Sample records for erratic mitochondrial clock

  1. Discrete gene replication events drive coupling between the cell cycle and circadian clocks

    PubMed Central

    Paijmans, Joris; Bosman, Mark; ten Wolde, Pieter Rein; Lubensky, David K.

    2016-01-01

    Many organisms possess both a cell cycle to control DNA replication and a circadian clock to anticipate changes between day and night. In some cases, these two rhythmic systems are known to be coupled by specific, cross-regulatory interactions. Here, we use mathematical modeling to show that, additionally, the cell cycle generically influences circadian clocks in a nonspecific fashion: The regular, discrete jumps in gene-copy number arising from DNA replication during the cell cycle cause a periodic driving of the circadian clock, which can dramatically alter its behavior and impair its function. A clock built on negative transcriptional feedback either phase-locks to the cell cycle, so that the clock period tracks the cell division time, or exhibits erratic behavior. We argue that the cyanobacterium Synechococcus elongatus has evolved two features that protect its clock from such disturbances, both of which are needed to fully insulate it from the cell cycle and give it its observed robustness: a phosphorylation-based protein modification oscillator, together with its accompanying push–pull read-out circuit that responds primarily to the ratios of different phosphoform concentrations, makes the clock less susceptible to perturbations in protein synthesis; the presence of multiple, asynchronously replicating copies of the same chromosome diminishes the effect of replicating any single copy of a gene. PMID:27035936

  2. Discrete gene replication events drive coupling between the cell cycle and circadian clocks.

    PubMed

    Paijmans, Joris; Bosman, Mark; Ten Wolde, Pieter Rein; Lubensky, David K

    2016-04-12

    Many organisms possess both a cell cycle to control DNA replication and a circadian clock to anticipate changes between day and night. In some cases, these two rhythmic systems are known to be coupled by specific, cross-regulatory interactions. Here, we use mathematical modeling to show that, additionally, the cell cycle generically influences circadian clocks in a nonspecific fashion: The regular, discrete jumps in gene-copy number arising from DNA replication during the cell cycle cause a periodic driving of the circadian clock, which can dramatically alter its behavior and impair its function. A clock built on negative transcriptional feedback either phase-locks to the cell cycle, so that the clock period tracks the cell division time, or exhibits erratic behavior. We argue that the cyanobacterium Synechococcus elongatus has evolved two features that protect its clock from such disturbances, both of which are needed to fully insulate it from the cell cycle and give it its observed robustness: a phosphorylation-based protein modification oscillator, together with its accompanying push-pull read-out circuit that responds primarily to the ratios of different phosphoform concentrations, makes the clock less susceptible to perturbations in protein synthesis; the presence of multiple, asynchronously replicating copies of the same chromosome diminishes the effect of replicating any single copy of a gene.

  3. Circadian rhythms, time-restricted feeding, and healthy aging.

    PubMed

    Manoogian, Emily N C; Panda, Satchidananda

    2017-10-01

    Circadian rhythms optimize physiology and health by temporally coordinating cellular function, tissue function, and behavior. These endogenous rhythms dampen with age and thus compromise temporal coordination. Feeding-fasting patterns are an external cue that profoundly influence the robustness of daily biological rhythms. Erratic eating patterns can disrupt the temporal coordination of metabolism and physiology leading to chronic diseases that are also characteristic of aging. However, sustaining a robust feeding-fasting cycle, even without altering nutrition quality or quantity, can prevent or reverse these chronic diseases in experimental models. In humans, epidemiological studies have shown erratic eating patterns increase the risk of disease, whereas sustained feeding-fasting cycles, or prolonged overnight fasting, is correlated with protection from breast cancer. Therefore, optimizing the timing of external cues with defined eating patterns can sustain a robust circadian clock, which may prevent disease and improve prognosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Mitochondrial Aging: Is There a Mitochondrial Clock?

    PubMed

    Zorov, Dmitry B; Popkov, Vasily A; Zorova, Ljubava D; Vorobjev, Ivan A; Pevzner, Irina B; Silachev, Denis N; Zorov, Savva D; Jankauskas, Stanislovas S; Babenko, Valentina A; Plotnikov, Egor Y

    2017-09-01

    Fragmentation (fission) of mitochondria, occurring in response to oxidative challenge, leads to heterogeneity in the mitochondrial population. It is assumed that fission provides a way to segregate mitochondrial content between the "young" and "old" phenotype, with the formation of mitochondrial "garbage," which later will be disposed. Fidelity of this process is the basis of mitochondrial homeostasis, which is disrupted in pathological conditions and aging. The asymmetry of the mitochondrial fission is similar to that of their evolutionary ancestors, bacteria, which also undergo an aging process. It is assumed that mitochondrial markers of aging are recognized by the mitochondrial quality control system, preventing the accumulation of dysfunctional mitochondria, which normally are subjected to disposal. Possibly, oncocytoma, with its abnormal proliferation of mitochondria occupying the entire cytoplasm, represents the case when segregation of damaged mitochondria is impaired during mitochondrial division. It is plausible that mitochondria contain a "clock" which counts the degree of mitochondrial senescence as the extent of flagging (by ubiquitination) of damaged mitochondria. Mitochondrial aging captures the essence of the systemic aging which must be analyzed. We assume that the mitochondrial aging mechanism is similar to the mechanism of aging of the immune system which we discuss in detail. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. A revised timescale for human evolution based on ancient mitochondrial genomes

    PubMed Central

    Johnson, Philip L.F.; Bos, Kirsten; Lari, Martina; Bollongino, Ruth; Sun, Chengkai; Giemsch, Liane; Schmitz, Ralf; Burger, Joachim; Ronchitelli, Anna Maria; Martini, Fabio; Cremonesi, Renata G.; Svoboda, Jiří; Bauer, Peter; Caramelli, David; Castellano, Sergi; Reich, David; Pääbo, Svante; Krause, Johannes

    2016-01-01

    Summary Background Recent analyses of de novo DNA mutations in modern humans have suggested a nuclear substitution rate that is approximately half that of previous estimates based on fossil calibration. This result has led to suggestions that major events in human evolution occurred far earlier than previously thought. Result Here we use mitochondrial genome sequences from 10 securely dated ancient modern humans spanning 40,000 years as calibration points for the mitochondrial clock, thus yielding a direct estimate of the mitochondrial substitution rate. Our clock yields mitochondrial divergence times that are in agreement with earlier estimates based on calibration points derived from either fossils or archaeological material. In particular, our results imply a separation of non-Africans from the most closely related sub-Saharan African mitochondrial DNAs (haplogroup L3) of less than 62,000-95,000 years ago. Conclusion Though single loci like mitochondrial DNA (mtDNA) can only provide biased estimates of population split times, they can provide valid upper bounds; our results exclude most of the older dates for African and non-African split times recently suggested by de novo mutation rate estimates in the nuclear genome. PMID:23523248

  6. A revised timescale for human evolution based on ancient mitochondrial genomes.

    PubMed

    Fu, Qiaomei; Mittnik, Alissa; Johnson, Philip L F; Bos, Kirsten; Lari, Martina; Bollongino, Ruth; Sun, Chengkai; Giemsch, Liane; Schmitz, Ralf; Burger, Joachim; Ronchitelli, Anna Maria; Martini, Fabio; Cremonesi, Renata G; Svoboda, Jiří; Bauer, Peter; Caramelli, David; Castellano, Sergi; Reich, David; Pääbo, Svante; Krause, Johannes

    2013-04-08

    Recent analyses of de novo DNA mutations in modern humans have suggested a nuclear substitution rate that is approximately half that of previous estimates based on fossil calibration. This result has led to suggestions that major events in human evolution occurred far earlier than previously thought. Here, we use mitochondrial genome sequences from ten securely dated ancient modern humans spanning 40,000 years as calibration points for the mitochondrial clock, thus yielding a direct estimate of the mitochondrial substitution rate. Our clock yields mitochondrial divergence times that are in agreement with earlier estimates based on calibration points derived from either fossils or archaeological material. In particular, our results imply a separation of non-Africans from the most closely related sub-Saharan African mitochondrial DNAs (haplogroup L3) that occurred less than 62-95 kya. Though single loci like mitochondrial DNA (mtDNA) can only provide biased estimates of population divergence times, they can provide valid upper bounds. Our results exclude most of the older dates for African and non-African population divergences recently suggested by de novo mutation rate estimates in the nuclear genome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Light at night alters daily patterns of cortisol and clock proteins in female Siberian hamsters.

    PubMed

    Bedrosian, T A; Galan, A; Vaughn, C A; Weil, Z M; Nelson, R J

    2013-06-01

    Humans and other organisms have adapted to a 24-h solar cycle in response to life on Earth. The rotation of the planet on its axis and its revolution around the sun cause predictable daily and seasonal patterns in day length. To successfully anticipate and adapt to these patterns in the environment, a variety of biological processes oscillate with a daily rhythm of approximately 24 h in length. These rhythms arise from hierarchally-coupled cellular clocks generated by positive and negative transcription factors of core circadian clock gene expression. From these endogenous cellular clocks, overt rhythms in activity and patterns in hormone secretion and other homeostatic processes emerge. These circadian rhythms in physiology and behaviour can be organised by a variety of cues, although they are most potently entrained by light. In recent history, there has been a major change from naturally-occurring light cycles set by the sun, to artificial and sometimes erratic light cycles determined by the use of electric lighting. Virtually every individual living in an industrialised country experiences light at night (LAN) but, despite its prevalence, the biological effects of such unnatural lighting have not been fully considered. Using female Siberian hamsters (Phodopus sungorus), we investigated the effects of chronic nightly exposure to dim light on daily rhythms in locomotor activity, serum cortisol concentrations and brain expression of circadian clock proteins (i.e. PER1, PER2, BMAL1). Although locomotor activity remained entrained to the light cycle, the diurnal fluctuation of cortisol concentrations was blunted and the expression patterns of clock proteins in the suprachiasmatic nucleus and hippocampus were altered. These results demonstrate that chronic exposure to dim LAN can dramatically affect fundamental cellular function and emergent physiology. © 2013 British Society for Neuroendocrinology.

  8. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA.

    PubMed

    Hasegawa, M; Kishino, H; Yano, T

    1985-01-01

    A new statistical method for estimating divergence dates of species from DNA sequence data by a molecular clock approach is developed. This method takes into account effectively the information contained in a set of DNA sequence data. The molecular clock of mitochondrial DNA (mtDNA) was calibrated by setting the date of divergence between primates and ungulates at the Cretaceous-Tertiary boundary (65 million years ago), when the extinction of dinosaurs occurred. A generalized least-squares method was applied in fitting a model to mtDNA sequence data, and the clock gave dates of 92.3 +/- 11.7, 13.3 +/- 1.5, 10.9 +/- 1.2, 3.7 +/- 0.6, and 2.7 +/- 0.6 million years ago (where the second of each pair of numbers is the standard deviation) for the separation of mouse, gibbon, orangutan, gorilla, and chimpanzee, respectively, from the line leading to humans. Although there is some uncertainty in the clock, this dating may pose a problem for the widely believed hypothesis that the pipedal creature Australopithecus afarensis, which lived some 3.7 million years ago at Laetoli in Tanzania and at Hadar in Ethiopia, was ancestral to man and evolved after the human-ape splitting. Another likelier possibility is that mtDNA was transferred through hybridization between a proto-human and a proto-chimpanzee after the former had developed bipedalism.

  9. Complete mitochondrial genome of Porzana fusca and Porzana pusilla and phylogenetic relationship of 16 Rallidae species.

    PubMed

    Chen, Peng; Han, Yuqing; Zhu, Chaoying; Gao, Bin; Ruan, Luzhang

    2017-12-01

    The complete mitochondrial genome sequences of Porzana fusca and Porzana pusilla were determined. The two avian species share a high degree of homology in terms of mitochondrial genome organization and gene arrangement. Their corresponding mitochondrial genomes are 16,935 and 16,978 bp and consist of 37 genes and a control region. Their PCGs were both 11,365 bp long and have similar structure. Their tRNA gene sequences could be folded into canonical cloverleaf secondary structure, except for tRNA Ser (AGY) , which lost its "DHU" arm. Based on the concatenated nucleotide sequences of the complete mitochondrial DNA genes of 16 Rallidae species, reconstruction of phylogenetic trees and analysis of the molecular clock of P. fusca and P. pusilla indicated that these species from a sister group, which in turn are sister group to Rallina eurizonoides. The genus Gallirallus is a sister group to genus Lewinia, and these groups in turn are sister groups to genus Porphyrio. Moreover, molecular clock analyses suggested that the basal divergence of Rallidae could be traced back to 40.47 (41.46‒39.45) million years ago (Mya), and the divergence of Porzana occurred approximately 5.80 (15.16‒0.79) Mya.

  10. Human Germline Mutation and the Erratic Evolutionary Clock

    PubMed Central

    Przeworski, Molly

    2016-01-01

    Our understanding of the chronology of human evolution relies on the “molecular clock” provided by the steady accumulation of substitutions on an evolutionary lineage. Recent analyses of human pedigrees have called this understanding into question by revealing unexpectedly low germline mutation rates, which imply that substitutions accrue more slowly than previously believed. Translating mutation rates estimated from pedigrees into substitution rates is not as straightforward as it may seem, however. We dissect the steps involved, emphasizing that dating evolutionary events requires not “a mutation rate” but a precise characterization of how mutations accumulate in development in males and females—knowledge that remains elusive. PMID:27760127

  11. Low Variation in the Polymorphic Clock Gene Poly-Q Region Despite Population Genetic Structure across Barn Swallow (Hirundo rustica) Populations

    PubMed Central

    Dor, Roi; Lovette, Irby J.; Safran, Rebecca J.; Billerman, Shawn M.; Huber, Gernot H.; Vortman, Yoni; Lotem, Arnon; McGowan, Andrew; Evans, Matthew R.; Cooper, Caren B.; Winkler, David W.

    2011-01-01

    Recent studies of several species have reported a latitudinal cline in the circadian clock gene, Clock, which influences rhythms in both physiology and behavior. Latitudinal variation in this gene may hence reflect local adaptation to seasonal variation. In some bird populations, there is also an among-individual association between Clock poly-Q genotype and clutch initiation date and incubation period. We examined Clock poly-Q allele variation in the Barn Swallow (Hirundo rustica), a species with a cosmopolitan geographic distribution and considerable variation in life-history traits that may be influenced by the circadian clock. We genotyped Barn Swallows from five populations (from three subspecies) and compared variation at the Clock locus to that at microsatellite loci and mitochondrial DNA (mtDNA). We found very low variation in the Clock poly-Q region, as >96% of individuals were homozygous, and the two other alleles at this locus were globally rare. Genetic differentiation based on the Clock poly-Q locus was not correlated with genetic differentiation based on either microsatellite loci or mtDNA sequences. Our results show that high diversity in Clock poly-Q is not general across avian species. The low Clock variation in the background of heterogeneity in microsatellite and mtDNA loci in Barn Swallows may be an outcome of stabilizing selection on the Clock locus. PMID:22216124

  12. Evaluating fossil calibrations for dating phylogenies in light of rates of molecular evolution: a comparison of three approaches.

    PubMed

    Lukoschek, Vimoksalehi; Scott Keogh, J; Avise, John C

    2012-01-01

    Evolutionary and biogeographic studies increasingly rely on calibrated molecular clocks to date key events. Although there has been significant recent progress in development of the techniques used for molecular dating, many issues remain. In particular, controversies abound over the appropriate use and placement of fossils for calibrating molecular clocks. Several methods have been proposed for evaluating candidate fossils; however, few studies have compared the results obtained by different approaches. Moreover, no previous study has incorporated the effects of nucleotide saturation from different data types in the evaluation of candidate fossils. In order to address these issues, we compared three approaches for evaluating fossil calibrations: the single-fossil cross-validation method of Near, Meylan, and Shaffer (2005. Assessing concordance of fossil calibration points in molecular clock studies: an example using turtles. Am. Nat. 165:137-146), the empirical fossil coverage method of Marshall (2008. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. Am. Nat. 171:726-742), and the Bayesian multicalibration method of Sanders and Lee (2007. Evaluating molecular clock calibrations using Bayesian analyses with soft and hard bounds. Biol. Lett. 3:275-279) and explicitly incorporate the effects of data type (nuclear vs. mitochondrial DNA) for identifying the most reliable or congruent fossil calibrations. We used advanced (Caenophidian) snakes as a case study; however, our results are applicable to any taxonomic group with multiple candidate fossils, provided appropriate taxon sampling and sufficient molecular sequence data are available. We found that data type strongly influenced which fossil calibrations were identified as outliers, regardless of which method was used. Despite the use of complex partitioned models of sequence evolution and multiple calibrations throughout the tree, saturation severely compressed basal branch lengths obtained from mitochondrial DNA compared with nuclear DNA. The effects of mitochondrial saturation were not ameliorated by analyzing a combined nuclear and mitochondrial data set. Although removing the third codon positions from the mitochondrial coding regions did not ameliorate saturation effects in the single-fossil cross-validations, it did in the Bayesian multicalibration analyses. Saturation significantly influenced the fossils that were selected as most reliable for all three methods evaluated. Our findings highlight the need to critically evaluate the fossils selected by data with different rates of nucleotide substitution and how data with different evolutionary rates affect the results of each method for evaluating fossils. Our empirical evaluation demonstrates that the advantages of using multiple independent fossil calibrations significantly outweigh any disadvantages.

  13. Vagaries of the molecular clock

    PubMed Central

    Ayala, Francisco J.

    1997-01-01

    The hypothesis of the molecular evolutionary clock asserts that informational macromolecules (i.e., proteins and nucleic acids) evolve at rates that are constant through time and for different lineages. The clock hypothesis has been extremely powerful for determining evolutionary events of the remote past for which the fossil and other evidence is lacking or insufficient. I review the evolution of two genes, Gpdh and Sod. In fruit flies, the encoded glycerol-3-phosphate dehydrogenase (GPDH) protein evolves at a rate of 1.1 × 10−10 amino acid replacements per site per year when Drosophila species are compared that diverged within the last 55 million years (My), but a much faster rate of ≈4.5 × 10−10 replacements per site per year when comparisons are made between mammals (≈70 My) or Dipteran families (≈100 My), animal phyla (≈650 My), or multicellular kingdoms (≈1100 My). The rate of superoxide dismutase (SOD) evolution is very fast between Drosophila species (16.2 × 10−10 replacements per site per year) and remains the same between mammals (17.2) or Dipteran families (15.9), but it becomes much slower between animal phyla (5.3) and still slower between the three kingdoms (3.3). If we assume a molecular clock and use the Drosophila rate for estimating the divergence of remote organisms, GPDH yields estimates of 2,500 My for the divergence between the animal phyla (occurred ≈650 My) and 3,990 My for the divergence of the kingdoms (occurred ≈1,100 My). At the other extreme, SOD yields divergence times of 211 My and 224 My for the animal phyla and the kingdoms, respectively. It remains unsettled how often proteins evolve in such erratic fashion as GPDH and SOD. PMID:9223263

  14. Evolutionary history of freshwater sculpins, genus Cottus (Teleostei; Cottidae) and related taxa, as inferred from mitochondrial DNA phylogeny.

    PubMed

    Yokoyama, Ryota; Goto, Akira

    2005-09-01

    The freshwater sculpins, genus Cottus (Teleostei; Cottidae), comprise bottom-dwelling fishes that exhibit various life-history styles, having radiated throughout Northern Hemisphere freshwater habitats. The phylogenetic relationships among Cottus and related taxa were estimated from mitochondrial DNA 12S rRNA and control region (CR) sequences, the freshwater sculpins examined falling into five lineages (A-E). Lineage A consisted of Trachidermus fasciatus and C. kazika, both having a catadromous life-history. The remaining species (lineages B-E) spawn in freshwater habitats regardless of life-history (amphidromous, lacustrine or fluvial), suggesting that the various life-history types post-dated a common ancestor of lineages B-E. Molecular clock estimates suggested a Pliocene-Pleistocene radiation (or Miocene-Pliocene from the alternative clock) of lineages B-E. In eastern Eurasia, speciation with life-history changes to amphidromous or fluvial styles has apparently occurred independently in some lineages, as a general pattern. Mitochondrial DNA CR phylogeny showed the monophyletic Baikalian cottoids (Cottoidei) to be nested within Cottus and Trachidermus, suggesting that the former ecologically and morphologically divergent cottoids may have originated from a single lineage which invaded the ancient lake.

  15. Molecular clock or erratic evolution? A tale of two genes.

    PubMed Central

    Ayala, F J; Barrio, E; Kwiatowski, J

    1996-01-01

    We have investigated the evolution of glycerol-3-phosphate dehydrogenase (Gpdh). The rate of amino acid replacements is 1 x 10(-10)/site/year when Drosophila species are compared. The rate is 2.7 times greater when Drosophila and Chymomyza species are compared; and about 5 times greater when any of those species are compared with the medfly Ceratitis capitata. This rate of 5 x 10(-10)/site/year is also the rate observed in comparisons between mammals, or between different animal phyla, or between the three multicellular kingdoms. We have also studied the evolution of Cu,Zn superoxide dismutase (Sod). The rate of amino acid replacements is about 17 x 10(-10)/site/year when comparisons are made between dipterans or between mammals, but only 5 x 10(-10) when animal phyla are compared, and only 3 x 10(-10) when the multicellular kingdoms are compared. The apparent decrease by about a factor of 5 in the rate of SOD evolution as the divergence between species increases can be consistent with the molecular clock hypothesis by assuming the covarion hypothesis (namely, that the number of amino acids that can change is constant, but the set of such amino acids changes from time to time and from lineage to lineage). However, we know of no model consistent with the molecular clock hypothesis that would account for the increase in the rate of GPDH evolution as the divergence between species increases. Images Fig. 2 Fig. 5 PMID:8876205

  16. The influence of body size and net diversification rate on molecular evolution during the radiation of animal phyla

    PubMed Central

    Fontanillas, Eric; Welch, John J; Thomas, Jessica A; Bromham, Lindell

    2007-01-01

    Background Molecular clock dates, which place the origin of animal phyla deep in the Precambrian, have been used to reject the hypothesis of a rapid evolutionary radiation of animal phyla supported by the fossil record. One possible explanation of the discrepancy is the potential for fast substitution rates early in the metazoan radiation. However, concerted rate variation, occurring simultaneously in multiple lineages, cannot be detected by "clock tests", and so another way to explore such variation is to look for correlated changes between rates and other biological factors. Here we investigate two possible causes of fast early rates: change in average body size or diversification rate of deep metazoan lineages. Results For nine genes for phylogenetically independent comparisons between 50 metazoan phyla, orders, and classes, we find a significant correlation between average body size and rate of molecular evolution of mitochondrial genes. The data also indicate that diversification rate may have a positive effect on rates of mitochondrial molecular evolution. Conclusion If average body sizes were significantly smaller in the early history of the Metazoa, and if rates of diversification were much higher, then it is possible that mitochondrial genes have undergone a slow-down in evolutionary rate, which could affect date estimates made from these genes. PMID:17592650

  17. Synchronization by Food Access Modifies the Daily Variations in Expression and Activity of Liver GABA Transaminase

    PubMed Central

    De Ita-Pérez, Dalia; Vázquez-Martínez, Olivia; Villalobos-Leal, Mónica

    2014-01-01

    Daytime restricted feeding (DRF) is an experimental protocol that influences the circadian timing system and underlies the expression of a biological clock known as the food entrained oscillator (FEO). Liver is the organ that reacts most rapidly to food restriction by adjusting the functional relationship between the molecular circadian clock and the metabolic networks. γ-Aminobutyric acid (GABA) is a signaling molecule in the liver, and able to modulate the cell cycle and apoptosis. This study was aimed at characterizing the expression and activity of the mostly mitochondrial enzyme GABA transaminase (GABA-T) during DRF/FEO expression. We found that DRF promotes a sustained increase of GABA-T in the liver homogenate and mitochondrial fraction throughout the entire day-night cycle. The higher amount of GABA-T promoted by DRF was not associated to changes in GABA-T mRNA or GABA-T activity. The GABA-T activity in the mitochondrial fraction even tended to decrease during the light period. We concluded that DRF influences the daily variations of GABA-T mRNA levels, stability, and catalytic activity of GABA-T. These data suggest that the liver GABAergic system responds to a metabolic challenge such as DRF and the concomitant appearance of the FEO. PMID:24809054

  18. Synchronization by food access modifies the daily variations in expression and activity of liver GABA transaminase.

    PubMed

    De Ita-Pérez, Dalia; Méndez, Isabel; Vázquez-Martínez, Olivia; Villalobos-Leal, Mónica; Díaz-Muñoz, Mauricio

    2014-01-01

    Daytime restricted feeding (DRF) is an experimental protocol that influences the circadian timing system and underlies the expression of a biological clock known as the food entrained oscillator (FEO). Liver is the organ that reacts most rapidly to food restriction by adjusting the functional relationship between the molecular circadian clock and the metabolic networks. γ-Aminobutyric acid (GABA) is a signaling molecule in the liver, and able to modulate the cell cycle and apoptosis. This study was aimed at characterizing the expression and activity of the mostly mitochondrial enzyme GABA transaminase (GABA-T) during DRF/FEO expression. We found that DRF promotes a sustained increase of GABA-T in the liver homogenate and mitochondrial fraction throughout the entire day-night cycle. The higher amount of GABA-T promoted by DRF was not associated to changes in GABA-T mRNA or GABA-T activity. The GABA-T activity in the mitochondrial fraction even tended to decrease during the light period. We concluded that DRF influences the daily variations of GABA-T mRNA levels, stability, and catalytic activity of GABA-T. These data suggest that the liver GABAergic system responds to a metabolic challenge such as DRF and the concomitant appearance of the FEO.

  19. Evolutionary rates of mitochondrial genomes correspond to diversification rates and to contemporary species richness in birds and reptiles

    PubMed Central

    Eo, Soo Hyung; DeWoody, J. Andrew

    2010-01-01

    Rates of biological diversification should ultimately correspond to rates of genome evolution. Recent studies have compared diversification rates with phylogenetic branch lengths, but incomplete phylogenies hamper such analyses for many taxa. Herein, we use pairwise comparisons of confamilial sauropsid (bird and reptile) mitochondrial DNA (mtDNA) genome sequences to estimate substitution rates. These molecular evolutionary rates are considered in light of the age and species richness of each taxonomic family, using a random-walk speciation–extinction process to estimate rates of diversification. We find the molecular clock ticks at disparate rates in different families and at different genes. For example, evolutionary rates are relatively fast in snakes and lizards, intermediate in crocodilians and slow in turtles and birds. There was also rate variation across genes, where non-synonymous substitution rates were fastest at ATP8 and slowest at CO3. Family-by-gene interactions were significant, indicating that local clocks vary substantially among sauropsids. Most importantly, we find evidence that mitochondrial genome evolutionary rates are positively correlated with speciation rates and with contemporary species richness. Nuclear sequences are poorly represented among reptiles, but the correlation between rates of molecular evolution and species diversification also extends to 18 avian nuclear genes we tested. Thus, the nuclear data buttress our mtDNA findings. PMID:20610427

  20. Time-lapse cinematography study of the germinal vesicle behaviour in mouse primary oocytes treated with activators of protein kinases A and C.

    PubMed

    Alexandre, H; Mulnard, J

    1988-12-01

    A passive erratic movement of the germinal vesicle (GV), already visible in small incompetent oocytes, is followed by an active scalloping of the nuclear membrane soon before GV breakdown (GVBD) in cultured competent oocytes. Maturation can be inhibited by activators of protein kinase A (PK-A) and protein kinase C (PK-C). Our time-lapse cinematography analysis allowed us to describe an unexpected behaviour of the GV when PK-C, but not PK-A, is activated: GV undergoes a displacement toward the cortex according to the same biological clock which triggers the programmed translocation of the spindle in control oocytes. It is concluded that, when oocytes become committed to undergo maturation, the cytoplasm acquires a PK-A-controlled "centrifugal displacement property" which is not restricted to the spindle.

  1. A sense of time: how molecular clocks organize metabolism.

    PubMed

    Kohsaka, Akira; Bass, Joseph

    2007-01-01

    The discovery of an internal temporal clockwork that coordinates behavior and metabolism according to the rising and setting of the sun was first revealed in flies and plants. However, in the past decade, a molecular transcription-translation feedback loop with similar properties has also been identified in mammals. In mammals, this transcriptional oscillator programs 24-hour cycles in sleep, activity and feeding within the master pacemaker neurons of the suprachiasmatic nucleus of the hypothalamus. More recent studies have shown that the core transcription mechanism is also present in other locations within the brain, in addition to many peripheral tissues. Processes ranging from glucose transport to gluconeogenesis, lipolysis, adipogenesis and mitochondrial oxidative phosphorylation are controlled through overlapping transcription networks that are tied to the clock and are thus time sensitive. Because disruption of tissue timing occurs when food intake, activity and sleep are altered, understanding how these many tissue clocks are synchronized to tick at the same time each day, and determining how each tissue 'senses time' set by these molecular clocks might open new insight into human disease, including disorders of sleep, circadian disruption, diabetes and obesity.

  2. Genetic variation and demographic history of the Haplochromis laparogramma group of Lake Victoria-An analysis based on SINEs and mitochondrial DNA.

    PubMed

    Mzighani, Semvua I; Nikaido, Masato; Takeda, Miyuki; Seehausen, Ole; Budeba, Yohana L; Ngatunga, Benjamin P; Katunzi, Egid F B; Aibara, Mitsuto; Mizoiri, Shinji; Sato, Tetsu; Tachida, Hidenori; Okada, Norihiro

    2010-01-15

    More than 500 endemic haplochromine cichlid species inhabit Lake Victoria. This striking species diversity is a classical example of recent explosive adaptive radiation thought to have happened within the last approximately 15,000 years. In this study, we examined the population structure and historical demography of 3 pelagic haplochromine cichlid species that resemble in morphology and have similar niche, Haplochromis (Yssichromis) laparogramma, Haplochromis (Y.) pyrrhocephalus, and Haplochromis (Y.) sp. "glaucocephalus". We investigated the sequences of the mitochondrial DNA control region and the insertion patterns of short interspersed elements (SINEs) of 759 individuals. We show that sympatric forms are genetically differentiated in 4 of 6 cases, but we also found apparent weakening of the genetic differentiation in areas with turbid water. We estimated the timings of population expansion and species divergence to coincide with the refilling of the lake at the Pleistocene/Holocene boundary. We also found that estimates can be altered significantly by the choice of the shape of the molecular clock. If we employ the nonlinear clock model of evolutionary rates in which the rates are higher towards the recent, the population expansion was dated at around the event of desiccation of the lake ca. 17,000 YBP. Thus, we succeeded in clarifying the species and population structure of closely related Lake Victoria cichlids and in showing the importance of applying appropriate clock calibrations in elucidating recent evolutionary events.

  3. Population histories of right whales (Cetacea: Eubalaena) inferred from mitochondrial sequence diversities and divergences of their whale lice (Amphipoda: Cyamus).

    PubMed

    Kaliszewska, Zofia A; Seger, Jon; Rowntree, Victoria J; Barco, Susan G; Benegas, Rafael; Best, Peter B; Brown, Moira W; Brownell, Robert L; Carribero, Alejandro; Harcourt, Robert; Knowlton, Amy R; Marshall-Tilas, Kim; Patenaude, Nathalie J; Rivarola, Mariana; Schaeff, Catherine M; Sironi, Mariano; Smith, Wendy A; Yamada, Tadasu K

    2005-10-01

    Right whales carry large populations of three 'whale lice' (Cyamus ovalis, Cyamus gracilis, Cyamus erraticus) that have no other hosts. We used sequence variation in the mitochondrial COI gene to ask (i) whether cyamid population structures might reveal associations among right whale individuals and subpopulations, (ii) whether the divergences of the three nominally conspecific cyamid species on North Atlantic, North Pacific, and southern right whales (Eubalaena glacialis, Eubalaena japonica, Eubalaena australis) might indicate their times of separation, and (iii) whether the shapes of cyamid gene trees might contain information about changes in the population sizes of right whales. We found high levels of nucleotide diversity but almost no population structure within oceans, indicating large effective population sizes and high rates of transfer between whales and subpopulations. North Atlantic and Southern Ocean populations of all three species are reciprocally monophyletic, and North Pacific C. erraticus is well separated from North Atlantic and southern C. erraticus. Mitochondrial clock calibrations suggest that these divergences occurred around 6 million years ago (Ma), and that the Eubalaena mitochondrial clock is very slow. North Pacific C. ovalis forms a clade inside the southern C. ovalis gene tree, implying that at least one right whale has crossed the equator in the Pacific Ocean within the last 1-2 million years (Myr). Low-frequency polymorphisms are more common than expected under neutrality for populations of constant size, but there is no obvious signal of rapid, interspecifically congruent expansion of the kind that would be expected if North Atlantic or southern right whales had experienced a prolonged population bottleneck within the last 0.5 Myr.

  4. Mitochondrial genomes of praying mantises (Dictyoptera, Mantodea): rearrangement, duplication, and reassignment of tRNA genes.

    PubMed

    Ye, Fei; Lan, Xu-E; Zhu, Wen-Bo; You, Ping

    2016-05-09

    Insect mitochondrial genomes (mitogenomes) contain a conserved set of 37 genes for an extensive diversity of lineages. Previously reported dictyopteran mitogenomes share this conserved mitochondrial gene arrangement, although surprisingly little is known about the mitogenome of Mantodea. We sequenced eight mantodean mitogenomes including the first representatives of two families: Hymenopodidae and Liturgusidae. Only two of these genomes retain the typical insect gene arrangement. In three Liturgusidae species, the trnM genes have translocated. Four species of mantis (Creobroter gemmata, Mantis religiosa, Statilia sp., and Theopompa sp.-HN) have multiple identical tandem duplication of trnR, and Statilia sp. additionally includes five extra duplicate trnW. These extra trnR and trnW in Statilia sp. are erratically arranged and form another novel gene order. Interestingly, the extra trnW is converted from trnR by the process of point mutation at anticodon, which is the first case of tRNA reassignment for an insect. Furthermore, no significant differences were observed amongst mantodean mitogenomes with variable copies of tRNA according to comparative analysis of codon usage. Combined with phylogenetic analysis, the characteristics of tRNA only possess limited phylogenetic information in this research. Nevertheless, these features of gene rearrangement, duplication, and reassignment provide valuable information toward understanding mitogenome evolution in insects.

  5. Mitochondrial genomes of praying mantises (Dictyoptera, Mantodea): rearrangement, duplication, and reassignment of tRNA genes

    PubMed Central

    Ye, Fei; Lan, Xu-e; Zhu, Wen-bo; You, Ping

    2016-01-01

    Insect mitochondrial genomes (mitogenomes) contain a conserved set of 37 genes for an extensive diversity of lineages. Previously reported dictyopteran mitogenomes share this conserved mitochondrial gene arrangement, although surprisingly little is known about the mitogenome of Mantodea. We sequenced eight mantodean mitogenomes including the first representatives of two families: Hymenopodidae and Liturgusidae. Only two of these genomes retain the typical insect gene arrangement. In three Liturgusidae species, the trnM genes have translocated. Four species of mantis (Creobroter gemmata, Mantis religiosa, Statilia sp., and Theopompa sp.-HN) have multiple identical tandem duplication of trnR, and Statilia sp. additionally includes five extra duplicate trnW. These extra trnR and trnW in Statilia sp. are erratically arranged and form another novel gene order. Interestingly, the extra trnW is converted from trnR by the process of point mutation at anticodon, which is the first case of tRNA reassignment for an insect. Furthermore, no significant differences were observed amongst mantodean mitogenomes with variable copies of tRNA according to comparative analysis of codon usage. Combined with phylogenetic analysis, the characteristics of tRNA only possess limited phylogenetic information in this research. Nevertheless, these features of gene rearrangement, duplication, and reassignment provide valuable information toward understanding mitogenome evolution in insects. PMID:27157299

  6. Yeast mother cell-specific ageing, genetic (in)stability, and the somatic mutation theory of ageing.

    PubMed

    Laun, Peter; Bruschi, Carlo V; Dickinson, J Richard; Rinnerthaler, Mark; Heeren, Gino; Schwimbersky, Richard; Rid, Raphaela; Breitenbach, Michael

    2007-01-01

    Yeast mother cell-specific ageing is characterized by a limited capacity to produce daughter cells. The replicative lifespan is determined by the number of cell cycles a mother cell has undergone, not by calendar time, and in a population of cells its distribution follows the Gompertz law. Daughter cells reset their clock to zero and enjoy the full lifespan characteristic for the strain. This kind of replicative ageing of a cell population based on asymmetric cell divisions is investigated as a model for the ageing of a stem cell population in higher organisms. The simple fact that the daughter cells can reset their clock to zero precludes the accumulation of chromosomal mutations as the cause of ageing, because semiconservative replication would lead to the same mutations in the daughters. However, nature is more complicated than that because, (i) the very last daughters of old mothers do not reset the clock; and (ii) mutations in mitochondrial DNA could play a role in ageing due to the large copy number in the cell and a possible asymmetric distribution of damaged mitochondrial DNA between mother and daughter cell. Investigation of the loss of heterozygosity in diploid cells at the end of their mother cell-specific lifespan has shown that genomic rearrangements do occur in old mother cells. However, it is not clear if this kind of genomic instability is causative for the ageing process. Damaged material other than DNA, for instance misfolded, oxidized or otherwise damaged proteins, seem to play a major role in ageing, depending on the balance between production and removal through various repair processes, for instance several kinds of proteolysis and autophagy. We are reviewing here the evidence for genetic change and its causality in the mother cell-specific ageing process of yeast.

  7. Yeast mother cell-specific ageing, genetic (in)stability, and the somatic mutation theory of ageing

    PubMed Central

    Laun, Peter; Bruschi, Carlo V.; Dickinson, J. Richard; Rinnerthaler, Mark; Heeren, Gino; Schwimbersky, Richard; Rid, Raphaela; Breitenbach, Michael

    2007-01-01

    Yeast mother cell-specific ageing is characterized by a limited capacity to produce daughter cells. The replicative lifespan is determined by the number of cell cycles a mother cell has undergone, not by calendar time, and in a population of cells its distribution follows the Gompertz law. Daughter cells reset their clock to zero and enjoy the full lifespan characteristic for the strain. This kind of replicative ageing of a cell population based on asymmetric cell divisions is investigated as a model for the ageing of a stem cell population in higher organisms. The simple fact that the daughter cells can reset their clock to zero precludes the accumulation of chromosomal mutations as the cause of ageing, because semiconservative replication would lead to the same mutations in the daughters. However, nature is more complicated than that because, (i) the very last daughters of old mothers do not reset the clock; and (ii) mutations in mitochondrial DNA could play a role in ageing due to the large copy number in the cell and a possible asymmetric distribution of damaged mitochondrial DNA between mother and daughter cell. Investigation of the loss of heterozygosity in diploid cells at the end of their mother cell-specific lifespan has shown that genomic rearrangements do occur in old mother cells. However, it is not clear if this kind of genomic instability is causative for the ageing process. Damaged material other than DNA, for instance misfolded, oxidized or otherwise damaged proteins, seem to play a major role in ageing, depending on the balance between production and removal through various repair processes, for instance several kinds of proteolysis and autophagy. We are reviewing here the evidence for genetic change and its causality in the mother cell-specific ageing process of yeast. PMID:17986449

  8. The evolutionary history of termites as inferred from 66 mitochondrial genomes.

    PubMed

    Bourguignon, Thomas; Lo, Nathan; Cameron, Stephen L; Šobotník, Jan; Hayashi, Yoshinobu; Shigenobu, Shuji; Watanabe, Dai; Roisin, Yves; Miura, Toru; Evans, Theodore A

    2015-02-01

    Termites have colonized many habitats and are among the most abundant animals in tropical ecosystems, which they modify considerably through their actions. The timing of their rise in abundance and of the dispersal events that gave rise to modern termite lineages is not well understood. To shed light on termite origins and diversification, we sequenced the mitochondrial genome of 48 termite species and combined them with 18 previously sequenced termite mitochondrial genomes for phylogenetic and molecular clock analyses using multiple fossil calibrations. The 66 genomes represent most major clades of termites. Unlike previous phylogenetic studies based on fewer molecular data, our phylogenetic tree is fully resolved for the lower termites. The phylogenetic positions of Macrotermitinae and Apicotermitinae are also resolved as the basal groups in the higher termites, but in the crown termitid groups, including Termitinae + Syntermitinae + Nasutitermitinae + Cubitermitinae, the position of some nodes remains uncertain. Our molecular clock tree indicates that the lineages leading to termites and Cryptocercus roaches diverged 170 Ma (153-196 Ma 95% confidence interval [CI]), that modern Termitidae arose 54 Ma (46-66 Ma 95% CI), and that the crown termitid group arose 40 Ma (35-49 Ma 95% CI). This indicates that the distribution of basal termite clades was influenced by the final stages of the breakup of Pangaea. Our inference of ancestral geographic ranges shows that the Termitidae, which includes more than 75% of extant termite species, most likely originated in Africa or Asia, and acquired their pantropical distribution after a series of dispersal and subsequent diversification events. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. The Circadian Clock Modulates Global Daily Cycles of mRNA Ribosome Loading[OPEN

    PubMed Central

    Missra, Anamika; Ernest, Ben; Jia, Qidong; Ke, Kenneth

    2015-01-01

    Circadian control of gene expression is well characterized at the transcriptional level, but little is known about diel or circadian control of translation. Genome-wide translation state profiling of mRNAs in Arabidopsis thaliana seedlings grown in long day was performed to estimate ribosome loading per mRNA. The experiments revealed extensive translational regulation of key biological processes. Notably, translation of mRNAs for ribosomal proteins and mitochondrial respiration peaked at night. Central clock mRNAs are among those subject to fluctuations in ribosome loading. There was no consistent phase relationship between peak translation states and peak transcript levels. The overlay of distinct transcriptional and translational cycles can be expected to alter the waveform of the protein synthesis rate. Plants that constitutively overexpress the clock gene CCA1 showed phase shifts in peak translation, with a 6-h delay from midnight to dawn or from noon to evening being particularly common. Moreover, cycles of ribosome loading that were detected under continuous light in the wild type collapsed in the CCA1 overexpressor. Finally, at the transcript level, the CCA1-ox strain adopted a global pattern of transcript abundance that was broadly correlated with the light-dark environment. Altogether, these data demonstrate that gene-specific diel cycles of ribosome loading are controlled in part by the circadian clock. PMID:26392078

  10. The mitochondrial genome of Elodia flavipalpis Aldrich (Diptera: Tachinidae) and the evolutionary timescale of Tachinid flies.

    PubMed

    Zhao, Zhe; Su, Tian-Juan; Chesters, Douglas; Wang, Shi-di; Ho, Simon Y W; Zhu, Chao-Dong; Chen, Xiao-Lin; Zhang, Chun-Tian

    2013-01-01

    Tachinid flies are natural enemies of many lepidopteran and coleopteran pests of forests, crops, and fruit trees. In order to address the lack of genetic data in this economically important group, we sequenced the complete mitochondrial genome of the Palaearctic tachinid fly Elodia flavipalpis Aldrich, 1933. Usually found in Northern China and Japan, this species is one of the primary natural enemies of the leaf-roller moths (Tortricidae), which are major pests of various fruit trees. The 14,932-bp mitochondrial genome was typical of Diptera, with 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes. However, its control region is only 105 bp in length, which is the shortest found so far in flies. In order to estimate dipteran evolutionary relationships, we conducted a phylogenetic analysis of 58 mitochondrial genomes from 23 families. Maximum-likelihood and Bayesian methods supported the monophyly of both Tachinidae and superfamily Oestroidea. Within the subsection Calyptratae, Muscidae was inferred as the sister group to Oestroidea. Within Oestroidea, Calliphoridae and Sarcophagidae formed a sister clade to Oestridae and Tachinidae. Using a Bayesian relaxed clock calibrated with fossil data, we estimated that Tachinidae originated in the middle Eocene.

  11. The Mitochondrial Genome of Elodia flavipalpis Aldrich (Diptera: Tachinidae) and the Evolutionary Timescale of Tachinid Flies

    PubMed Central

    Zhao, Zhe; Su, Tian-juan; Chesters, Douglas; Wang, Shi-di; Ho, Simon Y. W.; Zhu, Chao-dong; Chen, Xiao-lin; Zhang, Chun-tian

    2013-01-01

    Tachinid flies are natural enemies of many lepidopteran and coleopteran pests of forests, crops, and fruit trees. In order to address the lack of genetic data in this economically important group, we sequenced the complete mitochondrial genome of the Palaearctic tachinid fly Elodia flavipalpis Aldrich, 1933. Usually found in Northern China and Japan, this species is one of the primary natural enemies of the leaf-roller moths (Tortricidae), which are major pests of various fruit trees. The 14,932-bp mitochondrial genome was typical of Diptera, with 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes. However, its control region is only 105 bp in length, which is the shortest found so far in flies. In order to estimate dipteran evolutionary relationships, we conducted a phylogenetic analysis of 58 mitochondrial genomes from 23 families. Maximum-likelihood and Bayesian methods supported the monophyly of both Tachinidae and superfamily Oestroidea. Within the subsection Calyptratae, Muscidae was inferred as the sister group to Oestroidea. Within Oestroidea, Calliphoridae and Sarcophagidae formed a sister clade to Oestridae and Tachinidae. Using a Bayesian relaxed clock calibrated with fossil data, we estimated that Tachinidae originated in the middle Eocene. PMID:23626734

  12. Molecular systematics and global phylogeography of angel sharks (genus Squatina).

    PubMed

    Stelbrink, Björn; von Rintelen, Thomas; Cliff, Geremy; Kriwet, Jürgen

    2010-02-01

    Angel sharks of the genus Squatina represent a group comprising 22 extant benthic species inhabiting continental shelves and upper slopes. In the present study, a comprehensive phylogenetic reconstruction of 17 Squatina species based on two mitochondrial markers (COI and 16S rRNA) is provided. The phylogenetic reconstructions are used to test biogeographic patterns. In addition, a molecular clock analysis is conducted to estimate divergence times of the emerged clades. All analyses show Squatina to be monophyletic. Four geographic clades are recognized, of which the Europe-North Africa-Asia clade is probably a result of the Tethys Sea closure. A second sister group relationship emerged in the analyses, including S. californica (eastern North Pacific) and S. dumeril (western North Atlantic), probably related to the rise of the Panamanian isthmus. The molecular clock analysis show that both lineage divergences coincide with the estimated time of these two geological events. Copyright (c) 2009. Published by Elsevier Inc.

  13. Metabolic molecular markers of the tidal clock in the marine crustacean Eurydice pulchra

    PubMed Central

    O’Neill, John Stuart; Lee, Kate D.; Zhang, Lin; Feeney, Kevin; Webster, Simon George; Blades, Matthew James; Kyriacou, Charalambos Panayiotis; Hastings, Michael Harvey; Wilcockson, David Charles

    2015-01-01

    Summary In contrast to the well mapped molecular orchestration of circadian timekeeping in terrestrial organisms, the mechanisms that direct tidal and lunar rhythms in marine species are entirely unknown. Using a combination of biochemical and molecular approaches we have identified a series of metabolic markers of the tidal clock of the intertidal isopod Eurydice pulchra. Specifically, we show that the overoxidation of peroxiredoxin (PRX), a conserved marker of circadian timekeeping in terrestrial eukaryotes [1], follows a circatidal (approximately 12.4 hours) pattern in E. pulchra, in register with the tidal pattern of swimming. In parallel, we show that mitochondrially encoded genes are expressed with a circatidal rhythm. Together, these findings demonstrate that PRX overoxidation rhythms are not intrinsically circadian; rather they appear to resonate with the dominant metabolic cycle of an organism, regardless of its frequency. Moreover, they provide the first molecular leads for dissecting the tidal clockwork. PMID:25898100

  14. Erratic Continental Rocks on Volcanic Seamounts off California and Oregon

    NASA Astrophysics Data System (ADS)

    Paduan, J. B.; Clague, D. A.; Davis, A. S.

    2006-12-01

    The seamounts off the California continental margin, and those well offshore of California and Oregon that formed near mid-ocean ridges, are all constructed of basaltic lava flows and volcanic breccias and sandstones. However, explorations of these seamounts using dredges, and more recently, the remotely operated vehicle Tiburon, frequently recover rocks of a wide assortment of continental lithologies including gabbro, granodiorite, silicic volcanics, limestone, dolomite, and metamorphic rocks. These rocks are often rounded like river and beach cobbles, and the softer rocks are bored as by worms or bivalves. They are covered with manganese oxide crusts of thicknesses that range from a patina to several cm, approaching the thickness on the in-situ basaltic rocks. These rocks are often easier to collect than the basalts. We recognize these rocks to be erratics of continental origin. Erratics have been documented as being transported by icebergs at higher latitudes, but this mechanism is unlikely to be responsible for the erratics we have found as far south as 31.9° N. Three brief papers published by K.O. Emery from 1941 to 1954 proposed that such erratics found in many thick sections of fine-grained sedimentary sequences such as the Monterey Formation, were transported long distances by kelp holdfasts, tree roots, or in the guts of pinnipeds. We propose that these vectors also transport erratics to seamounts, where they have been accumulating since the seamounts formed millions of years ago. Those seamounts that were once islands would have intercepted even more erratics along their shorelines while they stood above sea level. We have recovered or observed such erratics on the Vance Seamounts; Gumdrop, Pioneer, Guide, Davidson, Rodriguez, San Juan, Little Joe, and San Marcos Seamounts; on the muddy bottom of Monterey Bay; and on Northeast Bank and along the Patton Escarpment at the western edge of the California Borderland. These locations are as far as 250 nautical miles from shore and extend along the entire west coast of the continental United States. Studies that fail to recognize the presence of erratics, even at temperate latitudes, may result in unrealistically complex interpretations of the regional geology

  15. Nephron-Specific Deletion of Circadian Clock Gene Bmal1 Alters the Plasma and Renal Metabolome and Impairs Drug Disposition.

    PubMed

    Nikolaeva, Svetlana; Ansermet, Camille; Centeno, Gabriel; Pradervand, Sylvain; Bize, Vincent; Mordasini, David; Henry, Hugues; Koesters, Robert; Maillard, Marc; Bonny, Olivier; Tokonami, Natsuko; Firsov, Dmitri

    2016-10-01

    The circadian clock controls a wide variety of metabolic and homeostatic processes in a number of tissues, including the kidney. However, the role of the renal circadian clocks remains largely unknown. To address this question, we performed a combined functional, transcriptomic, and metabolomic analysis in mice with inducible conditional knockout (cKO) of BMAL1, which is critically involved in the circadian clock system, in renal tubular cells (Bmal1 lox/lox /Pax8-rtTA/LC1 mice). Induction of cKO in adult mice did not produce obvious abnormalities in renal sodium, potassium, or water handling. Deep sequencing of the renal transcriptome revealed significant changes in the expression of genes related to metabolic pathways and organic anion transport in cKO mice compared with control littermates. Furthermore, kidneys from cKO mice exhibited a significant decrease in the NAD + -to-NADH ratio, which reflects the oxidative phosphorylation-to-glycolysis ratio and/or the status of mitochondrial function. Metabolome profiling showed significant changes in plasma levels of amino acids, biogenic amines, acylcarnitines, and lipids. In-depth analysis of two selected pathways revealed a significant increase in plasma urea level correlating with increased renal Arginase II activity, hyperargininemia, and increased kidney arginine content as well as a significant increase in plasma creatinine concentration and a reduced capacity of the kidney to secrete anionic drugs (furosemide) paralleled by an approximate 80% decrease in the expression level of organic anion transporter 3 (SLC22a8). Collectively, these results indicate that the renal circadian clocks control a variety of metabolic/homeostatic processes at the intrarenal and systemic levels and are involved in drug disposition. Copyright © 2016 by the American Society of Nephrology.

  16. Relaxed clocks and inferences of heterogeneous patterns of nucleotide substitution and divergence time estimates across whales and dolphins (Mammalia: Cetacea).

    PubMed

    Dornburg, Alex; Brandley, Matthew C; McGowen, Michael R; Near, Thomas J

    2012-02-01

    Various nucleotide substitution models have been developed to accommodate among lineage rate heterogeneity, thereby relaxing the assumptions of the strict molecular clock. Recently developed "uncorrelated relaxed clock" and "random local clock" (RLC) models allow decoupling of nucleotide substitution rates between descendant lineages and are thus predicted to perform better in the presence of lineage-specific rate heterogeneity. However, it is uncertain how these models perform in the presence of punctuated shifts in substitution rate, especially between closely related clades. Using cetaceans (whales and dolphins) as a case study, we test the performance of these two substitution models in estimating both molecular rates and divergence times in the presence of substantial lineage-specific rate heterogeneity. Our RLC analyses of whole mitochondrial genome alignments find evidence for up to ten clade-specific nucleotide substitution rate shifts in cetaceans. We provide evidence that in the uncorrelated relaxed clock framework, a punctuated shift in the rate of molecular evolution within a subclade results in posterior rate estimates that are either misled or intermediate between the disparate rate classes present in baleen and toothed whales. Using simulations, we demonstrate abrupt changes in rate isolated to one or a few lineages in the phylogeny can mislead rate and age estimation, even when the node of interest is calibrated. We further demonstrate how increasing prior age uncertainty can bias rate and age estimates, even while the 95% highest posterior density around age estimates decreases; in other words, increased precision for an inaccurate estimate. We interpret the use of external calibrations in divergence time studies in light of these results, suggesting that rate shifts at deep time scales may mislead inferences of absolute molecular rates and ages.

  17. Land-Bridge Calibration of Molecular Clocks and the Post-Glacial Colonization of Scandinavia by the Eurasian Field Vole Microtus agrestis

    PubMed Central

    Herman, Jeremy S.; McDevitt, Allan D.; Kawałko, Agata; Jaarola, Maarit; Wójcik, Jan M.; Searle, Jeremy B.

    2014-01-01

    Phylogeography interprets molecular genetic variation in a spatial and temporal context. Molecular clocks are frequently used to calibrate phylogeographic analyses, however there is mounting evidence that molecular rates decay over the relevant timescales. It is therefore essential that an appropriate rate is determined, consistent with the temporal scale of the specific analysis. This can be achieved by using temporally spaced data such as ancient DNA or by relating the divergence of lineages directly to contemporaneous external events of known time. Here we calibrate a Eurasian field vole (Microtus agrestis) mitochondrial genealogy from the well-established series of post-glacial geophysical changes that led to the formation of the Baltic Sea and the separation of the Scandinavian peninsula from the central European mainland. The field vole exhibits the common phylogeographic pattern of Scandinavian colonization from both the north and the south, however the southernmost of the two relevant lineages appears to have originated in situ on the Scandinavian peninsula, or possibly in the adjacent island of Zealand, around the close of the Younger Dryas. The mitochondrial substitution rate and the timescale for the genealogy are closely consistent with those obtained with a previous calibration, based on the separation of the British Isles from mainland Europe. However the result here is arguably more certain, given the level of confidence that can be placed in one of the central assumptions of the calibration, that field voles could not survive the last glaciation of the southern part of the Scandinavian peninsula. Furthermore, the similarity between the molecular clock rate estimated here and those obtained by sampling heterochronous (ancient) DNA (including that of a congeneric species) suggest that there is little disparity between the measured genetic divergence and the population divergence that is implicit in our land-bridge calibration. PMID:25111840

  18. Estimation of primate speciation dates using local molecular clocks.

    PubMed

    Yoder, A D; Yang, Z

    2000-07-01

    Protein-coding genes of the mitochondrial genomes from 31 mammalian species were analyzed to estimate the speciation dates within primates and also between rats and mice. Three calibration points were used based on paleontological data: one at 20-25 MYA for the hominoid/cercopithecoid divergence, one at 53-57 MYA for the cetacean/artiodactyl divergence, and the third at 110-130 MYA for the metatherian/eutherian divergence. Both the nucleotide and the amino acid sequences were analyzed, producing conflicting results. The global molecular clock was clearly violated for both the nucleotide and the amino acid data. Models of local clocks were implemented using maximum likelihood, allowing different evolutionary rates for some lineages while assuming rate constancy in others. Surprisingly, the highly divergent third codon positions appeared to contain phylogenetic information and produced more sensible estimates of primate divergence dates than did the amino acid sequences. Estimated dates varied considerably depending on the data type, the calibration point, and the substitution model but differed little among the four tree topologies used. We conclude that the calibration derived from the primate fossil record is too recent to be reliable; we also point out a number of problems in date estimation when the molecular clock does not hold. Despite these obstacles, we derived estimates of primate divergence dates that were well supported by the data and were generally consistent with the paleontological record. Estimation of the mouse-rat divergence date, however, was problematic.

  19. Signal-Preserving Erratic Noise Attenuation via Iterative Robust Sparsity-Promoting Filter

    DOE PAGES

    Zhao, Qiang; Du, Qizhen; Gong, Xufei; ...

    2018-04-06

    Sparse domain thresholding filters operating in a sparse domain are highly effective in removing Gaussian random noise under Gaussian distribution assumption. Erratic noise, which designates non-Gaussian noise that consists of large isolated events with known or unknown distribution, also needs to be explicitly taken into account. However, conventional sparse domain thresholding filters based on the least-squares (LS) criterion are severely sensitive to data with high-amplitude and non-Gaussian noise, i.e., the erratic noise, which makes the suppression of this type of noise extremely challenging. Here, in this paper, we present a robust sparsity-promoting denoising model, in which the LS criterion ismore » replaced by the Huber criterion to weaken the effects of erratic noise. The random and erratic noise is distinguished by using a data-adaptive parameter in the presented method, where random noise is described by mean square, while the erratic noise is downweighted through a damped weight. Different from conventional sparse domain thresholding filters, definition of the misfit between noisy data and recovered signal via the Huber criterion results in a nonlinear optimization problem. With the help of theoretical pseudoseismic data, an iterative robust sparsity-promoting filter is proposed to transform the nonlinear optimization problem into a linear LS problem through an iterative procedure. The main advantage of this transformation is that the nonlinear denoising filter can be solved by conventional LS solvers. Lastly, tests with several data sets demonstrate that the proposed denoising filter can successfully attenuate the erratic noise without damaging useful signal when compared with conventional denoising approaches based on the LS criterion.« less

  20. Signal-Preserving Erratic Noise Attenuation via Iterative Robust Sparsity-Promoting Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Qiang; Du, Qizhen; Gong, Xufei

    Sparse domain thresholding filters operating in a sparse domain are highly effective in removing Gaussian random noise under Gaussian distribution assumption. Erratic noise, which designates non-Gaussian noise that consists of large isolated events with known or unknown distribution, also needs to be explicitly taken into account. However, conventional sparse domain thresholding filters based on the least-squares (LS) criterion are severely sensitive to data with high-amplitude and non-Gaussian noise, i.e., the erratic noise, which makes the suppression of this type of noise extremely challenging. Here, in this paper, we present a robust sparsity-promoting denoising model, in which the LS criterion ismore » replaced by the Huber criterion to weaken the effects of erratic noise. The random and erratic noise is distinguished by using a data-adaptive parameter in the presented method, where random noise is described by mean square, while the erratic noise is downweighted through a damped weight. Different from conventional sparse domain thresholding filters, definition of the misfit between noisy data and recovered signal via the Huber criterion results in a nonlinear optimization problem. With the help of theoretical pseudoseismic data, an iterative robust sparsity-promoting filter is proposed to transform the nonlinear optimization problem into a linear LS problem through an iterative procedure. The main advantage of this transformation is that the nonlinear denoising filter can be solved by conventional LS solvers. Lastly, tests with several data sets demonstrate that the proposed denoising filter can successfully attenuate the erratic noise without damaging useful signal when compared with conventional denoising approaches based on the LS criterion.« less

  1. Active turbulence in a gas of self-assembled spinners

    PubMed Central

    Kokot, Gašper; Das, Shibananda; Winkler, Roland G.; Aranson, Igor S.; Snezhko, Alexey

    2017-01-01

    Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air–liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generated advection flows. The same-chirality spinners (clockwise or counterclockwise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. Our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale. PMID:29158382

  2. The mitochondrial genome of Ifremeria nautilei and the phylogenetic position of the enigmatic deep-sea Abyssochrysoidea (Mollusca: Gastropoda).

    PubMed

    Osca, David; Templado, José; Zardoya, Rafael

    2014-09-01

    The complete nucleotide sequence of the mitochondrial (mt) genome of the deep-sea vent snail Ifremeria nautilei (Gastropoda: Abyssochrysoidea) was determined. The double stranded circular molecule is 15,664 pb in length and encodes for the typical 37 metazoan mitochondrial genes. The gene arrangement of the Ifremeria mt genome is most similar to genome organization of caenogastropods and differs only on the relative position of the trnW gene. The deduced amino acid sequences of the mt protein coding genes of Ifremeria mt genome were aligned with orthologous sequences from representatives of the main lineages of gastropods and phylogenetic relationships were inferred. The reconstructed phylogeny supports that Ifremeria belongs to Caenogastropoda and that it is closely related to hypsogastropod superfamilies. Results were compared with a reconstructed nuclear-based phylogeny. Moreover, a relaxed molecular-clock timetree calibrated with fossils dated the divergence of Abyssochrysoidea in the Late Jurassic-Early Cretaceous indicating a relatively modern colonization of deep-sea environments by these snails. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Ancient DNA analysis reveals woolly rhino evolutionary relationships.

    PubMed

    Orlando, Ludovic; Leonard, Jennifer A; Thenot, Aurélie; Laudet, Vincent; Guerin, Claude; Hänni, Catherine

    2003-09-01

    With ancient DNA technology, DNA sequences have been added to the list of characters available to infer the phyletic position of extinct species in evolutionary trees. We have sequenced the entire 12S rRNA and partial cytochrome b (cyt b) genes of one 60-70,000-year-old sample, and partial 12S rRNA and cyt b sequences of two 40-45,000-year-old samples of the extinct woolly rhinoceros (Coelodonta antiquitatis). Based on these two mitochondrial markers, phylogenetic analyses show that C. antiquitatis is most closely related to one of the three extant Asian rhinoceros species, Dicerorhinus sumatrensis. Calculations based on a molecular clock suggest that the lineage leading to C. antiquitatis and D. sumatrensis diverged in the Oligocene, 21-26 MYA. Both results agree with morphological models deduced from palaeontological data. Nuclear inserts of mitochondrial DNA were identified in the ancient specimens. These data should encourage the use of nuclear DNA in future ancient DNA studies. It also further establishes that the degraded nature of ancient DNA does not completely protect ancient DNA studies based on mitochondrial data from the problems associated with nuclear inserts.

  4. Phylogenetic analyses of complete mitochondrial genome sequences suggest a basal divergence of the enigmatic rodent Anomalurus

    PubMed Central

    Horner, David S; Lefkimmiatis, Konstantinos; Reyes, Aurelio; Gissi, Carmela; Saccone, Cecilia; Pesole, Graziano

    2007-01-01

    Background Phylogenetic relationships between Lagomorpha, Rodentia and Primates and their allies (Euarchontoglires) have long been debated. While it is now generally agreed that Rodentia constitutes a monophyletic sister-group of Lagomorpha and that this clade (Glires) is sister to Primates and Dermoptera, higher-level relationships within Rodentia remain contentious. Results We have sequenced and performed extensive evolutionary analyses on the mitochondrial genome of the scaly-tailed flying squirrel Anomalurus sp., an enigmatic rodent whose phylogenetic affinities have been obscure and extensively debated. Our phylogenetic analyses of the coding regions of available complete mitochondrial genome sequences from Euarchontoglires suggest that Anomalurus is a sister taxon to the Hystricognathi, and that this clade represents the most basal divergence among sampled Rodentia. Bayesian dating methods incorporating a relaxed molecular clock provide divergence-time estimates which are consistently in agreement with the fossil record and which indicate a rapid radiation within Glires around 60 million years ago. Conclusion Taken together, the data presented provide a working hypothesis as to the phylogenetic placement of Anomalurus, underline the utility of mitochondrial sequences in the resolution of even relatively deep divergences and go some way to explaining the difficulty of conclusively resolving higher-level relationships within Glires with available data and methodologies. PMID:17288612

  5. Erratic blocks in NW Poland - geological heritage, conservation and geotourism promotion

    NASA Astrophysics Data System (ADS)

    Górska-Zabielska, Maria

    2015-04-01

    Big glacial erratic blocks, transported between 20 ka and 14 ka BP from Scandinavia are still present in the fields and forest of the north-western part of Poland. They present mainly magmatic and metamorphic petrographic types. Among them the most important are indicator erratics, which point to a distinct source region in Sweden, Finland or within the Baltic Sea. The largest boulders, sometimes shrouded in legend, have been protected for ages as natural monuments. Others still wait for such an attention. The largest erratic block in Poland ("Trigław") is located in a small town Tychowo (53°55'42″N 16°15'29″E) in the Middle Pomerania. It is a gneiss with no features pointing to a distinct Scandinavian provenance. Its measurements are: height 7,8 m (3,8 m above surface), length 13,7 m, width 9,3 m, volume around 520 m3, weight 1430 tons. The biggest sedimentary boulder, sandstone ("Mszczonowski Głaz"), is located in a Zawada village (51°54`51,1"N 20°27`16,5"E) in the centre of Poland (beyond the scope of the presentation). Its measurements are: height 3 m, length 12 m, width 3 m, volume around 57 m3, weight 160 tons. The presentation shows the biggest and most interesting Scandinavian boulders blocks from north-western part of Poland, their geological heritage and role, that they play in a local geotourism promotion. Apart from their location in situ, the boulders are also available ex situ, i.e. in erratic gardens. These collections of rocks accompany seats of local nature museums or national parks offices. Also other usage of erratics (stony buildings and road/pavements, fences), known for ages, will be presented. Erratic blocks are favorite destinations for tourists who follow geotouristic trails. The most valuable for a geotourism are these geosites, which are equipped in a board informing about the genesis and geologic value of an erratic. The simpler and more intelligible language, the bigger didactic and touristic value of a geosite.

  6. Erratic boulders in Switzerland, a geological and cultural heritage

    NASA Astrophysics Data System (ADS)

    Reynard, Emmanuel

    2015-04-01

    Erratic boulders are stones transported over quite long distances by glaciers and that differ from the type of rock upon which they rely. They range from the size of pebbles to large boulders weighing several thousand tons. Erratic boulders are significant geosites (Reynard, 2004) for several reasons. (1) First, they are indicators of former glacier extensions by marking glaciers' path, size and volume. In Switzerland, they allowed mapping the extension of large Alpine glaciers (the Rhine and Rhone glaciers, in particular) and their retreat stages (e.g. the Monthey erratic boulders that mark an important lateglacial stage of the Rhone glacier). Crystalline erratic boulders along the Jura range (limestone mountains) were used to map the altitude reached by the Rhone glacier during the two last glaciations. Precise mapping of crystalline and limestone boulders distribution also enabled mapping local Jura glaciers' recurrences after the Rhone glacier retreat. (2) During the last decades, several erratic boulders were used for cosmogenic nuclide exposure dating, which allowed impressive advances in palaeoclimatic research. (3) Erratic blocks have also an ecological interest by the fact that they "have transported" specific habitats in areas far away from their origin (e.g. acid crystalline rocks and soils in limestone areas such as in the Jura). For all these reasons, several erratic boulders were classified in the inventory of Swiss geosites. Erratic boulders also have a significant cultural value (Lugon et al., 2006). (1) The Glacier Garden in Lucerne was discovered in 1872. It comprises various surfaces of "roches moutonnées", potholes and large erratic blocks that document the presence of the Reuss glacier. Considered as a natural monument it is now one of the most famous touristic attraction of Lucerne and Central Switzerland. (2) The Pierre Bergère stone, situated in Salvan (Mont-Blanc massif, South-western Switzerland), is the place where future Nobel Prize Guglielmo Marconi made his first wireless experiments in the late 19th century. An interpretive panel explaining the origin of the block was posted near the site along a cultural path created by the Marconi Foundation. (3) The Pierre des Marmettes, in Monthey, is one of the key-sites where the nature conservation movement was initiated in the first decade of the 20th century. The block is the property of the Swiss Academy of Sciences and was chosen as an emblematic site for celebrating the 200 years of the Academy in 2015. Moreover, in several cantons the protection of erratic blocks was the first initiative for nature conservation. (4) Several blocks were dedicated or offered to famous scientists (De Charpentier, Agassiz, Studer, Venetz) involved in the development of glaciology during the 19th century. Their names (e.g. Agassiz Block, Studer Block, Venetz Block) remind this important period in the history of Swiss geosciences. In fact, several of these scientists - in particular Jean de Charpentier - not only demonstrated the glacial origin of these blocks, but also used them as a proof of former glacial extensions. (5) Finally, several blocks have a symbolic (most of them have a name, several refer to legends), mythical, religious or an archaeological value - with the presence of petroglyphs. This communication will focus on the cultural value of erratic boulders - in particular for the nature conservation movement and for the history of glaciology and geosciences - and will propose a strategy for their geotourist promotion. References Lugon R., Pralong J.-P., Reynard E. (2006). Patrimoine culturel et géomorphologie: le cas valaisan de quelques blocs erratiques, d'une marmite glaciaire et d'une moraine. Bull. Murithienne, 124, 73-87. Reynard E. (2004). Protecting Stones: conservation of erratic blocks in Switzerland. In: Prikryl R. (ed.) Dimension Stone 2004. New perspectives for a traditional building material, Leiden, Balkema, 3-7.

  7. Effects of Mitochondrial DNA Rate Variation on Reconstruction of Pleistocene Demographic History in a Social Avian Species, Pomatostomus superciliosus

    PubMed Central

    Norman, Janette A.; Blackmore, Caroline J.; Rourke, Meaghan; Christidis, Les

    2014-01-01

    Mitochondrial sequence data is often used to reconstruct the demographic history of Pleistocene populations in an effort to understand how species have responded to past climate change events. However, departures from neutral equilibrium conditions can confound evolutionary inference in species with structured populations or those that have experienced periods of population expansion or decline. Selection can affect patterns of mitochondrial DNA variation and variable mutation rates among mitochondrial genes can compromise inferences drawn from single markers. We investigated the contribution of these factors to patterns of mitochondrial variation and estimates of time to most recent common ancestor (TMRCA) for two clades in a co-operatively breeding avian species, the white-browed babbler Pomatostomus superciliosus. Both the protein-coding ND3 gene and hypervariable domain I control region sequences showed departures from neutral expectations within the superciliosus clade, and a two-fold difference in TMRCA estimates. Bayesian phylogenetic analysis provided evidence of departure from a strict clock model of molecular evolution in domain I, leading to an over-estimation of TMRCA for the superciliosus clade at this marker. Our results suggest mitochondrial studies that attempt to reconstruct Pleistocene demographic histories should rigorously evaluate data for departures from neutral equilibrium expectations, including variation in evolutionary rates across multiple markers. Failure to do so can lead to serious errors in the estimation of evolutionary parameters and subsequent demographic inferences concerning the role of climate as a driver of evolutionary change. These effects may be especially pronounced in species with complex social structures occupying heterogeneous environments. We propose that environmentally driven differences in social structure may explain observed differences in evolutionary rate of domain I sequences, resulting from longer than expected retention times for matriarchal lineages in the superciliosus clade. PMID:25181547

  8. Mitochondrial Phylogenomics of Modern and Ancient Equids

    PubMed Central

    Vilstrup, Julia T.; Seguin-Orlando, Andaine; Stiller, Mathias; Ginolhac, Aurelien; Raghavan, Maanasa; Nielsen, Sandra C. A.; Weinstock, Jacobo; Froese, Duane; Vasiliev, Sergei K.; Ovodov, Nikolai D.; Clary, Joel; Helgen, Kristofer M.; Fleischer, Robert C.; Cooper, Alan; Shapiro, Beth; Orlando, Ludovic

    2013-01-01

    The genus Equus is richly represented in the fossil record, yet our understanding of taxonomic relationships within this genus remains limited. To estimate the phylogenetic relationships among modern horses, zebras, asses and donkeys, we generated the first data set including complete mitochondrial sequences from all seven extant lineages within the genus Equus. Bayesian and Maximum Likelihood phylogenetic inference confirms that zebras are monophyletic within the genus, and the Plains and Grevy’s zebras form a well-supported monophyletic group. Using ancient DNA techniques, we further characterize the complete mitochondrial genomes of three extinct equid lineages (the New World stilt-legged horses, NWSLH; the subgenus Sussemionus; and the Quagga, Equus quagga quagga). Comparisons with extant taxa confirm the NWSLH as being part of the caballines, and the Quagga and Plains zebras as being conspecific. However, the evolutionary relationships among the non-caballine lineages, including the now-extinct subgenus Sussemionus, remain unresolved, most likely due to extremely rapid radiation within this group. The closest living outgroups (rhinos and tapirs) were found to be too phylogenetically distant to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data, including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation leading up to modern equids, which for now were found to have possibly shared a common ancestor as far as up to 4 Million years ago (Mya). PMID:23437078

  9. Active turbulence in a gas of self-assembled spinners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokot, Gasper; Das, Shibananda; Winkler, Roland G.

    Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generatedmore » advection flows. The same-chirality spinners (clockwise or counterclock-wise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. As a result, our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.« less

  10. Active turbulence in a gas of self-assembled spinners

    DOE PAGES

    Kokot, Gasper; Das, Shibananda; Winkler, Roland G.; ...

    2017-11-20

    Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generatedmore » advection flows. The same-chirality spinners (clockwise or counterclock-wise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. As a result, our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.« less

  11. [Identification of proteins interacting with the circadian clock protein PER1 in tumors using bacterial two-hybrid system technique].

    PubMed

    Zhang, Yu; Yao, Youlin; Jiang, Siyuan; Lu, Yilu; Liu, Yunqiang; Tao, Dachang; Zhang, Sizhong; Ma, Yongxin

    2015-04-01

    To identify protein-protein interaction partners of PER1 (period circadian protein homolog 1), key component of the molecular oscillation system of the circadian rhythm in tumors using bacterial two-hybrid system technique. Human cervical carcinoma cell Hela library was adopted. Recombinant bait plasmid pBT-PER1 and pTRG cDNA plasmid library were cotransformed into the two-hybrid system reporter strain cultured in a special selective medium. Target clones were screened. After isolating the positive clones, the target clones were sequenced and analyzed. Fourteen protein coding genes were identified, 4 of which were found to contain whole coding regions of genes, which included optic atrophy 3 protein (OPA3) associated with mitochondrial dynamics and homo sapiens cutA divalent cation tolerance homolog of E. coli (CUTA) associated with copper metabolism. There were also cellular events related proteins and proteins which are involved in biochemical reaction and signal transduction-related proteins. Identification of potential interacting proteins with PER1 in tumors may provide us new insights into the functions of the circadian clock protein PER1 during tumorigenesis.

  12. A molecular phylogeny of the stingless bee genus Melipona (Hymenoptera: Apidae).

    PubMed

    Ramírez, Santiago R; Nieh, James C; Quental, Tiago B; Roubik, David W; Imperatriz-Fonseca, Vera L; Pierce, Naomi E

    2010-08-01

    Stingless bees (Meliponini) constitute a diverse group of highly eusocial insects that occur throughout tropical regions around the world. The meliponine genus Melipona is restricted to the New World tropics and has over 50 described species. Melipona, like Apis, possesses the remarkable ability to use representational communication to indicate the location of foraging patches. Although Melipona has been the subject of numerous behavioral, ecological, and genetic studies, the evolutionary history of this genus remains largely unexplored. Here, we implement a multigene phylogenetic approach based on nuclear, mitochondrial, and ribosomal loci, coupled with molecular clock methods, to elucidate the phylogenetic relationships and antiquity of subgenera and species of Melipona. Our phylogenetic analysis resolves the relationship among subgenera and tends to agree with morphology-based classification hypotheses. Our molecular clock analysis indicates that the genus Melipona shared a most recent common ancestor at least approximately 14-17 million years (My) ago. These results provide the groundwork for future comparative analyses aimed at understanding the evolution of complex communication mechanisms in eusocial Apidae. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity.

