Sample records for error analysis attitude

  1. Attitude Determination Error Analysis System (ADEAS) mathematical specifications document

    NASA Technical Reports Server (NTRS)

    Nicholson, Mark; Markley, F.; Seidewitz, E.

    1988-01-01

    The mathematical specifications of Release 4.0 of the Attitude Determination Error Analysis System (ADEAS), which provides a general-purpose linear error analysis capability for various spacecraft attitude geometries and determination processes, are presented. The analytical basis of the system is presented. The analytical basis of the system is presented, and detailed equations are provided for both three-axis-stabilized and spin-stabilized attitude sensor models.

  2. An analysis of the Kalman filter in the Gamma Ray Observatory (GRO) onboard attitude determination subsystem

    NASA Technical Reports Server (NTRS)

    Snow, Frank; Harman, Richard; Garrick, Joseph

    1988-01-01

    The Gamma Ray Observatory (GRO) spacecraft needs a highly accurate attitude knowledge to achieve its mission objectives. Utilizing the fixed-head star trackers (FHSTs) for observations and gyroscopes for attitude propagation, the discrete Kalman Filter processes the attitude data to obtain an onboard accuracy of 86 arc seconds (3 sigma). A combination of linear analysis and simulations using the GRO Software Simulator (GROSS) are employed to investigate the Kalman filter for stability and the effects of corrupted observations (misalignment, noise), incomplete dynamic modeling, and nonlinear errors on Kalman filter. In the simulations, on-board attitude is compared with true attitude, the sensitivity of attitude error to model errors is graphed, and a statistical analysis is performed on the residuals of the Kalman Filter. In this paper, the modeling and sensor errors that degrade the Kalman filter solution beyond mission requirements are studied, and methods are offered to identify the source of these errors.

  3. Gamma Ray Observatory (GRO) OBC attitude error analysis

    NASA Technical Reports Server (NTRS)

    Harman, R. R.

    1990-01-01

    This analysis involves an in-depth look into the onboard computer (OBC) attitude determination algorithm. A review of TRW error analysis and necessary ground simulations to understand the onboard attitude determination process are performed. In addition, a plan is generated for the in-flight calibration and validation of OBC computed attitudes. Pre-mission expected accuracies are summarized and sensitivity of onboard algorithms to sensor anomalies and filter tuning parameters are addressed.

  4. Performance analysis of a GPS Interferometric attitude determination system for a gravity gradient stabilized spacecraft. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Stoll, John C.

    1995-01-01

    The performance of an unaided attitude determination system based on GPS interferometry is examined using linear covariance analysis. The modelled system includes four GPS antennae onboard a gravity gradient stabilized spacecraft, specifically the Air Force's RADCAL satellite. The principal error sources are identified and modelled. The optimal system's sensitivities to these error sources are examined through an error budget and by varying system parameters. The effects of two satellite selection algorithms, Geometric and Attitude Dilution of Precision (GDOP and ADOP, respectively) are examined. The attitude performance of two optimal-suboptimal filters is also presented. Based on this analysis, the limiting factors in attitude accuracy are the knowledge of the relative antenna locations, the electrical path lengths from the antennae to the receiver, and the multipath environment. The performance of the system is found to be fairly insensitive to torque errors, orbital inclination, and the two satellite geometry figures-of-merit tested.

  5. An Analysis of College Students' Attitudes towards Error Correction in EFL Context

    ERIC Educational Resources Information Center

    Zhu, Honglin

    2010-01-01

    This article is based on a survey on the attitudes towards the error correction by their teachers in the process of teaching and learning and it is intended to improve the language teachers' understanding of the nature of error correction. Based on the analysis, the article expounds some principles and techniques that can be applied in the process…

  6. Transparency When Things Go Wrong: Physician Attitudes About Reporting Medical Errors to Patients, Peers, and Institutions.

    PubMed

    Bell, Sigall K; White, Andrew A; Yi, Jean C; Yi-Frazier, Joyce P; Gallagher, Thomas H

    2017-12-01

    Transparent communication after medical error includes disclosing the mistake to the patient, discussing the event with colleagues, and reporting to the institution. Little is known about whether attitudes about these transparency practices are related. Understanding these relationships could inform educational and organizational strategies to promote transparency. We analyzed responses of 3038 US and Canadian physicians to a medical error communication survey. We used bivariate correlations, principal components analysis, and linear regression to determine whether and how physician attitudes about transparent communication with patients, peers, and the institution after error were related. Physician attitudes about disclosing errors to patients, peers, and institutions were correlated (all P's < 0.001) and represented 2 principal components analysis factors, namely, communication with patients and communication with peers/institution. Predictors of attitudes supporting transparent communication with patients and peers/institution included female sex, US (vs Canadian) doctors, academic (vs private) practice, the belief that disclosure decreased likelihood of litigation, and the belief that system changes occur after error reporting. In addition, younger physicians, surgeons, and those with previous experience disclosing a serious error were more likely to agree with disclosure to patients. In comparison, doctors who believed that disclosure would decrease patient trust were less likely to agree with error disclosure to patients. Previous disclosure education was associated with attitudes supporting greater transparency with peers/institution. Physician attitudes about discussing errors with patients, colleagues, and institutions are related. Several predictors of transparency affect all 3 practices and are potentially modifiable by educational and institutional strategies.

  7. A general geometric theory of attitude determination from directional sensing

    NASA Technical Reports Server (NTRS)

    Fang, B. T.

    1976-01-01

    A general geometric theory of spacecraft attitude determination from external reference direction sensors was presented. Outputs of different sensors are reduced to two kinds of basic directional measurements. Errors in these measurement equations are studied in detail. The partial derivatives of measurements with respect to the spacecraft orbit, the spacecraft attitude, and the error parameters form the basis for all orbit and attitude determination schemes and error analysis programs and are presented in a series of tables. The question of attitude observability is studied with the introduction of a graphical construction which provides a great deal of physical insight. The result is applied to the attitude observability of the IMP-8 spacecraft.

  8. Evaluating the Effectiveness of an Educational Intervention to Improve the Patient Safety Attitudes of Intern Pharmacists

    PubMed Central

    Fois, Romano A.; McLachlan, Andrew J.; Chen, Timothy F.

    2017-01-01

    Objective. To evaluate the effectiveness of a face-to-face educational intervention in improving the patient safety attitudes of intern pharmacists. Methods. A patient safety education program was delivered to intern pharmacists undertaking The University of Sydney Intern Training Program in 2014. Their patient safety attitudes were evaluated immediately prior to, immediately after, and three-months post-intervention. Underlying attitudinal factors were identified using exploratory factor analysis. Changes in factor scores were examined using analysis of variance. Results. Of the 120 interns enrolled, 95 (78.7%) completed all three surveys. Four underlying attitudinal factors were identified: attitudes towards addressing errors, questioning behaviors, blaming individuals, and reporting errors. Improvements in all attitudinal factors were evident immediately after the intervention. However, only improvements in attitudes towards blaming individuals involved in errors were sustained at three months post-intervention. Conclusion. The educational intervention was associated with short-term improvements in pharmacist interns’ patient safety attitudes. However, other factors likely influenced their attitudes in the longer term. PMID:28289295

  9. Evaluating the Effectiveness of an Educational Intervention to Improve the Patient Safety Attitudes of Intern Pharmacists.

    PubMed

    Walpola, Ramesh L; Fois, Romano A; McLachlan, Andrew J; Chen, Timothy F

    2017-02-25

    Objective. To evaluate the effectiveness of a face-to-face educational intervention in improving the patient safety attitudes of intern pharmacists. Methods. A patient safety education program was delivered to intern pharmacists undertaking The University of Sydney Intern Training Program in 2014. Their patient safety attitudes were evaluated immediately prior to, immediately after, and three-months post-intervention. Underlying attitudinal factors were identified using exploratory factor analysis. Changes in factor scores were examined using analysis of variance. Results. Of the 120 interns enrolled, 95 (78.7%) completed all three surveys. Four underlying attitudinal factors were identified: attitudes towards addressing errors, questioning behaviors, blaming individuals, and reporting errors. Improvements in all attitudinal factors were evident immediately after the intervention. However, only improvements in attitudes towards blaming individuals involved in errors were sustained at three months post-intervention. Conclusion. The educational intervention was associated with short-term improvements in pharmacist interns' patient safety attitudes. However, other factors likely influenced their attitudes in the longer term.

  10. Performance analysis of an integrated GPS/inertial attitude determination system. M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Sullivan, Wendy I.

    1994-01-01

    The performance of an integrated GPS/inertial attitude determination system is investigated using a linear covariance analysis. The principles of GPS interferometry are reviewed, and the major error sources of both interferometers and gyroscopes are discussed and modeled. A new figure of merit, attitude dilution of precision (ADOP), is defined for two possible GPS attitude determination methods, namely single difference and double difference interferometry. Based on this figure of merit, a satellite selection scheme is proposed. The performance of the integrated GPS/inertial attitude determination system is determined using a linear covariance analysis. Based on this analysis, it is concluded that the baseline errors (i.e., knowledge of the GPS interferometer baseline relative to the vehicle coordinate system) are the limiting factor in system performance. By reducing baseline errors, it should be possible to use lower quality gyroscopes without significantly reducing performance. For the cases considered, single difference interferometry is only marginally better than double difference interferometry. Finally, the performance of the system is found to be relatively insensitive to the satellite selection technique.

  11. Upper Atmosphere Research Satellite (UARS) onboard attitude determination using a Kalman filter

    NASA Technical Reports Server (NTRS)

    Garrick, Joseph

    1993-01-01

    The Upper Atmospheric Research Satellite (UARS) requires a highly accurate knowledge of its attitude to accomplish its mission. Propagation of the attitude state using gyro measurements is not sufficient to meet the accuracy requirements, and must be supplemented by a observer/compensation process to correct for dynamics and observation anomalies. The process of amending the attitude state utilizes a well known method, the discrete Kalman Filter. This study is a sensitivity analysis of the discrete Kalman Filter as implemented in the UARS Onboard Computer (OBC). The stability of the Kalman Filter used in the normal on-orbit control mode within the OBC, is investigated for the effects of corrupted observations and nonlinear errors. Also, a statistical analysis on the residuals of the Kalman Filter is performed. These analysis is based on simulations using the UARS Dynamics Simulator (UARSDSIM) and compared against attitude requirements as defined by General Electric (GE). An independent verification of expected accuracies is performed using the Attitude Determination Error Analysis System (ADEAS).

  12. A general model for attitude determination error analysis

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Seidewitz, ED; Nicholson, Mark

    1988-01-01

    An overview is given of a comprehensive approach to filter and dynamics modeling for attitude determination error analysis. The models presented include both batch least-squares and sequential attitude estimation processes for both spin-stabilized and three-axis stabilized spacecraft. The discussion includes a brief description of a dynamics model of strapdown gyros, but it does not cover other sensor models. Model parameters can be chosen to be solve-for parameters, which are assumed to be estimated as part of the determination process, or consider parameters, which are assumed to have errors but not to be estimated. The only restriction on this choice is that the time evolution of the consider parameters must not depend on any of the solve-for parameters. The result of an error analysis is an indication of the contributions of the various error sources to the uncertainties in the determination of the spacecraft solve-for parameters. The model presented gives the uncertainty due to errors in the a priori estimates of the solve-for parameters, the uncertainty due to measurement noise, the uncertainty due to dynamic noise (also known as process noise or measurement noise), the uncertainty due to the consider parameters, and the overall uncertainty due to all these sources of error.

  13. A gamma ray observatory ground attitude error analysis study using the generalized calibration system

    NASA Technical Reports Server (NTRS)

    Ketchum, E.

    1988-01-01

    The Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) will be responsible for performing ground attitude determination for Gamma Ray Observatory (GRO) support. The study reported in this paper provides the FDD and the GRO project with ground attitude determination error information and illustrates several uses of the Generalized Calibration System (GCS). GCS, an institutional software tool in the FDD, automates the computation of the expected attitude determination uncertainty that a spacecraft will encounter during its mission. The GRO project is particularly interested in the uncertainty in the attitude determination using Sun sensors and a magnetometer when both star trackers are inoperable. In order to examine the expected attitude errors for GRO, a systematic approach was developed including various parametric studies. The approach identifies pertinent parameters and combines them to form a matrix of test runs in GCS. This matrix formed the basis for this study.

  14. Sunrise/sunset thermal shock disturbance analysis and simulation for the TOPEX satellite

    NASA Technical Reports Server (NTRS)

    Dennehy, C. J.; Welch, R. V.; Zimbelman, D. F.

    1990-01-01

    It is shown here that during normal on-orbit operations the TOPEX low-earth orbiting satellite is subjected to an impulsive disturbance torque caused by rapid heating of its solar array when entering and exiting the earth's shadow. Error budgets and simulation results are used to demonstrate that this sunrise/sunset torque disturbance is the dominant Normal Mission Mode (NMM) attitude error source. The detailed thermomechanical modeling, analysis, and simulation of this torque is described, and the predicted on-orbit performance of the NMM attitude control system in the face of the sunrise/sunset disturbance is presented. The disturbance results in temporary attitude perturbations that exceed NMM pointing requirements. However, they are below the maximum allowable pointing error which would cause the radar altimeter to break lock.

  15. [The effectiveness of error reporting promoting strategy on nurse's attitude, patient safety culture, intention to report and reporting rate].

    PubMed

    Kim, Myoungsoo

    2010-04-01

    The purpose of this study was to examine the impact of strategies to promote reporting of errors on nurses' attitude to reporting errors, organizational culture related to patient safety, intention to report and reporting rate in hospital nurses. A nonequivalent control group non-synchronized design was used for this study. The program was developed and then administered to the experimental group for 12 weeks. Data were analyzed using descriptive analysis, X(2)-test, t-test, and ANCOVA with the SPSS 12.0 program. After the intervention, the experimental group showed significantly higher scores for nurses' attitude to reporting errors (experimental: 20.73 vs control: 20.52, F=5.483, p=.021) and reporting rate (experimental: 3.40 vs control: 1.33, F=1998.083, p<.001). There was no significant difference in some categories for organizational culture and intention to report. The study findings indicate that strategies that promote reporting of errors play an important role in producing positive attitudes to reporting errors and improving behavior of reporting. Further advanced strategies for reporting errors that can lead to improved patient safety should be developed and applied in a broad range of hospitals.

  16. Orbit/attitude estimation with LANDSAT Landmark data

    NASA Technical Reports Server (NTRS)

    Hall, D. L.; Waligora, S.

    1979-01-01

    The use of LANDSAT landmark data for orbit/attitude and camera bias estimation was studied. The preliminary results of these investigations are presented. The Goddard Trajectory Determination System (GTDS) error analysis capability was used to perform error analysis studies. A number of questions were addressed including parameter observability and sensitivity, effects on the solve-for parameter errors of data span, density, and distribution an a priori covariance weighting. The use of the GTDS differential correction capability with acutal landmark data was examined. The rms line and element observation residuals were studied as a function of the solve-for parameter set, a priori covariance weighting, force model, attitude model and data characteristics. Sample results are presented. Finally, verfication and preliminary system evaluation of the LANDSAT NAVPAK system for sequential (extended Kalman Filter) estimation of orbit, and camera bias parameters is given.

  17. An analysis of control reversal errors during unusual attitude recoveries using helmet-mounted display symbology.

    PubMed

    Liggett, Kristen K; Gallimore, Jennie J

    2002-02-01

    Spatial disorientation (SD) refers to pilots' inability to accurately interpret the attitude of their aircraft with respect to Earth. Unfortunately, SD statistics have held constant for the past few decades, through the transition from the head-down attitude indicator (Al) to the head-up display (HUD) as the attitude instrument. The newest attitude-indicating device to find its way into military cockpits is the helmet-mounted display (HMD). HMDs were initially introduced into the cockpit to enhance target location and weapon-pointing, but there is currently an effort to make HMDs attitude reference displays so pilots need not go head-down to obtain attitude information. However, unintuitive information or inappropriate implementation of on-boresight attitude symbology on the HMD may contribute to the SD problem. The occurrence of control reversal errors (CREs) during unusual attitude recovery tasks when using an HMD to provide attitude information was investigated. The effect of such errors was evaluated in terms of altitude changes during recovery and time to recover. There were 12 pilot-subjects who completed 8 unusual attitude recovery tasks. Results showed that CREs did occur, and there was a significant negative effect of these errors on absolute altitude change, but not on total recovery time. Results failed to show a decrease in the number of CREs occurring when using the HMD as compared with data from other studies that used an Al or a HUD. Results suggest that new HMD attitude symbology needs to be designed to help reduce CREs and, perhaps, SD incidences.

  18. Error analysis and experiments of attitude measurement using laser gyroscope

    NASA Astrophysics Data System (ADS)

    Ren, Xin-ran; Ma, Wen-li; Jiang, Ping; Huang, Jin-long; Pan, Nian; Guo, Shuai; Luo, Jun; Li, Xiao

    2018-03-01

    The precision of photoelectric tracking and measuring equipment on the vehicle and vessel is deteriorated by the platform's movement. Specifically, the platform's movement leads to the deviation or loss of the target, it also causes the jitter of visual axis and then produces image blur. In order to improve the precision of photoelectric equipment, the attitude of photoelectric equipment fixed with the platform must be measured. Currently, laser gyroscope is widely used to measure the attitude of the platform. However, the measurement accuracy of laser gyro is affected by its zero bias, scale factor, installation error and random error. In this paper, these errors were analyzed and compensated based on the laser gyro's error model. The static and dynamic experiments were carried out on a single axis turntable, and the error model was verified by comparing the gyro's output with an encoder with an accuracy of 0.1 arc sec. The accuracy of the gyroscope has increased from 7000 arc sec to 5 arc sec for an hour after error compensation. The method used in this paper is suitable for decreasing the laser gyro errors in inertial measurement applications.

  19. Horizon sensors attitude errors simulation for the Brazilian Remote Sensing Satellite

    NASA Astrophysics Data System (ADS)

    Vicente de Brum, Antonio Gil; Ricci, Mario Cesar

    Remote sensing, meteorological and other types of satellites require an increasingly better Earth related positioning. From the past experience it is well known that the thermal horizon in the 15 micrometer band provides conditions of determining the local vertical at any time. This detection is done by horizon sensors which are accurate instruments for Earth referred attitude sensing and control whose performance is limited by systematic and random errors amounting about 0.5 deg. Using the computer programs OBLATE, SEASON, ELECTRO and MISALIGN, developed at INPE to simulate four distinct facets of conical scanning horizon sensors, attitude errors are obtained for the Brazilian Remote Sensing Satellite (the first one, SSR-1, is scheduled to fly in 1996). These errors are due to the oblate shape of the Earth, seasonal and latitudinal variations of the 15 micrometer infrared radiation, electronic processing time delay and misalignment of sensor axis. The sensor related attitude errors are thus properly quantified in this work and will, together with other systematic errors (for instance, ambient temperature variation) take part in the pre-launch analysis of the Brazilian Remote Sensing Satellite, with respect to the horizon sensor performance.

  20. Error analysis of satellite attitude determination using a vision-based approach

    NASA Astrophysics Data System (ADS)

    Carozza, Ludovico; Bevilacqua, Alessandro

    2013-09-01

    Improvements in communication and processing technologies have opened the doors to exploit on-board cameras to compute objects' spatial attitude using only the visual information from sequences of remote sensed images. The strategies and the algorithmic approach used to extract such information affect the estimation accuracy of the three-axis orientation of the object. This work presents a method for analyzing the most relevant error sources, including numerical ones, possible drift effects and their influence on the overall accuracy, referring to vision-based approaches. The method in particular focuses on the analysis of the image registration algorithm, carried out through on-purpose simulations. The overall accuracy has been assessed on a challenging case study, for which accuracy represents the fundamental requirement. In particular, attitude determination has been analyzed for small satellites, by comparing theoretical findings to metric results from simulations on realistic ground-truth data. Significant laboratory experiments, using a numerical control unit, have further confirmed the outcome. We believe that our analysis approach, as well as our findings in terms of error characterization, can be useful at proof-of-concept design and planning levels, since they emphasize the main sources of error for visual based approaches employed for satellite attitude estimation. Nevertheless, the approach we present is also of general interest for all the affine applicative domains which require an accurate estimation of three-dimensional orientation parameters (i.e., robotics, airborne stabilization).

  1. Flight Mechanics Symposium 1997

    NASA Technical Reports Server (NTRS)

    Walls, Donna M. (Editor)

    1997-01-01

    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium. This symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.

  2. Linearizing feedforward/feedback attitude control

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    1991-01-01

    An approach to attitude control theory is introduced in which a linear form is postulated for the closed-loop rotation error dynamics, then the exact control law required to realize it is derived. The nonminimal (four-component) quaternion form is used to attitude because it is globally nonsingular, but the minimal (three-component) quaternion form is used for attitude error because it has no nonlinear constraints to prevent the rotational error dynamics from being linearized, and the definition of the attitude error is based on quaternion algebra. This approach produces an attitude control law that linearizes the closed-loop rotational error dynamics exactly, without any attitude singularities, even if the control errors become large.

  3. An exploration of Australian hospital pharmacists' attitudes to patient safety.

    PubMed

    Lalor, Daniel J; Chen, Timothy F; Walpola, Ramesh; George, Rachel A; Ashcroft, Darren M; Fois, Romano A

    2015-02-01

    To explore the attitudes of Australian hospital pharmacists towards patient safety in their work settings. A safety climate questionnaire was administered to all 2347 active members of the Society of Hospital Pharmacists of Australia in 2010. Part of the survey elicited free-text comments about patient safety, error and incident reporting. The comments were subjected to thematic analysis to determine the attitudes held by respondents in relation to patient safety and its quality management in their work settings. Two hundred and ten (210) of 643 survey respondents provided comments on safety and quality issues related to their work settings. The responses contained a number of dominant themes including issues of workforce and working conditions, incident reporting systems, the response when errors occur, the presence or absence of a blame culture, hospital management support for safety initiatives, openness about errors and the value of teamwork. A number of pharmacists described the development of a mature patient-safety culture - one that is open about reporting errors and active in reducing their occurrence. Others described work settings in which a culture of blame persists, stifling error reporting and ultimately compromising patient safety. Australian hospital pharmacists hold a variety of attitudes that reflect diverse workplace cultures towards patient safety, error and incident reporting. This study has provided an insight into these attitudes and the actions that are needed to improve the patient-safety culture within Australian hospital pharmacy work settings. © 2014 Royal Pharmaceutical Society.

  4. Attitude-error compensation for airborne down-looking synthetic-aperture imaging lidar

    NASA Astrophysics Data System (ADS)

    Li, Guang-yuan; Sun, Jian-feng; Zhou, Yu; Lu, Zhi-yong; Zhang, Guo; Cai, Guang-yu; Liu, Li-ren

    2017-11-01

    Target-coordinate transformation in the lidar spot of the down-looking synthetic-aperture imaging lidar (SAIL) was performed, and the attitude errors were deduced in the process of imaging, according to the principle of the airborne down-looking SAIL. The influence of the attitude errors on the imaging quality was analyzed theoretically. A compensation method for the attitude errors was proposed and theoretically verified. An airborne down-looking SAIL experiment was performed and yielded the same results. A point-by-point error-compensation method for solving the azimuthal-direction space-dependent attitude errors was also proposed.

  5. Attitude control with realization of linear error dynamics

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    1993-01-01

    An attitude control law is derived to realize linear unforced error dynamics with the attitude error defined in terms of rotation group algebra (rather than vector algebra). Euler parameters are used in the rotational dynamics model because they are globally nonsingular, but only the minimal three Euler parameters are used in the error dynamics model because they have no nonlinear mathematical constraints to prevent the realization of linear error dynamics. The control law is singular only when the attitude error angle is exactly pi rad about any eigenaxis, and a simple intuitive modification at the singularity allows the control law to be used globally. The forced error dynamics are nonlinear but stable. Numerical simulation tests show that the control law performs robustly for both initial attitude acquisition and attitude control.

  6. Development and Psychometric Analysis of a Nurses’ Attitudes and Skills Safety Scale: Initial Results

    PubMed Central

    Armstrong, Gail E.; Dietrich, Mary; Norman, Linda; Barnsteiner, Jane; Mion, Lorraine

    2016-01-01

    Health care organizations have incorporated updated safety principles in the analysis of errors and in norms and standards. Yet no research exists that assesses bedside nurses’ perceived skills or attitudes toward updated safety concepts. The aims of this study were to develop a scale assessing nurses’ perceived skills and attitudes toward updated safety concepts, determine content validity, and examine internal consistency of the scale and subscales. Understanding nurses’ perceived skills and attitudes about safety concepts can be used in targeting strategies to enhance their safety practices. PMID:27479518

  7. Development and Psychometric Analysis of a Nurses' Attitudes and Skills Safety Scale: Initial Results.

    PubMed

    Armstrong, Gail E; Dietrich, Mary; Norman, Linda; Barnsteiner, Jane; Mion, Lorraine

    Health care organizations have incorporated updated safety principles in the analysis of errors and in norms and standards. Yet no research exists that assesses bedside nurses' perceived skills or attitudes toward updated safety concepts. The aims of this study were to develop a scale assessing nurses' perceived skills and attitudes toward updated safety concepts, determine content validity, and examine internal consistency of the scale and subscales. Understanding nurses' perceived skills and attitudes about safety concepts can be used in targeting strategies to enhance their safety practices.

  8. Nurses' attitude and intention of medication administration error reporting.

    PubMed

    Hung, Chang-Chiao; Chu, Tsui-Ping; Lee, Bih-O; Hsiao, Chia-Chi

    2016-02-01

    The Aims of this study were to explore the effects of nurses' attitudes and intentions regarding medication administration error reporting on actual reporting behaviours. Underreporting of medication errors is still a common occurrence. Whether attitude and intention towards medication administration error reporting connect to actual reporting behaviours remain unclear. This study used a cross-sectional design with self-administered questionnaires, and the theory of planned behaviour was used as the framework for this study. A total of 596 staff nurses who worked in general wards and intensive care units in a hospital were invited to participate in this study. The researchers used the instruments measuring nurses' attitude, nurse managers' and co-workers' attitude, report control, and nurses' intention to predict nurses' actual reporting behaviours. Data were collected from September-November 2013. Path analyses were used to examine the hypothesized model. Of the 596 nurses invited to participate, 548 (92%) completed and returned a valid questionnaire. The findings indicated that nurse managers' and co-workers' attitudes are predictors for nurses' attitudes towards medication administration error reporting. Nurses' attitudes also influenced their intention to report medication administration errors; however, no connection was found between intention and actual reporting behaviour. The findings reflected links among colleague perspectives, nurses' attitudes, and intention to report medication administration errors. The researchers suggest that hospitals should increase nurses' awareness and recognition of error occurrence. Regardless of nurse managers' and co-workers' attitudes towards medication administration error reporting, nurses are likely to report medication administration errors if they detect them. Management of medication administration errors should focus on increasing nurses' awareness and recognition of error occurrence. © 2015 John Wiley & Sons Ltd.

  9. Knowledge, attitude and associated factors among primary school teachers regarding refractive error in school children in Gondar city, Northwest Ethiopia.

    PubMed

    Alemayehu, Abiy Maru; Belete, Gizchewu Tilahun; Adimassu, Nebiyat Feleke

    2018-01-01

    Refractive error is an important cause of correctable visual impairment in the worldwide with a global distribution of 1.75% to 20.7% among schoolchildren. Teacher's knowledge about refractive error play an important role in encouraging students to seek treatment that helps in reducing the burden of visual impairment. To determine knowledge, attitude and associated factors among primary school teachers regarding refractive error in school children in Gondar city. Institution based cross-sectional study was conducted on 565 primary school teachers in Gondar city using pretested and structured self-administered questionnaire. For processing and analysis, SPSS version 20 was used and variables which had a P value of <0.05 in the multivariable analysis were considered as statistically significant. A total of 565 study subjects were participated in this study with a mean age of 42.05 ± 12.01 years. Of these study participants 55.9% (95% CI: 51.9, 59.8) had good knowledge and 57.2% (95% CI: 52.9, 61.4) had favorable attitude towards refractive error. History of spectacle use [AOR = 2.13 (95% CI: 1.32, 3.43)], history of eye examination [AOR = 1.67 (95% CI: 1.19, 2.34)], training on eye health [AOR = 1.94 (95% CI; 1.09, 3.43)] and 11-20 years of experience [AOR = 2.53 (95% CI: 1.18, 5.43)] were positively associated with knowledge. Whereas being male [AOR = 2.03 (95% CI: 1.37, 3.01)], older age [AOR = 3.05 (95% CI: 1.07, 8.72)], 31-40 years of experience [AOR = 0.23 (95% CI: 0.07, 0.72)], private school type [AOR = 1.76 (95% CI: 1.06, 2.93)] and 5th -8th teaching category [AOR = 1.54 (95% CI: 1.05, 2.24)] were associated with attitude. Knowledge and attitude of study subjects were low which needs training of teachers about the refractive error.

  10. Operational support for Upper Atmosphere Research Satellite (UARS) attitude sensors

    NASA Technical Reports Server (NTRS)

    Lee, M.; Garber, A.; Lambertson, M.; Raina, P.; Underwood, S.; Woodruff, C.

    1994-01-01

    The Upper Atmosphere Research Satellite (UARS) has several sensors that can provide observations for attitude determination: star trackers, Sun sensors (gimbaled as well as fixed), magnetometers, Earth sensors, and gyroscopes. The accuracy of these observations is important for mission success. Analysts on the Flight Dynamics Facility (FDF) UARS Attitude task monitor these data to evaluate the performance of the sensors taking corrective action when appropriate. Monitoring activities range from examining the data during real-time passes to constructing long-term trend plots. Increasing residuals (differences) between the observed and expected quantities is a prime indicator of sensor problems. Residual increases may be due to alignment shifts and/or degradation in sensor output. Residuals from star tracker data revealed and anomalous behavior that contributes to attitude errors. Compensating for this behavior has significantly reduced the attitude errors. This paper discusses the methods used by the FDF UARS attitude task for maintenance of the attitude sensors, including short- and long-term monitoring, trend analysis, and calibration methods, and presents the results obtained through corrective action.

  11. Observability Analysis of a MEMS INS/GPS Integration System with Gyroscope G-Sensitivity Errors

    PubMed Central

    Fan, Chen; Hu, Xiaoping; He, Xiaofeng; Tang, Kanghua; Luo, Bing

    2014-01-01

    Gyroscopes based on micro-electromechanical system (MEMS) technology suffer in high-dynamic applications due to obvious g-sensitivity errors. These errors can induce large biases in the gyroscope, which can directly affect the accuracy of attitude estimation in the integration of the inertial navigation system (INS) and the Global Positioning System (GPS). The observability determines the existence of solutions for compensating them. In this paper, we investigate the observability of the INS/GPS system with consideration of the g-sensitivity errors. In terms of two types of g-sensitivity coefficients matrix, we add them as estimated states to the Kalman filter and analyze the observability of three or nine elements of the coefficient matrix respectively. A global observable condition of the system is presented and validated. Experimental results indicate that all the estimated states, which include position, velocity, attitude, gyro and accelerometer bias, and g-sensitivity coefficients, could be made observable by maneuvering based on the conditions. Compared with the integration system without compensation for the g-sensitivity errors, the attitude accuracy is raised obviously. PMID:25171122

  12. Observability analysis of a MEMS INS/GPS integration system with gyroscope G-sensitivity errors.

    PubMed

    Fan, Chen; Hu, Xiaoping; He, Xiaofeng; Tang, Kanghua; Luo, Bing

    2014-08-28

    Gyroscopes based on micro-electromechanical system (MEMS) technology suffer in high-dynamic applications due to obvious g-sensitivity errors. These errors can induce large biases in the gyroscope, which can directly affect the accuracy of attitude estimation in the integration of the inertial navigation system (INS) and the Global Positioning System (GPS). The observability determines the existence of solutions for compensating them. In this paper, we investigate the observability of the INS/GPS system with consideration of the g-sensitivity errors. In terms of two types of g-sensitivity coefficients matrix, we add them as estimated states to the Kalman filter and analyze the observability of three or nine elements of the coefficient matrix respectively. A global observable condition of the system is presented and validated. Experimental results indicate that all the estimated states, which include position, velocity, attitude, gyro and accelerometer bias, and g-sensitivity coefficients, could be made observable by maneuvering based on the conditions. Compared with the integration system without compensation for the g-sensitivity errors, the attitude accuracy is raised obviously.

  13. Attitude determination using vector observations: A fast optimal matrix algorithm

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    1993-01-01

    The attitude matrix minimizing Wahba's loss function is computed directly by a method that is competitive with the fastest known algorithm for finding this optimal estimate. The method also provides an estimate of the attitude error covariance matrix. Analysis of the special case of two vector observations identifies those cases for which the TRIAD or algebraic method minimizes Wahba's loss function.

  14. Error compensation of single-antenna attitude determination using GNSS for Low-dynamic applications

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Yu, Chao; Cai, Miaomiao

    2017-04-01

    GNSS-based single-antenna pseudo-attitude determination method has attracted more and more attention from the field of high-dynamic navigation due to its low cost, low system complexity, and no temporal accumulated errors. Related researches indicate that this method can be an important complement or even an alternative to the traditional sensors for general accuracy requirement (such as small UAV navigation). The application of single-antenna attitude determining method to low-dynamic carrier has just started. Different from the traditional multi-antenna attitude measurement technique, the pseudo-attitude attitude determination method calculates the rotation angle of the carrier trajectory relative to the earth. Thus it inevitably contains some deviations comparing with the real attitude angle. In low-dynamic application, these deviations are particularly noticeable, which may not be ignored. The causes of the deviations can be roughly classified into three categories, including the measurement error, the offset error, and the lateral error. Empirical correction strategies for the formal two errors have been promoted in previous study, but lack of theoretical support. In this paper, we will provide quantitative description of the three type of errors and discuss the related error compensation methods. Vehicle and shipborne experiments were carried out to verify the feasibility of the proposed correction methods. Keywords: Error compensation; Single-antenna; GNSS; Attitude determination; Low-dynamic

  15. Attitude Error Representations for Kalman Filtering

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The quaternion has the lowest dimensionality possible for a globally nonsingular attitude representation. The quaternion must obey a unit norm constraint, though, which has led to the development of an extended Kalman filter using a quaternion for the global attitude estimate and a three-component representation for attitude errors. We consider various attitude error representations for this Multiplicative Extended Kalman Filter and its second-order extension.

  16. 1999 Flight Mechanics Symposium

    NASA Technical Reports Server (NTRS)

    Lynch, John P. (Editor)

    1999-01-01

    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on May 18-20, 1999. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.

  17. Flight Mechanics/Estimation Theory Symposium, 1992

    NASA Technical Reports Server (NTRS)

    Stengle, Thomas H. (Editor)

    1993-01-01

    This conference publication includes 40 papers and abstracts presented at the Flight Mechanics/Estimation Theory Symposium on May 5-7, 1992. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.

  18. Flight Mechanics/Estimation Theory Symposium 1996

    NASA Technical Reports Server (NTRS)

    Greatorex, Scott (Editor)

    1996-01-01

    This conference publication includes 34 papers and abstracts presented at the Flight Mechanics/ Estimation Theory Symposium on May 14-16, 1996. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.

  19. Flight Mechanics/Estimation Theory Symposium, 1994

    NASA Technical Reports Server (NTRS)

    Hartman, Kathy R. (Editor)

    1994-01-01

    This conference publication includes 41 papers and abstracts presented at the Flight Mechanics/Estimation Theory Symposium on May 17-19, 1994. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.

  20. Flight Mechanics/Estimation Theory Symposium, 1990

    NASA Technical Reports Server (NTRS)

    Stengle, Thomas (Editor)

    1990-01-01

    This conference publication includes 32 papers and abstracts presented at the Flight Mechanics/Estimation Theory Symposium on May 22-25, 1990. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium features technical papers on a wide range of issues related to orbit-attitude prediction, determination and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.

  1. Flight Mechanics/Estimation Theory Symposium 1995

    NASA Technical Reports Server (NTRS)

    Hartman, Kathy R. (Editor)

    1995-01-01

    This conference publication includes 41 papers and abstracts presented at the Flight Mechanics/ Estimation Theory Symposium on May 16-18, 1995. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.

  2. Specialist Physicians' Attitudes and Practice Patterns Regarding Disclosure of Pre-referral Medical Errors.

    PubMed

    Dossett, Lesly A; Kauffmann, Rondi M; Lee, Jay S; Singh, Harkamal; Lee, M Catherine; Morris, Arden M; Jagsi, Reshma; Quinn, Gwendolyn P; Dimick, Justin B

    2018-06-01

    Our objective was to determine specialist physicians' attitudes and practices regarding disclosure of pre-referral errors. Physicians are encouraged to disclose their own errors to patients. However, no clear professional norms exist regarding disclosure when physicians discover errors in diagnosis or treatment that occurred at other institutions before referral. We conducted semistructured interviews of cancer specialists from 2 National Cancer Institute-designated Cancer Centers. We purposively sampled specialists by discipline, sex, and experience-level who self-described a >50% reliance on external referrals (n = 30). Thematic analysis of verbatim interview transcripts was performed to determine physician attitudes regarding disclosure of pre-referral medical errors; whether and how physicians disclose these errors; and barriers to providing full disclosure. Participants described their experiences identifying different types of pre-referral errors including errors of diagnosis, staging and treatment resulting in adverse events ranging from decreased quality of life to premature death. The majority of specialists expressed the belief that disclosure provided no benefit to patients, and might unnecessarily add to their anxiety about their diagnoses or prognoses. Specialists had varying practices of disclosure including none, non-verbal, partial, event-dependent, and full disclosure. They identified a number of barriers to disclosure, including medicolegal implications and damage to referral relationships, the profession's reputation, and to patient-physician relationships. Specialist physicians identify pre-referral errors but struggle with whether and how to provide disclosure, even when clinical circumstances force disclosure. Education- or communication-based interventions that overcome barriers to disclosing pre-referral errors warrant development.

  3. Modal Correction Method For Dynamically Induced Errors In Wind-Tunnel Model Attitude Measurements

    NASA Technical Reports Server (NTRS)

    Buehrle, R. D.; Young, C. P., Jr.

    1995-01-01

    This paper describes a method for correcting the dynamically induced bias errors in wind tunnel model attitude measurements using measured modal properties of the model system. At NASA Langley Research Center, the predominant instrumentation used to measure model attitude is a servo-accelerometer device that senses the model attitude with respect to the local vertical. Under smooth wind tunnel operating conditions, this inertial device can measure the model attitude with an accuracy of 0.01 degree. During wind tunnel tests when the model is responding at high dynamic amplitudes, the inertial device also senses the centrifugal acceleration associated with model vibration. This centrifugal acceleration results in a bias error in the model attitude measurement. A study of the response of a cantilevered model system to a simulated dynamic environment shows significant bias error in the model attitude measurement can occur and is vibration mode and amplitude dependent. For each vibration mode contributing to the bias error, the error is estimated from the measured modal properties and tangential accelerations at the model attitude device. Linear superposition is used to combine the bias estimates for individual modes to determine the overall bias error as a function of time. The modal correction model predicts the bias error to a high degree of accuracy for the vibration modes characterized in the simulated dynamic environment.

  4. Predictive momentum management for a space station measurement and computation requirements

    NASA Technical Reports Server (NTRS)

    Adams, John Carl

    1986-01-01

    An analysis is made of the effects of errors and uncertainties in the predicting of disturbance torques on the peak momentum buildup on a space station. Models of the disturbance torques acting on a space station in low Earth orbit are presented, to estimate how accurately they can be predicted. An analysis of the torque and momentum buildup about the pitch axis of the Dual Keel space station configuration is formulated, and a derivation of the Average Torque Equilibrium Attitude (ATEA) is presented, for the case of no MRMS (Mobile Remote Manipulation System) motion, Y vehicle axis MRMS motion, and Z vehicle axis MRMS motion. Results showed the peak momentum buildup to be approximately 20000 N-m-s and to be relatively insensitive to errors in the predicting torque models, for Z axis motion of the MRMS was found to vary significantly with model errors, but not exceed a value of approximately 15000 N-m-s for the Y axis MRMS motion with 1 deg attitude hold error. Minimum peak disturbance momentum was found not to occur at the ATEA angle, but at a slightly smaller angle. However, this minimum peak momentum attitude was found to produce significant disturbance momentum at the end of the predicting time interval.

  5. Kalman Filter for Spinning Spacecraft Attitude Estimation

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Sedlak, Joseph E.

    2008-01-01

    This paper presents a Kalman filter using a seven-component attitude state vector comprising the angular momentum components in an inertial reference frame, the angular momentum components in the body frame, and a rotation angle. The relatively slow variation of these parameters makes this parameterization advantageous for spinning spacecraft attitude estimation. The filter accounts for the constraint that the magnitude of the angular momentum vector is the same in the inertial and body frames by employing a reduced six-component error state. Four variants of the filter, defined by different choices for the reduced error state, are tested against a quaternion-based filter using simulated data for the THEMIS mission. Three of these variants choose three of the components of the error state to be the infinitesimal attitude error angles, facilitating the computation of measurement sensitivity matrices and causing the usual 3x3 attitude covariance matrix to be a submatrix of the 6x6 covariance of the error state. These variants differ in their choice for the other three components of the error state. The variant employing the infinitesimal attitude error angles and the angular momentum components in an inertial reference frame as the error state shows the best combination of robustness and efficiency in the simulations. Attitude estimation results using THEMIS flight data are also presented.

  6. Flight Mechanics/Estimation Theory Symposium 1988

    NASA Technical Reports Server (NTRS)

    Stengle, Thomas (Editor)

    1988-01-01

    This conference publication includes 28 papers and abstracts presented at the Flight Mechanics/Estimation Theory Symposium on May 10 to 11, 1988. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium features technical papers on a wide range of issue related to orbit-attitude prediction, determination and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.

  7. Knowledge, attitude and associated factors among primary school teachers regarding refractive error in school children in Gondar city, Northwest Ethiopia

    PubMed Central

    2018-01-01

    Introduction Refractive error is an important cause of correctable visual impairment in the worldwide with a global distribution of 1.75% to 20.7% among schoolchildren. Teacher’s knowledge about refractive error play an important role in encouraging students to seek treatment that helps in reducing the burden of visual impairment. Objective To determine knowledge, attitude and associated factors among primary school teachers regarding refractive error in school children in Gondar city. Methods Institution based cross-sectional study was conducted on 565 primary school teachers in Gondar city using pretested and structured self-administered questionnaire. For processing and analysis, SPSS version 20 was used and variables which had a P value of <0.05 in the multivariable analysis were considered as statistically significant. Result A total of 565 study subjects were participated in this study with a mean age of 42.05 ± 12.01 years. Of these study participants 55.9% (95% CI: 51.9, 59.8) had good knowledge and 57.2% (95% CI: 52.9, 61.4) had favorable attitude towards refractive error. History of spectacle use [AOR = 2.13 (95% CI: 1.32, 3.43)], history of eye examination [AOR = 1.67 (95% CI: 1.19, 2.34)], training on eye health [AOR = 1.94 (95% CI; 1.09, 3.43)] and 11–20 years of experience [AOR = 2.53 (95% CI: 1.18, 5.43)] were positively associated with knowledge. Whereas being male [AOR = 2.03 (95% CI: 1.37, 3.01)], older age [AOR = 3.05 (95% CI: 1.07, 8.72)], 31–40 years of experience [AOR = 0.23 (95% CI: 0.07, 0.72)], private school type [AOR = 1.76 (95% CI: 1.06, 2.93)] and 5th -8th teaching category [AOR = 1.54 (95% CI: 1.05, 2.24)] were associated with attitude. Conclusion Knowledge and attitude of study subjects were low which needs training of teachers about the refractive error. PMID:29447172

  8. A First Look at the Navigation Design and Analysis for the Orion Exploration Mission 2

    NASA Technical Reports Server (NTRS)

    D'Souza, Chris D.; Zenetti, Renato

    2017-01-01

    This paper will detail the navigation and dispersion design and analysis of the first Orion crewed mission. The optical navigation measurement model will be described. The vehicle noise includes the residual acceleration from attitude deadbanding, attitude maneuvers, CO2 venting, wastewater venting, ammonia sublimator venting and solar radiation pressure. The maneuver execution errors account for the contribution of accelerometer scale-factor on the accuracy of the maneuver execution. Linear covariance techniques are used to obtain the navigation errors and the trajectory dispersions as well as the DV performance. Particular attention will be paid to the accuracy of the delivery at Earth Entry Interface and at the Lunar Flyby.

  9. Perceptions and Attitudes towards Medication Error Reporting in Primary Care Clinics: A Qualitative Study in Malaysia.

    PubMed

    Samsiah, A; Othman, Noordin; Jamshed, Shazia; Hassali, Mohamed Azmi

    2016-01-01

    To explore and understand participants' perceptions and attitudes towards the reporting of medication errors (MEs). A qualitative study using in-depth interviews of 31 healthcare practitioners from nine publicly funded, primary care clinics in three states in peninsular Malaysia was conducted for this study. The participants included family medicine specialists, doctors, pharmacists, pharmacist assistants, nurses and assistant medical officers. The interviews were audiotaped and transcribed verbatim. Analysis of the data was guided by the framework approach. Six themes and 28 codes were identified. Despite the availability of a reporting system, most of the participants agreed that MEs were underreported. The nature of the error plays an important role in determining the reporting. The reporting system, organisational factors, provider factors, reporter's burden and benefit of reporting also were identified. Healthcare practitioners in primary care clinics understood the importance of reporting MEs to improve patient safety. Their perceptions and attitudes towards reporting of MEs were influenced by many factors which affect the decision-making process of whether or not to report. Although the process is complex, it primarily is determined by the severity of the outcome of the errors. The participants voluntarily report the errors if they are familiar with the reporting system, what error to report, when to report and what form to use.

  10. Rotation Matrix Method Based on Ambiguity Function for GNSS Attitude Determination.

    PubMed

    Yang, Yingdong; Mao, Xuchu; Tian, Weifeng

    2016-06-08

    Global navigation satellite systems (GNSS) are well suited for attitude determination. In this study, we use the rotation matrix method to resolve the attitude angle. This method achieves better performance in reducing computational complexity and selecting satellites. The condition of the baseline length is combined with the ambiguity function method (AFM) to search for integer ambiguity, and it is validated in reducing the span of candidates. The noise error is always the key factor to the success rate. It is closely related to the satellite geometry model. In contrast to the AFM, the LAMBDA (Least-squares AMBiguity Decorrelation Adjustment) method gets better results in solving the relationship of the geometric model and the noise error. Although the AFM is more flexible, it is lack of analysis on this aspect. In this study, the influence of the satellite geometry model on the success rate is analyzed in detail. The computation error and the noise error are effectively treated. Not only is the flexibility of the AFM inherited, but the success rate is also increased. An experiment is conducted in a selected campus, and the performance is proved to be effective. Our results are based on simulated and real-time GNSS data and are applied on single-frequency processing, which is known as one of the challenging case of GNSS attitude determination.

  11. Analysis of Meteorological Satellite location and data collection system concepts

    NASA Technical Reports Server (NTRS)

    Wallace, R. G.; Reed, D. L.

    1981-01-01

    A satellite system that employs a spaceborne RF interferometer to determine the location and velocity of data collection platforms attached to meteorological balloons is proposed. This meteorological advanced location and data collection system (MALDCS) is intended to fly aboard a low polar orbiting satellite. The flight instrument configuration includes antennas supported on long deployable booms. The platform location and velocity estimation errors introduced by the dynamic and thermal behavior of the antenna booms and the effects of the presence of the booms on the performance of the spacecraft's attitude control system, and the control system design considerations critical to stable operations are examined. The physical parameters of the Astromast type of deployable boom were used in the dynamic and thermal boom analysis, and the TIROS N system was assumed for the attitude control analysis. Velocity estimation error versus boom length was determined. There was an optimum, minimum error, antenna separation distance. A description of the proposed MALDCS system and a discussion of ambiguity resolution are included.

  12. Precision Attitude Determination System (PADS) design and analysis. Two-axis gimbal star tracker

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Development of the Precision Attitude Determination System (PADS) focused chiefly on the two-axis gimballed star tracker and electronics design improved from that of Precision Pointing Control System (PPCS), and application of the improved tracker for PADS at geosynchronous altitude. System design, system analysis, software design, and hardware design activities are reported. The system design encompasses the PADS configuration, system performance characteristics, component design summaries, and interface considerations. The PADS design and performance analysis includes error analysis, performance analysis via attitude determination simulation, and star tracker servo design analysis. The design of the star tracker and electronics are discussed. Sensor electronics schematics are included. A detailed characterization of the application software algorithms and computer requirements is provided.

  13. Role-modeling and medical error disclosure: a national survey of trainees.

    PubMed

    Martinez, William; Hickson, Gerald B; Miller, Bonnie M; Doukas, David J; Buckley, John D; Song, John; Sehgal, Niraj L; Deitz, Jennifer; Braddock, Clarence H; Lehmann, Lisa Soleymani

    2014-03-01

    To measure trainees' exposure to negative and positive role-modeling for responding to medical errors and to examine the association between that exposure and trainees' attitudes and behaviors regarding error disclosure. Between May 2011 and June 2012, 435 residents at two large academic medical centers and 1,187 medical students from seven U.S. medical schools received anonymous, electronic questionnaires. The questionnaire asked respondents about (1) experiences with errors, (2) training for responding to errors, (3) behaviors related to error disclosure, (4) exposure to role-modeling for responding to errors, and (5) attitudes regarding disclosure. Using multivariate regression, the authors analyzed whether frequency of exposure to negative and positive role-modeling independently predicted two primary outcomes: (1) attitudes regarding disclosure and (2) nontransparent behavior in response to a harmful error. The response rate was 55% (884/1,622). Training on how to respond to errors had the largest independent, positive effect on attitudes (standardized effect estimate, 0.32, P < .001); negative role-modeling had the largest independent, negative effect (standardized effect estimate, -0.26, P < .001). Positive role-modeling had a positive effect on attitudes (standardized effect estimate, 0.26, P < .001). Exposure to negative role-modeling was independently associated with an increased likelihood of trainees' nontransparent behavior in response to an error (OR 1.37, 95% CI 1.15-1.64; P < .001). Exposure to role-modeling predicts trainees' attitudes and behavior regarding the disclosure of harmful errors. Negative role models may be a significant impediment to disclosure among trainees.

  14. Use of Earth's magnetic field for mitigating gyroscope errors regardless of magnetic perturbation.

    PubMed

    Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard

    2011-01-01

    Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth's magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth's magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment.

  15. Use of Earth’s Magnetic Field for Mitigating Gyroscope Errors Regardless of Magnetic Perturbation

    PubMed Central

    Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard

    2011-01-01

    Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth’s magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth’s magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment. PMID:22247672

  16. Use of Fuzzycones for Sun-Only Attitude Determination: THEMIS Becomes ARTEMIS

    NASA Technical Reports Server (NTRS)

    Hashmall, Joseph A.; Felikson, Denis; Sedlak, Joseph E.

    2009-01-01

    In order for two THEMIS probes to successfully transition to ARTEMIS it will be necessary to determine attitudes with moderate accuracy using Sun sensor data only. To accomplish this requirement, an implementation of the Fuzzycones maximum likelihood algorithm was developed. The effect of different measurement uncertainty models on Fuzzycones attitude accuracy was investigated and a bin-transition technique was introduced to improve attitude accuracy using data with uniform error distributions. The algorithm was tested with THEMIS data and in simulations. The analysis results show that the attitude requirements can be met using Fuzzycones and data containing two bin-transitions.

  17. Low-Frequency Error Extraction and Compensation for Attitude Measurements from STECE Star Tracker

    PubMed Central

    Lai, Yuwang; Gu, Defeng; Liu, Junhong; Li, Wenping; Yi, Dongyun

    2016-01-01

    The low frequency errors (LFE) of star trackers are the most penalizing errors for high-accuracy satellite attitude determination. Two test star trackers- have been mounted on the Space Technology Experiment and Climate Exploration (STECE) satellite, a small satellite mission developed by China. To extract and compensate the LFE of the attitude measurements for the two test star trackers, a new approach, called Fourier analysis, combined with the Vondrak filter method (FAVF) is proposed in this paper. Firstly, the LFE of the two test star trackers’ attitude measurements are analyzed and extracted by the FAVF method. The remarkable orbital reproducibility features are found in both of the two test star trackers’ attitude measurements. Then, by using the reproducibility feature of the LFE, the two star trackers’ LFE patterns are estimated effectively. Finally, based on the actual LFE pattern results, this paper presents a new LFE compensation strategy. The validity and effectiveness of the proposed LFE compensation algorithm is demonstrated by the significant improvement in the consistency between the two test star trackers. The root mean square (RMS) of the relative Euler angle residuals are reduced from [27.95′′, 25.14′′, 82.43′′], 3σ to [16.12′′, 15.89′′, 53.27′′], 3σ. PMID:27754320

  18. Low-Frequency Error Extraction and Compensation for Attitude Measurements from STECE Star Tracker.

    PubMed

    Lai, Yuwang; Gu, Defeng; Liu, Junhong; Li, Wenping; Yi, Dongyun

    2016-10-12

    The low frequency errors (LFE) of star trackers are the most penalizing errors for high-accuracy satellite attitude determination. Two test star trackers- have been mounted on the Space Technology Experiment and Climate Exploration (STECE) satellite, a small satellite mission developed by China. To extract and compensate the LFE of the attitude measurements for the two test star trackers, a new approach, called Fourier analysis, combined with the Vondrak filter method (FAVF) is proposed in this paper. Firstly, the LFE of the two test star trackers' attitude measurements are analyzed and extracted by the FAVF method. The remarkable orbital reproducibility features are found in both of the two test star trackers' attitude measurements. Then, by using the reproducibility feature of the LFE, the two star trackers' LFE patterns are estimated effectively. Finally, based on the actual LFE pattern results, this paper presents a new LFE compensation strategy. The validity and effectiveness of the proposed LFE compensation algorithm is demonstrated by the significant improvement in the consistency between the two test star trackers. The root mean square (RMS) of the relative Euler angle residuals are reduced from [27.95'', 25.14'', 82.43''], 3σ to [16.12'', 15.89'', 53.27''], 3σ.

  19. Effects of vibration on inertial wind-tunnel model attitude measurement devices

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Buehrle, Ralph D.; Balakrishna, S.; Kilgore, W. Allen

    1994-01-01

    Results of an experimental study of a wind tunnel model inertial angle-of-attack sensor response to a simulated dynamic environment are presented. The inertial device cannot distinguish between the gravity vector and the centrifugal accelerations associated with wind tunnel model vibration, this situation results in a model attitude measurement bias error. Significant bias error in model attitude measurement was found for the model system tested. The model attitude bias error was found to be vibration mode and amplitude dependent. A first order correction model was developed and used for estimating attitude measurement bias error due to dynamic motion. A method for correcting the output of the model attitude inertial sensor in the presence of model dynamics during on-line wind tunnel operation is proposed.

  20. Disclosing Medical Errors to Patients: Attitudes and Practices of Physicians and Trainees

    PubMed Central

    Jones, Elizabeth W.; Wu, Barry J.; Forman-Hoffman, Valerie L.; Levi, Benjamin H.; Rosenthal, Gary E.

    2007-01-01

    BACKGROUND Disclosing errors to patients is an important part of patient care, but the prevalence of disclosure, and factors affecting it, are poorly understood. OBJECTIVE To survey physicians and trainees about their practices and attitudes regarding error disclosure to patients. DESIGN AND PARTICIPANTS Survey of faculty physicians, resident physicians, and medical students in Midwest, Mid-Atlantic, and Northeast regions of the United States. MEASUREMENTS Actual error disclosure; hypothetical error disclosure; attitudes toward disclosure; demographic factors. RESULTS Responses were received from 538 participants (response rate = 77%). Almost all faculty and residents responded that they would disclose a hypothetical error resulting in minor (97%) or major (93%) harm to a patient. However, only 41% of faculty and residents had disclosed an actual minor error (resulting in prolonged treatment or discomfort), and only 5% had disclosed an actual major error (resulting in disability or death). Moreover, 19% acknowledged not disclosing an actual minor error and 4% acknowledged not disclosing an actual major error. Experience with malpractice litigation was not associated with less actual or hypothetical error disclosure. Faculty were more likely than residents and students to disclose a hypothetical error and less concerned about possible negative consequences of disclosure. Several attitudes were associated with greater likelihood of hypothetical disclosure, including the belief that disclosure is right even if it comes at a significant personal cost. CONCLUSIONS There appears to be a gap between physicians’ attitudes and practices regarding error disclosure. Willingness to disclose errors was associated with higher training level and a variety of patient-centered attitudes, and it was not lessened by previous exposure to malpractice litigation. PMID:17473944

  1. Nurses' attitudes and perceived barriers to the reporting of medication administration errors.

    PubMed

    Yung, Hai-Peng; Yu, Shu; Chu, Chi; Hou, I-Ching; Tang, Fu-In

    2016-07-01

    (1) To explore the attitudes and perceived barriers to reporting medication administration errors and (2) to understand the characteristics of - and nurses' feelings - about error reports. Under-reporting of medication administration errors is a global concern related to the safety of patient care. Understanding nurses' attitudes and perceived barriers to error reporting is the initial step to increasing the reporting rate. A cross-sectional, descriptive survey with a self-administered questionnaire was completed by the nurses of a medical centre hospital in Taiwan. A total of 306 nurses participated in the study. Nurses' attitudes towards medication administration error reporting were inclined towards positive. The major perceived barrier was fear of the consequences after reporting. The results demonstrated that 88.9% of medication administration errors were reported orally, whereas 19.0% were reported through the hospital internet system. Self-recrimination was the common feeling of nurses after the commission of an medication administration error. Even if hospital management encourages errors to be reported without recrimination, nurses' attitudes toward medication administration error reporting are not very positive and fear is the most prominent barrier contributing to underreporting. Nursing managers should establish anonymous reporting systems and counselling classes to create a secure atmosphere to reduce nurses' fear and provide incentives to encourage reporting. © 2016 John Wiley & Sons Ltd.

  2. Space-Borne Laser Altimeter Geolocation Error Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Fang, J.; Ai, Y.

    2018-05-01

    This paper reviews the development of space-borne laser altimetry technology over the past 40 years. Taking the ICESAT satellite as an example, a rigorous space-borne laser altimeter geolocation model is studied, and an error propagation equation is derived. The influence of the main error sources, such as the platform positioning error, attitude measurement error, pointing angle measurement error and range measurement error, on the geolocation accuracy of the laser spot are analysed by simulated experiments. The reasons for the different influences on geolocation accuracy in different directions are discussed, and to satisfy the accuracy of the laser control point, a design index for each error source is put forward.

  3. Perceptions and Attitudes towards Medication Error Reporting in Primary Care Clinics: A Qualitative Study in Malaysia

    PubMed Central

    Samsiah, A.; Othman, Noordin; Jamshed, Shazia; Hassali, Mohamed Azmi

    2016-01-01

    Objective To explore and understand participants’ perceptions and attitudes towards the reporting of medication errors (MEs). Methods A qualitative study using in-depth interviews of 31 healthcare practitioners from nine publicly funded, primary care clinics in three states in peninsular Malaysia was conducted for this study. The participants included family medicine specialists, doctors, pharmacists, pharmacist assistants, nurses and assistant medical officers. The interviews were audiotaped and transcribed verbatim. Analysis of the data was guided by the framework approach. Results Six themes and 28 codes were identified. Despite the availability of a reporting system, most of the participants agreed that MEs were underreported. The nature of the error plays an important role in determining the reporting. The reporting system, organisational factors, provider factors, reporter’s burden and benefit of reporting also were identified. Conclusions Healthcare practitioners in primary care clinics understood the importance of reporting MEs to improve patient safety. Their perceptions and attitudes towards reporting of MEs were influenced by many factors which affect the decision-making process of whether or not to report. Although the process is complex, it primarily is determined by the severity of the outcome of the errors. The participants voluntarily report the errors if they are familiar with the reporting system, what error to report, when to report and what form to use. PMID:27906960

  4. How Do Simulated Error Experiences Impact Attitudes Related to Error Prevention?

    PubMed

    Breitkreuz, Karen R; Dougal, Renae L; Wright, Melanie C

    2016-10-01

    The objective of this project was to determine whether simulated exposure to error situations changes attitudes in a way that may have a positive impact on error prevention behaviors. Using a stratified quasi-randomized experiment design, we compared risk perception attitudes of a control group of nursing students who received standard error education (reviewed medication error content and watched movies about error experiences) to an experimental group of students who reviewed medication error content and participated in simulated error experiences. Dependent measures included perceived memorability of the educational experience, perceived frequency of errors, and perceived caution with respect to preventing errors. Experienced nursing students perceived the simulated error experiences to be more memorable than movies. Less experienced students perceived both simulated error experiences and movies to be highly memorable. After the intervention, compared with movie participants, simulation participants believed errors occurred more frequently. Both types of education increased the participants' intentions to be more cautious and reported caution remained higher than baseline for medication errors 6 months after the intervention. This study provides limited evidence of an advantage of simulation over watching movies describing actual errors with respect to manipulating attitudes related to error prevention. Both interventions resulted in long-term impacts on perceived caution in medication administration. Simulated error experiences made participants more aware of how easily errors can occur, and the movie education made participants more aware of the devastating consequences of errors.

