreceptors and crossover inhibition from cool thermoreceptors via inhibitory interneurons. Notably, this crossover inhibition elicits warming-evoked excitation, because warming suppresses tonic activity in cool thermoreceptors. This in turn disinhibits warm-PNs and sums with feedforward excitation evoked by warming. Crossover inhibition could cancel non-thermal activity (noise) that is positively-correlated among warm and cool thermoreceptor cells, while reinforcing thermal activity which is anti-correlated. Our results show how central circuits can combine signals from bidirectional opponent neurons to construct sensitive and robust neural codes. PMID:25739502

  17. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China.

    PubMed

    Tian, Yunlu; Zheng, Chengyan; Chen, Jin; Chen, Changqing; Deng, Aixing; Song, Zhenwei; Zhang, Baoming; Zhang, Weijian

    2014-01-01

    Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI) facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming) were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05), respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05) higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.

  18. Impacts of day versus night warming on soil microclimate: results from a semiarid temperate steppe.

    PubMed

    Xia, Jianyang; Chen, Shiping; Wan, Shiqiang

    2010-06-15

    One feature of climate warming is that increases in daily minimum temperature are greater than those in daily maximum temperature. Changes in soil microclimate in response to the asymmetrically diurnal warming scenarios can help to explain responses of ecosystem processes. In the present study, we examined the impacts of day, night, and continuous warming on soil microclimate in a temperate steppe in northern China. Our results showed that day, night, and continuous warming (approximately 13Wm(-2) with constant power mode) significantly increased daily mean soil temperature at 10cm depth by 0.71, 0.78, and 1.71 degrees C, respectively. Night warming caused greater increases in nighttime mean and daily minimum soil temperatures (0.74 and 0.99 degrees C) than day warming did (0.60 and 0.66 degrees C). However, there were no differences in the increases in daytime mean and daily maximum soil temperature between day (0.81 and 1.13 degrees C) and night (0.81 and 1.10 degrees C) warming. The differential effects of day and night warming on soil temperature varied with environmental factors, including photosynthetic active radiation, vapor-pressure deficit, and wind speed. When compared with the effect of continuous warming on soil temperature, the summed effects of day and night warming were lower during daytime, but greater at night, thus leading to equality at daily scale. Mean volumetric soil moisture at the depth of 0-40cm significantly decreased under continuous warming in both 2006 (1.44 V/V%) and 2007 (0.76 V/V%). Day warming significantly reduced volumetric soil moisture only in 2006, whereas night warming had no effect on volumetric soil moisture in both 2006 and 2007. Given the different diurnal warming patterns and variability of environmental factors among ecosystems, these results highlight the importance of incorporating the differential impacts of day and night warming on soil microclimate into the predictions of terrestrial ecosystem responses to climate warming. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Differential responses of invasive and native plants to warming with simulated changes in diurnal temperature ranges.

    PubMed

    Chen, Bao-Ming; Gao, Yang; Liao, Hui-Xuan; Peng, Shao-Lin

    2017-07-01

    Although many studies have documented the effects of global warming on invasive plants, little is known about whether the effects of warming on plant invasion differ depending on the imposed change in different diurnal temperature ranges (DTR). We tested the impact of warming with DTR change on seed germination and seedling growth of eight species in the family Asteraceae. Four of these are invasive ( Eupatorium catarium , Mikania micrantha , Biodens pilosa var. radiate , Ageratum conyzoides ) in China, and four are native ( Sonchus arvensis , Senecios candens , Pterocypsela indica , Eupatorium fortunei ). Four temperature treatments were set in growth chambers (three warming by 3 °C with different DTRs and control), and experiments were run to mimic wintertime and summertime conditions. The control treatment ( T c ) was set to the mean temperature for the corresponding time of year, and the three warming treatments were symmetric (i.e. equal night-and-day) (DTR sym ), asymmetric warming with increased (DTR inc ) and decreased (DTR dec ) DTR. The warming treatments did not affect seed germination of invasive species under any of the conditions, but DTR sym and DTR inc increased seed germination of natives relative to the control, suggesting that warming may not increase success of these invasive plant species via effects on seed germination of invasive plants relative to native plants. The invasive plants had higher biomass and greater stem allocation than the native ones under all of the warming treatments. Wintertime warming increased the biomass of the invasive and wintertime DTR sym and DTR inc increased that of the native plants, whereas summertime asymmetric warming decreased the biomass of the invasives but not the natives. Therefore, warming may not facilitate invasion of these invasive species due to the suppressive effects of summertime warming (particularly the asymmetric warming) on growth. Compared with DTR sym , DTR dec decreased the biomass of both the invasive and native plants, while the asymmetric summer warming treatments (DTR inc and DTR dec ) decreased the biomass of the invasive but not the native plants. In addition, wintertime DTR inc did not enhance the biomass of all the plants relative to DTR sym . Our results were obtained in an unrealistic setting; the growth conditions in chambers (e.g. low light, low herbivory, no competition) are quite different from natural conditions (high light, normal herbivory and competition), which may influence the effects of warming on the seedling establishment and growth of both invasive and native plants. Nonetheless, our work highlights the importance of asymmetric warming, particularly in regards to the comparison with the effects of symmetric warming on both invasive and native plants. Conclusions regarding the effects of future warming should be made cautiously because warming with different DTRs may suggest different implications for invasion, and effects of warming may be different in different seasons.

  20. 'Soothing the ring of fire': Australian women's and midwives' experiences of using perineal warm packs in the second stage of labour.

    PubMed

    Dahlen, Hannah G; Homer, Caroline S E; Cooke, Margaret; Upton, Alexis M; Nunn, Rosalie A; Brodrick, Belinda S

    2009-04-01

    to determine women's and midwives' experiences of using perineal warm packs in the second stage of labour. as part of a randomised controlled trial (Warm Pack Trial), women and midwives were asked to complete questionnaires about the effects of the warm packs on pain, perineal trauma, comfort, feelings of control, satisfaction and intentions for use during future births. two hospitals in Sydney, Australia. a randomised controlled trial was undertaken. In the late second stage of labour, nulliparous women (n=717) giving birth were randomly allocated to having warm packs (n=360) applied to their perineum or standard care (n=357). Standard care was defined as any second stage practice carried out by midwives that did not include the application of warm packs to the perineum. Three hundred and two nulliparous women randomised to receive warm packs (84%) received the treatment. Questionnaires were completed by 266 (88%) women who received warm packs, and 270 (89%) midwives who applied warm packs to these women. warm, moist packs were applied to the perineum in the late second stage of labour. warm packs were highly acceptable to both women and midwives as a means of relieving pain during the late second stage of labour. Almost the same number of women (79.7%) and midwives (80.4%) felt that the warm packs reduced perineal pain during the birth. Both midwives and women were positive about using warm packs in the future. The majority of women (85.7%) said that they would like to use perineal warm packs again for their next birth and would recommend them to friends (86.1%). Likewise, 91% of midwives were positive about using the warm packs, with 92.6% considering using them in the future as part of routine care in the second stage of labour. responses to questionnaires, eliciting experiences of women and midwives involved in the Warm Pack Trial, demonstrated that the practice of applying perineal warm packs in the late second stage of labour was highly acceptable and effective in helping to relieve perineal pain and increase comfort. perineal warm packs should be incorporated into second stage pain relief options available to women during childbirth.

  1. Peatland Woody Plant Growth Responses to Warming and Elevated CO2 in a Southern-boreal Raised Bog Ecosystem

    NASA Astrophysics Data System (ADS)

    Phillips, J. R.; Hanson, P. J.; Warren, J.; Ward, E. J.; Brice, D. J.; Graham, J.

    2017-12-01

    Spruce and Peatland Responses Under Changing Environments (SPRUCE) is an in situ warming by elevated CO2 manipulation located in a high-carbon, spruce peatland in northern Minnesota. Warming treatments combined a 12-m diameter open topped chamber with internally recirculating warm air and soil deep heating to simulate a broad range of future warming treatments. Deep below ground soil warming rates are 0, +2.25, +4.5, +6.75, and +9 °C. Deep belowground warming was initiated in June 2014 followed by air warming in August 2015. In June 2016, elevated CO2 atmospheres (eCO2 at + 500 ppm) were added to half of the warming treatments in a regression design. Our objective was to track long-term vegetation responses to warming and eCO2. Annual tree growth is based on winter measurement of circumference of all Picea mariana and Larix laricina trees within each 113 m2 plot, automated dendrometers, terrestrial LIDAR scanning of tree heights and canopy volumes, and destructive allometry. Annual shrub growth is measured in late summer by destructive clipping in two 0.25 m2 sub-plots and separation of the current year tissues. During the first year of warming, tree basal area growth was reduced for Picea, but not Larix trees. Growth responses for the woody shrub vegetation remains highly variable with a trend towards increasing growth with warming. Elevated CO2 enhancements of growth are not yet evident in the data. Second-year results will also be reported. Long-term hypotheses for increased woody plant growth under warming include potential enhancements driven by increased nutrient availability from warming induced decomposition of surface peats.

  2. Responses of greenhouse gas fluxes to experimental warming in wheat season under conventional tillage and no-tillage fields.

    PubMed

    Tu, Chun; Li, Fadong

    2017-04-01

    Understanding the effects of warming on greenhouse gas (GHG, such as N 2 O, CH 4 and CO 2 ) feedbacks to climate change represents the major environmental issue. However, little information is available on how warming effects on GHG fluxes in farmland of North China Plain (NCP). An infrared warming simulation experiment was used to assess the responses of N 2 O, CH 4 and CO 2 to warming in wheat season of 2012-2014 from conventional tillage (CT) and no-tillage (NT) systems. The results showed that warming increased cumulative N 2 O emission by 7.7% in CT but decreased it by 9.7% in NT fields (p<0.05). Cumulative CH 4 uptake and CO 2 emission were increased by 28.7%-51.7% and 6.3%-15.9% in both two tillage systems, respectively (p<0.05). The stepwise regressions relationship between GHG fluxes and soil temperature and soil moisture indicated that the supply soil moisture due to irrigation and precipitation would enhance the positive warming effects on GHG fluxes in two wheat seasons. However, in 2013, the long-term drought stress due to infrared warming and less precipitation decreased N 2 O and CO 2 emission in warmed treatments. In contrast, warming during this time increased CH 4 emission from deep soil depth. Across two years wheat seasons, warming significantly decreased by 30.3% and 63.9% sustained-flux global warming potential (SGWP) of N 2 O and CH 4 expressed as CO 2 equivalent in CT and NT fields, respectively. However, increase in soil CO 2 emission indicated that future warming projection might provide positive feedback between soil C release and global warming in NCP. Copyright © 2016. Published by Elsevier B.V.

  3. Passive warming reduces stress and shifts reproductive effort in the Antarctic moss, Polytrichastrum alpinum.

    PubMed

    Shortlidge, Erin E; Eppley, Sarah M; Kohler, Hans; Rosenstiel, Todd N; Zúñiga, Gustavo E; Casanova-Katny, Angélica

    2017-01-01

    The Western Antarctic Peninsula is one of the most rapidly warming regions on Earth, and many biotic communities inhabiting this dynamic region are responding to these well-documented climatic shifts. Yet some of the most prevalent organisms of terrestrial Antarctica, the mosses, and their responses to warming have been relatively overlooked and understudied. In this research, the impacts of 6 years of passive warming were investigated using open top chambers (OTCs), on moss communities of Fildes Peninsula, King George Island, Antarctica. The effects of experimental passive warming on the morphology, sexual reproductive effort and stress physiology of a common dioicous Antarctic moss, Polytrichastrum alpinum ,: were tested, gaining the first species-specific mechanistic insight into moss responses to warming in the Antarctic. Additionally community analyses were conducted examining the impact of warming on overall moss percentage cover and sporophyte production in intact Antarctic moss communities. Our results show a generally greater percentage moss cover under warming conditions as well as increased gametangia production in P. alpinum Distinct morphological and physiological shifts in P. alpinum were found under passive warming compared with those without warming: warmed mosses reduced investment in cellular stress defences, but invested more towards primary productivity and gametangia development. Taken together, results from this study of mosses under passive warming imply that in ice-free moss-dominated regions, continued climate warming will probably have profound impacts on moss biology and colonization along the Western Antarctic Peninsula. Such findings highlight the fundamental role that mosses will play in influencing the terrestrialization of a warming Antarctica. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Warm-Up Exercises May Not Be So Important for Enhancing Submaximal Running Performance.

    PubMed

    Takizawa, Kazuki; Yamaguchi, Taichi; Shibata, Keisuke

    2018-05-01

    Takizawa, K, Yamaguchi, T, and Shibata, K. Warm-up exercises may not be so important for enhancing submaximal running performance. J Strength Cond Res 32(5): 1383-1390, 2018-The purpose of this study was to determine an appropriate warm-up intensity for enhancing performance in submaximal running at 90% vV[Combining Dot Above]O2max (it assumes 3,000-5,000 m in track events). Seven trained male university athletes took part in this study (age: 21.3 ± 2.1 years, height: 169.3 ± 4.7 cm, body mass: 58.4 ± 5.6 kg, V[Combining Dot Above]O2max: 73.33 ± 5.46 ml·kg·min). Each subject ran on a treadmill at 90% vV[Combining Dot Above]O2max until exhaustion after 1 of 4 warm-up treatments. The 4 warm-up treatments were no warm-up, 15 minutes running at 60% vV[Combining Dot Above]O2max, at 70% vV[Combining Dot Above]O2max, and at 80% vV[Combining Dot Above]O2max. The running performance was evaluated by time to exhaustion (TTE). V[Combining Dot Above]O2, and vastus lateralis muscle temperature were also measured. There were no significant differences in TTE among the warm-up exercises (p > 0.05). V[Combining Dot Above]O2 in no warm-up showed slower reaction than the other warm-up exercises. Regarding, the vastus lateralis muscle temperature immediately after warm-up, no warm-up was significantly (p < 0.01) lower compared with the other warm-up exercises. Our results suggested that submaximal running performance was not affected by the presence or absence of a warm-up or by warm-up intensity, although physiological changes occurred.

  5. Effects of bedtime periocular and posterior cervical cutaneous warming on sleep status in adult male subjects: a preliminary study.

    PubMed

    Igaki, Michihito; Suzuki, Masahiro; Sakamoto, Ichiro; Ichiba, Tomohisa; Kuriyama, Kenichi; Uchiyama, Makoto

    2018-01-01

    Appropriate warming of the periocular or posterior cervical skin has been reported to induce autonomic or mental relaxation in humans. To clarify the effects of cutaneous warming on human sleep, eight male subjects with mild sleep difficulties were asked to try three experimental conditions at home, each lasting for 5 days, in a cross-over manner: warming of the periocular skin with a warming device for 10 min before habitual bedtime, warming of the posterior cervical skin with a warming device for 30 min before habitual bedtime, and no treatment as a control. The warming device had a heat- and steam-generating sheet that allowed warming of the skin to 40 °C through a chemical reaction with iron. Electroencephalograms (EEGs) were recorded during nocturnal sleep using an ambulatory EEG device and subjected to spectral analysis. All the participants reported their sleep status using a visual analog scale. We found that warming of the periocular or posterior cervical skin significantly improved subjective sleep status relative to the control. The EEG delta power density in the first 90 min of the sleep episode was significantly increased under both warming of the periocular or posterior cervical skin relative to the control. These results suggest that warming of appropriate skin regions may have favorable effects on subjective and objective sleep quality.

  6. Forced-air warming and ultra-clean ventilation do not mix: an investigation of theatre ventilation, patient warming and joint replacement infection in orthopaedics.

    PubMed

    McGovern, P D; Albrecht, M; Belani, K G; Nachtsheim, C; Partington, P F; Carluke, I; Reed, M R

    2011-11-01

    We investigated the capacity of patient warming devices to disrupt the ultra-clean airflow system. We compared the effects of two patient warming technologies, forced-air and conductive fabric, on operating theatre ventilation during simulated hip replacement and lumbar spinal procedures using a mannequin as a patient. Infection data were reviewed to determine whether joint infection rates were associated with the type of patient warming device that was used. Neutral-buoyancy detergent bubbles were released adjacent to the mannequin's head and at floor level to assess the movement of non-sterile air into the clean airflow over the surgical site. During simulated hip replacement, bubble counts over the surgical site were greater for forced-air than for conductive fabric warming when the anaesthesia/surgery drape was laid down (p = 0.010) and at half-height (p < 0.001). For lumbar surgery, forced-air warming generated convection currents that mobilised floor air into the surgical site area. Conductive fabric warming had no such effect. A significant increase in deep joint infection, as demonstrated by an elevated infection odds ratio (3.8, p = 0.024), was identified during a period when forced-air warming was used compared to a period when conductive fabric warming was used. Air-free warming is, therefore, recommended over forced-air warming for orthopaedic procedures.

  7. The capacity to cope with climate warming declines from temperate to tropical latitudes in two widely distributed Eucalyptus species.

    PubMed

    Drake, John E; Aspinwall, Michael J; Pfautsch, Sebastian; Rymer, Paul D; Reich, Peter B; Smith, Renee A; Crous, Kristine Y; Tissue, David T; Ghannoum, Oula; Tjoelker, Mark G

    2015-01-01

    As rapid climate warming creates a mismatch between forest trees and their home environment, the ability of trees to cope with warming depends on their capacity to physiologically adjust to higher temperatures. In widespread species, individual trees in cooler home climates are hypothesized to more successfully acclimate to warming than their counterparts in warmer climates that may approach thermal limits. We tested this prediction with a climate-shift experiment in widely distributed Eucalyptus tereticornis and E. grandis using provenances originating along a ~2500 km latitudinal transect (15.5-38.0°S) in eastern Australia. We grew 21 provenances in conditions approximating summer temperatures at seed origin and warmed temperatures (+3.5 °C) using a series of climate-controlled glasshouse bays. The effects of +3.5 °C warming strongly depended on home climate. Cool-origin provenances responded to warming through an increase in photosynthetic capacity and total leaf area, leading to enhanced growth of 20-60%. Warm-origin provenances, however, responded to warming through a reduction in photosynthetic capacity and total leaf area, leading to reduced growth of approximately 10%. These results suggest that there is predictable intraspecific variation in the capacity of trees to respond to warming; cool-origin taxa are likely to benefit from warming, while warm-origin taxa may be negatively affected. © 2014 John Wiley & Sons Ltd.

  8. Comparison of Effects Produced by Physiological Versus Traditional Vocal Warm-up in Contemporary Commercial Music Singers.

    PubMed

    Portillo, María Priscilla; Rojas, Sandra; Guzman, Marco; Quezada, Camilo

    2018-03-01

    The present study aimed to observe whether physiological warm-up and traditional singing warm-up differently affect aerodynamic, electroglottographic, acoustic, and self-perceived parameters of voice in Contemporary Commercial Music singers. Thirty subjects were asked to perform a 15-minute session of vocal warm-up. They were randomly assigned to one of two types of vocal warm-up: physiological (based on semi-occluded exercises) or traditional (singing warm-up based on open vowel [a:]). Aerodynamic, electroglottographic, acoustic, and self-perceived voice quality assessments were carried out before (pre) and after (post) warm-up. No significant differences were found when comparing both types of vocal warm-up methods, either in subjective or in objective measures. Furthermore, the main positive effect observed in both groups when comparing pre and post conditions was a better self-reported quality of voice. Additionally, significant differences were observed for sound pressure level (decrease), glottal airflow (increase), and aerodynamic efficiency (decrease) in the traditional warm-up group. Both traditional and physiological warm-ups produce favorable voice sensations. Moreover, there are no evident differences in aerodynamic and electroglottographic variables when comparing both types of vocal warm-ups. Some changes after traditional warm-up (decreased intensity, increased airflow, and decreased aerodynamic efficiency) could imply an early stage of vocal fatigue. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  9. Sustained acceleration of soil carbon decomposition observed in a 6-year warming experiment in a warm-temperate forest in southern Japan

    PubMed Central

    Teramoto, Munemasa; Liang, Naishen; Takagi, Masahiro; Zeng, Jiye; Grace, John

    2016-01-01

    To examine global warming’s effect on soil organic carbon (SOC) decomposition in Asian monsoon forests, we conducted a soil warming experiment with a multichannel automated chamber system in a 55-year-old warm-temperate evergreen broadleaved forest in southern Japan. We established three treatments: control chambers for total soil respiration, trenched chambers for heterotrophic respiration (Rh), and warmed trenched chambers to examine warming effect on Rh. The soil was warmed with an infrared heater above each chamber to increase soil temperature at 5 cm depth by about 2.5 °C. The warming treatment lasted from January 2009 to the end of 2014. The annual warming effect on Rh (an increase per °C) ranged from 7.1 to17.8% °C−1. Although the warming effect varied among the years, it averaged 9.4% °C−1 over 6 years, which was close to the value of 10.1 to 10.9% °C−1 that we calculated using the annual temperature–efflux response model of Lloyd and Taylor. The interannual warming effect was positively related to the total precipitation in the summer period, indicating that summer precipitation and the resulting soil moisture level also strongly influenced the soil warming effect in this forest. PMID:27748424

  10. Thai Youths and Global Warming: Media Information, Awareness, and Lifestyle Activities

    ERIC Educational Resources Information Center

    Chokriensukchai, Kanchana; Tamang, Ritendra

    2010-01-01

    This study examines the exposure of Thai youths to media information on global warming, the relationship between exposure to global warming information and awareness of global warming, and the relationship between that awareness and lifestyle activities that contribute to global warming. A focus group of eight Thai youths provided information that…

  11. Efficient Warm-ups: Creating a Warm-up That Works.

    ERIC Educational Resources Information Center

    Lauffenburger, Sandra Kay

    1992-01-01

    Proper warm-up is important for any activity, but designing an effective warm-up can be time consuming. An alternative approach is to take a cue from Laban Movement Analysis (LMA) and consider movement design from the perspective of space and planes of motion. Efficient warm-up exercises using LMA are described. (SM)

  12. Active Movement Warm-Up Routines

    ERIC Educational Resources Information Center

    Walter, Teri; Quint, Ashleigh; Fischer, Kim; Kiger, Joy

    2011-01-01

    This article presents warm-ups that are designed to physiologically and psychologically prepare students for vigorous physical activity. An active movement warm-up routine is made up of three parts: (1) active warm-up movement exercises, (2) general preparation, and (3) the energy system. These warm-up routines can be used with all grade levels…

  13. A Congeneric Comparison Shows That Experimental Warming Enhances the Growth of Invasive Eupatorium adenophorum

    PubMed Central

    He, Wei-Ming; Li, Jing-Ji; Peng, Pei-Hao

    2012-01-01

    Rising air temperatures may change the risks of invasive plants; however, little is known about how different warming timings affect the growth and stress-tolerance of invasive plants. We conducted an experiment with an invasive plant Eupatorium adenophorum and a native congener Eupatorium chinense, and contrasted their mortality, plant height, total biomass, and biomass allocation in ambient, day-, night-, and daily-warming treatments. The mortality of plants was significantly higher in E. chinense than E. adenophorum in four temperature regimes. Eupatorium adenophorum grew larger than E. chinense in the ambient climate, and this difference was amplified with warming. On the basis of the net effects of warming, daily-warming exhibited the strongest influence on E. adenophorum, followed by day-warming and night-warming. There was a positive correlation between total biomass and root weight ratio in E. adenophorum, but not in E. chinense. These findings suggest that climate warming may enhance E. adenophorum invasions through increasing its growth and stress-tolerance, and that day-, night- and daily-warming may play different roles in this facilitation. PMID:22536425

  14. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity.

    PubMed

    Cowles, Jane M; Wragg, Peter D; Wright, Alexandra J; Powers, Jennifer S; Tilman, David

    2016-02-01

    Ecosystems worldwide are increasingly impacted by multiple drivers of environmental change, including climate warming and loss of biodiversity. We show, using a long-term factorial experiment, that plant diversity loss alters the effects of warming on productivity. Aboveground primary productivity was increased by both high plant diversity and warming, and, in concert, warming (≈1.5 °C average above and belowground warming over the growing season) and diversity caused a greater than additive increase in aboveground productivity. The aboveground warming effects increased over time, particularly at higher levels of diversity, perhaps because of warming-induced increases in legume and C4 bunch grass abundances, and facilitative feedbacks of these species on productivity. Moreover, higher plant diversity was associated with the amelioration of warming-induced environmental conditions. This led to cooler temperatures, decreased vapor pressure deficit, and increased surface soil moisture in higher diversity communities. Root biomass (0-30 cm) was likewise consistently greater at higher plant diversity and was greater with warming in monocultures and at intermediate diversity, but at high diversity warming had no detectable effect. This may be because warming increased the abundance of legumes, which have lower root : shoot ratios than the other types of plants. In addition, legumes increase soil nitrogen (N) supply, which could make N less limiting to other species and potentially decrease their investment in roots. The negative warming × diversity interaction on root mass led to an overall negative interactive effect of these two global change factors on the sum of above and belowground biomass, and thus likely on total plant carbon stores. In total, plant diversity increased the effect of warming on aboveground net productivity and moderated the effect on root mass. These divergent effects suggest that warming and changes in plant diversity are likely to have both interactive and divergent impacts on various aspects of ecosystem functioning. © 2015 John Wiley & Sons Ltd.

  15. Contrasting above- and belowground organic matter decomposition and carbon and nitrogen dynamics in response to warming in High Arctic tundra.

    PubMed

    Blok, Daan; Faucherre, Samuel; Banyasz, Imre; Rinnan, Riikka; Michelsen, Anders; Elberling, Bo

    2018-06-01

    Tundra regions are projected to warm rapidly during the coming decades. The tundra biome holds the largest terrestrial carbon pool, largely contained in frozen permafrost soils. With warming, these permafrost soils may thaw and become available for microbial decomposition, potentially providing a positive feedback to global warming. Warming may directly stimulate microbial metabolism but may also indirectly stimulate organic matter turnover through increased plant productivity by soil priming from root exudates and accelerated litter turnover rates. Here, we assess the impacts of experimental warming on turnover rates of leaf litter, active layer soil and thawed permafrost sediment in two high-arctic tundra heath sites in NE-Greenland, either dominated by evergreen or deciduous shrubs. We incubated shrub leaf litter on the surface of control and warmed plots for 1 and 2 years. Active layer soil was collected from the plots to assess the effects of 8 years of field warming on soil carbon stocks. Finally, we incubated open cores filled with newly thawed permafrost soil for 2 years in the active layer of the same plots. After field incubation, we measured basal respiration rates of recovered thawed permafrost cores in the lab. Warming significantly reduced litter mass loss by 26% after 1 year incubation, but differences in litter mass loss among treatments disappeared after 2 years incubation. Warming also reduced litter nitrogen mineralization and decreased the litter carbon to nitrogen ratio. Active layer soil carbon stocks were reduced 15% by warming, while soil dissolved nitrogen was reduced by half in warmed plots. Warming had a positive legacy effect on carbon turnover rates in thawed permafrost cores, with 10% higher respiration rates measured in cores from warmed plots. These results demonstrate that warming may have contrasting effects on above- and belowground tundra carbon turnover, possibly governed by microbial resource availability. © 2017 John Wiley & Sons Ltd.

  16. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    PubMed

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall). © 2015 John Wiley & Sons Ltd.

  17. Phenological responses of Icelandic subarctic grasslands to short-term and long-term natural soil warming.

    PubMed

    Leblans, Niki I W; Sigurdsson, Bjarni D; Vicca, Sara; Fu, Yongshuo; Penuelas, Josep; Janssens, Ivan A

    2017-11-01

    The phenology of vegetation, particularly the length of the growing season (LOS; i.e., the period from greenup to senescence), is highly sensitive to climate change, which could imply potent feedbacks to the climate system, for example, by altering the ecosystem carbon (C) balance. In recent decades, the largest extensions of LOS have been reported at high northern latitudes, but further warming-induced LOS extensions may be constrained by too short photoperiod or unfulfilled chilling requirements. Here, we studied subarctic grasslands, which cover a vast area and contain large C stocks, but for which LOS changes under further warming are highly uncertain. We measured LOS extensions of Icelandic subarctic grasslands along natural geothermal soil warming gradients of different age (short term, where the measurements started after 5 years of warming and long term, i.e., warmed since ≥50 years) using ground-level measurements of normalized difference vegetation index. We found that LOS linearly extended with on average 2.1 days per °C soil warming up to the highest soil warming levels (ca. +10°C) and that LOS had the potential to extend at least 1 month. This indicates that the warming impact on LOS in these subarctic grasslands will likely not saturate in the near future. A similar response to short- and long-term warming indicated a strong physiological control of the phenological response of the subarctic grasslands to warming and suggested that genetic adaptations and community changes were likely of minor importance. We conclude that the warming-driven extension of the LOSs of these subarctic grasslands did not saturate up to +10°C warming, and hence that growing seasons of high-latitude grasslands are likely to continue lengthening with future warming (unless genetic adaptations or species shifts do occur). This persistence of the warming-induced extension of LOS has important implications for the C-sink potential of subarctic grasslands under climate change. © 2017 John Wiley & Sons Ltd.

  18. Global Warming in Schools: An Inquiry about the Competing Conceptions of High School Social Studies and Science Curricula and Teachers

    NASA Astrophysics Data System (ADS)

    Meehan, Casey R.

    Despite the scientific consensus supporting the theory of anthropogenic (human-induced) global warming, whether global warming is a serious problem, whether human activity is the primary cause of it, and whether scientific consensus exists at all are controversial questions among the U.S. lay-public. The cultural theory of risk perception (Schwarz and Thompson, 1990) serves as the theoretical framework for this qualitative analysis in which I ask the question how do U.S. secondary school curricula and teachers deal with the disparity between the overwhelming scientific consensus and the lay-public's skepticism regarding global warming? I analyzed nine widely used social studies and science textbooks, eight sets of supplemental materials about global warming produced by a range of not-for-profit and governmental organizations, and interviewed fourteen high school teachers who had experience teaching formal lessons about global warming in their content area. Findings suggest: 1) the range of global warming content within social studies and science textbooks and supplemental curricula reflects the spectrum of conceptualizations found among members of the U.S. public; 2) global warming curricula communicate only a narrow range of strategies for dealing with global warming and its associated threats; and 3) social studies and science teachers report taking a range of stances about global warming in their classroom, but sometimes the stance they put forth to their students does not align with their personal beliefs about global warming. The findings pose a troubling conundrum. Some of the global warming curricula treat the cause of global warming--a question that is not scientifically controversial--as a question with multiple and competing "right" answers. At the same time, much of curricula position how we should address global warming--a question that is legitimately controversial--as a question with one correct answer despite there being many reasonable responses. Finally, I present the implications this conundrum has for teaching about global warming in a politically polarized atmosphere.

  19. Plants regulate the effects of experimental warming on the soil microbial community in an alpine scrub ecosystem.

    PubMed

    Ma, Zhiliang; Zhao, Wenqiang; Zhao, Chunzhang; Wang, Dong; Liu, Mei; Li, Dandan; Liu, Qing

    2018-01-01

    Information on how soil microbial communities respond to warming is still scarce for alpine scrub ecosystems. We conducted a field experiment with two plant treatments (plant removal or undisturbed) subjected to warmed or unwarmed conditions to examine the effects of warming and plant removal on soil microbial community structures during the growing season in a Sibiraea angustata scrubland of the eastern Qinghai-Tibetan Plateau. The results indicate that experimental warming significantly influenced soil microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN), but the warming effects were dependent on the plant treatments and sampling seasons. In the plant-removal plots, warming did not affect most of the microbial variables, while in the undisturbed plots, warming significantly increased the abundances of actinomycete and Gram-positive bacterial groups during the mid-growing season (July), but it did not affect the fungi groups. Plant removal significantly reduced fungal abundance throughout the growing season and significantly altered the soil microbial community structure in July. The interaction between warming and plant removal significantly influenced the soil MBC and MBN and the abundances of total microbes, bacteria and actinomycete throughout the growing season. Experimental warming significantly reduced the abundance of rare taxa, while the interaction between warming and plant removal tended to have strong effects on the abundant taxa. These findings suggest that the responses of soil microbial communities to warming are regulated by plant communities. These results provide new insights into how soil microbial community structure responds to climatic warming in alpine scrub ecosystems.

  20. The effects of precompetition massage on the kinematic parameters of 20-m sprint performance.

    PubMed

    Fletcher, Iain M

    2010-05-01

    The purpose of this study was to investigate what effect precompetition massage has on short-term sprint performance. Twenty male collegiate games players, with a minimum training/playing background of 3 sessions per week, were assigned to a randomized, counter-balanced, repeated-measures designed experiment used to analyze 20-m sprints performance. Three discrete warm-up modalities, consisting of precompetition massage, a traditional warm-up, and a precompetition massage combined with a traditional warm-up were used. Massage consisted of fast, superficial techniques designed to stimulate the main muscle groups associated with sprint running. Twenty-meter sprint performance and core temperature were assessed post warm-up interventions. Kinematic differences between sprints were assessed through a 2-dimensional computerized motion analysis system (alpha level p

  1. Decadal evolution of the surface energy budget during the fast warming and global warming hiatus periods in the ERA-interim

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoming; Sejas, Sergio A.; Cai, Ming; Taylor, Patrick C.; Deng, Yi; Yang, Song

    2018-05-01

    The global-mean surface temperature has experienced a rapid warming from the 1980s to early-2000s but a muted warming since, referred to as the global warming hiatus in the literature. Decadal changes in deep ocean heat uptake are thought to primarily account for the rapid warming and subsequent slowdown. Here, we examine the role of ocean heat uptake in establishing the fast warming and warming hiatus periods in the ERA-Interim through a decomposition of the global-mean surface energy budget. We find the increase of carbon dioxide alone yields a nearly steady increase of the downward longwave radiation at the surface from the 1980s to the present, but neither accounts for the fast warming nor warming hiatus periods. During the global warming hiatus period, the transfer of latent heat energy from the ocean to atmosphere increases and the total downward radiative energy flux to the surface decreases due to a reduction of solar absorption caused primarily by an increase of clouds. The reduction of radiative energy into the ocean and the surface latent heat flux increase cause the ocean heat uptake to decrease and thus contribute to the slowdown of the global-mean surface warming. Our analysis also finds that in addition to a reduction of deep ocean heat uptake, the fast warming period is also driven by enhanced solar absorption due predominantly to a decrease of clouds and by enhanced longwave absorption mainly attributed to the air temperature feedback.

  2. Plants regulate the effects of experimental warming on the soil microbial community in an alpine scrub ecosystem

    PubMed Central

    Ma, Zhiliang; Zhao, Wenqiang; Zhao, Chunzhang; Wang, Dong; Liu, Mei; Li, Dandan

    2018-01-01

    Information on how soil microbial communities respond to warming is still scarce for alpine scrub ecosystems. We conducted a field experiment with two plant treatments (plant removal or undisturbed) subjected to warmed or unwarmed conditions to examine the effects of warming and plant removal on soil microbial community structures during the growing season in a Sibiraea angustata scrubland of the eastern Qinghai–Tibetan Plateau. The results indicate that experimental warming significantly influenced soil microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN), but the warming effects were dependent on the plant treatments and sampling seasons. In the plant-removal plots, warming did not affect most of the microbial variables, while in the undisturbed plots, warming significantly increased the abundances of actinomycete and Gram-positive bacterial groups during the mid-growing season (July), but it did not affect the fungi groups. Plant removal significantly reduced fungal abundance throughout the growing season and significantly altered the soil microbial community structure in July. The interaction between warming and plant removal significantly influenced the soil MBC and MBN and the abundances of total microbes, bacteria and actinomycete throughout the growing season. Experimental warming significantly reduced the abundance of rare taxa, while the interaction between warming and plant removal tended to have strong effects on the abundant taxa. These findings suggest that the responses of soil microbial communities to warming are regulated by plant communities. These results provide new insights into how soil microbial community structure responds to climatic warming in alpine scrub ecosystems. PMID:29668711

  3. Herbivores rescue diversity in warming tundra by modulating trait-dependent species losses and gains.

    PubMed

    Kaarlejärvi, Elina; Eskelinen, Anu; Olofsson, Johan

    2017-09-04

    Climate warming is altering the diversity of plant communities but it remains unknown which species will be lost or gained under warming, especially considering interactions with other factors such as herbivory and nutrient availability. Here, we experimentally test effects of warming, mammalian herbivory and fertilization on tundra species richness and investigate how plant functional traits affect losses and gains. We show that herbivory reverses the impact of warming on diversity: in the presence of herbivores warming increases species richness through higher species gains and lower losses, while in the absence of herbivores warming causes higher species losses and thus decreases species richness. Herbivores promote gains of short-statured species under warming, while herbivore removal and fertilization increase losses of short-statured and resource-conservative species through light limitation. Our results demonstrate that both rarity and traits forecast species losses and gains, and mammalian herbivores are essential for preventing trait-dependent extinctions and mitigate diversity loss under warming and eutrophication.Warming can reduce plant diversity but it is unclear which species will be lost or gained under interacting global changes. Kaarlejärvi et al. manipulate temperature, herbivory and nutrients in a tundra system and find that herbivory maintains diversity under warming by reducing species losses and promoting gains.

  4. Chronic warming stimulates growth of marsh grasses more than mangroves in a coastal wetland ecotone.

    PubMed

    Coldren, G A; Barreto, C R; Wykoff, D D; Morrissey, E M; Langley, J A; Feller, I C; Chapman, S K

    2016-11-01

    Increasing temperatures and a reduction in the frequency and severity of freezing events have been linked to species distribution shifts. Across the globe, mangrove ranges are expanding toward higher latitudes, likely due to diminishing frequency of freezing events associated with climate change. Continued warming will alter coastal wetland plant dynamics both above- and belowground, potentially altering plant capacity to keep up with sea level rise. We conducted an in situ warming experiment, in northeast Florida, to determine how increased temperature (+2°C) influences co-occurring mangrove and salt marsh plants. Warming was achieved using passive warming with three treatment levels (ambient, shade control, warmed). Avicennia germinans, the black mangrove, exhibited no differences in growth or height due to experimental warming, but displayed a warming-induced increase in leaf production (48%). Surprisingly, Distichlis spicata, the dominant salt marsh grass, increased in biomass (53% in 2013 and 70% in 2014), density (41%) and height (18%) with warming during summer months. Warming decreased plant root mass at depth and changed abundances of anaerobic bacterial taxa. Even while the poleward shift of mangroves is clearly controlled by the occurrences of severe freezes, chronic warming between these freeze events may slow the progression of mangrove dominance within ecotones. © 2016 by the Ecological Society of America.

  5. The tropical Pacific as a key pacemaker of the variable rates of global warming

    NASA Astrophysics Data System (ADS)

    Kosaka, Yu; Xie, Shang-Ping

    2016-09-01

    Global mean surface temperature change over the past 120 years resembles a rising staircase: the overall warming trend was interrupted by the mid-twentieth-century big hiatus and the warming slowdown since about 1998. The Interdecadal Pacific Oscillation has been implicated in modulations of global mean surface temperatures, but which part of the mode drives the variability in warming rates is unclear. Here we present a successful simulation of the global warming staircase since 1900 with a global ocean-atmosphere coupled model where tropical Pacific sea surface temperatures are forced to follow the observed evolution. Without prescribed tropical Pacific variability, the same model, on average, produces a continual warming trend that accelerates after the 1960s. We identify four events where the tropical Pacific decadal cooling markedly slowed down the warming trend. Matching the observed spatial and seasonal fingerprints we identify the tropical Pacific as a key pacemaker of the warming staircase, with radiative forcing driving the overall warming trend. Specifically, tropical Pacific variability amplifies the first warming epoch of the 1910s-1940s and determines the timing when the big hiatus starts and ends. Our method of removing internal variability from the observed record can be used for real-time monitoring of anthropogenic warming.

  6. Circumpolar dynamics of a marine top-predator track ocean warming rates.

    PubMed

    Descamps, Sébastien; Anker-Nilssen, Tycho; Barrett, Robert T; Irons, David B; Merkel, Flemming; Robertson, Gregory J; Yoccoz, Nigel G; Mallory, Mark L; Montevecchi, William A; Boertmann, David; Artukhin, Yuri; Christensen-Dalsgaard, Signe; Erikstad, Kjell-Einar; Gilchrist, H Grant; Labansen, Aili L; Lorentsen, Svein-Håkon; Mosbech, Anders; Olsen, Bergur; Petersen, Aevar; Rail, Jean-Francois; Renner, Heather M; Strøm, Hallvard; Systad, Geir H; Wilhelm, Sabina I; Zelenskaya, Larisa

    2017-09-01

    Global warming is a nonlinear process, and temperature may increase in a stepwise manner. Periods of abrupt warming can trigger persistent changes in the state of ecosystems, also called regime shifts. The responses of organisms to abrupt warming and associated regime shifts can be unlike responses to periods of slow or moderate change. Understanding of nonlinearity in the biological responses to climate warming is needed to assess the consequences of ongoing climate change. Here, we demonstrate that the population dynamics of a long-lived, wide-ranging marine predator are associated with changes in the rate of ocean warming. Data from 556 colonies of black-legged kittiwakes Rissa tridactyla distributed throughout its breeding range revealed that an abrupt warming of sea-surface temperature in the 1990s coincided with steep kittiwake population decline. Periods of moderate warming in sea temperatures did not seem to affect kittiwake dynamics. The rapid warming observed in the 1990s may have driven large-scale, circumpolar marine ecosystem shifts that strongly affected kittiwakes through bottom-up effects. Our study sheds light on the nonlinear response of a circumpolar seabird to large-scale changes in oceanographic conditions and indicates that marine top predators may be more sensitive to the rate of ocean warming rather than to warming itself. © 2017 John Wiley & Sons Ltd.

  7. Microbial physiology and soil CO2 efflux after 9 years of soil warming in a temperate forest - no indications for thermal adaptations.

    PubMed

    Schindlbacher, Andreas; Schnecker, Jörg; Takriti, Mounir; Borken, Werner; Wanek, Wolfgang

    2015-11-01

    Thermal adaptations of soil microorganisms could mitigate or facilitate global warming effects on soil organic matter (SOM) decomposition and soil CO2 efflux. We incubated soil from warmed and control subplots of a forest soil warming experiment to assess whether 9 years of soil warming affected the rates and the temperature sensitivity of the soil CO2 efflux, extracellular enzyme activities, microbial efficiency, and gross N mineralization. Mineral soil (0-10 cm depth) was incubated at temperatures ranging from 3 to 23 °C. No adaptations to long-term warming were observed regarding the heterotrophic soil CO2 efflux (R10 warmed: 2.31 ± 0.15 μmol m(-2)  s(-1) , control: 2.34 ± 0.29 μmol m(-2)  s(-1) ; Q10 warmed: 2.45 ± 0.06, control: 2.45 ± 0.04). Potential enzyme activities increased with incubation temperature, but the temperature sensitivity of the enzymes did not differ between the warmed and the control soils. The ratio of C : N acquiring enzyme activities was significantly higher in the warmed soil. Microbial biomass-specific respiration rates increased with incubation temperature, but the rates and the temperature sensitivity (Q10 warmed: 2.54 ± 0.23, control 2.75 ± 0.17) did not differ between warmed and control soils. Microbial substrate use efficiency (SUE) declined with increasing incubation temperature in both, warmed and control, soils. SUE and its temperature sensitivity (Q10 warmed: 0.84 ± 0.03, control: 0.88 ± 0.01) did not differ between warmed and control soils either. Gross N mineralization was invariant to incubation temperature and was not affected by long-term soil warming. Our results indicate that thermal adaptations of the microbial decomposer community are unlikely to occur in C-rich calcareous temperate forest soils. © 2015 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  8. Effects of in situ climate warming on monarch caterpillar (Danaus plexippus) development.

    PubMed

    Lemoine, Nathan P; Capdevielle, Jillian N; Parker, John D

    2015-01-01

    Climate warming will fundamentally alter basic life history strategies of many ectothermic insects. In the lab, rising temperatures increase growth rates of lepidopteran larvae but also reduce final pupal mass and increase mortality. Using in situ field warming experiments on their natural host plants, we assessed the impact of climate warming on development of monarch (Danaus plexippus) larvae. Monarchs were reared on Asclepias tuberosa grown under 'Ambient' and 'Warmed' conditions. We quantified time to pupation, final pupal mass, and survivorship. Warming significantly decreased time to pupation, such that an increase of 1 °C corresponded to a 0.5 day decrease in pupation time. In contrast, survivorship and pupal mass were not affected by warming. Our results indicate that climate warming will speed the developmental rate of monarchs, influencing their ecological and evolutionary dynamics. However, the effects of climate warming on larval development in other monarch populations and at different times of year should be investigated.

  9. [The innovation of warm disease theory in the Ming Dynasty before Wen yi lun On Pestilence].

    PubMed

    Zhang, Zhi-bin

    2008-10-01

    Some doctors of the Ming dynasty raised subversive doubts against the traditional viewpoints of "exogenous cold disease is warm-heat" before the emergence of Wen yi lun (On Pestilence), holding that warm-heat disease "is contracted in different seasons instead of being transformed from cold to warm and/or heat". The conception of the separation of warm-heat disease and exogenous cold disease had changed from obscure to clear. As the idea became clear, the recognition on the new affection of warm, heat, summer-heat, pestilent pathogen was formed, and the idea that the pathogens of summer-heat and warm entered the human body through the mouth and nostrils was put forward. The six-channel syndrome differentiation of warm disease and the five sweat-resolving methods in pestilence raised by the doctors of this period are the aspects of the differential diagnosis of syndrome and treatment in warm diseases, and deserve to be paid attention to.

  10. Early onset of industrial-era warming across the oceans and continents.

    PubMed

    Abram, Nerilie J; McGregor, Helen V; Tierney, Jessica E; Evans, Michael N; McKay, Nicholas P; Kaufman, Darrell S

    2016-08-25

    The evolution of industrial-era warming across the continents and oceans provides a context for future climate change and is important for determining climate sensitivity and the processes that control regional warming. Here we use post-ad 1500 palaeoclimate records to show that sustained industrial-era warming of the tropical oceans first developed during the mid-nineteenth century and was nearly synchronous with Northern Hemisphere continental warming. The early onset of sustained, significant warming in palaeoclimate records and model simulations suggests that greenhouse forcing of industrial-era warming commenced as early as the mid-nineteenth century and included an enhanced equatorial ocean response mechanism. The development of Southern Hemisphere warming is delayed in reconstructions, but this apparent delay is not reproduced in climate simulations. Our findings imply that instrumental records are too short to comprehensively assess anthropogenic climate change and that, in some regions, about 180 years of industrial-era warming has already caused surface temperatures to emerge above pre-industrial values, even when taking natural variability into account.

  11. Vocal warm-up practices and perceptions in vocalists: a pilot survey.

    PubMed

    Gish, Allison; Kunduk, Melda; Sims, Loraine; McWhorter, Andrew J

    2012-01-01

    Investigated in a pilot study the type, duration, and frequency of vocal warm-up regimens in the singing community using a survey. One hundred seventeen participants completed an online survey. Participants included voice students from undergraduate, masters, and doctoral music programs and professional singers. Fifty-four percent of participants reported always using vocal warm-up before singing. Twenty-two percent of the participants used vocal cool down. The most preferred warm-up duration was of 5-10 minutes in duration. Despite using vocal warm-up, 26% of the participants reported experiencing voice problems. Females tended to use vocal warm-up more frequently than males. Females also tended to use longer warm-up sessions than males. Education of the participants did not appear to have any noticeable effect on the vocal warm-up practices. The most commonly used singing warm-up exercises were ascending/descending five-note scales, ascending/descending octave scales, legato arpeggios, and glissandi. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  12. Soil warming effect on net ecosystem exchange of carbon dioxide during the transition from winter carbon source to spring carbon sink in a temperate urban lawn.

    PubMed

    Zhou, Xiaoping; Wang, Xiaoke; Tong, Lei; Zhang, Hongxing; Lu, Fei; Zheng, Feixiang; Hou, Peiqiang; Song, Wenzhi; Ouyang, Zhiyun

    2012-01-01

    The significant warming in urban environment caused by the combined effects of global warming and heat island has stimulated widely development of urban vegetations. However, it is less known of the climate feedback of urban lawn in warmed environment. Soil warming effect on net ecosystem exchange (NEE) of carbon dioxide during the transition period from winter to spring was investigated in a temperate urban lawn in Beijing, China. The NEE (negative for uptake) under soil warming treatment (temperature was about 5 degrees C higher than the ambient treatment as a control) was -0.71 micromol/(m2 x sec), the ecosytem was a CO2 sink under soil warming treatment, the lawn ecosystem under the control was a CO2 source (0.13 micromol/(m2 x sec)), indicating that the lawn ecosystem would provide a negative feedback to global warming. There was no significant effect of soil warming on nocturnal NEE (i.e., ecosystem respiration), although the soil temperature sensitivity (Q10) of ecosystem respiration under soil warming treatment was 3.86, much lower than that in the control (7.03). The CO2 uptake was significantly increased by soil warming treatment that was attributed to about 100% increase of alpha (apparent quantum yield) and Amax (maximum rate of photosynthesis). Our results indicated that the response of photosynthesis in urban lawn is much more sensitive to global warming than respiration in the transition period.

  13. [A comparison of the effects of intravenous fluid warming and skin surface warming on peri-operative body temperature and acid base balance of elderly patients with abdominal surgery].

    PubMed

    Park, Hyosun; Yoon, Haesang

    2007-12-01

    The purpose of this study was to compare the effects of intravenous fluid warming and skin surface warming on peri-operative body temperature and acid base balance of abdominal surgical patients under general anesthesia. Data collection was performed from January 4th, to May 31, 2004. The intravenous fluid warming(IFW) group (30 elderly patients) was warmed through an IV line by an Animec set to 37 degrees C. The skin surface warming (SSW) group (30 elderly patients) was warmed by a circulating-water blanket set to 38 degrees C under the back and a 60W heating lamp 40 cm above the chest. The warming continued from induction of general anesthesia to two hours after completion of surgery. Collected data was analyzed using Repeated Measures ANOVA, and Bonferroni methods. SSW was more effective than IFW in preventing hypothermia(p= .043), preventing a decrease of HCO(3)(-)(p= .000) and preventing base excess (p= .000) respectively. However, there was no difference in pH between the SSW and IFW (p= .401) groups. We conclude that skin surface warming is more effective in preventing hypothermia, and HCO(3)(-) and base excess during general anesthesia, and returning to normal body temperature after surgery than intravenous fluid warming; however, skin surface warming wasn't able to sustain a normal body temperature in elderly patients undergoing abdominal surgery under general anesthesia.

  14. The whole-soil carbon flux in response to warming

    NASA Astrophysics Data System (ADS)

    Hicks Pries, Caitlin E.; Castanha, C.; Porras, R. C.; Torn, M. S.

    2017-03-01

    Soil organic carbon harbors three times as much carbon as Earth’s atmosphere, and its decomposition is a potentially large climate change feedback and major source of uncertainty in climate projections. The response of whole-soil profiles to warming has not been tested in situ. In a deep warming experiment in mineral soil, we found that CO2 production from all soil depths increased with 4°C warming; annual soil respiration increased by 34 to 37%. All depths responded to warming with similar temperature sensitivities, driven by decomposition of decadal-aged carbon. Whole-soil warming reveals a larger soil respiration response than many in situ experiments (most of which only warm the surface soil) and models.

  15. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials Global Warming Potentials [100-Year Time Horizon] Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1...

  16. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials Global Warming Potentials [100-Year Time Horizon] Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1...

  17. Personal efficacy, the information environment, and attitudes toward global warming and climate change in the United States.

    PubMed

    Kellstedt, Paul M; Zahran, Sammy; Vedlitz, Arnold

    2008-02-01

    Despite the growing scientific consensus about the risks of global warming and climate change, the mass media frequently portray the subject as one of great scientific controversy and debate. And yet previous studies of the mass public's subjective assessments of the risks of global warming and climate change have not sufficiently examined public informedness, public confidence in climate scientists, and the role of personal efficacy in affecting global warming outcomes. By examining the results of a survey on an original and representative sample of Americans, we find that these three forces-informedness, confidence in scientists, and personal efficacy-are related in interesting and unexpected ways, and exert significant influence on risk assessments of global warming and climate change. In particular, more informed respondents both feel less personally responsible for global warming, and also show less concern for global warming. We also find that confidence in scientists has unexpected effects: respondents with high confidence in scientists feel less responsible for global warming, and also show less concern for global warming. These results have substantial implications for the interaction between scientists and the public in general, and for the public discussion of global warming and climate change in particular.

  18. A systematic review of the effects of upper body warm-up on performance and injury.

    PubMed

    McCrary, J Matt; Ackermann, Bronwen J; Halaki, Mark

    2015-07-01

    This systematic review was conducted to identify the impact of upper body warm-up on performance and injury prevention outcomes. Web of Science, MEDLINE, SPORTDiscus, PsycINFO and Cochrane databases were searched using terms related to upper extremity warm-up. Inclusion criteria were English language randomised controlled trials from peer-reviewed journals in which investigation of upper body warm-up on performance and injury prevention outcomes was a primary aim. Included studies were assessed for methodological quality using the PEDro scale. A wide variety of warm-up modes and outcomes precluded meta-analysis except for one group of studies. The majority of warm-ups were assessed as having 'positive', 'neutral', 'negative' or 'specific' effects on outcomes. Thirty-one studies met the inclusion criteria with 21 rated as having 'good' methodological quality. The studies investigated a total of 25 warm-up modes and 43 outcome factors that could be grouped into eight mode and performance outcome categories. No studies of upper body warm-up effects on injury prevention were discovered. Strong research-based evidence was found for the following: high-load dynamic warm-ups enhance power and strength performance; warm-up swings with a standard weight baseball bat are most effective for enhancing bat speed; short-duration static stretching warm-up has no effect on power outcomes; and passive heating/cooling is a largely ineffective warm-up mode. A clear knowledge gap in upper body warm-up literature is the lack of investigation of injury prevention outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism.

    PubMed

    Kraemer, Benjamin M; Chandra, Sudeep; Dell, Anthony I; Dix, Margaret; Kuusisto, Esko; Livingstone, David M; Schladow, S Geoffrey; Silow, Eugene; Sitoki, Lewis M; Tamatamah, Rashid; McIntyre, Peter B

    2017-05-01

    Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected. © 2016 John Wiley & Sons Ltd.

  20. Comparison of Two Types of Warm-Up Upon Repeated-Sprint Performance in Experienced Soccer Players.

    PubMed

    van den Tillaar, Roland; von Heimburg, Erna

    2016-08-01

    van den Tillaar, R and von Heimburg, E. Comparison of two types of warm-up upon repeated-sprint performance in experienced soccer players. J Strength Cond Res 30(8): 2258-2265, 2016-The aim of the study was to compare the effects of a long warm-up and a short warm-up upon repeated-sprint performance in soccer players. Ten male soccer players (age, 21.9 ± 1.9 years; body mass, 77.7 ± 8.3 kg; body height, 1.85 ± 0.03 m) conducted 2 types of warm-ups with 1 week in between: a long warm-up (20 minutes: LWup) and a short warm-up (10 minutes: SWup). Each warm-up was followed by a repeated-sprint test consisting of 8 × 30 m sprints with a new start every 30th second. The best sprint time, total sprinting time, and % decrease in time together with heart rate, lactate, and rate of perceived exertion (RPE) were measured. No significant differences in performance were found for the repeated-sprint test parameters (total sprint time: 35.99 ± 1.32 seconds [LWup] and 36.12 ± 0.96 seconds [SWup]; best sprint time: 4.32 ± 0.13 seconds [LWup] and 4.30 ± 0.10 seconds [SWup]; and % sprint decrease: 4.16 ± 2.15% [LWup] and 5.02 ± 2.07% [SWup]). No differences in lactate concentration after the warm-up and after the repeated-sprint test were found. However, RPE and heart rate were significantly higher after the long warm-up and the repeated-sprint test compared with the short warm-up. It was concluded that a short warm-up is as effective as a long warm-up for repeated sprints in soccer. Therefore, in regular training, less warm-up time is needed; the extra time could be used for important soccer skill training.

  1. Microclimatic Performance of a Free-Air Warming and CO2 Enrichment Experiment in Windy Wyoming, USA

    PubMed Central

    LeCain, Daniel; Smith, David; Morgan, Jack; Kimball, Bruce A.; Pendall, Elise; Miglietta, Franco

    2015-01-01

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO2) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO2 enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night) but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms-1 average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO2 had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO2. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time. PMID:25658313

  2. Microclimatic performance of a free-air warming and CO₂ enrichment experiment in windy Wyoming, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeCain, Daniel; Smith, David; Morgan, Jack

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO₂) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO₂ enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night)more » but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms⁻¹ average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO₂ had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO₂. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.« less

  3. Microclimatic performance of a free-air warming and CO₂ enrichment experiment in windy Wyoming, USA

    DOE PAGES

    LeCain, Daniel; Smith, David; Morgan, Jack; ...

    2015-02-06

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO₂) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO₂ enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night)more » but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms⁻¹ average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO₂ had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO₂. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.« less

  4. A randomized comparison of intraoperative PerfecTemp and forced-air warming during open abdominal surgery.

    PubMed

    Egan, Cameron; Bernstein, Ethan; Reddy, Desigen; Ali, Madi; Paul, James; Yang, Dongsheng; Sessler, Daniel I

    2011-11-01

    The PerfecTemp is an underbody resistive warming system that combines servocontrolled underbody warming with viscoelastic foam pressure relief. Clinical efficacy of the system has yet to be formally evaluated. We therefore tested the hypothesis that intraoperative distal esophageal (core) temperatures with the PerfecTemp (underbody resistive) warming system are noninferior to upper-body forced-air warming in patients undergoing major open abdominal surgery under general anesthesia. Adults scheduled for elective major open abdominal surgery (liver, pancreas, gynecological, and colorectal surgery) under general anesthesia were enrolled at 2 centers. Patients were randomly assigned to underbody resistive or forced-air warming. Resistive heating started when patients were transferred to the operating room table; forced-air warming started after patients were draped. The primary outcome was noninferiority of intraoperative time-weighted average core temperature, adjusted for baseline characteristics and using a buffer of 0.5°C. Thirty-six patients were randomly assigned to underbody resistive heating and 34 to forced-air warming. Baseline and surgical characteristics were generally similar. We had sufficient evidence (P=0.018) to conclude that underbody resistive warming is not worse than (i.e., noninferior to) upper-body forced-air warming in the time-weighted average intraoperative temperature, with a mean difference of -0.12°C [95% confidence interval (CI) -0.37 to 0.14]. Core temperatures at the end of surgery averaged 36.3°C [95% CI 36 to 36.5] in the resistive warming patients and 36.6°C [95% CI 36.4 to 36.8] in those assigned to forced-air warming for a mean difference of -0.34°C [95% CI -0.69 to 0.01]. Mean intraoperative time-weighted average core temperatures were no different, and significantly noninferior, with underbody resistive heating in comparison with upper-body forced-air warming. Underbody resistive heating may be an alternative to forced-air warming.

  5. Predominant role of water in regulating the tree-growth response to diurnal asymmetric warmin

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Xia, J.; Cui, E.

    2017-12-01

    Growth of the Northern Hemisphere trees is affected by diurnal asymmetric warming, which is generally considered to touch off carbon assimilation and increment of carbon storage. Asymmetric effects of diurnal warming on vegetation greenness were validated in previous researches, however, the effect of diurnal warming on wood tissue which stores most carbon of a whole plant is still unknown. Here, we combined ring-width index (RWI), remote sensing-based normalized difference vegetation index (NDVI) and climate datasets to detect the effects of daytime and night-time warming on vegetation growth, respectively. Our results indicate that daytime warming enhances NDVI but has neutral effect on tree woody growth over the Northern Hemisphere. Response of wood growth to daytime warming is linearly regulated by soil water availability. The underlying mechanism of different response of canopy and wood growth to daytime warming may attribute to the biomass change, that is, allocation to foliage tissues increased at the expense of wood tissue under warming and water-limited conditions. Night-time warming show neutral effects on NDVI and RWI over the Northern Hemisphere, and the neutral Tmin-NDVI correlations result from the non-linear mediation of soil water availability. Our results highlight the current greening trend under daytime warming does not mean higher carbon sink capacity, the warming-drying climate may impair the large carbon sink of global forests.

  6. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Tim

    2017-02-01

    Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.

  7. Climate warming promotes species diversity, but with greater taxonomic redundancy, in complex environments

    PubMed Central

    Thakur, Madhav P.; Tilman, David; Purschke, Oliver; Ciobanu, Marcel; Cowles, Jane; Isbell, Forest; Wragg, Peter D.; Eisenhauer, Nico

    2017-01-01

    Climate warming is predicted to alter species interactions, which could potentially lead to extinction events. However, there is an ongoing debate whether the effects of warming on biodiversity may be moderated by biodiversity itself. We tested warming effects on soil nematodes, one of the most diverse and abundant metazoans in terrestrial ecosystems, along a gradient of environmental complexity created by a gradient of plant species richness. Warming increased nematode species diversity in complex (16-species mixtures) plant communities (by ~36%) but decreased it in simple (monocultures) plant communities (by ~39%) compared to ambient temperature. Further, warming led to higher levels of taxonomic relatedness in nematode communities across all levels of plant species richness. Our results highlight both the need for maintaining species-rich plant communities to help offset detrimental warming effects and the inability of species-rich plant communities to maintain nematode taxonomic distinctness when warming occur. PMID:28740868

  8. The Effects of Three Physical and Vocal Warm-Up Procedures on Acoustic and Perceptual Measures of Choral Sound.

    PubMed

    Cook-Cunningham, Sheri L; Grady, Melissa L

    2018-03-01

    The purpose of this investigation was to assess the effects of three warm-up procedures (vocal-only, physical-only, physical/vocal combination) on acoustic and perceptual measures of choir sound. The researchers tested three videotaped, 5-minute, choral warm-up procedures on three university choirs. After participating in a warm-up procedure, each choir was recorded singing a folk song for long-term average spectra and pitch analysis. Singer participants responded to a questionnaire about preferences after each warm-up procedure. Warm-up procedures and recording sessions occurred during each choir's regular rehearsal time and in each choir's regular rehearsal space during three consecutive rehearsals. Long-term average spectra results demonstrated more resonant singing after the physical/vocal warm-up for two of the three choirs. Pitch analysis results indicate that all three choirs sang "in-tune" or with the least pitch deviation after participating in the physical/vocal warm-up. Singer questionnaire responses showed general preference for the physical/vocal combination warm-up, and singer ranking of the three procedures indicated the physical/vocal warm-up as the most favored for readiness to sing. In the context of this study with these three university choir participants, it seems that a combination choral warm-up that includes physical and vocal aspects is preferred by singers, enables more resonant singing, and more in-tune singing. Findings from this study could provide teachers and choral directors with important information as they structure and experiment with their choral warm-up procedures. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  9. [Startup mechanism of moxibustion warming and dredging function].

    PubMed

    Huang, Kaiyu; Liang, Shuang; Sun, Zheng; Zhang, Jianbin

    2017-09-12

    With "moxibustion" and "warm stimulation" as the keywords, the literature on moxibustion mechanism of warming and dredging from June 1st, 1995 to June 1st, 2016 was collected from PubMed, China National Knowledge Infrastructure (CNKI) and Wanfang database. The startup mechanism of moxibustion warming and dredging function was analyzed in terms of moxibustion warming stimulation. The results were found that moxibustion was based on local rising temperature of acupoint. It activated local specific receptors, heat sensitive immune cells, heat shock proteins and so on to start the warming and dredging function and produce various local effects. The warming stimulation signals as well as subsequent effects through nerve and body fluid pathways induced the effects of further specific target organs and body systems.

  10. Change of ENSO characteristics in response to global warming

    NASA Astrophysics Data System (ADS)

    Sun, X.; Xia, Y.; Yan, Y.; Feng, W.; Huang, F.; Yang, X. Q.

    2017-12-01

    By using datasets of HadISST monthly SST from 1895 to 2014 and 600-year simulations of two CESM model experiments with/without doubling of CO2 concentration, ENSO characteristics are compared pre- and post- global warming. The main results are as follows. Due to global warming, the maximum climatological SST warming occurs in the tropical western Pacific (La Niña-like background warming) and the tropical eastern Pacific (El Niño-like background warming) for observations and model, respectively, resulting in opposite zonal SST gradient anomalies in the tropical Pacific. The La Niña-like background warming induces intense surface divergence in the tropical central Pacific, which enhances the easterly trade winds in the tropical central-western Pacific and shifts the strongest ocean-atmosphere coupling westward, correspondingly. On the contrary, the El Niño-like background warming causes westerly winds in the whole tropical Pacific and moves the strongest ocean-atmosphere coupling eastward. Under the La Niña-like background warming, ENSO tends to develop and mature in the tropical central Pacific, because the background easterly wind anomaly weakens the ENSO-induced westerly wind anomaly in the tropical western Pacific, leading to the so-called "Central Pacific ENSO (CP ENSO)". However, the so-called "Eastern Pacific ENSO (EP ENSO)" is likely formed due to increased westerly wind anomaly by the El Niño-like background warming. ENSO lifetime is significantly extended under both the El Niño-like and the La Niña-like background warmings, and especially, it can be prolonged by up to 3 months in the situation of El Niño-like background warming. The prolonged El Nino lifetime mainly applies to extreme El Niño events, which is caused by earlier outbreak of the westerly wind bursts, shallower climatological thermocline depth and weaker "discharge" rate of the ENSO warm signal in response to global warming. Results from both observations and the model also show that the frequency of ENSO events greatly increases due to global warming, and many more extreme El Niño and La Niña events appear under the El Niño-like and the La Niña-like background warmings, respectively. This study reconciles the phenomena and mechanisms of different characteristics of ENSO changes in observations and models.