    PubMed

    van Moorsel, Dirk; Hansen, Jan; Havekes, Bas; Scheer, Frank A J L; Jörgensen, Johanna A; Hoeks, Joris; Schrauwen-Hinderling, Vera B; Duez, Helene; Lefebvre, Philippe; Schaper, Nicolaas C; Hesselink, Matthijs K C; Staels, Bart; Schrauwen, Patrick

    2016-08-01

    A disturbed day-night rhythm is associated with metabolic perturbations that can lead to obesity and type 2 diabetes mellitus (T2DM). In skeletal muscle, a reduced oxidative capacity is also associated with the development of T2DM. However, whether oxidative capacity in skeletal muscle displays a day-night rhythm in humans has so far not been investigated. Lean, healthy subjects were enrolled in a standardized living protocol with regular meals, physical activity and sleep to reflect our everyday lifestyle. Mitochondrial oxidative capacity was examined in skeletal muscle biopsies taken at five time points within a 24-hour period. Core-body temperature was lower during the early night, confirming a normal day-night rhythm. Skeletal muscle oxidative capacity demonstrated a robust day-night rhythm, with a significant time effect in ADP-stimulated respiration (state 3 MO, state 3 MOG and state 3 MOGS, p < 0.05). Respiration was lowest at 1 PM and highest at 11 PM (state 3 MOGS: 80.6 ± 4.0 vs. 95.8 ± 4.7 pmol/mg/s). Interestingly, the fluctuation in mitochondrial function was also observed in whole-body energy expenditure, with peak energy expenditure at 11 PM and lowest energy expenditure at 4 AM (p < 0.001). In addition, we demonstrate rhythmicity in mRNA expression of molecular clock genes in human skeletal muscle. Our results suggest that the biological clock drives robust rhythms in human skeletal muscle oxidative metabolism. It is tempting to speculate that disruption of these rhythms contribute to the deterioration of metabolic health associated with circadian misalignment.

  14. Phylogeography of the sand dollar genus Encope: implications regarding the Central American Isthmus and rates of molecular evolution.

    PubMed

    Coppard, Simon E; Lessios, H A

    2017-09-14

    Vicariant events have been widely used to calibrate rates of molecular evolution, the completion of the Central American Isthmus more extensively than any other. Recent studies have claimed that rather than the generally accepted date of ~3 million years ago (Ma), the Isthmus was effectively complete by the middle Miocene, 13 Ma. We present a fossil calibrated phylogeny of the new world sand dollar genus Encope, based on one nuclear and four mitochondrial genes, calibrated with fossils at multiple nodes. Present day distributions of Encope are likely the result of multiple range contractions and extinction events. Most species are now endemic to a single region, but one widely distributed species in each ocean is composed of morphotypes previously described as separate species. The most recent separation between eastern Pacific and Caribbean extant clades occurred at 4.90 Ma, indicating that the Isthmus of Panama allowed genetic exchange until the Pliocene. The rate of evolution of mitochondrial genes in Encope has been ten times slower than in the closely related genera Mellita and Lanthonia. This large difference in rates suggests that splits between eastern Pacific and Caribbean biota, dated on the assumption of a "universal" mitochondrial DNA clock are not valid.

  15. Will future climate favor more erratic wildfires in the western United States?

    Treesearch

    Lifeng Luo; Ying Tang; Shiyuan Zhong; Xindi Bian; Warren E. Heilman

    2013-01-01

    Wildfires that occurred over the western United States during August 2012 were fewer in number but larger in size when compared with all other Augusts in the twenty-first century. This unique characteristic, along with the tremendous property damage and potential loss of life that occur with large wildfires with erratic behavior, raised the question of whether future...

  16. Evidence for a warm ice-free environment on the high latitude Antarctic coast (78°S) during the Middle to Late Eocene

    NASA Astrophysics Data System (ADS)

    Levy, R. H.; Bohaty, S. M.; Harwood, D. M.; Sangiorgi, F.; Willmott, V.; Talarico, F.; MacLeod, K. G.

    2013-12-01

    Much of Antarctica's Cenozoic geological record is hidden beneath the thick ice sheets and fringing ice shelves that cover the continent. Glacial erratics of sedimentary rocks present in coastal moraines at Minna Bluff and Mount Discovery, McMurdo Sound, western Ross Sea, Antarctica contain middle and late Eocene plant and marine fossils that were deposited in a range of marine settings along the Antarctic coastline. This suite of sedimentary rocks were likely deposited at the margin of a narrow (c. 100 km wide), relatively deep (up to 1000 m) marine seaway that was bound by the proto-Transantarctic Mountains to the west and a topographic high to the east. Although these Eocene ';';McMurdo Erratics'' lack stratigraphic integrity, they are significant as they offer a rare glimpse into Antarctica's climate during global greenhouse conditions at high latitudes (c. 78°S). Fossils recovered from the rocks are diverse and include marine and terrestrial palynomorphs, diatoms, molluscs, wood, leaves and other macrofauna and flora. Geochemical temperature proxies derived from the sedimentary rocks include organic biomarkers (TEX86) and fish tooth δ18O that indicate coastal sea surface temperatures were at least 15°C in the late Middle Eocene. While rare lonestones occur in several sandstone erratics, we find no conclusive evidence for glaciation at the coast. The fossil-bearing coastal moraines also contain a suite of igneous and metamorphic erratics that are comparable to lithological units exposed in the Transantarctic Mountains between the Skelton and Mulock glaciers. This suggests that the Eocene erratics were eroded from the north-eastern portion of a large sub-glacial basin behind Minna Bluff and/or from grabens in a basement high immediately south-east of Minna Bluff. Importantly, the northeastward extension of this basement high is a target for stratigraphic drilling during the proposed ANDRILL Coulman High Project. Drilling on the Coulman High has an excellent chance of recovering correlative Eocene marine strata, providing stratigraphic context for the fossiliferous erratics and providing new constraints on polar environmental conditions under high atmospheric CO2. Studies on the erratic boulders show that organic biomarkers offer an important paleoenvironmental tool at this high southern latitude site. Biomarker data derived from the new drill cores will be integrated with other environmental proxies to estimate atmospheric and marine temperatures in order to determine the magnitude of polar amplification during high-CO2 'greenhouse' climatic conditions. These new data will improve our understanding of Earth System climate sensitivity in a warmer world.

  17. Host jumps shaped the diversity of extant rust fungi (Pucciniales).

    PubMed

    McTaggart, Alistair R; Shivas, Roger G; van der Nest, Magriet A; Roux, Jolanda; Wingfield, Brenda D; Wingfield, Michael J

    2016-02-01

    The aim of this study was to determine the evolutionary time line for rust fungi and date key speciation events using a molecular clock. Evidence is provided that supports a contemporary view for a recent origin of rust fungi, with a common ancestor on a flowering plant. Divergence times for > 20 genera of rust fungi were studied with Bayesian evolutionary analyses. A relaxed molecular clock was applied to ribosomal and mitochondrial genes, calibrated against estimated divergence times for the hosts of rust fungi, such as Acacia (Fabaceae), angiosperms and the cupressophytes. Results showed that rust fungi shared a most recent common ancestor with a mean age between 113 and 115 million yr. This dates rust fungi to the Cretaceous period, which is much younger than previous estimations. Host jumps, whether taxonomically large or between host genera in the same family, most probably shaped the diversity of rust genera. Likewise, species diversified by host shifts (through coevolution) or via subsequent host jumps. This is in contrast to strict coevolution with their hosts. Puccinia psidii was recovered in Sphaerophragmiaceae, a family distinct from Raveneliaceae, which were regarded as confamilial in previous studies. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  18. Evolutionary history of genus Macrobrachium inferred from mitochondrial markers: a molecular clock approach.

    PubMed

    Jose, Deepak; Harikrishnan, Mahadevan

    2018-04-17

    Caridea, an infraorder of shrimps coming under Pleocyemata was first reported from the oceans before 417 million years followed by their radiation recorded during the Permian period. Hitherto, about 3877 extant caridean species were accounted within which one quarter constitute freshwater species. Freshwater prawns of genus Macrobrachium (Infraorder Caridea; Family Palaemonidae), with more than 240 species are inhabitants of diverse aquatic habitats like coastal lagoons, lakes, tropical streams, ponds and rivers. Previous studies on Macrobrachium relied on the highly variable morphological characters which were insufficient for accurate diagnosis of natural species groups. Present study focuses on the utility of molecular markers (viz. COI and 16S rRNA) for resolving the evolutionary history of genus Macrobrachium using a combination of phylogeny and timescale components. It is for the first time a molecular clock approach had been carried out towards genus Macrobrachium in a broad aspect with the incorporation of congeners inhabiting diverse geographical realms including endemic species M. striatum from South West coast of India. Molecular results obtained revealed the phylogenetic relationships between congeners of genus Macrobrachium at intra/inter-continental level along with the corresponding evolutionary time estimates.

  19. Complete genomes of Hairstreak butterflies, their speciation, and nucleo-mitochondrial incongruence

    PubMed Central

    Cong, Qian; Shen, Jinhui; Borek, Dominika; Robbins, Robert K.; Otwinowski, Zbyszek; Grishin, Nick V.

    2016-01-01

    Comparison of complete genomes of closely related species enables research on speciation and how phenotype is determined by genotype. Lepidoptera, an insect order of 150,000 species with diverse phenotypes, is well-suited for such comparative genomics studies if new genomes, which cover additional Lepidoptera families are acquired. We report a 729 Mbp genome assembly of the Calycopis cecrops, the first genome from the family Lycaenidae and the largest available Lepidoptera genome. As detritivore, Calycopis shows expansion in detoxification and digestion enzymes. We further obtained complete genomes of 8 Calycopis specimens: 3 C. cecrops and 5 C. isobeon, including a dry specimen stored in the museum for 30 years. The two species differ subtly in phenotype and cannot be differentiated by mitochondrial DNA. However, nuclear genomes revealed a deep split between them. Genes that can clearly separate the two species (speciation hotspots) mostly pertain to circadian clock, mating behavior, transcription regulation, development and cytoskeleton. The speciation hotspots and their function significantly overlap with those we previously found in Pterourus, suggesting common speciation mechanisms in these butterflies. PMID:27120974

  20. Complete genomes of Hairstreak butterflies, their speciation, and nucleo-mitochondrial incongruence.

    PubMed

    Cong, Qian; Shen, Jinhui; Borek, Dominika; Robbins, Robert K; Otwinowski, Zbyszek; Grishin, Nick V

    2016-04-28

    Comparison of complete genomes of closely related species enables research on speciation and how phenotype is determined by genotype. Lepidoptera, an insect order of 150,000 species with diverse phenotypes, is well-suited for such comparative genomics studies if new genomes, which cover additional Lepidoptera families are acquired. We report a 729 Mbp genome assembly of the Calycopis cecrops, the first genome from the family Lycaenidae and the largest available Lepidoptera genome. As detritivore, Calycopis shows expansion in detoxification and digestion enzymes. We further obtained complete genomes of 8 Calycopis specimens: 3 C. cecrops and 5 C. isobeon, including a dry specimen stored in the museum for 30 years. The two species differ subtly in phenotype and cannot be differentiated by mitochondrial DNA. However, nuclear genomes revealed a deep split between them. Genes that can clearly separate the two species (speciation hotspots) mostly pertain to circadian clock, mating behavior, transcription regulation, development and cytoskeleton. The speciation hotspots and their function significantly overlap with those we previously found in Pterourus, suggesting common speciation mechanisms in these butterflies.

  1. Mitochondrial Genomes Reveal Slow Rates of Molecular Evolution and the Timing of Speciation in Beavers (Castor), One of the Largest Rodent Species

    PubMed Central

    Horn, Susanne; Durka, Walter; Wolf, Ronny; Ermala, Aslak; Stubbe, Annegret; Stubbe, Michael; Hofreiter, Michael

    2011-01-01

    Background Beavers are one of the largest and ecologically most distinct rodent species. Little is known about their evolution and even their closest phylogenetic relatives have not yet been identified with certainty. Similarly, little is known about the timing of divergence events within the genus Castor. Methodology/Principal Findings We sequenced complete mitochondrial genomes from both extant beaver species and used these sequences to place beavers in the phylogenetic tree of rodents and date their divergence from other rodents as well as the divergence events within the genus Castor. Our analyses support the phylogenetic position of beavers as a sister lineage to the scaly tailed squirrel Anomalurus within the mouse related clade. Molecular dating places the divergence time of the lineages leading to beavers and Anomalurus as early as around 54 million years ago (mya). The living beaver species, Castor canadensis from North America and Castor fiber from Eurasia, although similar in appearance, appear to have diverged from a common ancestor more than seven mya. This result is consistent with the hypothesis that a migration of Castor from Eurasia to North America as early as 7.5 mya could have initiated their speciation. We date the common ancestor of the extant Eurasian beaver relict populations to around 210,000 years ago, much earlier than previously thought. Finally, the substitution rate of Castor mitochondrial DNA is considerably lower than that of other rodents. We found evidence that this is correlated with the longer life span of beavers compared to other rodents. Conclusions/Significance A phylogenetic analysis of mitochondrial genome sequences suggests a sister-group relationship between Castor and Anomalurus, and allows molecular dating of species divergence in congruence with paleontological data. The implementation of a relaxed molecular clock enabled us to estimate mitochondrial substitution rates and to evaluate the effect of life history traits on it. PMID:21307956

  2. Seven new dolphin mitochondrial genomes and a time-calibrated phylogeny of whales

    PubMed Central

    Xiong, Ye; Brandley, Matthew C; Xu, Shixia; Zhou, Kaiya; Yang, Guang

    2009-01-01

    Background The phylogeny of Cetacea (whales) is not fully resolved with substantial support. The ambiguous and conflicting results of multiple phylogenetic studies may be the result of the use of too little data, phylogenetic methods that do not adequately capture the complex nature of DNA evolution, or both. In addition, there is also evidence that the generic taxonomy of Delphinidae (dolphins) underestimates its diversity. To remedy these problems, we sequenced the complete mitochondrial genomes of seven dolphins and analyzed these data with partitioned Bayesian analyses. Moreover, we incorporate a newly-developed "relaxed" molecular clock to model heterogenous rates of evolution among cetacean lineages. Results The "deep" phylogenetic relationships are well supported including the monophyly of Cetacea and Odontoceti. However, there is ambiguity in the phylogenetic affinities of two of the river dolphin clades Platanistidae (Indian River dolphins) and Lipotidae (Yangtze River dolphins). The phylogenetic analyses support a sister relationship between Delphinidae and Monodontidae + Phocoenidae. Additionally, there is statistically significant support for the paraphyly of Tursiops (bottlenose dolphins) and Stenella (spotted dolphins). Conclusion Our phylogenetic analysis of complete mitochondrial genomes using recently developed models of rate autocorrelation resolved the phylogenetic relationships of the major Cetacean lineages with a high degree of confidence. Our results indicate that a rapid radiation of lineages explains the lack of support the placement of Platanistidae and Lipotidae. Moreover, our estimation of molecular divergence dates indicates that these radiations occurred in the Middle to Late Oligocene and Middle Miocene, respectively. Furthermore, by collecting and analyzing seven new mitochondrial genomes, we provide strong evidence that the delphinid genera Tursiops and Stenella are not monophyletic, and the current taxonomy masks potentially interesting patterns of morphological, physiological, behavioral, and ecological evolution. PMID:19166626

  3. A complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus): an evolutionary history of camelidae

    PubMed Central

    Cui, Peng; Ji, Rimutu; Ding, Feng; Qi, Dan; Gao, Hongwei; Meng, He; Yu, Jun; Hu, Songnian; Zhang, Heping

    2007-01-01

    Background The family Camelidae that evolved in North America during the Eocene survived with two distinct tribes, Camelini and Lamini. To investigate the evolutionary relationship between them and to further understand the evolutionary history of this family, we determined the complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus), the only wild survivor of the Old World camel. Results The mitochondrial genome sequence (16,680 bp) from C. bactrianus ferus contains 13 protein-coding, two rRNA, and 22 tRNA genes as well as a typical control region; this basic structure is shared by all metazoan mitochondrial genomes. Its protein-coding region exhibits codon usage common to all mammals and possesses the three cryptic stop codons shared by all vertebrates. C. bactrianus ferus together with the rest of mammalian species do not share a triplet nucleotide insertion (GCC) that encodes a proline residue found only in the nd1 gene of the New World camelid Lama pacos. This lineage-specific insertion in the L. pacos mtDNA occurred after the split between the Old and New World camelids suggests that it may have functional implication since a proline insertion in a protein backbone usually alters protein conformation significantly, and nd1 gene has not been seen as polymorphic as the rest of ND family genes among camelids. Our phylogenetic study based on complete mitochondrial genomes excluding the control region suggested that the divergence of the two tribes may occur in the early Miocene; it is much earlier than what was deduced from the fossil record (11 million years). An evolutionary history reconstructed for the family Camelidae based on cytb sequences suggested that the split of bactrian camel and dromedary may have occurred in North America before the tribe Camelini migrated from North America to Asia. Conclusion Molecular clock analysis of complete mitochondrial genomes from C. bactrianus ferus and L. pacos suggested that the two tribes diverged from their common ancestor about 25 million years ago, much earlier than what was predicted based on fossil records. PMID:17640355

  4. Improved Orifice Plate for Spray Gun

    NASA Technical Reports Server (NTRS)

    Cunningham, W.

    1986-01-01

    Erratic spray pattern of commercial spray gun changed to repeatable one by simple redesign of two parts. In modified spray gun orifice plate and polytetrafluoroethylene bushing redesigned to assure centering and alignment with nozzle. Such improvement useful in many industrial applications requiring repeatable spray patterns. Might include spraying of foam insulation, paint, other protective coatings, detergents, abrasives, adhesives, process chemicals, or fuels. Unmodified spray gun produces erratic spray because lateral misalignment between orifice plate and nozzle.

  5. The Complete Mitochondrial Genome and Song Evolution of the Monotypic Genus U. Tarbinsky, 1932 (Orthoptera: Tettigoniidae).

    PubMed

    Wang, Yinliang; Zhao, Hanbo; Zhang, Xue; Ren, Bingzhong

    2016-04-23

    The insect Uvarovites inflatus Uvarov is highly appreciated in China. It is known for its distinctive songs and horn-like forewings and is raised commercially for insect lovers. U. inflatus was previously categorized as part of the monotypic genus Uvarovites; however, there was little molecular evidence to support this taxonomic classification. This study obtained and investigated the mitogenome of U. inflatus, and its songs were characterized and compared with other Ensifera species whose mitogenomes are available. By performing the mitochondrial analysis, we were able to assess the phylogenetic relationships between these species and discuss the evolution of Ensifera calling songs. The mitogenome of U. inflatus is 15,956 bp in length and contains 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 control region. The organization and orientation of the U. inflatus mitogenome are similar to those of other Tettigonioidea species. Phylogenetic analysis based on 13 protein-coding genes showed that the superfamily Tettigonioidea is monophyletic, as are the other six tested subfamilies from Tettigonioidea. Our results also indicated that Grylloidea is monophyletic. A Bayesian relaxed clock analysis showed that the differentiation of U. inflatus and Gampsocleis gratiosa Brunner occurred in the middle Miocene, suggesting that their speciation occurred over a long evolutionary period. The results provide significant support for the establishment of the monotypic genus Uvarovites. Calling song analysis showed that at least two discrete steps of independent evolution occurred during the change from pure tone to broadband noise, and that the ancestor of existing Ensifera was more likely to have emitted pure-tone songs than broadband signals. Together, the mitogenome, molecular clock, and acoustic data allowed us to clarify the taxonomic state of U. inflatus and propose a timeline for the evolution of Ensifera songs. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. The influence of taxon sampling on Bayesian divergence time inference under scenarios of rate heterogeneity among lineages.

    PubMed

    Soares, André E R; Schrago, Carlos G

    2015-01-07

    Although taxon sampling is commonly considered an important issue in phylogenetic inference, it is rarely considered in the Bayesian estimation of divergence times. In fact, the studies conducted to date have presented ambiguous results, and the relevance of taxon sampling for molecular dating remains unclear. In this study, we developed a series of simulations that, after six hundred Bayesian molecular dating analyses, allowed us to evaluate the impact of taxon sampling on chronological estimates under three scenarios of among-lineage rate heterogeneity. The first scenario allowed us to examine the influence of the number of terminals on the age estimates based on a strict molecular clock. The second scenario imposed an extreme example of lineage specific rate variation, and the third scenario permitted extensive rate variation distributed along the branches. We also analyzed empirical data on selected mitochondrial genomes of mammals. Our results showed that in the strict molecular-clock scenario (Case I), taxon sampling had a minor impact on the accuracy of the time estimates, although the precision of the estimates was greater with an increased number of terminals. The effect was similar in the scenario (Case III) based on rate variation distributed among the branches. Only under intensive rate variation among lineages (Case II) taxon sampling did result in biased estimates. The results of an empirical analysis corroborated the simulation findings. We demonstrate that taxonomic sampling affected divergence time inference but that its impact was significant if the rates deviated from those derived for the strict molecular clock. Increased taxon sampling improved the precision and accuracy of the divergence time estimates, but the impact on precision is more relevant. On average, biased estimates were obtained only if lineage rate variation was pronounced. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Transgenic Perturbation of the Decarboxylation Phase of Crassulacean Acid Metabolism Alters Physiology and Metabolism But Has Only a Small Effect on Growth

    DOE PAGES

    Dever, Louisa V.; Boxall, Susanna F.; Knerova, Jana; ...

    2014-11-05

    Here, mitochondrial NAD-malic enzyme (ME) and/or cytosolic/plastidic NADP-ME combined with the cytosolic/plastidic pyruvate orthophosphate dikinase (PPDK) catalyze two key steps during light-period malate decarboxylation that underpin secondary CO 2 fixation in some Crassulacean acid metabolism (CAM) species. We report the generation and phenotypic characterization of transgenic RNA interference lines of the obligate CAM species Kalanchoë fedtschenkoi with reduced activities of NAD-ME or PPDK. Transgenic line rNAD-ME1 had 8%, and rPPDK1 had 5% of the wild-type level of activity, and showed dramatic changes in the light/dark cycle of CAM CO 2 fixation. In well-watered conditions, these lines fixed all of theirmore » CO 2 in the light; they thus performed C 3 photosynthesis. The alternative malate decarboxylase, NADP-ME, did not appear to compensate for the reduction in NAD-ME, suggesting that NAD-ME was the key decarboxylase for CAM. The activity of other CAM enzymes was reduced as a consequence of knocking out either NAD-ME or PPDK activity, particularly phosphoenolpyruvate carboxylase (PPC) and PPDK in rNAD-ME1. Furthermore, the circadian clock-controlled phosphorylation of PPC in the dark was reduced in both lines, especially in rNAD-ME1. This had the consequence that circadian rhythms of PPC phosphorylation, PPC kinase transcript levels and activity, and the classic circadian rhythm of CAM CO 2 fixation were lost, or dampened toward arrhythmia, under constant light and temperature conditions. Surprisingly, oscillations in the transcript abundance of core circadian clock genes also became arrhythmic in the rNAD-ME1 line, suggesting that perturbing CAM in K. fedtschenkoi feeds back to perturb the central circadian clock.« less

  8. Transgenic Perturbation of the Decarboxylation Phase of Crassulacean Acid Metabolism Alters Physiology and Metabolism But Has Only a Small Effect on Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dever, Louisa V.; Boxall, Susanna F.; Knerova, Jana

    Here, mitochondrial NAD-malic enzyme (ME) and/or cytosolic/plastidic NADP-ME combined with the cytosolic/plastidic pyruvate orthophosphate dikinase (PPDK) catalyze two key steps during light-period malate decarboxylation that underpin secondary CO 2 fixation in some Crassulacean acid metabolism (CAM) species. We report the generation and phenotypic characterization of transgenic RNA interference lines of the obligate CAM species Kalanchoë fedtschenkoi with reduced activities of NAD-ME or PPDK. Transgenic line rNAD-ME1 had 8%, and rPPDK1 had 5% of the wild-type level of activity, and showed dramatic changes in the light/dark cycle of CAM CO 2 fixation. In well-watered conditions, these lines fixed all of theirmore » CO 2 in the light; they thus performed C 3 photosynthesis. The alternative malate decarboxylase, NADP-ME, did not appear to compensate for the reduction in NAD-ME, suggesting that NAD-ME was the key decarboxylase for CAM. The activity of other CAM enzymes was reduced as a consequence of knocking out either NAD-ME or PPDK activity, particularly phosphoenolpyruvate carboxylase (PPC) and PPDK in rNAD-ME1. Furthermore, the circadian clock-controlled phosphorylation of PPC in the dark was reduced in both lines, especially in rNAD-ME1. This had the consequence that circadian rhythms of PPC phosphorylation, PPC kinase transcript levels and activity, and the classic circadian rhythm of CAM CO 2 fixation were lost, or dampened toward arrhythmia, under constant light and temperature conditions. Surprisingly, oscillations in the transcript abundance of core circadian clock genes also became arrhythmic in the rNAD-ME1 line, suggesting that perturbing CAM in K. fedtschenkoi feeds back to perturb the central circadian clock.« less

  9. Can fat explain the human brain's big bang evolution?-Horrobin's leads for comparative and functional genomics.

    PubMed

    Erren, T C; Erren, M

    2004-04-01

    When David Horrobin suggested that phospholipid and fatty acid metabolism played a major role in human evolution, his 'fat utilization hypothesis' unified intriguing work from paleoanthropology, evolutionary biology, genetic and nervous system research in a novel and coherent lipid-related context. Interestingly, unlike most other evolutionary concepts, the hypothesis allows specific predictions which can be empirically tested in the near future. This paper summarizes some of Horrobin's intriguing propositions and suggests as to how approaches of comparative genomics published in Cell, Nature, Science and elsewhere since 1997 may be used to examine his evolutionary hypothesis. Indeed, systematic investigations of the genomic clock in the species' mitochondrial DNA, the Y and autosomal chromosomes as evidence of evolutionary relationships and distinctions can help to scrutinize associated predictions for their validity, namely that key mutations which differentiate us from Neanderthals and from great apes are in the genes coding for proteins which regulate fat metabolism, and particularly the phospholipid metabolism of the synapses of the brain. It is concluded that beyond clues to humans' relationships with living primates and to the Neanderthals' cognitive performance and their disappearance, the suggested molecular clock analyses may provide crucial insights into the biochemical evolution-and means of possible manipulation-of our brain.

  10. Molecular phylogeny of the lionfish genera Dendrochirus and Pterois (Scorpaenidae, Pteroinae) based on mitochondrial DNA sequences.

    PubMed

    Kochzius, Marc; Söller, Rainer; Khalaf, Maroof A; Blohm, Dietmar

    2003-09-01

    This study investigates the molecular phylogeny of seven lionfishes of the genera Dendrochirus and Pterois. MP, ML, and NJ phylogenetic analysis based on 964 bp of partial mitochondrial DNA sequences (cytochrome b and 16S rDNA) revealed two main clades: (1) "Pterois" clade (Pterois miles and Pterois volitans), and (2) "Pteropterus-Dendrochirus" clade (remainder of the sampled species). The position of Dendrochirus brachypterus either basal to the main clades or in the "Pteropterus-Dendrochirus" clade cannot be resolved. However, the molecular phylogeny did not support the current separation of the genera Pterois and Dendrochirus. The siblings P. miles and P. volitans are clearly separated and our results support the proposed allopatric or parapatric distribution in the Indian and Pacific Ocean. However, the present analysis cannot reveal if P. miles and P. volitans are separate species or two populations of a single species, because the observed separation in different clades can be either explained by speciation or lineage sorting. Molecular clock estimates for the siblings P. miles and P. volitans suggest a divergence time of 2.4-8.3 mya, which coincide with geological events that created vicariance between populations of the Indian and Pacific Ocean.

  11. Mitoflash frequency in early adulthood predicts lifespan in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Shen, En-Zhi; Song, Chun-Qing; Lin, Yuan; Zhang, Wen-Hong; Su, Pei-Fang; Liu, Wen-Yuan; Zhang, Pan; Xu, Jiejia; Lin, Na; Zhan, Cheng; Wang, Xianhua; Shyr, Yu; Cheng, Heping; Dong, Meng-Qiu

    2014-04-01

    It has been theorized for decades that mitochondria act as the biological clock of ageing, but the evidence is incomplete. Here we show a strong coupling between mitochondrial function and ageing by in vivo visualization of the mitochondrial flash (mitoflash), a frequency-coded optical readout reflecting free-radical production and energy metabolism at the single-mitochondrion level. Mitoflash activity in Caenorhabditis elegans pharyngeal muscles peaked on adult day 3 during active reproduction and on day 9 when animals started to die off. A plethora of genetic mutations and environmental factors inversely modified the lifespan and the day-3 mitoflash frequency. Even within an isogenic population, the day-3 mitoflash frequency was negatively correlated with the lifespan of individual animals. Furthermore, enhanced activity of the glyoxylate cycle contributed to the decreased day-3 mitoflash frequency and the longevity of daf-2 mutant animals. These results demonstrate that the day-3 mitoflash frequency is a powerful predictor of C. elegans lifespan across genetic, environmental and stochastic factors. They also support the notion that the rate of ageing, although adjustable in later life, has been set to a considerable degree before reproduction ceases.

  12. Kitty Field, Campbell County, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C.R.

    1970-01-01

    Kitty production and success, when viewed on a per well basis, is quite erratic. The geology, simplified in this study, is quite erratic and complex, awaiting further study to place it in the correct perspective. It should be remembered that ''Kitty'' a pre-Bell Creek field discovery, remained dormant for approx. 2 yr because of adverse economic factors. An aggressive and optimistic approach for geologists will be needed for further exploration and exploitation of the Muddy potential in the Powder River Basin of Wyoming. (10 refs.)

  13. Echolocating bats use a nearly time-optimal strategy to intercept prey.

    PubMed

    Ghose, Kaushik; Horiuchi, Timothy K; Krishnaprasad, P S; Moss, Cynthia F

    2006-05-01

    Acquisition of food in many animal species depends on the pursuit and capture of moving prey. Among modern humans, the pursuit and interception of moving targets plays a central role in a variety of sports, such as tennis, football, Frisbee, and baseball. Studies of target pursuit in animals, ranging from dragonflies to fish and dogs to humans, have suggested that they all use a constant bearing (CB) strategy to pursue prey or other moving targets. CB is best known as the interception strategy employed by baseball outfielders to catch ballistic fly balls. CB is a time-optimal solution to catch targets moving along a straight line, or in a predictable fashion--such as a ballistic baseball, or a piece of food sinking in water. Many animals, however, have to capture prey that may make evasive and unpredictable maneuvers. Is CB an optimum solution to pursuing erratically moving targets? Do animals faced with such erratic prey also use CB? In this paper, we address these questions by studying prey capture in an insectivorous echolocating bat. Echolocating bats rely on sonar to pursue and capture flying insects. The bat's prey may emerge from foliage for a brief time, fly in erratic three-dimensional paths before returning to cover. Bats typically take less than one second to detect, localize and capture such insects. We used high speed stereo infra-red videography to study the three dimensional flight paths of the big brown bat, Eptesicus fuscus, as it chased erratically moving insects in a dark laboratory flight room. We quantified the bat's complex pursuit trajectories using a simple delay differential equation. Our analysis of the pursuit trajectories suggests that bats use a constant absolute target direction strategy during pursuit. We show mathematically that, unlike CB, this approach minimizes the time it takes for a pursuer to intercept an unpredictably moving target. Interestingly, the bat's behavior is similar to the interception strategy implemented in some guided missiles. We suggest that the time-optimal strategy adopted by the bat is in response to the evolutionary pressures of having to capture erratic and fast moving insects.

  14. Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: Implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic

    USGS Publications Warehouse

    Phillips, R.L.; Grantz, A.

    2001-01-01

    The composition and distribution of ice-rafted glacial erratics in late Quaternary sediments define the major current systems of the Arctic Ocean and identify two distinct continental sources for the erratics. In the southern Amerasia basin up to 70% of the erratics are dolostones and limestones (the Amerasia suite) that originated in the carbonate-rich Paleozoic terranes of the Canadian Arctic Islands. These clasts reached the Arctic Ocean in glaciers and were ice-rafted to the core sites in the clockwise Beaufort Gyre. The concentration of erratics decreases northward by 98% along the trend of the gyre from southeastern Canada basin to Makarov basin. The concentration of erratics then triples across the Makarov basin flank of Lomonosov Ridge and siltstone, sandstone and siliceous clasts become dominant in cores from the ridge and the Eurasia basin (the Eurasia suite). The bedrock source for the siltstone and sandstone clasts is uncertain, but bedrock distribution and the distribution of glaciation in northern Eurasia suggest the Taymyr Peninsula-Kara Sea regions. The pattern of clast distribution in the Arctic Ocean sediments and the sharp northward decrease in concentration of clasts of Canadian Arctic Island provenance in the Amerasia basin support the conclusion that the modem circulation pattern of the Arctic Ocean, with the Beaufort Gyre dominant in the Amerasia basin and the Transpolar drift dominant in the Eurasia basin, has controlled both sea-ice and glacial iceberg drift in the Arctic Ocean during interglacial intervals since at least the late Pleistocene. The abruptness of the change in both clast composition and concentration on the Makarov basin flank of Lomonosov Ridge also suggests that the boundary between the Beaufort Gyre and the Transpolar Drift has been relatively stable during interglacials since that time. Because the Beaufort Gyre is wind-driven our data, in conjunction with the westerly directed orientation of sand dunes that formed during the last glacial maximum on the North Slope of Alaska, suggests that atmospheric circulation in the western Arctic during late Quaternary was similar to that of the present. ?? 2001 Elsevier Science B.V.

  15. Maps Showing Inundation Depths, Ice-Rafted Erratics, and Sedimentary Facies of Late Pleistocene Missoula Floods in the Willamette Valley, Oregon

    USGS Publications Warehouse

    Minervini, J.M.; O'Connor, J. E.; Wells, R.E.

    2003-01-01

    Glacial Lake Missoula, impounded by the Purcell Trench lobe of the late Pleistocene Cordilleran Icesheet, repeatedly breached its ice dam, sending floods as large as 2,500 cubic kilometers racing across the Channeled Scabland and down the Columbia River valley to the Pacific Ocean. Peak discharges for some floods exceeded 20 million cubic meters per second. At valley constrictions along the flood route, floodwaters temporarily ponded behind each narrow zone. One such constriction at Kalama Gap-northwest of Portland-backed water 120-150 meters high in the Portland basin, and backflooded 200 km south into Willamette Valley. Dozens of floods backed up into the Willamette Valley, eroding 'scabland' channels, and depositing giant boulder gravel bars in areas of vigorous currents as well as bedded flood sand and silt in backwater areas. Also, large chunks of ice entrained from the breached glacier dam rafted hundreds of 'erratic' rocks, leaving them scattered among the flanking foothills and valley bottom. From several sources and our own mapping, we have compiled information on many of these features and depict them on physiographic maps derived from digital elevation models of the Portland Basin and Willamette Valley. These maps show maximum flood inundation levels, inundation levels associated with stratigraphic evidence of repeated floodings, distribution of flood deposits, and sites of ice-rafted erratics. Accompanying these maps, a database lists locations, elevations, and descriptions of approximately 400 ice-rafted erratics-most compiled from early 20th-century maps and notes of A.M. Piper and I.S. Allison.

  16. Treatment of an Erratic Extraction Socket for Implant Therapy in a Patient with Chronic Periodontitis.

    PubMed

    Hamada, Yusuke; Prabhu, Srividya; John, Vanchit

    2016-01-01

    As implant therapy becomes more commonplace in daily practice, preservation and preparation of edentulous sites are key. Many times, however, implant therapy may not be considered at the time of tooth extraction and additional measures are not taken to conserve the edentulous site. While the healing process in extraction sockets has been well investigated and bone fill can be expected, there are cases where even when clinicians perform thorough debridement of the sockets, connective tissue infiltration into the socket can occur. This phenomenon, known as "erratic healing," may be associated with factors that lead to peri-implant disease and should be appropriately managed and treated prior to surgical implant placement. This case report describes the successful management of an erratic healing extraction socket in a 62-year-old Caucasian male patient with chronic periodontitis and the outcomes of an evidence-based treatment protocol performed prior to implant therapy. Careful preoperative analysis and cone beam computed tomography imaging can help detect signs of impaired healing in future implant sites and prevent surgical complications.

  17. Treatment of an Erratic Extraction Socket for Implant Therapy in a Patient with Chronic Periodontitis

    PubMed Central

    Prabhu, Srividya

    2016-01-01

    As implant therapy becomes more commonplace in daily practice, preservation and preparation of edentulous sites are key. Many times, however, implant therapy may not be considered at the time of tooth extraction and additional measures are not taken to conserve the edentulous site. While the healing process in extraction sockets has been well investigated and bone fill can be expected, there are cases where even when clinicians perform thorough debridement of the sockets, connective tissue infiltration into the socket can occur. This phenomenon, known as “erratic healing,” may be associated with factors that lead to peri-implant disease and should be appropriately managed and treated prior to surgical implant placement. This case report describes the successful management of an erratic healing extraction socket in a 62-year-old Caucasian male patient with chronic periodontitis and the outcomes of an evidence-based treatment protocol performed prior to implant therapy. Careful preoperative analysis and cone beam computed tomography imaging can help detect signs of impaired healing in future implant sites and prevent surgical complications. PMID:27807485

  18. Evolution of subterranean diving beetles (Coleoptera: Dytiscidae: Hydroporini, Bidessini) in the arid zone of Australia.

    PubMed

    Leys, Remko; Watts, Chris H S; Cooper, Steve J B; Humphreys, William F

    2003-12-01

    Calcrete aquifers in arid inland Australia have recently been found to contain the world's most diverse assemblage of subterranean diving beetles (Coleoptera: Dytiscidae). In this study we test whether the adaptive shift hypothesis (ASH) or the climatic relict hypothesis (CRH) is the most likely mode of evolution for the Australian subterranean diving beetles by using a phylogeny based on two sequenced fragments of mitochondrial genes (CO1 and 16S-tRNA-ND1) and linearized using a relaxed molecular clock method. Most individual calcrete aquifers contain an assemblage of diving beetle species of distantly related lineages and/or a single pair of sister species that significantly differ in size and morphology. Evolutionary transitions from surface to subterranean life took place in a relatively small time frame between nine and four million years ago. Most of the variation in divergence times of the sympatric sister species is explained by the variation in latitude of the localities, which correlates with the onset of aridity from the north to the south and with an aridity maximum in the Early Pliocene (five mya). We conclude that individual calcrete aquifers were colonized by several distantly related diving beetle lineages. Several lines of evidence from molecular clock analyses support the CRH, indicating that all evolutionary transitions took place during the Late Miocene and Early Pliocene as a result of aridification.

  19. High mitochondrial mutation rates estimated from deep-rooting Costa Rican pedigrees

    PubMed Central

    Madrigal, Lorena; Melendez-Obando, Mauricio; Villegas-Palma, Ramon; Barrantes, Ramiro; Raventos, Henrieta; Pereira, Reynaldo; Luiselli, Donata; Pettener, Davide; Barbujani, Guido

    2012-01-01

    Estimates of mutation rates for the noncoding hypervariable Region I (HVR-I) of mitochondrial DNA (mtDNA) vary widely, depending on whether they are inferred from phylogenies (assuming that molecular evolution is clock-like) or directly from pedigrees. All pedigree-based studies so far were conducted on populations of European origin. In this paper we analyzed 19 deep-rooting pedigrees in a population of mixed origin in Costa Rica. We calculated two estimates of the HVR-I mutation rate, one considering all apparent mutations, and one disregarding changes at sites known to be mutational hot spots and eliminating genealogy branches which might be suspected to include errors, or unrecognized adoptions along the female lines. At the end of this procedure, we still observed a mutation rate equal to 1.24 × 10−6, per site per year, i.e., at least three-fold as high as estimates derived from phylogenies. Our results confirm that mutation rates observed in pedigrees are much higher than estimated assuming a neutral model of long-term HVRI evolution. We argue that, until the cause of these discrepancies will be fully understood, both lower estimates (i.e., those derived from phylogenetic comparisons) and higher, direct estimates such as those obtained in this study, should be considered when modeling evolutionary and demographic processes. PMID:22460349

  20. Phylogeography of the Western Lyresnake (Trimorphodon biscutatus): testing aridland biogeographical hypotheses across the Nearctic-Neotropical transition.

    PubMed

    Devitt, Thomas J

    2006-12-01

    The Western Lyresnake (Trimorphodon biscutatus) is a widespread, polytypic taxon inhabiting arid regions from the warm deserts of the southwestern United States southward along the Pacific versant of Mexico to the tropical deciduous forests of Mesoamerica. This broadly distributed species provides a unique opportunity to evaluate a priori biogeographical hypotheses spanning two major distinct biogeographical realms (the Nearctic and Neotropical) that are usually treated separately in phylogeographical analyses. I investigated the phylogeography of T. biscutatus using maximum likelihood and Bayesian phylogenetic analysis of mitochondrial DNA (mtDNA) from across this species' range. Phylogenetic analyses recovered five well-supported clades whose boundaries are concordant with existing geographical barriers, a pattern consistent with a model of vicariant allopatric divergence. Assuming a vicariance model, divergence times between mitochondrial lineages were estimated using Bayesian relaxed molecular clock methods calibrated using geological information from putative vicariant events. Divergence time point estimates were bounded by broad confidence intervals, and thus these highly conservative estimates should be considered tentative hypotheses at best. Comparison of mtDNA lineages and taxa traditionally recognized as subspecies based on morphology suggest this taxon is comprised of multiple independent lineages at various stages of divergence, ranging from putative secondary contact and hybridization to sympatry of 'subspecies'.

  1. Metabolic Plasticity Enables Circadian Adaptation to Acute Hypoxia in Zebrafish Cells.

    PubMed

    Sandbichler, Adolf M; Jansen, Bianca; Peer, Bettina A; Paulitsch, Monika; Pelster, Bernd; Egg, Margit

    2018-01-01

    Reduced oxygen availability, hypoxia, is frequently encountered by organisms, tissues and cells, in aquatic environments as well as in high altitude or under pathological conditions such as infarct, stroke or cancer. The hypoxic signaling pathway was found to be mutually intertwined with circadian timekeeping in vertebrates and, as reported recently, also in mammals. However, the impact of hypoxia on intracellular metabolic oscillations is still unknown. For determination of metabolites we used Multilabel Reader based fluorescence and luminescence assays, circadian levels of Hypoxia Inducible Factor 1 alpha and oxidized peroxiredoxins were semi quantified by Western blotting and ratiometric quantification of cytosolic and mitochondrial H2O2 was achieved with stable transfections of a redox sensitive green fluorescent protein sensor into zebrafish fibroblasts. Circadian oscillations of core clock gene mRNA´s were assessed using realtime qPCR with subsequent cosine wave fit analysis. Here we show that under normoxia primary metabolic activity of cells predominately occurs during day time and that after acute hypoxia of two hours, administrated immediately before each sampling point, steady state concentrations of glycolytic key metabolites such as glucose and lactate reveal to be highly rhythmic, following a circadian pattern with highest levels during the night periods and reflecting the circadian variation of the cellular response to hypoxia. Remarkably, rhythms in glycolysis are transferred to cellular energy states under normoxic conditions, so that ADP/ATP ratios oscillate as well, which is the first evidence for cycling ADP/ATP pools in a metazoan cell line to our knowledge. Furthermore, the hypoxia induced alterations in rhythms of glycolysis lead to the alignment of three major cellular redox systems, namely the circadian oscillations of NAD+/NADH and NADP+/NADPH ratios and of increased nocturnal levels of oxidized peroxiredoxins, resulting in a highly oxidized nocturnal cellular environment. Of note, circadian rhythms of cytosolic H2O2 remain unaltered, while the transcriptional clock is already attenuated, as it is known to occur also under chronic hypoxia. We therefor propose that the realignment of metabolic redox oscillations might initiate the observed hypoxia induced attenuation of the transcriptional clock, based on the reduced binding affinity of the CLOCK/BMAL complex to the DNA in an oxidized environment. © 2018 The Author(s). Published by S. Karger AG, Basel.

  2. Phylogeography and spatial structure of the lowland tapir (Tapirus terrestris, Perissodactyla: Tapiridae) in South America.

    PubMed

    Ruiz-García, Manuel; Vásquez, Catalina; Sandoval, Sergio; Kaston, Franz; Luengas-Villamil, Kelly; Shostell, Joseph Mark

    2016-07-01

    We sequenced the mitochondrial cytochrome b gene of 141 lowland tapirs (Tapirus terrestris) - representing the largest geographical distribution sample of this species studied across of South America to date. We compare our new data regard to two previous works on population structure and molecular systematics of T. terrestris. Our data agree with the Thoisy et al.'s work in (1) the Northern Western Amazon basin was the area with the highest gene diversity levels in T. terrestris, being probably the area of initial diversification; (2) there was no clear association between haplogroups and specific geographical areas; (3) there were clear population decreases during the last glacial maximum for the different haplogroups detected, followed by population expansions during the Holocene; and (4) our temporal splits among different T. terrestris haplogroups coincided with the first molecular clock approach carried out by these authors (fossil calibration). Nevertheless, our study disagreed regard to other aspects of the Thoisy et al.'s claims: (1) meanwhile, they detected four relevant clades in their data, we put forward six different relevant clades; (2) the Amazon River was not a strong barrier for haplotype dispersion in T. terrestris; and (3) we found reciprocal monophyly between T. terrestris and T. pinchaque. Additionally, we sequenced 42 individuals (T. terrestris, T. pinchaque, T. bairdii, and the alleged "new species", T. kabomani) for three concatenated mitochondrial genes (Cyt-b, COI, and COII) agreeing quite well with the view of Voss et al., and against of the claims of Cozzuol et al. Tapirus kabomani should be not considered as a full species with the results obtained throughout the mitochondrial sequences.

  3. Mitogenome Phylogenetics: The Impact of Using Single Regions and Partitioning Schemes on Topology, Substitution Rate and Divergence Time Estimation

    PubMed Central

    Duchêne, Sebastián; Archer, Frederick I.; Vilstrup, Julia; Caballero, Susana; Morin, Phillip A.

    2011-01-01

    The availability of mitochondrial genome sequences is growing as a result of recent technological advances in molecular biology. In phylogenetic analyses, the complete mitogenome is increasingly becoming the marker of choice, usually providing better phylogenetic resolution and precision relative to traditional markers such as cytochrome b (CYTB) and the control region (CR). In some cases, the differences in phylogenetic estimates between mitogenomic and single-gene markers have yielded incongruent conclusions. By comparing phylogenetic estimates made from different genes, we identified the most informative mitochondrial regions and evaluated the minimum amount of data necessary to reproduce the same results as the mitogenome. We compared results among individual genes and the mitogenome for recently published complete mitogenome datasets of selected delphinids (Delphinidae) and killer whales (genus Orcinus). Using Bayesian phylogenetic methods, we investigated differences in estimation of topologies, divergence dates, and clock-like behavior among genes for both datasets. Although the most informative regions were not the same for each taxonomic group (COX1, CYTB, ND3 and ATP6 for Orcinus, and ND1, COX1 and ND4 for Delphinidae), in both cases they were equivalent to less than a quarter of the complete mitogenome. This suggests that gene information content can vary among groups, but can be adequately represented by a portion of the complete sequence. Although our results indicate that complete mitogenomes provide the highest phylogenetic resolution and most precise date estimates, a minimum amount of data can be selected using our approach when the complete sequence is unavailable. Studies based on single genes can benefit from the addition of a few more mitochondrial markers, producing topologies and date estimates similar to those obtained using the entire mitogenome. PMID:22073275

  4. Common features in diverse insect clocks.

    PubMed

    Numata, Hideharu; Miyazaki, Yosuke; Ikeno, Tomoko

    2015-01-01

    This review describes common features among diverse biological clocks in insects, including circadian, circatidal, circalunar/circasemilunar, and circannual clocks. These clocks control various behaviors, physiological functions, and developmental events, enabling adaptation to periodic environmental changes. Circadian clocks also function in time-compensation for celestial navigation and in the measurement of day or night length for photoperiodism. Phase response curves for such clocks reported thus far exhibit close similarities; specifically, the circannual clock in Anthrenus verbasci shows striking similarity to circadian clocks in its phase response. It is suggested that diverse biological clocks share physiological properties in their phase responses irrespective of period length. Molecular and physiological mechanisms are best understood for the optic-lobe and mid-brain circadian clocks, although there is no direct evidence that these clocks are involved in rhythmic phenomena other than circadian rhythms in daily events. Circadian clocks have also been localized in peripheral tissues, and research on their role in various rhythmic phenomena has been started. Although clock genes have been identified as controllers of circadian rhythms in daily events, some of these genes have also been shown to be involved in photoperiodism and possibly in time-compensated celestial navigation. In contrast, there is no experimental evidence indicating that any known clock gene is involved in biological clocks other than circadian clocks.

  5. Global synchronization of parallel processors using clock pulse width modulation

    DOEpatents

    Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.

    2013-04-02

    A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.

  6. Kicking modality during erratic-dynamic and static condition effects the muscular co-activation of attacker.

    PubMed

    Kim, Tae-Whan; Lee, Sang-Cheol; Kil, Se-Kee; Kang, Sung-Chul; Lim, Young-Tae; Kim, Ki-Tae; Panday, Siddhartha Bikram

    2017-05-01

    The purpose of the study was to investigate the effect of different kicking modality, i.e., erratic-dynamic target (EDT) versus static target (ST) on the performance of the roundhouse kick in two groups of taekwondo athletes of different skill level. Three-dimensional analysis and surface electromyography (SEMG) analysis were performed on 12 (Group A: six sub-elite, Group B: six elite) athletes to investigate muscle co-activation pattern under two conditions, i.e., EDT versus ST. In the results, the muscle recruitment ratio of the agonistic muscles was higher for Group A, whereas Group B had higher recruitment ratio for antagonist muscles. Overall, the co-activation index (CI) of hip joints appeared higher in the extensors for Group A, whereas higher CI was observed in flexor muscles for Group B with comparatively higher CI during EDT condition than ST condition. Higher value of CI was observed in flexor muscles of the knee joints among Group A during EDT conditions, in contrast, higher CI in the extensor muscles was observed among Group B during ST conditions. In conclusion, the study confirmed that erratic-dynamic movements of target could change the movement coordination pattern to maintain the joint stability of participants.

  7. Central and peripheral clocks are coupled by a neuropeptide pathway in Drosophila

    PubMed Central

    Selcho, Mareike; Millán, Carola; Palacios-Muñoz, Angelina; Ruf, Franziska; Ubillo, Lilian; Chen, Jiangtian; Bergmann, Gregor; Ito, Chihiro; Silva, Valeria; Wegener, Christian; Ewer, John

    2017-01-01

    Animal circadian clocks consist of central and peripheral pacemakers, which are coordinated to produce daily rhythms in physiology and behaviour. Despite its importance for optimal performance and health, the mechanism of clock coordination is poorly understood. Here we dissect the pathway through which the circadian clock of Drosophila imposes daily rhythmicity to the pattern of adult emergence. Rhythmicity depends on the coupling between the brain clock and a peripheral clock in the prothoracic gland (PG), which produces the steroid hormone, ecdysone. Time information from the central clock is transmitted via the neuropeptide, sNPF, to non-clock neurons that produce the neuropeptide, PTTH. These secretory neurons then forward time information to the PG clock. We also show that the central clock exerts a dominant role on the peripheral clock. This use of two coupled clocks could serve as a paradigm to understand how daily steroid hormone rhythms are generated in animals. PMID:28555616

  8. The Drosophila Clock Neuron Network Features Diverse Coupling Modes and Requires Network-wide Coherence for Robust Circadian Rhythms.

    PubMed

    Yao, Zepeng; Bennett, Amelia J; Clem, Jenna L; Shafer, Orie T

    2016-12-13

    In animals, networks of clock neurons containing molecular clocks orchestrate daily rhythms in physiology and behavior. However, how various types of clock neurons communicate and coordinate with one another to produce coherent circadian rhythms is not well understood. Here, we investigate clock neuron coupling in the brain of Drosophila and demonstrate that the fly's various groups of clock neurons display unique and complex coupling relationships to core pacemaker neurons. Furthermore, we find that coordinated free-running rhythms require molecular clock synchrony not only within the well-characterized lateral clock neuron classes but also between lateral clock neurons and dorsal clock neurons. These results uncover unexpected patterns of coupling in the clock neuron network and reveal that robust free-running behavioral rhythms require a coherence of molecular oscillations across most of the fly's clock neuron network. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. USNO Master Clock - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › USNO › Precise Time › Master Clock USNO Logo USNO Navigation Master Clock GPS Display Clocks TWSTT Telephone Time NTP Info USNO Master Clock clock vault The USNO Master Clock is the

  10. [Elevated expression of CLOCK is associated with poor prognosis in hepatocellular carcinoma].

    PubMed

    Li, Bo; Yang, Xiliang; Li, Jiaqi; Yang, Yi; Yan, Zhaoyong; Zhang, Hongxin; Mu, Jiao

    2018-02-01

    Objective To evaluate the expression of circadian locomotor output cycles kaput (CLOCK) and its effects on cell growth in hepatocellular carcinoma (HCC). Methods The expression of CLOCK in 158 pairs of human HCC tissues and matched noncancerous samples was detected by immunohistochemical (IHC) staining. The expression of CLOCK in HCC patients was also verified using the data from GEO and TCGA (a total of 356 cases). The relationship between CLOCK expression and clinicopathological features of HCC patients was analyzed by single factor statistical analysis. Kaplan-Meier survival curves of HCC patients were drawn to study the relationship between the expression level of CLOCK and the survival state. The effect of CLOCK on the growth of HepG2 cells was detected by MTS assay. Results The expression of CLOCK in HCC tissues was significantly higher than that in the adjacent tissues, and the up-regulation of CLOCK expression in HCC tissue was also confirmed in the public data of HCC (356 cases). HCC patients were divided into low CLOCK expression group and high CLOCK expression group. Univariate analysis showed that the expression of CLOCK was related to tumor size, TNM stage, and portal vein invasion in HCC patients. HCC patients with low CLOCK expression had longer overall survival time and relapse-free survival time than those with high CLOCK expression. The proliferation of cells significantly decreased after the expression of CLOCK was knocked down in HepG2 cells. Conclusion The expression of CLOCK in HCC tissues was much higher than that in normal liver tissues, and the high expression of CLOCK indicated the poor prognosis. The knockdown of CLOCK in HCC cells could inhibit the proliferation of HepG2 cells.

  11. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism.

    PubMed

    Marelja, Zvonimir; Leimkühler, Silke; Missirlis, Fanis

    2018-01-01

    Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.

  12. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism

    PubMed Central

    Marelja, Zvonimir; Leimkühler, Silke; Missirlis, Fanis

    2018-01-01

    Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle. PMID:29491838

  13. Molecular Systematics of the Cape Parrot (Poicephalus robustus): Implications for Taxonomy and Conservation

    PubMed Central

    Coetzer, Willem G.; Downs, Colleen T.; Perrin, Mike R.; Willows-Munro, Sandi

    2015-01-01

    The taxonomic position of the Cape Parrot (Poicephalus robustus robustus) has been the focus of much debate. A number of authors suggest that the Cape Parrot should be viewed as a distinct species separate from the other two P. robustus subspecies (P. r. fuscicollis and P. r. suahelicus). These recommendations were based on morphological, ecological, and behavioural assessments. In this study we investigated the validity of these recommendations using multilocus DNA analyses. We genotyped 138 specimens from five Poicephalus species (P. cryptoxanthus, P. gulielmi, P. meyeri, P. robustus, and P. rueppellii) using 11 microsatellite loci. Additionally, two mitochondrial (cytochrome oxidase I gene and 16S ribosomal RNA) and one nuclear intron (intron 7 of the β-fibrinogen gene) markers were amplified and sequenced. Bayesian clustering analysis and pairwise FST analysis of microsatellite data identified P. r. robustus as genetically distinct from the other P. robustus subspecies. Phylogenetic and molecular clock analyses on sequence data also supported the microsatellite analyses, placing P. r. robustus in a distinct clade separate from the other P. robustus subspecies. Molecular clock analysis places the most recent common ancestor between P. r. robustus and P. r. fuscicollis / P. r. suahelicus at 2.13 to 2.67 million years ago. Our results all support previous recommendations to elevate the Cape Parrot to species level. This will facilitate better planning and implementation of international and local conservation management strategies for the Cape Parrot. PMID:26267261

  14. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver

    PubMed Central

    Atger, Florian; Gobet, Cédric; Marquis, Julien; Martin, Eva; Wang, Jingkui; Weger, Benjamin; Lefebvre, Grégory; Descombes, Patrick; Naef, Felix; Gachon, Frédéric

    2015-01-01

    Diurnal oscillations of gene expression are a hallmark of rhythmic physiology across most living organisms. Such oscillations are controlled by the interplay between the circadian clock and feeding rhythms. Although rhythmic mRNA accumulation has been extensively studied, comparatively less is known about their transcription and translation. Here, we quantified simultaneously temporal transcription, accumulation, and translation of mouse liver mRNAs under physiological light–dark conditions and ad libitum or night-restricted feeding in WT and brain and muscle Arnt-like 1 (Bmal1)-deficient animals. We found that rhythmic transcription predominantly drives rhythmic mRNA accumulation and translation for a majority of genes. Comparison of wild-type and Bmal1 KO mice shows that circadian clock and feeding rhythms have broad impact on rhythmic gene expression, Bmal1 deletion affecting surprisingly both transcriptional and posttranscriptional levels. Translation efficiency is differentially regulated during the diurnal cycle for genes with 5′-Terminal Oligo Pyrimidine tract (5′-TOP) sequences and for genes involved in mitochondrial activity, many harboring a Translation Initiator of Short 5′-UTR (TISU) motif. The increased translation efficiency of 5′-TOP and TISU genes is mainly driven by feeding rhythms but Bmal1 deletion also affects amplitude and phase of translation, including TISU genes. Together this study emphasizes the complex interconnections between circadian and feeding rhythms at several steps ultimately determining rhythmic gene expression and translation. PMID:26554015

  15. CLOCK regulates mammary epithelial cell growth and differentiation

    PubMed Central

    Crodian, Jennifer; Suárez-Trujillo, Aridany; Erickson, Emily; Weldon, Bethany; Crow, Kristi; Cummings, Shelby; Chen, Yulu; Shamay, Avi; Mabjeesh, Sameer J.; Plaut, Karen

    2016-01-01

    Circadian clocks influence virtually all physiological processes, including lactation. Here, we investigate the role of the CLOCK gene in regulation of mammary epithelial cell growth and differentiation. Comparison of mammary morphology in late-pregnant wild-type and ClockΔ19 mice, showed that gland development was negatively impacted by genetic loss of a functional timing system. To understand whether these effects were due, in part, to loss of CLOCK function in the gland, the mouse mammary epithelial cell line, HC11, was transfected with short hairpin RNA that targeted Clock (shClock). Cells transfected with shClock expressed 70% less Clock mRNA than wild-type (WT) HC11 cultures, which resulted in significantly depressed levels of CLOCK protein (P < 0.05). HC11 lines carrying shClock had four-fold higher growth rates (P < 0.05), and the percentage of cells in G1 phase was significantly higher (90.1 ± 1.1% of shClock vs. 71.3 ± 3.6% of WT-HC11) following serum starvation. Quantitative-PCR (qPCR) analysis showed shClock had significant effects (P < 0.0001) on relative expression levels of Ccnd1, Wee1, and Tp63. qPCR analysis of the effect of shClock on Fasn and Cdh1 expression in undifferentiated cultures and cultures treated 96 h with dexamethasone, insulin, and prolactin (differentiated) found levels were reduced by twofold and threefold, respectively (P < 0.05), in shClock line relative to WT cultures. Abundance of CDH1 and TP63 proteins were significantly reduced in cultures transfected with shClock. These data support how CLOCK plays a role in regulation of epithelial cell growth and differentiation in the mammary gland. PMID:27707717

  16. Using Integer Clocks to Verify the Timing-Sync Sensor Network Protocol

    NASA Technical Reports Server (NTRS)

    Huang, Xiaowan; Singh, Anu; Smolka, Scott A.

    2010-01-01

    We use the UPPAAL model checker for Timed Automata to verify the Timing-Sync time-synchronization protocol for sensor networks (TPSN). The TPSN protocol seeks to provide network-wide synchronization of the distributed clocks in a sensor network. Clock-synchronization algorithms for sensor networks such as TPSN must be able to perform arithmetic on clock values to calculate clock drift and network propagation delays. They must be able to read the value of a local clock and assign it to another local clock. Such operations are not directly supported by the theory of Timed Automata. To overcome this formal-modeling obstacle, we augment the UPPAAL specification language with the integer clock derived type. Integer clocks, which are essentially integer variables that are periodically incremented by a global pulse generator, greatly facilitate the encoding of the operations required to synchronize clocks as in the TPSN protocol. With this integer-clock-based model of TPSN in hand, we use UPPAAL to verify that the protocol achieves network-wide time synchronization and is devoid of deadlock. We also use the UPPAAL Tracer tool to illustrate how integer clocks can be used to capture clock drift and resynchronization during protocol execution

  17. A clock-aided positioning algorithm based on Kalman model of GNSS receiver clock bias

    NASA Astrophysics Data System (ADS)

    Zhu, Lingyao; Li, Zishen; Yuan, Hong

    2017-10-01

    The modeling and forecasting of the receiver clock bias is of practical significance, including the improvement of positioning accuracy, etc. When the clock frequency of the receiver is stable, the model can be established according to the historical clock bias data and the clock bias of the following time can be predicted. For this, we adopted the Kalman model to predict the receiver clock bias based on the calculated clock bias data obtained from the laboratory via sliding mode. Meanwhile, the relevant clock-aided positioning algorithm was presented. The results show that: the Kalman model can be used in practical work; and that under the condition that only 3 satellite signal can be received, this clock-aided positioning results can meet the needs of civilian users, which improves the continuity of positioning in harsh conditions.

  18. Variable frequency microprocessor clock generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branson, C.N.

    A microprocessor-based system is described comprising: a digital central microprocessor provided with a clock input and having a rate of operation determined by the frequency of a clock signal input thereto; memory means operably coupled to the central microprocessor for storing programs respectively including a plurality of instructions and addressable by the central microprocessor; peripheral device operably connected to the central microprocessor, the first peripheral device being addressable by the central microprocessor for control thereby; a system clock generator for generating a digital reference clock signal having a reference frequency rate; and frequency rate reduction circuit means connected between themore » clock generator and the clock input of the central microprocessor for selectively dividing the reference clock signal to generate a microprocessor clock signal as an input to the central microprocessor for clocking the central microprocessor.« less

  19. Molecular targets for small-molecule modulators of circadian clocks

    PubMed Central

    He, Baokun; Chen, Zheng

    2016-01-01

    Background Circadian clocks are endogenous timing systems that regulate various aspects of mammalian metabolism, physiology and behavior. Traditional chronotherapy refers to the administration of drugs in a defined circadian time window to achieve optimal pharmacokinetic and therapeutic efficacies. In recent years, substantial efforts have been dedicated to developing novel small-molecule modulators of circadian clocks. Methods Here, we review the recent progress in the identification of molecular targets of small-molecule clock modulators and their efficacies in clock-related disorders. Specifically, we examine the clock components and regulatory factors as possible molecular targets of small molecules, and we review several key clock-related disorders as promising venues for testing the preventive/therapeutic efficacies of these small molecules. Finally, we also discuss circadian regulation of drug metabolism. Results Small molecules can modulate the period, phase and/or amplitude of the circadian cycle. Core clock proteins, nuclear hormone receptors, and clock-related kinases and other epigenetic regulators are promising molecular targets for small molecules. Through these targets small molecules exert protective effects against clock-related disorders including the metabolic syndrome, immune disorders, sleep disorders and cancer. Small molecules can also modulate circadian drug metabolism and response to existing therapeutics. Conclusion Small-molecule clock modulators target clock components or diverse cellular pathways that functionally impinge upon the clock. Target identification of new small-molecule modulators will deepen our understanding of key regulatory nodes in the circadian network. Studies of clock modulators will facilitate their therapeutic applications, alone or in combination, for clock-related diseases. PMID:26750111

  20. Phylogenetic Status and Timescale for the Diversification of Steno and Sotalia Dolphins

    PubMed Central

    Cunha, Haydée A.; Moraes, Lucas C.; Medeiros, Bruna V.; Lailson-Brito, José; da Silva, Vera M. F.; Solé-Cava, Antonio M.; Schrago, Carlos G.

    2011-01-01

    Molecular data have provided many insights into cetacean evolution but some unsettled issues still remain. We estimated the topology and timing of cetacean evolutionary relationships using Bayesian and maximum likelihood analyses of complete mitochondrial genomes. In order to clarify the phylogenetic placement of Sotalia and Steno within the Delphinidae, we sequenced three new delphinid mitogenomes. Our analyses support three delphinid clades: one joining Steno and Sotalia (supporting the revised subfamily Stenoninae); another placing Sousa within the Delphininae; and a third, the Globicephalinae, which includes Globicephala, Feresa, Pseudorca, Peponocephala and Grampus. We also conclude that Orcinus does not belong in the Globicephalinae, but Orcaella may be part of that subfamily. Divergence dates were estimated using the relaxed molecular clock calibrated with fossil data. We hypothesise that the timing of separation of the marine and Amazonian Sotalia species (2.3 Ma) coincided with the establishment of the modern Amazon River basin. PMID:22163290

  1. Phylogenetic status and timescale for the diversification of Steno and Sotalia dolphins.

    PubMed

    Cunha, Haydée A; Moraes, Lucas C; Medeiros, Bruna V; Lailson-Brito, José; da Silva, Vera M F; Solé-Cava, Antonio M; Schrago, Carlos G

    2011-01-01

    Molecular data have provided many insights into cetacean evolution but some unsettled issues still remain. We estimated the topology and timing of cetacean evolutionary relationships using bayesian and maximum likelihood analyses of complete mitochondrial genomes. In order to clarify the phylogenetic placement of Sotalia and Steno within the Delphinidae, we sequenced three new delphinid mitogenomes. Our analyses support three delphinid clades: one joining Steno and Sotalia (supporting the revised subfamily Stenoninae); another placing Sousa within the Delphininae; and a third, the Globicephalinae, which includes Globicephala, Feresa, Pseudorca, Peponocephala and Grampus. We also conclude that Orcinus does not belong in the Globicephalinae, but Orcaella may be part of that subfamily. Divergence dates were estimated using the relaxed molecular clock calibrated with fossil data. We hypothesise that the timing of separation of the marine and Amazonian Sotalia species (2.3 Ma) coincided with the establishment of the modern Amazon River basin.

  2. Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs.

    PubMed Central

    Horai, S; Hayasaka, K; Kondo, R; Tsugane, K; Takahata, N

    1995-01-01

    We analyzed the complete mitochondrial DNA (mtDNA) sequences of three humans (African, European, and Japanese), three African apes (common and pygmy chimpanzees, and gorilla), and one orangutan in an attempt to estimate most accurately the substitution rates and divergence times of hominoid mtDNAs. Nonsynonymous substitutions and substitutions in RNA genes have accumulated with an approximately clock-like regularity. From these substitutions and under the assumption that the orangutan and African apes diverged 13 million years ago, we obtained a divergence time for humans and chimpanzees of 4.9 million years. This divergence time permitted calibration of the synonymous substitution rate (3.89 x 10(-8)/site per year). To obtain the substitution rate in the displacement (D)-loop region, we compared the three human mtDNAs and measured the relative abundance of substitutions in the D-loop region and at synonymous sites. The estimated substitution rate in the D-loop region was 7.00 x 10(-8)/site per year. Using both synonymous and D-loop substitutions, we inferred the age of the last common ancestor of the human mtDNAs as 143,000 +/- 18,000 years. The shallow ancestry of human mtDNAs, together with the observation that the African sequence is the most diverged among humans, strongly supports the recent African origin of modern humans, Homo sapiens sapiens. PMID:7530363

  3. Molecular evidence for the subspecific differentiation of blue sheep (Pseudois nayaur) and polyphyletic origin of dwarf blue sheep (Pseudois schaeferi).

    PubMed

    Tan, Shuai; Zou, Dandan; Tang, Lei; Wang, Gaochao; Peng, Quekun; Zeng, Bo; Zhang, Chen; Zou, Fangdong

    2012-06-01

    Blue sheep (Pseudois nayaur), a Central Asian ungulate with restricted geographic distribution, exhibits unclear variation in morphology and phylogeographic structure. The composition of species and subspecies in the genus Pseudois is controversial, particularly with respect to the taxonomic designation of geographically restricted populations. Here, 26 specimens including 5 dwarf blue sheep (Pseudois schaeferi), which were collected from a broad geographic region in China, were analyzed for 2 mitochondrial DNA fragments (cytochrome b and control region sequences). In a pattern consistent with geographically defined subspecies, we found three deeply divergent mitochondrial lineages restricted to different geographic regions. The currently designated two subspecies of blue sheep, Pseudois nayaur nayaur and Pseudois nayaur szechuanensis, were recognized in the phylogenetic trees. In addition, the Helan Mountain population showed distinct genetic characteristics from other geographic populations, and thus should be classified as a new subspecies. In contrast, dwarf blue sheep clustered closely with some blue sheep from Sichuan Province in the phylogenetic trees. Therefore, dwarf blue sheep appear to be a subset of Pseudois nayaur szechuanensis. After considering both population genetic information and molecular clock analysis, we obtained some relevant molecular phylogeographic information concerning the historical biogeography of blue sheep. These results also indicate that western Sichuan was a potential refugium for blue sheep during the Quaternary period.

  4. Phylogenetic analysis of peri-Mediterranean blennies of the genus Salaria: molecular insights on the colonization of freshwaters.

    PubMed

    Almada, V C; Robalo, J I; Levy, A; Freyhof, J; Bernardi, G; Doadrio, I

    2009-08-01

    In this paper, the phylogenetic relationships of the marine blenny Salaria pavo and the freshwater S. fluviatilis and S. economidisi were analyzed using four molecular markers: the mitochondrial 12S rRNA, 16S rRNA, and the control region and the nuclear first intron of the S7 ribosomal protein. The monophyly of Salaria is supported, as well as that of S. pavo and that of all the freshwater members of Salaria. Thus, the present results support a single origin for all freshwater Mediterranean blenniids. Our results reject the placement of the species of Salaria in the genus Lipophrys as proposed in previous studies. Using a molecular clock calibrated with trans-Isthmian geminate blenniid species, the split between the ancestor of the freshwater lineage and the ancestor of S. pavo is tentatively placed in the Middle Miocene (well before the Messinian). The marine S. pavo displays a very low level of intraspecific sequence divergence consistent with a Pleistocene bottleneck. S. fluviatilis is a paraphyletic entity with S. economidisi nested within it. A Moroccan population of S. fluviatilis is more divergent than S. economidisi, both in nuclear and mitochondrial genes. Fish from Israel together with some Turkish samples represent the second oldest split. It is argued that these populations may represent cryptic species. Thus, further studies on the taxonomy of these freshwater blennies are urgently needed.

  5. Ancient islands and modern invasions: disparate phylogeographic histories among Hispaniola's endemic birds.

    PubMed

    Sly, Nicholas D; Townsend, Andrea K; Rimmer, Christopher C; Townsend, Jason M; Latta, Steven C; Lovette, Irby J

    2011-12-01

    With its large size, complex topography and high number of avian endemics, Hispaniola appears to be a likely candidate for the in situ speciation of its avifauna, despite the worldwide rarity of avian speciation within single islands. We used multilocus comparative phylogeography techniques to examine the pattern and history of divergence in 11 endemic birds representing potential within-island speciation events. Haplotype and allele networks from mitochondrial ND2 and nuclear intron loci reveal a consistent pattern: phylogeographic divergence within or between closely related species is correlated with the likely distribution of ancient sea barriers that once divided Hispaniola into several smaller paleo-islands. Coalescent and mitochondrial clock dating of divergences indicate species-specific response to different geological events over the wide span of the island's history. We found no evidence that ecological or topographical complexity generated diversity, either by creating open niches or by restricting long-term gene flow. Thus, no true within-island speciation appears to have occurred among the species sampled on Hispaniola. Divergence events predating the merging of Hispaniola's paleo-island blocks cannot be considered in situ divergence, and postmerging divergence in response to episodic island segmentation by marine flooding probably represents in situ vicariance or interarchipelago speciation by dispersal. Our work highlights the necessity of considering island geologic history while investigating the speciation-area relationship in birds and other taxa. © 2011 Blackwell Publishing Ltd.

  6. The NAD+/PARP1/SIRT1 Axis in Aging.

    PubMed

    Mendelsohn, Andrew R; Larrick, James W

    2017-06-01

    NAD+ levels decline with age in diverse animals from Caenorhabditis elegans to mice. Raising NAD+ levels by dietary supplementation with NAD+ precursors, nicotinamide riboside (NR) or nicotinamide mononucleotide (NMN), improves mitochondrial function and muscle and neural and melanocyte stem cell function in mice, as well as increases murine life span. Decreased NAD+ levels with age reduce SIRT1 function and reduce the mitochondrial unfolded protein response, which can be overcome by NR supplementation. Decreased NAD+ levels cause NAD+-binding protein DBC1 to form a complex with PARP1, inhibiting poly(adenosine diphosphate-ribose) polymerase (PARP) catalytic activity. Old mice have increased amounts of DBC1-PARP1 complexes, lower PARP activity, increased DNA damage, and reduced nonhomologous end joining and homologous recombination repair. DBC1-PARP1 complexes in old mice can be broken by increasing NAD+ levels through treatment with NMN, reducing DNA damage and restoring PARP activity to youthful levels. The mechanism of declining NAD+ levels and its fundamental importance to aging are yet to be elucidated. There is a correlation of PARP activity with mammalian life span that suggests that NAD+/SIRT1/PARP1 may be more significant than the modest effects on life span observed for NR supplementation in old mice. The NAD+/PARP1/SIRT1 axis may link NAD+ levels and DNA damage with the apparent epigenomic DNA methylation clocks that have been described.

  7. Transoceanic Dispersal and Plate Tectonics Shaped Global Cockroach Distributions: Evidence from Mitochondrial Phylogenomics.

    PubMed

    Bourguignon, Thomas; Tang, Qian; Ho, Simon Y W; Juna, Frantisek; Wang, Zongqing; Arab, Daej A; Cameron, Stephen L; Walker, James; Rentz, David; Evans, Theodore A; Lo, Nathan

    2018-04-01

    Following the acceptance of plate tectonics theory in the latter half of the 20th century, vicariance became the dominant explanation for the distributions of many plant and animal groups. In recent years, however, molecular-clock analyses have challenged a number of well-accepted hypotheses of vicariance. As a widespread group of insects with a fossil record dating back 300 My, cockroaches provide an ideal model for testing hypotheses of vicariance through plate tectonics versus transoceanic dispersal. However, their evolutionary history remains poorly understood, in part due to unresolved relationships among the nine recognized families. Here, we present a phylogenetic estimate of all extant cockroach families, as well as a timescale for their evolution, based on the complete mitochondrial genomes of 119 cockroach species. Divergence dating analyses indicated that the last common ancestor of all extant cockroaches appeared ∼235 Ma, ∼95 My prior to the appearance of fossils that can be assigned to extant families, and before the breakup of Pangaea began. We reconstructed the geographic ranges of ancestral cockroaches and found tentative support for vicariance through plate tectonics within and between several major lineages. We also found evidence of transoceanic dispersal in lineages found across the Australian, Indo-Malayan, African, and Madagascan regions. Our analyses provide evidence that both vicariance and dispersal have played important roles in shaping the distribution and diversity of these insects.

  8. Molecular phylogeny of the Cricetinae subfamily based on the mitochondrial cytochrome b and 12S rRNA genes and the nuclear vWF gene.

    PubMed

    Neumann, Karsten; Michaux, Johan; Lebedev, Vladimir; Yigit, Nuri; Colak, Ercument; Ivanova, Natalia; Poltoraus, Andrey; Surov, Alexei; Markov, Georgi; Maak, Steffen; Neumann, Sabine; Gattermann, Rolf

    2006-04-01

    Despite some popularity of hamsters as pets and laboratory animals there is no reliable phylogeny of the subfamily Cricetinae available so far. Contradicting views exist not only about the actual number of species but also concerning the validity of several genera. We used partial DNA sequences of two mitochondrial (cytochrome b, 12S rRNA) and one partial nuclear gene (von Willebrand Factor exon 28) to provide a first gene tree of the Cricetinae based on 15 taxa comprising six genera. According to our data, Palaearctic hamsters fall into three distinct phylogenetic groups: Phodopus, Mesocricetus, and Cricetus-related species which evolved during the late Miocene about 7-12MY ago. Surprisingly, the genus Phodopus, which was previously thought to have appeared during the Pleistocene, forms the oldest clade. The largest number of extant hamster genera is found in a group of Cricetus-related hamsters. The genus Cricetulus itself proved to be not truly monophyletic with Cricetulus migratorius appearing more closely related to Tscherskia, Cricetus, and Allocricetulus. We propose to place the species within a new monotypic genus. Molecular clock calculations are not always in line with the dating of fossil records. DNA based divergence time estimates as well as taxonomic relationships demand a reevaluation of morphological characters previously used to identify fossils and extant hamsters.