  5. Noise screen for attitude control system

    NASA Technical Reports Server (NTRS)

    Rodden, John J. (Inventor); Stevens, Homer D. (Inventor); Hong, David P. (Inventor); Hirschberg, Philip C. (Inventor)

    2002-01-01

    An attitude control system comprising a controller and a noise screen device coupled to the controller. The controller is adapted to control an attitude of a vehicle carrying an actuator system that is adapted to pulse in metered bursts in order to generate a control torque to control the attitude of the vehicle in response to a control pulse. The noise screen device is adapted to generate a noise screen signal in response to the control pulse that is generated when an input attitude error signal exceeds a predetermined deadband attitude level. The noise screen signal comprises a decaying offset signal that when combined with the attitude error input signal results in a net attitude error input signal away from the predetermined deadband level to reduce further control pulse generation.

  6. The culture of patient safety in an Iranian intensive care unit.

    PubMed

    Abdi, Zhaleh; Delgoshaei, Bahram; Ravaghi, Hamid; Abbasi, Mohsen; Heyrani, Ali

    2015-04-01

    To explore nurses' and physicians' attitudes and perceptions relevant to safety culture and to elicit strategies to promote safety culture in an intensive care unit. A strong safety culture is essential to ensure patient safety in the intensive care unit. This case study adopted a mixed method design. The Safety Attitude Questionnaire (SAQ-ICU version), assessing the safety climate through six domains, was completed by nurses and physicians (n = 42) in an academic intensive care unit. Twenty semi-structured interviews and document analyses were conducted as well. Interviews were analysed using a framework analysis method. Mean scores across the six domains ranged from 52.3 to 72.4 on a 100-point scale. Further analysis indicated that there were statistically significant differences between physicians' and nurses' attitudes toward teamwork (mean scores: 64.5/100 vs. 52.6/100, d = 1.15, t = 3.69, P < 0.001) and job satisfaction (mean scores: 78.2/100 vs. 57.7/100, d = 1.5, t = 4.8, P < 0.001). Interviews revealed several safety challenges including underreporting, failure to learn from errors, lack of speaking up, low job satisfaction among nurses and ineffective nurse-physician communication. The results indicate that all the domains need improvements. However, further attention should be devoted to error reporting and analysis, communication and teamwork among professional groups, and nurses' job satisfaction. Nurse managers can contribute to promoting a safety culture by encouraging staff to report errors, fostering learning from errors and addressing inter-professional communication problems. © 2013 John Wiley & Sons Ltd.

  7. Investigation on coupling error characteristics in angular rate matching based ship deformation measurement approach

    NASA Astrophysics Data System (ADS)

    Yang, Shuai; Wu, Wei; Wang, Xingshu; Xu, Zhiguang

    2018-01-01

    The coupling error in the measurement of ship hull deformation can significantly influence the attitude accuracy of the shipborne weapons and equipments. It is therefore important to study the characteristics of the coupling error. In this paper, an comprehensive investigation on the coupling error is reported, which has a potential of deducting the coupling error in the future. Firstly, the causes and characteristics of the coupling error are analyzed theoretically based on the basic theory of measuring ship deformation. Then, simulations are conducted for verifying the correctness of the theoretical analysis. Simulation results show that the cross-correlation between dynamic flexure and ship angular motion leads to the coupling error in measuring ship deformation, and coupling error increases with the correlation value between them. All the simulation results coincide with the theoretical analysis.

  8. Resolution of the COBE Earth sensor anomaly

    NASA Technical Reports Server (NTRS)

    Sedler, J.

    1993-01-01

    Since its launch on November 18, 1989, the Earth sensors on the Cosmic Background Explorer (COBE) have shown much greater noise than expected. The problem was traced to an error in Earth horizon acquisition-of-signal (AOS) times. Due to this error, the AOS timing correction was ignored, causing Earth sensor split-to-index (SI) angles to be incorrectly time-tagged to minor frame synchronization times. Resulting Earth sensor residuals, based on gyro-propagated fine attitude solutions, were as large as plus or minus 0.45 deg (much greater than plus or minus 0.10 deg from scanner specifications (Reference 1)). Also, discontinuities in single-frame coarse attitude pitch and roll angles (as large as 0.80 and 0.30 deg, respectively) were noted several times during each orbit. However, over the course of the mission, each Earth sensor was observed to independently and unexpectedly reset and then reactivate into a new configuration. Although the telemetered AOS timing corrections are still in error, a procedure has been developed to approximate and apply these corrections. This paper describes the approach, analysis, and results of approximating and applying AOS timing adjustments to correct Earth scanner data. Furthermore, due to the continuing degradation of COBE's gyroscopes, gyro-propagated fine attitude solutions may soon become unavailable, requiring an alternative method for attitude determination. By correcting Earth scanner AOS telemetry, as described in this paper, more accurate single-frame attitude solutions are obtained. All aforementioned pitch and roll discontinuities are removed. When proper AOS corrections are applied, the standard deviation of pitch residuals between coarse attitude and gyro-propagated fine attitude solutions decrease by a factor of 3. Also, the overall standard deviation of SI residuals from fine attitude solutions decrease by a factor of 4 (meeting sensor specifications) when AOS corrections are applied.

  9. A Dynamic Attitude Measurement System Based on LINS

    PubMed Central

    Li, Hanzhou; Pan, Quan; Wang, Xiaoxu; Zhang, Juanni; Li, Jiang; Jiang, Xiangjun

    2014-01-01

    A dynamic attitude measurement system (DAMS) is developed based on a laser inertial navigation system (LINS). Three factors of the dynamic attitude measurement error using LINS are analyzed: dynamic error, time synchronization and phase lag. An optimal coning errors compensation algorithm is used to reduce coning errors, and two-axis wobbling verification experiments are presented in the paper. The tests indicate that the attitude accuracy is improved 2-fold by the algorithm. In order to decrease coning errors further, the attitude updating frequency is improved from 200 Hz to 2000 Hz. At the same time, a novel finite impulse response (FIR) filter with three notches is designed to filter the dither frequency of the ring laser gyro (RLG). The comparison tests suggest that the new filter is five times more effective than the old one. The paper indicates that phase-frequency characteristics of FIR filter and first-order holder of navigation computer constitute the main sources of phase lag in LINS. A formula to calculate the LINS attitude phase lag is introduced in the paper. The expressions of dynamic attitude errors induced by phase lag are derived. The paper proposes a novel synchronization mechanism that is able to simultaneously solve the problems of dynamic test synchronization and phase compensation. A single-axis turntable and a laser interferometer are applied to verify the synchronization mechanism. The experiments results show that the theoretically calculated values of phase lag and attitude error induced by phase lag can both match perfectly with testing data. The block diagram of DAMS and physical photos are presented in the paper. The final experiments demonstrate that the real-time attitude measurement accuracy of DAMS can reach up to 20″ (1σ) and the synchronization error is less than 0.2 ms on the condition of three axes wobbling for 10 min. PMID:25177802

  10. A function space approach to smoothing with applications to model error estimation for flexible spacecraft control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1981-01-01

    A function space approach to smoothing is used to obtain a set of model error estimates inherent in a reduced-order model. By establishing knowledge of inevitable deficiencies in the truncated model, the error estimates provide a foundation for updating the model and thereby improving system performance. The function space smoothing solution leads to a specification of a method for computation of the model error estimates and development of model error analysis techniques for comparison between actual and estimated errors. The paper summarizes the model error estimation approach as well as an application arising in the area of modeling for spacecraft attitude control.

  11. Results of scatterometer systems analysis for NASA/MSC Earth observation sensor evaluation program

    NASA Technical Reports Server (NTRS)

    Krishen, K.; Vlahos, N.; Brandt, O.; Graybeal, G.

    1970-01-01

    A systems evaluation of the 13.3 GHz scatterometer system is presented. The effects of phase error between the scatterometer channels, antenna pattern deviations, aircraft attitude deviations, environmental changes, and other related factors such as processing errors, system repeatability, and propeller modulation, are established. Furthermore, the reduction in system errors and calibration improvement is investigated by taking into account these parameter deviations. Typical scatterometer data samples are presented.

  12. A novel body frame based approach to aerospacecraft attitude tracking.

    PubMed

    Ma, Carlos; Chen, Michael Z Q; Lam, James; Cheung, Kie Chung

    2017-09-01

    In the common practice of designing an attitude tracker for an aerospacecraft, one transforms the Newton-Euler rotation equations to obtain the dynamic equations of some chosen inertial frame based attitude metrics, such as Euler angles and unit quaternions. A Lyapunov approach is then used to design a controller which ensures asymptotic convergence of the attitude to the desired orientation. Although this design methodology is pretty standard, it usually involves singularity-prone coordinate transformations which complicates the analysis process and controller design. A new, singularity free error feedback method is proposed in the paper to provide simple and intuitive stability analysis and controller synthesis. This new body frame based method utilizes the concept of Euleraxis and angles to generate the smallest error angles from a body frame perspective, without coordinate transformations. Global tracking convergence is illustrated with the use of a feedback linearizing PD tracker, a sliding mode controller, and a model reference adaptive controller. Experimental results are also obtained on a quadrotor platform with unknown system parameters and disturbances, using a boundary layer approximated sliding mode controller, a PIDD controller, and a unit sliding mode controller. Significant tracking quality is attained. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Attitude errors arising from antenna/satellite altitude errors - Recognition and reduction

    NASA Technical Reports Server (NTRS)

    Godbey, T. W.; Lambert, R.; Milano, G.

    1972-01-01

    A review is presented of the three basic types of pulsed radar altimeter designs, as well as the source and form of altitude bias errors arising from antenna/satellite attitude errors in each design type. A quantitative comparison of the three systems was also made.

  14. Geometric error analysis for shuttle imaging spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Wang, S. J.; Ih, C. H.

    1984-01-01

    The demand of more powerful tools for remote sensing and management of earth resources steadily increased over the last decade. With the recent advancement of area array detectors, high resolution multichannel imaging spectrometers can be realistically constructed. The error analysis study for the Shuttle Imaging Spectrometer Experiment system is documented for the purpose of providing information for design, tradeoff, and performance prediction. Error sources including the Shuttle attitude determination and control system, instrument pointing and misalignment, disturbances, ephemeris, Earth rotation, etc., were investigated. Geometric error mapping functions were developed, characterized, and illustrated extensively with tables and charts. Selected ground patterns and the corresponding image distortions were generated for direct visual inspection of how the various error sources affect the appearance of the ground object images.

  15. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation

    PubMed Central

    Li, Tao; Yuan, Gannan; Li, Wang

    2016-01-01

    The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition. PMID:26999130

  16. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation.

    PubMed

    Li, Tao; Yuan, Gannan; Li, Wang

    2016-03-15

    The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition.

  17. Effects of model error on control of large flexible space antenna with comparisons of decoupled and linear quadratic regulator control procedures

    NASA Technical Reports Server (NTRS)

    Hamer, H. A.; Johnson, K. G.

    1986-01-01

    An analysis was performed to determine the effects of model error on the control of a large flexible space antenna. Control was achieved by employing two three-axis control-moment gyros (CMG's) located on the antenna column. State variables were estimated by including an observer in the control loop that used attitude and attitude-rate sensors on the column. Errors were assumed to exist in the individual model parameters: modal frequency, modal damping, mode slope (control-influence coefficients), and moment of inertia. Their effects on control-system performance were analyzed either for (1) nulling initial disturbances in the rigid-body modes, or (2) nulling initial disturbances in the first three flexible modes. The study includes the effects on stability, time to null, and control requirements (defined as maximum torque and total momentum), as well as on the accuracy of obtaining initial estimates of the disturbances. The effects on the transients of the undisturbed modes are also included. The results, which are compared for decoupled and linear quadratic regulator (LQR) control procedures, are shown in tabular form, parametric plots, and as sample time histories of modal-amplitude and control responses. Results of the analysis showed that the effects of model errors on the control-system performance were generally comparable for both control procedures. The effect of mode-slope error was the most serious of all model errors.

  18. Safety climate and attitude toward medication error reporting after hospital accreditation in South Korea.

    PubMed

    Lee, Eunjoo

    2016-09-01

    This study compared registered nurses' perceptions of safety climate and attitude toward medication error reporting before and after completing a hospital accreditation program. Medication errors are the most prevalent adverse events threatening patient safety; reducing underreporting of medication errors significantly improves patient safety. Safety climate in hospitals may affect medication error reporting. This study employed a longitudinal, descriptive design. Data were collected using questionnaires. A tertiary acute hospital in South Korea undergoing a hospital accreditation program. Nurses, pre- and post-accreditation (217 and 373); response rate: 58% and 87%, respectively. Hospital accreditation program. Perceived safety climate and attitude toward medication error reporting. The level of safety climate and attitude toward medication error reporting increased significantly following accreditation; however, measures of institutional leadership and management did not improve significantly. Participants' perception of safety climate was positively correlated with their attitude toward medication error reporting; this correlation strengthened following completion of the program. Improving hospitals' safety climate increased nurses' medication error reporting; interventions that help hospital administration and managers to provide more supportive leadership may facilitate safety climate improvement. Hospitals and their units should develop more friendly and intimate working environments that remove nurses' fear of penalties. Administration and managers should support nurses who report their own errors. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Spacecraft methods and structures with enhanced attitude control that facilitates gyroscope substitutions

    NASA Technical Reports Server (NTRS)

    Li, Rongsheng (Inventor); Kurland, Jeffrey A. (Inventor); Dawson, Alec M. (Inventor); Wu, Yeong-Wei A. (Inventor); Uetrecht, David S. (Inventor)

    2004-01-01

    Methods and structures are provided that enhance attitude control during gyroscope substitutions by insuring that a spacecraft's attitude control system does not drive its absolute-attitude sensors out of their capture ranges. In a method embodiment, an operational process-noise covariance Q of a Kalman filter is temporarily replaced with a substantially greater interim process-noise covariance Q. This replacement increases the weight given to the most recent attitude measurements and hastens the reduction of attitude errors and gyroscope bias errors. The error effect of the substituted gyroscopes is reduced and the absolute-attitude sensors are not driven out of their capture range. In another method embodiment, this replacement is preceded by the temporary replacement of an operational measurement-noise variance R with a substantially larger interim measurement-noise variance R to reduce transients during the gyroscope substitutions.

  20. CORRELATED ERRORS IN EARTH POINTING MISSIONS

    NASA Technical Reports Server (NTRS)

    Bilanow, Steve; Patt, Frederick S.

    2005-01-01

    Two different Earth-pointing missions dealing with attitude control and dynamics changes illustrate concerns with correlated error sources and coupled effects that can occur. On the OrbView-2 (OV-2) spacecraft, the assumption of a nearly-inertially-fixed momentum axis was called into question when a residual dipole bias apparently changed magnitude. The possibility that alignment adjustments and/or sensor calibration errors may compensate for actual motions of the spacecraft is discussed, and uncertainties in the dynamics are considered. Particular consideration is given to basic orbit frequency and twice orbit frequency effects and their high correlation over the short science observation data span. On the Tropical Rainfall Measuring Mission (TRMM) spacecraft, the switch to a contingency Kalman filter control mode created changes in the pointing error patterns. Results from independent checks on the TRMM attitude using science instrument data are reported, and bias shifts and error correlations are discussed. Various orbit frequency effects are common with the flight geometry for Earth pointing instruments. In both dual-spin momentum stabilized spacecraft (like OV-2) and three axis stabilized spacecraft with gyros (like TRMM under Kalman filter control), changes in the initial attitude state propagate into orbit frequency variations in attitude and some sensor measurements. At the same time, orbit frequency measurement effects can arise from dynamics assumptions, environment variations, attitude sensor calibrations, or ephemeris errors. Also, constant environment torques for dual spin spacecraft have similar effects to gyro biases on three axis stabilized spacecraft, effectively shifting the one-revolution-per-orbit (1-RPO) body rotation axis. Highly correlated effects can create a risk for estimation errors particularly when a mission switches an operating mode or changes its normal flight environment. Some error effects will not be obvious from attitude sensor measurement residuals, so some independent checks using imaging sensors are essential and derived science instrument attitude measurements can prove quite valuable in assessing the attitude accuracy.

  1. System Dynamic Analysis of a Wind Tunnel Model with Applications to Improve Aerodynamic Data Quality

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph David

    1997-01-01

    The research investigates the effect of wind tunnel model system dynamics on measured aerodynamic data. During wind tunnel tests designed to obtain lift and drag data, the required aerodynamic measurements are the steady-state balance forces and moments, pressures, and model attitude. However, the wind tunnel model system can be subjected to unsteady aerodynamic and inertial loads which result in oscillatory translations and angular rotations. The steady-state force balance and inertial model attitude measurements are obtained by filtering and averaging data taken during conditions of high model vibrations. The main goals of this research are to characterize the effects of model system dynamics on the measured steady-state aerodynamic data and develop a correction technique to compensate for dynamically induced errors. Equations of motion are formulated for the dynamic response of the model system subjected to arbitrary aerodynamic and inertial inputs. The resulting modal model is examined to study the effects of the model system dynamic response on the aerodynamic data. In particular, the equations of motion are used to describe the effect of dynamics on the inertial model attitude, or angle of attack, measurement system that is used routinely at the NASA Langley Research Center and other wind tunnel facilities throughout the world. This activity was prompted by the inertial model attitude sensor response observed during high levels of model vibration while testing in the National Transonic Facility at the NASA Langley Research Center. The inertial attitude sensor cannot distinguish between the gravitational acceleration and centrifugal accelerations associated with wind tunnel model system vibration, which results in a model attitude measurement bias error. Bias errors over an order of magnitude greater than the required device accuracy were found in the inertial model attitude measurements during dynamic testing of two model systems. Based on a theoretical modal approach, a method using measured vibration amplitudes and measured or calculated modal characteristics of the model system is developed to correct for dynamic bias errors in the model attitude measurements. The correction method is verified through dynamic response tests on two model systems and actual wind tunnel test data.

  2. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    PubMed Central

    Sun, Ting; Xing, Fei; You, Zheng

    2013-01-01

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers. PMID:23567527

  3. Endoscopic non-technical skills team training: the next step in quality assurance of endoscopy training.

    PubMed

    Matharoo, Manmeet; Haycock, Adam; Sevdalis, Nick; Thomas-Gibson, Siwan

    2014-12-14

    To investigate whether novel, non-technical skills training for Bowel Cancer Screening (BCS) endoscopy teams enhanced patient safety knowledge and attitudes. A novel endoscopy team training intervention for BCS teams was developed and evaluated as a pre-post intervention study. Four multi-disciplinary BCS teams constituting BCS endoscopist(s), specialist screening practitioners, endoscopy nurses and administrative staff (A) from English BCS training centres participated. No patients were involved in this study. Expert multidisciplinary faculty delivered a single day's training utilising real clinical examples. Pre and post-course evaluation comprised participants' patient safety awareness, attitudes, and knowledge. Global course evaluations were also collected. Twenty-three participants attended and their patient safety knowledge improved significantly from 43%-55% (P ≤ 0.001) following the training intervention. 12/41 (29%) of the safety attitudes items significantly improved in the areas of perceived patient safety knowledge and awareness. The remaining safety attitude items: perceived influence on patient safety, attitudes towards error management, error management actions and personal views following an error were unchanged following training. Both qualitative and quantitative global course evaluations were positive: 21/23 (91%) participants strongly agreed/agreed that they were satisfied with the course. Qualitative evaluation included mandating such training for endoscopy teams outside BCS and incorporating team training within wider endoscopy training. Limitations of the study include no measure of increased patient safety in clinical practice following training. A novel comprehensive training package addressing patient safety, non-technical skills and adverse event analysis was successful in improving multi-disciplinary teams' knowledge and safety attitudes.

  4. Endoscopic non-technical skills team training: The next step in quality assurance of endoscopy training

    PubMed Central

    Matharoo, Manmeet; Haycock, Adam; Sevdalis, Nick; Thomas-Gibson, Siwan

    2014-01-01

    AIM: To investigate whether novel, non-technical skills training for Bowel Cancer Screening (BCS) endoscopy teams enhanced patient safety knowledge and attitudes. METHODS: A novel endoscopy team training intervention for BCS teams was developed and evaluated as a pre-post intervention study. Four multi-disciplinary BCS teams constituting BCS endoscopist(s), specialist screening practitioners, endoscopy nurses and administrative staff (A) from English BCS training centres participated. No patients were involved in this study. Expert multidisciplinary faculty delivered a single day’s training utilising real clinical examples. Pre and post-course evaluation comprised participants’ patient safety awareness, attitudes, and knowledge. Global course evaluations were also collected. RESULTS: Twenty-three participants attended and their patient safety knowledge improved significantly from 43%-55% (P ≤ 0.001) following the training intervention. 12/41 (29%) of the safety attitudes items significantly improved in the areas of perceived patient safety knowledge and awareness. The remaining safety attitude items: perceived influence on patient safety, attitudes towards error management, error management actions and personal views following an error were unchanged following training. Both qualitative and quantitative global course evaluations were positive: 21/23 (91%) participants strongly agreed/agreed that they were satisfied with the course. Qualitative evaluation included mandating such training for endoscopy teams outside BCS and incorporating team training within wider endoscopy training. Limitations of the study include no measure of increased patient safety in clinical practice following training. CONCLUSION: A novel comprehensive training package addressing patient safety, non-technical skills and adverse event analysis was successful in improving multi-disciplinary teams’ knowledge and safety attitudes. PMID:25516665

  5. Exploring Reactions to Pilot Reliability Certification and Changing Attitudes on the Reduction of Errors

    ERIC Educational Resources Information Center

    Boedigheimer, Dan

    2010-01-01

    Approximately 70% of aviation accidents are attributable to human error. The greatest opportunity for further improving aviation safety is found in reducing human errors in the cockpit. The purpose of this quasi-experimental, mixed-method research was to evaluate whether there was a difference in pilot attitudes toward reducing human error in the…

  6. Analysis of GRACE Range-rate Residuals with Emphasis on Reprocessed Star-Camera Datasets

    NASA Astrophysics Data System (ADS)

    Goswami, S.; Flury, J.; Naeimi, M.; Bandikova, T.; Guerr, T. M.; Klinger, B.

    2015-12-01

    Since March 2002 the two GRACE satellites orbit the Earth at rela-tively low altitude. Determination of the gravity field of the Earth including itstemporal variations from the satellites' orbits and the inter-satellite measure-ments is the goal of the mission. Yet, the time-variable gravity signal has notbeen fully exploited. This can be seen better in the computed post-fit range-rateresiduals. The errors reflected in the range-rate residuals are due to the differ-ent sources as systematic errors, mismodelling errors and tone errors. Here, weanalyse the effect of three different star-camera data sets on the post-fit range-rate residuals. On the one hand, we consider the available attitude data andon other hand we take the two different data sets which has been reprocessedat Institute of Geodesy, Hannover and Institute of Theoretical Geodesy andSatellite Geodesy, TU Graz Austria respectively. Then the differences in therange-rate residuals computed from different attitude dataset are analyzed inthis study. Details will be given and results will be discussed.

  7. Filtering Methods for Error Reduction in Spacecraft Attitude Estimation Using Quaternion Star Trackers

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip C.; Sedlak, Joseph E.; Superfin, Emil

    2011-01-01

    Precision attitude determination for recent and planned space missions typically includes quaternion star trackers (ST) and a three-axis inertial reference unit (IRU). Sensor selection is based on estimates of knowledge accuracy attainable from a Kalman filter (KF), which provides the optimal solution for the case of linear dynamics with measurement and process errors characterized by random Gaussian noise with white spectrum. Non-Gaussian systematic errors in quaternion STs are often quite large and have an unpredictable time-varying nature, particularly when used in non-inertial pointing applications. Two filtering methods are proposed to reduce the attitude estimation error resulting from ST systematic errors, 1) extended Kalman filter (EKF) augmented with Markov states, 2) Unscented Kalman filter (UKF) with a periodic measurement model. Realistic assessments of the attitude estimation performance gains are demonstrated with both simulation and flight telemetry data from the Lunar Reconnaissance Orbiter.

  8. Q-adjusting technique applied to vertical deflections estimation in a single-axis rotation INS/GPS integrated system

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Wang, Xingshu; Wang, Jun; Dai, Dongkai; Xiong, Hao

    2016-10-01

    Former studies have proved that the attitude error in a single-axis rotation INS/GPS integrated system tracks the high frequency component of the deflections of the vertical (DOV) with a fixed delay and tracking error. This paper analyses the influence of the nominal process noise covariance matrix Q on the tracking error as well as the response delay, and proposed a Q-adjusting technique to obtain the attitude error which can track the DOV better. Simulation results show that different settings of Q lead to different response delay and tracking error; there exists optimal Q which leads to a minimum tracking error and a comparatively short response delay; for systems with different accuracy, different Q-adjusting strategy should be adopted. In this way, the DOV estimation accuracy of using the attitude error as the observation can be improved. According to the simulation results, the DOV estimation accuracy after using the Q-adjusting technique is improved by approximate 23% and 33% respectively compared to that of the Earth Model EGM2008 and the direct attitude difference method.

  9. Star centroiding error compensation for intensified star sensors.

    PubMed

    Jiang, Jie; Xiong, Kun; Yu, Wenbo; Yan, Jinyun; Zhang, Guangjun

    2016-12-26

    A star sensor provides high-precision attitude information by capturing a stellar image; however, the traditional star sensor has poor dynamic performance, which is attributed to its low sensitivity. Regarding the intensified star sensor, the image intensifier is utilized to improve the sensitivity, thereby further improving the dynamic performance of the star sensor. However, the introduction of image intensifier results in star centroiding accuracy decrease, further influencing the attitude measurement precision of the star sensor. A star centroiding error compensation method for intensified star sensors is proposed in this paper to reduce the influences. First, the imaging model of the intensified detector, which includes the deformation parameter of the optical fiber panel, is established based on the orthographic projection through the analysis of errors introduced by the image intensifier. Thereafter, the position errors at the target points based on the model are obtained by using the Levenberg-Marquardt (LM) optimization method. Last, the nearest trigonometric interpolation method is presented to compensate for the arbitrary centroiding error of the image plane. Laboratory calibration result and night sky experiment result show that the compensation method effectively eliminates the error introduced by the image intensifier, thus remarkably improving the precision of the intensified star sensors.

  10. The utility of multiple strategies for understanding complex behaviors.

    PubMed Central

    Adler, N E; Kegeles, S M; Irwin, C E

    1990-01-01

    Nickerson's critique of our brief report on changes in knowledge, attitudes and use of condoms among adolescents over a year's time mistakenly interprets the paper as examining an attitude/behavior discrepancy. A number of her criticisms follow from this mistaken interpretation. We agree with some of her general points but identify several errors in her analysis and note areas of disagreement about strategies for studying complex behaviors. PMID:2400026

  11. Overview of the Miniature Sensor Technology Integration (MSTI) spacecraft attitude control system

    NASA Technical Reports Server (NTRS)

    Mcewen, Rob

    1994-01-01

    Msti2 is a small, 164 kg (362 lb), 3-axis stabilized, low-Earth-orbiting satellite whose mission is missile booster tracking. The spacecraft is actuated by 3 reaction wheels and 12 hot gas thrusters. It carries enough fuel for a projected life of 6 months. The sensor complement consists of a Horizon Sensor, a Sun Sensor, low-rate gyros, and a high rate gyro for despin. The total pointing control error allocation is 6 mRad (.34 Deg), and this is while tracking a target on the Earth's surface. This paper describes the Attitude Control System (ACS) algorithms which include the following: attitude acquisition (despin, Sun and Earth acquisition), attitude determination, attitude control, and linear stability analysis.

  12. Feedback attitude sliding mode regulation control of spacecraft using arm motion

    NASA Astrophysics Data System (ADS)

    Shi, Ye; Liang, Bin; Xu, Dong; Wang, Xueqian; Xu, Wenfu

    2013-09-01

    The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields. Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical stabilization performance, so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic constraints. Thus, sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process. Due to the switching effects of the variable structure controller, once the tracking error reaches the designed hyper-plane, it will be restricted to this plane permanently even with the existence of external disturbances. Thus, precise attitude regulation can be achieved. Furthermore, taking the non-zero initial tracking errors and chattering phenomenon into consideration, saturation functions are used to replace sign functions to smooth the control torques. The relations between the upper bounds of tracking errors and the controller parameters are derived to reveal physical characteristic of the controller. Mathematical models of free-floating space manipulator are established and simulations are conducted in the end. The results show that the spacecraft’s attitude can be regulated to the position as desired by using the proposed algorithm, the steady state error is 0.000 2 rad. In addition, the joint tracking trajectory is smooth, the joint tracking errors converges to zero quickly with a satisfactory continuous joint control input. The proposed research provides a feasible solution for spacecraft attitude regulation by using arm motion, and improves the precision of the spacecraft attitude regulation.

  13. Estimation of attitude sensor timetag biases

    NASA Technical Reports Server (NTRS)

    Sedlak, J.

    1995-01-01

    This paper presents an extended Kalman filter for estimating attitude sensor timing errors. Spacecraft attitude is determined by finding the mean rotation from a set of reference vectors in inertial space to the corresponding observed vectors in the body frame. Any timing errors in the observations can lead to attitude errors if either the spacecraft is rotating or the reference vectors themselves vary with time. The state vector here consists of the attitude quaternion, timetag biases, and, optionally, gyro drift rate biases. The filter models the timetags as random walk processes: their expectation values propagate as constants and white noise contributes to their covariance. Thus, this filter is applicable to cases where the true timing errors are constant or slowly varying. The observability of the state vector is studied first through an examination of the algebraic observability condition and then through several examples with simulated star tracker timing errors. The examples use both simulated and actual flight data from the Extreme Ultraviolet Explorer (EUVE). The flight data come from times when EUVE had a constant rotation rate, while the simulated data feature large angle attitude maneuvers. The tests include cases with timetag errors on one or two sensors, both constant and time-varying, and with and without gyro bias errors. Due to EUVE's sensor geometry, the observability of the state vector is severely limited when the spacecraft rotation rate is constant. In the absence of attitude maneuvers, the state elements are highly correlated, and the state estimate is unreliable. The estimates are particularly sensitive to filter mistuning in this case. The EUVE geometry, though, is a degenerate case having coplanar sensors and rotation vector. Observability is much improved and the filter performs well when the rate is either varying or noncoplanar with the sensors, as during a slew. Even with bad geometry and constant rates, if gyro biases are independently known, the timetag error for a single sensor can be accurately estimated as long as its boresight is not too close to the spacecraft rotation axis.

  14. Control techniques to improve Space Shuttle solid rocket booster separation

    NASA Technical Reports Server (NTRS)

    Tomlin, D. D.

    1983-01-01

    The present Space Shuttle's control system does not prevent the Orbiter's main engines from being in gimbal positions that are adverse to solid rocket booster separation. By eliminating the attitude error and attitude rate feedback just prior to solid rocket booster separation, the detrimental effects of the Orbiter's main engines can be reduced. In addition, if angular acceleration feedback is applied, the gimbal torques produced by the Orbiter's engines can reduce the detrimental effects of the aerodynamic torques. This paper develops these control techniques and compares the separation capability of the developed control systems. Currently with the worst case initial conditions and each Shuttle system dispersion aligned in the worst direction (which is more conservative than will be experienced in flight), the solid rocket booster has an interference with the Shuttle's external tank of 30 in. Elimination of the attitude error and attitude rate feedback reduces that interference to 19 in. Substitution of angular acceleration feedback reduces the interference to 6 in. The two latter interferences can be eliminated by atess conservative analysis techniques, that is, by using a root sum square of the system dispersions.

  15. Detecting Signatures of GRACE Sensor Errors in Range-Rate Residuals

    NASA Astrophysics Data System (ADS)

    Goswami, S.; Flury, J.

    2016-12-01

    In order to reach the accuracy of the GRACE baseline, predicted earlier from the design simulations, efforts are ongoing since a decade. GRACE error budget is highly dominated by noise from sensors, dealiasing models and modeling errors. GRACE range-rate residuals contain these errors. Thus, their analysis provides an insight to understand the individual contribution to the error budget. Hence, we analyze the range-rate residuals with focus on contribution of sensor errors due to mis-pointing and bad ranging performance in GRACE solutions. For the analysis of pointing errors, we consider two different reprocessed attitude datasets with differences in pointing performance. Then range-rate residuals are computed from these two datasetsrespectively and analysed. We further compare the system noise of four K-and Ka- band frequencies of the two spacecrafts, with range-rate residuals. Strong signatures of mis-pointing errors can be seen in the range-rate residuals. Also, correlation between range frequency noise and range-rate residuals are seen.

  16. Unscented predictive variable structure filter for satellite attitude estimation with model errors when using low precision sensors

    NASA Astrophysics Data System (ADS)

    Cao, Lu; Li, Hengnian

    2016-10-01

    For the satellite attitude estimation problem, the serious model errors always exist and hider the estimation performance of the Attitude Determination and Control System (ACDS), especially for a small satellite with low precision sensors. To deal with this problem, a new algorithm for the attitude estimation, referred to as the unscented predictive variable structure filter (UPVSF) is presented. This strategy is proposed based on the variable structure control concept and unscented transform (UT) sampling method. It can be implemented in real time with an ability to estimate the model errors on-line, in order to improve the state estimation precision. In addition, the model errors in this filter are not restricted only to the Gaussian noises; therefore, it has the advantages to deal with the various kinds of model errors or noises. It is anticipated that the UT sampling strategy can further enhance the robustness and accuracy of the novel UPVSF. Numerical simulations show that the proposed UPVSF is more effective and robustness in dealing with the model errors and low precision sensors compared with the traditional unscented Kalman filter (UKF).

  17. Influencing Factors of the Initiation Point in the Parachute-Bomb Dynamic Detonation System

    NASA Astrophysics Data System (ADS)

    Qizhong, Li; Ye, Wang; Zhongqi, Wang; Chunhua, Bai

    2017-12-01

    The parachute system has been widely applied in modern armament design, especially for the fuel-air explosives. Because detonation of fuel-air explosives occurs during flight, it is necessary to investigate the influences of the initiation point to ensure successful dynamic detonation. In fact, the initiating position exist the falling area in the fuels, due to the error of influencing factors. In this paper, the major influencing factors of initiation point were explored with airdrop and the regularity between initiation point area and factors were obtained. Based on the regularity, the volume equation of initiation point area was established to predict the range of initiation point in the fuel. The analysis results showed that the initiation point appeared area, scattered on account of the error of attitude angle, secondary initiation charge velocity, and delay time. The attitude angle was the major influencing factors on a horizontal axis. On the contrary, secondary initiation charge velocity and delay time were the major influencing factors on a horizontal axis. Overall, the geometries of initiation point area were sector coupled with the errors of the attitude angle, secondary initiation charge velocity, and delay time.

  18. Attitude Control Subsystem for the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Hewston, Alan W.; Mitchell, Kent A.; Sawicki, Jerzy T.

    1996-01-01

    This paper provides an overview of the on-orbit operation of the Attitude Control Subsystem (ACS) for the Advanced Communications Technology Satellite (ACTS). The three ACTS control axes are defined, including the means for sensing attitude and determining the pointing errors. The desired pointing requirements for various modes of control as well as the disturbance torques that oppose the control are identified. Finally, the hardware actuators and control loops utilized to reduce the attitude error are described.

  19. Comparison of Different Attitude Correction Models for ZY-3 Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Song, Wenping; Liu, Shijie; Tong, Xiaohua; Niu, Changling; Ye, Zhen; Zhang, Han; Jin, Yanmin

    2018-04-01

    ZY-3 satellite, launched in 2012, is the first civilian high resolution stereo mapping satellite of China. This paper analyzed the positioning errors of ZY-3 satellite imagery and conducted compensation for geo-position accuracy improvement using different correction models, including attitude quaternion correction, attitude angle offset correction, and attitude angle linear correction. The experimental results revealed that there exist systematic errors with ZY-3 attitude observations and the positioning accuracy can be improved after attitude correction with aid of ground controls. There is no significant difference between the results of attitude quaternion correction method and the attitude angle correction method. However, the attitude angle offset correction model produced steady improvement than the linear correction model when limited ground control points are available for single scene.

  20. Accurate Magnetometer/Gyroscope Attitudes Using a Filter with Correlated Sensor Noise

    NASA Technical Reports Server (NTRS)

    Sedlak, J.; Hashmall, J.

    1997-01-01

    Magnetometers and gyroscopes have been shown to provide very accurate attitudes for a variety of spacecraft. These results have been obtained, however, using a batch-least-squares algorithm and long periods of data. For use in onboard applications, attitudes are best determined using sequential estimators such as the Kalman filter. When a filter is used to determine attitudes using magnetometer and gyroscope data for input, the resulting accuracy is limited by both the sensor accuracies and errors inherent in the Earth magnetic field model. The Kalman filter accounts for the random component by modeling the magnetometer and gyroscope errors as white noise processes. However, even when these tuning parameters are physically realistic, the rate biases (included in the state vector) have been found to show systematic oscillations. These are attributed to the field model errors. If the gyroscope noise is sufficiently small, the tuned filter 'memory' will be long compared to the orbital period. In this case, the variations in the rate bias induced by field model errors are substantially reduced. Mistuning the filter to have a short memory time leads to strongly oscillating rate biases and increased attitude errors. To reduce the effect of the magnetic field model errors, these errors are estimated within the filter and used to correct the reference model. An exponentially-correlated noise model is used to represent the filter estimate of the systematic error. Results from several test cases using in-flight data from the Compton Gamma Ray Observatory are presented. These tests emphasize magnetometer errors, but the method is generally applicable to any sensor subject to a combination of random and systematic noise.

  1. In the Aftermath: Attitudes of Anesthesiologists to Supportive Strategies After an Unexpected Intraoperative Patient Death.

    PubMed

    Heard, Gaylene C; Thomas, Rowan D; Sanderson, Penelope M

    2016-05-01

    Although most anesthesiologists will have 1 catastrophic perioperative event or more during their careers, there has been little research on their attitudes to assistive strategies after the event. There are wide-ranging emotional consequences for anesthesiologists involved in an unexpected intraoperative patient death, particularly if the anesthesiologist made an error. We used a between-groups survey study design to ask whether there are different attitudes to assistive strategies when a hypothetical patient death is caused by a drug error versus not caused by an error. First, we explored attitudes to generalized supportive strategies. Second, we examined our hypothesis that the presence of an error causing the hypothetical patient death would increase the perceived social stigma and self-stigma of help-seeking. Finally, we examined the strategies to assist help-seeking. An anonymous, mailed, self-administered survey was conducted with 1600 consultant anesthesiologists in Australia on the mailing list of the Australian and New Zealand College of Anaesthetists. The participants were randomized into "error" versus "no-error" groups for the hypothetical scenario of patient death due to anaphylaxis. Nonparametric, descriptive, parametric, and inferential tests were used for data analysis. P' is used where P values were corrected for multiple comparisons. There was a usable response rate of 48.9%. When an error had caused the hypothetical patient death, participants were more likely to agree with 4 of the 5 statements about support, including need for time off (P' = 0.003), counseling (P' < 0.001), a formal strategy for assistance (P' < 0.001), and the anesthesiologist not performing further cases that day (P' = 0.047). There were no differences between groups in perceived self-stigma (P = 0.98) or social stigma (P = 0.15) of seeking counseling, whether or not an error had caused the hypothetical patient death. Finally, when an error had caused the patient death, participants were more likely to agree with 2 of the 5 statements about help-seeking, including the need for a formal, hospital-based process that provides information on where to obtain professional counseling (P' = 0.006) and the availability of after-hours counseling services (P' = 0.035). Our participants were more likely to agree with assistive strategies such as not performing further work that day, time off, counseling, formal support strategies, and availability of after-hours counseling services, when the hypothetical patient death from anaphylaxis was due to an error. The perceived stigma toward attending counseling was not affected by the presence or absence of an error as the cause of the patient death, disproving our hypothesis.

  2. Online patient safety education programme for junior doctors: is it worthwhile?

    PubMed

    McCarthy, S E; O'Boyle, C A; O'Shaughnessy, A; Walsh, G

    2016-02-01

    Increasing demand exists for blended approaches to the development of professionalism. Trainees of the Royal College of Physicians of Ireland participated in an online patient safety programme. Study aims were: (1) to determine whether the programme improved junior doctors' knowledge, attitudes and skills relating to error reporting, open communication and care for the second victim and (2) to establish whether the methodology facilitated participants' learning. 208 junior doctors who completed the programme completed a pre-online questionnaire. Measures were "patient safety knowledge and attitudes", "medical safety climate" and "experience of learning". Sixty-two completed the post-questionnaire, representing a 30 % matched response rate. Participating in the programme resulted in immediate (p < 0.01) improvement in skills such as knowing when and how to complete incident forms and disclosing errors to patients, in self-rated knowledge (p < 0.01) and attitudes towards error reporting (p < 0.01). Sixty-three per cent disagreed that doctors routinely report medical errors and 42 % disagreed that doctors routinely share information about medical errors and what caused them. Participants rated interactive features as the most positive elements of the programme. An online training programme on medical error improved self-rated knowledge, attitudes and skills in junior doctors and was deemed an effective learning tool. Perceptions of work issues such as a poor culture of error reporting among doctors may prevent improved attitudes being realised in practice. Online patient safety education has a role in practice-based initiatives aimed at developing professionalism and improving safety.

  3. Crash risk and aberrant driving behaviors among bus drivers: the role of personality and attitudes towards traffic safety.

    PubMed

    Mallia, Luca; Lazuras, Lambros; Violani, Cristiano; Lucidi, Fabio

    2015-06-01

    Several studies have shown that personality traits and attitudes toward traffic safety predict aberrant driving behaviors and crash involvement. However, this process has not been adequately investigated in professional drivers, such as bus drivers. The present study used a personality-attitudes model to assess whether personality traits predicted aberrant self-reported driving behaviors (driving violations, lapses, and errors) both directly and indirectly, through the effects of attitudes towards traffic safety in a large sample of bus drivers. Additionally, the relationship between aberrant self-reported driving behaviors and crash risk was also assessed. Three hundred and one bus drivers (mean age=39.1, SD=10.7 years) completed a structured and anonymous questionnaire measuring personality traits, attitudes toward traffic safety, self-reported aberrant driving behaviors (i.e., errors, lapses, and traffic violations), and accident risk in the last 12 months. Structural equation modeling analysis revealed that personality traits were associated to aberrant driving behaviors both directly and indirectly. In particular altruism, excitement seeking, and normlessness directly predicted bus drivers' attitudes toward traffic safety which, in turn, were negatively associated with the three types of self-reported aberrant driving behaviors. Personality traits relevant to emotionality directly predicted bus drivers' aberrant driving behaviors, without any mediation of attitudes. Finally, only self-reported violations were related to bus drivers' accident risk. The present findings suggest that the hypothesized personality-attitudes model accounts for aberrant driving behaviors in bus drivers, and provide the empirical basis for evidence-based road safety interventions in the context of public transport. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Attitude Heading Reference System Using MEMS Inertial Sensors with Dual-Axis Rotation

    PubMed Central

    Kang, Li; Ye, Lingyun; Song, Kaichen; Zhou, Yang

    2014-01-01

    This paper proposes a low cost and small size attitude and heading reference system based on MEMS inertial sensors. A dual-axis rotation structure with a proper rotary scheme according to the design principles is applied in the system to compensate for the attitude and heading drift caused by the large gyroscope biases. An optimization algorithm is applied to compensate for the installation angle error between the body frame and the rotation table's frame. Simulations and experiments are carried out to evaluate the performance of the AHRS. The results show that the proper rotation could significantly reduce the attitude and heading drifts. Moreover, the new AHRS is not affected by magnetic interference. After the rotation, the attitude and heading are almost just oscillating in a range. The attitude error is about 3° and the heading error is less than 3° which are at least 5 times better than the non-rotation condition. PMID:25268911

  5. Nurses' Perceived Skills and Attitudes About Updated Safety Concepts: Impact on Medication Administration Errors and Practices.

    PubMed

    Armstrong, Gail E; Dietrich, Mary; Norman, Linda; Barnsteiner, Jane; Mion, Lorraine

    Approximately a quarter of medication errors in the hospital occur at the administration phase, which is solely under the purview of the bedside nurse. The purpose of this study was to assess bedside nurses' perceived skills and attitudes about updated safety concepts and examine their impact on medication administration errors and adherence to safe medication administration practices. Findings support the premise that medication administration errors result from an interplay among system-, unit-, and nurse-level factors.

  6. Statistical methods for launch vehicle guidance, navigation, and control (GN&C) system design and analysis

    NASA Astrophysics Data System (ADS)

    Rose, Michael Benjamin

    A novel trajectory and attitude control and navigation analysis tool for powered ascent is developed. The tool is capable of rapid trade-space analysis and is designed to ultimately reduce turnaround time for launch vehicle design, mission planning, and redesign work. It is streamlined to quickly determine trajectory and attitude control dispersions, propellant dispersions, orbit insertion dispersions, and navigation errors and their sensitivities to sensor errors, actuator execution uncertainties, and random disturbances. The tool is developed by applying both Monte Carlo and linear covariance analysis techniques to a closed-loop, launch vehicle guidance, navigation, and control (GN&C) system. The nonlinear dynamics and flight GN&C software models of a closed-loop, six-degree-of-freedom (6-DOF), Monte Carlo simulation are formulated and developed. The nominal reference trajectory (NRT) for the proposed lunar ascent trajectory is defined and generated. The Monte Carlo truth models and GN&C algorithms are linearized about the NRT, the linear covariance equations are formulated, and the linear covariance simulation is developed. The performance of the launch vehicle GN&C system is evaluated using both Monte Carlo and linear covariance techniques and their trajectory and attitude control dispersion, propellant dispersion, orbit insertion dispersion, and navigation error results are validated and compared. Statistical results from linear covariance analysis are generally within 10% of Monte Carlo results, and in most cases the differences are less than 5%. This is an excellent result given the many complex nonlinearities that are embedded in the ascent GN&C problem. Moreover, the real value of this tool lies in its speed, where the linear covariance simulation is 1036.62 times faster than the Monte Carlo simulation. Although the application and results presented are for a lunar, single-stage-to-orbit (SSTO), ascent vehicle, the tools, techniques, and mathematical formulations that are discussed are applicable to ascent on Earth or other planets as well as other rocket-powered systems such as sounding rockets and ballistic missiles.

  7. Event-triggered attitude control of spacecraft

    NASA Astrophysics Data System (ADS)

    Wu, Baolin; Shen, Qiang; Cao, Xibin

    2018-02-01

    The problem of spacecraft attitude stabilization control system with limited communication and external disturbances is investigated based on an event-triggered control scheme. In the proposed scheme, information of attitude and control torque only need to be transmitted at some discrete triggered times when a defined measurement error exceeds a state-dependent threshold. The proposed control scheme not only guarantees that spacecraft attitude control errors converge toward a small invariant set containing the origin, but also ensures that there is no accumulation of triggering instants. The performance of the proposed control scheme is demonstrated through numerical simulation.

  8. TRMM On-Orbit Performance Re-Accessed After Control Change

    NASA Technical Reports Server (NTRS)

    Bilanow, Steve

    2006-01-01

    The Tropical Rainfall Measuring Mission (TRMM) spacecraft, a joint mission between the U.S. and Japan, launched onboard an HI1 rocket on November 27,1997 and transitioned in August, 2001 from an average operating altitude of 350 kilometers to 402.5 kilometers. Due to problems using the Earth Sensor Assembly (ESA) at the higher altitude, TRMM switched to a backup attitude control mode. Prior to the orbit boost TRMM controlled pitch and roll to the local vertical using ESA measurements while using gyro data to propagate yaw attitude between yaw updates from the Sun sensors. After the orbit boost, a Kalman filter used 3-axis gyro data with Sun sensor and magnetometers to estimate onboard attitude. While originally intended to meet a degraded attitude accuracy of 0.7 degrees, the new control mode met the original 0.2 degree attitude accuracy requirement after improving onboard ephemeris prediction and adjusting the magnetometer calibration onboard. Independent roll attitude checks using a science instrument, the Precipitation Radar (PR) which was built in Japan, provided a novel insight into the pointing performance. The PR data helped identify the pointing errors after the orbit boost, track the performance improvements, and show subtle effects from ephemeris errors and gyro bias errors. It also helped identify average bias trends throughout the mission. Roll errors tracked by the PR from sample orbits pre-boost and post-boost are shown in Figure 1. Prior to the orbit boost the largest attitude errors were due to occasional interference in the ESA. These errors were sometime larger than 0.2 degrees in pitch and roll, but usually less, as estimated from a comprehensive review of the attitude excursions using gyro data. Sudden jumps in the onboard roll show up as spikes in the reported attitude since the control responds within tens of seconds to null the pointing error. The PR estimated roll tracks well with an estimate of the roll history propagated using gyro data. After the orbit boost, the attitude errors shown by the PR roll have a smooth sine-wave type signal because of the way that attitude errors propagate with the use of gyro data. Yaw errors couple at orbit period to roll with '/4 orbit lag. By tracking the amplitude, phase, and bias of the sinusoidal PR roll error signal, it was shown that the average pitch rotation axis tends to be offset from orbit normal in a direction perpendicular to the Sun direction, as shown in Figure 2 for a 200 day period following the orbit boost. This is a result of the higher accuracy and stability of the Sun sensor measurements relative to the magnetometer measurements used in the Kalman filter. In November, 2001 a magnetometer calibration adjustment was uploaded which improved the pointing performance, keeping the roll and yaw amplitudes within about 0.1 degrees. After the boost, onboard ephemeris errors had a direct effect on the pitch pointing, being used to compute the Earth pointing reference frame. Improvements after the orbit boost have kept the the onboard ephemeris errors generally below 20 kilometers. Ephemeris errors have secondary effects on roll and yaw, especially during high beta angle when pitch effects can couple into roll and yaw. This is illustrated in figure 3. The onboard roll bias trends as measured by PR data show correlations with the Kalman filter's gyro bias error. This particularly shows up after yaw turns (every 2 to 4 weeks) as shown in Figure 3, when a slight roll bias is observed while the onboard computed gyro biases settle to new values. As for longer term trends, the PR data shows that the roll bias was influenced by Earth horizon radiance effects prior to the boost, changing values at yaw turns, and indicated a long term drift as shown in Figure 4. After the boost, the bias variations were smaller and showed some possible correlation with solar beta angle, probably due to sun sensor misalignment effects.

  9. A simultaneously calibration approach for installation and attitude errors of an INS/GPS/LDS target tracker.

    PubMed

    Cheng, Jianhua; Chen, Daidai; Sun, Xiangyu; Wang, Tongda

    2015-02-04

    To obtain the absolute position of a target is one of the basic topics for non-cooperated target tracking problems. In this paper, we present a simultaneously calibration method for an Inertial navigation system (INS)/Global position system (GPS)/Laser distance scanner (LDS) integrated system based target positioning approach. The INS/GPS integrated system provides the attitude and position of observer, and LDS offers the distance between the observer and the target. The two most significant errors are taken into jointly consideration and analyzed: (1) the attitude measure error of INS/GPS; (2) the installation error between INS/GPS and LDS subsystems. Consequently, a INS/GPS/LDS based target positioning approach considering these two errors is proposed. In order to improve the performance of this approach, a novel calibration method is designed to simultaneously estimate and compensate these two main errors. Finally, simulations are conducted to access the performance of the proposed target positioning approach and the designed simultaneously calibration method.

  10. Analyzing Complex Survey Data.

    ERIC Educational Resources Information Center

    Rodgers-Farmer, Antoinette Y.; Davis, Diane

    2001-01-01

    Uses data from the 1994 AIDS Knowledge and Attitudes Supplement to the National Health Interview Survey (NHIS) to illustrate that biased point estimates, inappropriate standard errors, and misleading tests of significance can result from using traditional software packages, such as SPSS or SAS, for complex survey analysis. (BF)

  11. Mapping GRACE Accelerometer Error

    NASA Astrophysics Data System (ADS)

    Sakumura, C.; Harvey, N.; McCullough, C. M.; Bandikova, T.; Kruizinga, G. L. H.

    2017-12-01

    After more than fifteen years in orbit, instrument noise, and accelerometer noise in particular, remains one of the limiting error sources for the NASA/DLR Gravity Recovery and Climate Experiment mission. The recent V03 Level-1 reprocessing campaign used a Kalman filter approach to produce a high fidelity, smooth attitude solution fusing star camera and angular acceleration data. This process provided an unprecedented method for analysis and error estimation of each instrument. The accelerometer exhibited signal aliasing, differential scale factors between electrode plates, and magnetic effects. By applying the noise model developed for the angular acceleration data to the linear measurements, we explore the magnitude and geophysical pattern of gravity field error due to the electrostatic accelerometer.

  12. Attitudes of Mashhad Public Hospital's Nurses and Midwives toward the Causes and Rates of Medical Errors Reporting.

    PubMed

    Mobarakabadi, Sedigheh Sedigh; Ebrahimipour, Hosein; Najar, Ali Vafaie; Janghorban, Roksana; Azarkish, Fatemeh

    2017-03-01

    Patient's safety is one of the main objective in healthcare services; however medical errors are a prevalent potential occurrence for the patients in treatment systems. Medical errors lead to an increase in mortality rate of the patients and challenges such as prolonging of the inpatient period in the hospitals and increased cost. Controlling the medical errors is very important, because these errors besides being costly, threaten the patient's safety. To evaluate the attitudes of nurses and midwives toward the causes and rates of medical errors reporting. It was a cross-sectional observational study. The study population was 140 midwives and nurses employed in Mashhad Public Hospitals. The data collection was done through Goldstone 2001 revised questionnaire. SPSS 11.5 software was used for data analysis. To analyze data, descriptive and inferential analytic statistics were used. Standard deviation and relative frequency distribution, descriptive statistics were used for calculation of the mean and the results were adjusted as tables and charts. Chi-square test was used for the inferential analysis of the data. Most of midwives and nurses (39.4%) were in age range of 25 to 34 years and the lowest percentage (2.2%) were in age range of 55-59 years. The highest average of medical errors was related to employees with three-four years of work experience, while the lowest average was related to those with one-two years of work experience. The highest average of medical errors was during the evening shift, while the lowest were during the night shift. Three main causes of medical errors were considered: illegibile physician prescription orders, similarity of names in different drugs and nurse fatigueness. The most important causes for medical errors from the viewpoints of nurses and midwives are illegible physician's order, drug name similarity with other drugs, nurse's fatigueness and damaged label or packaging of the drug, respectively. Head nurse feedback, peer feedback, fear of punishment or job loss were considered as reasons for under reporting of medical errors. This research demonstrates the need for greater attention to be paid to the causes of medical errors.

  13. Dynamic response tests of inertial and optical wind-tunnel model attitude measurement devices

    NASA Technical Reports Server (NTRS)

    Buehrle, R. D.; Young, C. P., Jr.; Burner, A. W.; Tripp, J. S.; Tcheng, P.; Finley, T. D.; Popernack, T. G., Jr.

    1995-01-01

    Results are presented for an experimental study of the response of inertial and optical wind-tunnel model attitude measurement systems in a wind-off simulated dynamic environment. This study is part of an ongoing activity at the NASA Langley Research Center to develop high accuracy, advanced model attitude measurement systems that can be used in a dynamic wind-tunnel environment. This activity was prompted by the inertial model attitude sensor response observed during high levels of model vibration which results in a model attitude measurement bias error. Significant bias errors in model attitude measurement were found for the measurement using the inertial device during wind-off dynamic testing of a model system. The amount of bias present during wind-tunnel tests will depend on the amplitudes of the model dynamic response and the modal characteristics of the model system. Correction models are presented that predict the vibration-induced bias errors to a high degree of accuracy for the vibration modes characterized in the simulated dynamic environment. The optical system results were uncorrupted by model vibration in the laboratory setup.

  14. Accurate Attitude Estimation Using ARS under Conditions of Vehicle Movement Based on Disturbance Acceleration Adaptive Estimation and Correction

    PubMed Central

    Xing, Li; Hang, Yijun; Xiong, Zhi; Liu, Jianye; Wan, Zhong

    2016-01-01

    This paper describes a disturbance acceleration adaptive estimate and correction approach for an attitude reference system (ARS) so as to improve the attitude estimate precision under vehicle movement conditions. The proposed approach depends on a Kalman filter, where the attitude error, the gyroscope zero offset error and the disturbance acceleration error are estimated. By switching the filter decay coefficient of the disturbance acceleration model in different acceleration modes, the disturbance acceleration is adaptively estimated and corrected, and then the attitude estimate precision is improved. The filter was tested in three different disturbance acceleration modes (non-acceleration, vibration-acceleration and sustained-acceleration mode, respectively) by digital simulation. Moreover, the proposed approach was tested in a kinematic vehicle experiment as well. Using the designed simulations and kinematic vehicle experiments, it has been shown that the disturbance acceleration of each mode can be accurately estimated and corrected. Moreover, compared with the complementary filter, the experimental results have explicitly demonstrated the proposed approach further improves the attitude estimate precision under vehicle movement conditions. PMID:27754469

  15. Accurate Attitude Estimation Using ARS under Conditions of Vehicle Movement Based on Disturbance Acceleration Adaptive Estimation and Correction.

    PubMed

    Xing, Li; Hang, Yijun; Xiong, Zhi; Liu, Jianye; Wan, Zhong

    2016-10-16

    This paper describes a disturbance acceleration adaptive estimate and correction approach for an attitude reference system (ARS) so as to improve the attitude estimate precision under vehicle movement conditions. The proposed approach depends on a Kalman filter, where the attitude error, the gyroscope zero offset error and the disturbance acceleration error are estimated. By switching the filter decay coefficient of the disturbance acceleration model in different acceleration modes, the disturbance acceleration is adaptively estimated and corrected, and then the attitude estimate precision is improved. The filter was tested in three different disturbance acceleration modes (non-acceleration, vibration-acceleration and sustained-acceleration mode, respectively) by digital simulation. Moreover, the proposed approach was tested in a kinematic vehicle experiment as well. Using the designed simulations and kinematic vehicle experiments, it has been shown that the disturbance acceleration of each mode can be accurately estimated and corrected. Moreover, compared with the complementary filter, the experimental results have explicitly demonstrated the proposed approach further improves the attitude estimate precision under vehicle movement conditions.

  16. State estimation for autopilot control of small unmanned aerial vehicles in windy conditions

    NASA Astrophysics Data System (ADS)

    Poorman, David Paul

    The use of small unmanned aerial vehicles (UAVs) both in the military and civil realms is growing. This is largely due to the proliferation of inexpensive sensors and the increase in capability of small computers that has stemmed from the personal electronic device market. Methods for performing accurate state estimation for large scale aircraft have been well known and understood for decades, which usually involve a complex array of expensive high accuracy sensors. Performing accurate state estimation for small unmanned aircraft is a newer area of study and often involves adapting known state estimation methods to small UAVs. State estimation for small UAVs can be more difficult than state estimation for larger UAVs due to small UAVs employing limited sensor suites due to cost, and the fact that small UAVs are more susceptible to wind than large aircraft. The purpose of this research is to evaluate the ability of existing methods of state estimation for small UAVs to accurately capture the states of the aircraft that are necessary for autopilot control of the aircraft in a Dryden wind field. The research begins by showing which aircraft states are necessary for autopilot control in Dryden wind. Then two state estimation methods that employ only accelerometer, gyro, and GPS measurements are introduced. The first method uses assumptions on aircraft motion to directly solve for attitude information and smooth GPS data, while the second method integrates sensor data to propagate estimates between GPS measurements and then corrects those estimates with GPS information. The performance of both methods is analyzed with and without Dryden wind, in straight and level flight, in a coordinated turn, and in a wings level ascent. It is shown that in zero wind, the first method produces significant steady state attitude errors in both a coordinated turn and in a wings level ascent. In Dryden wind, it produces large noise on the estimates for its attitude states, and has a non-zero mean error that increases when gyro bias is increased. The second method is shown to not exhibit any steady state error in the tested scenarios that is inherent to its design. The second method can correct for attitude errors that arise from both integration error and gyro bias states, but it suffers from lack of attitude error observability. The attitude errors are shown to be more observable in wind, but increased integration error in wind outweighs the increase in attitude corrections that such increased observability brings, resulting in larger attitude errors in wind. Overall, this work highlights many technical deficiencies of both of these methods of state estimation that could be improved upon in the future to enhance state estimation for small UAVs in windy conditions.

  17. Attitude control system conceptual design for the GOES-N spacecraft series

    NASA Technical Reports Server (NTRS)

    Markley, F. L.; Bauer, F. H.; Deily, J. J.; Femiano, M. D.

    1991-01-01

    The attitude determination sensing and processing of the system are considered, and inertial reference units, star trackers, and beacons and landmarks are discussed as well as an extended Kalman filter and expected attitude-determination performance. The baseline controller is overviewed, and a spacecraft motion compensation (SMC) algorithm, disturbance environment, and SMC performance expectations are covered. Detailed simulation results are presented, and emphasis is placed on dynamic models, attitude estimation and control, and SMC disturbance accommmodation. It is shown that the attitude control system employing gyro/star tracker sensing and active three-axis control with reaction wheels is capable of maintaining attitude errors of 1.7 microrad or less on all axes in the absence of attitude disturbances, and that the sensor line-of-sight pointing errors can be reduced to 0.1 microrad by SMC.