  11. EFFECTS OF DIFFERENT WARM-UP PROGRAMS ON GOLF PERFORMANCE IN ELITE MALE GOLFERS

    PubMed Central

    Macfarlane, Alison

    2012-01-01

    Background: The physical demands required of the body to execute a shot in golf are enormous. Current evidence suggests that warm-up involving static stretching is detrimental to immediate performance in golf as opposed to active dynamic stretching. However the effect of resistance exercises during warm-up before golf on immediate performance is unknown. Therefore, the purpose of this study was to assess the effects of three different warm-up programs on immediate golf performance. Methods: Fifteen elite male golfers completed three different warm-up programs over three sessions on non-consecutive days. After each warm-up program each participant hit ten maximal drives with the ball flight and swing analyzed with Flightscope® to record maximum club head speed (MCHS), maximal driving distance (MDD), driving accuracy (DA), smash factor (SF) and consistent ball strike (CBS). Results: Repeated measures ANOVA tests showed statistically significant difference within 3 of the 5 factors of performance (MDD, CBS and SF). Subsequently, a paired t-test then showed statistically significant (p<0.05) improvements occurred in each of these three factors in the group performing a combined active dynamic and functional resistance (FR) warm-up as opposed to either the active dynamic (AD) warm-up or the combined AD with weights warm-up (WT). There were no statistically significant differences observed between the AD warm-up and the WT warm-up for any of the five performance factors and no statistical significant difference between any of the warm-ups for maximum clubhead speed (MCHS) and driving accuracy (DA). Conclusion: Performing a combined AD and FR warm up with Theraband® leads to significant increase in immediate performance of certain factors of the golf drive compared to performing an AD warm-up by itself or a combined AD with WT warm-up. No significant difference was observed between the three warm-up groups when looking at immediate effect on driving accuracy or maximum club head speed. The addition of functional resistance activities to active dynamic stretching has immediate benefits to elite male golfers in relation to some factors of their performance. Level of Evidence: This study is a Quantitative Experimental design using repeated measures and multiple crossovers. It cannot be classified using the descriptive level of evidence. PMID:23936749

  12. Major cause of unprecedented Arctic warming in January 2016: Critical role of an Atlantic windstorm

    PubMed Central

    Kim, Baek-Min; Hong, Ja-Young; Jun, Sang-Yoon; Zhang, Xiangdong; Kwon, Hataek; Kim, Seong-Joong; Kim, Joo-Hong; Kim, Sang-Woo; Kim, Hyun-Kyung

    2017-01-01

    In January 2016, the Arctic experienced an extremely anomalous warming event after an extraordinary increase in air temperature at the end of 2015. During this event, a strong intrusion of warm and moist air and an increase in downward longwave radiation, as well as a loss of sea ice in the Barents and Kara seas, were observed. Observational analyses revealed that the abrupt warming was triggered by the entry of a strong Atlantic windstorm into the Arctic in late December 2015, which brought enormous moist and warm air masses to the Arctic. Although the storm terminated at the eastern coast of Greenland in late December, it was followed by a prolonged blocking period in early 2016 that sustained the extreme Arctic warming. Numerical experiments indicate that the warming effect of sea ice loss and associated upward turbulent heat fluxes are relatively minor in this event. This result suggests the importance of the synoptically driven warm and moist air intrusion into the Arctic as a primary contributing factor of this extreme Arctic warming event. PMID:28051170

  13. Nighttime warming enhances drought resistance of plant communities in a temperate steppe

    NASA Astrophysics Data System (ADS)

    Yang, Zhongling; Jiang, Lin; Su, Fanglong; Zhang, Qian; Xia, Jianyang; Wan, Shiqiang

    2016-03-01

    Drought events could have profound influence on plant community structure and ecosystem function, and have subsequent impacts on community stability, but we know little about how different climate warming scenarios affect community resistance and resilience to drought. Combining a daytime and nighttime warming experiment in the temperate steppe of north China with a natural drought event during the study period, we tested how daytime and nighttime warming influences drought resistance and resilience. Our results showed that the semi-arid steppe in north China was resistant to both daytime and nighttime warming, but vulnerable to drought. Nighttime warming, but not daytime warming, enhanced community resistance to drought via stimulating carbon sequestration, whereas neither daytime nor nighttime warming affected community resilience to drought. Large decline in plant community cover, primarily caused by the reduction in the cover of dominant and rare species rather than subordinate species during drought, did not preclude rapid ecosystem recovery. These findings suggest that nighttime warming may facilitate ecosystem sustainability and highlight the need to assess the effects of climate extremes on ecosystem functions at finer temporal resolutions than based on diurnal mean temperature.

  14. Recent climate extremes associated with the West Pacific Warming Mode

    USGS Publications Warehouse

    Funk, Chris; Hoell, Andrew

    2017-01-01

    Here we analyze empirical orthogonal functions (EOFs) of observations and a 30 member ensemble of Community Earth System Model version 1 (CESM1) simulations, and suggest that precipitation declines in the Greater Horn of Africa (GHA) and the northern Middle East/Southwestern Asia (NME/SWE: Iran, Iraq, Kuwait, Syria, Saudi Arabia north of 25°N, Israel, Jordan, and Lebanon) may be interpreted as an interaction between La Niña-like decadal variability and the West Pacific Warming Mode (WPWM). While they exhibit different SST patterns, warming of the Pacific cold tongue (ENSO) and warming of the western Pacific (WPWM) produce similar warm pool diabatic forcing, Walker circulation anomalies, and terrestrial teleconnections. CESM1 SST EOFs indicate that both La Niña-like WPWM warming and El Niño-like east Pacific warming will be produced by climate change. The temporal frequency of these changes, however, are distinct. WPWM varies decadally, while ENSO is dominated by interannual variability. Future WPWM and ENSO warming may manifest as a tendency toward warm West Pacific SST, punctuated by extreme warm East Pacific events. WPWM EOFs from Global Precipitation Climatology Project (GPCP) precipitation also identify dramatic WPWM-related declines in the Greater Horn of Africa and NME/SWE.

  15. Acute effects of a loaded warm-up protocol on change of direction speed in professional badminton players.

    PubMed

    Maloney, Sean J; Turner, Anthony N; Miller, Stuart

    2014-10-01

    It has previously been shown that a loaded warm-up may improve power performances. We examined the acute effects of loaded dynamic warm-up on change of direction speed (CODS), which had not been previously investigated. Eight elite badminton players participated in three sessions during which they performed vertical countermovement jump and CODS tests before and after undertaking the dynamic warm-up. The three warm-up conditions involved wearing a weighted vest (a) equivalent to 5% body mass, (b) equivalent to 10% body mass, and (c) a control where a weighted vest was not worn. Vertical jump and CODS performances were then tested at 15 seconds and 2, 4, and 6 minutes post warm-up. Vertical jump and CODS significantly improved following all warm-up conditions (P < .05). Post warm-up vertical jump performance was not different between conditions (P = .430). Post warm-up CODS was significantly faster following the 5% (P = .02) and 10% (P < .001) loaded conditions compared with the control condition. In addition, peak CODS test performances, independent of recovery time, were faster than the control condition following the 10% loaded condition (P = .012). In conclusion, the current study demonstrates that a loaded warm-up augmented CODS, but not vertical jump performance, in elite badminton players.

  16. Evaluation of NASA GEOS-ADAS Modeled Diurnal Warming Through Comparisons to SEVIRI and AMSR2 SST Observations

    NASA Astrophysics Data System (ADS)

    Gentemann, C. L.; Akella, S.

    2018-02-01

    An analysis of the ocean skin Sea Surface Temperature (SST) has been included in the Goddard Earth Observing System (GEOS) - Atmospheric Data Assimilation System (ADAS), Version 5 (GEOS-ADAS). This analysis is based on the GEOS atmospheric general circulation model (AGCM) that simulates near-surface diurnal warming and cool skin effects. Analysis for the skin SST is performed along with the atmospheric state, including Advanced Very High Resolution Radiometer (AVHRR) satellite radiance observations as part of the data assimilation system. One month (September, 2015) of GEOS-ADAS SSTs were compared to collocated satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and Advanced Microwave Scanning Radiometer 2 (AMSR2) SSTs to examine how the GEOS-ADAS diurnal warming compares to the satellite measured warming. The spatial distribution of warming compares well to the satellite observed distributions. Specific diurnal events are analyzed to examine variability within a single day. The dependence of diurnal warming on wind speed, time of day, and daily average insolation is also examined. Overall the magnitude of GEOS-ADAS warming is similar to the warming inferred from satellite retrievals, but several weaknesses in the GEOS-AGCM simulated diurnal warming are identified and directly related back to specific features in the formulation of the diurnal warming model.

  17. [Effects of soil warming on specific respiration rate and non-structural carbohydrate concentration in fine roots of Chinese fir seedlings].

    PubMed

    Song, Tao Tao; Chen, Guang Shui; Shi, Shun Zeng; Guo, Run Quan; Zheng, Xin; Xiong, De Cheng; Chen, Wang Yuan; Chen, Ting Ting

    2018-03-01

    A field mesocosm experiment with Chinese fir (Cunninghamia lanceolata) seedlings was conducted in Chenda State-Owned Forest Farm, Sanming, Fujian Province. The effects of soil warming (ambient +5 ℃) on specific respiration rates and nonstructural carbohydrate (NSC) concentrations in fine roots were measured by the ingrowth core method, to reveal the belowground responses and the adaptability of Chinese fir to global warming. The results showed that soil warming caused significant changes of fine root NSC in the second year. The NSC and starch concentrations in 0-1 mm fine roots, and the NSC and sugar concentrations in 1-2 mm fine roots decreased signifi-cantly in January. The NSC, sugar and starch concentrations in 0-1 mm roots and the starch concentration in 1-2 mm roots increased in July. Soil warming had no significant effect on fine root NSC in the third year. The specific root respiration rate of the 0-1 mm roots significantly increased in July of the second year but significantly decreased in July of the third year in the warmed plots. Compared with the 0-1 mm roots, soil warming had no significant effect on the specific root respiration rate of the 1-2 mm roots. In conclusion, the responses of fine root respiration to soil warming depended on the duration of warming. Fine root respiration partly acclimated to soil warming with increasing duration of soil warming, which kept fine root NSC being relatively stable.

  18. Vibration exercise as a warm-up modality for deadlift power output.

    PubMed

    Cochrane, Darryl J; Coley, Karl W; Pritchard, Hayden J; Barnes, Matthew J

    2015-04-01

    Vibration exercise (VbX) has gained popularity as a warm-up modality to enhance performance in golf, baseball, and sprint cycling, but little is known about the efficacy of using VbX as a warm-up before resistance exercise, such as deadlifting. The aim of this study was to compare the effects of a deadlift (DL)-specific warm-up, VbX warm-up, and Control on DL power output (PO). The DL warm-up (DL-WU) included 10, 8, and 5 repetitions performed at 30, 40, and 50% 1-repetition maximum (1RM), respectively, where the number of repetitions was matched by body-weight squats performed with vibration and without vibration (Control). The warm-up conditions were randomized and performed at least 2 days apart. Peak power (PP), mean power, rate of force development (RFD), and electromyography (EMG) were measured during the concentric phase of 2 consecutive DLs (75% 1RM) at 30 seconds and 2:30 minutes after the warm-up conditions. There was no significant (p > 0.05) main effect or interaction effect between the DL-WU, VbX warm-up, and Control for PP, mean power, RFD, and EMG. Vibration exercise warm-up did not exhibit an ergogenic effect to potentiate muscle activity more than the specific DL-WU and Control. Therefore, DL PO is affected to a similar extent, irrespective of the type of stimuli, when the warm-up is not focused on raising muscle temperature.

  19. Effects of climate warming on net primary productivity in China during 1961-2010.

    PubMed

    Gu, Fengxue; Zhang, Yuandong; Huang, Mei; Tao, Bo; Guo, Rui; Yan, Changrong

    2017-09-01

    The response of ecosystems to different magnitudes of climate warming and corresponding precipitation changes during the last few decades may provide an important reference for predicting the magnitude and trajectory of net primary productivity (NPP) in the future. In this study, a process-based ecosystem model, Carbon Exchange between Vegetation, Soil and Atmosphere (CEVSA), was used to investigate the response of NPP to warming at both national and subregional scales during 1961-2010. The results suggest that a 1.3°C increase in temperature stimulated the positive changing trend in NPP at national scale during the past 50 years. Regardless of the magnitude of temperature increase, warming enhanced the increase in NPP; however, the positive trend of NPP decreased when warming exceeded 2°C. The largest increase in NPP was found in regions where temperature increased by 1-2°C, and this rate of increase also contributed the most to the total increase in NPP in China's terrestrial ecosystems. Decreasing precipitation depressed the positive trend in NPP that was stimulated by warming. In northern China, warming depressed the increasing trend of NPP and warming that was accompanied by decreasing precipitation led to negative changing trends in NPP in large parts of northern China, especially when warming exceeded 2°C. However, warming stimulated the increase in NPP until warming was greater than 2°C, and decreased precipitation helped to increase the NPP in southern China.

  20. Drylands face potential threat under 2 °C global warming target

    NASA Astrophysics Data System (ADS)

    Huang, Jianping; Yu, Haipeng; Dai, Aiguo; Wei, Yun; Kang, Litai

    2017-06-01

    The Paris Agreement aims to limit global mean surface warming to less than 2 °C relative to pre-industrial levels. However, we show this target is acceptable only for humid lands, whereas drylands will bear greater warming risks. Over the past century, surface warming over global drylands (1.2-1.3 °C) has been 20-40% higher than that over humid lands (0.8-1.0 °C), while anthropogenic CO2 emissions generated from drylands (~230 Gt) have been only ~30% of those generated from humid lands (~750 Gt). For the twenty-first century, warming of 3.2-4.0 °C (2.4-2.6 °C) over drylands (humid lands) could occur when global warming reaches 2.0 °C, indicating ~44% more warming over drylands than humid lands. Decreased maize yields and runoff, increased long-lasting drought and more favourable conditions for malaria transmission are greatest over drylands if global warming were to rise from 1.5 °C to 2.0 °C. Our analyses indicate that ~38% of the world's population living in drylands would suffer the effects of climate change due to emissions primarily from humid lands. If the 1.5 °C warming limit were attained, the mean warming over drylands could be within 3.0 °C therefore it is necessary to keep global warming within 1.5 °C to prevent disastrous effects over drylands.

  1. Heating and Cooling Rates With an Esophageal Heat Exchange System.

    PubMed

    Kalasbail, Prathima; Makarova, Natalya; Garrett, Frank; Sessler, Daniel I

    2018-04-01

    The Esophageal Cooling Device circulates warm or cool water through an esophageal heat exchanger, but warming and cooling efficacy in patients remains unknown. We therefore determined heat exchange rates during warming and cooling. Nineteen patients completed the trial. All had general endotracheal anesthesia for nonthoracic surgery. Intraoperative heat transfer was measured during cooling (exchanger fluid at 7°C) and warming (fluid at 42°C). Each was evaluated for 30 minutes, with the initial condition determined randomly, starting at least 40 minutes after induction of anesthesia. Heat transfer rate was estimated from fluid flow through the esophageal heat exchanger and inflow and outflow temperatures. Core temperature was estimated from a zero-heat-flux thermometer positioned on the forehead. Mean heat transfer rate during warming was 18 (95% confidence interval, 16-20) W, which increased core temperature at a rate of 0.5°C/h ± 0.6°C/h (mean ± standard deviation). During cooling, mean heat transfer rate was -53 (-59 to -48) W, which decreased core temperature at a rate of 0.9°C/h ± 0.9°C/h. Esophageal warming transferred 18 W which is considerably less than the 80 W reported with lower or upper body forced-air covers. However, esophageal warming can be used to supplement surface warming or provide warming in cases not amenable to surface warming. Esophageal cooling transferred more than twice as much heat as warming, consequent to the much larger difference between core and circulating fluid temperature with cooling (29°C) than warming (6°C). Esophageal cooling extracts less heat than endovascular catheters but can be used to supplement catheter-based cooling or possibly replace them in appropriate patients.

  2. Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe.

    PubMed

    Xia, Jianyang; Wan, Shiqiang

    2013-06-01

    Phenology is one of most sensitive traits of plants in response to regional climate warming. Better understanding of the interactive effects between warming and other environmental change factors, such as increasing atmosphere nitrogen (N) deposition, is critical for projection of future plant phenology. A 4-year field experiment manipulating temperature and N has been conducted in a temperate steppe in northern China. Phenology, including flowering and fruiting date as well as reproductive duration, of eight plant species was monitored and calculated from 2006 to 2009. Across all the species and years, warming significantly advanced flowering and fruiting time by 0·64 and 0·72 d per season, respectively, which were mainly driven by the earliest species (Potentilla acaulis). Although N addition showed no impact on phenological times across the eight species, it significantly delayed flowering time of Heteropappus altaicus and fruiting time of Agropyron cristatum. The responses of flowering and fruiting times to warming or N addition are coupled, leading to no response of reproductive duration to warming or N addition for most species. Warming shortened reproductive duration of Potentilla bifurca but extended that of Allium bidentatum, whereas N addition shortened that of A. bidentatum. No interactive effect between warming and N addition was found on any phenological event. Such additive effects could be ascribed to the species-specific responses of plant phenology to warming and N addition. The results suggest that the warming response of plant phenology is larger in earlier than later flowering species in temperate grassland systems. The effects of warming and N addition on plant phenology are independent of each other. These findings can help to better understand and predict the response of plant phenology to climate warming concurrent with other global change driving factors.

  3. Small mammal use of native warm-season and non-native cool-season grass forage fields

    USGS Publications Warehouse

    Ryan L Klimstra,; Christopher E Moorman,; Converse, Sarah J.; Royle, J. Andrew; Craig A Harper,

    2015-01-01

    Recent emphasis has been put on establishing native warm-season grasses for forage production because it is thought native warm-season grasses provide higher quality wildlife habitat than do non-native cool-season grasses. However, it is not clear whether native warm-season grass fields provide better resources for small mammals than currently are available in non-native cool-season grass forage production fields. We developed a hierarchical spatially explicit capture-recapture model to compare abundance of hispid cotton rats (Sigmodon hispidus), white-footed mice (Peromyscus leucopus), and house mice (Mus musculus) among 4 hayed non-native cool-season grass fields, 4 hayed native warm-season grass fields, and 4 native warm-season grass-forb ("wildlife") fields managed for wildlife during 2 summer trapping periods in 2009 and 2010 of the western piedmont of North Carolina, USA. Cotton rat abundance estimates were greater in wildlife fields than in native warm-season grass and non-native cool-season grass fields and greater in native warm-season grass fields than in non-native cool-season grass fields. Abundances of white-footed mouse and house mouse populations were lower in wildlife fields than in native warm-season grass and non-native cool-season grass fields, but the abundances were not different between the native warm-season grass and non-native cool-season grass fields. Lack of cover following haying in non-native cool-season grass and native warm-season grass fields likely was the key factor limiting small mammal abundance, especially cotton rats, in forage fields. Retention of vegetation structure in managed forage production systems, either by alternately resting cool-season and warm-season grass forage fields or by leaving unharvested field borders, should provide refugia for small mammals during haying events.

  4. Modeling the Warming Impact of Urban Land Expansion on Hot Weather Using the Weather Research and Forecasting Model: A Case Study of Beijing, China

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojuan; Tian, Guangjin; Feng, Jinming; Ma, Bingran; Wang, Jun; Kong, Lingqiang

    2018-06-01

    The impacts of three periods of urban land expansion during 1990-2010 on near-surface air temperature in summer in Beijing were simulated in this study, and then the interrelation between heat waves and urban warming was assessed. We ran the sensitivity tests using the mesoscaleWeather Research and Forecasting model coupled with a single urban canopy model, as well as high-resolution land cover data. The warming area expanded approximately at the same scale as the urban land expansion. The average regional warming induced by urban expansion increased but the warming speed declined slightly during 2000-2010. The smallest warming occurred at noon and then increased gradually in the afternoon before peaking at around 2000 LST—the time of sunset. In the daytime, urban warming was primarily caused by the decrease in latent heat flux at the urban surface. Urbanization led to more ground heat flux during the day and then more release at night, which resulted in nocturnal warming. Urban warming at night was higher than that in the day, although the nighttime increment in sensible heat flux was smaller. This was because the shallower planetary boundary layer at night reduced the release efficiency of near-surface heat. The simulated results also suggested that heat waves or high temperature weather enhanced urban warming intensity at night. Heat waves caused more heat to be stored in the surface during the day, greater heat released at night, and thus higher nighttime warming. Our results demonstrate a positive feedback effect between urban warming and heat waves in urban areas.

  5. Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, U.S.A.

    USGS Publications Warehouse

    Lyons, J.; Stewart, J.S.; Mitro, M.

    2010-01-01

    Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56.0-93.5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1?? C and water 0.8?? C), moderate warming (air 3?? C and water 2.4?? C) and major warming (air 5?? C and water 4?? C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin. ?? 2010 The Authors. Journal of Fish Biology ?? 2010 The Fisheries Society of the British Isles.

  6. A warmer and wetter solution for early Mars and the challenges with transient warming

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses M.

    2017-11-01

    The climate of early Mars has been hotly debated for decades. Although most investigators believe that the geology indicates the presence of surface water, disagreement has persisted regarding how warm and wet the surface must have been and how long such conditions may have existed. Although the geologic evidence is most easily explained by a persistently warm climate, the perceived difficulty that climate models have in generating warm surface conditions has seeded various models that assume a cold and glaciated early Mars punctuated by transient warming episodes. However, I use a single-column radiative convective climate model to show that it is relatively more straightforward to satisfy warm and relatively non-glaciated early Mars conditions, requiring only ∼1% H2 and 3 bar CO2 or ∼20% H2 and 0.55 bar CO2. In contrast, the reflectivity of surface ice greatly increases the difficulty to transiently warm an initially frozen surface. Surface pressure thresholds required for warm conditions increase ∼10 - 60% for transient warming models, depending on ice cover fraction. No warm solution is possible for ice cover fractions exceeding 40%, 70%, and 85% for mixed snow/ice and 25%, 35%, and 49% for fresher snow/ice at H2 concentrations of 3%, 10%, and 20%, respectively. If high temperatures (298-323 K) were required to produce the observed surface clay amounts on a transiently warm early Mars (Bishop et al), I show that such temperatures would have required surface pressures that exceed available paleopressure constraints for nearly all H2 concentrations considered (1-20%). I then argue that a warm and semi-arid climate remains the simplest and most logical solution to Mars paleoclimate.

  7. A zero-power warming chamber for investigating plant responses to rising temperature

    DOE PAGES

    Lewin, Keith F.; McMahon, Andrew M.; Ely, Kim S.; ...

    2017-09-19

    Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. But, current passive warming approaches are only able to elevate the mean daily air temperature by ~1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be ~2–3more » °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW) chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. Our approach is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming approaches is desired.« less

  8. Effects of different re-warm up activities in football players' performance.

    PubMed

    Abade, Eduardo; Sampaio, Jaime; Gonçalves, Bruno; Baptista, Jorge; Alves, Alberto; Viana, João

    2017-01-01

    Warm up routines are commonly used to optimize football performance and prevent injuries. Yet, official pre-match protocols may require players to passively rest for approximately 10 to 15 minutes between the warm up and the beginning of the match. Therefore, the aim of this study was to explore the effect of different re-warm up activities on the physical performance of football players. Twenty-Two Portuguese elite under-19 football players participated in the study conducted during the competitive season. Different re-warm up protocols were performed 6 minutes after the same standardized warm up in 4 consecutive days in a crossover controlled approach: without, eccentric, plyometric and repeated changes of direction. Vertical jump and Sprint performances were tested immediately after warm up and 12 minutes after warm up. Results showed that repeated changes of direction and plyometrics presented beneficial effects to jump and sprint. Different practical implications may be taken from the eccentric protocol since a vertical jump impairment was observed, suggesting a possibly harmful effect. The absence of re-warm up activities may be detrimental to players' physical performance. However, the inclusion of re-warm up prior to match is a complex issue, since the manipulation of volume, intensity and recovery may positively or negatively affect the subsequent performance. In fact, this exploratory study shows that eccentric exercise may be harmful for physical performance when performed prior a football match. However, plyometric and repeated changes of direction exercises seem to be simple, quick and efficient activities to attenuate losses in vertical jump and sprint capacity after warm up. Coaches should aim to develop individual optimal exercise modes in order to optimize physical performance after re warm activities.

  9. A zero-power warming chamber for investigating plant responses to rising temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewin, Keith F.; McMahon, Andrew M.; Ely, Kim S.

    Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. But, current passive warming approaches are only able to elevate the mean daily air temperature by ~1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be ~2–3more » °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW) chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. Our approach is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming approaches is desired.« less

  10. Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, U.S.A.

    USGS Publications Warehouse

    Stewart, Jana S.; Lyons, John D.; Matt Mitro,

    2010-01-01

    Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56·0–93·5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1° C and water 0·8° C), moderate warming (air 3° C and water 2·4° C) and major warming (air 5° C and water 4° C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin.

  11. Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.

    2002-10-01

    Under the 1997 Kyoto Protocol, no control of black carbon (BC) was considered. Here, it is found, through simulations in which 12 identifiable effects of aerosol particles on climate are treated, that any emission reduction of fossil-fuel (f.f.) particulate BC plus associated organic matter (OM) may slow global warming more than may any emission reduction of CO2 or CH4 for a specific period. When all f.f. BC + OM and anthropogenic CO2 and CH4 emissions are eliminated together, the period is 25-100 years. It is also estimated that historical net global warming can be attributed roughly to greenhouse gas plus f.f. BC + OM warming minus substantial cooling by other particles. Eliminating all f.f. BC + OM could eliminate 20-45% of net warming (8-18% of total warming before cooling is subtracted out) within 3-5 years if no other change occurred. Reducing CO2 emissions by a third would have the same effect, but after 50-200 years. Finally, diesel cars emitting continuously under the most recent U.S. and E.U. particulate standards (0.08 g/mi; 0.05 g/km) may warm climate per distance driven over the next 100+ years more than equivalent gasoline cars. Thus, fuel and carbon tax laws that favor diesel appear to promote global warming. Toughening vehicle particulate emission standards by a factor of 8 (0.01 g/mi; 0.006 g/km) does not change this conclusion, although it shortens the period over which diesel cars warm to 13-54 years. Although control of BC + OM can slow warming, control of greenhouse gases is necessary to stop warming. Reducing BC + OM will not only slow global warming but also improve human health.

  12. Effects of Substrate Addition on Soil Respiratory Carbon Release Under Long-Term Warming and Clipping in a Tallgrass Prairie

    PubMed Central

    Jia, Xiaohong; Zhou, Xuhui; Luo, Yiqi; Xue, Kai; Xue, Xian; Xu, Xia; Yang, Yuanhe; Wu, Liyou; Zhou, Jizhong

    2014-01-01

    Regulatory mechanisms of soil respiratory carbon (C) release induced by substrates (i.e., plant derived substrates) are critical for predicting ecosystem responses to climate change, but the mechanisms are not well understood. In this study, we sampled soils from a long-term field manipulative experiment and conducted a laboratory incubation to explore the role of substrate supply in regulating the differences in soil C release among the experimental treatments, including control, warming, clipping, and warming plus clipping. Three types of substrates (glucose, C3 and C4 plant materials) were added with an amount equal to 1% of soil dry weight under the four treatments. We found that the addition of all three substrates significantly stimulated soil respiratory C release in all four warming and clipping treatments. In soils without substrate addition, warming significantly stimulated soil C release but clipping decreased it. However, additions of glucose and C3 plant materials (C3 addition) offset the warming effects, whereas C4 addition still showed the warming-induced stimulation of soil C release. Our results suggest that long-term warming may inhibit microbial capacity for decomposition of C3 litter but may enhance it for decomposition of C4 litter. Such warming-induced adaptation of microbial communities may weaken the positive C-cycle feedback to warming due to increased proportion of C4 species in plant community and decreased litter quality. In contrast, clipping may weaken microbial capacity for warming-induced decomposition of C4 litter but may enhance it for C3 litter. Warming- and clipping-induced shifts in microbial metabolic capacity may be strongly associated with changes in plant species composition and could substantially influence soil C dynamics in response to global change. PMID:25490701

  13. Effects of substrate addition on soil respiratory carbon release under long-term warming and clipping in a tallgrass prairie.

    PubMed

    Jia, Xiaohong; Zhou, Xuhui; Luo, Yiqi; Xue, Kai; Xue, Xian; Xu, Xia; Yang, Yuanhe; Wu, Liyou; Zhou, Jizhong

    2014-01-01

    Regulatory mechanisms of soil respiratory carbon (C) release induced by substrates (i.e., plant derived substrates) are critical for predicting ecosystem responses to climate change, but the mechanisms are not well understood. In this study, we sampled soils from a long-term field manipulative experiment and conducted a laboratory incubation to explore the role of substrate supply in regulating the differences in soil C release among the experimental treatments, including control, warming, clipping, and warming plus clipping. Three types of substrates (glucose, C3 and C4 plant materials) were added with an amount equal to 1% of soil dry weight under the four treatments. We found that the addition of all three substrates significantly stimulated soil respiratory C release in all four warming and clipping treatments. In soils without substrate addition, warming significantly stimulated soil C release but clipping decreased it. However, additions of glucose and C3 plant materials (C3 addition) offset the warming effects, whereas C4 addition still showed the warming-induced stimulation of soil C release. Our results suggest that long-term warming may inhibit microbial capacity for decomposition of C3 litter but may enhance it for decomposition of C4 litter. Such warming-induced adaptation of microbial communities may weaken the positive C-cycle feedback to warming due to increased proportion of C4 species in plant community and decreased litter quality. In contrast, clipping may weaken microbial capacity for warming-induced decomposition of C4 litter but may enhance it for C3 litter. Warming- and clipping-induced shifts in microbial metabolic capacity may be strongly associated with changes in plant species composition and could substantially influence soil C dynamics in response to global change.

  14. A zero-power warming chamber for investigating plant responses to rising temperature

    NASA Astrophysics Data System (ADS)

    Lewin, Keith F.; McMahon, Andrew M.; Ely, Kim S.; Serbin, Shawn P.; Rogers, Alistair

    2017-09-01

    Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. However, current passive warming approaches are only able to elevate the mean daily air temperature by ˜ 1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be ˜ 2-3 °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW) chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. The approach we describe is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming approaches is desired.

  15. Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming

    DOE PAGES

    Feng, Wenting; Liang, Junyi; Hale, Lauren E.; ...

    2017-06-09

    Quantifying soil organic carbon (SOC) decomposition under warming is critical to predict carbon–climate feedbacks. According to the substrate regulating principle, SOC decomposition would decrease as labile SOC declines under field warming, but observations of SOC decomposition under warming do not always support this prediction. This discrepancy could result from varying changes in SOC components and soil microbial communities under warming. This study aimed to determine the decomposition of SOC components with different turnover times after subjected to long-term field warming and/or root exclusion to limit C input, and to test whether SOC decomposition is driven by substrate lability under warming.more » Taking advantage of a 12-year field warming experiment in a prairie, we assessed the decomposition of SOC components by incubating soils from control and warmed plots, with and without root exclusion for 3 years. We assayed SOC decomposition from these incubations by combining inverse modeling and microbial functional genes during decomposition with a metagenomic technique (GeoChip). The decomposition of SOC components with turnover times of years and decades, which contributed to 95% of total cumulative CO 2 respiration, was greater in soils from warmed plots. But the decomposition of labile SOC was similar in warmed plots compared to the control. The diversity of C-degradation microbial genes generally declined with time during the incubation in all treatments, suggesting shifts of microbial functional groups as substrate composition was changing. Compared to the control, soils from warmed plots showed significant increase in the signal intensities of microbial genes involved in degrading complex organic compounds, implying enhanced potential abilities of microbial catabolism. These are likely responsible for accelerated decomposition of SOC components with slow turnover rates. Overall, the shifted microbial community induced by long-term warming accelerates the decomposition of SOC components with slow turnover rates and thus amplify the positive feedback to climate change.« less

  16. Functional Trait Changes, Productivity Shifts and Vegetation Stability in Mountain Grasslands during a Short-Term Warming.

    PubMed

    Debouk, Haifa; de Bello, Francesco; Sebastià, Maria-Teresa

    2015-01-01

    Plant functional traits underlie vegetation responses to environmental changes such as global warming, and consequently influence ecosystem processes. While most of the existing studies focus on the effect of warming only on species diversity and productivity, we further investigated (i) how the structure of community plant functional traits in temperate grasslands respond to experimental warming, and (ii) whether species and functional diversity contribute to a greater stability of grasslands, in terms of vegetation composition and productivity. Intact vegetation turves were extracted from temperate subalpine grassland (highland) in the Eastern Pyrenees and transplanted into a warm continental, experimental site in Lleida, in Western Catalonia (lowland). The impacts of simulated warming on plant production and diversity, functional trait structure, and vegetation compositional stability were assessed. We observed an increase in biomass and a reduction in species and functional diversity under short-term warming. The functional structure of the grassland communities changed significantly, in terms of functional diversity and community-weighted means (CWM) for several traits. Acquisitive and fast-growing species with higher SLA, early flowering, erect growth habit, and rhizomatous strategy became dominant in the lowland. Productivity was significantly positively related to species, and to a lower extent, functional diversity, but productivity and stability after warming were more dependent on trait composition (CWM) than on diversity. The turves with more acquisitive species before warming changed less in composition after warming. Results suggest that (i) the short-term warming can lead to the dominance of acquisitive fast growing species over conservative species, thus reducing species richness, and (ii) the functional traits structure in grassland communities had a greater influence on the productivity and stability of the community under short-term warming, compared to diversity effects. In summary, short-term climate warming can greatly alter vegetation functional structure and its relation to productivity.

  17. The Temperature Dependence of Phytoplankton Stoichiometry: Investigating the Roles of Species Sorting and Local Adaptation

    PubMed Central

    Yvon-Durocher, Gabriel; Schaum, Charlotte-Elisa; Trimmer, Mark

    2017-01-01

    The elemental composition of phytoplankton (C:N:P stoichiometry) is a critical factor regulating nutrient cycling, primary production and energy transfer through planktonic food webs. Our understanding of the multiple direct and indirect mechanisms through which temperature controls phytoplankton stoichiometry is however incomplete, increasing uncertainty in the impacts of global warming on the biogeochemical functioning of aquatic ecosystems. Here, we use a decade-long warming experiment in outdoor freshwater ponds to investigate how temperature-driven turnover in species composition and shifts in stoichiometric traits within species through local thermal adaptation contribute to the effects of warming on seston stoichiometry. We found that experimental warming increased seston C:P and N:P ratios, while the C:N ratio was unaffected by warming. Temperature was also the dominant driver of seasonal variation in seston stoichiometry, correlating positively with both C:P and N:P ratios. The taxonomic composition of the phytoplankton community differed substantially between the warmed and ambient treatments indicating that warming resulted in differential sorting of species from the regional pool. Furthermore, taxonomic composition also changed markedly over the year within each of the warmed and ambient treatments, highlighting substantial temporal turnover in species. To investigate whether local adaptation also played an important role in shaping the effects of warming on seston stoichiometry, we isolated multiple strains of the cosmopolitan alga, Chlamydomonas reinhardtii from across the warmed and ambient mesocosms. We found that warmed isolates had higher C:P and N:P ratios, shifts that were comparable in direction and magnitude to the effects of warming on seston stoichiometry. Our results suggest that both species sorting and local adaptation are likely to play important roles in shaping the effects of warming on bulk phytoplankton stoichiometry and indicate that major shifts in aquatic biogeochemistry should be expected in a warmer world. PMID:29109703

  18. Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Wenting; Liang, Junyi; Hale, Lauren E.

    Quantifying soil organic carbon (SOC) decomposition under warming is critical to predict carbon–climate feedbacks. According to the substrate regulating principle, SOC decomposition would decrease as labile SOC declines under field warming, but observations of SOC decomposition under warming do not always support this prediction. This discrepancy could result from varying changes in SOC components and soil microbial communities under warming. This study aimed to determine the decomposition of SOC components with different turnover times after subjected to long-term field warming and/or root exclusion to limit C input, and to test whether SOC decomposition is driven by substrate lability under warming.more » Taking advantage of a 12-year field warming experiment in a prairie, we assessed the decomposition of SOC components by incubating soils from control and warmed plots, with and without root exclusion for 3 years. We assayed SOC decomposition from these incubations by combining inverse modeling and microbial functional genes during decomposition with a metagenomic technique (GeoChip). The decomposition of SOC components with turnover times of years and decades, which contributed to 95% of total cumulative CO 2 respiration, was greater in soils from warmed plots. But the decomposition of labile SOC was similar in warmed plots compared to the control. The diversity of C-degradation microbial genes generally declined with time during the incubation in all treatments, suggesting shifts of microbial functional groups as substrate composition was changing. Compared to the control, soils from warmed plots showed significant increase in the signal intensities of microbial genes involved in degrading complex organic compounds, implying enhanced potential abilities of microbial catabolism. These are likely responsible for accelerated decomposition of SOC components with slow turnover rates. Overall, the shifted microbial community induced by long-term warming accelerates the decomposition of SOC components with slow turnover rates and thus amplify the positive feedback to climate change.« less

  19. Functional Trait Changes, Productivity Shifts and Vegetation Stability in Mountain Grasslands during a Short-Term Warming

    PubMed Central

    Debouk, Haifa; de Bello, Francesco; Sebastià, Maria-Teresa

    2015-01-01

    Plant functional traits underlie vegetation responses to environmental changes such as global warming, and consequently influence ecosystem processes. While most of the existing studies focus on the effect of warming only on species diversity and productivity, we further investigated (i) how the structure of community plant functional traits in temperate grasslands respond to experimental warming, and (ii) whether species and functional diversity contribute to a greater stability of grasslands, in terms of vegetation composition and productivity. Intact vegetation turves were extracted from temperate subalpine grassland (highland) in the Eastern Pyrenees and transplanted into a warm continental, experimental site in Lleida, in Western Catalonia (lowland). The impacts of simulated warming on plant production and diversity, functional trait structure, and vegetation compositional stability were assessed. We observed an increase in biomass and a reduction in species and functional diversity under short-term warming. The functional structure of the grassland communities changed significantly, in terms of functional diversity and community-weighted means (CWM) for several traits. Acquisitive and fast-growing species with higher SLA, early flowering, erect growth habit, and rhizomatous strategy became dominant in the lowland. Productivity was significantly positively related to species, and to a lower extent, functional diversity, but productivity and stability after warming were more dependent on trait composition (CWM) than on diversity. The turves with more acquisitive species before warming changed less in composition after warming. Results suggest that (i) the short-term warming can lead to the dominance of acquisitive fast growing species over conservative species, thus reducing species richness, and (ii) the functional traits structure in grassland communities had a greater influence on the productivity and stability of the community under short-term warming, compared to diversity effects. In summary, short-term climate warming can greatly alter vegetation functional structure and its relation to productivity. PMID:26513148

  20. Preoperative warm-up the key to improved resident technique: a randomized study.

    PubMed

    Moran-Atkin, Erin; Abdalla, Gamal; Chen, Grace; Magnuson, Thomas H; Lidor, Anne O; Schweitzer, Michael A; Steele, Kimberley E

    2015-05-01

    The ACGME has required that a skills lab be incorporated into the surgical residency curriculum. While the value of warm-up is generally accepted in other areas requiring complex motor skills, there is little evidence to support the benefits of warm-up prior to performing surgery. We are conducting this study in an attempt to identify whether a warm-up period prior to operating impacts operative technique. All general surgery residents and MIS fellows were included in this IRB-approved randomized study. Participants were randomized to either warm-up or no warm-up groups. Participants randomized to the warm-up group completed a 10 min practice session in the simulation lab within 1 h of starting the case, using an FLS training box. At the conclusion of the operation, the participant was evaluated by the attending surgeon using the validated global rating scales of Reznick and Vassiliou. The attending surgeons were blinded to the use of pre-procedure warm-up. The results of the questionnaire were analyzed using student's t test with p < 0.05 for significance. Pilot data were obtained after completing 40 cases that were randomized to warm-up (19) or no warm-up (21). There was a statistically significant improvement in depth perception (p = 0.02), bimanual dexterity (p = 0.01), and efficiency of movements (p = 0.03) for those randomized to warm-up. There was statistical improvement when we preformed a composite scoring of the attending evaluations for each of the Reznick (p = 0.008) and the Vassiliou (p = 0.01) global rating scales. Preoperative warm-up significantly improves depth perception, bimanual dexterity, and efficiency of movements, as well as improvement in composite scores as judged by the attending surgeon. The lack of self-perceived improvement by the residents may be a reflection of the high standards and intense self-critique that is common among surgical trainees. We believe that our findings, while preliminary, reflect that surgical performance can be enhanced through structured warm-up activities.

  1. Warming-Induced Changes to the Molecular Composition of Soil Organic Matter

    NASA Astrophysics Data System (ADS)

    Feng, X.; Simpson, M. J.; Simpson, A. J.; Wilson, K. P.; Williams, D.

    2007-12-01

    Soil organic matter (SOM) contains two times more carbon than the atmosphere and the potential changes to SOM quantity and quality with global warming are a major concern. It is commonly believed that global warming will accelerate the decomposition of labile SOM compounds while refractory SOM constituents will remain stable. However, experimental evidence of molecular-level changes to SOM composition with global warming is currently lacking. Here we employ SOM biomarkers and nuclear magnetic resonance (NMR) spectroscopy to study SOM composition and degradation in a soil warming experiment in southern Ontario, Canada. The soil warming experiment consisted of a control and a treatment plot in a mixed forest that had a temperature difference of about 5 degrees C for 14 months. Before soil warming the control and treatment plots had the same organic carbon (OC) content and SOM composition. Soil warming significantly increased soil OC content and the abundance of cutin-derived carbon originating from leaf tissues and decreased carbohydrates that are regarded as easily degradable. Lignin components, which are believed to be part of the stable and slowly-cycling SOM, were observed to be in an advanced stage of degradation. This observation is corroborated by increases in fungal biomass in the warmed soil because fungi are considered the primary decomposer of lignin in the soil environment. An NMR study of SOM in the warmed and control plots indicates that alkyl carbon, mainly originating from plant cuticles in the soil, increased in the warmed soil while O-alkyl carbon, primarily occurring in carbohydrates, decreased. Aromatic and phenolic carbon regions, which include the main structures found in lignin, decreased in the warmed soil. These data collectively suggest that there is a great potential for lignin degradation with soil warming, and that the refractory (aromatic) soil carbon storage may be reduced as a result of increased fungal growth in a warmer climate.

  2. How does the dengue vector mosquito Aedes albopictus respond to global warming?

    PubMed

    Jia, Pengfei; Chen, Xiang; Chen, Jin; Lu, Liang; Liu, Qiyong; Tan, Xiaoyue

    2017-03-11

    Global warming has a marked influence on the life cycle of epidemic vectors as well as their interactions with human beings. The Aedes albopictus mosquito as the vector of dengue fever surged exponentially in the last decade, raising ecological and epistemological concerns of how climate change altered its growth rate and population dynamics. As the global warming pattern is considerably uneven across four seasons, with a confirmed stronger effect in winter, an emerging need arises as to exploring how the seasonal warming effects influence the annual development of Ae. albopictus. The model consolidates a 35-year climate dataset and designs fifteen warming patterns that increase the temperature of selected seasons. Based on a recently developed mechanistic population model of Ae. albopictus, the model simulates the thermal reaction of blood-fed adults by systematically increasing the temperature from 0.5 to 5 °C at an interval of 0.5 °C in each warming pattern. The results show the warming effects are different across seasons. The warming effects in spring and winter facilitate the development of the species by shortening the diapause period. The warming effect in summer is primarily negative by inhibiting mosquito development. The warming effect in autumn is considerably mixed. However, these warming effects cannot carry over to the following year, possibly due to the fact that under the extreme weather in winter the mosquito fully ceases from development and survives in terms of diapause eggs. As the historical pattern of global warming manifests seasonal fluctuations, this study provides corroborating and previously ignored evidence of how such seasonality affects the mosquito development. Understanding this short-term temperature-driven mechanism as one chain of the transmission events is critical to refining the thermal reaction norms of the epidemic vector under global warming as well as developing effective mosquito prevention and control strategies.

  3. Rate of warming affects temperature sensitivity of anaerobic peat decomposition and greenhouse gas production.

    PubMed

    Sihi, Debjani; Inglett, Patrick W; Gerber, Stefan; Inglett, Kanika S

    2018-01-01

    Temperature sensitivity of anaerobic carbon mineralization in wetlands remains poorly represented in most climate models and is especially unconstrained for warmer subtropical and tropical systems which account for a large proportion of global methane emissions. Several studies of experimental warming have documented thermal acclimation of soil respiration involving adjustments in microbial physiology or carbon use efficiency (CUE), with an initial decline in CUE with warming followed by a partial recovery in CUE at a later stage. The variable CUE implies that the rate of warming may impact microbial acclimation and the rate of carbon-dioxide (CO 2 ) and methane (CH 4 ) production. Here, we assessed the effects of warming rate on the decomposition of subtropical peats, by applying either a large single-step (10°C within a day) or a slow ramping (0.1°C/day for 100 days) temperature increase. The extent of thermal acclimation was tested by monitoring CO 2 and CH 4 production, CUE, and microbial biomass. Total gaseous C loss, CUE, and MBC were greater in the slow (ramp) warming treatment. However, greater values of CH 4 -C:CO 2 -C ratios lead to a greater global warming potential in the fast (step) warming treatment. The effect of gradual warming on decomposition was more pronounced in recalcitrant and nutrient-limited soils. Stable carbon isotopes of CH 4 and CO 2 further indicated the possibility of different carbon processing pathways under the contrasting warming rates. Different responses in fast vs. slow warming treatment combined with different endpoints may indicate alternate pathways with long-term consequences. Incorporations of experimental results into organic matter decomposition models suggest that parameter uncertainties in CUE and CH 4 -C:CO 2 -C ratios have a larger impact on long-term soil organic carbon and global warming potential than uncertainty in model structure, and shows that particular rates of warming are central to understand the response of wetland soils to global climate change. © 2017 John Wiley & Sons Ltd.

  4. The effect of active warming in prehospital trauma care during road and air ambulance transportation - a clinical randomized trial.

    PubMed

    Lundgren, Peter; Henriksson, Otto; Naredi, Peter; Björnstig, Ulf

    2011-10-21

    Prevention and treatment of hypothermia by active warming in prehospital trauma care is recommended but scientific evidence of its effectiveness in a clinical setting is scarce. The objective of this study was to evaluate the effect of additional active warming during road or air ambulance transportation of trauma patients. Patients were assigned to either passive warming with blankets or passive warming with blankets with the addition of an active warming intervention using a large chemical heat pad applied to the upper torso. Ear canal temperature, subjective sensation of cold discomfort and vital signs were monitored. Mean core temperatures increased from 35.1°C (95% CI; 34.7-35.5°C) to 36.0°C (95% CI; 35.7-36.3°C) (p < 0.05) in patients assigned to passive warming only (n = 22) and from 35.6°C (95% CI; 35.2-36.0°C) to 36.4°C (95% CI; 36.1-36.7°C) (p < 0.05) in patients assigned to additional active warming (n = 26) with no significant differences between the groups. Cold discomfort decreased in 2/3 of patients assigned to passive warming only and in all patients assigned to additional active warming, the difference in cold discomfort change being statistically significant (p < 0.05). Patients assigned to additional active warming also presented a statistically significant decrease in heart rate and respiratory frequency (p < 0.05). In mildly hypothermic trauma patients, with preserved shivering capacity, adequate passive warming is an effective treatment to establish a slow rewarming rate and to reduce cold discomfort during prehospital transportation. However, the addition of active warming using a chemical heat pad applied to the torso will significantly improve thermal comfort even further and might also reduce the cold induced stress response. ClinicalTrials.gov: NCT01400152.

  5. Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming.

    PubMed

    Feng, Wenting; Liang, Junyi; Hale, Lauren E; Jung, Chang Gyo; Chen, Ji; Zhou, Jizhong; Xu, Minggang; Yuan, Mengting; Wu, Liyou; Bracho, Rosvel; Pegoraro, Elaine; Schuur, Edward A G; Luo, Yiqi

    2017-11-01

    Quantifying soil organic carbon (SOC) decomposition under warming is critical to predict carbon-climate feedbacks. According to the substrate regulating principle, SOC decomposition would decrease as labile SOC declines under field warming, but observations of SOC decomposition under warming do not always support this prediction. This discrepancy could result from varying changes in SOC components and soil microbial communities under warming. This study aimed to determine the decomposition of SOC components with different turnover times after subjected to long-term field warming and/or root exclusion to limit C input, and to test whether SOC decomposition is driven by substrate lability under warming. Taking advantage of a 12-year field warming experiment in a prairie, we assessed the decomposition of SOC components by incubating soils from control and warmed plots, with and without root exclusion for 3 years. We assayed SOC decomposition from these incubations by combining inverse modeling and microbial functional genes during decomposition with a metagenomic technique (GeoChip). The decomposition of SOC components with turnover times of years and decades, which contributed to 95% of total cumulative CO 2 respiration, was greater in soils from warmed plots. But the decomposition of labile SOC was similar in warmed plots compared to the control. The diversity of C-degradation microbial genes generally declined with time during the incubation in all treatments, suggesting shifts of microbial functional groups as substrate composition was changing. Compared to the control, soils from warmed plots showed significant increase in the signal intensities of microbial genes involved in degrading complex organic compounds, implying enhanced potential abilities of microbial catabolism. These are likely responsible for accelerated decomposition of SOC components with slow turnover rates. Overall, the shifted microbial community induced by long-term warming accelerates the decomposition of SOC components with slow turnover rates and thus amplify the positive feedback to climate change. © 2017 John Wiley & Sons Ltd.

  6. Global Warming.

    ERIC Educational Resources Information Center

    Hileman, Bette

    1989-01-01

    States the foundations of the theory of global warming. Describes methodologies used to measure the changes in the atmosphere. Discusses steps currently being taken in the United States and the world to slow the warming trend. Recognizes many sources for the warming and the possible effects on the earth. (MVL)

  7. Military Implications of Global Warming.

    DTIC Science & Technology

    1999-05-20

    U.S. environmental issues also have important global implications. This paper analyzes current U.S. Policy as it pertains to global warming and climate...for military involvement to reduce global warming . Global warming and other environmental issues are important to the U.S. military. As the United

  8. Abrupt climate warming in East Antarctica during the early Holocene

    NASA Astrophysics Data System (ADS)

    Cremer, Holger; Heiri, Oliver; Wagner, Bernd; Wagner-Cremer, Friederike

    2007-08-01

    We report a centennial-scale warming event between 8600 and 8400 cal BP from Amery Oasis, East Antarctica, that is documented by the geochemical record in a lacustrine sediment sequence. The organic carbon content, the C/S ratio, and the sedimentation rate in this core have distinctly elevated values around 8500 y ago reflecting relatively warm and ice-free conditions that led to well-ventilated conditions in the lake and considerable sedimentation of both autochthonous and allochthonous organic matter on the lake bottom. This abrupt warming event occurred concurrently with reported warm climatic conditions in the Southern Ocean while the climate in central East Antarctic remained cold. The comparison of the spatial and temporal variability of warm climatic periods documented in various terrestrial, marine, and glacial archives from East Antarctica elucidates the uniqueness of the centennial-scale warming event in the Amery Oasis. We also discuss a possible correlation of the Amery warming event with the abrupt climatic deterioration around 8200 cal BP on the Northern Hemisphere.

  9. Amplified Arctic warming by phytoplankton under greenhouse warming.

    PubMed

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  10. Amplified Arctic warming by phytoplankton under greenhouse warming

    PubMed Central

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-01-01

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes. PMID:25902494

  11. Communicating the Science of Global Warming — the Role of Astronomers

    NASA Astrophysics Data System (ADS)

    Bennett, Jeffrey

    2018-06-01

    Global Warming is one of the most important and issues of our times, yet it is widely misunderstood among the general public (and politicians!). The American Astronomical Society has already joined many other scientific organizations in advocating for action on global warming (by supporting the AGU statement on global warming), but we as astronomers can do much more. The high public profile of astronomy gives us a unique platform — and credibility as scientists — for doing our part to educate the public about the underlying science of global warming. And while astronomers are not climate scientists, we use the same basic physics, and many aspects of global warming science come directly from astronomy, including the ways in which we measure the heat-absorbing potential of carbon dioxide and the hard evidence of greenhouse warming provided by studies of Venus. In this session, I will briefly introduce a few methods for communicating about global warming that I believe you will find effective in your own education efforts.

  12. Mechanical Behavior and Microstructure Evolution of Bearing Steel 52100 During Warm Compression

    NASA Astrophysics Data System (ADS)

    Huo, Yuanming; He, Tao; Chen, Shoushuang; Wu, Riming

    2018-05-01

    High-performance bearing steel requires a fine and homogeneous structure of carbide particles. Direct deformation spheroidizing of bearing steel in a dual-phase zone can contribute to achieving this important structure. In this work, warm compression testing of 52100 bearing steel was performed at temperatures in the range of 650-850°C and at strain rates of 0.1-10.0 s-1. The effect of deformation temperatures on mechanical behavior and microstructure evolution was investigated to determine the warm deformation temperature window. The effect of deformation rates on microstructure evolution and metal flow softening behavior of the warm compression was analyzed and discussed. Experimental results showed that the temperature range from 750°C to 800°C should be regarded as the critical range separating warm and hot deformation. Warm deformation at temperatures in the range of 650-750°C promoted carbide spheroidization, and this was determined to be the warm deformation temperature window. Metal flow softening during the warm deformation was caused by carbide spheroidization.

  13. Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition.

    PubMed

    Ward, Susan E; Ostle, Nicholas J; Oakley, Simon; Quirk, Helen; Henrys, Peter A; Bardgett, Richard D

    2013-10-01

    Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on direct effects of warming, without considering how concurrent changes in plant communities may alter such effects. Here, we combined vegetation manipulations with warming to investigate their interactive effects on greenhouse gas emissions from peatland. We found that although warming consistently increased respiration, the effect on net ecosystem CO2 exchange depended on vegetation composition. The greatest increase in CO2 sink strength after warming was when shrubs were present, and the greatest decrease when graminoids were present. CH4 was more strongly controlled by vegetation composition than by warming, with largest emissions from graminoid communities. Our results show that plant community composition is a significant modulator of greenhouse gas emissions and their response to warming, and suggest that vegetation change could alter peatland carbon sink strength under future climate change. © 2013 John Wiley & Sons Ltd/CNRS.

  14. [Responses of plant community structure and species composition to warming and N addition in an alpine meadow, northern Tibetan Plateau, China].

    PubMed

    Zong, Ning; Chai, Xi; Shi, Pei Li; Jiang, Jing; Niu, Ben; Zhang, Xian Zhou; He, Yong Tao

    2016-12-01

    Global climate warming and increasing nitrogen (N) deposition, as controversial global environmental issues, may distinctly affect the functions and processes of terrestrial ecosystems. It has been reported that the Qinghai-Tibet Plateau has been experiencing significant warming in recent decades, especially in winter. Previous studies have mainly focused on the effects of warming all the year round; however, few studies have tested the effects of winter warming. To investigate the effects of winter warming and N addition on plant community structure and species composition of alpine meadow, long-term N addition and simulated warming experiment was conducted in alpine meadow from 2010 in Damxung, northern Tibet. The experiment consisted of three warming patterns: Year-round warming (YW), winter warming (WW) and control (NW), crossed respectively with five N gradients: 0, 10, 20, 40, 80 kg N·hm -2 ·a -1 . From 2012 to 2014, both warming and N addition significantly affected the total coverage of plant community. Specifically, YW significantly decreased the total coverage of plant community. Without N addition, WW remarkably reduced the vegetation coverage. However, with N addition, the total vegetation coverage gradually increased with the increase of N level. Warming and N addition had different effects on plants from different functional groups. Warming significantly reduced the plant coverage of grasses and sedges, while N addition significantly enhanced the plant coverage of grasses. Regression analyses showed that the total coverage of plant community was positively related to soil water content in vigorous growth stages, indicating that the decrease in soil water content resulted from warming during dry seasons might be the main reason for the decline of total community coverage. As soil moisture in semi-arid alpine meadow is mainly regulated by rainfalls, our results indicated that changes in spatial and temporal patterns of rainfalls under the future climate change scenarios would dramatically influence the vegetation coverage and species composition. Additionally, the effects of increasing atmospheric N deposition on vegetation community might also depend on the change of rainfall patterns.

  15. Effect of the tropical Pacific and Indian Ocean warming since the late 1970s on wintertime Northern Hemispheric atmospheric circulation and East Asian climate interdecadal changes

    NASA Astrophysics Data System (ADS)

    Chu, Cuijiao; Yang, Xiu-Qun; Sun, Xuguang; Yang, Dejian; Jiang, Yiquan; Feng, Tao; Liang, Jin

    2018-04-01

    Observation reveals that the tropical Pacific-Indian Ocean (TPIO) has experienced a pronounced interdecadal warming since the end of the 1970s. Meanwhile, the wintertime midlatitude Northern Hemispheric atmospheric circulation and East Asian climate have also undergone substantial interdecadal changes. The effect of the TPIO warming on these interdecadal changes are identified by a suite of AMIP-type atmospheric general circulation model experiments in which the model is integrated from September 1948 to December 1999 with prescribed historical, observed realistic sea surface temperature (SST) in a specific region and climatological SST elsewhere. Results show that the TPIO warming reproduces quite well the observed Northern Hemispheric wintertime interdecadal changes, suggesting that these interdecadal changes primarily originate from the TPIO warming. However, each sub-region of TPIO has its own distinct contribution. Comparatively, the tropical central-eastern Pacific (TCEP) and tropical western Pacific (TWP) warming makes dominant contributions to the observed positive-phase PNA-like interdecadal anomaly over the North Pacific sector, while the tropical Indian Ocean (TIO) warming tends to cancel these contributions. Meanwhile, the TIO and TWP warming makes dominant contributions to the observed positive NAO-like interdecadal anomaly over the North Atlantic sector as well as the interdecadal anomalies over the Eurasian sector, although the TWP warming's contribution is relatively small. These remote responses are directly attributed to the TPIO warming-induced tropical convection, rainfall and diabatic heating increases, in which the TIO warming has the most significant effect. Moreover, the TPIO warming excites a Gill-type pattern anomaly over the tropical western Pacific, with a low-level anticyclonic circulation anomaly over the Philippine Sea. Of three sub-regions, the TIO warming dominates such a pattern, although the TWP warming tends to cancel this effect. The anticyclonic circulation anomaly intensifies the southwesterly flow that transfers more moisture from the Bay of Bengal to East Asia and considerably increases the winter precipitation over the southern East Asia. This is strongly supported by the observational fact that there has been a significant interdecadal increase of winter precipitation over the southern China since the end of the 1970s.

  16. Effects of warming on ectomycorrhizal colonization and nitrogen nutrition of Picea asperata seedlings grown in two contrasting forest ecosystems

    PubMed Central

    Li, Yuejiao; Sun, Didi; Li, Dandan; Xu, Zhenfeng; Zhao, Chunzhang; Lin, Honghui; Liu, Qing

    2015-01-01

    Ectomycorrhiza (ECM) plays an important role in plant nitrogen (N) nutrition and regulates plant responded to climate warming. We conducted a field experiment in a natural forest and a plantation in the eastern Tibetan Plateau to estimate the warming effects of open-top chambers (OTC) on ECM and N nutrition of Picea asperata seedlings. Four-year warming significantly decreased ECM colonization, ECM fungal biomass, fine root vigor, and the N concentration of leaf, stem and coarse root, but significantly increased fine root N concentration and N content of leaf, stem, fine root and whole plant in natural forest. Contrarily, warming induced no obvious change in most of these parameters in plantation. Moreover, warming decreased rhizospheric soil inorganic N content in both forests. Our results showed that four-year warming was not beneficial for ECM colonization of P. asperata seedlings in the two forests, and the seedlings in natural forest were more sensitive and flexible to experimental warming than in plantation. The changes of ECM colonization and fine root biomass for effective N uptake would be good for plant growth and remit N leaching under future warming in natural forest. PMID:26655633

  17. Soil warming, carbon–nitrogen interactions, and forest carbon budgets

    PubMed Central

    Melillo, Jerry M.; Butler, Sarah; Johnson, Jennifer; Mohan, Jacqueline; Steudler, Paul; Lux, Heidi; Burrows, Elizabeth; Bowles, Francis; Smith, Rose; Scott, Lindsay; Vario, Chelsea; Hill, Troy; Burton, Andrew; Zhou, Yu-Mei; Tang, Jim

    2011-01-01

    Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming-induced increases in nitrogen availability. This study underscores the importance of incorporating carbon–nitrogen interactions in atmosphere–ocean–land earth system models to accurately simulate land feedbacks to the climate system. PMID:21606374

  18. Nighttime warming enhances drought resistance of plant communities in a temperate steppe

    PubMed Central

    Yang, Zhongling; Jiang, Lin; Su, Fanglong; Zhang, Qian; Xia, Jianyang; Wan, Shiqiang

    2016-01-01

    Drought events could have profound influence on plant community structure and ecosystem function, and have subsequent impacts on community stability, but we know little about how different climate warming scenarios affect community resistance and resilience to drought. Combining a daytime and nighttime warming experiment in the temperate steppe of north China with a natural drought event during the study period, we tested how daytime and nighttime warming influences drought resistance and resilience. Our results showed that the semi-arid steppe in north China was resistant to both daytime and nighttime warming, but vulnerable to drought. Nighttime warming, but not daytime warming, enhanced community resistance to drought via stimulating carbon sequestration, whereas neither daytime nor nighttime warming affected community resilience to drought. Large decline in plant community cover, primarily caused by the reduction in the cover of dominant and rare species rather than subordinate species during drought, did not preclude rapid ecosystem recovery. These findings suggest that nighttime warming may facilitate ecosystem sustainability and highlight the need to assess the effects of climate extremes on ecosystem functions at finer temporal resolutions than based on diurnal mean temperature. PMID:26987482

  19. Effects of experimental throughfall reduction and soil warming on fine root biomass and its decomposition in a warm temperate oak forest.

    PubMed

    Liu, Yanchun; Liu, Shirong; Wan, Shiqiang; Wang, Jingxin; Wang, Hui; Liu, Kuan

    2017-01-01

    Fine root dynamics play a critical role in regulating carbon (C) cycling in terrestrial ecosystems. Examining responses of fine root biomass and its decomposition to altered precipitation pattern and climate warming is crucial to understand terrestrial C dynamics and its feedback to climate change. Fine root biomass and its decomposition rate were investigated in a warm temperate oak forest through a field manipulation experiment with throughfall reduction and soil warming conducted. Throughfall reduction significantly interacted with soil warming in affecting fine root biomass and its decomposition. Throughfall reduction substantially increased fine root biomass and its decomposition in unheated plots, but negative effects occurred in warmed plots. Soil warming significantly enhanced fine root biomass and its decomposition under ambient precipitation, but the opposite effects exhibited under throughfall reduction. Different responses in fine root biomass among different treatments could be largely attributed to soil total nitrogen (N), while fine root decomposition rate was more depended on microbial biomass C and N. Our observations indicate that decreased precipitation may offset the positive effect of soil warming on fine root biomass and decomposition. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. [Response of seed reproduction of two dominant lakeside species to experimental warming in a typical plateau wetland in Northwestern Yunnan Plateau, China].

    PubMed

    Wang, Zhi Bao; Sun, Mei; Liu, Zhen Ya; Zhang, Xiao Ning; Wang, Hang; Zhang, Yun; Xiao, De Rong

    2018-03-01

    Based on the forecasted warming scenarios by IPCC, we studied the impacts of warming (increased by 2.0 and 3.5 ℃) on seed reproduction of two lakeside dominant species (Schoeno-plectus tabernaemontani and Sparganium stoloniferum) in a typical plateau wetland (Napahai) in Northwestern Yunnan, by using "open-top chamber" technique. The results showed that warming had significant effects on the seed setting rate of both species, though with interspecific variation. The seed setting rate of S. tabernaemontani was significantly increased under two warming treatments, while that of S. stoloniferum was significantly decreased under the 2.0 ℃ warming treatment and had no variation under the 3.5 ℃ warming treatment. Warming promoted the spike growth of both species. For S. tabernaemontani, under the warming of 2.0 and 3.5 ℃ treatments, the spike length was increased by 82.9% and 89.0%, the spikelet number was increased by 133.3% and 150.0%, the biomass of each individual was increased by 10.1% and 89.6%, and the rate between biomass of per plant panicle and total biomass was increased by 79.5% and 409.3%, respectively. For S. stoloniferum, under the warming of 2.0 and 3.5 ℃ treatments, the spike length was increased by 66.1% and 95.2%, and the rate between biomass of per plant panicle and total biomass was increased by 878.8% and 1052.6%, respectively. Warming significantly increased seed yield of both species. Under the warming of 2.0 and 3.5 ℃ treatments, the seed yield per panicle of S. tabernaemontani was increased by 33.7% and 58.3%, respectively. For S. stoloniferum, the seed yield was increased by 3.4% and 69.5%, respectively. Under the warming of 2.0 and 3.5 ℃ treatments, the seed length of S. tabernaemontani was increased by 5.4% and 6.9%, and the seed length/width was increased by 9.1% and 5.3%, respectively. Warming had no significant effects on the seed shape of S. stoloniferum. The maximum and minimum temperatures were dominant factors affecting seed reproductions of both species. The advance of growing season, the prolonging of nutrition growing period, and accumulation of organic matter induced by warming would provide sufficient nutrient and energy accumulation for the reproduction and development of plants, which would promote seed reproduction capability of both species under the warming conditions.