  9. Molecular phylogenetic and dating analyses using mitochondrial DNA sequences of eyelid geckos (Squamata: Eublepharidae).

    PubMed

    Jonniaux, Pierre; Kumazawa, Yoshinori

    2008-01-15

    Mitochondrial DNA sequences of approximately 2.3 kbp including the complete NADH dehydrogenase subunit 2 gene and its flanking genes, as well as parts of 12S and 16S rRNA genes were determined from major species of the eyelid gecko family Eublepharidae sensu [Kluge, A.G. 1987. Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Misc. Publ. Mus. Zool. Univ. Michigan 173, 1-54.]. In contrast to previous morphological studies, phylogenetic analyses based on these sequences supported that Eublepharidae and Gekkonidae form a sister group with Pygopodidae, raising the possibility of homoplasious character change in some key features of geckos, such as reduction of movable eyelids and innovation of climbing toe pads. The phylogenetic analyses also provided a well-resolved tree for relationships between the eublepharid species. The Bayesian estimation of divergence times without assuming the molecular clock suggested the Jurassic divergence of Eublepharidae from Gekkonidae and radiations of most eublepharid genera around the Cretaceous. These dating results appeared to be robust against some conditional changes for time estimation, such as gene regions used, taxon representation, and data partitioning. Taken together with geological evidence, these results support the vicariant divergence of Eublepharidae and Gekkonidae by the breakup of Pangea into Laurasia and Gondwanaland, and recent dispersal of two African eublepharid genera from Eurasia to Africa after these landmasses were connected in the Early Miocene.

  10. Unraveling Selection in the Mitochondrial Genome of Drosophila

    PubMed Central

    Ballard, JWO.; Kreitman, M.

    1994-01-01

    We examine mitochondrial DNA variation at the cytochrome b locus within and between three species of Drosophila to determine whether patterns of variation conform to the predictions of neutral molecular evolution. The entire 1137-bp cytochrome b locus was sequenced in 16 lines of Drosophila melanogaster, 18 lines of Drosophila simulans and 13 lines of Drosophila yakuba. Patterns of variation depart from neutrality by several test criteria. Analysis of the evolutionary clock hypothesis shows unequal rates of change along D. simulans lineages. A comparison within and between species of the ratio of amino acid replacement change to synonymous change reveals a relative excess of amino acid replacement polymorphism compared to the neutral prediction, suggestive of slightly deleterious or diversifying selection. There is evidence for excess homozygosity in our world wide sample of D. melanogaster and D. simulans alleles, as well as a reduction in the number of segregating sites in D. simulans, indicative of selective sweeps. Furthermore, a test of neutrality for codon usage shows the direction of mutations at third positions differs among different topological regions of the gene tree. The analyses indicate that molecular variation and evolution of mtDNA are governed by many of the same selective forces that have been shown to govern nuclear genome evolution and suggest caution be taken in the use of mtDNA as a ``neutral'' molecular marker. PMID:7851772

  11. Entanglement of quantum clocks through gravity

    NASA Astrophysics Data System (ADS)

    Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2017-03-01

    In general relativity, the picture of space-time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass-energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks.

  12. Entanglement of quantum clocks through gravity.

    PubMed

    Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2017-03-21

    In general relativity, the picture of space-time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass-energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks.

  13. Geopotential measurements with synchronously linked optical lattice clocks

    NASA Astrophysics Data System (ADS)

    Takano, Tetsushi; Takamoto, Masao; Ushijima, Ichiro; Ohmae, Noriaki; Akatsuka, Tomoya; Yamaguchi, Atsushi; Kuroishi, Yuki; Munekane, Hiroshi; Miyahara, Basara; Katori, Hidetoshi

    2016-10-01

    According to Einstein's theory of relativity, the passage of time changes in a gravitational field. On Earth, raising a clock by 1 cm increases its apparent tick rate by 1.1 parts in 1018, allowing chronometric levelling through comparison of optical clocks. Here, we demonstrate such geopotential measurements by determining the height difference of master and slave clocks separated by 15 km with an uncertainty of 5 cm. A subharmonic of the master clock laser is delivered through a telecom fibre to synchronously operate the distant clocks. Clocks operated under such phase coherence reject clock laser noise and facilitate proposals for linking clocks and interferometers. Taken over half a year, 11 measurements determine the fractional frequency difference between the two clocks to be 1,652.9(5.9) × 10-18, consistent with an independent measurement by levelling and gravimetry. Our system demonstrates a building block for an internet of clocks, which may constitute ‘quantum benchmarks’, serving as height references with dynamic responses.

  14. Oscillator networks with tissue-specific circadian clocks in plants.

    PubMed

    Inoue, Keisuke; Araki, Takashi; Endo, Motomu

    2017-09-08

    Many organisms rely on circadian clocks to synchronize their biological processes with the 24-h rotation of the earth. In mammals, the circadian clock consists of a central clock in the suprachiasmatic nucleus and peripheral clocks in other tissues. The central clock is tightly coupled to synchronize rhythmicity and can organize peripheral clocks through neural and hormonal signals. In contrast to mammals, it has long been assumed that the circadian clocks in each plant cell is able to be entrained by external light, and they are only weakly coupled to each other. Recently, however, several reports have demonstrated that plants have unique oscillator networks with tissue-specific circadian clocks. Here, we introduce our current view regarding tissue-specific properties and oscillator networks of plant circadian clocks. Accumulating evidence suggests that plants have multiple oscillators, which show distinct properties and reside in different tissues. A direct tissue-isolation technique and micrografting have clearly demonstrated that plants have hierarchical oscillator networks consisting of multiple tissue-specific clocks. Copyright © 2017. Published by Elsevier Ltd.

  15. Entanglement of quantum clocks through gravity

    PubMed Central

    Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2017-01-01

    In general relativity, the picture of space–time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass–energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks. PMID:28270623

  16. Electromagnetic synchronisation of clocks with finite separation in a rotating system

    NASA Astrophysics Data System (ADS)

    Cohen, J. M.; Moses, H. E.; Rosenblum, A.

    1984-11-01

    For clocks on the vertices of a triangle, it is shown that clock synchronisation using electromagnetic signals between finitely spaced clocks in a rotating frame leads to the same synchronization error as a closely spaced band of clocks along the same light path. In addition, the above result is generalized to n equally spaced clocks.

  17. Biological timing and the clock metaphor: oscillatory and hourglass mechanisms.

    PubMed

    Rensing, L; Meyer-Grahle, U; Ruoff, P

    2001-05-01

    Living organisms have developed a multitude of timing mechanisms--"biological clocks." Their mechanisms are based on either oscillations (oscillatory clocks) or unidirectional processes (hourglass clocks). Oscillatory clocks comprise circatidal, circalunidian, circadian, circalunar, and circannual oscillations--which keep time with environmental periodicities--as well as ultradian oscillations, ovarian cycles, and oscillations in development and in the brain, which keep time with biological timescales. These clocks mainly determine time points at specific phases of their oscillations. Hourglass clocks are predominantly found in development and aging and also in the brain. They determine time intervals (duration). More complex timing systems combine oscillatory and hourglass mechanisms, such as the case for cell cycle, sleep initiation, or brain clocks, whereas others combine external and internal periodicities (photoperiodism, seasonal reproduction). A definition of a biological clock may be derived from its control of functions external to its own processes and its use in determining temporal order (sequences of events) or durations. Biological and chemical oscillators are characterized by positive and negative feedback (or feedforward) mechanisms. During evolution, living organisms made use of the many existing oscillations for signal transmission, movement, and pump mechanisms, as well as for clocks. Some clocks, such as the circadian clock, that time with environmental periodicities are usually compensated (stabilized) against temperature, whereas other clocks, such as the cell cycle, that keep time with an organismic timescale are not compensated. This difference may be related to the predominance of negative feedback in the first class of clocks and a predominance of positive feedback (autocatalytic amplification) in the second class. The present knowledge of a compensated clock (the circadian oscillator) and an uncompensated clock (the cell cycle), as well as relevant models, are briefly re viewed. Hourglass clocks are based on linear or exponential unidirectional processes that trigger events mainly in the course of development and aging. An important hourglass mechanism within the aging process is the limitation of cell division capacity by the length of telomeres. The mechanism of this clock is briefly reviewed. In all clock mechanisms, thresholds at which "dependent variables" are triggered play an important role.

  18. The Clock mutant mouse is a novel experimental model for nocturia and nocturnal polyuria.

    PubMed

    Ihara, Tatsuya; Mitsui, Takahiko; Nakamura, Yuki; Kira, Satoru; Miyamoto, Tatsuya; Nakagomi, Hiroshi; Sawada, Norifumi; Hirayama, Yuri; Shibata, Keisuke; Shigetomi, Eiji; Shinozaki, Yoichi; Yoshiyama, Mitsuharu; Andersson, Karl-Erik; Nakao, Atsuhito; Takeda, Masayuki; Koizumi, Schuichi

    2017-04-01

    The pathophysiologies of nocturia (NOC) and nocturnal polyuria (NP) are multifactorial and their etiologies remain unclear in a large number of patients. Clock genes exist in most cells and organs, and the products of Clock regulate circadian rhythms as representative clock genes. Clock genes regulate lower urinary tract function, and a newly suggested concept is that abnormalities in clock genes cause lower urinary tract symptoms. In the present study, we investigated the voiding behavior of Clock mutant (Clock Δ19/Δ19 ) mice in order to determine the effects of clock genes on NOC/NP. Male C57BL/6 mice aged 8-12 weeks (WT) and male C57BL/6 Clock Δ19/Δ19 mice aged 8 weeks were used. They were bred under 12 hr light/dark conditions for 2 weeks and voiding behavior was investigated by measuring water intake volume, urine volume, urine volume/void, and voiding frequency in metabolic cages in the dark and light periods. No significant differences were observed in behavior patterns between Clock Δ19/Δ19 and WT mice. Clock Δ19/Δ19 mice showed greater voiding frequencies and urine volumes during the sleep phase than WT mice. The diurnal change in urine volume/void between the dark and light periods in WT mice was absent in Clock Δ19/Δ19 mice. Additionally, functional bladder capacity was significantly lower in Clock Δ19/Δ19 mice than in WT mice. We demonstrated that Clock Δ19/Δ19 mice showed the phenotype of NOC/NP. The Clock Δ19/Δ19 mouse may be used as an animal model of NOC and NP. Neurourol. Urodynam. 36:1034-1038, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Real-Time Distributed Embedded Oscillator Operating Frequency Monitoring

    NASA Technical Reports Server (NTRS)

    Pollock, Julie; Oliver, Brett; Brickner, Christopher

    2012-01-01

    A document discusses the utilization of embedded clocks inside of operating network data links as an auxiliary clock source to satisfy local oscillator monitoring requirements. Modem network interfaces, typically serial network links, often contain embedded clocking information of very tight precision to recover data from the link. This embedded clocking data can be utilized by the receiving device to monitor the local oscillator for tolerance to required specifications, often important in high-integrity fault-tolerant applications. A device can utilize a received embedded clock to determine if the local or the remote device is out of tolerance by using a single link. The local device can determine if it is failing, assuming a single fault model, with two or more active links. Network fabric components, containing many operational links, can potentially determine faulty remote or local devices in the presence of multiple faults. Two methods of implementation are described. In one method, a recovered clock can be directly used to monitor the local clock as a direct replacement of an external local oscillator. This scheme is consistent with a general clock monitoring function whereby clock sources are clocking two counters and compared over a fixed interval of time. In another method, overflow/underflow conditions can be used to detect clock relationships for monitoring. These network interfaces often provide clock compensation circuitry to allow data to be transferred from the received (network) clock domain to the internal clock domain. This circuit could be modified to detect overflow/underflow conditions of the buffering required and report a fast or slow receive clock, respectively.

  20. Computer Aided Wirewrap Interconnect.

    DTIC Science & Technology

    1980-11-01

    ECLI (180 MHz System Clock Generated via Ring Oscillator) Clock Waveform: Synchronous Phase 0 Output Binary Counter: Power Plane Noie: (Loaded) LSB...LOGIC (ECL) (185 MHz System Clock Generated via Ring Oscillator) Clock Woveform Synchronous Phase 0 Output Binary Counter- Power Plane Voise (Loaded...High Speed .. ......... . 98 Clock Signals Into Logic Panels in a Multiboard System On-Eoard Clock Distribution Via Fanout .... ......... 102 Through

  1. Molecular cogs of the insect circadian clock.

    PubMed

    Shirasu, Naoto; Shimohigashi, Yasuyuki; Tominaga, Yoshiya; Shimohigashi, Miki

    2003-08-01

    During the last five years, enormous progress has been made in understanding the molecular basis of circadian systems, mainly by molecular genetic studies using the mouse and fly. Extensive evidence has revealed that the core clock machinery involves "clock genes" and "clock proteins" functioning as molecular cogs. These participate in transcriptional/translational feedback loops and many homologous clock-components in the fruit fly Drosophila are also expressed in mammalian clock tissues with circadian rhythms. Thus, the mechanisms of the central clock seem to be conserved across animal kingdom. However, some recent studies imply that the present widely accepted molecular models of circadian clocks may not always be supported by the experimental evidence.

  2. Circadian clock gene plays a key role on ovarian cycle and spontaneous abortion.

    PubMed

    Li, Ruiwen; Cheng, Shuting; Wang, Zhengrong

    2015-01-01

    Circadian locomotor output cycles protein kaput (CLOCK) plays a key role in maintaining circadian rhythms and activation of downstream elements. However, its function on human female reproductive system remains unknown. To investigate the potential role of CLOCK, CLOCK-shRNAs were transfected into mouse 129 ES cells or injected into the ovaries of adult female mice. Western blotting was utilized to analyze the protein interactions and flow cytometry was used to assess apoptosis. The expression of CLOCK peaked at the 6th week in the healthy fetuses. However, an abnormal expression of CLOCK was detected in fetuses from spontaneous miscarriage. To determine the effect of CLOCK on female fertility, a small hairpin RNA (shRNA) strategy was used to specifically knockdown the CLOCK gene expression in vitro and in vivo. Knockdown of CLOCK induced apoptosis in mouse embryonic stem (mES) cells and inhibited the proliferation in mES cells in vitro. CLOCK knockdown also led to decreased release of oocytes and smaller litter size compared with control in vivo. Collectively, theses findings indicate that CLOCK plays an important role in fertility and that the CLOCK knockdown leads to reduction in reproduction and increased miscarriage risk. © 2015 S. Karger AG, Basel.

  3. The sympathy of two pendulum clocks: beyond Huygens' observations.

    PubMed

    Peña Ramirez, Jonatan; Olvera, Luis Alberto; Nijmeijer, Henk; Alvarez, Joaquin

    2016-03-29

    This paper introduces a modern version of the classical Huygens' experiment on synchronization of pendulum clocks. The version presented here consists of two monumental pendulum clocks--ad hoc designed and fabricated--which are coupled through a wooden structure. It is demonstrated that the coupled clocks exhibit 'sympathetic' motion, i.e. the pendula of the clocks oscillate in consonance and in the same direction. Interestingly, when the clocks are synchronized, the common oscillation frequency decreases, i.e. the clocks become slow and inaccurate. In order to rigorously explain these findings, a mathematical model for the coupled clocks is obtained by using well-established physical and mechanical laws and likewise, a theoretical analysis is conducted. Ultimately, the sympathy of two monumental pendulum clocks, interacting via a flexible coupling structure, is experimentally, numerically, and analytically demonstrated.

  4. A Blind Circadian Clock in Cavefish Reveals that Opsins Mediate Peripheral Clock Photoreception

    PubMed Central

    Cavallari, Nicola; Frigato, Elena; Vallone, Daniela; Fröhlich, Nadine; Lopez-Olmeda, Jose Fernando; Foà, Augusto; Berti, Roberto; Sánchez-Vázquez, Francisco Javier; Bertolucci, Cristiano; Foulkes, Nicholas S.

    2011-01-01

    The circadian clock is synchronized with the day-night cycle primarily by light. Fish represent fascinating models for deciphering the light input pathway to the vertebrate clock since fish cell clocks are regulated by direct light exposure. Here we have performed a comparative, functional analysis of the circadian clock involving the zebrafish that is normally exposed to the day-night cycle and a cavefish species that has evolved in perpetual darkness. Our results reveal that the cavefish retains a food-entrainable clock that oscillates with an infradian period. Importantly, however, this clock is not regulated by light. This comparative study pinpoints the two extra-retinal photoreceptors Melanopsin (Opn4m2) and TMT-opsin as essential upstream elements of the peripheral clock light input pathway. PMID:21909239

  5. Regulation of circadian clock transcriptional output by CLOCK:BMAL1

    PubMed Central

    Trott, Alexandra J.

    2018-01-01

    The mammalian circadian clock relies on the transcription factor CLOCK:BMAL1 to coordinate the rhythmic expression of 15% of the transcriptome and control the daily regulation of biological functions. The recent characterization of CLOCK:BMAL1 cistrome revealed that although CLOCK:BMAL1 binds synchronously to all of its target genes, its transcriptional output is highly heterogeneous. By performing a meta-analysis of several independent genome-wide datasets, we found that the binding of other transcription factors at CLOCK:BMAL1 enhancers likely contribute to the heterogeneity of CLOCK:BMAL1 transcriptional output. While CLOCK:BMAL1 rhythmic DNA binding promotes rhythmic nucleosome removal, it is not sufficient to generate transcriptionally active enhancers as assessed by H3K27ac signal, RNA Polymerase II recruitment, and eRNA expression. Instead, the transcriptional activity of CLOCK:BMAL1 enhancers appears to rely on the activity of ubiquitously expressed transcription factors, and not tissue-specific transcription factors, recruited at nearby binding sites. The contribution of other transcription factors is exemplified by how fasting, which effects several transcription factors but not CLOCK:BMAL1, either decreases or increases the amplitude of many rhythmically expressed CLOCK:BMAL1 target genes. Together, our analysis suggests that CLOCK:BMAL1 promotes a transcriptionally permissive chromatin landscape that primes its target genes for transcription activation rather than directly activating transcription, and provides a new framework to explain how environmental or pathological conditions can reprogram the rhythmic expression of clock-controlled genes. PMID:29300726

  6. Extent and timing of paleoglaciation in the Kanas Valley, Altai Mountains, China, based on remote sensing, field investigations and multiple dating methods

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Harbor, Jon; Cui, Zhijiu; Liu, Liang; Liu, Beibei; Fu, Yanjing; Shi, Yuanhuang; Gribenski, Natacha; Blomdin, Robin; Stroeven, Arjen; Caffee, Marc; Jansson, Krister

    2014-05-01

    Reconstructions of the timing and extent of past glaciation provide key constraints for paleoclimate and numerical modeling of past glacier behavior. As part of the multinational Central Asian Paleoglaciology Project we are reconstructing the timing and extent of past glaciation along and across a series of mountain ranges in central Asia using consistent methods for mapping, field investigations and numerical dating. Here we report on new findings for the Kanas Valley in northwest China, a large glaciated valley system on the south side of the Altai Mountains. Previous studies have concluded that the Kanas Valley has been shaped by a series of major glacial advances that produced overdeepened basins, a U-shaped valley cross profile, and extensive glacial and glaciofluvial deposits. Existing Optically Stimulated Luminescence (OSL) and Electron Spin Resonance (ESR) dating results suggest major glaciation in the Kanas Valley during Marine Oxygen Isotope Stages (MIS) 3, 5, and 6, but very limited MIS 2 glaciation. Limited MIS 2 glaciation has also been suggested for other parts of central Asia, and this contrasts with extensive MIS 2 glaciation in Europe and North America. Field studies in 2013 provided new evidence for the highest elevation extent of glaciation in the Kanas Valley in the vicinity of the 20-km long Lake Kanas, with the upper limit of distinct erratics on the valley sidewalls indicating past ice thicknesses here up to 1000 m. Upper limits of erratics extending from Lake Kanas to the mapped maximum down-valley extent of glaciation suggest an ice surface slope of 1.8 degrees for the lower half of the paleoglacier in the Kanas Valley, assuming that all the erratics were deposited at the same time. Systematic sampling of glacial erratics, basal till, terminal moraines, glacially eroded bedrock, and glaciofluvial deposits provided material that is being used for cosmogenic radionuclide, OSL and ESR dating of the glacial chronology, and for dating intercomparisons.

  7. Erratic tacrolimus exposure, assessed using the standard deviation of trough blood levels, predicts chronic lung allograft dysfunction and survival.

    PubMed

    Gallagher, Harry M; Sarwar, Ghulam; Tse, Tracy; Sladden, Timothy M; Hii, Esmond; Yerkovich, Stephanie T; Hopkins, Peter M; Chambers, Daniel C

    2015-11-01

    Erratic tacrolimus blood levels are associated with liver and kidney graft failure. We hypothesized that erratic tacrolimus exposure would similarly compromise lung transplant outcomes. This study assessed the effect of tacrolimus mean and standard deviation (SD) levels on the risk of chronic lung allograft dysfunction (CLAD) and death after lung transplantation. We retrospectively reviewed 110 lung transplant recipients who received tacrolimus-based immunosuppression. Cox proportional hazard modeling was used to investigate the effect of tacrolimus mean and SD levels on survival and CLAD. At census, 48 patients (44%) had developed CLAD and 37 (34%) had died. Tacrolimus SD was highest for the first 6 post-transplant months (median, 4.01; interquartile range [IQR], 3.04-4.98 months) before stabilizing at 2.84 μg/liter (IQR, 2.16-4.13 μg/liter) between 6 and 12 months. The SD then remained the same (median, 2.85; IQR, 2.00-3.77 μg/liter) between 12 and 24 months. A high mean tacrolimus level 6 to 12 months post-transplant independently reduced the risk of CLAD (hazard ratio [HR], 0.74; 95% confidence interval [CI], 0.63-0.86; p < 0.001) but not death (HR, 0.96; 95% CI, 0.83-1.12; p = 0.65). In contrast, a high tacrolimus SD between 6 and 12 months independently increased the risk of CLAD (HR, 1.46; 95% CI, 1.23-1.73; p < 0.001) and death (HR, 1.27; 95% CI, 1.08-1.51; p = 0.005). Erratic tacrolimus levels are a risk factor for poor lung transplant outcomes. Identifying and modifying factors that contribute to this variability may significantly improve outcomes. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  8. Susceptibility of Redundant Versus Singular Clock Domains Implemented in SRAM-Based FPGA TMR Designs

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; LaBel, Kenneth A.; Pellish, Jonathan

    2016-01-01

    We present the challenges that arise when using redundant clock domains due to their clock-skew. Radiation data show that a singular clock domain (DTMR) provides an improved TMR methodology for SRAM-based FPGAs over redundant clocks.

  9. Quaternary history of sea ice and paleoclimate in the Amerasia Basin, Arctic Ocean, as recorded in the cyclical strata of Northwind Ridge

    USGS Publications Warehouse

    Phillips, R.L.; Grantz, A.

    1997-01-01

    The 19 middle-early Pleistocene to Holocene bipartite lithostratigraphic cycles observed in high-resolution piston cores from Northwind Ridge in the Amerasia Basin of the Arctic Ocean, provide a detailed record of alternating glacial and interglacial climatic and oceanographic conditions and of correlative changes in the character and thickness of the sea-ice cover in the Amerasia Basin. Glacial conditions in each cycle are represented by gray pelagic muds that are suboxic, laminated, and essentially lacking in microfossils, macrofossils, trace fossils, and generally in glacial erratics. Interglacial conditions are represented by ochre pelagic muds that are oxic and bioturbated and contain rare to abundant microfossils and abundant glacial erratics. The synglacial laminated gray muds were deposited when the central Amerasia Basin was covered by a floating sheet of sea ice of sufficient thickness and continuity to reduce downwelling solar irradiance and oxygen to levels that precluded photosynthesis, maintenance of a biota, and strong oxidation of the pelagic sediment. Except during the early part of 3 of the 19 synglacial episodes, when it was periodically breached by erratic-bearing glacial icebergs, the floating Arctic Ocean sea-ice sheet was sufficiently thick to block the circulation of icebergs over Northwind Ridge and presumably other areas of the central Arctic Ocean. Interglacial conditions were initiated by abrupt thinning and breakup of the floating sea-ice sheet at the close of glacial time, which permitted surges of glacial erratic-laden ice-bergs to reach Northwind Ridge and the central Arctic Ocean, where they circulated freely and deposited numerous, and relatively thick, erratic clast-rich beds. Breakup of the successive synglacial sea-ice sheets initiated deposition of the interglacial ochre mud units under conditions that allowed sunlight and increased amounts of oxygen to enter the water column, resulting in photosynthesis and biologic productivity, and strong oxidization of the pelagic sediment. The lithostratigraphy of Northwind Ridge suggests that during at least late Pleistocene time, glacial conditions in the Arctic Ocean were initiated abruptly and continued unabated until terminated, also abruptly, by onset of the succeeding interglacial warming. Variations in abundance of glacial erratics within the interglacial units of the late Pleistocene indicate that during at least most interglacial episodes northern North America was glaciated, but with generally diminishing severity, until onset of the succeeding continental glaciation. Magnetostratigraphy suggests that the glacial-interglacial cycles on Northwind Ridge had an average periodicity of approximately 93.5 k.y. during the Brunhes normal and approximately 105 k.y. during the latter part of the Matuyama reverse polarity zone. These average periodicities are close to the 100 k.y. temperature cycles found in North Atlantic deep-water sediments of the Brunhes normal polarity chron, which have been ascribed to forcing by a Milankovitch eccentricity cycle. They are also close, however, to the average interval (101 k.y.) between the aperiodic glacial terminations in the 500 k.y. Pleistocene continental climate record from Devil's Hole, Nevada, which have been ascribed to nonlinear feedbacks within the Earth's atmosphere-ice sheet-ocean system.

  10. Limited, episodic diversification and contrasting phylogeography in a New Zealand cicada radiation.

    PubMed

    Marshall, David C; Hill, Kathy B R; Marske, Katharine A; Chambers, Colleen; Buckley, Thomas R; Simon, Chris

    2012-09-11

    The New Zealand (NZ) cicada fauna contains two co-distributed lineages that independently colonized the isolated continental fragment in the Miocene. One extensively studied lineage includes 90% of the extant species (Kikihia + Maoricicada + Rhodopsalta; ca 51 spp.), while the other contains just four extant species (Amphipsalta - 3 spp. + Notopsalta - 1 sp.) and has been little studied. We examined mitochondrial and nuclear-gene phylogenies and phylogeography, Bayesian relaxed-clock divergence timing (incorporating literature-based uncertainty of molecular clock estimates) and ecological niche models of the species from the smaller radiation. Mitochondrial and nuclear-gene trees supported the monophyly of Amphipsalta. Most interspecific diversification within Amphipsalta-Notopsalta occurred from the mid-Miocene to the Pliocene. However, interspecific divergence time estimates had large confidence intervals and were highly dependent on the assumed tree prior, and comparisons of uncorrected and patristic distances suggested difficulty in estimation of branch lengths. In contrast, intraspecific divergence times varied little across analyses, and all appear to have occurred during the Pleistocene. Two large-bodied forest taxa (A. cingulata, A. zelandica) showed minimal phylogeographic structure, with intraspecific diversification dating to ca. 0.16 and 0.37 Ma, respectively. Mid-Pleistocene-age phylogeographic structure was found within two smaller-bodied species (A. strepitans - 1.16 Ma, N. sericea - 1.36 Ma] inhabiting dry open habitats. Branches separating independently evolving species were long compared to intraspecific branches. Ecological niche models hindcast to the Last Glacial Maximum (LGM) matched expectations from the genetic datasets for A. zelandica and A. strepitans, suggesting that the range of A. zelandica was greatly reduced while A. strepitans refugia were more extensive. However, no LGM habitat could be reconstructed for A. cingulata and N. sericea, suggesting survival in microhabitats not detectable with our downscaled climate data. Unlike the large and continuous diversification exhibited by the Kikihia-Maoricicada-Rhodopsalta clade, the contemporaneous Amphipsalta-Notopsalta lineage contains four comparatively old (early branching) species that show only recent diversification. This indicates either a long period of stasis with no speciation, or one or more bouts of extinction that have pruned the radiation. Within Amphipsalta-Notopsalta, greater population structure is found in dry-open-habitat species versus forest specialists. We attribute this difference to the fact that NZ lowland forests were repeatedly reduced in extent during glacial periods, while steep, open habitats likely became more available during late Pleistocene uplift.

  11. The circadian clock in cancer development and therapy

    USDA-ARS?s Scientific Manuscript database

    Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The...

  12. Dual-Mode Operation of an Optical Lattice Clock Using Strontium and Ytterbium Atoms.

    PubMed

    Akamatsu, Daisuke; Kobayashi, Takumi; Hisai, Yusuke; Tanabe, Takehiko; Hosaka, Kazumoto; Yasuda, Masami; Hong, Feng-Lei

    2018-06-01

    We have developed an optical lattice clock that can operate in dual modes: a strontium (Sr) clock mode and an ytterbium (Yb) clock mode. Dual-mode operation of the Sr-Yb optical lattice clock is achieved by alternately cooling and trapping 87 Sr and 171 Yb atoms inside the vacuum chamber of the clock. Optical lattices for Sr and Yb atoms were arranged with horizontal and vertical configurations, respectively, resulting in a small distance of the order of between the trapped Sr and Yb atoms. The 1 S 0 - 3 P 0 clock transitions in the trapped atoms were interrogated in turn and the clock lasers were stabilized to the transitions. We demonstrated the frequency ratio measurement of the Sr and Yb clock transitions by using the dual-mode operation of the Sr-Yb optical lattice clock. The dual-mode operation can reduce the uncertainty of the blackbody radiation shift in the frequency ratio measurement, because both Sr and Yb atoms share the same blackbody radiation.

  13. Derivation and experimental verification of clock synchronization theory

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.

    1994-01-01

    The objective of this work is to validate mathematically derived clock synchronization theories and their associated algorithms through experiment. Two theories are considered, the Interactive Convergence Clock Synchronization Algorithm and the Mid-Point Algorithm. Special clock circuitry was designed and built so that several operating conditions and failure modes (including malicious failures) could be tested. Both theories are shown to predict conservative upper bounds (i.e., measured values of clock skew were always less than the theory prediction). Insight gained during experimentation led to alternative derivations of the theories. These new theories accurately predict the clock system's behavior. It is found that a 100% penalty is paid to tolerate worst case failures. It is also shown that under optimal conditions (with minimum error and no failures) the clock skew can be as much as 3 clock ticks. Clock skew grows to 6 clock ticks when failures are present. Finally, it is concluded that one cannot rely solely on test procedures or theoretical analysis to predict worst case conditions. conditions.

  14. Experimental validation of clock synchronization algorithms

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.; Graham, R. Lynn

    1992-01-01

    The objective of this work is to validate mathematically derived clock synchronization theories and their associated algorithms through experiment. Two theories are considered, the Interactive Convergence Clock Synchronization Algorithm and the Midpoint Algorithm. Special clock circuitry was designed and built so that several operating conditions and failure modes (including malicious failures) could be tested. Both theories are shown to predict conservative upper bounds (i.e., measured values of clock skew were always less than the theory prediction). Insight gained during experimentation led to alternative derivations of the theories. These new theories accurately predict the behavior of the clock system. It is found that a 100 percent penalty is paid to tolerate worst-case failures. It is also shown that under optimal conditions (with minimum error and no failures) the clock skew can be as much as three clock ticks. Clock skew grows to six clock ticks when failures are present. Finally, it is concluded that one cannot rely solely on test procedures or theoretical analysis to predict worst-case conditions.

  15. Clock Drawing in Spatial Neglect: A Comprehensive Analysis of Clock Perimeter, Placement, and Accuracy

    PubMed Central

    Chen, Peii; Goedert, Kelly M.

    2012-01-01

    Clock drawings produced by right-brain-damaged (RBD) individuals with spatial neglect often contain an abundance of empty space on the left while numbers and hands are placed on the right. However, the clock perimeter is rarely compromised in neglect patients’ drawings. By analyzing clock drawings produced by 71 RBD and 40 healthy adults, this study investigated whether the geometric characteristics of the clock perimeter reveal novel insights to understanding spatial neglect. Neglect participants drew smaller clocks than either healthy or non-neglect RBD participants. While healthy participants’ clock perimeter was close to circular, RBD participants drew radially extended ellipses. The mechanisms for these phenomena were investigated by examining the relation between clock-drawing characteristics and performance on six subtests of the Behavioral Inattention Test (BIT). The findings indicated that the clock shape was independent of any BIT subtest or the drawing placement on the test sheet and that the clock size was significantly predicted by one BIT subtest: the poorer the figure and shape copying, the smaller the clock perimeter. Further analyses revealed that in all participants, clocks decreased in size as they were placed farther from the center of the paper. However, even when neglect participants placed their clocks towards the center of the page, they were smaller than those produced by healthy or non-neglect RBD participants. These results suggest a neglect-specific reduction in the subjectively available workspace for graphic production from memory, consistent with the hypothesis that neglect patients are impaired in the ability to enlarge the attentional aperture. PMID:22390278

  16. The Effects of Race Conditions when Implementing Single-Source Redundant Clock Trees in Triple Modular Redundant Synchronous Architectures

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; Label, Kenneth A.; Pellish, Jonathan

    2016-01-01

    We present the challenges that arise when using redundant clock domains due to their clock-skew. Heavy-ion radiation data show that a singular clock domain (DTMR) provides an improved TMR methodology for SRAM-based FPGAs over redundant clocks.

  17. Real-time simulation clock

    NASA Technical Reports Server (NTRS)

    Bennington, Donald R. (Inventor); Crawford, Daniel J. (Inventor)

    1990-01-01

    The invention is a clock for synchronizing operations within a high-speed, distributed data processing network. The clock is actually a distributed system comprising a central clock and multiple site clock interface units (SCIUs) which are connected by means of a fiber optic star network and which operate under control of separate clock software. The presently preferred embodiment is a part of the flight simulation system now in current use at the NASA Langley Research Center.

  18. The mammalian circadian clock and its entrainment by stress and exercise.

    PubMed

    Tahara, Yu; Aoyama, Shinya; Shibata, Shigenobu

    2017-01-01

    The mammalian circadian clock regulates day-night fluctuations in various physiological processes. The circadian clock consists of the central clock in the suprachiasmatic nucleus of the hypothalamus and peripheral clocks in peripheral tissues. External environmental cues, including light/dark cycles, food intake, stress, and exercise, provide important information for adjusting clock phases. This review focuses on stress and exercise as potent entrainment signals for both central and peripheral clocks, especially in regard to the timing of stimuli, types of stressors/exercises, and differences in the responses of rodents and humans. We suggest that the common signaling pathways of clock entrainment by stress and exercise involve sympathetic nervous activation and glucocorticoid release. Furthermore, we demonstrate that physiological responses to stress and exercise depend on time of day. Therefore, using exercise to maintain the circadian clock at an appropriate phase and amplitude might be effective for preventing obesity, diabetes, and cardiovascular disease.

  19. Noninvasive method for assessing the human circadian clock using hair follicle cells

    PubMed Central

    Akashi, Makoto; Soma, Haruhiko; Yamamoto, Takuro; Tsugitomi, Asuka; Yamashita, Shiko; Yamamoto, Takuya; Nishida, Eisuke; Yasuda, Akio; Liao, James K.; Node, Koichi

    2010-01-01

    A thorough understanding of the circadian clock requires qualitative evaluation of circadian clock gene expression. Thus far, no simple and effective method for detecting human clock gene expression has become available. This limitation has greatly hampered our understanding of human circadian rhythm. Here we report a convenient, reliable, and less invasive method for detecting human clock gene expression using biopsy samples of hair follicle cells from the head or chin. We show that the circadian phase of clock gene expression in hair follicle cells accurately reflects that of individual behavioral rhythms, demonstrating that this strategy is appropriate for evaluating the human peripheral circadian clock. Furthermore, using this method, we indicate that rotating shift workers suffer from a serious time lag between circadian gene expression rhythms and lifestyle. Qualitative evaluation of clock gene expression in hair follicle cells, therefore, may be an effective approach for studying the human circadian clock in the clinical setting. PMID:20798039

  20. Novel transcriptional networks regulated by CLOCK in human neurons.

    PubMed

    Fontenot, Miles R; Berto, Stefano; Liu, Yuxiang; Werthmann, Gordon; Douglas, Connor; Usui, Noriyoshi; Gleason, Kelly; Tamminga, Carol A; Takahashi, Joseph S; Konopka, Genevieve

    2017-11-01

    The molecular mechanisms underlying human brain evolution are not fully understood; however, previous work suggested that expression of the transcription factor CLOCK in the human cortex might be relevant to human cognition and disease. In this study, we investigated this novel transcriptional role for CLOCK in human neurons by performing chromatin immunoprecipitation sequencing for endogenous CLOCK in adult neocortices and RNA sequencing following CLOCK knockdown in differentiated human neurons in vitro. These data suggested that CLOCK regulates the expression of genes involved in neuronal migration, and a functional assay showed that CLOCK knockdown increased neuronal migratory distance. Furthermore, dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. These data support a role for CLOCK-regulated transcriptional cascades involved in human brain evolution and function. © 2017 Fontenot et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Generating clock signals for a cycle accurate, cycle reproducible FPGA based hardware accelerator

    DOEpatents

    Asaad, Sameth W.; Kapur, Mohit

    2016-01-05

    A method, system and computer program product are disclosed for generating clock signals for a cycle accurate FPGA based hardware accelerator used to simulate operations of a device-under-test (DUT). In one embodiment, the DUT includes multiple device clocks generating multiple device clock signals at multiple frequencies and at a defined frequency ratio; and the FPG hardware accelerator includes multiple accelerator clocks generating multiple accelerator clock signals to operate the FPGA hardware accelerator to simulate the operations of the DUT. In one embodiment, operations of the DUT are mapped to the FPGA hardware accelerator, and the accelerator clock signals are generated at multiple frequencies and at the defined frequency ratio of the frequencies of the multiple device clocks, to maintain cycle accuracy between the DUT and the FPGA hardware accelerator. In an embodiment, the FPGA hardware accelerator may be used to control the frequencies of the multiple device clocks.

  2. A new stochastic model considering satellite clock interpolation errors in precise point positioning

    NASA Astrophysics Data System (ADS)

    Wang, Shengli; Yang, Fanlin; Gao, Wang; Yan, Lizi; Ge, Yulong

    2018-03-01

    Precise clock products are typically interpolated based on the sampling interval of the observational data when they are used for in precise point positioning. However, due to the occurrence of white noise in atomic clocks, a residual component of such noise will inevitable reside within the observations when clock errors are interpolated, and such noise will affect the resolution of the positioning results. In this paper, which is based on a twenty-one-week analysis of the atomic clock noise characteristics of numerous satellites, a new stochastic observation model that considers satellite clock interpolation errors is proposed. First, the systematic error of each satellite in the IGR clock product was extracted using a wavelet de-noising method to obtain the empirical characteristics of atomic clock noise within each clock product. Then, based on those empirical characteristics, a stochastic observation model was structured that considered the satellite clock interpolation errors. Subsequently, the IGR and IGS clock products at different time intervals were used for experimental validation. A verification using 179 stations worldwide from the IGS showed that, compared with the conventional model, the convergence times using the stochastic model proposed in this study were respectively shortened by 4.8% and 4.0% when the IGR and IGS 300-s-interval clock products were used and by 19.1% and 19.4% when the 900-s-interval clock products were used. Furthermore, the disturbances during the initial phase of the calculation were also effectively improved.

  3. Light signaling to the zebrafish circadian clock by Cryptochrome 1a

    PubMed Central

    Tamai, T. Katherine; Young, Lucy C.; Whitmore, David

    2007-01-01

    Zebrafish tissues and cells have the unusual feature of not only containing a circadian clock, but also being directly light-responsive. Several zebrafish genes are induced by light, but little is known about their role in clock resetting or the mechanism by which this might occur. Here we show that Cryptochrome 1a (Cry1a) plays a key role in light entrainment of the zebrafish clock. Intensity and phase response curves reveal a strong correlation between light induction of Cry1a and clock resetting. Overexpression studies show that Cry1a acts as a potent repressor of clock function and mimics the effect of constant light to “stop” the circadian oscillator. Yeast two-hybrid analysis demonstrates that the Cry1a protein interacts directly with specific regions of core clock components, CLOCK and BMAL, blocking their ability to fully dimerize and transactivate downstream targets, providing a likely mechanism for clock resetting. A comparison of entrainment of zebrafish cells to complete versus skeleton photoperiods reveals that clock phase is identical under these two conditions. However, the amplitude of the core clock oscillation is much higher on a complete photoperiod, as are the levels of light-induced Cry1a. We believe that Cry1a acts on the core clock machinery in both a continuous and discrete fashion, leading not only to entrainment, but also to the establishment of a high-amplitude rhythm and even stopping of the clock under long photoperiods. PMID:17785416

  4. CLOCK phosphorylation by AKT regulates its nuclear accumulation and circadian gene expression in peripheral tissues.

    PubMed

    Luciano, Amelia K; Zhou, Wenping; Santana, Jeans M; Kyriakides, Cleo; Velazquez, Heino; Sessa, William C

    2018-06-08

    C ircadian l ocomotor o utput c ycles k aput (CLOCK) is a transcription factor that activates transcription of clock-controlled genes by heterodimerizing with BMAL1 and binding to E-box elements on DNA. Although several phosphorylation sites on CLOCK have already been identified, this study characterizes a novel phosphorylation site at serine 845 (Ser-836 in humans). Here, we show that CLOCK is a novel AKT substrate in vitro and in cells, and this phosphorylation site is a negative regulator of CLOCK nuclear localization by acting as a binding site for 14-3-3 proteins. To examine the role of CLOCK phosphorylation in vivo , Clock S845A knockin mice were generated using CRISPR/Cas9 technology. Clock S845A mice are essentially normal with normal central circadian rhythms and hemodynamics. However, examination of core circadian gene expression from peripheral tissues demonstrated that Clock S845A mice have diminished expression of Per2, Reverba, Dbp, and Npas2 in skeletal muscle and Per2, Reverba, Dbp, Per1 , Rora, and Npas2 in the liver during the circadian cycle. The reduction in Dbp levels is associated with reduced H3K9ac at E-boxes where CLOCK binds despite no change in total CLOCK levels. Thus, CLOCK phosphorylation by AKT on Ser-845 regulates its nuclear translocation and the expression levels of certain core circadian genes in insulin-sensitive tissues.

  5. The circadian clock network in the brain of different Drosophila species.

    PubMed

    Hermann, Christiane; Saccon, Rachele; Senthilan, Pingkalai R; Domnik, Lilith; Dircksen, Heinrich; Yoshii, Taishi; Helfrich-Förster, Charlotte

    2013-02-01

    Comparative studies on cellular and molecular clock mechanisms have revealed striking similarities in the organization of the clocks among different animal groups. To gain evolutionary insight into the properties of the clock network within the Drosophila genus, we analyzed sequence identities and similarities of clock protein homologues and immunostained brains of 10 different Drosophila species using antibodies against vrille (VRI), PAR-protein domain1 (PDP1), and cryptochrome (CRY). We found that the clock network of both subgenera Sophophora and Drosophila consists of all lateral and dorsal clock neuron clusters that were previously described in Drosophila melanogaster. Immunostaining against CRY and the neuropeptide pigment-dispersing factor (PDF), however, revealed species-specific differences. All species of the Drosophila subgenus and D. pseudoobscura of the Sophophora subgenus completely lacked CRY in the large ventrolateral clock neurons (lLN(v) s) and showed reduced PDF immunostaining in the small ventrolateral clock neurons (sLN(v) s). In contrast, we found the expression of the ion transport peptide (ITP) to be consistent within the fifth sLN(v) and one dorsolateral clock neuron (LN(d) ) in all investigated species, suggesting a conserved putative function of this neuropeptide in the clock. We conclude that the general anatomy of the clock network is highly conserved throughout the Drosophila genus, although there is variation in PDF and CRY expression. Our comparative study is a first step toward understanding the organization of the circadian clock in Drosophila species adapted to different habitats. Copyright © 2012 Wiley Periodicals, Inc.

  6. Differential maturation of rhythmic clock gene expression during early development in medaka (Oryzias latipes).

    PubMed

    Cuesta, Ines H; Lahiri, Kajori; Lopez-Olmeda, Jose Fernando; Loosli, Felix; Foulkes, Nicholas S; Vallone, Daniela

    2014-05-01

    One key challenge for the field of chronobiology is to identify how circadian clock function emerges during early embryonic development. Teleosts such as the zebrafish are ideal models for studying circadian clock ontogeny since the entire process of development occurs ex utero in an optically transparent chorion. Medaka (Oryzias latipes) represents another powerful fish model for exploring early clock function with, like the zebrafish, many tools available for detailed genetic analysis. However, to date there have been no reports documenting circadian clock gene expression during medaka development. Here we have characterized the expression of key clock genes in various developmental stages and in adult tissues of medaka. As previously reported for other fish, light dark cycles are required for the emergence of clock gene expression rhythms in this species. While rhythmic expression of per and cry genes is detected very early during development and seems to be light driven, rhythmic clock and bmal expression appears much later around hatching time. Furthermore, the maturation of clock function seems to correlate with the appearance of rhythmic expression of these positive elements of the clock feedback loop. By accelerating development through elevated temperatures or by artificially removing the chorion, we show an earlier onset of rhythmicity in clock and bmal expression. Thus, differential maturation of key elements of the medaka clock mechanism depends on the developmental stage and the presence of the chorion.

  7. Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis

    PubMed Central

    2014-01-01

    Background The circadian clock enables living organisms to anticipate recurring daily and seasonal fluctuations in their growth habitats and synchronize their biology to the environmental cycle. The plant circadian clock consists of multiple transcription-translation feedback loops that are entrained by environmental signals, such as light and temperature. In recent years, alternative splicing emerges as an important molecular mechanism that modulates the clock function in plants. Several clock genes are known to undergo alternative splicing in response to changes in environmental conditions, suggesting that the clock function is intimately associated with environmental responses via the alternative splicing of the clock genes. However, the alternative splicing events of the clock genes have not been studied at the molecular level. Results We systematically examined whether major clock genes undergo alternative splicing under various environmental conditions in Arabidopsis. We also investigated the fates of the RNA splice variants of the clock genes. It was found that the clock genes, including EARLY FLOWERING 3 (ELF3) and ZEITLUPE (ZTL) that have not been studied in terms of alternative splicing, undergo extensive alternative splicing through diverse modes of splicing events, such as intron retention, exon skipping, and selection of alternative 5′ splice site. Their alternative splicing patterns were differentially influenced by changes in photoperiod, temperature extremes, and salt stress. Notably, the RNA splice variants of TIMING OF CAB EXPRESSION 1 (TOC1) and ELF3 were degraded through the nonsense-mediated decay (NMD) pathway, whereas those of other clock genes were insensitive to NMD. Conclusion Taken together, our observations demonstrate that the major clock genes examined undergo extensive alternative splicing under various environmental conditions, suggesting that alternative splicing is a molecular scheme that underlies the linkage between the clock and environmental stress adaptation in plants. It is also envisioned that alternative splicing of the clock genes plays more complex roles than previously expected. PMID:24885185

  8. The function and evolution of male and female genitalia in Phyllophaga Harris scarab beetles (Coleoptera: Scarabaeidae).

    PubMed

    Richmond, M P; Park, J; Henry, C S

    2016-11-01

    Genitalia diversity in insects continues to fuel investigation of the function and evolution of these dynamic structures. Whereas most studies have focused on variation in male genitalia, an increasing number of studies on female genitalia have uncovered comparable diversity among females, but often at a much finer morphological scale. In this study, we analysed the function and evolution of male and female genitalia in Phyllophaga scarab beetles, a group in which both sexes exhibit genitalic diversity. To document the interaction between male and female structures during mating, we dissected flash-frozen mating pairs from three Phyllophaga species and investigated fine-scale morphology using SEM. We then reconstructed ancestral character states using a species tree inferred from mitochondrial and nuclear loci to elucidate and compare the evolutionary history of male and female genitalia. Our dissections revealed an interlocking mechanism of the female pubic process and male parameres that appears to improve the mechanical fit of the copulatory position. The comparative analyses, however, did not support coevolution of male and female structures and showed more erratic evolution of the female genitalia relative to males. By studying a group that exhibits obvious female genitalic diversity, we were able to demonstrate the relevance of female reproductive morphology in studies of male genital diversity. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  9. Flexible programmable logic module

    DOEpatents

    Robertson, Perry J.; Hutchinson, Robert L.; Pierson, Lyndon G.

    2001-01-01

    The circuit module of this invention is a VME board containing a plurality of programmable logic devices (PLDs), a controlled impedance clock tree, and interconnecting buses. The PLDs are arranged to permit systolic processing of a problem by offering wide data buses and a plurality of processing nodes. The board contains a clock reference and clock distribution tree that can drive each of the PLDs with two critically timed clock references. External clock references can be used to drive additional circuit modules all operating from the same synchronous clock reference.

  10. Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program

    NASA Technical Reports Server (NTRS)

    Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.

    2000-01-01

    This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.

  11. Library Buildings

    ERIC Educational Resources Information Center

    Allen, Walter C.

    1976-01-01

    Examines a century of library architecture in relation to the changing perceptions of library functions, the development of building techniques and materials, fluctuating esthetic fashions and sometimes wildly erratic economic climates. (Author)

  12. Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration

    PubMed Central

    Musiek, Erik S.; Lim, Miranda M.; Yang, Guangrui; Bauer, Adam Q.; Qi, Laura; Lee, Yool; Roh, Jee Hoon; Ortiz-Gonzalez, Xilma; Dearborn, Joshua T.; Culver, Joseph P.; Herzog, Erik D.; Hogenesch, John B.; Wozniak, David F.; Dikranian, Krikor; Giasson, Benoit I.; Weaver, David R.; Holtzman, David M.; FitzGerald, Garret A.

    2013-01-01

    Brain aging is associated with diminished circadian clock output and decreased expression of the core clock proteins, which regulate many aspects of cellular biochemistry and metabolism. The genes encoding clock proteins are expressed throughout the brain, though it is unknown whether these proteins modulate brain homeostasis. We observed that deletion of circadian clock transcriptional activators aryl hydrocarbon receptor nuclear translocator–like (Bmal1) alone, or circadian locomotor output cycles kaput (Clock) in combination with neuronal PAS domain protein 2 (Npas2), induced severe age-dependent astrogliosis in the cortex and hippocampus. Mice lacking the clock gene repressors period circadian clock 1 (Per1) and period circadian clock 2 (Per2) had no observed astrogliosis. Bmal1 deletion caused the degeneration of synaptic terminals and impaired cortical functional connectivity, as well as neuronal oxidative damage and impaired expression of several redox defense genes. Targeted deletion of Bmal1 in neurons and glia caused similar neuropathology, despite the retention of intact circadian behavioral and sleep-wake rhythms. Reduction of Bmal1 expression promoted neuronal death in primary cultures and in mice treated with a chemical inducer of oxidative injury and striatal neurodegeneration. Our findings indicate that BMAL1 in a complex with CLOCK or NPAS2 regulates cerebral redox homeostasis and connects impaired clock gene function to neurodegeneration. PMID:24270424

  13. High Performance Clocks and Gravity Field Determination

    NASA Astrophysics Data System (ADS)

    Müller, J.; Dirkx, D.; Kopeikin, S. M.; Lion, G.; Panet, I.; Petit, G.; Visser, P. N. A. M.

    2018-02-01

    Time measured by an ideal clock crucially depends on the gravitational potential and velocity of the clock according to general relativity. Technological advances in manufacturing high-precision atomic clocks have rapidly improved their accuracy and stability over the last decade that approached the level of 10^{-18}. This notable achievement along with the direct sensitivity of clocks to the strength of the gravitational field make them practically important for various geodetic applications that are addressed in the present paper. Based on a fully relativistic description of the background gravitational physics, we discuss the impact of those highly-precise clocks on the realization of reference frames and time scales used in geodesy. We discuss the current definitions of basic geodetic concepts and come to the conclusion that the advances in clocks and other metrological technologies will soon require the re-definition of time scales or, at least, clarification to ensure their continuity and consistent use in practice. The relative frequency shift between two clocks is directly related to the difference in the values of the gravity potential at the points of clock's localization. According to general relativity the relative accuracy of clocks in 10^{-18} is equivalent to measuring the gravitational red shift effect between two clocks with the height difference amounting to 1 cm. This makes the clocks an indispensable tool in high-precision geodesy in addition to laser ranging and space geodetic techniques. We show how clock measurements can provide geopotential numbers for the realization of gravity-field-related height systems and can resolve discrepancies in classically-determined height systems as well as between national height systems. Another application of clocks is the direct use of observed potential differences for the improved recovery of regional gravity field solutions. Finally, clock measurements for space-borne gravimetry are analyzed along with closely-related deficiencies of this method like an extra-ordinary knowledge of the spacecraft velocity, etc. For all these applications besides the near-future prospects, we also discuss the challenges that are related to using those novel clock data in geodesy.

  14. Oxyntomodulin regulates resetting of the liver circadian clock by food

    PubMed Central

    Landgraf, Dominic; Tsang, Anthony H; Leliavski, Alexei; Koch, Christiane E; Barclay, Johanna L; Drucker, Daniel J; Oster, Henrik

    2015-01-01

    Circadian clocks coordinate 24-hr rhythms of behavior and physiology. In mammals, a master clock residing in the suprachiasmatic nucleus (SCN) is reset by the light–dark cycle, while timed food intake is a potent synchronizer of peripheral clocks such as the liver. Alterations in food intake rhythms can uncouple peripheral clocks from the SCN, resulting in internal desynchrony, which promotes obesity and metabolic disorders. Pancreas-derived hormones such as insulin and glucagon have been implicated in signaling mealtime to peripheral clocks. In this study, we identify a novel, more direct pathway of food-driven liver clock resetting involving oxyntomodulin (OXM). In mice, food intake stimulates OXM secretion from the gut, which resets liver transcription rhythms via induction of the core clock genes Per1 and 2. Inhibition of OXM signaling blocks food-mediated resetting of hepatocyte clocks. These data reveal a direct link between gastric filling with food and circadian rhythm phasing in metabolic tissues. DOI: http://dx.doi.org/10.7554/eLife.06253.001 PMID:25821984

  15. The metabolic sensor AKIN10 modulates the Arabidopsis circadian clock in a light-dependent manner.

    PubMed

    Shin, Jieun; Sánchez-Villarreal, Alfredo; Davis, Amanda M; Du, Shen-Xiu; Berendzen, Kenneth W; Koncz, Csaba; Ding, Zhaojun; Li, Cuiling; Davis, Seth J

    2017-07-01

    Plants generate rhythmic metabolism during the repetitive day/night cycle. The circadian clock produces internal biological rhythms to synchronize numerous metabolic processes such that they occur at the required time of day. Metabolism conversely influences clock function by controlling circadian period and phase and the expression of core-clock genes. Here, we show that AKIN10, a catalytic subunit of the evolutionarily conserved key energy sensor sucrose non-fermenting 1 (Snf1)-related kinase 1 (SnRK1) complex, plays an important role in the circadian clock. Elevated AKIN10 expression led to delayed peak expression of the circadian clock evening-element GIGANTEA (GI) under diurnal conditions. Moreover, it lengthened clock period specifically under light conditions. Genetic analysis showed that the clock regulator TIME FOR COFFEE (TIC) is required for this effect of AKIN10. Taken together, we propose that AKIN10 conditionally works in a circadian clock input pathway to the circadian oscillator. © 2017 John Wiley & Sons Ltd.

  16. Circadian rhythms and light responsiveness of mammalian clock gene, Clock and BMAL1, transcripts in the rat retina.

    PubMed

    Namihira, M; Honma, S; Abe, H; Tanahashi, Y; Ikeda, M; Honma, K

    1999-08-13

    Circadian expression and light-responsiveness of the mammalian clock genes, Clock and BMAL1, in the rat retina were examined by in situ hydbribization under constant darkness. A small but significant daily variation was detected in the Clock transcript level, but not in BMAL1. Light increased the Clock and BMAL1 expressions significantly when examined 60 min after exposure. The light-induced gene expression was phase-dependent for Clock and peaked at ZT2, while rather constant throughout the day for BMAL1. These findings suggest that Clock and BMAL1 play different roles in the generation of circadian rhytm in the retina from those in the suprachiasmatic nucleus. Different roles are also suggested between the two genes in the photic signal transduction in the retina.

  17. The sympathy of two pendulum clocks: beyond Huygens’ observations

    PubMed Central

    Peña Ramirez, Jonatan; Olvera, Luis Alberto; Nijmeijer, Henk; Alvarez, Joaquin

    2016-01-01

    This paper introduces a modern version of the classical Huygens’ experiment on synchronization of pendulum clocks. The version presented here consists of two monumental pendulum clocks—ad hoc designed and fabricated—which are coupled through a wooden structure. It is demonstrated that the coupled clocks exhibit ‘sympathetic’ motion, i.e. the pendula of the clocks oscillate in consonance and in the same direction. Interestingly, when the clocks are synchronized, the common oscillation frequency decreases, i.e. the clocks become slow and inaccurate. In order to rigorously explain these findings, a mathematical model for the coupled clocks is obtained by using well-established physical and mechanical laws and likewise, a theoretical analysis is conducted. Ultimately, the sympathy of two monumental pendulum clocks, interacting via a flexible coupling structure, is experimentally, numerically, and analytically demonstrated. PMID:27020903

  18. MYC/MIZ1-dependent gene repression inversely coordinates the circadian clock with cell cycle and proliferation.

    PubMed

    Shostak, Anton; Ruppert, Bianca; Ha, Nati; Bruns, Philipp; Toprak, Umut H; Eils, Roland; Schlesner, Matthias; Diernfellner, Axel; Brunner, Michael

    2016-06-24

    The circadian clock and the cell cycle are major cellular systems that organize global physiology in temporal fashion. It seems conceivable that the potentially conflicting programs are coordinated. We show here that overexpression of MYC in U2OS cells attenuates the clock and conversely promotes cell proliferation while downregulation of MYC strengthens the clock and reduces proliferation. Inhibition of the circadian clock is crucially dependent on the formation of repressive complexes of MYC with MIZ1 and subsequent downregulation of the core clock genes BMAL1 (ARNTL), CLOCK and NPAS2. We show furthermore that BMAL1 expression levels correlate inversely with MYC levels in 102 human lymphomas. Our data suggest that MYC acts as a master coordinator that inversely modulates the impact of cell cycle and circadian clock on gene expression.

  19. A precise clock distribution network for MRPC-based experiments

    NASA Astrophysics Data System (ADS)

    Wang, S.; Cao, P.; Shang, L.; An, Q.

    2016-06-01

    In high energy physics experiments, the MRPC (Multi-Gap Resistive Plate Chamber) detectors are widely used recently which can provide higher-resolution measurement for particle identification. However, the application of MRPC detectors leads to a series of challenges in electronics design with large number of front-end electronic channels, especially for distributing clock precisely. To deal with these challenges, this paper presents a universal scheme of clock transmission network for MRPC-based experiments with advantages of both precise clock distribution and global command synchronization. For precise clock distributing, the clock network is designed into a tree architecture with two stages: the first one has a point-to-multipoint long range bidirectional distribution with optical channels and the second one has a fan-out structure with copper link inside readout crates. To guarantee the precision of clock frequency or phase, the r-PTP (reduced Precision Time Protocol) and the DDMTD (digital Dual Mixer Time Difference) methods are used for frequency synthesis, phase measurement and adjustment, which is implemented by FPGA (Field Programmable Gate Array) in real-time. In addition, to synchronize global command execution, based upon this clock distribution network, synchronous signals are coded with clock for transmission. With technique of encoding/decoding and clock data recovery, signals such as global triggers or system control commands, can be distributed to all front-end channels synchronously, which greatly simplifies the system design. The experimental results show that both the clock jitter (RMS) and the clock skew can be less than 100 ps.

  20. Circadian Clock genes Per2 and clock regulate steroid production, cell proliferation, and luteinizing hormone receptor transcription in ovarian granulosa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, Takashi, E-mail: shimizut@obihiro.ac.jp; Hirai, Yuko; Murayama, Chiaki

    2011-08-19

    Highlights: {yields} Treatment with Per2 and Clock siRNAs decreased the number of granulosa cells and LHr expression. {yields}Per2 siRNA treatment did not stimulate the production of estradiol and expression of P450arom. {yields} Clock siRNA treatment inhibited the production of estradiol and expression of P450arom mRNA. {yields}Per2 and Clock siRNA treatment increased and unchanged, respectively, progesterone production in FSH-treated granulosa cells. {yields} The expression of StAR mRNA was increased by Per2 siRNA and unchanged by Clock siRNA. -- Abstract: Circadian Clock genes are associated with the estrous cycle in female animals. Treatment with Per2 and Clock siRNAs decreased the number ofmore » granulosa cells and LHr expression in follicle-stimulating hormone FSH-treated granulosa cells. Per2 siRNA treatment did not stimulate the production of estradiol and expression of P450arom, whereas Clock siRNA treatment inhibited the production of estradiol and expression of P450arom mRNA. Per2 and Clock siRNA treatment increased and unchanged, respectively, progesterone production in FSH-treated granulosa cells. Similarly, expression of StAR mRNA was increased by Per2 siRNA and unchanged by Clock siRNA. Our data provide a new insight that Per2 and Clock have different action on ovarian granulosa cell functions.« less

  1. Mercury Atomic Frequency Standards for Space Based Navigation and Timekeeping

    NASA Technical Reports Server (NTRS)

    Tjoelker, R. L.; Burt, E. A.; Chung, S.; Hamell, R. L.; Prestage, J. D.; Tucker, B.; Cash, P.; Lutwak, R.

    2012-01-01

    A low power Mercury Atomic Frequency Standard (MAFS) has been developed and demonstrated on the path towards future space clock applications. A self contained mercury ion breadboard clock: emulating flight clock interfaces, steering a USO local oscillator, and consuming approx 40 Watts has been operating at JPL for more than a year. This complete, modular ion clock instrument demonstrates that key GNSS size, weight, and power (SWaP) requirements can be achieved while still maintaining short and long term performance demonstrated in previous ground ion clocks. The MAFS breadboard serves as a flexible platform for optimizing further space clock development and guides engineering model design trades towards fabrication of an ion clock for space flight.

  2. Clock Controller For Ac Self-Timing Analysis Of Logic System

    DOEpatents

    Lo, Tinchee; Flanagan, John D.

    2004-05-18

    A clock controller and clock generating method are provided for AC self-test timing analysis of a logic system. The controller includes latch circuitry which receives a DC input signal at a data input, and a pair of continuous out-of-phase clock signals at capture and launch clock inputs thereof. The latch circuitry outputs two overlapping pulses responsive to the DC input signal going high. The two overlapping pulses are provided to waveform shaper circuitry which produces therefrom two non-overlapping pulses at clock speed of the logic system to be tested. The two non-overlapping pulses are a single pair of clock pulses which facilitate AC self-test timing analysis of the logic system.

  3. An analysis of clock-shift experiments: is scatter increased and deflection reduced in clock-shifted homing pigeons?

    PubMed

    Chappell

    1997-01-01

    Clock-shifting (altering the phase of the internal clock) in homing pigeons leads to a deflection in the vanishing bearing of the clock-shifted group relative to controls. However, two unexplained phenomena are common in clock-shift experiments: the vanishing bearings of the clock-shifted group are often more scattered (with a shorter vector length) than those of the control group, and the deflection of the mean bearing of the clock-shifted group from that of the controls is often smaller than expected theoretically. Here, an analysis of 55 clock-shift experiments performed in four countries over 21 years is reported. The bearings of the clock-shifted groups were significantly more scattered than those of controls and less deflected than expected, but these effects were not significantly different at familiar and unfamiliar sites. The possible causes of the effects are discussed and evaluated with reference to this analysis and other experiments. The most likely causes appear to be conflict between the directions indicated by the sun compass and either unshifted familiar visual landmarks (at familiar sites only) or the unshifted magnetic compass (possible at both familiar and unfamiliar sites).

  4. Normal vision can compensate for the loss of the circadian clock

    PubMed Central

    Schlichting, Matthias; Menegazzi, Pamela; Helfrich-Förster, Charlotte

    2015-01-01

    Circadian clocks are thought to be essential for timing the daily activity of animals, and consequently increase fitness. This view was recently challenged for clock-less fruit flies and mice that exhibited astonishingly normal activity rhythms under outdoor conditions. Compensatory mechanisms appear to enable even clock mutants to live a normal life in nature. Here, we show that gradual daily increases/decreases of light in the laboratory suffice to provoke normally timed sharp morning (M) and evening (E) activity peaks in clock-less flies. We also show that the compound eyes, but not Cryptochrome (CRY), mediate the precise timing of M and E peaks under natural-like conditions, as CRY-less flies do and eyeless flies do not show these sharp peaks independently of a functional clock. Nevertheless, the circadian clock appears critical for anticipating dusk, as well as for inhibiting sharp activity peaks during midnight. Clock-less flies only increase E activity after dusk and not before the beginning of dusk, and respond strongly to twilight exposure in the middle of the night. Furthermore, the circadian clock responds to natural-like light cycles, by slightly broadening Timeless (TIM) abundance in the clock neurons, and this effect is mediated by CRY. PMID:26378222

  5. Meta-analysis of stratus OCT glaucoma diagnostic accuracy.

    PubMed

    Chen, Hsin-Yi; Chang, Yue-Cune

    2014-09-01

    To evaluate the diagnostic accuracy of glaucoma in different stages, different types of glaucoma, and different ethnic groups using Stratus optical coherence tomography (OCT). We searched MEDLINE to identify available articles on diagnostic accuracy of glaucoma published between January 2004 and December 2011. A PubMed (National Center for Biotechnology Information) search using medical subject headings and keywords was executed using the following terms: "diagnostic accuracy" or "receiver operator characteristic" or "area under curve" or "AUC" and "Stratus OCT" and "glaucoma." The search was subsequently limited to publications in English. The area under a receiver operator characteristic (AUC) curve was used to measure the diagnostic performance. A random-effects model was used to estimate the pooled AUC value of the 17 parameters (average retinal nerve fiber layer thickness, temporal quadrant, superior quadrant, nasal quadrant, inferior quadrant, and 1 to 12 o'clock). Meta-regression analysis was used to check the significance of some important factors: (1) glaucoma severity (five stages), (2) glaucoma types (four types), and (3) ethnicity (four categories). The orders of accuracy among those parameters were as follows: average > inferior > superior > 7 o'clock > 6 o'clock > 11 o'clock > 12 o'clock > 1 o'clock > 5 o'clock > nasal > temporal > 2 o'clock > 10 o'clock > 8 o'clock > 9 o'clock > 4 o'clock > 3 o'clock. After adjusting for the effects of age, glaucoma severity, glaucoma types, and ethnicity, the average retinal nerve fiber layer thickness provided highest accuracy compared with the other parameters of OCT. The diagnostic accuracy in Asian populations was significantly lower than that in whites and the other two ethnic types. Stratus OCT demonstrated good diagnostic capability in differentiating glaucomatous from normal eyes. However, we should be more cautious in applying this instrument in Asian groups in glaucoma management.

  6. Effect of Resveratrol, a SIRT1 Activator, on the Interactions of the CLOCK/BMAL1 Complex

    PubMed Central

    Park, Insung; Lee, Yool; Kim, Hee-Dae

    2014-01-01

    Background In mammals, the CLOCK/BMAL1 heterodimer is a key transcription factor complex that drives the cyclic expression of clock-controlled genes involved in various physiological functions and behavioral consequences. Recently, a growing number of studies have reported a molecular link between the circadian clock and metabolism. In the present study, we explored the regulatory effects of SIRTUIN1 (SIRT1), an NAD+-dependent deacetylase, on CLOCK/BMAL1-mediated clock gene expression. Methods To investigate the interaction between SIRT1 and CLOCK/BMAL1, we conducted bimolecular fluorescence complementation (BiFC) analyses supplemented with immunocytochemistry assays. BiFC experiments employing deletion-specific mutants of BMAL1 were used to elucidate the specific domains that are necessary for the SIRT1-BMAL1 interaction. Additionally, luciferase reporter assays were used to delineate the effects of SIRT1 on circadian gene expression. Results BiFC analysis revealed that SIRT1 interacted with both CLOCK and BMAL1 in most cell nuclei. As revealed by BiFC assays using various BMAL1 deletion mutants, the PAS-B domain of BMAL1 was essential for interaction with SIRT1. Activation of SIRT1 with resveratrol did not exert any significant change on the interaction with the CLOCK/BMAL1 complex. However, promoter analysis using Per1-Luc and Ebox-Luc reporters showed that SIRT1 significantly downregulated both promoter activities. This inhibitory effect was intensified by treatment with resveratrol, indicating a role for SIRT1 and its activator in CLOCK/BMAL1-mediated transcription of clock genes. Conclusion These results suggest that SIRT1 may form a regulatory complex with CLOCK/BMAL1 that represses clock gene expression, probably via deacetylase activity. PMID:25309798

  7. Relativity theory and time perception: single or multiple clocks?

    PubMed

    Buhusi, Catalin V; Meck, Warren H

    2009-07-22

    Current theories of interval timing assume that humans and other animals time as if using a single, absolute stopwatch that can be stopped or reset on command. Here we evaluate the alternative view that psychological time is represented by multiple clocks, and that these clocks create separate temporal contexts by which duration is judged in a relative manner. Two predictions of the multiple-clock hypothesis were tested. First, that the multiple clocks can be manipulated (stopped and/or reset) independently. Second, that an event of a given physical duration would be perceived as having different durations in different temporal contexts, i.e., would be judged differently by each clock. Rats were trained to time three durations (e.g., 10, 30, and 90 s). When timing was interrupted by an unexpected gap in the signal, rats reset the clock used to time the "short" duration, stopped the "medium" duration clock, and continued to run the "long" duration clock. When the duration of the gap was manipulated, the rats reset these clocks in a hierarchical order, first the "short", then the "medium", and finally the "long" clock. Quantitative modeling assuming re-allocation of cognitive resources in proportion to the relative duration of the gap to the multiple, simultaneously timed event durations was used to account for the results. These results indicate that the three event durations were effectively timed by separate clocks operated independently, and that the same gap duration was judged relative to these three temporal contexts. Results suggest that the brain processes the duration of an event in a manner similar to Einstein's special relativity theory: A given time interval is registered differently by independent clocks dependent upon the context.

  8. Clock is not a component of Z-bands.

    PubMed

    Wang, Jushuo; Dube, Dipak K; White, Jennifer; Fan, Yingli; Sanger, Jean M; Sanger, Joseph W

    2012-12-01

    The process of Z-band assembly begins with the formation of small Z-bodies composed of a complex of proteins rich in alpha-actinin. As additional proteins are added to nascent myofibrils, Z-bodies are transformed into continuous bands that form coherent discs of interacting proteins at the boundaries of sarcomeres. The steps controlling the transition of Z-bodies to Z-bands are not known. The report that a circadian protein, Clock, was localized in the Z-bands of neonatal rat cardiomyocytes raised the question whether this transcription factor could be involved in Z-band assembly. We found that the anti-Clock antibody used in the reported study also stained the Z-bands and Z-bodies of mouse and avian cardiac and skeletal muscle cells. YFP constructs of Clock that were assembled, however, did not localize to the Z-bands of muscle cells. Controls of Clock's activity showed that cotransfection of muscle cells with pYFP-Clock and pCeFP-BMAL1 led to the expected nuclear localization of YFP-Clock with its binding partner CeFP-BMAL1. Neither CeFP-BMAL1 nor antibodies directed against BMAL1 localized to Z-bands. A bimolecular fluorescence complementation assay (VC-BMAL1 and VN-Clock) confirmed the absence of Clock and BMAL1 from Z-bands, and their nuclear colocalization. A second anti-Clock antibody stained nuclei, but not Z-bands, of cells cotransfected with Clock and BMAL1 plasmids. Western blots of reactions of muscle extracts and purified alpha-actinins with the two anti-Clock antibodies showed that the original antibody cross-reacted with alpha-actinin and the second did not. These results cannot confirm Clock as an active component of Z-bands. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.

  9. A Novel Photonic Clock and Carrier Recovery Device

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve; Lutes, George; Maleki, Lute

    1996-01-01

    As data communication rates climb toward ten Gb/s, clock recovery and synchronization become more difficult, if not impossible, using conventional electronic circuits. We present in this article experimental results of a high speed clock and carrier recovery using a novel device called a photonic oscillator that we recently developed in our laboratory. This device is capable of recovering clock signals up to 70 GHz. To recover the clock, the incoming data is injected into the photonic oscillator either through the optical injection port or the electrical injection port. The free running photonic oscillator is tuned to oscillate at a nominal frequency equal to the clock frequency of the incoming data. With the injection of the data, the photonic oscillator will be quickly locked to clock frequency of the data stream while rejecting other frequency components associated with the data. Consequently, the output of the locked photonic oscillator is a continuous periodical wave synchronized with the incoming data or simply the recovered clock. We have demonstrated a clock to spur ratio of more than 60 dB of the recovered clock using this technique. Similar to the clock recovery, the photonic oscillator can be used to recover a high frequency carrier degraded by noise and an improvement of about 50 dB in signal-to-noise ratio was demonstrated. The photonic oscillator has both electrical and optical inputs and outputs and can be directly interfaced with a photonic system without signal conversion. In addition to clock and carrier recovery, the photonic oscillator can also be used for (1) stable high frequency clock signal generation, (2) frequency multiplication, (3) square wave and comb frequency generation, and (4) photonic phase locked loop.

  10. Chronic consumption of dietary proanthocyanidins modulates peripheral clocks in healthy and obese rats.

    PubMed

    Ribas-Latre, A; Baselga-Escudero, L; Casanova, E; Arola-Arnal, A; Salvadó, M J; Arola, L; Bladé, C

    2015-02-01

    Circadian rhythm plays an important role in maintaining homeostasis, and its disruption increases the risk of developing metabolic syndrome. Circadian rhythm is maintained by a central clock in the hypothalamus that is entrained by light, but circadian clocks are also present in peripheral tissues. These peripheral clocks are trained by other cues, such as diet. The aim of this study was to determine whether proanthocyanidins, the most abundant polyphenols in the human diet, modulate the expression of clock and clock-controlled genes in the liver, gut and mesenteric white adipose tissue (mWAT) in healthy and obese rats. Grape seed proanthocyanidin extracts (GSPEs) were administered for 21 days at 5, 25 or 50 mg GSPE/kg body weight in healthy rats and 25 mg GSPE/kg body weight in rats with diet-induced obesity. In healthy animals, GSPE administration led to the overexpression of core clock genes in a positive dose-dependent manner. Moreover, the acetylated BMAL1 protein ratio increased with the same pattern in the liver and mWAT. With regards to clock-controlled genes, Per2 was also overexpressed, whereas Rev-erbα and RORα were repressed in a negative dose-dependent manner. Diet-induced obesity always resulted in the overexpression of some core clock and clock-related genes, although the particular gene affected was tissue specific. GSPE administration counteracted disturbances in the clock genes in the liver and gut but was less effective in normalizing the clock gene disruption in WAT. In conclusion, proanthocyanidins have the capacity to modulate peripheral molecular clocks in both healthy and obese states. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Room 103, transom woodwork and original clock. All clocks are ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Room 103, transom woodwork and original clock. All clocks are driven by a common signal. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  12. Next Generation JPL Ultra-Stable Trapped Ion Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Burt, Eric; Tucker, Blake; Larsen, Kameron; Hamell, Robert; Tjoelker, Robert

    2013-01-01

    Over the past decade, trapped ion atomic clock development at the Jet Propulsion Laboratory (JPL) has focused on two directions: 1) new atomic clock technology for space flight applications that require strict adherence to size, weight, and power requirements, and 2) ultra-stable atomic clocks, usually for terrestrial applications emphasizing ultimate performance. In this paper we present a new ultra-stable trapped ion clock designed, built, and tested in the second category. The first new standard, L10, will be delivered to the Naval Research Laboratory for use in characterizing DoD space clocks.