  18. Safety culture perceptions of pharmacists in Malaysian hospitals and health clinics: a multicentre assessment using the Safety Attitudes Questionnaire

    PubMed Central

    Samsuri, Srima Elina; Pei Lin, Lua; Fahrni, Mathumalar Loganathan

    2015-01-01

    Objective To assess the safety attitudes of pharmacists, provide a profile of their domains of safety attitude and correlate their attitudes with self-reported rates of medication errors. Design A cross-sectional study utilising the Safety Attitudes Questionnaire (SAQ). Setting 3 public hospitals and 27 health clinics. Participants 117 pharmacists. Main outcome measure(s) Safety culture mean scores, variation in scores across working units and between hospitals versus health clinics, predictors of safety culture, and medication errors and their correlation. Results Response rate was 83.6% (117 valid questionnaires returned). Stress recognition (73.0±20.4) and working condition (54.8±17.4) received the highest and lowest mean scores, respectively. Pharmacists exhibited positive attitudes towards: stress recognition (58.1%), job satisfaction (46.2%), teamwork climate (38.5%), safety climate (33.3%), perception of management (29.9%) and working condition (15.4%). With the exception of stress recognition, those who worked in health clinics scored higher than those in hospitals (p<0.05) and higher scores (overall score as well as score for each domain except for stress recognition) correlated negatively with reported number of medication errors. Conversely, those working in hospital (versus health clinic) were 8.9 times more likely (p<0.01) to report a medication error (OR 8.9, CI 3.08 to 25.7). As stress recognition increased, the number of medication errors reported increased (p=0.023). Years of work experience (p=0.017) influenced the number of medication errors reported. For every additional year of work experience, pharmacists were 0.87 times less likely to report a medication error (OR 0.87, CI 0.78 to 0.98). Conclusions A minority (20.5%) of the pharmacists working in hospitals and health clinics was in agreement with the overall SAQ questions and scales. Pharmacists in outpatient and ambulatory units and those in health clinics had better perceptions of safety culture. As perceptions improved, the number of medication errors reported decreased. Group-specific interventions that target specific domains are necessary to improve the safety culture. PMID:26610761

  19. Considerations in the design of large space structures

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.; Macneal, R. H.; Knapp, K.; Macgillivray, C. S.

    1981-01-01

    Several analytical studies of topics relevant to the design of large space structures are presented. Topics covered are: the types and quantitative evaluation of the disturbances to which large Earth-oriented microwave reflectors would be subjected and the resulting attitude errors of such spacecraft; the influence of errors in the structural geometry of the performance of radiofrequency antennas; the effect of creasing on the flatness of tensioned reflector membrane surface; and an analysis of the statistics of damage to truss-type structures due to meteoroids.

  20. Extended Kalman filter for attitude estimation of the earth radiation budget satellite

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack Y.

    1989-01-01

    The design and testing of an Extended Kalman Filter (EKF) for ground attitude determination, misalignment estimation and sensor calibration of the Earth Radiation Budget Satellite (ERBS) are described. Attitude is represented by the quaternion of rotation and the attitude estimation error is defined as an additive error. Quaternion normalization is used for increasing the convergence rate and for minimizing the need for filter tuning. The development of the filter dynamic model, the gyro error model and the measurement models of the Sun sensors, the IR horizon scanner and the magnetometers which are used to generate vector measurements are also presented. The filter is applied to real data transmitted by ERBS sensors. Results are presented and analyzed and the EKF advantages as well as sensitivities are discussed. On the whole the filter meets the expected synergism, accuracy and robustness.

  1. Multisatellite attitude determination/optical aspect bias determination (MSAD/OABIAS) system description and operating guide. Volume 1: Introduction and analysis

    NASA Technical Reports Server (NTRS)

    Joseph, M.; Ket, J. E.; Liu, K. S.; Plett, M. E.; Shear, M. A.; Shinohara, T.; Wertz, J. R.

    1983-01-01

    The Multisatellite Attitude Determination/Optical Aspect Bias Determination (MSAD/OABIAS) System, designed to determine spin axis orientation and biases in the alignment or performance of optical or infrared horizon sensors and Sun sensors used for spacecraft attitude determination is described. MSAD/OABIAS uses any combination of eight observation models to process data from a single onboard horizon sensor and Sun sensor to determine simultaneously the two components of the attitude of the spacecraft, the initial phase of the Sun sensor, the spin rate, seven sensor biases, and the orbital in-track error associated with the spacecraft ephemeris information supplied to the system. In addition, the MSAD/OABIAS System provides a data simulator for system and performance testing, an independent deterministic attitude system for preprocessing and independent testing of biases determined, and a multipurpose data prediction and comparison system.

  2. Local Observability Analysis of Star Sensor Installation Errors in a SINS/CNS Integration System for Near-Earth Flight Vehicles.

    PubMed

    Yang, Yanqiang; Zhang, Chunxi; Lu, Jiazhen

    2017-01-16

    Strapdown inertial navigation system/celestial navigation system (SINS/CNS) integrated navigation is a fully autonomous and high precision method, which has been widely used to improve the hitting accuracy and quick reaction capability of near-Earth flight vehicles. The installation errors between SINS and star sensors have been one of the main factors that restrict the actual accuracy of SINS/CNS. In this paper, an integration algorithm based on the star vector observations is derived considering the star sensor installation error. Then, the star sensor installation error is accurately estimated based on Kalman Filtering (KF). Meanwhile, a local observability analysis is performed on the rank of observability matrix obtained via linearization observation equation, and the observable conditions are presented and validated. The number of star vectors should be greater than or equal to 2, and the times of posture adjustment also should be greater than or equal to 2. Simulations indicate that the star sensor installation error could be readily observable based on the maneuvering condition; moreover, the attitude errors of SINS are less than 7 arc-seconds. This analysis method and conclusion are useful in the ballistic trajectory design of near-Earth flight vehicles.

  3. A vignette study to examine health care professionals' attitudes towards patient involvement in error prevention.

    PubMed

    Schwappach, David L B; Frank, Olga; Davis, Rachel E

    2013-10-01

    Various authorities recommend the participation of patients in promoting patient safety, but little is known about health care professionals' (HCPs') attitudes towards patients' involvement in safety-related behaviours. To investigate how HCPs evaluate patients' behaviours and HCP responses to patient involvement in the behaviour, relative to different aspects of the patient, the involved HCP and the potential error. Cross-sectional fractional factorial survey with seven factors embedded in two error scenarios (missed hand hygiene, medication error). Each survey included two randomized vignettes that described the potential error, a patient's reaction to that error and the HCP response to the patient. Twelve hospitals in Switzerland. A total of 1141 HCPs (response rate 45%). Approval of patients' behaviour, HCP response to the patient, anticipated effects on the patient-HCP relationship, HCPs' support for being asked the question, affective response to the vignettes. Outcomes were measured on 7-point scales. Approval of patients' safety-related interventions was generally high and largely affected by patients' behaviour and correct identification of error. Anticipated effects on the patient-HCP relationship were much less positive, little correlated with approval of patients' behaviour and were mainly determined by the HCP response to intervening patients. HCPs expressed more favourable attitudes towards patients intervening about a medication error than about hand sanitation. This study provides the first insights into predictors of HCPs' attitudes towards patient engagement in safety. Future research is however required to assess the generalizability of the findings into practice before training can be designed to address critical issues. © 2012 John Wiley & Sons Ltd.

  4. Attitude and vibration control of a large flexible space-based antenna

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1982-01-01

    Control systems synthesis is considered for controlling the rigid body attitude and elastic motion of a large deployable space-based antenna. Two methods for control systems synthesis are considered. The first method utilizes the stability and robustness properties of the controller consisting of torque actuators and collocated attitude and rate sensors. The second method is based on the linear-quadratic-Gaussian control theory. A combination of the two methods, which results in a two level hierarchical control system, is also briefly discussed. The performance of the controllers is analyzed by computing the variances of pointing errors, feed misalignment errors and surface contour errors in the presence of sensor and actuator noise.

  5. Attitude error response of structures to actuator/sensor noise

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1991-01-01

    Explicit closed-form formulas are presented for the RMS attitude-error response to sensor and actuator noise for co-located actuators/sensors as a function of both control-gain parameters and structure parameters. The main point of departure is the use of continuum models. In particular the anisotropic Timoshenko model is used for lattice trusses typified by the NASA EPS Structure Model and the Evolutionary Model. One conclusion is that the maximum attainable improvement in the attitude error varying either structure parameters or control gains is 3 dB for the axial and torsion modes, the bending being essentially insensitive. The results are similar whether the Bernoulli model or the anisotropic Timoshenko model is used.

  6. Results of scatterometer systems analysis for NASA/MSC Earth Observation Sensor Evaluation Program.

    NASA Technical Reports Server (NTRS)

    Krishen, K.; Vlahos, N.; Brandt, O.; Graybeal, G.

    1971-01-01

    Radar scatterometers have applications in the NASA/MSC Earth Observation Aircraft Program. Over a period of several years, several missions have been flown over both land and ocean. In this paper a system evaluation of the NASA/MSC 13.3-GHz Scatterometer System is presented. The effects of phase error between the Scatterometer channels, antenna pattern deviations, aircraft attitude deviations, environmental changes, and other related factors such as processing errors, system repeatability, and propeller modulation, were established. Furthermore, the reduction in system errors and calibration improvement was investigated by taking into account these parameter deviations. Typical scatterometer data samples are presented.

  7. Solar maximum mission fine pointing sun sensor dawn and dusk errors flight data and model analysis

    NASA Technical Reports Server (NTRS)

    Kulp, D. R.

    1988-01-01

    SMM flight system control errors occurring at spacecraft dawn and dusk are analyzed. The errors are associated with the fine pointing sun sensor (FPSS), which is a primary component of the SMM attitude control system. It is shown that the source of the FPSS dawn/dusk distortion is the incomplete masking of sunlight reflected off the earth by the optical baffle covering the FPSS sensor heads onboard the SMM during periods of orbit dawn and dusk. For the most part, the modeled behavior of the FPSS under dawn and dusk lighting conditions matches the observed behavior in the SMM flight data.

  8. Wheel speed management control system for spacecraft

    NASA Technical Reports Server (NTRS)

    Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)

    1991-01-01

    A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.

  9. High-Accuracy Decoupling Estimation of the Systematic Coordinate Errors of an INS and Intensified High Dynamic Star Tracker Based on the Constrained Least Squares Method

    PubMed Central

    Jiang, Jie; Yu, Wenbo; Zhang, Guangjun

    2017-01-01

    Navigation accuracy is one of the key performance indicators of an inertial navigation system (INS). Requirements for an accuracy assessment of an INS in a real work environment are exceedingly urgent because of enormous differences between real work and laboratory test environments. An attitude accuracy assessment of an INS based on the intensified high dynamic star tracker (IHDST) is particularly suitable for a real complex dynamic environment. However, the coupled systematic coordinate errors of an INS and the IHDST severely decrease the attitude assessment accuracy of an INS. Given that, a high-accuracy decoupling estimation method of the above systematic coordinate errors based on the constrained least squares (CLS) method is proposed in this paper. The reference frame of the IHDST is firstly converted to be consistent with that of the INS because their reference frames are completely different. Thereafter, the decoupling estimation model of the systematic coordinate errors is established and the CLS-based optimization method is utilized to estimate errors accurately. After compensating for error, the attitude accuracy of an INS can be assessed based on IHDST accurately. Both simulated experiments and real flight experiments of aircraft are conducted, and the experimental results demonstrate that the proposed method is effective and shows excellent performance for the attitude accuracy assessment of an INS in a real work environment. PMID:28991179

  10. Evaluating the Effective Factors for Reporting Medical Errors among Midwives Working at Teaching Hospitals Affiliated to Isfahan University of Medical Sciences.

    PubMed

    Khorasani, Fahimeh; Beigi, Marjan

    2017-01-01

    Recently, evaluation and accreditation system of hospitals has had a special emphasis on reporting malpractices and sharing errors or lessons learnt from errors, but still due to lack of promotion of systematic approach for solving problems from the same system, this issue has remained unattended. This study was conducted to determine the effective factors for reporting medical errors among midwives. This project was a descriptive cross-sectional observational study. Data gathering tools were a standard checklist and two researcher-made questionnaires. Sampling for this study was conducted from all the midwives who worked at teaching hospitals affiliated to Isfahan University of Medical Sciences through census method (convenient) and lasted for 3 months. Data were analyzed using descriptive and inferential statistics through SPSS 16. Results showed that 79.1% of the staff reported errors and the highest rate of errors was in the process of patients' tests. In this study, the mean score of midwives' knowledge about the errors was 79.1 and the mean score of their attitude toward reporting errors was 70.4. There was a direct relation between the score of errors' knowledge and attitude in the midwifery staff and reporting errors. Based on the results of this study about the appropriate knowledge and attitude of midwifery staff regarding errors and action toward reporting them, it is recommended to strengthen the system when it comes to errors and hospitals risks.

  11. Postlaunch calibration of spacecraft attitude instruments

    NASA Technical Reports Server (NTRS)

    Davis, W.; Hashmall, J.; Garrick, J.; Harman, R.

    1993-01-01

    The accuracy of both onboard and ground attitude determination can be significantly enhanced by calibrating spacecraft attitude instruments (sensors) after launch. Although attitude sensors are accurately calibrated before launch, the stresses of launch and the space environment inevitably cause changes in sensor parameters. During the mission, these parameters may continue to drift requiring repeated on-orbit calibrations. The goal of attitude sensor calibration is to reduce the systematic errors in the measurement models. There are two stages at which systematic errors may enter. The first occurs in the conversion of sensor output into an observation vector in the sensor frame. The second occurs in the transformation of the vector from the sensor frame to the spacecraft attitude reference frame. This paper presents postlaunch alignment and transfer function calibration of the attitude sensors for the Compton Gamma Ray Observatory (GRO), the Upper Atmosphere Research Satellite (UARS), and the Extreme Ultraviolet Explorer (EUVE).

  12. Effect of Antenna Pointing Errors on SAR Imaging Considering the Change of the Point Target Location

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Liu, Shijie; Yu, Haifeng; Tong, Xiaohua; Huang, Guoman

    2018-04-01

    Towards spaceborne spotlight SAR, the antenna is regulated by the SAR system with specific regularity, so the shaking of the internal mechanism is inevitable. Moreover, external environment also has an effect on the stability of SAR platform. Both of them will cause the jitter of the SAR platform attitude. The platform attitude instability will introduce antenna pointing error on both the azimuth and range directions, and influence the acquisition of SAR original data and ultimate imaging quality. In this paper, the relations between the antenna pointing errors and the three-axis attitude errors are deduced, then the relations between spaceborne spotlight SAR imaging of the point target and antenna pointing errors are analysed based on the paired echo theory, meanwhile, the change of the azimuth antenna gain is considered as the spotlight SAR platform moves ahead. The simulation experiments manifest the effects on spotlight SAR imaging caused by antenna pointing errors are related to the target location, that is, the pointing errors of the antenna beam will severely influence the area far away from the scene centre of azimuth direction in the illuminated scene.

  13. An Experimental Study of Medical Error Explanations: Do Apology, Empathy, Corrective Action, and Compensation Alter Intentions and Attitudes?

    PubMed

    Nazione, Samantha; Pace, Kristin

    2015-01-01

    Medical malpractice lawsuits are a growing problem in the United States, and there is much controversy regarding how to best address this problem. The medical error disclosure framework suggests that apologizing, expressing empathy, engaging in corrective action, and offering compensation after a medical error may improve the provider-patient relationship and ultimately help reduce the number of medical malpractice lawsuits patients bring to medical providers. This study provides an experimental examination of the medical error disclosure framework and its effect on amount of money requested in a lawsuit, negative intentions, attitudes, and anger toward the provider after a medical error. Results suggest empathy may play a large role in providing positive outcomes after a medical error.

  14. Advantages of estimating rate corrections during dynamic propagation of spacecraft rates: Applications to real-time attitude determination of SAMPEX

    NASA Technical Reports Server (NTRS)

    Challa, M. S.; Natanson, G. A.; Baker, D. F.; Deutschmann, J. K.

    1994-01-01

    This paper describes real-time attitude determination results for the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), a gyroless spacecraft, using a Kalman filter/Euler equation approach denoted the real-time sequential filter (RTSF). The RTSF is an extended Kalman filter whose state vector includes the attitude quaternion and corrections to the rates, which are modeled as Markov processes with small time constants. The rate corrections impart a significant robustness to the RTSF against errors in modeling the environmental and control torques, as well as errors in the initial attitude and rates, while maintaining a small state vector. SAMPLEX flight data from various mission phases are used to demonstrate the robustness of the RTSF against a priori attitude and rate errors of up to 90 deg and 0.5 deg/sec, respectively, as well as a sensitivity of 0.0003 deg/sec in estimating rate corrections in torque computations. In contrast, it is shown that the RTSF attitude estimates without the rate corrections can degrade rapidly. RTSF advantages over single-frame attitude determination algorithms are also demonstrated through (1) substantial improvements in attitude solutions during sun-magnetic field coalignment and (2) magnetic-field-only attitude and rate estimation during the spacecraft's sun-acquisition mode. A robust magnetometer-only attitude-and-rate determination method is also developed to provide for the contingency when both sun data as well as a priori knowledge of the spacecraft state are unavailable. This method includes a deterministic algorithm used to initialize the RTSF with coarse estimates of the spacecraft attitude and rates. The combined algorithm has been found effective, yielding accuracies of 1.5 deg in attitude and 0.01 deg/sec in the rates and convergence times as little as 400 sec.

  15. Comparison of community and hospital pharmacists' attitudes and behaviors on medication error disclosure to the patient: A pilot study.

    PubMed

    Kim, ChungYun; Mazan, Jennifer L; Quiñones-Boex, Ana C

    To determine pharmacists' attitudes and behaviors on medication errors and their disclosure and to compare community and hospital pharmacists on such views. An online questionnaire was developed from previous studies on physicians' disclosure of errors. Questionnaire items included demographics, environment, personal experiences, and attitudes on medication errors and the disclosure process. An invitation to participate along with the link to the questionnaire was electronically distributed to members of two Illinois pharmacy associations. A follow-up reminder was sent 4 weeks after the original message. Data were collected for 3 months, and statistical analyses were performed with the use of IBM SPSS version 22.0. The overall response rate was 23.3% (n = 422). The average employed respondent was a 51-year-old white woman with a BS Pharmacy degree working in a hospital pharmacy as a clinical staff member. Regardless of practice settings, pharmacist respondents agreed that medication errors were inevitable and that a disclosure process is necessary. Respondents from community and hospital settings were further analyzed to assess any differences. Community pharmacist respondents were more likely to agree that medication errors were inevitable and that pharmacists should address the patient's emotions when disclosing an error. Community pharmacist respondents were also more likely to agree that the health care professional most closely involved with the error should disclose the error to the patient and thought that it was the pharmacists' responsibility to disclose the error. Hospital pharmacist respondents were more likely to agree that it was important to include all details in a disclosure process and more likely to disagree on putting a "positive spin" on the event. Regardless of practice setting, responding pharmacists generally agreed that errors should be disclosed to patients. There were, however, significant differences in their attitudes and behaviors depending on their particular practice setting. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. GPS Attitude Determination Using Deployable-Mounted Antennas

    NASA Technical Reports Server (NTRS)

    Osborne, Michael L.; Tolson, Robert H.

    1996-01-01

    The primary objective of this investigation is to develop a method to solve for spacecraft attitude in the presence of potential incomplete antenna deployment. Most research on the use of the Global Positioning System (GPS) in attitude determination has assumed that the antenna baselines are known to less than 5 centimeters, or one quarter of the GPS signal wavelength. However, if the GPS antennas are mounted on a deployable fixture such as a solar panel, the actual antenna positions will not necessarily be within 5 cm of nominal. Incomplete antenna deployment could cause the baselines to be grossly in error, perhaps by as much as a meter. Overcoming this large uncertainty in order to accurately determine attitude is the focus of this study. To this end, a two-step solution method is proposed. The first step uses a least-squares estimate of the baselines to geometrically calculate the deployment angle errors of the solar panels. For the spacecraft under investigation, the first step determines the baselines to 3-4 cm with 4-8 minutes of data. A Kalman filter is then used to complete the attitude determination process, resulting in typical attitude errors of 0.50.

  17. Analysis and Quality Assurance of the SKYMAP 4.0 Guidance and Tracking Star Catalog: The NASA SKY2000 Spacecraft Attitude Determination Star Catalog

    NASA Technical Reports Server (NTRS)

    Warren, Wayne H., Jr.

    2001-01-01

    An updated and improved NASA spacecraft attitude determination catalog, now called SKY2000, Version 3, has been prepared and quality assured. The highest priority goals were to replace the astrometric (positions and motions) and photometric (brightnesses and colors) data with the most recent and accurate data available. Quality assurance has been performed in a fairly straightforward manner, i.e., without extensive data checking and analysis, and many errors and Inconsistencies were corrected. Additional work should eventually be done on the variability and multiple-star data In the catalog, while certain other data can be significantly Improved. The current version of the catalog can be found at the GSFC Flight Dynamics website: http://cheli.gsfc.nasa.gov/dist/attitude/skymap.html. Supporting information and reference materials (published papers, format and data descriptions, etc.) can also be found at the website.

  18. Identification of factors which affect the tendency towards and attitudes of emergency unit nurses to make medical errors.

    PubMed

    Kiymaz, Dilek; Koç, Zeliha

    2018-03-01

    To determine individual and professional factors affecting the tendency of emergency unit nurses to make medical errors and their attitudes towards these errors in Turkey. Compared with other units, the emergency unit is an environment where there is an increased tendency for making medical errors due to its intensive and rapid pace, noise and complex and dynamic structure. A descriptive cross-sectional study. The study was carried out from 25 July 2014-16 September 2015 with the participation of 284 nurses who volunteered to take part in the study. Data were gathered using the data collection survey for nurses, the Medical Error Tendency Scale and the Medical Error Attitude Scale. It was determined that 40.1% of the nurses previously witnessed medical errors, 19.4% made a medical error in the last year, 17.6% of medical errors were caused by medication errors where the wrong medication was administered in the wrong dose, and none of the nurses filled out a case report form about the medical errors they made. Regarding the factors that caused medical errors in the emergency unit, 91.2% of the nurses stated excessive workload as a cause; 85.1% stated an insufficient number of nurses; and 75.4% stated fatigue, exhaustion and burnout. The study showed that nurses who loved their job were satisfied with their unit and who always worked during day shifts had a lower medical error tendency. It is suggested to consider the following actions: increase awareness about medical errors, organise training to reduce errors in medication administration, develop procedures and protocols specific to the emergency unit health care and create an environment which is not punitive wherein nurses can safely report medical errors. © 2017 John Wiley & Sons Ltd.

  19. The Precision Formation Flying Integrated Analysis Tool (PFFIAT)

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Lyon, Richard G.; Sears, Edie; Lu, Victor

    2004-01-01

    Several space missions presently in the concept phase (e.g. Stellar Imager, Submillimeter Probe of Evolutionary Cosmic Structure, Terrestrial Planet Finder) plan to use multiple spacecraft flying in precise formation to synthesize unprecedently large aperture optical systems. These architectures present challenges to the attitude and position determination and control system; optical performance is directly coupled to spacecraft pointing with typical control requirements being on the scale of milliarcseconds and nanometers. To investigate control strategies, rejection of environmental disturbances, and sensor and actuator requirements, a capability is needed to model both the dynamical and optical behavior of such a distributed telescope system. This paper describes work ongoing at NASA Goddard Space Flight Center toward the integration of a set of optical analysis tools (Optical System Characterization and Analysis Research software, or OSCAR) with the Formation Flying Test Bed (FFTB). The resulting system is called the Precision Formation Flying Integrated Analysis Tool (PFFIAT), and it provides the capability to simulate closed-loop control of optical systems composed of elements mounted on multiple spacecraft. The attitude and translation spacecraft dynamics are simulated in the FFTB, including effects of the space environment (e.g. solar radiation pressure, differential orbital motion). The resulting optical configuration is then processed by OSCAR to determine an optical image. From this image, wavefront sensing (e.g. phase retrieval) techniques are being developed to derive attitude and position errors. These error signals will be fed back to the spacecraft control systems, completing the control loop. A simple case study is presented to demonstrate the present capabilities of the tool.

  20. The Precision Formation Flying Integrated Analysis Tool (PFFIAT)

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Lyon, Richard G.; Sears, Edie; Lu, Victor

    2004-01-01

    Several space missions presently in the concept phase (e.g. Stellar Imager, Sub- millimeter Probe of Evolutionary Cosmic Structure, Terrestrial Planet Finder) plan to use multiple spacecraft flying in precise formation to synthesize unprecedently large aperture optical systems. These architectures present challenges to the attitude and position determination and control system; optical performance is directly coupled to spacecraft pointing with typical control requirements being on the scale of milliarcseconds and nanometers. To investigate control strategies, rejection of environmental disturbances, and sensor and actuator requirements, a capability is needed to model both the dynamical and optical behavior of such a distributed telescope system. This paper describes work ongoing at NASA Goddard Space Flight Center toward the integration of a set of optical analysis tools (Optical System Characterization and Analysis Research software, or OSCAR) with the Formation J?lying Test Bed (FFTB). The resulting system is called the Precision Formation Flying Integrated Analysis Tool (PFFIAT), and it provides the capability to simulate closed-loop control of optical systems composed of elements mounted on multiple spacecraft. The attitude and translation spacecraft dynamics are simulated in the FFTB, including effects of the space environment (e.g. solar radiation pressure, differential orbital motion). The resulting optical configuration is then processed by OSCAR to determine an optical image. From this image, wavefront sensing (e.g. phase retrieval) techniques are being developed to derive attitude and position errors. These error signals will be fed back to the spacecraft control systems, completing the control loop. A simple case study is presented to demonstrate the present capabilities of the tool.

  1. Safety culture perceptions of pharmacists in Malaysian hospitals and health clinics: a multicentre assessment using the Safety Attitudes Questionnaire.

    PubMed

    Samsuri, Srima Elina; Pei Lin, Lua; Fahrni, Mathumalar Loganathan

    2015-11-26

    To assess the safety attitudes of pharmacists, provide a profile of their domains of safety attitude and correlate their attitudes with self-reported rates of medication errors. A cross-sectional study utilising the Safety Attitudes Questionnaire (SAQ). 3 public hospitals and 27 health clinics. 117 pharmacists. Safety culture mean scores, variation in scores across working units and between hospitals versus health clinics, predictors of safety culture, and medication errors and their correlation. Response rate was 83.6% (117 valid questionnaires returned). Stress recognition (73.0±20.4) and working condition (54.8±17.4) received the highest and lowest mean scores, respectively. Pharmacists exhibited positive attitudes towards: stress recognition (58.1%), job satisfaction (46.2%), teamwork climate (38.5%), safety climate (33.3%), perception of management (29.9%) and working condition (15.4%). With the exception of stress recognition, those who worked in health clinics scored higher than those in hospitals (p<0.05) and higher scores (overall score as well as score for each domain except for stress recognition) correlated negatively with reported number of medication errors. Conversely, those working in hospital (versus health clinic) were 8.9 times more likely (p<0.01) to report a medication error (OR 8.9, CI 3.08 to 25.7). As stress recognition increased, the number of medication errors reported increased (p=0.023). Years of work experience (p=0.017) influenced the number of medication errors reported. For every additional year of work experience, pharmacists were 0.87 times less likely to report a medication error (OR 0.87, CI 0.78 to 0.98). A minority (20.5%) of the pharmacists working in hospitals and health clinics was in agreement with the overall SAQ questions and scales. Pharmacists in outpatient and ambulatory units and those in health clinics had better perceptions of safety culture. As perceptions improved, the number of medication errors reported decreased. Group-specific interventions that target specific domains are necessary to improve the safety culture. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. Maneuver Analysis and Targeting Strategy for the Stardust Re-Entry Capsule

    NASA Technical Reports Server (NTRS)

    Helfrich, Clifford E.; Bhat, Ram; Kangas, Julie; Wilson, Roby; Wong, Mau; Potts, Chris; Williams, Ken

    2006-01-01

    Stardust employed biased maneuvers to limit turns and minimize execution errors. Biased maneuvers also addressed planetary protection and safety issues. Stardust utilized a fixed-direction burn for the final maneuver to match the prevailing attitude so no turns were needed. Performance of the final burn was calibrated in flight.

  3. Infrared horizon sensor modeling for attitude determination and control: Analysis and mission experience

    NASA Technical Reports Server (NTRS)

    Phenneger, M. C.; Singhal, S. P.; Lee, T. H.; Stengle, T. H.

    1985-01-01

    The work performed by the Attitude Determination and Control Section at the National Aeronautics and Space Administration/Goddard Space Flight Center in analyzing and evaluating the performance of infrared horizon sensors is presented. The results of studies performed during the 1960s are reviewed; several models for generating the Earth's infrared radiance profiles are presented; and the Horizon Radiance Modeling Utility, the software used to model the horizon sensor optics and electronics processing to computer radiance-dependent attitude errors, is briefly discussed. Also provided is mission experience from 12 spaceflight missions spanning the period from 1973 to 1984 and using a variety of horizon sensing hardware. Recommendations are presented for future directions for the infrared horizon sensing technology.

  4. Dynamic analysis of Apollo-Salyut/Soyuz docking

    NASA Technical Reports Server (NTRS)

    Schliesing, J. A.

    1972-01-01

    The use of a docking-system computer program in analyzing the dynamic environment produced by two impacting spacecraft and the attitude control systems is discussed. Performance studies were conducted to determine the mechanism load and capture sensitivity to parametric changes in the initial impact conditions. As indicated by the studies, capture latching is most sensitive to vehicle angular-alinement errors and is least sensitive to lateral-miss error. As proved by load-sensitivity studies, peak loads acting on the Apollo spacecraft are considerably lower than the Apollo design-limit loads.

  5. Hubble Space Telescope Magnetometer and Two-Gyro Control Law Design, Implementation, and On-Orbit Performance. Part 1

    NASA Technical Reports Server (NTRS)

    Wirzburger, John H.

    2005-01-01

    For f i h years, the science mission of the Hubble Space Telescope (HST) required using at least three of six rate gyros for attitude control. In the past, HST has mitigated gyro hardware failures by replacement of the failed units through Space Shuttle Servicing Missions. Following the tragic loss of Space Shuttle Columbia on STS-107, the desire to have a safe haven for astronauts during missions has resulted in the cancellation of all planned maxu14 missions to HST. While a robotic servicing mission is being currently being planned, controlling with alternate sensors to replace failed gyros can extend the HST Science mission until the robotic mission can be performed and extend science at HST s end of life. A two-gym control law has been designed and implemented using magnetometers (Magnetic Sensing System - MSS), fixed head star trackers (FHSTs), and Fine Guidance Sensors (FGSs) to control vehicle rate about the missing gyro axis. The three aforementioned sensors are used in succession to reduce HST boresight jitter to less than 7 milli-arcseconds rms and attitude error to less than 10 milli-arcseconds prior to science imaging. The MSS and 2-Gyro (M2G) control law is used for large angle maneuvers and attitude control during earth occultation of FHSTs and FGSs. The Tracker and 2-Gyro (T2G) control law dampens M2G rates and corrects the majority of attitude error in preparation for guide star acquisition with the FGSs. The Fine Guidance Sensor and 2-Gyro (F2G) control law d a m p T2G rates and controls HST attitude during science imaging. This paper describes the M2G control law. Details of M2G algorithms are presented, including computation of the HST 3-axis attitude error estimate, design of the M2G control law, SISO hear stability analyses, and restrictions on operations to maintain the h d t h and safety requirement of a 10degree maximum attitude error. Results of simulations performed in HSTSIM, a high-fidelity non-linear time domain simulation, are presented to predict HST on-orbit performance in attitude hold and maneuver modes. Simulation results are compared to on-orbit data from M2G flight tests performed in November and December 2004 and February 2005. Flight telemetry, using a currently available third gyro, shows that HST attitude error with the new M2G control law is maintained below the 10-degree requirement, and attitude errors are under 2 degrees for 95% of the time.

  6. Instrument Attitude Precision Control

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    2004-01-01

    A novel approach is presented in this paper to analyze attitude precision and control for an instrument gimbaled to a spacecraft subject to an internal disturbance caused by a moving component inside the instrument. Nonlinear differential equations of motion for some sample cases are derived and solved analytically to gain insight into the influence of the disturbance on the attitude pointing error. A simple control law is developed to eliminate the instrument pointing error caused by the internal disturbance. Several cases are presented to demonstrate and verify the concept presented in this paper.

  7. Handbook of satellite pointing errors and their statistical treatment

    NASA Astrophysics Data System (ADS)

    Weinberger, M. C.

    1980-03-01

    This handbook aims to provide both satellite payload and attitude control system designers with a consistent, unambiguous approach to the formulation, definition and interpretation of attitude pointing and measurement specifications. It reviews and assesses the current terminology and practices, and from them establishes a set of unified terminology, giving the user a sound basis to understand the meaning and implications of various specifications and requirements. Guidelines are presented for defining the characteristics of the error sources influencing satellite pointing and attitude measurement, and their combination in performance verification.

  8. Robust double gain unscented Kalman filter for small satellite attitude estimation

    NASA Astrophysics Data System (ADS)

    Cao, Lu; Yang, Weiwei; Li, Hengnian; Zhang, Zhidong; Shi, Jianjun

    2017-08-01

    Limited by the low precision of small satellite sensors, the estimation theories with high performance remains the most popular research topic for the attitude estimation. The Kalman filter (KF) and its extensions have been widely applied in the satellite attitude estimation and achieved plenty of achievements. However, most of the existing methods just take use of the current time-step's priori measurement residuals to complete the measurement update and state estimation, which always ignores the extraction and utilization of the previous time-step's posteriori measurement residuals. In addition, the uncertainty model errors always exist in the attitude dynamic system, which also put forward the higher performance requirements for the classical KF in attitude estimation problem. Therefore, the novel robust double gain unscented Kalman filter (RDG-UKF) is presented in this paper to satisfy the above requirements for the small satellite attitude estimation with the low precision sensors. It is assumed that the system state estimation errors can be exhibited in the measurement residual; therefore, the new method is to derive the second Kalman gain Kk2 for making full use of the previous time-step's measurement residual to improve the utilization efficiency of the measurement data. Moreover, the sequence orthogonal principle and unscented transform (UT) strategy are introduced to robust and enhance the performance of the novel Kalman Filter in order to reduce the influence of existing uncertainty model errors. Numerical simulations show that the proposed RDG-UKF is more effective and robustness in dealing with the model errors and low precision sensors for the attitude estimation of small satellite by comparing with the classical unscented Kalman Filter (UKF).

  9. On-Orbit Solar Dynamics Observatory (SDO) Star Tracker Warm Pixel Analysis

    NASA Technical Reports Server (NTRS)

    Felikson, Denis; Ekinci, Matthew; Hashmall, Joseph A.; Vess, Melissa

    2011-01-01

    This paper describes the process of identification and analysis of warm pixels in two autonomous star trackers on the Solar Dynamics Observatory (SDO) mission. A brief description of the mission orbit and attitude regimes is discussed and pertinent star tracker hardware specifications are given. Warm pixels are defined and the Quality Index parameter is introduced, which can be explained qualitatively as a manifestation of a possible warm pixel event. A description of the algorithm used to identify warm pixel candidates is given. Finally, analysis of dumps of on-orbit star tracker charge coupled devices (CCD) images is presented and an operational plan going forward is discussed. SDO, launched on February 11, 2010, is operated from the NASA Goddard Space Flight Center (GSFC). SDO is in a geosynchronous orbit with a 28.5 inclination. The nominal mission attitude points the spacecraft X-axis at the Sun, with the spacecraft Z-axis roughly aligned with the Solar North Pole. The spacecraft Y-axis completes the triad. In attitude, SDO moves approximately 0.04 per hour, mostly about the spacecraft Z-axis. The SDO star trackers, manufactured by Galileo Avionica, project the images of stars in their 16.4deg x 16.4deg fields-of-view onto CCD detectors consisting of 512 x 512 pixels. The trackers autonomously identify the star patterns and provide an attitude estimate. Each unit is able to track up to 9 stars. Additionally, each tracker calculates a parameter called the Quality Index, which is a measure of the quality of the attitude solution. Each pixel in the CCD measures the intensity of light and a warns pixel is defined as having a measurement consistently and significantly higher than the mean background intensity level. A warns pixel should also have lower intensity than a pixel containing a star image and will not move across the field of view as the attitude changes (as would a dim star image). It should be noted that the maximum error introduced in the star tracker attitude solution during suspected warm pixel corruptions is within the specified 36 attitude error budget requirement of [35, 70, 70] arcseconds. Thus, the star trackers provided attitude accuracy within the specification for SDO. The star tracker images are intentionally defocused so each star image is detected in more than one CCD pixel. The position of each star is calculated as an intensity-weighted average of the illuminated pixels. The exact method of finding the positions is proprietary to the tracker manufacturer. When a warm pixel happens to be in the vicinity of a star, it can corrupt the calculation of the position of that particular star, thereby corrupting the estimate of the attitude.

  10. Reduction of low frequency error for SED36 and APS based HYDRA star trackers

    NASA Astrophysics Data System (ADS)

    Ouaknine, Julien; Blarre, Ludovic; Oddos-Marcel, Lionel; Montel, Johan; Julio, Jean-Marc

    2017-11-01

    In the frame of the CNES Pleiades satellite, a reduction of the star tracker low frequency error, which is the most penalizing error for the satellite attitude control, was performed. For that purpose, the SED36 star tracker was developed, with a design based on the flight qualified SED16/26. In this paper, the SED36 main features will be first presented. Then, the reduction process of the low frequency error will be developed, particularly the optimization of the optical distortion calibration. The result is an attitude low frequency error of 1.1" at 3 sigma along transverse axes. The implementation of these improvements to HYDRA, the new multi-head APS star tracker developed by SODERN, will finally be presented.

  11. In-flight measurement of the National Oceanic and Atmospheric Administration (NOAA)-10 static Earth sensor error

    NASA Technical Reports Server (NTRS)

    Harvie, E.; Filla, O.; Baker, D.

    1993-01-01

    Analysis performed in the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) measures error in the static Earth sensor onboard the National Oceanic and Atmospheric Administration (NOAA)-10 spacecraft using flight data. Errors are computed as the difference between Earth sensor pitch and roll angle telemetry and reference pitch and roll attitude histories propagated by gyros. The flight data error determination illustrates the effect on horizon sensing of systemic variation in the Earth infrared (IR) horizon radiance with latitude and season, as well as the effect of anomalies in the global IR radiance. Results of the analysis provide a comparison between static Earth sensor flight performance and that of scanning Earth sensors studied previously in the GSFC/FDD. The results also provide a baseline for evaluating various models of the static Earth sensor. Representative days from the NOAA-10 mission indicate the extent of uniformity and consistency over time of the global IR horizon. A unique aspect of the NOAA-10 analysis is the correlation of flight data errors with independent radiometric measurements of stratospheric temperature. The determination of the NOAA-10 static Earth sensor error contributes to realistic performance expectations for missions to be equipped with similar sensors.

  12. Local Observability Analysis of Star Sensor Installation Errors in a SINS/CNS Integration System for Near-Earth Flight Vehicles

    PubMed Central

    Yang, Yanqiang; Zhang, Chunxi; Lu, Jiazhen

    2017-01-01

    Strapdown inertial navigation system/celestial navigation system (SINS/CNS) integrated navigation is a fully autonomous and high precision method, which has been widely used to improve the hitting accuracy and quick reaction capability of near-Earth flight vehicles. The installation errors between SINS and star sensors have been one of the main factors that restrict the actual accuracy of SINS/CNS. In this paper, an integration algorithm based on the star vector observations is derived considering the star sensor installation error. Then, the star sensor installation error is accurately estimated based on Kalman Filtering (KF). Meanwhile, a local observability analysis is performed on the rank of observability matrix obtained via linearization observation equation, and the observable conditions are presented and validated. The number of star vectors should be greater than or equal to 2, and the times of posture adjustment also should be greater than or equal to 2. Simulations indicate that the star sensor installation error could be readily observable based on the maneuvering condition; moreover, the attitude errors of SINS are less than 7 arc-seconds. This analysis method and conclusion are useful in the ballistic trajectory design of near-Earth flight vehicles. PMID:28275211

  13. Application of vector analysis on study of illuminated area and Doppler characteristics of airborne pulse radar

    NASA Astrophysics Data System (ADS)

    Wang, Haijiang; Yang, Ling

    2014-12-01

    In this paper, the application of vector analysis tool in the illuminated area and the Doppler frequency distribution research for the airborne pulse radar is studied. An important feature of vector analysis is that it can closely combine the geometric ideas with algebraic calculations. Through coordinate transform, the relationship between the frame of radar antenna and the ground, under aircraft motion attitude, is derived. Under the time-space analysis, the overlap area between the footprint of radar beam and the pulse-illuminated zone is obtained. Furthermore, the Doppler frequency expression is successfully deduced. In addition, the Doppler frequency distribution is plotted finally. Using the time-space analysis results, some important parameters of a specified airborne radar system are obtained. Simultaneously, the results are applied to correct the phase error brought by attitude change in airborne synthetic aperture radar (SAR) imaging.

  14. Attitude and Trajectory Estimation Using Earth Magnetic Field Data

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack Y.

    1996-01-01

    The magnetometer has long been a reliable, inexpensive sensor used in spacecraft momentum management and attitude estimation. Recent studies show an increased accuracy potential for magnetometer-only attitude estimation systems. Since the Earth's magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computer and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of both the spacecraft trajectory and attitude errors. Therefore, these errors can be used to estimate both trajectory and attitude. Traditionally, satellite attitude and trajectory have been estimated with completely separate system, using different measurement data. Recently, trajectory estimation for low earth orbit satellites was successfully demonstrated in ground software using only magnetometer data. This work proposes a single augmented extended Kalman Filter to simultaneously and autonomously estimate both spacecraft trajectory and attitude with data from a magnetometer and either dynamically determined rates or gyro-measured body rates.

  15. Gravity compensation in a Strapdown Inertial Navigation System to improve the attitude accuracy

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Wang, Jun; Wang, Xingshu; Yang, Shuai

    2017-10-01

    Attitude errors in a strapdown inertial navigation system due to gravity disturbances and system noises can be relatively large, although they are bound within the Schuler and the Earth rotation period. The principal objective of the investigation is to determine to what extent accurate gravity data can improve the attitude accuracy. The way the gravity disturbances affect the attitude were analyzed and compared with system noises by the analytic solution and simulation. The gravity disturbances affect the attitude accuracy by introducing the initial attitude error and the equivalent accelerometer bias. With the development of the high precision inertial devices and the application of the rotation modulation technology, the gravity disturbance cannot be neglected anymore. The gravity compensation was performed using the EGM2008 and simulations with and without accurate gravity compensation under varying navigation conditions were carried out. The results show that the gravity compensation improves the horizontal components of attitude accuracy evidently while the yaw angle is badly affected by the uncompensated gyro bias in vertical channel.

  16. The intention to disclose medical errors among doctors in a referral hospital in North Malaysia.

    PubMed

    Hs, Arvinder-Singh; Rashid, Abdul

    2017-01-23

    In this study, medical errors are defined as unintentional patient harm caused by a doctor's mistake. This topic, due to limited research, is poorly understood in Malaysia. The objective of this study was to determine the proportion of doctors intending to disclose medical errors, and their attitudes/perception pertaining to medical errors. This cross-sectional study was conducted at a tertiary public hospital from July- December 2015 among 276 randomly selected doctors. Data was collected using a standardized and validated self-administered questionnaire intending to measure disclosure and attitudes/perceptions. The scale had four vignettes in total two medical and two surgical. Each vignette consisted of five questions and each question measured the disclosure. Disclosure was categorised as "No Disclosure", "Partial Disclosure" or "Full Disclosure". Data was keyed in and analysed using STATA v 13.0. Only 10.1% (n = 28) intended to disclose medical errors. Most respondents felt that they possessed an attitude/perception of adequately disclosing errors to patients. There was a statistically significant difference (p < 0.001) when comparing the intention of disclosure with perceived disclosures. Most respondents were in common agreement that disclosing an error would make them less likely to get sued, that minor errors should be reported and that they experienced relief from disclosing errors. Most doctors in this study would not disclose medical errors although they perceived that the errors were serious and felt responsible for it. Poor disclosure could be due the fear of litigations and improper mechanisms/procedures available for disclosure.

  17. On-board error correction improves IR earth sensor accuracy

    NASA Astrophysics Data System (ADS)

    Alex, T. K.; Kasturirangan, K.; Shrivastava, S. K.

    1989-10-01

    Infra-red earth sensors are used in satellites for attitude sensing. Their accuracy is limited by systematic and random errors. The sources of errors in a scanning infra-red earth sensor are analyzed in this paper. The systematic errors arising from seasonal variation of infra-red radiation, oblate shape of the earth, ambient temperature of sensor, changes in scan/spin rates have been analyzed. Simple relations are derived using least square curve fitting for on-board correction of these errors. Random errors arising out of noise from detector and amplifiers, instability of alignment and localized radiance anomalies are analyzed and possible correction methods are suggested. Sun and Moon interference on earth sensor performance has seriously affected a number of missions. The on-board processor detects Sun/Moon interference and corrects the errors on-board. It is possible to obtain eight times improvement in sensing accuracy, which will be comparable with ground based post facto attitude refinement.

  18. Low Frequency Error Analysis and Calibration for High-Resolution Optical Satellite's Uncontrolled Geometric Positioning

    NASA Astrophysics Data System (ADS)

    Wang, Mi; Fang, Chengcheng; Yang, Bo; Cheng, Yufeng

    2016-06-01

    The low frequency error is a key factor which has affected uncontrolled geometry processing accuracy of the high-resolution optical image. To guarantee the geometric quality of imagery, this paper presents an on-orbit calibration method for the low frequency error based on geometric calibration field. Firstly, we introduce the overall flow of low frequency error on-orbit analysis and calibration, which includes optical axis angle variation detection of star sensor, relative calibration among star sensors, multi-star sensor information fusion, low frequency error model construction and verification. Secondly, we use optical axis angle change detection method to analyze the law of low frequency error variation. Thirdly, we respectively use the method of relative calibration and information fusion among star sensors to realize the datum unity and high precision attitude output. Finally, we realize the low frequency error model construction and optimal estimation of model parameters based on DEM/DOM of geometric calibration field. To evaluate the performance of the proposed calibration method, a certain type satellite's real data is used. Test results demonstrate that the calibration model in this paper can well describe the law of the low frequency error variation. The uncontrolled geometric positioning accuracy of the high-resolution optical image in the WGS-84 Coordinate Systems is obviously improved after the step-wise calibration.

  19. A Novel Attitude Estimation Algorithm Based on the Non-Orthogonal Magnetic Sensors

    PubMed Central

    Zhu, Jianliang; Wu, Panlong; Bo, Yuming

    2016-01-01

    Because the existing extremum ratio method for projectile attitude measurement is vulnerable to random disturbance, a novel integral ratio method is proposed to calculate the projectile attitude. First, the non-orthogonal measurement theory of the magnetic sensors is analyzed. It is found that the projectile rotating velocity is constant in one spinning circle and the attitude error is actually the pitch error. Next, by investigating the model of the extremum ratio method, an integral ratio mathematical model is established to improve the anti-disturbance performance. Finally, by combining the preprocessed magnetic sensor data based on the least-square method and the rotating extremum features in one cycle, the analytical expression of the proposed integral ratio algorithm is derived with respect to the pitch angle. The simulation results show that the proposed integral ratio method gives more accurate attitude calculations than does the extremum ratio method, and that the attitude error variance can decrease by more than 90%. Compared to the extremum ratio method (which collects only a single data point in one rotation cycle), the proposed integral ratio method can utilize all of the data collected in the high spin environment, which is a clearly superior calculation approach, and can be applied to the actual projectile environment disturbance. PMID:27213389

  20. A Robust Nonlinear Observer for Real-Time Attitude Estimation Using Low-Cost MEMS Inertial Sensors

    PubMed Central

    Guerrero-Castellanos, José Fermi; Madrigal-Sastre, Heberto; Durand, Sylvain; Torres, Lizeth; Muñoz-Hernández, German Ardul

    2013-01-01

    This paper deals with the attitude estimation of a rigid body equipped with angular velocity sensors and reference vector sensors. A quaternion-based nonlinear observer is proposed in order to fuse all information sources and to obtain an accurate estimation of the attitude. It is shown that the observer error dynamics can be separated into two passive subsystems connected in “feedback”. Then, this property is used to show that the error dynamics is input-to-state stable when the measurement disturbance is seen as an input and the error as the state. These results allow one to affirm that the observer is “robustly stable”. The proposed observer is evaluated in real-time with the design and implementation of an Attitude and Heading Reference System (AHRS) based on low-cost MEMS (Micro-Electro-Mechanical Systems) Inertial Measure Unit (IMU) and magnetic sensors and a 16-bit microcontroller. The resulting estimates are compared with a high precision motion system to demonstrate its performance. PMID:24201316

  1. A study of attitude control concepts for precision-pointing non-rigid spacecraft

    NASA Technical Reports Server (NTRS)

    Likins, P. W.

    1975-01-01

    Attitude control concepts for use onboard structurally nonrigid spacecraft that must be pointed with great precision are examined. The task of determining the eigenproperties of a system of linear time-invariant equations (in terms of hybrid coordinates) representing the attitude motion of a flexible spacecraft is discussed. Literal characteristics are developed for the associated eigenvalues and eigenvectors of the system. A method is presented for determining the poles and zeros of the transfer function describing the attitude dynamics of a flexible spacecraft characterized by hybrid coordinate equations. Alterations are made to linear regulator and observer theory to accommodate modeling errors. The results show that a model error vector, which evolves from an error system, can be added to a reduced system model, estimated by an observer, and used by the control law to render the system less sensitive to uncertain magnitudes and phase relations of truncated modes and external disturbance effects. A hybrid coordinate formulation using the provided assumed mode shapes, rather than incorporating the usual finite element approach is provided.

  2. Study of a Satellite Attitude Control System Using Integrating Gyros as Torque Sources

    NASA Technical Reports Server (NTRS)

    White, John S.; Hansen, Q. Marion

    1961-01-01

    This report considers the use of single-degree-of-freedom integrating gyros as torque sources for precise control of satellite attitude. Some general design criteria are derived and applied to the specific example of the Orbiting Astronomical Observatory. The results of the analytical design are compared with the results of an analog computer study and also with experimental results from a low-friction platform. The steady-state and transient behavior of the system, as determined by the analysis, by the analog study, and by the experimental platform agreed quite well. The results of this study show that systems using integrating gyros for precise satellite attitude control can be designed to have a reasonably rapid and well-damped transient response, as well as very small steady-state errors. Furthermore, it is shown that the gyros act as rate sensors, as well as torque sources, so that no rate stabilization networks are required, and when no error sensor is available, the vehicle is still rate stabilized. Hence, it is shown that a major advantage of a gyro control system is that when the target is occulted, an alternate reference is not required.

  3. Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission

    NASA Technical Reports Server (NTRS)

    Thienel, Julie K.; Sanner, Robert M.

    2005-01-01

    In 2004 NASA began investigation of a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would require estimates of the HST attitude and rates in order to achieve a capture by the proposed Hubble robotic vehicle (HRV). HRV was to be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The inertial HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a nonlinear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. The development includes an analysis of the estimator stability given errors in the measured attitude. Second, a linearized approach is developed. The linearized approach is a pseudo-linear Kalman filter. Simulation test results for both methods are given, including scenarios with erroneous measured attitudes. Even though the development began as an application for the HST robotic servicing mission, the methods presented are applicable to any rendezvous/capture mission involving a non-cooperative target spacecraft.

  4. Space based optical staring sensor LOS determination and calibration using GCPs observation

    NASA Astrophysics Data System (ADS)

    Chen, Jun; An, Wei; Deng, Xinpu; Yang, Jungang; Sha, Zhichao

    2016-10-01

    Line of sight (LOS) attitude determination and calibration is the key prerequisite of tracking and location of targets in space based infrared (IR) surveillance systems (SBIRS) and the LOS determination and calibration of staring sensor is one of the difficulties. This paper provides a novel methodology for removing staring sensor bias through the use of Ground Control Points (GCPs) detected in the background field of the sensor. Based on researching the imaging model and characteristics of the staring sensor of SBIRS geostationary earth orbit part (GEO), the real time LOS attitude determination and calibration algorithm using landmark control point is proposed. The influential factors (including the thermal distortions error, assemble error, and so on) of staring sensor LOS attitude error are equivalent to bias angle of LOS attitude. By establishing the observation equation of GCPs and the state transition equation of bias angle, and using an extend Kalman filter (EKF), the real time estimation of bias angle and the high precision sensor LOS attitude determination and calibration are achieved. The simulation results show that the precision and timeliness of the proposed algorithm meet the request of target tracking and location process in space based infrared surveillance system.

  5. Magnetometer-only attitude and angular velocity filtering estimation for attitude changing spacecraft

    NASA Astrophysics Data System (ADS)

    Ma, Hongliang; Xu, Shijie

    2014-09-01

    This paper presents an improved real-time sequential filter (IRTSF) for magnetometer-only attitude and angular velocity estimation of spacecraft during its attitude changing (including fast and large angular attitude maneuver, rapidly spinning or uncontrolled tumble). In this new magnetometer-only attitude determination technique, both attitude dynamics equation and first time derivative of measured magnetic field vector are directly leaded into filtering equations based on the traditional single vector attitude determination method of gyroless and real-time sequential filter (RTSF) of magnetometer-only attitude estimation. The process noise model of IRTSF includes attitude kinematics and dynamics equations, and its measurement model consists of magnetic field vector and its first time derivative. The observability of IRTSF for small or large angular velocity changing spacecraft is evaluated by an improved Lie-Differentiation, and the degrees of observability of IRTSF for different initial estimation errors are analyzed by the condition number and a solved covariance matrix. Numerical simulation results indicate that: (1) the attitude and angular velocity of spacecraft can be estimated with sufficient accuracy using IRTSF from magnetometer-only data; (2) compared with that of RTSF, the estimation accuracies and observability degrees of attitude and angular velocity using IRTSF from magnetometer-only data are both improved; and (3) universality: the IRTSF of magnetometer-only attitude and angular velocity estimation is observable for any different initial state estimation error vector.

  6. Kalman Filter Estimation of Spinning Spacecraft Attitude using Markley Variables

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph E.; Harman, Richard

    2004-01-01

    There are several different ways to represent spacecraft attitude and its time rate of change. For spinning or momentum-biased spacecraft, one particular representation has been put forward as a superior parameterization for numerical integration. Markley has demonstrated that these new variables have fewer rapidly varying elements for spinning spacecraft than other commonly used representations and provide advantages when integrating the equations of motion. The current work demonstrates how a Kalman filter can be devised to estimate the attitude using these new variables. The seven Markley variables are subject to one constraint condition, making the error covariance matrix singular. The filter design presented here explicitly accounts for this constraint by using a six-component error state in the filter update step. The reduced dimension error state is unconstrained and its covariance matrix is nonsingular.

  7. A Nonlinear Adaptive Filter for Gyro Thermal Bias Error Cancellation

    NASA Technical Reports Server (NTRS)

    Galante, Joseph M.; Sanner, Robert M.

    2012-01-01

    Deterministic errors in angular rate gyros, such as thermal biases, can have a significant impact on spacecraft attitude knowledge. In particular, thermal biases are often the dominant error source in MEMS gyros after calibration. Filters, such as J\\,fEKFs, are commonly used to mitigate the impact of gyro errors and gyro noise on spacecraft closed loop pointing accuracy, but often have difficulty in rapidly changing thermal environments and can be computationally expensive. In this report an existing nonlinear adaptive filter is used as the basis for a new nonlinear adaptive filter designed to estimate and cancel thermal bias effects. A description of the filter is presented along with an implementation suitable for discrete-time applications. A simulation analysis demonstrates the performance of the filter in the presence of noisy measurements and provides a comparison with existing techniques.

  8. Estimation of Attitude and External Acceleration Using Inertial Sensor Measurement During Various Dynamic Conditions

    PubMed Central

    Lee, Jung Keun; Park, Edward J.; Robinovitch, Stephen N.

    2012-01-01

    This paper proposes a Kalman filter-based attitude (i.e., roll and pitch) estimation algorithm using an inertial sensor composed of a triaxial accelerometer and a triaxial gyroscope. In particular, the proposed algorithm has been developed for accurate attitude estimation during dynamic conditions, in which external acceleration is present. Although external acceleration is the main source of the attitude estimation error and despite the need for its accurate estimation in many applications, this problem that can be critical for the attitude estimation has not been addressed explicitly in the literature. Accordingly, this paper addresses the combined estimation problem of the attitude and external acceleration. Experimental tests were conducted to verify the performance of the proposed algorithm in various dynamic condition settings and to provide further insight into the variations in the estimation accuracy. Furthermore, two different approaches for dealing with the estimation problem during dynamic conditions were compared, i.e., threshold-based switching approach versus acceleration model-based approach. Based on an external acceleration model, the proposed algorithm was capable of estimating accurate attitudes and external accelerations for short accelerated periods, showing its high effectiveness during short-term fast dynamic conditions. Contrariwise, when the testing condition involved prolonged high external accelerations, the proposed algorithm exhibited gradually increasing errors. However, as soon as the condition returned to static or quasi-static conditions, the algorithm was able to stabilize the estimation error, regaining its high estimation accuracy. PMID:22977288

  9. Transfer Alignment Error Compensator Design Based on Robust State Estimation

    NASA Astrophysics Data System (ADS)

    Lyou, Joon; Lim, You-Chol

    This paper examines the transfer alignment problem of the StrapDown Inertial Navigation System (SDINS), which is subject to the ship’s roll and pitch. Major error sources for velocity and attitude matching are lever arm effect, measurement time delay and ship-body flexure. To reduce these alignment errors, an error compensation method based on state augmentation and robust state estimation is devised. A linearized error model for the velocity and attitude matching transfer alignment system is derived first by linearizing the nonlinear measurement equation with respect to its time delay and dominant Y-axis flexure, and by augmenting the delay state and flexure state into conventional linear state equations. Then an H∞ filter is introduced to account for modeling uncertainties of time delay and the ship-body flexure. The simulation results show that this method considerably decreases azimuth alignment errors considerably.

  10. Estimating Attitude, Trajectory, and Gyro Biases in an Extended Kalman Filter using Earth Magnetic Field Data from the Rossi X-Ray Timing Explorer

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack

    1997-01-01

    Traditionally satellite attitude and trajectory have been estimated with completely separate systems, using different measurement data. The estimation of both trajectory and attitude for low earth orbit satellites has been successfully demonstrated in ground software using magnetometer and gyroscope data. Since the earth's magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computed and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of both the spacecraft trajectory and attitude errors. Therefore, these errors can be used to estimate both trajectory and attitude. This work further tests the single augmented Extended Kalman Filter (EKF) which simultaneously and autonomously estimates spacecraft trajectory and attitude with data from the Rossi X-Ray Timing Explorer (RXTE) magnetometer and gyro-measured body rates. In addition, gyro biases are added to the state and the filter's ability to estimate them is presented.

  11. Alternative Attitude Commanding and Control for Precise Spacecraft Landing

    NASA Technical Reports Server (NTRS)

    Singh, Gurkirpal

    2004-01-01

    A report proposes an alternative method of control for precision landing on a remote planet. In the traditional method, the attitude of a spacecraft is required to track a commanded translational acceleration vector, which is generated at each time step by solving a two-point boundary value problem. No requirement of continuity is imposed on the acceleration. The translational acceleration does not necessarily vary smoothly. Tracking of a non-smooth acceleration causes the vehicle attitude to exhibit undesirable transients and poor pointing stability behavior. In the alternative method, the two-point boundary value problem is not solved at each time step. A smooth reference position profile is computed. The profile is recomputed only when the control errors get sufficiently large. The nominal attitude is still required to track the smooth reference acceleration command. A steering logic is proposed that controls the position and velocity errors about the reference profile by perturbing the attitude slightly about the nominal attitude. The overall pointing behavior is therefore smooth, greatly reducing the degree of pointing instability.

  12. Error Orientation and Reflection at Work

    ERIC Educational Resources Information Center

    Hetzner, Stefanie; Gartmeier, Martin; Heid, Helmut; Gruber, Hans

    2011-01-01

    Reflection on events at work, including errors is often as a means to learn effectively through work. In a cross-sectional field study in the banking sector, we investigated attitudes towards workplace errors (i.e. error orientation) as predictors of reflective activity. We assumed the organisational climate for psychological safety to have a…

  13. Method to mosaic gratings that relies on analysis of far-field intensity patterns in two wavelengths

    NASA Astrophysics Data System (ADS)

    Hu, Yao; Zeng, Lijiang; Li, Lifeng

    2007-01-01

    We propose an experimental method to coherently mosaic two planar diffraction gratings. The method uses a Twyman-Green interferometer to guarantee the planar parallelism of the two sub-aperture gratings, and obtains the in-plane rotational error and the two translational errors from analysis of the far-field diffraction intensity patterns in two alignment wavelengths. We adjust the relative attitude and position of the two sub-aperture gratings to produce Airy disk diffraction patterns in both wavelengths. In our experiment, the repeatability of in-plane rotation adjustment was 2.35 μrad and that of longitudinal adjustment was 0.11 μm. The accuracy of lateral adjustment was about 2.9% of the grating period.

  14. Reference equations of motion for automatic rendezvous and capture

    NASA Technical Reports Server (NTRS)

    Henderson, David M.