  1. Global Warming: Its Implications for U.S. National Security Policy

    DTIC Science & Technology

    2009-03-19

    The approach to this topic will be to look at the science behind anthropogenic global warming . Is man largely responsible for causing global warming due...paper will then investigate the nexus between global warming and U.S. national security policy. It will address the challenges facing U.S. leaders and...policy makers as they tackle the issue of global warming and its implications for U.S. policy. Finally it will conclude with recommendations for those

  2. Precompetition warm-up in elite and subelite rhythmic gymnastics.

    PubMed

    Guidetti, Laura; Di Cagno, Alessandra; Gallotta, Maria Chiara; Battaglia, Claudia; Piazza, Marina; Baldari, Carlo

    2009-09-01

    The aim of this study was to investigate which precompetition warm-up methodologies resulted in the best overall performance in rhythmic gymnastics. The coaches of national and international clubs (60 elite and 90 subelite) were interviewed. The relationship between sport performance and precompetition warm-up routines was examined. A total of 49% of the coaches interviewed spent more than 1 hour to prepare their athletes for the competition, including 45 minutes dedicated to warm-up exercises. In spite of previous studies' suggestions, the time between the end of warm-up and the beginning of competition was more than 5 minutes for 68% of those interviewed. A slow run was the activity of choice used to begin the warm-up (96%). Significant differences between elite and subelite gymnasts were found concerning the total duration of warm-up, duration of slow running, utilization of rhythmic steps and leaps during the warm-up, the use of dynamic flexibility exercises, competition performances repetition (p < 0.01), and utilization of imagery (p < 0.05). A precompetition warm-up in rhythmic gymnastics would include static stretching exercises at least 60 minutes prior to the competition starting time and the active stretching exercises alternated with analytic muscle strengthening aimed at increasing muscle temperature. Rhythmic gymnastics coaches at all levels can use this data as a review of precompetition warm-up practices and a possible source of new ideas.

  3. Does Vibration Warm-up Enhance Kinetic and Temporal Sprint Parameters?

    PubMed

    Cochrane, D J; Cronin, M J; Fink, P W

    2015-08-01

    The aim of this study was to investigate the efficacy of vibration warm-up to enhance sprint performance. 12 males involved in representative team sports performed 4 warm-up conditions in a randomised order performed at least 24 h apart; VbX warm-up (VbX-WU); Neural activation warm-up (Neu-WU); Dynamic warm-up (Dyn-WU) and Control (No VbX). Participants completed 5 m sprint at 30 s, 2:30 min and 5 min post warm-up where sprint time, kinetics, and temporal components were recorded. There was no significant (p>0.05) main effect or interaction effect between the split sprint times of 1 m, 2.5 m, and 5 m. There was a condition effect where vertical mean force was significantly higher (p<0.05) in Dyn-WU and Control compared to Neu-WU. No other significant (p>0.05) main and interaction effects in sprint kinetic and temporal parameters existed. Overall, all 4 warm-up conditions produced comparable results for sprint performance, and there was no detrimental effect on short-duration sprint performance using VbX-WU. Therefore, VbX could be useful for adding variety to the training warm-up or be included into the main warm-up routine as a supplementary modality. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Comparison of isokinetic muscle strength and muscle power by types of warm-up.

    PubMed

    Sim, Young-Je; Byun, Yong-Hyun; Yoo, Jaehyun

    2015-05-01

    [Purpose] The purpose of this study was to clarify the influence of static stretching at warm-up on the isokinetic muscle torque (at 60°/sec) and muscle power (at 180°/sec) of the flexor muscle and extensor muscle of the knee joint. [Subjects and Methods] The subjects of this study were 10 healthy students with no medically specific findings. The warm-up group and warm-up with stretching group performed their respective warm-up prior to the isokinetic muscle torque evaluation of the knee joint. One-way ANOVA was performed by randomized block design for each variable. [Results] The results were as follows: First, the flexor peak torque and extensor peak torque of the knee joint tended to decrease at 60°/sec in the warm-up with stretching group compared with the control group and warm-up group, but without statistical significance. Second, extensor power at 180°/sec was also not statistically significant. However, it was found that flexor power increased significantly in the warm-up with stretching group at 180°/sec compared with the control group and warm-up group in which stretching was not performed. [Conclusion] Therefore, it is considered that in healthy adults, warm-up including two sets of stretching for 20 seconds per muscle group does not decrease muscle strength and muscle power.

  5. Can biomass responses to warming at plant to ecosystem levels be predicted by leaf-level responses?

    NASA Astrophysics Data System (ADS)

    Xia, J.; Shao, J.; Zhou, X.; Yan, W.; Lu, M.

    2015-12-01

    Global warming has the profound impacts on terrestrial C processes from leaf to ecosystem scales, potentially feeding back to climate dynamics. Although numerous studies had investigated the effects of warming on C processes from leaf to plant and ecosystem levels, how leaf-level responses to warming scale up to biomass responses at plant, population, and community levels are largely unknown. In this study, we compiled a dataset from 468 papers at 300 experimental sites and synthesized the warming effects on leaf-level parameters, and plant, population and ecosystem biomass. Our results showed that responses of plant biomass to warming mainly resulted from the changed leaf area rather than the altered photosynthetic capacity. The response of ecosystem biomass to warming was weaker than those of leaf area and plant biomass. However, the scaling functions from responses of leaf area to plant biomass to warming were different in diverse forest types, but functions were similar in non-forested biomes. In addition, it is challenging to scale the biomass responses from plant up to ecosystem. These results indicated that leaf area might be the appropriate index for plant biomass response to warming, and the interspecific competition might hamper the scaling of the warming effects on plant and ecosystem levels, suggesting that the acclimation capacity of plant community should be incorporated into land surface models to improve the prediction of climate-C cycle feedback.

  6. Regional Contrasts of the Warming Rate over Land Significantly Depend on the Calculation Methods of Mean Air Temperature

    NASA Astrophysics Data System (ADS)

    Wang, Kaicun; Zhou, Chunlüe

    2016-04-01

    Global analyses of surface mean air temperature (Tm) are key datasets for climate change studies and provide fundamental evidences for global warming. However, the causes of regional contrasts in the warming rate revealed by such datasets, i.e., enhanced warming rates over the northern high latitudes and the "warming hole" over the central U.S., are still under debate. Here we show these regional contrasts depends on the calculation methods of Tm. Existing global analyses calculated Tm from daily minimum and maximum temperatures (T2). We found that T2 has a significant standard deviation error of 0.23 °C/decade in depicting the regional warming rate from 2000 to 2013 but can be reduced by two-thirds using Tm calculated from observations at four specific times (T4), which samples diurnal cycle of land surface air temperature more often. From 1973 to 1997, compared with T4, T2 significantly underestimated the warming rate over the central U.S. and overestimated the warming rate over the northern high latitudes. The ratio of the warming rate over China to that over the U.S. reduces from 2.3 by T2 to 1.4 by T4. This study shows that the studies of regional warming can be substantially improved by T4 instead of T2.

  7. C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland.

    PubMed

    Morgan, Jack A; LeCain, Daniel R; Pendall, Elise; Blumenthal, Dana M; Kimball, Bruce A; Carrillo, Yolima; Williams, David G; Heisler-White, Jana; Dijkstra, Feike A; West, Mark

    2011-08-03

    Global warming is predicted to induce desiccation in many world regions through increases in evaporative demand. Rising CO(2) may counter that trend by improving plant water-use efficiency. However, it is not clear how important this CO(2)-enhanced water use efficiency might be in offsetting warming-induced desiccation because higher CO(2) also leads to higher plant biomass, and therefore greater transpirational surface. Furthermore, although warming is predicted to favour warm-season, C(4) grasses, rising CO(2) should favour C(3), or cool-season plants. Here we show in a semi-arid grassland that elevated CO(2) can completely reverse the desiccating effects of moderate warming. Although enrichment of air to 600 p.p.m.v. CO(2) increased soil water content (SWC), 1.5/3.0 °C day/night warming resulted in desiccation, such that combined CO(2) enrichment and warming had no effect on SWC relative to control plots. As predicted, elevated CO(2) favoured C(3) grasses and enhanced stand productivity, whereas warming favoured C(4) grasses. Combined warming and CO(2) enrichment stimulated above-ground growth of C(4) grasses in 2 of 3 years when soil moisture most limited plant productivity. The results indicate that in a warmer, CO(2)-enriched world, both SWC and productivity in semi-arid grasslands may be higher than previously expected.

  8. Warm-Core Intensification Through Horizontal Eddy Heat Transports into the Eye

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.; Starr, David OC (Technical Monitor)

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob confirms subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation does not, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  9. The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China.

    PubMed

    Huang, Qunfang; Lu, Yuqi

    2015-07-27

    The Yangtze River Delta (YRD) has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA) has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI) effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime) and maximal (daytime) air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957-2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05). Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001). The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming.

  10. Effect of various practical warm-up protocols on acute lower-body power.

    PubMed

    Buttifant, David; Hrysomallis, Con

    2015-03-01

    The purpose of this study was to compare the acute effect of box squats with barbell (BBSquat), box squats with elastic resistance bands (BandSquat), and static stretches (SStretch) on external power during a 20-kg weighted jump squat. Twelve male athletes performed each of the 3 warm-up protocols on separate occasions in a randomized order. Weighted jump squat power was assessed using a linear position transducer attached to the bar of a Smith machine. Jump power was measured pre-warm-up and 5 and 10 minutes post-warm-up protocol. The BBSquat protocol involved 3 sets of 3RM, BandSquat involved 3 sets of 3 repetitions using highest resistance elastic bands, and the SStretch protocol comprises two 30-second stretches for muscles of the lower limbs. Jump power significantly increased from pre-warm-up to 5 and 10 minutes post-warm-up for both the BandSquat and BBSquat protocols. There was no statistical difference in power values between BandSquat and BBSquat. Power output significantly decreased from pre-warm-up to 5 and 10 minutes post-warm-up for the SStretch protocol. The BandSquat was just as effective as BBSquat in augmenting acute jump power. The SStretch was detrimental to jump performance. A practical warm-up using relatively inexpensive and portable equipment such as elastic resistance bands was just as effective as a warm-up protocol that requires more substantial and less transportable equipment such as a squat rack and associated free weights. The BandSquat warm-up may be considered more accessible for athletes at various competition levels.

  11. The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China

    PubMed Central

    Huang, Qunfang; Lu, Yuqi

    2015-01-01

    The Yangtze River Delta (YRD) has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA) has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI) effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime) and maximal (daytime) air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957–2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05). Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001). The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming. PMID:26225986

  12. Warming and elevated CO2 lead to longer growing season in temperate grassland

    USDA-ARS?s Scientific Manuscript database

    Observational data over time suggest that as climate has warmed the growing season has lengthened, although experimental warming shortens early-growing species’ life cycles. Are other plant species living longer? We found that experimental warming in a temperate, semi-arid grassland led to earlier l...

  13. 78 FR 20632 - Mandatory Reporting of Greenhouse Gases: Notice of Data Availability Regarding Global Warming...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... Greenhouse Gases: Notice of Data Availability Regarding Global Warming Potential Values for Certain... the availability of estimated global warming potentials, as well as data and analysis submitted in... global warming potentials and the data and analysis supporting them. We are also requesting comment on...

  14. 77 FR 33237 - Saline Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National Park, Inyo... an Environmental Impact Statement for the Saline Valley Warm Springs Management Plan, Death Valley... analysis process for the Saline Valley Warm Springs Management Plan for Death Valley [[Page 33238...

  15. Effect of pre-warming on perioperative hypothermia and anesthetic recovery in small breed dogs undergoing ovariohysterectomy.

    PubMed

    Aarnes, Turi K; Bednarski, Richard M; Lerche, Phillip; Hubbell, John A E

    2017-02-01

    This study compared perianesthetic body temperatures and times to recovery from general anesthesia in small dogs that were either warmed for 20 minutes prior to anesthesia or not warmed. Twenty-eight client-owned dogs that were presented for ovariohysterectomy were included in the study. Small (<10 kg body weight) dogs with normal circulatory status were randomly assigned to receive pre-warming for 20 minutes or no treatment. Body temperature was measured during the procedure using a calibrated rectal probe. Duration of anesthesia and surgery, time to rescue warming, time to extubation, presence and duration of shivering, and time to return to normal temperature were recorded. Temperature at the end of surgery was significantly higher in the control group than the pre-warmed group. There was no difference in time to extubation or duration of postoperative shivering between groups. Pre-warming did not result in improved temperature or recovery from anesthesia.

  16. Do Southern Ocean Cloud Feedbacks Matter for 21st Century Warming?

    NASA Astrophysics Data System (ADS)

    Frey, W. R.; Maroon, E. A.; Pendergrass, A. G.; Kay, J. E.

    2017-12-01

    Cloud phase improvements in a state-of-the-art climate model produce a large 1.5 K increase in equilibrium climate sensitivity (ECS, the surface warming in response to instantaneously doubled CO2) via extratropical shortwave cloud feedbacks. Here we show that the same model improvements produce only a small surface warming increase in a realistic 21st century emissions scenario. The small 21st century warming increase is attributed to extratropical ocean heat uptake. Southern Ocean mean-state circulation takes up heat while a slowdown in North Atlantic circulation acts as a feedback to slow surface warming. Persistent heat uptake by extratropical oceans implies that extratropical cloud biases may not be as important to 21st century warming as biases in other regions. Observational constraints on cloud phase and shortwave radiation that produce a large ECS increase do not imply large changes in 21st century warming.

  17. Ocean acidification ameliorates harmful effects of warming in primary consumer.

    PubMed

    Pedersen, Sindre Andre; Hanssen, Anja Elise

    2018-01-01

    Climate change-induced warming and ocean acidification are considered two imminent threats to marine biodiversity and current ecosystem structures. Here, we have for the first time examined an animal's response to a complete life cycle of exposure to co-occurring warming (+3°C) and ocean acidification (+1,600 μatm CO 2 ), using the key subarctic planktonic copepod, Calanus finmarchicus , as a model species. The animals were generally negatively affected by warming, which significantly reduced the females' energy status and reproductive parameters (respectively, 95% and 69%-87% vs. control). Unexpectedly, simultaneous acidification partially offset the negative effect of warming in an antagonistic manner, significantly improving reproductive parameters and hatching success (233%-340% improvement vs. single warming exposure). The results provide proof of concept that ocean acidification may partially offset negative effects caused by warming in some species. Possible explanations and ecological implications for the observed antagonistic effect are discussed.

  18. Local warming: daily temperature change influences belief in global warming.

    PubMed

    Li, Ye; Johnson, Eric J; Zaval, Lisa

    2011-04-01

    Although people are quite aware of global warming, their beliefs about it may be malleable; specifically, their beliefs may be constructed in response to questions about global warming. Beliefs may reflect irrelevant but salient information, such as the current day's temperature. This replacement of a more complex, less easily accessed judgment with a simple, more accessible one is known as attribute substitution. In three studies, we asked residents of the United States and Australia to report their opinions about global warming and whether the temperature on the day of the study was warmer or cooler than usual. Respondents who thought that day was warmer than usual believed more in and had greater concern about global warming than did respondents who thought that day was colder than usual. They also donated more money to a global-warming charity if they thought that day seemed warmer than usual. We used instrumental variable regression to rule out some alternative explanations.

  19. Design and performance of B4WarmED, an aboveground and belowground free-air warming experiment at the temperate-boreal forest ecotone

    USDA-ARS?s Scientific Manuscript database

    Conducting manipulative climate change experiments in forests is challenging, given their spatial heterogeneity and canopy complexity. One specific challenge involves warming both plants and soils to depth in ecosystems without much bare ground. We describe the design, implementation, and performanc...

  20. Analysis of data from spacecraft (stratospheric warmings)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The details of the stratospheric warming processes as to time, area, and intensity were established, and the warmings with other terrestrial and solar phenomena occurring at satellite platform altitudes, or observable from satellite platforms, were correlated. Links were sought between the perturbed upper atmosphere (mesosphere and thermosphere) and the stratosphere that might explain stratospheric warmings.

  1. Live birth in a woman with recurrent implantation failure and adenomyosis following transfer of refrozen-warmed embryos.

    PubMed

    Safari, Somayyeh; Faramarzi, Azita; Agha-Rahimi, Azam; Khalili, Mohammad Ali

    2016-09-01

    The aim was to report a healthy live birth using re-vitrified-warmed cleavage-stage embryos derived from supernumerary warmed embryos after frozen embryo transfer (ET) in a patient with recurrent implantation failure (RIF). The case was a 39-year-old female with a history of polycystic ovarian syndrome and adenomyosis, along with RIF. After ovarian hyperstimulation, 33 cumulus-oocyte complexes were retrieved and fertilized with conventional in vitro fertilization and intracytoplasmic sperm injection. Because of the risk of ovarian hyperstimulation syndrome, 16 grade B and C embryos were vitrified. After 3 and 6 months, 3 and 4 B-C warmed embryos were transferred to the uterus, respectively. However, implantation did not take place. Ten months later, four embryos were warmed, two grade B 8-cell embryos were transferred, and two embryos were re-vitrified. One year later, the two re-vitrified cleavage-stage embryos were warmed, which resulted in a successful live birth. This finding showed that following first warming, it is feasible to refreeze supernumerary warmed embryos for subsequent ET in patients with a history of RIF.

  2. Tropical Pacific variability as a key pacemaker of the global warming staircase

    NASA Astrophysics Data System (ADS)

    Kosaka, Y.; Xie, S. P.

    2016-12-01

    Global-mean surface temperature (GMST) has increased since the 19th century with notable interdecadal accelerations and slowdowns, forming the global-warming "staircase". The last step of this staircase is the surface warming slowdown since the late 1990s, for which the transition of the Interdecadal Pacific Oscillation (IPO) from a positive to negative state has been suggested as the leading mechanism. To examine the role of IPO in the entire warming staircase, a long pacemaker experiment is performed with a coupled climate model where tropical Pacific sea surface temperatures are forced to follow the observed evolution since the late 19th century. The pacemaker experiment successfully reproduces the staircase-like global warming remarkably well since 1900. Without the tropical Pacific effect, the same model produces a continual warming from the 1900s to the 1960 followed by rapid warming. The successful reproduction identifies the tropical Pacific decadal variability as a key pacemaker of the GMST staircase. We further propose a method to remove internal variability from observed GMST changes for real-time monitoring of anthropogenic warming.

  3. Enhanced Climatic Warming Over the Tibetan Plateau Due to Doubling CO2: A Model Study

    NASA Technical Reports Server (NTRS)

    Chen, Baode; Chao, Winston C.; Liu, Xiaodong; Lau, William K. M. (Technical Monitor)

    2001-01-01

    A number of studies have presented the evidences that surface climate change associated with global warming at high elevation sites shows more pronounced warming than at low elevations, i.e. an elevation dependency of climatic warming pointed out that snow-albedo feedback may be responsible for the excessive warming in the Swiss Alps. From an ensemble of climate change experiments of increasing greenhouse gases and aerosols using an air-sea coupled climate model, Eyre and Raw (1999) found a marked elevation dependency of the simulated surface screen temperature increase over the Rocky Mountains. Using almost all available instrumental records, Liu and Chen (2000) showed that the main portion of the Tibetan Plateau (TP) has experienced significant ground temperature warming since the middlebrows, especially in winter, and that there is a tendency for the warming trend to increase with elevation in the TP as well as its surrounding areas. In this paper, we will investigate the mechanism of elevation dependency of climatic warming in the TP by using a high-resolution regional climate model.

  4. Simulated warming shifts the flowering phenology and sexual reproduction of Cardamine hirsuta under different Planting densities

    PubMed Central

    Cao, YuSong; Xiao, Yian; Huang, Haiqun; Xu, Jiancheng; Hu, Wenhai; Wang, Ning

    2016-01-01

    Climate warming can shift the reproductive phenology of plant, and hence dramatically reduced the reproductive capacity both of density-dependent and -independent plant species. But it is still unclear how climate warming affects flowering phenology and reproductive allocation of plant under different planting densities. Here, we assessed the impact of simulated warming on flowering phenology and sexual reproduction in the ephemeral herb Cardamine hirsuta under four densities. We found that simulated warming delayed the onset of flowering averagely for 3.6 days but preceded the end of flowering for about 1 day, which indicated climate warming shortened the duration of the flowering. And the flowering amplitude in the peak flowering day also dramatically increased in the simulated warming treatment, which caused a mass-flowering pattern. Climate warming significantly increased the weights of the fruits, seeds and seed, but reduced fruit length and sexual reproductive allocation under all the four densities. The duration of flowering was shortened and the weights of the fruits, seeds and seed, and sexual reproductive allocation were reduced under The highest density. PMID:27296893

  5. Does the climate warming hiatus exist over the Tibetan Plateau?

    PubMed

    Duan, Anmin; Xiao, Zhixiang

    2015-09-02

    The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998-2013 (0.25 °C decade(-1)), compared with that during 1980-1997 (0.21 °C decade(-1)). Further results indicate that, to some degree, such an accelerated warming trend might be attributable to cloud-radiation feedback. The increased nocturnal cloud over the northern Tibetan Plateau would warm the nighttime temperature via enhanced atmospheric back-radiation, while the decreased daytime cloud over the southern Tibetan Plateau would induce the daytime sunshine duration to increase, resulting in surface air temperature warming. Meanwhile, the in situ surface wind speed has recovered gradually since 1998, and thus the energy concentration cannot explain the accelerated warming trend over the Tibetan Plateau after the 1990s. It is suggested that cloud-radiation feedback may play an important role in modulating the recent accelerated warming trend over the Tibetan Plateau.

  6. Ocean Heat Uptake Slows 21st Century Surface Warming Driven by Extratropical Cloud Feedbacks

    NASA Astrophysics Data System (ADS)

    Frey, W.; Maroon, E.; Pendergrass, A. G.; Kay, J. E.

    2017-12-01

    Equilibrium climate sensitivity (ECS), the warming in response to instantaneously doubled CO2, has long been used to compare climate models. In many models, ECS is well correlated with warming produced by transient forcing experiments. Modifications to cloud phase at high latitudes in a state-of-the-art climate model, the Community Earth System Model (CESM), produce a large increase in ECS (1.5 K) via extratropical cloud feedbacks. However, only a small surface warming increase occurs in a realistic 21st century simulation including a full-depth dynamic ocean and the "business as usual" RCP8.5 emissions scenario. In fact, the increase in surface warming is only barely above the internal variability-generated range in the CESM Large Ensemble. The small change in 21st century warming is attributed to subpolar ocean heat uptake in both hemispheres. In the Southern Ocean, the mean-state circulation takes up heat while in the North Atlantic a slowdown in circulation acts as a feedback to slow surface warming. These results show the importance of subpolar ocean heat uptake in controlling the pace of warming and demonstrate that ECS cannot be used to reliably infer transient warming when it is driven by extratropical feedbacks.

  7. Lower-limb warming improves sleep quality in elderly people living in nursing homes.

    PubMed

    Oshima-Saeki, Chika; Taniho, Yuiko; Arita, Hiromi; Fujimoto, Etsuko

    2017-01-01

    Sleep disturbances are common in older people. This study was conducted to examine the effects of a hot pack, which was used to warm the lower limbs, on the sleep of elderly people living in a nursing home. This is a prospective cohort involving seven elderly women. Subjects aged 74-93 years old were treated by warming the lower limbs for 40 minutes using hot packs every night over 8 weeks. A hot pack made of a dense polymer and warmed in a microwave oven was used as a warming device. In the first and last week, the subjects were required to wear an activity monitor to determine their sleep-awake status. During the second to ninth week, they received limb-warming treatment by a hot pack heated to 42ºC for 40 min every night. Surface skin temperature data were collected by thermographic measurement. As a result, lower-limb warming by a hot pack significantly improved the quality of sleep in the subjects. During warming, the surface temperature of the hands and face rose by approximately 0.5-1.5ºC. This study showed that lower-limb warming with a hot pack reduced sleep latency and wake episodes after sleep onset; thus, improving the quality of sleep in elderly people living in a nursing home.

  8. Warming alters the energetic structure and function but not resilience of soil food webs

    PubMed Central

    Schwarz, Benjamin; Barnes, Andrew D.; Thakur, Madhav P.; Brose, Ulrich; Ciobanu, Marcel; Reich, Peter B.; Rich, Roy L.; Rosenbaum, Benjamin; Stefanski, Artur; Eisenhauer, Nico

    2017-01-01

    Climate warming is predicted to alter the structure, stability, and functioning of food webs1–5. Yet, despite the importance of soil food webs for energy and nutrient turnover in terrestrial ecosystems, warming effects on these food webs—particularly in combination with other global change drivers—are largely unknown. Here, we present results from two complementary field experiments testing the interactive effects of warming with forest canopy disturbance and drought on energy fluxes in boreal-temperate ecotonal forest soil food webs. The first experiment applied a simultaneous above- and belowground warming treatment (ambient, +1.7°C, +3.4°C) to closed canopy and recently clear-cut forest, simulating common forest disturbance6. The second experiment crossed warming with a summer drought treatment (-40% rainfall) in the clear-cut habitats. We show that warming reduces energy fluxes to microbes, while forest canopy disturbance and drought facilitates warming-induced increases in energy flux to higher trophic levels and exacerbates reductions in energy flux to microbes, respectively. Contrary to expectations, we find no change in whole-network resilience to perturbations, but significant losses of ecosystem functioning. Warming thus interacts with forest disturbance and drought, shaping the energetic structure of soil food webs and threatening the provisioning of multiple ecosystem functions in boreal-temperate ecotonal forests. PMID:29218059

  9. Long-term experimental warming alters community composition of ascomycetes in Alaskan moist and dry arctic tundra.

    PubMed

    Semenova, Tatiana A; Morgado, Luis N; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József

    2015-01-01

    Arctic tundra regions have been responding to global warming with visible changes in plant community composition, including expansion of shrubs and declines in lichens and bryophytes. Even though it is well known that the majority of arctic plants are associated with their symbiotic fungi, how fungal community composition will be different with climate warming remains largely unknown. In this study, we addressed the effects of long-term (18 years) experimental warming on the community composition and taxonomic richness of soil ascomycetes in dry and moist tundra types. Using deep Ion Torrent sequencing, we quantified how OTU assemblage and richness of different orders of Ascomycota changed in response to summer warming. Experimental warming significantly altered ascomycete communities with stronger responses observed in the moist tundra compared with dry tundra. The proportion of several lichenized and moss-associated fungi decreased with warming, while the proportion of several plant and insect pathogens and saprotrophic species was higher in the warming treatment. The observed alterations in both taxonomic and ecological groups of ascomycetes are discussed in relation to previously reported warming-induced shifts in arctic plant communities, including decline in lichens and bryophytes and increase in coverage and biomass of shrubs. © 2014 John Wiley & Sons Ltd.

  10. Seagrass ecophysiological performance under ocean warming and acidification.

    PubMed

    Repolho, Tiago; Duarte, Bernardo; Dionísio, Gisela; Paula, José Ricardo; Lopes, Ana R; Rosa, Inês C; Grilo, Tiago F; Caçador, Isabel; Calado, Ricardo; Rosa, Rui

    2017-02-01

    Seagrasses play an essential ecological role within coastal habitats and their worldwide population decline has been linked to different types of anthropogenic forces. We investigated, for the first time, the combined effects of future ocean warming and acidification on fundamental biological processes of Zostera noltii, including shoot density, leaf coloration, photophysiology (electron transport rate, ETR; maximum PSII quantum yield, F v /F m ) and photosynthetic pigments. Shoot density was severely affected under warming conditions, with a concomitant increase in the frequency of brownish colored leaves (seagrass die-off). Warming was responsible for a significant decrease in ETR and F v /F m (particularly under control pH conditions), while promoting the highest ETR variability (among experimental treatments). Warming also elicited a significant increase in pheophytin and carotenoid levels, alongside an increase in carotenoid/chlorophyll ratio and De-Epoxidation State (DES). Acidification significantly affected photosynthetic pigments content (antheraxanthin, β-carotene, violaxanthin and zeaxanthin), with a significant decrease being recorded under the warming scenario. No significant interaction between ocean acidification and warming was observed. Our findings suggest that future ocean warming will be a foremost determinant stressor influencing Z. noltii survival and physiological performance. Additionally, acidification conditions to occur in the future will be unable to counteract deleterious effects posed by ocean warming.

  11. Seagrass ecophysiological performance under ocean warming and acidification

    PubMed Central

    Repolho, Tiago; Duarte, Bernardo; Dionísio, Gisela; Paula, José Ricardo; Lopes, Ana R.; Rosa, Inês C.; Grilo, Tiago F.; Caçador, Isabel; Calado, Ricardo; Rosa, Rui

    2017-01-01

    Seagrasses play an essential ecological role within coastal habitats and their worldwide population decline has been linked to different types of anthropogenic forces. We investigated, for the first time, the combined effects of future ocean warming and acidification on fundamental biological processes of Zostera noltii, including shoot density, leaf coloration, photophysiology (electron transport rate, ETR; maximum PSII quantum yield, Fv/Fm) and photosynthetic pigments. Shoot density was severely affected under warming conditions, with a concomitant increase in the frequency of brownish colored leaves (seagrass die-off). Warming was responsible for a significant decrease in ETR and Fv/Fm (particularly under control pH conditions), while promoting the highest ETR variability (among experimental treatments). Warming also elicited a significant increase in pheophytin and carotenoid levels, alongside an increase in carotenoid/chlorophyll ratio and De-Epoxidation State (DES). Acidification significantly affected photosynthetic pigments content (antheraxanthin, β-carotene, violaxanthin and zeaxanthin), with a significant decrease being recorded under the warming scenario. No significant interaction between ocean acidification and warming was observed. Our findings suggest that future ocean warming will be a foremost determinant stressor influencing Z. noltii survival and physiological performance. Additionally, acidification conditions to occur in the future will be unable to counteract deleterious effects posed by ocean warming. PMID:28145531

  12. Warming alters energetic structure and function but not resilience of soil food webs

    NASA Astrophysics Data System (ADS)

    Schwarz, Benjamin; Barnes, Andrew D.; Thakur, Madhav P.; Brose, Ulrich; Ciobanu, Marcel; Reich, Peter B.; Rich, Roy L.; Rosenbaum, Benjamin; Stefanski, Artur; Eisenhauer, Nico

    2017-12-01

    Climate warming is predicted to alter the structure, stability, and functioning of food webs1-5. Yet, despite the importance of soil food webs for energy and nutrient turnover in terrestrial ecosystems, the effects of warming on these food webs—particularly in combination with other global change drivers—are largely unknown. Here, we present results from two complementary field experiments that test the interactive effects of warming with forest canopy disturbance and drought on energy flux in boreal-temperate ecotonal forest soil food webs. The first experiment applied a simultaneous above- and belowground warming treatment (ambient, +1.7 °C, +3.4 °C) to closed-canopy and recently clear-cut forest, simulating common forest disturbance6. The second experiment crossed warming with a summer drought treatment (-40% rainfall) in the clear-cut habitats. We show that warming reduces energy flux to microbes, while forest canopy disturbance and drought facilitates warming-induced increases in energy flux to higher trophic levels and exacerbates the reduction in energy flux to microbes, respectively. Contrary to expectations, we find no change in whole-network resilience to perturbations, but significant losses in ecosystem functioning. Warming thus interacts with forest disturbance and drought, shaping the energetic structure of soil food webs and threatening the provisioning of multiple ecosystem functions in boreal-temperate ecotonal forests.

  13. The effect of prolonged of warm ischaemic injury on renal function in an experimental ex vivo normothermic perfusion system.

    PubMed

    Hosgood, Sarah A; Shah, K; Patel, M; Nicholson, M L

    2015-06-30

    Donation after circulatory death (DCD) kidney transplants inevitably sustain a degree of warm ischaemic injury, which is manifested clinically as delayed graft function. The aim of this study was to define the effects of prolonged periods of warm ischaemic injury on renal function in a normothermic haemoperfused kidney model. Porcine kidneys were subjected to 15, 60, 90 (n = 6 per group) and 120 min (n = 4) of in situ warm ischaemia (WI) and then retrieved, flushed with cold preservation fluid and stored in ice for 2 h. Kidneys then underwent 3 h of normothermic reperfusion with a whole blood-based perfusate using an ex vivo circuit developed from clinical grade cardiopulmonary bypass technology. Creatinine clearance, urine output and fractional excretion of sodium deteriorated sequentially with increasing warm time. Renal function was severely compromised after 90 or 120 min of WI but haemodynamic, metabolic and histological parameters demonstrated the viability of kidneys subjected to prolonged warm ischaemia. Isolated kidney perfusion using a warm, oxygenated, red cell-based perfusate allows an accurate ex vivo assessment of the potential for recovery from warm ischaemic injury. Prolonged renal warm ischaemic injury caused a severe decrement in renal function but was not associated with tissue necrosis.

  14. Decomposition of recalcitrant carbon under experimental warming in boreal forest

    PubMed Central

    Allison, Steven D.; Treseder, Kathleen K.

    2017-01-01

    Over the long term, soil carbon (C) storage is partly determined by decomposition rate of carbon that is slow to decompose (i.e., recalcitrant C). According to thermodynamic theory, decomposition rates of recalcitrant C might differ from those of non-recalcitrant C in their sensitivities to global warming. We decomposed leaf litter in a warming experiment in Alaskan boreal forest, and measured mass loss of recalcitrant C (lignin) vs. non-recalcitrant C (cellulose, hemicellulose, and sugars) throughout 16 months. We found that these C fractions responded differently to warming. Specifically, after one year of decomposition, the ratio of recalcitrant C to non-recalcitrant C remaining in litter declined in the warmed plots compared to control. Consistent with this pattern, potential activities of enzymes targeting recalcitrant C increased with warming, relative to those targeting non-recalcitrant C. Even so, mass loss of individual C fractions showed that non-recalcitrant C is preferentially decomposed under control conditions whereas recalcitrant C losses remain unchanged between control and warmed plots. Moreover, overall mass loss was greater under control conditions. Our results imply that direct warming effects, as well as indirect warming effects (e.g. drying), may serve to maintain decomposition rates of recalcitrant C compared to non-recalcitrant C despite negative effects on overall decomposition. PMID:28622366

  15. An Acute Bout of Self-Myofascial Release in the Form of Foam Rolling Improves Performance Testing

    PubMed Central

    PEACOCK, COREY A.; KREIN, DARREN D.; SILVER, TOBIN A.; SANDERS, GABRIEL J.; VON CARLOWITZ, KYLE-PATRICK A.

    2014-01-01

    Recent developments in the strength and conditioning field have shown the incorporation of foam rolling self-myofascial release in adjunct with a dynamic warm-up. This is thought to improve overall training performance; however, minimal research exists supporting this theory. Therefore, determining if an acute bout of foam rolling self-myofascial release in addition to a dynamic warm-up could influence performance is of importance. In order to do so, eleven athletically trained male subjects participated in a two condition, counterbalanced, crossover within-subjects study comparing two particular warm-up routines. The two warm-up routines compared were a total-body dynamic warm-up (DYN) and a total-body dynamic warm-up in adjunct with a self-myofascial release, total-body foam rolling session (SMR). Following each warm-up condition, subjects performed tests of flexibility, power, agility, strength, and speed. Paired samples T-tests were utilized to determine if there were any significant differences in test results between conditions (DYN vs. SMR). The data indicated that SMR was effective at improving power, agility, strength, and speed when compared to DYN (P ≤ 0.024). A warm-up routine consisting of both a dynamic warm-up and a self-myofascial release, total-body foam rolling session resulted in overall improvements in athletic performance testing. PMID:27182404

  16. Committed warming inferred from observations and an energy balance model

    NASA Astrophysics Data System (ADS)

    Pincus, R.; Mauritsen, T.

    2017-12-01

    Due to the lifetime of CO2 and thermal inertia of the ocean, the Earth's climate is not equilibrated with anthropogenic forcing. As a result, even if fossil fuel emissions were to suddenly cease, some level of committed warming is expected due to past emissions. Here, we provide an observational-based quantification of this committed warming using the instrument record of global-mean warming, recently-improved estimates of Earth's energy imbalance, and estimates of radiative forcing from the fifth IPCC assessment report. Compared to pre-industrial levels, we find a committed warming of 1.5K [0.9-3.6, 5-95 percentile] at equilibrium, and of 1.3K [0.9-2.3] within this century. However, when assuming that ocean carbon uptake cancels remnant greenhouse gas-induced warming on centennial timescales, committed warming is reduced to 1.1K [0.7-1.8]. Conservatively, there is a 32% risk that committed warming already exceeds the 1.5K target set in Paris, and that this will likely be crossed prior to 2053. Regular updates of these observationally-constrained committed warming estimates, though simplistic, can provide transparent guidance as uncertainty regarding transient climate sensitivity inevitably narrows and understanding the limitations of the framework is advanced.

  17. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem.

    PubMed

    Zhang, Tao; Guo, Rui; Gao, Song; Guo, Jixun; Sun, Wei

    2015-01-01

    Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China.

  18. Experimental warming of a mountain tundra increases soil CO2 effluxes and enhances CH4 and N2O uptake at Changbai Mountain, China

    PubMed Central

    Zhou, Yumei; Hagedorn, Frank; Zhou, Chunliang; Jiang, Xiaojie; Wang, Xiuxiu; Li, Mai-He

    2016-01-01

    Climatic warming is expected to particularly alter greenhouse gas (GHG) emissions from soils in cold ecosystems such as tundra. We used 1 m2 open-top chambers (OTCs) during three growing seasons to examine how warming (+0.8–1.2 °C) affects the fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from alpine tundra soils. Results showed that OTC warming increased soil CO2 efflux by 141% in the first growing season and by 45% in the second and third growing season. The mean CH4 flux of the three growing seasons was −27.6 and −16.7 μg CH4-C m−2h−1 in the warmed and control treatment, respectively. Fluxes of N2O switched between net uptake and emission. Warming didn’t significantly affect N2O emission during the first and the second growing season, but stimulated N2O uptake in the third growing season. The global warming potential of GHG was clearly dominated by soil CO2 effluxes (>99%) and was increased by the OTC warming. In conclusion, soil temperature is the main controlling factor for soil respiration in this tundra. Climate warming will lead to higher soil CO2 emissions but also to an enhanced CH4 uptake with an overall increase of the global warming potential for tundra. PMID:26880107

  19. Warming effects on permafrost ecosystem carbon fluxes associated with plant nutrients.

    PubMed

    Li, Fei; Peng, Yunfeng; Natali, Susan M; Chen, Kelong; Han, Tianfeng; Yang, Guibiao; Ding, Jinzhi; Zhang, Dianye; Wang, Guanqin; Wang, Jun; Yu, Jianchun; Liu, Futing; Yang, Yuanhe

    2017-11-01

    Large uncertainties exist in carbon (C)-climate feedback in permafrost regions, partly due to an insufficient understanding of warming effects on nutrient availabilities and their subsequent impacts on vegetation C sequestration. Although a warming climate may promote a substantial release of soil C to the atmosphere, a warming-induced increase in soil nutrient availability may enhance plant productivity, thus offsetting C loss from microbial respiration. Here, we present evidence that the positive temperature effect on carbon dioxide (CO 2 ) fluxes may be weakened by reduced plant nitrogen (N) and phosphorous (P) concentrations in a Tibetan permafrost ecosystem. Although experimental warming initially enhanced ecosystem CO 2 uptake, the increased rate disappeared after the period of peak plant growth during the early growing season, even though soil moisture was not a limiting factor in this swamp meadow ecosystem. We observed that warming did not significantly affect soil extractable N or P during the period of peak growth, but decreased both N and P concentrations in the leaves of dominant plant species, likely caused by accelerated plant senescence in the warmed plots. The attenuated warming effect on CO 2 assimilation during the late growing season was associated with lowered leaf N and P concentrations. These findings suggest that warming-mediated nutrient changes may not always benefit ecosystem C uptake in permafrost regions, making our ability to predict the C balance in these warming-sensitive ecosystems more challenging than previously thought. © 2017 by the Ecological Society of America.

  20. The Effects of Warming and Nitrogen Addition on Soil Nitrogen Cycling in a Temperate Grassland, Northeastern China

    PubMed Central

    Ma, Lin-Na; Lü, Xiao-Tao; Liu, Yang; Guo, Ji-Xun; Zhang, Nan-Yi; Yang, Jian-Qin; Wang, Ren-Zhong

    2011-01-01

    Background Both climate warming and atmospheric nitrogen (N) deposition are predicted to affect soil N cycling in terrestrial biomes over the next century. However, the interactive effects of warming and N deposition on soil N mineralization in temperate grasslands are poorly understood. Methodology/Principal Findings A field manipulation experiment was conducted to examine the effects of warming and N addition on soil N cycling in a temperate grassland of northeastern China from 2007 to 2009. Soil samples were incubated at a constant temperature and moisture, from samples collected in the field. The results showed that both warming and N addition significantly stimulated soil net N mineralization rate and net nitrification rate. Combined warming and N addition caused an interactive effect on N mineralization, which could be explained by the relative shift of soil microbial community structure because of fungal biomass increase and strong plant uptake of added N due to warming. Irrespective of strong intra- and inter-annual variations in soil N mineralization, the responses of N mineralization to warming and N addition did not change during the three growing seasons, suggesting independence of warming and N responses of N mineralization from precipitation variations in the temperate grassland. Conclusions/Significance Interactions between climate warming and N deposition on soil N cycling were significant. These findings will improve our understanding on the response of soil N cycling to the simultaneous climate change drivers in temperate grassland ecosystem. PMID:22096609

  1. Germination shifts of C3 and C4 species under simulated global warming scenario.

    PubMed

    Zhang, Hongxiang; Yu, Qiang; Huang, Yingxin; Zheng, Wei; Tian, Yu; Song, Yantao; Li, Guangdi; Zhou, Daowei

    2014-01-01

    Research efforts around the world have been increasingly devoted to investigating changes in C3 and C4 species' abundance or distribution with global warming, as they provide important insight into carbon fluxes and linked biogeochemical cycles. However, changes in the early life stage (e.g. germination) of C3 and C4 species in response to global warming, particularly with respect to asymmetric warming, have received less attention. We investigated germination percentage and rate of C3 and C4 species under asymmetric (+3/+6°C at day/night) and symmetric warming (+5/+5°C at day/night), simulated by alternating temperatures. A thermal time model was used to calculate germination base temperature and thermal time constant. Two additional alternating temperature regimes were used to test temperature metrics effect. The germination percentage and rate increased continuously for C4 species, but increased and then decreased with temperature for C3 species under both symmetric and asymmetric warming. Compared to asymmetric warming, symmetric warming significantly overestimated the speed of germination percentage change with temperature for C4 species. Among the temperature metrics (minimum, maximum, diurnal temperature range and average temperature), maximum temperature was most correlated with germination of C4 species. Our results indicate that global warming may favour germination of C4 species, at least for the C4 species studied in this work. The divergent effects of asymmetric and symmetric warming on plant germination also deserve more attention in future studies.

  2. Plant community responses to experimental warming across the tundra biome

    PubMed Central

    Walker, Marilyn D.; Wahren, C. Henrik; Hollister, Robert D.; Henry, Greg H. R.; Ahlquist, Lorraine E.; Alatalo, Juha M.; Bret-Harte, M. Syndonia; Calef, Monika P.; Callaghan, Terry V.; Carroll, Amy B.; Epstein, Howard E.; Jónsdóttir, Ingibjörg S.; Klein, Julia A.; Magnússon, Borgþór; Molau, Ulf; Oberbauer, Steven F.; Rewa, Steven P.; Robinson, Clare H.; Shaver, Gaius R.; Suding, Katharine N.; Thompson, Catharine C.; Tolvanen, Anne; Totland, Ørjan; Turner, P. Lee; Tweedie, Craig E.; Webber, Patrick J.; Wookey, Philip A.

    2006-01-01

    Recent observations of changes in some tundra ecosystems appear to be responses to a warming climate. Several experimental studies have shown that tundra plants and ecosystems can respond strongly to environmental change, including warming; however, most studies were limited to a single location and were of short duration and based on a variety of experimental designs. In addition, comparisons among studies are difficult because a variety of techniques have been used to achieve experimental warming and different measurements have been used to assess responses. We used metaanalysis on plant community measurements from standardized warming experiments at 11 locations across the tundra biome involved in the International Tundra Experiment. The passive warming treatment increased plant-level air temperature by 1-3°C, which is in the range of predicted and observed warming for tundra regions. Responses were rapid and detected in whole plant communities after only two growing seasons. Overall, warming increased height and cover of deciduous shrubs and graminoids, decreased cover of mosses and lichens, and decreased species diversity and evenness. These results predict that warming will cause a decline in biodiversity across a wide variety of tundra, at least in the short term. They also provide rigorous experimental evidence that recently observed increases in shrub cover in many tundra regions are in response to climate warming. These changes have important implications for processes and interactions within tundra ecosystems and between tundra and the atmosphere. PMID:16428292

  3. Warm-Core Intensification of a Hurricane Through Horizontal Eddy Heat Transports Inside the Eye

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob also identifies subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, excluding the eyewall (at least in an azimuthal mean sense), subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation cannot, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller contributions coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  4. Effects of Warming on CO2 Fluxes in an Alpine Meadow Ecosystem on the Central Qinghai-Tibetan Plateau.

    PubMed

    Ganjurjav, Hasbagan; Gao, Qingzhu; Zhang, Weina; Liang, Yan; Li, Yawei; Cao, Xujuan; Wan, Yunfan; Li, Yue; Danjiu, Luobu

    2015-01-01

    To analyze CO2 fluxes under conditions of climate change in an alpine meadow on the central Qinghai-Tibetan Plateau, we simulated the effect of warming using open top chambers (OTCs) from 2012 to 2014. The OTCs increased soil temperature by 1.62°C (P < 0.05), but decreased soil moisture (1.38%, P < 0.05) during the experiments. The response of ecosystem CO2 fluxes to warming was variable, and dependent on the year. Under conditions of warming, mean gross ecosystem productivity (GEP) during the growing season increased significantly in 2012 and 2014 (P < 0.05); however, ecosystem respiration (ER) increased substantially only in 2012 (P < 0.05). The net ecosystem CO2 exchange (NEE) increased marginally in 2012 (P = 0.056), did not change in 2013(P > 0.05), and increased significantly in 2014 (P = 0.034) under conditions of warming. The GEP was more sensitive to climate variations than was the ER, resulting in a large increase in net carbon uptake under warming in the alpine meadow. Under warming, the 3-year averages of GEP, ER, and NEE increased by 19.6%, 15.1%, and 21.1%, respectively. The seasonal dynamic patterns of GEP and NEE, but not ER, were significantly impacted by warming. Aboveground biomass, particularly the graminoid biomass increased significantly under conditions of warming. Soil moisture, soil temperature, and aboveground biomass were the main factors that affected the variation of the ecosystem CO2 fluxes. The effect of warming on inter- and intra-annual patterns of ecosystem CO2 fluxes and the mechanism of different sensitivities in GEP and ER to warming, require further researched.

  5. Phenological sequences reveal aggregate life history response to climatic warming.

    PubMed

    Post, Eric S; Pedersen, Christian; Wilmers, Christopher C; Forchhammer, Mads C

    2008-02-01

    Climatic warming is associated with organisms breeding earlier in the season than is typical for their species. In some species, however, response to warming is more complex than a simple advance in the timing of all life history events preceding reproduction. Disparities in the extent to which different components of the reproductive phenology of organisms vary with climatic warming indicate that not all life history events are equally responsive to environmental variation. Here, we propose that our understanding of phenological response to climate change can be improved by considering entire sequences of events comprising the aggregate life histories of organisms preceding reproduction. We present results of a two-year warming experiment conducted on 33 individuals of three plant species inhabiting a low-arctic site. Analysis of phenological sequences of three key events for each species revealed how the aggregate life histories preceding reproduction responded to warming, and which individual events exerted the greatest influence on aggregate life history variation. For alpine chickweed (Cerastium alpinum), warming elicited a shortening of the duration of the emergence stage by 2.5 days on average, but the aggregate life history did not differ between warmed and ambient plots. For gray willow (Salix glauca), however, all phenological events monitored occurred earlier on warmed than on ambient plots, and warming reduced the aggregate life history of this species by 22 days on average. Similarly, in dwarf birch (Betula nana), warming advanced flower bud set, blooming, and fruit set and reduced the aggregate life history by 27 days on average. Our approach provides important insight into life history responses of many organisms to climate change and other forms of environmental variation. Such insight may be compromised by considering changes in individual phenological events in isolation.

  6. Warming Ocean Conditions Relate to Increased Trophic Requirements of Threatened and Endangered Salmon

    PubMed Central

    Daly, Elizabeth A.; Brodeur, Richard D.

    2015-01-01

    The trophic habits, size and condition of yearling Chinook salmon (Oncorhynchus tshawytscha) caught early in their marine residence were examined during 19 survey years (1981–1985; 1998–2011). Juvenile salmon consumed distinct highly piscivorous diets in cold and warm ocean regimes with major differences between ocean regimes driven by changes in consumption of juvenile rockfishes, followed by several other fish prey, adult euphausiids and decapod larvae. Notable, Chinook salmon consumed 30% more food in the warm versus cold ocean regime in both May and June. Additionally, there were about 30% fewer empty stomachs in the warm ocean regime in May, and 10% fewer in warm June periods. The total prey energy density consumed during the warmer ocean regime was also significantly higher than in cold. Chinook salmon had lower condition factor and were smaller in fork length during the warm ocean regime, and were longer and heavier for their size during the cold ocean regime. The significant increase in foraging during the warm ocean regime occurred concurrently with lower available prey biomass. Adult return rates of juvenile Chinook salmon that entered the ocean during a warm ocean regime were lower. Notably, our long term data set contradicts the long held assertion that juvenile salmon eat less in a warm ocean regime when low growth and survival is observed, and when available prey are reduced. Comparing diet changes between decades under variable ocean conditions may assist us in understanding the effects of projected warming ocean regimes on juvenile Chinook salmon and their survival in the ocean environment. Bioenergetically, the salmon appear to require more food resources during warm ocean regimes. PMID:26675673

  7. Warming Ocean Conditions Relate to Increased Trophic Requirements of Threatened and Endangered Salmon.

    PubMed

    Daly, Elizabeth A; Brodeur, Richard D

    2015-01-01

    The trophic habits, size and condition of yearling Chinook salmon (Oncorhynchus tshawytscha) caught early in their marine residence were examined during 19 survey years (1981-1985; 1998-2011). Juvenile salmon consumed distinct highly piscivorous diets in cold and warm ocean regimes with major differences between ocean regimes driven by changes in consumption of juvenile rockfishes, followed by several other fish prey, adult euphausiids and decapod larvae. Notable, Chinook salmon consumed 30% more food in the warm versus cold ocean regime in both May and June. Additionally, there were about 30% fewer empty stomachs in the warm ocean regime in May, and 10% fewer in warm June periods. The total prey energy density consumed during the warmer ocean regime was also significantly higher than in cold. Chinook salmon had lower condition factor and were smaller in fork length during the warm ocean regime, and were longer and heavier for their size during the cold ocean regime. The significant increase in foraging during the warm ocean regime occurred concurrently with lower available prey biomass. Adult return rates of juvenile Chinook salmon that entered the ocean during a warm ocean regime were lower. Notably, our long term data set contradicts the long held assertion that juvenile salmon eat less in a warm ocean regime when low growth and survival is observed, and when available prey are reduced. Comparing diet changes between decades under variable ocean conditions may assist us in understanding the effects of projected warming ocean regimes on juvenile Chinook salmon and their survival in the ocean environment. Bioenergetically, the salmon appear to require more food resources during warm ocean regimes.

  8. Effects of Warming on CO2 Fluxes in an Alpine Meadow Ecosystem on the Central Qinghai–Tibetan Plateau

    PubMed Central

    Ganjurjav, Hasbagan; Gao, Qingzhu; Zhang, Weina; Liang, Yan; Li, Yawei; Cao, Xujuan; Wan, Yunfan; Li, Yue; Danjiu, Luobu

    2015-01-01

    To analyze CO2 fluxes under conditions of climate change in an alpine meadow on the central Qinghai–Tibetan Plateau, we simulated the effect of warming using open top chambers (OTCs) from 2012 to 2014. The OTCs increased soil temperature by 1.62°C (P < 0.05), but decreased soil moisture (1.38%, P < 0.05) during the experiments. The response of ecosystem CO2 fluxes to warming was variable, and dependent on the year. Under conditions of warming, mean gross ecosystem productivity (GEP) during the growing season increased significantly in 2012 and 2014 (P < 0.05); however, ecosystem respiration (ER) increased substantially only in 2012 (P < 0.05). The net ecosystem CO2 exchange (NEE) increased marginally in 2012 (P = 0.056), did not change in 2013(P > 0.05), and increased significantly in 2014 (P = 0.034) under conditions of warming. The GEP was more sensitive to climate variations than was the ER, resulting in a large increase in net carbon uptake under warming in the alpine meadow. Under warming, the 3-year averages of GEP, ER, and NEE increased by 19.6%, 15.1%, and 21.1%, respectively. The seasonal dynamic patterns of GEP and NEE, but not ER, were significantly impacted by warming. Aboveground biomass, particularly the graminoid biomass increased significantly under conditions of warming. Soil moisture, soil temperature, and aboveground biomass were the main factors that affected the variation of the ecosystem CO2 fluxes. The effect of warming on inter- and intra-annual patterns of ecosystem CO2 fluxes and the mechanism of different sensitivities in GEP and ER to warming, require further researched. PMID:26147223

  9. Predator contributions to belowground responses to warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maran, A. M.; Pelini, S. L.

    Identifying the factors that control soil CO 2 emissions will improve our ability to predict the magnitude of climate change–soil ecosystem feedbacks. Despite the integral role of invertebrates in belowground systems, they are excluded from climate change models. Soil invertebrates have consumptive and nonconsumptive effects on microbes, whose respiration accounts for nearly half of soil CO 2 emissions. By altering the behavior and abundance of invertebrates that interact with microbes, invertebrate predators may have indirect effects on soil respiration. We examined the effects of a generalist arthropod predator on belowground respiration under different warming scenarios. Based on research suggesting invertebratesmore » may mediate soil CO 2 emission responses to warming, we predicted that predator presence would result in increased emissions by negatively affecting these invertebrates. We altered the presence of wolf spiders ( Pardosa spp.) in mesocosms containing a forest floor community. To simulate warming, we placed mesocosms of each treatment in ten open-top warming chambers ranging from 1.5° to 5.5°C above ambient at Harvard Forest, Massachusetts, USA. As expected, CO 2 emissions increased under warming and we found an interactive effect of predator presence and warming, although the effect was not consistent through time. The interaction between predator presence and warming was the inverse of our predictions: Mesocosms with predators had lower respiration at higher levels of warming than those without predators. Carbon dioxide emissions were not significantly associated with microbial biomass. Here, we did not find evidence of consumptive effects of predators on the invertebrate community, suggesting that predator presence mediates response of microbial respiration to warming through nonconsumptive means. In our system, we found a significant interaction between warming and predator presence that warrants further research into mechanism and generality of this pattern to other systems.« less

  10. Predator contributions to belowground responses to warming

    DOE PAGES

    Maran, A. M.; Pelini, S. L.

    2016-09-26

    Identifying the factors that control soil CO 2 emissions will improve our ability to predict the magnitude of climate change–soil ecosystem feedbacks. Despite the integral role of invertebrates in belowground systems, they are excluded from climate change models. Soil invertebrates have consumptive and nonconsumptive effects on microbes, whose respiration accounts for nearly half of soil CO 2 emissions. By altering the behavior and abundance of invertebrates that interact with microbes, invertebrate predators may have indirect effects on soil respiration. We examined the effects of a generalist arthropod predator on belowground respiration under different warming scenarios. Based on research suggesting invertebratesmore » may mediate soil CO 2 emission responses to warming, we predicted that predator presence would result in increased emissions by negatively affecting these invertebrates. We altered the presence of wolf spiders ( Pardosa spp.) in mesocosms containing a forest floor community. To simulate warming, we placed mesocosms of each treatment in ten open-top warming chambers ranging from 1.5° to 5.5°C above ambient at Harvard Forest, Massachusetts, USA. As expected, CO 2 emissions increased under warming and we found an interactive effect of predator presence and warming, although the effect was not consistent through time. The interaction between predator presence and warming was the inverse of our predictions: Mesocosms with predators had lower respiration at higher levels of warming than those without predators. Carbon dioxide emissions were not significantly associated with microbial biomass. Here, we did not find evidence of consumptive effects of predators on the invertebrate community, suggesting that predator presence mediates response of microbial respiration to warming through nonconsumptive means. In our system, we found a significant interaction between warming and predator presence that warrants further research into mechanism and generality of this pattern to other systems.« less

  11. Soil moisture mediates alpine life form and community productivity responses to warming.

    PubMed

    Winkler, Daniel E; Chapin, Kenneth J; Kueppers, Lara M

    2016-06-01

    Climate change is expected to alter primary production and community composition in alpine ecosystems, but the direction and magnitude of change is debated. Warmer, wetter growing seasons may increase productivity; however, in the absence of additional precipitation, increased temperatures may decrease soil moisture, thereby diminishing any positive effect of warming. Since plant species show individual responses to environmental change, responses may depend on community composition and vary across life form or functional groups. We warmed an alpine plant community at Niwot Ridge, Colorado continuously for four years to test whether warming increases or decreases productivity of life form groups and the whole community. We provided supplemental water to a subset of plots to alleviate the drying effect of warming. We measured annual above-ground productivity and soil temperature and moisture, from which we calculated soil degree days and adequate soil moisture days. Using an information-theoretic approach, we observed that positive productivity responses to warming at the community level occur only when warming is combined with supplemental watering; otherwise we observed decreased productivity. Watering also increased community productivity in the absence of warming. Forbs accounted for the majority of the productivity at the site and drove the contingent community response to warming, while cushions drove the generally positive response to watering and graminoids muted the community response. Warming advanced snowmelt and increased soil degree days, while watering increased adequate soil moisture days. Heated and watered plots had more adequate soil moisture days than heated plots. Overall, measured changes in soil temperature and moisture in response to treatments were consistent with expected productivity responses. We found that available soil moisture largely determines the responses of this forb-dominated alpine community to simulated climate warming. © 2016 by the Ecological Society of America.

  12. IMMEDIATE EFFECTS OF A DYNAMIC ROTATION-SPECIFIC WARM-UP ON X-FACTOR AND X-FACTOR STRETCH IN THE AMATEUR GOLFER.

    PubMed

    Henry, Elizabeth; Berglund, Kathy; Millar, Lynn; Locke, Frederick

    2015-12-01

    Recent evidence suggests performing a warm-up prior to golf can improve performance and reduce injuries. While some characteristics of effective golf warm-ups have been determined, no studies have explored the immediate effects of a rotational-specific warm-up with elements of motor control on the biomechanical aspects of the full X-Factor and X-Factor Stretch during the golf swing. Thirty-six amateur golfers (mean ± SD age: 64 ± 8 years old; 75% male) were randomized into a Dynamic Rotation-Specific Warm-up group (n=20), or a Sham Warm-up group (n=16). X-Factor and X-Factor Stretch were measured at baseline and immediately following the warm-up. Mixed model ANCOVAs were used to determine if a Group*Time interaction existed for each variable with group as the between-subjects variable and time as the within-subjects variable. The mixed model ANCOVAs did not reveal a statistically significant group*time interaction for X-Factor or X-Factor Stretch. There was not a significant main effect for time for X-Factor but there was for X-Factor Stretch. These results indicate that neither group had a significant effect on improving X-Factor, however performing either warm-up increased X-Factor Stretch without significant difference between the two. The results of this study suggest that performing the Dynamic Rotation-Specific Warm-up did not increase X-Factor or X-Factor Stretch when controlled for age compared to the Sham Warm-up. Further study is needed to determine the long-term effects of the Dynamic Rotation-Specific Warm-up on performance factors of the golf swing while examining across all ages. 2b.

  13. Long-terms Change of Sea Surface Temperature in the South China Sea

    NASA Astrophysics Data System (ADS)

    Park, Y. G.; Choi, A.

    2016-02-01

    Using the Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST) the long term trend in the South China Sea (SCS) sea surface temperature (SST) between 1950 and 2008 is investigated. Both in winter and summer SST was increased by comparable amounts, but the warming patterns and the governing processes was different. During winter warming rate was greater in the deep basin in the central part, while during summer near the southern part. In winter the net heat flux into the sea was increased and could contribute to the warming. The pattern of the heat flux, however, was different from that of the warming. The heat flux was increased over the coastal area where warming was weaker, but decreased in deeper part where warming was stronger. The northeasterly monsoon wind weakened to lower the shoreward Ekman transport and the sea surface height gradient. The cyclonic gyre that transports cold northern water to south was weakened to warm the ocean. The effect manifested more strongly southward western boundary currents, and subsequently cold advection. In summer the net surface heat flux, however, was reduced and could not contribute to the warming. Over the southern part of the ocean the weakening of the southwesterly summer monsoon reduced southeastward Ekman transport, which is antiparallel to the mean SST gradient. Firstly, southeastward cold advection is reduced to warm the surface near the southeastern boundary of the SCS. The upwelling southeast of Vietnam was also weakened to raise the SST east of Vietnam. Thus the weakening of the wind in each season was the ultimate cause of the warming, but the responses of the ocean that lead to the warming were different.

  14. Is "Warm Arctic, Cold Continent" A Fingerprint Pattern of Climate Change?

    NASA Astrophysics Data System (ADS)

    Hoerling, M. P.; Sun, L.; Perlwitz, J.

    2015-12-01

    Cold winters and cold waves have recently occurred in Europe, central Asia and the Midwest to eastern United States, even as global mean temperatures set record highs and Arctic amplification of surface warming continued. Since 1979, Central Asia winter temperatures have in fact declined. Conjecture has it that more cold extremes over the mid-latitude continents should occur due to global warming and the impacts of Arctic sea ice loss. A Northern Hemisphere temperature signal termed the "Warm Arctic, Cold Continent" pattern has thus been surmised. Here we use a multi-model approach to test the hypothesis that such a pattern is indeed symptomatic of climate change. Diagnosis of a large model ensemble of historical climate simulations shows some individual realizations to yield cooling trends over Central Asia, but importantly the vast majority show warming. The observed cooling has thus likely been a low probability state of internal variability, not a fingerprint of forced climate change. We show that daily temperature variations over continents decline in winter due to global warming, and cold waves become less likely. This is partly related to diminution of Arctic cold air reservoirs due to warming-induced sea ice loss. Nonetheless, we find some evidence and present a physical basis that Arctic sea ice loss alone can induce a winter cooling over Central Asia, though with a magnitude that is appreciably smaller than the overall radiative-forced warming signal. Our results support the argument that recent cooling trends over central Asia, and cold extreme events over the winter continents, have principally resulted from atmospheric internal variability and have been neither a forced response to Arctic seas ice loss nor a symptom of global warming. The paradigm of climate change is thus better expressed as "Warm Arctic, Warm Continent" for the NH winter.

  15. Effects of warming and clipping on ecosystem carbon fluxes across two hydrologically contrasting years in an alpine meadow of the Qinghai-Tibet Plateau.

    PubMed

    Peng, Fei; You, Quangang; Xu, Manhou; Guo, Jian; Wang, Tao; Xue, Xian

    2014-01-01

    Responses of ecosystem carbon (C) fluxes to human disturbance and climatic warming will affect terrestrial ecosystem C storage and feedback to climate change. We conducted a manipulative experiment to investigate the effects of warming and clipping on soil respiration (Rs), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross ecosystem production (GEP) in an alpine meadow in a permafrost region during two hydrologically contrasting years (2012, with 29.9% higher precipitation than the long-term mean, and 2013, with 18.9% lower precipitation than the long-tem mean). Our results showed that GEP was higher than ER, leading to a net C sink (measured by NEE) over the two growing seasons. Warming significantly stimulated ecosystem C fluxes in 2012 but did not significantly affect these fluxes in 2013. On average, the warming-induced increase in GEP (1.49 µ mol m(-2) s(-1)) was higher than in ER (0.80 µ mol m(-2) s(-1)), resulting in an increase in NEE (0.70 µ mol m(-2) s(-1)). Clipping and its interaction with warming had no significant effects on C fluxes, whereas clipping significantly reduced aboveground biomass (AGB) by 51.5 g m(-2) in 2013. These results suggest the response of C fluxes to warming and clipping depends on hydrological variations. In the wet year, the warming treatment caused a reduction in water, but increases in soil temperature and AGB contributed to the positive response of ecosystem C fluxes to warming. In the dry year, the reduction in soil moisture, caused by warming, and the reduction in AGB, caused by clipping, were compensated by higher soil temperatures in warmed plots. Our findings highlight the importance of changes in soil moisture in mediating the responses of ecosystem C fluxes to climate warming in an alpine meadow ecosystem.

  16. Exploration of warm-up period in conceptual hydrological modelling

    NASA Astrophysics Data System (ADS)

    Kim, Kue Bum; Kwon, Hyun-Han; Han, Dawei

    2018-01-01

    One of the important issues in hydrological modelling is to specify the initial conditions of the catchment since it has a major impact on the response of the model. Although this issue should be a high priority among modelers, it has remained unaddressed by the community. The typical suggested warm-up period for the hydrological models has ranged from one to several years, which may lead to an underuse of data. The model warm-up is an adjustment process for the model to reach an 'optimal' state, where internal stores (e.g., soil moisture) move from the estimated initial condition to an 'optimal' state. This study explores the warm-up period of two conceptual hydrological models, HYMOD and IHACRES, in a southwestern England catchment. A series of hydrologic simulations were performed for different initial soil moisture conditions and different rainfall amounts to evaluate the sensitivity of the warm-up period. Evaluation of the results indicates that both initial wetness and rainfall amount affect the time required for model warm up, although it depends on the structure of the hydrological model. Approximately one and a half months are required for the model to warm up in HYMOD for our study catchment and climatic conditions. In addition, it requires less time to warm up under wetter initial conditions (i.e., saturated initial conditions). On the other hand, approximately six months is required for warm-up in IHACRES, and the wet or dry initial conditions have little effect on the warm-up period. Instead, the initial values that are close to the optimal value result in less warm-up time. These findings have implications for hydrologic model development, specifically in determining soil moisture initial conditions and warm-up periods to make full use of the available data, which is very important for catchments with short hydrological records.

  17. Simple additive simulation overestimates real influence: altered nitrogen and rainfall modulate the effect of warming on soil carbon fluxes.