  13. Investigations of the CLOCK and BMAL1 Proteins Binding to DNA: A Molecular Dynamics Simulation Study.

    PubMed

    Xue, Tuo; Song, Chunnian; Wang, Qing; Wang, Yan; Chen, Guangju

    2016-01-01

    The circadian locomotor output cycles kaput (CLOCK), and brain and muscle ARNT-like 1 (BMAL1) proteins are important transcriptional factors of the endogenous circadian clock. The CLOCK and BMAL1 proteins can regulate the transcription-translation activities of the clock-related genes through the DNA binding. The hetero-/homo-dimerization and DNA combination of the CLOCK and BMAL1 proteins play a key role in the positive and negative transcriptional feedback processes. In the present work, we constructed a series of binary and ternary models for the bHLH/bHLH-PAS domains of the CLOCK and BMAL1 proteins, and the DNA molecule, and carried out molecular dynamics simulations, free energy calculations and conformational analysis to explore the interaction properties of the CLOCK and BMAL1 proteins with DNA. The results show that the bHLH domains of CLOCK and BMAL1 can favorably form the heterodimer of the bHLH domains of CLOCK and BMAL1 and the homodimer of the bHLH domains of BMAL1. And both dimers could respectively bind to DNA at its H1-H1 interface. The DNA bindings of the H1 helices in the hetero- and homo-bHLH dimers present the rectangular and diagonal binding modes, respectively. Due to the function of the α-helical forceps in these dimers, the tight gripping of the H1 helices to the major groove of DNA would cause the decrease of interactions at the H1-H2 interfaces in the CLOCK and BMAL1 proteins. The additional PAS domains in the CLOCK and BMAL1 proteins affect insignificantly the interactions of the CLOCK and BMAL1 proteins with the DNA molecule due to the flexible and long loop linkers located at the middle of the PAS and bHLH domains. The present work theoretically explains the interaction mechanisms of the bHLH domains of the CLOCK and BMAL1 proteins with DNA.

  14. Transcriptional oscillation of canonical clock genes in mouse peripheral tissues

    PubMed Central

    Yamamoto, Takuro; Nakahata, Yasukazu; Soma, Haruhiko; Akashi, Makoto; Mamine, Takayoshi; Takumi, Toru

    2004-01-01

    Background The circadian rhythm of about 24 hours is a fundamental physiological function observed in almost all organisms from prokaryotes to humans. Identification of clock genes has allowed us to study the molecular bases for circadian behaviors and temporal physiological processes such as hormonal secretion, and has prompted the idea that molecular clocks reside not only in a central pacemaker, the suprachiasmatic nuclei (SCN) of hypothalamus in mammals, but also in peripheral tissues, even in immortalized cells. Furthermore, previous molecular dissection revealed that the mechanism of circadian oscillation at a molecular level is based on transcriptional regulation of clock and clock-controlled genes. Results We systematically analyzed the mRNA expression of clock and clock-controlled genes in mouse peripheral tissues. Eight genes (mBmal1, mNpas2, mRev-erbα, mDbp, mRev-erbβ, mPer3, mPer1 and mPer2; given in the temporal order of the rhythm peak) showed robust circadian expressions of mRNAs in all tissues except testis, suggesting that these genes are core molecules of the molecular biological clock. The bioinformatics analysis revealed that these genes have one or a combination of 3 transcriptional elements (RORE, DBPE, and E-box), which are conserved among human, mouse, and rat genome sequences, and indicated that these 3 elements may be responsible for the biological timing of expression of canonical clock genes. Conclusions The observation of oscillatory profiles of canonical clock genes is not only useful for physiological and pathological examination of the circadian clock in various organs but also important for systematic understanding of transcriptional regulation on a genome-wide basis. Our finding of the oscillatory expression of canonical clock genes with a temporal order provides us an interesting hypothesis, that cyclic timing of all clock and clock-controlled genes may be dependent on several transcriptional elements including 3 known elements, E-box, RORE, and DBPE. PMID:15473909

  15. Generating a fault-tolerant global clock using high-speed control signals for the MetaNet architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ofek, Y.

    1994-05-01

    This work describes a new technique, based on exchanging control signals between neighboring nodes, for constructing a stable and fault-tolerant global clock in a distributed system with an arbitrary topology. It is shown that it is possible to construct a global clock reference with time step that is much smaller than the propagation delay over the network's links. The synchronization algorithm ensures that the global clock tick' has a stable periodicity, and therefore, it is possible to tolerate failures of links and clocks that operate faster and/or slower than nominally specified, as well as hard failures. The approach taken inmore » this work is to generate a global clock from the ensemble of the local transmission clocks and not to directly synchronize these high-speed clocks. The steady-state algorithm, which generates the global clock, is executed in hardware by the network interface of each node. At the network interface, it is possible to measure accurately the propagation delay between neighboring nodes with a small error or uncertainty and thereby to achieve global synchronization that is proportional to these error measurements. It is shown that the local clock drift (or rate uncertainty) has only a secondary effect on the maximum global clock rate. The synchronization algorithm can tolerate any physical failure. 18 refs.« less

  16. Organ specificity in the plant circadian system is explained by different light inputs to the shoot and root clocks.

    PubMed

    Bordage, Simon; Sullivan, Stuart; Laird, Janet; Millar, Andrew J; Nimmo, Hugh G

    2016-10-01

    Circadian clocks allow the temporal compartmentalization of biological processes. In Arabidopsis, circadian rhythms display organ specificity but the underlying molecular causes have not been identified. We investigated the mechanisms responsible for the similarities and differences between the clocks of mature shoots and roots in constant conditions and in light : dark cycles. We developed an imaging system to monitor clock gene expression in shoots and light- or dark-grown roots, modified a recent mathematical model of the Arabidopsis clock and used this to simulate our new data. We showed that the shoot and root circadian clocks have different rhythmic properties (period and amplitude) and respond differently to light quality. The root clock was entrained by direct exposure to low-intensity light, even in antiphase to the illumination of shoots. Differences between the clocks were more pronounced in conditions where light was present than in constant darkness, and persisted in the presence of sucrose. We simulated the data successfully by modifying those parameters of a clock model that are related to light inputs. We conclude that differences and similarities between the shoot and root clocks can largely be explained by organ-specific light inputs. This provides mechanistic insight into the developing field of organ-specific clocks. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  17. Satellite clock corrections estimation to accomplish real time ppp: experiments for brazilian real time network

    NASA Astrophysics Data System (ADS)

    Marques, Haroldo; Monico, João; Aquino, Marcio; Melo, Weyller

    2014-05-01

    The real time PPP method requires the availability of real time precise orbits and satellites clocks corrections. Currently, it is possible to apply the solutions of clocks and orbits available by BKG within the context of IGS Pilot project or by using the operational predicted IGU ephemeris. The accuracy of the satellite position available in the IGU is enough for several applications requiring good quality. However, the satellites clocks corrections do not provide enough accuracy (3 ns ~ 0.9 m) to accomplish real time PPP with the same level of accuracy. Therefore, for real time PPP application it is necessary to further research and develop appropriated methodologies for estimating the satellite clock corrections in real time with better accuracy. Currently, it is possible to apply the real time solutions of clocks and orbits available by Federal Agency for Cartography and Geodesy (BKG) within the context of IGS Pilot project. The BKG corrections are disseminated by a new proposed format of the RTCM 3.x and can be applied in the broadcasted orbits and clocks. Some investigations have been proposed for the estimation of the satellite clock corrections using GNSS code and phase observable at the double difference level between satellites and epochs (MERVAT, DOUSA, 2007). Another possibility consists of applying a Kalman Filter in the PPP network mode (HAUSCHILD, 2010) and it is also possible the integration of both methods, using network PPP and observables at double difference level in specific time intervals (ZHANG; LI; GUO, 2010). For this work the methodology adopted consists in the estimation of the satellite clock corrections based on the data adjustment in the PPP mode, but for a network of GNSS stations. The clock solution can be solved by using two types of observables: code smoothed by carrier phase or undifferenced code together with carrier phase. In the former, we estimate receiver clock error; satellite clock correction and troposphere, considering that the phase ambiguities are eliminated when applying differences between consecutive epochs. However, when using undifferenced code and phase, the ambiguities may be estimated together with receiver clock errors, satellite clock corrections and troposphere parameters. In both strategies it is also possible to correct the troposphere delay from a Numerical Weather Forecast Model instead of estimating it. The prediction of the satellite clock correction can be performed using a straight line or a second degree polynomial using the time series of the estimated satellites clocks. To estimate satellite clock correction and to accomplish real time PPP two pieces of software have been developed, respectively, "RT_PPP" and "RT_SAT_CLOCK". The system (RT_PPP) is able to process GNSS code and phase data using precise ephemeris and precise satellites clocks corrections together with several corrections required for PPP. In the software RT_SAT_CLOCK we apply a Kalman filter algorithm to estimate satellite clock correction in the network PPP mode. In this case, all PPP corrections must be applied for each station. The experiments were generated in real time and post-processed mode (simulating real time) considering data from the Brazilian continuous GPS network and also from the IGS network in a global satellite clock solution. We have used IGU ephemeris for satellite position and estimated the satellite clock corrections, performing the updates as soon as new ephemeris files were available. Experiments were accomplished in order to assess the accuracy of the estimated clocks when using the Brazilian Numerical Weather Forecast Model (BNWFM) from CPTEC/INPE and also using the ZTD from European Centre for Medium-Range Weather Forecasts (ECMWF) together with Vienna Mapping Function VMF or estimating troposphere with clocks and ambiguities in the Kalman Filter. The daily precision of the estimated satellite clock corrections reached the order of 0.15 nanoseconds. The clocks were applied in the Real Time PPP for Brazilian network stations and also for flight test of the Brazilian airplanes and the results show that it is possible to accomplish real time PPP in the static and kinematic modes with accuracy of the order of 10 to 20 cm, respectively.

  18. Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path

    PubMed Central

    Bergeron, Hugo; Sinclair, Laura C.; Swann, William C.; Nelson, Craig W.; Deschênes, Jean-Daniel; Baumann, Esther; Giorgetta, Fabrizio R.; Coddington, Ian; Newbury, Nathan R.

    2018-01-01

    The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10−14 at one second and below 10−17 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems. PMID:29607352

  19. Orthogonally referenced integrated ensemble for navigation and timing

    DOEpatents

    Smith, Stephen Fulton; Moore, James Anthony

    2013-02-26

    An orthogonally referenced integrated ensemble for navigation and timing includes a dual-polyhedral oscillator array, including an outer sensing array of oscillators and an inner clock array of oscillators situated inside the outer sensing array. The outer sensing array includes a first pair of sensing oscillators situated along a first axis of the outer sensing array, a second pair of sensing oscillators situated along a second axis of the outer sensing array, and a third pair of sensing oscillators situated along a third axis of the outer sensing array. The inner clock array of oscillators includes a first pair of clock oscillators situated along a first axis of the inner clock array, a second pair of clock oscillators situated along a second axis of the inner clock array, and a third pair of clock oscillators situated along a third axis of the inner clock array.

  20. Fault-Tolerant Self-Stabilizing Distributed Clock Synchronization Protocol for Arbitrary Digraphs

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R. (Inventor)

    2014-01-01

    A self-stabilizing network in the form of an arbitrary, non-partitioned digraph includes K nodes having a synchronizer executing a protocol. K-1 monitors of each node may receive a Sync message transmitted from a directly connected node. When the Sync message is received, the logical clock value for the receiving node is set to between 0 and a communication latency value (gamma) if the clock value is less than a minimum event-response delay (D). A new Sync message is also transmitted to any directly connected nodes if the clock value is greater than or equal to both D and a graph threshold (T(sub S)). When the Sync message is not received the synchronizer increments the clock value if the clock value is less than a resynchronization period (P), and resets the clock value and transmits a new Sync message to all directly connected nodes when the clock value equals or exceeds P.

  1. The Clock gene clone and its circadian rhythms in Pelteobagrus vachelli

    NASA Astrophysics Data System (ADS)

    Qin, Chuanjie; Shao, Ting

    2015-05-01

    The Clock gene, a key molecule in circadian systems, is widely distributed in the animal kingdom. We isolated a 936-bp partial cDNA sequence of the Clock gene ( Pva-clock) from the darkbarbel catfish Pelteobagrus vachelli that exhibited high identity with Clock genes of other species of fish and animals (65%-88%). The putative domains included a basic helix-loop-helix (bHLH) domain and two period-ARNT-single-minded (PAS) domains, which were also similar to those in other species of fish and animals. Pva-Clock was primarily expressed in the brain, and was detected in all of the peripheral tissues sampled. Additionally, the pattern of Pva-Clock expression over a 24-h period exhibited a circadian rhythm in the brain, liver and intestine, with the acrophase at zeitgeber time 21:35, 23:00, and 23:23, respectively. Our results provide insight into the function of the molecular Clock of P. vachelli.

  2. Automatic control of clock duty cycle

    NASA Technical Reports Server (NTRS)

    Feng, Xiaoxin (Inventor); Roper, Weston (Inventor); Seefeldt, James D. (Inventor)

    2010-01-01

    In general, this disclosure is directed to a duty cycle correction (DCC) circuit that adjusts a falling edge of a clock signal to achieve a desired duty cycle. In some examples, the DCC circuit may generate a pulse in response to a falling edge of an input clock signal, delay the pulse based on a control voltage, adjust the falling edge of the input clock signal based on the delayed pulse to produce an output clock signal, and adjust the control voltage based on the difference between a duty cycle of the output clock signal and a desired duty cycle. Since the DCC circuit adjusts the falling edge of the clock cycle to achieve a desired duty cycle, the DCC may be incorporated into existing PLL control loops that adjust the rising edge of a clock signal without interfering with the operation of such PLL control loops.

  3. Geodesy and metrology with a transportable optical clock

    NASA Astrophysics Data System (ADS)

    Grotti, Jacopo; Koller, Silvio; Vogt, Stefan; Häfner, Sebastian; Sterr, Uwe; Lisdat, Christian; Denker, Heiner; Voigt, Christian; Timmen, Ludger; Rolland, Antoine; Baynes, Fred N.; Margolis, Helen S.; Zampaolo, Michel; Thoumany, Pierre; Pizzocaro, Marco; Rauf, Benjamin; Bregolin, Filippo; Tampellini, Anna; Barbieri, Piero; Zucco, Massimo; Costanzo, Giovanni A.; Clivati, Cecilia; Levi, Filippo; Calonico, Davide

    2018-05-01

    Optical atomic clocks, due to their unprecedented stability1-3 and uncertainty3-6, are already being used to test physical theories7,8 and herald a revision of the International System of Units9,10. However, to unlock their potential for cross-disciplinary applications such as relativistic geodesy11, a major challenge remains: their transformation from highly specialized instruments restricted to national metrology laboratories into flexible devices deployable in different locations12-14. Here, we report the first field measurement campaign with a transportable 87Sr optical lattice clock12. We use it to determine the gravity potential difference between the middle of a mountain and a location 90 km away, exploiting both local and remote clock comparisons to eliminate potential clock errors. A local comparison with a 171Yb lattice clock15 also serves as an important check on the international consistency of independently developed optical clocks. This campaign demonstrates the exciting prospects for transportable optical clocks.

  4. Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path.

    PubMed

    Bergeron, Hugo; Sinclair, Laura C; Swann, William C; Nelson, Craig W; Deschênes, Jean-Daniel; Baumann, Esther; Giorgetta, Fabrizio R; Coddington, Ian; Newbury, Nathan R

    2016-04-01

    The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10 -14 at one second and below 10 -17 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems.

  5. Melatonin resists oxidative stress-induced apoptosis in nucleus pulposus cells.

    PubMed

    He, Ruijun; Cui, Min; Lin, Hui; Zhao, Lei; Wang, Jiayu; Chen, Songfeng; Shao, Zengwu

    2018-04-15

    Intervertebral disc degeneration (IVDD) is thought to be the major cause of low back pain (LBP), which is still in lack of effective etiological treatment. Oxidative stress has been demonstrated to participate in the impairment of nucleus pulposus cells (NPCs). As the most important neuroendocrine hormone in biological clock regulation, melatonin (MLT) is also featured by good antioxidant effect. In this study, we investigated the effect and mechanisms of melatonin on oxidative stress-induced damage in rat NPCs. Cytotoxicity of H 2 O 2 and protecting effect of melatonin were analyzed with Cell Counting kit-8 (CCK-8). Cell apoptosis rate was detected by Annexin V-FITC/PI staining. DCFH-DA probe was used for the reactive oxygen species (ROS) detection. The mitochondrial membrane potential (MMP) changes were analyzed with JC-1 probe. Intracellular oxidation product and reductants were measured through enzymatic reactions. Extracellular matrix (ECM) and apoptosis associated proteins were analyzed with Western blot assays. Melatonin preserved cell viability of NPCs under oxidative stress. The apoptosis rate, ROS level and malonaldehyde (MDA) declined with melatonin. MLT/H 2 O 2 group showed higher activities of GSH and SOD. The fall of MMP receded and the expression of ECM protein increased with treatment of melatonin. The mitochondrial pathway of apoptosis was inhibited by melatonin. Melatonin alleviated the oxidative stress-induced apoptosis of NPCs. Melatonin could be a promising alternative in treatment of IVDD. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Monophyletic origin of domestic bactrian camel (Camelus bactrianus) and its evolutionary relationship with the extant wild camel (Camelus bactrianus ferus)

    PubMed Central

    Ji, R; Cui, P; Ding, F; Geng, J; Gao, H; Zhang, H; Yu, J; Hu, S; Meng, H

    2009-01-01

    The evolutionary relationship between the domestic bactrian camel and the extant wild two-humped camel and the factual origin of the domestic bactrian camel remain elusive. We determined the sequence of mitochondrial cytb gene from 21 camel samples, including 18 domestic camels (three Camelus bactrianus xinjiang, three Camelus bactrianus sunite, three Camelus bactrianus alashan, three Camelus bactrianus red, three Camelus bactrianus brown and three Camelus bactrianus normal) and three wild camels (Camelus bactrianus ferus). Our phylogenetic analyses revealed that the extant wild two-humped camel may not share a common ancestor with the domestic bactrian camel and they are not the same subspecies at least in their maternal origins. Molecular clock analysis based on complete mitochondrial genome sequences indicated that the sub-speciation of the two lineages had begun in the early Pleistocene, about 0.7 million years ago. According to the archaeological dating of the earliest known two-humped camel domestication (5000–6000 years ago), we could conclude that the extant wild camel is a separate lineage but not the direct progenitor of the domestic bactrian camel. Further phylogenetic analysis suggested that the bactrian camel appeared monophyletic in evolutionary origin and that the domestic bactrian camel could originate from a single wild population. The data presented here show how conservation strategies should be implemented to protect the critically endangered wild camel, as it is the last extant form of the wild tribe Camelina. PMID:19292708

  7. Lego clocks: building a clock from parts.

    PubMed

    Brunner, Michael; Simons, Mirre J P; Merrow, Martha

    2008-06-01

    A new finding opens up speculation that the molecular mechanism of circadian clocks in Synechococcus elongatus is composed of multiple oscillator systems (Kitayama and colleagues, this issue, pp. 1513-1521), as has been described in many eukaryotic clock model systems. However, an alternative intepretation is that the pacemaker mechanism-as previously suggested-lies primarily in the rate of ATP hydrolysis by the clock protein KaiC.

  8. Single-transistor-clocked flip-flop

    DOEpatents

    Zhao, Peiyi; Darwish, Tarek; Bayoumi, Magdy

    2005-08-30

    The invention provides a low power, high performance flip-flop. The flip-flop uses only one clocked transistor. The single clocked transistor is shared by the first and second branches of the device. A pulse generator produces a clock pulse to trigger the flip-flop. In one preferred embodiment the device can be made as a static explicit pulsed flip-flop which employs only two clocked transistors.

  9. Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex.

    PubMed

    Mongrain, Valérie; La Spada, Francesco; Curie, Thomas; Franken, Paul

    2011-01-01

    We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), -6, -12, and -18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and -6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven.

  10. Sleep Loss Reduces the DNA-Binding of BMAL1, CLOCK, and NPAS2 to Specific Clock Genes in the Mouse Cerebral Cortex

    PubMed Central

    Curie, Thomas; Franken, Paul

    2011-01-01

    We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), −6, −12, and −18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and −6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven. PMID:22039518

  11. Phylogeny and biogeography of African Murinae based on mitochondrial and nuclear gene sequences, with a new tribal classification of the subfamily

    PubMed Central

    2008-01-01

    Background Within the subfamily Murinae, African murines represent 25% of species biodiversity, making this group ideal for detailed studies of the patterns and timing of diversification of the African endemic fauna and its relationships with Asia. Here we report the results of phylogenetic analyses of the endemic African murines through a broad sampling of murine diversity from all their distribution area, based on the mitochondrial cytochrome b gene and the two nuclear gene fragments (IRBP exon 1 and GHR). Results A combined analysis of one mitochondrial and two nuclear gene sequences consistently identified and robustly supported ten primary lineages within Murinae. We propose to formalize a new tribal arrangement within the Murinae that reflects this phylogeny. The diverse African murine assemblage includes members of five of the ten tribes and clearly derives from multiple faunal exchanges between Africa and Eurasia. Molecular dating analyses using a relaxed Bayesian molecular clock put the first colonization of Africa around 11 Mya, which is consistent with the fossil record. The main period of African murine diversification occurred later following disruption of the migration route between Africa and Asia about 7–9 Mya. A second period of interchange, dating to around 5–6.5 Mya, saw the arrival in Africa of Mus (leading to the speciose endemic Nannomys), and explains the appearance of several distinctive African lineages in the late Miocene and Pliocene fossil record of Eurasia. Conclusion Our molecular survey of Murinae, which includes the most complete sampling so far of African taxa, indicates that there were at least four separate radiations within the African region, as well as several phases of dispersal between Asia and Africa during the last 12 My. We also reconstruct the phylogenetic structure of the Murinae, and propose a new classification at tribal level for this traditionally problematic group. PMID:18616808

  12. Biome specificity of distinct genetic lineages within the four-striped mouse Rhabdomys pumilio (Rodentia: Muridae) from southern Africa with implications for taxonomy.

    PubMed

    du Toit, Nina; van Vuuren, Bettine Jansen; Matthee, Sonja; Matthee, Conrad A

    2012-10-01

    Within southern Africa, a link between past climatic changes and faunal diversification has been hypothesized for a diversity of taxa. To test the hypothesis that evolutionary divergences may be correlated to vegetation changes (induced by changes in climate), we selected the widely distributed four-striped mouse, Rhabdomys, as a model. Two species are currently recognized, the mesic-adapted R. dilectus and arid-adapted R. pumilio. However, the morphology-based taxonomy and the distribution boundaries of previously described subspecies remain poorly defined. The current study, which spans seven biomes, focuses on the spatial genetic structure of the arid-adapted R. pumilio (521 specimens from 31 localities), but also includes limited sampling of the mesic-adapted R. dilectus (33 specimens from 10 localities) to act as a reference for interspecific variation within the genus. The mitochondrial COI gene and four nuclear introns (Eef1a1, MGF, SPTBN1, Bfib7) were used for the construction of gene trees. Mitochondrial DNA analyses indicate that Rhabdomys consists of four reciprocally monophyletic, geographically structured clades, with three distinct lineages present within the arid-adapted R. pumilio. These monophyletic lineages differ by at least 7.9% (±0.3) and these results are partly confirmed by a multilocus network of the combined nuclear intron dataset. Ecological niche modeling in MaxEnt supports a strong correlation between regional biomes and the distribution of distinct evolutionary lineages of Rhabdomys. A Bayesian relaxed molecular clock suggests that the geographic clades diverged between 3.09 and 4.30Ma, supporting the hypothesis that the radiation within the genus coincides with paleoclimatic changes (and the establishment of the biomes) characterizing the Miocene-Pliocene boundary. Marked genetic divergence at the mitochondrial DNA level, coupled with strong nuclear and mtDNA signals of non-monophyly of R. pumilio, support the notion that a taxonomic revision of the genus is needed. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Big and slow: phylogenetic estimates of molecular evolution in baleen whales (suborder mysticeti).

    PubMed

    Jackson, J A; Baker, C S; Vant, M; Steel, D J; Medrano-González, L; Palumbi, S R

    2009-11-01

    Baleen whales are the largest animals that have ever lived. To develop an improved estimation of substitution rate for nuclear and mitochondrial DNA for this taxon, we implemented a relaxed-clock phylogenetic approach using three fossil calibration dates: the divergence between odontocetes and mysticetes approximately 34 million years ago (Ma), between the balaenids and balaenopterids approximately 28 Ma, and the time to most recent common ancestor within the Balaenopteridae approximately 12 Ma. We examined seven mitochondrial genomes, a large number of mitochondrial control region sequences (219 haplotypes for 465 bp) and nine nuclear introns representing five species of whales, within which multiple species-specific alleles were sequenced to account for within-species diversity (1-15 for each locus). The total data set represents >1.65 Mbp of mitogenome and nuclear genomic sequence. The estimated substitution rate for the humpback whale control region (3.9%/million years, My) was higher than previous estimates for baleen whales but slow relative to other mammal species with similar generation times (e.g., human-chimp mean rate > 20%/My). The mitogenomic third codon position rate was also slow relative to other mammals (mean estimate 1%/My compared with a mammalian average of 9.8%/My for the cytochrome b gene). The mean nuclear genomic substitution rate (0.05%/My) was substantially slower than average synonymous estimates for other mammals (0.21-0.37%/My across a range of studies). The nuclear and mitogenome rate estimates for baleen whales were thus roughly consistent with an 8- to 10-fold slowing due to a combination of large body size and long generation times. Surprisingly, despite the large data set of nuclear intron sequences, there was only weak and conflicting support for alternate hypotheses about the phylogeny of balaenopterid whales, suggesting that interspecies introgressions or a rapid radiation has obscured species relationships in the nuclear genome.

  14. A (201)Hg+ Comagnetometer for (199)Hg+ Trapped Ion Space Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Burt, Eric A.; Taghavi, Shervin; Tjoelker, Robert L.

    2011-01-01

    A method has been developed for unambiguously measuring the exact magnetic field experienced by trapped mercury ions contained within an atomic clock intended for space applications. In general, atomic clocks are insensitive to external perturbations that would change the frequency at which the clocks operate. On a space platform, these perturbative effects can be much larger than they would be on the ground, especially in dealing with the magnetic field environment. The solution is to use a different isotope of mercury held within the same trap as the clock isotope. The magnetic field can be very accurately measured with a magnetic-field-sensitive atomic transition in the added isotope. Further, this measurement can be made simultaneously with normal clock operation, thereby not degrading clock performance. Instead of using a conventional magnetometer to measure ambient fields, which would necessarily be placed some distance away from the clock atoms, first order field-sensitive atomic transition frequency changes in the atoms themselves determine the variations in the magnetic field. As a result, all ambiguity over the exact field value experienced by the atoms is removed. Atoms used in atomic clocks always have an atomic transition (often referred to as the clock transition) that is sensitive to magnetic fields only in second order, and usually have one or more transitions that are first-order field sensitive. For operating parameters used in the (199)Hg(+) clock, the latter can be five orders of magnitude or more sensitive to field fluctuations than the clock transition, thereby providing an unambiguous probe of the magnetic field strength.

  15. Circadian molecular clock in lung pathophysiology

    PubMed Central

    Sundar, Isaac K.; Yao, Hongwei; Sellix, Michael T.

    2015-01-01

    Disrupted daily or circadian rhythms of lung function and inflammatory responses are common features of chronic airway diseases. At the molecular level these circadian rhythms depend on the activity of an autoregulatory feedback loop oscillator of clock gene transcription factors, including the BMAL1:CLOCK activator complex and the repressors PERIOD and CRYPTOCHROME. The key nuclear receptors and transcription factors REV-ERBα and RORα regulate Bmal1 expression and provide stability to the oscillator. Circadian clock dysfunction is implicated in both immune and inflammatory responses to environmental, inflammatory, and infectious agents. Molecular clock function is altered by exposomes, tobacco smoke, lipopolysaccharide, hyperoxia, allergens, bleomycin, as well as bacterial and viral infections. The deacetylase Sirtuin 1 (SIRT1) regulates the timing of the clock through acetylation of BMAL1 and PER2 and controls the clock-dependent functions, which can also be affected by environmental stressors. Environmental agents and redox modulation may alter the levels of REV-ERBα and RORα in lung tissue in association with a heightened DNA damage response, cellular senescence, and inflammation. A reciprocal relationship exists between the molecular clock and immune/inflammatory responses in the lungs. Molecular clock function in lung cells may be used as a biomarker of disease severity and exacerbations or for assessing the efficacy of chronotherapy for disease management. Here, we provide a comprehensive overview of clock-controlled cellular and molecular functions in the lungs and highlight the repercussions of clock disruption on the pathophysiology of chronic airway diseases and their exacerbations. Furthermore, we highlight the potential for the molecular clock as a novel chronopharmacological target for the management of lung pathophysiology. PMID:26361874

  16. Search for Effects of an Electrostatic Potential on Clocks in the Frame of Reference of a Charged Particle

    NASA Technical Reports Server (NTRS)

    Ringermacher, Harry I.; Conradi, Mark S.; Cassenti, Brice

    2005-01-01

    Results of experiments to confirm a theory that links classical electromagnetism with the geometry of spacetime are described. The theory, based on the introduction of a Torsion tensor into Einstein s equations and following the approach of Schroedinger, predicts effects on clocks attached to charged particles, subject to intense electric fields, analogous to the effects on clocks in a gravitational field. We show that in order to interpret this theory, one must re-interpret all clock changes, both gravitational and electromagnetic, as arising from changes in potential energy and not merely potential. The clock is provided naturally by proton spins in hydrogen atoms subject to Nuclear Magnetic Resonance trials. No frequency change of clocks was observed to a resolution of 6310(exp -9). A new "Clock Principle" was postulated to explain the null result. There are two possible implications of the experiments: (a) The Clock Principle is invalid and, in fact, no metric theory incorporating electromagnetism is possible; (b) The Clock Principle is valid and it follows that a negative rest mass cannot exist.

  17. Crosstalk between the Circadian Clock and Innate Immunity in Arabidopsis

    PubMed Central

    Zhang, Chong; Xie, Qiguang; Anderson, Ryan G.; Ng, Gina; Seitz, Nicholas C.; Peterson, Thomas; McClung, C. Robertson; McDowell, John M.; Kong, Dongdong; Kwak, June M.; Lu, Hua

    2013-01-01

    The circadian clock integrates temporal information with environmental cues in regulating plant development and physiology. Recently, the circadian clock has been shown to affect plant responses to biotic cues. To further examine this role of the circadian clock, we tested disease resistance in mutants disrupted in CCA1 and LHY, which act synergistically to regulate clock activity. We found that cca1 and lhy mutants also synergistically affect basal and resistance gene-mediated defense against Pseudomonas syringae and Hyaloperonospora arabidopsidis. Disrupting the circadian clock caused by overexpression of CCA1 or LHY also resulted in severe susceptibility to P. syringae. We identified a downstream target of CCA1 and LHY, GRP7, a key constituent of a slave oscillator regulated by the circadian clock and previously shown to influence plant defense and stomatal activity. We show that the defense role of CCA1 and LHY against P. syringae is at least partially through circadian control of stomatal aperture but is independent of defense mediated by salicylic acid. Furthermore, we found defense activation by P. syringae infection and treatment with the elicitor flg22 can feedback-regulate clock activity. Together this data strongly supports a direct role of the circadian clock in defense control and reveal for the first time crosstalk between the circadian clock and plant innate immunity. PMID:23754942

  18. Relativistic theory for syntonization of clocks in the vicinity of the Earth

    NASA Technical Reports Server (NTRS)

    Wolf, Peter; Petit, G.

    1995-01-01

    A well known prediction of Einstein's general theory of relativity states that two ideal clocks that move with a relative velocity, and are submitted to different gravitational fields will, in general, be observed to run at different rates. Similarly the rate of a clock with respect to the coordinate time of some spacetime reference system is dependent on the velocity of the clock in that reference system and on the gravitational fields it is submitted to. For the syntonization of clocks and the realization of coordinate times (like TAI) this rate shift has to be taken into account at an accuracy level which should be below the frequency stability of the clocks in question, i.e. all terms that are larger than the instability of the clocks should be corrected for. We present a theory for the calculation of the relativistic rate shift for clocks in the vicinity of the Earth, including all terms larger than one part in 10(exp 18). This, together with previous work on clock synchronization (Petit & Wolf 1993, 1994), amounts to a complete relativistic theory for the realization of coordinate time scales at picosecond synchronization and 10(exp -18) syntonization accuracy, which should be sufficient to accommodate future developments in time transfer and clock technology.

  19. Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1

    DOE PAGES

    Michael, Alicia K.; Fribourgh, Jennifer L.; Chelliah, Yogarany; ...

    2017-01-31

    The basic helix-loop-helix PAS domain (bHLH-PAS) transcription factor CLOCK:BMAL1 (brain and muscle Arnt-like protein 1) sits at the core of the mammalian circadian transcription/translation feedback loop. Precise control of CLOCK:BMAL1 activity by coactivators and repressors establishes the ~24-h periodicity of gene expression. Formation of a repressive complex, defined by the core clock proteins cryptochrome 1 (CRY1):CLOCK:BMAL1, plays an important role controlling the switch from repression to activation each day. Here in this paper, we show that CRY1 binds directly to the PAS domain core of CLOCK: BMAL1, driven primarily by interaction with the CLOCK PAS-B domain. Integrative modeling and solutionmore » X-ray scattering studies unambiguously position a key loop of the CLOCK PAS-B domain in the secondary pocket of CRY1, analogous to the antenna chromophore-binding pocket of photolyase. CRY1 docks onto the transcription factor alongside the PAS domains, extending above the DNA-binding bHLH domain. Single point mutations at the interface on either CRY1 or CLOCK disrupt formation of the ternary complex, highlighting the importance of this interface for direct regulation of CLOCK:BMAL1 activity by CRY1.« less

  20. Drosophila Ionotropic Receptor 25a mediates circadian clock resetting by temperature.

    PubMed

    Chen, Chenghao; Buhl, Edgar; Xu, Min; Croset, Vincent; Rees, Johanna S; Lilley, Kathryn S; Benton, Richard; Hodge, James J L; Stanewsky, Ralf

    2015-11-26

    Circadian clocks are endogenous timers adjusting behaviour and physiology with the solar day. Synchronized circadian clocks improve fitness and are crucial for our physical and mental well-being. Visual and non-visual photoreceptors are responsible for synchronizing circadian clocks to light, but clock-resetting is also achieved by alternating day and night temperatures with only 2-4 °C difference. This temperature sensitivity is remarkable considering that the circadian clock period (~24 h) is largely independent of surrounding ambient temperatures. Here we show that Drosophila Ionotropic Receptor 25a (IR25a) is required for behavioural synchronization to low-amplitude temperature cycles. This channel is expressed in sensory neurons of internal stretch receptors previously implicated in temperature synchronization of the circadian clock. IR25a is required for temperature-synchronized clock protein oscillations in subsets of central clock neurons. Extracellular leg nerve recordings reveal temperature- and IR25a-dependent sensory responses, and IR25a misexpression confers temperature-dependent firing of heterologous neurons. We propose that IR25a is part of an input pathway to the circadian clock that detects small temperature differences. This pathway operates in the absence of known 'hot' and 'cold' sensors in the Drosophila antenna, revealing the existence of novel periphery-to-brain temperature signalling channels.

  1. Inexpensive programmable clock for a 12-bit computer

    NASA Technical Reports Server (NTRS)

    Vrancik, J. E.

    1972-01-01

    An inexpensive programmable clock was built for a digital PDP-12 computer. The instruction list includes skip on flag; clear the flag, clear the clock, and stop the clock; and preset the counter with the contents of the accumulator and start the clock. The clock counts at a rate determined by an external oscillator and causes an interrupt and sets a flag when a 12-bit overflow occurs. An overflow can occur after 1 to 4096 counts. The clock can be built for a total parts cost of less than $100 including power supply and I/O connector. Slight modification can be made to permit its use on larger machines (16 bit, 24 bit, etc.) and logic level shifting can be made to make it compatible with any computer.

  2. The Circadian Clock Coordinates Ribosome Biogenesis

    PubMed Central

    Symul, Laura; Martin, Eva; Atger, Florian; Naef, Felix; Gachon, Frédéric

    2013-01-01

    Biological rhythms play a fundamental role in the physiology and behavior of most living organisms. Rhythmic circadian expression of clock-controlled genes is orchestrated by a molecular clock that relies on interconnected negative feedback loops of transcription regulators. Here we show that the circadian clock exerts its function also through the regulation of mRNA translation. Namely, the circadian clock influences the temporal translation of a subset of mRNAs involved in ribosome biogenesis by controlling the transcription of translation initiation factors as well as the clock-dependent rhythmic activation of signaling pathways involved in their regulation. Moreover, the circadian oscillator directly regulates the transcription of ribosomal protein mRNAs and ribosomal RNAs. Thus the circadian clock exerts a major role in coordinating transcription and translation steps underlying ribosome biogenesis. PMID:23300384

  3. Dynamics of statistical distance: Quantum limits for two-level clocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braunstein, S.L.; Milburn, G.J.

    1995-03-01

    We study the evolution of statistical distance on the Bloch sphere under unitary and nonunitary dynamics. This corresponds to studying the limits to clock precision for a clock constructed from a two-state system. We find that the initial motion away from pure states under nonunitary dynamics yields the greatest accuracy for a one-tick'' clock; in this case the clock's precision is not limited by the largest frequency of the system.

  4. Ground control system for the midcourse space experiment UTC clock

    NASA Technical Reports Server (NTRS)

    Dragonette, Richard

    1994-01-01

    One goal of the Midcourse Space Experiment (MSX) spacecraft Operations Planning Center is to maintain the onboard satellite UTC clock (UTC(MSX)) to within 1 millisecond of UTC(APL) (the program requirement is 10 msec). The UTC(MSX) clock employs as its time base an APL built 5 MHz quartz oscillator, which is expected to have frequency instabilities (aging rate + drift rate + frequency offset) that will cause the clock to drift approximately two to ten milliseconds per day. The UTC(MSX) clock can be advanced or retarded by the APL MSX satellite ground control center by integer multiples of 1 millisecond. The MSX Operations Planning Center is developing software which records the drift of UTC(MSX) relative to UTC(APL) and which schedules the time of day and magnitude of UTC(MSX) clock updates up to 48 hours in advance. Because of the manner in which MSX spacecraft activities are scheduled, MSX clock updates are planned 24 to 48 hours in advance, and stored in the satellite's computer controller for later execution. Data will be collected on the drift of UTC(MSX) relative to UTC(APL) over a three to five day period. Approximately six times per day, the time offset between UTC(MSX) and UTC(APL) will be measured by APL with a resolution of less than 100 microseconds. From this data a second order analytical model of the clock's drift will be derived. This model will be used to extrapolate the offset of the MSX clock in time from the present to 48 hours in the future. MSX clock updates will be placed on the spacecraft's daily schedule whenever the predicted clock offset exceeds 0.5 milliseconds. The paper includes a discussion of how the empirical model of the MSX clock is derived from satellite telemetry data, as well as the algorithm used to schedule MSX clock updates based on the model.

  5. Identification and temporal expression of putative circadian clock transcripts in the amphipod crustacean Talitrus saltator

    PubMed Central

    O’Grady, Joseph F.; Hoelters, Laura S.; Swain, Martin T.

    2016-01-01

    Background Talitrus saltator is an amphipod crustacean that inhabits the supralittoral zone on sandy beaches in the Northeast Atlantic and Mediterranean. T. saltator exhibits endogenous locomotor activity rhythms and time-compensated sun and moon orientation, both of which necessitate at least one chronometric mechanism. Whilst their behaviour is well studied, currently there are no descriptions of the underlying molecular components of a biological clock in this animal, and very few in other crustacean species. Methods We harvested brain tissue from animals expressing robust circadian activity rhythms and used homology cloning and Illumina RNAseq approaches to sequence and identify the core circadian clock and clock-related genes in these samples. We assessed the temporal expression of these genes in time-course samples from rhythmic animals using RNAseq. Results We identified a comprehensive suite of circadian clock gene homologues in T. saltator including the ‘core’ clock genes period (Talper), cryptochrome 2 (Talcry2), timeless (Taltim), clock (Talclk), and bmal1 (Talbmal1). In addition we describe the sequence and putative structures of 23 clock-associated genes including two unusual, extended isoforms of pigment dispersing hormone (Talpdh). We examined time-course RNAseq expression data, derived from tissues harvested from behaviourally rhythmic animals, to reveal rhythmic expression of these genes with approximately circadian period in Talper and Talbmal1. Of the clock-related genes, casein kinase IIβ (TalckIIβ), ebony (Talebony), jetlag (Taljetlag), pigment dispensing hormone (Talpdh), protein phosphatase 1 (Talpp1), shaggy (Talshaggy), sirt1 (Talsirt1), sirt7 (Talsirt7) and supernumerary limbs (Talslimb) show temporal changes in expression. Discussion We report the sequences of principle genes that comprise the circadian clock of T. saltator and highlight the conserved structural and functional domains of their deduced cognate proteins. Our sequencing data contribute to the growing inventory of described comparative clocks. Expression profiling of the identified clock genes illuminates tantalising targets for experimental manipulation to elucidate the molecular and cellular control of clock-driven phenotypes in this crustacean. PMID:27761341

  6. The Effects of Race Conditions When Implementing Single-Source Redundant Clock Trees in Triple Modular Redundant Synchronous Architectures

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; Kim, Hak S.; Phan, Anthony M.; Seidleck, Christina M.; Label, Kenneth A.; Pellish, Jonathan A.; Campola, Michael J.

    2016-01-01

    We present the challenges that arise when using redundant clock domains due to their time-skew. Radiation data show that a singular clock domain provides an improved triple modular redundant (TMR) scheme over redundant clocks.

  7. Real Time Distributed Embedded Oscillator Operating Frequency Monitoring

    NASA Technical Reports Server (NTRS)

    Pollock, Julie (Inventor); Oliver, Brett D. (Inventor); Brickner, Christopher (Inventor)

    2013-01-01

    A method for clock monitoring in a network is provided. The method comprises receiving a first network clock signal at a network device and comparing the first network clock signal to a local clock signal from a primary oscillator coupled to the network device.

  8. Cryptochrome and Period Proteins Are Regulated by the CLOCK/BMAL1 Gene: Crosstalk between the PPARs/RXRα-Regulated and CLOCK/BMAL1-Regulated Systems

    PubMed Central

    Nakamura, Koh-ichi; Inoue, Ikuo; Takahashi, Seiichiro; Komoda, Tsugikazu; Katayama, Shigehiro

    2008-01-01

    Feeding and the circadian system regulate lipid absorption and metabolism, and the expression of enzymes involved in lipid metabolism is believed to be directly controlled by the clock system. To investigate the interaction between the lipid metabolism system and the circadian system, we analyzed the effect of a CLOCK/BMAL1 heterodimer on the transcriptional regulation of PPAR-controlled genes through PPAR response elements (PPREs). Transcription of acyl-CoA oxidase, cellular retinol binding protein II (CRBPII), and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase was altered by CLOCK/BMAL1, and transcriptional activity via PPRE by PPARs/RXRα was enhanced by CLOCK/BMAL1 and/or by PPARs ligand/activators. We also found that CLOCK/BMAL1-mediated transcription of period (PER) and cryptochrome (CRY) was modulated by PPARα/RXRα. These results suggest that there may be crosstalk between the PPARs/RXRα-regulated system and the CLOCK/BMAL1-regulated system. PMID:18317514

  9. Network news: prime time for systems biology of the plant circadian clock.

    PubMed

    McClung, C Robertson; Gutiérrez, Rodrigo A

    2010-12-01

    Whole-transcriptome analyses have established that the plant circadian clock regulates virtually every plant biological process and most prominently hormonal and stress response pathways. Systems biology efforts have successfully modeled the plant central clock machinery and an iterative process of model refinement and experimental validation has contributed significantly to the current view of the central clock machinery. The challenge now is to connect this central clock to the output pathways for understanding how the plant circadian clock contributes to plant growth and fitness in a changing environment. Undoubtedly, systems approaches will be needed to integrate and model the vastly increased volume of experimental data in order to extract meaningful biological information. Thus, we have entered an era of systems modeling, experimental testing, and refinement. This approach, coupled with advances from the genetic and biochemical analyses of clock function, is accelerating our progress towards a comprehensive understanding of the plant circadian clock network. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. A clocking discipline for two-phase digital integrated circuits

    NASA Astrophysics Data System (ADS)

    Noice, D. C.

    1983-09-01

    Sooner or later a designer of digital circuits must face the problem of timing verification so he can avoid errors caused by clock skew, critical races, and hazards. Unlike previous verification methods, such as timing simulation and timing analysis, the approach presented here guarantees correct operation despite uncertainty about delays in the circuit. The result is a clocking discipline that deals with timing abstractions only. It is not based on delay calculations; it is only concerned with the correct, synchronous operation at some clock rate. Accordingly, it may be used earlier in the design cycle, which is particularly important to integrated circuit designs. The clocking discipline consists of a notation of clocking types, and composition rules for using the types. Together, the notation and rules define a formal theory of two phase clocking. The notation defines the names and exact characteristics for different signals that are used in a two phase digital system. The notation makes it possible to develop rules for propagating the clocking types through particular circuits.

  11. The space optical clocks project

    NASA Astrophysics Data System (ADS)

    Schiller, S.; Tino, G. M.; Lemonde, P.; Sterr, U.; Lisdat, Ch.; Görlitz, A.; Poli, N.; Nevsky, A.; Salomon, C.

    2017-11-01

    The Space Optical Clocks project aims at operating lattice clocks on the ISS for tests of fundamental physics and for providing high-accuracy comparisons of future terrestrial optical clocks. A pre-phase-A study (2007- 10), funded partially by ESA and DLR, included the implementation of several optical lattice clock systems using Strontium and Ytterbium as atomic species and their characterization. Subcomponents of clock demonstrators with the added specification of transportability and using techniques suitable for later space use, such as all-solid-state lasers, low power consumption, and compact dimensions, have been developed and have been validated. This included demonstration of laser-cooling and magneto-optical trapping of Sr atoms in a compact breadboard apparatus and demonstration of a transportable clock laser with 1 Hz linewidth. With two laboratory Sr lattice clock systems a number of fundamental results were obtained, such as observing atomic resonances with linewidths as low as 3 Hz, non-destructive detection of atom excitation, determination of decoherence effects and reaching a frequency instability of 1×10-16.

  12. Cryptochrome Mediates Light-Dependent Magnetosensitivity of Drosophila's Circadian Clock

    PubMed Central

    Yoshii, Taishi; Ahmad, Margaret; Helfrich-Förster, Charlotte

    2009-01-01

    Since 1960, magnetic fields have been discussed as Zeitgebers for circadian clocks, but the mechanism by which clocks perceive and process magnetic information has remained unknown. Recently, the radical-pair model involving light-activated photoreceptors as magnetic field sensors has gained considerable support, and the blue-light photoreceptor cryptochrome (CRY) has been proposed as a suitable molecule to mediate such magnetosensitivity. Since CRY is expressed in the circadian clock neurons and acts as a critical photoreceptor of Drosophila's clock, we aimed to test the role of CRY in magnetosensitivity of the circadian clock. In response to light, CRY causes slowing of the clock, ultimately leading to arrhythmic behavior. We expected that in the presence of applied magnetic fields, the impact of CRY on clock rhythmicity should be altered. Furthermore, according to the radical-pair hypothesis this response should be dependent on wavelength and on the field strength applied. We tested the effect of applied static magnetic fields on the circadian clock and found that flies exposed to these fields indeed showed enhanced slowing of clock rhythms. This effect was maximal at 300 μT, and reduced at both higher and lower field strengths. Clock response to magnetic fields was present in blue light, but absent under red-light illumination, which does not activate CRY. Furthermore, cryb and cryOUT mutants did not show any response, and flies overexpressing CRY in the clock neurons exhibited an enhanced response to the field. We conclude that Drosophila's circadian clock is sensitive to magnetic fields and that this sensitivity depends on light activation of CRY and on the applied field strength, consistent with the radical pair mechanism. CRY is widespread throughout biological systems and has been suggested as receptor for magnetic compass orientation in migratory birds. The present data establish the circadian clock of Drosophila as a model system for CRY-dependent magnetic sensitivity. Furthermore, given that CRY occurs in multiple tissues of Drosophila, including those potentially implicated in fly orientation, future studies may yield insights that could be applicable to the magnetic compass of migratory birds and even to potential magnetic field effects in humans. PMID:19355790

  13. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs.

    PubMed

    Campoli, Chiara; Shtaya, Munqez; Davis, Seth J; von Korff, Maria

    2012-06-21

    The circadian clock is an endogenous mechanism that coordinates biological processes with daily changes in the environment. In plants, circadian rhythms contribute to both agricultural productivity and evolutionary fitness. In barley, the photoperiod response regulator and flowering-time gene Ppd-H1 is orthologous to the Arabidopsis core-clock gene PRR7. However, relatively little is known about the role of Ppd-H1 and other components of the circadian clock in temperate crop species. In this study, we identified barley clock orthologs and tested the effects of natural genetic variation at Ppd-H1 on diurnal and circadian expression of clock and output genes from the photoperiod-response pathway. Barley clock orthologs HvCCA1, HvGI, HvPRR1, HvPRR37 (Ppd-H1), HvPRR73, HvPRR59 and HvPRR95 showed a high level of sequence similarity and conservation of diurnal and circadian expression patterns, when compared to Arabidopsis. The natural mutation at Ppd-H1 did not affect diurnal or circadian cycling of barley clock genes. However, the Ppd-H1 mutant was found to be arrhythmic under free-running conditions for the photoperiod-response genes HvCO1, HvCO2, and the MADS-box transcription factor and vernalization responsive gene Vrn-H1. We suggest that the described eudicot clock is largely conserved in the monocot barley. However, genetic differentiation within gene families and differences in the function of Ppd-H1 suggest evolutionary modification in the angiosperm clock. Our data indicates that natural variation at Ppd-H1 does not affect the expression level of clock genes, but controls photoperiodic output genes. Circadian control of Vrn-H1 in barley suggests that this vernalization responsive gene is also controlled by the photoperiod-response pathway. Structural and functional characterization of the barley circadian clock will set the basis for future studies of the adaptive significance of the circadian clock in Triticeae species.

  14. Ultrahigh-speed clock recovery with optical phase lock loop based on four-wave-mixing in a semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hwan; Kim, Sang Hyuck; Jo, Jae Cheol; Choi, Sang Sam

    2000-08-01

    A new phase lock loop (PLL) is proposed and demonstrated for clock recovery from 40 Gbps time-division-multiplexed (TDM) optical signal using simple optical phase lock loop circuit. The proposed clock recovery scheme improves the jitter effect in PLL circuit from the clock pulse laser of harmonically-mode locked fiber laser. The cross-correlation component between the optical signal and an optical clock pulse train is detected as a four-wave-mixing (FWM) signal generated in SOA. The lock-in frequency range of the clock recovery is found to be within 10 KHz.

  15. Byzantine-fault tolerant self-stabilizing protocol for distributed clock synchronization systems

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R. (Inventor)

    2010-01-01

    A rapid Byzantine self-stabilizing clock synchronization protocol that self-stabilizes from any state, tolerates bursts of transient failures, and deterministically converges within a linear convergence time with respect to the self-stabilization period. Upon self-stabilization, all good clocks proceed synchronously. The Byzantine self-stabilizing clock synchronization protocol does not rely on any assumptions about the initial state of the clocks. Furthermore, there is neither a central clock nor an externally generated pulse system. The protocol converges deterministically, is scalable, and self-stabilizes in a short amount of time. The convergence time is linear with respect to the self-stabilization period.

  16. Processing circuit with asymmetry corrector and convolutional encoder for digital data

    NASA Technical Reports Server (NTRS)

    Pfiffner, Harold J. (Inventor)

    1987-01-01

    A processing circuit is provided for correcting for input parameter variations, such as data and clock signal symmetry, phase offset and jitter, noise and signal amplitude, in incoming data signals. An asymmetry corrector circuit performs the correcting function and furnishes the corrected data signals to a convolutional encoder circuit. The corrector circuit further forms a regenerated clock signal from clock pulses in the incoming data signals and another clock signal at a multiple of the incoming clock signal. These clock signals are furnished to the encoder circuit so that encoded data may be furnished to a modulator at a high data rate for transmission.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael, Alicia K.; Fribourgh, Jennifer L.; Chelliah, Yogarany

    The basic helix-loop-helix PAS domain (bHLH-PAS) transcription factor CLOCK:BMAL1 (brain and muscle Arnt-like protein 1) sits at the core of the mammalian circadian transcription/translation feedback loop. Precise control of CLOCK:BMAL1 activity by coactivators and repressors establishes the ~24-h periodicity of gene expression. Formation of a repressive complex, defined by the core clock proteins cryptochrome 1 (CRY1):CLOCK:BMAL1, plays an important role controlling the switch from repression to activation each day. Here in this paper, we show that CRY1 binds directly to the PAS domain core of CLOCK: BMAL1, driven primarily by interaction with the CLOCK PAS-B domain. Integrative modeling and solutionmore » X-ray scattering studies unambiguously position a key loop of the CLOCK PAS-B domain in the secondary pocket of CRY1, analogous to the antenna chromophore-binding pocket of photolyase. CRY1 docks onto the transcription factor alongside the PAS domains, extending above the DNA-binding bHLH domain. Single point mutations at the interface on either CRY1 or CLOCK disrupt formation of the ternary complex, highlighting the importance of this interface for direct regulation of CLOCK:BMAL1 activity by CRY1.« less

  18. Asynchronous oscillations of two zebrafish CLOCK partners reveal differential clock control and function

    PubMed Central

    Cermakian, Nicolas; Whitmore, David; Foulkes, Nicholas S.; Sassone-Corsi, Paolo

    2000-01-01

    Most clock genes encode transcription factors that interact to elicit cooperative control of clock function. Using a two-hybrid system approach, we have isolated two different partners of zebrafish (zf) CLOCK, which are similar to the mammalian BMAL1 (brain and muscle arylhydrocarbon receptor nuclear translocator-like protein 1). The two homologs, zfBMAL1 and zfBMAL2, contain conserved basic helix–loop–helix-PAS (Period-Arylhydrocarbon receptor-Singleminded) domains but diverge in the carboxyl termini, thus bearing different transcriptional activation potential. As for zfClock, the expression of both zfBmals oscillates in most tissues in the animal. However, in many tissues, the peak, levels, and kinetics of expression are different between the two genes and for the same gene from tissue to tissue. These results support the existence of independent peripheral oscillators and suggest that zfBMAL1 and zfBMAL2 may exert distinct circadian functions, interacting differentially with zfCLOCK at various times in different tissues. Our findings also indicate that multiple controls may be exerted by the central clock and/or that peripheral oscillators can differentially interpret central clock signals. PMID:10760301

  19. Localization and expression of putative circadian clock transcripts in the brain of the nudibranch Melibe leonina.

    PubMed

    Duback, Victoria E; Sabrina Pankey, M; Thomas, Rachel I; Huyck, Taylor L; Mbarani, Izhar M; Bernier, Kyle R; Cook, Geoffrey M; O'Dowd, Colleen A; Newcomb, James M; Watson, Winsor H

    2018-09-01

    The nudibranch, Melibe leonina, expresses a circadian rhythm of locomotion, and we recently determined the sequences of multiple circadian clock transcripts that may play a role in controlling these daily patterns of behavior. In this study, we used these genomic data to help us: 1) identify putative clock neurons using fluorescent in situ hybridization (FISH); and 2) determine if there is a daily rhythm of expression of clock transcripts in the M. leonina brain, using quantitative PCR. FISH indicated the presence of the clock-related transcripts clock, period, and photoreceptive and non-photoreceptive cryptochrome (pcry and npcry, respectively) in two bilateral neurons in each cerebropleural ganglion and a group of <10 neurons in the anterolateral region of each pedal ganglion. Double-label experiments confirmed colocalization of all four clock transcripts with each other. Quantitative PCR demonstrated that the genes clock, period, pcry and npcry exhibited significant differences in expression levels over 24 h. These data suggest that the putative circadian clock network in M. leonina consists of a small number of identifiable neurons that express circadian genes with a daily rhythm. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Single-ion, transportable optical atomic clocks

    NASA Astrophysics Data System (ADS)

    Delehaye, Marion; Lacroûte, Clément

    2018-03-01

    For the past 15 years, tremendous progress within the fields of laser stabilization, optical frequency combs and atom cooling and trapping have allowed the realization of optical atomic clocks with unrivaled performances. These instruments can perform frequency comparisons with fractional uncertainties well below ?, finding applications in fundamental physics tests, relativistic geodesy and time and frequency metrology. Even though most optical clocks are currently laboratory setups, several proposals for using these clocks for field measurements or within an optical clock network have been published, and most of time and frequency metrology institutes have started to develop transportable optical clocks. For the purpose of this special issue, we chose to focus on trapped-ion optical clocks. Even though their short-term fractional frequency stability is impaired by a lower signal-to-noise ratio, they offer a high potential for compactness: trapped ions demand low optical powers and simple loading schemes, and can be trapped in small vacuum chambers. We review recent advances on the clock key components, including ion trap and ultra-stable optical cavity, as well as existing projects and experiments which draw the picture of what future transportable, single-ion optical clocks may resemble.

  1. Circadian organization in hemimetabolous insects.

    PubMed

    Tomioka, Kenji; Abdelsalam, Salaheldin

    2004-12-01

    The circadian system of hemimetabolous insects is reviewed in respect to the locus of the circadian clock and multioscillatory organization. Because of relatively easy access to the nervous system, the neuronal organization of the clock system in hemimetabolous insects has been studied, yielding identification of the compound eye as the major photoreceptor for entrainment and the optic lobe for the circadian clock locus. The clock site within the optic lobe is inconsistent among reported species; in cockroaches the lobula was previously thought to be a most likely clock locus but accessory medulla is recently stressed to be a clock center, while more distal part of the optic lobe including the lamina and the outer medulla area for the cricket. Identification of the clock cells needs further critical studies. Although each optic lobe clock seems functionally identical, in respect to photic entrainment and generation of the rhythm, the bilaterally paired clocks form a functional unit. They interact to produce a stable time structure within individual insects by exchanging photic and temporal information through neural pathways, in which serotonin and pigment-dispersing factor (PDF) are involved as chemical messengers. The mutual interaction also plays an important role in seasonal adaptation of the rhythm.

  2. Method and apparatus to debug an integrated circuit chip via synchronous clock stop and scan

    DOEpatents

    Bellofatto, Ralph E [Ridgefield, CT; Ellavsky, Matthew R [Rochester, MN; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Gooding, Thomas M [Rochester, MN; Haring, Rudolf A [Cortlandt Manor, NY; Hehenberger, Lance G [Leander, TX; Ohmacht, Martin [Yorktown Heights, NY

    2012-03-20

    An apparatus and method for evaluating a state of an electronic or integrated circuit (IC), each IC including one or more processor elements for controlling operations of IC sub-units, and each the IC supporting multiple frequency clock domains. The method comprises: generating a synchronized set of enable signals in correspondence with one or more IC sub-units for starting operation of one or more IC sub-units according to a determined timing configuration; counting, in response to one signal of the synchronized set of enable signals, a number of main processor IC clock cycles; and, upon attaining a desired clock cycle number, generating a stop signal for each unique frequency clock domain to synchronously stop a functional clock for each respective frequency clock domain; and, upon synchronously stopping all on-chip functional clocks on all frequency clock domains in a deterministic fashion, scanning out data values at a desired IC chip state. The apparatus and methodology enables construction of a cycle-by-cycle view of any part of the state of a running IC chip, using a combination of on-chip circuitry and software.

  3. System and method for clock synchronization and position determination using entangled photon pairs

    NASA Technical Reports Server (NTRS)

    Shih, Yanhua (Inventor)

    2010-01-01

    A system and method for clock synchronization and position determination using entangled photon pairs is provided. The present invention relies on the measurement of the second order correlation function of entangled states. Photons from an entangled photon source travel one-way to the clocks to be synchronized. By analyzing photon registration time histories generated at each clock location, the entangled states allow for high accuracy clock synchronization as well as high accuracy position determination.

  4. Taxonomic relationships among Phenacomys voles as inferred by cytochrome b

    USGS Publications Warehouse

    Bellinger, M.R.; Haig, S.M.; Forsman, E.D.; Mullins, T.D.

    2005-01-01

    Taxonomic relationships among red tree voles (Phenacomys longicaudus longicaudus, P. l. silvicola), the Sonoma tree vole (P. pomo), the white-footed vole (P. albipes), and the heather vole (P. intermedius) were examined using 664 base pairs of the mitochondrial cytochrome b gene. Results indicate specific differences among red tree voles, Sonoma tree voles, white-footed voles, and heather voles, but no clear difference between the 2 Oregon subspecies of red tree voles (P. l. longicaudus and P. l. silvicola). Our data further indicated a close relationship between tree voles and albipes, validating inclusion of albipes in the subgenus Arborimus. These 3 congeners shared a closer relationship to P. intermedius than to other arvicolids. A moderate association between porno and albipes was indicated by maximum parsimony and neighbor-joining phylogenetic analyses. Molecular clock estimates suggest a Pleistocene radiation of the Arborimus clade, which is concordant with pulses of diversification observed in other murid rodents. The generic rank of Arborimus is subject to interpretation of data.

  5. Molecular systematics of dormice (Rodentia: Gliridae) and the radiation of Graphiurus in Africa.

    PubMed Central

    Montgelard, Claudine; Matthee, Conrad A; Robinson, Terence J

    2003-01-01

    The phylogenetic relationships among the Gliridae (order Rodentia) were assessed using 3430 nucleotides derived from three nuclear fragments (beta-spectrin non-erythrocytic 1, thyrotropin and lecithin cholesterol acyl transferase) and one mitochondrial gene (12S rRNA). We included 14 glirid species, representative of seven genera of the three recognized subfamilies (Graphiurinae, Glirinae and Leithiinae) in our analysis. The molecular data identified three evolutionary lineages that broadly correspond to the three extant subfamilies. However, the data suggest that the genus Muscardinus, previously regarded as falling within the Glirinae, should be included in the Leithiinae. Molecular dating using local molecular clocks and partitioned datasets allowed an estimate of the timing of cladogenesis within the glirids. Graphiurus probably diverged early in the group's evolution (40-50 Myr ago) and the three subfamilies diverged contemporaneously, probably in Europe. The radiation within Graphiurus is more recent, with the colonization of Africa by this lineage estimated at ca. 8-10 Myr ago. PMID:14561309

  6. SlgA, encoded by the homolog of the human schizophrenia-associated gene PRODH, acts in clock neurons to regulate Drosophila aggression

    PubMed Central

    Zwarts, Liesbeth; Vulsteke, Veerle; Buhl, Edgar; Hodge, James J. L.

    2017-01-01

    ABSTRACT Mutations in the proline dehydrogenase gene PRODH are linked to behavioral alterations in schizophrenia and as part of DiGeorge and velo-cardio-facial syndromes, but the role of PRODH in their etiology remains unclear. Here, we establish a Drosophila model to study the role of PRODH in behavioral disorders. We determine the distribution of the Drosophila PRODH homolog slgA in the brain and show that knockdown and overexpression of human PRODH and slgA in the lateral neurons ventral (LNv) lead to altered aggressive behavior. SlgA acts in an isoform-specific manner and is regulated by casein kinase II (CkII). Our data suggest that these effects are, at least partially, due to effects on mitochondrial function. We thus show that precise regulation of proline metabolism is essential to drive normal behavior and we identify Drosophila aggression as a model behavior relevant for the study of the mechanisms that are impaired in neuropsychiatric disorders. PMID:28331058

  7. Tempo and rates of diversification in the South American cichlid genus Apistogramma (Teleostei: Perciformes: Cichlidae).

    PubMed

    Tougard, Christelle; García Dávila, Carmen R; Römer, Uwe; Duponchelle, Fabrice; Cerqueira, Frédérique; Paradis, Emmanuel; Guinand, Bruno; Angulo Chávez, Carlos; Salas, Vanessa; Quérouil, Sophie; Sirvas, Susana; Renno, Jean-François

    2017-01-01

    Evaluating biodiversity and understanding the processes involved in diversification are noticeable conservation issues in fishes subject to large, sometimes illegal, ornamental trade purposes. Here, the diversity and evolutionary history of the Neotropical dwarf cichlid genus Apistogramma from several South American countries are investigated. Mitochondrial and nuclear markers are used to infer phylogenetic relationships between 31 genetically identified species. The monophyly of Apistogramma is suggested, and Apistogramma species are distributed into four clades, corresponding to three morphological lineages. Divergence times estimated with the Yule process and an uncorrelated lognormal clock dated the Apistogramma origin to the beginning of the Eocene (≈ 50 Myr) suggesting that diversification might be related to marine incursions. Our molecular dating also suggests that the Quaternary glacial cycles coincide with the phases leading to Apistogramma speciation. These past events did not influence diversification rates in the speciose genus Apistogramma, since diversification appeared low and constant through time. Further characterization of processes involved in recent Apistogramma diversity will be necessary.

  8. Tempo and rates of diversification in the South American cichlid genus Apistogramma (Teleostei: Perciformes: Cichlidae)

    PubMed Central

    García Dávila, Carmen R.; Römer, Uwe; Duponchelle, Fabrice; Cerqueira, Frédérique; Paradis, Emmanuel; Guinand, Bruno; Angulo Chávez, Carlos; Salas, Vanessa; Quérouil, Sophie; Sirvas, Susana; Renno, Jean-François

    2017-01-01

    Evaluating biodiversity and understanding the processes involved in diversification are noticeable conservation issues in fishes subject to large, sometimes illegal, ornamental trade purposes. Here, the diversity and evolutionary history of the Neotropical dwarf cichlid genus Apistogramma from several South American countries are investigated. Mitochondrial and nuclear markers are used to infer phylogenetic relationships between 31 genetically identified species. The monophyly of Apistogramma is suggested, and Apistogramma species are distributed into four clades, corresponding to three morphological lineages. Divergence times estimated with the Yule process and an uncorrelated lognormal clock dated the Apistogramma origin to the beginning of the Eocene (≈ 50 Myr) suggesting that diversification might be related to marine incursions. Our molecular dating also suggests that the Quaternary glacial cycles coincide with the phases leading to Apistogramma speciation. These past events did not influence diversification rates in the speciose genus Apistogramma, since diversification appeared low and constant through time. Further characterization of processes involved in recent Apistogramma diversity will be necessary. PMID:28873089

  9. Practical security analysis of continuous-variable quantum key distribution with jitter in clock synchronization

    NASA Astrophysics Data System (ADS)

    Xie, Cailang; Guo, Ying; Liao, Qin; Zhao, Wei; Huang, Duan; Zhang, Ling; Zeng, Guihua

    2018-03-01

    How to narrow the gap of security between theory and practice has been a notoriously urgent problem in quantum cryptography. Here, we analyze and provide experimental evidence of the clock jitter effect on the practical continuous-variable quantum key distribution (CV-QKD) system. The clock jitter is a random noise which exists permanently in the clock synchronization in the practical CV-QKD system, it may compromise the system security because of its impact on data sampling and parameters estimation. In particular, the practical security of CV-QKD with different clock jitter against collective attack is analyzed theoretically based on different repetition frequencies, the numerical simulations indicate that the clock jitter has more impact on a high-speed scenario. Furthermore, a simplified experiment is designed to investigate the influence of the clock jitter.

  10. BDS Precise Point Positioning for Seismic Displacements Monitoring: Benefit from the High-Rate Satellite Clock Corrections

    PubMed Central

    Geng, Tao; Su, Xing; Fang, Rongxin; Xie, Xin; Zhao, Qile; Liu, Jingnan

    2016-01-01

    In order to satisfy the requirement of high-rate high-precision applications, 1 Hz BeiDou Navigation Satellite System (BDS) satellite clock corrections are generated based on precise orbit products, and the quality of the generated clock products is assessed by comparing with those from the other analysis centers. The comparisons show that the root mean square (RMS) of clock errors of geostationary Earth orbits (GEO) is about 0.63 ns, whereas those of inclined geosynchronous orbits (IGSO) and medium Earth orbits (MEO) are about 0.2–0.3 ns and 0.1 ns, respectively. Then, the 1 Hz clock products are used for BDS precise point positioning (PPP) to retrieve seismic displacements of the 2015 Mw 7.8 Gorkha, Nepal, earthquake. The derived seismic displacements from BDS PPP are consistent with those from the Global Positioning System (GPS) PPP, with RMS of 0.29, 0.38, and 1.08 cm in east, north, and vertical components, respectively. In addition, the BDS PPP solutions with different clock intervals of 1 s, 5 s, 30 s, and 300 s are processed and compared with each other. The results demonstrate that PPP with 300 s clock intervals is the worst and that with 1 s clock interval is the best. For the scenario of 5 s clock intervals, the precision of PPP solutions is almost the same to 1 s results. Considering the time consumption of clock estimates, we suggest that 5 s clock interval is competent for high-rate BDS solutions. PMID:27999384

  11. An optical lattice clock with accuracy and stability at the 10(-18) level.

    PubMed

    Bloom, B J; Nicholson, T L; Williams, J R; Campbell, S L; Bishof, M; Zhang, X; Zhang, W; Bromley, S L; Ye, J

    2014-02-06

    Progress in atomic, optical and quantum science has led to rapid improvements in atomic clocks. At the same time, atomic clock research has helped to advance the frontiers of science, affecting both fundamental and applied research. The ability to control quantum states of individual atoms and photons is central to quantum information science and precision measurement, and optical clocks based on single ions have achieved the lowest systematic uncertainty of any frequency standard. Although many-atom lattice clocks have shown advantages in measurement precision over trapped-ion clocks, their accuracy has remained 16 times worse. Here we demonstrate a many-atom system that achieves an accuracy of 6.4 × 10(-18), which is not only better than a single-ion-based clock, but also reduces the required measurement time by two orders of magnitude. By systematically evaluating all known sources of uncertainty, including in situ monitoring of the blackbody radiation environment, we improve the accuracy of optical lattice clocks by a factor of 22. This single clock has simultaneously achieved the best known performance in the key characteristics necessary for consideration as a primary standard-stability and accuracy. More stable and accurate atomic clocks will benefit a wide range of fields, such as the realization and distribution of SI units, the search for time variation of fundamental constants, clock-based geodesy and other precision tests of the fundamental laws of nature. This work also connects to the development of quantum sensors and many-body quantum state engineering (such as spin squeezing) to advance measurement precision beyond the standard quantum limit.

  12. BDS Precise Point Positioning for Seismic Displacements Monitoring: Benefit from the High-Rate Satellite Clock Corrections.

    PubMed

    Geng, Tao; Su, Xing; Fang, Rongxin; Xie, Xin; Zhao, Qile; Liu, Jingnan

    2016-12-20

    In order to satisfy the requirement of high-rate high-precision applications, 1 Hz BeiDou Navigation Satellite System (BDS) satellite clock corrections are generated based on precise orbit products, and the quality of the generated clock products is assessed by comparing with those from the other analysis centers. The comparisons show that the root mean square (RMS) of clock errors of geostationary Earth orbits (GEO) is about 0.63 ns, whereas those of inclined geosynchronous orbits (IGSO) and medium Earth orbits (MEO) are about 0.2-0.3 ns and 0.1 ns, respectively. Then, the 1 Hz clock products are used for BDS precise point positioning (PPP) to retrieve seismic displacements of the 2015 Mw 7.8 Gorkha, Nepal, earthquake. The derived seismic displacements from BDS PPP are consistent with those from the Global Positioning System (GPS) PPP, with RMS of 0.29, 0.38, and 1.08 cm in east, north, and vertical components, respectively. In addition, the BDS PPP solutions with different clock intervals of 1 s, 5 s, 30 s, and 300 s are processed and compared with each other. The results demonstrate that PPP with 300 s clock intervals is the worst and that with 1 s clock interval is the best. For the scenario of 5 s clock intervals, the precision of PPP solutions is almost the same to 1 s results. Considering the time consumption of clock estimates, we suggest that 5 s clock interval is competent for high-rate BDS solutions.

  13. Simulating Future GPS Clock Scenarios with Two Composite Clock Algorithms

    NASA Technical Reports Server (NTRS)

    Suess, Matthias; Matsakis, Demetrios; Greenhall, Charles A.

    2010-01-01

    Using the GPS Toolkit, the GPS constellation is simulated using 31 satellites (SV) and a ground network of 17 monitor stations (MS). At every 15-minutes measurement epoch, the monitor stations measure the time signals of all satellites above a parameterized elevation angle. Once a day, the satellite clock estimates the station and satellite clocks. The first composite clock (B) is based on the Brown algorithm, and is now used by GPS. The second one (G) is based on the Greenhall algorithm. The composite clock of G and B performance are investigated using three ground-clock models. Model C simulates the current GPS configuration, in which all stations are equipped with cesium clocks, except for masers at USNO and Alternate Master Clock (AMC) sites. Model M is an improved situation in which every station is equipped with active hydrogen masers. Finally, Models F and O are future scenarios in which the USNO and AMC stations are equipped with fountain clocks instead of masers. Model F is a rubidium fountain, while Model O is more precise but futuristic Optical Fountain. Each model is evaluated using three performance metrics. The timing-related user range error having all satellites available is the first performance index (PI1). The second performance index (PI2) relates to the stability of the broadcast GPS system time itself. The third performance index (PI3) evaluates the stability of the time scales computed by the two composite clocks. A distinction is made between the "Signal-in-Space" accuracy and that available through a GNSS receiver.

  14. Dynamics of the slowing segmentation clock reveal alternating two-segment periodicity

    PubMed Central

    Shih, Nathan P.; François, Paul; Delaune, Emilie A.; Amacher, Sharon L.

    2015-01-01

    The formation of reiterated somites along the vertebrate body axis is controlled by the segmentation clock, a molecular oscillator expressed within presomitic mesoderm (PSM) cells. Although PSM cells oscillate autonomously, they coordinate with neighboring cells to generate a sweeping wave of cyclic gene expression through the PSM that has a periodicity equal to that of somite formation. The velocity of each wave slows as it moves anteriorly through the PSM, although the dynamics of clock slowing have not been well characterized. Here, we investigate segmentation clock dynamics in the anterior PSM in developing zebrafish embryos using an in vivo clock reporter, her1:her1-venus. The her1:her1-venus reporter has single-cell resolution, allowing us to follow segmentation clock oscillations in individual cells in real-time. By retrospectively tracking oscillations of future somite boundary cells, we find that clock reporter signal increases in anterior PSM cells and that the periodicity of reporter oscillations slows to about ∼1.5 times the periodicity in posterior PSM cells. This gradual slowing of the clock in the anterior PSM creates peaks of clock expression that are separated at a two-segment periodicity both spatially and temporally, a phenomenon we observe in single cells and in tissue-wide analyses. These results differ from previous predictions that clock oscillations stop or are stabilized in the anterior PSM. Instead, PSM cells oscillate until they incorporate into somites. Our findings suggest that the segmentation clock may signal somite formation using a phase gradient with a two-somite periodicity. PMID:25968314

  15. Comparison of the clock test and a questionnaire-based test for screening for cognitive impairment in Nigerians.

    PubMed

    VanderJagt, D J; Ganga, S; Obadofin, M O; Stanley, P; Zimmerman, M; Skipper, B J; Glew, R H

    2006-01-01

    Since it is projected that by 2020 seventy percent of the elderly will reside in developing countries, a reliable screening method for dementia and cognitive impairment in general in populations with diverse languages, culture, education and literacy will be needed. We sought to determine if the Clock Test, a screening test for dementia, was suitable for use in a Nigerian population. Cross-sectional survey of 54 men and 12 women from Northern Nigeria. Researchers administered two dementia screening tools: a questionnaire-based test adapted for use in a Nigerian population and the Clock Test. Overall, 53.0% of the subjects had an abnormal Clock Test whereas 10.6% of the subjects had an abnormal questionnaire score. Only 9.1% of the subjects had abnormal scores on both tests. Subjects with more schooling had a greater probability of having a positive clock concept (understanding that a circle represented a clock). Of those with more than 6 years of schooling, 91.0% had a positive clock concept. Subjects with a negative clock concept were more likely to have an abnormal Clock Test (93.3%) than a questionnaire (26.6%). The main finding of our study was the discrepancy between the results of the Clock Test and the questionnaire. Performance on the Clock Test appeared to have been heavily influenced by education level, indicating the test is not universally applicable across cultures. The questionnaire-based test appears to reduce the effects of illiteracy on assessing dementia in a Nigerian population. Larger studies should be done to control for how education affects the assessment of dementia.