    1992-01-01

    The analysis presented in this paper defines the reference coordinate frames, equations of motion, and control parameters necessary to model the relative motion and attitude of spacecraft in close proximity with another space system during the Automatic Rendezvous and Capture phase of an on-orbit operation. The relative docking port target position vector and the attitude control matrix are defined based upon an arbitrary spacecraft design. These translation and rotation control parameters could be used to drive the error signal input to the vehicle flight control system. Measurements for these control parameters would become the bases for an autopilot or feedback control system (FCS) design for a specific spacecraft.

  15. Covariance Analysis Tool (G-CAT) for Computing Ascent, Descent, and Landing Errors

    NASA Technical Reports Server (NTRS)

    Boussalis, Dhemetrios; Bayard, David S.

    2013-01-01

    G-CAT is a covariance analysis tool that enables fast and accurate computation of error ellipses for descent, landing, ascent, and rendezvous scenarios, and quantifies knowledge error contributions needed for error budgeting purposes. Because GCAT supports hardware/system trade studies in spacecraft and mission design, it is useful in both early and late mission/ proposal phases where Monte Carlo simulation capability is not mature, Monte Carlo simulation takes too long to run, and/or there is a need to perform multiple parametric system design trades that would require an unwieldy number of Monte Carlo runs. G-CAT is formulated as a variable-order square-root linearized Kalman filter (LKF), typically using over 120 filter states. An important property of G-CAT is that it is based on a 6-DOF (degrees of freedom) formulation that completely captures the combined effects of both attitude and translation errors on the propagated trajectories. This ensures its accuracy for guidance, navigation, and control (GN&C) analysis. G-CAT provides the desired fast turnaround analysis needed for error budgeting in support of mission concept formulations, design trade studies, and proposal development efforts. The main usefulness of a covariance analysis tool such as G-CAT is its ability to calculate the performance envelope directly from a single run. This is in sharp contrast to running thousands of simulations to obtain similar information using Monte Carlo methods. It does this by propagating the "statistics" of the overall design, rather than simulating individual trajectories. G-CAT supports applications to lunar, planetary, and small body missions. It characterizes onboard knowledge propagation errors associated with inertial measurement unit (IMU) errors (gyro and accelerometer), gravity errors/dispersions (spherical harmonics, masscons), and radar errors (multiple altimeter beams, multiple Doppler velocimeter beams). G-CAT is a standalone MATLAB- based tool intended to run on any engineer's desktop computer.

  16. Research on the attitude of small UAV based on MEMS devices

    NASA Astrophysics Data System (ADS)

    Shi, Xiaojie; Lu, Libin; Jin, Guodong; Tan, Lining

    2017-05-01

    This paper mainly introduces the research principle and implementation method of the small UAV navigation attitude system based on MEMS devices. The Gauss - Newton method based on least squares is used to calibrate the MEMS accelerometer and gyroscope for calibration. Improve the accuracy of the attitude by using the modified complementary filtering to correct the attitude angle error. The experimental data show that the design of the attitude and attitude system in this paper to meet the requirements of small UAV attitude accuracy to achieve a small, low cost.

  17. [Medical errors: inevitable but preventable].

    PubMed

    Giard, R W

    2001-10-27

    Medical errors are increasingly reported in the lay press. Studies have shown dramatic error rates of 10 percent or even higher. From a methodological point of view, studying the frequency and causes of medical errors is far from simple. Clinical decisions on diagnostic or therapeutic interventions are always taken within a clinical context. Reviewing outcomes of interventions without taking into account both the intentions and the arguments for a particular action will limit the conclusions from a study on the rate and preventability of errors. The interpretation of the preventability of medical errors is fraught with difficulties and probably highly subjective. Blaming the doctor personally does not do justice to the actual situation and especially the organisational framework. Attention for and improvement of the organisational aspects of error are far more important then litigating the person. To err is and will remain human and if we want to reduce the incidence of faults we must be able to learn from our mistakes. That requires an open attitude towards medical mistakes, a continuous effort in their detection, a sound analysis and, where feasible, the institution of preventive measures.

  18. High-Precision Attitude Estimation Method of Star Sensors and Gyro Based on Complementary Filter and Unscented Kalman Filter

    NASA Astrophysics Data System (ADS)

    Guo, C.; Tong, X.; Liu, S.; Liu, S.; Lu, X.; Chen, P.; Jin, Y.; Xie, H.

    2017-07-01

    Determining the attitude of satellite at the time of imaging then establishing the mathematical relationship between image points and ground points is essential in high-resolution remote sensing image mapping. Star tracker is insensitive to the high frequency attitude variation due to the measure noise and satellite jitter, but the low frequency attitude motion can be determined with high accuracy. Gyro, as a short-term reference to the satellite's attitude, is sensitive to high frequency attitude change, but due to the existence of gyro drift and integral error, the attitude determination error increases with time. Based on the opposite noise frequency characteristics of two kinds of attitude sensors, this paper proposes an on-orbit attitude estimation method of star sensors and gyro based on Complementary Filter (CF) and Unscented Kalman Filter (UKF). In this study, the principle and implementation of the proposed method are described. First, gyro attitude quaternions are acquired based on the attitude kinematics equation. An attitude information fusion method is then introduced, which applies high-pass filtering and low-pass filtering to the gyro and star tracker, respectively. Second, the attitude fusion data based on CF are introduced as the observed values of UKF system in the process of measurement updating. The accuracy and effectiveness of the method are validated based on the simulated sensors attitude data. The obtained results indicate that the proposed method can suppress the gyro drift and measure noise of attitude sensors, improving the accuracy of the attitude determination significantly, comparing with the simulated on-orbit attitude and the attitude estimation results of the UKF defined by the same simulation parameters.

  19. Attitude output feedback control for rigid spacecraft with finite-time convergence.

    PubMed

    Hu, Qinglei; Niu, Guanglin

    2017-09-01

    The main problem addressed is the quaternion-based attitude stabilization control of rigid spacecraft without angular velocity measurements in the presence of external disturbances and reaction wheel friction as well. As a stepping stone, an angular velocity observer is proposed for the attitude control of a rigid body in the absence of angular velocity measurements. The observer design ensures finite-time convergence of angular velocity state estimation errors irrespective of the control torque or the initial attitude state of the spacecraft. Then, a novel finite-time control law is employed as the controller in which the estimate of the angular velocity is used directly. It is then shown that the observer and the controlled system form a cascaded structure, which allows the application of the finite-time stability theory of cascaded systems to prove the finite-time stability of the closed-loop system. A rigorous analysis of the proposed formulation is provided and numerical simulation studies are presented to help illustrate the effectiveness of the angular-velocity observer for rigid spacecraft attitude control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Patient safety education to change medical students' attitudes and sense of responsibility.

    PubMed

    Roh, Hyerin; Park, Seok Ju; Kim, Taekjoong

    2015-01-01

    This study examined changes in the perceptions and attitudes as well as the sense of individual and collective responsibility in medical students after they received patient safety education. A three-day patient safety curriculum was implemented for third-year medical students shortly before entering their clerkship. Before and after training, we administered a questionnaire, which was analysed quantitatively. Additionally, we asked students to answer questions about their expected behaviours in response to two case vignettes. Their answers were analysed qualitatively. There was improvement in students' concepts of patient safety after training. Before training, they showed good comprehension of the inevitability of error, but most students blamed individuals for errors and expressed a strong sense of individual responsibility. After training, students increasingly attributed errors to system dysfunction and reported more self-confidence in speaking up about colleagues' errors. However, due to the hierarchical culture, students still described difficulties communicating with senior doctors. Patient safety education effectively shifted students' attitudes towards systems-based thinking and increased their sense of collective responsibility. Strategies for improving superior-subordinate communication within a hierarchical culture should be added to the patient safety curriculum.

  1. True covariance simulation of the EUVE update filter

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Harman, R. R.

    1989-01-01

    A covariance analysis of the performance and sensitivity of the attitude determination Extended Kalman Filter (EKF) used by the On Board Computer (OBC) of the Extreme Ultra Violet Explorer (EUVE) spacecraft is presented. The linearized dynamics and measurement equations of the error states are derived which constitute the truth model describing the real behavior of the systems involved. The design model used by the OBC EKF is then obtained by reducing the order of the truth model. The covariance matrix of the EKF which uses the reduced order model is not the correct covariance of the EKF estimation error. A true covariance analysis has to be carried out in order to evaluate the correct accuracy of the OBC generated estimates. The results of such analysis are presented which indicate both the performance and the sensitivity of the OBC EKF.

  2. Physician attitudes and practices related to voluntary error and near-miss reporting.

    PubMed

    Smith, Koren S; Harris, Kendra M; Potters, Louis; Sharma, Rajiv; Mutic, Sasa; Gay, Hiram A; Wright, Jean; Samuels, Michael; Ye, Xiaobu; Ford, Eric; Terezakis, Stephanie

    2014-09-01

    Incident learning systems are important tools to improve patient safety in radiation oncology, but physician participation in these systems is poor. To understand reporting practices and attitudes, a survey was sent to staff members of four large academic radiation oncology centers, all of which have in-house reporting systems. Institutional review board approval was obtained to send a survey to employees including physicians, dosimetrists, nurses, physicists, and radiation therapists. The survey evaluated barriers to reporting, perceptions of errors, and reporting practices. The responses of physicians were compared with those of other professional groups. There were 274 respondents to the survey, with a response rate of 81.3%. Physicians and other staff agreed that errors and near-misses were happening in their clinics (93.8% v 88.7%, respectively) and that they have a responsibility to report (97% overall). Physicians were significantly less likely to report minor near-misses (P = .001) and minor errors (P = .024) than other groups. Physicians were significantly more concerned about getting colleagues in trouble (P = .015), liability (P = .009), effect on departmental reputation (P = .006), and embarrassment (P < .001) than their colleagues. Regression analysis identified embarrassment among physicians as a critical barrier. If not embarrassed, participants were 2.5 and 4.5 times more likely to report minor errors and major near-miss events, respectively. All members of the radiation oncology team observe errors and near-misses. Physicians, however, are significantly less likely to report events than other colleagues. There are important, specific barriers to physician reporting that need to be addressed to encourage reporting and create a fair culture around reporting. Copyright © 2014 by American Society of Clinical Oncology.

  3. Recovery from unusual attitudes: HUD vs. back-up display in a static F/A-18 simulator.

    PubMed

    Huber, Samuel W

    2006-04-01

    Spatial disorientation (SD) remains one of the most important causes of fatal fighter aircraft accidents. The aim of this study was to give a recommendation for the use of the head-up display (HUD) or back-up attitude directional indicator (ADI) in a state of spatial disorientation based on the respective performance in an unusual attitude recovery task. Seven fighter pilots joining a conversion course to the F/A-18 participated in this study. Flight time will be presented as range (and mean in parentheses). Total military flight experience of the subjects was 835-1759 h (1412 h). Flight time on the F/A-18 was 41-123 h (70 h). The study was performed in a fixed base F/A-18D Weapons Tactics Trainer. We tested the recovery from 11 unusual attitudes and analyzed decision time (DT), total recovery time (TRT), and error rates for the HUD or the back-up ADI. We found no differences regarding either reaction times or error rates. For the HUD we found a DT (mean +/- SD) of 1.3 +/- 0.4 s, a TRT of 9.1 +/- 4.1 s, and an error rate of 29%. For the ADI the respective values were a DT of 1.4 +/- 0.4 s, a TRT of 8.3 +/- 3.8 s, and an error rate of 27%. Unusual attitude recoveries are performed equally well using the HUD or the back-up ADI. Switching from one instrument to the other during recovery should be avoided since it would probably result in a loss of time without benefit.

  4. ISS Contingency Attitude Control Recovery Method for Loss of Automatic Thruster Control

    NASA Technical Reports Server (NTRS)

    Bedrossian, Nazareth; Bhatt, Sagar; Alaniz, Abran; McCants, Edward; Nguyen, Louis; Chamitoff, Greg

    2008-01-01

    In this paper, the attitude control issues associated with International Space Station (ISS) loss of automatic thruster control capability are discussed and methods for attitude control recovery are presented. This scenario was experienced recently during Shuttle mission STS-117 and ISS Stage 13A in June 2007 when the Russian GN&C computers, which command the ISS thrusters, failed. Without automatic propulsive attitude control, the ISS would not be able to regain attitude control after the Orbiter undocked. The core issues associated with recovering long-term attitude control using CMGs are described as well as the systems engineering analysis to identify recovery options. It is shown that the recovery method can be separated into a procedure for rate damping to a safe harbor gravity gradient stable orientation and a capability to maneuver the vehicle to the necessary initial conditions for long term attitude hold. A manual control option using Soyuz and Progress vehicle thrusters is investigated for rate damping and maneuvers. The issues with implementing such an option are presented and the key issue of closed-loop stability is addressed. A new non-propulsive alternative to thruster control, Zero Propellant Maneuver (ZPM) attitude control method is introduced and its rate damping and maneuver performance evaluated. It is shown that ZPM can meet the tight attitude and rate error tolerances needed for long term attitude control. A combination of manual thruster rate damping to a safe harbor attitude followed by a ZPM to Stage long term attitude control orientation was selected by the Anomaly Resolution Team as the alternate attitude control method for such a contingency.

  5. Female residents experiencing medical errors in general internal medicine: a qualitative study.

    PubMed

    Mankaka, Cindy Ottiger; Waeber, Gérard; Gachoud, David

    2014-07-10

    Doctors, especially doctors-in-training such as residents, make errors. They have to face the consequences even though today's approach to errors emphasizes systemic factors. Doctors' individual characteristics play a role in how medical errors are experienced and dealt with. The role of gender has previously been examined in a few quantitative studies that have yielded conflicting results. In the present study, we sought to qualitatively explore the experience of female residents with respect to medical errors. In particular, we explored the coping mechanisms displayed after an error. This study took place in the internal medicine department of a Swiss university hospital. Within a phenomenological framework, semi-structured interviews were conducted with eight female residents in general internal medicine. All interviews were audiotaped, fully transcribed, and thereafter analyzed. Seven main themes emerged from the interviews: (1) A perception that there is an insufficient culture of safety and error; (2) The perceived main causes of errors, which included fatigue, work overload, inadequate level of competences in relation to assigned tasks, and dysfunctional communication; (3) Negative feelings in response to errors, which included different forms of psychological distress; (4) Variable attitudes of the hierarchy toward residents involved in an error; (5) Talking about the error, as the core coping mechanism; (6) Defensive and constructive attitudes toward one's own errors; and (7) Gender-specific experiences in relation to errors. Such experiences consisted in (a) perceptions that male residents were more confident and therefore less affected by errors than their female counterparts and (b) perceptions that sexist attitudes among male supervisors can occur and worsen an already painful experience. This study offers an in-depth account of how female residents specifically experience and cope with medical errors. Our interviews with female residents convey the sense that gender possibly influences the experience with errors, including the kind of coping mechanisms displayed. However, we acknowledge that the lack of a direct comparison between female and male participants represents a limitation while aiming to explore the role of gender.

  6. Attitude Determination of a Spinning and Tumbling Rocket Using Data from Two Orthogonal Magnetometers

    DTIC Science & Technology

    1981-04-08

    andOwshite the moonshine projection is in west-east direction 7. Chamberlain. M. T. (1979) Data Analysis of Film From AFGL Rocket A31. 603. AFGL-TR-79...Chamberlain. M.T. (1979) Data Analysis of Film From AFGL Rocket A31. 603. AFGL-TR-79-0It5. AD A0792T0. 8. Sluder. R. B.. and Kofsky. I. L. (1978...discussed and an error analysis is provided. .,;/ PORM~~ Aj~. .. ,* Do JOAN𔃻,1 *7d Unclasaified SECURITY CLASSIFICAT ION OF THIS PAGE (Wheon Date

  7. Comparison of Kalman filter and optimal smoother estimates of spacecraft attitude

    NASA Technical Reports Server (NTRS)

    Sedlak, J.

    1994-01-01

    Given a valid system model and adequate observability, a Kalman filter will converge toward the true system state with error statistics given by the estimated error covariance matrix. The errors generally do not continue to decrease. Rather, a balance is reached between the gain of information from new measurements and the loss of information during propagation. The errors can be further reduced, however, by a second pass through the data with an optimal smoother. This algorithm obtains the optimally weighted average of forward and backward propagating Kalman filters. It roughly halves the error covariance by including future as well as past measurements in each estimate. This paper investigates whether such benefits actually accrue in the application of an optimal smoother to spacecraft attitude determination. Tests are performed both with actual spacecraft data from the Extreme Ultraviolet Explorer (EUVE) and with simulated data for which the true state vector and noise statistics are exactly known.

  8. Evaluation of geomagnetic field models using magnetometer measurements for satellite attitude determination system at low earth orbits: Case studies

    NASA Astrophysics Data System (ADS)

    Cilden-Guler, Demet; Kaymaz, Zerefsan; Hajiyev, Chingiz

    2018-01-01

    In this study, different geomagnetic field models are compared in order to study the errors resulting from the representation of magnetic fields that affect the satellite attitude system. For this purpose, we used magnetometer data from two Low Earth Orbit (LEO) spacecraft and the geomagnetic models IGRF-12 (Thébault et al., 2015) and T89 (Tsyganenko, 1989) models to study the differences between the magnetic field components, strength and the angle between the predicted and observed vector magnetic fields. The comparisons were made during geomagnetically active and quiet days to see the effects of the geomagnetic storms and sub-storms on the predicted and observed magnetic fields and angles. The angles, in turn, are used to estimate the spacecraft attitude and hence, the differences between model and observations as well as between two models become important to determine and reduce the errors associated with the models under different space environment conditions. We show that the models differ from the observations even during the geomagnetically quiet times but the associated errors during the geomagnetically active times increase. We find that the T89 model gives closer predictions to the observations, especially during active times and the errors are smaller compared to the IGRF-12 model. The magnitude of the error in the angle under both environmental conditions was found to be less than 1°. For the first time, the geomagnetic models were used to address the effects of the near Earth space environment on the satellite attitude.

  9. An Accurate and Fault-Tolerant Target Positioning System for Buildings Using Laser Rangefinders and Low-Cost MEMS-Based MARG Sensors

    PubMed Central

    Zhao, Lin; Guan, Dongxue; Landry, René Jr.; Cheng, Jianhua; Sydorenko, Kostyantyn

    2015-01-01

    Target positioning systems based on MEMS gyros and laser rangefinders (LRs) have extensive prospects due to their advantages of low cost, small size and easy realization. The target positioning accuracy is mainly determined by the LR’s attitude derived by the gyros. However, the attitude error is large due to the inherent noises from isolated MEMS gyros. In this paper, both accelerometer/magnetometer and LR attitude aiding systems are introduced to aid MEMS gyros. A no-reset Federated Kalman Filter (FKF) is employed, which consists of two local Kalman Filters (KF) and a Master Filter (MF). The local KFs are designed by using the Direction Cosine Matrix (DCM)-based dynamic equations and the measurements from the two aiding systems. The KFs can estimate the attitude simultaneously to limit the attitude errors resulting from the gyros. Then, the MF fuses the redundant attitude estimates to yield globally optimal estimates. Simulation and experimental results demonstrate that the FKF-based system can improve the target positioning accuracy effectively and allow for good fault-tolerant capability. PMID:26512672

  10. Multiple scene attitude estimator performance for LANDSAT-1

    NASA Technical Reports Server (NTRS)

    Rifman, S. S.; Monuki, A. T.; Shortwell, C. P.

    1979-01-01

    Initial results are presented to demonstrate the performance of a linear sequential estimator (Kalman Filter) used to estimate a LANDSAT 1 spacecraft attitude time series defined for four scenes. With the revised estimator a GCP poor scene - a scene with no usable geodetic control points (GCPs) - can be rectified to higher accuracies than otherwise based on the use of GCPs in adjacent scenes. Attitude estimation errors was determined by the use of GCPs located in the GCP-poor test scene, but which are not used to update the Kalman filter. Initial results achieved indicate that errors of 500m (rms) can be attained for the GCP-poor scenes. Operational factors are related to various scenarios.

  11. Apollo 15 mission report: Apollo 15 guidance, navigation, and control system performance analysis report (supplement 1)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This report contains the results of additional studies which were conducted to confirm the conclusions of the MSC Mission Report and contains analyses which were not completed in time to meet the mission report deadline. The LM IMU data were examined during the lunar descent and ascent phases. Most of the PGNCS descent absolute velocity error was caused by platform misalignments. PGNCS radial velocity divergence from AGS during the early part of descent was partially caused by PGNCS gravity computation differences from AGS. The remainder of the differences between PGNCS and AGS velocity were easily attributable to attitude reference alignment differences and tolerable instrument errors. For ascent the PGNCS radial velocity error at insertion was examined. The total error of 10.8 ft/sec was well within mission constraints but larger than expected. Of the total error, 2.30 ft/sec was PIPA bias error, which was suspected to exist pre-lunar liftoff. The remaining 8.5 ft/sec is most probably satisified with a large pre-liftoff planform misalignment.

  12. Spacecraft attitude determination accuracy from mission experience

    NASA Technical Reports Server (NTRS)

    Brasoveanu, D.; Hashmall, J.

    1994-01-01

    This paper summarizes a compilation of attitude determination accuracies attained by a number of satellites supported by the Goddard Space Flight Center Flight Dynamics Facility. The compilation is designed to assist future mission planners in choosing and placing attitude hardware and selecting the attitude determination algorithms needed to achieve given accuracy requirements. The major goal of the compilation is to indicate realistic accuracies achievable using a given sensor complement based on mission experience. It is expected that the use of actual spacecraft experience will make the study especially useful for mission design. A general description of factors influencing spacecraft attitude accuracy is presented. These factors include determination algorithms, inertial reference unit characteristics, and error sources that can affect measurement accuracy. Possible techniques for mitigating errors are also included. Brief mission descriptions are presented with the attitude accuracies attained, grouped by the sensor pairs used in attitude determination. The accuracies for inactive missions represent a compendium of missions report results, and those for active missions represent measurements of attitude residuals. Both three-axis and spin stabilized missions are included. Special emphasis is given to high-accuracy sensor pairs, such as two fixed-head star trackers (FHST's) and fine Sun sensor plus FHST. Brief descriptions of sensor design and mode of operation are included. Also included are brief mission descriptions and plots summarizing the attitude accuracy attained using various sensor complements.

  13. Attitude determination for small satellites using GPS signal-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Peters, Daniel

    An embedded system for GPS-based attitude determination (AD) using signal-to-noise (SNR) measurements was developed for CubeSat applications. The design serves as an evaluation testbed for conducting ground based experiments using various computational methods and antenna types to determine the optimum AD accuracy. Raw GPS data is also stored to non-volatile memory for downloading and post analysis. Two low-power microcontrollers are used for processing and to display information on a graphic screen for real-time performance evaluations. A new parallel inter-processor communication protocol was developed that is faster and uses less power than existing standard protocols. A shorted annular patch (SAP) antenna was fabricated for the initial ground-based AD experiments with the testbed. Static AD estimations with RMS errors in the range of 2.5° to 4.8° were achieved over a range of off-zenith attitudes.

  14. Precision Pointing Control System (PPCS) system design and analysis. [for gimbaled experiment platforms

    NASA Technical Reports Server (NTRS)

    Frew, A. M.; Eisenhut, D. F.; Farrenkopf, R. L.; Gates, R. F.; Iwens, R. P.; Kirby, D. K.; Mann, R. J.; Spencer, D. J.; Tsou, H. S.; Zaremba, J. G.

    1972-01-01

    The precision pointing control system (PPCS) is an integrated system for precision attitude determination and orientation of gimbaled experiment platforms. The PPCS concept configures the system to perform orientation of up to six independent gimbaled experiment platforms to design goal accuracy of 0.001 degrees, and to operate in conjunction with a three-axis stabilized earth-oriented spacecraft in orbits ranging from low altitude (200-2500 n.m., sun synchronous) to 24 hour geosynchronous, with a design goal life of 3 to 5 years. The system comprises two complementary functions: (1) attitude determination where the attitude of a defined set of body-fixed reference axes is determined relative to a known set of reference axes fixed in inertial space; and (2) pointing control where gimbal orientation is controlled, open-loop (without use of payload error/feedback) with respect to a defined set of body-fixed reference axes to produce pointing to a desired target.

  15. Side-effects of a bad attitude: How GNSS spacecraft orientation errors affect solar radiation pressure modelling

    NASA Astrophysics Data System (ADS)

    Dilssner, Florian; Springer, Tim; Schönemann, Erik; Zandbergen, Rene; Enderle, Werner

    2015-04-01

    Solar radiation pressure (SRP) is the largest non-gravitational perturbation for Global Navigation Satellite System (GNSS) satellites, and can therefore have substantial impact on their orbital dynamics. Various SRP force models have been developed over the past 30 years for the purpose of precise orbit determination. They all rely upon the assumption that the satellites continuously maintain a Sun-Nadir pointing attitude with the navigation antenna boresight (body-fixed z-axis) pointing towards Earth center, and the solar panel rotation axis (body-fixed y-axis) being normal to the Sun direction. However, in reality, this is not perfectly the case. Reasons for a non-nominal spacecraft attitude may be eclipse maneuvers, commanded attitude biases and Sun/horizon sensor measurement errors, for example due to mounting misalignment or incorrectly calibrated sensor electronics. In this work the effect of GNSS spacecraft orientation errors on SRP modelling is investigated. Simplified mathematical functions describing the SRP force acting on the solar arrays in the presence of yaw-, pitch- and roll-biases are derived. Special attention is paid to the yaw-bias and its relationship to the SRP dynamics, particular in direction of the spacecraft y-axis ("y-bias force"). Analytical and experimental results gathered from orbit and attitude analyses of GPS Block II/IIA/IIF satellites demonstrate how sensitive the SRP coefficients are to changes in yaw.

  16. GOES I/M image navigation and registration

    NASA Technical Reports Server (NTRS)

    Fiorello, J. L., Jr.; Oh, I. H.; Kelly, K. A.; Ranne, L.

    1989-01-01

    Image Navigation and Registration (INR) is the system that will be used on future Geostationary Operational Environmental Satellite (GOES) missions to locate and register radiometric imagery data. It consists of a semiclosed loop system with a ground-based segment that generates coefficients to perform image motion compensation (IMC). The IMC coefficients are uplinked to the satellite-based segment, where they are used to adjust the displacement of the imagery data due to movement of the imaging instrument line-of-sight. The flight dynamics aspects of the INR system is discussed in terms of the attitude and orbit determination, attitude pointing, and attitude and orbit control needed to perform INR. The modeling used in the determination of orbit and attitude is discussed, along with the method of on-orbit control used in the INR system, and various factors that affect stability. Also discussed are potential error sources inherent in the INR system and the operational methods of compensating for these errors.

  17. Integrated Power and Attitude Control for a Spacecraft with Flywheels and Control Moment Gyroscopes

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Karlgaard, Christopher D.; Kumar, Renjith R.; Bose, David M.

    2003-01-01

    A law is designed for simultaneous control of the orientation of an Earth-pointing spacecraft, the energy stored by counter-rotating flywheels, and the angular momentum of the flywheels and control moment gyroscopes used together as all integrated set of actuators for attitude control. General. nonlinear equations of motion are presented in vector-dyadic form, and used to obtain approximate expressions which are then linearized in preparation for design of control laws that include feedback of flywheel kinetic energy error as it means of compensating for damping exerted by rotor bearings. Two flywheel 'steering laws' are developed such that torque commanded by all attitude control law is achieved while energy is stored or discharged at the required rate. Using the International Space Station as an example, numerical simulations are performed to demonstrate control about a torque equilibrium attitude and illustrate the benefits of kinetic energy error feedback.

  18. Predictors of Attitudes Toward Non-Technical Skills in Farming.

    PubMed

    Irwin, Amy; Poots, Jill

    2018-01-01

    Farming is a high-risk sector with up to 170,000 worldwide fatalities reported per year; it is therefore vital to identify methods of mitigating the dangers of this industry. Research within high-risk industries, such as aviation, shipping, and agriculture, has identified the importance of non-technical skills (NTS) in maintaining effective, safe performance and reducing error and injury. However, there is a lack of research evaluating factors that may contribute to NTS attitudes and behaviors. As a first step to address this literature gap, the current study evaluated a range of individual and environmental factors as potential predictors of attitudes toward NTS in agriculture. A sample of 170 farmers from within the United Kingdom and Ireland were surveyed using an online questionnaire. The questionnaire included measures of personality, stress, attitudes toward safety (safety climate, motivation, and risk), environmental stressors (workload, work-life imbalance), and non-technical skills (team and lone worker). Attitudes toward safety climate, compliance, and motivation showed a significant association with both team-based and lone worker NTS. Conscientiousness correlated positively with the majority of the NTS elements. Multiple regression analysis indicated neuroticism and conscientiousness demonstrated capacity to predict NTS attitudes. Concerns about costs and equipment, attitudes toward safety climate, and safety motivation were also found to be significant predictors of NTS attitudes. The results indicate the utility of individual characteristics and environmental factors when predicting farming NTS attitudes. As a result, these elements could be important when evaluating engagement with NTS and developing NTS training initiatives in agriculture.

  19. Fine Pointing of Military Spacecraft

    DTIC Science & Technology

    2007-03-01

    estimate is high. But feedback controls are attempting to fix the attitude at the next time step with error based on the previous time step without using ...52 a. Stability Analysis Consider not using the reference trajectory in the feedback signal. The previous stability proof (Refs.[43],[46]) are no... robust steering law and quaternion feedback control [52]. TASS2 has center-of-gravity offset disturbance that must be countered by the three CMG

  20. Analysis and Compensation of Modulation Angular Rate Error Based on Missile-Borne Rotation Semi-Strapdown Inertial Navigation System.

    PubMed

    Zhang, Jiayu; Li, Jie; Zhang, Xi; Che, Xiaorui; Huang, Yugang; Feng, Kaiqiang

    2018-05-04

    The Semi-Strapdown Inertial Navigation System (SSINS) provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS) inertial measurement unit (MIMU) outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS) is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions.

  1. Attitude Representations for Kalman Filtering

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The four-component quaternion has the lowest dimensionality possible for a globally nonsingular attitude representation, it represents the attitude matrix as a homogeneous quadratic function, and its dynamic propagation equation is bilinear in the quaternion and the angular velocity. The quaternion is required to obey a unit norm constraint, though, so Kalman filters often employ a quaternion for the global attitude estimate and a three-component representation for small errors about the estimate. We consider these mixed attitude representations for both a first-order Extended Kalman filter and a second-order filter, as well for quaternion-norm-preserving attitude propagation.

  2. Observability of satellite launcher navigation with INS, GPS, attitude sensors and reference trajectory

    NASA Astrophysics Data System (ADS)

    Beaudoin, Yanick; Desbiens, André; Gagnon, Eric; Landry, René

    2018-01-01

    The navigation system of a satellite launcher is of paramount importance. In order to correct the trajectory of the launcher, the position, velocity and attitude must be known with the best possible precision. In this paper, the observability of four navigation solutions is investigated. The first one is the INS/GPS couple. Then, attitude reference sensors, such as magnetometers, are added to the INS/GPS solution. The authors have already demonstrated that the reference trajectory could be used to improve the navigation performance. This approach is added to the two previously mentioned navigation systems. For each navigation solution, the observability is analyzed with different sensor error models. First, sensor biases are neglected. Then, sensor biases are modelled as random walks and as first order Markov processes. The observability is tested with the rank and condition number of the observability matrix, the time evolution of the covariance matrix and sensitivity to measurement outlier tests. The covariance matrix is exploited to evaluate the correlation between states in order to detect structural unobservability problems. Finally, when an unobservable subspace is detected, the result is verified with theoretical analysis of the navigation equations. The results show that evaluating only the observability of a model does not guarantee the ability of the aiding sensors to correct the INS estimates within the mission time. The analysis of the covariance matrix time evolution could be a powerful tool to detect this situation, however in some cases, the problem is only revealed with a sensitivity to measurement outlier test. None of the tested solutions provide GPS position bias observability. For the considered mission, the modelling of the sensor biases as random walks or Markov processes gives equivalent results. Relying on the reference trajectory can improve the precision of the roll estimates. But, in the context of a satellite launcher, the roll estimation error and gyroscope bias are only observable if attitude reference sensors are present.

  3. Measuring safety culture in the ambulatory setting: the safety attitudes questionnaire--ambulatory version.

    PubMed

    Modak, Isitri; Sexton, J Bryan; Lux, Thomas R; Helmreich, Robert L; Thomas, Eric J

    2007-01-01

    Provider attitudes about issues pertinent to patient safety may be related to errors and adverse events. We know of no instruments that measure safety-related attitudes in the outpatient setting. To adapt the safety attitudes questionnaire (SAQ) to the outpatient setting and compare attitudes among different types of providers in the outpatient setting. We modified the SAQ to create a 62-item SAQ-ambulatory version (SAQ-A). Patient care staff in a multispecialty, academic practice rated their agreement with the items using a 5-point Likert scale. Cronbach's alpha was calculated to determine reliability of scale scores. Differences in SAQ-A scores between providers were assessed using ANOVA. Of the 409 staff, 282 (69%) returned surveys. One hundred ninety (46%) surveys were included in the analyses. Cronbach's alpha ranged from 0.68 to 0.86 for the scales: teamwork climate, safety climate, perceptions of management, job satisfaction, working conditions, and stress recognition. Physicians had the least favorable attitudes about perceptions of management while managers had the most favorable attitudes (mean scores: 50.4 +/- 22.5 vs 72.5 +/- 19.6, P < 0.05; percent with positive attitudes 18% vs 70%, respectively). Nurses had the most positive stress recognition scores (mean score 66.0 +/- 24.0). All providers had similar attitudes toward teamwork climate, safety climate, job satisfaction, and working conditions. The SAQ-A is a reliable tool for eliciting provider attitudes about the ambulatory work setting. Attitudes relevant to medical error may differ among provider types and reflect behavior and clinic operations that could be improved.

  4. Compensation method of cloud infrared radiation interference based on a spinning projectile's attitude measurement

    NASA Astrophysics Data System (ADS)

    Xu, Miaomiao; Bu, Xiongzhu; Yu, Jing; He, Zilu

    2018-01-01

    Based on the study of earth infrared radiation and further requirement of anticloud interference ability for a spinning projectile's infrared attitude measurement, a compensation method of cloud infrared radiation interference is proposed. First, the theoretical model of infrared radiation interference is established by analyzing the generation mechanism and interference characteristics of cloud infrared radiation. Then, the influence of cloud infrared radiation on attitude angle is calculated in the following two situations. The first situation is the projectile in cloud, and the maximum of roll angle error can reach ± 20 deg. The second situation is the projectile outside of cloud, and it results in the inability to measure the projectile's attitude angle. Finally, a multisensor weighted fusion algorithm is proposed based on trust function method to reduce the influence of cloud infrared radiation. The results of semiphysical experiments show that the error of roll angle with a weighted fusion algorithm can be kept within ± 0.5 deg in the presence of cloud infrared radiation interference. This proposed method improves the accuracy of roll angle by nearly four times in attitude measurement and also solves the problem of low accuracy of infrared radiation attitude measurement in navigation and guidance field.

  5. Effect of gyro verticality error on lateral autoland tracking performance for an inertially smoothed control law

    NASA Technical Reports Server (NTRS)

    Thibodeaux, J. J.

    1977-01-01

    The results of a simulation study performed to determine the effects of gyro verticality error on lateral autoland tracking and landing performance are presented. A first order vertical gyro error model was used to generate the measurement of the roll attitude feedback signal normally supplied by an inertial navigation system. The lateral autoland law used was an inertially smoothed control design. The effect of initial angular gyro tilt errors (2 deg, 3 deg, 4 deg, and 5 deg), introduced prior to localizer capture, were investigated by use of a small perturbation aircraft simulation. These errors represent the deviations which could occur in the conventional attitude sensor as a result of the maneuver-induced spin-axis misalinement and drift. Results showed that for a 1.05 deg per minute erection rate and a 5 deg initial tilt error, ON COURSE autoland control logic was not satisfied. Failure to attain the ON COURSE mode precluded high control loop gains and localizer beam path integration and resulted in unacceptable beam standoff at touchdown.

  6. Optimal Variable-Structure Control Tracking of Spacecraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Crassidis, John L.; Vadali, Srinivas R.; Markley, F. Landis

    1999-01-01

    An optimal control approach using variable-structure (sliding-mode) tracking for large angle spacecraft maneuvers is presented. The approach expands upon a previously derived regulation result using a quaternion parameterization for the kinematic equations of motion. This parameterization is used since it is free of singularities. The main contribution of this paper is the utilization of a simple term in the control law that produces a maneuver to the reference attitude trajectory in the shortest distance. Also, a multiplicative error quaternion between the desired and actual attitude is used to derive the control law. Sliding-mode switching surfaces are derived using an optimal-control analysis. Control laws are given using either external torque commands or reaction wheel commands. Global asymptotic stability is shown for both cases using a Lyapunov analysis. Simulation results are shown which use the new control strategy to stabilize the motion of the Microwave Anisotropy Probe spacecraft.

  7. Comparison of thruster configurations in attitude control systems. M.S. Thesis. Progress Report

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III; Drinkard, D. M., Jr.; White, L. R.; Chakravarthi, K. R.

    1973-01-01

    Several aspects concerning reaction control jet systems as used to govern the attitude of a spacecraft were considered. A thruster configuration currently in use was compared to several new configurations developed in this study. The method of determining the error signals which control the firing of the thrusters was also investigated. The current error determination procedure is explained and a new method is presented. Both of these procedures are applied to each of the thruster configurations which are developed and comparisons of the two methods are made.

  8. Closed Loop Software Control of the MIDEX Power System

    NASA Technical Reports Server (NTRS)

    Castell, Karen; Hernandez-Pellerano, Amri; Wismer, Margaret

    1998-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The design and analysis of the MAP attitude control system (ACS) have been refined since work previously reported. The full spacecraft and instrument flexible model was developed in NASTRAN, and the resulting flexible modes were plotted and reduced with the Modal Significance Analysis Package (MSAP). The reduced-order model was used to perform the linear stability analysis for each control mode, the results of which are presented in this paper. Although MAP is going to a relatively disturbance-free Lissajous orbit around the Earth-Sun L2 Lagrange point, a detailed disturbance-torque analysis is required because there are only a small number of opportunities for momentum unloading each year. Environmental torques, including solar pressure at L2, and aerodynamic and gravity gradient during phasing-loop orbits, were calculated and simulated. A simple model of fuel slosh was derived to model its effect on the motion of the spacecraft. In addition, a thruster mode linear impulse controller was developed to meet the accuracy requirements of the phasing loop burns. A dynamic attitude error limiter was added to improve the performance of the ACS during large attitude slews. The result of this analysis is a stable ACS subsystem that meets all of the mission's requirements.

  9. Speed-constrained three-axes attitude control using kinematic steering

    NASA Astrophysics Data System (ADS)

    Schaub, Hanspeter; Piggott, Scott

    2018-06-01

    Spacecraft attitude control solutions typically are torque-level algorithms that simultaneously control both the attitude and angular velocity tracking errors. In contrast, robotic control solutions are kinematic steering commands where rates are treated as the control variable, and a servo-tracking control subsystem is present to achieve the desired control rates. In this paper kinematic attitude steering controls are developed where an outer control loop establishes a desired angular response history to a tracking error, and an inner control loop tracks the commanded body angular rates. The overall stability relies on the separation principle of the inner and outer control loops which must have sufficiently different response time scales. The benefit is that the outer steering law response can be readily shaped to a desired behavior, such as limiting the approach angular velocity when a large tracking error is corrected. A Modified Rodrigues Parameters implementation is presented that smoothly saturates the speed response. A robust nonlinear body rate servo loop is developed which includes integral feedback. This approach provides a convenient modular framework that makes it simple to interchange outer and inner control loops to readily setup new control implementations. Numerical simulations illustrate the expected performance for an aggressive reorientation maneuver subject to an unknown external torque.

  10. Parameter Identification

    DTIC Science & Technology

    1979-11-01

    Science Aeronautique, Vol. 6, pp. 38-49, 1950. 9. Anon.: "Methods of testing at constant attitude", ICAO Circular 16-AN/13, 1951. 10. H.L. Jonkers...spectral density analysis, it was determined that a notch filter at 17.7 hertz and a third-order Butterworth low-pass filter with a break frequency of 20...of the effects of specific errors, they are circular in nature and do not address the basic theoretical problem. Therefore, the Cramer-Rao bound

  11. Simultaneous calibrations of Voyager celestial and inertial attitude control systems in flight

    NASA Technical Reports Server (NTRS)

    Jahanshahi, M. H.

    1982-01-01

    A mathematical description of the data reduction technique used to simultaneously calibrate the Voyager celestial and inertial attitude control subsystems is given. It is shown that knowledge of the spacecraft limit cycle motion, as measured by the celestial and the inertial sensors, is adequate to result in the estimates of a selected number of errors which adversely affect the spacecraft attitude knowledge.

  12. Patient Safety Climate: A Study of Southern California Healthcare Organizations.

    PubMed

    Avramchuk, Andre S; McGuire, Stephen J J

    2018-01-01

    Human error remains the most important factor in unnecessary deaths and suffering in U.S. hospitals. Human error results from healthcare providers' attitudes and behaviors toward patients in different settings. Therefore, taking periodic snapshots of the attitudes and behaviors prevalent in an organization and manifested in its patient safety climate (PSC) is essential.We developed and tested a short survey instrument intended as an organization-level measure of PSC with good psychometric properties that can be used in hospitals, clinics, or other healthcare provider settings. Analysis of data from 61 Southern California healthcare organizations resulted in a PSC model with four distinct, reliable factors: (1) Assistance From Others and the Organization, (2) Leadership Messages of Support in Policy and Behavior, (3) Resources and Work Environment, and (4) Error Reporting Behavior. A PSC score, ranging from 0 to 100, was generated for each organization.For a subsample of hospitals in our study, preliminary results indicate a predictive quality of the model. The higher the PSC score, the lower the number of violations detected by the Centers for Medicare & Medicaid Services in complaint inspections, and the fewer the safety problems reported by The Leapfrog Group.Given the association between PSC and health outcomes, we urge healthcare leaders to use various means, such as our survey, to monitor the degree to which their organizations maintain a climate that fosters patient safety and use such data to pinpoint areas for improvement.

  13. Forensic child sexual abuse evaluations: assessing subjectivity and bias in professional judgements.

    PubMed

    Everson, Mark D; Sandoval, Jose Miguel

    2011-04-01

    Evaluators examining the same evidence often arrive at substantially different conclusions in forensic assessments of child sexual abuse (CSA). This study attempts to identify and quantify subjective factors that contribute to such disagreements so that interventions can be devised to improve the reliability of case decisions. Participants included 1106 professionals in the field of child maltreatment representing a range of professional positions or job titles and years of experience. Each completed the Child Forensic Attitude Scale (CFAS), a 28-item survey assessing 3 forensic attitudes believed to influence professional judgments about CSA allegations: emphasis-on-sensitivity (i.e., a focus on minimizing false negatives or errors of undercalling abuse); emphasis-on-specificity (i.e., a focus on minimizing false positives or errors of overcalling abuse); and skepticism toward child and adolescent reports of CSA. A subset of 605 professionals also participated in 1 of 3 diverse decision exercises to assess the influence of the 3 forensic attitudes on ratings of case credibility. Exploratory factor analysis identified 4 factors or attitude subscales that corresponded closely with the original CFAS scales: 2 subscales for emphasis-on-sensitivity and 1 each for emphasis-on-specificity and skepticism. Attitude subscale scores differed significantly by sample source (in-state trainings vs. national conferences), gender, years of experience, and professional position, with Child Protective Service workers unexpectedly more concerned about overcalling abuse and more skeptical of child disclosures than other professionals-a pattern of scores associated with an increased probability of disbelieving CSA allegations. The 3 decision exercises offered validation of the attitude subscales as predictors of professional ratings of case credibility, with adjusted R(2)s for the three exercises ranging from .06 to .24, suggesting highly variable effect sizes. Evaluator disagreements about CSA allegations can be explained, in part, by individual differences in 3 attitudes related to forensic decision-making: emphasis-on-sensitivity, emphasis-on-specificity, and skepticism toward child reports of abuse. These attitudes operate as predispositions or biases toward viewing CSA allegations as likely true or likely false. Several strategies for curbing the influence of subjective factors are highlighted including self-awareness of personal biases and team approaches to assessment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Attitude Accuracy Study for the Earth Observing System (EOS) AM-1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Lesikar, James D., II; Garrick, Joseph C.

    1996-01-01

    Earth Observing System (EOS) spacecraft will take measurements of the Earth's clouds, oceans, atmosphere, land, and radiation balance. These EOS spacecraft are part of the National Aeronautics and Space Administration's Mission to Planet Earth, and consist of several series of satellites, with each series specializing in a particular class of observations. This paper focuses on the EOS AM-1 spacecraft, which is the first of three satellites constituting the EOS AM series (morning equatorial crossing) and the initial spacecraft of the EOS program. EOS AM-1 has a stringent onboard attitude knowledge requirement, of 36/41/44 arc seconds (3 sigma) in yaw/roll/pitch, respectively. During normal mission operations, attitude is determined onboard using an extended Kalman sequential filter via measurements from two charge coupled device (CCD) star trackers, one Fine Sun Sensor, and an Inertial Rate Unit. The attitude determination error analysis system (ADEAS) was used to model the spacecraft and mission profile, and in a worst case scenario with only one star tracker in operation, the attitude uncertainty was 9.7/ll.5/12.2 arc seconds (3 sigma) in yaw/roll/pitch. The quoted result assumed the spacecraft was in nominal attitude, using only the 1-rotation per orbit motion of the spacecraft about the pitch axis for calibration of the gyro biases. Deviations from the nominal attitude would show greater attitude uncertainties, unless calibration maneuvers which roll and/or yaw the spacecraft have been performed. This permits computation of the gyro misalignments, and the attitude knowledge requirement would remain satisfied.

  15. An Improved Method for Dynamic Measurement of Deflections of the Vertical Based on the Maintenance of Attitude Reference

    PubMed Central

    Dai, Dongkai; Wang, Xingshu; Zhan, Dejun; Huang, Zongsheng

    2014-01-01

    A new method for dynamic measurement of deflections of the vertical (DOV) is proposed in this paper. The integration of an inertial navigation system (INS) and global navigation satellite system (GNSS) is constructed to measure the body's attitude with respect to the astronomical coordinates. Simultaneously, the attitude with respect to the geodetic coordinates is initially measured by a star sensor under quasi-static condition and then maintained by the laser gyroscope unit (LGU), which is composed of three gyroscopes in the INS, when the vehicle travels along survey lines. Deflections of the vertical are calculated by using the difference between the attitudes with respect to the geodetic coordinates and astronomical coordinates. Moreover, an algorithm for removing the trend error of the vertical deflections is developed with the aid of Earth Gravitational Model 2008 (EGM2008). In comparison with traditional methods, the new method required less accurate GNSS, because the dynamic acceleration calculation is avoided. The errors of inertial sensors are well resolved in the INS/GNSS integration, which is implemented by a Rauch–Tung–Striebel (RTS) smoother. In addition, a single-axis indexed INS is adopted to improve the observability of the system errors and to restrain the inertial sensor errors. The proposed method is validated by Monte Carlo simulations. The results show that deflections of the vertical can achieve a precision of better than 1″ for a single survey line. The proposed method can be applied to a gravimetry system based on a ground vehicle or ship with a speed lower than 25 m/s. PMID:25192311

  16. An improved method for dynamic measurement of deflections of the vertical based on the maintenance of attitude reference.

    PubMed

    Dai, Dongkai; Wang, Xingshu; Zhan, Dejun; Huang, Zongsheng

    2014-09-03

    A new method for dynamic measurement of deflections of the vertical (DOV) is proposed in this paper. The integration of an inertial navigation system (INS) and global navigation satellite system (GNSS) is constructed to measure the body's attitude with respect to the astronomical coordinates. Simultaneously, the attitude with respect to the geodetic coordinates is initially measured by a star sensor under quasi-static condition and then maintained by the laser gyroscope unit (LGU), which is composed of three gyroscopes in the INS, when the vehicle travels along survey lines. Deflections of the vertical are calculated by using the difference between the attitudes with respect to the geodetic coordinates and astronomical coordinates. Moreover, an algorithm for removing the trend error of the vertical deflections is developed with the aid of Earth Gravitational Model 2008 (EGM2008). In comparison with traditional methods, the new method required less accurate GNSS, because the dynamic acceleration calculation is avoided. The errors of inertial sensors are well resolved in the INS/GNSS integration, which is implemented by a Rauch-Tung-Striebel (RTS) smoother. In addition, a single-axis indexed INS is adopted to improve the observability of the system errors and to restrain the inertial sensor errors. The proposed method is validated by Monte Carlo simulations. The results show that deflections of the vertical can achieve a precision of better than 1″ for a single survey line. The proposed method can be applied to a gravimetry system based on a ground vehicle or ship with a speed lower than 25 m/s.

  17. Carrier-phase multipath corrections for GPS-based satellite attitude determination

    NASA Technical Reports Server (NTRS)

    Axelrad, A.; Reichert, P.

    2001-01-01

    This paper demonstrates the high degree of spatial repeatability of these errors for a spacecraft environment and describes a correction technique, termed the sky map method, which exploits the spatial correlation to correct measurements and improve the accuracy of GPS-based attitude solutions.

  18. Docking Offset Between the Space Shuttle and the International Space Station and Resulting Impacts to the Transfer of Attitude Reference and Control

    NASA Technical Reports Server (NTRS)

    Helms, W. Jason; Pohlkamp, Kara M.

    2011-01-01

    The Space Shuttle does not dock at an exact 90 degrees to the International Space Station (ISS) x-body axis. This offset from 90 degrees, along with error sources within their respective attitude knowledge, causes the two vehicles to never completely agree on their attitude, even though they operate as a single, mated stack while docked. The docking offset can be measured in flight when both vehicles have good attitude reference and is a critical component in calculations to transfer attitude reference from one vehicle to another. This paper will describe how the docking offset and attitude reference errors between both vehicles are measured and how this information would be used to recover Shuttle attitude reference from ISS in the event of multiple failures. During STS-117, ISS on-board Guidance, Navigation and Control (GNC) computers began having problems and after several continuous restarts, the systems failed. The failure took the ability for ISS to maintain attitude knowledge. This paper will also demonstrate how with knowledge of the docking offset, the contingency procedure to recover Shuttle attitude reference from ISS was reversed in order to provide ISS an attitude reference from Shuttle. Finally, this paper will show how knowledge of the docking offset can be used to speed up attitude control handovers from Shuttle to ISS momentum management. By taking into account the docking offset, Shuttle can be commanded to hold a more precise attitude which better agrees with the ISS commanded attitude such that start up transients with the ISS momentum management controllers are reduced. By reducing start-up transients, attitude control can be transferred from Shuttle to ISS without the use of ISS thrusters saving precious on-board propellant, crew time and minimizing loads placed upon the mated stack.

  19. A self-calibration method in single-axis rotational inertial navigation system with rotating mechanism

    NASA Astrophysics Data System (ADS)

    Chen, Yuanpei; Wang, Lingcao; Li, Kui

    2017-10-01

    Rotary inertial navigation modulation mechanism can greatly improve the inertial navigation system (INS) accuracy through the rotation. Based on the single-axis rotational inertial navigation system (RINS), a self-calibration method is put forward. The whole system is applied with the rotation modulation technique so that whole inertial measurement unit (IMU) of system can rotate around the motor shaft without any external input. In the process of modulation, some important errors can be decoupled. Coupled with the initial position information and attitude information of the system as the reference, the velocity errors and attitude errors in the rotation are used as measurement to perform Kalman filtering to estimate part of important errors of the system after which the errors can be compensated into the system. The simulation results show that the method can complete the self-calibration of the single-axis RINS in 15 minutes and estimate gyro drifts of three-axis, the installation error angle of the IMU and the scale factor error of the gyro on z-axis. The calibration accuracy of optic gyro drifts could be about 0.003°/h (1σ) as well as the scale factor error could be about 1 parts per million (1σ). The errors estimate reaches the system requirements which can effectively improve the longtime navigation accuracy of the vehicle or the boat.

  20. Finite-Time Attitude Tracking Control for Spacecraft Using Terminal Sliding Mode and Chebyshev Neural Network.

    PubMed

    An-Min Zou; Kumar, K D; Zeng-Guang Hou; Xi Liu

    2011-08-01

    A finite-time attitude tracking control scheme is proposed for spacecraft using terminal sliding mode and Chebyshev neural network (NN) (CNN). The four-parameter representations (quaternion) are used to describe the spacecraft attitude for global representation without singularities. The attitude state (i.e., attitude and velocity) error dynamics is transformed to a double integrator dynamics with a constraint on the spacecraft attitude. With consideration of this constraint, a novel terminal sliding manifold is proposed for the spacecraft. In order to guarantee that the output of the NN used in the controller is bounded by the corresponding bound of the approximated unknown function, a switch function is applied to generate a switching between the adaptive NN control and the robust controller. Meanwhile, a CNN, whose basis functions are implemented using only desired signals, is introduced to approximate the desired nonlinear function and bounded external disturbances online, and the robust term based on the hyperbolic tangent function is applied to counteract NN approximation errors in the adaptive neural control scheme. Most importantly, the finite-time stability in both the reaching phase and the sliding phase can be guaranteed by a Lyapunov-based approach. Finally, numerical simulations on the attitude tracking control of spacecraft in the presence of an unknown mass moment of inertia matrix, bounded external disturbances, and control input constraints are presented to demonstrate the performance of the proposed controller.

  1. MAP stability, design, and analysis

    NASA Technical Reports Server (NTRS)

    Ericsson-Jackson, A. J.; Andrews, S. F.; O'Donnell, J. R., Jr.; Markley, F. L.

    1998-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The design and analysis of the MAP attitude control system (ACS) have been refined since work previously reported. The full spacecraft and instrument flexible model was developed in NASTRAN, and the resulting flexible modes were plotted and reduced with the Modal Significance Analysis Package (MSAP). The reduced-order model was used to perform the linear stability analysis for each control mode, the results of which are presented in this paper. Although MAP is going to a relatively disturbance-free Lissajous orbit around the Earth-Sun L(2) Lagrange point, a detailed disturbance-torque analysis is required because there are only a small number of opportunities for momentum unloading each year. Environmental torques, including solar pressure at L(2), aerodynamic and gravity gradient during phasing-loop orbits, were calculated and simulated. Thruster plume impingement torques that could affect the performance of the thruster modes were estimated and simulated, and a simple model of fuel slosh was derived to model its effect on the motion of the spacecraft. In addition, a thruster mode linear impulse controller was developed to meet the accuracy requirements of the phasing loop burns. A dynamic attitude error limiter was added to improve the performance of the ACS during large attitude slews. The result of this analysis is a stable ACS subsystem that meets all of the mission's requirements.

  2. Knowledge of healthcare professionals about medication errors in hospitals

    PubMed Central

    Abdel-Latif, Mohamed M. M.

    2016-01-01

    Context: Medication errors are the most common types of medical errors in hospitals and leading cause of morbidity and mortality among patients. Aims: The aim of the present study was to assess the knowledge of healthcare professionals about medication errors in hospitals. Settings and Design: A self-administered questionnaire was distributed to randomly selected healthcare professionals in eight hospitals in Madinah, Saudi Arabia. Subjects and Methods: An 18-item survey was designed and comprised questions on demographic data, knowledge of medication errors, availability of reporting systems in hospitals, attitudes toward error reporting, causes of medication errors. Statistical Analysis Used: Data were analyzed with Statistical Package for the Social Sciences software Version 17. Results: A total of 323 of healthcare professionals completed the questionnaire with 64.6% response rate of 138 (42.72%) physicians, 34 (10.53%) pharmacists, and 151 (46.75%) nurses. A majority of the participants had a good knowledge about medication errors concept and their dangers on patients. Only 68.7% of them were aware of reporting systems in hospitals. Healthcare professionals revealed that there was no clear mechanism available for reporting of errors in most hospitals. Prescribing (46.5%) and administration (29%) errors were the main causes of errors. The most frequently encountered medication errors were anti-hypertensives, antidiabetics, antibiotics, digoxin, and insulin. Conclusions: This study revealed differences in the awareness among healthcare professionals toward medication errors in hospitals. The poor knowledge about medication errors emphasized the urgent necessity to adopt appropriate measures to raise awareness about medication errors in Saudi hospitals. PMID:27330261

  3. Application of the Safety Attitudes Questionnaire (SAQ) in Albanian hospitals: a cross-sectional study

    PubMed Central

    Gabrani, Adriatik; Hoxha, Adrian; Simaku, Artan; Gabrani, Jonila (Cyco)

    2015-01-01

    Objective To establish the reliability and validity of the translated version of the Safety Attitudes Questionnaire (SAQ) by evaluating its psychometric properties and to determine possible differences among nurses and physicians regarding safety attitudes. Design A cross-sectional study utilising the Albanian version of the SAQ and a demographic questionnaire. Setting Four regional hospitals in Albania. Participants 341 healthcare providers, including 132 nurses and 209 doctors. Main outcome measure(s) The translation, construct validity and internal validity of the SAQ. The SAQ includes six scales and 30 items. Results A total of 341 valid questionnaires were returned, for a response rate of 70%. The confirmatory factor analysis and its goodness-of-fit indices (standardised root mean square residual 0.075, root mean square error of approximation 0.044 and comparative fit index 0.97) showed good model fit. The Cronbach's α values for each of the scales of the SAQ ranged from 0.64 to 0.82. The percentage of hospital healthcare workers who had a positive attitude was 60.3% for the teamwork climate, 57.2% for the safety climate, 58.4% for job satisfaction, 37.4% for stress recognition, 59.3% for the perception of management and 49.5% for working conditions. Intercorrelations showed that the subscales had moderate-to-high correlations with one another. Nurses were more hesitant to admit and report errors; only 55% of physicians and 44% of nurses endorsed this statement (χ2=4.9, p=0.02). Moreover, nurses received lower scores on team work compared with doctors (N 45.7 vs D 52.3, p=0.01). Doctors denied the effects of stress and fatigue on their performance (N 46.7 vs D 39.5, p<0.01), neglecting the workload. Conclusions The SAQ is a useful tool for evaluating safety attitudes in Albanian hospitals. In light of the health workforce's poor recognition of stress, establishing patient safety programmes should be a priority among policymakers in Albania. PMID:25877270

  4. Noise modeling and analysis of an IMU-based attitude sensor: improvement of performance by filtering and sensor fusion

    NASA Astrophysics Data System (ADS)

    K., Nirmal; A. G., Sreejith; Mathew, Joice; Sarpotdar, Mayuresh; Suresh, Ambily; Prakash, Ajin; Safonova, Margarita; Murthy, Jayant

    2016-07-01

    We describe the characterization and removal of noises present in the Inertial Measurement Unit (IMU) MPU- 6050, which was initially used in an attitude sensor, and later used in the development of a pointing system for small balloon-borne astronomical payloads. We found that the performance of the IMU degraded with time because of the accumulation of different errors. Using Allan variance analysis method, we identified the different components of noise present in the IMU, and verified the results by the power spectral density analysis (PSD). We tried to remove the high-frequency noise using smooth filters such as moving average filter and then Savitzky Golay (SG) filter. Even though we managed to filter some high-frequency noise, these filters performance wasn't satisfactory for our application. We found the distribution of the random noise present in IMU using probability density analysis and identified that the noise in our IMU was white Gaussian in nature. Hence, we used a Kalman filter to remove the noise and which gave us good performance real time.