    PubMed

    Ni, Xiangyin; Yang, Wanqin; Qi, Zemin; Liao, Shu; Xu, Zhenfeng; Tan, Bo; Wang, Bin; Wu, Qinggui; Fu, Changkun; You, Chengming; Wu, Fuzhong

    2017-08-01

    Experiments and models have led to a consensus that there is positive feedback between carbon (C) fluxes and climate warming. However, the effect of warming may be altered by regional and global changes in nitrogen (N) and rainfall levels, but the current understanding is limited. Through synthesizing global data on soil C pool, input and loss from experiments simulating N deposition, drought and increased precipitation, we quantified the responses of soil C fluxes and equilibrium to the three single factors and their interactions with warming. We found that warming slightly increased the soil C input and loss by 5% and 9%, respectively, but had no significant effect on the soil C pool. Nitrogen deposition alone increased the soil C input (+20%), but the interaction of warming and N deposition greatly increased the soil C input by 49%. Drought alone decreased the soil C input by 17%, while the interaction of warming and drought decreased the soil C input to a greater extent (-22%). Increased precipitation stimulated the soil C input by 15%, but the interaction of warming and increased precipitation had no significant effect on the soil C input. However, the soil C loss was not significantly affected by any of the interactions, although it was constrained by drought (-18%). These results implied that the positive C fluxes-climate warming feedback was modulated by the changing N and rainfall regimes. Further, we found that the additive effects of [warming × N deposition] and [warming × drought] on the soil C input and of [warming × increased precipitation] on the soil C loss were greater than their interactions, suggesting that simple additive simulation using single-factor manipulations may overestimate the effects on soil C fluxes in the real world. Therefore, we propose that more multifactorial experiments should be considered in studying Earth systems. © 2016 John Wiley & Sons Ltd.

  18. Effects of Warming and Clipping on Ecosystem Carbon Fluxes across Two Hydrologically Contrasting Years in an Alpine Meadow of the Qinghai-Tibet Plateau

    PubMed Central

    Peng, Fei; You, Quangang; Xu, Manhou; Guo, Jian; Wang, Tao; Xue, Xian

    2014-01-01

    Responses of ecosystem carbon (C) fluxes to human disturbance and climatic warming will affect terrestrial ecosystem C storage and feedback to climate change. We conducted a manipulative experiment to investigate the effects of warming and clipping on soil respiration (Rs), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross ecosystem production (GEP) in an alpine meadow in a permafrost region during two hydrologically contrasting years (2012, with 29.9% higher precipitation than the long-term mean, and 2013, with 18.9% lower precipitation than the long-tem mean). Our results showed that GEP was higher than ER, leading to a net C sink (measured by NEE) over the two growing seasons. Warming significantly stimulated ecosystem C fluxes in 2012 but did not significantly affect these fluxes in 2013. On average, the warming-induced increase in GEP (1.49 µ mol m−2s−1) was higher than in ER (0.80 µ mol m−2s−1), resulting in an increase in NEE (0.70 µ mol m−2s−1). Clipping and its interaction with warming had no significant effects on C fluxes, whereas clipping significantly reduced aboveground biomass (AGB) by 51.5 g m−2 in 2013. These results suggest the response of C fluxes to warming and clipping depends on hydrological variations. In the wet year, the warming treatment caused a reduction in water, but increases in soil temperature and AGB contributed to the positive response of ecosystem C fluxes to warming. In the dry year, the reduction in soil moisture, caused by warming, and the reduction in AGB, caused by clipping, were compensated by higher soil temperatures in warmed plots. Our findings highlight the importance of changes in soil moisture in mediating the responses of ecosystem C fluxes to climate warming in an alpine meadow ecosystem. PMID:25291187

  19. Comparison of the WarmCloud and Bair Hugger Warming Devices for the Prevention of Intraoperative Hypothermia in Patients Undergoing Orthotopic Liver Transplantation: A Randomized Clinical Trial

    PubMed Central

    Pearce, Brett; Mattheyse, Linda; Ellard, Louise; Desmond, Fiona; Pillai, Param; Weinberg, Laurence

    2018-01-01

    Background The avoidance of hypothermia is vital during prolonged and open surgery to improve patient outcomes. Hypothermia is particularly common during orthotopic liver transplantation (OLT) and associated with undesirable physiological effects that can adversely impact on perioperative morbidity. The KanMed WarmCloud (Bromma, Sweden) is a revolutionary, closed-loop, warm-air heating mattress developed to maintain normothermia and prevent pressure sores during major surgery. The clinical effectiveness of the WarmCloud device during OLT is unknown. Therefore, we conducted a randomized controlled trial to determine whether the WarmCloud device reduces hypothermia and prevents pressure injuries compared with the Bair Hugger underbody warming device. Methods Patients were randomly allocated to receive either the WarmCloud or Bair Hugger warming device. Both groups also received other routine standardized multimodal thermoregulatory strategies. Temperatures were recorded by nasopharyngeal temperature probe at set time points during surgery. The primary endpoint was nasopharyngeal temperature recorded 5 minutes before reperfusion. Secondary endpoints included changes in temperature over the predefined intraoperative time points, number of patients whose nadir temperature was below 35.5°C and the development of pressure injuries during surgery. Results Twenty-six patients were recruited with 13 patients randomized to each group. One patient from the WarmCloud group was excluded because of a protocol violation. Baseline characteristics were similar. The mean (standard deviation) temperature before reperfusion was 36.0°C (0.7) in the WarmCloud group versus 36.3°C (0.6) in the Bairhugger group (P = 0.25). There were no statistical differences between the groups for any of the secondary endpoints. Conclusions When combined with standardized multimodal thermoregulatory strategies, the WarmCloud device does not reduce hypothermia compared with the Bair Hugger device in patients undergoing OLT. PMID:29707629

  20. Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe

    PubMed Central

    Xia, Jianyang; Wan, Shiqiang

    2013-01-01

    Background and Aims Phenology is one of most sensitive traits of plants in response to regional climate warming. Better understanding of the interactive effects between warming and other environmental change factors, such as increasing atmosphere nitrogen (N) deposition, is critical for projection of future plant phenology. Methods A 4-year field experiment manipulating temperature and N has been conducted in a temperate steppe in northern China. Phenology, including flowering and fruiting date as well as reproductive duration, of eight plant species was monitored and calculated from 2006 to 2009. Key Results Across all the species and years, warming significantly advanced flowering and fruiting time by 0·64 and 0·72 d per season, respectively, which were mainly driven by the earliest species (Potentilla acaulis). Although N addition showed no impact on phenological times across the eight species, it significantly delayed flowering time of Heteropappus altaicus and fruiting time of Agropyron cristatum. The responses of flowering and fruiting times to warming or N addition are coupled, leading to no response of reproductive duration to warming or N addition for most species. Warming shortened reproductive duration of Potentilla bifurca but extended that of Allium bidentatum, whereas N addition shortened that of A. bidentatum. No interactive effect between warming and N addition was found on any phenological event. Such additive effects could be ascribed to the species-specific responses of plant phenology to warming and N addition. Conclusions The results suggest that the warming response of plant phenology is larger in earlier than later flowering species in temperate grassland systems. The effects of warming and N addition on plant phenology are independent of each other. These findings can help to better understand and predict the response of plant phenology to climate warming concurrent with other global change driving factors. PMID:23585496

  1. Are Sierran Lakes Warming as a Result of Climate Change? The Effects of Climate Warming and Variation in Precipitation on Water Temperature in a Snowmelt-Dominated Lake

    NASA Astrophysics Data System (ADS)

    Sadro, S.; Melack, J. M.; Sickman, J. O.; Skeen, K.

    2016-12-01

    Water temperature regulates a broad range of fundamental ecosystem processes in lakes. While climate can be an important factor regulating lake temperatures, heterogeneity in the warming response of lakes is large, and variation in precipitation is rarely considered. We analyzed three decades of climate and water temperature data from a high-elevation catchment in the southern Sierra Nevada of California to illustrate the magnitude of warming taking place during different seasons and the role of precipitation in regulating lake temperatures. Significant climate warming trends were evident during all seasons except spring. Nighttime rates of climate warming were approximately 25% higher than daytime rates. Spatial patterns in warming were elevation dependent, with rates of temperature increase higher at sites above 2800 m.a.s.l. than below. Although interannual variation in snow deposition was high, the frequency and severity of recent droughts has contributed to a significant 3.4 mm year -1 decline in snow water equivalent over the last century. Snow accumulation, more than any other climate factor, regulated lake temperature; 94% of variation in summer lake temperature was regulated by precipitation as snow. For every 100 mm decrease in snow water equivalent there was a 0.62 ° increase in lake temperature. Drought years amplify warming in lakes by reducing the role of cold spring meltwaters in lake energy budgets and prolonging the ice-free period during which lakes warm. The combination of declining winter snowpack and warming air temperatures has the capacity to amplify the effect of climate warming on lake temperatures during drought years. Interactions among climatic factors need to be considered when evaluating ecosystem level effects, especially in mountain regions. For mountain lakes already affected by drought, continued climate warming during spring and autumn has the greatest potential to impact mean lake temperatures.

  2. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application.

    PubMed

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2018-01-01

    Global warming will likely enhance greenhouse gas (GHG) emissions from soils. Due to its slow decomposability, biochar is widely recognized as effective in long-term soil carbon (C) sequestration and in mitigation of soil GHG emissions. In a long-term soil warming experiment (+2.5 °C, since July 2008) we studied the effect of applying high-temperature Miscanthus biochar (0, 30 t/ha, since August 2013) on GHG emissions and their global warming potential (GWP) during 2 years in a temperate agroecosystem. Crop growth, physical and chemical soil properties, temperature sensitivity of soil respiration (R s ), and metabolic quotient (qCO 2 ) were investigated to yield further information about single effects of soil warming and biochar as well as on their interactions. Soil warming increased total CO 2 emissions by 28% over 2 years. The effect of warming on soil respiration did not level off as has often been observed in less intensively managed ecosystems. However, the temperature sensitivity of soil respiration was not affected by warming. Overall, biochar had no effect on most of the measured parameters, suggesting its high degradation stability and its low influence on microbial C cycling even under elevated soil temperatures. In contrast, biochar × warming interactions led to higher total N 2 O emissions, possibly due to accelerated N-cycling at elevated soil temperature and to biochar-induced changes in soil properties and environmental conditions. Methane uptake was not affected by soil warming or biochar. The incorporation of biochar-C into soil was estimated to offset warming-induced elevated GHG emissions for 25 years. Our results highlight the suitability of biochar for C sequestration in cultivated temperate agricultural soil under a future elevated temperature. However, the increased N 2 O emissions under warming limit the GHG mitigation potential of biochar. © 2017 John Wiley & Sons Ltd.

  3. Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, USA.

    PubMed

    Lyons, J; Stewart, J S; Mitro, M

    2010-11-01

    Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56·0-93·5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1° C and water 0·8° C), moderate warming (air 3° C and water 2·4° C) and major warming (air 5° C and water 4° C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin. © 2010 The Authors. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles.

  4. Warming and Nitrogen Addition Increase Litter Decomposition in a Temperate Meadow Ecosystem

    PubMed Central

    Gong, Shiwei; Guo, Rui; Zhang, Tao; Guo, Jixun

    2015-01-01

    Background Litter decomposition greatly influences soil structure, nutrient content and carbon sequestration, but how litter decomposition is affected by climate change is still not well understood. Methodology/Principal Findings A field experiment with increased temperature and nitrogen (N) addition was established in April 2007 to examine the effects of experimental warming, N addition and their interaction on litter decomposition in a temperate meadow steppe in northeastern China. Warming, N addition and warming plus N addition reduced the residual mass of L. chinensis litter by 3.78%, 7.51% and 4.53%, respectively, in 2008 and 2009, and by 4.73%, 24.08% and 16.1%, respectively, in 2010. Warming, N addition and warming plus N addition had no effect on the decomposition of P. communis litter in 2008 or 2009, but reduced the residual litter mass by 5.58%, 15.53% and 5.17%, respectively, in 2010. Warming and N addition reduced the cellulose percentage of L. chinensis and P. communis, specifically in 2010. The lignin percentage of L. chinensis and P. communis was reduced by warming but increased by N addition. The C, N and P contents of L. chinensis and P. communis litter increased with time. Warming and N addition reduced the C content and C:N ratios of L. chinensisand P. communis litter, but increased the N and P contents. Significant interactive effects of warming and N addition on litter decomposition were observed (P<0.01). Conclusion/Significance The litter decomposition rate was highly correlated with soil temperature, soil water content and litter quality. Warming and N addition significantly impacted the litter decomposition rate in the Songnen meadow ecosystem, and the effects of warming and N addition on litter decomposition were also influenced by the quality of litter. These results highlight how climate change could alter grassland ecosystem carbon, nitrogen and phosphorus contents in soil by influencing litter decomposition. PMID:25774776

  5. TRMM-observed summer warm rain over the tropical and subtropical Pacific Ocean: Characteristics and regional differences

    NASA Astrophysics Data System (ADS)

    Qin, Fang; Fu, Yunfei

    2016-06-01

    Based on the merged measurements from the TRMM Precipitation Radar and Visible and Infrared Scanner, refined characteristics (intensity, frequency, vertical structure, and diurnal variation) and regional differences of the warm rain over the tropical and subtropical Pacific Ocean (40ffiS-40ffiN, 120ffiE-70ffiW) in boreal summer are investigated for the period 1998-2012. The results reveal that three warm rain types (phased, pure, and mixed) exist over these regions. The phased warm rain, which occurs during the developing or declining stage of precipitation weather systems, is located over the central to western Intertropical Convergence Zone, South Pacific Convergence Zone, and Northwest Pacific. Its occurrence frequency peaks at midnight and minimizes during daytime with a 5.5-km maximum echo top. The frequency of this warm rain type is about 2.2%, and it contributes to 40% of the regional total rainfall. The pure warm rain is characterized by typical stable precipitation with an echo top lower than 4 km, and mostly occurs in Southeast Pacific. Although its frequency is less than 1.3%, this type of warm rain accounts for 95% of the regional total rainfall. Its occurrence peaks before dawn and it usually disappears in the afternoon. For the mixed warm rain, some may develop into deep convective precipitation, while most are similar to those of the pure type. The mixed warm rain is mainly located over the ocean east of Hawaii. Its frequency is 1.2%, but this type of warm rain could contribute to 80% of the regional total rainfall. The results also uncover that the mixed and pure types occur over the regions where SST ranges from 295 to 299 K, accompanied by relatively strong downdrafts at 500 hPa. Both the mixed and pure warm rains happen in a more unstable atmosphere, compared with the phased warm rain.

  6. Characterizing the Seasonality and Spatiotemporal Evolution of the U.S. Warming Hole

    NASA Astrophysics Data System (ADS)

    Partridge, T.; Winter, J.; Osterberg, E. C.; Magilligan, F. J.; Hyndman, D. W.; Kendall, A. D.

    2017-12-01

    Regions of the Eastern United States have experienced periods of cooling during the last half of the twentieth century inconsistent with broader global warming trends. While there have been a variety of mechanisms proposed to explain this "warming hole", the spatial and temporal definitions of the warming hole often differ across studies, potentially obfuscating the physical drivers leading to its existence. Further, a broad consensus on the causality of the warming hole has yet to be reached. We use daily temperature data from the Global Historical Climate Network (GHCN) to conduct a thorough characterization of the spatiotemporal evolution and seasonality of regional cooling across the Eastern U.S., and define a dynamic warming hole as the region of most persistent cooling. We find that the location of the dynamic warming hole varies by season from the Midwestern U.S. during summer to the Southeastern U.S. during winter. In addition, the cool period associated with the warming hole is characterized by an abrupt decrease in maximum temperature (Tx) and a decline in minimum temperature (Tn) around 1957. While average Tn values in the warming hole recover after the decline and increase from the mid 1960's to present, Tx values for the second half of the 20th century remain below observed values from the first half of the century. To explore large-scale atmospheric drivers of the dynamic warming hole, we correlate SST teleconnection and regional atmospheric circulation indices with seasonal temperature values from 1901-1957 and 1958-2015. We show that 1957 marks a shift, where winter temperatures in the warming hole become more correlated with the Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO) and less correlated with the Atlantic Multidecadal Oscillation (AMO). Summer warming hole temperatures become less correlated with the NAO post 1957 and are strongly negatively correlated with precipitation.

  7. Warming reinforces nonconsumptive predator effects on prey growth, physiology, and body stoichiometry.

    PubMed

    Janssens, Lizanne; Van Dievel, Marie; Stoks, Robby

    2015-12-01

    While nonconsumptive effects of predators may strongly affect prey populations, little is known how future warming will modulate these effects. Such information would be especially relevant with regard to prey physiology and resulting changes in prey stoichiometry. We investigated in Enallagma cyathigerum damselfly larvae the effects of a 4°C warming (20°C vs. 24°C) and predation risk on growth rate, physiology and body stoichiometry, for the first time including all key mechanisms suggested by the general stress paradigm (GSP) on how stressors shape changes in body stoichiometry. Growth rate and energy storage were higher at 24°C. Based on thermodynamic principles and the growth rate hypothesis, we could demonstrate predictable reductions in body C:P under warming and link these to the increase in P-rich RNA; the associated warming-induced decrease in C:N may be explained by the increased synthesis of N-rich proteins. Yet, under predation risk, growth rate instead decreased with warming and the warming-induced decreases in C:N and C:P disappeared. As predicted by the GSP, larvae increased body C:N and C:P at 24°C under predation risk. Notably, we did not detect the assumed GSP-mechanisms driving these changes: despite an increased metabolic rate there was neither an increase of C-rich biomolecules (instead fat and sugar contents decreased under predation risk), nor a decrease of N-rich proteins. We hypothesize that the higher C:N and N:P under predation risk are caused by a higher investment in morphological defense. This may also explain the stronger predator-induced increase in C:N under warming. The expected higher C:P under predation risk was only present under warming and matched the observed growth reduction and associated reduction in P-rich RNA. Our integrated mechanistic approach unraveled novel pathways of how warming and predation risk shape body stoichiometry. Key findings that (1) warming effects on elemental stoichiometry were predictable and only present in the absence of predation risk and that (2) warming reinforced the predator-induced effects on C:N:P, are pivotal in understanding how nonconsumptive predator effects under global warming will shape prey populations.

  8. Warm-up for Sprint Swimming: Race-Pace or Aerobic Stimulation? A Randomized Study.

    PubMed

    Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Viana, João L; Teixeira, Ana M; Marinho, Daniel A

    2017-09-01

    Neiva, HP, Marques, MC, Barbosa, TM, Izquierdo, M, Viana, JL, Teixeira, AM, and Marinho, DA. Warm-up for sprint swimming: race-pace or aerobic stimulation? A randomized study. J Strength Cond Res 31(9): 2423-2431, 2017-The aim of this study was to compare the effects of 2 different warm-up intensities on 100-m swimming performance in a randomized controlled trial. Thirteen competitive swimmers performed two 100-m freestyle time-trials on separate days after either control or experimental warm-up in a randomized design. The control warm-up included a typical race-pace set (4 × 25 m), whereas the experimental warm-up included an aerobic set (8 × 50 m at 98-102% of critical velocity). Cortisol, testosterone, blood lactate ([La]), oxygen uptake (V[Combining Dot Above]O2), heart rate, core (Tcore and Tcorenet) and tympanic temperatures, and rating of perceived exertion (RPE) were monitored. Stroke length (SL), stroke frequency (SF), stroke index (SI), and propelling efficiency (ηp) were assessed for each 50-m lap. We found that V[Combining Dot Above]O2, heart rate, and Tcorenet were higher after experimental warm-up (d > 0.73), but only the positive effect for Tcorenet was maintained until the trial. Performance was not different between conditions (d = 0.07). Experimental warm-up was found to slow SF (mean change ±90% CL = 2.06 ± 1.48%) and increase SL (1.65 ± 1.40%) and ηp (1.87 ± 1.33%) in the first lap. After the time-trials, this warm-up had a positive effect on Tcorenet (d = 0.69) and a negative effect on [La] (d = 0.56). Although the warm-ups had similar outcomes in the 100-m freestyle, performance was achieved through different biomechanical strategies. Stroke length and efficiency were higher in the first lap after the experimental warm-up, whereas SF was higher after control warm-up. Physiological adaptations were observed mainly through an increased Tcore after experimental warm-up. In this condition, the lower [La] after the trial suggests lower dependency on anaerobic metabolism.

  9. Anthropogenic Warming Impacts on Today's Sierra Nevada Snowpack and Flood Severity

    NASA Astrophysics Data System (ADS)

    Huang, X.; Hall, A. D.; Berg, N.

    2017-12-01

    Focusing on this recent extreme wet year over California, this study investigates the warming impacts on the snowpack and the flood severity over the Sierra Nevada (SN), where the majority of the precipitation occurs during the winter season and early spring. One of our goals is to quantify anthropogenic warming impacts on the snow water equivalent (SWE) including recent historical warming and prescribed future projected warming scenarios; This work also explores to what extent flooding risk has increased under those warming cases. With a good representation of the historical precipitation and snowpack over the Sierra Nevada from the historical reference run at 9km (using WRF), the results from the offline Noah-MP simulations with perturbed near-surface temperatures reveal magnificent impacts of warming to the loss of the average snowpack. The reduction of the SWE under warming mainly results from the decreased rain-to-snow conversion with a weaker effect from increased snowmelt. Compared to the natural case, the past industrial warming decreased the maximum SWE by about one-fifth averaged over the study area. Future continuing warming can result in around one-third reduction of current maximum SWE under RCP4.5 emissions scenario, and the loss can reach to two-thirds under RCP8.5 as a "business-as-usual" condition. The impact of past warming is particularly outstanding over the North SN region where precipitation dominates and over the middle elevation regions where the snow mainly distributes. In the future, the warming impact on SWE progresses to higher regions, and so to the south and east. Under the business-as-usual scenario, the projected mid-elevation snowpack almost disappears by April 1st with even high-elevation snow reduced by about half. Along with the loss of the snowpack, as the temperature warms, floods can also intensify with increased early season runoff especially under heavy-rainy days caused by the weakened rain-to-snow processes and strengthened snow-melt mainly over the mid-elevation region. Under continuing warming and predicted intensified precipitation extremes in the coming century, the severity of floods can become much more disastrous and potentially shift from the north (where the Oroville Dam spillway emergency occurred this February) to the central and south SN regions.

  10. Impact of a Submaximal Warm-Up on Endurance Performance in Highly Trained and Competitive Male Runners.

    PubMed

    Zourdos, Michael C; Bazyler, Caleb D; Jo, Edward; Khamoui, Andy V; Park, Bong-Sup; Lee, Sang-Rok; Panton, Lynn B; Kim, Jeong-Su

    2017-03-01

    The purpose of this investigation was to examine the effects of a submaximal running warm-up on running performance in male endurance athletes (n = 16, M age  = 21 ± 2 years, M VO2max  = 69.3 ± 5.1 mL/kg/min). Endurance performance was determined by a 30-min distance trial after control and submaximal running warm-up conditions in a randomized crossover fashion. The warm-up began with 5 min of quiet sitting, followed by 6 min of submaximal running split into 2-min intervals at speeds corresponding to 45%, 55%, and 65% maximal oxygen consumption (VO 2 max). A 2-min walk at 3.2 km/hr concluded the 13-min warm-up protocol. For the control condition, participants sat quietly for 13 min. VO 2 and heart rate (HR) were determined at Minutes 0, 5, and 13 of the pre-exercise protocol in each condition. At the end of 13 min prior to the distance trial, mean VO 2 (warm-up = 14.1 ± 2.2 mL/kg/min vs. control = 5.5 ± 1.7 mL/kg/min) and mean HR (warm-up = 105 ± 11 bpm vs. control = 67 ± 11 bpm) were statistically greater (p < .001) in the warm-up condition compared with the control condition. The distance run did not statistically differ (p = .37) between the warm-up (7.8 ± 0.5 km) and control (7.7 ± 0.6 km) conditions; however, effect size calculation revealed a small effect (d = 0.2) in favor of the warm-up condition. Thus, the warm-up employed may have important and practical implications to determine placing among high-level athletes in close races. These findings suggest a submaximal running warm-up may have a small but critical effect on a 30-min distance trial in competitive endurance athletes. Further, the warm-up elicited increases in physiological variables VO 2 and HR prior to performance; thus, a submaximal specific warm-up should warrant consideration.

  11. Warm-adapted microbial communities enhance their carbon-use efficiency in warmed soils

    NASA Astrophysics Data System (ADS)

    Rousk, Johannes; Frey, Serita

    2017-04-01

    Ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon (C), resulting in a positive feedback to increasing temperatures. The current generation of models assume that the temperature sensitivities of microbial processes do not respond to warming. However, recent studies have suggested that the ability of microbial communities to adapt to warming can lead both strengthened and weakened feedbacks. A further complication is that the balance between microbial C used for growth to that used for respiration - the microbial carbon-use efficiency (CUE) - also has been shown through both modelling and empirical study to respond to warming. In our study, we set out to assess how chronic warming (+5°C over ambient during 9 years) of a temperate hardwood forest floor (Harvard Forest LTER, USA) affected temperature sensitivities of microbial processes in soil. To do this, we first determined the temperature relationships for bacterial growth, fungal growth, and respiration in plots exposed to warmed or ambient conditions. Secondly, we parametrised the established temperature functions microbial growth and respiration with plot-specific measured soil temperature data at a hourly time-resolution over the course of 3 years to estimate the real-time variation of in situ microbial C production and respiration. To estimate the microbial CUE, we also divided the microbial C production with the sum of microbial C production and respiration as a proxy for substrate use. We found that warm-adapted bacterial and fungal communities both shifted their temperature relationships to grow at higher rates in warm conditions which coincided with reduced rates at cool conditions. As such, their optimal temperature (Topt), minimum temperature (Tmin) and temperature sensitivity (Q10) were all increased. The temperature relationship for temperature, in contrast, was only marginally shifted in the same direction, but at a much smaller effect size, with negligible changes in Topt, Tmin and Q10 for respiration. When these physiological changes were scaled with soil temperature data to estimate real-time variation in situ during three years, the warm-adaptation resulted in elevated microbial CUEs during summer temperatures in warm-adapted communities and reduced microbial CUEs during winter temperatures. By comparing simulated microbial CUEs in cold-adapted communities exposed to warmed conditions to microbial CUEs in the warm-adapted communities exposed to those temperatures, we could demonstrate that the shifts towards warm-adapted microbial communities had selected for elevated microbial CUEs for the full range of in situ soil temperatures during three years. Our results suggest that microbial adaptation to warming will enhance microbial CUEs, shifting their balance of C use from respiration to biomass production. If our estimates scale to ecosystem level, this would imply that warm-adapted microbial communities will ultimately have the potential to store more C in soil than their cold-adapted counter parts could when exposed to warmer temperatures.

  12. Warm-Ups: The Key to the Beginning of a Great Lesson

    ERIC Educational Resources Information Center

    James, Alisa R.; Collier, Douglas H.

    2011-01-01

    Historically, traditional pre-lesson warm-ups in physical education have consisted of callisthenic exercises such as jumping jacks, pushups, sit-ups, and running laps, as well as static stretching activities. These warm-ups are used to increase core body temperature and to assist blood flow to the working muscles. Although the traditional warm-up…

  13. 40 CFR 52.223 - Approval status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of... associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming...

  14. 40 CFR 52.1634 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gases in the pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4... associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming...

  15. 40 CFR 52.223 - Approval status.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of... associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming...

  16. 40 CFR 52.223 - Approval status.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of... associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming...

  17. 40 CFR 52.223 - Approval status.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of... associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming...

  18. Apocalypse soon? Dire messages reduce belief in global warming by contradicting just-world beliefs.

    PubMed

    Feinberg, Matthew; Willer, Robb

    2011-01-01

    Though scientific evidence for the existence of global warming continues to mount, in the United States and other countries belief in global warming has stagnated or even decreased in recent years. One possible explanation for this pattern is that information about the potentially dire consequences of global warming threatens deeply held beliefs that the world is just, orderly, and stable. Individuals overcome this threat by denying or discounting the existence of global warming, and this process ultimately results in decreased willingness to counteract climate change. Two experiments provide support for this explanation of the dynamics of belief in global warming, suggesting that less dire messaging could be more effective for promoting public understanding of climate-change research.

  19. Experimental warming differentially affects microbial structure and activity in two contrasted moisture sites in a Sphagnum-dominated peatland.

    PubMed

    Delarue, Frédéric; Buttler, Alexandre; Bragazza, Luca; Grasset, Laurent; Jassey, Vincent E J; Gogo, Sébastien; Laggoun-Défarge, Fatima

    2015-04-01

    Several studies on the impact of climate warming have indicated that peat decomposition/mineralization will be enhanced. Most of these studies deal with the impact of experimental warming during summer when prevalent abiotic conditions are favorable to decomposition. Here, we investigated the effect of experimental air warming by open-top chambers (OTCs) on water-extractable organic matter (WEOM), microbial biomasses and enzymatic activities in two contrasted moisture sites named Bog and Fen sites, the latter considered as the wetter ones. While no or few changes in peat temperature and water content appeared under the overall effect of OTCs, we observed that air warming smoothed water content differences and led to a decrease in mean peat temperature at the warmed Bog sites. This thermal discrepancy between the two sites led to contrasting changes in microbial structure and activities: a rise in hydrolytic activity at the warmed Bog sites and a relative enhancement of bacterial biomass at the warmed Fen sites. These features were not associated with any change in WEOM properties namely carbon and sugar contents and aromaticity, suggesting that air warming did not trigger any shift in OM decomposition. Using various tools, we show that the use of single indicators of OM decomposition can lead to fallacious conclusions. Lastly, these patterns may change seasonally as a consequence of complex interactions between groundwater level and air warming, suggesting the need to improve our knowledge using a high time-resolution approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The origins of the anomalous warming in the California coastal ocean and San Francisco Bay during 2014-2016

    NASA Astrophysics Data System (ADS)

    Chao, Yi; Farrara, John D.; Bjorkstedt, Eric; Chai, Fei; Chavez, Francisco; Rudnick, Daniel L.; Enright, Wendy; Fisher, Jennifer L.; Peterson, William T.; Welch, Gregory F.; Davis, Curtiss O.; Dugdale, Richard C.; Wilkerson, Frances P.; Zhang, Hongchun; Zhang, Yinglong; Ateljevich, Eli

    2017-09-01

    During 2014 exceptionally warm water temperatures developed across a wide area off the California coast and within San Francisco Bay (SFB) and persisted into 2016. Observations and numerical model output are used to document this warming and determine its origins. The coastal warming was mostly confined to the upper 100 m of the ocean and was manifested strongly in the two leading modes of upper ocean (0-100 m) temperature variability in the extratropical eastern Pacific. Observations suggest that the coastal warming in 2014 propagated into nearshore regions from the west while later indicating a warming influence that propagated from south to north into the region associated with the 2015-2016 El Niño event. An analysis of the upper ocean (0-100 m) heat budget in a Regional Ocean Modeling System (ROMS) simulation confirmed this scenario. The results from a set of sensitivity runs with the model in which the lateral boundary conditions varied supported the conclusions drawn from the heat budget analysis. Concerning the warming in the SFB, an examination of the observations and the heat budget in an unstructured-grid numerical model simulation suggested that the warming during the second half of 2014 and early 2016 originated in the adjacent California coastal ocean and propagated through the Golden Gate into the Bay. The finding that the coastal and Bay warming are due to the relatively slow propagation of signals from remote sources raises the possibility that such warming events may be predictable many months or even several seasons in advance.

  1. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    DOE PAGES

    Xue, Kai; Xie, Jianping; Zhou, Aifen; ...

    2016-05-06

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward moremore » C 4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C 4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming.« less

  2. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    PubMed Central

    Xue, Kai; Xie, Jianping; Zhou, Aifen; Liu, Feifei; Li, Dejun; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Luo, Yiqi; Zhou, Jizhong

    2016-01-01

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward more C4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming. PMID:27199978

  3. Responses of Plant Community Composition and Biomass Production to Warming and Nitrogen Deposition in a Temperate Meadow Ecosystem

    PubMed Central

    Gao, Song; Guo, Jixun; Sun, Wei

    2015-01-01

    Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China. PMID:25874975

  4. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Kai; Xie, Jianping; Zhou, Aifen

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward moremore » C 4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C 4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming.« less

  5. Performance comparison of improvised prehospital blood warming techniques and a commercial blood warmer.

    PubMed

    Milligan, James; Lee, Anna; Gill, Martin; Weatherall, Andrew; Tetlow, Chloe; Garner, Alan A

    2016-08-01

    Prehospital transfusion of packed red blood cells (PRBC) may be life saving for hypovolaemic trauma patients. PRBCs should preferably be warmed prior to administration but practical prehospital devices have only recently become available. The effectiveness of purpose designed prehospital warmers compared with previously used improvised methods of warming has not previously been described. Expired units of PRBCs were randomly assigned to a warming method in a bench study. Warming methods were exposure to body heat of an investigator, leaving the blood in direct sunlight on a dark material, wrapping the giving set around gel heat pads or a commercial fluid warmer (Belmont Buddy Lite). Methods were compared with control units that were run through the fluid circuit with no active warming strategy. The mean temperature was similar for all methods on removal from the fridge (4.5°C). The mean temperatures (degrees centigrade) for all methods were higher than the control group at the end of the circuit (all P≤0.001). For each method the mean (95% CI) temperature at the end of the circuit was; body heat 17.2 (16.4-18.0), exposure to sunlight 20.2 (19.4-21.0), gel heat pads 18.8 (18.0-19.6), Buddy Lite 35.2 (34.5-36.0) and control group 14.7 (13.9-15.5). All of the warming methods significantly warmed the blood but only the Buddy Lite reliably warmed the blood to a near normal physiological level. Improvised warming methods therefore cannot be recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Impact of nasal septal perforations of varying sizes and locations on the warming function of the nasal cavity: A computational fluid-dynamics analysis of 5 cases.

    PubMed

    Li, Lifeng; Han, Demin; Zhang, Luo; Li, Yunchuan; Zang, Hongrui; Wang, Tong; Liu, Yingxi

    2016-09-01

    Patients with a nasal septal perforation often exhibit symptoms associated with disturbed airflow, which can have an adverse effect on the warming function of the nasal cavity. The impact of this effect is not fully understood. The warming function is an important factor in the maintenance of nasal physiology. We conducted a study to investigate the impact of septal perforations of various sizes and locations on the warming function during inspiration in 5 patients-3 men and 2 women, aged 25 to 47 years. Three-dimensional computed tomography and computational fluid dynamics were used to model the flux of communication and temperature, and differences among patients were compared. All 5 patients exhibited an impairment of their nasal warming function. As the size of the perforation increased, the flux of communication increased and the warming function decreased. Perforations located in an anterior position were associated with greater damage to the warming function than those in a posterior position. In patients with a large or anteriorly located perforation, airflow temperature in the nasopharynx was decreased. Our findings suggest that septal perforations not only induce airflow disturbance, but they also impair the nasal warming function. Further analysis of warming function is necessary to better explore flow mechanisms in patients with structural abnormalities.

  7. Simulated Warming Differentially Affects the Growth and Competitive Ability of Centaurea maculosa Populations from Home and Introduced Ranges

    PubMed Central

    He, Wei-Ming; Li, Jing-Ji; Peng, Pei-Hao

    2012-01-01

    Climate warming may drive invasions by exotic plants, thereby raising concerns over the risks of invasive plants. However, little is known about how climate warming influences the growth and competitive ability of exotic plants from their home and introduced ranges. We conducted a common garden experiment with an invasive plant Centaurea maculosa and a native plant Poa pratensis, in which a mixture of sand and vermiculite was used as a neutral medium, and contrasted the total biomass, competitive effects, and competitive responses of C. maculosa populations from Europe (home range) and North America (introduced range) under two different temperatures. The warming-induced inhibitory effects on the growth of C. maculosa alone were stronger in Europe than in North America. The competitive ability of C. maculosa plants from North America was greater than that of plants from Europe under the ambient condition whereas this competitive ability followed the opposite direction under the warming condition, suggesting that warming may enable European C. maculosa to be more invasive. Across two continents, warming treatment increased the competitive advantage instead of the growth advantage of C. maculosa, suggesting that climate warming may facilitate C. maculosa invasions through altering competitive outcomes between C. maculosa and its neighbors. Additionally, the growth response of C. maculosa to warming could predict its ability to avoid being suppressed by its neighbors. PMID:22303485

  8. Simulated warming differentially affects the growth and competitive ability of Centaurea maculosa populations from home and introduced ranges.

    PubMed

    He, Wei-Ming; Li, Jing-Ji; Peng, Pei-Hao

    2012-01-01

    Climate warming may drive invasions by exotic plants, thereby raising concerns over the risks of invasive plants. However, little is known about how climate warming influences the growth and competitive ability of exotic plants from their home and introduced ranges. We conducted a common garden experiment with an invasive plant Centaurea maculosa and a native plant Poa pratensis, in which a mixture of sand and vermiculite was used as a neutral medium, and contrasted the total biomass, competitive effects, and competitive responses of C. maculosa populations from Europe (home range) and North America (introduced range) under two different temperatures. The warming-induced inhibitory effects on the growth of C. maculosa alone were stronger in Europe than in North America. The competitive ability of C. maculosa plants from North America was greater than that of plants from Europe under the ambient condition whereas this competitive ability followed the opposite direction under the warming condition, suggesting that warming may enable European C. maculosa to be more invasive. Across two continents, warming treatment increased the competitive advantage instead of the growth advantage of C. maculosa, suggesting that climate warming may facilitate C. maculosa invasions through altering competitive outcomes between C. maculosa and its neighbors. Additionally, the growth response of C. maculosa to warming could predict its ability to avoid being suppressed by its neighbors.

  9. An aftereffect of global warming on tropical Pacific decadal variability

    NASA Astrophysics Data System (ADS)

    Zheng, Jian; Liu, Qinyu; Wang, Chuanyang

    2018-03-01

    Studies have shown that global warming over the past six decades can weaken the tropical Pacific Walker circulation and maintain the positive phase of the Interdecadal Pacific Oscillation (IPO). Based on observations and model simulations, another aftereffect of global warming on IPO is found. After removing linear trends (global warming signals) from observations, however, the tropical Pacific climate still exhibited some obvious differences between two IPO negative phases. The boreal winter (DJF) equatorial central-eastern Pacific sea surface temperature (SST) was colder during the 1999-2014 period (P2) than that during 1961-1976 (P1). This difference may have been a result of global warming nonlinear modulation of precipitation; i.e., in the climatological rainy region, the core area of the tropical Indo-western Pacific warm pool receives more precipitation through the "wet-get-wetter" mechanism. Positive precipitation anomalies in the warm pool during P2 are much stronger than those during P1, even after subtracting the linear trend. Corresponding to the differences of precipitation, the Pacific Walker circulation is stronger in P2 than in P1. Consequent easterly winds over the equatorial Pacific led to a colder equatorial eastern-central Pacific during P2. Therefore, tropical Pacific climate differences between the two negative IPO phases are aftereffects of global warming. These aftereffects are supported by the results of coupled climate model experiments, with and without global warming.

  10. How much might additional half a degree from a global warming of 1.5°C affects the extreme precipitation change in China?

    NASA Astrophysics Data System (ADS)

    Li, W.; Jiang, Z.

    2017-12-01

    In order to strengthen the global respond to the dangerous of global warming, Paris Agreement sets out two long-term warming goals: limiting global warming to well below 2˚C and purse effort to below 1.5˚C above pre-industrial levels. However, future climate change risks in those two warming targets show significant regional differences. This article aims to study the intensity and frequency of extreme precipitation change over China under those two global warming targets by using CMIP5 models under RCP4.5 and RCP8.5 scenario. Focus is put on the effects of the additional half degree in changing the extreme precipitation. Results show that the changes of extreme precipitation are independent of the RCP scenarios when global warming reaches the same threshold. Intensity of extreme precipitation averaged over China increase by around 6% and 11% when global warming reaches 1.5˚C and 2˚C, respectively. The additional half a degree increase makes the intensity of extreme precipitation averaged over China to increase by 4.5%, which translates to an increase close to the Clausius-Clapeyron scaling. Return period decreases by 5 years for the extra half degree warming when the 20-year return values are considered at the reference level.

  11. Committed warming inferred from observations

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten; Pincus, Robert

    2017-09-01

    Due to the lifetime of CO2, the thermal inertia of the oceans, and the temporary impacts of short-lived aerosols and reactive greenhouse gases, the Earth’s climate is not equilibrated with anthropogenic forcing. As a result, even if fossil-fuel emissions were to suddenly cease, some level of committed warming is expected due to past emissions as studied previously using climate models. Here, we provide an observational-based quantification of this committed warming using the instrument record of global-mean warming, recently improved estimates of Earth’s energy imbalance, and estimates of radiative forcing from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Compared with pre-industrial levels, we find a committed warming of 1.5 K (0.9-3.6, 5th-95th percentile) at equilibrium, and of 1.3 K (0.9-2.3) within this century. However, when assuming that ocean carbon uptake cancels remnant greenhouse gas-induced warming on centennial timescales, committed warming is reduced to 1.1 K (0.7-1.8). In the latter case there is a 13% risk that committed warming already exceeds the 1.5 K target set in Paris. Regular updates of these observationally constrained committed warming estimates, although simplistic, can provide transparent guidance as uncertainty regarding transient climate sensitivity inevitably narrows and the understanding of the limitations of the framework is advanced.

  12. Impacts of half a degree additional warming on the Asian summer monsoon rainfall characteristics

    NASA Astrophysics Data System (ADS)

    Lee, Donghyun; Min, Seung-Ki; Fischer, Erich; Shiogama, Hideo; Bethke, Ingo; Lierhammer, Ludwig; Scinocca, John F.

    2018-04-01

    This study investigates the impacts of global warming of 1.5 °C and 2.0 °C above pre-industrial conditions (Paris Agreement target temperatures) on the South Asian and East Asian monsoon rainfall using five atmospheric global climate models participating in the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) project. Mean and extreme precipitation is projected to increase under warming over the two monsoon regions, more strongly in the 2.0 °C warmer world. Moisture budget analysis shows that increases in evaporation and atmospheric moisture lead to the additional increases in mean precipitation with good inter-model agreement. Analysis of daily precipitation characteristics reveals that more-extreme precipitation will have larger increase in intensity and frequency responding to the half a degree additional warming, which is more clearly seen over the South Asian monsoon region, indicating non-linear scaling of precipitation extremes with temperature. Strong inter-model relationship between temperature and precipitation intensity further demonstrates that the increased moisture with warming (Clausius-Clapeyron relation) plays a critical role in the stronger intensification of more-extreme rainfall with warming. Results from CMIP5 coupled global climate models under a transient warming scenario confirm that half a degree additional warming would bring more frequent and stronger heavy precipitation events, exerting devastating impacts on the human and natural system over the Asian monsoon region.

  13. Benefits of a Sport-Specific Warm-Up in Physical Education

    ERIC Educational Resources Information Center

    Reed, Julian; Banks, Aaron; Brathwaite, Rock

    2004-01-01

    Participating in some form of a warm-up prior to engaging in physical activity is considered an acceptable and valid practice. Nonetheless, the topic has been debated among those in the sport and physical education field for a number of years. Some professionals believe warm-up is essential to physical activity, while others believe warm-up is not…

  14. Intensified plant N and C pool with more available nitrogen under experimental warming in an alpine meadow ecosystem.

    PubMed

    Peng, Fei; Xue, Xian; You, Quangang; Xu, Manhou; Chen, Xiang; Guo, Jian; Wang, Tao

    2016-12-01

    Nitrogen (N) availability is projected to increase in a warming climate. But whether the more available N is immobilized by microbes (thus stimulates soil carbon (C) decomposition), or is absorbed by plants (thus intensifies C uptake) remains unknown in the alpine meadow ecosystem. Infrared heaters were used to simulate climate warming with a paired experimental design. Soil ammonification, nitrification, and net mineralization were obtained by in situ incubation in a permafrost region of the Qinghai-Tibet Plateau (QTP). Available N significantly increased due to the stimulation of net nitrification and mineralization in 0-30 cm soil layer. Microbes immobilized N in the end of growing season in both warming and control plots. The magnitude of immobilized N was lower in the warming plots. The root N concentration significantly reduced, but root N pool intensified due to the significant increase in root biomass in the warming treatment. Our results suggest that a warming-induced increase in biomass is the major N sink and will continue to stimulate plant growth until plant N saturation, which could sustain the positive warming effect on ecosystem productivity.

  15. Continuous tonic spike activity in spider warm cells in the absence of sensory input.

    PubMed

    Gingl, E; Tichy, H

    2006-09-01

    The warm cells of the spider tarsal organ respond very sensitively to low-amplitude changes in temperature and discharge continuously as the rate of change in temperature reaches zero. To test whether the continuous tonic discharge remains without sensory input, we blocked the warm cell's receptive region by Epoxy glue. The activity continued in this situation, but its dependence on temperature changes was strongly reduced. We interpret this to mean that the warm cells exhibit specific intrinsic properties that underlie the generation of the tonic discharge. Experiments with electrical stimulation confirmed the observation that the warm cells persist in activity without an external drive. In warm cells with blocked receptive region, the response curves describing the relationship between the tonic discharge and the level of depolarization is the same for different temperatures. In warm cells with intact receptive region, the curves are shifted upward with rising temperature, as if the injected current is simply added to the receptor current. This indicates a modulating effect of the receptor current on the tonic discharge. Stimulation causes a change in the tonic discharge rate and thereby enables individual warm cells to signal the direction in addition to the magnitude of temperature changes.

  16. Sensitivity of the Palaeocene-Eocene Thermal Maximum climate to cloud properties.

    PubMed

    Kiehl, Jeffrey T; Shields, Christine A

    2013-10-28

    The Palaeocene-Eocene Thermal Maximum (PETM) was a significant global warming event in the Earth's history (approx. 55 Ma). The cause for this warming event has been linked to increases in greenhouse gases, specifically carbon dioxide and methane. This rapid warming took place in the presence of the existing Early Eocene warm climate. Given that projected business-as-usual levels of atmospheric carbon dioxide reach concentrations of 800-1100 ppmv by 2100, it is of interest to study past climates where atmospheric carbon dioxide was higher than present. This is especially the case given the difficulty of climate models in simulating past warm climates. This study explores the sensitivity of the simulated pre-PETM and PETM periods to change in cloud condensation nuclei (CCN) and microphysical properties of liquid water clouds. Assuming lower levels of CCN for both of these periods leads to significant warming, especially at high latitudes. The study indicates that past differences in cloud properties may be an important factor in accurately simulating past warm climates. Importantly, additional shortwave warming from such a mechanism would imply lower required atmospheric CO2 concentrations for simulated surface temperatures to be in reasonable agreement with proxy data for the Eocene.

  17. Climatic warming destabilizes forest ant communities

    PubMed Central

    Diamond, Sarah E.; Nichols, Lauren M.; Pelini, Shannon L.; Penick, Clint A.; Barber, Grace W.; Cahan, Sara Helms; Dunn, Robert R.; Ellison, Aaron M.; Sanders, Nathan J.; Gotelli, Nicholas J.

    2016-01-01

    How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable. PMID:27819044

  18. Climatic warming destabilizes forest ant communities.

    PubMed

    Diamond, Sarah E; Nichols, Lauren M; Pelini, Shannon L; Penick, Clint A; Barber, Grace W; Cahan, Sara Helms; Dunn, Robert R; Ellison, Aaron M; Sanders, Nathan J; Gotelli, Nicholas J

    2016-10-01

    How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable.

  19. Australian climate extremes at 1.5 °C and 2 °C of global warming

    NASA Astrophysics Data System (ADS)

    King, Andrew D.; Karoly, David J.; Henley, Benjamin J.

    2017-06-01

    To avoid more severe impacts from climate change, there is international agreement to strive to limit warming to below 1.5 °C. However, there is a lack of literature assessing climate change at 1.5 °C and the potential benefits in terms of reduced frequency of extreme events. Here, we demonstrate that existing model simulations provide a basis for rapid and rigorous analysis of the effects of different levels of warming on large-scale climate extremes, using Australia as a case study. We show that limiting warming to 1.5 °C, relative to 2 °C, would perceptibly reduce the frequency of extreme heat events in Australia. The Australian continent experiences a variety of high-impact climate extremes that result in loss of life, and economic and environmental damage. Events similar to the record-hot summer of 2012-2013 and warm seas associated with bleaching of the Great Barrier Reef in 2016 would be substantially less likely, by about 25% in both cases, if warming is kept to lower levels. The benefits of limiting warming on hydrometeorological extremes are less clear. This study provides a framework for analysing climate extremes at 1.5 °C global warming.

  20. Early warm-rewarding parenting moderates the genetic contributions to callous-unemotional traits in childhood.

    PubMed

    Henry, Jeffrey; Dionne, Ginette; Viding, Essi; Vitaro, Frank; Brendgen, Mara; Tremblay, Richard E; Boivin, Michel

    2018-04-23

    Previous gene-environment interaction studies of CU traits have relied on the candidate gene approach, which does not account for the entire genetic load of complex phenotypes. Moreover, these studies have not examined the role of positive environmental factors such as warm/rewarding parenting. The aim of the present study was to determine whether early warm/rewarding parenting moderates the genetic contributions (i.e., heritability) to callous-unemotional (CU) traits at school age. Data were collected in a population sample of 662 twin pairs (Quebec Newborn Twin Study - QNTS). Mothers reported on their warm/rewarding parenting. Teachers assessed children's CU traits. These reports were subjected to twin modeling. Callous-unemotional traits were highly heritable, with the remaining variance accounted for by nonshared environmental factors. Warm/rewarding parenting significantly moderated the role of genes in CU traits; heritability was lower when children received high warm/rewarding parenting than when they were exposed to low warm/rewarding parenting. High warm/rewarding parenting may partly impede the genetic expression of CU traits. Developmental models of CU traits need to account for such gene-environment processes. © 2018 Association for Child and Adolescent Mental Health.

  1. Five Years of Experimental Warming Increases the Biodiversity and Productivity of Phytoplankton

    PubMed Central

    Yvon-Durocher, Gabriel; Allen, Andrew P.; Cellamare, Maria; Dossena, Matteo; Gaston, Kevin J.; Leitao, Maria; Montoya, José M.; Reuman, Daniel C.; Woodward, Guy; Trimmer, Mark

    2015-01-01

    Phytoplankton are key components of aquatic ecosystems, fixing CO2 from the atmosphere through photosynthesis and supporting secondary production, yet relatively little is known about how future global warming might alter their biodiversity and associated ecosystem functioning. Here, we explore how the structure, function, and biodiversity of a planktonic metacommunity was altered after five years of experimental warming. Our outdoor mesocosm experiment was open to natural dispersal from the regional species pool, allowing us to explore the effects of experimental warming in the context of metacommunity dynamics. Warming of 4°C led to a 67% increase in the species richness of the phytoplankton, more evenly-distributed abundance, and higher rates of gross primary productivity. Warming elevated productivity indirectly, by increasing the biodiversity and biomass of the local phytoplankton communities. Warming also systematically shifted the taxonomic and functional trait composition of the phytoplankton, favoring large, colonial, inedible phytoplankton taxa, suggesting stronger top-down control, mediated by zooplankton grazing played an important role. Overall, our findings suggest that temperature can modulate species coexistence, and through such mechanisms, global warming could, in some cases, increase the species richness and productivity of phytoplankton communities. PMID:26680314

  2. Nonlinear regional warming with increasing CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Good, Peter; Lowe, Jason A.; Andrews, Timothy; Wiltshire, Andrew; Chadwick, Robin; Ridley, Jeff K.; Menary, Matthew B.; Bouttes, Nathaelle; Dufresne, Jean Louis; Gregory, Jonathan M.; Schaller, Nathalie; Shiogama, Hideo

    2015-02-01

    When considering adaptation measures and global climate mitigation goals, stakeholders need regional-scale climate projections, including the range of plausible warming rates. To assist these stakeholders, it is important to understand whether some locations may see disproportionately high or low warming from additional forcing above targets such as 2 K (ref. ). There is a need to narrow uncertainty in this nonlinear warming, which requires understanding how climate changes as forcings increase from medium to high levels. However, quantifying and understanding regional nonlinear processes is challenging. Here we show that regional-scale warming can be strongly superlinear to successive CO2 doublings, using five different climate models. Ensemble-mean warming is superlinear over most land locations. Further, the inter-model spread tends to be amplified at higher forcing levels, as nonlinearities grow--especially when considering changes per kelvin of global warming. Regional nonlinearities in surface warming arise from nonlinearities in global-mean radiative balance, the Atlantic meridional overturning circulation, surface snow/ice cover and evapotranspiration. For robust adaptation and mitigation advice, therefore, potentially avoidable climate change (the difference between business-as-usual and mitigation scenarios) and unavoidable climate change (change under strong mitigation scenarios) may need different analysis methods.

  3. Decadal Variation's Offset of Global Warming in Recent Tropical Pacific Climate

    NASA Astrophysics Data System (ADS)

    Yeo, S. R.; Yeh, S. W.; Kim, K. Y.; Kim, W.

    2015-12-01

    Despite the increasing greenhouse gas concentration, there is no significant warming in the sea surface temperature (SST) over the tropical eastern Pacific since about 2000. This counterintuitive observation has generated substantial interest in the role of low-frequency variation over the Pacific Ocean such as Pacific Decadal Oscillation (PDO) or Interdecadal Pacific Oscillation (IPO). Therefore, it is necessary to appropriately separate low-frequency variability and global warming from SST records. Here we present three primary modes of global SST as a secular warming trend, a low-frequency variability, and a biennial oscillation through the use of novel statistical method. By analyzing temporal behavior of the three-mode, it is found that the opposite contributions of secular warming trend and cold phase of low-frequency variability since 1999 account for the warming hiatus in the tropical eastern Pacific. This result implies that the low-frequency variability modulates the manifestation of global warming signal in the tropical Pacific SST. Furthermore, if the low-frequency variability turns to a positive phase, warming in the tropical eastern Pacific will be amplified and also strong El Niño events will occur more frequently in the near future.

  4. Earlier flowering did not alter pollen limitation in an early flowering shrub under short-term experimental warming.

    PubMed

    Pan, Cheng-Chen; Feng, Qi; Zhao, Ha-Lin; Liu, Lin-De; Li, Yu-Lin; Li, Yu-Qiang; Zhang, Tong-Hui; Yu, Xiao-Ya

    2017-06-05

    In animal pollinated plants, phenological shifts caused by climate change may have important ecological consequences. However, no empirical evidence exists at present on the consequences that flowering phenology shifts have on the strength of pollen limitation under experimental warming. Here, we investigated the effects of experimental warming on flowering phenology, flower density, reproductive success, and pollen limitation intensity in Caragana microphylla and evaluated whether earlier flowering phenology affected plant reproduction and the level of pollen limitation using warmed and unwarmed open top chambers in the Horqin Sandy Land of Inner Mongolia, northern China. The results of this study indicated that artificial warming markedly advanced flower phenology rather than extending the duration of the flowering. Additionally, warming was found to significantly reduce flower density which led to seed production reduction, since there were insignificant effects observed on fruit set and seed number per fruit. Experimental floral manipulations showed that warming did not affect pollen limitation. These results revealed the negative effects of advanced phenology induced by warming on flower density and reproductive output, as well as the neutral effects on reproductive success and pollen limitation intensity of long surviving plants.

  5. Does the climate warming hiatus exist over the Tibetan Plateau?

    PubMed Central

    Duan, Anmin; Xiao, Zhixiang

    2015-01-01

    The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998–2013 (0.25 °C decade−1), compared with that during 1980–1997 (0.21 °C decade−1). Further results indicate that, to some degree, such an accelerated warming trend might be attributable to cloud–radiation feedback. The increased nocturnal cloud over the northern Tibetan Plateau would warm the nighttime temperature via enhanced atmospheric back-radiation, while the decreased daytime cloud over the southern Tibetan Plateau would induce the daytime sunshine duration to increase, resulting in surface air temperature warming. Meanwhile, the in situ surface wind speed has recovered gradually since 1998, and thus the energy concentration cannot explain the accelerated warming trend over the Tibetan Plateau after the 1990s. It is suggested that cloud–radiation feedback may play an important role in modulating the recent accelerated warming trend over the Tibetan Plateau. PMID:26329678

  6. Effect of pre-warming on perioperative hypothermia and anesthetic recovery in small breed dogs undergoing ovariohysterectomy

    PubMed Central

    Aarnes, Turi K.; Bednarski, Richard M.; Lerche, Phillip; Hubbell, John A.E.

    2017-01-01

    This study compared perianesthetic body temperatures and times to recovery from general anesthesia in small dogs that were either warmed for 20 minutes prior to anesthesia or not warmed. Twenty-eight client-owned dogs that were presented for ovariohysterectomy were included in the study. Small (<10 kg body weight) dogs with normal circulatory status were randomly assigned to receive pre-warming for 20 minutes or no treatment. Body temperature was measured during the procedure using a calibrated rectal probe. Duration of anesthesia and surgery, time to rescue warming, time to extubation, presence and duration of shivering, and time to return to normal temperature were recorded. Temperature at the end of surgery was significantly higher in the control group than the pre-warmed group. There was no difference in time to extubation or duration of postoperative shivering between groups. Pre-warming did not result in improved temperature or recovery from anesthesia. PMID:28216687

  7. Pressure-relieving properties of a intra-operative warming device.

    PubMed

    Baker, E A; Leaper, D J

    2003-04-01

    The primary objective of this study was to determine differences in interface pressure between four mattress combinations: a standard operating table mattress, a pressure-relieving gel pad and an under-patient warming device set at 38 degrees C (Pegasus Inditherm System) and at ambient temperature. The secondary objective was to determine whether the warming device remains stable in extreme surgical positions. Interface pressures obtained with all four combinations were measured in 10 healthy volunteers using force sensing array technology. The warming device demonstrated better or equivalent pressure relief when compared with the standard gel pad. There was no significant difference in subject position 'shift' between the mattress, the gel pad and the warming device for either the Trendelenberg or reverse Trendelenberg positions. Both pressure-relieving mattresses and warming reduce intra-operative pressure damage. A mattress with both properties may further reduce pressure damage postoperatively. The warming device used in this study appears stable--subject 'slippage' was minimal in extreme positions. Research needs to be conducted among real anaesthetised patients to support these conclusions.

  8. Warm-up with weighted bat and adjustment of upper limb muscle activity in bat swinging under movement correction conditions.

    PubMed

    Ohta, Yoichi; Ishii, Yasumitsu; Ikudome, Sachi; Nakamoto, Hiroki

    2014-02-01

    The effects of weighted bat warm-up on adjustment of upper limb muscle activity were investigated during baseball bat swinging under dynamic conditions that require a spatial and temporal adjustment of the swinging to hit a moving target. Seven male college baseball players participated in this study. Using a batting simulator, the task was to swing the standard bat coincident with the arrival timing and position of a moving target after three warm-up swings using a standard or weighted bat. There was no significant effect of weighted bat warm-up on muscle activity before impact associated with temporal or spatial movement corrections. However, lower inhibition of the extensor carpi ulnaris muscle activity was observed in a velocity-changed condition in the weighted bat warm-up, as compared to a standard bat warm-up. It is suggested that weighted bat warm-up decreases the adjustment ability associated with inhibition of muscle activation under movement correction conditions.

  9. Consistency of the tachyon warm inflationary universe models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao-Min; Zhu, Jian-Yang, E-mail: zhangxm@mail.bnu.edu.cn, E-mail: zhujy@bnu.edu.cn

    2014-02-01

    This study concerns the consistency of the tachyon warm inflationary models. A linear stability analysis is performed to find the slow-roll conditions, characterized by the potential slow-roll (PSR) parameters, for the existence of a tachyon warm inflationary attractor in the system. The PSR parameters in the tachyon warm inflationary models are redefined. Two cases, an exponential potential and an inverse power-law potential, are studied, when the dissipative coefficient Γ = Γ{sub 0} and Γ = Γ(φ), respectively. A crucial condition is obtained for a tachyon warm inflationary model characterized by the Hubble slow-roll (HSR) parameter ε{sub H}, and the conditionmore » is extendable to some other inflationary models as well. A proper number of e-folds is obtained in both cases of the tachyon warm inflation, in contrast to existing works. It is also found that a constant dissipative coefficient (Γ = Γ{sub 0}) is usually not a suitable assumption for a warm inflationary model.« less

  10. Trends in global warming and evolution of nucleoproteins from influenza A viruses since 1918.

    PubMed

    Yan, S; Wu, G

    2010-12-01

    Global warming affects not only the environment where we live, but also all living species to different degree, including influenza A virus. We recently conducted several studies on the possible impact of global warming on the protein families of influenza A virus. More studies are needed in order to have a full picture of the impact of global warming on living organisms, especially its effect on viruses. In this study, we correlate trends in global warming with evolution of the nucleoprotein from influenza A virus and then analyse the trends with respect to northern/southern hemispheres, virus subtypes and sampling species. The results suggest that global warming may have an impact on the evolution of the nucleoprotein from influenza A virus. © 2010 Blackwell Verlag GmbH.

  11. Urban warming reduces aboveground carbon storage.

    PubMed

    Meineke, Emily; Youngsteadt, Elsa; Dunn, Robert R; Frank, Steven D

    2016-10-12

    A substantial amount of global carbon is stored in mature trees. However, no experiments to date test how warming affects mature tree carbon storage. Using a unique, citywide, factorial experiment, we investigated how warming and insect herbivory affected physiological function and carbon sequestration (carbon stored per year) of mature trees. Urban warming increased herbivorous arthropod abundance on trees, but these herbivores had negligible effects on tree carbon sequestration. Instead, urban warming was associated with an estimated 12% loss of carbon sequestration, in part because photosynthesis was reduced at hotter sites. Ecosystem service assessments that do not consider urban conditions may overestimate urban tree carbon storage. Because urban and global warming are becoming more intense, our results suggest that urban trees will sequester even less carbon in the future. © 2016 The Author(s).

  12. Effects of warm and cold climate conditions on capelin (Mallotus villosus) and Pacific herring (Clupea pallasii) in the eastern Bering Sea

    NASA Astrophysics Data System (ADS)

    Andrews, Alexander G.; Strasburger, Wesley W.; Farley, Edward V.; Murphy, James M.; Coyle, Kenneth O.

    2016-12-01

    Climate warming has impacted the southern extent of sea ice in the eastern Bering Sea (EBS) ecosystem, leading to many changes in ocean conditions and food webs there. We explore how these changes have affected two key forage fish species, capelin (Mallotus villosus) and Pacific herring (Clupea pallasii), examining the effects of climate change on this commercially important ecosystem in the EBS. Catch per unit effort (CPUE) data from surface trawls, size, and diet of capelin and Pacific herring were collected during a series of warm and cold years by fisheries oceanographic surveys conducted from mid-August to early October 2003 through 2011. Overall, mean CPUE for both species was higher in the northeastern Bering Sea [NEBS; capelin=1.2 kg/km2 (warm) and 40.0 kg/km2 (cold); herring=141.1 kg/km2 (warm) and 132.4 kg/km2 (cold)] relative to the southeastern Bering Sea [SEBS; capelin=0.2 kg/km2 (warm) and 5.8 kg/km2 (cold); herring=15.8 kg/km2 (warm) and 24.5 kg/km2 (cold)], irrespective of temperature conditions. Capelin mean CPUE was significantly lower during warm years than during cold years [p<0.001; 0.6 kg/km2 (warm), 19.0 kg/km2 (cold)]. Pacific herring mean CPUE was less variable between warm and cold years [p<0.001; 63.8 kg/km2 (warm), 66.2 kg/km2 (cold)], but was still significantly less during warm years than cold. Capelin and herring lengths remained relatively constant between climate periods. Capelin lengths were similar among oceanographic domains [104 mm (South Inner domain), 112 mm (South Middle domain), 107 mm (North Inner domain), and 104 mm (North Middle domain)], while herring were larger in domains further offshore [123 mm (South Inner domain), 232 mm (South Middle domain), 260 mm (South Outer domain), 129 mm (North Inner domain), and 198 mm (North Middle domain)]. Diets for both species were significantly different between climate periods. Large crustacean prey comprised a higher proportion of the diets in most regions during cold years. Age-0 walleye pollock (Gadus chalcogrammus) contributed >60% to the diets of Pacific herring in southern Middle Domain and >30% in the northern Middle domain during warm years. A switch to less energetic prey for these forage fishes during warm years may have implications for fitness and future recruitment. The shifts in the distribution and lower biomass of capelin in the EBS during warm years could lead to disruptions in energy pathways in this complex marine ecosystem.

  13. Warming trends: Adapting to nonlinear change

    DOE PAGES

    Jonko, Alexandra K.

    2015-01-28

    As atmospheric carbon dioxide concentrations rise, some regions are expected to warm more than others. Research suggests that whether warming will intensify or slow down over time also depends on location.

  14. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Kai; Yuan, Mengting M.; Xie, Jianping

    Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. Withmore » less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened. IMPORTANCE Global change involves simultaneous alterations, including those caused by climate warming and land management practices (e.g., clipping). Data on the interactive effects of warming and clipping on ecosystems remain elusive, particularly in microbial ecology. This study found that clipping alters microbial responses to warming and demonstrated the effects of antagonistic interactions between clipping and warming on microbial functional genes. Clipping alone or combined with warming enriched genes degrading relatively recalcitrant carbon, likely reflecting the decreased quantity of soil carbon input from litter, which could weaken long-term soil C stability and trigger positive warming feedback. These results have important implications in assessing and predicting the consequences of global climate change and indicate that the removal of aboveground biomass for biofuel production may need to be reconsidered.« less

  15. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming

    DOE PAGES

    Xue, Kai; Yuan, Mengting M.; Xie, Jianping; ...