  16. Submillimeter Schottky Diodes with Electron Beam Lithography.

    DTIC Science & Technology

    1979-12-01

    Timer 2: external clock, oneshot , 0’ sixteen bit counting modes are .,selected, no data is entered; interrupts are disabled. Timer 3: external clock and...CLOCK, ONESHOT MODE, NO INTERRUPTS, 00031* 16 BIT COUNTING MODE, OUTPUT IS EN- 00032 * ABLED; NO DATA IS ENTERED, 00033 00034 * TIMER3: EXT CLOCK

  17. Sex Differences in Patients With CAM Deformities With Femoroacetabular Impingement: 3-Dimensional Computed Tomographic Quantification.

    PubMed

    Yanke, Adam B; Khair, M Michael; Stanley, Robert; Walton, David; Lee, Simon; Bush-Joseph, Charles A; Espinoza Orías, Alejandro; Espinosa Orias, Alejandro A; Inoue, Nozomu; Nho, Shane J

    2015-12-01

    To determine if significant differences exist between male and female CAM deformities using quantitative 3-dimensional (3D) volume and location analysis. Retrospective analysis of preoperative computed tomographic (CT) scans for 138 femurs (69 from male patients and 69 from female patients) diagnosed with impingement from November 2009 to November 2011 was completed. Those patients who presented with hip complaints and had a history, physical examination (limited range of motion, positive impingement signs), plain radiographs (anteroposterior pelvis, 90° Dunn view, false profile view), and magnetic resonance images consistent with femoroacetabular impingement (FAI) and in whom a minimum of 6 months of conservative therapy (oral anti-inflammatory agents, physical therapy, and activity modification) had failed were indicated for arthroscopic surgery and had a preoperative CT scan. Scans were segmented, converted to point cloud data, and analyzed with a custom-written computer program. Analysis included mean CAM height and volume, head radius, and femoral version. Differences were analyzed using an unpaired t test with significance set at P < .05. Female patients had greater femoral anteversion compared with male patients (female patients, 15.5° ± 8.3°; male patients, 11.3° ± 9.0°; P = .06). Male femoral head radii were significantly larger than female femoral heads (female patients, 22.0 ± 1.3 mm; male patients, 25.4 ± 1.3 mm; P < .001). Male CAM height was significantly larger than that in female patients (female patients, 0.66 ± 0.61 mm; male patients, 1.51 ± 0.75 mm; P < .001). Male CAM volume was significantly larger as well (male patients, 433 ± 471 mm(3); female patients, 89 ± 124 mm(3); P < .001). These differences persisted after normalizing height (P < .001) and volume (P < .001) to femoral head radius. Average clock face distribution was from the 1:09 o'clock position ± the 2:51 o'clock position to the 3:28 o'clock position ± the 1:59 o'clock position, with an average span from the 3:06 o'clock position ± the 1:29 o'clock position (male patients, the 11:23 o'clock position ± the 0:46 o'clock position to the 3:05 o'clock position ± the 1:20 o'clock position; female patients, the 11:33 o'clock position ± the 0:37 o'clock position to the 2:27 o'clock position ± the 0:45 o'clock position). There were no differences in the posterior (P = .60) or anterior (P = .14) extent of CAM deformities. However, the span on the clock face of the CAM deformities varied when comparing men with women (male patients, the 3:43 o'clock position ± the 1:29 o'clock position; female patients, the 2:54 o'clock position ± the 1:09 o'clock position; P = .02). Our data show that female CAM deformities are shallower and of smaller volume than male lesions. Further studies will allow further characterization of the 3D geometry of the proximal femur and provide more precise guidance for femoral osteochondroplasty for the treatment of CAM deformities. Female CAM deformities may not be detectable using current 2D nonquantitative methods. These findings should raise the clinician's index of suspicion when diagnosing a symptomatic CAM lesion in female patients. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  18. Countdown Clock Ribbon Cutting

    NASA Image and Video Library

    2016-03-01

    Confetti is launched as the spaceport's historic countdown clock is dedicated as the newest display at the Kennedy Space Center Visitor Complex. Now located at the entrance to the visitor complex, the spaceport's historic countdown clock was used starting with the launch of Apollo 12 on Nov. 14, 1969. Originally set up at the space center's Press Site, the clock operated through the final space shuttle mission, STS-135, launched on July 8, 2011. The old countdown clock was replaced in 2014 with a modern light emitting diode, or LED, display.

  19. The Space Optical Clock project: status and perspectives

    NASA Astrophysics Data System (ADS)

    Schiller, Stephan; Tino, Guglielmo M.; Sterr, Uwe; Lemonde, Pierre; Görlitz, Axel; Salomon, Christophe

    The Space Optical Clocks project aims at operating lattice clocks on the ISS for tests of funda-mental physics and for providing high-accuracy comparisons of future terrestrial optical clocks. A pre-phase-A study (2007-10), funded partially by ESA and DLR, includes the implementa-tion of several optical lattice clock systems using Strontium and Ytterbium as atomic systems and their characterization. Subcomponents of clock demonstrators with the added specification of transportability and using techniques that are suitable for later space use, such as all-solid-state lasers, low power consumption, and compact dimensions, have been developed and are being validated. The talk will give a brief overview over the achieved results and outline future developments.

  20. A Genome-Wide RNAi Screen for Modifiers of the Circadian Clock in Human Cells

    PubMed Central

    Zhang, Eric E.; Liu, Andrew C.; Hirota, Tsuyoshi; Miraglia, Loren J.; Welch, Genevieve; Pongsawakul, Pagkapol Y.; Liu, Xianzhong; Atwood, Ann; Huss, Jon W.; Janes, Jeff; Su, Andrew I.; Hogenesch, John B.; Kay, Steve A.

    2009-01-01

    Summary Two decades of research identified more than a dozen clock genes and defined a biochemical feedback mechanism of circadian oscillator function. To identify additional clock genes and modifiers, we conducted a genome-wide siRNA screen in a human cellular clock model. Knockdown of nearly a thousand genes reduced rhythm amplitude. Potent effects on period length or increased amplitude were less frequent; we found hundreds of these and confirmed them in secondary screens. Characterization of a subset of these genes demonstrated a dosage-dependent effect on oscillator function. Protein interaction network analysis showed that dozens of gene products directly or indirectly associate with known clock components. Pathway analysis revealed these genes are overrepresented for components of insulin and hedgehog signaling, the cell cycle, and the folate metabolism. Coupled with data showing many of these pathways are clock-regulated, we conclude the clock is interconnected with many aspects of cellular function. PMID:19765810

  1. Noise-Induced Synchronization among Sub-RF CMOS Analog Oscillators for Skew-Free Clock Distribution

    NASA Astrophysics Data System (ADS)

    Utagawa, Akira; Asai, Tetsuya; Hirose, Tetsuya; Amemiya, Yoshihito

    We present on-chip oscillator arrays synchronized by random noises, aiming at skew-free clock distribution on synchronous digital systems. Nakao et al. recently reported that independent neural oscillators can be synchronized by applying temporal random impulses to the oscillators [1], [2]. We regard neural oscillators as independent clock sources on LSIs; i. e., clock sources are distributed on LSIs, and they are forced to synchronize through the use of random noises. We designed neuron-based clock generators operating at sub-RF region (<1GHz) by modifying the original neuron model to a new model that is suitable for CMOS implementation with 0.25-μm CMOS parameters. Through circuit simulations, we demonstrate that i) the clock generators are certainly synchronized by pseudo-random noises and ii) clock generators exhibited phase-locked oscillations even if they had small device mismatches.

  2. Orthogonally referenced integrated ensemble for navigation and timing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stephen Fulton; Moore, James Anthony

    2014-04-01

    An orthogonally referenced integrated ensemble for navigation and timing includes a dual-polyhedral oscillator array, including an outer sensing array of oscillators and an inner clock array of oscillators situated inside the outer sensing array. The outer sensing array includes a first pair of sensing oscillators situated along a first axis of the outer sensing array, a second pair of sensing oscillators situated along a second axis of the outer sensing array, and a third pair of sensing oscillators situated along a third axis of the outer sensing array. The inner clock array of oscillators includes a first pair of clockmore » oscillators situated along a first axis of the inner clock array, a second pair of clock oscillators situated along a second axis of the inner clock array, and a third pair of clock oscillators situated along a third axis of the inner clock array.« less

  3. Precise time dissemination via portable atomic clocks

    NASA Technical Reports Server (NTRS)

    Putkovich, K.

    1982-01-01

    The most precise operational method of time dissemination over long distances presently available to the Precise Time and Time Interval (PTTI) community of users is by means of portable atomic clocks. The Global Positioning System (GPS), the latest system showing promise of replacing portable clocks for global PTTI dissemination, was evaluated. Although GPS has the technical capability of providing superior world-wide dissemination, the question of present cost and future accessibility may require a continued reliance on portable clocks for a number of years. For these reasons a study of portable clock operations as they are carried out today was made. The portable clock system that was utilized by the U.S. Naval Observatory (NAVOBSY) in the global synchronization of clocks over the past 17 years is described and the concepts on which it is based are explained. Some of its capabilities and limitations are also discussed.

  4. The Effects of Clock Drift on the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Ali, Khaled S.; Vanelli, C. Anthony

    2012-01-01

    All clocks drift by some amount, and the mission clock on the Mars Exploration Rovers (MER) is no exception. The mission clock on both MER rovers drifted significantly since the rovers were launched, and it is still drifting on the Opportunity rover. The drift rate is temperature dependent. Clock drift causes problems for onboard behaviors and spacecraft operations, such as attitude estimation, driving, operation of the robotic arm, pointing for imaging, power analysis, and telecom analysis. The MER operations team has techniques to deal with some of these problems. There are a few techniques for reducing and eliminating the clock drift, but each has drawbacks. This paper presents an explanation of what is meant by clock drift on the rovers, its relationship to temperature, how we measure it, what problems it causes, how we deal with those problems, and techniques for reducing the drift.

  5. Clock-drawing test and unilateral spatial neglect.

    PubMed

    Ishiai, S; Sugishita, M; Ichikawa, T; Gono, S; Watabiki, S

    1993-01-01

    We investigated the ability of 25 patients with left unilateral spatial neglect to make a clock face by putting numbers inside a printed circle. Impairment seen in this clock-drawing test did not parallel neglect severity as judged by results of the line-cancellation and line-bisection tests, as well as the copying of a daisy. The score for clock drawing correlated highly with the verbal WAIS score. Most neglect patients with a verbal IQ of 87 or more could draw a clock face fairly well and used planning in placing the numbers 12, 3, 6, and 9 before the others. In clock drawing, verbal intelligence may compensate for left unilateral spatial neglect. We therefore recommend use of the line-cancellation and line-bisection tests, as well as the copying test, but do not recommend use of the clock-drawing test in the diagnosis of left unilateral spatial neglect.

  6. Apparatus and method for compensating for clock drift in downhole drilling components

    DOEpatents

    Hall, David R [Provo, UT; Pixton, David S [Lehi, UT; Johnson, Monte L [Orem, UT; Bartholomew, David B [Springville, UT; Hall, Jr., H. Tracy

    2007-08-07

    A precise downhole clock that compensates for drift includes a prescaler configured to receive electrical pulses from an oscillator. The prescaler is configured to output a series of clock pulses. The prescaler outputs each clock pulse after counting a preloaded number of electrical pulses from the oscillator. The prescaler is operably connected to a compensator module for adjusting the number loaded into the prescaler. By adjusting the number that is loaded into the prescaler, the timing may be advanced or retarded to more accurately synchronize the clock pulses with a reference time source. The compensator module is controlled by a counter-based trigger module configured to trigger the compensator module to load a value into the prescaler. Finally, a time-base logic module is configured to calculate the drift of the downhole clock by comparing the time of the downhole clock with a reference time source.

  7. A Light Clock Satisfying the Clock Hypothesis of Special Relativity

    ERIC Educational Resources Information Center

    West, Joseph

    2007-01-01

    The design of the FMEL, a floor-mirrored Einstein-Langevin "light clock", is introduced. The clock provides a physically intuitive manner to calculate and visualize the time dilation effects for a spatially extended set of observers (an accelerated "frame") undergoing unidirectional acceleration or observers on a rotating cylinder of constant…

  8. Crosstalk of clock gene expression and autophagy in aging

    PubMed Central

    Kalfalah, Faiza; Janke, Linda; Schiavi, Alfonso; Tigges, Julia; Ix, Alexander; Ventura, Natascia; Boege, Fritz; Reinke, Hans

    2016-01-01

    Autophagy and the circadian clock counteract tissue degeneration and support longevity in many organisms. Accumulating evidence indicates that aging compromises both the circadian clock and autophagy but the mechanisms involved are unknown. Here we show that the expression levels of transcriptional repressor components of the circadian oscillator, most prominently the human Period homologue PER2, are strongly reduced in primary dermal fibroblasts from aged humans, while raising the expression of PER2 in the same cells partially restores diminished autophagy levels. The link between clock gene expression and autophagy is corroborated by the finding that the circadian clock drives cell-autonomous, rhythmic autophagy levels in immortalized murine fibroblasts, and that siRNA-mediated downregulation of PER2 decreases autophagy levels while leaving core clock oscillations intact. Moreover, the Period homologue lin-42 regulates autophagy and life span in the nematode Caenorhabditis elegans, suggesting an evolutionarily conserved role for Period proteins in autophagy control and aging. Taken together, this study identifies circadian clock proteins as set-point regulators of autophagy and puts forward a model, in which age-related changes of clock gene expression promote declining autophagy levels. PMID:27574892

  9. Crosstalk of clock gene expression and autophagy in aging.

    PubMed

    Kalfalah, Faiza; Janke, Linda; Schiavi, Alfonso; Tigges, Julia; Ix, Alexander; Ventura, Natascia; Boege, Fritz; Reinke, Hans

    2016-08-28

    Autophagy and the circadian clock counteract tissue degeneration and support longevity in many organisms. Accumulating evidence indicates that aging compromises both the circadian clock and autophagy but the mechanisms involved are unknown. Here we show that the expression levels of transcriptional repressor components of the circadian oscillator, most prominently the human Period homologue PER2 , are strongly reduced in primary dermal fibroblasts from aged humans, while raising the expression of PER2 in the same cells partially restores diminished autophagy levels. The link between clock gene expression and autophagy is corroborated by the finding that the circadian clock drives cell-autonomous, rhythmic autophagy levels in immortalized murine fibroblasts, and that siRNA-mediated downregulation of PER2 decreases autophagy levels while leaving core clock oscillations intact. Moreover, the Period homologue lin-42 regulates autophagy and life span in the nematode Caenorhabditis elegans , suggesting an evolutionarily conserved role for Period proteins in autophagy control and aging. Taken together, this study identifies circadian clock proteins as set-point regulators of autophagy and puts forward a model, in which age-related changes of clock gene expression promote declining autophagy levels.

  10. On-orbit frequency stability analysis of the GPS NAVSTAR-1 quartz clock and the NAVSTARs-6 and -8 rubidium clocks

    NASA Technical Reports Server (NTRS)

    Mccaskill, T. B.; Buisson, J. A.; Reid, W. G.

    1984-01-01

    An on-orbit frequency stability performance analysis of the GPS NAVSTAR-1 quartz clock and the NAVSTARs-6 and -8 rubidium clocks is presented. The clock offsets were obtained from measurements taken at the GPS monitor stations which use high performance cesium standards as a reference. Clock performance is characterized through the use of the Allan variance, which is evaluated for sample times of 15 minutes to two hours, and from one day to 10 days. The quartz and rubidium clocks' offsets were corrected for aging rate before computing the frequency stability. The effect of small errors in aging rate is presented for the NAVSTAR-8 rubidium clock's stability analysis. The analysis includes presentation of time and frequency residuals with respect to linear and quadratic models, which aid in obtaining aging rate values and identifying systematic and random effects. The frequency stability values were further processed with a time domain noise process analysis, which is used to classify random noise process and modulation type.

  11. Genetic differences in human circadian clock genes among worldwide populations.

    PubMed

    Ciarleglio, Christopher M; Ryckman, Kelli K; Servick, Stein V; Hida, Akiko; Robbins, Sam; Wells, Nancy; Hicks, Jennifer; Larson, Sydney A; Wiedermann, Joshua P; Carver, Krista; Hamilton, Nalo; Kidd, Kenneth K; Kidd, Judith R; Smith, Jeffrey R; Friedlaender, Jonathan; McMahon, Douglas G; Williams, Scott M; Summar, Marshall L; Johnson, Carl Hirschie

    2008-08-01

    The daily biological clock regulates the timing of sleep and physiological processes that are of fundamental importance to human health, performance, and well-being. Environmental parameters of relevance to biological clocks include (1) daily fluctuations in light intensity and temperature, and (2) seasonal changes in photoperiod (day length) and temperature; these parameters vary dramatically as a function of latitude and locale. In wide-ranging species other than humans, natural selection has genetically optimized adaptiveness along latitudinal clines. Is there evidence for selection of clock gene alleles along latitudinal/photoperiod clines in humans? A number of polymorphisms in the human clock genes Per2, Per3, Clock, and AANAT have been reported as alleles that could be subject to selection. In addition, this investigation discovered several novel polymorphisms in the human Arntl and Arntl2 genes that may have functional impact upon the expression of these clock transcriptional factors. The frequency distribution of these clock gene polymorphisms is reported for diverse populations of African Americans, European Americans, Ghanaians, Han Chinese, and Papua New Guineans (including 5 subpopulations within Papua New Guinea). There are significant differences in the frequency distribution of clock gene alleles among these populations. Population genetic analyses indicate that these differences are likely to arise from genetic drift rather than from natural selection.

  12. Molecular clock integration of brown adipose tissue formation and function

    PubMed Central

    Nam, Deokhwa; Yechoor, Vijay K.; Ma, Ke

    2016-01-01

    Abstract The circadian clock is an essential time-keeping mechanism that entrains internal physiology to environmental cues. Despite the well-established link between the molecular clock and metabolic homeostasis, an intimate interplay between the clock machinery and the metabolically active brown adipose tissue (BAT) is only emerging. Recently, we came to appreciate that the formation and metabolic functions of BAT, a key organ for body temperature maintenance, are under an orchestrated circadian clock regulation. Two complementary studies from our group uncover that the cell-intrinsic clock machinery exerts concerted control of brown adipogenesis with consequent impacts on adaptive thermogenesis, which adds a previously unappreciated temporal dimension to the regulatory mechanisms governing BAT development and function. The essential clock transcriptional activator, Bmal1, suppresses adipocyte lineage commitment and differentiation, whereas the clock repressor, Rev-erbα, promotes these processes. This newly discovered temporal mechanism in fine-tuning BAT thermogenic capacity may enable energy utilization and body temperature regulation in accordance with external timing signals during development and functional recruitment. Given the important role of BAT in whole-body metabolic homeostasis, pharmacological interventions targeting the BAT-modulatory activities of the clock circuit may offer new avenues for the prevention and treatment of metabolic disorders, particularly those associated with circadian dysregulation. PMID:27385482

  13. Assessing the short-term clock drift of early broadband stations with burst events of the 26 s persistent and localized microseism

    NASA Astrophysics Data System (ADS)

    Xie, J.; Ni, S.; Chu, R.; Xia, Y.

    2017-12-01

    Accurate seismometer clock plays an important role in seismological studies including earthquake location and tomography. However, some seismic stations may have clock drift larger than 1 second, especially in early days of global seismic network. The 26 s Persistent Localized (PL) microseism event in the Gulf of Guinea sometime excites strong and coherent signals, and can be used as repeating source for assessing stability of seismometer clocks. Taking station GSC/TS in southern California, USA as an example, the 26 s PL signal can be easily observed in the ambient Noise Cross-correlation Function (NCF) between GSC/TS and a remote station. The variation of travel-time of this 26 s signal in the NCF is used to infer clock error. A drastic clock error is detected during June, 1992. This short-term clock error is confirmed by both teleseismic and local earthquake records with a magnitude of ±25 s. Using 26 s PL source, the clock can be validated for historical records of sparsely distributed stations, where usual NCF of short period microseism (<20 s) might be less effective due to its attenuation over long interstation distances. However, this method suffers from cycling problem, and should be verified by teleseismic/local P waves. The location change of the 26 s PL source may influence the measured clock drift, using regional stations with stable clock, we estimate the possible location change of the source.

  14. Synthesizing genetic sequential logic circuit with clock pulse generator.

    PubMed

    Chuang, Chia-Hua; Lin, Chun-Liang

    2014-05-28

    Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal.

  15. Non-Metastatic Cutaneous Melanoma Induces Chronodisruption in Central and Peripheral Circadian Clocks.

    PubMed

    de Assis, Leonardo Vinícius Monteiro; Moraes, Maria Nathália; Magalhães-Marques, Keila Karoline; Kinker, Gabriela Sarti; da Silveira Cruz-Machado, Sanseray; Castrucci, Ana Maria de Lauro

    2018-04-03

    The biological clock has received increasing interest due to its key role in regulating body homeostasis in a time-dependent manner. Cancer development and progression has been linked to a disrupted molecular clock; however, in melanoma, the role of the biological clock is largely unknown. We investigated the effects of the tumor on its micro- (TME) and macro-environments (TMaE) in a non-metastatic melanoma model. C57BL/6J mice were inoculated with murine B16-F10 melanoma cells and 2 weeks later the animals were euthanized every 6 h during 24 h. The presence of a localized tumor significantly impaired the biological clock of tumor-adjacent skin and affected the oscillatory expression of genes involved in light- and thermo-reception, proliferation, melanogenesis, and DNA repair. The expression of tumor molecular clock was significantly reduced compared to healthy skin but still displayed an oscillatory profile. We were able to cluster the affected genes using a human database and distinguish between primary melanoma and healthy skin. The molecular clocks of lungs and liver (common sites of metastasis), and the suprachiasmatic nucleus (SCN) were significantly affected by tumor presence, leading to chronodisruption in each organ. Taken altogether, the presence of non-metastatic melanoma significantly impairs the organism's biological clocks. We suggest that the clock alterations found in TME and TMaE could impact development, progression, and metastasis of melanoma; thus, making the molecular clock an interesting pharmacological target.

  16. A molecular genetic time scale demonstrates Cretaceous origins and multiple diversification rate shifts within the order Galliformes (Aves).

    PubMed

    Stein, R Will; Brown, Joseph W; Mooers, Arne Ø

    2015-11-01

    The phylogeny of Galliformes (landfowl) has been studied extensively; however, the associated chronologies have been criticized recently due to misplaced or misidentified fossil calibrations. As a consequence, it is unclear whether any crown-group lineages arose in the Cretaceous and survived the Cretaceous-Paleogene (K-Pg; 65.5 Ma) mass extinction. Using Bayesian phylogenetic inference on an alignment spanning 14,539 bp of mitochondrial and nuclear DNA sequence data, four fossil calibrations, and a combination of uncorrelated lognormally distributed relaxed-clock and strict-clock models, we inferred a time-calibrated molecular phylogeny for 225 of the 291 extant Galliform taxa. These analyses suggest that crown Galliformes diversified in the Cretaceous and that three-stem lineages survived the K-Pg mass extinction. Ideally, characterizing the tempo and mode of diversification involves a taxonomically complete phylogenetic hypothesis. We used simple constraint structures to incorporate 66 data-deficient taxa and inferred the first taxon-complete phylogenetic hypothesis for the Galliformes. Diversification analyses conducted on 10,000 timetrees sampled from the posterior distribution of candidate trees show that the evolutionary history of the Galliformes is best explained by a rate-shift model including 1-3 clade-specific increases in diversification rate. We further show that the tempo and mode of diversification in the Galliformes conforms to a three-pulse model, with three-stem lineages arising in the Cretaceous and inter and intrafamilial diversification occurring after the K-Pg mass extinction, in the Paleocene-Eocene (65.5-33.9 Ma) or in association with the Eocene-Oligocene transition (33.9 Ma). Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Thyroxine differentially modulates the peripheral clock: lessons from the human hair follicle.

    PubMed

    Hardman, Jonathan A; Haslam, Iain S; Farjo, Nilofer; Farjo, Bessam; Paus, Ralf

    2015-01-01

    The human hair follicle (HF) exhibits peripheral clock activity, with knock-down of clock genes (BMAL1 and PER1) prolonging active hair growth (anagen) and increasing pigmentation. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured human HFs. In addition they are recognized as key regulators of the central clock that controls circadian rhythmicity. Therefore, we asked whether thyroxine (T4) also influences peripheral clock activity in the human HF. Over 24 hours we found a significant reduction in protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly. Furthermore, while all clock genes maintained their rhythmicity in both the control and T4 treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4 (100 nM) treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was also assessed appearing to show an induced circadian rhythmicity by T4 however, this was not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2) were up-regulated in T4 treated HFs. BMAL1 and PER1 mRNA was also up-regulated in the HF bulge, the location of HF epithelial stem cells. Together this provides the first direct evidence that T4 modulates the expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may also show a disordered peripheral clock, which raises the possibility that short term, pulsatile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as a target to treat clock-related disease.

  18. Extra-hypothalamic brain clocks in songbirds: Photoperiodic state dependent clock gene oscillations in night-migratory blackheaded buntings, Emberiza melanocephala.

    PubMed

    Singh, Devraj; Kumar, Vinod

    2017-04-01

    The avian circadian pacemaker system is comprised of independent clocks in the retina, pineal and hypothalamus, as shown by daily and circadian oscillations of core clock genes (Per2, Cry1, Bmal1 and Clock) in several birds including migratory blackheaded buntings (Emberiza melanocephala). This study investigated the extra-hypothalamic brain circadian clocks in blackheaded buntings, and measured Per2, Cry1, Cry2, Bmal1 and Clock mRNA expressions at 4h intervals over 24h beginning 1h after light-on in the left and right telencephalon, optic tectum and cerebellum, the brain regions involved in several physiological and cognitive functions. Because of seasonal alterations in the circadian clock dependent brain functions, we measured daily clock gene oscillations in buntings photoperiod-induced with the non-migratory state under short days (SDnM), and the pre-migratory (LDpM), migratory (LDM) and post-migratory (refractory, LDR) states under long days. Daily Per2 oscillations were not altered with changes in the photoperiodic states, except for about 2-3h phase difference in the optic tectum between the SDnM and LDpM states. However, there were about 3-5h differences in the phase and 2 to 4 fold change in the amplitude of daily Bmal1 and Cry1 mRNA oscillations between the photoperiod-induced states. Further, Cry2 and Clock genes lacked a significant oscillation, except in Cb (Cry2) and TeO and Rt (Clock) under LDR state. Overall, these results show the presence of circadian clocks in extra-hypothalamic brain regions of blackheaded buntings, and suggest tissue-dependent alterations in the waveforms of mRNA oscillations with transitions in the photoperiod-induced seasonal states in a long-day species. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Gigabit Ethernet Asynchronous Clock Compensation FIFO

    NASA Technical Reports Server (NTRS)

    Duhachek, Jeff

    2012-01-01

    Clock compensation for Gigabit Ethernet is necessary because the clock recovered from the 1.25 Gb/s serial data stream has the potential to be 200 ppm slower or faster than the system clock. The serial data is converted to 10-bit parallel data at a 125 MHz rate on a clock recovered from the serial data stream. This recovered data needs to be processed by a system clock that is also running at a nominal rate of 125 MHz, but not synchronous to the recovered clock. To cross clock domains, an asynchronous FIFO (first-in-first-out) is used, with the write pointer (wprt) in the recovered clock domain and the read pointer (rptr) in the system clock domain. Because the clocks are generated from separate sources, there is potential for FIFO overflow or underflow. Clock compensation in Gigabit Ethernet is possible by taking advantage of the protocol data stream features. There are two distinct data streams that occur in Gigabit Ethernet where identical data is transmitted for a period of time. The first is configuration, which happens during auto-negotiation. The second is idle, which occurs at the end of auto-negotiation and between every packet. The identical data in the FIFO can be repeated by decrementing the read pointer, thus compensating for a FIFO that is draining too fast. The identical data in the FIFO can also be skipped by incrementing the read pointer, which compensates for a FIFO draining too slowly. The unique and novel features of this FIFO are that it works in both the idle stream and the configuration streams. The increment or decrement of the read pointer is different in the idle and compensation streams to preserve disparity. Another unique feature is that the read pointer to write pointer difference range changes between compensation and idle to minimize FIFO latency during packet transmission.

  20. Role of monochromatic light on daily variation of clock gene expression in the pineal gland of chick.

    PubMed

    Jiang, Nan; Wang, Zixu; Cao, Jing; Dong, Yulan; Chen, Yaoxing

    2016-11-01

    The avian pineal gland is a master clock that can receive external photic cues and translate them into output rhythms. To clarify whether a shift in light wavelength can influence the circadian expression in chick pineal gland, a total of 240 Arbor Acre male broilers were exposed to white light (WL), red light (RL), green light (GL) or blue light (BL). After 2weeks light illumination, circadian expressions of seven core clock genes in pineal gland and the level of melatonin in plasma were examined. The results showed after illumination with monochromatic light, 24h profiles of all clock gene mRNAs retained circadian oscillation, except that RL tended to disrupt the rhythm of cCry2. Compared to WL, BL advanced the acrophases of the negative elements (cCry1, cCry2, cPer2 and cPer3) by 0.1-1.5h and delayed those of positive elements (cClock, cBmal1 and cBmal2) by 0.2-0.8h. And, RL advanced all clock genes except cClock and cPer2 by 0.3-2.1h, while GL delayed all clock genes by 0.5-1.5h except cBmal2. Meanwhile, GL increased the amplitude and mesor of positive and reduced both parameters of negative clock genes, but RL showed the opposite pattern. Although the acrophase of plasma melatonin was advanced by both GL and RL, the melatonin level was significantly increased in GL and decreased in RL. This tendency was consistent with the variations in the positive clock gene mRNA levels under monochromatic light and contrasted with those of negative clock genes. Therefore, we speculate that GL may enhance positive clock genes expression, leading to melatonin synthesis, whereas RL may enhance negative genes expression, suppressing melatonin synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. GPS satellite clock determination in case of inter-frequency clock biases for triple-frequency precise point positioning

    NASA Astrophysics Data System (ADS)

    Guo, Jiang; Geng, Jianghui

    2017-12-01

    Significant time-varying inter-frequency clock biases (IFCBs) within GPS observations prevent the application of the legacy L1/L2 ionosphere-free clock products on L5 signals. Conventional approaches overcoming this problem are to estimate L1/L5 ionosphere-free clocks in addition to their L1/L2 counterparts or to compute IFCBs between the L1/L2 and L1/L5 clocks which are later modeled through a harmonic analysis. In contrast, we start from the undifferenced uncombined GNSS model and propose an alternative approach where a second satellite clock parameter dedicated to the L5 signals is estimated along with the legacy L1/L2 clock. In this manner, we do not need to rely on the correlated L1/L2 and L1/L5 ionosphere-free observables which complicates triple-frequency GPS stochastic models, or account for the unfavorable time-varying hardware biases in undifferenced GPS functional models since they can be absorbed by the L5 clocks. An extra advantage over the ionosphere-free model is that external ionosphere constraints can potentially be introduced to improve PPP. With 27 days of triple-frequency GPS data from globally distributed stations, we find that the RMS of the positioning differences between our GPS model and all conventional models is below 1 mm for all east, north and up components, demonstrating the effectiveness of our model in addressing triple-frequency observations and time-varying IFCBs. Moreover, we can combine the L1/L2 and L5 clocks derived from our model to calculate precisely the L1/L5 clocks which in practice only depart from their legacy counterparts by less than 0.006 ns in RMS. Our triple-frequency GPS model proves convenient and efficient in combating time-varying IFCBs and can be generalized to more than three frequency signals for satellite clock determination.

  2. A closer look at the concept of regional clocks for Precise Point Positioning

    NASA Astrophysics Data System (ADS)

    Weber, Robert; Karabatic, Ana; Thaler, Gottfried; Abart, Christoph; Huber, Katrin

    2010-05-01

    Under the precondition of at least two successfully tracked signals at different carrier frequencies we may obtain their ionosphere free linear combination. By introducing approximate values for geometric effects like orbits and tropospheric delay as well as an initial bias parameter N per individual satellite we can solve for the satellite clock with respect to the receiver clock. Noting, that residual effects like orbit errors, remaining tropospheric delays and a residual bias parameter map into these parameters, this procedure leaves us with a kind of virtual clock differences. These clocks cover regional effects and are therefore clearly correlated with clocks at nearby station. Therefore we call these clock differences, which are clearly different from clock solutions provided for instance by IGS, the "regional clocks". When introducing the regional clocks obtained from real-time data of a GNSS reference station network we are able to process the coordinates of a nearby isolated station via a PPP .In terms of PPP-convergence time which will be reduced down to 30 minutes or less, this procedure is clearly favorable. The accuracy is quite comparable with state of the art PPP procedures. Nevertheless, this approach cannot compete in fixing times with double-difference approaches but the correlation holds over hundreds of kilometers distance to our master station and the clock differences can easily by obtained, even in real-time. This presentation provides preliminary results of the project RA-PPP. RA-PPP is a research project financed by the Federal Ministry for Transport, Innovation and Technology, managed by the Austrian Research Promotion Agency (FFG) in the course of the 6th call of the Austrian Space Application Program (ASAP). RA-PPP stands for Rapid Precise Point Positioning, which denotes the wish for faster and more accurate algorithms for PPP. The concept of regional clocks which will be demonstrated in detail in this presentation is one out of 4 concepts to be evaluated in this project.

  3. Improved Short-Term Clock Prediction Method for Real-Time Positioning.

    PubMed

    Lv, Yifei; Dai, Zhiqiang; Zhao, Qile; Yang, Sheng; Zhou, Jinning; Liu, Jingnan

    2017-06-06

    The application of real-time precise point positioning (PPP) requires real-time precise orbit and clock products that should be predicted within a short time to compensate for the communication delay or data gap. Unlike orbit correction, clock correction is difficult to model and predict. The widely used linear model hardly fits long periodic trends with a small data set and exhibits significant accuracy degradation in real-time prediction when a large data set is used. This study proposes a new prediction model for maintaining short-term satellite clocks to meet the high-precision requirements of real-time clocks and provide clock extrapolation without interrupting the real-time data stream. Fast Fourier transform (FFT) is used to analyze the linear prediction residuals of real-time clocks. The periodic terms obtained through FFT are adopted in the sliding window prediction to achieve a significant improvement in short-term prediction accuracy. This study also analyzes and compares the accuracy of short-term forecasts (less than 3 h) by using different length observations. Experimental results obtained from International GNSS Service (IGS) final products and our own real-time clocks show that the 3-h prediction accuracy is better than 0.85 ns. The new model can replace IGS ultra-rapid products in the application of real-time PPP. It is also found that there is a positive correlation between the prediction accuracy and the short-term stability of on-board clocks. Compared with the accuracy of the traditional linear model, the accuracy of the static PPP using the new model of the 2-h prediction clock in N, E, and U directions is improved by about 50%. Furthermore, the static PPP accuracy of 2-h clock products is better than 0.1 m. When an interruption occurs in the real-time model, the accuracy of the kinematic PPP solution using 1-h clock prediction product is better than 0.2 m, without significant accuracy degradation. This model is of practical significance because it solves the problems of interruption and delay in data broadcast in real-time clock estimation and can meet the requirements of real-time PPP.

  4. Rate variation and estimation of divergence times using strict and relaxed clocks.

    PubMed

    Brown, Richard P; Yang, Ziheng

    2011-09-26

    Understanding causes of biological diversity may be greatly enhanced by knowledge of divergence times. Strict and relaxed clock models are used in Bayesian estimation of divergence times. We examined whether: i) strict clock models are generally more appropriate in shallow phylogenies where rate variation is expected to be low, ii) the likelihood ratio test of the clock (LRT) reliably informs which model is appropriate for dating divergence times. Strict and relaxed models were used to analyse sequences simulated under different levels of rate variation. Published shallow phylogenies (Black bass, Primate-sucking lice, Podarcis lizards, Gallotiinae lizards, and Caprinae mammals) were also analysed to determine natural levels of rate variation relative to the performance of the different models. Strict clock analyses performed well on data simulated under the independent rates model when the standard deviation of log rate on branches, σ, was low (≤ 0.1), but were inappropriate when σ>0.1 (95% of rates fall within 0.0082-0.0121 subs/site/Ma when σ = 0.1, for a mean rate of 0.01). The independent rates relaxed clock model performed well at all levels of rate variation, although posterior intervals on times were significantly wider than for the strict clock. The strict clock is therefore superior when rate variation is low. The performance of a correlated rates relaxed clock model was similar to the strict clock. Increased numbers of independent loci led to slightly narrower posteriors under the relaxed clock while older root ages provided proportionately narrower posteriors. The LRT had low power for σ = 0.01-0.1, but high power for σ = 0.5-2.0. Posterior means of σ2 were useful for assessing rate variation in published datasets. Estimates of natural levels of rate variation ranged from 0.05-3.38 for different partitions. Differences in divergence times between relaxed and strict clock analyses were greater in two datasets with higher σ2 for one or more partitions, supporting the simulation results. The strict clock can be superior for trees with shallow roots because of low levels of rate variation between branches. The LRT allows robust assessment of suitability of the clock model as does examination of posteriors on σ2.

  5. Clock recovery for high-speed optical communication

    NASA Astrophysics Data System (ADS)

    Pedrotti, Kenneth D.

    1996-01-01

    This paper reviews recent results for clock recovery circuits operating at speeds in excess of 1 Gbit/sec or realized as multichannel arrays. The emphasis is on synchronous optical network (SONET) type systems, their requirements, and the effect of the clock recovery circuits on system performance. Clock recovery approaches include filter based, phase-locked-loops, and all-optical methods.

  6. Clock recovery for high-speed optical communication

    NASA Astrophysics Data System (ADS)

    Pedrotti, Ken

    1996-01-01

    This paper reviews recent results for clock recovery circuits operating at speeds in excess of 1 Gbit/sec or realized as multichannel arrays. The emphasis is on Synchronous Optical NETwork (SONET) type systems, their requirements, and the effect of the clock recovery circuits on system performance. Clock recovery approaches include filter based, phase-lockcd-loops, and all-optical methods.

  7. Sound Affects the Speed of Visual Processing

    ERIC Educational Resources Information Center

    Keetels, Mirjam; Vroomen, Jean

    2011-01-01

    The authors examined the effects of a task-irrelevant sound on visual processing. Participants were presented with revolving clocks at or around central fixation and reported the hand position of a target clock at the time an exogenous cue (1 clock turning red) or an endogenous cue (a line pointing toward 1 of the clocks) was presented. A…

  8. Curriculum Sequencing and the Acquisition of Clock-Reading Skills among Chinese and Flemish Children

    ERIC Educational Resources Information Center

    Burny, Elise; Valcke, Martin; Desoete, Annemie; Van Luit, Johannes E. Hans

    2013-01-01

    The present study addresses the impact of the curriculum on primary school children's acquisition of clock-reading knowledge from analog and digital clocks. Focusing on Chinese and Flemish children's clock-reading knowledge, the study is about whether the differences in sequencing of learning and instruction opportunities--as defined by the…

  9. High-speed clock recovery with phase-locked-loop-based on LiNbO3 modulators

    NASA Astrophysics Data System (ADS)

    Zhu, Guanghao; Chen, Hongmin; Wang, Qiang; Dutta, Niloy K.

    2003-08-01

    In this paper, we present a scheme for recovering 10 GHz clock from 40 Gb/s and 80 Gb/s time division multiplexed (TDM) return to zero (RZ) data stream. The proposed clock recovery is successfully demonstrated using an electrical phase locked loop (PLL). The jitter of the recovered clock is estimated to be around 50 fs. The key part in the proposed clock recovery circuit is a LiNbO3 Mach-Zehnder modulator which is shown to be highly effective in optical to electrical down conversion.

  10. A novel approach for clock recovery without pattern effect from degraded signal

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoxin; Wang, Tong; Lou, Caiyun; Huo, Li; Gao, Yizhi

    2003-04-01

    A novel clock recovery scheme using two-ring injection mode-locked fiber ring laser based on all 10 GHz bandwidth components was demonstrated. With this scheme, the clock with low timing jitter was obtained from a degraded 10 Gb/s optical data stream. Optical clock recovery was also achieved from a degraded 20 Gb/s optical data train when the clock division technique in the opto-electronic oscillator (OEO) and the rational harmonic mode-locking technique in the fiber ring laser were applied. No pattern effect was observed in the experiments.

  11. Precise time transfer using MKIII VLBI technology

    NASA Technical Reports Server (NTRS)

    Johnston, K. J.; Buisson, J. A.; Lister, M. J.; Oaks, O. J.; Spencer, J. H.; Waltman, W. B.; Elgered, G.; Lundqvist, G.; Rogers, A. E. E.; Clark, T. A.

    1984-01-01

    It is well known that Very Long Baseline Interferometry (VLBI) is capable of precise time synchronization at subnanosecond levels. This paper deals with a demonstration of clock synchronization using the MKIII VBLI system. The results are compared with clock synchronization by traveling cesium clocks and GPS. The comparison agrees within the errors of the portable clocks (+ 5 ns) and GPS(+ or - 30 ns) systems. The MKIII technology appears to be capable of clock synchronization at subnanosecond levels and appears to be very good benchmark system against which future time synchronization systems can be evaluated.

  12. New experiments on the effect of clock shifts on homing in pigeons

    NASA Technical Reports Server (NTRS)

    Schmidt-Koenig, K.

    1972-01-01

    The effect of clock shifts as an experimental tool for predictably interfering with the homing ability of birds is discussed. Clock shifts introduce specific errors in the birds' sun azimuth compass, resulting in corresponding errors during initial orientation and possibly during orientation enroute. The effects of 6 hour and 12 hour clock shifts resulted in a 90 degree deviation and a 180 degree deviation from the initial orientation, respectively. The method for conducting the clock shift experiments and results obtained from previous experiments are described.

  13. Advancing the state-of-the-art of the optical atomic clock

    NASA Astrophysics Data System (ADS)

    Ye, Jun

    2014-05-01

    The continued advance in laser phase coherence has permitted an improvement of the stability of optical lattice clocks by a factor of 10. This measurement precision has facilitated characterization of systematic effects, allowing us to improve the lattice clock accuracy by a factor of 20. The accuracy and stability of the JILA Sr clock now reach the 10-18 level. Owing to these advances, the lattice clock has also emerged as an effective laboratory to study many-body spin correlations. NIST, NSF, DARPA-QuASAR.

  14. METAS New Time Scale Generation System - A Progress Report

    DTIC Science & Technology

    2007-01-01

    and a TWSTFT station are used for remote T&F comparisons. The GPS TAI link is driven by one of the atomic clocks defined as the REF clock...UTC(CH.P) paper clock TA(CH.P) paper clock TWSTFT link GPS link CH00 WAB1 H-maser 1-PPS H-maser 1-PPS REF 1-PPS 5-MHz from all clocks UTC(CH.R) 1-PPS...lost, the only consequence would be a transient of UTC (CH.P), which can be corrected by a subsequent steering. The GPS and TWSTFT links can be

  15. Feedback repression is required for mammalian circadian clock function.

    PubMed

    Sato, Trey K; Yamada, Rikuhiro G; Ukai, Hideki; Baggs, Julie E; Miraglia, Loren J; Kobayashi, Tetsuya J; Welsh, David K; Kay, Steve A; Ueda, Hiroki R; Hogenesch, John B

    2006-03-01

    Direct evidence for the requirement of transcriptional feedback repression in circadian clock function has been elusive. Here, we developed a molecular genetic screen in mammalian cells to identify mutants of the circadian transcriptional activators CLOCK and BMAL1, which were uncoupled from CRYPTOCHROME (CRY)-mediated transcriptional repression. Notably, mutations in the PER-ARNT-SIM domain of CLOCK and the C terminus of BMAL1 resulted in synergistic insensitivity through reduced physical interactions with CRY. Coexpression of these mutant proteins in cultured fibroblasts caused arrhythmic phenotypes in population and single-cell assays. These data demonstrate that CRY-mediated repression of the CLOCK/BMAL1 complex activity is required for maintenance of circadian rhythmicity and provide formal proof that transcriptional feedback is required for mammalian clock function.

  16. Initial atomic coherences and Ramsey frequency pulling in fountain clocks

    NASA Astrophysics Data System (ADS)

    Gerginov, Vladislav; Nemitz, Nils; Weyers, Stefan

    2014-09-01

    In the uncertainty budget of primary atomic cesium fountain clocks, evaluations of frequency-pulling shifts of the hyperfine clock transition caused by unintentional excitation of its nearby transitions (Rabi and Ramsey pulling) have been based so far on an approach developed for cesium beam clocks. We re-evaluate this type of frequency pulling in fountain clocks and pay particular attention to the effect of initial coherent atomic states. We find significantly enhanced frequency shifts caused by Ramsey pulling due to sublevel population imbalance and corresponding coherences within the state-selected hyperfine component of the initial atom ground state. Such shifts are experimentally investigated in an atomic fountain clock and quantitative agreement with the predictions of the model is demonstrated.

  17. A remark on the GNSS single difference model with common clock scheme for attitude determination

    NASA Astrophysics Data System (ADS)

    Chen, Wantong

    2016-09-01

    GNSS-based attitude determination technique is an important field of study, in which two schemes can be used to construct the actual system: the common clock scheme and the non-common clock scheme. Compared with the non-common clock scheme, the common clock scheme can strongly improve both the reliability and the accuracy. However, in order to gain these advantages, specific care must be taken in the implementation. The cares are thus discussed, based on the generating technique of carrier phase measurement in GNSS receivers. A qualitative assessment of potential phase bias contributes is also carried out. Possible technical difficulties are pointed out for the development of single-board multi-antenna GNSS attitude systems with a common clock.

  18. A Conserved Bicycle Model for Circadian Clock Control of Membrane Excitability

    PubMed Central

    Flourakis, Matthieu; Kula-Eversole, Elzbieta; Hutchison, Alan L.; Han, Tae Hee; Aranda, Kimberly; Moose, Devon L.; White, Kevin P.; Dinner, Aaron R.; Lear, Bridget C.; Ren, Dejian; Diekman, Casey O.; Raman, Indira M.; Allada, Ravi

    2015-01-01

    Summary Circadian clocks regulate membrane excitability in master pacemaker neurons to control daily rhythms of sleep and wake. Here we find that two distinctly timed electrical drives collaborate to impose rhythmicity on Drosophila clock neurons. In the morning, a voltage-independent sodium conductance via the NA/NALCN ion channel depolarizes these neurons. This current is driven by the rhythmic expression of NCA localization factor-1, linking the molecular clock to ion channel function. In the evening, basal potassium currents peak to silence clock neurons. Remarkably, daily antiphase cycles of sodium and potassium currents also drive mouse clock neuron rhythms. Thus, we reveal an evolutionarily ancient strategy for the neural mechanisms that govern daily sleep and wake. PMID:26276633

  19. A proportional integral estimator-based clock synchronization protocol for wireless sensor networks.

    PubMed

    Yang, Wenlun; Fu, Minyue

    2017-11-01

    Clock synchronization is an issue of vital importance in applications of WSNs. This paper proposes a proportional integral estimator-based protocol (EBP) to achieve clock synchronization for wireless sensor networks. As each local clock skew gradually drifts, synchronization accuracy will decline over time. Compared with existing consensus-based approaches, the proposed synchronization protocol improves synchronization accuracy under time-varying clock skews. Moreover, by restricting synchronization error of clock skew into a relative small quantity, it could reduce periodic re-synchronization frequencies. At last, a pseudo-synchronous implementation for skew compensation is introduced as synchronous protocol is unrealistic in practice. Numerical simulations are shown to illustrate the performance of the proposed protocol. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Regulation of the Rhythmic Emission of Plant Volatiles by the Circadian Clock.

    PubMed

    Zeng, Lanting; Wang, Xiaoqin; Kang, Ming; Dong, Fang; Yang, Ziyin

    2017-11-13

    Like other organisms, plants have endogenous biological clocks that enable them to organize their metabolic, physiological, and developmental processes. The representative biological clock is the circadian system that regulates daily (24-h) rhythms. Circadian-regulated changes in growth have been observed in numerous plants. Evidence from many recent studies indicates that the circadian clock regulates a multitude of factors that affect plant metabolites, especially emitted volatiles that have important ecological functions. Here, we review recent progress in research on plant volatiles showing rhythmic emission under the regulation of the circadian clock, and on how the circadian clock controls the rhythmic emission of plant volatiles. We also discuss the potential impact of other factors on the circadian rhythmic emission of plant volatiles.

  1. An expanding universe of circadian networks in higher plants.

    PubMed

    Pruneda-Paz, Jose L; Kay, Steve A

    2010-05-01

    Extensive circadian clock networks regulate almost every biological process in plants. Clock-controlled physiological responses are coupled with daily oscillations in environmental conditions resulting in enhanced fitness and growth vigor. Identification of core clock components and their associated molecular interactions has established the basic network architecture of plant clocks, which consists of multiple interlocked feedback loops. A hierarchical structure of transcriptional feedback overlaid with regulated protein turnover sets the pace of the clock and ultimately drives all clock-controlled processes. Although originally described as linear entities, increasing evidence suggests that many signaling pathways can act as both inputs and outputs within the overall network. Future studies will determine the molecular mechanisms involved in these complex regulatory loops. 2010 Elsevier Ltd. All rights reserved.

  2. High-speed clock recovery unit based on a phase aligner

    NASA Astrophysics Data System (ADS)

    Tejera, Efrain; Esper-Chain, Roberto; Tobajas, Felix; De Armas, Valentin; Sarmiento, Roberto

    2003-04-01

    Nowadays clock recovery units are key elements in high speed digital communication systems. For an efficient operation, this units should generate a low jitter clock based on the NRZ received data, and be tolerant to long absence of transitions. Architectures based on Hogge phase detectors have been widely used, nevertheless, they are very sensitive to jitter of the received data and they have a limited tolerance to the absence of transitions. This paper shows a novel high speed clock recovery unit based on a phase aligner. The system allows a very fast clock recovery with a low jitter, moreover, it is very resistant to absence of transitions. The design is based on eight phases obtained from a reference clock running at the nominal frequency of the received signal. This high speed reference clock is generated using a crystal and a clock multiplier unit. The phase alignment system chooses, as starting point, the two phases closest to the data phase. This allows a maximum error of 45 degrees between the clock and data signal phases. Furthermore, the system includes a feed-back loop that interpolates the chosen phases to reduce the phase error to zero. Due to the high stability and reduced tolerance of the local reference clock, the jitter obtained is highly reduced and the system becomes able to operate under long absence of transitions. This performances make this design suitable for systems such as high speed serial link technologies. This system has been designed for CMOS 0.25μm at 1.25GHz and has been verified through HSpice simulations.

  3. nocte Is Required for Integrating Light and Temperature Inputs in Circadian Clock Neurons of Drosophila.

    PubMed

    Chen, Chenghao; Xu, Min; Anantaprakorn, Yuto; Rosing, Mechthild; Stanewsky, Ralf

    2018-05-21

    Circadian clocks organize biological processes to occur at optimized times of day and thereby contribute to overall fitness. While the regular daily changes of environmental light and temperature synchronize circadian clocks, extreme external conditions can bypass the temporal constraints dictated by the clock. Despite advanced knowledge about how the daily light-dark changes synchronize the clock, relatively little is known with regard to how the daily temperature changes influence daily timing and how temperature and light signals are integrated. In Drosophila, a network of ∼150 brain clock neurons exhibit 24-hr oscillations of clock gene expression to regulate daily activity and sleep. We show here that a temperature input pathway from peripheral sensory organs, which depends on the gene nocte, targets specific subsets of these clock neurons to synchronize molecular and behavioral rhythms to temperature cycles. Strikingly, while nocte 1 mutant flies synchronize normally to light-dark cycles at constant temperatures, the combined presence of light-dark and temperature cycles inhibits synchronization. nocte 1 flies exhibit altered siesta sleep, suggesting that the sleep-regulating clock neurons are an important target for nocte-dependent temperature input, which dominates a parallel light input into these cells. In conclusion, we reveal a nocte-dependent temperature input pathway to central clock neurons and show that this pathway and its target neurons are important for the integration of sensory light and temperature information in order to temporally regulate activity and sleep during daily light and temperature cycles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Machine Learning Helps Identify CHRONO as a Circadian Clock Component

    PubMed Central

    Venkataraman, Anand; Ramanathan, Chidambaram; Kavakli, Ibrahim H.; Hughes, Michael E.; Baggs, Julie E.; Growe, Jacqueline; Liu, Andrew C.; Kim, Junhyong; Hogenesch, John B.

    2014-01-01

    Over the last decades, researchers have characterized a set of “clock genes” that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics. PMID:24737000

  5. Synthesizing genetic sequential logic circuit with clock pulse generator

    PubMed Central

    2014-01-01

    Background Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. Results This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. Conclusions A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal. PMID:24884665

  6. Stable Kalman filters for processing clock measurement data

    NASA Technical Reports Server (NTRS)

    Clements, P. A.; Gibbs, B. P.; Vandergraft, J. S.

    1989-01-01

    Kalman filters have been used for some time to process clock measurement data. Due to instabilities in the standard Kalman filter algorithms, the results have been unreliable and difficult to obtain. During the past several years, stable forms of the Kalman filter have been developed, implemented, and used in many diverse applications. These algorithms, while algebraically equivalent to the standard Kalman filter, exhibit excellent numerical properties. Two of these stable algorithms, the Upper triangular-Diagonal (UD) filter and the Square Root Information Filter (SRIF), have been implemented to replace the standard Kalman filter used to process data from the Deep Space Network (DSN) hydrogen maser clocks. The data are time offsets between the clocks in the DSN, the timescale at the National Institute of Standards and Technology (NIST), and two geographically intermediate clocks. The measurements are made by using the GPS navigation satellites in mutual view between clocks. The filter programs allow the user to easily modify the clock models, the GPS satellite dependent biases, and the random noise levels in order to compare different modeling assumptions. The results of this study show the usefulness of such software for processing clock data. The UD filter is indeed a stable, efficient, and flexible method for obtaining optimal estimates of clock offsets, offset rates, and drift rates. A brief overview of the UD filter is also given.

  7. Clock gene modulates roles of OXTR and AVPR1b genes in prosociality.

    PubMed

    Ci, Haipeng; Wu, Nan; Su, Yanjie

    2014-01-01

    The arginine vasopressin receptor (AVPR) and oxytocin receptor (OXTR) genes have been demonstrated to contribute to prosocial behavior. Recent research has focused on the manner by which these simple receptor genes influence prosociality, particularly with regard to the AVP system, which is modulated by the clock gene. The clock gene is responsible for regulating the human biological clock, affecting sleep, emotion and behavior. The current study examined in detail whether the influences of the OXTR and AVPR1b genes on prosociality are dependent on the clock gene. This study assessed interactions between the clock gene (rs1801260, rs6832769) and the OXTR (rs1042778, rs237887) and AVPR1b (rs28373064) genes in association with individual differences in prosociality in healthy male Chinese subjects (n = 436). The Prosocial Tendencies Measure (PTM-R) was used to assess prosociality. Participants carrying both the GG/GA variant of AVPR1b rs28373064 and the AA variant of clock rs6832769 showed the highest scores on the Emotional PTM. Carriers of both the T allele of OXTR rs1042778 and the C allele of clock rs1801260 showed the lowest total PTM scores compared with the other groups. The observed interaction effects provide converging evidence that the clock gene and OXT/AVP systems are intertwined and contribute to human prosociality.

  8. Master/slave clock arrangement for providing reliable clock signal

    NASA Technical Reports Server (NTRS)

    Abbey, Duane L. (Inventor)

    1977-01-01

    The outputs of two like frequency oscillators are combined to form a single reliable clock signal, with one oscillator functioning as a slave under the control of the other to achieve phase coincidence when the master is operative and in a free-running mode when the master is inoperative so that failure of either oscillator produces no effect on the clock signal.

  9. CLOCKΔ19 mutation modifies the manner of synchrony among oscillation neurons in the suprachiasmatic nucleus.

    PubMed

    Sujino, Mitsugu; Asakawa, Takeshi; Nagano, Mamoru; Koinuma, Satoshi; Masumoto, Koh-Hei; Shigeyoshi, Yasufumi

    2018-01-16

    In mammals, the principal circadian oscillator exists in the hypothalamic suprachiasmatic nucleus (SCN). In the SCN, CLOCK works as an essential component of molecular circadian oscillation, and ClockΔ19 mutant mice show unique characteristics of circadian rhythms such as extended free running periods, amplitude attenuation, and high-magnitude phase-resetting responses. Here we investigated what modifications occur in the spatiotemporal organization of clock gene expression in the SCN of ClockΔ19 mutants. The cultured SCN, sampled from neonatal homozygous ClockΔ19 mice on an ICR strain comprising PERIOD2::LUCIFERASE, demonstrated that the Clock gene mutation not only extends the circadian period, but also affects the spatial phase and period distribution of circadian oscillations in the SCN. In addition, disruption of the synchronization among neurons markedly attenuated the amplitude of the circadian rhythm of individual oscillating neurons in the mutant SCN. Further, with numerical simulations based on the present studies, the findings suggested that, in the SCN of the ClockΔ19 mutant mice, stable oscillation was preserved by the interaction among oscillating neurons, and that the orderly phase and period distribution that makes a phase wave are dependent on the functionality of CLOCK.

  10. Redox rhythm reinforces the circadian clock to gate immune response.

    PubMed

    Zhou, Mian; Wang, Wei; Karapetyan, Sargis; Mwimba, Musoki; Marqués, Jorge; Buchler, Nicolas E; Dong, Xinnian

    2015-07-23

    Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism's metabolic activities. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant's redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism.

  11. Noninertial coordinate time: A new concept affecting time standards, time transfers, and clock synchronization

    NASA Technical Reports Server (NTRS)

    Deines, Steven D.

    1992-01-01

    Relativity compensations must be made in precise and accurate measurements whenever an observer is accelerated. Although many believe the Earth-centered frame is sufficiently inertial, accelerations of the Earth, as evidenced by the tides, prove that it is technically a noninertial system for even an Earth-based observer. Using the constant speed of light, a set of fixed remote clocks in an inertial frame can be synchronized to a fixed master clock transmitting its time in that frame. The time on the remote clock defines the coordinate time at that coordinate position. However, the synchronization procedure for an accelerated frame is affected, because the distance between the master and remote clocks is altered due to the acceleration of the remote clock toward or away from the master clock during the transmission interval. An exact metric that converts observations from noninertial frames to inertial frames was recently derived. Using this metric with other physical relationships, a new concept of noninertial coordinate time is defined. This noninertial coordinate time includes all relativity compensations. This new issue raises several timekeeping issues, such as proper time standards, time transfer process, and clock synchronization, all in a noninertial frame such as Earth.

  12. Transcriptional Control of Antioxidant Defense by the Circadian Clock

    PubMed Central

    Patel, Sonal A.; Velingkaar, Nikkhil S.

    2014-01-01

    Abstract Significance: The circadian clock, an internal timekeeping system, is implicated in the regulation of metabolism and physiology, and circadian dysfunctions are associated with pathological changes in model organisms and increased risk of some diseases in humans. Recent Advances: Data obtained in different organisms, including humans, have established a tight connection between the clock and cellular redox signaling making it among the major candidates for a link between the circadian system and physiological processes. Critical Issues: In spite of the recent progress in understanding the importance of the circadian clock in the regulation of reactive oxygen species homeostasis, molecular mechanisms and key regulators are mostly unknown. Future Directions: Here we review, with an emphasis on transcriptional control, the circadian-clock-dependent control of oxidative stress response system as a potential mechanism in age-associated diseases. We will discuss the roles of the core clock components such as brain and muscle ARNT-like 1, Circadian Locomotor Output Cycles Kaput, the circadian-clock-controlled transcriptional factors such as nuclear factor erythroid-2-related factor, and peroxisome proliferator-activated receptor and circadian clock control chromatin modifying enzymes from sirtuin family in the regulation of cellular and organism antioxidant defense. Antioxid. Redox Signal. 20, 2997–3006. PMID:24111970

  13. High speed imager test station

    DOEpatents

    Yates, George J.; Albright, Kevin L.; Turko, Bojan T.

    1995-01-01

    A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment.

  14. High speed imager test station

    DOEpatents

    Yates, G.J.; Albright, K.L.; Turko, B.T.

    1995-11-14

    A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment. 12 figs.

  15. Association between genetic variants of the clock gene and obesity and sleep duration.

    PubMed

    Valladares, Macarena; Obregón, Ana María; Chaput, Jean-Philippe

    2015-12-01

    Obesity is a multifactorial disease caused by the interaction of genetic and environmental factors related to lifestyle aspects. It has been shown that reduced sleep is associated with increased body mass index (BMI). Circadian Locomotor Output Cycles Kaput (CLOCK) gene variants have also been associated with obesity. The objective of this mini-review was to discuss the available literature related to CLOCK gene variants associated with adiposity and sleep duration in humans. In total, 16 articles complied with the terms of the search that reported CLOCK variants associated with sleep duration, energy intake, and BMI. Overall, six CLOCK single nucleotide polymorphisms (SNPs) have been associated with sleep duration, and three variants have been associated with energy intake variables. Overall, the most studied area has been the association of CLOCK gene with obesity; close to eight common variants have been associated with obesity. The most studied CLOCK SNP in different populations is rs1801260, and most of these populations correspond to European populations. Collectively, identifying at risk CLOCK genotypes is a new area of research that may help identify individuals who are more susceptible to overeating and gaining weight when exposed to short sleep durations.

  16. A Role for Timely Nuclear Translocation of Clock Repressor Proteins in Setting Circadian Clock Speed

    PubMed Central

    Lee, Euna

    2014-01-01

    By means of a circadian clock system, all the living organisms on earth including human beings can anticipate the environmental rhythmic changes such as light/dark and warm/cold periods in a daily as well as in a yearly manner. Anticipating such environmental changes provide organisms with survival benefits via manifesting behavior and physiology at an advantageous time of the day and year. Cell-autonomous circadian oscillators, governed by transcriptional feedback loop composed of positive and negative elements, are organized into a hierarchical system throughout the organisms and generate an oscillatory expression of a clock gene by itself as well as clock controlled genes (ccgs) with a 24 hr periodicity. In the feedback loop, hetero-dimeric transcription factor complex induces the expression of negative regulatory proteins, which in turn represses the activity of transcription factors to inhibit their own transcription. Thus, for robust oscillatory rhythms of the expression of clock genes as well as ccgs, the precise control of subcellular localization and/or timely translocation of core clock protein are crucial. Here, we discuss how sub-cellular localization and nuclear translocation are controlled in a time-specific manner focusing on the negative regulatory clock proteins. PMID:25258565

  17. The impact of routine cognitive screening by using the clock drawing task in the evaluation of elderly patients in the emergency department.

    PubMed

    Salen, Philip; Heller, Michael; Oller, Carlo; Reed, James

    2009-07-01

    The prevalence of cognitive impairment, as reflected by failure to correctly perform a clock drawing task, in elderly Emergency Department (ED) patients was assessed. Additionally, we evaluated whether primary care provider notification of cognitive impairment spurred further cognitive evaluation. The clock drawing task was administered to a convenience sample of 100 elderly, English-speaking subjects presenting for reasons other than altered mentation at a community hospital ED. Primary care providers were contacted regarding abnormal clock drawing task results immediately and again after 2 months to determine if there was further evaluation of cognition. Of the 100 subjects enrolled, 30% were unable to correctly complete the clock drawing task, but only 8 had further evaluation of their cognitive abilities, resulting in four new diagnoses of dementia. Subjects who drew incorrect clocks (54%; 16/30) were more likely to be reevaluated in the ED within 2 months than those who drew correct clocks (29%; 20/70; p < 0.02). Cognitive screening of elderly ED patients with the clock drawing task identified a substantial number with unsuspected abnormal cognition. Further evaluation by their primary care physicians in follow-up was disappointing.

  18. Frequency stability of on-orbit GPS Block-I and Block-II Navstar clocks

    NASA Astrophysics Data System (ADS)

    McCaskill, Thomas B.; Reid, Wilson G.; Buisson, James A.

    On-orbit analysis of the Global Positioning System (GPS) Block-I and Block-II Navstar clocks has been performed by the Naval Research Laboratory using a multi-year database. The Navstar clock phase-offset measurements were computed from pseudorange measurements made by the five GPS monitor sites and from the U.S. Naval Observatory precise-time site using single or dual frequency GPS receivers. Orbital data was obtained from the Navstar broadcast ephemeris and from the best-fit, postprocessed orbital ephemerides supplied by the Naval Surface Weapons Center or by the Defense Mapping Agency. Clock performance in the time domain is characterized using frequency-stability profiles with sample times that vary from 1 to 100 days. Composite plots of Navstar frequency stability and time-prediction uncertainty are included as a summary of clock analysis results. The analysis includes plots of the clock phase offset and frequency offset histories with the eclipse seasons superimposed on selected plots to demonstrate the temperature sensitivity of one of the Block-I Navstar rubidium clocks. The potential impact on navigation and on transferring precise time of the degradation in the long-term frequency stability of the rubidium clocks is discussed.

  19. Applications of Clocks to Space Navigation & "Planetary GPS"

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    2004-01-01

    The ability to fly atomic clocks on GPS satellites has profoundly defined the capabilities and limitations of GPS in near-Earth applications. It is likely that future infrastructure for Lunar and Mars applications will be constrained by financial factors. The development of a low cost, small, high performance space clock -- or ultrahigh performance space clocks -- could revolutionize and drive the entire approach to GPS-like systems at the Moon (or Mars), and possibly even change the future of GPS at Earth. Many system trade studies are required. The performance of future GPS-like tracking systems at the Moon or Mars will depend critically on clock performance, availability of inertial sensors, and constellation coverage. Example: present-day GPS carry 10(exp -13) clocks and require several updates per day. With 10(exp -15) clocks, a constellation at Mars could operate autonomously with updates just once per month. Use of GPS tracking at the Moon should be evaluated in a technical study.

  20. Public health assessment for public health implications of radiation contamination at former clock factories located in Bristo (Hartford County), New Haven, (New Haven County), Thomaston (Litchfield County), and Waterbury (New Haven County), Connecticut, Region 1. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This public health assessment was developed (1) to evaluate the radiation data collected by the Connecticut Department of Environmental Protection (CT DEP) at structures that once housed clock factories in four Connecticut municipalities, and (2) to determine whether a public health hazard exists at any of these sites from the contamination. Contamination was detected at levels that may pose a health risk to current occupants at the former Waterbury Clock Factory, the former Lux Clock Factory, and the former Benrus Clock Company buildings in Waterbury; the former Sessions Clock Company in Bristol; and the former Seth Thomas Clock Company inmore » Thomaston. However, none of the radiation levels detected pose an immediate health problem. The Connecticut Department of Public Health recommends that individuals be disassociated from areas with radiation at levels exceeding 15 mRem/year.« less

  1. Inexpensive Clock for Displaying Planetary or Sidereal Time

    NASA Technical Reports Server (NTRS)

    Lux, James

    2007-01-01

    An inexpensive wall clock has been devised for displaying solar time or sidereal time as it would be perceived on a planet other than the Earth, or for displaying sidereal time on the Earth. The concept of a wall clock synchronized to a period other than the terrestrial mean solar day is not new in itself. What is new here is that the clock is realized through a relatively simple electronic modification of a common battery-powered, quartz-crystal-oscillator-driven wall clock. The essence of the modification is to shut off the internal oscillator of the clock and replace the internal-oscillator output signal with a signal of the required frequency generated by an external oscillator. The unmodified clock electronic circuitry includes a quartz crystal connected to an integrated circuit (IC) that includes, among other parts, a buffer amplifier that conditions the oscillator output. The modification is effected by removing the quartz crystal and connecting the output terminal of the external oscillator, via a capacitor, to the input terminal of the buffer amplifier

  2. Clock Drawing as a Screen for Impaired Driving in Aging and Dementia: Is It Worth the Time?

    PubMed Central

    Manning, Kevin J.; Davis, Jennifer D.; Papandonatos, George D.; Ott, Brian R.

    2014-01-01

    Clock drawing is recommended by medical and transportation authorities as a screening test for unsafe drivers. The objective of the present study was to assess the usefulness of different clock drawing systems as screening measures of driving performance in 122 healthy and cognitively impaired older drivers. Clock drawing was measured using four different scoring systems. Driving outcomes included global ratings of safety and the error rate on a standardized on-road test. Findings revealed that clock drawing was significantly correlated with the driving score on the road test for each of the scoring systems. However, receiver operator curve analyses showed limited clinical utility for clock drawing as a screening instrument for impaired on-road driving performance with the area under the curve ranging from 0.53 to 0.61. Results from this study indicate that clock drawing has limited utility as a solitary screening measure of on-road driving, even when considering a variety of scoring approaches. PMID:24296110

  3. Clock drawing as a screen for impaired driving in aging and dementia: is it worth the time?

    PubMed

    Manning, Kevin J; Davis, Jennifer D; Papandonatos, George D; Ott, Brian R

    2014-02-01

    Clock drawing is recommended by medical and transportation authorities as a screening test for unsafe drivers. The objective of the present study was to assess the usefulness of different clock drawing systems as screening measures of driving performance in 122 healthy and cognitively impaired older drivers. Clock drawing was measured using four different scoring systems. Driving outcomes included global ratings of safety and the error rate on a standardized on-road test. Findings revealed that clock drawing was significantly correlated with the driving score on the road test for each of the scoring systems. However, receiver operator curve analyses showed limited clinical utility for clock drawing as a screening instrument for impaired on-road driving performance with the area under the curve ranging from 0.53 to 0.61. Results from this study indicate that clock drawing has limited utility as a solitary screening measure of on-road driving, even when considering a variety of scoring approaches.

  4. A clock network for geodesy and fundamental science

    PubMed Central

    Lisdat, C.; Grosche, G.; Quintin, N.; Shi, C.; Raupach, S.M.F.; Grebing, C.; Nicolodi, D.; Stefani, F.; Al-Masoudi, A.; Dörscher, S.; Häfner, S.; Robyr, J.-L.; Chiodo, N.; Bilicki, S.; Bookjans, E.; Koczwara, A.; Koke, S.; Kuhl, A.; Wiotte, F.; Meynadier, F.; Camisard, E.; Abgrall, M.; Lours, M.; Legero, T.; Schnatz, H.; Sterr, U.; Denker, H.; Chardonnet, C.; Le Coq, Y.; Santarelli, G.; Amy-Klein, A.; Le Targat, R.; Lodewyck, J.; Lopez, O; Pottie, P.-E.

    2016-01-01

    Leveraging the unrivalled performance of optical clocks as key tools for geo-science, for astronomy and for fundamental physics beyond the standard model requires comparing the frequency of distant optical clocks faithfully. Here, we report on the comparison and agreement of two strontium optical clocks at an uncertainty of 5 × 10−17 via a newly established phase-coherent frequency link connecting Paris and Braunschweig using 1,415 km of telecom fibre. The remote comparison is limited only by the instability and uncertainty of the strontium lattice clocks themselves, with negligible contributions from the optical frequency transfer. A fractional precision of 3 × 10−17 is reached after only 1,000 s averaging time, which is already 10 times better and more than four orders of magnitude faster than any previous long-distance clock comparison. The capability of performing high resolution international clock comparisons paves the way for a redefinition of the unit of time and an all-optical dissemination of the SI-second. PMID:27503795

  5. Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty

    PubMed Central

    Nicholson, T.L.; Campbell, S.L.; Hutson, R.B.; Marti, G.E.; Bloom, B.J.; McNally, R.L.; Zhang, W.; Barrett, M.D.; Safronova, M.S.; Strouse, G.F.; Tew, W.L.; Ye, J.

    2015-01-01

    The pursuit of better atomic clocks has advanced many research areas, providing better quantum state control, new insights in quantum science, tighter limits on fundamental constant variation and improved tests of relativity. The record for the best stability and accuracy is currently held by optical lattice clocks. Here we take an important step towards realizing the full potential of a many-particle clock with a state-of-the-art stable laser. Our 87Sr optical lattice clock now achieves fractional stability of 2.2 × 10−16 at 1 s. With this improved stability, we perform a new accuracy evaluation of our clock, reducing many systematic uncertainties that limited our previous measurements, such as those in the lattice ac Stark shift, the atoms' thermal environment and the atomic response to room-temperature blackbody radiation. Our combined measurements have reduced the total uncertainty of the JILA Sr clock to 2.1 × 10−18 in fractional frequency units. PMID:25898253

  6. DNA Replication Is Required for Circadian Clock Function by Regulating Rhythmic Nucleosome Composition.

    PubMed

    Liu, Xiao; Dang, Yunkun; Matsu-Ura, Toru; He, Yubo; He, Qun; Hong, Christian I; Liu, Yi

    2017-07-20

    Although the coupling between circadian and cell cycles allows circadian clocks to gate cell division and DNA replication in many organisms, circadian clocks were thought to function independently of cell cycle. Here, we show that DNA replication is required for circadian clock function in Neurospora. Genetic and pharmacological inhibition of DNA replication abolished both overt and molecular rhythmicities by repressing frequency (frq) gene transcription. DNA replication is essential for the rhythmic changes of nucleosome composition at the frq promoter. The FACT complex, known to be involved in histone disassembly/reassembly, is required for clock function and is recruited to the frq promoter in a replication-dependent manner to promote replacement of histone H2A.Z by H2A. Finally, deletion of H2A.Z uncoupled the dependence of the circadian clock on DNA replication. Together, these results establish circadian clock and cell cycle as interdependent coupled oscillators and identify DNA replication as a critical process in the circadian mechanism. Published by Elsevier Inc.

  7. Towards Self-Clocked Gated OCDMA Receiver

    NASA Astrophysics Data System (ADS)

    Idris, S.; Osadola, T.; Glesk, I.

    2013-02-01

    A novel incoherent OCDMA receiver with incorporated all-optical clock recovery for self-synchronization of a time gate for the multi access interferences (MAI) suppression and minimizing the effect of data time jitter in incoherent OCDMA system was successfully developed and demonstrated. The solution was implemented and tested in a multiuser environment in an out of the laboratory OCDMA testbed with two-dimensional wavelength-hopping time-spreading coding scheme and OC-48 (2.5 Gbp/s) data rate. The self-clocked all-optical time gate uses SOA-based fibre ring laser optical clock, recovered all-optically from the received OCDMA traffic to control its switching window for cleaning the autocorrelation peak from the surrounding MAI. A wider eye opening was achieved when the all-optically recovered clock from received data was used for synchronization if compared to a static approach with the RF clock being generated by a RF synthesizer. Clean eye diagram was also achieved when recovered clock is used to drive time gating.

  8. A clock network for geodesy and fundamental science.

    PubMed

    Lisdat, C; Grosche, G; Quintin, N; Shi, C; Raupach, S M F; Grebing, C; Nicolodi, D; Stefani, F; Al-Masoudi, A; Dörscher, S; Häfner, S; Robyr, J-L; Chiodo, N; Bilicki, S; Bookjans, E; Koczwara, A; Koke, S; Kuhl, A; Wiotte, F; Meynadier, F; Camisard, E; Abgrall, M; Lours, M; Legero, T; Schnatz, H; Sterr, U; Denker, H; Chardonnet, C; Le Coq, Y; Santarelli, G; Amy-Klein, A; Le Targat, R; Lodewyck, J; Lopez, O; Pottie, P-E

    2016-08-09

    Leveraging the unrivalled performance of optical clocks as key tools for geo-science, for astronomy and for fundamental physics beyond the standard model requires comparing the frequency of distant optical clocks faithfully. Here, we report on the comparison and agreement of two strontium optical clocks at an uncertainty of 5 × 10(-17) via a newly established phase-coherent frequency link connecting Paris and Braunschweig using 1,415 km of telecom fibre. The remote comparison is limited only by the instability and uncertainty of the strontium lattice clocks themselves, with negligible contributions from the optical frequency transfer. A fractional precision of 3 × 10(-17) is reached after only 1,000 s averaging time, which is already 10 times better and more than four orders of magnitude faster than any previous long-distance clock comparison. The capability of performing high resolution international clock comparisons paves the way for a redefinition of the unit of time and an all-optical dissemination of the SI-second.