  5. Psychometric properties of the communication skills attitude scale (CSAS) measure in a sample of Iranian medical students

    PubMed Central

    YAKHFOROSHHA, AFSANEH; SHIRAZI, MANDANA; YOUSEFZADEH, NASER; GHANBARNEJAD, AMIN; CHERAGHI, MOHAMMADALI; MOJTAHEDZADEH, RITA; MAHMOODI-BAKHTIARI, BEHROOZ; EMAMI, SEYED AMIR HOSSEIN

    2018-01-01

    Introduction: Communication skill (CS) has been regarded as one of the fundamental competencies for medical and other health care professionals. Student's attitude toward learning CS is a key factor in designing educational interventions. The original CSAS, as positive and negative subscales, was developed in the UK; however, there is no scale to measure these attitudes in Iran. The aim of this study was to assess the psychometric characteristic of the Communication Skills Attitude Scale (CSAS), in an Iranian context and to understand if it is a valid tool to assess attitude toward learning communication skills among health care professionals. Methods: Psychometric characteristics of the CSAS were assessed by using a cross-sectional design. In the current study, 410 medical students were selected using stratified sampling framework. The face validity of the scale was estimated through students and experts’ opinion. Content validity of CSAS was assessed qualitatively and quantitatively. Reliability was examined through two methods including Chronbach’s alpha coefficient and Intraclass Correlation of Coefficient (ICC). Construct validity of CSAS was assessed using confirmatory factor analysis (CFA) and explanatory factor analysis (PCA) followed by varimax rotation. Convergent and discriminant validity of the scale was measured through Spearman correlation. Statistical analysis was performed using SPSS 19 and EQS, 6.1. Results: The internal consistency and reproducibility of the total CSAS score were 0.84 (Cronbach’s alpha) and 0.81, which demonstrates an acceptable reliability of the questionnaire. The item-level content validity index (I-CVI) and the scale-level content validity index (S-CVI/Ave) demonstrated appropriate results: 0.97 and 0.94, respectively. An exploratory factor analysis (EFA) on the 25 items of the CSAS revealed 4-factor structure that all together explained %55 of the variance. Results of the confirmatory factor analysis indicated an acceptable goodness-of-fit between the model and the observed data. [χ2/df = 2.36, Comparative Fit Index (CFI) = 0.95, the GFI=0.96, Root Mean Square Error of Approximation (RMSEA) = 0.05]. Conclusion: The Persian version of CSAS is a multidimensional, valid and reliable tool for assessing attitudes towards communication skill among medical students. PMID:29344525

  6. Study of Systems Using Inertia Wheels for Precise Attitude Control of a Satellite

    NASA Technical Reports Server (NTRS)

    White, John S.; Hansen, Q. Marion

    1961-01-01

    Systems using inertia wheels are evaluated in this report to determine their suitability for precise attitude control of a satellite and to select superior system configurations. Various possible inertia wheel system configurations are first discussed in a general manner. Three of these systems which appear more promising than the others are analyzed in detail, using the Orbiting Astronomical Observatory as an example. The three systems differ from each other only by the method of damping, which is provided by either a rate gyro, an error-rate network, or a tachometer in series with a high-pass filter. An analytical investigation which consists of a generalized linear analysis, a nonlinear analysis using the switching-time method, and an analog computer study shows that all three systems are theoretically capable of producing adequate response and also of maintaining the required pointing accuracy for the Orbiting Astronomical Observatory of plus or minus 0.1 second of arc. Practical considerations and an experimental investigation show, however, that the system which uses an error-rate network to provide damping is superior to the other two systems. The system which uses a rate gyro is shown to be inferior because the threshold level causes a significant amount of limit-cycle operation, and the system which uses a tachometer with a filter is shown to be inferior because a device with the required dynamic range of operation does not appear to be available. The experimental laboratory apparatus used to investigate the dynamic performance of the systems is described, and experimental results are included to show that under laboratory conditions with relatively large extraneous disturbances, a dynamic tracking error of less than plus or minus 0.5 second of arc was obtained.

  7. Trends in MODIS Geolocation Error Analysis

    NASA Technical Reports Server (NTRS)

    Wolfe, R. E.; Nishihama, Masahiro

    2009-01-01

    Data from the two MODIS instruments have been accurately geolocated (Earth located) to enable retrieval of global geophysical parameters. The authors describe the approach used to geolocate with sub-pixel accuracy over nine years of data from M0DIS on NASA's E0S Terra spacecraft and seven years of data from MODIS on the Aqua spacecraft. The approach uses a geometric model of the MODIS instruments, accurate navigation (orbit and attitude) data and an accurate Earth terrain model to compute the location of each MODIS pixel. The error analysis approach automatically matches MODIS imagery with a global set of over 1,000 ground control points from the finer-resolution Landsat satellite to measure static biases and trends in the MO0lS geometric model parameters. Both within orbit and yearly thermally induced cyclic variations in the pointing have been found as well as a general long-term trend.

  8. Analysis and Compensation of Modulation Angular Rate Error Based on Missile-Borne Rotation Semi-Strapdown Inertial Navigation System

    PubMed Central

    Zhang, Jiayu; Li, Jie; Zhang, Xi; Che, Xiaorui; Huang, Yugang; Feng, Kaiqiang

    2018-01-01

    The Semi-Strapdown Inertial Navigation System (SSINS) provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS) inertial measurement unit (MIMU) outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS) is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions. PMID:29734707

  9. Computer simulation results of attitude estimation of earth orbiting satellites

    NASA Technical Reports Server (NTRS)

    Kou, S. R.

    1976-01-01

    Computer simulation results of attitude estimation of Earth-orbiting satellites (including Space Telescope) subjected to environmental disturbances and noises are presented. Decomposed linear recursive filter and Kalman filter were used as estimation tools. Six programs were developed for this simulation, and all were written in the basic language and were run on HP 9830A and HP 9866A computers. Simulation results show that a decomposed linear recursive filter is accurate in estimation and fast in response time. Furthermore, for higher order systems, this filter has computational advantages (i.e., less integration errors and roundoff errors) over a Kalman filter.

  10. Students' Preferences and Attitude toward Oral Error Correction Techniques at Yanbu University College, Saudi Arabia

    ERIC Educational Resources Information Center

    Alamri, Bushra; Fawzi, Hala Hassan

    2016-01-01

    Error correction has been one of the core areas in the field of English language teaching. It is "seen as a form of feedback given to learners on their language use" (Amara, 2015). Many studies investigated the use of different techniques to correct students' oral errors. However, only a few focused on students' preferences and attitude…

  11. A Damping Grid Strapdown Inertial Navigation System Based on a Kalman Filter for Ships in Polar Regions.

    PubMed

    Huang, Weiquan; Fang, Tao; Luo, Li; Zhao, Lin; Che, Fengzhu

    2017-07-03

    The grid strapdown inertial navigation system (SINS) used in polar navigation also includes three kinds of periodic oscillation errors as common SINS are based on a geographic coordinate system. Aiming ships which have the external information to conduct a system reset regularly, suppressing the Schuler periodic oscillation is an effective way to enhance navigation accuracy. The Kalman filter based on the grid SINS error model which applies to the ship is established in this paper. The errors of grid-level attitude angles can be accurately estimated when the external velocity contains constant error, and then correcting the errors of the grid-level attitude angles through feedback correction can effectively dampen the Schuler periodic oscillation. The simulation results show that with the aid of external reference velocity, the proposed external level damping algorithm based on the Kalman filter can suppress the Schuler periodic oscillation effectively. Compared with the traditional external level damping algorithm based on the damping network, the algorithm proposed in this paper can reduce the overshoot errors when the state of grid SINS is switched from the non-damping state to the damping state, and this effectively improves the navigation accuracy of the system.

  12. Relationship of employee attitudes and supervisor-controller ratio to en route operational error rates : final report.

    DOT National Transportation Integrated Search

    2002-05-01

    An operational error (OE) results when an air traffic control specialist (ATCS) fails to maintain appropriate separation between aircraft, obstacles, etc. Recent research on OEs has focused on situational and individual characteristics (Center for Na...

  13. The use of a contextual, modal and psychological classification of medication errors in the emergency department: a retrospective descriptive study.

    PubMed

    Cabilan, C J; Hughes, James A; Shannon, Carl

    2017-12-01

    To describe the contextual, modal and psychological classification of medication errors in the emergency department to know the factors associated with the reported medication errors. The causes of medication errors are unique in every clinical setting; hence, error minimisation strategies are not always effective. For this reason, it is fundamental to understand the causes specific to the emergency department so that targeted strategies can be implemented. Retrospective analysis of reported medication errors in the emergency department. All voluntarily staff-reported medication-related incidents from 2010-2015 from the hospital's electronic incident management system were retrieved for analysis. Contextual classification involved the time, place and the type of medications involved. Modal classification pertained to the stage and issue (e.g. wrong medication, wrong patient). Psychological classification categorised the errors in planning (knowledge-based and rule-based errors) and skill (slips and lapses). There were 405 errors reported. Most errors occurred in the acute care area, short-stay unit and resuscitation area, during the busiest shifts (0800-1559, 1600-2259). Half of the errors involved high-alert medications. Many of the errors occurred during administration (62·7%), prescribing (28·6%) and commonly during both stages (18·5%). Wrong dose, wrong medication and omission were the issues that dominated. Knowledge-based errors characterised the errors that occurred in prescribing and administration. The highest proportion of slips (79·5%) and lapses (76·1%) occurred during medication administration. It is likely that some of the errors occurred due to the lack of adherence to safety protocols. Technology such as computerised prescribing, barcode medication administration and reminder systems could potentially decrease the medication errors in the emergency department. There was a possibility that some of the errors could be prevented if safety protocols were adhered to, which highlights the need to also address clinicians' attitudes towards safety. Technology can be implemented to help minimise errors in the ED, but this must be coupled with efforts to enhance the culture of safety. © 2017 John Wiley & Sons Ltd.

  14. Dynamics and Control of Attitude, Power, and Momentum for a Spacecraft Using Flywheels and Control Moment Gyroscopes

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Karlgaard, Christopher D.; Kumar, Renjith R.; Seywald, Hans; Bose, David M.

    2003-01-01

    Several laws are designed for simultaneous control of the orientation of an Earth-pointing spacecraft, the energy stored by counter-rotating flywheels, and the angular momentum of the flywheels and control moment gyroscopes used together as an integrated set of actuators for attitude control. General, nonlinear equations of motion are presented in vector-dyadic form, and used to obtain approximate expressions which are then linearized in preparation for design of control laws that include feedback of flywheel kinetic energy error as a means of compensating for damping exerted by rotor bearings. Two flywheel steering laws are developed such that torque commanded by an attitude control law is achieved while energy is stored or discharged at the required rate. Using the International Space Station as an example, numerical simulations are performed to demonstrate control about a torque equilibrium attitude, and illustrate the benefits of kinetic energy error feedback. Control laws for attitude hold are also developed, and used to show the amount of propellant that can be saved when flywheels assist the CMGs. Nonlinear control laws for large-angle slew maneuvers perform well, but excessive momentum is required to reorient a vehicle like the International Space Station.

  15. Personality and attitudes as predictors of risky driving among older drivers.

    PubMed

    Lucidi, Fabio; Mallia, Luca; Lazuras, Lambros; Violani, Cristiano

    2014-11-01

    Although there are several studies on the effects of personality and attitudes on risky driving among young drivers, related research in older drivers is scarce. The present study assessed a model of personality-attitudes-risky driving in a large sample of active older drivers. A cross-sectional design was used, and structured and anonymous questionnaires were completed by 485 older Italian drivers (Mean age=68.1, SD=6.2, 61.2% males). The measures included personality traits, attitudes toward traffic safety, risky driving (errors, lapses, and traffic violations), and self-reported crash involvement and number of issued traffic tickets in the last 12 months. Structural equation modeling showed that personality traits predicted both directly and indirectly traffic violations, errors, and lapses. More positive attitudes toward traffic safety negatively predicted risky driving. In turn, risky driving was positively related to self-reported crash involvement and higher number of issued traffic tickets. Our findings suggest that theoretical models developed to account for risky driving of younger drivers may also apply in the older drivers, and accordingly be used to inform safe driving interventions for this age group. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Canadian drivers' attitudes regarding preventative responses to driving while impaired by alcohol.

    PubMed

    Vanlaar, Ward; Nadeau, Louise; McKiernan, Anna; Hing, Marisela M; Ouimet, Marie Claude; Brown, Thomas G

    2017-09-01

    In many jurisdictions, a risk assessment following a first driving while impaired (DWI) offence is used to guide administrative decision making regarding driver relicensing. Decision error in this process has important consequences for public security on one hand, and the social and economic well being of drivers on the other. Decision theory posits that consideration of the costs and benefits of decision error is needed, and in the public health context, this should include community attitudes. The objective of the present study was to clarify whether Canadians prefer decision error that: i) better protects the public (i.e., false positives); or ii) better protects the offender (i.e., false negatives). A random sample of male and female adult drivers (N=1213) from the five most populated regions of Canada was surveyed on drivers' preference for a protection of the public approach versus a protection of DWI drivers approach in resolving assessment decision error, and the relative value (i.e., value ratio) they imparted to both approaches. The role of region, sex and age on drivers' value ratio were also appraised. Seventy percent of Canadian drivers preferred a protection of the public from DWI approach, with the overall relative ratio given to this preference, compared to the alternative protection of the driver approach, being 3:1. Females expressed a significantly higher value ratio (M=3.4, SD=3.5) than males (M=3.0, SD=3.4), p<0.05. Regression analysis showed that both days of alcohol use in the past 30days (CI for B: -0.07, -0.02) and frequency of driving over legal BAC limits in the past year (CI for B=-0.19, -0.01) were significantly but modestly related to lower value ratios, R 2 (adj.)=0.014, p<0.001. Regional differences were also detected. Canadian drivers strongly favour a protection of the public approach to dealing with uncertainty in assessment, even at the risk of false positives. Accounting for community attitudes concerning DWI prevention and the individual differences that influence them could contribute to more informed, coherent and effective regional policies and prevention program development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A new model for yaw attitude of Global Positioning System satellites

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Y. E.

    1995-01-01

    Proper modeling of the Global Positioning System (GPS) satellite yaw attitude is important in high-precision applications. A new model for the GPS satellite yaw attitude is introduced that constitutes a significant improvement over the previously available model in terms of efficiency, flexibility, and portability. The model is described in detail, and implementation issues, including the proper estimation strategy, are addressed. The performance of the new model is analyzed, and an error budget is presented. This is the first self-contained description of the GPS yaw attitude model.

  18. Conceptualizing Public Attitudes toward the Welfare State: A Comment on Hasenfeld and Rafferty.

    ERIC Educational Resources Information Center

    Emerson, Michael O.; Van Buren, Mark E.

    1992-01-01

    Using structural equation technique to replicate results of Hasenfeld and Rafferty's causal model predicting public attitudes toward welfare state programs with the social ideologies of work ethic and social rights. By incorporating estimates of measurement error, results failed to support the authors' original conclusions. Operationalizing key…

  19. GEOS-C altimeter attitude bias error correction. [gate-tracking radar

    NASA Technical Reports Server (NTRS)

    Marini, J. W.

    1974-01-01

    A pulse-limited split-gate-tracking radar altimeter was flown on Skylab and will be used aboard GEOS-C. If such an altimeter were to employ a hypothetical isotropic antenna, the altimeter output would be independent of spacecraft orientation. To reduce power requirements the gain of the altimeter antenna proposed is increased to the point where its beamwidth is only a few degrees. The gain of the antenna consequently varies somewhat over the pulse-limited illuminated region of the ocean below the altimeter, and the altimeter output varies with antenna orientation. The error introduced into the altimeter data is modeled empirically, but close agreements with the expected errors was not realized. The attitude error effects expected with the GEOS-C altimeter are modelled using a form suggested by an analytical derivation. The treatment is restricted to the case of a relatively smooth sea, where the height of the ocean waves are small relative to the spatial length (pulse duration times speed of light) of the transmitted pulse.

  20. Sensor fault detection and recovery in satellite attitude control

    NASA Astrophysics Data System (ADS)

    Nasrolahi, Seiied Saeed; Abdollahi, Farzaneh

    2018-04-01

    This paper proposes an integrated sensor fault detection and recovery for the satellite attitude control system. By introducing a nonlinear observer, the healthy sensor measurements are provided. Considering attitude dynamics and kinematic, a novel observer is developed to detect the fault in angular rate as well as attitude sensors individually or simultaneously. There is no limit on type and configuration of attitude sensors. By designing a state feedback based control signal and Lyapunov stability criterion, the uniformly ultimately boundedness of tracking errors in the presence of sensor faults is guaranteed. Finally, simulation results are presented to illustrate the performance of the integrated scheme.

  1. Patient safety awareness among Undergraduate Medical Students in Pakistani Medical School.

    PubMed

    Kamran, Rizwana; Bari, Attia; Khan, Rehan Ahmed; Al-Eraky, Mohamed

    2018-01-01

    To measure the level of awareness of patient safety among undergraduate medical students in Pakistani Medical School and to find the difference with respect to gender and prior experience with medical error. This cross-sectional study was conducted at the University of Lahore (UOL), Pakistan from January to March 2017, and comprised final year medical students. Data was collected using a questionnaire 'APSQ- III' on 7 point Likert scale. Eight questions were reverse coded. Survey was anonymous. SPSS package 20 was used for statistical analysis. Questionnaire was filled by 122 students, with 81% response rate. The best score 6.17 was given for the 'team functioning', followed by 6.04 for 'long working hours as a cause of medical error'. The domains regarding involvement of patient, confidence to report medical errors and role of training and learning on patient safety scored high in the agreed range of >5. Reverse coded questions about 'professional incompetence as an error cause' and 'disclosure of errors' showed negative perception. No significant differences of perceptions were found with respect to gender and prior experience with medical error (p= >0.05). Undergraduate medical students at UOL had a positive attitude towards patient safety. However, there were misconceptions about causes of medical errors and error disclosure among students and patient safety education needs to be incorporated in medical curriculum of Pakistan.

  2. Research into Kinect/Inertial Measurement Units Based on Indoor Robots.

    PubMed

    Li, Huixia; Wen, Xi; Guo, Hang; Yu, Min

    2018-03-12

    As indoor mobile navigation suffers from low positioning accuracy and accumulation error, we carried out research into an integrated location system for a robot based on Kinect and an Inertial Measurement Unit (IMU). In this paper, the close-range stereo images are used to calculate the attitude information and the translation amount of the adjacent positions of the robot by means of the absolute orientation algorithm, for improving the calculation accuracy of the robot's movement. Relying on the Kinect visual measurement and the strap-down IMU devices, we also use Kalman filtering to obtain the errors of the position and attitude outputs, in order to seek the optimal estimation and correct the errors. Experimental results show that the proposed method is able to improve the positioning accuracy and stability of the indoor mobile robot.

  3. Effect of Variations in IRU Integration Time Interval On Accuracy of Aqua Attitude Estimation

    NASA Technical Reports Server (NTRS)

    Natanson, G. A.; Tracewell, Dave

    2003-01-01

    During Aqua launch support, attitude analysts noticed several anomalies in Onboard Computer (OBC) rates and in rates computed by the ground Attitude Determination System (ADS). These included: 1) periodic jumps in the OBC pitch rate every 2 minutes; 2) spikes in ADS pitch rate every 4 minutes; 3) close agreement between pitch rates computed by ADS and those derived from telemetered OBC quaternions (in contrast to the step-wise pattern observed for telemetered OBC rates); 4) spikes of +/- 10 milliseconds in telemetered IRU integration time every 4 minutes (despite the fact that telemetered time tags of any two sequential IRU measurements were always 1 second apart from each other). An analysis presented in the paper explains this anomalous behavior by a small average offset of about 0.5 +/- 0.05 microsec in the time interval between two sequential accumulated angle measurements. It is shown that errors in the estimated pitch angle due to neglecting the aforementioned variations in the integration time interval by the OBC is within +/- 2 arcseconds. Ground attitude solutions are found to be accurate enough to see the effect of the variations on the accuracy of the estimated pitch angle.

  4. Adaptive extended-state observer-based fault tolerant attitude control for spacecraft with reaction wheels

    NASA Astrophysics Data System (ADS)

    Ran, Dechao; Chen, Xiaoqian; de Ruiter, Anton; Xiao, Bing

    2018-04-01

    This study presents an adaptive second-order sliding control scheme to solve the attitude fault tolerant control problem of spacecraft subject to system uncertainties, external disturbances and reaction wheel faults. A novel fast terminal sliding mode is preliminarily designed to guarantee that finite-time convergence of the attitude errors can be achieved globally. Based on this novel sliding mode, an adaptive second-order observer is then designed to reconstruct the system uncertainties and the actuator faults. One feature of the proposed observer is that the design of the observer does not necessitate any priori information of the upper bounds of the system uncertainties and the actuator faults. In view of the reconstructed information supplied by the designed observer, a second-order sliding mode controller is developed to accomplish attitude maneuvers with great robustness and precise tracking accuracy. Theoretical stability analysis proves that the designed fault tolerant control scheme can achieve finite-time stability of the closed-loop system, even in the presence of reaction wheel faults and system uncertainties. Numerical simulations are also presented to demonstrate the effectiveness and superiority of the proposed control scheme over existing methodologies.

  5. I trust it, but I don't know why: effects of implicit attitudes toward automation on trust in an automated system.

    PubMed

    Merritt, Stephanie M; Heimbaugh, Heather; LaChapell, Jennifer; Lee, Deborah

    2013-06-01

    This study is the first to examine the influence of implicit attitudes toward automation on users' trust in automation. Past empirical work has examined explicit (conscious) influences on user level of trust in automation but has not yet measured implicit influences. We examine concurrent effects of explicit propensity to trust machines and implicit attitudes toward automation on trust in an automated system. We examine differential impacts of each under varying automation performance conditions (clearly good, ambiguous, clearly poor). Participants completed both a self-report measure of propensity to trust and an Implicit Association Test measuring implicit attitude toward automation, then performed an X-ray screening task. Automation performance was manipulated within-subjects by varying the number and obviousness of errors. Explicit propensity to trust and implicit attitude toward automation did not significantly correlate. When the automation's performance was ambiguous, implicit attitude significantly affected automation trust, and its relationship with propensity to trust was additive: Increments in either were related to increases in trust. When errors were obvious, a significant interaction between the implicit and explicit measures was found, with those high in both having higher trust. Implicit attitudes have important implications for automation trust. Users may not be able to accurately report why they experience a given level of trust. To understand why users trust or fail to trust automation, measurements of implicit and explicit predictors may be necessary. Furthermore, implicit attitude toward automation might be used as a lever to effectively calibrate trust.

  6. Effects of Shame and Guilt on Error Reporting Among Obstetric Clinicians.

    PubMed

    Zabari, Mara Lynne; Southern, Nancy L

    2018-04-17

    To understand how the experiences of shame and guilt, coupled with organizational factors, affect error reporting by obstetric clinicians. Descriptive cross-sectional. A sample of 84 obstetric clinicians from three maternity units in Washington State. In this quantitative inquiry, a variant of the Test of Self-Conscious Affect was used to measure proneness to guilt and shame. In addition, we developed questions to assess attitudes regarding concerns about damaging one's reputation if an error was reported and the choice to keep an error to oneself. Both assessments were analyzed separately and then correlated to identify relationships between constructs. Interviews were used to identify organizational factors that affect error reporting. As a group, mean scores indicated that obstetric clinicians would not choose to keep errors to themselves. However, bivariate correlations showed that proneness to shame was positively correlated to concerns about one's reputation if an error was reported, and proneness to guilt was negatively correlated with keeping errors to oneself. Interview data analysis showed that Past Experience with Responses to Errors, Management and Leadership Styles, Professional Hierarchy, and Relationships With Colleagues were influential factors in error reporting. Although obstetric clinicians want to report errors, their decisions to report are influenced by their proneness to guilt and shame and perceptions of the degree to which organizational factors facilitate or create barriers to restore their self-images. Findings underscore the influence of the organizational context on clinicians' decisions to report errors. Copyright © 2018 AWHONN, the Association of Women’s Health, Obstetric and Neonatal Nurses. Published by Elsevier Inc. All rights reserved.

  7. Shipborne wind measurement and motion-induced error correction by coherent doppler lidar over yellow sea in 2014

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi; Song, Xiaoquan

    2018-04-01

    Shipborne wind observations by the Coherent Doppler Lidar (CDL) during the 2014 Yellow Sea campaign are presented to study the structure of the Marine Atmospheric Boundary Layer (MABL). This paper gives an analysis of the correction for horizontal and vertical wind measurement, demonstrating that the combination of the CDL with the attitude correction system enables the retrieval of wind profiles in the MABL during both anchored and cruising measurement with satisfied statistical uncertainties.

  8. A spacecraft attitude and articulation control system design for the Comet Halley intercept mission

    NASA Technical Reports Server (NTRS)

    Key, R. W.

    1981-01-01

    An attitude and articulation control system design for the Comet Halley 1986 intercept mission is presented. A spacecraft dynamics model consisting of five hinge-connected rigid bodies is used to analyze the spacecraft attitude and articulation control system performance. Inertial and optical information are combined to generate scan platform pointing commands. The comprehensive spacecraft model has been developed into a digital computer simulation program, which provides performance characteristics and insight pertaining to the control and dynamics of a Halley Intercept spacecraft. It is shown that scan platform pointing error has a maximum value of 1.8 milliradians during the four minute closest approach interval. It is also shown that the jitter or scan platform pointing rate error would have a maximum value of 2.5 milliradians/second for the nominal 1000 km closest approach distance trajectory and associated environment model.

  9. Generalized Linear Covariance Analysis

    NASA Technical Reports Server (NTRS)

    Carpenter, James R.; Markley, F. Landis

    2014-01-01

    This talk presents a comprehensive approach to filter modeling for generalized covariance analysis of both batch least-squares and sequential estimators. We review and extend in two directions the results of prior work that allowed for partitioning of the state space into solve-for'' and consider'' parameters, accounted for differences between the formal values and the true values of the measurement noise, process noise, and textita priori solve-for and consider covariances, and explicitly partitioned the errors into subspaces containing only the influence of the measurement noise, process noise, and solve-for and consider covariances. In this work, we explicitly add sensitivity analysis to this prior work, and relax an implicit assumption that the batch estimator's epoch time occurs prior to the definitive span. We also apply the method to an integrated orbit and attitude problem, in which gyro and accelerometer errors, though not estimated, influence the orbit determination performance. We illustrate our results using two graphical presentations, which we call the variance sandpile'' and the sensitivity mosaic,'' and we compare the linear covariance results to confidence intervals associated with ensemble statistics from a Monte Carlo analysis.

  10. A New Quaternion-Based Kalman Filter for Real-Time Attitude Estimation Using the Two-Step Geometrically-Intuitive Correction Algorithm.

    PubMed

    Feng, Kaiqiang; Li, Jie; Zhang, Xiaoming; Shen, Chong; Bi, Yu; Zheng, Tao; Liu, Jun

    2017-09-19

    In order to reduce the computational complexity, and improve the pitch/roll estimation accuracy of the low-cost attitude heading reference system (AHRS) under conditions of magnetic-distortion, a novel linear Kalman filter, suitable for nonlinear attitude estimation, is proposed in this paper. The new algorithm is the combination of two-step geometrically-intuitive correction (TGIC) and the Kalman filter. In the proposed algorithm, the sequential two-step geometrically-intuitive correction scheme is used to make the current estimation of pitch/roll immune to magnetic distortion. Meanwhile, the TGIC produces a computed quaternion input for the Kalman filter, which avoids the linearization error of measurement equations and reduces the computational complexity. Several experiments have been carried out to validate the performance of the filter design. The results demonstrate that the mean time consumption and the root mean square error (RMSE) of pitch/roll estimation under magnetic disturbances are reduced by 45.9% and 33.8%, respectively, when compared with a standard filter. In addition, the proposed filter is applicable for attitude estimation under various dynamic conditions.

  11. A New Quaternion-Based Kalman Filter for Real-Time Attitude Estimation Using the Two-Step Geometrically-Intuitive Correction Algorithm

    PubMed Central

    Feng, Kaiqiang; Li, Jie; Zhang, Xiaoming; Shen, Chong; Bi, Yu; Zheng, Tao; Liu, Jun

    2017-01-01

    In order to reduce the computational complexity, and improve the pitch/roll estimation accuracy of the low-cost attitude heading reference system (AHRS) under conditions of magnetic-distortion, a novel linear Kalman filter, suitable for nonlinear attitude estimation, is proposed in this paper. The new algorithm is the combination of two-step geometrically-intuitive correction (TGIC) and the Kalman filter. In the proposed algorithm, the sequential two-step geometrically-intuitive correction scheme is used to make the current estimation of pitch/roll immune to magnetic distortion. Meanwhile, the TGIC produces a computed quaternion input for the Kalman filter, which avoids the linearization error of measurement equations and reduces the computational complexity. Several experiments have been carried out to validate the performance of the filter design. The results demonstrate that the mean time consumption and the root mean square error (RMSE) of pitch/roll estimation under magnetic disturbances are reduced by 45.9% and 33.8%, respectively, when compared with a standard filter. In addition, the proposed filter is applicable for attitude estimation under various dynamic conditions. PMID:28925979

  12. System and method for correcting attitude estimation

    NASA Technical Reports Server (NTRS)

    Josselson, Robert H. (Inventor)

    2010-01-01

    A system includes an angular rate sensor disposed in a vehicle for providing angular rates of the vehicle, and an instrument disposed in the vehicle for providing line-of-sight control with respect to a line-of-sight reference. The instrument includes an integrator which is configured to integrate the angular rates of the vehicle to form non-compensated attitudes. Also included is a compensator coupled across the integrator, in a feed-forward loop, for receiving the angular rates of the vehicle and outputting compensated angular rates of the vehicle. A summer combines the non-compensated attitudes and the compensated angular rates of the to vehicle to form estimated vehicle attitudes for controlling the instrument with respect to the line-of-sight reference. The compensator is configured to provide error compensation to the instrument free-of any feedback loop that uses an error signal. The compensator may include a transfer function providing a fixed gain to the received angular rates of the vehicle. The compensator may, alternatively, include a is transfer function providing a variable gain as a function of frequency to operate on the received angular rates of the vehicle.

  13. Are physicians' perceptions of healthcare quality and practice satisfaction affected by errors associated with electronic health record use?

    PubMed Central

    Wright, Adam; Simon, Steven R; Jenter, Chelsea A; Soran, Christine S; Volk, Lynn A; Bates, David W; Poon, Eric G

    2011-01-01

    Background Electronic health record (EHR) adoption is a national priority in the USA, and well-designed EHRs have the potential to improve quality and safety. However, physicians are reluctant to implement EHRs due to financial constraints, usability concerns, and apprehension about unintended consequences, including the introduction of medical errors related to EHR use. The goal of this study was to characterize and describe physicians' attitudes towards three consequences of EHR implementation: (1) the potential for EHRs to introduce new errors; (2) improvements in healthcare quality; and (3) changes in overall physician satisfaction. Methods Using data from a 2007 statewide survey of Massachusetts physicians, we conducted multivariate regression analysis to examine relationships between practice characteristics, perceptions of EHR-related errors, perceptions of healthcare quality, and overall physician satisfaction. Results 30% of physicians agreed that EHRs create new opportunities for error, but only 2% believed their EHR has created more errors than it prevented. With respect to perceptions of quality, there was no significant association between perceptions of EHR-associated errors and perceptions of EHR-associated changes in healthcare quality. Finally, physicians who believed that EHRs created new opportunities for error were less likely be satisfied with their practice situation (adjusted OR 0.49, p=0.001). Conclusions Almost one third of physicians perceived that EHRs create new opportunities for error. This perception was associated with lower levels of physician satisfaction. PMID:22199017

  14. Temperature dependence of attitude sensor coalignments on the Solar Maximum Mission (SMM)

    NASA Technical Reports Server (NTRS)

    Pitone, D. S.; Eudell, A. H.; Patt, F. S.

    1989-01-01

    Results are presented on the temperature correlation of the relative coalignment between the fine pointing sun sensor (FPSS) and fixed head star trackers (FHSTs) on the Solar Maximum Mission (SMM). This correlation can be caused by spacecraft electronic and mechanical effects. Routine daily measurements reveal a time dependent sensor coalignment variation. The magnitude of the alignment variation is on the order of 120 arc seconds (arc sec), which greatly exceeds the prelaunch thermal structural analysis estimate of 15 acr sec. Differences between FPSS-only and FHST-only yaw solutions as a function of mission day are correlated with the relevant spacecraft temperature. If unaccounted for, the sensor misalignments due to thermal effects are a significant source of error in attitude determination accuracy. Prominent sources of temperature variation are identified and correlated with the temperature profile observed on the SMM. It was determined that even relatively small changes in spacecraft temperature can affect the coalignments between the attitude hardware on the SMM and the science instrument support plate and that frequent recalibration of sensor alignments is necessary to compensate for this effect. An alterntive to frequent recalibration is to model the variation of alignments as a function of temperature and use this to maintain accurate ground or onboard alignment estimates. These flight data analysis results may be important consierations for prelaunch analysis of future missions.

  15. The Swiss cheese model of adverse event occurrence--Closing the holes.

    PubMed

    Stein, James E; Heiss, Kurt

    2015-12-01

    Traditional surgical attitude regarding error and complications has focused on individual failings. Human factors research has brought new and significant insights into the occurrence of error in healthcare, helping us identify systemic problems that injure patients while enhancing individual accountability and teamwork. This article introduces human factors science and its applicability to teamwork, surgical culture, medical error, and individual accountability. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Assessment of the knowledge and attitudes of intern doctors to medication prescribing errors in a Nigeria tertiary hospital

    PubMed Central

    Ajemigbitse, Adetutu A.; Omole, Moses Kayode; Ezike, Nnamdi Chika; Erhun, Wilson O.

    2013-01-01

    Context: Junior doctors are reported to make most of the prescribing errors in the hospital setting. Aims: The aim of the following study is to determine the knowledge intern doctors have about prescribing errors and circumstances contributing to making them. Settings and Design: A structured questionnaire was distributed to intern doctors in National Hospital Abuja Nigeria. Subjects and Methods: Respondents gave information about their experience with prescribing medicines, the extent to which they agreed with the definition of a clinically meaningful prescribing error and events that constituted such. Their experience with prescribing certain categories of medicines was also sought. Statistical Analysis Used: Data was analyzed with Statistical Package for the Social Sciences (SPSS) software version 17 (SPSS Inc Chicago, Ill, USA). Chi-squared analysis contrasted differences in proportions; P < 0.05 was considered to be statistically significant. Results: The response rate was 90.9% and 27 (90%) had <1 year of prescribing experience. 17 (56.7%) respondents totally agreed with the definition of a clinically meaningful prescribing error. Most common reasons for prescribing mistakes were a failure to check prescriptions with a reference source (14, 25.5%) and failure to check for adverse drug interactions (14, 25.5%). Omitting some essential information such as duration of therapy (13, 20%), patient age (14, 21.5%) and dosage errors (14, 21.5%) were the most common types of prescribing errors made. Respondents considered workload (23, 76.7%), multitasking (19, 63.3%), rushing (18, 60.0%) and tiredness/stress (16, 53.3%) as important factors contributing to prescribing errors. Interns were least confident prescribing antibiotics (12, 25.5%), opioid analgesics (12, 25.5%) cytotoxics (10, 21.3%) and antipsychotics (9, 19.1%) unsupervised. Conclusions: Respondents seemed to have a low awareness of making prescribing errors. Principles of rational prescribing and events that constitute prescribing errors should be taught in the practice setting. PMID:24808682

  17. Restoration of the ASCA Source Position Accuracy

    NASA Astrophysics Data System (ADS)

    Gotthelf, E. V.; Ueda, Y.; Fujimoto, R.; Kii, T.; Yamaoka, K.

    2000-11-01

    We present a calibration of the absolute pointing accuracy of the Advanced Satellite for Cosmology and Astrophysics (ASCA) which allows us to compensate for a large error (up to 1') in the derived source coordinates. We parameterize a temperature dependent deviation of the attitude solution which is responsible for this error. By analyzing ASCA coordinates of 100 bright active galactic nuclei, we show that it is possible to reduce the uncertainty in the sky position for any given observation by a factor of 4. The revised 90% error circle radius is then 12", consistent with preflight specifications, effectively restoring the full ASCA pointing accuracy. Herein, we derive an algorithm which compensates for this attitude error and present an internet-based table to be used to correct post facto the coordinate of all ASCA observations. While the above error circle is strictly applicable to data taken with the on-board Solid-state Imaging Spectrometers (SISs), similar coordinate corrections are derived for data obtained with the Gas Imaging Spectrometers (GISs), which, however, have additional instrumental uncertainties. The 90% error circle radius for the central 20' diameter of the GIS is 24". The large reduction in the error circle area for the two instruments offers the opportunity to greatly enhance the search for X-ray counterparts at other wavelengths. This has important implications for current and future ASCA source catalogs and surveys.

  18. Attitudes and perceived barriers influencing incident reporting by nurses and their correlation with reported incidents: A systematic review.

    PubMed

    Fung, Wing Mei; Koh, Serena Siew Lin; Chow, Yeow Leng

    Clinical incident reporting is an integral feature of risk management system in the healthcare sector. By reporting clinical incidents, nurses allow for learning from errors, identification of error patterns and development of error preventive strategies. The need to understand attitudes to reporting, perceived barriers and incident reporting patterns by nurses are the core highlights of this review. INCLUSION CRITERIA: This review considered descriptive quantitative studies that examined nurses' attitudes or perceived barriers towards incident reporting.The participants in this review were nurses working in acute care settings or step-down care settings. Studies that included non-nursing healthcare personnel were excluded.This review considered studies which examined nurses' attitudes towards incident reporting, perceived barriers and incident reporting practices.The outcomes of interest were the attitudes that nurses have towards incident reporting, perceived barriers and the types of reported incidents in correlation with nurses' attitudes and barriers. A three-step search strategy was utilised in this review. An initial limited search of CINAHL and MEDLINE was undertaken. Search strategies were then developed using identified keywords and index terms. Lastly, the reference lists of all identified articles were examined. All searches were limited to studies published in English, between 1991 and 2010. The studies were independently assessed by two reviewers using the Joanna Briggs Institute Critical Appraisal Checklist for Descriptive/ Case Series studies. The reviewers extracted data independently from included studies using the Joanna Briggs Institute Data Extraction Form for Descriptive/ Case Series studies. Due to the descriptive nature of the study designs, statistical pooling was not possible. Therefore, the findings of this systematic review are presented in a narrative summary. Fifty-five papers were identified from the searches based on their titles and abstracts. Nine studies were included in this review. Cultural and demographic factors were the most significant factors in affecting nurses' attitudes towards incident reporting. Major perceived barriers included fear, administrative issues, and the reporting process. Also, nurses were more likely to report incidents that caused direct harm, and if reporting was kept anonymous. This review demonstrated that attitudes of nurses towards incident reporting vary across different study settings, with perceived barriers hindering the reporting process. Using the findings, interventions can be customised to increase reporting rates can be developed to curb the problem of underreporting.A non-punitive culture towards incident reporting has to be cultivated, and nursing authorities should provide frequent positive feedback to staff who reported incidents. Investigating system errors should be the focus rather than individual blame.Further research should target the development and evaluation of strategies to increase rates of incident reporting. Any differences between actual and perceived reporting rates should also be explored.

  19. Wilkinson Microwave Anisotropy Probe (WMAP) Attitude Estimation Filter Comparison

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    2005-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP) spacecraft was launched in June of 2001. The sensor complement of WMAP consists of two Autonomous Star Trackers (ASTs), two Fine Sun Sensors (FSSs), and a gyro package which contains redundancy about one of the WMAP body axes. The onboard attitude estimation filter consists of an extended Kalman filter (EKF) solving for attitude and gyro bias errors which are then resolved into a spacecraft attitude quaternion and gyro bias. A pseudo-linear Kalman filter has been developed which directly estimates the spacecraft attitude quaternion, rate, and gyro bias. In this paper, the performance of the two filters is compared for the two major control modes of WMAP: inertial mode and observation mode.

  20. NOSS/ALDCS analysis and system requirements definition. [national oceanic satellite system data collection

    NASA Technical Reports Server (NTRS)

    Reed, D. L.; Wallace, R. G.

    1981-01-01

    The results of system analyses and implementation studies of an advanced location and data collection system (ALDCS) , proposed for inclusion on the National Oceanic Satellite System (NOSS) spacecraft are reported. The system applies Doppler processing and radiofrequency interferometer position location technqiues both alone and in combination. Aspects analyzed include: the constraints imposed by random access to the system by platforms, the RF link parameters, geometric concepts of position and velocity estimation by the two techniques considered, and the effects of electrical measurement errors, spacecraft attitude errors, and geometric parameters on estimation accuracy. Hardware techniques and trade-offs for interferometric phase measurement, ambiguity resolution and calibration are considered. A combined Doppler-interferometer ALDCS intended to fulfill the NOSS data validation and oceanic research support mission is also described.

  1. A Performance Improvement Method for Low-Cost Land Vehicle GPS/MEMS-INS Attitude Determination

    PubMed Central

    Cong, Li; Li, Ercui; Qin, Honglei; Ling, Keck Voon; Xue, Rui

    2015-01-01

    Global positioning system (GPS) technology is well suited for attitude determination. However, in land vehicle application, low-cost single frequency GPS receivers which have low measurement quality are often used, and external factors such as multipath and low satellite visibility in the densely built-up urban environment further degrade the quality of the GPS measurements. Due to the low-quality receivers used and the challenging urban environment, the success rate of the single epoch ambiguity resolution for dynamic attitude determination is usually quite low. In this paper, a micro-electro-mechanical system (MEMS)—inertial navigation system (INS)-aided ambiguity resolution method is proposed to improve the GPS attitude determination performance, which is particularly suitable for land vehicle attitude determination. First, the INS calculated baseline vector is augmented with the GPS carrier phase and code measurements. This improves the ambiguity dilution of precision (ADOP), resulting in better quality of the unconstrained float solution. Second, the undesirable float solutions caused by large measurement errors are further filtered and replaced using the INS-aided ambiguity function method (AFM). The fixed solutions are then obtained by the constrained least squares ambiguity decorrelation (CLAMBDA) algorithm. Finally, the GPS/MEMS-INS integration is realized by the use of a Kalman filter. Theoretical analysis of the ADOP is given and experimental results demonstrate that our proposed method can significantly improve the quality of the float ambiguity solution, leading to high success rate and better accuracy of attitude determination. PMID:25760057

  2. Planetarium instructional efficacy: A research synthesis

    NASA Astrophysics Data System (ADS)

    Brazell, Bruce D.

    The purpose of the current study was to explore the instructional effectiveness of the planetarium in astronomy education using meta-analysis. A review of the literature revealed 46 studies related to planetarium efficacy. However, only 19 of the studies satisfied selection criteria for inclusion in the meta-analysis. Selected studies were then subjected to coding procedures, which extracted information such as subject characteristics, experimental design, and outcome measures. From these data, 24 effect sizes were calculated in the area of student achievement and five effect sizes were determined in the area of student attitudes using reported statistical information. Mean effect sizes were calculated for both the achievement and the attitude distributions. Additionally, each effect size distribution was subjected to homogeneity analysis. The attitude distribution was found to be homogeneous with a mean effect size of -0.09, which was not significant, p = .2535. The achievement distribution was found to be heterogeneous with a statistically significant mean effect size of +0.28, p < .05. Since the achievement distribution was heterogeneous, the analog to the ANOVA procedure was employed to explore variability in this distribution in terms of the coded variables. The analog to the ANOVA procedure revealed that the variability introduced by the coded variables did not fully explain the variability in the achievement distribution beyond subject-level sampling error under a fixed effects model. Therefore, a random effects model analysis was performed which resulted in a mean effect size of +0.18, which was not significant, p = .2363. However, a large random effect variance component was determined indicating that the differences between studies were systematic and yet to be revealed. The findings of this meta-analysis showed that the planetarium has been an effective instructional tool in astronomy education in terms of student achievement. However, the meta-analysis revealed that the planetarium has not been a very effective tool for improving student attitudes towards astronomy.

  3. Design and Integration of an All-Magnetic Attitude Control System for FASTSAT-HSV01's Multiple Pointing Objectives

    NASA Technical Reports Server (NTRS)

    DeKock, Brandon; Sanders, Devon; Vanzwieten, Tannen; Capo-Lugo, Pedro

    2011-01-01

    The FASTSAT-HSV01 spacecraft is a microsatellite with magnetic torque rods as it sole attitude control actuator. FASTSAT s multiple payloads and mission functions require the Attitude Control System (ACS) to maintain Local Vertical Local Horizontal (LVLH)-referenced attitudes without spin-stabilization, while the pointing errors for some attitudes be significantly smaller than the previous best-demonstrated for this type of control system. The mission requires the ACS to hold multiple stable, unstable, and non-equilibrium attitudes, as well as eject a 3U CubeSat from an onboard P-POD and recover from the ensuing tumble. This paper describes the Attitude Control System, the reasons for design choices, how the ACS integrates with the rest of the spacecraft, and gives recommendations for potential future applications of the work.

  4. Quaternion normalization in spacecraft attitude determination

    NASA Technical Reports Server (NTRS)

    Deutschmann, J.; Markley, F. L.; Bar-Itzhack, Itzhack Y.

    1993-01-01

    Attitude determination of spacecraft usually utilizes vector measurements such as Sun, center of Earth, star, and magnetic field direction to update the quaternion which determines the spacecraft orientation with respect to some reference coordinates in the three dimensional space. These measurements are usually processed by an extended Kalman filter (EKF) which yields an estimate of the attitude quaternion. Two EKF versions for quaternion estimation were presented in the literature; namely, the multiplicative EKF (MEKF) and the additive EKF (AEKF). In the multiplicative EKF, it is assumed that the error between the correct quaternion and its a-priori estimate is, by itself, a quaternion that represents the rotation necessary to bring the attitude which corresponds to the a-priori estimate of the quaternion into coincidence with the correct attitude. The EKF basically estimates this quotient quaternion and then the updated quaternion estimate is obtained by the product of the a-priori quaternion estimate and the estimate of the difference quaternion. In the additive EKF, it is assumed that the error between the a-priori quaternion estimate and the correct one is an algebraic difference between two four-tuple elements and thus the EKF is set to estimate this difference. The updated quaternion is then computed by adding the estimate of the difference to the a-priori quaternion estimate. If the quaternion estimate converges to the correct quaternion, then, naturally, the quaternion estimate has unity norm. This fact was utilized in the past to obtain superior filter performance by applying normalization to the filter measurement update of the quaternion. It was observed for the AEKF that when the attitude changed very slowly between measurements, normalization merely resulted in a faster convergence; however, when the attitude changed considerably between measurements, without filter tuning or normalization, the quaternion estimate diverged. However, when the quaternion estimate was normalized, the estimate converged faster and to a lower error than with tuning only. In last years, symposium we presented three new AEKF normalization techniques and we compared them to the brute force method presented in the literature. The present paper presents the issue of normalization of the MEKF and examines several MEKF normalization techniques.

  5. A transition matrix approach to the Davenport gryo calibration scheme

    NASA Technical Reports Server (NTRS)

    Natanson, G. A.

    1998-01-01

    The in-flight gyro calibration scheme commonly used by NASA Goddard Space Flight Center (GSFC) attitude ground support teams closely follows an original version of the Davenport algorithm developed in the late seventies. Its basic idea is to minimize the least-squares differences between attitudes gyro- propagated over the course of a maneuver and those determined using post- maneuver sensor measurements. The paper represents the scheme in a recursive form by combining necessary partials into a rectangular matrix, which is propagated in exactly the same way as a Kalman filters square transition matrix. The nontrivial structure of the propagation matrix arises from the fact that attitude errors are not included in the state vector, and therefore their derivatives with respect to estimated a parameters do not appear in the transition matrix gyro defined in the conventional way. In cases when the required accuracy can be achieved by a single iteration, representation of the Davenport gyro calibration scheme in a recursive form allows one to discard each gyro measurement immediately after it was used to propagate the attitude and state transition matrix. Another advantage of the new approach is that it utilizes the same expression for the error sensitivity matrix as that used by the Kalman filter. As a result the suggested modification of the Davenport algorithm made it possible to reuse software modules implemented in the Kalman filter estimator, where both attitude errors and gyro calibration parameters are included in the state vector. The new approach has been implemented in the ground calibration utilities used to support the Tropical Rainfall Measuring Mission (TRMM). The paper analyzes some preliminary results of gyro calibration performed by the TRMM ground attitude support team. It is demonstrated that an effect of the second iteration on estimated values of calibration parameters is negligibly small, and therefore there is no need to store processed gyro data. This opens a promising opportunity for onboard implementation of the suggested recursive procedure by combining, it with the Kalman filter used to obtain necessary attitude solutions at the beginning and end of each maneuver.

  6. Real-time orbit estimation for ATS-6 from redundant attitude sensors

    NASA Technical Reports Server (NTRS)

    Englar, T. S., Jr.

    1975-01-01

    A program installed in the ATSOCC on-line computer operates with attitude sensor data to produce a smoothed real-time orbit estimate. This estimate is obtained from a Kalman filter which enables the estimate to be maintained in the absence of T/M data. The results are described of analytical and numerical investigations into the sensitivity of Control Center output to the position errors resulting from the real-time estimation. The results of the numerical investigation, which used several segments of ATS-6 data gathered during the Sensor Data Acquisition run on August 19, 1974, show that the implemented system can achieve absolute position determination with an error of about 100 km, implying pointing errors of less than 0.2 deg in latitude and longitude. This compares very favorably with ATS-6 specifications of approximately 0.5 deg in latitude-longitude.

  7. Finite-time control for nonlinear spacecraft attitude based on terminal sliding mode technique.

    PubMed

    Song, Zhankui; Li, Hongxing; Sun, Kaibiao

    2014-01-01

    In this paper, a fast terminal sliding mode control (FTSMC) scheme with double closed loops is proposed for the spacecraft attitude control. The FTSMC laws are included both in an inner control loop and an outer control loop. Firstly, a fast terminal sliding surface (FTSS) is constructed, which can drive the inner loop tracking-error and the outer loop tracking-error on the FTSS to converge to zero in finite time. Secondly, FTSMC strategy is designed by using Lyaponov's method for ensuring the occurrence of the sliding motion in finite time, which can hold the character of fast transient response and improve the tracking accuracy. It is proved that FTSMC can guarantee the convergence of tracking-error in both approaching and sliding mode surface. Finally, simulation results demonstrate the effectiveness of the proposed control scheme. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  8. A Measuring System for Well Logging Attitude and a Method of Sensor Calibration

    PubMed Central

    Ren, Yong; Wang, Yangdong; Wang, Mijian; Wu, Sheng; Wei, Biao

    2014-01-01

    This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°. PMID:24859028

  9. A measuring system for well logging attitude and a method of sensor calibration.

    PubMed

    Ren, Yong; Wang, Yangdong; Wang, Mijian; Wu, Sheng; Wei, Biao

    2014-05-23

    This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°.

  10. Learning Through Experience: Influence of Formal and Informal Training on Medical Error Disclosure Skills in Residents.

    PubMed

    Wong, Brian M; Coffey, Maitreya; Nousiainen, Markku T; Brydges, Ryan; McDonald-Blumer, Heather; Atkinson, Adelle; Levinson, Wendy; Stroud, Lynfa

    2017-02-01

    Residents' attitudes toward error disclosure have improved over time. It is unclear whether this has been accompanied by improvements in disclosure skills. To measure the disclosure skills of internal medicine (IM), paediatrics, and orthopaedic surgery residents, and to explore resident perceptions of formal versus informal training in preparing them for disclosure in real-world practice. We assessed residents' error disclosure skills using a structured role play with a standardized patient in 2012-2013. We compared disclosure skills across programs using analysis of variance. We conducted a multiple linear regression, including data from a historical cohort of IM residents from 2005, to investigate the influence of predictor variables on performance: training program, cohort year, and prior disclosure training and experience. We conducted a qualitative descriptive analysis of data from semistructured interviews with residents to explore resident perceptions of formal versus informal disclosure training. In a comparison of disclosure skills for 49 residents, there was no difference in overall performance across specialties (4.1 to 4.4 of 5, P  = .19). In regression analysis, only the current cohort was significantly associated with skill: current residents performed better than a historical cohort of 42 IM residents ( P  < .001). Qualitative analysis identified the importance of both formal (workshops, morbidity and mortality rounds) and informal (role modeling, debriefing) activities in preparation for disclosure in real-world practice. Residents across specialties have similar skills in disclosure of errors. Residents identified role modeling and a strong local patient safety culture as key facilitators for disclosure.

  11. Estimation and identification study for flexible vehicles

    NASA Technical Reports Server (NTRS)

    Jazwinski, A. H.; Englar, T. S., Jr.

    1973-01-01

    Techniques are studied for the estimation of rigid body and bending states and the identification of model parameters associated with the single-axis attitude dynamics of a flexible vehicle. This problem is highly nonlinear but completely observable provided sufficient attitude and attitude rate data is available and provided all system bending modes are excited in the observation interval. A sequential estimator tracks the system states in the presence of model parameter errors. A batch estimator identifies all model parameters with high accuracy.

  12. Anatomy of an incident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cournoyer, Michael E.; Trujillo, Stanley; Lawton, Cindy M.

    A traditional view of incidents is that they are caused by shortcomings in human competence, attention, or attitude. It may be under the label of “loss of situational awareness,” procedure “violation,” or “poor” management. A different view is that human error is not the cause of failure, but a symptom of failure – trouble deeper inside the system. In this perspective, human error is not the conclusion, but rather the starting point of investigations. During an investigation, three types of information are gathered: physical, documentary, and human (recall/experience). Through the causal analysis process, apparent cause or apparent causes are identifiedmore » as the most probable cause or causes of an incident or condition that management has the control to fix and for which effective recommendations for corrective actions can be generated. A causal analysis identifies relevant human performance factors. In the following presentation, the anatomy of a radiological incident is discussed, and one case study is presented. We analyzed the contributing factors that caused a radiological incident. When underlying conditions, decisions, actions, and inactions that contribute to the incident are identified. This includes weaknesses that may warrant improvements that tolerate error. Measures that reduce consequences or likelihood of recurrence are discussed.« less

  13. Anatomy of an incident

    DOE PAGES

    Cournoyer, Michael E.; Trujillo, Stanley; Lawton, Cindy M.; ...

    2016-03-23

    A traditional view of incidents is that they are caused by shortcomings in human competence, attention, or attitude. It may be under the label of “loss of situational awareness,” procedure “violation,” or “poor” management. A different view is that human error is not the cause of failure, but a symptom of failure – trouble deeper inside the system. In this perspective, human error is not the conclusion, but rather the starting point of investigations. During an investigation, three types of information are gathered: physical, documentary, and human (recall/experience). Through the causal analysis process, apparent cause or apparent causes are identifiedmore » as the most probable cause or causes of an incident or condition that management has the control to fix and for which effective recommendations for corrective actions can be generated. A causal analysis identifies relevant human performance factors. In the following presentation, the anatomy of a radiological incident is discussed, and one case study is presented. We analyzed the contributing factors that caused a radiological incident. When underlying conditions, decisions, actions, and inactions that contribute to the incident are identified. This includes weaknesses that may warrant improvements that tolerate error. Measures that reduce consequences or likelihood of recurrence are discussed.« less

  14. Aeronautical Decision Making for Instrument Pilots.

    DTIC Science & Technology

    1987-05-01

    psychological stressors. o Sociological stressors include: a death in the family, divorce, sick child , demotion or pressure from your boss. Sociological...Error, Editors of Flying Weather Flying, Robert Buck Illusions, Richard Bach " The Bush Pilot Syndrome ," Dr. Michael Mitchell Briefs of Accidents, National... The Impulsivity Hazardous Attitude...........................35 The Invulnerability Hazardous Attitude ................. .... 37 The Macho Hazardous

  15. Colored noise effects on batch attitude accuracy estimates

    NASA Technical Reports Server (NTRS)

    Bilanow, Stephen

    1991-01-01

    The effects of colored noise on the accuracy of batch least squares parameter estimates with applications to attitude determination cases are investigated. The standard approaches used for estimating the accuracy of a computed attitude commonly assume uncorrelated (white) measurement noise, while in actual flight experience measurement noise often contains significant time correlations and thus is colored. For example, horizon scanner measurements from low Earth orbit were observed to show correlations over many minutes in response to large scale atmospheric phenomena. A general approach to the analysis of the effects of colored noise is investigated, and interpretation of the resulting equations provides insight into the effects of any particular noise color and the worst case noise coloring for any particular parameter estimate. It is shown that for certain cases, the effects of relatively short term correlations can be accommodated by a simple correction factor. The errors in the predicted accuracy assuming white noise and the reduced accuracy due to the suboptimal nature of estimators that do not take into account the noise color characteristics are discussed. The appearance of a variety of sample noise color characteristics are demonstrated through simulation, and their effects are discussed for sample estimation cases. Based on the analysis, options for dealing with the effects of colored noise are discussed.

  16. GRACE star camera noise

    NASA Astrophysics Data System (ADS)

    Harvey, Nate

    2016-08-01

    Extending results from previous work by Bandikova et al. (2012) and Inacio et al. (2015), this paper analyzes Gravity Recovery and Climate Experiment (GRACE) star camera attitude measurement noise by processing inter-camera quaternions from 2003 to 2015. We describe a correction to star camera data, which will eliminate a several-arcsec twice-per-rev error with daily modulation, currently visible in the auto-covariance function of the inter-camera quaternion, from future GRACE Level-1B product releases. We also present evidence supporting the argument that thermal conditions/settings affect long-term inter-camera attitude biases by at least tens-of-arcsecs, and that several-to-tens-of-arcsecs per-rev star camera errors depend largely on field-of-view.

  17. Pitch Guidance Optimization for the Orion Abort Flight Tests

    NASA Technical Reports Server (NTRS)

    Stillwater, Ryan Allanque

    2010-01-01

    The National Aeronautics and Space Administration created the Constellation program to develop the next generation of manned space vehicles and launch vehicles. The Orion abort system is initiated in the event of an unsafe condition during launch. The system has a controller gains schedule that can be tuned to reduce the attitude errors between the simulated Orion abort trajectories and the guidance trajectory. A program was created that uses the method of steepest descent to tune the pitch gains schedule by an automated procedure. The gains schedule optimization was applied to three potential abort scenarios; each scenario tested using the optimized gains schedule resulted in reduced attitude errors when compared to the Orion production gains schedule.

  18. Application of GPS attitude determination to gravity gradient stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Lightsey, E. G.; Cohen, Clark E.; Parkinson, Bradford W.

    1993-01-01

    Recent advances in the Global Positioning System (GPS) technology have initiated a new era in aerospace navigation and control. GPS receivers have become increasingly compact and affordable, and new developments have made attitude determination using subcentimeter positioning among two or more antennas feasible for real-time applications. GPS-based attitude control systems will become highly portable packages which provide time, navigation, and attitude information of sufficient accuracy for many aerospace needs. A typical spacecraft application of GPS attitude determination is a gravity gradient stabilized satellite in low Earth orbit that employs a GPS receiver and four body mounted patch antennas. The coupled, linearized equations of motion enable complete position and attitude information to be extracted from only two antennas. A discussion of the various error sources for spaceborne GPS attitude measurement systems is included. Attitude determination of better than 0.3 degrees is possible for 1 meter antenna separation. Suggestions are provided to improve the accuracy of the attitude solution.

  19. Factors Associated With Negative Attitudes Toward Speaking in Preschool-Age Children Who Do and Do Not Stutter.

    PubMed

    Groner, Stephen; Walden, Tedra; Jones, Robin

    2016-01-01

    This study explored relations between the negativity of children's speech-related attitudes as measured by the Communication Attitude Test for Preschool and Kindergarten Children Who Stutter (KiddyCAT; Vanryckeghem & Brutten, 2007) and (a) age; (b) caregiver reports of stuttering and its social consequences; (c) types of disfluencies; and (d) standardized speech, vocabulary, and language scores. Participants were 46 preschool-age children who stutter (CWS; 12 females, 34 males) and 66 preschool-age children who do not stutter (CWNS; 35 females, 31 males). After a conversation, children completed standardized tests and the KiddyCAT while their caregivers completed scales on observed stuttering behaviors and their consequences. The KiddyCAT scores of both the CWS and the CWNS were significantly negatively correlated with age. Both groups' KiddyCAT scores increased with higher scores on the Speech Fluency Rating Scale of the Test of Childhood Stuttering (Gillam, Logan, & Pearson, 2009). Repetitions were a significant contributor to the CWNS's KiddyCAT scores, but no specific disfluency significantly contributed to the CWS's KiddyCAT scores. Greater articulation errors were associated with higher KiddyCAT scores in the CWNS. No standardized test scores were associated with KiddyCAT scores in the CWS. Attitudes that speech is difficult are not associated with similar aspects of communication for CWS and CWNS. Age significantly contributed to negative speech attitudes for CWS, whereas age, repetitions, and articulation errors contributed to negative speech attitudes for CWNS.

  20. Application of the Safety Attitudes Questionnaire (SAQ) in Albanian hospitals: a cross-sectional study.

    PubMed

    Gabrani, Adriatik; Hoxha, Adrian; Simaku, Artan; Gabrani, Jonila Cyco

    2015-04-15

    To establish the reliability and validity of the translated version of the Safety Attitudes Questionnaire (SAQ) by evaluating its psychometric properties and to determine possible differences among nurses and physicians regarding safety attitudes. A cross-sectional study utilising the Albanian version of the SAQ and a demographic questionnaire. Four regional hospitals in Albania. 341 healthcare providers, including 132 nurses and 209 doctors. The translation, construct validity and internal validity of the SAQ. The SAQ includes six scales and 30 items. A total of 341 valid questionnaires were returned, for a response rate of 70%. The confirmatory factor analysis and its goodness-of-fit indices (standardised root mean square residual 0.075, root mean square error of approximation 0.044 and comparative fit index 0.97) showed good model fit. The Cronbach's α values for each of the scales of the SAQ ranged from 0.64 to 0.82. The percentage of hospital healthcare workers who had a positive attitude was 60.3% for the teamwork climate, 57.2% for the safety climate, 58.4% for job satisfaction, 37.4% for stress recognition, 59.3% for the perception of management and 49.5% for working conditions. Intercorrelations showed that the subscales had moderate-to-high correlations with one another. Nurses were more hesitant to admit and report errors; only 55% of physicians and 44% of nurses endorsed this statement (χ(2)=4.9, p=0.02). Moreover, nurses received lower scores on team work compared with doctors (N 45.7 vs D 52.3, p=0.01). Doctors denied the effects of stress and fatigue on their performance (N 46.7 vs D 39.5, p<0.01), neglecting the workload. The SAQ is a useful tool for evaluating safety attitudes in Albanian hospitals. In light of the health workforce's poor recognition of stress, establishing patient safety programmes should be a priority among policymakers in Albania. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Comprehensive evaluation of attitude and orbit estimation using real earth magnetic field data

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack

    1997-01-01

    A single, augmented extended Kalman filter (EKF) which simultaneously and autonomously estimates spacecraft attitude and orbit was developed and tested with simulated and real magnetometer and rate data. Since the earth's magnetic field is a function of time and position, and since time is accurately known, the differences between the computed and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft's orbit, are a function of orbit and attitude errors. These differences can be used to estimate the orbit and attitude. The test results of the EKF with magnetometer and gyro data from three NASA satellites are presented and evaluated.