    2016-09-27

    Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. Withmore » less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened. IMPORTANCE Global change involves simultaneous alterations, including those caused by climate warming and land management practices (e.g., clipping). Data on the interactive effects of warming and clipping on ecosystems remain elusive, particularly in microbial ecology. This study found that clipping alters microbial responses to warming and demonstrated the effects of antagonistic interactions between clipping and warming on microbial functional genes. Clipping alone or combined with warming enriched genes degrading relatively recalcitrant carbon, likely reflecting the decreased quantity of soil carbon input from litter, which could weaken long-term soil C stability and trigger positive warming feedback. These results have important implications in assessing and predicting the consequences of global climate change and indicate that the removal of aboveground biomass for biofuel production may need to be reconsidered.« less

  16. Projection of actual evapotranspiration using the COSMO-CLM regional climate model under global warming scenarios of 1.5 °C and 2.0 °C in the Tarim River basin, China

    NASA Astrophysics Data System (ADS)

    Su, Buda; Jian, Dongnan; Li, Xiucang; Wang, Yanjun; Wang, Anqian; Wen, Shanshan; Tao, Hui; Hartmann, Heike

    2017-11-01

    Actual evapotranspiration (ETa) is an important component of the water cycle. The goals for limiting global warming to below 2.0 °C above pre-industrial levels and aspiring to 1.5 °C were negotiated in the Paris Agreement in 2015. In this study, outputs from the regional climate model COSMO-CLM (CCLM) for the Tarim River basin (TRB) were used to calculate ETa with an advection-aridity model, and changes in ETa under global warming scenarios of 1.5 °C (2020 to 2039) and 2.0 °C (2040 to 2059) were analyzed. Comparison of warming at the global and regional scale showed that regional 1.5 °C warming would occur later than the global average, while regional 2.0 °C warming would occur earlier than the global average. For global warming of 1.5 °C, the average ETa in the TRB is about 222.7 mm annually, which represents an increase of 6.9 mm relative to the reference period (1986-2005), with obvious increases projected for spring and summer. The greatest increases in ETa were projected for the northeast and southwest. The increment in the annual ETa across the TRB considering a warming of 1.5 °C was 4.3 mm less than that for a warming of 2.0 °C, and the reduction between the two levels of warming was most pronounced in the summer, when ETa was 3.4 mm smaller. The reduction in the increment of annual ETa for warming of 1.5 °C relative to warming of 2.0 °C was most pronounced in the southwest and northeast, where it was projected to be 8.2 mm and 9.3 mm smaller, respectively. It is suggested that the higher ETa under a warming of 2.0 °C mainly results from an increase in the sunshine duration (net radiation) in the southwestern basin and an increase in precipitation in the northeastern basin. Vapor is removed from the limited surface water supplies by ETa. The results of this study are therefore particularly relevant for water resource planning in the TRB.

  17. A systematic review of the effectiveness of warming interventions for women undergoing cesarean section.

    PubMed

    Munday, Judy; Hines, Sonia; Wallace, Karen; Chang, Anne M; Gibbons, Kristen; Yates, Patsy

    2014-12-01

    Women undergoing cesarean section are vulnerable to adverse effects associated with inadvertent perioperative hypothermia, but there has been a lack of synthesized evidence for temperature management in this population. This systematic review aimed to synthesize the best available evidence in relation to preventing hypothermia in mothers undergoing cesarean section surgery. Randomized controlled trials meeting the inclusion criteria (adult patients of any ethnic background, with or without comorbidities, undergoing any mode of anesthesia for any type of cesarean section) were eligible for consideration. Active or passive warming interventions versus usual care or placebo, aiming to limit or manage core heat loss in women undergoing cesarean section were considered. The primary outcome was maternal core temperature. A comprehensive search with no language restrictions was undertaken of multiple databases from their inception until May 2012. Two independent reviewers using the standardized critical appraisal instrument for randomized controlled trials from the Joanna Briggs Institute Meta-Analysis of Statistics Assessment and Review Instruments (JBI-MASTARI) assessed retrieved papers for methodological quality and conducted data collection. Where possible, results were combined in a fixed effects meta-analysis using the Cochrane Collaboration Review Manager software. Due to heterogeneity for one outcome, random effects meta-analysis was also used. A combined total of 719 participants from 12 studies were included. Intravenous fluid warming was found to be effective at maintaining maternal temperature and preventing shivering. Warming devices, including forced air warming and under-body carbon polymer mattresses, were effective at preventing hypothermia. However, effectiveness increased if the devices were applied preoperatively. Preoperative warming devices reduced shivering and improved neonatal temperatures at birth. Intravenous fluid warming did not improve neonatal temperature, and the effectiveness of warming interventions on umbilical pH remains unclear. Intravenous fluid warming by any method improves maternal temperature and reduces shivering during and after cesarean section, as does preoperative body warming. Preoperative warming strategies should be utilized where possible. Preoperative or intraoperative warmed IV fluids should be standard practice. Warming strategies are less effective when intrathecal opioids are administered. Further research is needed to investigate interventions in emergency cesarean section surgery. Larger scale studies using standardized, clinically meaningful temperature measurement time points are required. © 2014 Sigma Theta Tau International.

  18. Clinical Trial Research on Mongolian Medical Warm Acupuncture in Treating Insomnia.

    PubMed

    Bo, Agula; Si, Lengge; Wang, Yuehong; Xiu, Lan; Wu, Rihan; Li, Yutang; Mu, Rigenjiya; Ga, Latai; Miao, Mei; Shuang, Fu; Wu, Yunhua; Jin, Qiu; Tong, Suocai; Wuyun, Gerile; Guan, Wurihan; Mo, Rigen; Hu, Sileng; Zhang, Lixia; Peng, Rui; Bao, Lidao

    2016-01-01

    Objective. Insomnia is one of the most common sleep disorders. Hypnotics have poor long-term efficacy. Mongolian medical warm acupuncture has significant efficacy in treating insomnia. The paper evaluates the role of Mongolian medical warm acupuncture in treating insomnia by investigating the Mongolian medicine syndromes and conditions, Pittsburgh sleep quality index, and polysomnography indexes. Method. The patients were diagnosed in accordance with International Classification of Sleep Disorders (ICSD-2). The insomnia patients were divided into the acupuncture group (40 cases) and the estazolam group (40 cases). The patients underwent intervention of Mongolian medical warm acupuncture and estazolam. The indicators of the Mongolian medicine syndromes and conditions, Pittsburgh sleep quality index (PSQI), and polysomnography indexes (PSG) have been detected. Result. Based on the comparison of the Mongolian medicine syndrome scores between the warm acupuncture group and the drug treatment group, the result indicated P < 0.01. The clinical efficacy result showed that the effective rate (85%) in the warm acupuncture group was higher than that (70%) in the drug group. The total scores of PSQI of both groups were approximated. The sleep quality indexes of both groups decreased significantly ( P < 0.05). The sleep quality index in the Mongolian medical warm acupuncture group decreased significantly ( P < 0.01) and was better than that in the estazolam group. The sleep efficiency and daytime functions of the patients in the Mongolian medical warm acupuncture group improved significantly ( P < 0.01). The sleep time was significantly extended ( P < 0.01) in the Mongolian medical warm acupuncture group following PSG intervention. The sleep time during NREM in the Mongolian warm acupuncture group increased significantly ( P < 0.01). The sleep time exhibited a decreasing trend during REM and it decreased significantly in the Mongolian warm acupuncture group ( P < 0.01). The percentage of sleep time in the total sleep time during NREM3+4 in the Mongolian medical warm acupuncture group increased significantly. Conclusion. Mongolian medical warm acupuncture is efficient and safe in treating insomnia. It is able to better improve the patients' sleep time and daytime functions. It is better than that in the estazolam group following drug withdrawal in terms of improving the sleep time. It is more effective in helping the insomnia patients than hypnotics.

  19. Population risk perceptions of global warming in Australia.

    PubMed

    Agho, Kingsley; Stevens, Garry; Taylor, Mel; Barr, Margo; Raphael, Beverley

    2010-11-01

    According to the World Health Organisation (WHO), global warming has the potential to dramatically disrupt some of life's essential requirements for health, water, air and food. Understanding how Australians perceive the risk of global warming is essential for climate change policy and planning. The aim of this study was to determine the prevalence of, and socio-demographic factors associated with, high levels of perceived likelihood that global warming would worsen, concern for self and family and reported behaviour changes. A module of questions on global warming was incorporated into the New South Wales Population Health Survey in the second quarter of 2007. This Computer Assisted Telephone Interview (CATI) was completed by a representative sample of 2004 adults. The weighted sample was comparable to the Australian population. Bivariate and multivariate statistical analyses were conducted to examine the socio-demographic and general health factors. Overall 62.1% perceived that global warming was likely to worsen; 56.3% were very or extremely concerned that they or their family would be directly affected by global warming; and 77.6% stated that they had made some level of change to the way they lived their lives, because of the possibility of global warming. After controlling for confounding factors, multivariate analyses revealed that those with high levels of psychological distress were 2.17 (Adjusted Odds Ratio (AOR)=2.17; CI: 1.16-4.03; P=0.015) times more likely to be concerned about global warming than those with low psychological distress levels. Those with a University degree or equivalent and those who lived in urban areas were significantly more likely to think that global warming would worsen compared to those without a University degree or equivalent and those who lived in the rural areas. Females were significantly (AOR=1.69; CI: 1.23-2.33; P=0.001) more likely to report they had made changes to the way they lived their lives due to the risk of global warming. A high proportion of respondents reported that they perceived that global warming would worsen, were concerned that it would affect them and their families and had already made changes in their lives because of it. These findings support a readiness in the population to deal with global warming. Future research and programs are needed to investigate population-level strategies for future action. Crown Copyright © 2010. Published by Elsevier Inc. All rights reserved.

  20. Tourniquet application after local forearm warming to improve venodilation for peripheral intravenous cannulation in young and middle-aged adults: A single-blind prospective randomized controlled trial.

    PubMed

    Yamagami, Yuki; Tomita, Kohei; Tsujimoto, Tomomi; Inoue, Tomoko

    2017-07-01

    Local forearm warming before tourniquet application is often used to promote venodilation for peripheral intravenous cannulation; however, few studies have compared the effect of tourniquet application with and without local warming on vein size. To evaluate the effectiveness of tourniquet application after local forearm warming with that of tourniquet application alone in young and middle-aged adults. A single-blind, prospective, parallel group, randomized controlled trial. A national university in Japan. Seventy-two volunteers aged 20-64 years. Participants were randomly allocated to one of two groups: tourniquet application for 30s after forearm application of a heat pack warmed to 40°C±2°C for 15min (active warming group; n=36) or tourniquet application for 30s after applying a non-warmed heat pack for 15min (passive warming group; n=36). The primary outcomes were vein cross-sectional area on the forearm, measured after the intervention by blinded research assistants using ultrasound. Secondary outcomes were shortest diameter, and longest diameter of vein on the forearm, forearm skin temperature, body temperature, pulse, systolic blood pressure, and diastolic blood pressure. All outcomes were assessed at the same site before and immediately after the intervention, once per participant. Vein cross-sectional area, shortest vein diameter, and longest vein diameter were significantly increased in the active warming group compared with the passive warming group (p <0.01). Tourniquet application after local warming was superior to tourniquet application alone in increasing vein cross-sectional, shortest diameter, and longest diameter (between-group differences of 2.2mm 2 , 0.5mm, and 0.5mm, respectively), and in raising skin temperature (between-group difference: 5.2°C). However, there were no significant differences in body temperature, pulse, or systolic or diastolic blood pressure between the groups. There were no adverse events associated with either intervention. Tourniquet application after local warming was associated with increased forearm vein size when compared with tourniquet application alone, and was demonstrated as being safe. Thus, with demonstrable effects on vein size, we recommend local warming before tourniquet application as a safe and effective technique for improving venodilation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Global warming: Clouds cooled the Earth

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten

    2016-12-01

    The slow instrumental-record warming is consistent with lower-end climate sensitivity. Simulations and observations now show that changing sea surface temperature patterns could have affected cloudiness and thereby dampened the warming.

  2. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials [100-Year Time Horizon] Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1 Methane 74-82-8 CH4 21 Nitrous...

  3. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials [100-Year Time Horizon] Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1 Methane 74-82-8 CH4 21 Nitrous...

  4. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials [100-Year Time Horizon] Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1 Methane 74-82-8 CH4 21 Nitrous...

  5. Effect of various warm-up devices on bat velocity of intercollegiate softball players.

    PubMed

    Szymanski, David J; Bassett, Kylie E; Beiser, Erik J; Till, Megan E; Medlin, Greg L; Beam, Jason R; Derenne, Coop

    2012-01-01

    Numerous warm-up devices are available for use by softball players while they are in the on-deck circle. It is difficult to know which warm-up device produces the greatest bat velocity (BV) in the batter's box for softball players because on-deck studies with these individuals are sparse. Because the majority of warm-up device research has been conducted with baseball players, the primary purpose of this study was to examine the effect of various warm-up devices on the BV of female intercollegiate softball players and compare the results with those of male baseball players. A secondary purpose was to evaluate 2 new commercially available resistance devices as warm-up aids. Nineteen Division I intercollegiate softball players (age = 19.8 ± 1.2 years, height = 167.0 ± 4.7 cm, body mass = 69.2 ± 8.6 kg, lean body mass = 49.6 ± 3.6 kg, % body fat = 27.9 ± 5.9) participated in a warm-up with 1 of 8 resistance devices on separate days. Each of the 8 testing sessions had players perform a standardized dynamic warm-up, 3 maximal dry swings mimicking their normal game swing with the assigned warm-up device, 2 comfortable dry swings with a standard 83.8-cm, 652-g (33-in., 23-oz) softball bat followed by 3 maximal game swings (20-second rest between swings) while hitting a softball off a batting tee with the same standard softball bat. Results indicated that there were no statistically significant differences in BV after using any of the 8 warm-up devices (510.3-2,721.5 g or 18-96 oz) similar to in previous baseball research. This indicates that the results for both male and female intercollegiate players are similar and that intercollegiate softball players can use any of the 8 warm-up devices in the on-deck circle and have similar BVs. However, similar to in other previous baseball research, it is not recommended that female intercollegiate softball players warm up with the popular commercial donut ring in the on-deck circle because it produced the slowest BV.

  6. Forced-Air Warming During Pediatric Surgery: A Randomized Comparison of a Compressible with a Noncompressible Warming System.

    PubMed

    Triffterer, Lydia; Marhofer, Peter; Sulyok, Irene; Keplinger, Maya; Mair, Stefan; Steinberger, Markus; Klug, Wolfgang; Kimberger, Oliver

    2016-01-01

    Perioperative hypothermia is a common problem, challenging the anesthesiologist and influencing patient outcome. Efficient and safe perioperative active warming is therefore paramount; yet, it can be particularly challenging in pediatric patients. Forced-air warming technology is the most widespread patient-warming option, with most forced-air warming systems consisting of a forced-air blower connected to a compressible, double layer plastic and/or a paper blanket with air holes on the patient side. We compared an alternative, forced-air, noncompressible, under-body patient-warming mattress (Baby/Kleinkinddecke of MoeckWarmingSystems, Moeck und Moeck GmbH; group MM) with a standard, compressible warming mattress system (Pediatric Underbody, Bair Hugger, 3M; group BH). The study included 80 patients aged <2 years, scheduled for elective surgery. After a preoperative core temperature measurement, the patients were placed on the randomized mattress in the operation theater and 4 temperature probes were applied rectally and to the patients' skin. The warming devices were turned on as soon as possible to the level for pediatric patients as recommended by the manufacturer (MM = 40°C, BH = 43°C). There was a distinct difference of temperature slope between the 2 groups: core temperatures of patients in the group MM remained stable and mean of the core temperature of patients in the group BH increased significantly (difference: +1.48°C/h; 95% confidence interval, 0.82-2.15°C/h; P = 0.0001). The need for temperature downregulation occurred more often in the BH group, with 22 vs 7 incidences (RR, 3.14; 95% confidence interval, 1.52-6.52; P = 0.0006). Skin temperatures were all lower in the MM group. Perioperatively, no side effects related to a warming device were observed in any group. Both devices are feasible choices for active pediatric patient warming, with the compressible mattress system being better suited to increase core temperature. The use of lower pediatric forced-air temperature settings, as recommended by the manufacturer, in the noncompressible mattress group resulted in more stable core temperature conditions, with fewer forced-air temperature adjustments necessary to avoid hyperthermia.

  7. Consequences of Global Warming of 1.5 °C and 2 °C for Regional Temperature and Precipitation Changes in the Contiguous United States

    PubMed Central

    Bradley, Raymond S.

    2017-01-01

    The differential warming of land and ocean leads to many continental regions in the Northern Hemisphere warming at rates higher than the global mean temperature. Adaptation and conservation efforts will, therefore, benefit from understanding regional consequences of limiting the global mean temperature increase to well below 2°C above pre-industrial levels, a limit agreed upon at the United Nations Climate Summit in Paris in December 2015. Here, we analyze climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to determine the timing and magnitude of regional temperature and precipitation changes across the contiguous United States (US) for global warming of 1.5 and 2°C and highlight consensus and uncertainties in model projections and their implications for making decisions. The regional warming rates differ considerably across the contiguous US, but all regions are projected to reach 2°C about 10-20 years before the global mean temperature. Although there is uncertainty in the timing of exactly when the 1.5 and 2°C thresholds will be crossed regionally, over 80% of the models project at least 2°C warming by 2050 for all regions for the high emissions scenario. This threshold-based approach also highlights regional variations in the rate of warming across the US. The fastest warming region in the contiguous US is the Northeast, which is projected to warm by 3°C when global warming reaches 2°C. The signal-to-noise ratio calculations indicate that the regional warming estimates remain outside the envelope of uncertainty throughout the twenty-first century, making them potentially useful to planners. The regional precipitation projections for global warming of 1.5°C and 2°C are uncertain, but the eastern US is projected to experience wetter winters and the Great Plains and the Northwest US are projected to experience drier summers in the future. The impact of different scenarios on regional precipitation projections is negligible throughout the twenty-first century compared to uncertainties associated with internal variability and model diversity. PMID:28076360

  8. Impacts of Dams and Global Warming on Fish Biodiversity in the Indo-Burma Hotspot

    PubMed Central

    Nam, So; Samejima, Hiromitsu; Watanabe, Katsutoshi; Grudpan, Chaiwut; Grudpan, Jarungjit; Magtoon, Wichan; Musikasinthorn, Prachya; Nguyen, Phuong Thanh; Praxaysonbath, Bounthob; Sato, Tomoyuki; Shimatani, Yukihiro; Suvarnaraksha, Apinun; Tanaka, Wataru; Thach, Phanara; Tran, Dac Dinh; Yamashita, Tomomi

    2016-01-01

    Both hydropower dams and global warming pose threats to freshwater fish diversity. While the extent of global warming may be reduced by a shift towards energy generation by large dams in order to reduce fossil-fuel use, such dams profoundly modify riverine habitats. Furthermore, the threats posed by dams and global warming will interact: for example, dams constrain range adjustments by fishes that might compensate for warming temperatures. Evaluation of their combined or synergistic effects is thus essential for adequate assessment of the consequences of planned water-resource developments. We made projections of the responses of 363 fish species within the Indo-Burma global biodiversity hotspot to the separate and joint impacts of dams and global warming. The hotspot encompasses the Lower Mekong Basin, which is the world’s largest freshwater capture fishery. Projections for 81 dam-building scenarios revealed progressive impacts upon projected species richness, habitable area, and the proportion of threatened species as generating capacity increased. Projections from 126 global-warming scenarios included a rise in species richness, a reduction in habitable area, and an increase in the proportion of threatened species; however, there was substantial variation in the extent of these changes among warming projections. Projections from scenarios that combined the effects of dams and global warming were derived either by simply adding the two threats, or by combining them in a synergistic manner that took account of the likelihood that habitat shifts under global warming would be constrained by river fragmentation. Impacts on fish diversity under the synergistic projections were 10–20% higher than those attributable to additive scenarios, and were exacerbated as generating capacity increased—particularly if CO2 emissions remained high. The impacts of dams, especially those on river mainstreams, are likely to be greater, more predictable and more immediately pressing for fishes than the consequences of global warming. Limits upon dam construction should therefore be a priority action for conserving fish biodiversity in the Indo-Burma hotspot. This would minimize synergistic impacts attributable to dams plus global warming, and help ensure the continued provision of ecosystem services represented by the Lower Mekong fishery. PMID:27532150

  9. Consequences of Global Warming of 1.5 °C and 2 °C for Regional Temperature and Precipitation Changes in the Contiguous United States.

    PubMed

    Karmalkar, Ambarish V; Bradley, Raymond S

    2017-01-01

    The differential warming of land and ocean leads to many continental regions in the Northern Hemisphere warming at rates higher than the global mean temperature. Adaptation and conservation efforts will, therefore, benefit from understanding regional consequences of limiting the global mean temperature increase to well below 2°C above pre-industrial levels, a limit agreed upon at the United Nations Climate Summit in Paris in December 2015. Here, we analyze climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to determine the timing and magnitude of regional temperature and precipitation changes across the contiguous United States (US) for global warming of 1.5 and 2°C and highlight consensus and uncertainties in model projections and their implications for making decisions. The regional warming rates differ considerably across the contiguous US, but all regions are projected to reach 2°C about 10-20 years before the global mean temperature. Although there is uncertainty in the timing of exactly when the 1.5 and 2°C thresholds will be crossed regionally, over 80% of the models project at least 2°C warming by 2050 for all regions for the high emissions scenario. This threshold-based approach also highlights regional variations in the rate of warming across the US. The fastest warming region in the contiguous US is the Northeast, which is projected to warm by 3°C when global warming reaches 2°C. The signal-to-noise ratio calculations indicate that the regional warming estimates remain outside the envelope of uncertainty throughout the twenty-first century, making them potentially useful to planners. The regional precipitation projections for global warming of 1.5°C and 2°C are uncertain, but the eastern US is projected to experience wetter winters and the Great Plains and the Northwest US are projected to experience drier summers in the future. The impact of different scenarios on regional precipitation projections is negligible throughout the twenty-first century compared to uncertainties associated with internal variability and model diversity.

  10. Impacts of Dams and Global Warming on Fish Biodiversity in the Indo-Burma Hotspot.

    PubMed

    Kano, Yuichi; Dudgeon, David; Nam, So; Samejima, Hiromitsu; Watanabe, Katsutoshi; Grudpan, Chaiwut; Grudpan, Jarungjit; Magtoon, Wichan; Musikasinthorn, Prachya; Nguyen, Phuong Thanh; Praxaysonbath, Bounthob; Sato, Tomoyuki; Shibukawa, Koichi; Shimatani, Yukihiro; Suvarnaraksha, Apinun; Tanaka, Wataru; Thach, Phanara; Tran, Dac Dinh; Yamashita, Tomomi; Utsugi, Kenzo

    2016-01-01

    Both hydropower dams and global warming pose threats to freshwater fish diversity. While the extent of global warming may be reduced by a shift towards energy generation by large dams in order to reduce fossil-fuel use, such dams profoundly modify riverine habitats. Furthermore, the threats posed by dams and global warming will interact: for example, dams constrain range adjustments by fishes that might compensate for warming temperatures. Evaluation of their combined or synergistic effects is thus essential for adequate assessment of the consequences of planned water-resource developments. We made projections of the responses of 363 fish species within the Indo-Burma global biodiversity hotspot to the separate and joint impacts of dams and global warming. The hotspot encompasses the Lower Mekong Basin, which is the world's largest freshwater capture fishery. Projections for 81 dam-building scenarios revealed progressive impacts upon projected species richness, habitable area, and the proportion of threatened species as generating capacity increased. Projections from 126 global-warming scenarios included a rise in species richness, a reduction in habitable area, and an increase in the proportion of threatened species; however, there was substantial variation in the extent of these changes among warming projections. Projections from scenarios that combined the effects of dams and global warming were derived either by simply adding the two threats, or by combining them in a synergistic manner that took account of the likelihood that habitat shifts under global warming would be constrained by river fragmentation. Impacts on fish diversity under the synergistic projections were 10-20% higher than those attributable to additive scenarios, and were exacerbated as generating capacity increased-particularly if CO2 emissions remained high. The impacts of dams, especially those on river mainstreams, are likely to be greater, more predictable and more immediately pressing for fishes than the consequences of global warming. Limits upon dam construction should therefore be a priority action for conserving fish biodiversity in the Indo-Burma hotspot. This would minimize synergistic impacts attributable to dams plus global warming, and help ensure the continued provision of ecosystem services represented by the Lower Mekong fishery.

  11. Interdecadal changes in El Nino onset in the last four decades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, B.

    The characteristics of the onset of the Pacific basin-wide warming have experienced notable changes since the late 1970s. The changes are caused by a concurrent change in the background state on which El Nino evolves. For the most significant warm episodes before the late 1970s (1957, 1965, and 1972), the atmospheric anomalies in the onset phase (November to December of the year preceding the El Nino) were characterized by a giant anomalous cyclone over east Australia whose eastward movement brought anomalous westerlies into the western equatorial Pacific, causing development of the basin-wide warming. Meanwhile, the trades in the southeastern Pacificmore » relaxed back to their weakest stage, resulting in a South American coastal warming, which led the central Pacific warming about three seasons. Conversely, in the warm episodes after the late 1970s (1982, 1986-87, and 1991), the onset phase was characterized by an anomalous cyclone over the Philippine Sea whose intensification established anomalous westerlies in the western equatorial Pacific. Concurrently, the trades were enhanced in the southeastern Pacific, so that the coastal warming off Ecuado occurred after the central Pacific warming. It is found that the atmospheric anomalies occurring in the onset phase are controlled by background SSTs that exhibit a significant secular variation. In the late 1970s, the tropical Pacific between 20{degrees}S and 20{degrees}N experienced an abrupt interdecadal warming, concurrent with a cooling in the extratropical North Pacific and South Pacific and a deepening of the Aleutian Low. The interdecadal change of the background state affected El Nino onset by altering the formation of the onset cyclone and equatorial westerly anomalies and through changing the trades in the southeast Pacific, which determine whether a South American coastal warming leads or follows the warming at the central equatorial Pacific. 49 refs., 13 figs.« less

  12. Impaired ecosystem process despite little effects on populations: modeling combined effects of warming and toxicants.

    PubMed

    Galic, Nika; Grimm, Volker; Forbes, Valery E

    2017-08-01

    Freshwater ecosystems are exposed to many stressors, including toxic chemicals and global warming, which can impair, separately or in combination, important processes in organisms and hence higher levels of organization. Investigating combined effects of warming and toxicants has been a topic of little research, but neglecting their combined effects may seriously misguide management efforts. To explore how toxic chemicals and warming, alone and in combination, propagate across levels of biological organization, including a key ecosystem process, we developed an individual-based model (IBM) of a freshwater amphipod detritivore, Gammarus pseudolimnaeus, feeding on leaf litter. In this IBM, life history emerges from the individuals' energy budgets. We quantified, in different warming scenarios (+1-+4 °C), the effects of hypothetical toxicants on suborganismal processes, including feeding, somatic and maturity maintenance, growth, and reproduction. Warming reduced mean adult body sizes and population abundance and biomass, but only in the warmest scenarios. Leaf litter processing, a key contributor to ecosystem functioning and service delivery in streams, was consistently enhanced by warming, through strengthened interaction between the detritivorous consumer and its resource. Toxicant effects on feeding and maintenance resulted in initially small adverse effects on consumers, but ultimately led to population extinction and loss of ecosystem process. Warming in combination with toxicants had little effect at the individual and population levels, but ecosystem process was impaired in the warmer scenarios. Our results suggest that exposure to the same amount of toxicants can disproportionately compromise ecosystem processing depending on global warming scenarios; for example, reducing organismal feeding rates by 50% will reduce resource processing by 50% in current temperature conditions, but by up to 200% with warming of 4 °C. Our study has implications for assessing and monitoring impacts of chemicals on ecosystems facing global warming. We advise complementing existing monitoring approaches with directly quantifying ecosystem processes and services. © 2017 John Wiley & Sons Ltd.

  13. Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska.

    PubMed

    Morgado, Luis N; Semenova, Tatiana A; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József

    2015-02-01

    Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root-associated, respond to warming. Here, we investigate how long-term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long-term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU-rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium-distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium-distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  14. Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska

    PubMed Central

    Morgado, Luis N; Semenova, Tatiana A; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József

    2015-01-01

    Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root-associated, respond to warming. Here, we investigate how long-term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long-term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU-rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium-distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium-distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage. PMID:25156129

  15. Mitochondrial acclimation capacities to ocean warming and acidification are limited in the antarctic Nototheniid Fish, Notothenia rossii and Lepidonotothen squamifrons.

    PubMed

    Strobel, Anneli; Graeve, Martin; Poertner, Hans O; Mark, Felix C

    2013-01-01

    Antarctic notothenioid fish are characterized by their evolutionary adaptation to the cold, thermostable Southern Ocean, which is associated with unique physiological adaptations to withstand the cold and reduce energetic requirements but also entails limited compensation capacities to environmental change. This study compares the capacities of mitochondrial acclimation to ocean warming and acidification between the Antarctic nototheniid Notothenia rossii and the sub-Antarctic Lepidonotothen squamifrons, which share a similar ecology, but different habitat temperatures. After acclimation of L. squamifrons to 9°C and N. rossii to 7°C (normocapnic/hypercapnic, 0.2 kPa CO2/2000 ppm CO2) for 4-6 weeks, we compared the capacities of their mitochondrial respiratory complexes I (CI) and II (CII), their P/O ratios (phosphorylation efficiency), proton leak capacities and mitochondrial membrane fatty acid compositions. Our results reveal reduced CII respiration rates in warm-acclimated L. squamifrons and cold hypercapnia-acclimated N. rossii. Generally, L. squamifrons displayed a greater ability to increase CI contribution during acute warming and after warm-acclimation than N. rossii. Membrane unsaturation was not altered by warm or hypercapnia-acclimation in both species, but membrane fatty acids of warm-acclimated L. squamifrons were less saturated than in warm normocapnia-/hypercapnia-acclimated N. rossii. Proton leak capacities were not affected by warm or hypercapnia-acclimation of N. rossii. We conclude that an acclimatory response of mitochondrial capacities may include higher thermal plasticity of CI supported by enhanced utilization of anaplerotic substrates (via oxidative decarboxylation reactions) feeding into the citrate cycle. L. squamifrons possesses higher relative CI plasticities than N. rossii, which may facilitate the usage of energy efficient NADH-related substrates under conditions of elevated energy demand, possibly induced by ocean warming and acidification. The observed adjustments of electron transport system complexes with a higher flux through CI under warming and acidification suggest a metabolic acclimation potential of the sub-Antarctic L. squamifrons, but only limited acclimation capacities for N. rossii.

  16. Commentary: Urgent need for large-scale warming manipulation experiments in tropical forests

    NASA Astrophysics Data System (ADS)

    Cavaleri, M. A.; Wood, T. E.; Reed, S.

    2013-12-01

    Tropical forests represent the largest fluxes of carbon into and out of the atmosphere of any terrestrial ecosystem type on earth. Despite their clear biogeochemical importance, responses of tropical forests to global warming are more uncertain than for any other biome. This uncertainty stems primarily from a lack of mechanistic data, in part because warming manipulation field experiments have been located almost exclusively in higher latitude systems. As a result of the large fluxes, lack of data, and high uncertainty, recent studies have highlighted the tropics as a 'high priority region' for future climate change research. We argue that warming manipulation experiments are urgently needed in tropical forests that are: 1) single-factor, 2) large-scale, and 3) long-term. The emergence of a novel heat regime is predicted for the tropics within the next two decades, and tropical forest trees may be more susceptible to warming than previously thought. Over a decade of Free Air CO2 Enrichment experiments have shown that single-factor studies that integrate above- and belowground function can be the most informative and efficient means of informing models, which can then be used to determine interactive effects of multiple factors. Warming both above- and below-ground parts of an ecosystem would be fundamental to the understanding of whole-ecosystem and net carbon responses because of the multiple feedbacks between tree canopy, root, and soil function. Finally, evidence from high-latitude warming experiments highlight the importance of long-term studies by suggesting that key processes related to carbon cycling, like soil respiration, could acclimate with extended warming. Despite the fact that there has never been a long-term ecosystem-level warming experiment in any forest, the technology is available, and momentum is gathering. In order to study the effects of warming on tropical forests, which contribute disproportionately to global carbon balance, full-scale ecosystem warming experiments are imperative.

  17. Coarsening of AA6013-T6 Precipitates During Sheet Warm Forming Applications

    NASA Astrophysics Data System (ADS)

    Di Ciano, M.; DiCecco, S.; Esmaeili, S.; Wells, M. A.; Worswick, M. J.

    2018-03-01

    The use of warm forming for AA6xxx-T6 sheet is of interest to improve its formability; however, the effect warm forming may have on the coarsening of precipitates and the mechanical strength of these sheets has not been well studied. In this research, the coarsening behavior of AA6013-T6 precipitates has been explored, in the temperature range of 200-300 °C, and time of 30 s up to 50 h. Additionally, the effect of warm deformation on coarsening behavior was explored using: (1) simulated warm forming tests in a Gleeble thermo-mechanical simulator and (2) bi-axial warm deformation tests. Using a strong obstacle model to describe the yield strength (YS) evolution of the AA6013-T6 material, and a Lifshitz, Slyozov, and Wagner (LSW) particle coarsening law to describe the change in precipitate size with time, the coarsening kinetics were modeled for this alloy. The coarsening kinetics in the range of 220-300 °C followed a trend similar to that previously found for AA6111 for the 180-220 °C range. There was strong evidence that coarsening kinetics were not altered due to warm deformation above 220 °C. For warm forming between 200 and 220 °C, the YS of the AA6013-T6 material increased slightly, which could be attributed to strain hardening during warm deformation. Finally, a non-isothermal coarsening model was used to assess the potential reduction in the YS of AA6013-T6 for practical processing conditions related to auto-body manufacturing. The model calculations showed that 90% of the original AA6013-T6 YS could be maintained, for warm forming temperatures up to 280 °C, if the heating schedule used to get the part to the warm forming temperature was limited to 1 min.

  18. Current Warm-Up Practices and Contemporary Issues Faced by Elite Swimming Coaches.

    PubMed

    McGowan, Courtney J; Pyne, David B; Raglin, John S; Thompson, Kevin G; Rattray, Ben

    2016-12-01

    McGowan, CJ, Pyne, DB, Raglin, JS, Thompson, KG, and Rattray, B. Current warm-up practices and contemporary issues faced by elite swimming coaches. J Strength Cond Res 30(12): 3471-3480, 2016-A better understanding of current swimming warm-up strategies is needed to improve their effectiveness. The purpose of this study was to describe current precompetition warm-up practices and identify contemporary issues faced by elite swimming coaches during competition. Forty-six state-international level swimming coaches provided information through a questionnaire on their prescription of volume, intensity, and recovery within their pool and dryland-based competition warm-ups, and challenges faced during the final stages of event preparation. Coaches identified four key objectives of the precompetition warm-up: physiological (elevate body temperature and increase muscle activation), kinesthetic (tactile preparation, increase "feel" of the water), tactical (race-pace rehearsal), and mental (improve focus, reduce anxiety). Pool warm-up volume ranged from ∼1300 to 2100 m, beginning with 400-1000 m of continuous, low-intensity (∼50-70% of perceived maximal exertion) swimming, followed by 200-600 m of stroke drills and 1-2 sets (100-400 m in length) of increasing intensity (∼60-90%) swimming, concluding with 3-4 race or near race-pace efforts (25-100 m; ∼90-100%) and 100-400 m easy swimming. Dryland-based warm-up exercises, involving stretch cords and skipping, were also commonly prescribed. Coaches preferred swimmers complete their warm-up 20-30 minutes before race start. Lengthy marshalling periods (15-20+ minutes) and the time required to don racing suits (>10 minutes) were identified as complicating issues. Coaches believed that the pool warm-up affords athletes the opportunity to gain a tactile feel for the water and surrounding pool environment. The combination of dryland-based activation exercises followed by pool-based warm-up routines seems to be the preferred approach taken by elite swimming coaches preparing their athletes for competition.

  19. How much do direct livestock emissions actually contribute to global warming?

    PubMed

    Reisinger, Andy; Clark, Harry

    2018-04-01

    Agriculture directly contributes about 10%-12% of current global anthropogenic greenhouse gas emissions, mostly from livestock. However, such percentage estimates are based on global warming potentials (GWPs), which do not measure the actual warming caused by emissions and ignore the fact that methane does not accumulate in the atmosphere in the same way as CO 2 . Here, we employ a simple carbon cycle-climate model, historical estimates and future projections of livestock emissions to infer the fraction of actual warming that is attributable to direct livestock non-CO 2 emissions now and in future, and to CO 2 from pasture conversions, without relying on GWPs. We find that direct livestock non-CO 2 emissions caused about 19% of the total modelled warming of 0.81°C from all anthropogenic sources in 2010. CO 2 from pasture conversions contributed at least another 0.03°C, bringing the warming directly attributable to livestock to 23% of the total warming in 2010. The significance of direct livestock emissions to future warming depends strongly on global actions to reduce emissions from other sectors. Direct non-CO 2 livestock emissions would contribute only about 5% of the warming in 2100 if emissions from other sectors increase unabated, but could constitute as much as 18% (0.27°C) of the warming in 2100 if global CO 2 emissions from other sectors are reduced to near or below zero by 2100, consistent with the goal of limiting warming to well below 2°C. These estimates constitute a lower bound since indirect emissions linked to livestock feed production and supply chains were not included. Our estimates demonstrate that expanding the mitigation potential and realizing substantial reductions of direct livestock non-CO 2 emissions through demand and supply side measures can make an important contribution to achieve the stringent mitigation goals set out in the Paris Agreement, including by increasing the carbon budget consistent with the 1.5°C goal. © 2017 John Wiley & Sons Ltd.

  20. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems.

    PubMed

    Hicks Pries, Caitlin E; van Logtestijn, Richard S P; Schuur, Edward A G; Natali, Susan M; Cornelissen, Johannes H C; Aerts, Rien; Dorrepaal, Ellen

    2015-12-01

    Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change feedback. Few studies partitioning ecosystem respiration examine decadal warming effects or compare responses among ecosystems. Here, we first examined how 11 years of warming during different seasons affected autotrophic and heterotrophic respiration in a bryophyte-dominated peatland in Abisko, Sweden. We used natural abundance radiocarbon to partition ecosystem respiration into autotrophic respiration, associated with production, and heterotrophic decomposition. Summertime warming decreased the age of carbon respired by the ecosystem due to increased proportional contributions from autotrophic and young soil respiration and decreased proportional contributions from old soil. Summertime warming's large effect was due to not only warmer air temperatures during the growing season, but also to warmer deep soils year-round. Second, we compared ecosystem respiration responses between two contrasting ecosystems, the Abisko peatland and a tussock-dominated tundra in Healy, Alaska. Each ecosystem had two different timescales of warming (<5 years and over a decade). Despite the Abisko peatland having greater ecosystem respiration and larger contributions from heterotrophic respiration than the Healy tundra, both systems responded consistently to short- and long-term warming with increased respiration, increased autotrophic contributions to ecosystem respiration, and increased ratios of autotrophic to heterotrophic respiration. We did not detect an increase in old soil carbon losses with warming at either site. If increased autotrophic respiration is balanced by increased primary production, as is the case in the Healy tundra, warming will not cause these ecosystems to become growing season carbon sources. Warming instead causes a persistent shift from heterotrophic to more autotrophic control of the growing season carbon cycle in these carbon-rich permafrost ecosystems. © 2015 John Wiley & Sons Ltd.

  1. The Acute Effects of Static Stretching Compared to Dynamic Stretching with and without an Active Warm up on Anaerobic Performance

    PubMed Central

    KENDALL, BRADLEY J.

    2017-01-01

    The Wingate Anaerobic Test (WAnT) has been used in many studies to determine anaerobic performance. However, there has been poor reporting of warm-up protocols and limited consistency between warm-up methods that have been used. With the WAnT being such a commonly-used test, consistency in warm-up methods is essential in order to compare results across studies. Therefore, this study was designed to compare how static stretching, dynamic stretching, and an active warm-up affect WAnT performance. Ten recreationally active participants (5 males, 5 females) with a mean (SD) age of 23.3 (0.7) volunteered for this study. Subjects were randomized to a specific order of five warm-up protocols, which were performed on individual days followed by a WAnT. Peak power, mean power, power drop, and fatigue index were compared for each trial using a repeated measures ANOVA. For peak power, results revealed that warm-up protocol had a significant effect, F(4,36) = 3.90, p = .01, partial η2 = .302. It was hypothesized that the dynamic stretching would lead to greater peak power than the static stretching protocol. However, results of post hoc analyses failed to detect a significant difference (p =.065). For the other measured variables no significant differences were found. The findings from this study suggest that warm-up protocols may have significantly different impacts on peak power during the WAnT. Additional research should use larger sample sizes and further explore these warm-up protocols. Developing a standardized warm-up protocol for the WAnT may improve consistency between studies. PMID:28479947

  2. Asynchronous marine-terrestrial signals of the last deglacial warming in East Asia associated with low- and high-latitude climate changes.

    PubMed

    Xu, Deke; Lu, Houyuan; Wu, Naiqin; Liu, Zhenxia; Li, Tiegang; Shen, Caiming; Wang, Luo

    2013-06-11

    A high-resolution multiproxy record, including pollen, foraminifera, and alkenone paleothermometry, obtained from a single core (DG9603) from the Okinawa Trough, East China Sea (ECS), provided unambiguous evidence for asynchronous climate change between the land and ocean over the past 40 ka. On land, the deglacial stage was characterized by rapid warming, as reflected by paleovegetation, and it began ca. 15 kaBP, consistent with the timing of the last deglacial warming in Greenland. However, sea surface temperature estimates from foraminifera and alkenone paleothermometry increased around 20-19 kaBP, as in the Western Pacific Warm Pool (WPWP). Sea surface temperatures in the Okinawa Trough were influenced mainly by heat transport from the tropical western Pacific Ocean by the Kuroshio Current, but the epicontinental vegetation of the ECS was influenced by atmospheric circulation linked to the northern high-latitude climate. Asynchronous terrestrial and marine signals of the last deglacial warming in East Asia were thus clearly related to ocean currents and atmospheric circulation. We argue that (i) early warming seawater of the WPWP, driven by low-latitude insolation and trade winds, moved northward via the Kuroshio Current and triggered marine warming along the ECS around 20-19 kaBP similar to that in the WPWP, and (ii) an almost complete shutdown of the Atlantic Meridional Overturning Circulation ca. 18-15 kaBP was associated with cold Heinrich stadial-1 and delayed terrestrial warming during the last deglacial warming until ca. 15 kaBP at northern high latitudes, and hence in East Asia. Terrestrial deglacial warming therefore lagged behind marine changes by ca. 3-4 ka.

  3. Using data to attribute episodes of warming and cooling in instrumental records.

    PubMed

    Tung, Ka-Kit; Zhou, Jiansong

    2013-02-05

    The observed global-warming rate has been nonuniform, and the cause of each episode of slowing in the expected warming rate is the subject of intense debate. To explain this, nonrecurrent events have commonly been invoked for each episode separately. After reviewing evidence in both the latest global data (HadCRUT4) and the longest instrumental record, Central England Temperature, a revised picture is emerging that gives a consistent attribution for each multidecadal episode of warming and cooling in recent history, and suggests that the anthropogenic global warming trends might have been overestimated by a factor of two in the second half of the 20th century. A recurrent multidecadal oscillation is found to extend to the preindustrial era in the 353-y Central England Temperature and is likely an internal variability related to the Atlantic Multidecadal Oscillation (AMO), possibly caused by the thermohaline circulation variability. The perspective of a long record helps in quantifying the contribution from internal variability, especially one with a period so long that it is often confused with secular trends in shorter records. Solar contribution is found to be minimal for the second half of the 20th century and less than 10% for the first half. The underlying net anthropogenic warming rate in the industrial era is found to have been steady since 1910 at 0.07-0.08 °C/decade, with superimposed AMO-related ups and downs that included the early 20th century warming, the cooling of the 1960s and 1970s, the accelerated warming of the 1980s and 1990s, and the recent slowing of the warming rates. Quantitatively, the recurrent multidecadal internal variability, often underestimated in attribution studies, accounts for 40% of the observed recent 50-y warming trend.

  4. Using data to attribute episodes of warming and cooling in instrumental records

    PubMed Central

    Tung, Ka-Kit; Zhou, Jiansong

    2013-01-01

    The observed global-warming rate has been nonuniform, and the cause of each episode of slowing in the expected warming rate is the subject of intense debate. To explain this, nonrecurrent events have commonly been invoked for each episode separately. After reviewing evidence in both the latest global data (HadCRUT4) and the longest instrumental record, Central England Temperature, a revised picture is emerging that gives a consistent attribution for each multidecadal episode of warming and cooling in recent history, and suggests that the anthropogenic global warming trends might have been overestimated by a factor of two in the second half of the 20th century. A recurrent multidecadal oscillation is found to extend to the preindustrial era in the 353-y Central England Temperature and is likely an internal variability related to the Atlantic Multidecadal Oscillation (AMO), possibly caused by the thermohaline circulation variability. The perspective of a long record helps in quantifying the contribution from internal variability, especially one with a period so long that it is often confused with secular trends in shorter records. Solar contribution is found to be minimal for the second half of the 20th century and less than 10% for the first half. The underlying net anthropogenic warming rate in the industrial era is found to have been steady since 1910 at 0.07–0.08 °C/decade, with superimposed AMO-related ups and downs that included the early 20th century warming, the cooling of the 1960s and 1970s, the accelerated warming of the 1980s and 1990s, and the recent slowing of the warming rates. Quantitatively, the recurrent multidecadal internal variability, often underestimated in attribution studies, accounts for 40% of the observed recent 50-y warming trend. PMID:23345448

  5. Using radiative signatures to diagnose the cause of warming during the 2013-2014 Californian drought

    NASA Astrophysics Data System (ADS)

    Wolf, Sebastian; Yin, Dongqin; Roderick, Michael L.

    2017-10-01

    California recently experienced among the worst droughts of the last century, with exceptional precipitation deficits and co-occurring record high temperatures. The dry conditions caused severe water shortages in one of the economically most important agricultural regions of the US. It has recently been hypothesized that anthropogenic warming is increasing the likelihood of such extreme droughts in California, or more specifically, that warmer temperatures from the enhanced greenhouse effect intensify drought conditions. However, separating the cause and effect is difficult because the dry conditions lead to a reduction in evaporative cooling that contributes to the warming. Here we investigate and compare the forcing of long-term greenhouse-induced warming with the short-term warming during the 2013-2014 Californian drought. We use the concept of radiative signatures to investigate the source of the radiative perturbation during the drought, relate the signatures to expected changes due to anthropogenic warming, and assess the cause of warming based on observed changes in the surface energy balance compared to the period 2001-2012. We found that the recent meteorological drought based on precipitation deficits was characterised by an increase in incoming shortwave radiation coupled with a decline in incoming longwave radiation, which contributed to record warm temperatures. In contrast, climate models project that anthropogenic warming is accompanied by little change in incoming shortwave but a large increase in incoming longwave radiation. The warming during the drought was associated with increased incoming shortwave radiation in combination with reduced evaporative cooling from water deficits, which enhanced surface temperatures and sensible heat transfer to the atmosphere. Our analyses demonstrate that radiative signatures are a powerful tool to differentiate the source of perturbations in the surface energy balance at monthly to seasonal time scales.

  6. Establishing native warm season grasses on Eastern Kentucky strip mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B.

    1998-12-31

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomassmore » samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat.« less

  7. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content.

    PubMed

    Garzke, Jessica; Hansen, Thomas; Ismar, Stefanie M H; Sommer, Ulrich

    2016-01-01

    Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1-5) and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA) and arachidonic acid (ARA) to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts.

  8. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content

    PubMed Central

    Hansen, Thomas; Ismar, Stefanie M. H.; Sommer, Ulrich

    2016-01-01

    Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1–5) and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA) and arachidonic acid (ARA) to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts. PMID:27224476

  9. Effect of anthropogenic aerosol emissions on precipitation in warm conveyor belts in the western North Pacific in winter - a model study with ECHAM6-HAM

    NASA Astrophysics Data System (ADS)

    Joos, Hanna; Madonna, Erica; Witlox, Kasja; Ferrachat, Sylvaine; Wernli, Heini; Lohmann, Ulrike

    2017-05-01

    While there is a clear impact of aerosol particles on the radiation balance, whether and how aerosol particles influence precipitation is controversial. Here we use the ECHAM6-HAM global climate model coupled to an aerosol module to analyse whether an impact of anthropogenic aerosol particles on the timing and amount of precipitation can be detected in North Pacific warm conveyor belts. Warm conveyor belts are the strongest precipitation-producing airstreams in extratropical cyclones and are identified here with a Lagrangian technique, i.e. by objectively identifying the most strongly ascending trajectories in North Pacific cyclones. These conveyor belts have been identified separately in 10-year ECHAM6-HAM simulations with present-day and pre-industrial aerosol conditions. Then, the evolution of aerosols and cloud properties has been analysed in detail along the identified warm conveyor belt trajectories. The results show that, under present-day conditions, some warm conveyor belt trajectories are strongly polluted (i.e. high concentrations of black carbon and sulfur dioxide) due to horizontal transport from eastern Asia to the oceanic region where warm conveyor belts start their ascent. In these polluted trajectories a weak delay and reduction of precipitation formation occurs compared to clean warm conveyor belt trajectories. However, all warm conveyor belts consist of both polluted and clean trajectories at the time they start their ascent, and the typically more abundant clean trajectories strongly reduce the aerosol impact from the polluted trajectories. The main conclusion then is that the overall amount of precipitation is comparable in pre-industrial conditions, when all warm conveyor belt trajectories are clean, and in present-day conditions, when warm conveyor belts consist of a mixture of clean and polluted trajectories.

  10. The responses of microbial temperature relationships to seasonal change and winter warming in a temperate grassland.

    PubMed

    Birgander, Johanna; Olsson, Pål Axel; Rousk, Johannes

    2018-01-18

    Microorganisms dominate the decomposition of organic matter and their activities are strongly influenced by temperature. As the carbon (C) flux from soil to the atmosphere due to microbial activity is substantial, understanding temperature relationships of microbial processes is critical. It has been shown that microbial temperature relationships in soil correlate with the climate, and microorganisms in field experiments become more warm-tolerant in response to chronic warming. It is also known that microbial temperature relationships reflect the seasons in aquatic ecosystems, but to date this has not been investigated in soil. Although climate change predictions suggest that temperatures will be mostly affected during winter in temperate ecosystems, no assessments exist of the responses of microbial temperature relationships to winter warming. We investigated the responses of the temperature relationships of bacterial growth, fungal growth, and respiration in a temperate grassland to seasonal change, and to 2 years' winter warming. The warming treatments increased winter soil temperatures by 5-6°C, corresponding to 3°C warming of the mean annual temperature. Microbial temperature relationships and temperature sensitivities (Q 10 ) could be accurately established, but did not respond to winter warming or to seasonal temperature change, despite significant shifts in the microbial community structure. The lack of response to winter warming that we demonstrate, and the strong response to chronic warming treatments previously shown, together suggest that it is the peak annual soil temperature that influences the microbial temperature relationships, and that temperatures during colder seasons will have little impact. Thus, mean annual temperatures are poor predictors for microbial temperature relationships. Instead, the intensity of summer heat-spells in temperate systems is likely to shape the microbial temperature relationships that govern the soil-atmosphere C exchange. © 2018 John Wiley & Sons Ltd.

  11. The impact of winter and spring temperatures on temperate tree budburst dates: results from an experimental climate manipulation.

    PubMed

    Fu, Yongshuo H; Campioli, Matteo; Deckmyn, Gaby; Janssens, Ivan A

    2012-01-01

    Budburst phenology is a key driver of ecosystem structure and functioning, and it is sensitive to global change. Both cold winter temperatures (chilling) and spring warming (forcing) are important for budburst. Future climate warming is expected to have a contrasting effect on chilling and forcing, and subsequently to have a non-linear effect on budburst timing. To clarify the different effects of warming during chilling and forcing phases of budburst phenology in deciduous trees, (i) we conducted a temperature manipulation experiment, with separate winter and spring warming treatments on well irrigated and fertilized saplings of beech, birch and oak, and (ii) we analyzed the observations with five temperature-based budburst models (Thermal Time model, Parallel model, Sequential model, Alternating model, and Unified model). The results show that both winter warming and spring warming significantly advanced budburst date, with the combination of winter plus spring warming accelerating budburst most. As expected, all three species were more sensitive to spring warming than to winter warming. Although the different chilling requirement, the warming sensitivity was not significantly different among the studied species. Model evaluation showed that both one- and two- phase models (without and with chilling, respectively) are able to accurately predict budburst. For beech, the Sequential model reproduced budburst dates best. For oak and birch, both Sequential model and the Thermal Time model yielded good fit with the data but the latter was slightly better in case of high parameter uncertainty. However, for late-flushing species, the Sequential model is likely be the most appropriate to predict budburst data in a future warmer climate.

  12. Warming by immersion or exercise affects initial cooling rate during subsequent cold water immersion.

    PubMed

    Scott, Chris G; Ducharme, Michel B; Haman, François; Kenny, Glen P

    2004-11-01

    We examined the effect of prior heating, by exercise and warm-water immersion, on core cooling rates in individuals rendered mildly hypothermic by immersion in cold water. There were seven male subjects who were randomly assigned to one of three groups: 1) seated rest for 15 min (control); 2) cycling ergometry for 15 min at 70% Vo2 peak (active warming); or 3) immersion in a circulated bath at 40 degrees C to an esophageal temperature (Tes) similar to that at the end of exercise (passive warming). Subjects were then immersed in 7 degrees C water to a Tes of 34.5 degrees C. Initial Tes cooling rates (initial approximately 6 min cooling) differed significantly among the treatment conditions (0.074 +/- 0.045, 0.129 +/- 0.076, and 0.348 +/- 0.117 degrees C x min(-1) for control, active, and passive warming conditions, respectively); however, secondary cooling rates (rates following initial approximately 6 min cooling to the end of immersion) were not different between treatments (average of 0.102 +/- 0.085 degrees C x min(-1)). Overall Tes cooling rates during the full immersion period differed significantly and were 0.067 +/- 0.047, 0.085 +/- 0.045, and 0.209 +/- 0.131 degrees C x min(-1) for control, active, and passive warming, respectively. These results suggest that prior warming by both active and, to a greater extent, passive warming, may predispose a person to greater heat loss and to experience a larger decline in core temperature when subsequently exposed to cold water. Thus, functional time and possibly survival time could be reduced when cold water immersion is preceded by whole-body passive warming, and to a lesser degree by active warming.

  13. Role of CO2-forced Antarctic shelf freshening on local shelf warming in an eddying global climate model

    NASA Astrophysics Data System (ADS)

    Goddard, P.; Dufour, C.; Yin, J.; Griffies, S. M.; Winton, M.

    2017-12-01

    Ocean warming near the Antarctic ice shelves has critical implications for future ice sheet mass loss and global sea level rise. A global climate model (GFDL CM2.6) with an eddying ocean is used to quantify and better understand the mechanisms contributing to ocean warming on the Antarctic continental shelf in an idealized 2xCO2 experiment. The results indicate that the simulated shelf region warming varies in magnitude at different locations. Relatively large warm anomalies occur both in the upper 100 m and at depth, which are controlled by different mechanisms. Here, we focus on the deep shelf warming and its relationship to shelf freshening. Under CO2-forcing, enhanced runoff from Antarctica, more regional precipitation, and reduction of sea ice contribute to the shelf freshening. The freshening increases the lateral density gradient of the Antarctic Slope Front, which can limit along-isopycnal onshore transport of heat from the Circumpolar Deep Water across the shelf break. Thus, the magnitude and location of the freshening anomalies govern the magnitude and location of onshore heat transport and deep warm anomalies. Additionally, the freshening increases vertical stratification on the shelf. The enhanced stratification reduces vertical mixing of heat associated with diffusion and gravitational instabilities, further contributing to the build-up of temperature anomalies at depth. Freshening is a crucial driver of the magnitude and location of the warming; however, other drivers influence the warming such as CO2-forced weakening of the easterly wind stress and associated shoaling of isotherms. Understanding the relative role of freshening in the inhomogeneous ocean warming of the Antarctic continental shelf would lead to better projections of future ice sheet mass loss, especially near the most vulnerable calving fronts.

  14. The acoustic and perceptual differences to the non-singer's singing voice before and after a singing vocal warm-up

    NASA Astrophysics Data System (ADS)

    DeRosa, Angela

    The present study analyzed the acoustic and perceptual differences in non-singer's singing voice before and after a vocal warm-up. Experiments were conducted with 12 females who had no singing experience and considered themselves to be non-singers. Participants were recorded performing 3 tasks: a musical scale stretching to their most comfortable high and low pitches, sustained productions of the vowels /a/ and /i/, and singing performance of the "Star Spangled Banner." Participants were recorded performing these three tasks before a vocal warm-up, after a vocal warm-up, and then again 2-3 weeks later after 2-3 weeks of practice. Acoustical analysis consisted of formant frequency analysis, singer's formant/singing power ratio analysis, maximum phonation frequency range analysis, and an analysis of jitter, noise to harmonic ratio (NHR), relative average perturbation (RAP), and voice turbulence index (VTI). A perceptual analysis was also conducted with 12 listeners rating comparison performances of before vs. after the vocal warm-up, before vs. after the second vocal warm-up, and after both vocal warm-ups. There were no significant findings for the formant frequency analysis of the vowel /a/, but there was significance for the 1st formant frequency analysis of the vowel /i/. Singer's formant analyzed via Singing Power Ratio analysis showed significance only for the vowel /i/. Maximum phonation frequency range analysis showed a significant increase after the vocal warm-ups. There were no significant findings for the acoustic measures of jitter, NHR, RAP, and VTI. Perceptual analysis showed a significant difference after a vocal warm-up. The results indicate that a singing vocal warm-up can have a significant positive influence on the singing voice of non-singers.

  15. Dynamic changes in cardiac mitochondrial metabolism during warm acclimation in rainbow trout.

    PubMed

    Pichaud, Nicolas; Ekström, Andreas; Hellgren, Kim; Sandblom, Erik

    2017-05-01

    Although the mitochondrial metabolism responses to warm acclimation have been widely studied in fish, the time course of this process is less understood. Here, we characterized the changes of rainbow trout ( Oncorhynchus mykiss ) cardiac mitochondrial metabolism during acute warming from 10 to 16°C, and during the subsequent warm acclimation for 39 days. We repeatedly measured mitochondrial oxygen consumption in cardiac permeabilized fibers and the functional integrity of mitochondria (i.e. mitochondrial coupling and cytochrome c effect) at two assay temperatures (10 and 16°C), as well as the activities of citrate synthase (CS) and lactate dehydrogenase (LDH) at room temperature. LDH and CS activities significantly increased between day 0 (10°C acclimated fish) and day 1 (acute warming to 16°C) while mitochondrial oxygen consumption measured at respective in vivo temperatures did not change. Enzymatic activities and mitochondrial oxygen consumption rates significantly decreased by day 2, and remained stable during warm acclimation (days 2-39). The decrease in rates of oxygen between day 0 and day 1 coincided with an increased cytochrome c effect and a decreased mitochondrial coupling, suggesting a structural/functional impairment of mitochondria during acute warming. We suggest that after 2 days of warm acclimation, a new homeostasis is reached, which may involve the removal of dysfunctional mitochondria. Interestingly, from day 2 onwards, there was a lack of differences in mitochondrial oxygen consumption rates between the assay temperatures, suggesting that warm acclimation reduces the acute thermal sensitivity of mitochondria. This study provides significant knowledge on the thermal sensitivity of cardiac mitochondria that is essential to delineate the contribution of cellular processes to warm acclimation. © 2017. Published by The Company of Biologists Ltd.

  16. The Acute Effects of Static Stretching Compared to Dynamic Stretching with and without an Active Warm up on Anaerobic Performance.

    PubMed

    Kendall, Bradley J

    2017-01-01

    The Wingate Anaerobic Test (WAnT) has been used in many studies to determine anaerobic performance. However, there has been poor reporting of warm-up protocols and limited consistency between warm-up methods that have been used. With the WAnT being such a commonly-used test, consistency in warm-up methods is essential in order to compare results across studies. Therefore, this study was designed to compare how static stretching, dynamic stretching, and an active warm-up affect WAnT performance. Ten recreationally active participants (5 males, 5 females) with a mean (SD) age of 23.3 (0.7) volunteered for this study. Subjects were randomized to a specific order of five warm-up protocols, which were performed on individual days followed by a WAnT. Peak power, mean power, power drop, and fatigue index were compared for each trial using a repeated measures ANOVA. For peak power, results revealed that warm-up protocol had a significant effect, F (4,36) = 3.90, p = .01, partial η 2 = .302. It was hypothesized that the dynamic stretching would lead to greater peak power than the static stretching protocol. However, results of post hoc analyses failed to detect a significant difference (p =.065). For the other measured variables no significant differences were found. The findings from this study suggest that warm-up protocols may have significantly different impacts on peak power during the WAnT. Additional research should use larger sample sizes and further explore these warm-up protocols. Developing a standardized warm-up protocol for the WAnT may improve consistency between studies.

  17. Quantifying global soil carbon losses in response to warming.

    PubMed

    Crowther, T W; Todd-Brown, K E O; Rowe, C W; Wieder, W R; Carey, J C; Machmuller, M B; Snoek, B L; Fang, S; Zhou, G; Allison, S D; Blair, J M; Bridgham, S D; Burton, A J; Carrillo, Y; Reich, P B; Clark, J S; Classen, A T; Dijkstra, F A; Elberling, B; Emmett, B A; Estiarte, M; Frey, S D; Guo, J; Harte, J; Jiang, L; Johnson, B R; Kröel-Dulay, G; Larsen, K S; Laudon, H; Lavallee, J M; Luo, Y; Lupascu, M; Ma, L N; Marhan, S; Michelsen, A; Mohan, J; Niu, S; Pendall, E; Peñuelas, J; Pfeifer-Meister, L; Poll, C; Reinsch, S; Reynolds, L L; Schmidt, I K; Sistla, S; Sokol, N W; Templer, P H; Treseder, K K; Welker, J M; Bradford, M A

    2016-11-30

    The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

  18. Past and future warming of a deep European lake (Lake Lugano): What are the climatic drivers?

    USGS Publications Warehouse

    Lepori, Fabio; Roberts, James J.

    2015-01-01

    We used four decades (1972–2013) of temperature data from Lake Lugano, Switzerland and Italy, to address the hypotheses that: [i] the lake has been warming; [ii] part of the warming reflects global trends and is independent from climatic oscillations and [iii] the lake will continue to warm until the end of the 21st century. During the time spanned by our data, the surface waters of the lake (0–5 m) warmed at rates of 0.2–0.9 °C per decade, depending on season. The temperature of the deep waters (50-m bottom) displayed a rising trend in a meromictic basin of the lake and a sawtooth pattern in the other basin, which is holomictic. Long-term variation in surfacewater temperature correlated to global warming and multidecadal variation in two climatic oscillations, the Atlantic Multidecadal Oscillation (AMO) and the East Atlantic Pattern (EA).However, we did not detect an influence of the EA on the lake's temperature (as separate from the effect of global warming). Moreover, the effect of the AMO, estimated to a maximum of +1 °C, was not sufficient to explain the observed temperature increase (+2–3 °C in summer). Based on regional climate projections, we predicted that the lake will continue to warm at least until the end of the 21st century. Our results strongly suggest that the warming of Lake Lugano is tied to globalclimate change. To sustain current ecosystem conditions in Lake Lugano, we suggest that manage- ment plans that curtail eutrophication and (or) mitigation of global warming be pursued.

  19. Temperature Control of Hypertensive Rats during Moderate Exercise in Warm Environment.

    PubMed

    Campos, Helton O; Leite, Laura H R; Drummond, Lucas R; Cunha, Daise N Q; Coimbra, Cândido C; Natali, Antônio J; Prímola-Gomes, Thales N

    2014-09-01

    The control of body temperature in Spontaneously Hypertensive Rat (SHR) subjected to exercise in warm environment was investigated. Male SHR and Wistar rats were submitted to moderate exercise in temperate (25°C) and warm (32°C) environments while body and tail skin temperatures, as well as oxygen consumption, were registered. Total time of exercise, workload performed, mechanical efficiency and heat storage were determined. SHR had increased heat production and body temperature at the end of exercise, reduced mechanical efficiency and increased heat storage (p < 0.05). Furthermore, these rats also showed a more intense and faster increase in body temperature during moderate exercise in the warm environment (p < 0.05). The lower mechanical efficiency seen in SHR was closely correlated with their higher body temperature at the point of fatigue in warm environment (p < 0.05). Our results indicate that SHR exhibit significant differences in body temperature control during moderate exercise in warm environment characterized by increased heat production and heat storage during moderate exercise in warm environment. The combination of these responses result in aggravated hyperthermia linked with lower mechanical efficiency. Key PointsThe practice of physical exercise in warm environment has gained importance in recent decades mainly because of the progressive increases in environmental temperature;To the best of our knowledge, these is the first study to analyze body temperature control of SHR during moderate exercise in warm environment;SHR showed increased heat production and heat storage that resulted in higher body temperature at the end of exercise;SHR showed reduced mechanical efficiency;These results demonstrate that when exercising in a warm environment the hypertensive rat exhibit differences in temperature control.