  9. Circadian expression profiles of chromatin remodeling factor genes in Arabidopsis.

    PubMed

    Lee, Hong Gil; Lee, Kyounghee; Jang, Kiyoung; Seo, Pil Joon

    2015-01-01

    The circadian clock is a biological time keeper mechanism that regulates biological rhythms to a period of approximately 24 h. The circadian clock enables organisms to anticipate environmental cycles and coordinates internal cellular physiology with external environmental cues. In plants, correct matching of the clock with the environment confers fitness advantages to plant survival and reproduction. Therefore, circadian clock components are regulated at multiple layers to fine-tune the circadian oscillation. Epigenetic regulation provides an additional layer of circadian control. However, little is known about which chromatin remodeling factors are responsible for circadian control. In this work, we analyzed circadian expression of 109 chromatin remodeling factor genes and identified 17 genes that display circadian oscillation. In addition, we also found that a candidate interacts with a core clock component, supporting that clock activity is regulated in part by chromatin modification. As an initial attempt to elucidate the relationship between chromatin modification and circadian oscillation, we identified novel regulatory candidates that provide a platform for future investigations of chromatin regulation of the circadian clock.

  10. Blasting for abandoned-mine land reclamation (closure of individual subsidence features and erratic, undocumented underground coal-mine workings). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Workman, J.L.; Thompson, J.

    1991-01-01

    The study has examined the feasibility of blasting for mitigating various abandoned mine land features on AML sites. The investigation included extensive field trial blasts at sites in North Dakota and Montana. A blasting technique was used that was based on spherical cratering concepts. At the Beulah, North Dakota site thirteen individual vertical openings (sinkholes) were blasted with the intent to fill the voids. The blasts were designed to displace material laterally into the void. Good success was had in filling the sinkholes. At the White site in Montana erratic underground rooms with no available documentation were collapsed. An aditmore » leading into the mine was also blasted. Both individual room blasting and area pattern blasting were studied. A total of eight blasts were fired on the one acre area. Exploration requirements and costs were found to be extensive.« less

  11. Melting heat transport of nanofluidic problem over a Riga plate with erratic thickness: Use of Keller Box scheme

    NASA Astrophysics Data System (ADS)

    Iqbal, Z.; Azhar, Ehtsham; Mehmood, Zaffar; Maraj, E. N.

    Present article is a study of stagnation point flow over Riga plate with erratic thickness. Riga plate is an electromagnetic surface in which electrodes are assembled alternatively. This arrangement generates electromagnetic hydrodynamic behavior in the fluid flow. This is an attempt to investigate influence of melting heat, thermal radiation and viscous dissipation effects on Riga plate. A traversal electric and magnetic fields are produced by Riga plate. It causes Lorentz force parallel to wall which contributes in directing flow pattern. Physical problem is modeled and reduced nonlinear system is solved numerically. Comparative analysis is carried out between solutions obtained by Keller Box Method and shooting technique with Runge-Kutta Fehlberg method of order 5. It is noted that melting heat transfer reduces temperature distribution whereas radiation parameter upsurge it. Velocity is accelerated by modified Hartman number and Eckert number contributes in raising temperature.

  12. The Relative Importance of Psychopathy-Related Traits in Predicting Impersonal Sex and Hostile Masculinity

    PubMed Central

    LeBreton, James M.; Baysinger, Michael; Abbey, Antonia; Jacques-Tiura, Angela J.

    2013-01-01

    This paper reports the relative contributions of several facets of subclinical psychopathy (i.e., callous affect, erratic lifestyle, interpersonal manipulation), subclinical narcissism (i.e., entitlement, exploitation), and trait aggression (i.e., anger) to the prediction of four enduring attitudes towards women and sexual assault (i.e., hostility towards women, negative attitudes regarding women, sexual dominance, impersonal sex) and a behavioral indicator of an impersonal sexual behavior (i.e., number of one-night stands). Survey data were collected from 470 single men living in the Detroit Metropolitan area. The importance of personality traits varied as a function of the outcome with anger most predictive of hostility toward women; erratic lifestyle most predictive of impersonal sexual attitudes and behavior, and entitlement most predictive of sexual dominance and negative attitudes toward women. These outcome-specific findings are interpreted and directions for future research are discussed. PMID:26082565

  13. Phylogeny, Systematics and Biogeography of the Genus Panolis (Lepidoptera: Noctuidae) Based on Morphological and Molecular Evidence

    PubMed Central

    Wang, Houshuai; Fan, Xiaoling; Owada, Mamoru; Wang, Min; Nylin, Sören

    2014-01-01

    The genus Panolis is a small group of noctuid moths with six recognized species distributed from Europe to East Asia, and best known for containing the widespread Palearctic pest species P. flammea, the pine beauty moth. However, a reliable classification and robust phylogenetic framework for this group of potentially economic importance are currently lacking. Here, we use morphological and molecular data (mitochondrial genes cytochrome c oxidase subunit I and 16S ribosomal RNA, nuclear gene elongation factor-1 alpha) to reconstruct the phylogeny of this genus, with a comprehensive systematic revision of all recognized species and a new one, P. ningshan sp. nov. The analysis results of maximum parsimony, maximum likelihood and Bayesian inferring methods for the combined morphological and molecular data sets are highly congruent, resulting in a robust phylogeny and identification of two clear species groups, i.e., the P. flammea species group and the P. exquisita species group. We also estimate the divergence times of Panolis moths using two conventional mutation rates for the arthropod mitochondrial COI gene with a comparison of two molecular clock models, as well as reconstruct their ancestral areas. Our results suggest that 1) Panolis is a young clade, originating from the Oriental region in China in the Late Miocene (6–10Mya), with an ancestral species in the P. flammea group extending northward to the Palearctic region some 3–6 Mya; 2) there is a clear possibility for a representative of the Palearctic clade to become established as an invasive species in the Nearctic taiga. PMID:24603596

  14. Revealing the maternal demographic history of Panthera leo using ancient DNA and a spatially explicit genealogical analysis.

    PubMed

    Barnett, Ross; Yamaguchi, Nobuyuki; Shapiro, Beth; Ho, Simon Y W; Barnes, Ian; Sabin, Richard; Werdelin, Lars; Cuisin, Jacques; Larson, Greger

    2014-04-02

    Understanding the demographic history of a population is critical to conservation and to our broader understanding of evolutionary processes. For many tropical large mammals, however, this aim is confounded by the absence of fossil material and by the misleading signal obtained from genetic data of recently fragmented and isolated populations. This is particularly true for the lion which as a consequence of millennia of human persecution, has large gaps in its natural distribution and several recently extinct populations. We sequenced mitochondrial DNA from museum-preserved individuals, including the extinct Barbary lion (Panthera leo leo) and Iranian lion (P. l. persica), as well as lions from West and Central Africa. We added these to a broader sample of lion sequences, resulting in a data set spanning the historical range of lions. Our Bayesian phylogeographical analyses provide evidence for highly supported, reciprocally monophyletic lion clades. Using a molecular clock, we estimated that recent lion lineages began to diverge in the Late Pleistocene. Expanding equatorial rainforest probably separated lions in South and East Africa from other populations. West African lions then expanded into Central Africa during periods of rainforest contraction. Lastly, we found evidence of two separate incursions into Asia from North Africa, first into India and later into the Middle East. We have identified deep, well-supported splits within the mitochondrial phylogeny of African lions, arguing for recognition of some regional populations as worthy of independent conservation. More morphological and nuclear DNA data are now needed to test these subdivisions.

  15. Revealing the maternal demographic history of Panthera leo using ancient DNA and a spatially explicit genealogical analysis

    PubMed Central

    2014-01-01

    Background Understanding the demographic history of a population is critical to conservation and to our broader understanding of evolutionary processes. For many tropical large mammals, however, this aim is confounded by the absence of fossil material and by the misleading signal obtained from genetic data of recently fragmented and isolated populations. This is particularly true for the lion which as a consequence of millennia of human persecution, has large gaps in its natural distribution and several recently extinct populations. Results We sequenced mitochondrial DNA from museum-preserved individuals, including the extinct Barbary lion (Panthera leo leo) and Iranian lion (P. l. persica), as well as lions from West and Central Africa. We added these to a broader sample of lion sequences, resulting in a data set spanning the historical range of lions. Our Bayesian phylogeographical analyses provide evidence for highly supported, reciprocally monophyletic lion clades. Using a molecular clock, we estimated that recent lion lineages began to diverge in the Late Pleistocene. Expanding equatorial rainforest probably separated lions in South and East Africa from other populations. West African lions then expanded into Central Africa during periods of rainforest contraction. Lastly, we found evidence of two separate incursions into Asia from North Africa, first into India and later into the Middle East. Conclusions We have identified deep, well-supported splits within the mitochondrial phylogeny of African lions, arguing for recognition of some regional populations as worthy of independent conservation. More morphological and nuclear DNA data are now needed to test these subdivisions. PMID:24690312

  16. Nonsynonymous substitution in abalone sperm fertilization genes exceeds substitution in introns and mitochondrial DNA

    PubMed Central

    Metz, Edward C.; Robles-Sikisaka, Refugio; Vacquier, Victor D.

    1998-01-01

    Strong positive Darwinian selection acts on two sperm fertilization proteins, lysin and 18-kDa protein, from abalone (Haliotis). To understand the phylogenetic context for this dramatic molecular evolution, we obtained sequences of mitochondrial cytochrome c oxidase subunit I (mtCOI), and genomic sequences of lysin, 18-kDa, and a G protein subunit. Based on mtDNA differentiation, four north Pacific abalone species diverged within the past 2 million years (Myr), and remaining north Pacific species diverged over a period of 4–20 Myr. Between-species nonsynonymous differences in lysin and 18-kDa exons exceed nucleotide differences in introns by 3.5- to 24-fold. Remarkably, in some comparisons nonsynonymous substitutions in lysin and 18-kDa genes exceed synonymous substitutions in mtCOI. Lysin and 18-kDa intron/exon segments were sequenced from multiple red abalone individuals collected over a 1,200-km range. Only two nucleotide changes and two sites of slippage variation were detected in a total of >29,000 nucleotides surveyed. However, polymorphism in mtCOI and a G protein intron was found in this species. This finding suggests that positive selection swept one lysin allele and one 18-kDa allele to fixation. Similarities between mtCOI and lysin gene trees indicate that rapid adaptive evolution of lysin has occurred consistently through the history of the group. Comparisons with mtCOI molecular clock calibrations suggest that nonsynonymous substitutions accumulate 2–50 times faster in lysin and 18-kDa genes than in rapidly evolving mammalian genes. PMID:9724763

  17. Phylogeny and evolutionary radiation of the marine mussels (Bivalvia: Mytilidae) based on mitochondrial and nuclear genes.

    PubMed

    Liu, Jun; Liu, Helu; Zhang, Haibin

    2018-04-22

    The marine mussels (Mytilidae) are distributed in the oceans worldwide and occupy various habitats with diverse life styles. However, their taxonomy and phylogeny remain unclear from genus to family level due to equivocal morphological and anatomical characters among some taxa. In this study, we inferred the deep phylogenetic relationships among 42 mytiloid species, 19 genera, and five subfamilies of the extant marine mussels by using two mitochondrial (COI and 16S rRNA) and three nuclear (18S and 28S rRNA, and histone H3) genes. Phylogeny was reconstructed with a combination of five genes using Bayesian inference and maximum likelihood method, and divergence time was estimated for the major nodes using a relaxed clock model with three fossil calibrations. Phylogenetic trees revealed two major clades (Clades 1 and 2). In Clade 1, the deep-sea mussels (subfamily Bathymodiolinae) were sister to subfamily Modiolinae (represented by Modiolus), and then was clustered with Leiosolenus (subfamily Lithophaginae). Clade 2 comprised Lithophaga (Lithophaginae) and subfamily Mytilinae. Additionally, a Modiolus species and Musculus senhousia (subfamily Crenellinae) were positioned within the subfamily Mytilinae. The phylogenetic results strongly indicated monophyly of Mytilidae and Bathymodiolinae, polyphyly of Modiolinae and Lithophaginae, and paraphyly of Mytilinae. Divergence time estimation showed an ancient and gradual divergence in most mussel groups, whereas the deep-sea mussels originated recently and diverged rapidly during the Paleogene. The present study provides new insight into the evolutionary history of the marine mussels, and supports taxonomic revision for this important bivalve group. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Leber Hereditary Optic Neuropathy: Exemplar of an mtDNA Disease.

    PubMed

    Wallace, Douglas C; Lott, Marie T

    2017-01-01

    The report in 1988 that Leber Hereditary Optic Neuropathy (LHON) was the product of mitochondrial DNA (mtDNA) mutations provided the first demonstration of the clinical relevance of inherited mtDNA variation. From LHON studies, the medical importance was demonstrated for the mtDNA showing its coding for the most important energy genes, its maternal inheritance, its high mutation rate, its presence in hundreds to thousands of copies per cell, its quantitatively segregation of biallelic genotypes during both mitosis and meiosis, its preferential effect on the most energetic tissues including the eye and brain, its wide range of functional polymorphisms that predispose to common diseases, and its accumulation of mutations within somatic tissues providing the aging clock. These features of mtDNA genetics, in combination with the genetics of the 1-2000 nuclear DNA (nDNA) coded mitochondrial genes, is not only explaining the genetics of LHON but also providing a model for understanding the complexity of many common diseases. With the maturation of LHON biology and genetics, novel animal models for complex disease have been developed and new therapeutic targets and strategies envisioned, both pharmacological and genetic. Multiple somatic gene therapy approaches are being developed for LHON which are applicable to other mtDNA diseases. Moreover, the unique cytoplasmic genetics of the mtDNA has permitted the first successful human germline gene therapy via spindle nDNA transfer from mtDNA mutant oocytes to enucleated normal mtDNA oocytes. Such LHON lessons are actively being applied to common ophthalmological diseases like glaucoma and neurological diseases like Parkinsonism.

  19. Mitochondrial DNA phylogeography of Semisulcospira libertina (Gastropoda: Cerithioidea: Pleuroceridae): implications the history of landform changes in Taiwan.

    PubMed

    Hsu, Kui-Ching; Bor, Hor; Lin, Hung-Du; Kuo, Po-Hsun; Tan, Mian-Shin; Chiu, Yuh-Wen

    2014-06-01

    The mitochondrial DNA cytochrome c oxidase subunit I sequences from 95 specimens of Semisulcospira libertina in Taiwan were identified as two major phylogroups, exhibiting a southern and northern distribution, north of Formosa Bank and south of Miaoli Plateau. The genetic distance between these two phylogroups was 12.20%, and the distances within-phylogroups were 4.97 and 5.56%. According to a molecular clock of 1.56% per lineage per million years, the divergence time between these two major phylogroups was estimated at 4.94 million years ago (mya), with the two phylogroups forming at 3.64 and 3.75 mya, respectively. Moreover, the geological events have suggested that Taiwan Island emerged above sea level at 4-5 mya, and became its present shape at 2 mya. These results suggested that these two phylogroups might originate from two independent ancestral populations or divergent before colonizing Taiwan. Within South phylogroup, the initial colonization was hypothesized to be in Kaoping River (WT), followed by its northward. The high divergence between south- and north of WT River was influenced by the formation of the Kaoping foreland basins. Within North phylogroup, the colonization was from central sub-region through paleo-Miaoli Plateau to northern and northeastern sub-regions. This study showed that the landform changes might have shaped the genetic structure of S. libertina in concert. Apparently, two cryptic species or five different genetic stocks of S. libertina could be identified; these results are useful for the evaluation and conservation of S. libertina in Taiwan.

  20. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization.

    PubMed

    West, Geoffrey B; Brown, James H

    2005-05-01

    Life is the most complex physical phenomenon in the Universe, manifesting an extraordinary diversity of form and function over an enormous scale from the largest animals and plants to the smallest microbes and subcellular units. Despite this many of its most fundamental and complex phenomena scale with size in a surprisingly simple fashion. For example, metabolic rate scales as the 3/4-power of mass over 27 orders of magnitude, from molecular and intracellular levels up to the largest organisms. Similarly, time-scales (such as lifespans and growth rates) and sizes (such as bacterial genome lengths, tree heights and mitochondrial densities) scale with exponents that are typically simple powers of 1/4. The universality and simplicity of these relationships suggest that fundamental universal principles underly much of the coarse-grained generic structure and organisation of living systems. We have proposed a set of principles based on the observation that almost all life is sustained by hierarchical branching networks, which we assume have invariant terminal units, are space-filling and are optimised by the process of natural selection. We show how these general constraints explain quarter power scaling and lead to a quantitative, predictive theory that captures many of the essential features of diverse biological systems. Examples considered include animal circulatory systems, plant vascular systems, growth, mitochondrial densities, and the concept of a universal molecular clock. Temperature considerations, dimensionality and the role of invariants are discussed. Criticisms and controversies associated with this approach are also addressed.

  1. Science Goals of the Primary Atomic Reference Clock in Space (PARCS) Experiment

    NASA Technical Reports Server (NTRS)

    Ashby, N.

    2003-01-01

    The PARCS (Primary Atomic Reference Clock in Space) experiment will use a laser-cooled Cesium atomic clock operating in the microgravity environment aboard the International Space Station (ISS) to provide both advanced tests of gravitational theory and to demonstrate a new cold-atom clock technology for space. PARCS is a joint project of the National Institute of Standards and Technology (NIST), NASA's Jet Propulsion Laboratory (JPL), and the University of Colorado (CU). This paper concentrates on the scientific goals of the PARCS mission. The microgravity space environment allows laser-cooled Cs atoms to have Ramsey times in excess of those feasible on Earth, resulting in improved clock performance. Clock stabilities of 5x10(exp -14) at one second, and accuracies better than 10(exp -16) are projected.

  2. All-polarization-maintaining, single-port Er:fiber comb for high-stability comparison of optical lattice clocks

    NASA Astrophysics Data System (ADS)

    Ohmae, Noriaki; Kuse, Naoya; Fermann, Martin E.; Katori, Hidetoshi

    2017-06-01

    All-polarization-maintaining, single-port Er:fiber combs offer long-term robust operation as well as high stability. We have built two such combs and evaluated the transfer noise for linking optical clocks. A uniformly broadened spectrum over 135-285 THz with a high signal-to-noise ratio enables the optical frequency measurement of the subharmonics of strontium, ytterbium, and mercury optical lattice clocks with the fractional frequency-noise power spectral density of (1-2) × 10-17 Hz-1/2 at 1 Hz. By applying a synchronous clock comparison, the comb enables clock ratio measurements with 10-17 instability at 1 s, which is one order of magnitude smaller than the best instability of the frequency ratio of optical lattice clocks.

  3. Molecular Mechanisms Regulating Temperature Compensation of the Circadian Clock.

    PubMed

    Narasimamurthy, Rajesh; Virshup, David M

    2017-01-01

    An approximately 24-h biological timekeeping mechanism called the circadian clock is present in virtually all light-sensitive organisms from cyanobacteria to humans. The clock system regulates our sleep-wake cycle, feeding-fasting, hormonal secretion, body temperature, and many other physiological functions. Signals from the master circadian oscillator entrain peripheral clocks using a variety of neural and hormonal signals. Even centrally controlled internal temperature fluctuations can entrain the peripheral circadian clocks. But, unlike other chemical reactions, the output of the clock system remains nearly constant with fluctuations in ambient temperature, a phenomenon known as temperature compensation. In this brief review, we focus on recent advances in our understanding of the posttranslational modifications, especially a phosphoswitch mechanism controlling the stability of PER2 and its implications for the regulation of temperature compensation.

  4. Synthesis of energy-efficient FSMs implemented in PLD circuits

    NASA Astrophysics Data System (ADS)

    Nawrot, Radosław; Kulisz, Józef; Kania, Dariusz

    2017-11-01

    The paper presents an outline of a simple synthesis method of energy-efficient FSMs. The idea consists in using local clock gating to selectively block the clock signal, if no transition of a state of a memory element is required. The research was dedicated to logic circuits using Programmable Logic Devices as the implementation platform, but the conclusions can be applied to any synchronous circuit. The experimental section reports a comparison of three methods of implementing sequential circuits in PLDs with respect to clock distribution: the classical fully synchronous structure, the structure exploiting the Enable Clock inputs of memory elements, and the structure using clock gating. The results show that the approach based on clock gating is the most efficient one, and it leads to significant reduction of dynamic power consumed by the FSM.

  5. Quantum Algorithmic Readout in Multi-Ion Clocks.

    PubMed

    Schulte, M; Lörch, N; Leroux, I D; Schmidt, P O; Hammerer, K

    2016-01-08

    Optical clocks based on ensembles of trapped ions promise record frequency accuracy with good short-term stability. Most suitable ion species lack closed transitions, so the clock signal must be read out indirectly by transferring the quantum state of the clock ions to cotrapped logic ions of a different species. Existing methods of quantum logic readout require a linear overhead in either time or the number of logic ions. Here we describe a quantum algorithmic readout whose overhead scales logarithmically with the number of clock ions in both of these respects. The scheme allows a quantum nondemolition readout of the number of excited clock ions using a single multispecies gate operation which can also be used in other areas of ion trap technology such as quantum information processing, quantum simulations, metrology, and precision spectroscopy.

  6. A polarization converting device for an interfering enhanced CPT atomic clock.

    PubMed

    Wang, Kewei; Tian, Yuan; Yin, Yi; Wang, Yuanchao; Gu, Sihong

    2017-11-01

    With interfering enhanced coherent population trapping (CPT) signals, a CPT atomic clock with improved frequency stability performance can be realized. We explore an optical device that converts single-polarized bichromatic light to left and right circularly polarized superposed bichromatic light to generate interfering enhanced CPT resonance with atoms. We have experimentally studied a tabletop CPT atomic clock apparatus with a microfabricated 87 Rb atomic chip-scale cell, and the study results show that it is promising to realize a compact CPT atomic clock, even a chip-scale CPT atomic clock through microfabrication, with improved frequency stability performance.

  7. The New Countdown Clock is Turned on for the First Time

    NASA Image and Video Library

    2014-12-01

    At NASA's Kennedy Space Center in Florida, the new countdown clock at the spaceport's Press Site is being tested. The modern, multimedia display is similar to the screens seen at sporting venues. The new screen will be nearly 26 feet wide by 7 feet high, a foot taller than the original clock. The historic countdown clock was designed by Kennedy engineers and built by space center technicians before Apollo 12 in 1969. NASA has requested to acquire the countdown clock from the agency’s Artifact Working Group at the agency's Headquarters for display at the Kennedy Space Center Visitor Complex.

  8. The Shroud is Put Over the New Countdown Clock

    NASA Image and Video Library

    2014-12-09

    At NASA's Kennedy Space Center in Florida, a shade is placed around the new countdown clock at the spaceport's Press Site. The modern, multimedia display is similar to the screens seen at sporting venues. The new screen is nearly 26 feet wide by 7 feet high, a foot taller than the original clock. The historic countdown clock was designed by Kennedy engineers and built by space center technicians before Apollo 12 in 1969. NASA has acquired the countdown clock from the agency’s Artifact Working Group at the agency's Headquarters for display at the Kennedy Space Center Visitor Complex.

  9. Countdown Clock Ribbon Cutting

    NASA Image and Video Library

    2016-03-01

    Kennedy Space Center Director Bob Cabana, left, and Therrin Protze, chief operating officer of Kennedy's Visitor Complex, celebrate the dedication of the spaceport's historic countdown clock as the newest display at the center's visitor complex. Now located at the entrance to the visitor complex, the spaceport's historic countdown clock was used starting with the launch of Apollo 12 on Nov. 14, 1969. Originally set up at the space center's Press Site, the clock operated through the final space shuttle mission, STS-135, launched on July 8, 2011. The old countdown clock was replaced in 2014 with a modern light emitting diode, or LED, display.

  10. Countdown Clock Ribbon Cutting

    NASA Image and Video Library

    2016-03-01

    Therrin Protze, chief operating officer of the Kennedy Space Center Visitor Complex, speaks at the dedication of the center's historic countdown clock. To the right is space center director Bob Cabana. Now located at the entrance to the visitor complex, the spaceport's historic countdown clock was used starting with the launch of Apollo 12 on Nov. 14, 1969. Originally set up at the space center's Press Site, the clock was used through the final space shuttle mission, STS-135, launched on July 8, 2011. The old countdown clock was replaced in 2014 with a modern light emitting diode, or LED, display.

  11. Countdown Clock Ribbon Cutting

    NASA Image and Video Library

    2016-03-01

    Therrin Protze, chief operating officer of the Kennedy Space Center Visitor Complex, left, and center director Bob Cabana watch as confetti was launched as the spaceport's historic countdown clock is dedicated as the newest display at the entrance to Kennedy's visitor complex. The spaceport's historic countdown clock was used beginning with the launch of Apollo 12 on Nov. 14, 1969. Originally set up at the space center's Press Site, the clock was used through the final space shuttle mission, STS-135, launched on July 8, 2011. The old countdown clock was replaced in 2014 with a modern light emitting diode, or LED, display.

  12. A polarization converting device for an interfering enhanced CPT atomic clock

    NASA Astrophysics Data System (ADS)

    Wang, Kewei; Tian, Yuan; Yin, Yi; Wang, Yuanchao; Gu, Sihong

    2017-11-01

    With interfering enhanced coherent population trapping (CPT) signals, a CPT atomic clock with improved frequency stability performance can be realized. We explore an optical device that converts single-polarized bichromatic light to left and right circularly polarized superposed bichromatic light to generate interfering enhanced CPT resonance with atoms. We have experimentally studied a tabletop CPT atomic clock apparatus with a microfabricated 87Rb atomic chip-scale cell, and the study results show that it is promising to realize a compact CPT atomic clock, even a chip-scale CPT atomic clock through microfabrication, with improved frequency stability performance.

  13. Interdependence of nutrient metabolism and the circadian clock system: Importance for metabolic health.

    PubMed

    Ribas-Latre, Aleix; Eckel-Mahan, Kristin

    2016-03-01

    While additional research is needed, a number of large epidemiological studies show an association between circadian disruption and metabolic disorders. Specifically, obesity, insulin resistance, cardiovascular disease, and other signs of metabolic syndrome all have been linked to circadian disruption in humans. Studies in other species support this association and generally reveal that feeding that is not in phase with the external light/dark cycle, as often occurs with night or rotating shift workers, is disadvantageous in terms of energy balance. As food is a strong driver of circadian rhythms in the periphery, understanding how nutrient metabolism drives clocks across the body is important for dissecting out why circadian misalignment may produce such metabolic effects. A number of circadian clock proteins as well as their accessory proteins (such as nuclear receptors) are highly sensitive to nutrient metabolism. Macronutrients and micronutrients can function as zeitgebers for the clock in a tissue-specific way and can thus impair synchrony between clocks across the body, or potentially restore synchrony in the case of circadian misalignment. Circadian nuclear receptors are particularly sensitive to nutrient metabolism and can alter tissue-specific rhythms in response to changes in the diet. Finally, SNPs in human clock genes appear to be correlated with diet-specific responses and along with chronotype eventually may provide valuable information from a clinical perspective on how to use diet and nutrition to treat metabolic disorders. This article presents a background of the circadian clock components and their interrelated metabolic and transcriptional feedback loops, followed by a review of some recent studies in humans and rodents that address the effects of nutrient metabolism on the circadian clock and vice versa. We focus on studies in which results suggest that nutrients provide an opportunity to restore or, alternatively, can destroy synchrony between peripheral clocks and the central pacemaker in the brain as well as between peripheral clocks themselves. In addition, we review several studies looking at clock gene SNPs in humans and the metabolic phenotypes or tendencies associated with particular clock gene mutations. Targeted use of specific nutrients based on chronotype has the potential for immense clinical utility in the future. Macronutrients and micronutrients have the ability to function as zeitgebers for the clock by activating or modulating specific clock proteins or accessory proteins (such as nuclear receptors). Circadian clock control by nutrients can be tissue-specific. With a better understanding of the mechanisms that support nutrient-induced circadian control in specific tissues, human chronotype and SNP information might eventually be used to tailor nutritional regimens for metabolic disease treatment and thus be an important part of personalized medicine's future.

  14. Eight-Channel Continuous Timer

    NASA Technical Reports Server (NTRS)

    Cole, Steven

    2004-01-01

    A custom laboratory electronic timer circuit measures the durations of successive cycles of nominally highly stable input clock signals in as many as eight channels, for the purpose of statistically quantifying the small instabilities of these signals. The measurement data generated by this timer are sent to a personal computer running software that integrates the measurements to form a phase residual for each channel and uses the phase residuals to compute Allan variances for each channel. (The Allan variance is a standard statistical measure of instability of a clock signal.) Like other laboratory clock-cycle-measuring circuits, this timer utilizes an externally generated reference clock signal having a known frequency (100 MHz) much higher than the frequencies of the input clock signals (between 100 and 120 Hz). It counts the number of reference-clock cycles that occur between successive rising edges of each input clock signal of interest, thereby affording a measurement of the input clock-signal period to within the duration (10 ns) of one reference clock cycle. Unlike typical prior laboratory clock-cycle-measuring circuits, this timer does not skip some cycles of the input clock signals. The non-cycle-skipping feature is an important advantage because in applications that involve integration of measurements over long times for characterizing nominally highly stable clock signals, skipping cycles can degrade accuracy. The timer includes a field-programmable gate array that functions as a 20-bit counter running at the reference clock rate of 100 MHz. The timer also includes eight 20-bit latching circuits - one for each channel - at the output terminals of the counter. Each transition of an input signal from low to high causes the corresponding latching circuit to latch the count at that instant. Each such transition also sets a status flip-flop circuit to indicate the presence of the latched count. A microcontroller reads the values of all eight status flipflops and then reads the latched count for each channel for which the flip-flop indicates the presence of a count. Reading the count for each channel automatically causes the flipflop of that channel to be reset. The microcontroller places the counts in time order, identifies the channel number for each count, and transmits these data to the personal computer.

  15. Investigating the detection of multi-homed devices independent of operating systems

    DTIC Science & Technology

    2017-09-01

    timestamp data was used to estimate clock skews using linear regression and linear optimization methods. Analysis revealed that detection depends on...the consistency of the estimated clock skew. Through vertical testing, it was also shown that clock skew consistency depends on the installed...optimization methods. Analysis revealed that detection depends on the consistency of the estimated clock skew. Through vertical testing, it was also

  16. The Square Light Clock and Special Relativity

    ERIC Educational Resources Information Center

    Galli, J. Ronald; Amiri, Farhang

    2012-01-01

    A thought experiment that includes a square light clock is similar to the traditional vertical light beam and mirror clock, except it is made up of four mirrors placed at a 45[degree] angle at each corner of a square of length L[subscript 0], shown in Fig. 1. Here we have shown the events as measured in the rest frame of the square light clock. By…

  17. Estimation of accuracy of time synchronization obtained by means of clock transportation

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhen; Ma, Dekang; Jin, Wenjing; Zhao, Gang; Huang, Peicheng

    A portable clock experiment was carried out in October 1985 between Shanghai Observatory and Beijing Observatory using a small quartz clock made in Switzerland. The accuracy of time synchronization in 5 days is 70.18 microsec and the accuracy of determining the transmission time of short wave is satisfactory for reduction of the astronomical observations to the same master clock.

  18. Segregation of Clock and Non-Clock Regulatory Functions of REV-ERB.

    PubMed

    Butler, Andrew A; Burris, Thomas P

    2015-08-04

    The molecular clock is a master controller of circadian cellular processes that affect growth, metabolic homeostasis, and behavior. A report in Science by Zhang et al. (2015) redefines our understanding of how Rev-erba acts as an internal feedback inhibitor that modulates activity of the core clock while simultaneously regulating tissue-specific metabolic processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Noise in state of the art clocks and their impact for fundamental physics

    NASA Technical Reports Server (NTRS)

    Maleki, L.

    2001-01-01

    In this paper a review of the use of advanced atomic clocks in testing the fundamental physical laws will be presented. Noise sources of clocks will be discussed, together with an outline their characterization based on current models. The paper will conclude with a discussion of recent attempts to reduce the fundamental, as well as technical noise in atomic clocks.

  20. Navstar Global Positioning System (GPS) clock program: Present and future

    NASA Technical Reports Server (NTRS)

    Tennant, D. M.

    1981-01-01

    Global Positioning System (GPS) program status are discussed and plans for ensuring the long term continuation of the program are presented. Performance of GPS clocks is presented in terms of on orbit data as portrayed by GPS master control station kalman filter processing. The GPS Clock reliability program is reviewed in depth and future plans fo the overall clock program are published.

  1. Circadian signaling in Homarus americanus: Region-specific de novo assembled transcriptomes show that both the brain and eyestalk ganglia possess the molecular components of a putative clock system.

    PubMed

    Christie, Andrew E; Yu, Andy; Pascual, Micah G; Roncalli, Vittoria; Cieslak, Matthew C; Warner, Amanda N; Lameyer, Tess J; Stanhope, Meredith E; Dickinson, Patsy S; Joe Hull, J

    2018-04-11

    Essentially all organisms exhibit recurring patterns of physiology/behavior that oscillate with a period of ~24-h and are synchronized to the solar day. Crustaceans are no exception, with robust circadian rhythms having been documented in many members of this arthropod subphylum. However, little is known about the molecular underpinnings of their circadian rhythmicity. Moreover, the location of the crustacean central clock has not been firmly established, although both the brain and eyestalk ganglia have been hypothesized as loci. The American lobster, Homarus americanus, is known to exhibit multiple circadian rhythms, and immunodetection data suggest that its central clock is located within the eyestalk ganglia rather than in the brain. Here, brain- and eyestalk ganglia-specific transcriptomes were generated and used to assess the presence/absence of transcripts encoding the commonly recognized protein components of arthropod circadian signaling systems in these two regions of the lobster central nervous system. Transcripts encoding putative homologs of the core clock proteins clock, cryptochrome 2, cycle, period and timeless were found in both the brain and eyestalk ganglia assemblies, as were transcripts encoding similar complements of putative clock-associated, clock input pathway and clock output pathway proteins. The presence and identity of transcripts encoding core clock proteins in both regions were confirmed using PCR. These findings suggest that both the brain and eyestalk ganglia possess all of the molecular components needed for the establishment of a circadian signaling system. Whether the brain and eyestalk clocks are independent of one another or represent a single timekeeping system remains to be determined. Interestingly, while most of the proteins deduced from the identified transcripts are shared by both the brain and eyestalk ganglia, assembly-specific isoforms were also identified, e.g., several period variants, suggesting the possibility of region-specific variation in clock function, especially if the brain and eyestalk clocks represent independent oscillators. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Physical Activity and Heart Rate Variability in Older Adults: The Cardiovascular Health Study

    PubMed Central

    Soares-Miranda, Luisa; Sattelmair, Jacob; Chaves, Paulo; Duncan, Glen; Siscovick, David S; Stein, Phyllis K; Mozaffarian, Dariush

    2014-01-01

    Background Cardiac mortality and electrophysiologic dysfunction both increase with age. Heart rate variability (HRV) provides indices of autonomic function and electrophysiology that are associated with cardiac risk. How habitual physical activity (PA) among older adults prospectively relates to HRV, including nonlinear indices of erratic sinus patterns, is not established. We hypothesized that increasing levels of both total leisure-time activity and walking would be prospectively associated with more favorable time-domain, frequency-domain, and nonlinear HRV measures in older adults. Methods and Results We evaluated serial longitudinal measures of both PA and 24-hour Holter HRV over 5 years among 985 older US adults in the community-based Cardiovascular Health Study. After multivariable adjustment, greater total leisure-time activity, walking distance, and walking pace were each prospectively associated with specific, more favorable HRV indices, including higher 24-hour standard-deviation-of-all-normal-to-normal-intervals (SDNN, p-trend=0.009, 0.02, 0.06, respectively) and ultra-low-frequency-power (p-trend=0.02, 0.008, 0.16, respectively). Greater walking pace was also associated with higher short-term-fractal-scaling-exponent (p-trend=0.003) and lower Poincare ratio (p-trend=0.02), markers of less erratic sinus patterns. Conclusions Greater total leisure-time activity, as well as walking alone, were prospectively associated with more favorable and specific indices of autonomic function in older adults, including several suggestive of more normal circadian fluctuations and less erratic sinoatrial firing. Our results suggest potential mechanisms that might contribute to lower cardiovascular mortality with habitual PA later in life. PMID:24799513

  3. Light Stimulates the Mouse Adrenal through a Retinohypothalamic Pathway Independent of an Effect on the Clock in the Suprachiasmatic Nucleus

    PubMed Central

    Kiessling, Silke; Sollars, Patricia J.; Pickard, Gary E.

    2014-01-01

    The brain's master circadian pacemaker resides within the hypothalamic suprachiasmatic nucleus (SCN). SCN clock neurons are entrained to the day/night cycle via the retinohypothalamic tract and the SCN provides temporal information to the central nervous system and to peripheral organs that function as secondary oscillators. The SCN clock-cell network is thought to be the hypothalamic link between the retina and descending autonomic circuits to peripheral organs such as the adrenal gland, thereby entraining those organs to the day/night cycle. However, there are at least three different routes or mechanisms by which retinal signals transmitted to the hypothalamus may be conveyed to peripheral organs: 1) via retinal input to SCN clock neurons; 2) via retinal input to non-clock neurons in the SCN; or 3) via retinal input to hypothalamic regions neighboring the SCN. It is very well documented that light-induced responses of the SCN clock (i.e., clock gene expression, neural activity, and behavioral phase shifts) occur primarily during the subjective night. Thus to determine the role of the SCN clock in transmitting photic signals to descending autonomic circuits, we compared the phase dependency of light-evoked responses in the SCN and a peripheral oscillator, the adrenal gland. We observed light-evoked clock gene expression in the mouse adrenal throughout the subjective day and subjective night. Light also induced adrenal corticosterone secretion during both the subjective day and subjective night. The irradiance threshold for light-evoked adrenal responses was greater during the subjective day compared to the subjective night. These results suggest that retinohypothalamic signals may be relayed to the adrenal clock during the subjective day by a retinal pathway or cellular mechanism that is independent of an effect of light on the SCN neural clock network and thus may be important for the temporal integration of physiology and metabolism. PMID:24658072

  4. Evaluating the Autonomy of the Drosophila Circadian Clock in Dissociated Neuronal Culture.

    PubMed

    Sabado, Virginie; Vienne, Ludovic; Nagoshi, Emi

    2017-01-01

    Circadian behavioral rhythms offer an excellent model to study intricate interactions between the molecular and neuronal mechanisms of behavior. In mammals, pacemaker neurons in the suprachiasmatic nucleus (SCN) generate rhythms cell-autonomously, which are synchronized by the network interactions within the circadian circuit to drive behavioral rhythms. However, whether this principle is universal to circadian systems in animals remains unanswered. Here, we examined the autonomy of the Drosophila circadian clock by monitoring transcriptional and post-transcriptional rhythms of individual clock neurons in dispersed culture with time-lapse microscopy. Expression patterns of the transcriptional reporter show that CLOCK/CYCLE (CLK/CYC)-mediated transcription is constantly active in dissociated clock neurons. In contrast, the expression profile of the post-transcriptional reporter indicates that PERIOD (PER) protein levels fluctuate and ~10% of cells display rhythms in PER levels with periods in the circadian range. Nevertheless, PER and TIM are enriched in the cytoplasm and no periodic PER nuclear accumulation was observed. These results suggest that repression of CLK/CYC-mediated transcription by nuclear PER is impaired, and thus the negative feedback loop of the molecular clock is incomplete in isolated clock neurons. We further demonstrate that, by pharmacological assays using the non-amidated form of neuropeptide pigment-dispersing factor (PDF), which could be specifically secreted from larval LNvs and adult s-LNvs, downstream events of the PDF signaling are partly impaired in dissociated larval clock neurons. Although non-amidated PDF is likely to be less active than the amidated one, these results point out the possibility that alteration in PDF downstream signaling may play a role in dampening of molecular rhythms in isolated clock neurons. Taken together, our results suggest that Drosophila clocks are weak oscillators that need to be in the intact circadian circuit to generate robust 24-h rhythms.

  5. A review of atomic clock technology, the performance capability of present spaceborne and terrestrial atomic clocks, and a look toward the future

    NASA Technical Reports Server (NTRS)

    Vessot, Robert F. C.

    1989-01-01

    Clocks have played a strong role in the development of general relativity. The concept of the proper clock is presently best realized by atomic clocks, whose development as precision instruments has evolved very rapidly in the last decades. To put a historical prospective on this progress since the year AD 1000, the time stability of various clocks expressed in terms of seconds of time error over one day of operation is shown. This stability of operation must not be confused with accuracy. Stability refers to the constancy of a clock operation as compared to that of some other clocks that serve as time references. Accuracy, on the other hand, is the ability to reproduce a previously defined frequency. The issues are outlined that must be considered when accuracy and stability of clocks and oscillators are studied. In general, the most widely used resonances result from the hyperfine interaction of the nuclear magnetic dipole moment and that of the outermost electron, which is characteristic of hydrogen and the alkali atoms. During the past decade hyperfine resonances of ions have also been used. The principal reason for both the accuracy and the stability of atomic clocks is the ability of obtaining very narrow hyperfine transition resonances by isolating the atom in some way so that only the applied stimulating microwave magnetic field is a significant source of perturbation. It is also important to make resonance transitions among hyperfine magnetic sublevels where separation is independent, at least to first order, of the magnetic field. In the case of ions stored in traps operating at high magnetic fields, one selects the trapping field to be consistent with a field-independent transition of the trapped atoms.

  6. Glucocorticoids Affect 24 h Clock Genes Expression in Human Adipose Tissue Explant Cultures

    PubMed Central

    Gómez-Abellán, Purificación; Díez-Noguera, Antoni; Madrid, Juan A.; Luján, Juan A.; Ordovás, José M.; Garaulet, Marta

    2012-01-01

    Aims to examine firstly whether CLOCK exhibits a circadian expression in human visceral (V) and subcutaneous (S) adipose tissue (AT) in vitro as compared with BMAL1 and PER2, and secondly to investigate the possible effect of the glucocorticoid analogue dexamethasone (DEX) on positive and negative clock genes expression. Subjects and Methods VAT and SAT biopsies were obtained from morbid obese women (body mass index≥40 kg/m2) (n = 6). In order to investigate rhythmic expression pattern of clock genes and the effect of DEX on CLOCK, PER2 and BMAL1 expression, control AT (without DEX) and AT explants treated with DEX (2 hours) were cultured during 24 h and gene expression was analyzed at the following times: 10:00 h, 14:00 h, 18:00 h, 22:00 h, 02:00 h and 06:00 h, using qRT-PCR. Results CLOCK, BMAL1 and PER2 expression exhibited circadian patterns in both VAT and SAT explants that were adjusted to a typical 24 h sinusoidal curve. PER2 expression (negative element) was in antiphase with respect to CLOCK and in phase with BMAL1 expression (both positive elements) in the SAT (situation not present in VAT). A marked effect of DEX exposure on both positive and negative clock genes expression patterns was observed. Indeed, DEX treatment modified the rhythmicity pattern towards altered patterns with a period lower than 24 hours in all genes and in both tissues. Conclusions 24 h patterns in CLOCK and BMAL1 (positive clock elements) and PER2 (negative element) mRNA levels were observed in human adipose explants. These patterns were altered by dexamethasone exposure. PMID:23251369

  7. Bayesian random local clocks, or one rate to rule them all

    PubMed Central

    2010-01-01

    Background Relaxed molecular clock models allow divergence time dating and "relaxed phylogenetic" inference, in which a time tree is estimated in the face of unequal rates across lineages. We present a new method for relaxing the assumption of a strict molecular clock using Markov chain Monte Carlo to implement Bayesian modeling averaging over random local molecular clocks. The new method approaches the problem of rate variation among lineages by proposing a series of local molecular clocks, each extending over a subregion of the full phylogeny. Each branch in a phylogeny (subtending a clade) is a possible location for a change of rate from one local clock to a new one. Thus, including both the global molecular clock and the unconstrained model results, there are a total of 22n-2 possible rate models available for averaging with 1, 2, ..., 2n - 2 different rate categories. Results We propose an efficient method to sample this model space while simultaneously estimating the phylogeny. The new method conveniently allows a direct test of the strict molecular clock, in which one rate rules them all, against a large array of alternative local molecular clock models. We illustrate the method's utility on three example data sets involving mammal, primate and influenza evolution. Finally, we explore methods to visualize the complex posterior distribution that results from inference under such models. Conclusions The examples suggest that large sequence datasets may only require a small number of local molecular clocks to reconcile their branch lengths with a time scale. All of the analyses described here are implemented in the open access software package BEAST 1.5.4 (http://beast-mcmc.googlecode.com/). PMID:20807414

  8. An out-of-lab trial: a case example for the effect of intensive exercise on rhythms of human clock gene expression

    PubMed Central

    2013-01-01

    Background Although out-of-lab investigation of the human circadian clock at the clock gene expression level remains difficult, a recent method using hair follicle cells might be useful. While exercise may function as an entrainment cue for circadian rhythms, it remains unclear whether exercise affects human circadian clock gene expression. Methods Efforts to observe apparent effects of exercise on clock gene expression require that several specific conditions be met: intense exercise should be habitually performed at a relatively uncommon time of day over an extended period; and any relative phase shift thereby observed should be validated by comparison of exercise and no-exercise periods. Wake-up and meal times should be kept almost constant over the experimental period. The present study was conducted using a professional fighter who met these strict criteria as subject. Facial hair samples were collected at 4-h intervals around the clock to ascertain rhythms of clock gene expression. Results During a period in which nighttime training (from 20:00 to 22:00) was habitually performed, circadian clock gene expression was phase-delayed by 2 to 4 h compared with that during a no-exercise period. Maximum level and circadian amplitude of clock gene expression were not affected by the nighttime training. Conclusion Our trial observations illustrate the possibility that heavy physical exercise might strongly affect the circadian phase of clock gene expression. Exercise might be therefore effective for the clinical care of circadian disorders. The results also suggest that athletes may require careful scheduling of heavy physical exercise to maintain normal circadian phase and ensure optimal athletic performance. PMID:24004634

  9. Circadian Rhythms, the Molecular Clock, and Skeletal Muscle

    PubMed Central

    Lefta, Mellani; Wolff, Gretchen; Esser, Karyn A.

    2015-01-01

    Almost all organisms ranging from single cell bacteria to humans exhibit a variety of behavioral, physiological, and biochemical rhythms. In mammals, circadian rhythms control the timing of many physiological processes over a 24-h period, including sleep-wake cycles, body temperature, feeding, and hormone production. This body of research has led to defined characteristics of circadian rhythms based on period length, phase, and amplitude. Underlying circadian behaviors is a molecular clock mechanism found in most, if not all, cell types including skeletal muscle. The mammalian molecular clock is a complex of multiple oscillating networks that are regulated through transcriptional mechanisms, timed protein turnover, and input from small molecules. At this time, very little is known about circadian aspects of skeletal muscle function/metabolism but some progress has been made on understanding the molecular clock in skeletal muscle. The goal of this chapter is to provide the basic terminology and concepts of circadian rhythms with a more detailed review of the current state of knowledge of the molecular clock, with reference to what is known in skeletal muscle. Research has demonstrated that the molecular clock is active in skeletal muscles and that the muscle-specific transcription factor, MyoD, is a direct target of the molecular clock. Skeletal muscle of clock-compromised mice, Bmal1−/− and ClockΔ19 mice, are weak and exhibit significant disruptions in expression of many genes required for adult muscle structure and metabolism. We suggest that the interaction between the molecular clock, MyoD, and metabolic factors, such as PGC-1, provide a potential system of feedback loops that may be critical for both maintenance and adaptation of skeletal muscle. PMID:21621073

  10. Real Time GPS- Satellite Clock Estimation Development of a RTIGS Web Service

    NASA Astrophysics Data System (ADS)

    Opitz, M.; Weber, R.; Caissy, M.

    2006-12-01

    Since 3 years the IGS (International GNSS Service) Real-Time Working Group disseminates via Internet raw observation data of a subset of stations of the IGS network. This observation data can be used to establish a real-time integrity monitoring of the IGS predicted orbits (Ultra Rapid (IGU-) Orbits) and clocks, according to the recommendations of the IGS Workshop 2004 in Bern. The Institute for "Geodesy and Geophysics" of the TU-Vienna develops in cooperation with the IGS Real-Time Working Group the software "RTR- Control", which currently provides a real-time integrity monitoring of predicted IGU Clock Corrections to GPS Time. Our poster presents the results of a prototype version which is in operation since August this year. Besides RTR-Control allows for the comparison of pseudoranges measured at any permanent station in the global network with theoretical pseudoranges calculated on basis of the IGU- orbits. Thus, the programme can diagnose incorrectly predicted satellite orbits and clocks as well as detect multi-path distorted pseudoranges in real- time. RTR- Control calculates every 15 seconds Satellite Clock Corrections with respect to the most recent IGU- clocks (updated in a 6 hours interval). The clock estimations are referenced to a stable station clock (H-maser) with a small offset to GPS- time. This real-time Satellite Clocks are corrected for individual outliers and modelling errors. The most recent GPS- Satellite Clock Corrections (updated every 60 seconds) are published in Real Time via the Internet. The user group interested in a rigorous integrity monitoring comprises on the one hand the components of IGS itself to qualify the issued orbital data and on the other hand all users of the IGS Ultra Rapid Products (e.g. for PPP in Real Time).

  11. Circadian Clock Dysfunction and Psychiatric Disease: Could Fruit Flies have a Say?

    PubMed Central

    Zordan, Mauro Agostino; Sandrelli, Federica

    2015-01-01

    There is evidence of a link between the circadian system and psychiatric diseases. Studies in humans and mammals suggest that environmental and/or genetic disruption of the circadian system leads to an increased liability to psychiatric disease. Disruption of clock genes and/or the clock network might be related to the etiology of these pathologies; also, some genes, known for their circadian clock functions, might be associated to mental illnesses through clock-independent pleiotropy. Here, we examine the features which we believe make Drosophila melanogaster a model apt to study the role of the circadian clock in psychiatric disease. Despite differences in the organization of the clock system, the molecular architecture of the Drosophila and mammalian circadian oscillators are comparable and many components are evolutionarily related. In addition, Drosophila has a rather complex nervous system, which shares much at the cell and neurobiological level with humans, i.e., a tripartite brain, the main neurotransmitter systems, and behavioral traits: circadian behavior, learning and memory, motivation, addiction, social behavior. There is evidence that the Drosophila brain shares some homologies with the vertebrate cerebellum, basal ganglia, and hypothalamus-pituitary-adrenal axis, the dysfunctions of which have been tied to mental illness. We discuss Drosophila in comparison to mammals with reference to the: organization of the brain and neurotransmitter systems; architecture of the circadian clock; clock-controlled behaviors. We sum up current knowledge on behavioral endophenotypes, which are amenable to modeling in flies, such as defects involving sleep, cognition, or social interactions, and discuss the relationship of the circadian system to these traits. Finally, we consider if Drosophila could be a valuable asset to understand the relationship between circadian clock malfunction and psychiatric disease. PMID:25941512

  12. Hyperpolarizability and Operational Magic Wavelength in an Optical Lattice Clock

    NASA Astrophysics Data System (ADS)

    Brown, R. C.; Phillips, N. B.; Beloy, K.; McGrew, W. F.; Schioppo, M.; Fasano, R. J.; Milani, G.; Zhang, X.; Hinkley, N.; Leopardi, H.; Yoon, T. H.; Nicolodi, D.; Fortier, T. M.; Ludlow, A. D.

    2017-12-01

    Optical clocks benefit from tight atomic confinement enabling extended interrogation times as well as Doppler- and recoil-free operation. However, these benefits come at the cost of frequency shifts that, if not properly controlled, may degrade clock accuracy. Numerous theoretical studies have predicted optical lattice clock frequency shifts that scale nonlinearly with trap depth. To experimentally observe and constrain these shifts in an 171Yb optical lattice clock, we construct a lattice enhancement cavity that exaggerates the light shifts. We observe an atomic temperature that is proportional to the optical trap depth, fundamentally altering the scaling of trap-induced light shifts and simplifying their parametrization. We identify an "operational" magic wavelength where frequency shifts are insensitive to changes in trap depth. These measurements and scaling analysis constitute an essential systematic characterization for clock operation at the 10-18 level and beyond.

  13. Kruppel-like factor KLF10 is a link between the circadian clock and metabolism in liver.

    PubMed

    Guillaumond, Fabienne; Gréchez-Cassiau, Aline; Subramaniam, Malayannan; Brangolo, Sophie; Peteri-Brünback, Brigitta; Staels, Bart; Fiévet, Catherine; Spelsberg, Thomas C; Delaunay, Franck; Teboul, Michèle

    2010-06-01

    The circadian timing system coordinates many aspects of mammalian physiology and behavior in synchrony with the external light/dark cycle. These rhythms are driven by endogenous molecular clocks present in most body cells. Many clock outputs are transcriptional regulators, suggesting that clock genes primarily control physiology through indirect pathways. Here, we show that Krüppel-like factor 10 (KLF10) displays a robust circadian expression pattern in wild-type mouse liver but not in clock-deficient Bmal1 knockout mice. Consistently, the Klf10 promoter recruited the BMAL1 core clock protein and was transactivated by the CLOCK-BMAL1 heterodimer through a conserved E-box response element. Profiling the liver transcriptome from Klf10(-/-) mice identified 158 regulated genes with significant enrichment for transcripts involved in lipid and carbohydrate metabolism. Importantly, approximately 56% of these metabolic genes are clock controlled. Male Klf10(-/-) mice displayed postprandial and fasting hyperglycemia, a phenotype accompanied by a significant time-of-day-dependent upregulation of the gluconeogenic gene Pepck and increased hepatic glucose production. Consistently, functional data showed that the proximal Pepck promoter is repressed directly by KLF10. Klf10(-/-) females were normoglycemic but displayed higher plasma triglycerides. Correspondingly, rhythmic gene expression of components of the lipogenic pathway, including Srebp1c, Fas, and Elovl6, was altered in females. Collectively, these data establish KLF10 as a required circadian transcriptional regulator that links the molecular clock to energy metabolism in the liver.

  14. Time maintenance system for the BMDO MSX spacecraft

    NASA Technical Reports Server (NTRS)

    Hermes, Martin J.

    1994-01-01

    The Johns Hopkins University Applied Physics Laboratory (APL) is responsible for designing and implementing a clock maintenance system for the Ballistic Missile Defense Organizations (BMDO) Midcourse Space Experiment (MSX) spacecraft. The MSX spacecraft has an on-board clock that will be used to control execution of time-dependent commands and to time tag all science and housekeeping data received from the spacecraft. MSX mission objectives have dictated that this spacecraft time, UTC(MSX), maintain a required accuracy with respect to UTC(USNO) of +/- 10 ms with a +/- 1 ms desired accuracy. APL's atomic time standards and the downlinked spacecraft time were used to develop a time maintenance system that will estimate the current MSX clock time offset during an APL pass and make estimates of the clock's drift and aging using the offset estimates from many passes. Using this information, the clock's accuracy will be maintained by uplinking periodic clock correction commands. The resulting time maintenance system is a combination of offset measurement, command/telemetry, and mission planning hardware and computing assets. All assets provide necessary inputs for deciding when corrections to the MSX spacecraft clock must be made to maintain its required accuracy without inhibiting other mission objectives. The MSX time maintenance system is described as a whole and the clock offset measurement subsystem, a unique combination of precision time maintenance and measurement hardware controlled by a Macintosh computer, is detailed. Simulations show that the system estimates the MSX clock offset to less than+/- 33 microseconds.

  15. Subnanosecond GPS-based clock synchronization and precision deep-space tracking

    NASA Technical Reports Server (NTRS)

    Dunn, C. E.; Lichten, S. M.; Jefferson, D. C.; Border, J. S.

    1992-01-01

    Interferometric spacecraft tracking is accomplished by the Deep Space Network (DSN) by comparing the arrival time of electromagnetic spacecraft signals at ground antennas separated by baselines on the order of 8000 km. Clock synchronization errors within and between DSN stations directly impact the attainable tracking accuracy, with a 0.3-nsec error in clock synchronization resulting in an 11-nrad angular position error. This level of synchronization is currently achieved by observing a quasar which is angularly close to the spacecraft just after the spacecraft observations. By determining the differential arrival times of the random quasar signal at the stations, clock offsets and propagation delays within the atmosphere and within the DSN stations are calibrated. Recent developments in time transfer techniques may allow medium accuracy (50-100 nrad) spacecraft tracking without near-simultaneous quasar-based calibrations. Solutions are presented for a worldwide network of Global Positioning System (GPS) receivers in which the formal errors for DSN clock offset parameters are less than 0.5 nsec. Comparisons of clock rate offsets derived from GPS measurements and from very long baseline interferometry (VLBI), as well as the examination of clock closure, suggest that these formal errors are a realistic measure of GPS-based clock offset precision and accuracy. Incorporating GPS-based clock synchronization measurements into a spacecraft differential ranging system would allow tracking without near-simultaneous quasar observations. The impact on individual spacecraft navigation-error sources due to elimination of quasar-based calibrations is presented. System implementation, including calibration of station electronic delays, is discussed.

  16. Sub-nanosecond clock synchronization and precision deep space tracking

    NASA Technical Reports Server (NTRS)

    Dunn, Charles; Lichten, Stephen; Jefferson, David; Border, James S.

    1992-01-01

    Interferometric spacecraft tracking is accomplished at the NASA Deep Space Network (DSN) by comparing the arrival time of electromagnetic spacecraft signals to ground antennas separated by baselines on the order of 8000 km. Clock synchronization errors within and between DSN stations directly impact the attainable tracking accuracy, with a 0.3 ns error in clock synchronization resulting in an 11 nrad angular position error. This level of synchronization is currently achieved by observing a quasar which is angularly close to the spacecraft just after the spacecraft observations. By determining the differential arrival times of the random quasar signal at the stations, clock synchronization and propagation delays within the atmosphere and within the DSN stations are calibrated. Recent developments in time transfer techniques may allow medium accuracy (50-100 nrad) spacecraft observations without near-simultaneous quasar-based calibrations. Solutions are presented for a global network of GPS receivers in which the formal errors in clock offset parameters are less than 0.5 ns. Comparisons of clock rate offsets derived from GPS measurements and from very long baseline interferometry and the examination of clock closure suggest that these formal errors are a realistic measure of GPS-based clock offset precision and accuracy. Incorporating GPS-based clock synchronization measurements into a spacecraft differential ranging system would allow tracking without near-simultaneous quasar observations. The impact on individual spacecraft navigation error sources due to elimination of quasar-based calibrations is presented. System implementation, including calibration of station electronic delays, is discussed.

  17. Adult Circadian Behavior in Drosophila Requires Developmental Expression of cycle, But Not period

    PubMed Central

    Kim, Min-Ho; Rao, Neethi Varadaraja; Bonilla, Gloribel; Wijnen, Herman

    2011-01-01

    Circadian clocks have evolved as internal time keeping mechanisms that allow anticipation of daily environmental changes and organization of a daily program of physiological and behavioral rhythms. To better examine the mechanisms underlying circadian clocks in animals and to ask whether clock gene expression and function during development affected subsequent daily time keeping in the adult, we used the genetic tools available in Drosophila to conditionally manipulate the function of the CYCLE component of the positive regulator CLOCK/CYCLE (CLK/CYC) or its negative feedback inhibitor PERIOD (PER). Differential manipulation of clock function during development and in adulthood indicated that there is no developmental requirement for either a running clock mechanism or expression of per. However, conditional suppression of CLK/CYC activity either via per over-expression or cyc depletion during metamorphosis resulted in persistent arrhythmic behavior in the adult. Two distinct mechanisms were identified that may contribute to this developmental function of CLK/CYC and both involve the ventral lateral clock neurons (LNvs) that are crucial to circadian control of locomotor behavior: (1) selective depletion of cyc expression in the LNvs resulted in abnormal peptidergic small-LNv dorsal projections, and (2) PER expression rhythms in the adult LNvs appeared to be affected by developmental inhibition of CLK/CYC activity. Given the conservation of clock genes and circuits among animals, this study provides a rationale for investigating a possible similar developmental role of the homologous mammalian CLOCK/BMAL1 complex. PMID:21750685

  18. Frequency Standards and Metrology

    NASA Astrophysics Data System (ADS)

    Maleki, Lute

    2009-04-01

    Preface / Lute Maleki -- Symposium history / Jacques Vanier -- Symposium photos -- pt. I. Fundamental physics. Variation of fundamental constants from the big bang to atomic clocks: theory and observations (Invited) / V. V. Flambaum and J. C. Berengut. Alpha-dot or not: comparison of two single atom optical clocks (Invited) / T. Rosenband ... [et al.]. Variation of the fine-structure constant and laser cooling of atomic dysprosium (Invited) / N. A. Leefer ... [et al.]. Measurement of short range forces using cold atoms (Invited) / F. Pereira Dos Santos ... [et al.]. Atom interferometry experiments in fundamental physics (Invited) / S. W. Chiow ... [et al.]. Space science applications of frequency standards and metrology (Invited) / M. Tinto -- pt. II. Frequency & metrology. Quantum metrology with lattice-confined ultracold Sr atoms (Invited) / A. D. Ludlow ... [et al.]. LNE-SYRTE clock ensemble: new [symbol]Rb hyperfine frequency measurement - spectroscopy of [symbol]Hg optical clock transition (Invited) / M. Petersen ... [et al.]. Precise measurements of S-wave scattering phase shifts with a juggling atomic clock (Invited) / S. Gensemer ... [et al.]. Absolute frequency measurement of the [symbol] clock transition (Invited) / M. Chwalla ... [et al.]. The semiclassical stochastic-field/atom interaction problem (Invited) / J. Camparo. Phase and frequency noise metrology (Invited) / E. Rubiola ... [et al.]. Optical spectroscopy of atomic hydrogen for an improved determination of the Rydberg constant / J. L. Flowers ... [et al.] -- pt. III. Clock applications in space. Recent progress on the ACES mission (Invited) / L. Cacciapuoti and C. Salomon. The SAGAS mission (Invited) / P. Wolf. Small mercury microwave ion clock for navigation and radioScience (Invited) / J. D. Prestage ... [et al.]. Astro-comb: revolutionizing precision spectroscopy in astrophysics (Invited) / C. E. Kramer ... [et al.]. High frequency very long baseline interferometry: frequency standards and imaging an event horizon (Invited) / S. Doeleman. Optically-pumped space cesium clock for Galileo: results of the breadboard / R. Ruffieux ... [et al.] -- pt. IV. Optical clocks I: lattice clocks. Optical lattice clock: seven years of progress and next steps (Invited) / H. Katori, M. Takamoto and T. Akatsuka. The Yb optical lattice clock (Invited) / N. D. Demke ... [et al.]. Optical Lattice clock with Sr atoms (Invited) / P. G. Westergaard ... [et al.]. Development of an optical clock based on neutral strontium atoms held in a lattice trap / E. A. Curtis ... [et al.]. Decoherence and losses by collisions in a [symbol]Sr lattice clock / J. S. R. Vellore Winfred ... [et al.]. Lattice Yb optical clock and cryogenic Cs fountain at INRIM / F. Levi ... [et al.] -- pt. V. Optical clocks II: ion clocks. [Symbol]Yb+ single-ion optical frequency standards (Invited) / Chr. Tamm ... [et al.]. An optical clock based on a single trapped [symbol]Sr+ ion (Invited) / H. S. Margolis ... [et al.]. A trapped [symbol]Yb+ ion optical frequency standard based on the [symbol] transition (Invited) / P. Gill ... [et al.]. Overview of highly accurate RF and optical frequency standards at the National Research Council of Canada (Invited) / A. A. Madej ... [et al.] -- pt. VI. Optical frequency combs. Extreme ultraviolet frequency combs for spectroscopy (Invited) / A. Ozawa ... [et al.]. Development of an optical clockwork for the single trapped strontium ion standard at 445 THz / J. E. Bernard ... [et al.]. A phase-coherent link between the visible and infrared spectral ranges using a combination of CW OPO and femtosecond laser frequency comb / E. V. Kovalchuk and A. Peters. Improvements to the robustness of a TI: sapphire-based femtosecond comb at NPL / V. Tsatourian ... [et al.] -- pt. VII. Atomic microwave standards. NIST FI and F2 (Invited) / T. P. Heavner ... [et al.]. Atomic fountains for the USNO master clock (Invited) / C. Ekstrom ... [et al.]. The transportable cesium fountain clock NIM5: its construction and performance (Invited) / T. Li ... [et al.].Compensated multi-pole mercury trapped ion frequency standard and stability evaluation of systematic effects (Invited) / E. A. Burt ... [et al.]. Research of frequency standards in SIOM - atomic frequency standards based on coherent storage (Invited) / B. Yan ... [et al.]. The PTB fountain clock ensemble preliminary characterization of the new fountain CSF2 / N. Nemitz ... [et al.]. The pulsed optically pumped clock: microwave and optical detection / S. Micalizio ... [et al.]. Research on characteristics of pulsed optically pumped rubidium frequency standard / J. Deng ... [et al.]. Status of the continuous cold fountain clocks at METAS-LTF / A. Joyet ... [et al.]. Experiments with a new [symbol]Hg+ ion clock / E. A. Burt ... [et al.]. Optimising a high-stability CW laser-pumped rubidium gas-cell frequency standard / C. Affolderbach ... [et al.]. Raman-Ramsey Cs cell atomic clock / R. Boudot ... [et al.] -- pt. VIII. Microwave resonators & oscillators. Solutions and ultimate limits in temperature compensation of metallic cylindrical microwave resonators (Invited) / A. De Marchi. Cryogenic sapphire oscillators (Invited) / J. G. Hartnett, E. N. Ivanov and M. E. Tobar. Ultra-stable optical cavity: design and experiments / J. Millo ... [et al.]. New results for whispering gallery mode cryogenic sapphire maser oscillators / K. Benmessai ... [et al.] -- pt. IX. Advanced techniques. Fundamental noise-limited optical phase locking at Femtowatt light levels (Invited) / J. Dick ... [et al.]. Microwave and optical frequency transfer via optical fibre / G. Marra ... [et al.]. Ultra-stable laser source for the [symbol]Sr+ single-ion optical frequency standard at NRC / P. Dubé, A. A. Madej and J. E. Bernard. Clock laser system for a strontium lattice clock / T. Legero ... [et al.]. Measurement noise floor for a long-distance optical carrier transmission via fiber / G. Grosche ... [et al.]. Optical frequency transfer over 172 KM of installed fiber / S. Crane -- pt. X. Miniature systems. Chip-scale atomic devices: precision atomic instruments based on MEMS (Invited) / J. Kitching ... [et al.]. CSAC - the chip-scale atomic clock (Invited) / R. Lutwak ... [et al.]. Reaching a few 10[symbol] stability level with a compact cold atom clock / F. X. Esnault ... [et al.]. Evaluation of Lin||Lin CPT for compact and high performance frequency standard / E. Breschi ... [et al.] -- pt. XI. Time scales. Atomic time scales TAI and TI(BIPM): present status and prospects (Invited) / G. Petit. Weight functions for biases in atomic frequency standards / J. H. Shirley -- pt. XII. Interferometers. Definition and construction of noise budget in atom interferometry (Invited) / E. D'Ambriosio. Characterization of a cold atom gyroscope (Invited) / A. Landragin ... [et al.]. A mobile atom interferometer for high precision measurements of local gravity / M. Schmidt ... [et al.]. Demonstration of atom interferometer comprised of geometric beam splitters / Hiromitsu Imai and Atsuo Morinaga -- pt. XIII. New directions. Active optical clocks (Invited) / J. Chen. Prospects for a nuclear optical frequency standard based on Thorium-229 (Invited) / E. Peik ... [et al.]. Whispering gallery mode oscillators and optical comb generators (Invited) / A. B. Matsko ... [et al.]. Frequency comparison using energy-time entangled photons / A. Stefanov -- List of participants.

  19. Array Receivers and Sound Sources for Three Dimensional Shallow Water Acoustic Field Experiments

    DTIC Science & Technology

    2016-12-06

    upgrade included improving the SHRU clocks by utilizing chip- scale atomic clocks (CSAC), enlarging battery packs to extend the operation duration, and...instrument upgrade included improving the SHRU clocks by utilizing chip-scale atomic clocks (CSAC), enlarging battery packs to extend the operation...Changing the deployment configuration to use dual pressure housings to augment the alkaline primary battery payload to achieve the one-year duration

  20. An Adaptive Method for Reducing Clock Skew in an Accumulative Z-Axis Interconnect System

    NASA Technical Reports Server (NTRS)

    Bolotin, Gary; Boyce, Lee

    1997-01-01

    This paper will present several methods for adjusting clock skew variations that occur in a n accumulative z-axis interconnect system. In such a system, delay between modules in a function of their distance from one another. Clock distribution in a high-speed system, where clock skew must be kept to a minimum, becomes more challenging when module order is variable before design.

  1. PARCS-Primary Atomic Reference Clock in Space

    NASA Astrophysics Data System (ADS)

    Ashby, Neil

    2000-04-01

    The purpose of the PARCS project is to place an advanced Cesium clock on the International Space Station (ISS). The project has been approved by NASA at the level of Science Concept Review. Groups at the National Institute of Standards and Technology, Jet Propulsion Laboratory, University of Colorado, and Harvard-Smithsonian Astrophysical Observatory, University of Torino are collaborating on clock design and construction. The microgravity space environment allows laser-cooled Cs atoms to spend longer times in the beam, resulting in improved clock performance. Clock stabilities of 3 × 10-14 at one second and accuracies of 1 × 10-16 are projected. With improved clock performance, significant improvements in several fundamental special and general relativity experiments are expected. For an ISS orbit at 400 km altitude and eccentricity 0.02, the gravitational frequency shift should be measureable about 35 times better than the previous best, Gravity Probe A. Improvements in testing Local Position Invariance and in a Kennedy-Thorndike experiment are expected. Areas of technology such as world-wide timing and time transfer and navigation will also directly benefit from such a high-performance clock in space. This paper will briefly describe the PARCS clock. The principal limitations on performance of relativity experiments, scientific objectives and benefits, and projected outcomes, will be discussed.

  2. Diurnal Variation in Vascular and Metabolic Function in Diet-Induced Obesity

    PubMed Central

    Prasai, Madhu J.; Mughal, Romana S.; Wheatcroft, Stephen B.; Kearney, Mark T.; Grant, Peter J.; Scott, Eleanor M.

    2013-01-01

    Circadian rhythms are integral to the normal functioning of numerous physiological processes. Evidence from human and mouse studies suggests that loss of rhythm occurs in obesity and cardiovascular disease and may be a neglected contributor to pathophysiology. Obesity has been shown to impair the circadian clock mechanism in liver and adipose tissue but its effect on cardiovascular tissues is unknown. We investigated the effect of diet-induced obesity in C57BL6J mice upon rhythmic transcription of clock genes and diurnal variation in vascular and metabolic systems. In obesity, clock gene function and physiological rhythms were preserved in the vasculature but clock gene transcription in metabolic tissues and rhythms of glucose tolerance and insulin sensitivity were blunted. The most pronounced attenuation of clock rhythm occurred in adipose tissue, where there was also impairment of clock-controlled master metabolic genes and both AMPK mRNA and protein. Across tissues, clock gene disruption was associated with local inflammation but diverged from impairment of insulin signaling. We conclude that vascular tissues are less sensitive to pathological disruption of diurnal rhythms during obesity than metabolic tissues and suggest that cellular disruption of clock gene rhythmicity may occur by mechanisms shared with inflammation but distinct from those leading to insulin resistance. PMID:23382450

  3. Visuoconstructional Impairment in Subtypes of Mild Cognitive Impairment

    PubMed Central

    Ahmed, Samrah; Brennan, Laura; Eppig, Joel; Price, Catherine C.; Lamar, Melissa; Delano-Wood, Lisa; Bangen, Katherine J.; Edmonds, Emily C.; Clark, Lindsey; Nation, Daniel A.; Jak, Amy; Au, Rhoda; Swenson, Rodney; Bondi, Mark W.; Libon, David J.

    2018-01-01

    Clock Drawing Test performance was examined alongside other neuropsychological tests in mild cognitive impairment (MCI). We tested the hypothesis that clock-drawing errors are related to executive impairment. The current research examined 86 patients with MCI for whom, in prior research, cluster analysis was used to sort patients into dysexecutive (dMCI, n=22), amnestic (aMCI, n=13), and multi-domain (mMCI, n=51) subtypes. First, principal components analysis (PCA) and linear regression examined relations between clock-drawing errors and neuropsychological test performance independent of MCI subtype. Second, between-group differences were assessed with analysis of variance (ANOVA) where MCI subgroups were compared to normal controls (NC). PCA yielded a 3-group solution. Contrary to expectations, clock-drawing errors loaded with lower performance on naming/lexical retrieval, rather than with executive tests. Regression analyses found increasing clock-drawing errors to command were associated with worse performance only on naming/lexical retrieval tests. ANOVAs revealed no differences in clock-drawing errors between dMCI versus mMCI or aMCI versus NCs. Both the dMCI and mMCI groups generated more clock-drawing errors than the aMCI and NC groups in the command condition. In MCI, language-related skills contribute to clock-drawing impairment. PMID:26397732

  4. Punctual Transcriptional Regulation by the Rice Circadian Clock under Fluctuating Field Conditions[OPEN

    PubMed Central

    Matsuzaki, Jun; Kawahara, Yoshihiro; Izawa, Takeshi

    2015-01-01

    Plant circadian clocks that oscillate autonomously with a roughly 24-h period are entrained by fluctuating light and temperature and globally regulate downstream genes in the field. However, it remains unknown how punctual internal time produced by the circadian clock in the field is and how it is affected by environmental fluctuations due to weather or daylength. Using hundreds of samples of field-grown rice (Oryza sativa) leaves, we developed a statistical model for the expression of circadian clock-related genes integrating diurnally entrained circadian clock with phase setting by light, both responses to light and temperature gated by the circadian clock. We show that expression of individual genes was strongly affected by temperature. However, internal time estimated from expression of multiple genes, which may reflect transcriptional regulation of downstream genes, is punctual to 22 min and not affected by weather, daylength, or plant developmental age in the field. We also revealed perturbed progression of internal time under controlled environment or in a mutant of the circadian clock gene GIGANTEA. Thus, we demonstrated that the circadian clock is a regulatory network of multiple genes that retains accurate physical time of day by integrating the perturbations on individual genes under fluctuating environments in the field. PMID:25757473

  5. GNSS Clock Error Impacts on Radio Occultation Retrievals

    NASA Astrophysics Data System (ADS)

    Weiss, Jan; Sokolovskiy, Sergey; Schreiner, Bill; Yoon, Yoke

    2017-04-01

    We assess the impacts of GPS and GLONASS clock errors on radio occultation retrieval of bending angle, refractivity, and temperature from low Earth orbit. The major contributing factor is the interpretation of GNSS clock offsets sampled at 30 sec or longer intervals. Using 1 Hz GNSS clock estimates as truth we apply several interpolation and fitting schemes to evaluate how they affect the accuracy of atmospheric retrieval products. The results are organized by GPS and GLONASS space vehicle and the GNSS clock interpolation/fitting scheme. We find that bending angle error is roughly similar for all current GPS transmitters (about 0.7 mcrad) but note some differences related to the type of atomic oscillator onboard the transmitter satellite. GLONASS bending angle errors show more variation over the constellation and are approximately two times larger than GPS. An investigation of the transmitter clock spectra reveals this is due to more power in periods between 2-10 sec. Retrieved refractivity and temperature products show clear differences between GNSS satellite generations, and indicate that GNSS clocks sampled at intervals smaller than 5 sec significantly improve accuracy, particularly for GLONASS. We conclude by summarizing the tested GNSS clock estimation and application strategies in the context of current and future radio occultation missions.

  6. Proceedings of the Workshop on the Scientific Applications of Clocks in Space

    NASA Technical Reports Server (NTRS)

    Maleki, Lute (Editor)

    1997-01-01

    The Workshop on Scientific Applications of Clocks in space was held to bring together scientists and technologists interested in applications of ultrastable clocks for test of fundamental theories, and for other science investigations. Time and frequency are the most precisely determined of all physical parameters, and thus are the required tools for performing the most sensitive tests of physical theories. Space affords the opportunity to make measurement, parameters inaccessible on Earth, and enables some of the most original and sensitive tests of fundamental theories. In the past few years, new developments in clock technologies have pointed to the opportunity for flying ultrastable clocks in support of science investigations of space missions. This development coincides with the new NASA paradigm for space flights, which relies on frequent, low-cost missions in place of the traditional infrequent and high-cost missions. The heightened interest in clocks in space is further advanced by new theoretical developments in various fields. For example, recent developments in certain Grand Unified Theory formalisms have vastly increased interest in fundamental tests of gravitation physics with clocks. The workshop included sessions on all related science including relativity and gravitational physics, cosmology, orbital dynamics, radio science, geodynamics, and GPS science and others, as well as a session on advanced clock technology.