  2. INFORMATION OR NOISE. AN INVESTIGATION OF RESPONSE ERRORS.

    DTIC Science & Technology

    BEHAVIOR, SOCIAL PSYCHOLOGY), (* SOCIAL SCIENCES, SCIENTIFIC RESEARCH), PERFORMANCE(HUMAN), REACTION(PSYCHOLOGY), TEST CONSTRUCTION(PSYCHOLOGY), ATTITUDES(PSYCHOLOGY), MOTIVATION, PSYCHOLOGICAL TESTS, PUBLIC OPINION

  3. Positioning and tracking control system analysis for mobile free space optical network

    NASA Astrophysics Data System (ADS)

    Li, Yushan; Refai, Hazem; Sluss, , James J., Jr.; Verma, Pramode; LoPresti, Peter

    2005-08-01

    Free Space Optical (FSO) communication has evolved to be applied to the mobile network, because it can provide up to 2.5Gbps or higher data rate wireless communication. One of the key challenges with FSO systems is to maintain the Line of Sight (LOS) between transmitter and receiver. In this paper, the feasibility and performance of applying the FSO technology to the mobile network is explored, and the design plan of the attitude positioning and tracking control system of the FSO transceiver is investigated. First, the system architecture is introduced, the requirements for the control system are analyzed, the involved reference frames and frame transformation are presented. Second, the control system bandwidth is used to evaluate the system performance in controlling a positioning system consisting of a gimbal and a steering mirror, some definitions to describe the positioning accuracy and tracking capacity are given. The attitude control of a FSO transceiver is split into 2 similar channels: pitch and yaw. Using an equivalent linear control system model, the simulations are carried out, with and without the presence of uncertainties that includes GPS data errors and sensor measurement errors. Finally, based on the simulation results in the pitch channel, the quantitative evaluation on the performance of the control system is given, including positioning accuracy, tracking capability and uncertainty tolerance.

  4. Barriers to Medical Error Reporting for Physicians and Nurses.

    PubMed

    Soydemir, Dilek; Seren Intepeler, Seyda; Mert, Hatice

    2017-10-01

    The purpose of the study was to determine what barriers to error reporting exist for physicians and nurses. The study, of descriptive qualitative design, was conducted with physicians and nurses working at a training and research hospital. In-depth interviews were held with eight physicians and 15 nurses, a total of 23 participants. Physicians and nurses do not choose to report medical errors that they experience or witness. When barriers to error reporting were examined, it was seen that there were four main themes involved: fear, the attitude of administration, barriers related to the system, and the employees' perceptions of error. It is important in terms of preventing medical errors to identify the barriers that keep physicians and nurses from reporting errors.

  5. Investigation of the Application of Communicative Language Teaching in the English Language Classroom -- A Case Study on Teachers' Attitudes in Turkey

    ERIC Educational Resources Information Center

    Coskun, Abdullah

    2011-01-01

    This qualitative study aimed to reveal whether teachers' classroom practices overlap with their attitudes towards certain features of Communicative Language Teaching (CLT) such as pair and group-work activities, fluency and accuracy, error correction and the role of the teacher. Before conducting an open-ended questionnaire with two teachers of…

  6. Comparison and testing of extended Kalman filters for attitude estimation of the Earth radiation budget satellite

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack Y.; Rokni, Mohammad

    1990-01-01

    The testing and comparison of two Extended Kalman Filters (EKFs) developed for the Earth Radiation Budget Satellite (ERBS) is described. One EKF updates the attitude quaternion using a four component additive error quaternion. This technique is compared to that of a second EKF, which uses a multiplicative error quaternion. A brief development of the multiplicative algorithm is included. The mathematical development of the additive EKF was presented in the 1989 Flight Mechanics/Estimation Theory Symposium along with some preliminary testing results using real spacecraft data. A summary of the additive EKF algorithm is included. The convergence properties, singularity problems, and normalization techniques of the two filters are addressed. Both filters are also compared to those from the ERBS operational ground support software, which uses a batch differential correction algorithm to estimate attitude and gyro biases. Sensitivity studies are performed on the estimation of sensor calibration states. The potential application of the EKF for real time and non-real time ground attitude determination and sensor calibration for future missions such as the Gamma Ray Observatory (GRO) and the Small Explorer Mission (SMEX) is also presented.

  7. In-Flight Study of Helmet-Mounted Symbology System Concepts in Degraded Visual Environments.

    PubMed

    Cheung, Bob; Craig, Gregory; Steels, Brad; Sceviour, Robert; Cosman, Vaughn; Jennings, Sion; Holst, Peter

    2015-08-01

    During approach and departure in rotary wing aircraft, a sudden loss of external visual reference precipitates spatial disorientation. There were 10 Royal Canadian Air Force (RCAF) Griffon pilots who participated in an in-flight investigation of a 3-dimensional conformal Helmet Display Tracking System (HDTS) and the BrownOut Symbology System (BOSS) aboard an Advanced System Research Aircraft. For each symbology system, pilots performed a two-stage departure followed by a single-stage approach. The presentation order of the two symbology systems was randomized across the pilots. Subjective measurements included situation awareness, mental effort, perceived performance, perceptual cue rating, NASA Task Load Index, and physiological response. Objective performance included aircraft speed, altitude, attitude, and distance from the landing point, control position, and control activity. Repeated measures analysis of variance and planned comparison tests for the subjective and objective responses were performed. For both maneuvers, the HDTS system afforded better situation awareness, lower workload, better perceptual cueing in attitude, horizontal and vertical translation, and lower overall workload index. During the two-stage departure, HDTS achieved less lateral drift from initial takeoff and hover, lower root mean square error (RMSE) in altitude during hover, and lower track error during the acceleration to forward flight. During the single-stage approach, HDTS achieved less error in lateral and longitudinal position offset from the landing point and lower RMSE in heading. In both maneuvers, pilots exhibited higher control activity when using HDTS, which suggested that more pertinent information was available to the pilots. Pilots preferred the HDTS system.

  8. Seasat. Volume 4: Attitude determination

    NASA Technical Reports Server (NTRS)

    Treder, A. J.

    1980-01-01

    The Seasat project was a feasibility demonstration of the use of orbital remote sensing for global ocean observation. The satellite was launched in June 1978 and was operated successfully until October 1978. A massive electrical failure occurred in the power system, terminating the mission prematurely. The actual implementation of the Seasat Attitude Determination system and the contents of the attitude data files generated by that system are documented. The deviations from plan caused by the anomalous Sun interference with horizon sensors, inflight calibration of Sun sensor head 2 alignment and horizon sensor biomass, estimation of yaw interpolation parameters, Sun and horizon sensor error sources, and yaw interpolation accuracy are included. Examples are given of flight attitude data from all modes of the Orbital Attitude Control System, of the ground processing effects on attitude data, and of cold cloud effects on pitch, and roll data.

  9. Attitudes toward clinical autopsy in unexpected patient deaths in Japan: a nation-wide survey of the general public and physicians.

    PubMed

    Kamishiraki, Etsuko; Maeda, Shoichi; Starkey, Jay; Ikeda, Noriaki

    2012-12-01

    Autopsy is a useful tool for understanding the cause and manner of unexpected patient death. However, the attitudes of the general public and physicians in Japan about clinical autopsy are limited. To describe the beliefs of the general public about whether autopsy should be performed and ascertain if they would actually request one given specific clinical situations where patient death occurred with the additional variable of medical error. To compare these attitudes with previously obtained attitudes of physicians practising at Japanese teaching hospitals. We conducted a cross-sectional study of the general public. We sent standardised questionnaires in 2010 to a randomly selected non-physician adult population using a survey company for participant selection. Respondents gave their opinions about the necessity of autopsy and how they might act given various clinical scenarios of patient death. We compared these results with those of a previous survey of Japanese physicians conducted in 2009. Of the 2300 eligible general adult population, 1575 (68.5%) responded. The majority of the general public indicated they believed an autopsy was necessary. However, in cases of unclear medical error or unclear cause and effect relationship of medical care and patient death, the general public were much less likely to indicate they would actually request an autopsy than were physicians (p<0.0001). Currently in Japan the debate about the role autopsy should play in the case of error related to death is underway. The results from this study will be important in informing related decisions.

  10. (Biased) Grading of Students' Performance: Students' Names, Performance Level, and Implicit Attitudes.

    PubMed

    Bonefeld, Meike; Dickhäuser, Oliver

    2018-01-01

    Biases in pre-service teachers' evaluations of students' performance may arise due to stereotypes (e.g., the assumption that students with a migrant background have lower potential). This study examines the effects of a migrant background, performance level, and implicit attitudes toward individuals with a migrant background on performance assessment (assigned grades and number of errors counted in a dictation). Pre-service teachers ( N = 203) graded the performance of a student who appeared to have a migrant background statistically significantly worse than that of a student without a migrant background. The differences were more pronounced when the performance level was low and when the pre-service teachers held relatively positive implicit attitudes toward individuals with a migrant background. Interestingly, only performance level had an effect on the number of counted errors. Our results support the assumption that pre-service teachers exhibit bias when grading students with a migrant background in a third-grade level dictation assignment.

  11. (Biased) Grading of Students’ Performance: Students’ Names, Performance Level, and Implicit Attitudes

    PubMed Central

    Bonefeld, Meike; Dickhäuser, Oliver

    2018-01-01

    Biases in pre-service teachers’ evaluations of students’ performance may arise due to stereotypes (e.g., the assumption that students with a migrant background have lower potential). This study examines the effects of a migrant background, performance level, and implicit attitudes toward individuals with a migrant background on performance assessment (assigned grades and number of errors counted in a dictation). Pre-service teachers (N = 203) graded the performance of a student who appeared to have a migrant background statistically significantly worse than that of a student without a migrant background. The differences were more pronounced when the performance level was low and when the pre-service teachers held relatively positive implicit attitudes toward individuals with a migrant background. Interestingly, only performance level had an effect on the number of counted errors. Our results support the assumption that pre-service teachers exhibit bias when grading students with a migrant background in a third-grade level dictation assignment. PMID:29867618

  12. Patient safety awareness among Undergraduate Medical Students in Pakistani Medical School

    PubMed Central

    Kamran, Rizwana; Bari, Attia; Khan, Rehan Ahmed; Al-Eraky, Mohamed

    2018-01-01

    Objective: To measure the level of awareness of patient safety among undergraduate medical students in Pakistani Medical School and to find the difference with respect to gender and prior experience with medical error. Methods: This cross-sectional study was conducted at the University of Lahore (UOL), Pakistan from January to March 2017, and comprised final year medical students. Data was collected using a questionnaire ‘APSQ- III’ on 7 point Likert scale. Eight questions were reverse coded. Survey was anonymous. SPSS package 20 was used for statistical analysis. Results: Questionnaire was filled by 122 students, with 81% response rate. The best score 6.17 was given for the ‘team functioning’, followed by 6.04 for ‘long working hours as a cause of medical error’. The domains regarding involvement of patient, confidence to report medical errors and role of training and learning on patient safety scored high in the agreed range of >5. Reverse coded questions about ‘professional incompetence as an error cause’ and ‘disclosure of errors’ showed negative perception. No significant differences of perceptions were found with respect to gender and prior experience with medical error (p= >0.05). Conclusion: Undergraduate medical students at UOL had a positive attitude towards patient safety. However, there were misconceptions about causes of medical errors and error disclosure among students and patient safety education needs to be incorporated in medical curriculum of Pakistan. PMID:29805398

  13. Results of the Magnetometer Navigation (MAGNAV)lnflight Experiment

    NASA Technical Reports Server (NTRS)

    Thienel, Julie K.; Harman, Richard R.; Bar-Itzhack, Itzhack Y.; Lambertson, Mike

    2004-01-01

    The Magnetometer Navigation (MAGNAV) algorithm is currently running as a flight experiment as part of the Wide Field Infrared Explorer (WIRE) Post-Science Engineering Testbed. Initialization of MAGNAV occurred on September 4, 2003. MAGNAV is designed to autonomously estimate the spacecraft orbit, attitude, and rate using magnetometer and sun sensor data. Since the Earth's magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computed magnetic field and measured magnetic field components, as measured by the magnetometer throughout the entire spacecraft orbit, are a function of the spacecraft trajectory and attitude errors. Therefore, these errors are used to estimate both trajectory and attitude. In addition, the time rate of change of the magnetic field vector is used to estimate the spacecraft rotation rate. The estimation of the attitude and trajectory is augmented with the rate estimation into an Extended Kalman filter blended with a pseudo-linear Kalman filter. Sun sensor data is also used to improve the accuracy and observability of the attitude and rate estimates. This test serves to validate MAGNAV as a single low cost navigation system which utilizes reliable, flight qualified sensors. MAGNAV is intended as a backup algorithm, an initialization algorithm, or possibly a prime navigation algorithm for a mission with coarse requirements. Results from the first six months of operation are presented.

  14. Line of sight pointing technology for laser communication system between aircrafts

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Liu, Yunqing; Song, Yansong

    2017-12-01

    In space optical communications, it is important to obtain the most efficient performance of line of sight (LOS) pointing system. The errors of position (latitude, longitude, and altitude), attitude angles (pitch, yaw, and roll), and installation angle among a different coordinates system are usually ineluctable when assembling and running an aircraft optical communication terminal. These errors would lead to pointing errors and make it difficult for the LOS system to point to its terminal to establish a communication link. The LOS pointing technology of an aircraft optical communication system has been researched using a transformation matrix between the coordinate systems of two aircraft terminals. A method of LOS calibration has been proposed to reduce the pointing error. In a flight test, a successful 144-km link was established between two aircrafts. The position and attitude angles of the aircraft have been obtained to calculate the pointing angle in azimuth and elevation provided by using a double-antenna GPS/INS system. The size of the field of uncertainty (FOU) and the pointing accuracy are analyzed based on error theory, and it has been also measured using an observation camera installed next to the optical LOS. Our results show that the FOU of aircraft optical communications is 10 mrad without a filter, which is the foundation to acquisition strategy and scanning time.

  15. A Nonlinear, Six-Degree of Freedom Precision Formation Control Algorithm, Based on Restricted Three Body Dynamics

    NASA Technical Reports Server (NTRS)

    Bauer, Frank (Technical Monitor); Luquette, Richard J.; Sanner, Robert M.

    2003-01-01

    Precision Formation Flying is an enabling technology for a variety of proposed space-based observatories, including the Micro-Arcsecond X-ray Imaging Mission (MAXIM), the associated MAXIM pathfinder mission, and the Stellar Imager. An essential element of the technology is the control algorithm. This paper discusses the development of a nonlinear, six-degree of freedom (6DOF) control algorithm for maintaining the relative position and attitude of a spacecraft within a formation. The translation dynamics are based on the equations of motion for the restricted three body problem. The control law guarantees the tracking error convergences to zero, based on a Lyapunov analysis. The simulation, modelled after the MAXIM Pathfinder mission, maintains the relative position and attitude of a Follower spacecraft with respect to a Leader spacecraft, stationed near the L2 libration point in the Sun-Earth system.

  16. Analysis of a novel device-level SINS/ACFSS deeply integrated navigation method

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Qin, Shiqiao; Wang, Xingshu; Jiang, Guangwen; Tan, Wenfeng; Wu, Wei

    2017-02-01

    The combination of the strap-down inertial navigation system(SINS) and the celestial navigation system(CNS) is one of the popular measures to constitute the integrated navigation system. A star sensor(SS) is used as a precise attitude determination device in CNS. To solve the problem that the star image obtained by SS is motion-blurred under dynamic conditions, the attitude-correlated frames(ACF) approach is presented and the star sensor which works based on ACF approach is named ACFSS. Depending on the ACF approach, a novel device-level SINS/ACFSS deeply integrated navigation method is proposed in this paper. Feedback to the ACF process from the error of the gyro is one of the typical characters of the SINS/CNS deeply integrated navigation method. Herein, simulation results have verified its validity and efficiency in improving the accuracy of gyro and it can be proved that this method is feasible.

  17. Attitudes Toward Seeking Professional Psychological Help: Factor Structure and Socio-Demographic Predictors

    PubMed Central

    Picco, Louisa; Abdin, Edimanysah; Chong, Siow Ann; Pang, Shirlene; Shafie, Saleha; Chua, Boon Yiang; Vaingankar, Janhavi A.; Ong, Lue Ping; Tay, Jenny; Subramaniam, Mythily

    2016-01-01

    Attitudes toward seeking professional psychological help (ATSPPH) are complex. Help seeking preferences are influenced by various attitudinal and socio-demographic factors and can often result in unmet needs, treatment gaps, and delays in help-seeking. The aims of the current study were to explore the factor structure of the ATSPPH short form (-SF) scale and determine whether any significant socio-demographic differences exist in terms of help-seeking attitudes. Data were extracted from a population-based survey conducted among Singapore residents aged 18–65 years. Respondents provided socio-demographic information and were administered the ATSPPH-SF. Weighted mean and standard error of the mean were calculated for continuous variables, and frequencies and percentages for categorical variables. Confirmatory factor analysis and exploratory factor analysis were performed to establish the validity of the factor structure of the ATSPPH-SF scale. Multivariable linear regressions were conducted to examine predictors of each of the ATSPPH-SF factors. The factor analysis revealed that the ATSPPH-SF formed three distinct dimensions: “Openness to seeking professional help,” “Value in seeking professional help,” and “Preference to cope on one's own.” Multiple linear regression analyses showed that age, ethnicity, marital status, education, and income were significantly associated with the ATSPPH-SF factors. Population subgroups that were less open to or saw less value in seeking psychological help should be targeted via culturally appropriate education campaigns and tailored and supportive interventions. PMID:27199794

  18. A Novel Kalman Filter for Human Motion Tracking With an Inertial-Based Dynamic Inclinometer.

    PubMed

    Ligorio, Gabriele; Sabatini, Angelo M

    2015-08-01

    Design and development of a linear Kalman filter to create an inertial-based inclinometer targeted to dynamic conditions of motion. The estimation of the body attitude (i.e., the inclination with respect to the vertical) was treated as a source separation problem to discriminate the gravity and the body acceleration from the specific force measured by a triaxial accelerometer. The sensor fusion between triaxial gyroscope and triaxial accelerometer data was performed using a linear Kalman filter. Wrist-worn inertial measurement unit data from ten participants were acquired while performing two dynamic tasks: 60-s sequence of seven manual activities and 90 s of walking at natural speed. Stereophotogrammetric data were used as a reference. A statistical analysis was performed to assess the significance of the accuracy improvement over state-of-the-art approaches. The proposed method achieved, on an average, a root mean square attitude error of 3.6° and 1.8° in manual activities and locomotion tasks (respectively). The statistical analysis showed that, when compared to few competing methods, the proposed method improved the attitude estimation accuracy. A novel Kalman filter for inertial-based attitude estimation was presented in this study. A significant accuracy improvement was achieved over state-of-the-art approaches, due to a filter design that better matched the basic optimality assumptions of Kalman filtering. Human motion tracking is the main application field of the proposed method. Accurately discriminating the two components present in the triaxial accelerometer signal is well suited for studying both the rotational and the linear body kinematics.

  19. Adaptive attitude control and momentum management for large-angle spacecraft maneuvers

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Sunkel, John W.

    1992-01-01

    The fully coupled equations of motion are systematically linearized around an equilibrium point of a gravity gradient stabilized spacecraft, controlled by momentum exchange devices. These equations are then used for attitude control system design of an early Space Station Freedom flight configuration, demonstrating the errors caused by the improper approximation of the spacecraft dynamics. A full state feedback controller, incorporating gain-scheduled adaptation of the attitude gains, is developed for use during spacecraft on-orbit assembly or operations characterized by significant mass properties variations. The feasibility of the gain adaptation is demonstrated via a Space Station Freedom assembly sequence case study. The attitude controller stability robustness and transient performance during gain adaptation appear satisfactory.

  20. Gimbal Control Algorithms for the Global Precipitation Measurement Core Observatory

    NASA Technical Reports Server (NTRS)

    Welter, Gary L.; Liu, Kuo Chia; Blaurock, Carl

    2012-01-01

    There are two gimbaled systems on the Global Precipitation Measurement Core Observatory: two single-degree-of-freedom solar arrays (SAs) and one two-degree-of-freedom high gain antenna (HGA). The guidance, navigation, and control analysis team was presented with the following challenges regarding SA orientation control during periods of normal mission science: (1) maximize solar flux on the SAs during orbit day, subject to battery charging limits, (2) minimize atmospheric drag during orbit night to reduce frequency of orbit maintenance thruster usage, (3) minimize atmospheric drag during orbits for which solar flux is nearly independent of SA orientation, and (4) keep array-induced spacecraft attitude disturbances within allocated tolerances. The team was presented with the following challenges regarding HGA control during mission science periods: (1) while tracking a ground-selected Tracking Data and Relay Satellite (TDRS), keep HGA control error below about 4', (2) keep array-induced spacecraft attitude disturbances small, and (3) minimize transition time between TDRSs subject to constraints imposed by item 2. This paper describes the control algorithms developed to achieve these goals and certain analysis done as part of that work.

  1. The Impact of Patient Safety Training on Oral and Maxillofacial Surgery Residents' Attitudes and Knowledge: A Mixed Method Case Study

    ERIC Educational Resources Information Center

    Buhrow, Suzanne

    2013-01-01

    It is estimated that in the United States, more than 40,000 patients are injured each day because of preventable medical errors. Patient safety experts and graduate medical education accreditation leaders recognize that medical education reform must include the integration of safety training focused on error causation, system engineering, and…

  2. Ring Laser Gyro G-Sensitive Misalignment Calibration in Linear Vibration Environments.

    PubMed

    Wang, Lin; Wu, Wenqi; Li, Geng; Pan, Xianfei; Yu, Ruihang

    2018-02-16

    The ring laser gyro (RLG) dither axis will bend and exhibit errors due to the specific forces acting on the instrument, which are known as g-sensitive misalignments of the gyros. The g-sensitive misalignments of the RLG triad will cause severe attitude error in vibration or maneuver environments where large-amplitude specific forces and angular rates coexist. However, g-sensitive misalignments are usually ignored when calibrating the strapdown inertial navigation system (SINS). This paper proposes a novel method to calibrate the g-sensitive misalignments of an RLG triad in linear vibration environments. With the SINS is attached to a linear vibration bench through outer rubber dampers, rocking of the SINS can occur when the linear vibration is performed on the SINS. Therefore, linear vibration environments can be created to simulate the harsh environment during aircraft flight. By analyzing the mathematical model of g-sensitive misalignments, the relationship between attitude errors and specific forces as well as angular rates is established, whereby a calibration scheme with approximately optimal observations is designed. Vibration experiments are conducted to calibrate g-sensitive misalignments of the RLG triad. Vibration tests also show that SINS velocity error decreases significantly after g-sensitive misalignments compensation.

  3. Spinning projectile's attitude measurement with LW infrared radiation under sea-sky background

    NASA Astrophysics Data System (ADS)

    Xu, Miaomiao; Bu, Xiongzhu; Yu, Jing; He, Zilu

    2018-05-01

    With the further development of infrared radiation research in sea-sky background and the requirement of spinning projectile's attitude measurement, the sea-sky infrared radiation field is used to carry out spinning projectile's attitude angle instead of inertial sensors. Firstly, the generation mechanism of sea-sky infrared radiation is analysed. The mathematical model of sea-sky infrared radiation is deduced in LW (long wave) infrared 8 ∼ 14 μm band by calculating the sea surface and sky infrared radiation. Secondly, according to the movement characteristics of spinning projectile, the attitude measurement model of infrared sensors on projectile's three axis is established. And the feasibility of the model is analysed by simulation. Finally, the projectile's attitude calculation algorithm is designed to improve the attitude angle estimation accuracy. The results of semi-physical experiments show that the segmented interactive algorithm estimation error of pitch and roll angle is within ±1.5°. The attitude measurement method is effective and feasible, and provides accurate measurement basis for the guidance of spinning projectile.

  4. Using incident reports to inform the prevention of medication administration errors.

    PubMed

    Härkänen, Marja; Saano, Susanna; Vehviläinen-Julkunen, Katri

    2017-11-01

    To describe ways of preventing medication administration errors based on reporters' views expressed in medication administration incident reports. Medication administration errors are very common, and nurses play important roles in committing and in preventing such errors. Thus far, incident reporters' perceptions of how to prevent medication administration errors have rarely been analysed. This is a qualitative, descriptive study using an inductive content analysis of the incident reports related to medication administration errors (n = 1012). These free-text descriptions include reporters' views on preventing the reoccurrence of medication administration errors. The data were collected from two hospitals in Finland and pertain to incidents that were reported between 1 January 2013 and 31 December 2014. Reporters' views on preventing medication administration errors were divided into three main categories related to individuals (health professionals), teams and organisations. The following categories related to individuals in preventing medication administration errors were identified: (1) accuracy and preciseness; (2) verification; and (3) following the guidelines, responsibility and attitude towards work. The team categories were as follows: (1) distribution of work; (2) flow of information and cooperation; and (3) documenting and marking the drug information. The categories related to organisation were as follows: (1) work environment; (2) resources; (3) training; (4) guidelines; and (5) development of the work. Health professionals should administer medication with a high moral awareness and an attempt to concentrate on the task. Nonetheless, the system should support health professionals by providing a reasonable work environment and encouraging collaboration among the providers to facilitate the safe administration of medication. Although there are numerous approaches to supporting medication safety, approaches that support the ability of individual health professionals to manage daily medications should be prioritised. © 2017 John Wiley & Sons Ltd.

  5. An Attitude Filtering and Magnetometer Calibration Approach for Nanosatellites

    NASA Astrophysics Data System (ADS)

    Söken, Halil Ersin

    2018-04-01

    We propose an attitude filtering and magnetometer calibration approach for nanosatellites. Measurements from magnetometers, Sun sensor and gyros are used in the filtering algorithm to estimate the attitude of the satellite together with the bias terms for the gyros and magnetometers. In the traditional approach for the attitude filtering, the attitude sensor measurements are used in the filter with a nonlinear vector measurement model. In the proposed algorithm, the TRIAD algorithm is used in conjunction with the unscented Kalman filter (UKF) to form the nontraditional attitude filter. First the vector measurements from the magnetometer and Sun sensor are processed with the TRIAD algorithm to obtain a coarse attitude estimate for the spacecraft. In the second phase the estimated coarse attitude is used as quaternion measurements for the UKF. The UKF estimates the fine attitude, and the gyro and magnetometer biases. We evaluate the algorithm for a hypothetical nanosatellite by numerical simulations. The results show that the attitude of the satellite can be estimated with an accuracy better than 0.5{°} and the computational load decreases more than 25% compared to a traditional UKF algorithm. We discuss the algorithm's performance in case of a time-variance in the magnetometer errors.

  6. Evaluation of Mars Entry Reconstructured Trajectories Based on Hypothetical 'Quick-Look' Entry Navigation Data

    NASA Technical Reports Server (NTRS)

    Pastor, P. Rick; Bishop, Robert H.; Striepe, Scott A.

    2000-01-01

    A first order simulation analysis of the navigation accuracy expected from various Navigation Quick-Look data sets is performed. Here quick-look navigation data are observations obtained by hypothetical telemetried data transmitted on the fly during a Mars probe's atmospheric entry. In this simulation study, navigation data consists of 3-axis accelerometer sensor and attitude information data. Three entry vehicle guidance types are studied: I. a Maneuvering entry vehicle (as with Mars 01 guidance where angle of attack and bank angle are controlled); II. Zero angle-of-attack controlled entry vehicle (as with Mars 98); and III. Ballistic, or spin stabilized entry vehicle (as with Mars Pathfinder);. For each type, sensitivity to progressively under sampled navigation data and inclusion of sensor errors are characterized. Attempts to mitigate the reconstructed trajectory errors, including smoothing, interpolation and changing integrator characteristics are also studied.

  7. Evaluation of display and control concepts for a terminal configured vehicle in final approach in a windshear environment

    NASA Technical Reports Server (NTRS)

    Levison, W. H.

    1978-01-01

    A revised treatment of nonrandom inputs was incorporated in the model. Response behavior was observed for two display configurations (a pictorial EADI presentation and a flight-director configuration requiring use of a panel-mounted airspeed indicator), two control configurations (attitude and velocity control wheel steering), and two shear environments, each of which contained a head-to-tail shear and a vertical component. In general, performance trends predicted by the model were confirmed experimentally. Experimental and analytical results both indicated superiority to the EADI display with respect to regulation of height and airspeed errors. Velocity steering allowed tighter regulation of height errors, but control parameters had little influence on airspeed regulation. Model analysis indicated that display-related differences could be ascribed to differences in the quality of speed-related information provided by the two displays.

  8. How Radiation Oncologists Would Disclose Errors: Results of a Survey of Radiation Oncologists and Trainees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Suzanne B., E-mail: Suzannne.evans@yale.edu; Yu, James B.; Chagpar, Anees

    2012-10-01

    Purpose: To analyze error disclosure attitudes of radiation oncologists and to correlate error disclosure beliefs with survey-assessed disclosure behavior. Methods and Materials: With institutional review board exemption, an anonymous online survey was devised. An email invitation was sent to radiation oncologists (American Society for Radiation Oncology [ASTRO] gold medal winners, program directors and chair persons of academic institutions, and former ASTRO lecturers) and residents. A disclosure score was calculated based on the number or full, partial, or no disclosure responses chosen to the vignette-based questions, and correlation was attempted with attitudes toward error disclosure. Results: The survey received 176 responses:more » 94.8% of respondents considered themselves more likely to disclose in the setting of a serious medical error; 72.7% of respondents did not feel it mattered who was responsible for the error in deciding to disclose, and 3.9% felt more likely to disclose if someone else was responsible; 38.0% of respondents felt that disclosure increased the likelihood of a lawsuit, and 32.4% felt disclosure decreased the likelihood of lawsuit; 71.6% of respondents felt near misses should not be disclosed; 51.7% thought that minor errors should not be disclosed; 64.7% viewed disclosure as an opportunity for forgiveness from the patient; and 44.6% considered the patient's level of confidence in them to be a factor in disclosure. For a scenario that could be considerable, a non-harmful error, 78.9% of respondents would not contact the family. Respondents with high disclosure scores were more likely to feel that disclosure was an opportunity for forgiveness (P=.003) and to have never seen major medical errors (P=.004). Conclusions: The surveyed radiation oncologists chose to respond with full disclosure at a high rate, although ideal disclosure practices were not uniformly adhered to beyond the initial decision to disclose the occurrence of the error.« less

  9. Autonomous integrated GPS/INS navigation experiment for OMV. Phase 1: Feasibility study

    NASA Technical Reports Server (NTRS)

    Upadhyay, Triveni N.; Priovolos, George J.; Rhodehamel, Harley

    1990-01-01

    The phase 1 research focused on the experiment definition. A tightly integrated Global Positioning System/Inertial Navigation System (GPS/INS) navigation filter design was analyzed and was shown, via detailed computer simulation, to provide precise position, velocity, and attitude (alignment) data to support navigation and attitude control requirements of future NASA missions. The application of the integrated filter was also shown to provide the opportunity to calibrate inertial instrument errors which is particularly useful in reducing INS error growth during times of GPS outages. While the Orbital Maneuvering Vehicle (OMV) provides a good target platform for demonstration and for possible flight implementation to provide improved capability, a successful proof-of-concept ground demonstration can be obtained using any simulated mission scenario data, such as Space Transfer Vehicle, Shuttle-C, Space Station.

  10. Four methods of attitude determination for spin-stabilized spacecraft with applications and comparative results

    NASA Technical Reports Server (NTRS)

    Smith, G. A.

    1975-01-01

    The attitude of a spacecraft is determined by specifying independent parameters which relate the spacecraft axes to an inertial coordinate system. Sensors which measure angles between spin axis and other vectors directed to objects or fields external to the spacecraft are discussed. For the spin-stabilized spacecraft considered, the spin axis is constant over at least an orbit, but separate solutions based on sensor angle measurements are different due to propagation of errors. Sensor-angle solution methods are described which minimize the propagated errors by making use of least squares techniques over many sensor angle measurements and by solving explicitly (in closed form) for the spin axis coordinates. These methods are compared with star observation solutions to determine if satisfactory accuracy is obtained by each method.

  11. Comparison of complementary and Kalman filter based data fusion for attitude heading reference system

    NASA Astrophysics Data System (ADS)

    Islam, Tariqul; Islam, Md. Saiful; Shajid-Ul-Mahmud, Md.; Hossam-E-Haider, Md

    2017-12-01

    An Attitude Heading Reference System (AHRS) provides 3D orientation of an aircraft (roll, pitch, and yaw) with instantaneous position and also heading information. For implementation of a low cost AHRS system Micro-electrical-Mechanical system (MEMS) based sensors are used such as accelerometer, gyroscope, and magnetometer. Accelerometers suffer from errors caused by external accelerations that sums to gravity and make accelerometers based rotation inaccurate. Gyroscopes can remove such errors but create drifting problems. So for getting the precise data additionally two very common and well known filters Complementary and Kalman are introduced to the system. In this paper a comparison of system performance using these two filters is shown separately so that one would be able to select filter with better performance for his/her system.

  12. Dissecting through barriers: A mixed-methods study on the effect of interprofessional education in a dissection course with healthcare professional students.

    PubMed

    Fernandes, Alisha Rebecca; Palombella, Andrew; Salfi, Jenn; Wainman, Bruce

    2015-01-01

    Healthcare delivery is reliant on a team-based approach, and interprofessional education (IPE) provides a means by which such collaboration skills can be fostered prior to entering the workplace. IPE within healthcare programs has been associated with improved collaborative behavior, patient care and satisfaction, reduced clinical error, and diminished negative professional stereotypes. An intensive interprofessional gross anatomy dissection course was created in 2009 to facilitate IPE at McMaster University. Data were collected from five cohorts over five years to determine the influence of this IPE format on the attitudes and perceptions of students towards other health professions. Each year, 28 students from the medicine, midwifery, nursing, physician's assistant, physiotherapy, and occupational therapy programs were randomly assigned into interprofessional teams for 10 weeks. Sessions involved an anatomy and scope-of-practice presentation, a small-group case-based session, and a dissection. A before/after design measured changes in attitudes and perceptions, while focus group data elaborated on the student experience with the course. Pre- and postmatched data revealed significant improvements in positive professional identity, competency and autonomy, role clarity and attitudes toward other health professions. Qualitative analysis of intraprofessional focus group interviews revealed meaningful improvements in a number of areas including learning anatomy, role clarity, and attitudes towards other health professions. © 2015 American Association of Anatomists.

  13. Finite-time fault tolerant attitude stabilization control for rigid spacecraft.

    PubMed

    Huo, Xing; Hu, Qinglei; Xiao, Bing

    2014-03-01

    A sliding mode based finite-time control scheme is presented to address the problem of attitude stabilization for rigid spacecraft in the presence of actuator fault and external disturbances. More specifically, a nonlinear observer is first proposed to reconstruct the amplitude of actuator faults and external disturbances. It is proved that precise reconstruction with zero observer error is achieved in finite time. Then, together with the system states, the reconstructed information is used to synthesize a nonsingular terminal sliding mode attitude controller. The attitude and the angular velocity are asymptotically governed to zero with finite-time convergence. A numerical example is presented to demonstrate the effectiveness of the proposed scheme. © 2013 Published by ISA on behalf of ISA.

  14. Error reduction by combining strapdown inertial measurement units in a baseball stitch

    NASA Astrophysics Data System (ADS)

    Tracy, Leah

    A poor musical performance is rarely due to an inferior instrument. When a device is under performing, the temptation is to find a better device or a new technology to achieve performance objectives; however, another solution may be improving how existing technology is used through a better understanding of device characteristics, i.e., learning to play the instrument better. This thesis explores improving position and attitude estimates of inertial navigation systems (INS) through an understanding of inertial sensor errors, manipulating inertial measurement units (IMUs) to reduce that error and multisensor fusion of multiple IMUs to reduce error in a GPS denied environment.

  15. Undergraduate medical students' perceptions and intentions regarding patient safety during clinical clerkship.

    PubMed

    Lee, Hoo-Yeon; Hahm, Myung-Il; Lee, Sang Gyu

    2018-04-04

    The purpose of this study was to examine undergraduate medical students' perceptions and intentions regarding patient safety during clinical clerkships. Cross-sectional study administered in face-to-face interviews using modified the Medical Student Safety Attitudes and Professionalism Survey (MSSAPS) from three colleges of medicine in Korea. We assessed medical students' perceptions of the cultures ('safety', 'teamwork', and 'error disclosure'), 'behavioural intentions' concerning patient safety issues and 'overall patient safety'. Confirmatory factor analysis and Spearman's correlation analyses was performed. In total, 194(91.9%) of the 211 third-year undergraduate students participated. 78% of medical students reported that the quality of care received by patients was impacted by teamwork during clinical rotations. Regarding error disclosure, positive scores ranged from 10% to 74%. Except for one question asking whether the disclosure of medical errors was an important component of patient safety (74%), the percentages of positive scores for all the other questions were below 20%. 41.2% of medical students have intention to disclose it when they saw a medical error committed by another team member. Many students had difficulty speaking up about medical errors. Error disclosure guidelines and educational efforts aimed at developing sophisticated communication skills are needed. This study may serve as a reference for other institutions planning patient safety education in their curricula. Assessing student perceptions of safety culture can provide clerkship directors and clinical service chiefs with information that enhances the educational environment and promotes patient safety.

  16. Solar Array Disturbances to Spacecraft Pointing During the Lunar Reconnaissance Orbiter (LRO) Mission

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip

    2010-01-01

    The Lunar Reconnaissance Orbiter (LRO), the first spacecraft to support NASA s return to the Moon, launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle. It was initially inserted into a direct trans-lunar trajectory to the Moon. After a five day transit to the Moon, LRO was inserted into the Lunar orbit and successfully lowered to a low altitude elliptical polar orbit for spacecraft commissioning. Successful commissioning was completed in October 2009 when LRO was placed in its near circular mission orbit with an approximate altitude of 50km. LRO will spend at least one year orbiting the Moon, collecting lunar environment science and mapping data, utilizing a suite of seven instruments to enable future human exploration. The objective is to provide key science data necessary to facilitate human return to the Moon as well as identification of opportunities for future science missions. LRO's instrument suite will provide the high resolution imaging data with sub-meter accuracy, highly accurate lunar cartographic maps, mineralogy mapping, amongst other science data of interest. LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing Mode", provides Lunar nadir, off-nadir, and inertial fine pointing for the science data collection and instrument calibration. This controller combines the capability of fine pointing with on-demand large angle full-sky attitude reorientation. It provides simplicity of spacecraft operation as well as additional flexibility for science data collection. A conventional suite of ACS components is employed in the Observing Mode to meet the pointing and control objectives. Actuation is provided by a set of four reaction wheels developed in-house at NASA Goddard Space Flight Center (GSFC). Attitude feedback is provided by a six state Kalman filter which utilizes two SELEX Galileo Star Trackers for attitude updates, and a single Honeywell Miniature Inertial Measurement Unit (MIMU) to provide body rates for attitude propagation. Rate is computed by differentiating accumulated angle provided by the MIMU. The Observing Mode controller is required to maintain fine pointing while a large fully-articulated solar array (SA) maintains its panel normal to the solar incidence. This paper describes the disturbances to the attitude control resulting from the SA articulation. Observing Mode performance in the presence of this disturbance was assessed while the spacecraft was in an initial elliptical low altitude orbit during the commissioning phase, which started about two weeks after launch and lasted for 90 days. LRO demonstrated excellent pointing performance during Observing Mode nadir and inertial attitude target operations during this phase. Transient LRO attitude errors observed during commissioning resulted primarily from three sources, Diviner instrument calibrations, RW zero crossings, and SA articulation. Even during times of considerable disturbance from SA articulation, the attitude errors were maintained below the statistical attitude error requirement level of 15 arc-sec (3 sigma).

  17. Attitude estimation from magnetometer and earth-albedo-corrected coarse sun sensor measurements

    NASA Astrophysics Data System (ADS)

    Appel, Pontus

    2005-01-01

    For full 3-axes attitude determination the magnetic field vector and the Sun vector can be used. A Coarse Sun Sensor consisting of six solar cells placed on each of the six outer surfaces of the satellite is used for Sun vector determination. This robust and low cost setup is sensitive to surrounding light sources as it sees the whole sky. To compensate for the largest error source, the Earth, an albedo model is developed. The total albedo light vector has contributions from the Earth surface which is illuminated by the Sun and visible from the satellite. Depending on the reflectivity of the Earth surface, the satellite's position and the Sun's position the albedo light changes. This cannot be calculated analytically and hence a numerical model is developed. For on-board computer use the Earth albedo model consisting of data tables is transferred into polynomial functions in order to save memory space. For an absolute worst case the attitude determination error can be held below 2∘. In a nominal case it is better than 1∘.

  18. Adaptive fuzzy logic controller with direct action type structures for InnoSAT attitude control system

    NASA Astrophysics Data System (ADS)

    Bakri, F. A.; Mashor, M. Y.; Sharun, S. M.; Bibi Sarpinah, S. N.; Abu Bakar, Z.

    2016-10-01

    This study proposes an adaptive fuzzy controller for attitude control system (ACS) of Innovative Satellite (InnoSAT) based on direct action type structure. In order to study new methods used in satellite attitude control, this paper presents three structures of controllers: Fuzzy PI, Fuzzy PD and conventional Fuzzy PID. The objective of this work is to compare the time response and tracking performance among the three different structures of controllers. The parameters of controller were tuned on-line by adjustment mechanism, which was an approach similar to a PID error that could minimize errors between actual and model reference output. This paper also presents a Model References Adaptive Control (MRAC) as a control scheme to control time varying systems where the performance specifications were given in terms of the reference model. All the controllers were tested using InnoSAT system under some operating conditions such as disturbance, varying gain, measurement noise and time delay. In conclusion, among all considered DA-type structures, AFPID controller was observed as the best structure since it outperformed other controllers in most conditions.

  19. Velocity-Aided Attitude Estimation for Helicopter Aircraft Using Microelectromechanical System Inertial-Measurement Units.

    PubMed

    Lee, Sang Cheol; Hong, Sung Kyung

    2016-12-11

    This paper presents an algorithm for velocity-aided attitude estimation for helicopter aircraft using a microelectromechanical system inertial-measurement unit. In general, high- performance gyroscopes are used for estimating the attitude of a helicopter, but this type of sensor is very expensive. When designing a cost-effective attitude system, attitude can be estimated by fusing a low cost accelerometer and a gyro, but the disadvantage of this method is its relatively low accuracy. The accelerometer output includes a component that occurs primarily as the aircraft turns, as well as the gravitational acceleration. When estimating attitude, the accelerometer measurement terms other than gravitational ones can be considered as disturbances. Therefore, errors increase in accordance with the flight dynamics. The proposed algorithm is designed for using velocity as an aid for high accuracy at low cost. It effectively eliminates the disturbances of accelerometer measurements using the airspeed. The algorithm was verified using helicopter experimental data. The algorithm performance was confirmed through a comparison with an attitude estimate obtained from an attitude heading reference system based on a high accuracy optic gyro, which was employed as core attitude equipment in the helicopter.

  20. Velocity-Aided Attitude Estimation for Helicopter Aircraft Using Microelectromechanical System Inertial-Measurement Units

    PubMed Central

    Lee, Sang Cheol; Hong, Sung Kyung

    2016-01-01

    This paper presents an algorithm for velocity-aided attitude estimation for helicopter aircraft using a microelectromechanical system inertial-measurement unit. In general, high- performance gyroscopes are used for estimating the attitude of a helicopter, but this type of sensor is very expensive. When designing a cost-effective attitude system, attitude can be estimated by fusing a low cost accelerometer and a gyro, but the disadvantage of this method is its relatively low accuracy. The accelerometer output includes a component that occurs primarily as the aircraft turns, as well as the gravitational acceleration. When estimating attitude, the accelerometer measurement terms other than gravitational ones can be considered as disturbances. Therefore, errors increase in accordance with the flight dynamics. The proposed algorithm is designed for using velocity as an aid for high accuracy at low cost. It effectively eliminates the disturbances of accelerometer measurements using the airspeed. The algorithm was verified using helicopter experimental data. The algorithm performance was confirmed through a comparison with an attitude estimate obtained from an attitude heading reference system based on a high accuracy optic gyro, which was employed as core attitude equipment in the helicopter. PMID:27973429

  1. COBE attitude as seen from the FDF

    NASA Technical Reports Server (NTRS)

    Sedlak, J.; Chu, D.; Scheidker, E.

    1990-01-01

    The goal of the Flight Dynamics Facility (FDF) attitude support is twofold: to determine spacecraft attitude and to explain deviations from nominal attitude behavior. Attitude determination often requires resolving contradictions in the sensor observations. This may be accomplished by applying calibration corrections or by revising the observation models. After accounting for all known sources of error, solution accuracy should be limited only by observation and propagation noise. The second half of the goal is to explain why the attitude may not be as originally intended. Reasons for such deviations include sensor or actuator misalignments and control system performance. In these cases, the ability to explain the behavior should, in principle, be limited only by knowledge of the sensor and actuator data and external torques. Documented here are some results obtained to date in support of the Cosmic Background Explorer (COBE). Advantages and shortcomings of the integrated attitude determination/sensor calibration software are discussed. Some preliminary attitude solutions using data from the Diffuse Infrared Background Experiment (DIRBE) instrument are presented and compared to solutions using Sun and Earth sensors. A dynamical model is constructed to illustrate the relative importance of the various sensor imprefections. This model also shows the connection between the high- and low-frequency attitude oscillations.

  2. Altitude Registration of Limb-Scattered Radiation

    NASA Technical Reports Server (NTRS)

    Moy, Leslie; Bhartia, Pawan K.; Jaross, Glen; Loughman, Robert; Kramarova, Natalya; Chen, Zhong; Taha, Ghassan; Chen, Grace; Xu, Philippe

    2017-01-01

    One of the largest constraints to the retrieval of accurate ozone profiles from UV backscatter limb sounding sensors is altitude registration. Two methods, the Rayleigh scattering attitude sensing (RSAS) and absolute radiance residual method (ARRM), are able to determine altitude registration to the accuracy necessary for long-term ozone monitoring. The methods compare model calculations of radiances to measured radiances and are independent of onboard tracking devices. RSAS determines absolute altitude errors, but, because the method is susceptible to aerosol interference, it is limited to latitudes and time periods with minimal aerosol contamination. ARRM, a new technique introduced in this paper, can be applied across all seasons and altitudes. However, it is only appropriate for relative altitude error estimates. The application of RSAS to Limb Profiler (LP) measurements from the Ozone Mapping and Profiler Suite (OMPS) on board the Suomi NPP (SNPP) satellite indicates tangent height (TH) errors greater than 1 km with an absolute accuracy of +/-200 m. Results using ARRM indicate a approx. 300 to 400m intra-orbital TH change varying seasonally +/-100 m, likely due to either errors in the spacecraft pointing or in the geopotential height (GPH) data that we use in our analysis. ARRM shows a change of approx. 200m over 5 years with a relative accuracy (a long-term accuracy) of 100m outside the polar regions.

  3. Error, stress, and teamwork in medicine and aviation: cross sectional surveys

    NASA Technical Reports Server (NTRS)

    Sexton, J. B.; Thomas, E. J.; Helmreich, R. L.

    2000-01-01

    OBJECTIVES: To survey operating theatre and intensive care unit staff about attitudes concerning error, stress, and teamwork and to compare these attitudes with those of airline cockpit crew. DESIGN:: Cross sectional surveys. SETTING:: Urban teaching and non-teaching hospitals in the United States, Israel, Germany, Switzerland, and Italy. Major airlines around the world. PARTICIPANTS:: 1033 doctors, nurses, fellows, and residents working in operating theatres and intensive care units and over 30 000 cockpit crew members (captains, first officers, and second officers). MAIN OUTCOME MEASURES:: Perceptions of error, stress, and teamwork. RESULTS:: Pilots were least likely to deny the effects of fatigue on performance (26% v 70% of consultant surgeons and 47% of consultant anaesthetists). Most pilots (97%) and intensive care staff (94%) rejected steep hierarchies (in which senior team members are not open to input from junior members), but only 55% of consultant surgeons rejected such hierarchies. High levels of teamwork with consultant surgeons were reported by 73% of surgical residents, 64% of consultant surgeons, 39% of anaesthesia consultants, 28% of surgical nurses, 25% of anaesthetic nurses, and 10% of anaesthetic residents. Only a third of staff reported that errors are handled appropriately at their hospital. A third of intensive care staff did not acknowledge that they make errors. Over half of intensive care staff reported that they find it difficult to discuss mistakes. CONCLUSIONS: Medical staff reported that error is important but difficult to discuss and not handled well in their hospital. Barriers to discussing error are more important since medical staff seem to deny the effect of stress and fatigue on performance. Further problems include differing perceptions of teamwork among team members and reluctance of senior theatre staff to accept input from junior members.

  4. High accuracy navigation information estimation for inertial system using the multi-model EKF fusing adams explicit formula applied to underwater gliders.

    PubMed

    Huang, Haoqian; Chen, Xiyuan; Zhang, Bo; Wang, Jian

    2017-01-01

    The underwater navigation system, mainly consisting of MEMS inertial sensors, is a key technology for the wide application of underwater gliders and plays an important role in achieving high accuracy navigation and positioning for a long time of period. However, the navigation errors will accumulate over time because of the inherent errors of inertial sensors, especially for MEMS grade IMU (Inertial Measurement Unit) generally used in gliders. The dead reckoning module is added to compensate the errors. In the complicated underwater environment, the performance of MEMS sensors is degraded sharply and the errors will become much larger. It is difficult to establish the accurate and fixed error model for the inertial sensor. Therefore, it is very hard to improve the accuracy of navigation information calculated by sensors. In order to solve the problem mentioned, the more suitable filter which integrates the multi-model method with an EKF approach can be designed according to different error models to give the optimal estimation for the state. The key parameters of error models can be used to determine the corresponding filter. The Adams explicit formula which has an advantage of high precision prediction is simultaneously fused into the above filter to achieve the much more improvement in attitudes estimation accuracy. The proposed algorithm has been proved through theory analyses and has been tested by both vehicle experiments and lake trials. Results show that the proposed method has better accuracy and effectiveness in terms of attitudes estimation compared with other methods mentioned in the paper for inertial navigation applied to underwater gliders. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Error, stress, and teamwork in medicine and aviation: cross sectional surveys

    PubMed Central

    Sexton, J Bryan; Thomas, Eric J; Helmreich, Robert L

    2000-01-01

    Objectives: To survey operating theatre and intensive care unit staff about attitudes concerning error, stress, and teamwork and to compare these attitudes with those of airline cockpit crew. Design: Cross sectional surveys. Setting: Urban teaching and non-teaching hospitals in the United States, Israel, Germany, Switzerland, and Italy. Major airlines around the world. Participants: 1033 doctors, nurses, fellows, and residents working in operating theatres and intensive care units and over 30 000 cockpit crew members (captains, first officers, and second officers). Main outcome measures: Perceptions of error, stress, and teamwork. Results: Pilots were least likely to deny the effects of fatigue on performance (26% v 70% of consultant surgeons and 47% of consultant anaesthetists). Most pilots (97%) and intensive care staff (94%) rejected steep hierarchies (in which senior team members are not open to input from junior members), but only 55% of consultant surgeons rejected such hierarchies. High levels of teamwork with consultant surgeons were reported by 73% of surgical residents, 64% of consultant surgeons, 39% of anaesthesia consultants, 28% of surgical nurses, 25% of anaesthetic nurses, and 10% of anaesthetic residents. Only a third of staff reported that errors are handled appropriately at their hospital. A third of intensive care staff did not acknowledge that they make errors. Over half of intensive care staff reported that they find it difficult to discuss mistakes. Conclusions: Medical staff reported that error is important but difficult to discuss and not handled well in their hospital. Barriers to discussing error are more important since medical staff seem to deny the effect of stress and fatigue on performance. Further problems include differing perceptions of teamwork among team members and reluctance of senior theatre staff to accept input from junior members. PMID:10720356

  6. Comprehensive Evaluation of Attitude and Orbit Estimation Using Actual Earth Magnetic Field Data

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie K.; Bar-Itzhack, Itzhack Y.

    2000-01-01

    A single, augmented Extended Kalman Filter (EKF), which simultaneously and autonomously estimates spacecraft attitude and orbit has been developed and successfully tested with real magnetometer and gyro data only. Because the earth magnetic field is a function of time and position, and because time is known quite precisely, the differences between the computed and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of both orbit and attitude errors. Thus, conceivably these differences could be used to estimate both orbit and attitude; an observability study validated this assumption. The results of testing the EKF with actual magnetometer and gyro data, from four satellites supported by the NASA Goddard Space Flight Center (GSFC) Guidance, Navigation, and Control Center, are presented and evaluated. They confirm the assumption that a single EKF can estimate both attitude and orbit when using gyros and magnetometers only.

  7. Multisatellite attitude determination/optical aspect bias determination (MSAD/OABIAS) system description and operating guide. Volume 3: Operating guide

    NASA Technical Reports Server (NTRS)

    Joseph, M.; Keat, J.; Liu, K. S.; Plett, M. E.; Shear, M. A.; Shinohara, T.; Wertz, J. R.

    1983-01-01

    The Multisatellite Attitude Determination/Optical Aspect Bias Determination (MSAD/OABIAS) System, designed to determine spin axis orientation and biases in the alignment or performance of optical or infrared horizon sensors and Sun sensors used for spacecraft attitude determination, is described. MSAD/OABIAS uses any combination of eight observation models to process data from a single onboard horizon sensor and Sun sensor to determine simultaneously the two components of the attitude of the spacecraft, the initial phase of the Sun sensor, the spin rate, seven sensor biases, and the orbital in-track error associated with the spacecraft ephemeris information supplied to the system. In addition, the MSAD/OABIAS system provides a data simulator for system and performance testing, an independent deterministic attitude system for preprocessing and independent testing of biases determined, and a multipurpose data prediction and comparison system.

  8. Feasibility study of scanning celestial Attitude System (SCADS) for Earth Resources Technology Satellite (ERTS)

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The feasibility of using the Scanning Celestial Attitude Determination System (SCADS) during Earth Resources Technology Satellite (ERTS) missions to compute an accurate spacecraft attitude by use of stellar measurements is considered. The spacecraft is local-vertical-stabilized. A heuristic discussion of the SCADS concept is first given. Two concepts are introduced: a passive system which contains no moving parts, and an active system in which the reticle is caused to rotate about the sensor's axis. A quite complete development of the equations of attitude motions is then given. These equations are used to generate the true attitude which in turn is used to compute the transit times of detectable stars and to determine the errors associated with the SCADS attitude. A more complete discussion of the analytical foundation of SCADS concept and its use for the geometries particular to this study, as well as salient design parameters for the passive and active systems are included.

  9. Virtual TeamSTEPPS(®) Simulations Produce Teamwork Attitude Changes Among Health Professions Students.

    PubMed

    Sweigart, Linda I; Umoren, Rachel A; Scott, Patrician J; Carlton, Kay Hodson; Jones, James A; Truman, Barbara; Gossett, Evalyn J

    2016-01-01

    The majority of the estimated 400,000 or more patient deaths per year in the United States are from preventable medical errors due to poor communication. Team training programs have been established to teach teamwork skills to health professions students. However, it is often challenging to provide this training at a physical site. A brief intervention using a virtual learning environment with TeamSTEPPS(®)-based scenarios is described. Using a pretest-posttest design, the effects on teamwork attitudes in 109 health professional students from two institutions and multiple disciplines were measured using the TeamSTEPPS Teamwork Attitudes questionnaire. Participants showed significant attitude changes in the categories of leadership, situation monitoring, mutual support, and communication (p ⩽ .05), with significance in four of the six indicator attitudes in the communication section at the p ⩽ .001 level. These findings indicate the potential impact that virtual learning experiences may have on teamwork attitudes in learners across professions on multiple campuses. Copyright 2016, SLACK Incorporated.

  10. In-motion initial alignment and positioning with INS/CNS/ODO integrated navigation system for lunar rovers

    NASA Astrophysics Data System (ADS)

    Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang; Liu, Ming

    2017-06-01

    Many countries have been paying great attention to space exploration, especially about the Moon and the Mars. Autonomous and high-accuracy navigation systems are needed for probers and rovers to accomplish missions. Inertial navigation system (INS)/celestial navigation system (CNS) based navigation system has been used widely on the lunar rovers. Initialization is a particularly important step for navigation. This paper presents an in-motion alignment and positioning method for lunar rovers by INS/CNS/odometer integrated navigation. The method can estimate not only the position and attitude errors, but also the biases of the accelerometers and gyros using the standard Kalman filter. The differences between the platform star azimuth, elevation angles and the computed star azimuth, elevation angles, and the difference between the velocity measured by odometer and the velocity measured by inertial sensors are taken as measurements. The semi-physical experiments are implemented to demonstrate that the position error can reduce to 10 m and attitude error is within 2″ during 5 min. The experiment results prove that it is an effective and attractive initialization approach for lunar rovers.

  11. TRAC based sensing for autonomous rendezvous

    NASA Technical Reports Server (NTRS)

    Everett, Louis J.; Monford, Leo

    1991-01-01

    The Targeting Reflective Alignment Concept (TRAC) sensor is to be used in an effort to support an Autonomous Rendezvous and Docking (AR&D) flight experiment. The TRAC sensor uses a fixed-focus, fixed-iris CCD camera and a target that is a combination of active and passive components. The system experiment is anticipated to fly in 1994 using two Commercial Experiment Transporters (COMET's). The requirements for the sensor are: bearing error less than or equal to 0.075 deg; bearing error rate less than 0.3 deg/sec; attitude error less than 0.5 deg.; and attitude rate error less than 2.0 deg/sec. The range requirement depends on the range and the range rate of the vehicle. The active component of the target is several 'kilo-bright' LED's that can emit 2500 millicandela with 40 milliwatts of input power. Flashing the lights in a known pattern eliminates background illumination. The system should be able to rendezvous from 300 meters all the way to capture. A question that arose during the presentation: What is the life time of the LED's and their sensitivity to radiation? The LED's should be manufactured to Military Specifications, coated with silicon dioxide, and all other space qualified precautions should be taken. The LED's will not be on all the time so they should easily last the two-year mission.

  12. Band co-registration modeling of LAPAN-A3/IPB multispectral imager based on satellite attitude

    NASA Astrophysics Data System (ADS)

    Hakim, P. R.; Syafrudin, A. H.; Utama, S.; Jayani, A. P. S.

    2018-05-01

    One of significant geometric distortion on images of LAPAN-A3/IPB multispectral imager is co-registration error between each color channel detector. Band co-registration distortion usually can be corrected by using several approaches, which are manual method, image matching algorithm, or sensor modeling and calibration approach. This paper develops another approach to minimize band co-registration distortion on LAPAN-A3/IPB multispectral image by using supervised modeling of image matching with respect to satellite attitude. Modeling results show that band co-registration error in across-track axis is strongly influenced by yaw angle, while error in along-track axis is fairly influenced by both pitch and roll angle. Accuracy of the models obtained is pretty good, which lies between 1-3 pixels error for each axis of each pair of band co-registration. This mean that the model can be used to correct the distorted images without the need of slower image matching algorithm, nor the laborious effort needed in manual approach and sensor calibration. Since the calculation can be executed in order of seconds, this approach can be used in real time quick-look image processing in ground station or even in satellite on-board image processing.

  13. Application of square-root filtering for spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Schmidt, S. F.; Goka, T.

    1978-01-01

    Suitable digital algorithms are developed and tested for providing on-board precision attitude estimation and pointing control for potential use in the Landsat-D spacecraft. These algorithms provide pointing accuracy of better than 0.01 deg. To obtain necessary precision with efficient software, a six state-variable square-root Kalman filter combines two star tracker measurements to update attitude estimates obtained from processing three gyro outputs. The validity of the estimation and control algorithms are established, and the sensitivity of their performance to various error sources and software parameters are investigated by detailed digital simulation. Spacecraft computer memory, cycle time, and accuracy requirements are estimated.

  14. ADRC for spacecraft attitude and position synchronization in libration point orbits

    NASA Astrophysics Data System (ADS)

    Gao, Chen; Yuan, Jianping; Zhao, Yakun

    2018-04-01

    This paper addresses the problem of spacecraft attitude and position synchronization in libration point orbits between a leader and a follower. Using dual quaternion, the dimensionless relative coupled dynamical model is derived considering computation efficiency and accuracy. Then a model-independent dimensionless cascade pose-feedback active disturbance rejection controller is designed to spacecraft attitude and position tracking control problems considering parameter uncertainties and external disturbances. Numerical simulations for the final approach phase in spacecraft rendezvous and docking and formation flying are done, and the results show high-precision tracking errors and satisfactory convergent rates under bounded control torque and force which validate the proposed approach.

  15. Determinants of moderate to vigorous physical activity and obesity in children: a structural equation modeling analysis.