  20. Asynchronous marine-terrestrial signals of the last deglacial warming in East Asia associated with low- and high-latitude climate changes

    PubMed Central

    Xu, Deke; Lu, Houyuan; Wu, Naiqin; Liu, Zhenxia; Li, Tiegang; Shen, Caiming; Wang, Luo

    2013-01-01

    A high-resolution multiproxy record, including pollen, foraminifera, and alkenone paleothermometry, obtained from a single core (DG9603) from the Okinawa Trough, East China Sea (ECS), provided unambiguous evidence for asynchronous climate change between the land and ocean over the past 40 ka. On land, the deglacial stage was characterized by rapid warming, as reflected by paleovegetation, and it began ca. 15 kaBP, consistent with the timing of the last deglacial warming in Greenland. However, sea surface temperature estimates from foraminifera and alkenone paleothermometry increased around 20–19 kaBP, as in the Western Pacific Warm Pool (WPWP). Sea surface temperatures in the Okinawa Trough were influenced mainly by heat transport from the tropical western Pacific Ocean by the Kuroshio Current, but the epicontinental vegetation of the ECS was influenced by atmospheric circulation linked to the northern high-latitude climate. Asynchronous terrestrial and marine signals of the last deglacial warming in East Asia were thus clearly related to ocean currents and atmospheric circulation. We argue that (i) early warming seawater of the WPWP, driven by low-latitude insolation and trade winds, moved northward via the Kuroshio Current and triggered marine warming along the ECS around 20–19 kaBP similar to that in the WPWP, and (ii) an almost complete shutdown of the Atlantic Meridional Overturning Circulation ca. 18–15 kaBP was associated with cold Heinrich stadial-1 and delayed terrestrial warming during the last deglacial warming until ca. 15 kaBP at northern high latitudes, and hence in East Asia. Terrestrial deglacial warming therefore lagged behind marine changes by ca. 3–4 ka. PMID:23720306

  1. Cost-effectiveness of forced air warming during sedation in the cardiac catheterisation laboratory.

    PubMed

    Conway, Aaron; Duff, Jed; Sutherland, Joanna

    2018-05-13

    To determine the cost-effectiveness of forced air warming during sedation in a cardiac catheterisation laboratory. Forced air warming improves thermal comfort in comparison with standard care. It is not known whether the extra costs required for forced air warming are good value. Cost-effectiveness analysis alongside a randomised controlled trial conducted in 2016-2017. A cost-effectiveness analysis was undertaken using Monte Carlo simulations from input distributions to estimate costs and effects associated with using forced air warming to reduce risk of thermal discomfort for patients receiving sedation in a cardiac catheterisation laboratory. A range of willingness to pay threshold values were tested with results plotted on a cost-effectiveness acceptability curve. Costs were calculated in Australian currency ($AUD). Estimated total costs were $5.21 (SD 3.26) higher per patient for forced air warming in comparison to standard care. Estimated probability of success (rating of thermal comfort) was 0.16 (0.06) higher for forced air warming. Forced air warming becomes more likely to result in a net benefit than standard care at a willingness to pay threshold of $34. Forced air warming could be considered cost-effective for procedures performed with sedation in a cardiac catheterisation laboratory if the extra cost of an incremental gain in thermal comfort is less than the decision maker's willingness to pay for it. Therefore, those responsible for decision-making regarding use of forced air warming in the cardiac catheterisation laboratory can use results of our model to decide if it represents good value for their organisation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Quantifying global soil carbon losses in response to warming

    NASA Astrophysics Data System (ADS)

    Crowther, T. W.; Todd-Brown, K. E. O.; Rowe, C. W.; Wieder, W. R.; Carey, J. C.; Machmuller, M. B.; Snoek, B. L.; Fang, S.; Zhou, G.; Allison, S. D.; Blair, J. M.; Bridgham, S. D.; Burton, A. J.; Carrillo, Y.; Reich, P. B.; Clark, J. S.; Classen, A. T.; Dijkstra, F. A.; Elberling, B.; Emmett, B. A.; Estiarte, M.; Frey, S. D.; Guo, J.; Harte, J.; Jiang, L.; Johnson, B. R.; Kröel-Dulay, G.; Larsen, K. S.; Laudon, H.; Lavallee, J. M.; Luo, Y.; Lupascu, M.; Ma, L. N.; Marhan, S.; Michelsen, A.; Mohan, J.; Niu, S.; Pendall, E.; Peñuelas, J.; Pfeifer-Meister, L.; Poll, C.; Reinsch, S.; Reynolds, L. L.; Schmidt, I. K.; Sistla, S.; Sokol, N. W.; Templer, P. H.; Treseder, K. K.; Welker, J. M.; Bradford, M. A.

    2016-12-01

    The majority of the Earth’s terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

  3. Versions of the Waste Reduction Model (WARM)

    EPA Pesticide Factsheets

    This page provides a brief chronology of changes made to EPA’s Waste Reduction Model (WARM), organized by WARM version number. The page includes brief summaries of changes and updates since the previous version.

  4. Versions of the Waste Reduction Model (WARM)

    EPA Pesticide Factsheets

    2017-02-14

    This page provides a brief chronology of changes made to EPA’s Waste Reduction Model (WARM), organized by WARM version number. The page includes brief summaries of changes and updates since the previous version.

  5. Mixing processes following the final stratospheric warming

    NASA Technical Reports Server (NTRS)

    Hess, Peter G.

    1991-01-01

    An investigation is made of the dynamics responsible for the mixing and dissolution of the polar vortex during the final stratospheric warmings. The dynamics and transport during a Northern Hemisphere final stratospheric warming are simulated via a GCM and an associated offline N2O transport model. The results are compared with those obtained from LIMS data for the final warming of 1979, with emphasis on the potential vorticity evolution in the two datasets, the modeled N2O evolution, and the observed O3 evolution. Following each warming, the remnants of the originally intact vortex are found to gradually homogenize with the atmosphere at large. Two processes leading to this homogenization are identified following the final warmings, namely, the potential vorticity field becomes decorrelated from that of the chemical tracer, and the vortex remnants begin to tilt dramatically in a vertical direction.

  6. Global warming reduces plant reproductive output for temperate multi-inflorescence species on the Tibetan plateau.

    PubMed

    Liu, Yinzhan; Mu, Junpeng; Niklas, Karl J; Li, Guoyong; Sun, Shucun

    2012-07-01

    • Temperature is projected to increase more during the winter than during the summer in cold regions. The effects of winter warming on reproductive effort have not been examined for temperate plant species. • Here, we report the results of experimentally induced seasonal winter warming (0.4 and 2.4°C increases in growing and nongrowing seasons, respectively, using warmed and ambient open-top chambers in a Tibetan Plateau alpine meadow) for nine indeterminate-growing species producing multiple (single-flowered or multi-flowered) inflorescences and three determinate-growing species producing single inflorescences after a 3-yr period of warming. • Warming reduced significantly flower number and seed production per plant for all nine multi-inflorescence species, but not for the three single-inflorescence species. Warming had an insignificant effect on the fruit to flower number ratio, seed size and seed number per fruit among species. The reduction in seed production was largely attributable to the decline in flower number per plant. The flowering onset time was unaffected for nine of the 12 species. Therefore, the decline in flower production and seed production in response to winter warming probably reflects a physiological response (e.g. metabolic changes associated with flower production). • Collectively, the data indicate that global warming may reduce flower and seed production for temperate herbaceous species and will probably have a differential effect on single- vs multi-inflorescence species. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  7. Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming

    NASA Astrophysics Data System (ADS)

    Wang, Zhili; Lin, Lei; Zhang, Xiaoye; Zhang, Hua; Liu, Liangke; Xu, Yangyang

    2017-04-01

    The 2015 Paris Agreement aims to limit global warming below 2 °C and pursue efforts to even limit it to 1.5 °C relative to pre-industrial levels. Decision makers need reliable information on the impacts caused by these warming levels for climate mitigation and adaptation measures. We explore the changes in climate extremes, which are closely tied to economic losses and casualties, under 1.5 °C and 2 °C global warming and their scenario dependence using three sets of ensemble global climate model simulations. A warming of 0.5 °C (from 1.5 °C to 2 °C) leads to significant increases in temperature and precipitation extremes in most regions. However, the projected changes in climate extremes under both warming levels highly depend on the pathways of emissions scenarios, with different greenhouse gas (GHG)/aerosol forcing ratio and GHG levels. Moreover, there are multifold differences in several heavily polluted regions, among the scenarios, in the changes in precipitation extremes due to an additional 0.5 °C warming from 1.5 °C to 2 °C. Our results demonstrate that the chemical compositions of emissions scenarios, not just the total radiative forcing and resultant warming level, must be considered when assessing the impacts of global 1.5/2 °C warming.

  8. Investigate the plant biomass response to climate warming in permafrost ecosystem using matrix-based data assimilation

    NASA Astrophysics Data System (ADS)

    Lu, X.; Du, Z.; Schuur, E.; Luo, Y.

    2017-12-01

    Permafrost is one of the most vulnerable regions on the earth with over 40% world soil C represented in this region. Future climate warming potentially has a great impact on this region. On one hand, rising temperature accelerates permafrost soil thaw and release more C from land. On the other hand, warming may also increase the plant growing season length and therefore negatively feedback to climate change by increasing annual land C uptake. However, whether permafrost vegetation biomass change in response to warming can sequester more C has not been well understood. Manipulated air warming experiments reported that air warming has very limited impacts on grass land productivity and biomass growth in permafrost region [Mauritz et al., 2017]. It is hard to reveal the mechanisms behind the limited air warming response directly from experiment data. We employ a vegetation C cycle matrix model based on Community land model 4.5 (CLM4.5) and data assimilation technique to investigate how much do phenology and physiology processes contribute to the response respectively. Our results indicate phenology contributes the most in response to warming. The shift of vegetation parameter distributions after 2012 indicate vegetation acclimation may explain the modest response in plant biomass to air warming. The results suggest future model development need to take vegetation acclimation more seriously. The novel matrix-based model allows data assimilation to be conducted more efficiently. It provides more functional understanding of the models as well as the mechanism behind experiment data.

  9. Warming and Nitrogen Addition Alter Photosynthetic Pigments, Sugars and Nutrients in a Temperate Meadow Ecosystem.

    PubMed

    Zhang, Tao; Yang, Shaobo; Guo, Rui; Guo, Jixun

    2016-01-01

    Global warming and nitrogen (N) deposition have an important influence on terrestrial ecosystems; however, the influence of warming and N deposition on plant photosynthetic products and nutrient cycling in plants is not well understood. We examined the effects of 3 years of warming and N addition on the plant photosynthetic products, foliar chemistry and stoichiometric ratios of two dominant species, i.e., Leymus chinensis and Phragmites communis, in a temperate meadow in northeastern China. Warming significantly increased the chlorophyll content and soluble sugars in L. chinensis but had no impact on the carotenoid and fructose contents. N addition caused a significant increase in the carotenoid and fructose contents. Warming and N addition had little impact on the photosynthetic products of P. communis. Warming caused significant decreases in the N and phosphorus (P) concentrations and significantly increased the carbon (C):P and N:P ratios of L. chinensis, but not the C concentration or the C:N ratio. N addition significantly increased the N concentration, C:P and N:P ratios, but significantly reduced the C:N ratio of L. chinensis. Warming significantly increased P. communis C and P concentrations, and the C:N and C:P ratios, whereas N addition increased the C, N and P concentrations but had no impact on the stoichiometric variables. This study suggests that both warming and N addition have direct impacts on plant photosynthates and elemental stoichiometry, which may play a vital role in plant-mediated biogeochemical cycling in temperate meadow ecosystems.

  10. Effects of different warm-up modalities on power output during the high pull.

    PubMed

    Barnes, Matthew John; Petterson, Ashley; Cochrane, Darryl J

    2017-05-01

    This study compared the effects of six warm-up modalities on peak power output (PPO) during the high-pull exercise. Nine resistance-trained males completed six trials using different warm-ups: high-pull specific (HPS), cycle, whole body vibration (WBV), cycle+HPS, WBV+HPS and a control. Intramuscular temperature (T m ) was increased by 2°C using WBV or cycling. PPO, T m and electromyography (EMG) were recorded during each trial. Two high-pulls were performed prior to and 3 min after participants completed the warm-up. The greatest increase in PPO occurred with HPS (232.8 ± 89.7 W, P < 0.001); however, this was not different to combined warm-ups (cycle+HPS 158.6 ± 121.1 W; WBV+HPS 177.3 ± 93.3 W, P = 1.00). These modalities increased PPO to a greater extent than those that did not involve HPS (all P < 0.05). HPS took the shortest time to complete, compared to the other conditions (P < 0.05). EMG did not differ from pre to post warm-up or between modalities in any of the muscles investigated. No change in T m occurred in warm-ups that did not include cycling or WBV. These results suggest that a movement-specific warm-up improves performance more than temperature-related warm-ups. Therefore, mechanisms other than increased muscle temperature and activation may be important for improving short-term PPO.

  11. Anthropogenic warming has increased drought risk in California.

    PubMed

    Diffenbaugh, Noah S; Swain, Daniel L; Touma, Danielle

    2015-03-31

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼ 100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm-dry conditions like those that have created the acute human and ecosystem impacts associated with the "exceptional" 2012-2014 drought in California.

  12. The Tropical Western Hemisphere Warm Pool

    NASA Astrophysics Data System (ADS)

    Wang, C.; Enfield, D. B.

    2002-12-01

    The paper describes and examines variability of the tropical Western Hemisphere warm pool (WHWP) of water warmer than 28.5oC. The WHWP is the second-largest tropical warm pool on Earth. Unlike the Eastern Hemisphere warm pool in the western Pacific, which straddles the equator, the WHWP is entirely north of the equator. At various stages of development the WHWP extends over parts of the eastern North Pacific, the Gulf of Mexico, the Caribbean, and the western tropical North Atlantic. It has a large seasonal cycle and its interannual fluctuations of area and intensity are significant. Surface heat fluxes warm the WHWP through the boreal spring to an annual maximum of SST and WHWP area in the late summer/early fall, associated with eastern North Pacific and Atlantic hurricane activities and rainfall from northern South America to the southern tier of the United States. Observations suggest that a positive ocean-atmosphere feedback operating through longwave radiation and associated cloudiness seems to operate in the WHWP. During winter preceding large warm pool, there is an alteration of the Walker and Hadley circulation cells that serves as a "tropospheric bridge" for transferring Pacific ENSO effects to the Atlantic sector and inducing initial warming of warm pool. Associated with the warm SST anomalies is a decrease in sea level pressure anomalies and an anomalous increase in atmospheric convection and cloudiness. The increase in convective activity and cloudiness results in less net longwave radiation loss from the sea surface, which then reinforces SST anomalies.

  13. Experimental whole-stream warming alters community size structure.

    PubMed

    Nelson, Daniel; Benstead, Jonathan P; Huryn, Alexander D; Cross, Wyatt F; Hood, James M; Johnson, Philip W; Junker, James R; Gíslason, Gísli M; Ólafsson, Jón S

    2017-07-01

    How ecological communities respond to predicted increases in temperature will determine the extent to which Earth's biodiversity and ecosystem functioning can be maintained into a warmer future. Warming is predicted to alter the structure of natural communities, but robust tests of such predictions require appropriate large-scale manipulations of intact, natural habitat that is open to dispersal processes via exchange with regional species pools. Here, we report results of a two-year whole-stream warming experiment that shifted invertebrate assemblage structure via unanticipated mechanisms, while still conforming to community-level metabolic theory. While warming by 3.8 °C decreased invertebrate abundance in the experimental stream by 60% relative to a reference stream, total invertebrate biomass was unchanged. Associated shifts in invertebrate assemblage structure were driven by the arrival of new taxa and a higher proportion of large, warm-adapted species (i.e., snails and predatory dipterans) relative to small-bodied, cold-adapted taxa (e.g., chironomids and oligochaetes). Experimental warming consequently shifted assemblage size spectra in ways that were unexpected, but consistent with thermal optima of taxa in the regional species pool. Higher temperatures increased community-level energy demand, which was presumably satisfied by higher primary production after warming. Our experiment demonstrates how warming reassembles communities within the constraints of energy supply via regional exchange of species that differ in thermal physiological traits. Similar responses will likely mediate impacts of anthropogenic warming on biodiversity and ecosystem function across all ecological communities. © 2016 John Wiley & Sons Ltd.

  14. The acute effect of different warm-up protocols on anaerobic performance in elite youth soccer players.

    PubMed

    Needham, Robert A; Morse, Christopher I; Degens, Hans

    2009-12-01

    The purpose of the study was to investigate the acute effect of different warm-up protocols on anaerobic performance in elite youth soccer players. Twenty elite youth soccer players (mean age 17.2 +/- 1.2 years) performed 3 different warm-up protocols in a random order on nonconsecutive days. Each warm-up protocol consisted of a 5-minute low-intensity jog followed by 10 minutes of static stretching (SS), dynamic stretching (DS), or dynamic stretching followed by 8 front squats + 20% body mass (DSR). Subjects performed a countermovement jump followed by a 10- and 20-m sprint test immediately and at 3 and 6 minutes after each warm-up protocol. Vertical jump performance following DSR was better at 3 and 6 minutes than after DS, which in turn was better than after SS at 0, 3, and 6 minutes (p < 0.05). Jump performance was better at 3 minutes than immediately after, and this improvement was maintained at 6 minutes after DSR (p < 0.05). A better sprint performance was observed after DSR and DS compared with SS immediately and at 3 and 6 minutes following each warm-up protocol (p < 0.05). The results of the study suggest that a dynamic warm-up with the inclusion of resistance enhances jumping ability more than dynamic exercise alone. In addition, a dynamic warm-up produces a superior sprint and jump performance compared to a warm-up consisting of static stretching.

  15. Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming.

    PubMed

    Wang, Zhili; Lin, Lei; Zhang, Xiaoye; Zhang, Hua; Liu, Liangke; Xu, Yangyang

    2017-04-20

    The 2015 Paris Agreement aims to limit global warming below 2 °C and pursue efforts to even limit it to 1.5 °C relative to pre-industrial levels. Decision makers need reliable information on the impacts caused by these warming levels for climate mitigation and adaptation measures. We explore the changes in climate extremes, which are closely tied to economic losses and casualties, under 1.5 °C and 2 °C global warming and their scenario dependence using three sets of ensemble global climate model simulations. A warming of 0.5 °C (from 1.5 °C to 2 °C) leads to significant increases in temperature and precipitation extremes in most regions. However, the projected changes in climate extremes under both warming levels highly depend on the pathways of emissions scenarios, with different greenhouse gas (GHG)/aerosol forcing ratio and GHG levels. Moreover, there are multifold differences in several heavily polluted regions, among the scenarios, in the changes in precipitation extremes due to an additional 0.5 °C warming from 1.5 °C to 2 °C. Our results demonstrate that the chemical compositions of emissions scenarios, not just the total radiative forcing and resultant warming level, must be considered when assessing the impacts of global 1.5/2 °C warming.

  16. Effects of Soil Warming and Nitrogen Addition on Soil Respiration in a New Zealand Tussock Grassland

    PubMed Central

    Graham, Scott L.; Hunt, John E.; Millard, Peter; McSeveny, Tony; Tylianakis, Jason M.; Whitehead, David

    2014-01-01

    Soil respiration (R S) represents a large terrestrial source of CO2 to the atmosphere. Global change drivers such as climate warming and nitrogen deposition are expected to alter the terrestrial carbon cycle with likely consequences for R S and its components, autotrophic (R A) and heterotrophic respiration (R H). Here we investigate the impacts of a 3°C soil warming treatment and a 50 kg ha−1 y−1 nitrogen addition treatment on R S, R H and their respective seasonal temperature responses in an experimental tussock grassland. Average respiration in untreated soils was 0.96±0.09 μmol m−2 s−1 over the course of the experiment. Soil warming and nitrogen addition increased R S by 41% and 12% respectively. These treatment effects were additive under combined warming and nitrogen addition. Warming increased R H by 37% while nitrogen addition had no effect. Warming and nitrogen addition affected the seasonal temperature response of R S by increasing the basal rate of respiration (R 10) by 14% and 20% respectively. There was no significant interaction between treatments for R 10. The treatments had no impact on activation energy (E 0). The seasonal temperature response of R H was not affected by either warming or nitrogen addition. These results suggest that the additional CO2 emissions from New Zealand tussock grassland soils as a result of warming-enhanced R S constitute a potential positive feedback to rising atmospheric CO2 concentration. PMID:24621790

  17. Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming

    PubMed Central

    Wang, Zhili; Lin, Lei; Zhang, Xiaoye; Zhang, Hua; Liu, Liangke; Xu, Yangyang

    2017-01-01

    The 2015 Paris Agreement aims to limit global warming below 2 °C and pursue efforts to even limit it to 1.5 °C relative to pre-industrial levels. Decision makers need reliable information on the impacts caused by these warming levels for climate mitigation and adaptation measures. We explore the changes in climate extremes, which are closely tied to economic losses and casualties, under 1.5 °C and 2 °C global warming and their scenario dependence using three sets of ensemble global climate model simulations. A warming of 0.5 °C (from 1.5 °C to 2 °C) leads to significant increases in temperature and precipitation extremes in most regions. However, the projected changes in climate extremes under both warming levels highly depend on the pathways of emissions scenarios, with different greenhouse gas (GHG)/aerosol forcing ratio and GHG levels. Moreover, there are multifold differences in several heavily polluted regions, among the scenarios, in the changes in precipitation extremes due to an additional 0.5 °C warming from 1.5 °C to 2 °C. Our results demonstrate that the chemical compositions of emissions scenarios, not just the total radiative forcing and resultant warming level, must be considered when assessing the impacts of global 1.5/2 °C warming. PMID:28425445

  18. Warm-ups for military fitness testing: rapid evidence assessment of the literature.

    PubMed

    Zeno, Stacey A; Purvis, Dianna; Crawford, Cindy; Lee, Courtney; Lisman, Peter; Deuster, Patricia A

    2013-07-01

    Warm-up exercises are commonly used before exercise as a method to physiologically prepare for strenuous physical activity. Various warm-up exercises are often implemented but without scientific merit and, at times, may be detrimental to performance. To date, no systematic reviews have examined the effectiveness of warm-up exercises for military physical fitness test (PFT) or combat fitness test (CFT). The purpose of this rapid evidence assessment of the literature was to examine the quantity, quality, and effectiveness of warm-up exercises for PFT and identify those that might increase PFT and/or CFT scores, as reported in the literature. Literature searches of randomized controlled trials were performed across various databases from database inception to May 2011. Methodological quality of included studies was assessed using the Scottish Intercollegiate Guidelines Network (SIGN) 50 criteria for randomized controlled trial designs, and studies were individually described. Subject matter experts summarized the results applicable or generalizable to military testing. The search yielded a total of 1177 citations, with 37 fitting our inclusion criteria. Cardiovascular warm-ups increased sprint/running time, but dynamic stretching and dynamic warm-ups had the most positive outcome for the various exercise tests examined. Systematically, static stretching had no beneficial or detrimental effect on exercise performance but did improve range of movement exercises. Selected warm-up exercise may increase PFT and possibly CFT scores. Further research is needed to investigate the efficacy of dynamic stretching and dynamic warm-ups.

  19. Biomass production in experimental grasslands of different species richness during three years of climate warming

    NASA Astrophysics Data System (ADS)

    de Boeck, H. J.; Lemmens, C. M. H. M.; Gielen, B.; Malchair, S.; Carnol, M.; Merckx, R.; van den Berge, J.; Ceulemans, R.; Nijs, I.

    2007-12-01

    Here we report on the single and combined impacts of climate warming and species richness on the biomass production in experimental grassland communities. Projections of a future warmer climate have stimulated studies on the response of terrestrial ecosystems to this global change. Experiments have likewise addressed the importance of species numbers for ecosystem functioning. There is, however, little knowledge on the interplay between warming and species richness. During three years, we grew experimental plant communities containing one, three or nine grassland species in 12 sunlit, climate-controlled chambers in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3°C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration was higher. Biomass production was decreased due to warming, both aboveground (-29%) and belowground (-25%), as negative impacts of increased heat and drought stress in summer prevailed. Increased resource partitioning, likely mostly through spatial complementarity, led to higher shoot and root biomass in multi-species communities, regardless of the induced warming. Surprisingly, warming suppressed productivity the most in 9-species communities, which may be attributed to negative impacts of intense interspecific competition for resources under conditions of high abiotic stress. Our results suggest that warming and the associated soil drying could reduce primary production in many temperate grasslands, and that this will not necessarily be mitigated by efforts to maintain or increase species richness.

  20. Arbuscular mycorrhizal symbiosis can mitigate the negative effects of night warming on physiological traits of Medicago truncatula L.

    PubMed

    Hu, Yajun; Wu, Songlin; Sun, Yuqing; Li, Tao; Zhang, Xin; Chen, Caiyan; Lin, Ge; Chen, Baodong

    2015-02-01

    Elevated night temperature, one of the main climate warming scenarios, can have profound effects on plant growth and metabolism. However, little attention has been paid to the potential role of mycorrhizal associations in plant responses to night warming, although it is well known that symbiotic fungi can protect host plants against various environmental stresses. In the present study, physiological traits of Medicago truncatula L. in association with the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis were investigated under simulated night warming. A constant increase in night temperature of 1.53 °C significantly reduced plant shoot and root biomass, flower and seed number, leaf sugar concentration, and shoot Zn and root P concentrations. However, the AM association essentially mitigated these negative effects of night warming by improving plant growth, especially through increased root biomass, root to shoot ratio, and shoot Zn and root P concentrations. A significant interaction was observed between R. irregularis inoculation and night warming in influencing both root sucrose concentration and expression of sucrose synthase (SusS) genes, suggesting that AM symbiosis and increased night temperature jointly regulated plant sugar metabolism. Night warming stimulated AM fungal colonization but did not influence arbuscule abundance, symbiosis-related plant or fungal gene expression, or growth of extraradical mycelium, indicating little effect of night warming on the development or functioning of AM symbiosis. These findings highlight the importance of mycorrhizal symbiosis in assisting plant resilience to climate warming.

  1. Warming slowdown over the Tibetan plateau in recent decades

    NASA Astrophysics Data System (ADS)

    Liu, Yaojie; Zhang, Yangjian; Zhu, Juntao; Huang, Ke; Zu, Jiaxing; Chen, Ning; Cong, Nan; Stegehuis, Annemiek Irene

    2018-03-01

    As the recent global warming hiatus and the warming on high elevations are attracting worldwide attention, this study examined the robustness of the warming slowdown over the Tibetan plateau (TP) and its related driving forces. By integrating multiple-source data from 1982 to 2015 and using trend analysis, we found that the mean temperature (T mean), maximum temperature (T max) and minimum temperature (T min) showed a slowdown of the warming trend around 1998, during the period of the global warming hiatus. This was found over both the growing season (GS) and non-growing season (NGS) and suggested a robust warming hiatus over the TP. Due to the differences in trends of T max and T min, the trend of diurnal temperature range (DTR) also shifted after 1998, especially during the GS temperature. The warming rate was spatially heterogeneous. The northern TP (NTP) experienced more warming than the southern TP (STP) in all seasons from 1982 to 1998, while the pattern was reversed in the period from 1998 to 2015. Water vapour was found to be the main driving force for the trend in T mean and T min by influencing downward long wave radiation. Sunshine duration was the main driving force behind the trend in T max and DTR through a change in downward shortwave radiation that altered the energy source of daytime temperature. Water vapour was the major driving force for temperature change over the NTP, while over the STP, sunshine duration dominated the temperature trend.

  2. Effects of feeding different proportions of silver leaf desmodium (Dismodium uncinatum) with banana (Musa paradisiaca) leaf on nutrient utilization in Horro sheep fed a basal diet of natural grass hay.

    PubMed

    Chali, Diriba; Nurfeta, Ajebu; Banerjee, Sandip; Eik, Lars Olav

    2018-03-02

    The objective was to evaluate feed intake, digestibility, body weight change and carcass characteristics of sheep fed a basal diet of hay supplemented with banana leaves and silver leaf desmodium. Thirty yearling lambs with an average initial body weight of 15.85 ± 1.6 kg were grouped into six blocks of five rams in each block. The treatments were: hay alone (T1), hay + 100% banana leaf (T2), hay + 67% banana leaf + 33% desmodium leaf (T3), hay + 33% banana leaf + 67% desmodium leaf (T4) and hay + 100% desmodium leaf (T5). Three hundred grams of treatment diets were offered daily on as fed basis. The feeding and digestibility trial lasted for 84 and 7 days, respectively, followed by carcass evaluation. The total dry matter (DM) intake for T3, T4 and T5 were greater (P<0.05) than those fed T1 and T2 diets. The lowest (P<0.05) organic matter (OM) intake was recorded in rams reared on T1 diet. The total crude protein (CP) intake was in the following order: T5 > T4 > T3 > T2 > T1. Rams lambs receiving supplementary diets had higher (P<0.05) DM, OM, CP, neutral detergent fiber and acid detergent fiber digestibility compared with the control diet. The empty body weight and slaughter weight was highest (P<0.05) in rams receiving T3, T4 and T5 diets. The average daily gain and feed conversion efficiency was highest (P<0.05) in rams receiving the supplementary diets. The DP on the basis of hot carcass weight linearly increased with increasing levels of desmodium. Rams reared on supplementary diet had higher (P<0.05) rib eye area compared with the control diet. In conclusion, when banana leaf is used as a supplement to poor quality grass, better response was obtained when fed in combination with desmodium.

  3. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America

    Treesearch

    Irena F. Creed; Adam T. Spargo; Julia A. Jones; Jim M. Buttle; Mary B. Adams; Fred D. Beall; Eric G. Booth; John L. Campbell; Dave Clow; Kelly Elder; Mark B. Green; Nancy B. Grimm; Chelcy Miniat; Patricia Ramlal; Amartya Saha; Stephen Sebestyen; Dave Spittlehouse; Shannon Sterling; Mark W. Williams; Rita Winkler; Huaxia Yao

    2014-01-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary.We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm...

  4. 40 CFR Appendix I to Subpart A of... - Global Warming Potentials (Mass Basis), Referenced to the Absolute GWP for the Adopted Carbon...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Global Warming Potentials (Mass Basis..., App. I Appendix I to Subpart A of Part 82—Global Warming Potentials (Mass Basis), Referenced to the... formula Global warming potential (time horizon) 20 years 100 years 500 years CFC-11 CFCl3 5000 4000 1400...

  5. Arctic Security in a Warming World

    DTIC Science & Technology

    2010-03-01

    2009). 3 Map based on: “Northwest Passage - Map of Arctic Sea Ice: Global Warming is Opening Canada’s Arctic” http://geology.com/articles/northwest...War College, February 17, 2009) 3. 5 Scott G. Borgerson, “Arctic Meltdown: the Economic and Security Implications of Global Warming ”, Foreign Affairs...april/kirkpatrick.pdf (accessed February 10, 2010). 45 Thomas R. McCarthy, Jr., Global Warming Threatens National Interests in the Arctic, Strategy

  6. 40 CFR Appendix I to Subpart A of... - Global Warming Potentials (Mass Basis), Referenced to the Absolute GWP for the Adopted Carbon...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Global Warming Potentials (Mass Basis..., App. I Appendix I to Subpart A of Part 82—Global Warming Potentials (Mass Basis), Referenced to the... formula Global warming potential (time horizon) 20 years 100 years 500 years CFC-11 CFCl3 5000 4000 1400...

  7. 40 CFR Appendix I to Subpart A of... - Global Warming Potentials (Mass Basis), Referenced to the Absolute GWP for the Adopted Carbon...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Global Warming Potentials (Mass Basis..., App. I Appendix I to Subpart A of Part 82—Global Warming Potentials (Mass Basis), Referenced to the... formula Global warming potential (time horizon) 20 years 100 years 500 years CFC-11 CFCl3 5000 4000 1400...

  8. 40 CFR Appendix I to Subpart A of... - Global Warming Potentials (Mass Basis), Referenced to the Absolute GWP for the Adopted Carbon...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Global Warming Potentials (Mass Basis..., App. I Appendix I to Subpart A of Part 82—Global Warming Potentials (Mass Basis), Referenced to the... formula Global warming potential (time horizon) 20 years 100 years 500 years CFC-11 CFCl3 5000 4000 1400...

  9. Research on trend of warm-humid climate in Central Asia

    NASA Astrophysics Data System (ADS)

    Gong, Zhi; Peng, Dailiang; Wen, Jingyi; Cai, Zhanqing; Wang, Tiantian; Hu, Yuekai; Ma, Yaxin; Xu, Junfeng

    2017-07-01

    Central Asia is a typical arid area, which is sensitive and vulnerable part of climate changes, at the same time, Central Asia is the Silk Road Economic Belt of the core district, the warm-humid climate change will affect the production and economic development of neighboring countries. The average annual precipitation, average anneal temperature and evapotranspiration are the important indexes to weigh the climate change. In this paper, the annual precipitation, annual average temperature and evapotranspiration data of every pixel point in Central Asia are analyzed by using long-time series remote sensing data to analyze the trend of warm and humid conditions. Finally, using the model to analyzed the distribution of warm-dry trend, the warm-wet trend, the cold-dry trend and the cold-wet trend in Central Asia and Xinjiang area. The results showed that most of the regions of Central Asia were warm-humid and warm-dry trends, but only a small number of regions showed warm-dry and cold-dry trends. It is of great significance to study the climatic change discipline and guarantee the ecological safety and improve the ability to cope with climate change in the region. It also provide scientific basis for the formulation of regional climate change program. The first section in your paper

  10. Increased Carbon Throughput But No Net Soil Carbon Loss in Field Warming Experiments: Combining Data Assimilation and Meta-Analyses

    NASA Astrophysics Data System (ADS)

    van Gestel, N.; Shi, Z.; van Groenigen, K. J.; Osenberg, C. W.; Andresen, L. C.; Dukes, J. S.; Hovenden, M. J.; Michelsen, A.; Pendall, E.; Reich, P.; Schuur, E.; Hungate, B. A.

    2017-12-01

    Minor changes in soil C dynamics in response to warming can strongly modulate climate change. Approaches to estimate long-term changes in soil carbon stocks from shorter-term warming experiments should consider temporal trends in soil carbon dynamics. Here we used data assimilation to take into account the soil carbon time series data collected from the upper soil layer (<15 cm) in 70 field warming experiments located worldwide. We used a soil carbon model with two pools, representing fast- and slow-decaying materials. We show that on average experimental warming enhanced fluxes of incoming and outgoing carbon with no change in predicted equilibrium stocks of carbon. Experimental warming increased the decomposition rates of the fast soil carbon pools by 10.7% on average, but also increased soil carbon input by 8.1%. When projecting the carbon pools to equilibrium stocks we found that warming decreased the size of the fast pool (-3.7%), but did not affect the slow or total carbon pools. We demonstrate that warming increases carbon throughput without an overall effect on total equilibrium carbon stocks. Hence, our findings do not support a generalizable soil carbon-climate feedback for soil carbon in the upper soil layer.

  11. The Effects of Warming-Shifted Plant Phenology on Ecosystem Carbon Exchange Are Regulated by Precipitation in a Semi-Arid Grassland

    PubMed Central

    Xia, Jianyang; Wan, Shiqiang

    2012-01-01

    Background The longer growing season under climate warming has served as a crucial mechanism for the enhancement of terrestrial carbon (C) sink over the past decades. A better understanding of this mechanism is critical for projection of changes in C cycling of terrestrial ecosystems. Methodology/Principal Findings A 4-year field experiment with day and night warming was conducted to examine the responses of plant phenology and their influences on plant coverage and ecosystem C cycling in a temperate steppe in northern China. Greater phenological responses were observed under night than day warming. Both day and night warming prolonged the growing season by advancing phenology of early-blooming species but without changing that of late-blooming species. However, no warming response of vegetation coverage was found for any of the eight species. The variances in species-level coverage and ecosystem C fluxes under different treatments were positively dependent upon the accumulated precipitation within phenological duration but not the length of phenological duration. Conclusions/Significance These plants' phenology is more sensitive to night than day warming, and the warming effects on ecosystem C exchange via shifting plant phenology could be mediated by precipitation patterns in semi-arid grasslands. PMID:22359660

  12. [Effects of warming and precipitation exclusion on soil N2O fluxes in subtropical forests.

    PubMed

    Tang, Cai di; Zhang, Zheng; Cai, Xiao Zhen; Guo, Jian Fen; Yang, Yu Sheng

    2017-10-01

    In order to explore how soil warming and precipitation exclusion influence soil N2O fluxes, we used related functional genes as markers, and four treatments were set up, i.e. , control (CT), soil warming (W, 5 ℃ above the ambient temperature of the control), 50% precipitation reduction (P), soil warming plus 50% precipitation reduction (WP). The results showed that precipitation exclusion reduced soil ammonium nitrogen concentration significantly. Soil warming decreased soil N2O flux and soil denitrification potential significantly. Soil microbial biomass nitrogen (MBN) in warming treatment (W) and precipitation exclusion treatment (P) was significantly lower than that in the control. The amoA gene abundance of AOA was negatively correlated with MBN and ammonium nitrogen contents, but neither soil nitrification potential nor soil N2O flux was correlated with the amoA gene abundance of AOA. Path analysis showed that the denitrification potential affected soil N2O flux directly, while microbial biomass phosphorus (MBP) and warming affected soil N2O flux indirectly through their direct effects on denitrification potential. Temperature might be the main driver of N2O flux in subtropical forest soils. Global warming would reduce N2O emissions from subtropical forest soils.

  13. Pathways to 1.5 °C and 2 °C warming based on observational and geological constraints

    NASA Astrophysics Data System (ADS)

    Goodwin, Philip; Katavouta, Anna; Roussenov, Vassil M.; Foster, Gavin L.; Rohling, Eelco J.; Williams, Richard G.

    2018-02-01

    To restrict global warming to below the agreed targets requires limiting carbon emissions, the principal driver of anthropogenic warming. However, there is significant uncertainty in projecting the amount of carbon that can be emitted, in part due to the limited number of Earth system model simulations and their discrepancies with present-day observations. Here we demonstrate a novel approach to reduce the uncertainty of climate projections; using theory and geological evidence we generate a very large ensemble (3 × 104) of projections that closely match records for nine key climate metrics, which include warming and ocean heat content. Our analysis narrows the uncertainty in surface-warming projections and reduces the range in equilibrium climate sensitivity. We find that a warming target of 1.5 °C above the pre-industrial level requires the total emitted carbon from the start of year 2017 to be less than 195-205 PgC (in over 66% of the simulations), whereas a warming target of 2 °C is only likely if the emitted carbon remains less than 395-455 PgC. At the current emission rates, these warming targets are reached in 17-18 years and 35-41 years, respectively, so that there is a limited window to develop a more carbon-efficient future.

  14. Irrigation enhances local warming with greater nocturnal warming effects than daytime cooling effects

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Jeong, Su-Jong

    2018-02-01

    To meet the growing demand for food, land is being managed to be more productive using agricultural intensification practices, such as the use of irrigation. Understanding the specific environmental impacts of irrigation is a critical part of using it as a sustainable way to provide food security. However, our knowledge of irrigation effects on climate is still limited to daytime effects. This is a critical issue to define the effects of irrigation on warming related to greenhouse gases (GHGs). This study shows that irrigation led to an increasing temperature (0.002 °C year-1) by enhancing nighttime warming (0.009 °C year-1) more than daytime cooling (-0.007 °C year-1) during the dry season from 1961-2004 over the North China Plain (NCP), which is one of largest irrigated areas in the world. By implementing irrigation processes in regional climate model simulations, the consistent warming effect of irrigation on nighttime temperatures over the NCP was shown to match observations. The intensive nocturnal warming is attributed to energy storage in the wetter soil during the daytime, which contributed to the nighttime surface warming. Our results suggest that irrigation could locally amplify the warming related to GHGs, and this effect should be taken into account in future climate change projections.

  15. Recent Warming of Lake Kivu

    PubMed Central

    Katsev, Sergei; Aaberg, Arthur A.; Crowe, Sean A.; Hecky, Robert E.

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient. PMID:25295730

  16. Autumn photosynthetic decline and growth cessation in seedlings of white spruce are decoupled under warming and photoperiod manipulations.

    PubMed

    Stinziano, Joseph R; Way, Danielle A

    2017-08-01

    Climate warming is expected to increase the seasonal duration of photosynthetic carbon fixation and tree growth in high-latitude forests. However, photoperiod, a crucial cue for seasonality, will remain constant, which may constrain tree responses to warming. We investigated the effects of temperature and photoperiod on weekly changes in photosynthetic capacity, leaf biochemistry and growth in seedlings of a boreal evergreen conifer, white spruce [Picea glauca (Moench) Voss]. Warming delayed autumn declines in photosynthetic capacity, extending the period when seedlings had high carbon uptake. While photoperiod was correlated with photosynthetic capacity, short photoperiods did not constrain the maintenance of high photosynthetic capacity under warming. Rubisco concentration dynamics were affected by temperature but not photoperiod, while leaf pigment concentrations were unaffected by treatments. Respiration rates at 25 °C were stimulated by photoperiod, although respiration at the growth temperatures was increased in warming treatments. Seedling growth was stimulated by increased photoperiod and suppressed by warming. We demonstrate that temperature is a stronger control on the seasonal timing of photosynthetic down-regulation than is photoperiod. Thus, while warming can stimulate carbon uptake in boreal conifers, the extra carbon may be directed towards respiration rather than biomass, potentially limiting carbon sequestration under climate change. © 2017 John Wiley & Sons Ltd.

  17. Fungi benefit from two decades of increased nutrient availability in tundra heath soil.

    PubMed

    Rinnan, Riikka; Michelsen, Anders; Bååth, Erland

    2013-01-01

    If microbial degradation of carbon substrates in arctic soil is stimulated by climatic warming, this would be a significant positive feedback on global change. With data from a climate change experiment in Northern Sweden we show that warming and enhanced soil nutrient availability, which is a predicted long-term consequence of climatic warming and mimicked by fertilization, both increase soil microbial biomass. However, while fertilization increased the relative abundance of fungi, warming caused only a minimal shift in the microbial community composition based on the phospholipid fatty acid (PLFA) and neutral lipid fatty acid (NLFA) profiles. The function of the microbial community was also differently affected, as indicated by stable isotope probing of PLFA and NLFA. We demonstrate that two decades of fertilization have favored fungi relative to bacteria, and increased the turnover of complex organic compounds such as vanillin, while warming has had no such effects. Furthermore, the NLFA-to-PLFA ratio for (13)C-incorporation from acetate increased in warmed plots but not in fertilized ones. Thus, fertilization cannot be used as a proxy for effects on warming in arctic tundra soils. Furthermore, the different functional responses suggest that the biomass increase found in both fertilized and warmed plots was mediated via different mechanisms.

  18. Singer and listener perception of vocal warm-up.

    PubMed

    Moorcroft, Lynda; Kenny, Dianna T

    2013-03-01

    This study investigated changes perceived by singers and listeners after the singers had vocally warmed up. The study used a repeated measures within-subject design to assess changes in vibrato quality from pre (nonwarmed-up voice) to post (warmed-up voice) test. Intraclass correlation coefficients were calculated to assess singers' self-ratings pre- and posttest and intra- and interlistener rater reliability. Twelve classically trained female singers recorded and self-rated their performance of an eight bar solo before and after 25 minutes of vocal warm-up exercises. Six experienced listeners assessed the vocal samples for pre- to posttest differences in tone quality and for each singer's warm-up condition. Perceptual judgements were also compared with pre- to posttest changes in vibrato. All singers perceived significant changes in tone quality, psychophysiological factors, proprioceptive feedback and technical command. Significant pre- to posttest differences in tone quality and correct appraisal of the singer's warm-up condition from most of the listeners were only observed for singers who moderated extremely fast or extremely slow vibrato after warming up. The findings reveal the divide between listeners' and singers' perceptions of the warmed-up voice and highlight the importance of enhanced vibrato quality to listener perception of an improvement in vocal quality. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  19. Ecosystem responses to warming and watering in typical and desert steppes.

    PubMed

    Xu, Zhenzhu; Hou, Yanhui; Zhang, Lihua; Liu, Tao; Zhou, Guangsheng

    2016-10-10

    Global warming is projected to continue, leading to intense fluctuations in precipitation and heat waves and thereby affecting the productivity and the relevant biological processes of grassland ecosystems. Here, we determined the functional responses to warming and altered precipitation in both typical and desert steppes. The results showed that watering markedly increased the aboveground net primary productivity (ANPP) in a typical steppe during a drier year and in a desert steppe over two years, whereas warming manipulation had no significant effect. The soil microbial biomass carbon (MBC) and the soil respiration (SR) were increased by watering in both steppes, but the SR was significantly decreased by warming in the desert steppe only. The inorganic nitrogen components varied irregularly, with generally lower levels in the desert steppe. The belowground traits of soil total organic carbon (TOC) and the MBC were more closely associated with the ANPP in the desert than in the typical steppes. The results showed that the desert steppe with lower productivity may respond strongly to precipitation changes, particularly with warming, highlighting the positive effect of adding water with warming. Our study implies that the habitat- and year-specific responses to warming and watering should be considered when predicting an ecosystem's functional responses under climate change scenarios.

  20. Warming enhances old organic carbon decomposition through altering functional microbial communities

    DOE PAGES

    Cheng, Lei; Zhang, Naifang; Yuan, Mengting; ...

    2017-04-21

    Soil organic matter (SOM) stocks contain nearly three times as much carbon (C) as the atmosphere and changes in soil C stocks may have a major impact on future atmospheric carbon dioxide concentrations and climate. Over the past two decades, much research has been devoted to examining the influence of warming on SOM decomposition in topsoil. Most SOM, however, is old and stored in subsoil. The fate of subsoil SOM under future warming remains highly uncertain. Here, by combining a long-term field warming experiment and a meta-analysis study, we showed that warming significantly increased SOM decomposition in subsoil. We alsomore » showed that a decade of warming promoted decomposition of subsoil SOM with turnover times of decades to millennia in a tall grass prairie and this effect was largely associated with shifts in the functional gene structure of microbial communities. By coupling stable isotope probing with metagenomics, we found that microbial communities in warmed soils possessed a higher relative abundance of key functional genes involved in the degradation of organic materials with varying recalcitrance than those in control soils. These findings suggest warming may considerably alter the stability of the vast pool of old SOM in subsoil, contributing to the long-term positive feedback between the C cycle and climate.« less

  1. Recent warming of lake Kivu.

    PubMed

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  2. Warming enhances old organic carbon decomposition through altering functional microbial communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lei; Zhang, Naifang; Yuan, Mengting

    Soil organic matter (SOM) stocks contain nearly three times as much carbon (C) as the atmosphere and changes in soil C stocks may have a major impact on future atmospheric carbon dioxide concentrations and climate. Over the past two decades, much research has been devoted to examining the influence of warming on SOM decomposition in topsoil. Most SOM, however, is old and stored in subsoil. The fate of subsoil SOM under future warming remains highly uncertain. Here, by combining a long-term field warming experiment and a meta-analysis study, we showed that warming significantly increased SOM decomposition in subsoil. We alsomore » showed that a decade of warming promoted decomposition of subsoil SOM with turnover times of decades to millennia in a tall grass prairie and this effect was largely associated with shifts in the functional gene structure of microbial communities. By coupling stable isotope probing with metagenomics, we found that microbial communities in warmed soils possessed a higher relative abundance of key functional genes involved in the degradation of organic materials with varying recalcitrance than those in control soils. These findings suggest warming may considerably alter the stability of the vast pool of old SOM in subsoil, contributing to the long-term positive feedback between the C cycle and climate.« less

  3. Usefulness of warm water and oil assistance in colonoscopy by trainees.

    PubMed

    Park, Sung Chul; Keum, Bora; Kim, Eun Sun; Jung, Eun Suk; Lee, Sehe Dong; Park, Sanghoon; Seo, Yeon Seok; Kim, Yong Sik; Jeen, Yoon Tae; Chun, Hoon Jai; Um, Soon Ho; Kim, Chang Duck; Ryu, Ho Sang

    2010-10-01

    Success rate of cecal intubation, endoscopist's difficulty, and procedure-related patient pain are still problems for beginners performing colonoscopy. New methods to aid colonoscopic insertion such as warm water instillation and oil lubrication have been proposed. The aim of this study is to evaluate the feasibility of using warm water or oil in colonoscopy. Colonoscopy was performed in 117 unsedated patients by three endoscopists-in-training. Patients were randomly allocated to three groups, using a conventional method with administration of antispasmodics, warm water instillation, and oil lubrication, respectively. Success rate of total intubation within time limit (15 min), cecal intubation time, degree of endoscopist's difficulty, and level of patient discomfort were compared among the three groups. Cecal intubation time was shorter in the warm water group than in the conventional and oil groups. Degree of procedural difficulty was lower in the warm water group, and patient pain score was higher in the oil lubrication group, compared with the other groups. However, there was no significant difference in success rate of intubation within time limit among the three groups. The warm water method is a simple, safe, and feasible method for beginners. Oil lubrication may not be a useful method compared with conventional and warm water method.

  4. Global metabolic impacts of recent climate warming.

    PubMed

    Dillon, Michael E; Wang, George; Huey, Raymond B

    2010-10-07

    Documented shifts in geographical ranges, seasonal phenology, community interactions, genetics and extinctions have been attributed to recent global warming. Many such biotic shifts have been detected at mid- to high latitudes in the Northern Hemisphere-a latitudinal pattern that is expected because warming is fastest in these regions. In contrast, shifts in tropical regions are expected to be less marked because warming is less pronounced there. However, biotic impacts of warming are mediated through physiology, and metabolic rate, which is a fundamental measure of physiological activity and ecological impact, increases exponentially rather than linearly with temperature in ectotherms. Therefore, tropical ectotherms (with warm baseline temperatures) should experience larger absolute shifts in metabolic rate than the magnitude of tropical temperature change itself would suggest, but the impact of climate warming on metabolic rate has never been quantified on a global scale. Here we show that estimated changes in terrestrial metabolic rates in the tropics are large, are equivalent in magnitude to those in the north temperate-zone regions, and are in fact far greater than those in the Arctic, even though tropical temperature change has been relatively small. Because of temperature's nonlinear effects on metabolism, tropical organisms, which constitute much of Earth's biodiversity, should be profoundly affected by recent and projected climate warming.

  5. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time.

    PubMed

    Elmendorf, Sarah C; Henry, Gregory H R; Hollister, Robert D; Björk, Robert G; Bjorkman, Anne D; Callaghan, Terry V; Collier, Laura Siegwart; Cooper, Elisabeth J; Cornelissen, Johannes H C; Day, Thomas A; Fosaa, Anna Maria; Gould, William A; Grétarsdóttir, Járngerður; Harte, John; Hermanutz, Luise; Hik, David S; Hofgaard, Annika; Jarrad, Frith; Jónsdóttir, Ingibjörg Svala; Keuper, Frida; Klanderud, Kari; Klein, Julia A; Koh, Saewan; Kudo, Gaku; Lang, Simone I; Loewen, Val; May, Jeremy L; Mercado, Joel; Michelsen, Anders; Molau, Ulf; Myers-Smith, Isla H; Oberbauer, Steven F; Pieper, Sara; Post, Eric; Rixen, Christian; Robinson, Clare H; Schmidt, Niels Martin; Shaver, Gaius R; Stenström, Anna; Tolvanen, Anne; Totland, Orjan; Troxler, Tiffany; Wahren, Carl-Henrik; Webber, Patrick J; Welker, Jeffery M; Wookey, Philip A

    2012-02-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date. © 2011 Blackwell Publishing Ltd/CNRS.

  6. Causes of model dry and warm bias over central U.S. and impact on climate projections.

    PubMed

    Lin, Yanluan; Dong, Wenhao; Zhang, Minghua; Xie, Yuanyu; Xue, Wei; Huang, Jianbin; Luo, Yong

    2017-10-12

    Climate models show a conspicuous summer warm and dry bias over the central United States. Using results from 19 climate models in the Coupled Model Intercomparison Project Phase 5 (CMIP5), we report a persistent dependence of warm bias on dry bias with the precipitation deficit leading the warm bias over this region. The precipitation deficit is associated with the widespread failure of models in capturing strong rainfall events in summer over the central U.S. A robust linear relationship between the projected warming and the present-day warm bias enables us to empirically correct future temperature projections. By the end of the 21st century under the RCP8.5 scenario, the corrections substantially narrow the intermodel spread of the projections and reduce the projected temperature by 2.5 K, resulting mainly from the removal of the warm bias. Instead of a sharp decrease, after this correction the projected precipitation is nearly neutral for all scenarios.Climate models repeatedly show a warm and dry bias over the central United States, but the origin of this bias remains unclear. Here the authors associate this bias to precipitation deficits in models and after applying a correction, projected precipitation in this region shows no significant changes.

  7. Grade 7 students' normative decision making in science learning about global warming through science technology and society (STS) approach

    NASA Astrophysics Data System (ADS)

    Luengam, Piyanuch; Tupsai, Jiraporn; Yuenyong, Chokchai

    2018-01-01

    This study reported Grade 7 students' normative decision making in teaching and learning about global warming through science technology and society (STS) approach. The participants were 43 Grade 7 students in Sungkom, Nongkhai, Thailand. The teaching and learning about global warming through STS approach had carried out for 5 weeks. The global warming unit through STS approach was developed based on framework of Yuenyong (2006) that consisted of five stages including (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decision-making, and (5) socialization stage. Students' normative decision making was collected during their learning by questionnaire, participant observation, and students' tasks. Students' normative decision making were analyzed from both pre-and post-intervention and students' ideas during the intervention. The aspects of normative include influences of global warming on technology and society; influences of values, culture, and society on global warming; and influences of technology on global warming. The findings revealed that students have chance to learn science concerning with the relationship between science, technology, and society through their giving reasons about issues related to global warming. The paper will discuss implications of these for science teaching and learning through STS in Thailand.

  8. Ecosystem responses to warming and watering in typical and desert steppes

    PubMed Central

    Xu, Zhenzhu; Hou, Yanhui; Zhang, Lihua; Liu, Tao; Zhou, Guangsheng

    2016-01-01

    Global warming is projected to continue, leading to intense fluctuations in precipitation and heat waves and thereby affecting the productivity and the relevant biological processes of grassland ecosystems. Here, we determined the functional responses to warming and altered precipitation in both typical and desert steppes. The results showed that watering markedly increased the aboveground net primary productivity (ANPP) in a typical steppe during a drier year and in a desert steppe over two years, whereas warming manipulation had no significant effect. The soil microbial biomass carbon (MBC) and the soil respiration (SR) were increased by watering in both steppes, but the SR was significantly decreased by warming in the desert steppe only. The inorganic nitrogen components varied irregularly, with generally lower levels in the desert steppe. The belowground traits of soil total organic carbon (TOC) and the MBC were more closely associated with the ANPP in the desert than in the typical steppes. The results showed that the desert steppe with lower productivity may respond strongly to precipitation changes, particularly with warming, highlighting the positive effect of adding water with warming. Our study implies that the habitat- and year-specific responses to warming and watering should be considered when predicting an ecosystem’s functional responses under climate change scenarios. PMID:27721480

  9. Warming enhances old organic carbon decomposition through altering functional microbial communities

    PubMed Central

    Cheng, Lei; Zhang, Naifang; Yuan, Mengting; Xiao, Jing; Qin, Yujia; Deng, Ye; Tu, Qichao; Xue, Kai; Van Nostrand, Joy D; Wu, Liyou; He, Zhili; Zhou, Xuhui; Leigh, Mary Beth; Konstantinidis, Konstantinos T; Schuur, Edward AG; Luo, Yiqi; Tiedje, James M; Zhou, Jizhong

    2017-01-01

    Soil organic matter (SOM) stocks contain nearly three times as much carbon (C) as the atmosphere and changes in soil C stocks may have a major impact on future atmospheric carbon dioxide concentrations and climate. Over the past two decades, much research has been devoted to examining the influence of warming on SOM decomposition in topsoil. Most SOM, however, is old and stored in subsoil. The fate of subsoil SOM under future warming remains highly uncertain. Here, by combining a long-term field warming experiment and a meta-analysis study, we showed that warming significantly increased SOM decomposition in subsoil. We also showed that a decade of warming promoted decomposition of subsoil SOM with turnover times of decades to millennia in a tall grass prairie and this effect was largely associated with shifts in the functional gene structure of microbial communities. By coupling stable isotope probing with metagenomics, we found that microbial communities in warmed soils possessed a higher relative abundance of key functional genes involved in the degradation of organic materials with varying recalcitrance than those in control soils. These findings suggest warming may considerably alter the stability of the vast pool of old SOM in subsoil, contributing to the long-term positive feedback between the C cycle and climate. PMID:28430189

  10. Assessing the magnitude and timing of anthropogenic warming of a shallow aquifer: example from Virginia Beach, USA

    USGS Publications Warehouse

    Eggleston, John R.; McCoy, Kurt J.

    2015-01-01

    Groundwater temperature measurements in a shallow coastal aquifer in Virginia Beach, Virginia, USA, suggest groundwater warming of +4.1 °C relative to deeper geothermal gradients. Observed warming is related to timing and depth of influence of two potential thermal drivers—atmospheric temperature increases and urbanization. Results indicate that up to 30 % of groundwater warming at the water table can be attributed to atmospheric warming while up to 70 % of warming can be attributed to urbanization. Groundwater temperature readings to 30-m depth correlate positively with percentage of impervious cover and negatively with percentage of tree canopy cover; thus, these two land-use metrics explain up to 70 % of warming at the water table. Analytical and numerical modeling results indicate that an average vertical groundwater temperature profile for the study area, constructed from repeat measurement at 11 locations over 15 months, is consistent with the timing of land-use change over the past century in Virginia Beach. The magnitude of human-induced warming at the water table (+4.1 °C) is twice the current seasonal temperature variation, indicating the potential for ecological impacts on wetlands and estuaries receiving groundwater discharge from shallow aquifers.

  11. Warming enhances old organic carbon decomposition through altering functional microbial communities.

    PubMed

    Cheng, Lei; Zhang, Naifang; Yuan, Mengting; Xiao, Jing; Qin, Yujia; Deng, Ye; Tu, Qichao; Xue, Kai; Van Nostrand, Joy D; Wu, Liyou; He, Zhili; Zhou, Xuhui; Leigh, Mary Beth; Konstantinidis, Konstantinos T; Schuur, Edward Ag; Luo, Yiqi; Tiedje, James M; Zhou, Jizhong

    2017-08-01

    Soil organic matter (SOM) stocks contain nearly three times as much carbon (C) as the atmosphere and changes in soil C stocks may have a major impact on future atmospheric carbon dioxide concentrations and climate. Over the past two decades, much research has been devoted to examining the influence of warming on SOM decomposition in topsoil. Most SOM, however, is old and stored in subsoil. The fate of subsoil SOM under future warming remains highly uncertain. Here, by combining a long-term field warming experiment and a meta-analysis study, we showed that warming significantly increased SOM decomposition in subsoil. We also showed that a decade of warming promoted decomposition of subsoil SOM with turnover times of decades to millennia in a tall grass prairie and this effect was largely associated with shifts in the functional gene structure of microbial communities. By coupling stable isotope probing with metagenomics, we found that microbial communities in warmed soils possessed a higher relative abundance of key functional genes involved in the degradation of organic materials with varying recalcitrance than those in control soils. These findings suggest warming may considerably alter the stability of the vast pool of old SOM in subsoil, contributing to the long-term positive feedback between the C cycle and climate.

  12. Ecosystem responses to warming and watering in typical and desert steppes

    NASA Astrophysics Data System (ADS)

    Xu, Zhenzhu; Hou, Yanhui; Zhang, Lihua; Liu, Tao; Zhou, Guangsheng

    2016-10-01

    Global warming is projected to continue, leading to intense fluctuations in precipitation and heat waves and thereby affecting the productivity and the relevant biological processes of grassland ecosystems. Here, we determined the functional responses to warming and altered precipitation in both typical and desert steppes. The results showed that watering markedly increased the aboveground net primary productivity (ANPP) in a typical steppe during a drier year and in a desert steppe over two years, whereas warming manipulation had no significant effect. The soil microbial biomass carbon (MBC) and the soil respiration (SR) were increased by watering in both steppes, but the SR was significantly decreased by warming in the desert steppe only. The inorganic nitrogen components varied irregularly, with generally lower levels in the desert steppe. The belowground traits of soil total organic carbon (TOC) and the MBC were more closely associated with the ANPP in the desert than in the typical steppes. The results showed that the desert steppe with lower productivity may respond strongly to precipitation changes, particularly with warming, highlighting the positive effect of adding water with warming. Our study implies that the habitat- and year-specific responses to warming and watering should be considered when predicting an ecosystem’s functional responses under climate change scenarios.

  13. Global warming and neurodegenerative disorders: speculations on their linkage.

    PubMed

    Habibi, Laleh; Perry, George; Mahmoudi, Morteza

    2014-01-01

    Climate change is having considerable impact on biological systems. Eras of ice ages and warming shaped the contemporary earth and origin of creatures including humans. Warming forces stress conditions on cells. Therefore, cells evolved elaborate defense mechanisms, such as creation of heat shock proteins, to combat heat stress. Global warming is becoming a crisis and this process would yield an undefined increasing rate of neurodegenerative disorders in future decades. Since heat stress is known to have a degenerative effects on neurons and, conversely, cold conditions have protective effect on these cells, we hypothesize that persistent heat stress forced by global warming might play a crucial role in increasing neurodegenerative disorders.

  14. Terrestrial carbon cycle affected by non-uniform climate warming

    NASA Astrophysics Data System (ADS)

    Xia, Jianyang; Chen, Jiquan; Piao, Shilong; Ciais, Philippe; Luo, Yiqi; Wan, Shiqiang

    2014-03-01

    Feedbacks between the terrestrial carbon cycle and climate change could affect many ecosystem functions and services, such as food production, carbon sequestration and climate regulation. The rate of climate warming varies on diurnal and seasonal timescales. A synthesis of global air temperature data reveals a greater rate of warming in winter than in summer in northern mid and high latitudes, and the inverse pattern in some tropical regions. The data also reveal a decline in the diurnal temperature range over 51% of the global land area and an increase over only 13%, because night-time temperatures in most locations have risen faster than daytime temperatures. Analyses of satellite data, model simulations and in situ observations suggest that the impact of seasonal warming varies between regions. For example, spring warming has largely stimulated ecosystem productivity at latitudes between 30° and 90° N, but suppressed productivity in other regions. Contrasting impacts of day- and night-time warming on plant carbon gain and loss are apparent in many regions. We argue that ascertaining the effects of non-uniform climate warming on terrestrial ecosystems is a key challenge in carbon cycle research.

  15. Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean

    PubMed Central

    Mei, Wei; Primeau, François; McWilliams, James C.; Pasquero, Claudia

    2013-01-01

    Tropical cyclones have been hypothesized to influence climate by pumping heat into the ocean, but a direct measure of this warming effect is still lacking. We quantified cyclone-induced ocean warming by directly monitoring the thermal expansion of water in the wake of cyclones, using satellite-based sea surface height data that provide a unique way of tracking the changes in ocean heat content on seasonal and longer timescales. We find that the long-term effect of cyclones is to warm the ocean at a rate of 0.32 ± 0.15 PW between 1993 and 2009, i.e., ∼23 times more efficiently per unit area than the background equatorial warming, making cyclones potentially important modulators of the climate by affecting heat transport in the ocean–atmosphere system. Furthermore, our analysis reveals that the rate of warming increases with cyclone intensity. This, together with a predicted shift in the distribution of cyclones toward higher intensities as climate warms, suggests the ocean will get even warmer, possibly leading to a positive feedback. PMID:23922393

  16. Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean.

    PubMed

    Mei, Wei; Primeau, François; McWilliams, James C; Pasquero, Claudia

    2013-09-17

    Tropical cyclones have been hypothesized to influence climate by pumping heat into the ocean, but a direct measure of this warming effect is still lacking. We quantified cyclone-induced ocean warming by directly monitoring the thermal expansion of water in the wake of cyclones, using satellite-based sea surface height data that provide a unique way of tracking the changes in ocean heat content on seasonal and longer timescales. We find that the long-term effect of cyclones is to warm the ocean at a rate of 0.32 ± 0.15 PW between 1993 and 2009, i.e., ∼23 times more efficiently per unit area than the background equatorial warming, making cyclones potentially important modulators of the climate by affecting heat transport in the ocean-atmosphere system. Furthermore, our analysis reveals that the rate of warming increases with cyclone intensity. This, together with a predicted shift in the distribution of cyclones toward higher intensities as climate warms, suggests the ocean will get even warmer, possibly leading to a positive feedback.

  17. The 2014/15 Warm Anomaly in the Southern California Current - Physical and Biological Responses

    NASA Astrophysics Data System (ADS)

    Ralf, G.

    2016-02-01

    The 2014/15 Warm Anomaly (WarmA) off Southern California manifested itself in the summer of 2014 as an anomalously warm surface layer in the Southern Calif. Bight with low concentrations of Chl a. This layer intensified in spatial extent, covering the entire CalCOFI surface area by the winter of 2015 with temperature anomalies 3 StDev larger than long-term averages. Concentrations of nutrients, phytoplankton biomass and rates of primary production were extremely low during the WarmA. The evolution of the WarmA as well as the 2015/16 El Niño with time will be compared to the evolution of the weak and strong El Niño's observed over the last 60 years. These events provide unique insights in the controls of phytoplankton biomass and production in the southern California Current System. Preliminary analyses suggest that the response of the phytoplankton community to the WarmA was consistent with responses to similar forcing during the prior decade. This presentation is based on data collected during the quarterly CalCOFI cruises by the CalCOFI and the CCE-LTER groups.

  18. Shifting phenology and abundance under experimental warming alters trophic relationships and plant reproductive capacity.

    PubMed

    Liu, Yinzhan; Reich, Peter B; Li, Guoyong; Sun, Shucun

    2011-06-01

    Phenological mismatches due to climate change may have important ecological consequences. In a three-year study, phenological shifts due to experimental warming markedly altered trophic relationships between plants and insect herbivores, causing a dramatic decline of reproductive capacity for one of the plant species. In a Tibetan meadow, the gentian (Gentiana formosa) typically flowers after the peak larva density of a noctuid moth (Melanchra pisi) that primarily feeds on a dominant forb (anemone, Anemone trullifolia var. linearis). However, artificial warming of approximately 1.5 degrees C advanced gentian flower phenology and anemone vegetative phenology by a week, but delayed moth larvae emergence by two weeks. The warming increased larval density 10-fold, but decreased anemone density by 30%. The phenological and density shifts under warmed conditions resulted in the insect larvae feeding substantially on the gentian flowers and ovules; there was approximately 100-fold more damage in warmed than in unwarmed chambers. This radically increased trophic connection reduced gentian plant reproduction and likely contributed to its reduced abundance in the warmed chambers.