  7. Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood.

    PubMed

    Hampp, Gabriele; Ripperger, Jürgen A; Houben, Thijs; Schmutz, Isabelle; Blex, Christian; Perreau-Lenz, Stéphanie; Brunk, Irene; Spanagel, Rainer; Ahnert-Hilger, Gudrun; Meijer, Johanna H; Albrecht, Urs

    2008-05-06

    The circadian clock has been implicated in addiction and several forms of depression [1, 2], indicating interactions between the circadian and the reward systems in the brain [3-5]. Rewards such as food, sex, and drugs influence this system in part by modulating dopamine neurotransmission in the mesolimbic dopamine reward circuit, including the ventral tegmental area (VTA) and the ventral striatum (NAc). Hence, changes in dopamine levels in these brain areas are proposed to influence mood in humans and mice [6-10]. To establish a molecular link between the circadian-clock mechanism and dopamine metabolism, we analyzed the murine promoters of genes encoding key enzymes important in dopamine metabolism. We find that transcription of the monoamine oxidase A (Maoa) promoter is regulated by the clock components BMAL1, NPAS2, and PER2. A mutation in the clock gene Per2 in mice leads to reduced expression and activity of MAOA in the mesolimbic dopaminergic system. Furthermore, we observe increased levels of dopamine and altered neuronal activity in the striatum, and these results probably lead to behavioral alterations observed in Per2 mutant mice in despair-based tests. These findings suggest a role of circadian-clock components in dopamine metabolism highlighting a role of the clock in regulating mood-related behaviors.

  8. Agile Blocker and Clock Jitter Tolerant Low-Power Frequency Selective Receiver with Energy Harvesting Capability.

    PubMed

    Hasan, Abul; Helaoui, Mohamed; Ghannouchi, Fadhel M

    2017-08-29

    In this article, a novel tunable, blocker and clock jitter tolerant, low power, quadrature phase shift frequency selective (QPS-FS) receiver with energy harvesting capability is proposed. The receiver's design embraces and integrates (i) the baseband to radio frequency (RF) impedance translation concept to improve selectivity over that of conventional homodyne receiver topologies and (ii) broadband quadrature phase shift circuitry in the RF path to remove an active multi-phase clock generation circuit in passive mixer (PM) receivers. The use of a single local oscillator clock signal with a passive clock division network improves the receiver's robustness against clock jitter and reduces the source clock frequency by a factor of N, compared to PM receivers using N switches (N≥4). As a consequence, the frequency coverage of the QPS-FS receiver is improved by a factor of N, given a clock source of maximum frequency; and, the power consumption of the whole receiver system can eventually be reduced. The tunable QPS-FS receiver separates the wanted RF band signal from the unwanted blockers/interferers. The desired RF signal is frequency down-converted to baseband, while the undesired blocker/interferer signals are reflected by the receiver, collected and could be energy recycled using an auxiliary energy harvesting device.

  9. The New Countdown Clock is Turned on for the First Time

    NASA Image and Video Library

    2014-12-01

    At NASA's Kennedy Space Center in Florida, work continues to install 24 light emitting diode LED panels in the new countdown clock at the spaceport's Press Site. The modern, multimedia display is similar to the screens seen at sporting venues. The new screen will be nearly 26 feet wide by 7 feet high, a foot taller than the original clock. The historic countdown clock was designed by Kennedy engineers and built by space center technicians before Apollo 12 in 1969. NASA has requested to acquire the countdown clock from the agency’s Artifact Working Group at the agency's Headquarters for display at the Kennedy Space Center Visitor Complex.

  10. The Last Panels are Installed on the New Countdown Clock

    NASA Image and Video Library

    2014-11-26

    At NASA's Kennedy Space Center in Florida, work continues to install 24 light emitting diode LED panels in the new countdown clock at the spaceport's Press Site. The modern, multimedia display is similar to the screens seen at sporting venues. The new screen will be nearly 26 feet wide by 7 feet high, a foot taller than the original clock. The historic countdown clock was designed by Kennedy engineers and built by space center technicians before Apollo 12 in 1969. NASA has requested to acquire the countdown clock from the agency’s Artifact Working Group at the agency's Headquarters for display at the Kennedy Space Center Visitor Complex.

  11. Work Continues on Installing New Countdown Clock

    NASA Image and Video Library

    2014-11-26

    At NASA's Kennedy Space Center in Florida, work continues to install 24 light emitting diode LED panels in the new countdown clock at the spaceport's Press Site. The modern, multimedia display is similar to the screens seen at sporting venues. The new screen will be nearly 26 feet wide by 7 feet high, a foot taller than the original clock. The historic countdown clock was designed by Kennedy engineers and built by space center technicians before Apollo 12 in 1969. NASA has requested to acquire the countdown clock from the agency’s Artifact Working Group at the agency's Headquarters for likely display at the Kennedy Space Center Visitor Complex.

  12. Atomic Clocks and Variations of the FIne Structure Constant

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    1995-01-01

    We describe a new test for possible variations of the fine structure constant alpha by comparisons of rates between clocks based on hyperfine transitions in alkali atoms with different atomic number Z. H-maser, Cs, and Hg(+) clocks have a different dependence on alpha via relativistic contributions of order (Z-alpha)(sup 2). Recent H-maser vs Hg(+) clock comparison data improve laboratory limits on a time variation by 100-fold to give dot-alpha less than or equal to 3.7 x 10(exp -14)/yr. Future laser cooled clocks (Be(+), Rb, Cs, Hg(+), etc.), when compared, will yield the most sensitive of all tests for dot-alpha/alpha.

  13. Expression of Clock genes in the pineal glands of newborn rats with hypoxic-ischemic encephalopathy☆

    PubMed Central

    Sun, Bin; Feng, Xing; Ding, Xin; Bao, Li; Li, Yongfu; He, Jun; Jin, Meifang

    2012-01-01

    Clock genes are involved in circadian rhythm regulation, and surviving newborns with hypoxic-ischemic encephalopathy may present with sleep-wake cycle reversal. This study aimed to determine the expression of the clock genes Clock and Bmal1, in the pineal gland of rats with hypoxic-ischemic brain damage. Results showed that levels of Clock mRNA were not significantly changed within 48 hours after cerebral hypoxia and ischemia. Expression levels of CLOCK and BMAL1 protein were significantly higher after 48 hours. The levels of Bmal1 mRNA reached a peak at 36 hours, but were significantly reduced at 48 hours. Experimental findings indicate that Clock and Bmal1 genes were indeed expressed in the pineal glands of neonatal rats. At the initial stage (within 36 hours) of hypoxic-ischemic brain damage, only slight changes in the expression levels of these two genes were detected, followed by significant changes at 36–48 hours. These changes may be associated with circadian rhythm disorder induced by hypoxic-ischemic brain damage. PMID:25538743

  14. The Central Clock Neurons Regulate Lipid Storage in Drosophila

    PubMed Central

    DiAngelo, Justin R.; Erion, Renske; Crocker, Amanda; Sehgal, Amita

    2011-01-01

    A proper balance of lipid breakdown and synthesis is essential for achieving energy homeostasis as alterations in either of these processes can lead to pathological states such as obesity. The regulation of lipid metabolism is quite complex with multiple signals integrated to control overall triglyceride levels in metabolic tissues. Based upon studies demonstrating effects of the circadian clock on metabolism, we sought to determine if the central clock cells in the Drosophila brain contribute to lipid levels in the fat body, the main nutrient storage organ of the fly. Here, we show that altering the function of the Drosophila central clock neurons leads to an increase in fat body triglycerides. We also show that although triglyceride levels are not affected by age, they are increased by expression of the amyloid-beta protein in central clock neurons. The effect on lipid storage seems to be independent of circadian clock output as changes in triglycerides are not always observed in genetic manipulations that result in altered locomotor rhythms. These data demonstrate that the activity of the central clock neurons is necessary for proper lipid storage. PMID:21625640

  15. Temperature compensation and temperature sensation in the circadian clock

    PubMed Central

    Kidd, Philip B.; Young, Michael W.; Siggia, Eric D.

    2015-01-01

    All known circadian clocks have an endogenous period that is remarkably insensitive to temperature, a property known as temperature compensation, while at the same time being readily entrained by a diurnal temperature oscillation. Although temperature compensation and entrainment are defining features of circadian clocks, their mechanisms remain poorly understood. Most models presume that multiple steps in the circadian cycle are temperature-dependent, thus facilitating temperature entrainment, but then insist that the effect of changes around the cycle sums to zero to enforce temperature compensation. An alternative theory proposes that the circadian oscillator evolved from an adaptive temperature sensor: a gene circuit that responds only to temperature changes. This theory implies that temperature changes should linearly rescale the amplitudes of clock component oscillations but leave phase relationships and shapes unchanged. We show using timeless luciferase reporter measurements and Western blots against TIMELESS protein that this prediction is satisfied by the Drosophila circadian clock. We also review evidence for pathways that couple temperature to the circadian clock, and show previously unidentified evidence for coupling between the Drosophila clock and the heat-shock pathway. PMID:26578788

  16. Detecting gravitational decoherence with clocks: Limits on temporal resolution from a classical-channel model of gravity

    NASA Astrophysics Data System (ADS)

    Khosla, Kiran E.; Altamirano, Natacha

    2017-05-01

    The notion of time is given a different footing in quantum mechanics and general relativity, treated as a parameter in the former and being an observer-dependent property in the latter. From an operational point of view time is simply the correlation between a system and a clock, where an idealized clock can be modeled as a two-level system. We investigate the dynamics of clocks interacting gravitationally by treating the gravitational interaction as a classical information channel. This model, known as the classical-channel gravity (CCG), postulates that gravity is mediated by a fundamentally classical force carrier and is therefore unable to entangle particles gravitationally. In particular, we focus on the decoherence rates and temporal resolution of arrays of N clocks, showing how the minimum dephasing rate scales with N , and the spatial configuration. Furthermore, we consider the gravitational redshift between a clock and a massive particle and show that a classical-channel model of gravity predicts a finite-dephasing rate from the nonlocal interaction. In our model we obtain a fundamental limitation in time accuracy that is intrinsic to each clock.

  17. Cost and Precision of Brownian Clocks

    NASA Astrophysics Data System (ADS)

    Barato, Andre C.; Seifert, Udo

    2016-10-01

    Brownian clocks are biomolecular networks that can count time. A paradigmatic example are proteins that go through a cycle, thus regulating some oscillatory behavior in a living system. Typically, such a cycle requires free energy often provided by ATP hydrolysis. We investigate the relation between the precision of such a clock and its thermodynamic costs. For clocks driven by a constant thermodynamic force, a given precision requires a minimal cost that diverges as the uncertainty of the clock vanishes. In marked contrast, we show that a clock driven by a periodic variation of an external protocol can achieve arbitrary precision at arbitrarily low cost. This result constitutes a fundamental difference between processes driven by a fixed thermodynamic force and those driven periodically. As a main technical tool, we map a periodically driven system with a deterministic protocol to one subject to an external protocol that changes in stochastic time intervals, which simplifies calculations significantly. In the nonequilibrium steady state of the resulting bipartite Markov process, the uncertainty of the clock can be deduced from the calculable dispersion of a corresponding current.

  18. The circadian clock stops ticking during deep hibernation in the European hamster

    PubMed Central

    Revel, Florent G.; Herwig, Annika; Garidou, Marie-Laure; Dardente, Hugues; Menet, Jérôme S.; Masson-Pévet, Mireille; Simonneaux, Valérie; Saboureau, Michel; Pévet, Paul

    2007-01-01

    Hibernation is a fascinating, yet enigmatic, physiological phenomenon during which body temperature and metabolism are reduced to save energy. During the harsh season, this strategy allows substantial energy saving by reducing body temperature and metabolism. Accordingly, biological processes are considerably slowed down and reduced to a minimum. However, the persistence of a temperature-compensated, functional biological clock in hibernating mammals has long been debated. Here, we show that the master circadian clock no longer displays 24-h molecular oscillations in hibernating European hamsters. The clock genes Per1, Per2, and Bmal1 and the clock-controlled gene arginine vasopressin were constantly expressed in the suprachiasmatic nucleus during deep torpor, as assessed by radioactive in situ hybridization. Finally, the melatonin rhythm-generating enzyme, arylalkylamine N-acetyltransferase, whose rhythmic expression in the pineal gland is controlled by the master circadian clock, no longer exhibits day/night changes of expression but constantly elevated mRNA levels over 24 h. Overall, these data provide strong evidence that in the European hamster the molecular circadian clock is arrested during hibernation and stops delivering rhythmic output signals. PMID:17715068

  19. The Clock Mission Optis

    NASA Astrophysics Data System (ADS)

    Dittus, Hansjörg; Lämmerzahl, Claus

    Clocks are an almost universal tool for exploring the fundamental structure of theories related to relativity. For future clock experiments, it is important for them to be performed in space. One mission which has the capability to perform and improve all relativity tests based on clocks by several orders of magnitude is OPTIS. These tests consist of (i) tests of the isotropy of light propagation (from which information about the matter sector which the optical resonators are made of can also be drawn), (ii) tests of the constancy of the speed of light, (iii) tests of the universality of the gravitational redshift by comparing clocks based on light propagation, like light clocks and various atomic clocks, (iv) time dilation based on the Doppler effect, (v) measuring the absolute gravitational redshift, (vi) measuring the perihelion advance of the satellite's orbit by using very precise tracking techniques, (vii) measuring the Lense-Thirring effect, and (viii) testing Newton's gravitational potential law on the scale of Earth-bound satellites. The corresponding tests are not only important for fundamental physics but also indispensable for practical purposes like navigation, Earth sciences, metrology, etc.

  20. A Byzantine-Fault Tolerant Self-Stabilizing Protocol for Distributed Clock Synchronization Systems

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2006-01-01

    Embedded distributed systems have become an integral part of safety-critical computing applications, necessitating system designs that incorporate fault tolerant clock synchronization in order to achieve ultra-reliable assurance levels. Many efficient clock synchronization protocols do not, however, address Byzantine failures, and most protocols that do tolerate Byzantine failures do not self-stabilize. Of the Byzantine self-stabilizing clock synchronization algorithms that exist in the literature, they are based on either unjustifiably strong assumptions about initial synchrony of the nodes or on the existence of a common pulse at the nodes. The Byzantine self-stabilizing clock synchronization protocol presented here does not rely on any assumptions about the initial state of the clocks. Furthermore, there is neither a central clock nor an externally generated pulse system. The proposed protocol converges deterministically, is scalable, and self-stabilizes in a short amount of time. The convergence time is linear with respect to the self-stabilization period. Proofs of the correctness of the protocol as well as the results of formal verification efforts are reported.

  1. Two Clock Transitions in Neutral Yb for the Highest Sensitivity to Variations of the Fine-Structure Constant.

    PubMed

    Safronova, Marianna S; Porsev, Sergey G; Sanner, Christian; Ye, Jun

    2018-04-27

    We propose a new frequency standard based on a 4f^{14}6s6p ^{3}P_{0}-4f^{13}6s^{2}5d (J=2) transition in neutral Yb. This transition has a potential for high stability and accuracy and the advantage of the highest sensitivity among atomic clocks to variation of the fine-structure constant α. We find its dimensionless α-variation enhancement factor to be K=-15, in comparison to the most sensitive current clock (Yb^{+}  E3, K=-6), and it is 18 times larger than in any neutral-atomic clocks (Hg, K=0.8). Combined with the unprecedented stability of an optical lattice clock for neutral atoms, this high sensitivity opens new perspectives for searches for ultralight dark matter and for tests of theories beyond the standard model of elementary particles. Moreover, together with the well-established ^{1}S_{0}-^{3}P_{0} transition, one will have two clock transitions operating in neutral Yb, whose interleaved interrogations may further reduce systematic uncertainties of such clock-comparison experiments.

  2. Functional Development of the Circadian Clock in the Zebrafish Pineal Gland

    PubMed Central

    Ben-Moshe, Zohar; Foulkes, Nicholas S.

    2014-01-01

    The zebrafish constitutes a powerful model organism with unique advantages for investigating the vertebrate circadian timing system and its regulation by light. In particular, the remarkably early and rapid development of the zebrafish circadian system has facilitated exploring the factors that control the onset of circadian clock function during embryogenesis. Here, we review our understanding of the molecular basis underlying functional development of the central clock in the zebrafish pineal gland. Furthermore, we examine how the directly light-entrainable clocks in zebrafish cell lines have facilitated unravelling the general mechanisms underlying light-induced clock gene expression. Finally, we summarize how analysis of the light-induced transcriptome and miRNome of the zebrafish pineal gland has provided insight into the regulation of the circadian system by light, including the involvement of microRNAs in shaping the kinetics of light- and clock-regulated mRNA expression. The relative contributions of the pineal gland central clock and the distributed peripheral oscillators to the synchronization of circadian rhythms at the whole animal level are a crucial question that still remains to be elucidated in the zebrafish model. PMID:24839600

  3. Two Clock Transitions in Neutral Yb for the Highest Sensitivity to Variations of the Fine-Structure Constant

    NASA Astrophysics Data System (ADS)

    Safronova, Marianna S.; Porsev, Sergey G.; Sanner, Christian; Ye, Jun

    2018-04-01

    We propose a new frequency standard based on a 4 f146 s 6 p P0 3 -4 f136 s25 d (J =2 ) transition in neutral Yb. This transition has a potential for high stability and accuracy and the advantage of the highest sensitivity among atomic clocks to variation of the fine-structure constant α . We find its dimensionless α -variation enhancement factor to be K =-15 , in comparison to the most sensitive current clock (Yb+ E 3 , K =-6 ), and it is 18 times larger than in any neutral-atomic clocks (Hg, K =0.8 ). Combined with the unprecedented stability of an optical lattice clock for neutral atoms, this high sensitivity opens new perspectives for searches for ultralight dark matter and for tests of theories beyond the standard model of elementary particles. Moreover, together with the well-established 1S0-3P0 transition, one will have two clock transitions operating in neutral Yb, whose interleaved interrogations may further reduce systematic uncertainties of such clock-comparison experiments.

  4. Trojan Horse Strategy for Non-invasive Interference of Clock Gene in the Oyster Crassostrea gigas.

    PubMed

    Payton, Laura; Perrigault, Mickael; Bourdineaud, Jean-Paul; Marcel, Anjara; Massabuau, Jean-Charles; Tran, Damien

    2017-08-01

    RNA interference is a powerful method to inhibit specific gene expression. Recently, silencing target genes by feeding has been successfully carried out in nematodes, insects, and small aquatic organisms. A non-invasive feeding-based RNA interference is reported here for the first time in a mollusk bivalve, the pacific oyster Crassostrea gigas. In this Trojan horse strategy, the unicellular alga Heterocapsa triquetra is the food supply used as a vector to feed oysters with Escherichia coli strain HT115 engineered to express the double-stranded RNA targeting gene. To test the efficacy of the method, the Clock gene, a central gene of the circadian clock, was targeted for knockout. Results demonstrated specific and systemic efficiency of the Trojan horse strategy in reducing Clock mRNA abundance. Consequences of Clock disruption were observed in Clock-related genes (Bmal, Tim1, Per, Cry1, Cry2, Rev.-erb, and Ror) and triploid oysters were more sensitive than diploid to the interference. This non-invasive approach shows an involvement of the circadian clock in oyster bioaccumulation of toxins produced by the harmful alga Alexandrium minutum.

  5. What is dynamics in quantum gravity?

    NASA Astrophysics Data System (ADS)

    Małkiewicz, Przemysław

    2017-10-01

    The appearance of the Hamiltonian constraint in the canonical formalism for general relativity reflects the lack of a fixed external time. The dynamics of general relativistic systems can be expressed with respect to an arbitrarily chosen internal degree of freedom, the so-called internal clock. We investigate the way in which the choice of internal clock determines the quantum dynamics and how much different quantum dynamics induced by different clocks are. We develop our method of comparison by extending the Hamilton-Jacobi theory of contact transformations to include a new type of transformation which transforms both the canonical variables and the internal clock. We employ our method to study the quantum dynamics of the Friedmann-Lemaitre model and obtain semiclassical corrections to the classical dynamics, which depend on the choice of internal clock. For a unique quantisation map we find the abundance of inequivalent semiclassical corrections induced by quantum dynamics taking place in different internal clocks. It follows that the concepts like minimal volume, maximal curvature and the number of quantum bounces, often used to describe quantum effects in cosmological models, depend on the choice of internal clock.

  6. One O'Clock, Two O'Clock, Three O'Clock Rock!

    ERIC Educational Resources Information Center

    Koontz, Elizabeth Duncan

    1975-01-01

    Considered the long period identified with the movement to bring women into full citizenship and participation at all social levels and the new effort to pass legislation that will grant women equal rights. (Author/RK)

  7. Tick Tock: Your Body Clocks: Understanding Your Daily Rhythms

    MedlinePlus

    ... has its own internal network of clocks? These biological clocks help you feel alert during the day, ... NIH’s Dr. Michael Sesma, an expert in circadian biology. “They affect almost every part of your physiology ...

  8. The ferroin-catalyzed Belousov-Zhabotinskii system with a "clock" behaviour

    NASA Astrophysics Data System (ADS)

    Melicherčík, Milan; Treindl, L̆udovít

    1991-07-01

    The ferroin-catalyzed Belousov-Zhabotinskii oscillatory system with methyl-, ethyl-, or isopropyl-ester of 3-oxobutanoic acid exhibits a "clock" behaviour and subsequent two-frequency oscillations. The influence of oxygen on the "clock" behaviour is assumed to be caused by an interaction of oxygen as a scavenger with intermediary radicals. A mechanism of the "clock" behaviour together with two-frequency oscillations of the Belousov-Zhabotinskii type will be developed later.

  9. Molecular clock of HIV-1 envelope genes under early immune selection

    DOE PAGES

    Park, Sung Yong; Love, Tanzy M. T.; Perelson, Alan S.; ...

    2016-06-01

    Here, the molecular clock hypothesis that genes or proteins evolve at a constant rate is a key tool to reveal phylogenetic relationships among species. Using the molecular clock, we can trace an infection back to transmission using HIV-1 sequences from a single time point. Whether or not a strict molecular clock applies to HIV-1’s early evolution in the presence of immune selection has not yet been fully examined.

  10. Molecular clock of HIV-1 envelope genes under early immune selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sung Yong; Love, Tanzy M. T.; Perelson, Alan S.

    Here, the molecular clock hypothesis that genes or proteins evolve at a constant rate is a key tool to reveal phylogenetic relationships among species. Using the molecular clock, we can trace an infection back to transmission using HIV-1 sequences from a single time point. Whether or not a strict molecular clock applies to HIV-1’s early evolution in the presence of immune selection has not yet been fully examined.

  11. Processing of visually presented clock times.

    PubMed

    Goolkasian, P; Park, D C

    1980-11-01

    The encoding and representation of visually presented clock times was investigated in three experiments utilizing a comparative judgment task. Experiment 1 explored the effects of comparing times presented in different formats (clock face, digit, or word), and Experiment 2 examined angular distance effects created by varying positions of the hands on clock faces. In Experiment 3, encoding and processing differences between clock faces and digitally presented times were directly measured. Same/different reactions to digitally presented times were faster than to times presented on a clock face, and this format effect was found to be a result of differences in processing that occurred after encoding. Angular separation also had a limited effect on processing. The findings are interpreted within the framework of theories that refer to the importance of representational codes. The applicability to the data of Bank's semantic-coding theory, Paivio's dual-coding theory, and the levels-of-processing view of memory are discussed.

  12. A self-interfering clock as a “which path” witness

    NASA Astrophysics Data System (ADS)

    Margalit, Yair; Zhou, Zhifan; Machluf, Shimon; Rohrlich, Daniel; Japha, Yonathan; Folman, Ron

    2015-09-01

    In Einstein’s general theory of relativity, time depends locally on gravity; in standard quantum theory, time is global—all clocks “tick” uniformly. We demonstrate a new tool for investigating time in the overlap of these two theories: a self-interfering clock, comprising two atomic spin states. We prepare the clock in a spatial superposition of quantum wave packets, which evolve coherently along two paths into a stable interference pattern. If we make the clock wave packets “tick” at different rates, to simulate a gravitational time lag, the clock time along each path yields “which path” information, degrading the pattern’s visibility. In contrast, in standard interferometry, time cannot yield “which path” information. This proof-of-principle experiment may have implications for the study of time and general relativity and their impact on fundamental effects such as decoherence and the emergence of a classical world.

  13. A self-interfering clock as a "which path" witness.

    PubMed

    Margalit, Yair; Zhou, Zhifan; Machluf, Shimon; Rohrlich, Daniel; Japha, Yonathan; Folman, Ron

    2015-09-11

    In Einstein's general theory of relativity, time depends locally on gravity; in standard quantum theory, time is global-all clocks "tick" uniformly. We demonstrate a new tool for investigating time in the overlap of these two theories: a self-interfering clock, comprising two atomic spin states. We prepare the clock in a spatial superposition of quantum wave packets, which evolve coherently along two paths into a stable interference pattern. If we make the clock wave packets "tick" at different rates, to simulate a gravitational time lag, the clock time along each path yields "which path" information, degrading the pattern's visibility. In contrast, in standard interferometry, time cannot yield "which path" information. This proof-of-principle experiment may have implications for the study of time and general relativity and their impact on fundamental effects such as decoherence and the emergence of a classical world. Copyright © 2015, American Association for the Advancement of Science.

  14. Systematic evaluation of a 171Yb optical clock by synchronous comparison between two lattice systems.

    PubMed

    Gao, Qi; Zhou, Min; Han, Chengyin; Li, Shangyan; Zhang, Shuang; Yao, Yuan; Li, Bo; Qiao, Hao; Ai, Di; Lou, Ge; Zhang, Mengya; Jiang, Yanyi; Bi, Zhiyi; Ma, Longsheng; Xu, Xinye

    2018-05-22

    Optical clocks are the most precise measurement devices. Here we experimentally characterize one such clock based on the 1 S 0 - 3 P 0 transition of neutral 171 Yb atoms confined in an optical lattice. Given that the systematic evaluation using an interleaved stabilization scheme is unable to avoid noise from the clock laser, synchronous comparisons against a second 171 Yb lattice system were implemented to accelerate the evaluation. The fractional instability of one clock falls below 4 × 10 -17 after an averaging over a time of 5,000 seconds. The systematic frequency shifts were corrected with a total uncertainty of 1.7 × 10 -16 . The lattice polarizability shift currently contributes the largest source. This work paves the way to measuring the absolute clock transition frequency relative to the primary Cs standard or against the International System of Units (SI) second.

  15. Physiological links of circadian clock and biological clock of aging.

    PubMed

    Liu, Fang; Chang, Hung-Chun

    2017-07-01

    Circadian rhythms orchestrate biochemical and physiological processes in living organisms to respond the day/night cycle. In mammals, nearly all cells hold self-sustained circadian clocks meanwhile couple the intrinsic rhythms to systemic changes in a hierarchical manner. The suprachiasmatic nucleus (SCN) of the hypothalamus functions as the master pacemaker to initiate daily synchronization according to the photoperiod, in turn determines the phase of peripheral cellular clocks through a variety of signaling relays, including endocrine rhythms and metabolic cycles. With aging, circadian desynchrony occurs at the expense of peripheral metabolic pathologies and central neurodegenerative disorders with sleep symptoms, and genetic ablation of circadian genes in model organisms resembled the aging-related features. Notably, a number of studies have linked longevity nutrient sensing pathways in modulating circadian clocks. Therapeutic strategies that bridge the nutrient sensing pathways and circadian clock might be rational designs to defy aging.

  16. Central and peripheral regulation of feeding and nutrition by the mammalian circadian clock: implications for nutrition during manned space flight

    NASA Technical Reports Server (NTRS)

    Cassone, Vincent M.; Stephan, Friedrich K.

    2002-01-01

    Circadian clocks have evolved to predict and coordinate physiologic processes with the rhythmic environment on Earth. Space studies in non-human primates and humans have suggested that this clock persists in its rhythmicity in space but that its function is altered significantly in long-term space flight. Under normal circumstances, the clock is synchronized by the light-dark cycle via the retinohypothalamic tract and the suprachiasmatic nucleus. It is also entrained by restricted feeding regimes via a suprachiasmatic nucleus-independent circadian oscillator. The site of this suboscillator (or oscillators) is not known, but new evidence has suggested that peripheral tissues in the liver and viscera may express circadian clock function when forced to do so by restricted feeding schedules or other homeostatic disruptions. New research on the role of the circadian clock in the control of feeding on Earth and in space is warranted.

  17. Early sex-specific modulation of the molecular clock in trauma.

    PubMed

    Mehraj, Vikram; Wiramus, Sandrine; Capo, Christian; Leone, Marc; Mege, Jean-Louis; Textoris, Julien

    2014-01-01

    Immune system biology and most physiologic functions are tightly linked to circadian rhythms. Time of day-dependent variations in many biologic parameters also play a fundamental role in the disease process. We previously showed that the genes encoding the peripheral molecular clock were modulated in a sex-dependent manner in Q fever. Here, we examined severe trauma patients at admission to the intensive care unit. Using quantitative real-time polymerase chain reaction, the whole-blood expression of the molecular clock components ARNTL, CLOCK, and PER2 was assessed in male and female trauma patients. Healthy volunteers of both sexes were used as controls. We observed a significant overexpression of both ARNTL and CLOCK in male trauma patients. We report, for the first time, the sex-related modulation of the molecular clock genes in the blood following severe trauma. These results emphasize the role of circadian rhythms in the immune response in trauma patients. Epidemiologic study, level IV.

  18. A VLBI experiment using a remote atomic clock via a coherent fibre link

    PubMed Central

    Clivati, Cecilia; Ambrosini, Roberto; Artz, Thomas; Bertarini, Alessandra; Bortolotti, Claudio; Frittelli, Matteo; Levi, Filippo; Mura, Alberto; Maccaferri, Giuseppe; Nanni, Mauro; Negusini, Monia; Perini, Federico; Roma, Mauro; Stagni, Matteo; Zucco, Massimo; Calonico, Davide

    2017-01-01

    We describe a VLBI experiment in which, for the first time, the clock reference is delivered from a National Metrology Institute to a radio telescope using a coherent fibre link 550 km long. The experiment consisted of a 24-hours long geodetic campaign, performed by a network of European telescopes; in one of those (Medicina, Italy) the local clock was alternated with a signal generated from an optical comb slaved to a fibre-disseminated optical signal. The quality of the results obtained with this facility and with the local clock is similar: interferometric fringes were detected throughout the whole 24-hours period and it was possible to obtain a solution whose residuals are comparable to those obtained with the local clock. These results encourage further investigation of the ultimate VLBI performances achievable using fibre dissemination at the highest precision of state-of-the-art atomic clocks. PMID:28145451

  19. Vasculature on the clock: Circadian rhythm and vascular dysfunction.

    PubMed

    Crnko, Sandra; Cour, Martin; Van Laake, Linda W; Lecour, Sandrine

    2018-05-17

    The master mammalian circadian clock (i.e. central clock), located in the suprachiasmatic nucleus of the hypothalamus, orchestrates the synchronization of the daily behavioural and physiological rhythms to better adapt the organism to the external environment in an anticipatory manner. This central clock is entrained by a variety of signals, the best established being light and food. However, circadian cycles are not simply the consequences of these two cues but are generated by endogenous circadian clocks. Indeed, clock machinery is found in mainly all tissues and cell types, including cells of the vascular system such as endothelial cells, fibroblasts, smooth muscle cells and stem cells. This machinery physiologically contributes to modulate the daily vascular function, and its disturbance therefore plays a major role in the pathophysiology of vascular dysfunction. Therapies targeting the circadian rhythm may therefore be of benefit against vascular disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Potential Role for Peripheral Circadian Clock Dyssynchrony in the Pathogenesis of Cardiovascular Dysfunction

    PubMed Central

    Young, Martin E.; Bray, Molly S.

    2007-01-01

    Circadian clocks are intracellular molecular mechanisms designed to allow the cell, organ, and organism to prepare for an anticipated stimulus prior to its onset. In order for circadian clocks to maintain their selective advantage, they must be entrained to the environment. Light, sound, temperature, physical activity (including sleep/wake transitions), and food intake are among the strongest environmental factors influencing mammalian circadian clocks. Normal circadian rhythmicities in these environmental factors have become severely disrupted in our modern day society, concomitant with increased incidence of type 2 diabetes mellitus, obesity, and cardiovascular disease. Here, we review our current knowledge regarding the roles of peripheral circadian clocks, concentrating on those found within tissues directly involved in metabolic homeostasis and cardiovascular function. We propose that both inter- and intra- organ dyssynchronization, through alteration/impairment of peripheral circadian clocks, accelerates the development of cardiovascular disease risk factors associated with cardiometabolic syndrome. PMID:17387040

  1. A Group Neighborhood Average Clock Synchronization Protocol for Wireless Sensor Networks

    PubMed Central

    Lin, Lin; Ma, Shiwei; Ma, Maode

    2014-01-01

    Clock synchronization is a very important issue for the applications of wireless sensor networks. The sensors need to keep a strict clock so that users can know exactly what happens in the monitoring area at the same time. This paper proposes a novel internal distributed clock synchronization solution using group neighborhood average. Each sensor node collects the offset and skew rate of the neighbors. Group averaging of offset and skew rate value are calculated instead of conventional point-to-point averaging method. The sensor node then returns compensated value back to the neighbors. The propagation delay is considered and compensated. The analytical analysis of offset and skew compensation is presented. Simulation results validate the effectiveness of the protocol and reveal that the protocol allows sensor networks to quickly establish a consensus clock and maintain a small deviation from the consensus clock. PMID:25120163

  2. Test of an orbiting hydrogen maser clock system using laser time transfer

    NASA Technical Reports Server (NTRS)

    Vessot, Robert F. C.; Mattison, Edward M.; Nystrom, G. U.; Decher, Rudolph

    1992-01-01

    We describe a joint Smithsonian Astrophysical Laboratory/National Aeronautics and Space Administration (SAO/NASA) program for flight testing a atomic hydrogen maser clock system designed for long-term operation in space. The clock system will be carried by a shuttle-launched EURECA spacecraft. Comparisons with earth clocks to measure the clock's long-term frequency stability (tau = 10(exp 4) seconds) will be made using laser time transfer from existing NASA laser tracking stations. We describe the design of the maser clock and its control systems, and the laser timing technique. We describe the precision of station time synchronization and the limitations in the comparison between the earth and space time scales owing to gravitational and relativistic effects. We will explore the implications of determining the spacecraft's location by an on-board Global Position System (GPS) receiver, and of using microwave techniques for time and frequency transfer.

  3. Laser controlled atom source for optical clocks.

    PubMed

    Kock, Ole; He, Wei; Świerad, Dariusz; Smith, Lyndsie; Hughes, Joshua; Bongs, Kai; Singh, Yeshpal

    2016-11-18

    Precision timekeeping has been a driving force in innovation, from defining agricultural seasons to atomic clocks enabling satellite navigation, broadband communication and high-speed trading. We are on the verge of a revolution in atomic timekeeping, where optical clocks promise an over thousand-fold improvement in stability and accuracy. However, complex setups and sensitivity to thermal radiation pose limitations to progress. Here we report on an atom source for a strontium optical lattice clock which circumvents these limitations. We demonstrate fast (sub 100 ms), cold and controlled emission of strontium atomic vapours from bulk strontium oxide irradiated by a simple low power diode laser. Our results demonstrate that millions of strontium atoms from the vapour can be captured in a magneto-optical trap (MOT). Our method enables over an order of magnitude reduction in scale of the apparatus. Future applications range from satellite clocks testing general relativity to portable clocks for inertial navigation systems and relativistic geodesy.

  4. Compensation for intracellular environment in expression levels of mammalian circadian clock genes

    PubMed Central

    Matsumura, Ritsuko; Okamoto, Akihiko; Node, Koichi; Akashi, Makoto

    2014-01-01

    The circadian clock is driven by transcriptional oscillation of clock genes in almost all body cells. To investigate the effect of cell type-specific intracellular environment on the circadian machinery, we examined gene expression profiles in five peripheral tissues. As expected, the phase relationship between expression rhythms of nine clock genes was similar in all tissues examined. We also compared relative expression levels of clock genes among tissues, and unexpectedly found that quantitative variation remained within an approximately three-fold range, which was substantially smaller than that of metabolic housekeeping genes. Interestingly, circadian gene expression was little affected even when fibroblasts were cultured with different concentrations of serum. Together, these findings support a hypothesis that expression levels of clock genes are quantitatively compensated for the intracellular environment, such as redox potential and metabolite composition. However, more comprehensive studies are required to reach definitive conclusions. PMID:24504324

  5. Rb vapor-cell clock demonstration with a frequency-doubled telecom laser.

    PubMed

    Almat, Nil; Pellaton, Matthieu; Moreno, William; Gruet, Florian; Affolderbach, Christoph; Mileti, Gaetano

    2018-06-01

    We employ a recently developed laser system, based on a low-noise telecom laser emitting around 1.56 μm, to evaluate its impact on the performance of an Rb vapor-cell clock in a continuous-wave double-resonance scheme. The achieved short-term clock instability below 2.5·10 -13 ·τ -1/2 demonstrates, for the first time, the suitability of a frequency-doubled telecom laser for this specific application. We measure and study quantitatively the impact of laser amplitude and frequency noises and of the ac Stark shift, which limit the clock frequency stability on short timescales. We also report on the detailed noise budgets and demonstrate experimentally that, under certain conditions, the short-term stability of the clock operated with the low-noise telecom laser is improved by a factor of three compared to clock operation using the direct 780-nm laser.

  6. Realistic clocks, universal decoherence, and the black hole information paradox.

    PubMed

    Gambini, Rodolfo; Porto, Rafael A; Pullin, Jorge

    2004-12-10

    Ordinary quantum mechanics is formulated on the basis of the existence of an ideal classical clock external to the system under study. This is clearly an idealization. As emphasized originally by Salecker and Wigner and more recently by others, there exist limits in nature to how "classical" even the best possible clock can be. With realistic clocks, quantum mechanics ceases to be unitary and a fundamental mechanism of decoherence of quantum states arises. We estimate the rate of the universal loss of unitarity using optimal realistic clocks. In particular, we observe that the rate is rapid enough to eliminate the black hole information puzzle: all information is lost through the fundamental decoherence before the black hole can evaporate. This improves on a previous calculation we presented with a suboptimal clock in which only part of the information was lost by the time of evaporation.

  7. A VLBI experiment using a remote atomic clock via a coherent fibre link.

    PubMed

    Clivati, Cecilia; Ambrosini, Roberto; Artz, Thomas; Bertarini, Alessandra; Bortolotti, Claudio; Frittelli, Matteo; Levi, Filippo; Mura, Alberto; Maccaferri, Giuseppe; Nanni, Mauro; Negusini, Monia; Perini, Federico; Roma, Mauro; Stagni, Matteo; Zucco, Massimo; Calonico, Davide

    2017-02-01

    We describe a VLBI experiment in which, for the first time, the clock reference is delivered from a National Metrology Institute to a radio telescope using a coherent fibre link 550 km long. The experiment consisted of a 24-hours long geodetic campaign, performed by a network of European telescopes; in one of those (Medicina, Italy) the local clock was alternated with a signal generated from an optical comb slaved to a fibre-disseminated optical signal. The quality of the results obtained with this facility and with the local clock is similar: interferometric fringes were detected throughout the whole 24-hours period and it was possible to obtain a solution whose residuals are comparable to those obtained with the local clock. These results encourage further investigation of the ultimate VLBI performances achievable using fibre dissemination at the highest precision of state-of-the-art atomic clocks.

  8. Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling

    PubMed Central

    Barca-Mayo, Olga; Pons-Espinal, Meritxell; Follert, Philipp; Armirotti, Andrea; Berdondini, Luca; De Pietri Tonelli, Davide

    2017-01-01

    Circadian rhythms are controlled by a network of clock neurons in the central pacemaker, the suprachiasmatic nucleus (SCN). Core clock genes, such as Bmal1, are expressed in SCN neurons and in other brain cells, such as astrocytes. However, the role of astrocytic clock genes in controlling rhythmic behaviour is unknown. Here we show that ablation of Bmal1 in GLAST-positive astrocytes alters circadian locomotor behaviour and cognition in mice. Specifically, deletion of astrocytic Bmal1 has an impact on the neuronal clock through GABA signalling. Importantly, pharmacological modulation of GABAA-receptor signalling completely rescues the behavioural phenotypes. Our results reveal a crucial role of astrocytic Bmal1 for the coordination of neuronal clocks and propose a new cellular target, astrocytes, for neuropharmacology of transient or chronic perturbation of circadian rhythms, where alteration of astrocytic clock genes might contribute to the impairment of the neurobehavioural outputs such as cognition. PMID:28186121

  9. Standard Clock in primordial density perturbations and cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Chen, Xingang; Namjoo, Mohammad Hossein

    2014-12-01

    Standard Clocks in the primordial epoch leave a special type of features in the primordial perturbations, which can be used to directly measure the scale factor of the primordial universe as a function of time a (t), thus discriminating between inflation and alternatives. We have started to search for such signals in the Planck 2013 data using the key predictions of the Standard Clock. In this Letter, we summarize the key predictions of the Standard Clock and present an interesting candidate example in Planck 2013 data. Motivated by this candidate, we construct and compute full Standard Clock models and use the more complete prediction to make more extensive comparison with data. Although this candidate is not yet statistically significant, we use it to illustrate how Standard Clocks appear in Cosmic Microwave Background (CMB) and how they can be further tested by future data. We also use it to motivate more detailed theoretical model building.

  10. A VLBI experiment using a remote atomic clock via a coherent fibre link

    NASA Astrophysics Data System (ADS)

    Clivati, Cecilia; Ambrosini, Roberto; Artz, Thomas; Bertarini, Alessandra; Bortolotti, Claudio; Frittelli, Matteo; Levi, Filippo; Mura, Alberto; Maccaferri, Giuseppe; Nanni, Mauro; Negusini, Monia; Perini, Federico; Roma, Mauro; Stagni, Matteo; Zucco, Massimo; Calonico, Davide

    2017-02-01

    We describe a VLBI experiment in which, for the first time, the clock reference is delivered from a National Metrology Institute to a radio telescope using a coherent fibre link 550 km long. The experiment consisted of a 24-hours long geodetic campaign, performed by a network of European telescopes; in one of those (Medicina, Italy) the local clock was alternated with a signal generated from an optical comb slaved to a fibre-disseminated optical signal. The quality of the results obtained with this facility and with the local clock is similar: interferometric fringes were detected throughout the whole 24-hours period and it was possible to obtain a solution whose residuals are comparable to those obtained with the local clock. These results encourage further investigation of the ultimate VLBI performances achievable using fibre dissemination at the highest precision of state-of-the-art atomic clocks.

  11. Laser controlled atom source for optical clocks

    PubMed Central

    Kock, Ole; He, Wei; Świerad, Dariusz; Smith, Lyndsie; Hughes, Joshua; Bongs, Kai; Singh, Yeshpal

    2016-01-01

    Precision timekeeping has been a driving force in innovation, from defining agricultural seasons to atomic clocks enabling satellite navigation, broadband communication and high-speed trading. We are on the verge of a revolution in atomic timekeeping, where optical clocks promise an over thousand-fold improvement in stability and accuracy. However, complex setups and sensitivity to thermal radiation pose limitations to progress. Here we report on an atom source for a strontium optical lattice clock which circumvents these limitations. We demonstrate fast (sub 100 ms), cold and controlled emission of strontium atomic vapours from bulk strontium oxide irradiated by a simple low power diode laser. Our results demonstrate that millions of strontium atoms from the vapour can be captured in a magneto-optical trap (MOT). Our method enables over an order of magnitude reduction in scale of the apparatus. Future applications range from satellite clocks testing general relativity to portable clocks for inertial navigation systems and relativistic geodesy. PMID:27857214

  12. Clock distribution for BaF2 readout electronics at CSNS-WNS

    NASA Astrophysics Data System (ADS)

    He, Bing; Cao, Ping; Zhang, De-Liang; Wang, Qi; Zhang, Ya-Xi; Qi, Xin-Cheng; An, Qi

    2017-01-01

    A BaF2 (Barium Fluoride) detector array is designed to precisely measure the (n, γ) cross section at the CSNS-WNS (white neutron source at China Spallation Neutron Source). It is a 4π solid angle-shaped detector array consisting of 92 BaF2 crystal elements. To discriminate signals from the BaF2 detector, a pulse shape discrimination method is used, supported by a waveform digitization technique. There are 92 channels for digitizing. The precision and synchronization of clock distribution restricts the performance of waveform digitizing. In this paper, a clock prototype for the BaF2 readout electronics at CSNS-WNS is introduced. It is based on the PXIe platform and has a twin-stage tree topology. In the first stage, clock is synchronously distributed from the tree root to each PXIe crate through a coaxial cable over a long distance, while in the second stage, the clock is further distributed to each electronic module through a PXIe dedicated differential star bus. With the help of this topology, each tree node can fan out up to 20 clocks with 3U size. Test results show the clock jitter is less than 20 ps, which meets the requirements of the BaF2 readout electronics. Besides, this clock system has the advantages of high density, simplicity, scalability and cost saving, so it can be useful for other clock distribution applications. Supported by National Research and Development plan (2016 YFA0401602) NSAF (U1530111) and National Natural Science Foundation of China (11005107)

  13. Sensitivity to Pigment-Dispersing Factor (PDF) Is Cell-Type Specific among PDF-Expressing Circadian Clock Neurons in the Madeira Cockroach.

    PubMed

    Gestrich, Julia; Giese, Maria; Shen, Wen; Zhang, Yi; Voss, Alexandra; Popov, Cyril; Stengl, Monika; Wei, HongYing

    2018-02-01

    Transplantation studies have pinpointed the circadian clock of the Madeira cockroach to the accessory medulla (AME) of the brain's optic lobes. The AME is innervated by approximately 240 adjacent neuropeptidergic neurons, including 12 pigment-dispersing factor (PDF)-expressing neurons anterior to the AME (aPDFMEs). Four of the aPDFMEs project contralaterally, controlling locomotor activity rhythms of the night-active cockroach. The present in vitro Ca 2+ imaging analysis focuses on contralaterally projecting AME neurons and their responses to PDF, GABA, and acetylcholine (ACh). First, rhodamine-dextran backfills from the contralateral optic stalk identified contralaterally projecting AME neurons, which were then dispersed in primary cell cultures. After characterization of PDF, GABA, and ACh responses, PDF immunocytochemistry identified ipsilaterally and contralaterally projecting PDFMEs. All PDF-sensitive clock neurons, PDF-immunoreactive clock neurons, and the majority of ipsilaterally and contralaterally projecting cells were excited by ACh. GABA inhibited all PDF-expressing clock neurons, and about half of other ipsilaterally projecting and most contralaterally projecting clock neurons. For the first time, we identified PDF autoreceptors in PDF-secreting cockroach circadian pacemakers. The medium-sized aPDFMEs and all other contralaterally projecting PDF-sensitive clock cells were inhibited by PDF. The ipsilaterally remaining small PDF-sensitive clock cells were activated by PDF. Only the largest aPDFME did not express PDF autoreceptors. We hypothesize that opposing PDF signaling generates 2 different ensembles of clock cells with antiphasic activity, regulating and maintaining a constant phase relationship between rest and activity cycles of the night-active cockroach.

  14. Ground-based optical atomic clocks as a tool to monitor vertical surface motion

    NASA Astrophysics Data System (ADS)

    Bondarescu, Ruxandra; Schärer, Andreas; Lundgren, Andrew; Hetényi, György; Houlié, Nicolas; Jetzer, Philippe; Bondarescu, Mihai

    2015-09-01

    According to general relativity, a clock experiencing a shift in the gravitational potential ΔU will measure a frequency change given by Δf/f ≈ ΔU/c2. The best clocks are optical clocks. After about 7 hr of integration they reach stabilities of Δf/f ˜ 10-18 and can be used to detect changes in the gravitational potential that correspond to vertical displacements of the centimetre level. At this level of performance, ground-based atomic clock networks emerge as a tool that is complementary to existing technology for monitoring a wide range of geophysical processes by directly measuring changes in the gravitational potential. Vertical changes of the clock's position due to magmatic, post-seismic or tidal deformations can result in measurable variations in the clock tick rate. We illustrate the geopotential change arising due to an inflating magma chamber using the Mogi model and apply it to the Etna volcano. Its effect on an observer on the Earth's surface can be divided into two different terms: one purely due to uplift (free-air gradient) and one due to the redistribution of matter. Thus, with the centimetre-level precision of current clocks it is already possible to monitor volcanoes. The matter redistribution term is estimated to be 3 orders of magnitude smaller than the uplift term. Additionally, clocks can be compared over distances of thousands of kilometres over short periods of time, which improves our ability to monitor periodic effects with long wavelength like the solid Earth tide.

  15. Clock face drawing test performance in children with ADHD.

    PubMed

    Ghanizadeh, Ahmad; Safavi, Salar; Berk, Michael

    2013-01-01

    The utility and discriminatory pattern of the clock face drawing test in ADHD is unclear. This study therefore compared Clock Face Drawing test performance in children with ADHD and controls. 95 school children with ADHD and 191 other children were matched for gender ratio and age. ADHD symptoms severities were assessed using DSM-IV ADHD checklist and their intellectual functioning was assessed. The participants completed three clock-drawing tasks, and the following four functions were assessed: Contour score, Numbers score, Hands setting score, and Center score. All the subscales scores of the three clock drawing tests of the ADHD group were lower than that of the control group. In ADHD children, inattention and hyperactivity/ impulsivity scores were not related to free drawn clock test scores. When pre-drawn contour test was performed, inattentiveness score was statistically associated with Number score while none of the other variables of age, gender, intellectual functioning, and hand use preference were associated with that kind of score. In pre-drawn clock, no association of ADHD symptoms with any CDT subscales found significant. In addition, more errors are observed with free drawn clock and Pre-drawn contour than pre-drawn clock. Putting Numbers and Hands setting are more sensitive measures to screen ADHD than Contour and Center drawing. Test performance, except Hands setting, may have already reached a developmental plateau. It is probable that Hand setting deficit in children with ADHD may not decrease from age 8 to 14 years. Performance of children with ADHD is associated with complexity of CDT.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keith, Dove; Finlay, Liam; Butler, Judy

    Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve thesemore » results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks.« less

  17. Clock gene variation in Tachycineta swallows

    PubMed Central

    Dor, Roi; Cooper, Caren B; Lovette, Irby J; Massoni, Viviana; Bulit, Flor; Liljesthrom, Marcela; Winkler, David W

    2012-01-01

    Many animals use photoperiod cues to synchronize reproduction with environmental conditions and thereby improve their reproductive success. The circadian clock, which creates endogenous behavioral and physiological rhythms typically entrained to photoperiod, is well characterized at the molecular level. Recent work provided evidence for an association between Clock poly-Q length polymorphism and latitude and, within a population, an association with the date of laying and the length of the incubation period. Despite relatively high overall breeding synchrony, the timing of clutch initiation has a large impact on the fitness of swallows in the genus Tachycineta. We compared length polymorphism in the Clock poly-Q region among five populations from five different Tachycineta species that breed across a hemisphere-wide latitudinal gradient (Fig. 1). Clock poly-Q variation was not associated with latitude; however, there was an association between Clock poly-Q allele diversity and the degree of clutch size decline within breeding seasons. We did not find evidence for an association between Clock poly-Q variation and date of clutch initiation in for any of the five Tachycineta species, nor did we found a relationship between incubation duration and Clock genotype. Thus, there is no general association between latitude, breeding phenology, and Clock polymorphism in this clade of closely related birds. Figure 1 Photos of Tachycineta swallows that were used in this study: A) T. bicolor from Ithaca, New York, B) T. leucorrhoa from Chascomús, Argentina, C) T. albilinea from Hill Bank, Belize, D) T. meyeni from Puerto Varas, Chile, and E) T. thalassina from Mono Lake, California, Photographers: B: Valentina Ferretti; A, C-E: David Winkler. PMID:22408729

  18. Solving of Clock Problems Using An Algebraic Approach And Developing An Application For Automatic Conversion

    NASA Astrophysics Data System (ADS)

    Lakshmi Devaraj, Shanmuga

    2018-04-01

    The recent trend in learning Mathematics is through android apps like Byju’s. The clock problems asked in aptitude tests could be learnt using such computer applications. The Clock problems are of four categories namely: 1. What is the angle between the hands of a clock at a particular time 2. When the hands of a clock will meet after a particular time 3. When the hands of a clock will be at right angle after a particular time 4. When the hands of a clock will be in a straight line but not together after a particular time The aim of this article is to convert the clock problems which were solved using the traditional approach to algebraic equations and solve them. Shortcuts are arrived which help in solving the questions in just a few seconds. Any aptitude problem could be converted to an algebraic equation by tracing the way the problem proceeds by applying our analytical skills. Solving of equations would be the easiest part in coming up with the solution. Also a computer application could be developed by using the equations that were arrived at in the analysis part. The computer application aims at solving the four different problems in Clocks. The application helps the learners of aptitude for CAT and other competitive exams to know the approach of the problem. Learning Mathematics with a gaming tool like this would be interesting to the learners. This paper provides a path to creating gaming apps to learn Mathematics.

  19. Effects of continuous white light and 12h white-12h blue light-cycles on the expression of clock genes in diencephalon, liver, and skeletal muscle in chicks.

    PubMed

    Honda, Kazuhisa; Kondo, Makoto; Hiramoto, Daichi; Saneyasu, Takaoki; Kamisoyama, Hiroshi

    2017-05-01

    The core circadian clock mechanism relies on a feedback loop comprised of clock genes, such as the brain and muscle Arnt-like 1 (Bmal1), chriptochrome 1 (Cry1), and period 3 (Per3). Exposure to the light-dark cycle synchronizes the master circadian clock in the brain, and which then synchronizes circadian clocks in peripheral tissues. Birds have long been used as a model for the investigation of circadian rhythm in human neurobiology. In the present study, we examined the effects of continuous light and the combination of white and blue light on the expression of clock genes (Bmal1, Cry1, and Per3) in the central and peripheral tissues in chicks. Seventy two day-old male chicks were weighed, allocated to three groups and maintained under three light schedules: 12h white light-12h dark-cycles group (control); 24h white light group (WW group); 12h white light-12h blue light-cycles group (WB group). The mRNA levels of clock genes in the diencephalon were significantly different between the control and WW groups. On the other hand, the alteration in the mRNA levels of clock genes was similar between the control and WB groups. Similar phenomena were observed in the liver and skeletal muscle (biceps femoris). These results suggest that 12h white-12h blue light-cycles did not disrupt the circadian rhythm of clock gene expression in chicks. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Role of cardiomyocyte circadian clock in myocardial metabolic adaptation

    USDA-ARS?s Scientific Manuscript database

    Marked circadian rhythmicities in cardiovascular physiology and pathophysiology exist. The cardiomyocyte circadian clock has recently been linked to circadian rhythms in myocardial gene expression, metabolism, and contractile function. For instance, the cardiomyocyte circadian clock is essential f...

  1. Teaching How to Tell Time.

    ERIC Educational Resources Information Center

    Britton, Richard Aquinas

    1981-01-01

    An approach to teaching time telling to learning disabled children begins with the child drawing a clock, then designating 5-minute marks, using old alarm or play clocks to manipulate the hands, and drawing clock hands to represent specific times. (CL)

  2. An optical clock to go

    NASA Astrophysics Data System (ADS)

    Ludlow, Andrew D.

    2018-05-01

    Bringing next-generation atomic clocks out of the lab is not an easy task, but doing so will unlock many new possibilities. As a crucial first step, a portable atomic clock has now been deployed for relativistic geodesy measurements in the Alps.

  3. Circadian expression of clock and putative clock-controlled genes in skeletal muscle of the zebrafish.

    PubMed

    Amaral, Ian P G; Johnston, Ian A

    2012-01-01

    To identify circadian patterns of gene expression in skeletal muscle, adult male zebrafish were acclimated for 2 wk to a 12:12-h light-dark photoperiod and then exposed to continuous darkness for 86 h with ad libitum feeding. The increase in gut food content associated with the subjective light period was much diminished by the third cycle, enabling feeding and circadian rhythms to be distinguished. Expression of zebrafish paralogs of mammalian transcriptional activators of the circadian mechanism (bmal1, clock1, and rora) followed a rhythmic pattern with a ∼24-h periodicity. Peak expression of rora paralogs occurred at the beginning of the subjective light period [Zeitgeber time (ZT)07 and ZT02 for roraa and rorab], whereas the highest expression of bmal1 and clock paralogs occurred 12 h later (ZT13-15 and ZT16 for bmal and clock paralogs). Expression of the transcriptional repressors cry1a, per1a/1b, per2, per3, nr1d2a/2b, and nr1d1 also followed a circadian pattern with peak expression at ZT0-02. Expression of the two paralogs of cry2 occurred in phase with clock1a/1b. Duplicated genes had a high correlation of expression except for paralogs of clock1, nr1d2, and per1, with cry1b showing no circadian pattern. The highest expression difference was 9.2-fold for the activator bmal1b and 51.7-fold for the repressor per1a. Out of 32 candidate clock-controlled genes, only myf6, igfbp3, igfbp5b, and hsf2 showed circadian expression patterns. Igfbp3, igfbp5b, and myf6 were expressed in phase with clock1a/1b and had an average of twofold change in expression from peak to trough, whereas hsf2 transcripts were expressed in phase with cry1a and had a 7.2-fold-change in expression. The changes in expression of clock and clock-controlled genes observed during continuous darkness were also observed at similar ZTs in fish exposed to a normal photoperiod in a separate control experiment. The role of circadian clocks in regulating muscle maintenance and growth are discussed.

  4. The contribution of Multi-GNSS Experiment (MGEX) to precise point positioning

    NASA Astrophysics Data System (ADS)

    Guo, Fei; Li, Xingxing; Zhang, Xiaohong; Wang, Jinling

    2017-06-01

    In response to the changing world of GNSS, the International GNSS Service (IGS) has initiated the Multi-GNSS Experiment (MGEX). As part of the MGEX project, initial precise orbit and clock products have been released for public use, which are the key prerequisites for multi-GNSS precise point positioning (PPP). In particular, precise orbits and clocks at intervals of 5 min and 30 s are presently available for the new emerging systems. This paper investigates the benefits of multi-GNSS for PPP. Firstly, orbit and clock consistency tests (between different providers) were performed for GPS, GLONASS, Galileo and BeiDou. In general, the differences of GPS are, respectively, 1.0-1.5 cm for orbit and 0.1 ns for clock. The consistency of GLONASS is worse than GPS by a factor of 2-3, i.e. 2-4 cm for orbit and 0.2 ns for clock. However, the corresponding differences of Galileo and BeiDou are significantly larger than those of GPS and GLONASS, particularly for the BeiDou GEO satellites. Galileo as well as BeiDou IGSO/MEO products have a consistency of 0.1-0.2 m for orbit, and 0.2-0.3 ns for clock. As to BeiDou GEO satellites, the difference of their orbits reaches 3-4 m in along-track, 0.5-0.6 m in cross-track, and 0.2-0.3 m in the radial directions, together with an average RMS of 0.6 ns for clock. Furthermore, the short-term stability of multi-GNSS clocks was analyzed by Allan deviation. Results show that clock stability of the onboard GNSS is highly dependent on the satellites generations, operational lifetime, orbit types, and frequency standards. Finally, kinematic PPP tests were conducted to investigate the contribution of multi-GNSS and higher rate clock corrections. As expected, the positioning accuracy as well as convergence speed benefit from the fusion of multi-GNSS and higher rate of precise clock corrections. The multi-GNSS PPP improves the positioning accuracy by 10-20%, 40-60%, and 60-80% relative to the GPS-, GLONASS-, and BeiDou-only PPP. The usage of 30 s interval clock products decreases interpolation errors, and the positioning accuracy is improved by an average of 30-50% for the all the cases except for the BeiDou-only PPP.

  5. Potential Conservation of Circadian Clock Proteins in the phylum Nematoda as Revealed by Bioinformatic Searches

    PubMed Central

    Romanowski, Andrés; Garavaglia, Matías Javier; Goya, María Eugenia; Ghiringhelli, Pablo Daniel; Golombek, Diego Andrés

    2014-01-01

    Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system. PMID:25396739

  6. First of 24 LED Panels Installed in New Countdown Clock

    NASA Image and Video Library

    2014-11-25

    At NASA's Kennedy Space Center in Florida, assembly has begun on the first of 24 light emitting diode LED panels for installation in the new countdown clock at the spaceport's Press Site. The new modern, multimedia display will be similar to the screens seen at sporting venues. The new screen will be nearly 26 feet wide by 7 feet high, a foot taller than the original clock. The historic countdown clock was designed by Kennedy engineers and built by space center technicians before Apollo 12 in 1969. NASA has requested to acquire the countdown clock from the agency’s Artifact Working Group at the agency's Headquarters for likely display at the Kennedy Space Center Visitor Complex.

  7. First of 24 LED Panels Installed in New Countdown Clock

    NASA Image and Video Library

    2014-11-25

    At NASA's Kennedy Space Center in Florida, the first of 24 light emitting diode LED panels have arrived for installation in the new countdown clock at the spaceport's Press Site. A new modern, multimedia display soon will be installed, similar to the screens seen at sporting venues. The new screen will be nearly 26 feet wide by 7 feet high, a foot taller than the original clock. The historic countdown clock was designed by Kennedy engineers and built by space center technicians before Apollo 12 in 1969. NASA has requested to acquire the countdown clock from the agency’s Artifact Working Group at the agency's Headquarters for likely display at the Kennedy Space Center Visitor Complex.

  8. The development of a Kalman filter clock predictor

    NASA Technical Reports Server (NTRS)

    Davis, John A.; Greenhall, Charles A.; Boudjemaa, Redoane

    2005-01-01

    A Kalman filter based clock predictor is developed, and its performance evaluated using both simulated and real data. The clock predictor is shown to possess a neat to optimal Prediction Error Variance (PEV) when the underlying noise consists of one of the power law noise processes commonly encountered in time and frequency measurements. The predictor's performance is the presence of multiple noise processes is also examined. The relationship between the PEV obtained in the presence of multiple noise processes and those obtained for the individual component noise processes is examined. Comparisons are made with a simple linear clock predictor. The clock predictor is used to predict future values of the time offset between pairs of NPL's active hydrogen masers.

  9. Potential conservation of circadian clock proteins in the phylum Nematoda as revealed by bioinformatic searches.

    PubMed

    Romanowski, Andrés; Garavaglia, Matías Javier; Goya, María Eugenia; Ghiringhelli, Pablo Daniel; Golombek, Diego Andrés

    2014-01-01

    Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system.

  10. The role of the mechanical clock in medieval science.

    PubMed

    Álvarez, Víctor Pérez

    2015-03-01

    The invention and spread of the mechanical clock is a complex and multifaceted historical phenomenon. Some of these facets, such as its social impact, have been widely studied, but their scientific dimensions have often been dismissed. The mechanical clock was probably born as a scientific instrument for driving a model of the universe, and not only natural philosophers but also kings, nobles and other members of the social elites showed an interest in clocks as scientific instruments. Public clocks later spread a new way of telling time based on equal hours, laying the foundations for changes in time consciousness that would accelerate scientific thinking. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Selected highly charged ions as prospective candidates for optical clocks with quality factors larger than 1015

    NASA Astrophysics Data System (ADS)

    Yu, Yan-mei; Sahoo, B. K.

    2018-04-01

    The Ni12 +, Cu13 +, Pd12 +, and Ag13 + highly charged ions (HCIs) are proposed for making very accurate optical clocks with the fractional uncertainties below 10-19 level. These HCIs have simple atomic energy levels, clock transitions with quality factors larger than 1015, and optical magnetic-dipole (M 1 ) transitions that can be used for laser cooling and detecting quantum jumps on the clock transitions by the shelving method. To demonstrate the projected fractional uncertainties, we estimate orders of magnitude of the Zeeman, Stark, blackbody radiation, and electric quadrupole shifts of the clock transitions by performing calculations of the relevant atomic properties in the above HCIs.

  12. Countdown Clock Ribbon Cutting

    NASA Image and Video Library

    2016-03-01

    The newest display at the Kennedy Space Center Visitor Complex is the spaceport's historic countdown clock. It is now located at the entrance to the visitor complex. The clock was set up at the space center's Press Site and used from the launch of Apollo 12 on Nov. 14, 1969 to the final space shuttle mission, STS-135, launched on July 8, 2011. The old countdown clock was replaced in 2014 with a modern light emitting diode, or LED, display.

  13. Strong resetting of the mammalian clock by constant light followed by constant darkness

    PubMed Central

    Chen, Rongmin; Seo, Dong-oh; Bell, Elijah; von Gall, Charlotte; Lee, Choogon

    2008-01-01

    The mammalian molecular circadian clock in the suprachiasmatic nuclei (SCN) regulates locomotor activity rhythms as well as clocks in peripheral tissues (Reppert and Weaver, 2002; Ko and Takahashi, 2006). Constant light (LL) can induce behavioral and physiological arrhythmicity, by desynchronizing clock cells in the SCN (Ohta et al., 2005). We examined how the disordered clock cells resynchronize by probing the molecular clock and measuring behavior in mice transferred from LL to constant darkness (DD). The circadian locomotor activity rhythms disrupted in LL become robustly rhythmic again from the beginning of DD, and the starting phase of the rhythm in DD is specific, not random, suggesting that the desynchronized clock cells are quickly reset in an unconventional manner by the L:D transition. By measuring mPERIOD protein rhythms, we showed that the SCN and peripheral tissue clocks quickly become rhythmic again in phase with the behavioral rhythms. We propose that this resetting mechanism may be different from conventional phase shifting, which involves light-induction of Period genes (Albrecht et al., 1997; Shearman et al., 1997; Shigeyoshi et al., 1997). Using our functional insights, we could shift the circadian phase of locomotor activity rhythms by 12 hours using a 15-hour LL treatment: essentially producing phase reversal by a single light pulse, a feat that has not been reported previously in wild-type mice and that has potential clinical utility. PMID:19005049

  14. Rapid resetting of human peripheral clocks by phototherapy during simulated night shift work.

    PubMed

    Cuesta, Marc; Boudreau, Philippe; Cermakian, Nicolas; Boivin, Diane B

    2017-11-24

    A majority of night shift workers have their circadian rhythms misaligned to their atypical schedule. While bright light exposure at night is known to reset the human central circadian clock, the behavior of peripheral clocks under conditions of shift work is more elusive. The aim of the present study was to quantify the resetting effects of bright light exposure on both central (plasma cortisol and melatonin) and peripheral clocks markers (clock gene expression in peripheral blood mononuclear cells, PBMCs) in subjects living at night. Eighteen healthy subjects were enrolled to either a control (dim light) or a bright light group. Blood was sampled at baseline and on the 4 th day of simulated night shift. In response to a night-oriented schedule, the phase of PER1 and BMAL1 rhythms in PBMCs was delayed by ~2.5-3 h (P < 0.05), while no shift was observed for the other clock genes and the central markers. Three cycles of 8-h bright light induced significant phase delays (P < 0.05) of ~7-9 h for central and peripheral markers, except BMAL1 (advanced by +5h29; P < 0.05). Here, we demonstrate in humans a lack of peripheral clock adaptation under a night-oriented schedule and a rapid resetting effect of nocturnal bright light exposure on peripheral clocks.

  15. Diurnal oscillations of soybean circadian clock and drought responsive genes.

    PubMed

    Marcolino-Gomes, Juliana; Rodrigues, Fabiana Aparecida; Fuganti-Pagliarini, Renata; Bendix, Claire; Nakayama, Thiago Jonas; Celaya, Brandon; Molinari, Hugo Bruno Correa; de Oliveira, Maria Cristina Neves; Harmon, Frank G; Nepomuceno, Alexandre

    2014-01-01

    Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i) drought stress affects gene expression of circadian clock components and (ii) several stress responsive genes display diurnal oscillation in soybeans.

  16. Biomedical ultrasonoscope

    NASA Technical Reports Server (NTRS)

    Lee, R. D. (Inventor)

    1979-01-01

    The combination of a "C" mode scan electronics in a portable, battery powered biomedical ultrasonoscope having "A" and "M" mode scan electronics, the latter including a clock generator for generating clock pulses, a cathode ray tube having X, Y and Z axis inputs, a sweep generator connected between the clock generator and the X axis input of the cathode ray tube for generating a cathode ray sweep signal synchronized by the clock pulses, and a receiver adapted to be connected to the Z axis input of the cathode ray tube. The "C" mode scan electronics comprises a plurality of transducer elements arranged in a row and adapted to be positioned on the skin of the patient's body for converting a pulsed electrical signal to a pulsed ultrasonic signal, radiating the ultrasonic signal into the patient's body, picking up the echoes reflected from interfaces in the patient's body and converting the echoes to electrical signals; a plurality of transmitters, each transmitter being coupled to a respective transducer for transmitting a pulsed electrical signal thereto and for transmitting the converted electrical echo signals directly to the receiver, a sequencer connected between the clock generator and the plurality of transmitters and responsive to the clock pulses for firing the transmitters in cyclic order; and a staircase voltage generator connected between the clock generator and the Y axis input of the cathode ray tube for generating a staircase voltage having steps synchronized by the clock pulses.

  17. The Circadian Clock in Cancer Development and Therapy

    PubMed Central

    Fu, Loning; Kettner, Nicole M.

    2014-01-01

    Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The central and peripheral clocks coordinately generate rhythmic gene expression in a tissue-specific manner in vivo to couple diverse physiological and behavioral processes to periodic changes in the environment. However, as the world industrialized, activities that disrupt endogenous homeostasis with external circadian cues have increased. This change in lifestyle has been linked to increased risk of diseases in all aspects of human health, including cancer. Studies in humans and animal models have revealed that cancer development in vivo is closely associated with the loss of circadian homeostasis in energy balance, immune function and aging that are supported by cellular functions important for tumor suppression including cell proliferation, senescence, metabolism and DNA damage response. The clock controls these cellular functions both locally in cells of peripheral tissues and at the organismal level via extracellular signaling. Thus, the hierarchical mammalian circadian clock provides a unique system to study carcinogenesis as a deregulated physiological process in vivo. The asynchrony between host and malignant tissues in cell proliferation and metabolism also provides new and exciting options for novel anti-cancer therapies. PMID:23899600

  18. TNF-alpha suppresses the expression of clock genes by interfering with E-box-mediated transcription.

    PubMed

    Cavadini, Gionata; Petrzilka, Saskia; Kohler, Philipp; Jud, Corinne; Tobler, Irene; Birchler, Thomas; Fontana, Adriano

    2007-07-31

    Production of TNF-alpha and IL-1 in infectious and autoimmune diseases is associated with fever, fatigue, and sleep disturbances, which are collectively referred to as sickness behavior syndrome. In mice TNF-alpha and IL-1 increase nonrapid eye movement sleep. Because clock genes regulate the circadian rhythm and thereby locomotor activity and may alter sleep architecture we assessed the influence of TNF-alpha on the circadian timing system. TNF-alpha is shown here to suppress the expression of the PAR bZip clock-controlled genes Dbp, Tef, and Hlf and of the period genes Per1, Per2, and Per3 in fibroblasts in vitro and in vivo in the liver of mice infused with the cytokine. The effect of TNF-alpha on clock genes is shared by IL-1beta, but not by IFN-alpha, and IL-6. Furthermore, TNF-alpha interferes with the expression of Dbp in the suprachiasmatic nucleus and causes prolonged rest periods in the dark when mice show spontaneous locomotor activity. Using clock reporter genes TNF-alpha is found here to inhibit CLOCK-BMAL1-induced activation of E-box regulatory elements-dependent clock gene promoters. We suggest that the increase of TNF-alpha and IL-1beta, as seen in infectious and autoimmune diseases, impairs clock gene functions and causes fatigue.

  19. Diurnal Oscillations of Soybean Circadian Clock and Drought Responsive Genes

    PubMed Central

    Marcolino-Gomes, Juliana; Rodrigues, Fabiana Aparecida; Fuganti-Pagliarini, Renata; Bendix, Claire; Nakayama, Thiago Jonas; Celaya, Brandon; Molinari, Hugo Bruno Correa; de Oliveira, Maria Cristina Neves; Harmon, Frank G.; Nepomuceno, Alexandre

    2014-01-01

    Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i) drought stress affects gene expression of circadian clock components and (ii) several stress responsive genes display diurnal oscillation in soybeans. PMID:24475115

  20. Upset due to a single particle caused propagated transients in a bulk CMOS microprocessor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leavy, J.F.; Hoffmann, L.F.; Shoran, R.W.

    1991-12-01

    This paper reports on data pattern advances observed in preset, single event upset (SEU) hardened clocked flip-flops, during static Cf-252 exposures on a bulk CMOS microprocessor, that were attributable to particle caused anomalous clock signals, or propagated transients. SPICE simulations established that particle strikes in the output nodes of a clock control logic flip-flop could produce transients of sufficient amplitude and duration to be accepted as legitimate pulses by clock buffers fed by the flip-flop's output nodes. The buffers would then output false clock pulses, thereby advancing the state of the present flip-flops. Masking the clock logic on one ofmore » the test chips made the flip-flop data advance cease, confirming the clock logic as the source of the SEU. By introducing N{sub 2} gas, at reduced pressures, into the SEU test chamber to attenuate Cf-252 particle LET's, a 24-26 MeV-cm{sup 2}/mg LET threshold was deduced. Subsequent tests, at the 88-inch cyclotron at Berkeley, established an LET threshold of 30 MeV-cm{sup 2}/mg (283 MeV Cu at 0{degrees}) for the generation of false clocks. Cyclotron SEU tests are considered definitive, while Cf-252 data usually is not. However, in this instance Cf-252 tests proved analytically useful, providing SEU characterization data that was both timely and inexpensive.« less

  1. Circadian factor BMAL1 in histaminergic neurons regulates sleep architecture.

    PubMed

    Yu, Xiao; Zecharia, Anna; Zhang, Zhe; Yang, Qianzi; Yustos, Raquel; Jager, Polona; Vyssotski, Alexei L; Maywood, Elizabeth S; Chesham, Johanna E; Ma, Ying; Brickley, Stephen G; Hastings, Michael H; Franks, Nicholas P; Wisden, William

    2014-12-01

    Circadian clocks allow anticipation of daily environmental changes. The suprachiasmatic nucleus (SCN) houses the master clock, but clocks are also widely expressed elsewhere in the body. Although some peripheral clocks have established roles, it is unclear what local brain clocks do. We tested the contribution of one putative local clock in mouse histaminergic neurons in the tuberomamillary nucleus to the regulation of the sleep-wake cycle. Histaminergic neurons are silent during sleep, and start firing after wake onset; the released histamine, made by the enzyme histidine decarboxylase (HDC), enhances wakefulness. We found that hdc gene expression varies with time of day. Selectively deleting the Bmal1 (also known as Arntl or Mop3) clock gene from histaminergic cells removes this variation, producing higher HDC expression and brain histamine levels during the day. The consequences include more fragmented sleep, prolonged wake at night, shallower sleep depth (lower nonrapid eye movement [NREM] δ power), increased NREM-to-REM transitions, hindered recovery sleep after sleep deprivation, and impaired memory. Removing BMAL1 from histaminergic neurons does not, however, affect circadian rhythms. We propose that for mammals with polyphasic/nonwake consolidating sleep, the local BMAL1-dependent clock directs appropriately timed declines and increases in histamine biosynthesis to produce an appropriate balance of wake and sleep within the overall daily cycle of rest and activity specified by the SCN. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Enhanced extinction of contextual fear conditioning in ClockΔ19 mutant mice.

    PubMed

    Bernardi, Rick E; Spanagel, Rainer

    2014-08-01

    Clock genes have been implicated in several disorders, such as schizophrenia, bipolar disorder, autism spectrum disorders, and drug dependence. However, few studies to date have examined the role of clock genes in fear-related behaviors. The authors used mice with the ClockΔ19 mutation to assess the involvement of this gene in contextual fear conditioning. Male wild-type (WT) and ClockΔ19 mutant mice underwent a single session of contextual fear conditioning (12 min, 4 unsignaled shocks), followed by daily 12-min retention trials. There were no differences between mutant and WT mice in the acquisition of contextual fear, and WT and mutant mice demonstrated similar freezing during the first retention session. However, extinction of contextual fear was accelerated in mutant mice across the remaining retention sessions, as compared to WT mice, suggesting a role for Clock in extinction following aversive learning. Because the ClockΔ19 mutation has previously been demonstrated to result in an increase in dopamine signaling, the authors confirmed the role of dopamine in extinction learning using preretention session administration of a low dose of the dopamine transport reuptake inhibitor modafinil (0.75 mg/kg), which resulted in decreased freezing across retention sessions. These findings are consistent with an emerging portrayal of the importance of Clock genes in noncircadian functions, as well as the important role of dopamine in extinction learning.