    PubMed

    Yeung, Daniel Chi-Shing; Yuan, Xin; Hui, Stanley Sai-Chuen; Feresu, Shingairai Aliifina

    2016-05-01

    The determinants of physical activity (PA) and body fatness in Chinese adolescents are rarely examined. This study aimed to investigate the effect of attitude toward PA, screen time, parents' socioeconomic status (SES), and exercise habit on PA and body fatness among Chinese children by using structural equation modeling (SEM) analysis. Data obtained from the second Community Fitness Survey in Hong Kong were utilized, in which students from one secondary school of each of the 18 districts of Hong Kong were recruited. A total of 2517 questionnaires with physical fitness items were successfully distributed to students aged 13-19 years in these districts. Families' SES, parents' exercise habit, children's intention to participate in PA, amount of moderate to vigorous PA (MVPA), screen time, children's attitude toward PA, and children's body fat percentage were measured and analyzed with SEM. The structural equation model was composed of a measurement model and a structural model. The model was tested with Mplus 6. The Chi-square test, root mean square error of approximation, comparative fit index, and Tucker-Lewis index were calculated to evaluate model fit. The model was then modified based on the model fit indices. Children's intention to participate in PA was a strong predictor of their engagement in MVPA. Parents' exercise habit had both direct and indirect (via attitude) effects on their children's intention to participate in PA. Screen time was not a predictor of body composition. Children's intention to participate in PA directly affected their body composition. Children's attitude toward PA, parents' exercise habit, and SES had significant effects on the children's intention to participate in PA. Furthermore, obesity had a negative effect on the children's attitude toward PA. To promote MVPA and prevent obesity in Chinese children of Hong Kong, it is important to design intervention that enhances children's intention and attitude in PA, as well as parent's exercise habits. Tailormade programs that take SES into consideration are also essential. Further studies are necessary to extend the results and test the model in other metropolitan areas in China.

  16. Approximate reasoning-based learning and control for proximity operations and docking in space

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Jani, Yashvant; Lea, Robert N.

    1991-01-01

    A recently proposed hybrid-neutral-network and fuzzy-logic-control architecture is applied to a fuzzy logic controller developed for attitude control of the Space Shuttle. A model using reinforcement learning and learning from past experience for fine-tuning its knowledge base is proposed. Two main components of this approximate reasoning-based intelligent control (ARIC) model - an action-state evaluation network and action selection network are described as well as the Space Shuttle attitude controller. An ARIC model for the controller is presented, and it is noted that the input layer in each network includes three nodes representing the angle error, angle error rate, and bias node. Preliminary results indicate that the controller can hold the pitch rate within its desired deadband and starts to use the jets at about 500 sec in the run.

  17. Evaluation of the prototype dual-axis wall attitude measurement sensor

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    1994-01-01

    A prototype dual-axis electrolytic tilt sensor package for angular position measurements was built and evaluated in a laboratory environment. The objective was to investigate the use of this package for making wind tunnel wall attitude measurements for the National Transonic Facility (NTF) at NASA Langley Research Center (LaRC). The instrumentation may replace an existing, more costly, and less rugged servo accelerometer package (angle-of-attack package) currently in use. The dual-axis electrolytic tilt sensor package contains two commercial electrolytic tilt sensors thermally insulated with NTF foam, all housed within a stainless steel package. The package is actively heated and maintained at 160 F using foil heating elements. The laboratory evaluation consisted of a series of tests to characterize the linearity, repeatability, cross-axis interaction, lead wire effect, step response, thermal time constant, and rectification errors. Tests revealed that the total RMS errors for the x-axis sensor is 0.084 degree, and 0.182 degree for the y-axis sensor. The RMS errors are greater than the 0.01 degree specification required for NTF wall attitude measurements. It is therefore not a viable replacement for the angle-of-attack package in the NTF application. However, with some physical modifications, it can be used as an inexpensive 5-degree range dual-axis inclinometer with overall accuracy approaching 0.01 degree under less harsh environments. Also, the data obtained from the tests can be valuable for wind tunnel applications of most types of electrolytic tilt sensors.

  18. Toward Accurate On-Ground Attitude Determination for the Gaia Spacecraft

    NASA Astrophysics Data System (ADS)

    Samaan, Malak A.

    2010-03-01

    The work presented in this paper concerns the accurate On-Ground Attitude (OGA) reconstruction for the astrometry spacecraft Gaia in the presence of disturbance and of control torques acting on the spacecraft. The reconstruction of the expected environmental torques which influence the spacecraft dynamics will be also investigated. The telemetry data from the spacecraft will include the on-board real-time attitude, which is of order of several arcsec. This raw attitude is the starting point for the further attitude reconstruction. The OGA will use the inputs from the field coordinates of known stars (attitude stars) and also the field coordinate differences of objects on the Sky Mapper (SM) and Astrometric Field (AF) payload instruments to improve this raw attitude. The on-board attitude determination uses a Kalman Filter (KF) to minimize the attitude errors and produce a more accurate attitude estimation than the pure star tracker measurement. Therefore the first approach for the OGA will be an adapted version of KF. Furthermore, we will design a batch least squares algorithm to investigate how to obtain a more accurate OGA estimation. Finally, a comparison between these different attitude determination techniques in terms of accuracy, robustness, speed and memory required will be evaluated in order to choose the best attitude algorithm for the OGA. The expected resulting accuracy for the OGA determination will be on the order of milli-arcsec.

  19. Concepts for conformal and body-axis attitude information for spatial awareness presented in a helmet-mounted display

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Abbott, Terence S.; Burley, James R., II

    1993-01-01

    A piloted simulation study has been conducted to evaluate two methods of presenting attitude information in a helmet-mounted display (HMD) for spatial awareness in a fighter airplane. One method, the body-axis concept, displayed the information relative to the body axis of the airplane. The quantitative results of this study favored the body-axis concept. Although no statistically significant differences were noted for either the pilots' understanding of roll attitude or target position, the pilots made pitch judgment errors three times more often with the conformal display. The subjective results showed the body-axis display did not cause attitude confusion, a prior concern with this display. In the posttest comments, the pilots overwhelmingly selected the body-axis display as the display of choice.

  20. Attitude Control System Design for the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Bourkland, Kristin L.; Kuo-Chia, Liu; Mason, Paul A. C.; Vess, Melissa F.; Andrews, Stephen F.; Morgenstern, Wendy M.

    2005-01-01

    The Solar Dynamics Observatory mission, part of the Living With a Star program, will place a geosynchronous satellite in orbit to observe the Sun and relay data to a dedicated ground station at all times. SDO remains Sun- pointing throughout most of its mission for the instruments to take measurements of the Sun. The SDO attitude control system is a single-fault tolerant design. Its fully redundant attitude sensor complement includes 16 coarse Sun sensors, a digital Sun sensor, 3 two-axis inertial reference units, 2 star trackers, and 4 guide telescopes. Attitude actuation is performed using 4 reaction wheels and 8 thrusters, and a single main engine nominally provides velocity-change thrust. The attitude control software has five nominal control modes-3 wheel-based modes and 2 thruster-based modes. A wheel-based Safehold running in the attitude control electronics box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. The paper details the mode designs and their uses.

  1. Attitudes of medical students to medical leadership and management: a systematic review to inform curriculum development.

    PubMed

    Abbas, Mark R; Quince, Thelma A; Wood, Diana F; Benson, John A

    2011-11-14

    There is a growing acknowledgement that doctors need to develop leadership and management competences to become more actively involved in the planning, delivery and transformation of patient services. We undertook a systematic review of what is known concerning the knowledge, skills and attitudes of medical students regarding leadership and management. Here we report the results pertaining to the attitudes of students to provide evidence to inform curriculum development in this developing field of medical education. We searched major electronic databases and citation indexes within the disciplines of medicine, education, social science and management. We undertook hand searching of major journals, and reference and citation tracking. We accessed websites of UK medical institutions and contacted individuals working within the field. 26 studies were included. Most were conducted in the USA, using mainly quantitative methods. We used inductive analysis of the topics addressed by each study to identity five main content areas: Quality Improvement; Managed Care, Use of Resources and Costs; General Leadership and Management; Role of the Doctor, and Patient Safety. Students have positive attitudes to clinical practice guidelines, quality improvement techniques and multidisciplinary teamwork, but mixed attitudes to managed care, cost containment and medical error. Education interventions had variable effects on students' attitudes. Medical students perceive a need for leadership and management education but identified lack of curriculum time and disinterest in some activities as potential barriers to implementation. The findings from our review may reflect the relatively little emphasis given to leadership and management in medical curricula. However, students recognise a need to develop leadership and management competences. Although further work needs to be undertaken, using rigorous methods, to identify the most effective and cost-effective curriculum innovations, this review offers the only currently available summary of work examining the attitudes of students to this important area of development for future doctors.

  2. Attitudes of medical students to medical leadership and management: a systematic review to inform curriculum development

    PubMed Central

    2011-01-01

    Background There is a growing acknowledgement that doctors need to develop leadership and management competences to become more actively involved in the planning, delivery and transformation of patient services. We undertook a systematic review of what is known concerning the knowledge, skills and attitudes of medical students regarding leadership and management. Here we report the results pertaining to the attitudes of students to provide evidence to inform curriculum development in this developing field of medical education. Methods We searched major electronic databases and citation indexes within the disciplines of medicine, education, social science and management. We undertook hand searching of major journals, and reference and citation tracking. We accessed websites of UK medical institutions and contacted individuals working within the field. Results 26 studies were included. Most were conducted in the USA, using mainly quantitative methods. We used inductive analysis of the topics addressed by each study to identity five main content areas: Quality Improvement; Managed Care, Use of Resources and Costs; General Leadership and Management; Role of the Doctor, and Patient Safety. Students have positive attitudes to clinical practice guidelines, quality improvement techniques and multidisciplinary teamwork, but mixed attitudes to managed care, cost containment and medical error. Education interventions had variable effects on students' attitudes. Medical students perceive a need for leadership and management education but identified lack of curriculum time and disinterest in some activities as potential barriers to implementation. Conclusions The findings from our review may reflect the relatively little emphasis given to leadership and management in medical curricula. However, students recognise a need to develop leadership and management competences. Although further work needs to be undertaken, using rigorous methods, to identify the most effective and cost-effective curriculum innovations, this review offers the only currently available summary of work examining the attitudes of students to this important area of development for future doctors. PMID:22082174

  3. Performance analysis of device-level SINS/ACFSS deeply integrated navigation method

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Qin, Shiqiao; Wang, Xingshu; Jiang, Guangwen; Tan, Wenfeng

    2016-10-01

    The Strap-Down Inertial Navigation System (SINS) is a widely used navigation system. The combination of SINS and the Celestial Navigation System (CNS) is one of the popular measures to constitute the integrated navigation system. A Star Sensor (SS) is used as a precise attitude determination device in CNS. To solve the problem that the star image obtained by SS under dynamic conditions is motion-blurred, the Attitude Correlated Frames (ACF) is presented and the star sensor which works based on ACF approach is named ACFSS. Depending on the ACF approach, a novel device-level SINS/ACFSS deeply integrated navigation method is proposed in this paper. Feedback to the ACF process from the error of the gyro is one of the typical characters of the SINS/CNS deeply integrated navigation method. Herein, simulation results have verified its validity and efficiency in improving the accuracy of gyro and it can be proved that this method is feasible in theory.

  4. Microgravity experiments of nano-satellite docking mechanism for final rendezvous approach and docking phase

    NASA Astrophysics Data System (ADS)

    Ui, Kyoichi; Matunaga, Saburo; Satori, Shin; Ishikawa, Tomohiro

    2005-09-01

    Laboratory for Space Systems (LSS), Tokyo Institute of Technology (Tokyo Tech) conducted three-dimensional microgravity environment experiments about a docking mechanism for mothership-daughtership (MS-DS) nano-satellite using the facility of Japan Micro Gravity Center (JAMIC) with Hokkaido Institute of Technology (HIT). LSS has studied and developed a docking mechanism for MS-DS nano-satellite system in final rendezvous approach and docking phase since 2000. Consideration of the docking mechanism is to mate a nano-satellite stably while remaining control error of relative velocity and attitude because it is difficult for nano-satellite to have complicated attitude control and mating systems. Objective of the experiments is to verify fundamental grasping function based on our proposed docking methodology. The proposed docking sequence is divided between approach/grasping phase and guiding phase. In the approach/grasping phase, the docking mechanism grasps the nano-satellite even though the nano-satellite has relative position and attitude control errors as well as relative velocity in a docking space. In the guiding function, the docking mechanism guides the nano-satellite to a docking port while adjusting its attitude in order to transfer electrical power and fuel to the nano-satellite. In the paper, we describe the experimental system including the docking mechanism, control system, the daughtership system and the release mechanism, and describe results of microgravity experiments in JAMIC.

  5. JASMINE simulator

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Gouda, N.; Yano, T.; Sako, N.; Hatsutori, Y.; Tanaka, T.; Yamauchi, M.

    We explain simulation tools in JASMINE project(JASMINE simulator). The JASMINE project stands at the stage where its basic design will be determined in a few years. Then it is very important to simulate the data stream generated by astrometric fields at JASMINE in order to support investigations of error budgets, sampling strategy, data compression, data analysis, scientific performances, etc. Of course, component simulations are needed, but total simulations which include all components from observation target to satellite system are also very important. We find that new software technologies, such as Object Oriented(OO) methodologies are ideal tools for the simulation system of JASMINE(the JASMINE simulator). The simulation system should include all objects in JASMINE such as observation techniques, models of instruments and bus design, orbit, data transfer, data analysis etc. in order to resolve all issues which can be expected beforehand and make it easy to cope with some unexpected problems which might occur during the mission of JASMINE. So, the JASMINE Simulator is designed as handling events such as photons from astronomical objects, control signals for devices, disturbances for satellite attitude, by instruments such as mirrors and detectors, successively. The simulator is also applied to the technical demonstration "Nano-JASMINE". The accuracy of ordinary sensor is not enough for initial phase attitude control. Mission instruments may be a good sensor for this purpose. The problem of attitude control in initial phase is a good example of this software because the problem is closely related to both mission instruments and satellite bus systems.

  6. JASMINE Simulator

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Gouda, N.; Yano, T.; Kobayashi, Y.; Suganuma, M.; Tsujimoto, T.; Sako, N.; Hatsutori, Y.; Tanaka, T.

    2006-08-01

    We explain simulation tools in JASMINE project (JASMINE simulator). The JASMINE project stands at the stage where its basic design will be determined in a few years. Then it is very important to simulate the data stream generated by astrometric fields at JASMINE in order to support investigations of error budgets, sampling strategy, data compression, data analysis, scientific performances, etc. Of course, component simulations are needed, but total simulations which include all components from observation target to satellite system are also very important. We find that new software technologies, such as Object Oriented (OO) methodologies are ideal tools for the simulation system of JASMINE (the JASMINE simulator). The simulation system should include all objects in JASMINE such as observation techniques, models of instruments and bus design, orbit, data transfer, data analysis etc. in order to resolve all issues which can be expected beforehand and make it easy to cope with some unexpected problems which might occur during the mission of JASMINE. So, the JASMINE Simulator is designed as handling events such as photons from astronomical objects, control signals for devices, disturbances for satellite attitude, by instruments such as mirrors and detectors, successively. The simulator is also applied to the technical demonstration "Nano-JASMINE". The accuracy of ordinary sensor is not enough for initial phase attitude control. Mission instruments may be a good sensor for this purpose. The problem of attitude control in initial phase is a good example of this software because the problem is closely related to both mission instruments and satellite bus systems.

  7. Confirmatory factor analysis of the Chinese Breast Cancer Screening Beliefs Questionnaire.

    PubMed

    Kwok, Cannas; Fethney, Judith; White, Kate

    2012-01-01

    Chinese women have been consistently reported as having low breast cancer screening practices. The Chinese Breast Cancer Screening Beliefs Questionnaire (CBCSB) was designed to assess Chinese Australian women's beliefs, knowledge, and attitudes toward breast cancer and screening practices. The objectives of the study were to confirm the factor structure of the CBCSB with a new, larger sample of immigrant Chinese Australian women and to report its clinical validity. A convenience sample of 785 Chinese Australian women was recruited from Chinese community organizations and shopping malls. Cronbach α was used to assess internal consistency reliability, and Amos v18 was used for confirmatory factor analysis. Clinical validity was assessed through linear regression using SPSS v18. The 3-factor structure of the CBCSB was confirmed, although the model required respecification to arrive at a suitable model fit as measured by the goodness-of-fit index (0.98), adjusted goodness-of-fit index (0.97), normed fit index (0.95), and root mean square error of approximation (0.031). Internal consistency reliability coefficients were satisfactory (>.6). Women who engaged in all 3 types of screening had more proactive attitudes to health checkups and perceived less barriers to mammographic screening. The CBCSB is a valid and reliable tool for assessing Chinese women's beliefs, knowledge, and attitudes about breast cancer and breast cancer screening practices. The CBCSB can be used for providing practicing nurses with insights into the provision of culturally sensitive breast health education.

  8. Atmospheric reentry flight test of winged space vehicle

    NASA Astrophysics Data System (ADS)

    Inatani, Yoshifumi; Akiba, Ryojiro; Hinada, Motoki; Nagatomo, Makoto

    A summary of the atmospheric reentry flight experiment of winged space vehicle is presented. The test was conducted and carried out by the Institute of Space and Astronautical Science (ISAS) in Feb. 1992 in Kagoshima Space Center. It is the first Japanese atmospheric reentry flight of the controlled lifting vehicle. A prime objective of the flight is to demonstrate a high speed atmospheric entry flight capability and high-angle-of-attack flight capability in terms of aerodynamics, flight dynamics and flight control of these kind of vehicles. The launch of the winged vehicle was made by balloon and solid propellant rocket booster which was also the first trial in Japan. The vehicle accomplishes the lfight from space-equivalent condition to the atmospheric flight condition where reaction control system (RCS) attitude stabilization and aerodynamic control was used, respectively. In the flight, the vehicle's attitude was measured by both an inertial measurement unit (IMU) and an air data sensor (ADS) which were employed into an auto-pilot flight control loop. After completion of the entry transient flight, the vehicle experienced unexpected instability during the atmospheric decelerating flight; however, it recovered the attitude orientation and completed the transonic flight after that. The latest analysis shows that it is due to the ADS measurement error and the flight control gain scheduling; what happened was all understood. Some details of the test and the brief summary of the current status of the post flight analysis are presented.

  9. Medical error and related factors during internship and residency.

    PubMed

    Ahmadipour, Habibeh; Nahid, Mortazavi

    2015-01-01

    It is difficult to determine the real incidence of medical errors due to the lack of a precise definition of errors, as well as the failure to report them under certain circumstances. We carried out a cross- sectional study in Kerman University of Medical Sciences, Iran in 2013. The participants were selected through the census method. The data were collected using a self-administered questionnaire, which consisted of questions on the participants' demographic data and questions on the medical errors committed. The data were analysed by SPSS 19. It was found that 270 participants had committed medical errors. There was no significant difference in the frequency of errors committed by interns and residents. In the case of residents, the most common error was misdiagnosis and in that of interns, errors related to history-taking and physical examination. Considering that medical errors are common in the clinical setting, the education system should train interns and residents to prevent the occurrence of errors. In addition, the system should develop a positive attitude among them so that they can deal better with medical errors.

  10. Reliability and Validity Study of a Tool to Measure Cancer Stigma: Patient Version.

    PubMed

    Yılmaz, Medine; Dişsiz, Gülçin; Demir, Filiz; Irız, Sibel; Alacacioglu, Ahmet

    2017-01-01

    The aim of this methodological study is to establish the validity and reliability of the Turkish version of "A Questionnaire for Measuring Attitudes toward Cancer (Cancer Stigma) - Patient version." The sample comprised oncology patients who had active cancer treatment. The construct validity was assessed using the confirmatory and exploratory factor analysis. The mean age of the participants was 54.9±12.3 years. In the confirmatory factor analysis, fit values were determined as comparative fit index = 0.93, goodness of fit index = 0.91, normed-fit index=0.91, and root mean square error of approximation RMSEA = 0.09 ( P <0.05) (Kaiser-Meyer-Olkin = 0.88, χ 2 = 1084.41, Df = 66, and Barletta's test P <0.000). The first factor was "impossibility of recovery and experience of social discrimination" and the second factor was "stereotypes of cancer patients." The two-factor structure accounted for 56.74% of the variance. The Cronbach's alpha value was determined as 0.88 for the two-factor scale. "A questionnaire for measuring attitudes toward cancer (cancer stigma) - Patient version" is a reliable and valid questionnaire to assess stigmatization of cancer in cancer patients.

  11. Inertial parameter identification using contact force information for an unknown object captured by a space manipulator

    NASA Astrophysics Data System (ADS)

    Chu, Zhongyi; Ma, Ye; Hou, Yueyang; Wang, Fengwen

    2017-02-01

    This paper presents a novel identification method for the intact inertial parameters of an unknown object in space captured by a manipulator in a space robotic system. With strong dynamic and kinematic coupling existing in the robotic system, the inertial parameter identification of the unknown object is essential for the ideal control strategy based on changes in the attitude and trajectory of the space robot via capturing operations. Conventional studies merely refer to the principle and theory of identification, and an error analysis process of identification is deficient for a practical scenario. To solve this issue, an analysis of the effect of errors on identification is illustrated first, and the accumulation of measurement or estimation errors causing poor identification precision is demonstrated. Meanwhile, a modified identification equation incorporating the contact force, as well as the force/torque of the end-effector, is proposed to weaken the accumulation of errors and improve the identification accuracy. Furthermore, considering a severe disturbance condition caused by various measured noises, the hybrid immune algorithm, Recursive Least Squares and Affine Projection Sign Algorithm (RLS-APSA), is employed to decode the modified identification equation to ensure a stable identification property. Finally, to verify the validity of the proposed identification method, the co-simulation of ADAMS-MATLAB is implemented by multi-degree of freedom models of a space robotic system, and the numerical results show a precise and stable identification performance, which is able to guarantee the execution of aerospace operations and prevent failed control strategies.

  12. Assessment of the knowledge and attitudes of intern doctors to medication prescribing errors in a Nigeria tertiary hospital.

    PubMed

    Ajemigbitse, Adetutu A; Omole, Moses Kayode; Ezike, Nnamdi Chika; Erhun, Wilson O

    2013-12-01

    Junior doctors are reported to make most of the prescribing errors in the hospital setting. The aim of the following study is to determine the knowledge intern doctors have about prescribing errors and circumstances contributing to making them. A structured questionnaire was distributed to intern doctors in National Hospital Abuja Nigeria. Respondents gave information about their experience with prescribing medicines, the extent to which they agreed with the definition of a clinically meaningful prescribing error and events that constituted such. Their experience with prescribing certain categories of medicines was also sought. Data was analyzed with Statistical Package for the Social Sciences (SPSS) software version 17 (SPSS Inc Chicago, Ill, USA). Chi-squared analysis contrasted differences in proportions; P < 0.05 was considered to be statistically significant. The response rate was 90.9% and 27 (90%) had <1 year of prescribing experience. 17 (56.7%) respondents totally agreed with the definition of a clinically meaningful prescribing error. Most common reasons for prescribing mistakes were a failure to check prescriptions with a reference source (14, 25.5%) and failure to check for adverse drug interactions (14, 25.5%). Omitting some essential information such as duration of therapy (13, 20%), patient age (14, 21.5%) and dosage errors (14, 21.5%) were the most common types of prescribing errors made. Respondents considered workload (23, 76.7%), multitasking (19, 63.3%), rushing (18, 60.0%) and tiredness/stress (16, 53.3%) as important factors contributing to prescribing errors. Interns were least confident prescribing antibiotics (12, 25.5%), opioid analgesics (12, 25.5%) cytotoxics (10, 21.3%) and antipsychotics (9, 19.1%) unsupervised. Respondents seemed to have a low awareness of making prescribing errors. Principles of rational prescribing and events that constitute prescribing errors should be taught in the practice setting.

  13. ADCS controllers comparison for small satellitess in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Calvo, Daniel; Laverón-Simavilla, Ana; Lapuerta, Victoria

    2016-07-01

    Fuzzy logic controllers are flexible and simple, suitable for small satellites Attitude Determination and Control Subsystems (ADCS). In a previous work, a tailored Fuzzy controller was designed for a nanosatellite. Its performance and efficiency were compared with a traditional Proportional Integrative Derivative (PID) controller within the same specific mission. The orbit height varied along the mission from injection at around 380 km down to 200 km height, and the mission required pointing accuracy over the whole time. Due to both, the requirements imposed by such a low orbit, and the limitations in the power available for the attitude control, an efficient ADCS is required. Both methodologies, fuzzy and PID, were fine-tuned using an automated procedure to grant maximum efficiency with fixed performances. The simulations showed that the Fuzzy controller is much more efficient (up to 65% less power required) in single manoeuvres, achieving similar, or even better, precision than the PID. The accuracy and efficiency improvement of the Fuzzy controller increase with orbit height because the environmental disturbances decrease, approaching the ideal scenario. However, the controllers are meant to be used in a vast range of situations and configurations which exceed those used in the calibration process carried out in the previous work. To assess the suitability and performance of both controllers in a wider framework, parametric and statistical methods have been applied using the Monte Carlo technique. Several parameters have been modified randomly at the beginning of each simulation: the moments of inertia of the whole satellite and of the momentum wheel, the residual magnetic dipole and the initial conditions of the test. These parameters have been chosen because they are the main source of uncertainty during the design phase. The variables used for the analysis are the error (critical for science) and the operation cost (which impacts the mission lifetime and outcome). The analysis of the simulations has shown that, in overall, the PID error is over twice the Fuzzy error and the PID cost is over 40% bigger than the Fuzzy cost. This suggests that a Fuzzy controller may be a better solution in a wider range of configurations than other classical solutions like the PID.

  14. Screen-related sedentary behaviours: Children’s and parents’ attitudes, motivations, and practices

    PubMed Central

    He, Meizi; Piché, Leonard; Beynon, Charlene; Harris, Stewart

    2016-01-01

    Objective To investigate school-aged children’s and parents’ attitudes, social influences, and intentions toward excessive screen-related sedentary behaviour (S-RSB). Design A cross-sectional study using a survey methodology. Setting Elementary schools in London, Ontario, Canada. Participants All grades five and six students, their parents and teachers in the participating schools were invited to voluntarily participate; 508 student-parent pairs completed the surveys. Main Outcome Measure Children’s screen-related behaviours. Analysis Data were analyzed using the Independent Student t-test to compare differences of continuous variables and the Chi-Square test to test for differences of categorical variables. Results Children spent 3.3 ± 0.15 (standard error) hours per day engaged in screen-related activities. Entertainment, spending time with family, and boredom were cited as the top three reasons for television viewing and video game playing. Compared to “low-screen-users” (i.e. < 2hours/day), “high-screen-users” (i.e. ≥2hours/day) held less negative attitudes toward excessive S-RSB and perceived loosened parental rules on screen use. Parents of “high-screen-users” held less negative attitudes towards children’s S-RSB, had fewer rules about their children’s screen use, and were more likely to be sedentary themselves. Conclusions and Implications Intervention strategies aimed at reducing S-RSB should involve both parents and children and should focus on fostering behavioural changes and promoting parental role-modeling. PMID:19914872

  15. Sliding mode based trajectory linearization control for hypersonic reentry vehicle via extended disturbance observer.

    PubMed

    Xingling, Shao; Honglun, Wang

    2014-11-01

    This paper proposes a novel hybrid control framework by combing observer-based sliding mode control (SMC) with trajectory linearization control (TLC) for hypersonic reentry vehicle (HRV) attitude tracking problem. First, fewer control consumption is achieved using nonlinear tracking differentiator (TD) in the attitude loop. Second, a novel SMC that employs extended disturbance observer (EDO) to counteract the effect of uncertainties using a new sliding surface which includes the estimation error is integrated to address the tracking error stabilization issues in the attitude and angular rate loop, respectively. In addition, new results associated with EDO are examined in terms of dynamic response and noise-tolerant performance, as well as estimation accuracy. The key feature of the proposed compound control approach is that chattering free tracking performance with high accuracy can be ensured for HRV in the presence of multiple uncertainties under control constraints. Based on finite time convergence stability theory, the stability of the resulting closed-loop system is well established. Also, comparisons and extensive simulation results are presented to demonstrate the effectiveness of the control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  16. The political (and physiological) divide: Political orientation, performance monitoring, and the anterior cingulate response.

    PubMed

    Weissflog, Meghan; Choma, Becky L; Dywan, Jane; van Noordt, Stefon J R; Segalowitz, Sidney J

    2013-01-01

    Our goal was to test a model of sociopolitical attitudes that posits a relationship between individual differences in liberal versus conservative political orientation and differential levels of anterior cingulate cortex (ACC) responsivity. We recorded event-related potentials (ERPs) while participants who varied along a unidimensional liberal-conservative continuum engaged in a standard Go/NoGo task. We also measured component attitudes of political orientation in the form of traditionalism (degree of openness to social change) and egalitarianism (a preference for social equality). Generally, participants who reported a more liberal political orientation made fewer errors and produced larger ACC-generated ERPs (the error-related negativity, or ERN and the NoGo N2). This ACC activation, especially as indicated by a larger NoGo N2, was most strongly associated with greater preference for social equality. Performance accuracy, however, was most strongly associated with greater openness to social change. These data are consistent with a social neuroscience view that sociopolitical attitudes are related to aspects of neurophysiological responsivity. They also indicate that a bidimensional model of political orientation can enhance our interpretation of the nature of these associations.

  17. Protection: clarifying the concept for use in nursing practice.

    PubMed

    Lorenz, Susan G

    2007-01-01

    The protection of patients is integral in any healthcare setting. Healthcare organizations are increasingly held accountable for preventable medical errors, the attitudes toward safety, and communication among all levels of providers, collaborative practices, and recognition of risks. The concept of protection is inherent in nursing practice. It provides a framework, that further defines healthcare provider's roles in meeting these imperatives. The scope of protection is considered both globally and individually prominent. Nurses protect patients from environmental hazards, themselves, and any perceived threat. In this analysis of the phenomenon, the concept is clarified, and an evidence-based approach to protection is utilized for theory development and concept measurement.

  18. Exposure Time Optimization for Highly Dynamic Star Trackers

    PubMed Central

    Wei, Xinguo; Tan, Wei; Li, Jian; Zhang, Guangjun

    2014-01-01

    Under highly dynamic conditions, the star-spots on the image sensor of a star tracker move across many pixels during the exposure time, which will reduce star detection sensitivity and increase star location errors. However, this kind of effect can be compensated well by setting an appropriate exposure time. This paper focuses on how exposure time affects the star tracker under highly dynamic conditions and how to determine the most appropriate exposure time for this case. Firstly, the effect of exposure time on star detection sensitivity is analyzed by establishing the dynamic star-spot imaging model. Then the star location error is deduced based on the error analysis of the sub-pixel centroiding algorithm. Combining these analyses, the effect of exposure time on attitude accuracy is finally determined. Some simulations are carried out to validate these effects, and the results show that there are different optimal exposure times for different angular velocities of a star tracker with a given configuration. In addition, the results of night sky experiments using a real star tracker agree with the simulation results. The summarized regularities in this paper should prove helpful in the system design and dynamic performance evaluation of the highly dynamic star trackers. PMID:24618776

  19. Earth elevation map production and high resolution sensing camera imaging analysis

    NASA Astrophysics Data System (ADS)

    Yang, Xiubin; Jin, Guang; Jiang, Li; Dai, Lu; Xu, Kai

    2010-11-01

    The Earth's digital elevation which impacts space camera imaging has prepared and imaging has analysed. Based on matching error that TDI CCD integral series request of the speed of image motion, statistical experimental methods-Monte Carlo method is used to calculate the distribution histogram of Earth's elevation in image motion compensated model which includes satellite attitude changes, orbital angular rate changes, latitude, longitude and the orbital inclination changes. And then, elevation information of the earth's surface from SRTM is read. Earth elevation map which produced for aerospace electronic cameras is compressed and spliced. It can get elevation data from flash according to the shooting point of latitude and longitude. If elevation data between two data, the ways of searching data uses linear interpolation. Linear interpolation can better meet the rugged mountains and hills changing requests. At last, the deviant framework and camera controller are used to test the character of deviant angle errors, TDI CCD camera simulation system with the material point corresponding to imaging point model is used to analyze the imaging's MTF and mutual correlation similarity measure, simulation system use adding cumulation which TDI CCD imaging exceeded the corresponding pixel horizontal and vertical offset to simulate camera imaging when stability of satellite attitude changes. This process is practicality. It can effectively control the camera memory space, and meet a very good precision TDI CCD camera in the request matches the speed of image motion and imaging.

  20. Spacecraft attitude determination using a second-order nonlinear filter

    NASA Technical Reports Server (NTRS)

    Vathsal, S.

    1987-01-01

    The stringent attitude determination accuracy and faster slew maneuver requirements demanded by present-day spacecraft control systems motivate the development of recursive nonlinear filters for attitude estimation. This paper presents the second-order filter development for the estimation of attitude quaternion using three-axis gyro and star tracker measurement data. Performance comparisons have been made by computer simulation of system models and filter mechanization. It is shown that the second-order filter consistently performs better than the extended Kalman filter when the performance index of the root sum square estimation error of the quaternion vector is compared. The second-order filter identifies the gyro drift rates faster than the extended Kalman filter. The uniqueness of this algorithm is the online generation of the time-varying process and measurement noise covariance matrices, derived as a function or the process and measurement nonlinearity, respectively.

  1. Singularity-free extraction of a quaternion from a direction-cosine matrix. [for spacecraft control and guidance

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.

    1976-01-01

    A computer algorithm for extracting a quaternion from a direction-cosine matrix (DCM) is described. The quaternion provides a four-parameter representation of rotation, as against the nine-parameter representation afforded by a DCM. Commanded attitude in space shuttle steering is conveniently computed by DCM, while actual attitude is computed most compactly as a quaternion, as is attitude error. The unit length of the rotation quaternion, and interchangeable of a quaternion and its negative, are used to advantage in the extraction algorithm. Protection of the algorithm against square root failure and division overflow are considered. Necessary and sufficient conditions for handling the rotation vector element of largest magnitude are discussed

  2. Preliminary Design and Analysis of the GIFTS Instrument Pointing System

    NASA Technical Reports Server (NTRS)

    Zomkowski, Paul P.

    2003-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Instrument is the next generation spectrometer for remote sensing weather satellites. The GIFTS instrument will be used to perform scans of the Earth s atmosphere by assembling a series of field-of- views (FOV) into a larger pattern. Realization of this process is achieved by step scanning the instrument FOV in a contiguous fashion across any desired portion of the visible Earth. A 2.3 arc second pointing stability, with respect to the scanning instrument, must be maintained for the duration of the FOV scan. A star tracker producing attitude data at 100 Hz rate will be used by the autonomous pointing algorithm to precisely track target FOV s on the surface of the Earth. The main objective is to validate the pointing algorithm in the presence of spacecraft disturbances and determine acceptable disturbance limits from expected noise sources. Proof of concept validation of the pointing system algorithm is carried out with a full system simulation developed using Matlab Simulink. Models for the following components function within the full system simulation: inertial reference unit (IRU), attitude control system (ACS), reaction wheels, star tracker, and mirror controller. With the spacecraft orbital position and attitude maintained to within specified limits the pointing algorithm receives quaternion, ephemeris, and initialization data that are used to construct the required mirror pointing commands at a 100 Hz rate. This comprehensive simulation will also aid in obtaining a thorough understanding of spacecraft disturbances and other sources of pointing system errors. Parameter sensitivity studies and disturbance analysis will be used to obtain limits of operability for the GIFTS instrument. The culmination of this simulation development and analysis will be used to validate the specified performance requirements outlined for this instrument.

  3. Estimation and Modeling of Enceladus Plume Jet Density Using Reaction Wheel Control Data

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Wang, Eric K.; Pilinski, Emily B.; Macala, Glenn A.; Feldman, Antonette

    2010-01-01

    The Cassini spacecraft was launched on October 15, 1997 by a Titan 4B launch vehicle. After an interplanetary cruise of almost seven years, it arrived at Saturn on June 30, 2004. In 2005, Cassini completed three flybys of Enceladus, a small, icy satellite of Saturn. Observations made during these flybys confirmed the existence of a water vapor plume in the south polar region of Enceladus. Five additional low-altitude flybys of Enceladus were successfully executed in 2008-9 to better characterize these watery plumes. The first of these flybys was the 50-km Enceladus-3 (E3) flyby executed on March 12, 2008. During the E3 flyby, the spacecraft attitude was controlled by a set of three reaction wheels. During the flyby, multiple plume jets imparted disturbance torque on the spacecraft resulting in small but visible attitude control errors. Using the known and unique transfer function between the disturbance torque and the attitude control error, the collected attitude control error telemetry could be used to estimate the disturbance torque. The effectiveness of this methodology is confirmed using the E3 telemetry data. Given good estimates of spacecraft's projected area, center of pressure location, and spacecraft velocity, the time history of the Enceladus plume density is reconstructed accordingly. The 1-sigma uncertainty of the estimated density is 7.7%. Next, we modeled the density due to each plume jet as a function of both the radial and angular distances of the spacecraft from the plume source. We also conjecture that the total plume density experienced by the spacecraft is the sum of the component plume densities. By comparing the time history of the reconstructed E3 plume density with that predicted by the plume model, values of the plume model parameters are determined. Results obtained are compared with those determined by other Cassini science instruments.

  4. Estimation and Modeling of Enceladus Plume Jet Density Using Reaction Wheel Control Data

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Wang, Eric K.; Pilinski, Emily B.; Macala, Glenn A.; Feldman, Antonette

    2010-01-01

    The Cassini spacecraft was launched on October 15, 1997 by a Titan 4B launch vehicle. After an interplanetary cruise of almost seven years, it arrived at Saturn on June 30, 2004. In 2005, Cassini completed three flybys of Enceladus, a small, icy satellite of Saturn. Observations made during these flybys confirmed the existence of a water vapor plume in the south polar region of Enceladus. Five additional low-altitude flybys of Enceladus were successfully executed in 2008-9 to better characterize these watery plumes. The first of these flybys was the 50-km Enceladus-3 (E3) flyby executed on March 12, 2008. During the E3 flyby, the spacecraft attitude was controlled by a set of three reaction wheels. During the flyby, multiple plume jets imparted disturbance torque on the spacecraft resulting in small but visible attitude control errors. Using the known and unique transfer function between the disturbance torque and the attitude control error, the collected attitude control error telemetry could be used to estimate the disturbance torque. The effectiveness of this methodology is confirmed using the E3 telemetry data. Given good estimates of spacecraft's projected area, center of pressure location, and spacecraft velocity, the time history of the Enceladus plume density is reconstructed accordingly. The 1 sigma uncertainty of the estimated density is 7.7%. Next, we modeled the density due to each plume jet as a function of both the radial and angular distances of the spacecraft from the plume source. We also conjecture that the total plume density experienced by the spacecraft is the sum of the component plume densities. By comparing the time history of the reconstructed E3 plume density with that predicted by the plume model, values of the plume model parameters are determined. Results obtained are compared with those determined by other Cassini science instruments.

  5. Attitude determination for high-accuracy submicroradian jitter pointing on space-based platforms

    NASA Astrophysics Data System (ADS)

    Gupta, Avanindra A.; van Houten, Charles N.; Germann, Lawrence M.

    1990-10-01

    A description of the requirement definition process is given for a new wideband attitude determination subsystem (ADS) for image motion compensation (IMC) systems. The subsystem consists of either lateral accelerometers functioning in differential pairs or gas-bearing gyros for high-frequency sensors using CCD-based star trackers for low-frequency sensors. To minimize error the sensor signals are combined so that the mixing filter does not allow phase distortion. The two ADS models are introduced in an IMC simulation to predict measurement error, correction capability, and residual image jitter for a variety of system parameters. The IMC three-axis testbed is utilized to simulate an incoming beam in inertial space. Results demonstrate that both mechanical and electronic IMC meet the requirements of image stabilization for space-based observation at submicroradian-jitter levels. Currently available technology may be employed to implement IMC systems.

  6. Large Angle Reorientation of a Solar Sail Using Gimballed Mass Control

    NASA Astrophysics Data System (ADS)

    Sperber, E.; Fu, B.; Eke, F. O.

    2016-06-01

    This paper proposes a control strategy for the large angle reorientation of a solar sail equipped with a gimballed mass. The algorithm consists of a first stage that manipulates the gimbal angle in order to minimize the attitude error about a single principal axis. Once certain termination conditions are reached, a regulator is employed that selects a single gimbal angle for minimizing both the residual attitude error concomitantly with the body rate. Because the force due to the specular reflection of radiation is always directed along a reflector's surface normal, this form of thrust vector control cannot generate torques about an axis normal to the plane of the sail. Thus, in order to achieve three-axis control authority a 1-2-1 or 2-1-2 sequence of rotations about principal axes is performed. The control algorithm is implemented directly in-line with the nonlinear equations of motion and key performance characteristics are identified.

  7. Analysis of error in TOMS total ozone as a function of orbit and attitude parameters

    NASA Technical Reports Server (NTRS)

    Gregg, W. W.; Ardanuy, P. E.; Braun, W. C.; Vallette, B. J.; Bhartia, P. K.; Ray, S. N.

    1991-01-01

    Computer simulations of orbital scenarios were performed to examine the effects of orbital altitude, equator crossing time, attitude uncertainty, and orbital eccentricity on ozone observations by future satellites. These effects were assessed by determining changes in solar and viewing geometry and earth daytime coverage loss. The importance of these changes on ozone retrieval was determined by simulating uncertainties in the TOMS ozone retrieval algorithm. The major findings are as follows: (1) Drift of equator crossing time from local noon would have the largest effect on the quality of ozone derived from TOMS. The most significant effect of this drift is the loss of earth daytime coverage in the winter hemisphere. The loss in coverage increases from 1 degree latitude for + or - 1 hour from noon, 6 degrees for + or - 3 hours from noon, to 53 degrees for + or - 6 hours from noon. An additional effect is the increase in ozone retrieval errors due to high solar zenith angles. (2) To maintain contiguous earth coverage, the maximum scan angle of the sensor must be increased with decreasing orbital altitude. The maximum scan angle required for full coverage at the equator varies from 60 degrees at 600 km altitude to 45 degrees at 1200 km. This produces an increase in spacecraft zenith angle, theta, which decreases the ozone retrieval accuracy. The range in theta was approximately 72 degrees for 600 km to approximately 57 degrees at 1200 km. (3) The effect of elliptical orbits is to create gaps in coverage along the subsatellite track. An elliptical orbit with a 200 km perigee and 1200 km apogee produced a maximum earth coverage gap of about 45 km at the perigee at nadir. (4) An attitude uncertainty of 0.1 degree in each axis (pitch, roll, yaw) produced a maximum scan angle to view the pole, and maximum solar zenith angle).

  8. Empowering family physicians to impart proper inhaler teaching to patients with chronic obstructive pulmonary disease and asthma

    PubMed Central

    Leung, Janice M; Bhutani, Mohit; Leigh, Richard; Pelletier, Dan; Good, Cathy; Sin, Don D

    2015-01-01

    BACKGROUND: Patients with chronic obstructive pulmonary disease (COPD) and asthma depend on inhalers for management, but critical errors committed during inhaler use can limit drug effectiveness. Outpatient education in inhaler technique remains inconsistent due to limited resources and inadequate provider knowledge. OBJECTIVE: To determine whether a simple, two-session inhaler education program can improve physician attitudes toward inhaler teaching in primary care practice. METHODS: An inhaler education program with small-group hands-on device training was instituted for family physicians (FP) in British Columbia and Alberta. Sessions were spaced one to three months apart. All critical errors were corrected in the first session. Questionnaires surveying current inhaler teaching practices and attitudes toward inhaler teaching were distributed to physicians before and after the program. RESULTS: Forty-one (60%) of a total 68 participating FPs completed both before and after program questionnaires. Before the program, only 20 (49%) reported providing some form of inhaler teaching in their practices, and only four (10%) felt fully competent to teach patients inhaler technique. After the program, 40 (98%) rated their inhaler teaching as good to excellent. Thirty-four (83%) reported providing inhaler teaching in their practices, either by themselves or by an allied health care professional they had personally trained. All stated they could teach inhaler technique within 5 min. Observation of FPs during the second session by certified respiratory educators found that none made critical errors and all had excellent technique. CONCLUSION: A physician inhaler education program can improve attitudes toward inhaler teaching and facilitate implementation in clinical practices. PMID:26436910

  9. LANDSAT-4 horizon scanner performance evaluation

    NASA Technical Reports Server (NTRS)

    Bilanow, S.; Chen, L. C.; Davis, W. M.; Stanley, J. P.

    1984-01-01

    Representative data spans covering a little more than a year since the LANDSAT-4 launch were analyzed to evaluate the flight performance of the satellite's horizon scanner. High frequency noise was filtered out by 128-point averaging. The effects of Earth oblateness and spacecraft altitude variations are modeled, and residual systematic errors are analyzed. A model for the predicted radiance effects is compared with the flight data and deficiencies in the radiance effects modeling are noted. Correction coefficients are provided for a finite Fourier series representation of the systematic errors in the data. Analysis of the seasonal dependence of the coefficients indicates the effects of some early mission problems with the reference attitudes which were computed by the onboard computer using star trackers and gyro data. The effects of sun and moon interference, unexplained anomalies in the data, and sensor noise characteristics and their power spectrum are described. The variability of full orbit data averages is shown. Plots of the sensor data for all the available data spans are included.

  10. A new smooth robust control design for uncertain nonlinear systems with non-vanishing disturbances

    NASA Astrophysics Data System (ADS)

    Xian, Bin; Zhang, Yao

    2016-06-01

    In this paper, we consider the control problem for a general class of nonlinear system subjected to uncertain dynamics and non-varnishing disturbances. A smooth nonlinear control algorithm is presented to tackle these uncertainties and disturbances. The proposed control design employs the integral of a nonlinear sigmoid function to compensate the uncertain dynamics, and achieve a uniformly semi-global practical asymptotic stable tracking control of the system outputs. A novel Lyapunov-based stability analysis is employed to prove the convergence of the tracking errors and the stability of the closed-loop system. Numerical simulation results on a two-link robot manipulator are presented to illustrate the performance of the proposed control algorithm comparing with the layer-boundary sliding mode controller and the robust of integration of sign of error control design. Furthermore, real-time experiment results for the attitude control of a quadrotor helicopter are also included to confirm the effectiveness of the proposed algorithm.

  11. James Webb Space Telescope Initial Mid-Course Correction Monte Carlo Implementation using Task Parallelism

    NASA Technical Reports Server (NTRS)

    Petersen, Jeremy; Tichy, Jason; Wawrzyniak, Geoffrey; Richon, Karen

    2014-01-01

    The James Webb Space Telescope will be launched into a highly elliptical orbit that does not possess sufficient energy to achieve a proper Sun-Earth L2 libration point orbit. Three mid-course correction (MCC) maneuvers are planned to rectify the energy deficit: MCC-1a, MCC-1b, and MCC-2. To validate the propellant budget and trajectory design methods, a set of Monte Carlo analyses that incorporate MCC maneuver modeling and execution are employed. The first analysis focuses on the effects of launch vehicle injection errors on the magnitude of MCC-1a. The second on the spread of potential V based on the performance of the propulsion system as applied to all three MCC maneuvers. The final highlights the slight, but notable, contribution of the attitude thrusters during each MCC maneuver. Given the possible variations in these three scenarios, the trajectory design methods are determined to be robust to errors in the modeling of the flight system.

  12. James Webb Space Telescope Initial Mid-Course Correction Monte Carlo Implementation using Task Parallelism

    NASA Technical Reports Server (NTRS)

    Petersen, Jeremy; Tichy, Jason; Wawrzyniak, Geoffrey; Richon, Karen

    2014-01-01

    The James Webb Space Telescope will be launched into a highly elliptical orbit that does not possess sufficient energy to achieve a proper Sun-Earth/Moon L2 libration point orbit. Three mid-course correction (MCC) maneuvers are planned to rectify the energy deficit: MCC-1a, MCC-1b, and MCC-2. To validate the propellant budget and trajectory design methods, a set of Monte Carlo analyses that incorporate MCC maneuver modeling and execution are employed. The first analysis focuses on the effects of launch vehicle injection errors on the magnitude of MCC-1a. The second on the spread of potential V based on the performance of the propulsion system as applied to all three MCC maneuvers. The final highlights the slight, but notable, contribution of the attitude thrusters during each MCC maneuver. Given the possible variations in these three scenarios, the trajectory design methods are determined to be robust to errors in the modeling of the flight system.

  13. Altitude registration of limb-scattered radiation

    NASA Astrophysics Data System (ADS)

    Moy, Leslie; Bhartia, Pawan K.; Jaross, Glen; Loughman, Robert; Kramarova, Natalya; Chen, Zhong; Taha, Ghassan; Chen, Grace; Xu, Philippe

    2017-01-01

    One of the largest constraints to the retrieval of accurate ozone profiles from UV backscatter limb sounding sensors is altitude registration. Two methods, the Rayleigh scattering attitude sensing (RSAS) and absolute radiance residual method (ARRM), are able to determine altitude registration to the accuracy necessary for long-term ozone monitoring. The methods compare model calculations of radiances to measured radiances and are independent of onboard tracking devices. RSAS determines absolute altitude errors, but, because the method is susceptible to aerosol interference, it is limited to latitudes and time periods with minimal aerosol contamination. ARRM, a new technique introduced in this paper, can be applied across all seasons and altitudes. However, it is only appropriate for relative altitude error estimates. The application of RSAS to Limb Profiler (LP) measurements from the Ozone Mapping and Profiler Suite (OMPS) on board the Suomi NPP (SNPP) satellite indicates tangent height (TH) errors greater than 1 km with an absolute accuracy of ±200 m. Results using ARRM indicate a ˜ 300 to 400 m intra-orbital TH change varying seasonally ±100 m, likely due to either errors in the spacecraft pointing or in the geopotential height (GPH) data that we use in our analysis. ARRM shows a change of ˜ 200 m over ˜ 5 years with a relative accuracy (a long-term accuracy) of ±100 m outside the polar regions.

  14. A Sequential Multiplicative Extended Kalman Filter for Attitude Estimation Using Vector Observations.

    PubMed

    Qin, Fangjun; Chang, Lubin; Jiang, Sai; Zha, Feng

    2018-05-03

    In this paper, a sequential multiplicative extended Kalman filter (SMEKF) is proposed for attitude estimation using vector observations. In the proposed SMEKF, each of the vector observations is processed sequentially to update the attitude, which can make the measurement model linearization more accurate for the next vector observation. This is the main difference to Murrell’s variation of the MEKF, which does not update the attitude estimate during the sequential procedure. Meanwhile, the covariance is updated after all the vector observations have been processed, which is used to account for the special characteristics of the reset operation necessary for the attitude update. This is the main difference to the traditional sequential EKF, which updates the state covariance at each step of the sequential procedure. The numerical simulation study demonstrates that the proposed SMEKF has more consistent and accurate performance in a wide range of initial estimate errors compared to the MEKF and its traditional sequential forms.

  15. A Sequential Multiplicative Extended Kalman Filter for Attitude Estimation Using Vector Observations

    PubMed Central

    Qin, Fangjun; Jiang, Sai; Zha, Feng

    2018-01-01

    In this paper, a sequential multiplicative extended Kalman filter (SMEKF) is proposed for attitude estimation using vector observations. In the proposed SMEKF, each of the vector observations is processed sequentially to update the attitude, which can make the measurement model linearization more accurate for the next vector observation. This is the main difference to Murrell’s variation of the MEKF, which does not update the attitude estimate during the sequential procedure. Meanwhile, the covariance is updated after all the vector observations have been processed, which is used to account for the special characteristics of the reset operation necessary for the attitude update. This is the main difference to the traditional sequential EKF, which updates the state covariance at each step of the sequential procedure. The numerical simulation study demonstrates that the proposed SMEKF has more consistent and accurate performance in a wide range of initial estimate errors compared to the MEKF and its traditional sequential forms. PMID:29751538

  16. High accuracy position method based on computer vision and error analysis

    NASA Astrophysics Data System (ADS)

    Chen, Shihao; Shi, Zhongke

    2003-09-01

    The study of high accuracy position system is becoming the hotspot in the field of autocontrol. And positioning is one of the most researched tasks in vision system. So we decide to solve the object locating by using the image processing method. This paper describes a new method of high accuracy positioning method through vision system. In the proposed method, an edge-detection filter is designed for a certain running condition. Here, the filter contains two mainly parts: one is image-processing module, this module is to implement edge detection, it contains of multi-level threshold self-adapting segmentation, edge-detection and edge filter; the other one is object-locating module, it is to point out the location of each object in high accurate, and it is made up of medium-filtering and curve-fitting. This paper gives some analysis error for the method to prove the feasibility of vision in position detecting. Finally, to verify the availability of the method, an example of positioning worktable, which is using the proposed method, is given at the end of the paper. Results show that the method can accurately detect the position of measured object and identify object attitude.

  17. My copilot is a nurse--using crew resource management in the OR.

    PubMed

    Powell, Stephen M; Hill, Ruth Kimberly

    2006-01-01

    Crew resource management (CRM) has been used for more than 20 years in the aviation industry to teach individual error countermeasures by developing nontechnical (ie, cognitive, social) skills based on the observed traits of successful individuals and crews. The health care industry began to investigate aviation CRM after the Institute of Medicine's report, To Err is Human: Building a Safer Health System, recommended that medicine adopt aviation's approach to safety and error management. Initial results of implementing CRM in health care arenas have demonstrated reduced adverse outcomes, reduced errors, reduced length of stay, improved nurse retention, and changed attitudes and behaviors toward teamwork.

  18. Cross-cultural validity of the theory of planned behavior for predicting healthy food choice in secondary school students of Inner Mongolia.

    PubMed

    Shimazaki, Takashi; Bao, Hugejiletu; Deli, Geer; Uechi, Hiroaki; Lee, Ying-Hua; Miura, Kayo; Takenaka, Koji

    2017-11-01

    Unhealthy eating behavior is a serious health concern among secondary school students in Inner Mongolia. To predict their healthy food choices and devise methods of correcting unhealthy choices, we sought to confirm the cross-cultural validity of the theory of planned behavior among Inner Mongolian students. A cross-sectional study, conducted between November and December 2014. Overall, 3047 students were enrolled. We devised a questionnaire based on the theory of planned behavior to measure its components (intentions, attitudes, subjective norms, and perceived behavioral control) in relation to healthy food choices; we also assessed their current engagement in healthy food choices. A principal component analysis revealed high contribution rates for the components (69.32%-88.77%). A confirmatory factor analysis indicated that the components of the questionnaire had adequate model fit (goodness of fit index=0.997, adjusted goodness of fit index=0.984, comparative fit index=0.998, and root mean square error of approximation=0.049). Notably, data from participants within the suburbs did not support the theory of planned behavior construction. Several paths did not predict the hypothesis variables. However, attitudes toward healthy food choices strongly predicted behavioral intention (path coefficients 0.49-0.77, p<0.01), regardless of demographic characteristics. Our results support that the theory of planned behavior can apply to secondary school students in urban areas. Furthermore, attitudes towards healthy food choices were the best predictor of behavioral intentions to engage in such choices in Inner Mongolian students. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  19. Precision Attitude Determination for an Infrared Space Telescope

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.

    2008-01-01

    We have developed performance simulations for a precision attitude determination system using a focal plane star tracker on an infrared space telescope. The telescope is being designed for the Destiny mission to measure cosmologically distant supernovae as one of the candidate implementations for the Joint Dark Energy Mission. Repeat observations of the supernovae require attitude control at the level of 0.010 arcseconds (0.05 microradians) during integrations and at repeat intervals up to and over a year. While absolute accuracy is not required, the repoint precision is challenging. We have simulated the performance of a focal plane star tracker in a multidimensional parameter space, including pixel size, read noise, and readout rate. Systematic errors such as proper motion, velocity aberration, and parallax can be measured and compensated out. Our prediction is that a relative attitude determination accuracy of 0.001 to 0.002 arcseconds (0.005 to 0.010 microradians) will be achievable.

  20. Science observations with the IUE using the one-gyro mode

    NASA Technical Reports Server (NTRS)

    Imhoff, C.; Pitts, R.; Arquilla, R.; Shrader, Chris R.; Perez, M. R.; Webb, J.

    1990-01-01

    The International Ultraviolet Explorer (IUE) attitude control system originally included an inertial reference package containing six gyroscopes for three axis stabilization. The science instrument includes a prime and redundant Field Error Sensor (FES) camera for target acquisition and offset guiding. Since launch, four of the six gyroscopes have failed. The current attitude control system utilizes the remaining two gyros and a Fine Sun Sensor (FSS) for three axis stabilization. When the next gyro fails, a new attitude control system will be uplinked which will rely on the remaining gyro and the FSS for general three axis stabilization. In addition to the FSS, the FES cameras will be required to assist in maintaining fine attitude control during target acquisition. This has required thoroughly determining the characteristics of the FES cameras and the spectrograph aperture plate as well as devising new target acquisition procedures. The results of this work are presented.

  1. Science observations with the IUE using the one-gyro mode

    NASA Technical Reports Server (NTRS)

    Imhoff, C.; Pitts, R.; Arquilla, R.; Shrader, C.; Perez, M.; Webb, J.

    1990-01-01

    The International Ultraviolet Explorer (IUE) attitude control system originally included an inertial reference package containing six gyroscopes for three axis stabilization. The science instrument includes a prime and redundant Field Error Sensor (FES) camera for target acquisition and offset guiding. Since launch, four of the six gyroscopes have failed. The current attitude control system utilizes the remaining two gyros and a Fine Sun Sensor (FSS) for three axis stabilization. When the next gyro fails, a new attitude control system will be uplinked, which will relay on the remaining gyro and the FSS for general three axis stabilization. In addition to the FSS, the FES cameras will be required to assist in maintaining fine attitude control during target acquisition. This has required thoroughly determining the characteristics of the FES cameras and the spectrograph aperture plate as well as devising new target acquisition procedures. The results of this work are presented.

  2. Measuring attitude with a gradiometer

    NASA Technical Reports Server (NTRS)

    Sonnabend, David; Gardner, Thomas G.

    1994-01-01

    This paper explores using a gravity gradiometer to measure the attitude of a satellite, given that the gravity field is accurately known. Since gradiometers actually measure a combination of the gradient and attitude rate and acceleration terms, the answer is far from obvious. The paper demonstrates that it can be done and at microradian accuracy. The technique employed is dynamic estimation, based on the momentum biased Euler equations. The satellite is assumed nominally planet pointed, and subject to control, gravity gradient, and partly radom drag torques. The attitude estimator is unusual. While the standard method of feeding back measurement residuals is used, the feedback gain matrix isn't derived from Kalman theory. instead, it's chosen to minimize a measure of the terminal covariance of the error in the estimate. This depends on the gain matrix and the power spectra of all the process and measurement noises. An integration is required over multiple solutions of Lyapunov equations.

  3. Adaptive UAV Attitude Estimation Employing Unscented Kalman Filter, FOAM and Low-Cost MEMS Sensors

    PubMed Central

    de Marina, Héctor García; Espinosa, Felipe; Santos, Carlos

    2012-01-01

    Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like take-off aerobatic maneuvers. This paper presents an adaptive method to estimate these angles using off-the-shelf components. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Fast Optimal Attitude Matrix (FOAM) algorithm as the observation model. The performance of the method is assessed through simulations. Moreover, field experiments are presented using a real fixed-wing UAV. The proposed low cost solution, implemented in a microcontroller, shows a satisfactory real time performance. PMID:23012559

  4. Specification and misspecification of theoretical foundations and logic models for health communication campaigns.

    PubMed

    Slater, Michael D

    2006-01-01

    While increasingly widespread use of behavior change theory is an advance for communication campaigns and their evaluation, such theories provide a necessary but not sufficient condition for theory-based communication interventions. Such interventions and their evaluations need to incorporate theoretical thinking about plausible mechanisms of message effect on health-related attitudes and behavior. Otherwise, strategic errors in message design and dissemination, and misspecified campaign logic models, insensitive to campaign effects, are likely to result. Implications of the elaboration likelihood model, attitude accessibility, attitude to the ad theory, exemplification, and framing are explored, and implications for campaign strategy and evaluation designs are briefly discussed. Initial propositions are advanced regarding a theory of campaign affect generalization derived from attitude to ad theory, and regarding a theory of reframing targeted health behaviors in those difficult contexts in which intended audiences are resistant to the advocated behavior or message.

  5. Are health care provider organizations ready to tackle diagnostic error? A survey of Leapfrog-participating hospitals.

    PubMed

    Newman-Toker, David E; Austin, J Matthew; Derk, Jordan; Danforth, Melissa; Graber, Mark L

    2017-06-27

    A 2015 National Academy of Medicine report on improving diagnosis in health care made recommendations for direct action by hospitals and health systems. Little is known about how health care provider organizations are addressing diagnostic safety/quality. This study is an anonymous online survey of safety professionals from US hospitals and health systems in July-August 2016. The survey was sent to those attending a Leapfrog Group webinar on misdiagnosis (n=188). The instrument was focused on knowledge, attitudes, and capability to address diagnostic errors at the institutional level. Overall, 61 (32%) responded, including community hospitals (42%), integrated health networks (25%), and academic centers (21%). Awareness was high, but commitment and capability were low (31% of leaders understand the problem; 28% have sufficient safety resources; and 25% have made diagnosis a top institutional safety priority). Ongoing efforts to improve diagnostic safety were sparse and mostly included root cause analysis and peer review feedback around diagnostic errors. The top three barriers to addressing diagnostic error were lack of awareness of the problem, lack of measures of diagnostic accuracy and error, and lack of feedback on diagnostic performance. The top two tools viewed as critically important for locally tackling the problem were routine feedback on diagnostic performance and culture change to emphasize diagnostic safety. Although hospitals and health systems appear to be aware of diagnostic errors as a major safety imperative, most organizations (even those that appear to be making a strong commitment to patient safety) are not yet doing much to improve diagnosis. Going forward, efforts to activate health care organizations will be essential to improving diagnostic safety.