  19. Arctic Sea Ice in a 1.5°C Warmer World

    NASA Astrophysics Data System (ADS)

    Niederdrenk, Anne Laura; Notz, Dirk

    2018-02-01

    We examine the seasonal cycle of Arctic sea ice in scenarios with limited future global warming. To do so, we analyze two sets of observational records that cover the observational uncertainty of Arctic sea ice loss per degree of global warming. The observations are combined with 100 simulations of historical and future climate evolution from the Max Planck Institute Earth System Model Grand Ensemble. Based on the high-sensitivity observations, we find that Arctic September sea ice is lost with low probability (P≈ 10%) for global warming of +1.5°C above preindustrial levels and with very high probability (P> 99%) for global warming of +2°C above preindustrial levels. For the low-sensitivity observations, September sea ice is extremely unlikely to disappear for +1.5°C warming (P≪ 1%) and has low likelihood (P≈ 10%) to disappear even for +2°C global warming. For March, both observational records suggest a loss of 15% to 20% of Arctic sea ice area for 1.5°C to 2°C global warming.

  20. Effects of Warm-Up and Fatigue on Knee Joint Position Sense and Jump Performance.

    PubMed

    Romero-Franco, N; Jiménez-Reyes, P

    2017-01-01

    The purpose of this study was to evaluate the effects of a warm-up and fatigue protocol on the vertical jump and knee joint position sense of sprinters. Thirty-two sprinters were randomly allocated to either a control group (CONT) or a plyometric group (PLYO) that performed a warm-up, followed by a high-intensity plyometric protocol. Absolute (AAE), relative (RAE), and variable (VAE) angular errors and vertical jump were evaluated before and after the warm-up, as well as after the plyometric protocol and again 5 min later. After the warm-up, athletes improved RAE and jump performance. After the plyometric protocol, scores on the RAE, VAE, and the vertical jump performance worsened compared to the control group and to the values obtained after the warm-up. Five minutes later, RAE and vertical jump continued to be impaired. AAE did not show significant differences. The vertical jump is improved after the warm-up, although it is deteriorated after high-intensity plyometry. Regarding knee proprioception, the lack of impairments in the AAE make unclear the effects of the plyometric exercises on knee proprioception.

  1. Control of Fossil-Fuel Particulate Black Carbon and Organic Matter, the Most Effective Method of Slowing Global Warming

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2001-12-01

    Under the 1997 Kyoto Protocol, no control of black carbon (BC) was considered. Here, it is found, through simulations in which seven new particles feedbacks to climate are identified, that any emission reduction of fossil-fuel (f.f.) particulate BC plus associated organic matter (OM) will slow global warming more than will any emission reduction of CO2 or CH4 for a definite time period. When all f.f. BC+OM and anthropogenic CO2 and CH4 emissions are eliminated together, that period is 20-90 years. It is also found that historical net global warming can be attributed roughly to greenhouse-gas plus f.f. BC+OM warming minus anthropogenic sulfate cooling. Eliminating all f.f. BC+OM could eliminate more than 40 percent of such net warming within three years if no other changes occurred. Reducing CO2 emissions by a third would have the same effect, but after 50-200 years. Finally, diesel cars warm climate more than do equivalent gasoline cars; thus, fuel- and carbon-tax laws that favor diesel promote global warming.

  2. Ten years of measurements and modeling of soil temperature changes and their effects on permafrost in Northwestern Alaska

    NASA Astrophysics Data System (ADS)

    Batir, Joseph F.; Hornbach, Matthew J.; Blackwell, David D.

    2017-01-01

    Multiple studies demonstrate Northwest Alaska and the Alaskan North Slope are warming. Melting permafrost causes surface destabilization and ecological changes. Here, we use thermistors permanently installed in 1996 in a borehole in northwestern Alaska to study past, present, and future ground and subsurface temperature change, and from this, forecast future permafrost degradation in the region. We measure and model Ground Surface Temperature (GST) warming trends for a 10 year period using equilibrium Temperature-Depth (TD) measurements from borehole T96-012, located near the Red Dog Mine in northwestern Alaska-part of the Arctic ecosystem where a continuous permafrost layer exists. Temperature measurements from 1996 to 2006 indicate the subsurface has clearly warmed at depths shallower than 70 m. Seasonal climate effects are visible in the data to a depth of 30 m based on a visible sinusoidal pattern in the TD plots that correlate with season patterns. Using numerical models constrained by thermal conductivity and temperature measurements at the site, we show that steady warming at depths of 30 to 70 m is most likely the direct result of longer term (decadal-scale) surface warming. The analysis indicates the GST in the region is warming at 0.44 ± 0.05 °C/decade, a value consistent with Surface Air Temperature (SAT) warming of 1.0 ± 0.8 °C/decade observed at Red Dog Mine, but with much lower uncertainty. The high annual variability in the SAT signal produces significant uncertainty in SAT trends. The high annual variability is filtered out of the GST signal by the low thermal diffusivity of the subsurface. Comparison of our results to recent permafrost monitoring studies suggests changes in latitude in the polar regions significantly impacts warming rates. North Slope average GST warming is 0.9 ± 0.5 °C/decade, double our observations at RDM, but within error. The RDM warming rate is within the warming variation observed in eastern Alaska, 0.36-0.71 °C/decade, which suggests changes in longitude produce a smaller impact but have warming variability likely related to ecosystem, elevation, microclimates, etc. changes. We also forward model future warming by assuming a 1D diffusive heat flow model and incorporating latent heat effects for permafrost melting. Our analysis indicates 1 to 4 m of loss at the upper permafrost boundary, a 145 ± 100% increase in the active layer thickness by 2055. If warming continues at a constant rate of 0.44 ± 0.05 °C/decade, we estimate the 125 m thick zone of permafrost at this site will completely melt by 2150. Permafrost is expected to melt by 2200, 2110, or 2080, if the rate of warming is altered to 0.25, 0.90, or 2.0 °C/decade, respectively, as an array of different climate models suggest. Since our model assumes no advection of heat (a more efficient heat transport mechanism), and no accelerated warming, our current prediction of complete permafrost loss by 2150 may overestimate the residence time of permafrost in this region of Northwest Alaska.

  3. Waste Reduction Model (WARM) Resources for Students

    EPA Pesticide Factsheets

    This page provides a brief overview of how EPA’s Waste Reduction Model (WARM) can be used by students. The page includes a brief summary of uses of WARM for the audience and links to other resources.

  4. Warm-up: A Psychophysiological Phenomenon.

    ERIC Educational Resources Information Center

    Lopez, Richard; Dausman, Cindy

    1981-01-01

    The effectiveness of warm-up as an aid to athletic performance is related to an interaction of both psychological and physiological factors. Benefits of warm-up include an increase in blood and muscle temperatures and an increased muscular endurance. (JN)

  5. Warm Mix Asphalt

    DOT National Transportation Integrated Search

    2009-04-17

    State of Alaska State of Alaska - Warm Mix Project Warm Mix Project: Location - Petersburg, Alaska which is Petersburg, Alaska which is located in the heart of Southeast Alaska located in the heart of Southeast Alaska's Inside Passage at the tip of M...

  6. Alabama warm mix asphalt field study : final report.

    DOT National Transportation Integrated Search

    2010-05-01

    The Alabama Department of Transportation hosted a warm mix asphalt field demonstration in August 2007. The warm mix asphalt technology demonstrated was Evotherm Dispersed Asphalt Technology. The WMA and hot mix asphalt produced for the demonstration ...

  7. America’s Security Role in a Changing World: A Global Strategic Assessment

    DTIC Science & Technology

    2009-04-01

    actually three interrelated crises: a global warming crisis, fuel crisis, and diplomatic crisis. Global warming threatens to create an environmental...which is a diplomatic crisis, particularly for the United States. Global warming is already being used as a dip- lomatic wedge issue against America...mitigating or stopping transnational threats 4 INSS Proceedings April 7–8, 2009 actors, and effects of global warming . A result of these increasing

  8. Amplified summer warming in Europe-West Asia and Northeast Asia after the mid-1990s

    NASA Astrophysics Data System (ADS)

    Hong, Xiaowei; Lu, Riyu; Li, Shuanglin

    2017-09-01

    Regional temperature changes are a crucial factor in affecting agriculture, ecosystems and societies, which depend greatly on local temperatures. We identify a nonuniform warming pattern in summer around the mid-1990s over the Eurasian continent, with a predominant amplified warming over Europe-West Asia and Northeast Asia but much weaker warming over Central Asia. It is found that the nonuniform warming concurs with both the phase shift of the Atlantic Multi-decadal Oscillation (AMO) and the decadal change in the Silk Road Pattern (SRP), which is an upper-tropospheric teleconnection pattern over the Eurasian continent during summer. We suggest that the AMO may modulate the decadal change in SRP and then induce the zonal asymmetry in temperature changes. Our results have important implications for decadal prediction of regional warming pattern in Eurasia based on the predictable AMO.

  9. Delayed warming hiatus over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    An, Wenling; Hou, Shugui; Hu, Yongyun; Wu, Shuangye

    2017-03-01

    A reduction in the warming rate for the global surface temperature since the late 1990s has attracted much attention and caused a great deal of controversy. During the same time period, however, most previous studies have reported enhanced warming over the Tibetan Plateau (TP). In this study we further examined the temperature trend of the TP and surrounding areas based on the homogenized temperature records for the period 1980-2014, we found that for the TP regions lower than 4000 m the warming rate has started to slow down since the late 1990s, a similar pattern consistent with the whole China and the global temperature trend. However, for the TP regions higher than 4000 m, this reduction in warming rate did not occur until the mid-2000s. This delayed warming hiatus could be related to changes in regional radiative, energy, and land surface processes in recent years.

  10. Suppressed midlatitude summer atmospheric warming by Arctic sea ice loss during 1979-2012

    NASA Astrophysics Data System (ADS)

    Wu, Qigang; Cheng, Luyao; Chan, Duo; Yao, Yonghong; Hu, Haibo; Yao, Ying

    2016-03-01

    Since the 1980s, rapid Arctic warming, sea ice decline, and weakening summer circulation have coincided with an increasing number of extreme heat waves and other destructive weather events in the Northern Hemisphere (NH) midlatitudes in summer. Recent papers disagree about whether such high-impact events are related to Arctic warming and/or ice loss. Here we use atmospheric model ensemble simulations to attribute effects of sea ice loss and other factors on observed summer climate trends during 1979-2012. The ongoing greenhouse gas buildup and resulting sea surface temperature warming outside the Arctic explains nearly all land warming and a significant portion of observed weakening zonal winds in the NH midlatitudes. However, sea ice loss has induced a negative Arctic Oscillation(AO)-type circulation with significant summer surface and tropospheric cooling trends over large portions of the NH midlatitudes, which reduce the warming and might reduce the probability of regional severe hot summers.

  11. The changing seasonal climate in the Arctic.

    PubMed

    Bintanja, R; van der Linden, E C

    2013-01-01

    Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities.

  12. Recurrent sublethal warming reduces embryonic survival, inhibits juvenile growth, and alters species distribution projections under climate change.

    PubMed

    Carlo, Michael A; Riddell, Eric A; Levy, Ofir; Sears, Michael W

    2018-01-01

    The capacity to tolerate climate change often varies across ontogeny in organisms with complex life cycles. Recently developed species distribution models incorporate traits across life stages; however, these life-cycle models primarily evaluate effects of lethal change. Here, we examine impacts of recurrent sublethal warming on development and survival in ecological projections of climate change. We reared lizard embryos in the laboratory under temperature cycles that simulated contemporary conditions and warming scenarios. We also artificially warmed natural nests to mimic laboratory treatments. In both cases, recurrent sublethal warming decreased embryonic survival and hatchling sizes. Incorporating survivorship results into a mechanistic species distribution model reduced annual survival by up to 24% compared to models that did not incorporate sublethal warming. Contrary to models without sublethal effects, our model suggests that modest increases in developmental temperatures influence species ranges due to effects on survivorship. © 2017 John Wiley & Sons Ltd/CNRS.

  13. The changing seasonal climate in the Arctic

    PubMed Central

    Bintanja, R.; van der Linden, E. C.

    2013-01-01

    Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities. PMID:23532038

  14. Increasing occurrence of cold and warm extremes during the recent global warming slowdown.

    PubMed

    Johnson, Nathaniel C; Xie, Shang-Ping; Kosaka, Yu; Li, Xichen

    2018-04-30

    The recent levelling of global mean temperatures after the late 1990s, the so-called global warming hiatus or slowdown, ignited a surge of scientific interest into natural global mean surface temperature variability, observed temperature biases, and climate communication, but many questions remain about how these findings relate to variations in more societally relevant temperature extremes. Here we show that both summertime warm and wintertime cold extreme occurrences increased over land during the so-called hiatus period, and that these increases occurred for distinct reasons. The increase in cold extremes is associated with an atmospheric circulation pattern resembling the warm Arctic-cold continents pattern, whereas the increase in warm extremes is tied to a pattern of sea surface temperatures resembling the Atlantic Multidecadal Oscillation. These findings indicate that large-scale factors responsible for the most societally relevant temperature variations over continents are distinct from those of global mean surface temperature.

  15. Competition between global warming and an abrupt collapse of the AMOC in Earth's energy imbalance.

    PubMed

    Drijfhout, Sybren

    2015-10-06

    A collapse of the Atlantic Meridional Overturning Circulation (AMOC) leads to global cooling through fast feedbacks that selectively amplify the response in the Northern Hemisphere (NH). How such cooling competes with global warming has long been a topic for speculation, but was never addressed using a climate model. Here it is shown that global cooling due to a collapsing AMOC obliterates global warming for a period of 15-20 years. Thereafter, the global mean temperature trend is reversed and becomes similar to a simulation without an AMOC collapse. The resulting surface warming hiatus lasts for 40-50 years. Global warming and AMOC-induced NH cooling are governed by similar feedbacks, giving rise to a global net radiative imbalance of similar sign, although the former is associated with surface warming, the latter with cooling. Their footprints in outgoing longwave and absorbed shortwave radiation are very distinct, making attribution possible.

  16. Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming.

    PubMed

    Cheng, Jun; Liu, Zhengyu; Zhang, Shaoqing; Liu, Wei; Dong, Lina; Liu, Peng; Li, Hongli

    2016-03-22

    Interdecadal variability of the Atlantic Meridional Overturning Circulation (AMOC-IV) plays an important role in climate variation and has significant societal impacts. Past climate reconstruction indicates that AMOC-IV has likely undergone significant changes. Despite some previous studies, responses of AMOC-IV to global warming remain unclear, in particular regarding its amplitude and time scale. In this study, we analyze the responses of AMOC-IV under various scenarios of future global warming in multiple models and find that AMOC-IV becomes weaker and shorter with enhanced global warming. From the present climate condition to the strongest future warming scenario, on average, the major period of AMOC-IV is shortened from ∼50 y to ∼20 y, and the amplitude is reduced by ∼60%. These reductions in period and amplitude of AMOC-IV are suggested to be associated with increased oceanic stratification under global warming and, in turn, the speedup of oceanic baroclinic Rossby waves.

  17. Southern Hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming.

    PubMed

    Stott, Lowell; Timmermann, Axel; Thunell, Robert

    2007-10-19

    Establishing what caused Earth's largest climatic changes in the past requires a precise knowledge of both the forcing and the regional responses. We determined the chronology of high- and low-latitude climate change at the last glacial termination by radiocarbon dating benthic and planktonic foraminiferal stable isotope and magnesium/calcium records from a marine core collected in the western tropical Pacific. Deep-sea temperatures warmed by approximately 2 degrees C between 19 and 17 thousand years before the present (ky B.P.), leading the rise in atmospheric CO2 and tropical-surface-ocean warming by approximately 1000 years. The cause of this deglacial deep-water warming does not lie within the tropics, nor can its early onset between 19 and 17 ky B.P. be attributed to CO2 forcing. Increasing austral-spring insolation combined with sea-ice albedo feedbacks appear to be the key factors responsible for this warming.

  18. More losers than winners in a century of future Southern Ocean seafloor warming

    NASA Astrophysics Data System (ADS)

    Griffiths, Huw J.; Meijers, Andrew J. S.; Bracegirdle, Thomas J.

    2017-10-01

    The waters of the Southern Ocean are projected to warm over the coming century, with potential adverse consequences for native cold-adapted organisms. Warming waters have caused temperate marine species to shift their ranges poleward. The seafloor animals of the Southern Ocean shelf have long been isolated by the deep ocean surrounding Antarctica and the Antarctic Circumpolar Current, with little scope for southward migration. How these largely endemic species will react to future projected warming is unknown. By considering 963 invertebrate species, we show that within the current century, warming temperatures alone are unlikely to result in wholesale extinction or invasion affecting Antarctic seafloor life. However, 79% of Antarctica's endemic species do face a significant reduction in suitable temperature habitat (an average 12% reduction). Our findings highlight the species and regions most likely to respond significantly (negatively and positively) to warming and have important implications for future management of the region.

  19. Artificial Warming of Arctic Meadow under Pollution Stress: Experimental design

    NASA Astrophysics Data System (ADS)

    Moni, Christophe; Silvennoinen, Hanna; Fjelldal, Erling; Brenden, Marius; Kimball, Bruce; Rasse, Daniel

    2014-05-01

    Boreal and arctic terrestrial ecosystems are central to the climate change debate, notably because future warming is expected to be disproportionate as compared to world averages. Likewise, greenhouse gas (GHG) release from terrestrial ecosystems exposed to climate warming is expected to be the largest in the arctic. Artic agriculture, in the form of cultivated grasslands, is a unique and economically relevant feature of Northern Norway (e.g. Finnmark Province). In Eastern Finnmark, these agro-ecosystems are under the additional stressor of heavy metal and sulfur pollution generated by metal smelters of NW Russia. Warming and its interaction with heavy metal dynamics will influence meadow productivity, species composition and GHG emissions, as mediated by responses of soil microbial communities. Adaptation and mitigation measurements will be needed. Biochar application, which immobilizes heavy metal, is a promising adaptation method to promote positive growth response in arctic meadows exposed to a warming climate. In the MeadoWarm project we conduct an ecosystem warming experiment combined to biochar adaptation treatments in the heavy-metal polluted meadows of Eastern Finnmark. In summary, the general objective of this study is twofold: 1) to determine the response of arctic agricultural ecosystems under environmental stress to increased temperatures, both in terms of plant growth, soil organisms and GHG emissions, and 2) to determine if biochar application can serve as a positive adaptation (plant growth) and mitigation (GHG emission) strategy for these ecosystems under warming conditions. Here, we present the experimental site and the designed open-field warming facility. The selected site is an arctic meadow located at the Svanhovd Research station less than 10km west from the Russian mining city of Nikel. A splitplot design with 5 replicates for each treatment is used to test the effect of biochar amendment and a 3oC warming on the Arctic meadow. Ten circular split plots (diameter: 3.65 m & surface area: 10.5 m2) composed of one half amended with biochar and one control half not amended were prepared. Five of these plots are equipped with a warming system, while the other five were equipped with dummies. Each warmed plot is collocated with a control plot within one block. While split plots are all oriented in the same direction the position of blocks is randomized to eliminate the effect of the spatial variability. Biochar was incorporated in the first 20 cm of the soil with a rototiller. Warming system is provided by hexagonal arrays of infrared heaters. The temperature of the plots is monitored with infrared cameras. The 3oC increase of temperature is obtained by dynamically monitoring the temperature difference between warmed and control plots within blocks via improved software. Each plot is further equipped with a soil temperature and moisture sensor.

  20. Long-term comparison of the climate extremes variability in different climate types located in coastal and inland regions of Iran

    NASA Astrophysics Data System (ADS)

    Ghiami-Shamami, Fereshteh; Sabziparvar, Ali Akbar; Shinoda, Seirou

    2018-06-01

    The present study examined annually and seasonally trends in climate-based and location-based indices after detection of artificial change points and application of homogenization. Thirteen temperature and eight precipitation indices were generated at 27 meteorological stations over Iran during 1961-2012. The Mann-Kendall test and Sen's slope estimator were applied for trend detection. Results revealed that almost all indices based on minimum temperature followed warmer conditions. Indicators based on minimum temperature showed less consistency with more cold and less warm events. Climate-based results for all extremes indicated semi-arid climate had the most warming events. Moreover, based on location-based results, inland areas showed the most signs of warming. Indices based on precipitation exhibited a negative trend in warm seasons, with the most changes in coastal areas and inland, respectively. Results provided evidence of warming and drying since the 1990s. Changes in precipitation indices were much weaker and less spatially coherent. Summer was found to be the most sensitive season, in comparison with winter. For arid and semi-arid regions, by increasing the latitude, less warm events occurred, while increasing the longitude led to more warming events. Overall, Iran is dominated by a significant increase in warm events, especially minimum temperature-based indices (nighttime). This result, in addition to fewer precipitation events, suggests a generally dryer regime for the future, which is more evident in the warm season of semi-arid sites. The results could provide beneficial references for water resources and eco-environmental policymakers.

  1. Warm-up before laparoscopic surgery is not essential.

    PubMed

    Weston, Maree K; Stephens, Jacqueline H; Schafer, Amy; Hewett, Peter J

    2014-03-01

    Several recent studies have suggested that warming up prior to surgery may improve surgical performance. The purpose of this study was to investigate whether warming up prior to laparoscopic surgery improves surgical performance or reduces surgery duration. Between August 2011 and January 2012, a randomized controlled trial was conducted to compare two warm-up modalities to no warm-up. The study was conducted at a single site, with nine surgeons performing 72 laparoscopic cholecystectomies and 37 laparoscopic appendicectomies. Prior to surgery, surgeons were randomized to either laparoscopic trainer box warm-up, PlayStation 2 warm-up or no warm-up. The activity was performed within 30 min of surgery commencing. Patients provided informed consent for the surgery to be digitally recorded. Digital videodiscs (DVDs) were reviewed by an independent and blinded assessor. Data were collected on duration of surgery, level of training and perceived surgical difficulty. Surgical performance was graded using a validated scoring system. From the 109 operations performed, there were 75 usable DVDs. Overall, there were no statistical differences in the demographics of patients and surgeons in the three treatment groups, nor in the subset that had useable DVDs. There were no statistical differences in the duration of surgery or surgeon's perceived surgical difficulty. There was no statistical difference in surgical performance. This study suggests that warm-up prior to laparoscopic cholecystectomy or appendicectomy is not essential, acknowledging that there are several study limitations that preclude definitive conclusion. © 2012 The Authors. ANZ Journal of Surgery © 2012 Royal Australasian College of Surgeons.

  2. The Summertime Warming Trends in Surface Water Temperature of the Great Lakes

    NASA Astrophysics Data System (ADS)

    Sugiyama, N.; Kravtsov, S.; Roebber, P.

    2014-12-01

    Over the past 30 years, the Laurentian Great Lakes have exhibited summertime warming trends in surface water temperature which were greater than those in surface air temperature of the surrounding land, by as much as an order of magnitude over some of the regions. For the years 1995-2012, Lake Superior exhibited the most dramatic warming trend in July-mean temperature, of 0.27±0.15 deg. C yr-1, based on the NOAA's GLSEA satellite observations. Shallower lakes, such as Lake Erie, exhibited smaller warming trends. In addition, within each lake, the warming was also the greatest in the regions of larger water depth; for example, some regions of Lake Superior deeper than 200m exhibited surface-water July-mean warming trends which exceeded 0.3 deg. C yr-1. We used a three-column lake model based on the one developed by Hostetler and Barnstein (1990) coupled with a two-layer atmospheric energy balance model to explore the physics behind these warming trends. We found that, as suggested by Austin and Colman (2007), the ice-albedo feedback plays an important role in amplifying the overlake warming trends. Our particular emphasis was on the question of whether the ice-albedo feedback alone is enough to account for lacustrine amplification of surface warming observed over the Great Lakes region. We found that the answer to this question depends on a number of model parameters, including the diffusion and light attenuation coefficients, which greatly affect the model's skill in reproducing the observed ice coverage of the deep lakes.

  3. Effect of Warming Rate on the Survival of Vitrified Mouse Oocytes and on the Recrystallization of Intracellular Ice1

    PubMed Central

    Seki, Shinsuke; Mazur, Peter

    2008-01-01

    Successful cryopreservation demands there be little or no intracellular ice. One procedure is classical slow equilibrium freezing, and it has been successful in many cases. However, for some important cell types, including some mammalian oocytes, it has not. For the latter, there are increasing attempts to cryopreserve them by vitrification. However, even if intracellular ice formation (IIF) is prevented during cooling, it can still occur during the warming of a vitrified sample. Here, we examine two aspects of this occurrence in mouse oocytes. One took place in oocytes that were partly dehydrated by an initial hold for 12 min at −25°C. They were then cooled rapidly to −70°C and warmed slowly, or they were warmed rapidly to intermediate temperatures and held. These oocytes underwent no IIF during cooling but blackened from IIF during warming. The blackening rate increased about 5-fold for each five-degree rise in temperature. Upon thawing, they were dead. The second aspect involved oocytes that had been vitrified by cooling to −196°C while suspended in a concentrated solution of cryoprotectants and warmed at rates ranging from 140°C/min to 3300°C/min. Survivals after warming at 140°C/min and 250°C/min were low (<30%). Survivals after warming at ≥2200°C/min were high (80%). When warmed slowly, they were killed, apparently by the recrystallization of previously formed small internal ice crystals. The similarities and differences in the consequences of the two types of freezing are discussed. PMID:18562703

  4. Effect of transient warming of red blood cells for up to 24 h: in vitro characteristics in CPD/saline-adenine-glucose-mannitol environment.

    PubMed

    Gulliksson, H; Nordahl-Källman, A-S

    2014-01-01

    There are few studies on transient warming of red blood cells (RBCs). Occasional storage outside restricted temperature range often results in destroying of the RBC unit, even after a short period of time due to national guidelines. This study evaluates the in vitro effects associated with such accidental warming on RBCs stored in saline-adenine-glucose-mannitol (SAGM) and prepared within 8 h after blood collection. This study includes both repeated short-term exposure of RBCs to room temperature for 6 h as wells as warming for either 6, 12, 18 or 24 h after 1 week or after 3 weeks of storage in two separate studies. RBCs were stored for 42 days. We weekly measured pH, K(+) , glucose, lactate, haemolysis, red cell ATP and 2,3-diphosphoglycerate. The lowest individual ATP value observed in any of the groups of warmed units was 2·6 μmol/g haemoglobin. Increased haemolysis in warmed units was noted in two of the studies. None of the individual units exceeded the European maximum limit of 0·8% haemolysis. Our results suggest that quality of RBCs after transient warming will be maintained at acceptable levels specified in standards and in previous studies. However, increased haemolysis was observed when transient warming occurred during the second part of the storage period of 6 weeks suggesting that RBCs are more vulnerable to warming by the end of storage. © 2013 International Society of Blood Transfusion.

  5. Extreme Temperature Exceedances Change more Rapidly Under Future Warming in Regions of non-Gaussian Short Temperature Distribution Tails

    NASA Astrophysics Data System (ADS)

    Loikith, P. C.; Neelin, J. D.; Meyerson, J.

    2017-12-01

    Regions of shorter-than-Gaussian warm and cold side temperature distribution tails are shown to occur in spatially coherent patterns in the current climate. Under such conditions, warming may be manifested in more complex ways than if the underlying distribution were close to Gaussian. For example, under a uniform warm shift, the simplest prototype for future warming, a location with a short warm side tail would experience a greater increase in extreme warm exceedances compared to if the distribution were Gaussian. Similarly, for a location with a short cold side tail, a uniform warm shift would result in a rapid decrease in extreme cold exceedances. Both scenarios carry major societal and environmental implications including but not limited to negative impacts on human and ecosystem health, agriculture, and the economy. It is therefore important for climate models to be able to realistically reproduce short tails in simulations of historical climate in order to boost confidence in projections of future temperature extremes. Overall, climate models contributing to the fifth phase of the Coupled Model Intercomparison Project capture many of the principal observed regions of short tails. This suggests the underlying dynamics and physics occur on scales resolved by the models, and helps build confidence in model projections of extremes. Furthermore, most GCMs show more rapid changes in exceedances of extreme temperature thresholds in regions of short tails. Results therefore suggest that the shape of the tails of the underlying temperature distribution is an indicator of how rapidly a location will experience changes to extreme temperature occurrence under future warming.

  6. Long-term forest soil warming alters microbial communities in temperate forest soils

    PubMed Central

    DeAngelis, Kristen M.; Pold, Grace; Topçuoğlu, Begüm D.; van Diepen, Linda T. A.; Varney, Rebecca M.; Blanchard, Jeffrey L.; Melillo, Jerry; Frey, Serita D.

    2015-01-01

    Soil microbes are major drivers of soil carbon cycling, yet we lack an understanding of how climate warming will affect microbial communities. Three ongoing field studies at the Harvard Forest Long-term Ecological Research (LTER) site (Petersham, MA) have warmed soils 5°C above ambient temperatures for 5, 8, and 20 years. We used this chronosequence to test the hypothesis that soil microbial communities have changed in response to chronic warming. Bacterial community composition was studied using Illumina sequencing of the 16S ribosomal RNA gene, and bacterial and fungal abundance were assessed using quantitative PCR. Only the 20-year warmed site exhibited significant change in bacterial community structure in the organic soil horizon, with no significant changes in the mineral soil. The dominant taxa, abundant at 0.1% or greater, represented 0.3% of the richness but nearly 50% of the observations (sequences). Individual members of the Actinobacteria, Alphaproteobacteria and Acidobacteria showed strong warming responses, with one Actinomycete decreasing from 4.5 to 1% relative abundance with warming. Ribosomal RNA copy number can obfuscate community profiles, but is also correlated with maximum growth rate or trophic strategy among bacteria. Ribosomal RNA copy number correction did not affect community profiles, but rRNA copy number was significantly decreased in warming plots compared to controls. Increased bacterial evenness, shifting beta diversity, decreased fungal abundance and increased abundance of bacteria with low rRNA operon copy number, including Alphaproteobacteria and Acidobacteria, together suggest that more or alternative niche space is being created over the course of long-term warming. PMID:25762989

  7. Plausible rice yield losses under future climate warming.

    PubMed

    Zhao, Chuang; Piao, Shilong; Wang, Xuhui; Huang, Yao; Ciais, Philippe; Elliott, Joshua; Huang, Mengtian; Janssens, Ivan A; Li, Tao; Lian, Xu; Liu, Yongwen; Müller, Christoph; Peng, Shushi; Wang, Tao; Zeng, Zhenzhong; Peñuelas, Josep

    2016-12-19

    Rice is the staple food for more than 50% of the world's population 1-3 . Reliable prediction of changes in rice yield is thus central for maintaining global food security. This is an extraordinary challenge. Here, we compare the sensitivity of rice yield to temperature increase derived from field warming experiments and three modelling approaches: statistical models, local crop models and global gridded crop models. Field warming experiments produce a substantial rice yield loss under warming, with an average temperature sensitivity of -5.2 ± 1.4% K -1 . Local crop models give a similar sensitivity (-6.3 ± 0.4% K -1 ), but statistical and global gridded crop models both suggest less negative impacts of warming on yields (-0.8 ± 0.3% and -2.4 ± 3.7% K -1 , respectively). Using data from field warming experiments, we further propose a conditional probability approach to constrain the large range of global gridded crop model results for the future yield changes in response to warming by the end of the century (from -1.3% to -9.3% K -1 ). The constraint implies a more negative response to warming (-8.3 ± 1.4% K -1 ) and reduces the spread of the model ensemble by 33%. This yield reduction exceeds that estimated by the International Food Policy Research Institute assessment (-4.2 to -6.4% K -1 ) (ref. 4). Our study suggests that without CO 2 fertilization, effective adaptation and genetic improvement, severe rice yield losses are plausible under intensive climate warming scenarios.

  8. Scaling Potential Evapotranspiration with Greenhouse Warming (Invited)

    NASA Astrophysics Data System (ADS)

    Scheff, J.; Frierson, D. M.

    2013-12-01

    Potential evapotranspiration (PET) is a supply-independent measure of the evaporative demand of a terrestrial climate, of basic importance in climatology, hydrology, and agriculture. Future increases in PET from greenhouse warming are often cited as key drivers of global trends toward drought and aridity. The present work computes recent and business-as-usual-future Penman-Monteith (i.e. physically-based) PET fields at 3-hourly resolution in 14 modern global climate models. The %-change in local annual-mean PET over the upcoming century is almost always positive, modally low double-digit in magnitude, usually increasing with latitude, yet quite divergent between models. These patterns are understood as follows. In every model, the global field of PET %-change is found to be dominated by the direct, positive effects of constant-relative-humidity warming (via increasing vapor pressure deficit and increasing Clausius-Clapeyron slope.) This direct-warming term very accurately scales as the PET-weighted (warm-season daytime) local warming, times 5-6% per degree (related to the Clausius-Clapeyron equation), times an analytic factor ranging from about 0.25 in warm climates to 0.75 in cold climates, plus a small correction. With warming of several degrees, this product is of low double-digit magnitude, and the strong temperature dependence gives the latitude dependence. Similarly, the inter-model spread in the amount of warming gives most of the spread in this term. Additional spread in the total change comes from strong disagreement on radiation, relative-humidity, and windspeed changes, which make smaller yet substantial contributions to the full PET %-change fields.

  9. Efficacy of Warm Showers on Postpartum Fatigue Among Vaginal-Birth Taiwanese Women: A Quasi-Experimental Design.

    PubMed

    Hsieh, Ching-Hsing; Chen, Chien-Lan; Chung, Feng-Fang; Lin, Su-Ying

    2017-05-01

    Postpartum fatigue is one of the most common complaints among women following childbirth. As a postpartum ritual practice, Taiwanese women refrain from taking showers while "doing the month." However, warm showers are the systemic application of moist heat, and they maintain physical hygiene, stimulate blood circulation, mitigate discomfort, and provide relaxation. As Taiwanese society becomes increasingly receptive to scientific and contemporary health care practice, more and more women choose to take warm showers after childbirth. The purpose of this study was to evaluate the efficacy of warm showers on postpartum fatigue among vaginal-birth women in Taiwan. This was a two-group quasi-experimental design. Women took showers in warm water with temperatures ranging between 40 °C and 43 °C for approximately 20 minutes. Postpartum women's fatigue is measured using the 10-item Postpartum Fatigue Scale (PFS). The intervention effect was analyzed using a generalized estimating equation (GEE) model. The study population consisted of 358 vaginal-birth postpartum Taiwanese women aged 20-43 years. Postpartum women who took warm showers showed improvements from their pretest to posttest mean scores of postpartum fatigue compared to postpartum women who did not take warm showers. Warm showers helped to reduce postpartum fatigue among vaginal-birth women during the study period. Nurses have the unique opportunity to provide the intervention to Taiwanese women who have vaginal birth to help them relieve postpartum fatigue with warm showers while "doing the month" without the taboo of no-showering customary practices in the early postpartum period.

  10. The ultrastructural characteristics of porcine hepatocytes donated after cardiac death and preserved with warm machine perfusion preservation.

    PubMed

    Bochimoto, Hiroki; Matsuno, Naoto; Ishihara, Yo; Shonaka, Tatsuya; Koga, Daisuke; Hira, Yoshiki; Nishikawa, Yuji; Furukawa, Hiroyuki; Watanabe, Tsuyoshi

    2017-01-01

    The effects of warm machine perfusion preservation of liver grafts donated after cardiac death on the intracellular three-dimensional ultrastructure of the organelles in hepatocytes remain unclear. Here we analyzed comparatively the ultrastructure of the endomembrane systems in porcine hepatocytes under warm ischemia and successive hypothermic and midthermic machine perfusion preservation, a type of the warm machine perfusion. Porcine liver grafts which had a warm ischemia time of 60 minutes were perfused for 4 hours with modified University of Wisconsin gluconate solution. Group A grafts were preserved with hypothermic machine perfusion preservation at 8°C constantly for 4 hours. Group B grafts were preserved with rewarming up to 22°C by warm machine perfusion preservation for 4 hours. An analysis of hepatocytes after 60 minutes of warm ischemia by scanning electron microscope revealed the appearance of abnormal vacuoles and invagination of mitochondria. In the hepatocytes preserved by subsequent hypothermic machine perfusion preservation, strongly swollen mitochondria were observed. In contrast, the warm machine perfusion preservation could preserve the functional appearance of mitochondria in hepatocytes. Furthermore, abundant vacuoles and membranous structures sequestrating cellular organelles like autophagic vacuoles were frequently observed in hepatocytes after warm machine perfusion preservation. In conclusion, the ultrastructure of the endomembrane systems in the hepatocytes of liver grafts changed in accordance with the temperature conditions of machine perfusion preservation. In addition, temperature condition of the machine perfusion preservation may also affect the condition of the hepatic graft attributed to autophagy systems, and consequently alleviate the damage of the hepatocytes.

  11. Effects of Forced Air Warming on Airflow around the Operating Table.

    PubMed

    Shirozu, Kazuhiro; Kai, Tetsuya; Setoguchi, Hidekazu; Ayagaki, Nobuyasu; Hoka, Sumio

    2018-01-01

    Forced air warming systems are used to maintain body temperature during surgery. Benefits of forced air warming have been established, but the possibility that it may disturb the operating room environment and contribute to surgical site contamination is debated. The direction and speed of forced air warming airflow and the influence of laminar airflow in the operating room have not been reported. In one institutional operating room, we examined changes in airflow speed and direction from a lower-body forced air warming device with sterile drapes mimicking abdominal surgery or total knee arthroplasty, and effects of laminar airflow, using a three-dimensional ultrasonic anemometer. Airflow from forced air warming and effects of laminar airflow were visualized using special smoke and laser light. Forced air warming caused upward airflow (39 cm/s) in the patient head area and a unidirectional convection flow (9 to 14 cm/s) along the ceiling from head to foot. No convection flows were observed around the sides of the operating table. Downward laminar airflow of approximately 40 cm/s counteracted the upward airflow caused by forced air warming and formed downward airflow at 36 to 45 cm/s. Downward airflows (34 to 56 cm/s) flowing diagonally away from the operating table were detected at operating table height in both sides. Airflow caused by forced air warming is well counteracted by downward laminar airflow from the ceiling. Thus it would be less likely to cause surgical field contamination in the presence of sufficient laminar airflow.

  12. Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity

    USGS Publications Warehouse

    Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Hansen, Gretchen J. A.

    2016-01-01

    Climate change is rapidly warming aquatic ecosystems including lakes and reservoirs. However, variability in lake characteristics can modulate how lakes respond to climate. Water clarity is especially important both because it influences the depth range over which heat is absorbed, and because it is changing in many lakes. Here, we show that simulated long-term water clarity trends influence how both surface and bottom water temperatures of lakes and reservoirs respond to climate change. Clarity changes can either amplify or suppress climate-induced warming, depending on lake depth and the direction of clarity change. Using a process-based model to simulate 1894 north temperate lakes from 1979 to 2012, we show that a scenario of decreasing clarity at a conservative yet widely observed rate of 0.92% yr−1 warmed surface waters and cooled bottom waters at rates comparable in magnitude to climate-induced warming. For lakes deeper than 6.5 m, decreasing clarity was sufficient to fully offset the effects of climate-induced warming on median whole-lake mean temperatures. Conversely, a scenario increasing clarity at the same rate cooled surface waters and warmed bottom waters relative to baseline warming rates. Furthermore, in 43% of lakes, increasing clarity more than doubled baseline bottom temperature warming rates. Long-term empirical observations of water temperature in lakes with and without clarity trends support these simulation results. Together, these results demonstrate that water clarity trends may be as important as rising air temperatures in determining how waterbodies respond to climate change.

  13. Ultrarapid Inductive Rewarming of Vitrified Biomaterials with Thin Metal Forms.

    PubMed

    Manuchehrabadi, Navid; Shi, Meng; Roy, Priyatanu; Han, Zonghu; Qiu, Jinbin; Xu, Feng; Lu, Tian Jian; Bischof, John

    2018-06-19

    Arteries with 1-mm thick walls can be successfully vitrified by loading cryoprotective agents (CPAs) such as VS55 (8.4 M) or less concentrated DP6 (6 M) and cooling at or beyond their critical cooling rates of 2.5 and 40 °C/min, respectively. Successful warming from this vitrified state, however, can be challenging. For example, convective warming by simple warm-bath immersion achieves 70 °C/min, which is faster than VS55's critical warming rate of 55 °C/min, but remains far below that of DP6 (185 °C/min). Here we present a new method that can dramatically increase the warming rates within either a solution or tissue by inductively warming commercially available metal components placed within solutions or in proximity to tissues with non-invasive radiofrequency fields (360 kHz, 20 kA/m). Directly measured warming rates within solutions exceeded 1000 °C/min with specific absorption rates (W/g) of 100, 450 and 1000 for copper foam, aluminum foil, and nitinol mesh, respectively. As proof of principle, a carotid artery diffusively loaded with VS55 and DP6 CPA was successfully warmed with high viability using aluminum foil, while standard convection failed for the DP6 loaded tissue. Modeling suggests this approach can improve warming in tissues up to 4-mm thick where diffusive loading of CPA may be incomplete. Finally, this technology is not dependent on the size of the system and should therefore scale up where convection cannot.

  14. Extreme warm temperatures alter forest phenology and productivity in Europe.

    PubMed

    Crabbe, Richard A; Dash, Jadu; Rodriguez-Galiano, Victor F; Janous, Dalibor; Pavelka, Marian; Marek, Michal V

    2016-09-01

    Recent climate warming has shifted the timing of spring and autumn vegetation phenological events in the temperate and boreal forest ecosystems of Europe. In many areas spring phenological events start earlier and autumn events switch between earlier and later onset. Consequently, the length of growing season in mid and high latitudes of European forest is extended. However, the lagged effects (i.e. the impact of a warm spring or autumn on the subsequent phenological events) on vegetation phenology and productivity are less explored. In this study, we have (1) characterised extreme warm spring and extreme warm autumn events in Europe during 2003-2011, and (2) investigated if direct impact on forest phenology and productivity due to a specific warm event translated to a lagged effect in subsequent phenological events. We found that warmer events in spring occurred extensively in high latitude Europe producing a significant earlier onset of greening (OG) in broadleaf deciduous forest (BLDF) and mixed forest (MF). However, this earlier OG did not show any significant lagged effects on autumnal senescence. Needleleaf evergreen forest (NLEF), BLDF and MF showed a significantly delayed end of senescence (EOS) as a result of extreme warm autumn events; and in the following year's spring phenological events, OG started significantly earlier. Extreme warm spring events directly led to significant (p=0.0189) increases in the productivity of BLDF. In order to have a complete understanding of ecosystems response to warm temperature during key phenological events, particularly autumn events, the lagged effect on the next growing season should be considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Warming and Nitrogen Addition Alter Photosynthetic Pigments, Sugars and Nutrients in a Temperate Meadow Ecosystem

    PubMed Central

    Zhang, Tao; Yang, Shaobo; Guo, Rui; Guo, Jixun

    2016-01-01

    Global warming and nitrogen (N) deposition have an important influence on terrestrial ecosystems; however, the influence of warming and N deposition on plant photosynthetic products and nutrient cycling in plants is not well understood. We examined the effects of 3 years of warming and N addition on the plant photosynthetic products, foliar chemistry and stoichiometric ratios of two dominant species, i.e., Leymus chinensis and Phragmites communis, in a temperate meadow in northeastern China. Warming significantly increased the chlorophyll content and soluble sugars in L. chinensis but had no impact on the carotenoid and fructose contents. N addition caused a significant increase in the carotenoid and fructose contents. Warming and N addition had little impact on the photosynthetic products of P. communis. Warming caused significant decreases in the N and phosphorus (P) concentrations and significantly increased the carbon (C):P and N:P ratios of L. chinensis, but not the C concentration or the C:N ratio. N addition significantly increased the N concentration, C:P and N:P ratios, but significantly reduced the C:N ratio of L. chinensis. Warming significantly increased P. communis C and P concentrations, and the C:N and C:P ratios, whereas N addition increased the C, N and P concentrations but had no impact on the stoichiometric variables. This study suggests that both warming and N addition have direct impacts on plant photosynthates and elemental stoichiometry, which may play a vital role in plant-mediated biogeochemical cycling in temperate meadow ecosystems. PMID:27171176

  16. Multiple Satellite Observations of Cloud Cover in Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Booth, James F.; Posselt, Derek J.; van den Heever, Susan C.

    2013-01-01

    Using cloud observations from NASA Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, and CloudSat-CALIPSO, composites of cloud fraction in southern and northern hemisphere extratropical cyclones are obtained for cold and warm seasons between 2006 and 2010, to assess differences between these three data sets, and between summer and winter cyclones. In both hemispheres and seasons, over the open ocean, the cyclone-centered cloud fraction composites agree within 5% across the three data sets, but behind the cold fronts, or over sea ice and land, the differences are much larger. To supplement the data set comparison and learn more about the cyclones, we also examine the differences in cloud fraction between cold and warm season for each data set. The difference in cloud fraction between cold and warm season southern hemisphere cyclones is small for all three data sets, but of the same order of magnitude as the differences between the data sets. The cold-warm season contrast in northern hemisphere cyclone cloud fractions is similar for all three data sets: in the warm sector, the cold season cloud fractions are lower close to the low, but larger on the equator edge than their warm season counterparts. This seasonal contrast in cloud fraction within the cyclones warm sector seems to be related to the seasonal differences in moisture flux within the cyclones. Our analysis suggests that the three different data sets can all be used confidently when studying the warm sector and warm frontal zone of extratropical cyclones but caution should be exerted when studying clouds in the cold sector.

  17. Effects of warming on N2O fluxes in a boreal peatland of Permafrost region, Northeast China.

    PubMed

    Cui, Qian; Song, Changchun; Wang, Xianwei; Shi, Fuxi; Yu, Xueyang; Tan, Wenwen

    2018-03-01

    Climate warming is expected to increasingly influence boreal peatlands and alter their greenhouse gases emissions. However, the effects of warming on N 2 O fluxes and the N 2 O budgets were ignored in boreal peatlands. Therefore, in a boreal peatland of permafrost zone in Northeast China, a simulated warming experiment was conducted to investigate the effects of warming on N 2 O fluxes in Betula. Fruticosa community (B. Fruticosa) and Ledum. palustre community (L. palustre) during the growing seasons from 2013 to 2015. Results showed that warming treatment increased air temperature at 1.5m aboveground and soil temperature at 5cm depth by 0.6°C and 2°C, respectively. The average seasonal N 2 O fluxes ranged from 6.62 to 9.34μgm -2 h -1 in the warming plot and ranged from 0.41 to 4.55μgm -2 h -1 in the control plots. Warming treatment increased N 2 O fluxes by 147% and transformed the boreal peatlands from a N 2 O sink to a source. The primary driving factors for N 2 O fluxes were soil temperature and active layer depth, whereas soil moisture showed a weak correlation with N 2 O fluxes. The results indicated that warming promoted N 2 O fluxes by increasing soil temperature and active layer depth in a boreal peatland of permafrost zone in Northeast China. Moreover, elevated N 2 O fluxes persisted in this region will potentially drive a noncarbon feedback to ongoing climate change. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Biomass production in experimental grasslands of different species richness during three years of climate warming

    NASA Astrophysics Data System (ADS)

    de Boeck, H. J.; Lemmens, C. M. H. M.; Zavalloni, C.; Gielen, B.; Malchair, S.; Carnol, M.; Merckx, R.; van den Berge, J.; Ceulemans, R.; Nijs, I.

    2008-04-01

    Here we report on the single and combined impacts of climate warming and species richness on the biomass production in experimental grassland communities. Projections of a future warmer climate have stimulated studies on the response of terrestrial ecosystems to this global change. Experiments have likewise addressed the importance of species numbers for ecosystem functioning. There is, however, little knowledge on the interplay between warming and species richness. During three years, we grew experimental plant communities containing one, three or nine grassland species in 12 sunlit, climate-controlled chambers in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3°C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration was higher. Biomass production was decreased due to warming, both aboveground (-29%) and belowground (-25%), as negative impacts of increased heat and drought stress in summer prevailed. Complementarity effects, likely mostly through both increased aboveground spatial complementarity and facilitative effects of legumes, led to higher shoot and root biomass in multi-species communities, regardless of the induced warming. Surprisingly, warming suppressed productivity the most in 9-species communities, which may be attributed to negative impacts of intense interspecific competition for resources under conditions of high abiotic stress. Our results suggest that warming and the associated soil drying could reduce primary production in many temperate grasslands, and that this will not necessarily be mitigated by efforts to maintain or increase species richness.

  19. Warming rate drives microbial limitation and enzyme expression during peat decomposition

    NASA Astrophysics Data System (ADS)

    Inglett, P.; Sihi, D.; Inglett, K. S.

    2015-12-01

    Recent developments of enzyme-based decomposition models highlight the importance of enzyme kinetics with warming, but most modeling exercises are based on studies with a step-wise warming. This approach may mask the effect of temperature in controlling in-situ activities as in most ecosystems soil temperature change more gradually than air temperature. We conducted an experiment to test the effects of contrasting warming rates on the kinetics of C, N, and P degradation enzymes in subtropical peat soils. We also wanted to evaluate if the stoichiometry of enzyme kinetics shifts under contrasting warming rates and if so, how does it relate to the stoichiometry in microbial biomass. Contrasting warming rates altered microbial biomass stoichiometry leading to differing patterns of enzyme expression and microbial nutrient limitation. Activity (higher Vmax) and efficiency (lower Km) of C acquisition enzymes were greater in the step treatment; however, expressions of nutrient (N and P) acquiring enzymes were enhanced in the ramp treatment at the end of the experiment. In the step treatment, there was a typical pattern of an initial peak in the Vmax and drop in the Km for all enzyme groups followed by later adjustments. On the other hand, a consistent increase in Vmax and decline in Km of all enzyme groups were observed in the slow warming treatment. These changes were sufficient to alter microbial identity (as indicated by enzyme Km and biomass stoichiometry) with two apparently stable endpoints under contrasting warming rates. This observation resembles the concept of alternate stable states and highlights a need for improved representation of warming in models.

  20. Global Warming: How Much and Why?

    ERIC Educational Resources Information Center

    Lanouette, William

    1990-01-01

    Summarizes the history of the study of global warming and includes a discussion of the role of gases, like carbon dioxide, methane, and chlorofluorocarbon (CFC). Discusses modern research on the global warming, including computer modelling and the super-greenhouse effect. (YP)

  1. Documentation for the Waste Reduction Model (WARM)

    EPA Pesticide Factsheets

    This page describes the WARM documentation files and provides links to all documentation files associated with EPA’s Waste Reduction Model (WARM). The page includes a brief summary of the chapters documenting the greenhouse gas emission and energy factors.

  2. Effects of experimental warming and clipping on metabolic change of microbial community in a US Great Plains tallgrass prairie

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jianping; Liu, Xinxing; Liu, Xueduan

    2010-05-17

    While more and more studies are being conducted on the effects of global warming, little is known regarding the response of metabolic change of whole soil microbial communities to this phenomenon. In this study, functional gene changes at the mRNA level were analyzed by our new developed GeoChip 3.0. Soil samples were taken from a long-term climate warming experiment site, which has been conducted for ~;;8 years at the Kessler Farm Field Laboratory, a 137.6-ha farm located in the Central Redbed Plains, in McClain County, Oklahoma. The experiment uses a paired factorial design with warming as the primary factor nestedmore » with clipping as a secondary factor. An infrared heater was used to simulate global warming, and clipping was used to mimic mowing hay. Twelve 2m x 2m plots were divided into six pairs of warmed and control plots. The heater generates a constant output of ~;;100 Watts m-2 to approximately 2 oC increase in soil temperature above the ambient plots, which is at the low range of the projected climate warming by IPCC. Soil whole microbial communities? mRNA was extracted, amplified, labeled and hybridized with our GeoChip 3.0, a functional gene array covering genes involved in N, C, P, and S cycling, metal resistance and contaminant degradation, to examine expressed genes. The results showed that a greater number and higher diversity of genes were expressed under warmed plots compared to control. Detrended correspondence analysis (DCA) of all detected genes showed that the soil microbial communities were clearly altered by warming, with or without clipping. The dissimilarity of the communities based on functional genes was tested and results showed that warming and control communities were significantly different (P<0.05), with or without clipping. Most genes involved in C, N, P and S cycling were expressed at higher levels in warming samples compared to control samples. All of the results demonstrated that the whole microbial communities increase functional gene expression under warming with or without clipping in order to adapt the changed out environment. More detail analysis is underway.« less

  3. Quantitative and qualitative responses of soil organic carbon to six years of extreme soil warming in a subarctic grassland in Iceland

    NASA Astrophysics Data System (ADS)

    Poeplau, Christopher; Leblans, Niki I. W.; Sigurdsson, Bjarni D.; Kätterer, Thomas

    2016-04-01

    Terrestrial carbon cycle feedbacks to global warming are expected, but constitute a major uncertainty in climate models. Soils in northern latitudes store a large proportion of the total global biosphere carbon stock and might thus become a strong source of CO2 when warmed. Long-term in situ observations of warming effects on soil organic carbon (SOC) dynamics are indispensable for an in depth understanding of the involved processes. We investigated the effect of six years of soil warming on SOC quantity and quality in a geothermally heated grassland soil in Iceland. We isolated five fractions of SOC along an extreme soil warming gradient of +0 to +40°C. Those fractions vary conceptually in turnover time from active to passive in the following order: particulate organic matter (POM), dissolved organic carbon (DOC), SOC in sand and stable aggregates (SA), SOC in silt and clay (SC-rSOC) and resistant SOC (rSOC). Soil warming of 1°C increased bulk SOC by 22% (0-10 cm) and 27% (20-30 cm), while further warming led to exponential SOC depletion of up to 79% (0-10 cm) and 74% (20-30) in the most heated plots (~ +40°C). Only the SA fraction was more sensitive than the bulk soil, with 93% (0-10 cm) and 86% (20-30 cm) losses and with the highest relative enrichment in 13C (+1.6‰ in 0-10 cm and +1.3‰ in 20-30 cm). In addition, the mass of the SA fraction did significantly decline along the warming gradient, which we explained by devitalization of aggregate binding mechanisms. As a consequence, the fine SC fraction mass increased with warming which explained the relative enrichment of presumably more slow-cycling SOC (R2=0.61 in 0-10 cm and R2=0.92 in 20-30 cm). Unexpectedly, no difference was observed between the responses of SC-rSOC (slow-cycling) and rSOC (passive) to warming. Furthermore, the 13C enrichment by trophic fractionation in the passive rSOC fraction was equal to this in the bulk soil. We therefore conclude that the sensitivity of SOC to warming was not a function of age or chemical recalcitrance, but rather triggered by changes in bio-physical stabilization mechanisms, such as aggregation.

  4. Authropogenic Warming in North Alaska?.

    NASA Astrophysics Data System (ADS)

    Michaels, Patrick J.; Sappington, David E.; Stooksbury, David E.

    1988-09-01

    Using permafrost boreholes, Lachenbruch and Marshall recently reported evidence for a 2°-4°C warming in North Alaska occurring at some undetermined time during the last century. Popular accounts suggest their findings are evidence for anthropogenic warming caused by trace gases. Analyses of North Alaskan 1000-500 mb thickness onwards back to 1948 indicate that the warming was prior to that date. Relatively sparse thermometric data for the early twentieth century from Jones et al. are too noisy to support any trend since the data record begins in 1910, or to apply to any subperiod of climatic significance. Any warming detected from the permafrost record therefore occurred before the major emissions of thermally active trace gases.

  5. Application of wavelet analysis in determining the periodicity of global warming

    NASA Astrophysics Data System (ADS)

    Feng, Xiao

    2018-04-01

    In the last two decades of the last century, the global average temperature has risen by 0.48 ° C over 100 years ago. Since then, global warming has become a hot topic. Global warming will have complex and potential impacts on humans and the Earth. However, the negative impacts far outweigh the positive impacts. The most obvious external manifestation of global warming is temperature. Therefore, this study uses wavelet analysis study the characteristics of temperature time series, solve the periodicity of the sequence, find out the trend of temperature change and predict the extent of global warming in the future, so as to take the necessary precautionary measures.

  6. What happens during vocal warm-up?

    PubMed

    Elliot, N; Sundberg, J; Gramming, P

    1995-03-01

    Most singers prefer to warm up their voices before performing. Although the subjective effect is often considerable, the underlying physiological effects are largely unknown. Because warm-up tends to increase blood flow in muscles, it seems likely that vocal warm-up might induce decreased viscosity in the vocal folds. According to the theory of vocal-fold vibration, such a decrease should lead to a lower phonation threshold pressure. In this investigation the effect of vocal warm-up on the phonation threshold pressure was examined in a group of male and female singers. The effect varied considerably between subjects, presumably because the vocal-fold viscosity was not a dominating factor for the phonation-threshold pressure.

  7. Reconciling controversies about the ‘global warming hiatus’

    NASA Astrophysics Data System (ADS)

    Medhaug, Iselin; Stolpe, Martin B.; Fischer, Erich M.; Knutti, Reto

    2017-05-01

    Between about 1998 and 2012, a time that coincided with political negotiations for preventing climate change, the surface of Earth seemed hardly to warm. This phenomenon, often termed the ‘global warming hiatus’, caused doubt in the public mind about how well anthropogenic climate change and natural variability are understood. Here we show that apparently contradictory conclusions stem from different definitions of ‘hiatus’ and from different datasets. A combination of changes in forcing, uptake of heat by the oceans, natural variability and incomplete observational coverage reconciles models and data. Combined with stronger recent warming trends in newer datasets, we are now more confident than ever that human influence is dominant in long-term warming.

  8. Reconciling controversies about the 'global warming hiatus'.

    PubMed

    Medhaug, Iselin; Stolpe, Martin B; Fischer, Erich M; Knutti, Reto

    2017-05-03

    Between about 1998 and 2012, a time that coincided with political negotiations for preventing climate change, the surface of Earth seemed hardly to warm. This phenomenon, often termed the 'global warming hiatus', caused doubt in the public mind about how well anthropogenic climate change and natural variability are understood. Here we show that apparently contradictory conclusions stem from different definitions of 'hiatus' and from different datasets. A combination of changes in forcing, uptake of heat by the oceans, natural variability and incomplete observational coverage reconciles models and data. Combined with stronger recent warming trends in newer datasets, we are now more confident than ever that human influence is dominant in long-term warming.

  9. Temperature and size variabilities of the Western Pacific Warm Pool

    NASA Technical Reports Server (NTRS)

    Yan, Xiao-Hai; Ho, Chung-Ru; Zheng, Quanan; Klemas, Vic

    1992-01-01

    Variabilities in sea-surface temperature and size of the Western Pacific Warm Pool were tracked with 10 years of satellite multichannel sea-surface temperature observations from 1982 to 1991. The results show that both annual mean sea-surface temperature and the size of the warm pool increased from 1983 to 1987 and fluctuated after 1987. Possible causes of these variations include solar irradiance variabilities, El Nino-Southern Oscillaton events, volcanic activities, and global warming.

  10. Relationships Between Global Warming and Tropical Cyclone Activity in the Western North Pacific

    DTIC Science & Technology

    2007-09-01

    In this work, we investigate the relationships between global warming and tropical cyclone activity in the Western North Pacific (WNP). Our...hypothesis is that global warming impacts on TC activity occur through changes in the large scale environmental factors (LSEFs) known to be important in...averages. Using a least squares fit, we identify global warming signals in both the SST and vertical wind shear data across the WNP. These signals vary

  11. [Comparative evaluation of heat state in workers exposed to heating microclimate during cold and warm seasons].

    PubMed

    Afanas'eva, R F; Prokopenko, L V; Kiladze, N A; Konstantinov, E I

    2009-01-01

    The authors demonstrated differences in heat state among workers exposed to heating microclimate during cold and warm seasons. Same external thermal load in cold season induces more humidity loss, lower weighted average skin temperature, higher pulse rate, increased systolic and diastolic blood pressure. With that, heat discomfort was more in cold season, than in warm one, this necessitates decrease of thermal load in cold season vs. the warm one.

  12. Causes of Warming and Thawing Permafrost in Alaska

    NASA Astrophysics Data System (ADS)

    Osterkamp, T. E.

    2007-11-01

    There is a perception that climatic warming was the cause of the twentieth-century global warming and thawing of permafrost and associated terrain instability (thermokarst) [>Gore, 2006; Perkins, 2007; Zielinski, 2007; Delisle, 2007]. While pertinent data are sparse, published results do not support this viewpoint [Zhang et al., 2001; Osterkamp, 2007]. This brief report reviews the warming of permafrost in Alaska during the twentieth century and shows that snow cover has played a significant role in it.

  13. Allocation trade-off under climate warming in experimental amphibian populations

    PubMed Central

    Gao, Xu; Jin, Changnan; Camargo, Arley

    2015-01-01

    Climate change could either directly or indirectly cause population declines via altered temperature, rainfall regimes, food availability or phenological responses. However few studies have focused on allocation trade-offs between growth and reproduction under marginal resources, such as food scarce that may be caused by climate warming. Such critical changes may have an unpredicted impact on amphibian life-history parameters and even population dynamics. Here, we report an allocation strategy of adult anuran individuals involving a reproductive stage under experimental warming. Using outdoor mesocosm experiments we simulated a warming scenario likely to occur at the end of this century. We examined the effects of temperature (ambient vs. pre-/post-hibernation warming) and food availability (normal vs. low) on reproduction and growth parameters of pond frogs (Pelophylax nigromaculatus). We found that temperature was the major factor influencing reproductive time of female pond frogs, which showed a significant advancing under post-hibernation warming treatment. While feeding rate was the major factor influencing reproductive status of females, clutch size, and variation of body size for females, showed significant positive correlations between feeding rate and reproductive status, clutch size, or variation of body size. Our results suggested that reproduction and body size of amphibians might be modulated by climate warming or food availability variation. We believe this study provides some new evidence on allocation strategies suggesting that amphibians could adjust their reproductive output to cope with climate warming. PMID:26500832

  14. Changes in substrate availability drive carbon cycle response to chronic warming

    DOE PAGES

    Pold, Grace; Grandy, A. Stuart; Melillo, Jerry M.; ...

    2017-03-22

    As earth's climate continues to warm, it is important to understand how the capacity of terrestrial ecosystems to retain carbon (C) will be affected. We combined measurements of microbial activity with the concentration, quality, and physical accessibility of soil carbon to microorganisms to evaluate the mechanisms by which more than two decades of experimental warming has altered the carbon cycle in a Northeast US temperate deciduous forest. We have found that concentrations of soil organic matter were reduced in both the organic and mineral soil horizons. The molecular composition of the carbon was altered in the mineral soil with significantmore » reductions in the relative abundance of polysaccharides and lignin, and an increase in lipids. Mineral-associated organic matter was preferentially depleted by warming in the top 3 cm of mineral soil. We found that potential extracellular enzyme activity per gram of soil at a common temperature was generally unaffected by warming treatment. However, by measuring potential extracellular enzyme activities between 4 and 30 °C, we found that activity per unit microbial biomass at in-situ temperatures was increased by warming. This was associated with a tendency for microbial biomass to decrease with warming. These results indicate that chronic warming has reduced soil organic matter concentrations, selecting for a smaller but more active microbial community increasingly dependent on mineral-associated organic matter.« less

  15. Influences of spring-to-summer sea surface temperatures over different Indian Ocean domains on the Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Li, Zhenning; Yang, Song

    2017-11-01

    The influences of spring-to-summer sea surface temperature (SST) anomalies in different domains of the Indian Ocean (IO) on the Asian summer monsoon are investigated by conducting a series of numerical experiments using the NCAR CAM4 model. It is found that, to a certain extent, the springtime IO SST anomalies can persist to the summer season. The spring-to-summer IO SST anomalies associated with the IO basin warming mode are strongly linked to the summer climate over Asia, especially the South Asian monsoon (SAM) and the East Asian monsoon. Among this connection, the warming of tropical IO plays the most critical role, and the warming of southern IO is important for monsoon variation and prediction prior to the full development of the monsoon. The atmospheric response to IO basin wide warming is similar with that to tropical IO warming. The influence of northern IO warming on the SAM, however, is opposite to the effect of southern IO warming. Meanwhile, the discrepancies between the results from idealized SST forcing simulations and observations, especially for the southern IO, reveal that the dominant role of air-sea interaction in the monsoon-IO coupled system cannot be ignored. Moreover, the springtime northern IO warming seems to favor an early onset or a stronger persistence of the SAM.

  16. Genome-Wide Identification and Characterization of Warming-Related Genes in Brassica rapa ssp. pekinensis.

    PubMed

    Song, Hayoung; Dong, Xiangshu; Yi, Hankuil; Ahn, Ju Young; Yun, Keunho; Song, Myungchul; Han, Ching-Tack; Hur, Yoonkang

    2018-06-11

    For sustainable crop cultivation in the face of global warming, it is important to unravel the genetic mechanisms underlying plant adaptation to a warming climate and apply this information to breeding. Thermomorphogenesis and ambient temperature signaling pathways have been well studied in model plants, but little information is available for vegetable crops. Here, we investigated genes responsive to warming conditions from two Brassica rapa inbred lines with different geographic origins: subtropical (Kenshin) and temperate (Chiifu). Genes in Gene Ontology categories “response to heat”, “heat acclimation”, “response to light intensity”, “response to oxidative stress”, and “response to temperature stimulus” were upregulated under warming treatment in both lines, but genes involved in “response to auxin stimulus” were upregulated only in Kenshin under both warming and minor-warming conditions. We identified 16 putative high temperature (HT) adaptation-related genes, including 10 heat-shock response genes, 2 transcription factor genes, 1 splicing factor gene, and 3 others. BrPIF4 , BrROF2 , and BrMPSR1 are candidate genes that might function in HT adaptation. Auxin response, alternative splicing of BrHSFA2 , and heat shock memory appear to be indispensable for HT adaptation in B. rapa . These results lay the foundation for molecular breeding and marker development to improve warming tolerance in B. rapa .