  3. Consequences of Exposure to Light at Night on the Pancreatic Islet Circadian Clock and Function in Rats

    PubMed Central

    Qian, Jingyi; Block, Gene D.; Colwell, Christopher S.; Matveyenko, Aleksey V.

    2013-01-01

    There is a correlation between circadian disruption, type 2 diabetes mellitus (T2DM), and islet failure. However, the mechanisms underlying this association are largely unknown. Pancreatic islets express self-sustained circadian clocks essential for proper β-cell function and survival. We hypothesized that exposure to environmental conditions associated with disruption of circadian rhythms and susceptibility to T2DM in humans disrupts islet clock and β-cell function. To address this hypothesis, we validated the use of Per-1:LUC transgenic rats for continuous longitudinal assessment of islet circadian clock function ex vivo. Using this methodology, we subsequently examined effects of the continuous exposure to light at night (LL) on islet circadian clock and insulin secretion in vitro in rat islets. Our data show that changes in the light–dark cycle in vivo entrain the phase of islet clock transcriptional oscillations, whereas prolonged exposure (10 weeks) to LL disrupts islet circadian clock function through impairment in the amplitude, phase, and interislet synchrony of clock transcriptional oscillations. We also report that exposure to LL leads to diminished glucose-stimulated insulin secretion due to a decrease in insulin secretory pulse mass. Our studies identify potential mechanisms by which disturbances in circadian rhythms common to modern life can predispose to islet failure in T2DM. PMID:23775768

  4. Mitochondrial genomes of acrodont lizards: timing of gene rearrangements and phylogenetic and biogeographic implications

    PubMed Central

    2010-01-01

    Background Acrodonta consists of Agamidae and Chamaeleonidae that have the characteristic acrodont dentition. These two families and Iguanidae sensu lato are members of infraorder Iguania. Phylogenetic relationships and historical biogeography of iguanian lizards still remain to be elucidated in spite of a number of morphological and molecular studies. This issue was addressed by sequencing complete mitochondrial genomes from 10 species that represent major lineages of acrodont lizards. This study also provided a good opportunity to compare molecular evolutionary modes of mitogenomes among different iguanian lineages. Results Acrodontan mitogenomes were found to be less conservative than iguanid counterparts with respect to gene arrangement features and rates of sequence evolution. Phylogenetic relationships were constructed with the mitogenomic sequence data and timing of gene rearrangements was inferred on it. The result suggested highly lineage-specific occurrence of several gene rearrangements, except for the translocation of the tRNAPro gene from the 5' to 3' side of the control region, which likely occurred independently in both agamine and chamaeleonid lineages. Phylogenetic analyses strongly suggested the monophyly of Agamidae in relation to Chamaeleonidae and the non-monophyly of traditional genus Chamaeleo within Chamaeleonidae. Uromastyx and Brookesia were suggested to be the earliest shoot-off of Agamidae and Chamaeleonidae, respectively. Together with the results of relaxed-clock dating analyses, our molecular phylogeny was used to infer the origin of Acrodonta and historical biogeography of its descendant lineages. Our molecular data favored Gondwanan origin of Acrodonta, vicariant divergence of Agamidae and Chamaeleonidae in the drifting India-Madagascar landmass, and migration of the Agamidae to Eurasia with the Indian subcontinent, although Laurasian origin of Acrodonta was not strictly ruled out. Conclusions We detected distinct modes of mitogenomic evolution among iguanian families. Agamidae was highlighted in including a number of lineage-specific mitochondrial gene rearrangements. The mitogenomic data provided a certain level of resolution in reconstructing acrodontan phylogeny, although there still remain ambiguous relationships. Our biogeographic implications shed a light on the previous hypothesis of Gondwanan origin of Acrodonta by adding some new evidence and concreteness. PMID:20465814

  5. Gone with the plate: the opening of the Western Mediterranean basin drove the diversification of ground-dweller spiders

    PubMed Central

    2011-01-01

    Background The major islands of the Western Mediterranean--Corsica, Sardinia, and the Balearic Islands--are continental terrenes that drifted towards their present day location following a retreat from their original position on the eastern Iberian Peninsula about 30 million years ago. Several studies have taken advantage of this well-dated geological scenario to calibrate molecular rates in species for which distributions seemed to match this tectonic event. Nevertheless, the use of external calibration points has revealed that most of the present-day fauna on these islands post-dated the opening of the western Mediterranean basin. In this study, we use sequence information of the cox1, nad1, 16S, L1, and 12S mitochondrial genes and the 18S, 28S, and h3 nuclear genes, along with relaxed clock models and a combination of biogeographic and fossil external calibration points, to test alternative historical scenarios of the evolutionary history of the ground-dweller spider genus Parachtes (Dysderidae), which is endemic to the region. Results We analyse 49 specimens representing populations of most Parachtes species and close relatives. Our results reveal that both the sequence of species formation in Parachtes and the estimated divergence times match the geochronological sequence of separation of the main islands, suggesting that the diversification of the group was driven by Tertiary plate tectonics. In addition, the confirmation that Parachtes diversification matches well-dated geological events provides a model framework to infer substitution rates of molecular markers. Divergence rates estimates ranged from 3.5% My-1 (nad1) to 0.12% My-1 (28S), and the average divergence rate for the mitochondrial genes was 2.25% My-1, very close to the "standard" arthropod mitochondrial rate (2.3% My-1). Conclusions Our study provides the first unequivocal evidence of terrestrial endemic fauna of the major western Mediterranean islands, whose origin can be traced back to the Oligocene separation of these islands from the continent. Moreover, our study provides useful information on the divergence rate estimates of the most commonly used genes for phylogenetic inference in non-model arthropods. PMID:22039781

  6. Gone with the plate: the opening of the Western Mediterranean basin drove the diversification of ground-dweller spiders.

    PubMed

    Bidegaray-Batista, Leticia; Arnedo, Miquel A

    2011-10-31

    The major islands of the Western Mediterranean--Corsica, Sardinia, and the Balearic Islands--are continental terrenes that drifted towards their present day location following a retreat from their original position on the eastern Iberian Peninsula about 30 million years ago. Several studies have taken advantage of this well-dated geological scenario to calibrate molecular rates in species for which distributions seemed to match this tectonic event. Nevertheless, the use of external calibration points has revealed that most of the present-day fauna on these islands post-dated the opening of the western Mediterranean basin. In this study, we use sequence information of the cox1, nad1, 16S, L1, and 12S mitochondrial genes and the 18S, 28S, and h3 nuclear genes, along with relaxed clock models and a combination of biogeographic and fossil external calibration points, to test alternative historical scenarios of the evolutionary history of the ground-dweller spider genus Parachtes (Dysderidae), which is endemic to the region. We analyse 49 specimens representing populations of most Parachtes species and close relatives. Our results reveal that both the sequence of species formation in Parachtes and the estimated divergence times match the geochronological sequence of separation of the main islands, suggesting that the diversification of the group was driven by Tertiary plate tectonics. In addition, the confirmation that Parachtes diversification matches well-dated geological events provides a model framework to infer substitution rates of molecular markers. Divergence rates estimates ranged from 3.5% My(-1) (nad1) to 0.12% My(-1) (28S), and the average divergence rate for the mitochondrial genes was 2.25% My(-1), very close to the "standard" arthropod mitochondrial rate (2.3% My(-1)). Our study provides the first unequivocal evidence of terrestrial endemic fauna of the major western Mediterranean islands, whose origin can be traced back to the Oligocene separation of these islands from the continent. Moreover, our study provides useful information on the divergence rate estimates of the most commonly used genes for phylogenetic inference in non-model arthropods.

  7. Clock genes and their genomic distributions in three species of salmonid fishes: Associations with genes regulating sexual maturation and cell cycling

    PubMed Central

    2010-01-01

    Background Clock family genes encode transcription factors that regulate clock-controlled genes and thus regulate many physiological mechanisms/processes in a circadian fashion. Clock1 duplicates and copies of Clock3 and NPAS2-like genes were partially characterized (genomic sequencing) and mapped using family-based indels/SNPs in rainbow trout (RT)(Oncorhynchus mykiss), Arctic charr (AC)(Salvelinus alpinus), and Atlantic salmon (AS)(Salmo salar) mapping panels. Results Clock1 duplicates mapped to linkage groups RT-8/-24, AC-16/-13 and AS-2/-18. Clock3/NPAS2-like genes mapped to RT-9/-20, AC-20/-43, and AS-5. Most of these linkage group regions containing the Clock gene duplicates were derived from the most recent 4R whole genome duplication event specific to the salmonids. These linkage groups contain quantitative trait loci (QTL) for life history and growth traits (i.e., reproduction and cell cycling). Comparative synteny analyses with other model teleost species reveal a high degree of conservation for genes in these chromosomal regions suggesting that functionally related or co-regulated genes are clustered in syntenic blocks. For example, anti-müllerian hormone (amh), regulating sexual maturation, and ornithine decarboxylase antizymes (oaz1 and oaz2), regulating cell cycling, are contained within these syntenic blocks. Conclusions Synteny analyses indicate that regions homologous to major life-history QTL regions in salmonids contain many candidate genes that are likely to influence reproduction and cell cycling. The order of these genes is highly conserved across the vertebrate species examined, and as such, these genes may make up a functional cluster of genes that are likely co-regulated. CLOCK, as a transcription factor, is found within this block and therefore has the potential to cis-regulate the processes influenced by these genes. Additionally, clock-controlled genes (CCGs) are located in other life-history QTL regions within salmonids suggesting that at least in part, trans-regulation of these QTL regions may also occur via Clock expression. PMID:20670436

  8. Development of a strontium optical lattice clock for space applications

    NASA Astrophysics Data System (ADS)

    Singh, Yeshpal

    2016-07-01

    With timekeeping being of paramount importance for modern life, much research and major scientific advances have been undertaken in the field of frequency metrology, particularly over the last few years. New Nobel-prize winning technologies have enabled a new era of atomic clocks; namely the optical clock. These have been shown to perform significantly better than the best microwave clocks reaching an inaccuracy of 1.6x10-18 [1]. With such results being found in large lab based apparatus, the focus now has shifted to portability - to enable the accuracy of various ground based clocks to be measured, and compact autonomous performance - to enable such technologies to be tested in space. This could lead to a master clock in space, improving not only the accuracy of technologies on which modern life has come to require such as GPS and communication networks. But also more fundamentally, this could lead to the redefinition of the second and tests of fundamental physics including applications in the fields of ground based and satellite geodesy, metrology, positioning, navigation, transport and logistics etc. Within the European collaboration, Space Optical Clocks (SOC2) [2-3] consisting of various institutes and industry partners across Europe we have tried to tackle this problem of miniaturisation whilst maintaining stability, accuracy (5x10-17) and robustness whilst keeping power consumption to a minimum - necessary for space applications. We will present the most recent results of the Sr optical clock in SOC2 and also the novel compact design features, new methods employed and outlook. References [1] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, "An optical lattice clock with accuracy and stability at the 10-18 level," Nature 506, 71-75 (2014). [2] S. Schiller et al. "Towards Neutral-atom Space Optical Clocks (SOC2): Development of high-performance transportable and breadboard optical clocks and advanced subsystems" on "Let's embrace space, volume II" 45, 452-463 (2012). ISBN 978-92-79-22207-8. [3] www.soc2.eu

  9. The development of the time-keeping clock with TS-1 single chip microcomputer.

    NASA Astrophysics Data System (ADS)

    Zhou, Jiguang; Li, Yongan

    The authors have developed a time-keeping clock with Intel 8751 single chip microcomputer that has been successfully used in time-keeping station. The hard-soft ware design and performance of the clock are introduced.

  10. Phylogeny and temporal diversification of darters (Percidae: Etheostomatinae).

    PubMed

    Near, Thomas J; Bossu, Christen M; Bradburd, Gideon S; Carlson, Rose L; Harrington, Richard C; Hollingsworth, Phillip R; Keck, Benjamin P; Etnier, David A

    2011-10-01

    Discussions aimed at resolution of the Tree of Life are most often focused on the interrelationships of major organismal lineages. In this study, we focus on the resolution of some of the most apical branches in the Tree of Life through exploration of the phylogenetic relationships of darters, a species-rich clade of North American freshwater fishes. With a near-complete taxon sampling of close to 250 species, we aim to investigate strategies for efficient multilocus data sampling and the estimation of divergence times using relaxed-clock methods when a clade lacks a fossil record. Our phylogenetic data set comprises a single mitochondrial DNA (mtDNA) gene and two nuclear genes sampled from 245 of the 248 darter species. This dense sampling allows us to determine if a modest amount of nuclear DNA sequence data can resolve relationships among closely related animal species. Darters lack a fossil record to provide age calibration priors in relaxed-clock analyses. Therefore, we use a near-complete species-sampled phylogeny of the perciform clade Centrarchidae, which has a rich fossil record, to assess two distinct strategies of external calibration in relaxed-clock divergence time estimates of darters: using ages inferred from the fossil record and molecular evolutionary rate estimates. Comparison of Bayesian phylogenies inferred from mtDNA and nuclear genes reveals that heterospecific mtDNA is present in approximately 12.5% of all darter species. We identify three patterns of mtDNA introgression in darters: proximal mtDNA transfer, which involves the transfer of mtDNA among extant and sympatric darter species, indeterminate introgression, which involves the transfer of mtDNA from a lineage that cannot be confidently identified because the introgressed haplotypes are not clearly referable to mtDNA haplotypes in any recognized species, and deep introgression, which is characterized by species diversification within a recipient clade subsequent to the transfer of heterospecific mtDNA. The results of our analyses indicate that DNA sequences sampled from single-copy nuclear genes can provide appreciable phylogenetic resolution for closely related animal species. A well-resolved near-complete species-sampled phylogeny of darters was estimated with Bayesian methods using a concatenated mtDNA and nuclear gene data set with all identified heterospecific mtDNA haplotypes treated as missing data. The relaxed-clock analyses resulted in very similar posterior age estimates across the three sampled genes and methods of calibration and therefore offer a viable strategy for estimating divergence times for clades that lack a fossil record. In addition, an informative rank-free clade-based classification of darters that preserves the rich history of nomenclature in the group and provides formal taxonomic communication of darter clades was constructed using the mtDNA and nuclear gene phylogeny. On the whole, the appeal of mtDNA for phylogeny inference among closely related animal species is diminished by the observations of extensive mtDNA introgression and by finding appreciable phylogenetic signal in a modest sampling of nuclear genes in our phylogenetic analyses of darters.

  11. Evaluating the Autonomy of the Drosophila Circadian Clock in Dissociated Neuronal Culture

    PubMed Central

    Sabado, Virginie; Vienne, Ludovic; Nagoshi, Emi

    2017-01-01

    Circadian behavioral rhythms offer an excellent model to study intricate interactions between the molecular and neuronal mechanisms of behavior. In mammals, pacemaker neurons in the suprachiasmatic nucleus (SCN) generate rhythms cell-autonomously, which are synchronized by the network interactions within the circadian circuit to drive behavioral rhythms. However, whether this principle is universal to circadian systems in animals remains unanswered. Here, we examined the autonomy of the Drosophila circadian clock by monitoring transcriptional and post-transcriptional rhythms of individual clock neurons in dispersed culture with time-lapse microscopy. Expression patterns of the transcriptional reporter show that CLOCK/CYCLE (CLK/CYC)-mediated transcription is constantly active in dissociated clock neurons. In contrast, the expression profile of the post-transcriptional reporter indicates that PERIOD (PER) protein levels fluctuate and ~10% of cells display rhythms in PER levels with periods in the circadian range. Nevertheless, PER and TIM are enriched in the cytoplasm and no periodic PER nuclear accumulation was observed. These results suggest that repression of CLK/CYC-mediated transcription by nuclear PER is impaired, and thus the negative feedback loop of the molecular clock is incomplete in isolated clock neurons. We further demonstrate that, by pharmacological assays using the non-amidated form of neuropeptide pigment-dispersing factor (PDF), which could be specifically secreted from larval LNvs and adult s-LNvs, downstream events of the PDF signaling are partly impaired in dissociated larval clock neurons. Although non-amidated PDF is likely to be less active than the amidated one, these results point out the possibility that alteration in PDF downstream signaling may play a role in dampening of molecular rhythms in isolated clock neurons. Taken together, our results suggest that Drosophila clocks are weak oscillators that need to be in the intact circadian circuit to generate robust 24-h rhythms. PMID:29075180

  12. Dual PDF signaling pathways reset clocks via TIMELESS and acutely excite target neurons to control circadian behavior.

    PubMed

    Seluzicki, Adam; Flourakis, Matthieu; Kula-Eversole, Elzbieta; Zhang, Luoying; Kilman, Valerie; Allada, Ravi

    2014-03-01

    Molecular circadian clocks are interconnected via neural networks. In Drosophila, PIGMENT-DISPERSING FACTOR (PDF) acts as a master network regulator with dual functions in synchronizing molecular oscillations between disparate PDF(+) and PDF(-) circadian pacemaker neurons and controlling pacemaker neuron output. Yet the mechanisms by which PDF functions are not clear. We demonstrate that genetic inhibition of protein kinase A (PKA) in PDF(-) clock neurons can phenocopy PDF mutants while activated PKA can partially rescue PDF receptor mutants. PKA subunit transcripts are also under clock control in non-PDF DN1p neurons. To address the core clock target of PDF, we rescued per in PDF neurons of arrhythmic per⁰¹ mutants. PDF neuron rescue induced high amplitude rhythms in the clock component TIMELESS (TIM) in per-less DN1p neurons. Complete loss of PDF or PKA inhibition also results in reduced TIM levels in non-PDF neurons of per⁰¹ flies. To address how PDF impacts pacemaker neuron output, we focally applied PDF to DN1p neurons and found that it acutely depolarizes and increases firing rates of DN1p neurons. Surprisingly, these effects are reduced in the presence of an adenylate cyclase inhibitor, yet persist in the presence of PKA inhibition. We have provided evidence for a signaling mechanism (PKA) and a molecular target (TIM) by which PDF resets and synchronizes clocks and demonstrates an acute direct excitatory effect of PDF on target neurons to control neuronal output. The identification of TIM as a target of PDF signaling suggests it is a multimodal integrator of cell autonomous clock, environmental light, and neural network signaling. Moreover, these data reveal a bifurcation of PKA-dependent clock effects and PKA-independent output effects. Taken together, our results provide a molecular and cellular basis for the dual functions of PDF in clock resetting and pacemaker output.

  13. Dual PDF Signaling Pathways Reset Clocks Via TIMELESS and Acutely Excite Target Neurons to Control Circadian Behavior

    PubMed Central

    Seluzicki, Adam; Flourakis, Matthieu; Kula-Eversole, Elzbieta; Zhang, Luoying; Kilman, Valerie; Allada, Ravi

    2014-01-01

    Molecular circadian clocks are interconnected via neural networks. In Drosophila, PIGMENT-DISPERSING FACTOR (PDF) acts as a master network regulator with dual functions in synchronizing molecular oscillations between disparate PDF(+) and PDF(−) circadian pacemaker neurons and controlling pacemaker neuron output. Yet the mechanisms by which PDF functions are not clear. We demonstrate that genetic inhibition of protein kinase A (PKA) in PDF(−) clock neurons can phenocopy PDF mutants while activated PKA can partially rescue PDF receptor mutants. PKA subunit transcripts are also under clock control in non-PDF DN1p neurons. To address the core clock target of PDF, we rescued per in PDF neurons of arrhythmic per01 mutants. PDF neuron rescue induced high amplitude rhythms in the clock component TIMELESS (TIM) in per-less DN1p neurons. Complete loss of PDF or PKA inhibition also results in reduced TIM levels in non-PDF neurons of per01 flies. To address how PDF impacts pacemaker neuron output, we focally applied PDF to DN1p neurons and found that it acutely depolarizes and increases firing rates of DN1p neurons. Surprisingly, these effects are reduced in the presence of an adenylate cyclase inhibitor, yet persist in the presence of PKA inhibition. We have provided evidence for a signaling mechanism (PKA) and a molecular target (TIM) by which PDF resets and synchronizes clocks and demonstrates an acute direct excitatory effect of PDF on target neurons to control neuronal output. The identification of TIM as a target of PDF signaling suggests it is a multimodal integrator of cell autonomous clock, environmental light, and neural network signaling. Moreover, these data reveal a bifurcation of PKA-dependent clock effects and PKA-independent output effects. Taken together, our results provide a molecular and cellular basis for the dual functions of PDF in clock resetting and pacemaker output. PMID:24643294

  14. Using a transportable optical clock for chronometric levelling

    NASA Astrophysics Data System (ADS)

    Lisdat, Christian; Sterr, Uwe; Koller, Silvio; Grotti, Jacopo; Vogt, Stefan; Häfner, Sebastian; Herbers, Sofia; Al-Masoudi, Ali

    2016-07-01

    With their supreme accuracy and precision, optical clocks in combination with new methods of long-distance frequency transfer can be used to determine height differences by measuring the gravitational red shift between two clocks without accumulation of measurement errors, as in classical levelling. We are developing transportable optical clocks for this purpose that will also serve for the technology development regarding optical clocks in Space and for international comparisons between optical clocks that cannot be linked with sufficient accuracy otherwise. In this talk we will focus on the transportable strontium lattice clock that we are developing and its first evaluation. Presently, we achieve a fractional frequency instability of 3 × 10^{-17} after 1000 s averaging time, which is equivalent to a height resolution of 30 cm. The first uncertainty evaluation of the system yielded 7 × 10^{-17}. We expect rapid improvements to an uncertainty of a few parts in 10^{17}. The clock is now located within a car trailer, which requires compact and rugged lasers systems and physics package. Special care has been taken in the design of the ultra-frequency stable interrogation laser that has to achieve fractional frequency instabilities of considerably below 10^{-15}. Typical laboratory constructions of the reference resonator system used to pre-stabilize the laser frequency are not compatible with the requirement of transportability. In an actual levelling campaign, this clock will be connected via a stabilized optical fibre link with another, stationary frequency standard. The measured gravitational red shift will be compared with the ones calculated from potential differences derived with state of the art geodetic data and models. We will discuss the status of measurements of geodetic relevance with optical clocks and give an outlook on our next steps. This work is supported by QUEST, DFG (RTG 1729, CRC 1128), EU-FP7 (FACT) and EMRP (ITOC). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

  15. GPS/GLONASS Combined Precise Point Positioning with Receiver Clock Modeling

    PubMed Central

    Wang, Fuhong; Chen, Xinghan; Guo, Fei

    2015-01-01

    Research has demonstrated that receiver clock modeling can reduce the correlation coefficients among the parameters of receiver clock bias, station height and zenith tropospheric delay. This paper introduces the receiver clock modeling to GPS/GLONASS combined precise point positioning (PPP), aiming to better separate the receiver clock bias and station coordinates and therefore improve positioning accuracy. Firstly, the basic mathematic models including the GPS/GLONASS observation equations, stochastic model, and receiver clock model are briefly introduced. Then datasets from several IGS stations equipped with high-stability atomic clocks are used for kinematic PPP tests. To investigate the performance of PPP, including the positioning accuracy and convergence time, a week of (1–7 January 2014) GPS/GLONASS data retrieved from these IGS stations are processed with different schemes. The results indicate that the positioning accuracy as well as convergence time can benefit from the receiver clock modeling. This is particularly pronounced for the vertical component. Statistic RMSs show that the average improvement of three-dimensional positioning accuracy reaches up to 30%–40%. Sometimes, it even reaches over 60% for specific stations. Compared to the GPS-only PPP, solutions of the GPS/GLONASS combined PPP are much better no matter if the receiver clock offsets are modeled or not, indicating that the positioning accuracy and reliability are significantly improved with the additional GLONASS satellites in the case of insufficient number of GPS satellites or poor geometry conditions. In addition to the receiver clock modeling, the impacts of different inter-system timing bias (ISB) models are investigated. For the case of a sufficient number of satellites with fairly good geometry, the PPP performances are not seriously affected by the ISB model due to the low correlation between the ISB and the other parameters. However, the refinement of ISB model weakens the correlation between coordinates and ISB estimates and finally enhance the PPP performance in the case of poor observation conditions. PMID:26134106

  16. The circadian clock in skin: implications for adult stem cells, tissue regeneration, cancer, aging, and immunity

    PubMed Central

    Plikus, Maksim V.; Van Spyk, Elyse Noelani; Pham, Kim; Geyfman, Mikhail; Kumar, Vivek; Takahashi, Joseph S.; Andersen, Bogi

    2015-01-01

    Historically work on peripheral circadian clocks has been focused on organs and tissues that have prominent metabolic functions, such as liver, fat and muscle. In recent years, skin is emerging as a model for studying circadian clock regulation of cell proliferation, stem cell functions, tissue regeneration, aging and carcinogenesis. Morphologically skin is complex, containing multiple cell types and structures, and there is evidence for a functional circadian clock in most, if not all, of its cell types. Despite the complexity, skin stem cell populations are well defined, experimentally tractable and exhibit prominent daily cell proliferation cycles. Hair follicle stem cells also participate in recurrent, long-lasting cycles of regeneration -- the hair growth cycles. Among other advantages of skin is a broad repertoire of available genetic tools enabling the creation of cell-type specific circadian mutants. Also, due to the accessibility of the skin, in vivo imaging techniques can be readily applied to study the circadian clock and its outputs in real time, even at the single-cell level. Skin provides the first line of defense against many environmental and stress factors that exhibit dramatic diurnal variations such as solar UV radiation and temperature. Studies have already linked the circadian clock to the control of UVB-induced DNA damage and skin cancers. Due to the important role that skin plays in the defense against microorganisms, it represents a promising model system to further explore the role of the clock in the regulation of the body's immune functions. To that end, recent studies have already linked the circadian clock to psoriasis, one of the most common immune-mediated skin disorders. The skin also provides opportunities to interrogate clock regulation of tissue metabolism in the context of stem cells and regeneration. Furthermore, many animal species feature prominent seasonal hair molt cycles, offering an attractive model for investigating the role of clock in seasonal organismal behaviors. PMID:25589491

  17. Immediate Effects of Clock-Turn Strategy on the Pattern and Performance of Narrow Turning in Persons With Parkinson Disease.

    PubMed

    Yang, Wen-Chieh; Hsu, Wei-Li; Wu, Ruey-Meei; Lin, Kwan-Hwa

    2016-10-01

    Turning difficulty is common in people with Parkinson disease (PD). The clock-turn strategy is a cognitive movement strategy to improve turning performance in people with PD despite its effects are unverified. Therefore, this study aimed to investigate the effects of the clock-turn strategy on the pattern of turning steps, turning performance, and freezing of gait during a narrow turning, and how these effects were influenced by concurrent performance of a cognitive task (dual task). Twenty-five people with PD were randomly assigned to the clock-turn or usual-turn group. Participants performed the Timed Up and Go test with and without concurrent cognitive task during the medication OFF period. The clock-turn group performed the Timed Up and Go test using the clock-turn strategy, whereas participants in the usual-turn group performed in their usual manner. Measurements were taken during the 180° turn of the Timed Up and Go test. The pattern of turning steps was evaluated by step time variability and step time asymmetry. Turning performance was evaluated by turning time and number of turning steps. The number and duration of freezing of gait were calculated by video review. The clock-turn group had lower step time variability and step time asymmetry than the usual-turn group. Furthermore, the clock-turn group turned faster with fewer freezing of gait episodes than the usual-turn group. Dual task increased the step time variability and step time asymmetry in both groups but did not affect turning performance and freezing severity. The clock-turn strategy reduces turning time and freezing of gait during turning, probably by lowering step time variability and asymmetry. Dual task compromises the effects of the clock-turn strategy, suggesting a competition for attentional resources.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A141).

  18. Two Decades into the LCR: What We Do and Still Don’t Know to Solve Lead Problems

    EPA Science Inventory

    Site selection and sampling protocol biases in LCR samplingunderestimate peak lead and copper concentrations whilemissing erratic lead release episodes resulting from distributionsystem chemical and physical disturbances. Possible sitetargeting and sampling protocol changes could...

  19. Two Decades into the LCR: What We Do and Still Don’t Know to Solve Lead Problems - abstract

    EPA Science Inventory

    Site selection and sampling protocol biases in LCR samplingunderestimate peak lead and copper concentrations whilemissing erratic lead release episodes resulting from distributionsystem chemical and physical disturbances. Possible sitetargeting and sampling protocol changes could...

  20. Earth Science: Then and Now

    ERIC Educational Resources Information Center

    Orgren, James R.

    1969-01-01

    Reviews history of earth science in secondary schools. From early nineteenth century to the present, earth science (and its antecedents, geology, physical geography, and astronomy) has had an erratic history for several reasons, but particularly because of lack of earth science teacher-training programs. (BR)

  1. Factors reducing the expected deflection in initial orientation in clock-shifted homing pigeons.

    PubMed

    Gagliardo, Anna; Odetti, Francesca; Ioalè, Paolo

    2005-02-01

    To orient from familiar sites, homing pigeons can rely on both an olfactory map and visual familiar landmarks. The latter can in principle be used in two different ways: either within a topographical map exploited for piloting or in a so-called mosaic map associated with a compass bearing. One way to investigate the matter is to put the compass and the topographical information in conflict by releasing clock-shifted pigeons from familiar locations. Although the compass orientation is in general dominant over a piloting strategy, a stronger or weaker tendency to correct towards the home direction by clock-shifted pigeons released from very familiar sites has often been observed. To investigate which factors are involved in the reduction of the deviation due to clock-shift, we performed a series of releases with intact and anosmic pigeons from familiar sites in unshifted and clock-shifted conditions and a series of releases from the same sites with naive clock-shifted birds. Our data suggest that the following factors have a role in reducing deviation due to the clock-shift: familiarity with the release site, the lack of olfactory information and some unknown site-dependent features.

  2. Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers

    PubMed Central

    Yon, Felipe; Joo, Youngsung; Cortés Llorca, Lucas; Rothe, Eva; Baldwin, Ian T.; Kim, Sang-Gyu

    2016-01-01

    Summary The rhythmic opening/closing and volatile emissions of flowers is known to attract pollinators at specific times. That these rhythms are maintained under constant light or dark conditions suggests a circadian clock involvement. Although a forward and reverse genetic approach led to the identification of core circadian clock components in Arabidopsis thaliana, involvement of these clock components for floral rhythms remained untested likely due to weak diurnal rhythms in A. thaliana flowers.Here we addressed the role of these core clock components in the flowers of the wild tobacco Nicotiana attenuata, whose flowers open at night, emit benzyl acetone (BA) scents, and move vertically through a 140° arc.We first measured N. attenuata floral rhythms under constant light conditions. The results suggest that the circadian clock controls flower opening, BA emission, and pedicel movement, but not flower closing.We generated transgenic N. attenuata lines silenced in the homologous genes of Arabidopsis LATE ELONGATED HYPOCOTYL (LHY) and ZEITLUPE (ZTL), which are known as a core clock component. Silencing NaLHY and NaZTL strongly altered floral rhythms in different ways, indicating that conserved clock components in N. attenuata coordinate these floral rhythms. PMID:26439540

  3. Atomic clocks and the continuous-time random-walk

    NASA Astrophysics Data System (ADS)

    Formichella, Valerio; Camparo, James; Tavella, Patrizia

    2017-11-01

    Atomic clocks play a fundamental role in many fields, most notably they generate Universal Coordinated Time and are at the heart of all global navigation satellite systems. Notwithstanding their excellent timekeeping performance, their output frequency does vary: it can display deterministic frequency drift; diverse continuous noise processes result in nonstationary clock noise (e.g., random-walk frequency noise, modelled as a Wiener process), and the clock frequency may display sudden changes (i.e., "jumps"). Typically, the clock's frequency instability is evaluated by the Allan or Hadamard variances, whose functional forms can identify the different operative noise processes. Here, we show that the Allan and Hadamard variances of a particular continuous-time random-walk, the compound Poisson process, have the same functional form as for a Wiener process with drift. The compound Poisson process, introduced as a model for observed frequency jumps, is an alternative to the Wiener process for modelling random walk frequency noise. This alternate model fits well the behavior of the rubidium clocks flying on GPS Block-IIR satellites. Further, starting from jump statistics, the model can be improved by considering a more general form of continuous-time random-walk, and this could bring new insights into the physics of atomic clocks.

  4. Verification of fault-tolerant clock synchronization systems. M.S. Thesis - College of William and Mary, 1992

    NASA Technical Reports Server (NTRS)

    Miner, Paul S.

    1993-01-01

    A critical function in a fault-tolerant computer architecture is the synchronization of the redundant computing elements. The synchronization algorithm must include safeguards to ensure that failed components do not corrupt the behavior of good clocks. Reasoning about fault-tolerant clock synchronization is difficult because of the possibility of subtle interactions involving failed components. Therefore, mechanical proof systems are used to ensure that the verification of the synchronization system is correct. In 1987, Schneider presented a general proof of correctness for several fault-tolerant clock synchronization algorithms. Subsequently, Shankar verified Schneider's proof by using the mechanical proof system EHDM. This proof ensures that any system satisfying its underlying assumptions will provide Byzantine fault-tolerant clock synchronization. The utility of Shankar's mechanization of Schneider's theory for the verification of clock synchronization systems is explored. Some limitations of Shankar's mechanically verified theory were encountered. With minor modifications to the theory, a mechanically checked proof is provided that removes these limitations. The revised theory also allows for proven recovery from transient faults. Use of the revised theory is illustrated with the verification of an abstract design of a clock synchronization system.

  5. Experimental verification of clock noise transfer and components for space based gravitational wave detectors.

    PubMed

    Sweeney, Dylan; Mueller, Guido

    2012-11-05

    The Laser Interferometer Space Antenna (LISA) and other space based gravitational wave detector designs require a laser communication subsystem to, among other things, transfer clock signals between spacecraft (SC) in order to cancel clock noise in post-processing. The original LISA baseline design requires frequency synthesizers to convert each SC clock into a 2 GHz signal, and electro-optic modulators (EOMs) to modulate this 2 GHz clock signal onto the laser light. Both the frequency synthesizers and the EOMs must operate with a phase fidelity of 2×10(-4)cycles/√Hz. In this paper we present measurements of the phase fidelity of frequency synthesizers and EOMs. We found that both the frequency synthesizers and the EOMs meet the requirement when tested independently and together. We also performed an electronic test of the clock noise transfer using frequency synthesizers and the University of Florida LISA Interferometry (UFLIS) phasemeter. We found that by applying a time varying fractional delay filter we could suppress the clock noise to a level below our measurement limit, which is currently determined by timing jitter and is less than an order of magnitude above the LISA requirement for phase measurements.

  6. An algorithm for the Italian atomic time scale

    NASA Technical Reports Server (NTRS)

    Cordara, F.; Vizio, G.; Tavella, P.; Pettiti, V.

    1994-01-01

    During the past twenty years, the time scale at the IEN has been realized by a commercial cesium clock, selected from an ensemble of five, whose rate has been continuously steered towards UTC to maintain a long term agreement within 3 x 10(exp -13). A time scale algorithm, suitable for a small clock ensemble and capable of improving the medium and long term stability of the IEN time scale, has been recently designed taking care of reducing the effects of the seasonal variations and the sudden frequency anomalies of the single cesium clocks. The new time scale, TA(IEN), is obtained as a weighted average of the clock ensemble computed once a day from the time comparisons between the local reference UTC(IEN) and the single clocks. It is foreseen to include in the computation also ten cesium clocks maintained in other Italian laboratories to further improve its reliability and its long term stability. To implement this algorithm, a personal computer program in Quick Basic has been prepared and it has been tested at the IEN time and frequency laboratory. Results obtained using this algorithm on the real clocks data relative to a period of about two years are presented.

  7. Effects of Light and Temperature on Daily Activity and Clock Gene Expression in Two Mosquito Disease Vectors.

    PubMed

    Rivas, Gustavo B S; Teles-de-Freitas, Rayane; Pavan, Márcio G; Lima, José B P; Peixoto, Alexandre A; Bruno, Rafaela Vieira

    2018-06-01

    Most organisms feature an endogenous circadian clock capable of synchronization with their environment. The most well-known synchronizing agents are light and temperature. The circadian clock of mosquitoes, vectors of many pathogens, drives important behaviors related to vectoral capacity, including oviposition, host seeking, and hematophagy. Main clock gene expression, as well as locomotor activity patterns, has been identified in Aedes aegypti and Culex quinquefasciatus under artificial light-dark cycles. Given that these mosquito species thrive in tropical areas, it is reasonable to speculate that temperature plays an important role in the circadian clock. Here, we provide data supporting a different hierarchy of light and temperature as zeitgebers of two mosquito species. We recorded their locomotor activity and quantified mRNA expression of the main clock genes in several combinations of light and temperature cycles. We observed that A. aegypti is more sensitive to temperature, while C. quinquefasciatus is more responsive to light. These variations in clock gene expression and locomotor activity may have affected the mosquito species' metabolism, energy expenditure, fitness cost, and pathogen transmission efficiency. Our findings are relevant to chronobiology studies and also have epidemiological implications.

  8. Chronobiology of crickets: a review.

    PubMed

    Tomioka, Kenji

    2014-10-01

    Crickets provide a good model for the study of mechanisms underlying circadian rhythms and photoperiodic responses. They show clear circadian rhythms in their overt behavior and the sensitivity of the visual system. Classical neurobiological studies revealed that a pair of optic lobes is the locus of the circadian clock controlling these rhythms and that the compound eye is the major photoreceptor necessary for synchronization to environmental light cycles. The two optic lobe clocks are mutually coupled through a neural pathway and the coupling regulates an output circadian waveform and a free-running period. Recent molecular studies revealed that the cricket's clock consists of cyclic expression of so-called clock genes and that the clock mechanism is featured by both Drosophila-like and mammalian-like traits. Molecular oscillation is also observed in some extra-optic lobe tissues and depends on the optic lobe clock in a tissue dependent manner. Interestingly, the clock is also involved in adaptation to seasonally changing environment. It fits its waveform to a given photoperiod and may be an indispensable part of a photoperiodic time-measurement mechanism. With adoption of modern molecular technologies, the cricket becomes a much more important and promising model animal for the study of circadian and photoperiodic biology.

  9. Identification of the Molecular Clockwork of the Oyster Crassostrea gigas

    PubMed Central

    Perrigault, Mickael; Tran, Damien

    2017-01-01

    Molecular clock system constitutes the origin of biological rhythms that allow organisms to anticipate cyclic environmental changes and adapt their behavior and physiology. Components of the molecular clock are largely conserved across a broad range of species but appreciable diversity in clock structure and function is also present especially in invertebrates. The present work aimed at identify and characterize molecular clockwork components in relationship with the monitoring of valve activity behavior in the oyster Crassostrea gigas. Results provided the characterization of most of canonical clock gene including clock, bmal/cycle, period, timeless, vertebrate-type cry, rev-erb, ror as well as other members of the cryptochrome/photolyase family (plant-like cry, 6–4 photolyase). Analyses of transcriptional variations of clock candidates in oysters exposed to light / dark regime and to constant darkness led to the generation of a putative and original clockwork model in C. gigas, intermediate of described systems in vertebrates and insects. This study is the first characterization of a mollusk clockwork. It constitutes essential bases to understand interactions of the different components of the molecular clock in C. gigas as well as the global mechanisms associated to the generation and the synchronization of biological rhythms in oysters. PMID:28072861

  10. The Chip-Scale Atomic Clock - Recent Development Progress

    DTIC Science & Technology

    2004-09-01

    35th Annual Precise Time and Time Interval (PTTI) Meeting 467 THE CHIP-SCALE ATOMIC CLOCK – RECENT DEVELOPMENT PROGRESS R. Lutwak ...1] R. Lutwak , et al., 2003, “The Chip-Scale Atomic Clock – Coherent Population Trapping vs. Conventional Interrogation,” in

  11. Technology development for laser-cooled clocks on the International Space Station

    NASA Technical Reports Server (NTRS)

    Klipstein, W. M.

    2003-01-01

    The PARCS experiment will use a laser-cooled cesium atomic clock operating in the microgravity environment aboard the International Space Station to provide both advanced tests of gravitational theory to demonstrate a new cold-atom clock technology for space.

  12. A novel simultaneous demultiplexing and clock recovery unit for high speed OTDM system

    NASA Astrophysics Data System (ADS)

    Zhong, Kangping; Jia, Nan; Li, Tangjun; Wang, Muguang; Chi, Jianfeng; Sun, Jian; Wang, Jingtian

    2010-11-01

    In this letter, a novel simultaneous demultiplexing and clock recovery unit based on EAMs and clock recovery module is presented and experimentally demonstrated for a high speed OTDM system. The 10GHz clock signal with low jitter is extracted from 80Gbit/s and 160Gbit/s OTDM signal, and every channel of the OTDM signal is successfully demultiplexed using this unit. The power penalty is lower than 3dB at BER of 10-9.

  13. Analyses of conversion efficiency in high-speed clock recovery based on Mach-Zehnder modulator

    NASA Astrophysics Data System (ADS)

    Dong, H.; Sun, H.; Zhu, G.; Dutta, N. K.

    2006-09-01

    In this paper, detailed analyses of the conversion efficiency in high-speed clock recovery based on Mach-Zehnder (MZ) modulator has been carried out. The theoretical results show the conversion efficiency changes with RF driving power and the mixing order. For high order clock recovery, the cascaded MZ modulator provides higher conversion efficiency. A study of clock recovery at 160 Gb/s using the cascaded MZ modulator has been carried out. The experimental results agree with the results of the analysis.

  14. System-wide power management control via clock distribution network

    DOEpatents

    Coteus, Paul W.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Reed, Don D.

    2015-05-19

    An apparatus, method and computer program product for automatically controlling power dissipation of a parallel computing system that includes a plurality of processors. A computing device issues a command to the parallel computing system. A clock pulse-width modulator encodes the command in a system clock signal to be distributed to the plurality of processors. The plurality of processors in the parallel computing system receive the system clock signal including the encoded command, and adjusts power dissipation according to the encoded command.

  15. System and method for adaptively deskewing parallel data signals relative to a clock

    DOEpatents

    Jenkins, Philip Nord [Eau Claire, WI; Cornett, Frank N [Chippewa Falls, WI

    2008-10-07

    A system and method of reducing skew between a plurality of signals transmitted with a transmit clock is described. Skew is detected between the received transmit clock and each of received data signals. Delay is added to the clock or to one or more of the plurality of data signals to compensate for the detected skew. The delay added to each of the plurality of delayed signals is updated to adapt to changes in detected skew.

  16. System and method for adaptively deskewing parallel data signals relative to a clock

    DOEpatents

    Jenkins, Philip Nord [Redwood Shores, CA; Cornett, Frank N [Chippewa Falls, WI

    2011-10-04

    A system and method of reducing skew between a plurality of signals transmitted with a transmit clock is described. Skew is detected between the received transmit clock and each of received data signals. Delay is added to the clock or to one or more of the plurality of data signals to compensate for the detected skew. The delay added to each of the plurality of delayed signals is updated to adapt to changes in detected skew.

  17. Non-canonical Phototransduction Mediates Synchronization of the Drosophila melanogaster Circadian Clock and Retinal Light Responses.

    PubMed

    Ogueta, Maite; Hardie, Roger C; Stanewsky, Ralf

    2018-06-04

    The daily light-dark cycles represent a key signal for synchronizing circadian clocks. Both insects and mammals possess dedicated "circadian" photoreceptors but also utilize the visual system for clock resetting. In Drosophila, circadian clock resetting is achieved by the blue-light photoreceptor cryptochrome (CRY), which is expressed within subsets of the brain clock neurons. In addition, rhodopsin-expressing photoreceptor cells contribute to light synchronization. Light resets the molecular clock by CRY-dependent degradation of the clock protein Timeless (TIM), although in specific subsets of key circadian pacemaker neurons, including the small ventral lateral neurons (s-LNvs), TIM and Period (PER) oscillations can be synchronized by light independent of CRY and canonical visual Rhodopsin phototransduction. Here, we show that at least three of the seven Drosophila rhodopsins can utilize an alternative transduction mechanism involving the same α-subunit of the heterotrimeric G protein operating in canonical visual phototransduction (Gq). Surprisingly, in mutants lacking the canonical phospholipase C-β (PLC-β) encoded by the no receptor potential A (norpA) gene, we uncovered a novel transduction pathway using a different PLC-β encoded by the Plc21C gene. This novel pathway is important for behavioral clock resetting to semi-natural light-dark cycles and mediates light-dependent molecular synchronization within the s-LNv clock neurons. The same pathway appears to be responsible for norpA-independent light responses in the compound eye. We show that Rhodopsin 5 (Rh5) and Rh6, present in the R8 subset of retinal photoreceptor cells, drive both the long-term circadian and rapid light responses in the eye. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Evolution of circadian rhythms in Drosophila melanogaster populations reared in constant light and dark regimes for over 330 generations.

    PubMed

    Shindey, Radhika; Varma, Vishwanath; Nikhil, K L; Sharma, Vijay Kumar

    2017-01-01

    Organisms are believed to have evolved circadian clocks as adaptations to deal with cyclic environmental changes, and therefore it has been hypothesized that evolution in constant environments would lead to regression of such clocks. However, previous studies have yielded mixed results, and evolution of circadian clocks under constant conditions has remained an unsettled topic of debate in circadian biology. In continuation of our previous studies, which reported persistence of circadian rhythms in Drosophila melanogaster populations evolving under constant light, here we intended to examine whether circadian clocks and the associated properties evolve differently under constant light and constant darkness. In this regard, we assayed activity-rest, adult emergence and oviposition rhythms of D. melanogaster populations which have been maintained for over 19 years (~330 generations) under three different light regimes - constant light (LL), light-dark cycles of 12:12 h (LD) and constant darkness (DD). We observed that while circadian rhythms in all the three behaviors persist in both LL and DD stocks with no differences in circadian period, they differed in certain aspects of the entrained rhythms when compared to controls reared in rhythmic environment (LD). Interestingly, we also observed that DD stocks have evolved significantly higher robustness or power of free-running activity-rest and adult emergence rhythms compared to LL stocks. Thus, our study, in addition to corroborating previous results of circadian clock evolution in constant light, also highlights that, contrary to the expected regression of circadian clocks, rearing in constant darkness leads to the evolution of more robust circadian clocks which may be attributed to an intrinsic adaptive advantage of circadian clocks and/or pleiotropic functions of clock genes in other traits.

  19. Conservation and Divergence of Circadian Clock Operation in a Stress-Inducible Crassulacean Acid Metabolism Species Reveals Clock Compensation against Stress1

    PubMed Central

    Boxall, Susanna F.; Foster, Jonathan M.; Bohnert, Hans J.; Cushman, John C.; Nimmo, Hugh G.; Hartwell, James

    2005-01-01

    One of the best-characterized physiological rhythms in plants is the circadian rhythm of CO2 metabolism in Crassulacean acid metabolism (CAM) plants, which is the focus here. The central components of the plant circadian clock have been studied in detail only in Arabidopsis (Arabidopsis thaliana). Full-length cDNAs have been obtained encoding orthologs of CIRCADIAN CLOCK-ASSOCIATED1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION1 (TOC1), EARLY FLOWERING4 (ELF4), ZEITLUPE (ZTL), FLAVIN-BINDING KELCH REPEAT F-BOX1 (FKF1), EARLY FLOWERING3 (ELF3), and a partial cDNA encoding GIGANTEA in the model stress-inducible CAM plant, Mesembryanthemum crystallinum (Common Ice Plant). TOC1 and LHY/CCA1 are under reciprocal circadian control in a manner similar to their regulation in Arabidopsis. ELF4, FKF1, ZTL, GIGANTEA, and ELF3 are under circadian control in C3 and CAM leaves. ELF4 transcripts peak in the evening and are unaffected by CAM induction. FKF1 shows an abrupt transcript peak 3 h before subjective dusk. ELF3 transcripts appear in the evening, consistent with their role in gating light input to the circadian clock. Intriguingly, ZTL transcripts do not oscillate in Arabidopsis, but do in M. crystallinum. The transcript abundance of the clock-associated genes in M. crystallinum is largely unaffected by development and salt stress, revealing compensation of the central circadian clock against development and abiotic stress in addition to the well-known temperature compensation. Importantly, the clock in M. crystallinum is very similar to that in Arabidopsis, indicating that such a clock could control CAM without requiring additional components of the central oscillator or a novel CAM oscillator. PMID:15734916

  20. Advances in time-scale algorithms

    NASA Technical Reports Server (NTRS)

    Stein, S. R.

    1993-01-01

    The term clock is usually used to refer to a device that counts a nearly periodic signal. A group of clocks, called an ensemble, is often used for time keeping in mission critical applications that cannot tolerate loss of time due to the failure of a single clock. The time generated by the ensemble of clocks is called a time scale. The question arises how to combine the times of the individual clocks to form the time scale. One might naively be tempted to suggest the expedient of averaging the times of the individual clocks, but a simple thought experiment demonstrates the inadequacy of this approach. Suppose a time scale is composed of two noiseless clocks having equal and opposite frequencies. The mean time scale has zero frequency. However if either clock fails, the time-scale frequency immediately changes to the frequency of the remaining clock. This performance is generally unacceptable and simple mean time scales are not used. First, previous time-scale developments are reviewed and then some new methods that result in enhanced performance are presented. The historical perspective is based upon several time scales: the AT1 and TA time scales of the National Institute of Standards and Technology (NIST), the A.1(MEAN) time scale of the US Naval observatory (USNO), the TAI time scale of the Bureau International des Poids et Measures (BIPM), and the KAS-1 time scale of the Naval Research laboratory (NRL). The new method was incorporated in the KAS-2 time scale recently developed by Timing Solutions Corporation. The goal is to present time-scale concepts in a nonmathematical form with as few equations as possible. Many other papers and texts discuss the details of the optimal estimation techniques that may be used to implement these concepts.

  1. Manipulating the circadian and sleep cycles to protect against metabolic disease.

    PubMed

    Nohara, Kazunari; Yoo, Seung-Hee; Chen, Zheng Jake

    2015-01-01

    Modernization of human society parallels an epidemic of metabolic disorders including obesity. Apart from excess caloric intake, a 24/7 lifestyle poses another important challenge to our metabolic health. Recent research under both laboratory and epidemiological settings has indicated that abnormal temporal organization of sleep and wakeful activities including food intake is a significant risk factor for metabolic disease. The circadian clock system is our intrinsic biological timer that regulates internal rhythms such as the sleep/wake cycle and also responses to external stimuli including light and food. Initially thought to be mainly involved in the timing of sleep, the clock, and/or clock genes may also play a role in sleep architecture and homeostasis. Importantly, an extensive body of evidence has firmly established a master regulatory role of the clock in energy balance. Together, a close relationship between well-timed circadian/sleep cycles and metabolic health is emerging. Exploiting this functional connection, an important holistic strategy toward curbing the epidemic of metabolic disorders (e.g., obesity) involves corrective measures on the circadian clock and sleep. In addition to behavioral and environmental interventions including meal timing and light control, pharmacological agents targeting sleep and circadian clocks promise convenient and effective applications. Recent studies, for example, have reported small molecules targeting specific clock components and displaying robust beneficial effects on sleep and metabolism. Furthermore, a group of clock-amplitude-enhancing small molecules (CEMs) identified via high-throughput chemical screens are of particular interest for future in vivo studies of their metabolic and sleep efficacies. Elucidating the functional relationship between clock, sleep, and metabolism will also have far-reaching implications for various chronic human diseases and aging.

  2. Assessing the short-term clock drift of early broadband stations with burst events of the 26 s persistent and localized microseism

    NASA Astrophysics Data System (ADS)

    Xie, Jun; Ni, Sidao; Chu, Risheng; Xia, Yingjie

    2018-01-01

    Accurate seismometer clock plays an important role in seismological studies including earthquake location and tomography. However, some seismic stations may have clock drift larger than 1 s (e.g. GSC in 1992), especially in early days of global seismic networks. The 26 s Persistent Localized (PL) microseism event in the Gulf of Guinea sometime excites strong and coherent signals, and can be used as repeating source for assessing stability of seismometer clocks. Taking station GSC, PAS and PFO in the TERRAscope network as an example, the 26 s PL signal can be easily observed in the ambient noise cross-correlation function between these stations and a remote station OBN with interstation distance about 9700 km. The travel-time variation of this 26 s signal in the ambient noise cross-correlation function is used to infer clock error. A drastic clock error is detected during June 1992 for station GSC, but not found for station PAS and PFO. This short-term clock error is confirmed by both teleseismic and local earthquake records with a magnitude of 25 s. Averaged over the three stations, the accuracy of the ambient noise cross-correlation function method with the 26 s source is about 0.3-0.5 s. Using this PL source, the clock can be validated for historical records of sparsely distributed stations, where the usual ambient noise cross-correlation function of short-period (<20 s) ambient noise might be less effective due to its attenuation over long interstation distances. However, this method suffers from cycling problem, and should be verified by teleseismic/local P waves. Further studies are also needed to investigate whether the 26 s source moves spatially and its effects on clock drift detection.

  3. Circadian CLOCK gene polymorphisms in relation to sleep patterns and obesity in African Americans: findings from the Jackson heart study.

    PubMed

    Riestra, Pia; Gebreab, Samson Y; Xu, Ruihua; Khan, Rumana J; Gaye, Amadou; Correa, Adolfo; Min, Nancy; Sims, Mario; Davis, Sharon K

    2017-06-23

    Circadian rhythms regulate key biological processes and the dysregulation of the intrinsic clock mechanism affects sleep patterns and obesity onset. The CLOCK (circadian locomotor output cycles protein kaput) gene encodes a core transcription factor of the molecular circadian clock influencing diverse metabolic pathways, including glucose and lipid homeostasis. The primary objective of this study was to evaluate the associations between CLOCK single nucleotide polymorphisms (SNPs) and body mass index (BMI). We also evaluated the association of SNPs with BMI related factors such as sleep duration and quality, adiponectin and leptin, in 2962 participants (1116 men and 1810 women) from the Jackson Heart Study. Genotype data for the selected 23 CLOCK gene SNPS was obtained by imputation with IMPUTE2 software and reference phase data from the 1000 genome project. Genetic analyses were conducted with PLINK RESULTS: We found a significant association between the CLOCK SNP rs2070062 and sleep duration, participants carriers of the T allele showed significantly shorter sleep duration compared to non-carriers after the adjustment for individual proportions of European ancestry (PEA), socio economic status (SES), body mass index (BMI), alcohol consumption and smoking status that reach the significance threshold after multiple testing correction. In addition, we found nominal associations of the CLOCK SNP rs6853192 with longer sleep duration and the rs6820823, rs3792603 and rs11726609 with BMI. However, these associations did not reach the significance threshold after correction for multiple testing. In this work, CLOCK gene variants were associated with sleep duration and BMI suggesting that the effects of these polymorphisms on circadian rhythmicity may affect sleep duration and body weight regulation in Africans Americans.

  4. BMAL1 and CLOCK proteins in regulating UVB-induced apoptosis and DNA damage responses in human keratinocytes.

    PubMed

    Sun, Yang; Wang, Peiling; Li, Hongyu; Dai, Jun

    2018-06-26

    A diverse array of biological processes are under circadian controls. In mouse skin, ultraviolet ray (UVR)-induced apoptosis and DNA damage responses are time-of-day dependent, which are controlled by core clock proteins. This study investigates the roles of clock proteins in regulating UVB responses in human keratinocytes (HKCs). We found that the messenger RNA expression of brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) genes is altered by low doses (5 mJ/cm 2 ) of UVB in the immortalized HaCat HKCs cell line. Although depletion of BMAL1 or CLOCK has no effect on the activation of Rad3-related protein kinases-checkpoint kinase 1-p53 mediated DNA damage checkpoints, it leads to suppression of UVB-stimulated apoptotic responses, and downregulation of UVB-elevated expression of DNA damage marker γ-H2AX and cell cycle inhibitor p21. Diminished apoptotic responses are also observed in primary HKCs depleted of BMAL1 or CLOCK after UVB irradiation. While CLOCK depletion shows a suppressive effect on UVB-induced p53 protein accumulation, depletion of either clock gene triggers early keratinocyte differentiation of HKCs at their steady state. These results suggest that UVB-induced apoptosis and DNA damage responses are controlled by clock proteins, but via different mechanisms in the immortalized human adult low calcium temperature and primary HKCs. Given the implication of UVB in photoaging and photocarcinogenesis, mechanistic elucidation of circadian controls on UVB effects in human skin will be critical and beneficial for prevention and treatment of skin cancers and other skin-related diseases. © 2018 Wiley Periodicals, Inc.

  5. Effect of monochromatic light on circadian rhythmic expression of clock genes in the hypothalamus of chick.

    PubMed

    Jiang, Nan; Wang, Zixu; Cao, Jing; Dong, Yulan; Chen, Yaoxing

    2017-08-01

    To clarify the effect of monochromatic light on circadian clock gene expression in chick hypothalamus, a total 240 newly hatched chickens were reared under blue light (BL), green light (GL), red light (RL) and white light (WL), respectively. On the post-hatched day 14, 24-h profiles of seven core clock genes (cClock, cBmal1, cBmal2, cCry1, cCry2, cPer2 and cPer3) were measured at six time points (CT 0, CT 4, CT 8, CT 12, CT 16, CT 20, circadian time). We found all these clock genes expressed with a significant rhythmicity in different light wavelength groups. Meanwhile, cClock and cBmal1 showed a high level under GL, and followed a corresponding high expression of cCry1. However, RL decreased the expression levels of these genes. Be consistent with the mRNA level, CLOCK and BMAL1 proteins also showed a high level under GL. The CLOCK-like immunoreactive neurons were observed not only in the SCN, but also in the non-SCN brain region such as the nucleus anterior medialis hypothalami, the periventricularis nucleus, the paraventricular nucleus and the median eminence. All these results are consistent with the auto-regulatory circadian feedback loop, and indicate that GL may play an important role on the circadian time generation and development in the chick hypothalamus. Our results also suggest that the circadian clock in the chick hypothalamus such as non-SCN brain region were involved in the regulation of photo information. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The geomorphic impact of glaciers as indicated by tors in North Sweden (Aurivaara, 68° N)

    NASA Astrophysics Data System (ADS)

    André, Marie-Françoise

    2004-02-01

    Geomorphological investigations carried out on 15 tor-like features located on the Aurivaara plateau (North Sweden, 68° N) provide new insights in the greatly debated age of these landforms. Erratics and till trapped deep in the tor joints support a pre-Weichselian age for tor formation. Moreover, the occurrence of various weathering stages in allochtonous material, the joint width up to 1.5 m (requiring long-term weathering), and the frequent association of tors with pediment-like forms, suggest pre-Quaternary tor formation. The juxtaposition of fresh erratics and in situ old weathering features (mushroom rocks, concentrically weathered well-rounded corestones, and grus) indicates a predominantly cold-based regime for the Scandinavian ice sheet, with erratics carried by the overlying moving ice being repeatedly deposited on tor summits during deglaciation phases. The relationships between tors and ice action indicated for the Aurivaara plateau result in the proposal of a morphodynamical succession of five tor subtypes ranging from the preservation of well-rounded corestones still embedded in grus (suggesting negligible glacial erosion) to the almost complete removal of tor features by ice scouring. A comparison with tors in similar geological and topographical contexts from the unglaciated Dartmoor area allows a tentative evaluation of an average overall glacial erosion of 0-10 m on the northern Sweden plateaus, in sharp contrast with the 190 m overdeepening of the nearby Torneträsk basin. Thus, this case study of Swedish tors provides additional support to the recent interpretations of relict landscapes in previously glaciated areas and is in accordance with the classical «model» of glacial selective erosion established in the Nordic and Arctic mountains.

  7. A tuff cone erupted under frozen-bed ice (northern Victoria Land, Antarctica): linking glaciovolcanic and cosmogenic nuclide data for ice sheet reconstructions

    NASA Astrophysics Data System (ADS)

    Smellie, J. L.; Rocchi, S.; Johnson, J. S.; Di Vincenzo, G.; Schaefer, J. M.

    2018-01-01

    The remains of a small volcanic centre are preserved on a thin bedrock ridge at Harrow Peaks, northern Victoria Land, Antarctica. The outcrop is interpreted as a monogenetic tuff cone relict formed by a hydrovolcanic (phreatomagmatic) eruption of mafic magma at 642 ± 20 ka (by 40Ar-39Ar), corresponding to the peak of the Marine Isotope Stage 16 (MIS16) glacial. Although extensively dissected and strewn with glacial erratics, the outcrop shows no evidence for erosion by ice. From interpretation of the lithofacies and eruptive mechanisms, the weight of the evidence suggests that eruptions took place under a cold-based (frozen-bed) ice sheet. This is the first time that a tuff cone erupted under cold ice has been described. The most distinctive feature of the lithofacies is the dominance of massive lapilli tuff rich in fine ash matrix and abraded lapilli. The lack of stratification is probably due to repeated eruption through a conduit blasted through the ice covering the vent. The ice thickness is uncertain but it might have been as little as 100 m and the preserved tephra accumulated mainly as a crater (or ice conduit) infill. The remainder of the tuff cone edifice was probably deposited supraglacially and underwent destruction by ice advection and, particularly, collapse during a younger interglacial. Dating using 10Be cosmogenic exposure of granitoid basement erratics indicates that the erratics are unrelated to the eruptive period. The 10Be ages suggest that the volcanic outcrop was most recently exposed by ice decay at c. 20.8 ± 0.8 ka (MIS2) and the associated ice was thicker than at 642 ka and probably polythermal rather than cold-based, which is normally assumed for the period.

  8. Karst is a repository for old sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, H.C.

    1994-04-01

    The Paleozoic plateau of southeastern Minnesota has been repeatedly glaciated, and has accumulated several sheets of loess. In the eastern part of this area, most of the older sediments have been eroded away and the late Wisconsinan Peoria loess directly overlies limestone. A lag of erratics from one or more older tills occurs sporadically on the bedrock surface. A more complete record is preserved in some sinkholes and solution cavities. Sinkholes (surface depressions) contain material that washed or collapsed into the hole, as well as material that was deposited directly (such as loess). Solution cavities contain only material sorted bymore » water. Sinkhole fills exposed in roadcuts and quarry walls commonly lack the surface expression and black-dirt funnel'' of active sinkholes. Several of these contain erratic-bearing sediment interpreted as slopewash and mudflow. One appears to contain actual till--unsorted, unbedded pebble-loam that is not mixed with other materials commonly found on the limestone surface, such as red clay or loess. It cannot be determined whether this material was deposited directly or collapsed in later. Solution cavities are typically packed with sediment right up to the top. The bulk of such deposits is typically clay and silt; however, erratic pebbles are present in some. The fine sediment is sorted and bedded, at least in places. In one large cavity fill, a layer of rip-up clay clasts occurs near the top. Study of the stratigraphy of karst sediments in southeastern Minnesota is still preliminary. Techniques which are used to correlate them include: physical characteristics, texture analysis (on material that has not been sorted), sand and pebble lithology, and magnetic polarity. Techniques that could be used include clay mineralogy, geochemical analysis, and thermoluminescence.« less

  9. Restoration of labral anatomy and biomechanics after superior labral anterior-posterior repair: comparison of mattress versus simple technique.

    PubMed

    Boddula, Madhav R; Adamson, Gregory J; Gupta, Akash; McGarry, Michelle H; Lee, Thay Q

    2012-04-01

    Both simple and mattress repair techniques have been utilized with success for type II superior labral anterior-posterior (SLAP) lesions; however, direct anatomic and biomechanical comparisons of these techniques have yet to be clearly demonstrated. For type II SLAP lesions, the mattress suture repair technique will result in greater labral height and better position on the glenoid face and exhibit stronger biomechanical characteristics, when cyclically loaded and loaded to failure through the biceps, compared with the simple suture repair technique. Controlled laboratory study. Six matched pairs of cadaveric shoulders were dissected, and a clock face was created on the glenoid from 9 o'clock (posterior) to 3 o'clock (anterior). For the intact specimen, labral height and labral distance from the glenoid edge were measured using a MicroScribe. A SLAP lesion was then created from 10 o'clock to 2 o'clock. Lesions were repaired with two 3.0-mm BioSuture-Tak anchors placed at 11 o'clock and 1 o'clock. For each pair, a mattress repair was used for one shoulder, and a simple repair was used for the contralateral shoulder. After repair, labral height and labral distance from the glenoid edge were again measured. The specimens were then cyclically loaded and loaded to failure through the biceps using an Instron machine. A paired t test was used for statistical analysis. After mattress repair, a significant increase in labral height occurred compared with intact from 2.5 ± 0.3 mm to 4.3 ± 0.3 mm at 11 o'clock (P = .013), 2.7 ± 0.5 mm to 4.2 ± 0.7 mm at 12:30 o'clock (P = .007), 3.1 ± 0.5 mm to 4.2 ± 0.7 mm at 1 o'clock (P = .006), and 2.8 ± 0.7 mm to 3.7 ± 0.8 mm at 1:30 o'clock (P = .037). There was no significant difference in labral height between the intact condition and after simple repair at any clock face position. Labral height was significantly increased in the mattress repairs compared with simple repairs at 11 o'clock (mean difference, 2.0 mm; P = .008) and 12:30 o'clock (mean difference, 1.3 mm; P = .044). Labral distance from the glenoid edge was not significantly different between techniques. No difference was observed between the mattress and simple repair techniques for all biomechanical parameters, except the simple technique had a higher load and energy absorbed at 2-mm displacement. The mattress technique created a greater labral height while maintaining similar biomechanical characteristics compared with the simple repair, with the exception of load and energy absorbed at 2-mm displacement, which was increased for the simple technique. Mattress repair for type II SLAP lesions creates a higher labral bumper compared with simple repairs, while both techniques resulted in similar biomechanical characteristics.

  10. Eocene diversification of crown group rails (Aves: Gruiformes: Rallidae).

    PubMed

    García-R, Juan C; Gibb, Gillian C; Trewick, Steve A

    2014-01-01

    Central to our understanding of the timing of bird evolution is debate about an apparent conflict between fossil and molecular data. A deep age for higher level taxa within Neoaves is evident from molecular analyses but much remains to be learned about the age of diversification in modern bird families and their evolutionary ecology. In order to better understand the timing and pattern of diversification within the family Rallidae we used a relaxed molecular clock, fossil calibrations, and complete mitochondrial genomes from a range of rallid species analysed in a Bayesian framework. The estimated time of origin of Rallidae is Eocene, about 40.5 Mya, with evidence of intrafamiliar diversification from the Late Eocene to the Miocene. This timing is older than previously suggested for crown group Rallidae, but fossil calibrations, extent of taxon sampling and substantial sequence data give it credence. We note that fossils of Eocene age tentatively assigned to Rallidae are consistent with our findings. Compared to available studies of other bird lineages, the rail clade is old and supports an inference of deep ancestry of ground-dwelling habits among Neoaves.

  11. SlgA, encoded by the homolog of the human schizophrenia-associated gene PRODH, acts in clock neurons to regulate Drosophila aggression.

    PubMed

    Zwarts, Liesbeth; Vulsteke, Veerle; Buhl, Edgar; Hodge, James J L; Callaerts, Patrick

    2017-06-01

    Mutations in the proline dehydrogenase gene PRODH are linked to behavioral alterations in schizophrenia and as part of DiGeorge and velo-cardio-facial syndromes, but the role of PRODH in their etiology remains unclear. Here, we establish a Drosophila model to study the role of PRODH in behavioral disorders. We determine the distribution of the Drosophila PRODH homolog slgA in the brain and show that knockdown and overexpression of human PRODH and slgA in the lateral neurons ventral (LNv) lead to altered aggressive behavior. SlgA acts in an isoform-specific manner and is regulated by casein kinase II (CkII). Our data suggest that these effects are, at least partially, due to effects on mitochondrial function. We thus show that precise regulation of proline metabolism is essential to drive normal behavior and we identify Drosophila aggression as a model behavior relevant for the study of the mechanisms that are impaired in neuropsychiatric disorders. © 2017. Published by The Company of Biologists Ltd.

  12. Chronic alcohol binging injures the liver and other organs by reducing NAD⁺ levels required for sirtuin's deacetylase activity.

    PubMed

    French, Samuel W

    2016-04-01

    NAD(+) levels are markedly reduced when blood alcohol levels are high during binge drinking. This causes liver injury to occur because the enzymes that require NAD(+) as a cofactor such as the sirtuin de-acetylases cannot de-acetylate acetylated proteins such as acetylated histones. This prevents the epigenetic changes that regulate metabolic processes and which prevent organ injury such as fatty liver in response to alcohol abuse. Hyper acetylation of numerous regulatory proteins develops. Systemic multi-organ injury occurs when NAD(+) is reduced. For instance the Circadian clock is altered if NAD(+) is not available. Cell cycle arrest occurs due to up regulation of cell cycle inhibitors leading to DNA damage, mutations, apoptosis and tumorigenesis. NAD(+) is linked to aging in the regulation of telomere stability. NAD(+) is required for mitochondrial renewal. Alcohol dehydrogenase is present in every visceral organ in the body so that there is a systemic reduction of NAD(+) levels in all of these organs during binge drinking. Copyright © 2016. Published by Elsevier Inc.

  13. Autobalanced Ramsey Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanner, Christian; Huntemann, Nils; Lange, Richard; Tamm, Christian; Peik, Ekkehard

    2018-01-01

    We devise a perturbation-immune version of Ramsey's method of separated oscillatory fields. Spectroscopy of an atomic clock transition without compromising the clock's accuracy is accomplished by actively balancing the spectroscopic responses from phase-congruent Ramsey probe cycles of unequal durations. Our simple and universal approach eliminates a wide variety of interrogation-induced line shifts often encountered in high precision spectroscopy, among them, in particular, light shifts, phase chirps, and transient Zeeman shifts. We experimentally demonstrate autobalanced Ramsey spectroscopy on the light shift prone Yb+ 171 electric octupole optical clock transition and show that interrogation defects are not turned into clock errors. This opens up frequency accuracy perspectives below the 10-18 level for the Yb+ system and for other types of optical clocks.

  14. Direct regulation of myocardial triglyceride metabolism by the cardiomyocyte circadian clock

    USDA-ARS?s Scientific Manuscript database

    Maintenance of circadian alignment between an organism and its environment is essential to ensure metabolic homeostasis. Synchrony is achieved by cell autonomous circadian clocks. Despite a growing appreciation of the integral relation between clocks and metabolism, little is known regarding the dir...

  15. Disruption of the circadian clock within the cardiomyocyte influences mycardial contractile function, metabolism, and gene expression

    USDA-ARS?s Scientific Manuscript database

    Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology is poorly understood. We hypothesized that the circadian clock within the cardiomyocyte influences diurnal variatio...

  16. Development of an optically-pumped cesium standard at the Aerospace Corporation

    NASA Technical Reports Server (NTRS)

    Chan, Yat C.

    1992-01-01

    We have initiated a research program to study the performance of compact optically-pumped cesium (Cs) frequency standards, which have potential for future timekeeping applications in space. A Cs beam clock apparatus has been assembled. Basic functions of the frequency standard have been demonstrated. Clock signals are observed with optical pumping schemes using one or two lasers. With two laser pumping, we are able to selectively place up to 80 percent of the atomic population into one of the clock transition states. The observed pattern of clock signal indicates that the velocity distribution of the Cs atoms contributing to the microwave signal is beam-Maxwellian. Thus, in the optically-pumped Cs frequency standards, the entire Cs population in the atomic beam could be utilized to generate the clock signals. This is in contrast to the conventional Cs beam standards where only approx. 1 percent of the atoms in the beam are used. More efficient Cs consumption can lead to improved reliability and increased useful lifetime of the clock.

  17. The role of feeding rhythm, adrenal hormones and neuronal inputs in synchronizing daily clock gene rhythms in the liver.

    PubMed

    Su, Yan; Cailotto, Cathy; Foppen, Ewout; Jansen, Remi; Zhang, Zhi; Buijs, Ruud; Fliers, Eric; Kalsbeek, Andries

    2016-02-15

    The master clock in the hypothalamic suprachiasmatic nucleus (SCN) is assumed to distribute rhythmic information to the periphery via neural, humoral and/or behavioral connections. Until now, feeding, corticosterone and neural inputs are considered important signals for synchronizing daily rhythms in the liver. In this study, we investigated the necessity of neural inputs as well as of the feeding and adrenal hormone rhythms for maintaining daily hepatic clock gene rhythms. Clock genes kept their daily rhythm when only one of these three signals was disrupted, or when we disrupted hepatic neuronal inputs together with the adrenal hormone rhythm or with the daily feeding rhythm. However, all clock genes studied lost their daily expression rhythm after simultaneous disruption of the feeding and adrenal hormone rhythm. These data indicate that either a daily rhythm of feeding or adrenal hormones should be present to synchronize clock gene rhythms in the liver with the SCN. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Circadian clock proteins and immunity.

    PubMed

    Curtis, Anne M; Bellet, Marina M; Sassone-Corsi, Paolo; O'Neill, Luke A J

    2014-02-20

    Immune parameters change with time of day and disruption of circadian rhythms has been linked to inflammatory pathologies. A circadian-clock-controlled immune system might allow an organism to anticipate daily changes in activity and feeding and the associated risk of infection or tissue damage to the host. Responses to bacteria have been shown to vary depending on time of infection, with mice being more at risk of sepsis when challenged ahead of their activity phase. Studies highlight the extent to which the molecular clock, most notably the core clock proteins BMAL1, CLOCK, and REV-ERBα, control fundamental aspects of the immune response. Examples include the BMAL1:CLOCK heterodimer regulating toll-like receptor 9 (TLR9) expression and repressing expression of the inflammatory monocyte chemokine ligand (CCL2) as well as REV-ERBα suppressing the induction of interleukin-6. Understanding the daily rhythm of the immune system could have implications for vaccinations and how we manage infectious and inflammatory diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. RNA-seq analysis of Drosophila clock and non-clock neurons reveals neuron-specific cycling and novel candidate neuropeptides.

    PubMed

    Abruzzi, Katharine C; Zadina, Abigail; Luo, Weifei; Wiyanto, Evelyn; Rahman, Reazur; Guo, Fang; Shafer, Orie; Rosbash, Michael

    2017-02-01

    Locomotor activity rhythms are controlled by a network of ~150 circadian neurons within the adult Drosophila brain. They are subdivided based on their anatomical locations and properties. We profiled transcripts "around the clock" from three key groups of circadian neurons with different functions. We also profiled a non-circadian outgroup, dopaminergic (TH) neurons. They have cycling transcripts but fewer than clock neurons as well as low expression and poor cycling of clock gene transcripts. This suggests that TH neurons do not have a canonical circadian clock and that their gene expression cycling is driven by brain systemic cues. The three circadian groups are surprisingly diverse in their cycling transcripts and overall gene expression patterns, which include known and putative novel neuropeptides. Even the overall phase distributions of cycling transcripts are distinct, indicating that different regulatory principles govern transcript oscillations. This surprising cell-type diversity parallels the functional heterogeneity of the different neurons.

  20. Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of Drosophila revealed by real-time cyclic AMP imaging.

    PubMed

    Shafer, Orie T; Kim, Dong Jo; Dunbar-Yaffe, Richard; Nikolaev, Viacheslav O; Lohse, Martin J; Taghert, Paul H

    2008-04-24

    The neuropeptide PDF is released by sixteen clock neurons in Drosophila and helps maintain circadian activity rhythms by coordinating a network of approximately 150 neuronal clocks. Whether PDF acts directly on elements of this neural network remains unknown. We address this question by adapting Epac1-camps, a genetically encoded cAMP FRET sensor, for use in the living brain. We find that a subset of the PDF-expressing neurons respond to PDF with long-lasting cAMP increases and confirm that such responses require the PDF receptor. In contrast, an unrelated Drosophila neuropeptide, DH31, stimulates large cAMP increases in all PDF-expressing clock neurons. Thus, the network of approximately 150 clock neurons displays widespread, though not uniform, PDF receptivity. This work introduces a sensitive means of measuring cAMP changes in a living brain with subcellular resolution. Specifically, it experimentally confirms the longstanding hypothesis that PDF is a direct modulator of most neurons in the Drosophila clock network.

Top