  17. Controlled soil warming powered by alternative energy for remote field sites.

    PubMed

    Johnstone, Jill F; Henkelman, Jonathan; Allen, Kirsten; Helgason, Warren; Bedard-Haughn, Angela

    2013-01-01

    Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2 °C in 1 m(2) plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes.

  18. Warming experiments elucidate the drivers of observed directional changes in tundra vegetation

    PubMed Central

    Hollister, Robert D; May, Jeremy L; Kremers, Kelseyann S; Tweedie, Craig E; Oberbauer, Steven F; Liebig, Jennifer A; Botting, Timothy F; Barrett, Robert T; Gregory, Jessica L

    2015-01-01

    Few studies have clearly linked long-term monitoring with in situ experiments to clarify potential drivers of observed change at a given site. This is especially necessary when findings from a site are applied to a much broader geographic area. Here, we document vegetation change at Barrow and Atqasuk, Alaska, occurring naturally and due to experimental warming over nearly two decades. An examination of plant cover, canopy height, and community indices showed more significant differences between years than due to experimental warming. However, changes with warming were more consistent than changes between years and were cumulative in many cases. Most cases of directional change observed in the control plots over time corresponded with a directional change in response to experimental warming. These included increases in canopy height and decreases in lichen cover. Experimental warming resulted in additional increases in evergreen shrub cover and decreases in diversity and bryophyte cover. This study suggests that the directional changes occurring at the sites are primarily due to warming and indicates that further changes are likely in the next two decades if the regional warming trend continues. These findings provide an example of the utility of coupling in situ experiments with long-term monitoring to accurately document vegetation change in response to global change and to identify the underlying mechanisms driving observed changes. PMID:26140204

  19. The Warm Plasma Composition in the Inner Magnetosphere during 2012–2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahn, J. M.; Goldstein, J.; Reeves, Geoffrey D.

    Ionospheric heavy ions play an important role in the dynamics of Earth's magnetosphere. The greater mass and gyro radius of ionospheric oxygen differentiates its behavior from protons at the same energies. Oxygen may have an impact on tail reconnection processes, and it can at least temporarily dominate the energy content of the ring current during geomagnetic storms. At sub-keV energies, multi-species ion populations in the inner magnetosphere form the warm plasma cloak, occupying the energy range between the plasmasphere and the ring current. Lastly, cold lighter ions from the mid-latitude ionosphere create the co-rotating plasmasphere whose outer regions can interactmore » with the plasma cloak, plasma sheet, ring current, and outer electron belt. Here in this paper we present a statistical view of warm, cloak-like ion populations in the inner magnetosphere, contrasting in particular the warm plasma composition during quiet and active times. We study the relative abundances and absolute densities of warm plasma measured by the Van Allen Probes, whose two spacecraft cover the inner magnetosphere from plasmaspheric altitudes close to Earth to just inside geostationary orbit. We observe that warm (>30 eV) oxygen is most abundant closer to the plasmasphere boundary whereas warm hydrogen dominates closer to geostationary orbit. Warm helium is usually a minor constituent, but shows a noticeable enhancement in the near-Earth dusk sector.« less

  20. Warm Rain Processes Over the Tropical Oceans and Implications on Climate Change

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, H. T.

    2004-01-01

    In this talk, we will first show results from TRMM regarding the characteristics of warm rains over the tropical oceans, and the dependence of rate of warm rain production on sea surface temperature. Results lead to the hypothesis that warm rain production efficiency, i.e., autoconversion, may be increased in a warm climate. We use the GEOS-II GCM to test this hypothesis. Our modeling results show that in a climate with increased rate of autoconversion, the total rain amount is increased, with warm rain contributing to a larger portion of the increase. The abundant rainout of warm precipitation at middle to low levels causes a reduction of high cloud cover due to the depletion of water available for ice-phase rain production. As a result, more isolated, but more intense penetrative convection develops. Results also show that increased autoconversion reduces the convective adjustment time scale tends, implying a faster recycling of atmospheric water. Most interestingly, the increased low level heating associated with warm rain leads to more energetic Madden and Julian oscillations in the tropics, with well-defined eastward propagation. While reducing the autoconversion leads to an abundant mix of westward and eastward tropical disturbance on daily to weekly time scales. The causes of the sensitivity of the dynamical regimes to the microphysics parameterization in the GCM will be discussed.

  1. Two decades of warming increases diversity of a potentially lignolytic bacterial community

    PubMed Central

    Pold, Grace; Melillo, Jerry M.; DeAngelis, Kristen M.

    2015-01-01

    As Earth's climate warms, the massive stores of carbon found in soil are predicted to become depleted, and leave behind a smaller carbon pool that is less accessible to microbes. At a long-term forest soil-warming experiment in central Massachusetts, soil respiration and bacterial diversity have increased, while fungal biomass and microbially-accessible soil carbon have decreased. Here, we evaluate how warming has affected the microbial community's capability to degrade chemically-complex soil carbon using lignin-amended BioSep beads. We profiled the bacterial and fungal communities using PCR-based methods and completed extracellular enzyme assays as a proxy for potential community function. We found that lignin-amended beads selected for a distinct community containing bacterial taxa closely related to known lignin degraders, as well as members of many genera not previously noted as capable of degrading lignin. Warming tended to drive bacterial community structure more strongly in the lignin beads, while the effect on the fungal community was limited to unamended beads. Of those bacterial operational taxonomic units (OTUs) enriched by the warming treatment, many were enriched uniquely on lignin-amended beads. These taxa may be contributing to enhanced soil respiration under warming despite reduced readily available C availability. In aggregate, these results suggest that there is genetic potential for chemically complex soil carbon degradation that may lead to extended elevated soil respiration with long-term warming. PMID:26042112

  2. Experimental soil warming shifts the fungal community composition at the alpine treeline.

    PubMed

    Solly, Emily F; Lindahl, Björn D; Dawes, Melissa A; Peter, Martina; Souza, Rômulo C; Rixen, Christian; Hagedorn, Frank

    2017-07-01

    Increased CO 2 emissions and global warming may alter the composition of fungal communities through the removal of temperature limitation in the plant-soil system, faster nitrogen (N) cycling and changes in the carbon (C) allocation of host plants to the rhizosphere. At a Swiss treeline featuring Larix decidua and Pinus uncinata, the effects of multiple years of CO 2 enrichment and experimental soil warming on the fungal community composition in the organic horizons were analysed using 454-pyrosequencing of ITS2 amplicons. Sporocarp production and colonization of ectomycorrhizal root tips were investigated in parallel. Fungal community composition was significantly altered by soil warming, whereas CO 2 enrichment had little effect. Tree species influenced fungal community composition and the magnitude of the warming responses. The abundance of ectomycorrhizal fungal taxa was positively correlated with N availability, and ectomycorrhizal taxa specialized for conditions of high N availability proliferated with warming, corresponding to considerable increases in inorganic N in warmed soils. Traits related to N utilization are important in determining the responses of ectomycorrhizal fungi to warming in N-poor cold ecosystems. Shifts in the overall fungal community composition in response to higher temperatures may alter fungal-driven processes with potential feedbacks on ecosystem N cycling and C storage at the alpine treeline. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. Predictive value of serum HCG concentrations in pregnancies achieved after single fresh or vitrified-warmed blastocyst transfer.

    PubMed

    Oron, Galia; Shavit, Tal; Esh-Broder, Efrat; Weon-Young, Son; Tulandi, Togas; Holzer, Hananel

    2017-09-01

    Possible differences between serum HCG levels in pregnancies achieved after transfer of a single fresh or a vitrified-warmed blastocyst were evaluated. Out of 1130 single blastocyst transfers resulting in positive HCG results, 789 were single fresh blastocyst transfers and 341 single vitrified-warmed blastocyst transfers. The initial serum HCG levels of 869 clinical intrauterine pregnancies were evaluated, 638 after the transfer of a single fresh blastocysts and 231 after the transfer of a single vitrified-warmed blastocysts. The HCG levels from cycles resulting in a clinical intrauterine pregnancy were significantly higher after the transfer of a single vitrified-warmed blastocyst (383 ± 230 IU/l) versus a fresh transfer (334 ± 192 IU/l; P = 0.01). Threshold values for predicting a clinical pregnancy for a fresh blastocyst were 111 IU/l and for a vitrified-warmed blastocyst 137 IU/l. Our study shows that the overall beta-HCG levels are comparable after the transfer of a fresh or vitrified-warmed blastocyst, suggesting that vitrification most probably does not affect the ability of the embryos to produce beta-HCG. This study further shows that when clinicians counsel patients, they should take into account that higher HCG levels are needed after a vitrified-warmed blastocyst transfer to predict a clinical intrauterine pregnancy. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Extreme Warming Challenges Sentinel Status of Kelp Forests as Indicators of Climate Change

    NASA Astrophysics Data System (ADS)

    Miller, R. J.; Reed, D.; Washburn, L.; Rassweiler, A.; Bell, T. W.; Harrer, S.

    2016-12-01

    The ecological effects of global warming are expected to be large, but are proving difficult and costly to measure. This has led to a growing interest in using sentinel species as early warning indicators of impending climate change effects on entire ecosystems, raising awareness of the importance of verifying that such conservation shortcuts have sound biological foundations. A recent large-scale warming event in the North Pacific Ocean of unprecedented magnitude and duration allowed us to evaluate the sentinel status of giant kelp, a coastal foundation species that thrives in cold, nutrient-rich waters and considered sensitive to warming. Here we show that giant kelp did not presage ecosystem effects of extreme warming off southern California despite its expected vulnerability. Fluctuations in the biomass of giant kelp, understory algae, invertebrates and fish remained within historical ranges despite 34 months of above average temperatures and below average nutrients. Sea stars and sea urchins were exceptions, plummeting due to disease outbreaks linked to the warming. Our results challenge the IPCC predictions about the vulnerability of kelp-dominated systems to extreme warming events and question their use as early indicators of climate change. The resilience of giant kelp to unprecedented warming not only questions our understanding of kelp ecology, but exposes the risk of relying on supposed sentinel species that are assumed to be very sensitive to climate change.

  5. Influence of warm-up duration on physical performance and psychological perceptions in handball players.

    PubMed

    Romaratezabala, Estibaliz; Nakamura, Fábio Yuzo; Castillo, Daniel; Gorostegi-Anduaga, Ilargi; Yanci, Javier

    2018-01-01

    The purpose of the study was to analyse the effect of two warm-up protocols of different duration on physical performance, perceived load and perception of being ready for a match in handball players. Eighteen handball players were randomly divided into two groups (Wup 34min , warm-up protocol of 34 min, Wup 17min , warm-up protocol of 17 min). Before and after the warm-up protocols, they performed a battery of physical tests and recorded their perception of feeling ready for a match. At the end of the warm-up protocols, all the players evaluated their differentiated perceived effort (dRPE). The results showed that neither of the protocols significantly modified (p > 0.05) the players' physical performance. However, the Wup 34min group showed higher values in the differentiated warm-up perceived load (dRPE-WL) (p < 0.01, TE = 0.97-1.27, high) than the Wup 17min group. The players with a greater perceived muscular load (RPE MUSC ) experienced a greater decrease in their acceleration capacity (r = 0.48-0.49, p < 0.05). In spite of the fact that neither of the warm-up protocols significantly modified the players' physical performance, a greater perceived muscular load may cause a greater decrease in acceleration capacity.

  6. Ice core measurements of 14CH4 show no evidence of methane release to atmosphere from methane hydrates during a large warming event 11,600 years ago

    NASA Astrophysics Data System (ADS)

    Petrenko, V. V.; Severinghaus, J. P.; Smith, A.; Riedel, K.; Brook, E.; Schaefer, H.; Baggenstos, D.; Harth, C. M.; Hua, Q.; Buizert, C.; Schilt, A.; Fain, X.; Mitchell, L.; Bauska, T. K.; Orsi, A. J.; Weiss, R. F.

    2016-12-01

    Marine methane hydrate destabilization has been proposed as a potentially large source of methane to the atmosphere in response to both past and future warming. We present new measurements of 14C of paleoatmospheric methane (CH4) over the Younger Dryas - Preboreal (YD - PB) abrupt warming event (≈11,600 years ago) from ancient ice outcropping at Taylor Glacier, Antarctica. The YD - PB abrupt warming was centered in the North Atlantic, occurred partway through the global warming of last deglaciation and was associated with a ≈ 50% increase in atmospheric CH4 concentrations. 14C can unambiguously identify CH4 emissions from "old carbon" sources, such as CH4 hydrates. All samples from before, during and after the abrupt warming and associated CH4 increase yielded 14CH4 values that are consistent with 14C of atmospheric CO2 at that time, indicating a purely contemporaneous methane source. Our results show that neither the abrupt regional warming nor the gradual global warming that preceded it resulted in detectable CH4 release to the atmosphere from CH4 hydrates during the YD - PB transition. Our results are thus consistent with the hypothesis that the vast majority of CH4 that is released from dissociating hydrates or other old-carbon seafloor CH4 sources is oxidized prior to reaching the atmosphere.

  7. Changes in substrate availability drive carbon cycle response to chronic warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pold, Grace; Grandy, A. Stuart; Melillo, Jerry M.

    As earth's climate continues to warm, it is important to understand how the capacity of terrestrial ecosystems to retain carbon (C) will be affected. We combined measurements of microbial activity with the concentration, quality, and physical accessibility of soil carbon to microorganisms to evaluate the mechanisms by which more than two decades of experimental warming has altered the carbon cycle in a Northeast US temperate deciduous forest. We have found that concentrations of soil organic matter were reduced in both the organic and mineral soil horizons. The molecular composition of the carbon was altered in the mineral soil with significantmore » reductions in the relative abundance of polysaccharides and lignin, and an increase in lipids. Mineral-associated organic matter was preferentially depleted by warming in the top 3 cm of mineral soil. We found that potential extracellular enzyme activity per gram of soil at a common temperature was generally unaffected by warming treatment. However, by measuring potential extracellular enzyme activities between 4 and 30 °C, we found that activity per unit microbial biomass at in-situ temperatures was increased by warming. This was associated with a tendency for microbial biomass to decrease with warming. These results indicate that chronic warming has reduced soil organic matter concentrations, selecting for a smaller but more active microbial community increasingly dependent on mineral-associated organic matter.« less

  8. Changes in Concurrent Risk of Warm and Dry Years under Impact of Climate Change

    NASA Astrophysics Data System (ADS)

    Sarhadi, A.; Wiper, M.; Touma, D. E.; Ausín, M. C.; Diffenbaugh, N. S.

    2017-12-01

    Anthropogenic global warming has changed the nature and the risk of extreme climate phenomena. The changing concurrence of multiple climatic extremes (warm and dry years) may result in intensification of undesirable consequences for water resources, human and ecosystem health, and environmental equity. The present study assesses how global warming influences the probability that warm and dry years co-occur in a global scale. In the first step of the study a designed multivariate Mann-Kendall trend analysis is used to detect the areas in which the concurrence of warm and dry years has increased in the historical climate records and also climate models in the global scale. The next step investigates the concurrent risk of the extremes under dynamic nonstationary conditions. A fully generalized multivariate risk framework is designed to evolve through time under dynamic nonstationary conditions. In this methodology, Bayesian, dynamic copulas are developed to model the time-varying dependence structure between the two different climate extremes (warm and dry years). The results reveal an increasing trend in the concurrence risk of warm and dry years, which are in agreement with the multivariate trend analysis from historical and climate models. In addition to providing a novel quantification of the changing probability of compound extreme events, the results of this study can help decision makers develop short- and long-term strategies to prepare for climate stresses now and in the future.

  9. Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis?

    PubMed

    Drake, John E; Tjoelker, Mark G; Aspinwall, Michael J; Reich, Peter B; Barton, Craig V M; Medlyn, Belinda E; Duursma, Remko A

    2016-08-01

    Given the contrasting short-term temperature dependences of gross primary production (GPP) and autotrophic respiration, the fraction of GPP respired by trees is predicted to increase with warming, providing a positive feedback to climate change. However, physiological acclimation may dampen or eliminate this response. We measured the fluxes of aboveground respiration (Ra ), GPP and their ratio (Ra /GPP) in large, field-grown Eucalyptus tereticornis trees exposed to ambient or warmed air temperatures (+3°C). We report continuous measurements of whole-canopy CO2 exchange, direct temperature response curves of leaf and canopy respiration, leaf and branch wood respiration, and diurnal photosynthetic measurements. Warming reduced photosynthesis, whereas physiological acclimation prevented a coincident increase in Ra . Ambient and warmed trees had a common nonlinear relationship between the fraction of GPP that was respired above ground (Ra /GPP) and the mean daily temperature. Thus, warming significantly increased Ra /GPP by moving plants to higher positions on the shared Ra /GPP vs daily temperature relationship, but this effect was modest and only notable during hot conditions. Despite the physiological acclimation of autotrophic respiration to warming, increases in temperature and the frequency of heat waves may modestly increase tree Ra /GPP, contributing to a positive feedback between climate warming and atmospheric CO2 accumulation. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. The Warm Plasma Composition in the Inner Magnetosphere during 2012–2015

    DOE PAGES

    Jahn, J. M.; Goldstein, J.; Reeves, Geoffrey D.; ...

    2017-09-11

    Ionospheric heavy ions play an important role in the dynamics of Earth's magnetosphere. The greater mass and gyro radius of ionospheric oxygen differentiates its behavior from protons at the same energies. Oxygen may have an impact on tail reconnection processes, and it can at least temporarily dominate the energy content of the ring current during geomagnetic storms. At sub-keV energies, multi-species ion populations in the inner magnetosphere form the warm plasma cloak, occupying the energy range between the plasmasphere and the ring current. Lastly, cold lighter ions from the mid-latitude ionosphere create the co-rotating plasmasphere whose outer regions can interactmore » with the plasma cloak, plasma sheet, ring current, and outer electron belt. Here in this paper we present a statistical view of warm, cloak-like ion populations in the inner magnetosphere, contrasting in particular the warm plasma composition during quiet and active times. We study the relative abundances and absolute densities of warm plasma measured by the Van Allen Probes, whose two spacecraft cover the inner magnetosphere from plasmaspheric altitudes close to Earth to just inside geostationary orbit. We observe that warm (>30 eV) oxygen is most abundant closer to the plasmasphere boundary whereas warm hydrogen dominates closer to geostationary orbit. Warm helium is usually a minor constituent, but shows a noticeable enhancement in the near-Earth dusk sector.« less

  11. Decadal trends in Red Sea maximum surface temperature.

    PubMed

    Chaidez, V; Dreano, D; Agusti, S; Duarte, C M; Hoteit, I

    2017-08-15

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade -1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century 1 . However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade -1 , while the northern Red Sea is warming between 0.40 and 0.45 °C decade -1 , all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  12. Global Ocean Circulation During Cretaceous Time

    NASA Astrophysics Data System (ADS)

    Haupt, B. J.; Seidov, D.

    2001-12-01

    Present--day global thermohaline ocean circulation (TOC) is usually associated with high--latitude deep-water formation due to surface cooling. In this understanding of the TOC driven by the deep--water production, the warm deep ocean during Mesozoic--Cenozoic time is a challenge. It may be questioned whether warm deep--ocean water, which is direct geologic evidence, does reflect warm polar surface--ocean regions. For the warm Cretaceous, it is difficult to maintain strong poleward heat transport in the case of reduced oceanic thermal contrasts. Usually, atmospheric feedbacks, in conjunction with the increase of atmospheric concentrations of greenhouse gases, are employed in order to explain the warm equable Cretaceous--Eocene climate. However, there is no feasible physical mechanism that could maintain warm subpolar surface oceans in both hemispheres, an assumption often used in atmospheric modeling. Our numerical experiments indicate that having a relatively cool but saltier high--latitude sea surface in at least one hemisphere is sufficient for driving a strong meridional overturning. Thus freshwater impacts in the high latitudes may be responsible for a vigorous conveyor capable of maintaining sufficient poleward oceanic heat transport needed to keep the polar oceans ice--free. These results imply that evaporation-precipitation patterns during warm climates are especially important climatic factors that can redistribute freshwater to create hemispheric asymmetry of sea surface conditions capable of generating a sufficiently strong TOC, otherwise impossible in warm climates.

  13. Experimental warming effects on the bacterial community structure and diversity

    NASA Astrophysics Data System (ADS)

    Kim, W.; Han, S.; Adams, J.; Son, Y.

    2014-12-01

    The objective of this study is to investigate the responses of soil bacterial community to future temperature increase by conducting open-field warming experiment. We conducted an open-field experimental warming system using infra-red heater in 2011 and regulated the temperature of warmed plots by 3oC higher than that of control plots constantly. The seeds of Pinus densiflora, Abies holophylla, Abies koreana, Betula costata, Quercus variabilis, Fraxinus rhynchophylla, and Zelkova serrata were planted in each 1 m × 1 m plot (n=3) in April, 2012. We collected soil samples from the rhizosphere of 7 tree species. DNA was extracted and PCR-amplified for the bacterial 16S gene targeting V1-V3 region. The paired-end sequencing was performed at Beijing Genome Institute (BGI, Hong Kong, China) using 2× 100 bp Hiseq2000 (Illumina). This study aimed to answer the following prediction/hypothesis: 1) Experimental warming will change the structure of soil bacterial community, 2) There will be distinct 'indicator group' which response to warming treatment relatively more sensitive than other groups. 3) Warming treatment will enhance the microbial activity in terms of soil respiration. 4) The rhizoplane bacterial communities for each of 7 tree species will show different response pattern to warming treatment. Since the sequence data does not arrive before the submission deadline, therefore, we would like to present the results and discussions on December 2014, AGU Fall Meeting.

  14. Seasonal responses of soil respiration to warming and nitrogen addition in a semi-arid alfalfa-pasture of the Loess Plateau, China.

    PubMed

    Fang, Chao; Ye, Jian-Sheng; Gong, Yanhong; Pei, Jiuying; Yuan, Ziqiang; Xie, Chan; Zhu, Yusi; Yu, Yueyuan

    2017-07-15

    Responses of soil respiration (R s ) to increasing nitrogen (N) deposition and warming will have far-reaching influences on global carbon (C) cycling. However, the seasonal (growing and non-growing seasons) difference of R s responses to warming and N deposition has rarely been investigated. We conducted a field manipulative experiment in a semi-arid alfalfa-pasture of northwest China to evaluate the response of R s to nitrogen addition and warming from March 2014 to March 2016. Open-top chambers were used to elevate temperature and N was enriched at a rate of 4.42g m -2 yr -1 with NH 4 NO 3 . Results showed that (1) N addition increased R s by 14% over the two-year period; and (2) warming stimulated R s by 15% in the non-growing season, while inhibited it by 5% in the growing season, which can be explained by decreased plant coverage and soil water. The main effect of N addition did not change with time, but that of warming changed with time, with the stronger inhibition observed in the dry year. When N addition and warming were combined, an antagonistic effect was observed in the growing season, whereas a synergism was observed in the non-growing season. Overall, warming and N addition did not affect the Q10 values over the two-year period, but these treatments significantly increased the Q10 values in the growing season compared with the control treatment. In comparison, combined warming and nitrogen addition significantly reduced the Q10 values compared with the single factor treatment. These results suggest that the negative indirect effect of warming-induced water stress overrides the positive direct effect of warming on R s . Our results also imply the necessity of considering the different R s responses in the growing and non-growing seasons to climate change to accurately evaluate the carbon cycle in the arid and semi-arid regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Artificial asymmetric warming reduces nectar yield in a Tibetan alpine species of Asteraceae

    PubMed Central

    Mu, Junpeng; Peng, Youhong; Xi, Xinqiang; Wu, Xinwei; Li, Guoyong; Niklas, Karl J.; Sun, Shucun

    2015-01-01

    Background and Aims Asymmetric warming is one of the distinguishing features of global climate change, in which winter and night-time temperatures are predicted to increase more than summer and diurnal temperatures. Winter warming weakens vernalization and hence decreases the potential to flower for some perennial herbs, and night warming can reduce carbohydrate concentrations in storage organs. This study therefore hypothesized that asymmetric warming should act to reduce flower number and nectar production per flower in a perennial herb, Saussurea nigrescens, a key nectar plant for pollinators in Tibetan alpine meadows. Methods A long-term (6 years) warming experiment was conducted using open-top chambers placed in a natural meadow and manipulated to achieve asymmetric increases in temperature, as follows: a mean annual increase of 0·7 and 2·7 °C during the growing and non-growing seasons, respectively, combined with an increase of 1·6 and 2·8 °C in the daytime and night-time, respectively, from June to August. Measurements were taken of nectar volume and concentration (sucrose content), and also of leaf non-structural carbohydrate content and plant morphology. Key Results Six years of experimental warming resulted in reductions in nectar volume per floret (64·7 % of control), floret number per capitulum (8·7 %) and capitulum number per plant (32·5 %), whereas nectar concentration remained unchanged. Depletion of leaf non-structural carbohydrates was significantly higher in the warmed than in the ambient condition. Overall plant density was also reduced by warming, which, when combined with reductions in flower development and nectar volumes, led to a reduction of ∼90 % in nectar production per unit area. Conclusions The negative effect of asymmetric warming on nectar yields in S. nigrescens may be explained by a concomitant depletion of leaf non-structural carbohydrates. The results thus highlight a novel aspect of how climate change might affect plant–pollinator interactions and plant reproduction via induction of allocation shifts for plants growing in communities subject to asymmetric warming. PMID:25921787

  16. Artificial asymmetric warming reduces nectar yield in a Tibetan alpine species of Asteraceae.

    PubMed

    Mu, Junpeng; Peng, Youhong; Xi, Xinqiang; Wu, Xinwei; Li, Guoyong; Niklas, Karl J; Sun, Shucun

    2015-11-01

    Asymmetric warming is one of the distinguishing features of global climate change, in which winter and night-time temperatures are predicted to increase more than summer and diurnal temperatures. Winter warming weakens vernalization and hence decreases the potential to flower for some perennial herbs, and night warming can reduce carbohydrate concentrations in storage organs. This study therefore hypothesized that asymmetric warming should act to reduce flower number and nectar production per flower in a perennial herb, Saussurea nigrescens, a key nectar plant for pollinators in Tibetan alpine meadows. A long-term (6 years) warming experiment was conducted using open-top chambers placed in a natural meadow and manipulated to achieve asymmetric increases in temperature, as follows: a mean annual increase of 0·7 and 2·7 °C during the growing and non-growing seasons, respectively, combined with an increase of 1·6 and 2·8 °C in the daytime and night-time, respectively, from June to August. Measurements were taken of nectar volume and concentration (sucrose content), and also of leaf non-structural carbohydrate content and plant morphology. Six years of experimental warming resulted in reductions in nectar volume per floret (64·7 % of control), floret number per capitulum (8·7 %) and capitulum number per plant (32·5 %), whereas nectar concentration remained unchanged. Depletion of leaf non-structural carbohydrates was significantly higher in the warmed than in the ambient condition. Overall plant density was also reduced by warming, which, when combined with reductions in flower development and nectar volumes, led to a reduction of ∼90 % in nectar production per unit area. The negative effect of asymmetric warming on nectar yields in S. nigrescens may be explained by a concomitant depletion of leaf non-structural carbohydrates. The results thus highlight a novel aspect of how climate change might affect plant-pollinator interactions and plant reproduction via induction of allocation shifts for plants growing in communities subject to asymmetric warming. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. The effect of warm-ups with stretching on the isokinetic moments of collegiate men.

    PubMed

    Park, Hyoung-Kil; Jung, Min-Kyung; Park, Eunkyung; Lee, Chang-Young; Jee, Yong-Seok; Eun, Denny; Cha, Jun-Youl; Yoo, Jaehyun

    2018-02-01

    Performing warm-ups increases muscle temperature and blood flow, which contributes to improved exercise performance and reduced risk of injuries to muscles and tendons. Stretching increases the range of motion of the joints and is effective for the maintenance and enhancement of exercise performance and flexibility, as well as for injury prevention. However, stretching as a warm-up activity may temporarily decrease muscle strength, muscle power, and exercise performance. This study aimed to clarify the effect of stretching during warm-ups on muscle strength, muscle power, and muscle endurance in a nonathletic population. The subjects of this study consisted of 13 physically active male collegiate students with no medical conditions. A self-assessment questionnaire regarding how well the subjects felt about their physical abilities was administered to measure psychological readiness before and after the warm-up. Subjects performed a non-warm-up, warm-up, or warm-up regimen with stretching prior to the assessment of the isokinetic moments of knee joints. After the measurements, the respective variables were analyzed using nonparametric tests. First, no statistically significant intergroup differences were found in the flexor and extensor peak torques of the knee joints at 60°/sec, which were assessed to measure muscle strength. Second, no statistically significant intergroup differences were found in the flexor and extensor peak torques of the knee joints at 180°/sec, which were assessed to measure muscle power. Third, the total work of the knee joints at 240°/sec, intended to measure muscle endurance, was highest in the aerobic-stretch-warm-ups (ASW) group, but no statistically significant differences were found among the groups. Finally, the psychological readiness for physical activity according to the type of warm-up was significantly higher in ASW. Simple stretching during warm-ups appears to have no effect on variables of exercise physiology in nonathletes who participate in routine recreational sport activities. However, they seem to have a meaningful effect on exercise performance by affording psychological stability, preparation, and confidence in exercise performance.

  18. Warming Effects on Enzyme Activities are Predominant in Sub-surface Soils of an Arctic Tundra Ecosystem over 6-Year Field Manipulation

    NASA Astrophysics Data System (ADS)

    Kang, H.; Seo, J.; Kim, M.; Jung, J. Y.; Lee, Y. K.

    2017-12-01

    Arctic tundra ecosystems are of great importance because they store a large amount of carbon as un-decomposed organic matter. Global climate change is expected to affect enzyme activities and heterotrophic respiration in Arctic soils, which may accelerate greenhouse gas (GHG) emission through positive biological feedbacks. Unlike laboratory-based incubation experiments, field measurements often show different warming effects on decomposition of organic carbon and releases of GHGs. In the present study, we conducted a field-based warming experiment in Cambridge Bay, Canada (69°07'48″N, 105°03'36″W) by employing passive chambers during growing seasons over 6 years. A suite of enzyme activities (ß-glucosidase, cellobiohydrolase, N-acetylglucosaminidase, leucine aminopeptidase and phenol oxidase), microbial community structure (NGS), microbial abundances (gene copy numbers of bacteria and fungi), and soil chemical properties have been monitored in two depths (0-5 cm and 5-10 cm) of tundra soils, which were exposed to four different treatments (`control', `warming-only', `water-addition only', and both `warming and water-addition'). Phenol oxidase activity increased substantially, and bacterial community structure and abundance changed in the early stage (after 1 year's warming manipulation), but these changes disappeared afterwards. Most hydrolases were enhanced in surface soils by `water-addition only' over the period. However, the long-term effects of warming appeared in sub-surface soils where both `warming only' and `warming and water addition' increased hydrolase activities. Overall results of this study indicate that the warming effects on enzyme activities in surface soils are only short-term (phenol oxidase) or masked by water-limitation (hydrolases). However, hydrolases activities in sub-surface soils are more strongly enhanced than surface soils by warming, probably due to the lack of water limitation. Meanwhile, negative correlations between hydrolase activities and humic fraction of DOC appeared following the sudden increase in phenol oxidase after 1 year's manipulation, suggesting that `enzyme latch' hypothesis is partially responsible for the control of hydrolases in the ecosystem.

  19. Comparing the Immediate Effects of a Total Motion Release Warm-up and a Dynamic Warm-up Protocol on the Dominant Shoulder in Baseball Athletes.

    PubMed

    Gamma, Stephen C; Baker, Russell; May, James; Seegmiller, Jeff G; Nasypany, Alan; Iorio, Steven M

    2018-04-10

    Gamma, SC, Baker, R, May, J, Seegmiller, JG, Nasypany, A, and Iorio, SM. Comparing the immediate effects of a total motion release warm-up and a dynamic warm-up protocol on the dominant shoulder in baseball athletes. J Strength Cond Res XX(X): 000-000, 2017-A decrease in total range of motion (ROM) of the dominant shoulder may predispose baseball athletes to increased shoulder injury risk; the most effective technique for improving ROM is unknown. The purpose of this study was to compare the immediate effects of Total Motion Release (TMR) to a generic dynamic warm-up program in baseball athletes. Baseball athletes (n = 20) were randomly assigned to an intervention group: TMR group (TMRG; n = 10) or traditional warm-up group (TWG; n = 10). Shoulder ROM measurements were recorded for internal rotation (IR) and external rotation (ER), the intervention was applied, and postmeasurements were recorded. Each group then received the other intervention and postmeasurements were again recorded. The time main effect (p ≤ 0.001) and the time × group interaction effect were significant (p ≤ 0.001) for IR and ER. Post hoc analysis revealed that TMR produced significant increases in mean IR (p ≤ 0.005, d = 1.52) and ER (p ≤ 0.018, d = 1.22) of the dominant shoulder initially. When groups crossed-over, the TMRG experienced a decrease in mean IR and ER after the dynamic warm-up, whereas the TWG experienced a significant increase in mean IR (p ≤ 0.001, d = 3.08) and ER (p ≤ 0.001, d = 2.56) after TMR intervention. Total Motion Release increased IR and ER of the dominant shoulder more than a dynamic warm-up. Dynamic warm-up after TMR also resulted in decreased IR and ER; however, TMR after dynamic warm-up significantly improved IR and ER. Based on these results, TMR is more effective than a generic dynamic warm-up for improving dominant shoulder ROM in baseball players.

  20. Climate change exacerbates interspecific interactions in sympatric coastal fishes.

    PubMed

    Milazzo, Marco; Mirto, Simone; Domenici, Paolo; Gristina, Michele

    2013-03-01

    Biological responses to warming are presently based on the assumption that species will remain within their bioclimatic envelope as environmental conditions change. As a result, changes in the relative abundance of several marine species have been documented over the last decades. This suggests that warming may drive novel interspecific interactions to occur (i.e. invasive vs. native species) or may intensify the strength of pre-existing ones (i.e. warm vs. cold adapted). For mobile species, habitat relocation is a viable solution to track tolerable conditions and reduce competitive costs, resulting in 'winner' species dominating the best quality habitat at the expense of 'loser' species. Here, we focus on the importance of warming in exacerbating interspecific interactions between two sympatric fishes. We assessed the relocation response of the cool-water fish Coris julis (a potential 'loser' species in warming scenarios) at increasing relative dominance of the warm-water fish Thalassoma pavo (a 'winner' species). These wrasses are widespread in the Mediterranean nearshore waters. C. julis tolerates cooler waters and is found throughout the basin. T. pavo is common along southern coasts, although the species range is expanding northwards as the Mediterranean warms. We surveyed habitat patterns along a thermo-latitudinal gradient in the Western Mediterranean Sea and manipulated seawater temperature under two scenarios (present day vs. projected) in outdoor arenas. Our results show that the cool-water species relocates to a less-preferred seagrass habitat and undergoes lower behavioural performance in warmer environments, provided the relative dominance of its warm-water antagonist is high. The results suggest that expected warming will act synergistically with increased relative dominance of a warm-water species to cause a cool-water fish to relocate in a less-preferred habitat within the same thermal environment. Our study highlights the complexity of climate change effects and has broad implications for predictive models of responses to warming. To achieve more accurate predictions, further consideration is needed of the pervasive importance of species interactions. We believe these fundamental issues to be addressed to understand the biotic consequences of climate change. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  1. Effects of warming and nitrogen fertilization on GHG flux in the permafrost region of an alpine meadow

    NASA Astrophysics Data System (ADS)

    Chen, Xiaopeng; Wang, Genxu; Zhang, Tao; Mao, Tianxu; Wei, Da; Hu, Zhaoyong; Song, Chunlin

    2017-05-01

    The limited number of in situ measurements of greenhouse gas (GHG) flux during soil freeze-thaw cycles in permafrost regions limits our ability to accurately predict how the alpine ecosystem carbon sink or source function will vary under future warming and increased nitrogen (N) deposition. An alpine meadow in the permafrost region of the Qinghai-Tibet Plateau was selected, and a simulated warming with N fertilization experiment was carried out to investigate the key GHG fluxes (ecosystem respiration [Re], CH4 and N2O) in the early (EG), mid (MG) and late (LG) growing seasons. The results showed that: (i) warming (4.5 °C) increased the average seasonal Re, CH4 uptake and N2O emission by 73.5%, 65.9% and 431.6%, respectively. N fertilization (4 g N m-2) alone had no significant effect on GHG flux; the interaction of warming and N fertilization enhanced CH4 uptake by 10.3% and N2O emissions by 27.2% than warming, while there was no significant effect on the Re; (ii) the average seasonal fluxes of Re, CH4 and N2O were MG > LG > EG, and Re and CH4 uptake were most sensitive to the soil freezing process instead of soil thawing process; (iii) surface soil temperature was the main driving factor of the Re and CH4 fluxes, and the N2O flux was mainly affected by daily rainfall; (iv) in the growing season, warming increased greenhouse warming potential (GWP) of the alpine meadow by 74.5%, the N fertilization decreased GWP of the warming plots by 13.9% but it was not statistically significant. These results indicate that (i) relative to future climate warming (or permafrost thawing), there could be a hysteresis of GHG flux in the alpine meadow of permafrost region; (ii) under the scenario of climate warming, increasing N deposition has limited impacts on the feedback of GHG flux of the alpine meadow.

  2. Laboratory evaluation of a warm asphalt technology for use in Virginia.

    DOT National Transportation Integrated Search

    2008-01-01

    Rising energy costs and increased environmental awareness have brought attention to the potential benefits of warm asphalt in the United States. Warm-mix asphalt (WMA) is produced by incorporating additives into asphalt mixtures to allow production a...

  3. OVERVIEW OF GOLD HILL MILL, ROAD, AND WARM SPRINGS CAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF GOLD HILL MILL, ROAD, AND WARM SPRINGS CAMP BUILDINGS, LOOKING SOUTH SOUTHEAST. THE FUNCTION OF THE FLAT AREA AT CENTER RIGHT IS UNKNOWN. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  4. Icehouse Effect: A Polar Autumn and Winter Cooling Trend

    NASA Technical Reports Server (NTRS)

    Wetzel, Peter J.

    1999-01-01

    The icehouse effect is a hypothesized polar climate trend toward cooling (or lack of warming) in response to greenhouse warming of adjacent lower latitudes. When greenhouse warmed air from lower latitudes moves over ice and snow, it generates a stronger, more stable, cappino, inversion than in a parallel case without greenhouse warming. Because the degree of decoupling between vertically adjacent air masses is directly dependent on the strength of the inversion, the capping inversion acts somewhat analogously to the walls and roof of the icehouse of generations past. What is inside the icehouse, namely the cold polar atmospheric boundary layer (ABL) air, is preserved by the "insulation" or decoupling, provided by the warm air aloft. Observations over the Arctic Ocean have shown an unexpected lack of any detectable surface warming trend over the past 40 years. This finding strongly contradicts climate model predictions that polar regions should show the strongest effect of greenhouse warming. It also stands in contrast to the consensus reached by the Intergovernmental Panel on Climate Change (IPCC), that human caused greenhouse warming is now detectable globally. One might ask: Are these Arctic observations wrong? Or, if right, is there a plausible physical explanation for them? The published observations mentioned above used about 50,000 soundings over the Arctic Ocean. Here I present a novel analysis of ALL available Arctic rawinsonde data north of 65N--a total of more than 1.1 million soundings. The analysis confirms the previously published result: There is indeed a slight climate-cooling trend in the vast majority of the data. Importantly, there are also select conditions (very strong and very weak stability of the ABL) which show a consistent, strong Arctic warming trend. It is the juxtaposition of these warming and cooling trends which defines a unique "icehouse signature" for which an explanation can be sought.

  5. Infrared heater system for warming tropical forest understory plants and soils.

    PubMed

    Kimball, Bruce A; Alonso-Rodríguez, Aura M; Cavaleri, Molly A; Reed, Sasha C; González, Grizelle; Wood, Tana E

    2018-02-01

    The response of tropical forests to global warming is one of the largest uncertainties in predicting the future carbon balance of Earth. To determine the likely effects of elevated temperatures on tropical forest understory plants and soils, as well as other ecosystems, an infrared (IR) heater system was developed to provide in situ warming for the Tropical Responses to Altered Climate Experiment (TRACE) in the Luquillo Experimental Forest in Puerto Rico. Three replicate heated 4-m-diameter plots were warmed to maintain a 4°C increase in understory vegetation compared to three unheated control plots, as sensed by IR thermometers. The equipment was larger than any used previously and was subjected to challenges different from those of many temperate ecosystem warming systems, including frequent power surges and outages, high humidity, heavy rains, hurricanes, saturated clayey soils, and steep slopes. The system was able to maintain the target 4.0°C increase in hourly average vegetation temperatures to within ± 0.1°C. The vegetation was heterogeneous and on a 21° slope, which decreased uniformity of the warming treatment on the plots; yet, the green leaves were fairly uniformly warmed, and there was little difference among 0-10 cm depth soil temperatures at the plot centers, edges, and midway between. Soil temperatures at the 40-50 cm depth increased about 3°C compared to the controls after a month of warming. As expected, the soil in the heated plots dried faster than that of the control plots, but the average soil moisture remained adequate for the plants. The TRACE heating system produced an adequately uniform warming precisely controlled down to at least 50-cm soil depth, thereby creating a treatment that allows for assessing mechanistic responses of tropical plants and soil to warming, with applicability to other ecosystems. No physical obstacles to scaling the approach to taller vegetation (i.e., trees) and larger plots were observed.

  6. On the influence of simulated SST warming on rainfall projections in the Indo-Pacific domain: an AGCM study

    NASA Astrophysics Data System (ADS)

    Zhang, Huqiang; Zhao, Y.; Moise, A.; Ye, H.; Colman, R.; Roff, G.; Zhao, M.

    2018-02-01

    Significant uncertainty exists in regional climate change projections, particularly for rainfall and other hydro-climate variables. In this study, we conduct a series of Atmospheric General Circulation Model (AGCM) experiments with different future sea surface temperature (SST) warming simulated by a range of coupled climate models. They allow us to assess the extent to which uncertainty from current coupled climate model rainfall projections can be attributed to their simulated SST warming. Nine CMIP5 model-simulated global SST warming anomalies have been super-imposed onto the current SSTs simulated by the Australian climate model ACCESS1.3. The ACCESS1.3 SST-forced experiments closely reproduce rainfall means and interannual variations as in its own fully coupled experiments. Although different global SST warming intensities explain well the inter-model difference in global mean precipitation changes, at regional scales the SST influence vary significantly. SST warming explains about 20-25% of the patterns of precipitation changes in each of the four/five models in its rainfall projections over the oceans in the Indo-Pacific domain, but there are also a couple of models in which different SST warming explains little of their precipitation pattern changes. The influence is weaker again for rainfall changes over land. Roughly similar levels of contribution can be attributed to different atmospheric responses to SST warming in these models. The weak SST influence in our study could be due to the experimental setup applied: superimposing different SST warming anomalies onto the same SSTs simulated for current climate by ACCESS1.3 rather than directly using model-simulated past and future SSTs. Similar modelling and analysis from other modelling groups with more carefully designed experiments are needed to tease out uncertainties caused by different SST warming patterns, different SST mean biases and different model physical/dynamical responses to the same underlying SST forcing.

  7. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog.

    PubMed

    Gill, Allison L; Giasson, Marc-André; Yu, Rieka; Finzi, Adrien C

    2017-12-01

    Boreal peatlands contain approximately 500 Pg carbon (C) in the soil, emit globally significant quantities of methane (CH 4 ), and are highly sensitive to climate change. Warming associated with global climate change is likely to increase the rate of the temperature-sensitive processes that decompose stored organic carbon and release carbon dioxide (CO 2 ) and CH 4 . Variation in the temperature sensitivity of CO 2 and CH 4 production and increased peat aerobicity due to enhanced growing-season evapotranspiration may alter the nature of peatland trace gas emission. As CH 4 is a powerful greenhouse gas with 34 times the warming potential of CO 2 , it is critical to understand how factors associated with global change will influence surface CO 2 and CH 4 fluxes. Here, we leverage the Spruce and Peatland Responses Under Changing Environments (SPRUCE) climate change manipulation experiment to understand the impact of a 0-9°C gradient in deep belowground warming ("Deep Peat Heat", DPH) on peat surface CO 2 and CH 4 fluxes. We find that DPH treatments increased both CO 2 and CH 4 emission. Methane production was more sensitive to warming than CO 2 production, decreasing the C-CO 2 :C-CH 4 of the respired carbon. Methane production is dominated by hydrogenotrophic methanogenesis but deep peat warming increased the δ 13 C of CH 4 suggesting an increasing contribution of acetoclastic methanogenesis to total CH 4 production with warming. Although the total quantity of C emitted from the SPRUCE Bog as CH 4 is <2%, CH 4 represents >50% of seasonal C emissions in the highest-warming treatments when adjusted for CO 2 equivalents on a 100-year timescale. These results suggest that warming in boreal regions may increase CH 4 emissions from peatlands and result in a positive feedback to ongoing warming. © 2017 John Wiley & Sons Ltd.

  8. Tropical Warm Semi-Arid Regions Expanding Over Temperate Latitudes In The Projected 21st Century

    NASA Astrophysics Data System (ADS)

    Rajaud, A.; de Noblet, N. I.

    2015-12-01

    Two billion people today live in drylands, where extreme climatic conditions prevail, and natural resources are limited. Drylands are expected to expand under several scenarios of climatic change. However, relevant adaptation strategies need to account for the aridity level: it conditions the equilibrium tree-cover density, ranging from deserts (hyper-arid) to dense savannas (sub-humid). Here we focus on the evolution of climatically defined warm semi-arid areas, where low-tree density covers can be maintained. We study the global repartition of these regions in the future and the bioclimatic shifts involved. We adopted a bioclimatological approach based on the Köppen climate classification. The warm semi-arid class is characterized by mean annual temperatures over 18°C and a rainfall-limitation criterion. A multi-model ensemble of CMIP5 projections for three representative concentration pathways was selected to analyze future conditions. The classification was first applied to the start, middle and end of the 20th and 21st centuries, in order to localize past and future warm semi-arid regions. Then, time-series for the classification were built to characterize trends and variability in the evolution of those regions. According to the CRU datasets, global expansion of the warm semi-arid area has already started (~+13%), following the global warming trend since the 1900s. This will continue according to all projections, most significantly so outside the tropical belt. Under the "business as usual" scenario, the global warm semi-arid area will increase by 30% and expand 12° poleward in the Northern Hemisphere, according to the multi-model mean. Drying drives the conversion from equatorial sub-humid conditions. Beyond 30° of latitude, cold semi-arid conditions become warm semi-arid through warming, and temperate conditions through combined warming and drying processes. Those various transitions may have drastic but also very distinct ecological and sociological impacts.

  9. Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation.

    PubMed

    Dawes, Melissa A; Philipson, Christopher D; Fonti, Patrick; Bebi, Peter; Hättenschwiler, Stephan; Hagedorn, Frank; Rixen, Christian

    2015-05-01

    Responses of alpine tree line ecosystems to increasing atmospheric CO2 concentrations and global warming are poorly understood. We used an experiment at the Swiss tree line to investigate changes in vegetation biomass after 9 years of free air CO2 enrichment (+200 ppm; 2001-2009) and 6 years of soil warming (+4 °C; 2007-2012). The study contained two key tree line species, Larix decidua and Pinus uncinata, both approximately 40 years old, growing in heath vegetation dominated by dwarf shrubs. In 2012, we harvested and measured biomass of all trees (including root systems), above-ground understorey vegetation and fine roots. Overall, soil warming had clearer effects on plant biomass than CO2 enrichment, and there were no interactive effects between treatments. Total plant biomass increased in warmed plots containing Pinus but not in those with Larix. This response was driven by changes in tree mass (+50%), which contributed an average of 84% (5.7 kg m(-2) ) of total plant mass. Pinus coarse root mass was especially enhanced by warming (+100%), yielding an increased root mass fraction. Elevated CO2 led to an increased relative growth rate of Larix stem basal area but no change in the final biomass of either tree species. Total understorey above-ground mass was not altered by soil warming or elevated CO2 . However, Vaccinium myrtillus mass increased with both treatments, graminoid mass declined with warming, and forb and nonvascular plant (moss and lichen) mass decreased with both treatments. Fine roots showed a substantial reduction under soil warming (-40% for all roots <2 mm in diameter at 0-20 cm soil depth) but no change with CO2 enrichment. Our findings suggest that enhanced overall productivity and shifts in biomass allocation will occur at the tree line, particularly with global warming. However, individual species and functional groups will respond differently to these environmental changes, with consequences for ecosystem structure and functioning. © 2014 John Wiley & Sons Ltd.

  10. Patient warming excess heat: the effects on orthopedic operating room ventilation performance.

    PubMed

    Belani, Kumar G; Albrecht, Mark; McGovern, Paul D; Reed, Mike; Nachtsheim, Christopher

    2013-08-01

    Patient warming has become a standard of care for the prevention of unintentional hypothermia based on benefits established in general surgery. However, these benefits may not fully translate to contamination-sensitive surgery (i.e., implants), because patient warming devices release excess heat that may disrupt the intended ceiling-to-floor ventilation airflows and expose the surgical site to added contamination. Therefore, we studied the effects of 2 popular patient warming technologies, forced air and conductive fabric, versus control conditions on ventilation performance in an orthopedic operating room with a mannequin draped for total knee replacement. Ventilation performance was assessed by releasing neutrally buoyant detergent bubbles ("bubbles") into the nonsterile region under the head-side of the anesthesia drape. We then tracked whether the excess heat from upper body patient warming mobilized the "bubbles" into the surgical site. Formally, a randomized replicated design assessed the effect of device (forced air, conductive fabric, control) and anesthesia drape height (low-drape, high-drape) on the number of bubbles photographed over the surgical site. The direct mass-flow exhaust from forced air warming generated hot air convection currents that mobilized bubbles over the anesthesia drape and into the surgical site, resulting in a significant increase in bubble counts for the factor of patient warming device (P < 0.001). Forced air had an average count of 132.5 versus 0.48 for conductive fabric (P = 0.003) and 0.01 for control conditions (P = 0.008) across both drape heights. Differences in average bubble counts across both drape heights were insignificant between conductive fabric and control conditions (P = 0.87). The factor of drape height had no significant effect (P = 0.94) on bubble counts. Excess heat from forced air warming resulted in the disruption of ventilation airflows over the surgical site, whereas conductive patient warming devices had no noticeable effect on ventilation airflows. These findings warrant future research into the effects of forced air warming excess heat on clinical outcomes during contamination-sensitive surgery.

  11. Understanding the causes of recent warming of mediterranean waters. How much could be attributed to climate change?

    PubMed

    Macias, Diego; Garcia-Gorriz, Elisa; Stips, Adolf

    2013-01-01

    During the past two decades, Mediterranean waters have been warming at a rather high rate resulting in scientific and social concern. This warming trend is observed in satellite data, field data and model simulations, and affects both surface and deep waters throughout the Mediterranean basin. However, the warming rate is regionally different and seems to change with time, which has led to the question of what causes underlie the observed trends. Here, we analyze available satellite information on sea surface temperature (SST) from the last 25 years using spectral techniques and find that more than half of the warming tendency during this period is due to a non-linear, wave-like tendency. Using a state of the art hydrodynamic model, we perform a hindcast simulation and obtain the simulated SST evolution of the Mediterranean basin for the last 52 years. These SST results show a clear sinusoidal tendency that follows the Atlantic Multidecadal Oscillation (AMO) during the simulation period. Our results reveal that 58% of recent warming in Mediterranean waters could be attributed to this AMO-like oscillation, being anthropogenic-induced climate change only responsible for 42% of total trend. The observed acceleration of water warming during the 1990s therefore appears to be caused by a superimposition of anthropogenic-induced warming with the positive phase of the AMO, while the recent slowdown of this tendency is likely due to a shift in the AMO phase. It has been proposed that this change in the AMO phase will mask the effect of global warming in the forthcoming decades, and our results indicate that the same could also be applicable to the Mediterranean Sea. Henceforth, natural multidecadal temperature oscillations should be taken into account to avoid underestimation of the anthropogenic-induced warming of the Mediterranean basin in the future.

  12. [Effects of warm needling moxibustion on knee cartilage and morphology in rats with knee osteoarthritis].

    PubMed

    Zhang, Yongliang; Mi, Yiqun; Gang, Jiahong; Wang, Huamin

    2016-02-01

    To observe the effects of warm needling moxibustion on body mass, knee cartilage andmorphology in rats with knee osteoarthritis (KOA). Forty SD rats were randomly divided into a normalgroup, a model group, a medication group and a warm needling group, 10 rats in each one. Except the normalgroup, the rats in the remaining three groups were injected with papain to establish the model of KOA. After themodeling, rats in the model group did not receive any treatment; rats in the warm needling group were treated withwarm needling moxibustion at bilateral "Xiqian"; rats in the medication group were treated with intragastric administration of meloxicam; rats in the normal group were treated with 0. 9% NaCl solution (identical dose as medication group) and immobilized as the warm needling group. The treatment was given once a day for consecutive20 days. The body mass, scale of knee cartilage and morphological changes were observed in each group after'treatment. The increasing of body mass in the medication group and warm needling group was faster than!that in the model group, but slower than that in the normal group (all P<0. 05); the difference between medication group and warm needling group was not statistically significant (P>0. 05). The scale of knee cartilage in thewarm needling group and medication group was significantly lower than that in the model group (both P<0. 05),while the scale in the warm needling group was lower than that in the medication group (P<. 05). Regarding theknee morphology under micro-CT, the relief of knee degeneration and improvement of knee recovery in the warm needlinggroup were superior to those in the medication group. The warm needling moxibustion could effectively reduce the knee pain, improve the recovery of knee cartilage, which is a safe and effective treatment.

  13. Catalytic power of enzymes decreases with temperature: New insights for understanding soil C cycling and microbial ecology under warming.

    PubMed

    Alvarez, Gaël; Shahzad, Tanvir; Andanson, Laurence; Bahn, Michael; Wallenstein, Matthew D; Fontaine, Sébastien

    2018-04-23

    Most current models of soil C dynamics predict that climate warming will accelerate soil C mineralization, resulting in a long-term CO 2 release and positive feedback to global warming. However, ecosystem warming experiments show that CO 2 loss from warmed soils declines to control levels within a few years. Here, we explore the temperature dependence of enzymatic conversion of polymerized soil organic C (SOC) into assimilable compounds, which is presumed the rate-limiting step of SOC mineralization. Combining literature review, modelling and enzyme assays, we studied the effect of temperature on activity of enzymes considering their thermal inactivation and catalytic activity. We defined the catalytic power of enzymes (E power ) as the cumulative amount of degraded substrate by one unit of enzyme until its complete inactivation. We show a universal pattern of enzyme's thermodynamic properties: activation energy of catalytic activity (EA cat ) < activation energy of thermal inactivation (EA inact ). By investing in stable enzymes (high EA inact ) having high catalytic activity (low EA cat ), microorganisms may maximize the E power of their enzymes. The counterpart of such EAs' hierarchical pattern is the higher relative temperature sensitivity of enzyme inactivation than catalysis, resulting in a reduction in E power under warming. Our findings could explain the decrease with temperature in soil enzyme pools, microbial biomass (MB) and carbon use efficiency (CUE) reported in some warming experiments and studies monitoring the seasonal variation in soil enzymes. They also suggest that a decrease in soil enzyme pools due to their faster inactivation under warming contributes to the observed attenuation of warming effect on soil C mineralization. This testable theory predicts that the ultimate response of SOC degradation to warming can be positive or negative depending on the relative temperature response of E power and microbial production of enzymes. © 2018 John Wiley & Sons Ltd.

  14. Specificity Responses of Grasshoppers in Temperate Grasslands to Diel Asymmetric Warming

    PubMed Central

    Wu, Tingjuan; Hao, Shuguang; Sun, Osbert Jianxin; Kang, Le

    2012-01-01

    Background Global warming is characterized by not only an increase in the daily mean temperature, but also a diel asymmetric pattern. However, most of the current studies on climate change have only concerned with the mean values of the warming trend. Although many studies have been conducted concerning the responses of insects to climate change, studies that address the issue of diel asymmetric warming under field conditions are not found in the literature. Methodology/Principal Findings We conducted a field climate manipulative experiment and investigated developmental and demographic responses to diel asymmetric warming in three grasshopper species (an early-season species Dasyhippus barbipes, a mid-season species Oedaleus asiaticus, and a late-season species Chorthippus fallax). It was found that warming generally advanced the development of eggs and nymphs, but had no apparent impacts on the hatching rate of eggs, the emergence rate of nymphs and the survival and fecundity of adults in all the three species. Nighttime warming was more effective in advancing egg development than the daytime warming. The emergence time of adults was differentially advanced by warming in the three species; it was advanced by 5.64 days in C. fallax, 3.55 days in O. asiaticus, and 1.96 days in D. barbipes. This phenological advancement was associated with increases in the effective GDDs accumulation. Conclusions/Significance Results in this study indicate that the responses of the three grasshopper species to warming are influenced by several factors, including species traits, developmental stage, and the thermal sensitivity of the species. Moreover, species with diapausing eggs are less responsive to changes in temperature regimes, suggesting that development of diapausing eggs is a protective mechanism in early-season grasshopper for avoiding the risk of pre-winter hatching. Our results highlight the need to consider the complex relationships between climate change and specificity responses of invertebrates. PMID:22848593

  15. Warming increases plant biomass and reduces diversity across continents, latitudes, and species migration scenarios in experimental wetland communities.

    PubMed

    Baldwin, Andrew H; Jensen, Kai; Schönfeldt, Marisa

    2014-03-01

    Atmospheric warming may influence plant productivity and diversity and induce poleward migration of species, altering communities across latitudes. Complicating the picture is that communities from different continents deviate in evolutionary histories, which may modify responses to warming and migration. We used experimental wetland plant communities grown from seed banks as model systems to determine whether effects of warming on biomass production and species richness are consistent across continents, latitudes, and migration scenarios. We collected soil samples from each of three tidal freshwater marshes in estuaries at three latitudes (north, middle, south) on the Atlantic coasts of Europe and North America. In one experiment, we exposed soil seed bank communities from each latitude and continent to ambient and elevated (+2.8 °C) temperatures in the greenhouse. In a second experiment, soil samples were mixed either within each estuary (limited migration) or among estuaries from different latitudes in each continent (complete migration). Seed bank communities of these migration scenarios were also exposed to ambient and elevated temperatures and contrasted with a no-migration treatment. In the first experiment, warming overall increased biomass (+16%) and decreased species richness (-14%) across latitudes in Europe and North America. Species richness and evenness of south-latitude communities were less affected by warming than those of middle and north latitudes. In the second experiment, warming also stimulated biomass and lowered species richness. In addition, complete migration led to increased species richness (+60% in North America, + 100% in Europe), but this higher diversity did not translate into increased biomass. Species responded idiosyncratically to warming, but Lythrum salicaria and Bidens sp. increased significantly in response to warming in both continents. These results reveal for the first time consistent impacts of warming on biomass and species richness for temperate wetland plant communities across continents, latitudes, and migration scenarios. © 2013 John Wiley & Sons Ltd.

  16. Warm-up Practices in Elite Boxing Athletes: Impact on Power Output.

    PubMed

    Cunniffe, Brian; Ellison, Mark; Loosemore, Mike; Cardinale, Marco

    2017-01-01

    Cunniffe, B, Ellison, M, Loosemore, M, and Cardinale, M. Warm-up practices in elite boxing athletes: Iimpact on power output. J Strength Cond Res 31(1): 95-105, 2017-This study evaluated the performance impact of routine warm-up strategies in elite Olympic amateur boxing athletes and physiological implications of the time gap (GAP) between warm-up and boxing activity. Six male boxers were assessed while performing standardized prefight warm-up routines. Core and skin temperature measurements (Tcore and Tskin), heart rate, and upper- and lower-body power output (PO) were assessed before and after warm-up, during a 25-minutes GAP and after 3 × 2 minutes rounds of sparring. Reflected temperature (Tc) was also determined using high-resolution thermal images at fixed time-points to explore avenues for heat loss. Despite individual differences in warm-up duration (range 7.4-18.5 minutes), increases in Tcore and Tskin occurred (p ≤ 0.05). Corresponding increases (4.8%; p ≤ 0.05) in countermovement jump (CMJ) height and upward-rightward shifts in upper-body force-velocity and power-velocity curves were observed. Athletes remained inactive during the 25-minutes GAP with a gradual and significant increase in Tc occurring by the end of GAP suggesting the likelihood of heat loss. Decreases in CMJ height and upper-body PO were observed after 15 minutes and 25 minutes GAP (p ≤ 0.05). By the end of GAP period, all performance variables had returned to pre-warm-up values. Results suggest routine warm-ups undertaken by elite boxers have acute effects on power-generating capacity. Gradual decreases in performance variables are evident with inactivity and seem related to alterations in body temperature. Considering the constraints of major competitions and time spent in air conditioned holding areas before fights, practitioners should be aware of the potential of nullifying the warm-up effects.

  17. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America

    PubMed Central

    Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia

    2014-01-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period – a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI – high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to climate warming than the more diverse mixed forest catchments. PMID:24757012

  18. Soil warming opens the nitrogen cycle at the alpine treeline.

    PubMed

    Dawes, Melissa A; Schleppi, Patrick; Hättenschwiler, Stephan; Rixen, Christian; Hagedorn, Frank

    2017-01-01

    Climate warming may alter ecosystem nitrogen (N) cycling by accelerating N transformations in the soil, and changes may be especially pronounced in cold regions characterized by N-poor ecosystems. We investigated N dynamics across the plant-soil continuum during 6 years of experimental soil warming (2007-2012; +4 °C) at a Swiss high-elevation treeline site (Stillberg, Davos; 2180 m a.s.l.) featuring Larix decidua and Pinus uncinata. In the soil, we observed considerable increases in the NH4+ pool size in the first years of warming (by >50%), but this effect declined over time. In contrast, dissolved organic nitrogen (DON) concentrations in soil solutions from the organic layer increased under warming, especially in later years (maximum of +45% in 2012), suggesting enhanced DON leaching from the main rooting zone. Throughout the experimental period, foliar N concentrations showed species-specific but small warming effects, whereas δ 15 N values showed a sustained increase in warmed plots that was consistent for all species analysed. The estimated total plant N pool size at the end of the study was greater (+17%) in warmed plots with Pinus but not in those containing Larix, with responses driven by trees. Irrespective of plot tree species identity, warming led to an enhanced N pool size of Vaccinium dwarf shrubs, no change in that of Empetrum hermaphroditum (dwarf shrub) and forbs, and a reduction in that of grasses, nonvascular plants, and fine roots. In combination, higher foliar δ 15 N values and the transient response in soil inorganic N indicate a persistent increase in plant-available N and greater cumulative plant N uptake in warmer soils. Overall, greater N availability and increased DON concentrations suggest an opening of the N cycle with global warming, which might contribute to growth stimulation of some plant species while simultaneously leading to greater N losses from treeline ecosystems and possibly other cold biomes. © 2016 John Wiley & Sons Ltd.

  19. Comparison of the performance of battery-operated fluid warmers.

    PubMed

    Lehavi, Amit; Yitzhak, Avraham; Jarassy, Refael; Heizler, Rami; Katz, Yeshayahu Shai; Raz, Aeyal

    2018-06-07

    Warming intravenous fluids is essential to prevent hypothermia in patients with trauma, especially when large volumes are administered. Prehospital and transport settings require fluid warmers to be small, energy efficient and independent of external power supply. We compared the warming properties and resistance to flow of currently available battery-operated fluid warmers. Fluid warming was evaluated at 50, 100 and 200 mL/min at a constant input temperature of 20°C and 10°C using a cardiopulmonary bypass roller pump and cooler. Output temperature was continuously recorded. Performance of fluid warmers varied with flows and input temperatures. At an input temperature of 20°C and flow of 50 mL/min, the Buddy Lite, enFlow, Thermal Angel and Warrior warmed 3.4, 2.4, 1 and 3.6 L to over 35°C, respectively. However, at an input temperature of 10°C and flow of 200 mL/min, the Buddy Lite failed to warm, the enFlow warmed 3.3 L to 25.7°C, the Thermal Angel warmed 1.5 L to 20.9°C and the Warrior warmed 3.4 L to 34.4°C (p<0.0001). We found significant differences between the fluid warmers: the use of the Buddy Lite should be limited to moderate input temperature and low flow rates. The use of the Thermal Angel is limited to low volumes due to battery capacity and low output temperature at extreme conditions. The Warrior provides the best warming performance at high infusion rates, as well as low input temperatures, and was able to warm the largest volumes in these conditions. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. High chance that current atmospheric greenhouse concentrations commit to warmings greater than 1.5 °C over land

    PubMed Central

    Huntingford, Chris; Mercado, Lina M.

    2016-01-01

    The recent Paris UNFCCC climate meeting discussed the possibility of limiting global warming to 2 °C since pre-industrial times, or possibly even 1.5 °C, which would require major future emissions reductions. However, even if climate is stabilised at current atmospheric greenhouse gas (GHG) concentrations, those warming targets would almost certainly be surpassed in the context of mean temperature increases over land only. The reason for this is two-fold. First, current transient warming lags significantly below equilibrium or “committed” warming. Second, almost all climate models indicate warming rates over land are much higher than those for the oceans. We demonstrate this potential for high eventual temperatures over land, even for contemporary GHG levels, using a large set of climate models and for which climate sensitivities are known. Such additional land warming has implications for impacts on terrestrial ecosystems and human well-being. This suggests that even if massive and near-immediate emissions reductions occur such that atmospheric GHGs increase further by only small amounts, careful planning is needed by society to prepare for higher land temperatures in an eventual equilibrium climatic state. PMID:27461560

Top