  6. Scout fourth stage attitude and velocity control (AVC) system feasibility study

    NASA Technical Reports Server (NTRS)

    Byars, L. B.

    1975-01-01

    The feasibility of incorporating a guidance system in the Scout fourth stage to achieve a significant improvement in expected payload delivery accuracy is studied. The technical investigations included the determination of the AVC equipment performance requirements, establishment of qualification and acceptance test levels, generation of layouts illustrating design approaches for the upper D and payload transition sections to incorporate the hardware, and the preparation of a vendor bid package. Correction concepts, utilizing inertial velocity and attitude, were identified and evaluated. Fourth stage attitude adjustments as determined from inertial velocity variation through the first three stages and a final velocity correction based upon the measured in-plane component errors at injection were employed. Results show radical reductions in apogee-perigee deviations.

  7. Skin movement artefact assessment and compensation in the estimation of knee-joint kinematics.

    PubMed

    Lucchetti, L; Cappozzo, A; Cappello, A; Della Croce, U

    1998-11-01

    In three dimensional (3-D) human movement analysis using close-range photogrammetry, surface marker clusters deform and rigidly move relative to the underlying bone. This introduces an important artefact (skin movement artefact) which propagates to bone position and orientation and joint kinematics estimates. This occurs to the extent that those joint attitude components that undergo small variations result in totally unreliable values. This paper presents an experimental and analytical procedure, to be included in a subject-specific movement analysis protocol, which allows for the assessment of skin movement artefacts and, based on this knowledge, for their compensation. The effectiveness of this procedure was verified with reference to knee-joint kinematics and to the artefacts caused by the hip movements on markers located on the thigh surface. Quantitative validation was achieved through experimental paradigms whereby prior reliable information on the target joint kinematics was available. When position and orientation of bones were determined during the execution of a motor task, using a least-squares optimal estimator, but the rigid artefactual marker cluster movement was not dealt with, then knee joint translations and rotations were affected by root mean square errors (r.m.s.) up to 14 mm and 6 degrees, respectively. When the rigid artefactual movement was also compensated for, then r.m.s errors were reduced to less than 4 mm and 3 degrees, respectively. In addition, errors originally strongly correlated with hip rotations, after compensation, lost this correlation.

  8. Integrated orbit and attitude hardware-in-the-loop simulations for autonomous satellite formation flying

    NASA Astrophysics Data System (ADS)

    Park, Han-Earl; Park, Sang-Young; Kim, Sung-Woo; Park, Chandeok

    2013-12-01

    Development and experiment of an integrated orbit and attitude hardware-in-the-loop (HIL) simulator for autonomous satellite formation flying are presented. The integrated simulator system consists of an orbit HIL simulator for orbit determination and control, and an attitude HIL simulator for attitude determination and control. The integrated simulator involves four processes (orbit determination, orbit control, attitude determination, and attitude control), which interact with each other in the same way as actual flight processes do. Orbit determination is conducted by a relative navigation algorithm using double-difference GPS measurements based on the extended Kalman filter (EKF). Orbit control is performed by a state-dependent Riccati equation (SDRE) technique that is utilized as a nonlinear controller for the formation control problem. Attitude is determined from an attitude heading reference system (AHRS) sensor, and a proportional-derivative (PD) feedback controller is used to control the attitude HIL simulator using three momentum wheel assemblies. Integrated orbit and attitude simulations are performed for a formation reconfiguration scenario. By performing the four processes adequately, the desired formation reconfiguration from a baseline of 500-1000 m was achieved with meter-level position error and millimeter-level relative position navigation. This HIL simulation demonstrates the performance of the integrated HIL simulator and the feasibility of the applied algorithms in a real-time environment. Furthermore, the integrated HIL simulator system developed in the current study can be used as a ground-based testing environment to reproduce possible actual satellite formation operations.

  9. The attitude inversion method of geostationary satellites based on unscented particle filter

    NASA Astrophysics Data System (ADS)

    Du, Xiaoping; Wang, Yang; Hu, Heng; Gou, Ruixin; Liu, Hao

    2018-04-01

    The attitude information of geostationary satellites is difficult to be obtained since they are presented in non-resolved images on the ground observation equipment in space object surveillance. In this paper, an attitude inversion method for geostationary satellite based on Unscented Particle Filter (UPF) and ground photometric data is presented. The inversion algorithm based on UPF is proposed aiming at the strong non-linear feature in the photometric data inversion for satellite attitude, which combines the advantage of Unscented Kalman Filter (UKF) and Particle Filter (PF). This update method improves the particle selection based on the idea of UKF to redesign the importance density function. Moreover, it uses the RMS-UKF to partially correct the prediction covariance matrix, which improves the applicability of the attitude inversion method in view of UKF and the particle degradation and dilution of the attitude inversion method based on PF. This paper describes the main principles and steps of algorithm in detail, correctness, accuracy, stability and applicability of the method are verified by simulation experiment and scaling experiment in the end. The results show that the proposed method can effectively solve the problem of particle degradation and depletion in the attitude inversion method on account of PF, and the problem that UKF is not suitable for the strong non-linear attitude inversion. However, the inversion accuracy is obviously superior to UKF and PF, in addition, in the case of the inversion with large attitude error that can inverse the attitude with small particles and high precision.

  10. Construction, Deployment and Data Analysis of the E and B EXperiment: A Cosmic Microwave Background Polarimeter

    NASA Astrophysics Data System (ADS)

    Didier, Joy

    The E and B EXperiment (EBEX) is a pointed balloon-borne telescope designed to measure the polarization of the cosmic microwave background (CMB) as well as that from Galactic dust. The instrument is equipped with a 1.5 meter aperture Gregorian-Dragone telescope, providing an 8' beam at three frequency bands centered on 150, 250 and 410 GHz. The telescope is designed to measure or place an upper limit on inflationary B-mode signals and to probe B-modes originating from gravitationnal lensing of the CMB. The higher EBEX frequencies are designed to enable the measurement and removal of polarized Galactic dust foregrounds which currently limit the measurement of inflationary B-modes. Polarimetry is achieved by rotating an achromatic half-wave plate (HWP) on a superconducting magnetic bearing. In January 2013, EBEX completed 11 days of observations in a flight over Antarctica covering 6,000 square degrees of the southern sky. This marks the first time that kilo-pixel TES bolometer arrays have made science observations on a balloon-borne platform. In this thesis we report on the construction, deployment and data analysis of EBEX. We review the development of the pointing sensors and software used for real-time attitude determination and control, including pre-flight testing and calibration. We then report on the 2013 long duration flight (LD2013) and review all the major stages of the analysis pipeline used to transform the ˜1 TB of raw data into polarized sky maps. We review "LEAP", the software framework developed to support the analysis pipeline. We discuss in detail the novel program developed to reconstruct the attitude post-flight and estimate the effect of attitude errors on measured B-mode signals. We describe the bolometer time-stream cleaning procedure including removing the HWP-synchronous signal, and we detail the map making procedure. Finally we present a novel method to measure and subtract instrumental polarization, after which we show Galaxy and CMB maps.

  11. Single-lens 3D digital image correlation system based on a bilateral telecentric lens and a bi-prism: Systematic error analysis and correction

    NASA Astrophysics Data System (ADS)

    Wu, Lifu; Zhu, Jianguo; Xie, Huimin; Zhou, Mengmeng

    2016-12-01

    Recently, we proposed a single-lens 3D digital image correlation (3D DIC) method and established a measurement system on the basis of a bilateral telecentric lens (BTL) and a bi-prism. This system can retrieve the 3D morphology of a target and measure its deformation using a single BTL with relatively high accuracy. Nevertheless, the system still suffers from systematic errors caused by manufacturing deficiency of the bi-prism and distortion of the BTL. In this study, in-depth evaluations of these errors and their effects on the measurement results are performed experimentally. The bi-prism deficiency and the BTL distortion are characterized by two in-plane rotation angles and several distortion coefficients, respectively. These values are obtained from a calibration process using a chessboard placed into the field of view of the system; this process is conducted after the measurement of tested specimen. A modified mathematical model is proposed, which takes these systematic errors into account and corrects them during 3D reconstruction. Experiments on retrieving the 3D positions of the chessboard grid corners and the morphology of a ceramic plate specimen are performed. The results of the experiments reveal that ignoring the bi-prism deficiency will induce attitude error to the retrieved morphology, and the BTL distortion can lead to its pseudo out-of-plane deformation. Correcting these problems can further improve the measurement accuracy of the bi-prism-based single-lens 3D DIC system.

  12. Reliability and Validity Study of a Tool to Measure Cancer Stigma: Patient Version

    PubMed Central

    Yılmaz, Medine; Dişsiz, Gülçin; Demir, Filiz; Irız, Sibel; Alacacioglu, Ahmet

    2017-01-01

    Objective: The aim of this methodological study is to establish the validity and reliability of the Turkish version of “A Questionnaire for Measuring Attitudes toward Cancer (Cancer Stigma) - Patient version.” Methods: The sample comprised oncology patients who had active cancer treatment. The construct validity was assessed using the confirmatory and exploratory factor analysis. Results: The mean age of the participants was 54.9±12.3 years. In the confirmatory factor analysis, fit values were determined as comparative fit index = 0.93, goodness of fit index = 0.91, normed-fit index=0.91, and root mean square error of approximation RMSEA = 0.09 (P <0.05) (Kaiser–Meyer–Olkin = 0.88, χ2 = 1084.41, Df = 66, and Barletta's test P <0.000). The first factor was “impossibility of recovery and experience of social discrimination” and the second factor was “stereotypes of cancer patients.” The two-factor structure accounted for 56.74% of the variance. The Cronbach's alpha value was determined as 0.88 for the two-factor scale. Conclusions: “A questionnaire for measuring attitudes toward cancer (cancer stigma) - Patient version” is a reliable and valid questionnaire to assess stigmatization of cancer in cancer patients. PMID:28503649

  13. Measurement of phase difference for micromachined gyros driven by rotating aircraft.

    PubMed

    Zhang, Zengping; Zhang, Fuxue; Zhang, Wei

    2013-08-21

    This paper presents an approach for realizing a phase difference measurement of a new gyro. A silicon micromachined gyro was mounted on rotating aircraft for aircraft attitude control. Aircraft spin drives the silicon pendulum of a gyro rotating at a high speed so that it can sense the transverse angular velocity of the rotating aircraft based on the gyroscopic precession principle when the aircraft has transverse rotation. In applications of the rotating aircraft single channel control system, such as damping in the attitude stabilization loop, the gyro signal must be kept in sync with the control signal. Therefore, the phase difference between both signals needs to be measured accurately. Considering that phase difference is mainly produced by both the micromachined part and the signal conditioning circuit, a mathematical model has been established and analyzed to determine the gyro's phase frequency characteristics. On the basis of theoretical analysis, a dynamic simulation has been done for a case where the spin frequency is 15 Hz. Experimental results with the proposed measurement method applied to a silicon micromachined gyro driven by a rotating aircraft demonstrate that it is effective in practical applications. Measured curve and numerical analysis of phase frequency characteristic are in accordance, and the error between measurement and simulation is only 5.3%.

  14. Geopositioning with a quadcopter: Extracted feature locations and predicted accuracy without a priori sensor attitude information

    NASA Astrophysics Data System (ADS)

    Dolloff, John; Hottel, Bryant; Edwards, David; Theiss, Henry; Braun, Aaron

    2017-05-01

    This paper presents an overview of the Full Motion Video-Geopositioning Test Bed (FMV-GTB) developed to investigate algorithm performance and issues related to the registration of motion imagery and subsequent extraction of feature locations along with predicted accuracy. A case study is included corresponding to a video taken from a quadcopter. Registration of the corresponding video frames is performed without the benefit of a priori sensor attitude (pointing) information. In particular, tie points are automatically measured between adjacent frames using standard optical flow matching techniques from computer vision, an a priori estimate of sensor attitude is then computed based on supplied GPS sensor positions contained in the video metadata and a photogrammetric/search-based structure from motion algorithm, and then a Weighted Least Squares adjustment of all a priori metadata across the frames is performed. Extraction of absolute 3D feature locations, including their predicted accuracy based on the principles of rigorous error propagation, is then performed using a subset of the registered frames. Results are compared to known locations (check points) over a test site. Throughout this entire process, no external control information (e.g. surveyed points) is used other than for evaluation of solution errors and corresponding accuracy.

  15. Medicine and aviation: a review of the comparison.

    PubMed

    Randell, R

    2003-01-01

    This paper aims to understand the nature of medical error in highly technological environments and argues that a comparison with aviation can blur its real understanding. This study is a comparative study between the notion of error in health care and aviation based on the author's own ethnographic study in intensive care units and findings from the research literature on errors in aviation. Failures in the use of medical technology are common. In attempts to understand the area of medical error, much attention has focused on how we can learn from aviation. This paper argues that such a comparison is not always useful, on the basis that (i) the type of work and technology is very different in the two domains; (ii) different issues are involved in training and procurement; and (iii) attitudes to error vary between the domains. Therefore, it is necessary to look closely at the subject of medical error and resolve those questions left unanswered by the lessons of aviation.

  16. The Effects of Propellant Slosh Dynamics on the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Mason, Paul; Starin, Scott R.

    2011-01-01

    The Solar Dynamics Observatory (SDO) mission, which is part of the Living With a Star program, was successfully launched and deployed from its Atlas V launch vehicle on February 11, 2010. SDO is an Explorer-class mission now operating in a geosynchronous orbit (GEO). The basic mission is to observe the Sun for a very high percentage of the 5-year mission (10-year goal) with long stretches of uninterrupted observations and with constant, high-data-rate transmission to a dedicated ground station located in White Sands, New Mexico. A significant portion of SDO's launch mass was propellant, contained in two large tanks. To ensure performance with this level of propellant, a slosh analysis was performed. This paper provides an overview of the SDO slosh analysis, the on-orbit experience, and the lessons learned. SDO is a three-axis controlled, single fault tolerant spacecraft. The attitude sensor complement includes sixteen coarse Sun sensors, a digital Sun sensor, three two-axis inertial reference units, two star trackers, and four guide telescopes. Attitude actuation is performed either using four reaction wheels or eight thrusters, depending on the control mode, along with single main engine which nominally provides velocity-change thrust. The attitude control software has five nominal control modes: three wheel-based modes and two thruster-based modes. A wheel-based Safehold running in the Attitude Control Electronics (ACE) box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. To achieve and maintain a geosynchronous orbit for a 2974-kilogram spacecraft in a cost effective manner, the SDO team designed a high-efficiency propulsive system. This bi-propellant design includes a 100-pound-force main engine and eight 5-pound-force attitude control thrusters. The main engine provides high specific impulse for the maneuvers to attain GEO, while the smaller Attitude Control System (ACS) thrusters manage the disturbance torques of the larger main engine and provide the capability for much smaller orbit adjustment burns. SDO's large solar profile produces a large solar torque disturbance and momentum buildup. This buildup drives the frequency of momentum unloads via ACS thrusters. SDO requires 1409 kilograms (which is approximately half the launch mass) of propellant to achieve and maintain the GEO orbit while performing the momentum unloads for 10 years.

  17. An improved GRACE monthly gravity field solution by modeling the non-conservative acceleration and attitude observation errors

    NASA Astrophysics Data System (ADS)

    Chen, Qiujie; Shen, Yunzhong; Chen, Wu; Zhang, Xingfu; Hsu, Houze

    2016-06-01

    The main contribution of this study is to improve the GRACE gravity field solution by taking errors of non-conservative acceleration and attitude observations into account. Unlike previous studies, the errors of the attitude and non-conservative acceleration data, and gravity field parameters, as well as accelerometer biases are estimated by means of weighted least squares adjustment. Then we compute a new time series of monthly gravity field models complete to degree and order 60 covering the period Jan. 2003 to Dec. 2012 from the twin GRACE satellites' data. The derived GRACE solution (called Tongji-GRACE02) is compared in terms of geoid degree variances and temporal mass changes with the other GRACE solutions, namely CSR RL05, GFZ RL05a, and JPL RL05. The results show that (1) the global mass signals of Tongji-GRACE02 are generally consistent with those of CSR RL05, GFZ RL05a, and JPL RL05; (2) compared to CSR RL05, the noise of Tongji-GRACE02 is reduced by about 21 % over ocean when only using 300 km Gaussian smoothing, and 60 % or more over deserts (Australia, Kalahari, Karakum and Thar) without using Gaussian smoothing and decorrelation filtering; and (3) for all examples, the noise reductions are more significant than signal reductions, no matter whether smoothing and filtering are applied or not. The comparison with GLDAS data supports that the signals of Tongji-GRACE02 over St. Lawrence River basin are close to those from CSR RL05, GFZ RL05a and JPL RL05, while the GLDAS result shows the best agreement with the Tongji-GRACE02 result.

  18. Optimal full motion video registration with rigorous error propagation

    NASA Astrophysics Data System (ADS)

    Dolloff, John; Hottel, Bryant; Doucette, Peter; Theiss, Henry; Jocher, Glenn

    2014-06-01

    Optimal full motion video (FMV) registration is a crucial need for the Geospatial community. It is required for subsequent and optimal geopositioning with simultaneous and reliable accuracy prediction. An overall approach being developed for such registration is presented that models relevant error sources in terms of the expected magnitude and correlation of sensor errors. The corresponding estimator is selected based on the level of accuracy of the a priori information of the sensor's trajectory and attitude (pointing) information, in order to best deal with non-linearity effects. Estimator choices include near real-time Kalman Filters and batch Weighted Least Squares. Registration solves for corrections to the sensor a priori information for each frame. It also computes and makes available a posteriori accuracy information, i.e., the expected magnitude and correlation of sensor registration errors. Both the registered sensor data and its a posteriori accuracy information are then made available to "down-stream" Multi-Image Geopositioning (MIG) processes. An object of interest is then measured on the registered frames and a multi-image optimal solution, including reliable predicted solution accuracy, is then performed for the object's 3D coordinates. This paper also describes a robust approach to registration when a priori information of sensor attitude is unavailable. It makes use of structure-from-motion principles, but does not use standard Computer Vision techniques, such as estimation of the Essential Matrix which can be very sensitive to noise. The approach used instead is a novel, robust, direct search-based technique.

  19. An adaptive reentry guidance method considering the influence of blackout zone

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Yao, Jianyao; Qu, Xiangju

    2018-01-01

    Reentry guidance has been researched as a popular topic because it is critical for a successful flight. In view that the existing guidance methods do not take into account the accumulated navigation error of Inertial Navigation System (INS) in the blackout zone, in this paper, an adaptive reentry guidance method is proposed to obtain the optimal reentry trajectory quickly with the target of minimum aerodynamic heating rate. The terminal error in position and attitude can be also reduced with the proposed method. In this method, the whole reentry guidance task is divided into two phases, i.e., the trajectory updating phase and the trajectory planning phase. In the first phase, the idea of model predictive control (MPC) is used, and the receding optimization procedure ensures the optimal trajectory in the next few seconds. In the trajectory planning phase, after the vehicle has flown out of the blackout zone, the optimal reentry trajectory is obtained by online planning to adapt to the navigation information. An effective swarm intelligence algorithm, i.e. pigeon inspired optimization (PIO) algorithm, is applied to obtain the optimal reentry trajectory in both of the two phases. Compared to the trajectory updating method, the proposed method can reduce the terminal error by about 30% considering both the position and attitude, especially, the terminal error of height has almost been eliminated. Besides, the PIO algorithm performs better than the particle swarm optimization (PSO) algorithm both in the trajectory updating phase and the trajectory planning phases.

  20. The mutual inductance calculation between circular and quadrilateral coils at arbitrary attitudes using a rotation matrix for airborne transient electromagnetic systems

    NASA Astrophysics Data System (ADS)

    Ji, Yanju; Wang, Hongyuan; Lin, Jun; Guan, Shanshan; Feng, Xue; Li, Suyi

    2014-12-01

    Performance testing and calibration of airborne transient electromagnetic (ATEM) systems are conducted to obtain the electromagnetic response of ground loops. It is necessary to accurately calculate the mutual inductance between transmitting coils, receiving coils and ground loops to compute the electromagnetic responses. Therefore, based on Neumann's formula and the measured attitudes of the coils, this study deduces the formula for the mutual inductance calculation between circular and quadrilateral coils, circular and circular coils, and quadrilateral and quadrilateral coils using a rotation matrix, and then proposes a method to calculate the mutual inductance between two coils at arbitrary attitudes (roll, pitch, and yaw). Using coil attitude simulated data of an ATEM system, we calculate the mutual inductance of transmitting coils and ground loops at different attitudes, analyze the impact of coil attitudes on mutual inductance, and compare the computational accuracy and speed of the proposed method with those of other methods using the same data. The results show that the relative error of the calculation is smaller and that the speed-up is significant compared to other methods. Moreover, the proposed method is also applicable to the mutual inductance calculation of polygonal and circular coils at arbitrary attitudes and is highly expandable.

  1. Design of an all-attitude flight control system to execute commanded bank angles and angles of attack

    NASA Technical Reports Server (NTRS)

    Burgin, G. H.; Eggleston, D. M.

    1976-01-01

    A flight control system for use in air-to-air combat simulation was designed. The input to the flight control system are commanded bank angle and angle of attack, the output are commands to the control surface actuators such that the commanded values will be achieved in near minimum time and sideslip is controlled to remain small. For the longitudinal direction, a conventional linear control system with gains scheduled as a function of dynamic pressure is employed. For the lateral direction, a novel control system, consisting of a linear portion for small bank angle errors and a bang-bang control system for large errors and error rates is employed.

  2. Imaging X-Ray Polarimetry Explorer Mission Attitude Determination and Control Concept

    NASA Technical Reports Server (NTRS)

    Bladt, Jeff; Deininger, William D.; Kalinowski, William C.; Boysen, Mary; Bygott, Kyle; Guy, Larry; Pentz, Christina; Seckar, Chris; Valdez, John; Wedmore, Jeffrey; hide

    2018-01-01

    The goal of the Imaging X-Ray Polarimetry Explorer (IXPE) Mission is to expand understanding of high-energy astrophysical processes and sources, in support of NASA's first science objective in Astrophysics: "Discover how the universe works." X-ray polarimetry is the focus of the IXPE science mission. Polarimetry uniquely probes physical anisotropies-ordered magnetic fields, aspheric matter distributions, or general relativistic coupling to black-hole spin-that are not otherwise measurable. The IXPE Observatory consists of Spacecraft and Payload modules. The Payload includes three polarization sensitive, X-ray detector units (DU), each paired with its corresponding grazing incidence mirror module assemblies (MMA). A deployable boom provides the correct separation (focal length) between the DUs and MMAs. These Payload elements are supported by the IXPE Spacecraft. A star tracker is mounted directly with the deployed Payload to minimize alignment errors between the star tracker line of sight (LoS) and Payload LoS. Stringent pointing requirements coupled with a flexible structure and a non-collocated attitude sensor-actuator configuration requires a thorough analysis of control-structure interactions. A non-minimum phase notch filter supports robust control loop stability margins. This paper summarizes the IXPE mission science objectives and Observatory concepts, and then it describes IXPE attitude determination and control implementation. IXPE LoS pointing accuracy, control loop stability, and angular momentum management are discussed.

  3. Youth Attitude Tracking Study II Wave 17 -- Fall 1986.

    DTIC Science & Technology

    1987-06-01

    decision, unless so designated by other official documentation. TABLE OF CONTENTS Page PREFACE ................................................. xi...Segmentation Analyses .......................... 2-7 .3. METHODOLOGY OF YATS II....................................... 3-1 A. Sampling Design Overview...Sampling Design , Estimation Procedures and Estimated Sampling Errors ................................. A-i Appendix B: Data Collection Procedures

  4. Candidate configuration trade study, Stellar-Inertial Measurement System (SIMS) for an Earth Observation Satellite (EOS), addendum

    NASA Technical Reports Server (NTRS)

    White, R.; Grant, F.

    1973-01-01

    Results are given of an investigation of the effects of spacecraft orbital ephemeris and attitude errors on the ability to determine the locations of unknown landmarks with respect to known landmarks in the payload sensor imagery.

  5. A method of determining attitude from magnetometer data only

    NASA Technical Reports Server (NTRS)

    Natanson, G. A.; Mclaughlin, S. F.; Nicklas, R. C.

    1990-01-01

    Presented here is a new algorithm to determine attitude using only magnetometer data under the following conditions: (1) internal torques are known and (2) external torques are negligible. Torque-free rotation of a spacecraft in thruster firing acquisition phase and its magnetic despin in the B-dot mode give typical examples of such situations. A simple analytical formula has been derived in the limiting case of a spacecraft rotating with constant angular velocity. The formula has been tested using low-frequency telemetry data for the Earth Radiation Budget Satellite (ERBS) under normal conditions. Observed small oscillation of body-fixed components of the angular velocity vector near their mean values result in relatively minor errors of approximately 5 degrees. More significant errors come from processing digital magnetometer data. Higher resolution of digitized magnetometer measurements would significantly improve the accuracy of this deterministic scheme. Tests of the general version of the developed algorithm for a free-rotating spacecraft and for the B-dot mode are in progress.

  6. Integrated navigation fusion strategy of INS/UWB for indoor carrier attitude angle and position synchronous tracking.

    PubMed

    Fan, Qigao; Wu, Yaheng; Hui, Jing; Wu, Lei; Yu, Zhenzhong; Zhou, Lijuan

    2014-01-01

    In some GPS failure conditions, positioning for mobile target is difficult. This paper proposed a new method based on INS/UWB for attitude angle and position synchronous tracking of indoor carrier. Firstly, error model of INS/UWB integrated system is built, including error equation of INS and UWB. And combined filtering model of INS/UWB is researched. Simulation results show that the two subsystems are complementary. Secondly, integrated navigation data fusion strategy of INS/UWB based on Kalman filtering theory is proposed. Simulation results show that FAKF method is better than the conventional Kalman filtering. Finally, an indoor experiment platform is established to verify the integrated navigation theory of INS/UWB, which is geared to the needs of coal mine working environment. Static and dynamic positioning results show that the INS/UWB integrated navigation system is stable and real-time, positioning precision meets the requirements of working condition and is better than any independent subsystem.

  7. Synchronization of multiple 3-DOF helicopters under actuator faults and saturations with prescribed performance.

    PubMed

    Yang, Huiliao; Jiang, Bin; Yang, Hao; Liu, Hugh H T

    2018-04-01

    The distributed cooperative control strategy is proposed to make the networked nonlinear 3-DOF helicopters achieve the attitude synchronization in the presence of actuator faults and saturations. Based on robust adaptive control, the proposed control method can both compensate the uncertain partial loss of control effectiveness and deal with the system uncertainties. To address actuator saturation problem, the control scheme is designed to ensure that the saturation constraint on the actuation will not be violated during the operation in spite of the actuator faults. It is shown that with the proposed control strategy, both the tracking errors of the leading helicopter and the attitude synchronization errors of each following helicopter are bounded in the existence of faulty actuators and actuator saturations. Moreover, the state responses of the entire group would not exceed the predesigned performance functions which are totally independent from the underlaying interaction topology. Simulation results illustrate the effectiveness of the proposed control scheme. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  8. GNSS Single Frequency, Single Epoch Reliable Attitude Determination Method with Baseline Vector Constraint.

    PubMed

    Gong, Ang; Zhao, Xiubin; Pang, Chunlei; Duan, Rong; Wang, Yong

    2015-12-02

    For Global Navigation Satellite System (GNSS) single frequency, single epoch attitude determination, this paper proposes a new reliable method with baseline vector constraint. First, prior knowledge of baseline length, heading, and pitch obtained from other navigation equipment or sensors are used to reconstruct objective function rigorously. Then, searching strategy is improved. It substitutes gradually Enlarged ellipsoidal search space for non-ellipsoidal search space to ensure correct ambiguity candidates are within it and make the searching process directly be carried out by least squares ambiguity decorrelation algorithm (LAMBDA) method. For all vector candidates, some ones are further eliminated by derived approximate inequality, which accelerates the searching process. Experimental results show that compared to traditional method with only baseline length constraint, this new method can utilize a priori baseline three-dimensional knowledge to fix ambiguity reliably and achieve a high success rate. Experimental tests also verify it is not very sensitive to baseline vector error and can perform robustly when angular error is not great.

  9. Decentralized finite-time attitude synchronization for multiple rigid spacecraft via a novel disturbance observer.

    PubMed

    Zong, Qun; Shao, Shikai

    2016-11-01

    This paper investigates decentralized finite-time attitude synchronization for a group of rigid spacecraft by using quaternion with the consideration of environmental disturbances, inertia uncertainties and actuator saturation. Nonsingular terminal sliding mode (TSM) is used for controller design. Firstly, a theorem is proven that there always exists a kind of TSM that converges faster than fast terminal sliding mode (FTSM) for quaternion-descripted attitude control system. Controller with this kind of TSM has faster convergence and reduced computation than FTSM controller. Then, combining with an adaptive parameter estimation strategy, a novel terminal sliding mode disturbance observer is proposed. The proposed disturbance observer needs no upper bound information of the lumped uncertainties or their derivatives. On the basis of undirected topology and the disturbance observer, decentralized attitude synchronization control laws are designed and all attitude errors are ensured to converge to small regions in finite time. As for actuator saturation problem, an auxiliary variable is introduced and accommodated by the disturbance observer. Finally, simulation results are given and the effectiveness of the proposed control scheme is testified. Copyright © 2016. Published by Elsevier Ltd.

  10. Microwave power transmission system studies. Volume 2: Introduction, organization, environmental and spaceborne systems analyses

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.; Brown, W. C.; Edwards, A.; Haley, J. T.; Meltz, G.; Howell, J. M.; Nathan, A.

    1975-01-01

    Introduction, organization, analyses, conclusions, and recommendations for each of the spaceborne subsystems are presented. Environmental effects - propagation analyses are presented with appendices covering radio wave diffraction by random ionospheric irregularities, self-focusing plasma instabilities and ohmic heating of the D-region. Analyses of dc to rf conversion subsystems and system considerations for both the amplitron and the klystron are included with appendices for the klystron covering cavity circuit calculations, output power of the solenoid-focused klystron, thermal control system, and confined flow focusing of a relativistic beam. The photovoltaic power source characteristics are discussed as they apply to interfacing with the power distribution flow paths, magnetic field interaction, dc to rf converter protection, power distribution including estimates for the power budget, weights, and costs. Analyses for the transmitting antenna consider the aperture illumination and size, with associated efficiencies and ground power distributions. Analyses of subarray types and dimensions, attitude error, flatness, phase error, subarray layout, frequency tolerance, attenuation, waveguide dimensional tolerances, mechanical including thermal considerations are included. Implications associated with transportation, assembly and packaging, attitude control and alignment are discussed. The phase front control subsystem, including both ground based pilot signal driven adaptive and ground command approaches with their associated phase errors, are analyzed.

  11. The single category implicit association test as a measure of implicit social cognition.

    PubMed

    Karpinski, Andrew; Steinman, Ross B

    2006-07-01

    The Single Category Implicit Association Test (SC-IAT) is a modification of the Implicit Association Test that measures the strength of evaluative associations with a single attitude object. Across 3 different attitude domains--soda brand preferences, self-esteem, and racial attitudes--the authors found evidence that the SC-IAT is internally consistent and makes unique contributions in the ability to understand implicit social cognition. In a 4th study, the authors investigated the susceptibility of the SC-IAT to faking or self-presentational concerns. Once participants with high error rates were removed, no significant self-presentation effect was observed. These results provide initial evidence for the reliability and validity of the SC-IAT as an individual difference measure of implicit social cognition. Copyright 2006 APA, all rights reserved.

  12. The struggle against perceived negligence. A qualitative study of patients' experiences of adverse events in Norwegian hospitals.

    PubMed

    Hågensen, Gunn; Nilsen, Gudrun; Mehus, Grete; Henriksen, Nils

    2018-04-25

    Every year, 14 % of patients in Norwegian hospitals experience adverse events, which often have health-damaging consequences. The government, hospital management and health personnel attempt to minimize such events. Limited research on the first-hand experience of the patients affected is available. The aim of this study is to present patients' perspectives of the occurrence of, disclosure of, and healthcare organizations' responses to adverse events. Findings are discussed within a social constructivist framework and with reference to principles of open disclosure policy. This qualitative study with an explorative descriptive design included fifteen in-depth interviews with former patients recruited by the Health and Social Services ombudsmen in the two northernmost counties of Norway. Inclusion criteria were as follows: 1) experience of adverse events in connection with surgical, orthopedic or medical treatment in general hospitals; 2) men and women; 3) aged 20-70; and 4) a minimum of one year since the event occurred. Transcribed audio-recorded interviews were analyzed through qualitative content analysis. The analysis revealed three main topics regarding patients' experiences of adverse events: 1) ignored concerns or signs of complications; 2) lack of responsibility and error correction; and 3) lack of support, loyalty and learning opportunities. Patients had to struggle to demonstrate the error that had occurred and to receive the necessary treatment and monitoring in the aftermath of the events. Patient narratives reveal a lack of openness, care and responsibility in connection with adverse events. Conflicting power structures, attitudes and established procedures may inhibit prevention, learning and patient safety work in spite of major efforts and good intentions. Attitudes in day-to-day patient care and organizational procedures should be challenged to invite patients into open disclosure processes and include them in health and safety work to a greater extent. The study's small sample of self-selected participants limits the generalizability of the findings, and future studies should include a larger number of patients as well as professional perspectives.

  13. SBAR improves communication and safety climate and decreases incident reports due to communication errors in an anaesthetic clinic: a prospective intervention study.

    PubMed

    Randmaa, Maria; Mårtensson, Gunilla; Leo Swenne, Christine; Engström, Maria

    2014-01-21

    We aimed to examine staff members' perceptions of communication within and between different professions, safety attitudes and psychological empowerment, prior to and after implementation of the communication tool Situation-Background-Assessment-Recommendation (SBAR) at an anaesthetic clinic. The aim was also to study whether there was any change in the proportion of incident reports caused by communication errors. A prospective intervention study with comparison group using preassessments and postassessments. Questionnaire data were collected from staff in an intervention (n=100) and a comparison group (n=69) at the anaesthetic clinic in two hospitals prior to (2011) and after (2012) implementation of SBAR. The proportion of incident reports due to communication errors was calculated during a 1-year period prior to and after implementation. Anaesthetic clinics at two hospitals in Sweden. All licensed practical nurses, registered nurses and physicians working in the operating theatres, intensive care units and postanaesthesia care units at anaesthetic clinics in two hospitals were invited to participate. Implementation of SBAR in an anaesthetic clinic. The primary outcomes were staff members' perception of communication within and between different professions, as well as their perceptions of safety attitudes. Secondary outcomes were psychological empowerment and incident reports due to error of communication. In the intervention group, there were statistically significant improvements in the factors 'Between-group communication accuracy' (p=0.039) and 'Safety climate' (p=0.011). The proportion of incident reports due to communication errors decreased significantly (p<0.0001) in the intervention group, from 31% to 11%. Implementing the communication tool SBAR in anaesthetic clinics was associated with improvement in staff members' perception of communication between professionals and their perception of the safety climate as well as with a decreased proportion of incident reports related to communication errors. ISRCTN37251313.

  14. Determining a Method of Enabling and Disabling the Integral Torque in the SDO Science and Inertial Mode Controllers

    NASA Technical Reports Server (NTRS)

    Vess, Melissa F.; Starin, Scott R.

    2007-01-01

    During design of the SDO Science and Inertial mode PID controllers, the decision was made to disable the integral torque whenever system stability was in question. Three different schemes were developed to determine when to disable or enable the integral torque, and a trade study was performed to determine which scheme to implement. The trade study compared complexity of the control logic, risk of not reenabling the integral gain in time to reject steady-state error, and the amount of integral torque space used. The first scheme calculated a simplified Routh criterion to determine when to disable the integral torque. The second scheme calculates the PD part of the torque and looked to see if that torque would cause actuator saturation. If so, only the PD torque is used. If not, the integral torque is added. Finally, the third scheme compares the attitude and rate errors to limits and disables the integral torque if either of the errors is greater than the limit. Based on the trade study results, the third scheme was selected. Once it was decided when to disable the integral torque, analysis was performed to determine how to disable the integral torque and whether or not to reset the integrator once the integral torque was reenabled. Three ways to disable the integral torque were investigated: zero the input into the integrator, which causes the integral part of the PID control torque to be held constant; zero the integral torque directly but allow the integrator to continue integrating; or zero the integral torque directly and reset the integrator on integral torque reactivation. The analysis looked at complexity of the control logic, slew time plus settling time between each calibration maneuver step, and ability to reject steady-state error. Based on the results of the analysis, the decision was made to zero the input into the integrator without resetting it. Throughout the analysis, a high fidelity simulation was used to test the various implementation methods.

  15. Organization Development: A Critique

    ERIC Educational Resources Information Center

    Stephenson, T. E.

    1975-01-01

    Reviews the literature dealing with organization development (OD) and discusses the predominant concerns and attitudes of OD theorists and practitioners. Suggests that OD might be more aptly named "human development" and argues that OD practitioners generally act as missionaries who feel they must remedy the errors of their clients' behavior. (JG)

  16. A Method of Calibrating Airspeed Installations on Airplanes at Transonic and Supersonic Speeds by the Use of Accelerometer and Attitude-Angle Measurements

    NASA Technical Reports Server (NTRS)

    Zalovick, John A; Lina, Lindsay J; Trant, James P , Jr

    1953-01-01

    A method is described for calibrating airspeed installation on airplanes at transonic and supersonic speeds in vertical-plane maneuvers in which use is made of measurements of normal and longitudinal accelerations and attitude angle. In this method all the required instrumentation is carried within the airplane. An analytical study of the effects of various sources of error on the accuracy of an airspeed calibration by the accelerometer method indicated that the required measurements can be made accurately enough to insure a satisfactory calibration.

  17. Guide star targeting success for the HEAO-B observatory

    NASA Technical Reports Server (NTRS)

    Farrenkopf, R. L.; Hoffman, D. P.

    1977-01-01

    The statistics associated with the successful selection and acquisition of guide stars as attitude benchmarks for use in reorientation maneuvers of the HEAO-B observatory are considered as a function of the maneuver angle, initial attitude uncertainties, and the pertinent celestial region. Success likelihoods in excess of 0.99 are predicted assuming anticipated gyro and star tracker error sources. The maneuver technique and guide star selection constraints are described in detail. The results presented are specialized numerically to the HEAO-B observatory. However, the analytical techniques developed are considered applicable to broader classes of spacecraft requiring celestial targeting.

  18. Attitude analysis in Flatland: The plane truth

    NASA Technical Reports Server (NTRS)

    Shuster, Malcolm D.

    1993-01-01

    Many results in attitude analysis are still meaningful when the attitude is restricted to rotations about a single axis. Such a picture corresponds to attitude analysis in the Euclidean plane. The present report formalizes the representation of attitude in the plane and applies it to some well-known problems. In particular, we study the connection of the 'additive' and 'multiplicative' formulations of the differential corrector for the quaternion in its two-dimensional setting.

  19. In-orbit performance of the ITOS improved attitude control system with Hall generator brushless motor and earth-splitting technique

    NASA Technical Reports Server (NTRS)

    Peacock, W. M.

    1973-01-01

    The National Aeronautics and Space Administration (NASA), launched ITOS-D with an improved attitude control system. A Hall generator brushless dc torque motor replaced the brush dc torque motor on Tiros-M and ITOS-A. Two CO2 attitude horizon sensors and one mirror replaced the four wideband horizon sensors and two mirrors on ITOS-1 and NOAA-1. Redundant pitch-control electronic boxes containing additional electronic circuitry for earth-splitting and brushless motor electronics were used. A method of generating a spacecraft earth-facing side reference for comparison to the time occurrence of the earth-splitting pulse was used to automatically correct pitch-attitude error. A single rotating flywheel, supported by a single bearing, provided gyroscopic stability and the required momentum interchange to keep one side of the satellite facing the earth. Magnetic torquing against the earth's magnetic field eliminated the requirement for expendable propellants which would limit satellite life in orbit.

  20. Inflight redesign of the IUE attitude control system

    NASA Technical Reports Server (NTRS)

    Femiano, M. D.

    1986-01-01

    The one- and two-gyro system designs of the International Ultraviolet Explorer (IUE) attitude control system (ACS) are examined. The inertial reference assembly that provides the primary attitude reference for IUE consists of six rate sensors which are single-axis rate integrating gyros. The gyros operate in a pulse rebalanced mode that produces an output pulse for 0.01 arcsec of motion about the input axis. The functions of the fine error sensor, fine sun sensor (FSS), the IUE reaction wheels, the onboard computer, and the hold/slew algorithm are described. The use of the hold/slew algorithm to compute the control voltage for the ACS based on the Kalman filter is studied. A two-gyro system was incorporated into IUE following gyro failure. The procedures for establishing attitude control with the two-gyro design based on the FSS is analyzed. The performance of the two-gyro system is evaluated; it is observed that the pitch and yaw gyro control is 0.24 arcsec and the control is sufficient to permit extended periods of observation.

  1. Adaptive twisting sliding mode algorithm for hypersonic reentry vehicle attitude control based on finite-time observer.

    PubMed

    Guo, Zongyi; Chang, Jing; Guo, Jianguo; Zhou, Jun

    2018-06-01

    This paper focuses on the adaptive twisting sliding mode control for the Hypersonic Reentry Vehicles (HRVs) attitude tracking issue. The HRV attitude tracking model is transformed into the error dynamics in matched structure, whereas an unmeasurable state is redefined by lumping the existing unmatched disturbance with the angular rate. Hence, an adaptive finite-time observer is used to estimate the unknown state. Then, an adaptive twisting algorithm is proposed for systems subject to disturbances with unknown bounds. The stability of the proposed observer-based adaptive twisting approach is guaranteed, and the case of noisy measurement is analyzed. Also, the developed control law avoids the aggressive chattering phenomenon of the existing adaptive twisting approaches because the adaptive gains decrease close to the disturbance once the trajectories reach the sliding surface. Finally, numerical simulations on the attitude control of the HRV are conducted to verify the effectiveness and benefit of the proposed approach. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Norms and attitudes related to alcohol usage and driving : a review of the literature. Volume 2, A meta-analysis of primary prevention studies

    DOT National Transportation Integrated Search

    1982-09-01

    This project provides information on norms and attitudes related to alcohol use and driving. This volume contains a review and analysis of the literature pertaining to attitude formation and change, attitudes towards alcohol use/abuse, attitudes asso...

  3. Visual navigation using edge curve matching for pinpoint planetary landing

    NASA Astrophysics Data System (ADS)

    Cui, Pingyuan; Gao, Xizhen; Zhu, Shengying; Shao, Wei

    2018-05-01

    Pinpoint landing is challenging for future Mars and asteroid exploration missions. Vision-based navigation scheme based on feature detection and matching is practical and can achieve the required precision. However, existing algorithms are computationally prohibitive and utilize poor-performance measurements, which pose great challenges for the application of visual navigation. This paper proposes an innovative visual navigation scheme using crater edge curves during descent and landing phase. In the algorithm, the edge curves of the craters tracked from two sequential images are utilized to determine the relative attitude and position of the lander through a normalized method. Then, considering error accumulation of relative navigation, a method is developed. That is to integrate the crater-based relative navigation method with crater-based absolute navigation method that identifies craters using a georeferenced database for continuous estimation of absolute states. In addition, expressions of the relative state estimate bias are derived. Novel necessary and sufficient observability criteria based on error analysis are provided to improve the navigation performance, which hold true for similar navigation systems. Simulation results demonstrate the effectiveness and high accuracy of the proposed navigation method.

  4. Analysis of key technologies in geomagnetic navigation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Zhao, Yan

    2008-10-01

    Because of the costly price and the error accumulation of high precise Inertial Navigation Systems (INS) and the vulnerability of Global Navigation Satellite Systems (GNSS), the geomagnetic navigation technology, a passive autonomous navigation method, is paid attention again. Geomagnetic field is a natural spatial physical field, and is a function of position and time in near earth space. The navigation technology based on geomagnetic field is researched in a wide range of commercial and military applications. This paper presents the main features and the state-of-the-art of Geomagnetic Navigation System (GMNS). Geomagnetic field models and reference maps are described. Obtaining, modeling and updating accurate Anomaly Magnetic Field information is an important step for high precision geomagnetic navigation. In addition, the errors of geomagnetic measurement using strapdown magnetometers are analyzed. The precise geomagnetic data is obtained by means of magnetometer calibration and vehicle magnetic field compensation. According to the measurement data and reference map or model of geomagnetic field, the vehicle's position and attitude can be obtained using matching algorithm or state-estimating method. The tendency of geomagnetic navigation in near future is introduced at the end of this paper.

  5. Impractical CME programs: Influential parameters in Iran.

    PubMed

    Faghihi, Seyed Aliakbar; Khankeh, Hamid Reza; Hosseini, Seyed Jalil; Soltani Arabshahi, Seyed Kamran; Faghih, Zahra; Shirazi, Mandana

    2017-01-01

    Background: Traditional approaches in Continuing Medical Education (CME) appear to be ineffective in any improvement of the patients' care, reducing the medical errors, and/or altering physicians' behaviors. However, they are still executed by the CME providers, and are popular among the majority of the physicians. In this study, we aimed to explore the parameters involved in the degree of effectiveness of CME program in Iran. Methods: In this study, 31 participants, consisting of general practitioners, CME experts and providers were recruited to participate in in-depth interviews and field observations concerning experiences with CME. Application was made of the qualitative paradigm along with the qualitative content analysis, using grounded theory data analysis methodology (constant comparative analysis). Results: Based on the participants' experiences, the insufficient consistency between the training program contents and the demands of GPs, in addition to the non-beneficiary programs for the physicians and the non-comprehensive educational designs, created a negative attitude to the continuing education among physicians. This could be defined by an unrealistic continuing education program, which is the main theme here. Conclusion: Impracticable continuing education has created a negative attitude toward the CME programs among physicians so much that they consider these programs less important, resulting in attending the said programs without any specific aim: they dodge absenteeism just to get the credit points. Evidently, promoting CME programs to improve the performance of the physicians requires factual needs assessment over and above adaptation of the contents to the physicians' performance.

  6. Impractical CME programs: Influential parameters in Iran

    PubMed Central

    Faghihi, Seyed Aliakbar; Khankeh, Hamid Reza; Hosseini, Seyed Jalil; Soltani Arabshahi, Seyed Kamran; Faghih, Zahra; Shirazi, Mandana

    2017-01-01

    Background: Traditional approaches in Continuing Medical Education (CME) appear to be ineffective in any improvement of the patients’ care, reducing the medical errors, and/or altering physicians' behaviors. However, they are still executed by the CME providers, and are popular among the majority of the physicians. In this study, we aimed to explore the parameters involved in the degree of effectiveness of CME program in Iran. Methods: In this study, 31 participants, consisting of general practitioners, CME experts and providers were recruited to participate in in-depth interviews and field observations concerning experiences with CME. Application was made of the qualitative paradigm along with the qualitative content analysis, using grounded theory data analysis methodology (constant comparative analysis). Results: Based on the participants’ experiences, the insufficient consistency between the training program contents and the demands of GPs, in addition to the non-beneficiary programs for the physicians and the non-comprehensive educational designs, created a negative attitude to the continuing education among physicians. This could be defined by an unrealistic continuing education program, which is the main theme here. Conclusion: Impracticable continuing education has created a negative attitude toward the CME programs among physicians so much that they consider these programs less important, resulting in attending the said programs without any specific aim: they dodge absenteeism just to get the credit points. Evidently, promoting CME programs to improve the performance of the physicians requires factual needs assessment over and above adaptation of the contents to the physicians’ performance. PMID:28638813

  7. The estimation of pointing angle and normalized surface scattering cross section from GEOS-3 radar altimeter measurements

    NASA Technical Reports Server (NTRS)

    Brown, G. S.; Curry, W. J.

    1977-01-01

    The statistical error of the pointing angle estimation technique is determined as a function of the effective receiver signal to noise ratio. Other sources of error are addressed and evaluated with inadequate calibration being of major concern. The impact of pointing error on the computation of normalized surface scattering cross section (sigma) from radar and the waveform attitude induced altitude bias is considered and quantitative results are presented. Pointing angle and sigma processing algorithms are presented along with some initial data. The intensive mode clean vs. clutter AGC calibration problem is analytically resolved. The use clutter AGC data in the intensive mode is confirmed as the correct calibration set for the sigma computations.

  8. Who Loves Prescriptivism and Why? Some Aspects of Language Correctness in Latvia

    ERIC Educational Resources Information Center

    Strelevica-Ošina, Dace

    2016-01-01

    Taking into account the crosscultural differences in prescriptive attitudes in various linguistic communities, a theory of three types of prescriptivism--human-oriented, language-oriented, and error-oriented prescriptivism--has been offered [Strelevica-Ošina, Dace. [2011] 2012. "Kapec mes gribam, lai valoda ir pareiza? Ieskats preskriptivisma…

  9. Steps towards Improving GNSS Systematic Errors and Biases

    NASA Astrophysics Data System (ADS)

    Herring, T.; Moore, M.

    2017-12-01

    Four general areas of analysis method improvements, three related to data analysis models and the fourth to calibration methods, have been recommended at the recent unified analysis workshop (UAW) and we discuss aspects of these areas for improvement. The gravity fields used in the GNSS orbit integrations should be updated to match modern fields to make them consistent with the fields being used by the other IAG services. The update would include the static part of the field and a time variable component. The force models associated with radiation forces are the most uncertain and modeling of these forces can be made more consistent with the exchange of attitude information. The international GNSS service (IGS) will develop an attitude format and make attitude information available so that analysis centers can validate their models. The IGS has noted the appearance of the GPS draconitic period and harmonics of this period in time series of various geodetic products (e.g., positions and Earth orientation parameters). An updated short-period (diurnal and semidiurnal) model is needed and a method to determine the best model developed. The final area, not directly related to analysis models, is the recommendation that site dependent calibration of GNSS antennas are needed since these have a direct effect on the ITRF realization and position offsets when antennas are changed. Evaluation of the effects of the use of antenna specific phase center models will be investigated for those sites where these values are available without disturbing an existing antenna installation. Potential development of an in-situ antenna calibration system is strongly encouraged. In-situ calibration would be deployed at core sites where GNSS sites are tied to other geodetic systems. With recent expansion of the number of GPS satellites transmitting unencrypted codes on the GPS L2 frequency and the availability of software GNSS receivers in-situ calibration between an existing installation and a movable directional antenna is now more likely to generate accurate results than earlier analog switching systems. With all of these improvements, there is the expectation that there will be better agreement between the space geodetic methods thus allowing more definitive assessment and modeling of the Earth's time variable shape and gravity field.

  10. Modeling and Control of a Tailsitter with a Ducted Fan

    NASA Astrophysics Data System (ADS)

    Argyle, Matthew Elliott

    There are two traditional aircraft categories: fixed-wing which have a long endurance and a high cruise airspeed and rotorcraft which can take-off and land vertically. The tailsitter is a type of aircraft that has the strengths of both platforms, with no additional mechanical complexity, because it takes off and lands vertically on its tail and can transition the entire aircraft horizontally into high-speed flight. In this dissertation, we develop the entire control system for a tailsitter with a ducted fan. The standard method to compute the quaternion-based attitude error does not generate ideal trajectories for a hovering tailsitter for some situations. In addition, the only approach in the literature to mitigate this breaks down for large attitude errors. We develop an alternative quaternion-based error method which generates better trajectories than the standard approach and can handle large errors. We also derive a hybrid backstepping controller with almost global asymptotic stability based on this error method. Many common altitude and airspeed control schemes for a fixed-wing airplane assume that the altitude and airspeed dynamics are decoupled which leads to errors. The Total Energy Control System (TECS) is an approach that controls the altitude and airspeed by manipulating the total energy rate and energy distribution rate, of the aircraft, in a manner which accounts for the dynamic coupling. In this dissertation, a nonlinear controller, which can handle inaccurate thrust and drag models, based on the TECS principles is derived. Simulation results show that the nonlinear controller has better performance than the standard PI TECS control schemes. Most constant altitude transitions are accomplished by generating an optimal trajectory, and potentially actuator inputs, based on a high fidelity model of the aircraft. While there are several approaches to mitigate the effects of modeling errors, these do not fully remove the accurate model requirement. In this dissertation, we develop two different approaches that can achieve near constant altitude transitions for some types of aircraft. The first method, based on multiple LQR controllers, requires a high fidelity model of the aircraft. However, the second method, based on the energy along the body axes, requires almost no aerodynamic information.

  11. Modeling SMAP Spacecraft Attitude Control Estimation Error Using Signal Generation Model

    NASA Technical Reports Server (NTRS)

    Rizvi, Farheen

    2016-01-01

    Two ground simulation software are used to model the SMAP spacecraft dynamics. The CAST software uses a higher fidelity model than the ADAMS software. The ADAMS software models the spacecraft plant, controller and actuator models, and assumes a perfect sensor and estimator model. In this simulation study, the spacecraft dynamics results from the ADAMS software are used as CAST software is unavailable. The main source of spacecraft dynamics error in the higher fidelity CAST software is due to the estimation error. A signal generation model is developed to capture the effect of this estimation error in the overall spacecraft dynamics. Then, this signal generation model is included in the ADAMS software spacecraft dynamics estimate such that the results are similar to CAST. This signal generation model has similar characteristics mean, variance and power spectral density as the true CAST estimation error. In this way, ADAMS software can still be used while capturing the higher fidelity spacecraft dynamics modeling from CAST software.

  12. Exploration of Incarcerated Men’s and Women’s Attitudes of Smoking in the Presence of Children and Pregnant Women: Is There a Disparity Between Smoking Attitudes and Smoking Behavior?

    PubMed Central

    Roberts, Mary B.; van den Berg, Jacob J.; Bock, Beth; Stein, Lyn A. R.; Martin, Rosemarie A.; Clarke, Jennifer G.

    2016-01-01

    Abstract Introduction: A major health challenge facing persons who are incarcerated is tobacco smoking. Upon reentry to the community, concerns regarding smoking cessation may be less likely to receive needed attention. Many individuals have partners who are pregnant and/or reside in households where children and pregnant women live. We explored incarcerated adults’ attitudes of smoking in the presence of children and pregnant women and how post-release smoking behaviors are influenced by their attitudes. Methods: Two hundred forty-seven incarcerated adults participated in a smoking cessation randomized clinical trial in a tobacco-free prison. An instrument was developed to examine smoking attitudes and behaviors around children and pregnant women. Moderating effects of smoking factors on post-release abstinence were examined by evaluating interactions between smoking factors and treatment group. Results: Four factors were defined using factor analysis: smoking around children; impact of smoking on child’s health; awareness of environmental tobacco smoke (ETS) risk for pregnant women; and importance of smoking avoidance during pregnancy. We found moderation effects of smoking factors on smoking outcomes which included: treatment group by smoking behavior around children (β = 0.8085; standard error [ SE ] = 0.4002; P = .04); treatment group by impact of smoking on child’s health (β = 1.2390; SE = 0.5632; P = .03) and for those smoking 50% fewer cigarettes post-release, treatment group by smoking impact on child’s health (β = 1.2356; SE = 0.4436; P < .01). Conclusions: Concern for smoking around children and pregnant women and awareness of ETS risk for pregnant women was not found to be significantly associated with smoking outcomes and requires additional investigation. Among individuals who continue to smoke post-release, effective ETS interventions are needed aimed at protecting children and pregnant women with whom they live. PMID:26014453

  13. Piecewise compensation for the nonlinear error of fiber-optic gyroscope scale factor

    NASA Astrophysics Data System (ADS)

    Zhang, Yonggang; Wu, Xunfeng; Yuan, Shun; Wu, Lei

    2013-08-01

    Fiber-Optic Gyroscope (FOG) scale factor nonlinear error will result in errors in Strapdown Inertial Navigation System (SINS). In order to reduce nonlinear error of FOG scale factor in SINS, a compensation method is proposed in this paper based on curve piecewise fitting of FOG output. Firstly, reasons which can result in FOG scale factor error are introduced and the definition of nonlinear degree is provided. Then we introduce the method to divide the output range of FOG into several small pieces, and curve fitting is performed in each output range of FOG to obtain scale factor parameter. Different scale factor parameters of FOG are used in different pieces to improve FOG output precision. These parameters are identified by using three-axis turntable, and nonlinear error of FOG scale factor can be reduced. Finally, three-axis swing experiment of SINS verifies that the proposed method can reduce attitude output errors of SINS by compensating the nonlinear error of FOG scale factor and improve the precision of navigation. The results of experiments also demonstrate that the compensation scheme is easy to implement. It can effectively compensate the nonlinear error of FOG scale factor with slightly increased computation complexity. This method can be used in inertial technology based on FOG to improve precision.

  14. The Kepler Science Data Processing Pipeline Source Code Road Map

    NASA Technical Reports Server (NTRS)

    Wohler, Bill; Jenkins, Jon M.; Twicken, Joseph D.; Bryson, Stephen T.; Clarke, Bruce Donald; Middour, Christopher K.; Quintana, Elisa Victoria; Sanderfer, Jesse Thomas; Uddin, Akm Kamal; Sabale, Anima; hide

    2016-01-01

    We give an overview of the operational concepts and architecture of the Kepler Science Processing Pipeline. Designed, developed, operated, and maintained by the Kepler Science Operations Center (SOC) at NASA Ames Research Center, the Science Processing Pipeline is a central element of the Kepler Ground Data System. The SOC consists of an office at Ames Research Center, software development and operations departments, and a data center which hosts the computers required to perform data analysis. The SOC's charter is to analyze stellar photometric data from the Kepler spacecraft and report results to the Kepler Science Office for further analysis. We describe how this is accomplished via the Kepler Science Processing Pipeline, including, the software algorithms. We present the high-performance, parallel computing software modules of the pipeline that perform transit photometry, pixel-level calibration, systematic error correction, attitude determination, stellar target management, and instrument characterization.

  15. Turbulence flight director analysis and preliminary simulation

    NASA Technical Reports Server (NTRS)

    Johnson, D. E.; Klein, R. E.

    1974-01-01

    A control column and trottle flight director display system is synthesized for use during flight through severe turbulence. The column system is designed to minimize airspeed excursions without overdriving attitude. The throttle system is designed to augment the airspeed regulation and provide an indication of the trim thrust required for any desired flight path angle. Together they form an energy management system to provide harmonious display indications of current aircraft motions and required corrective action, minimize gust upset tendencies, minimize unsafe aircraft excursions, and maintain satisfactory ride qualities. A preliminary fixed-base piloted simulation verified the analysis and provided a shakedown for a more sophisticated moving-base simulation to be accomplished next. This preliminary simulation utilized a flight scenario concept combining piloting tasks, random turbulence, and discrete gusts to create a high but realistic pilot workload conducive to pilot error and potential upset. The turbulence director (energy management) system significantly reduced pilot workload and minimized unsafe aircraft excursions.

  16. An Application of UAV Attitude Estimation Using a Low-Cost Inertial Navigation System

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Quach, Cuong Chi; Vazquez, Sixto L.; Hogge, Edward F.; Hill, Boyd L.

    2013-01-01

    Unmanned Aerial Vehicles (UAV) are playing an increasing role in aviation. Various methods exist for the computation of UAV attitude based on low cost microelectromechanical systems (MEMS) and Global Positioning System (GPS) receivers. There has been a recent increase in UAV autonomy as sensors are becoming more compact and onboard processing power has increased significantly. Correct UAV attitude estimation will play a critical role in navigation and separation assurance as UAVs share airspace with civil air traffic. This paper describes attitude estimation derived by post-processing data from a small low cost Inertial Navigation System (INS) recorded during the flight of a subscale commercial off the shelf (COTS) UAV. Two discrete time attitude estimation schemes are presented here in detail. The first is an adaptation of the Kalman Filter to accommodate nonlinear systems, the Extended Kalman Filter (EKF). The EKF returns quaternion estimates of the UAV attitude based on MEMS gyro, magnetometer, accelerometer, and pitot tube inputs. The second scheme is the complementary filter which is a simpler algorithm that splits the sensor frequency spectrum based on noise characteristics. The necessity to correct both filters for gravity measurement errors during turning maneuvers is demonstrated. It is shown that the proposed algorithms may be used to estimate UAV attitude. The effects of vibration on sensor measurements are discussed. Heuristic tuning comments pertaining to sensor filtering and gain selection to achieve acceptable performance during flight are given. Comparisons of attitude estimation performance are made between the EKF and the complementary filter.

  17. Synthetic Air Data Estimation: A case study of model-aided estimation

    NASA Astrophysics Data System (ADS)

    Lie, F. Adhika Pradipta

    A method for estimating airspeed, angle of attack, and sideslip without using conventional, pitot-static airdata system is presented. The method relies on measurements from GPS, an inertial measurement unit (IMU) and a low-fidelity model of the aircraft's dynamics which are fused using two, cascaded Extended Kalman Filters. In the cascaded architecture, the first filter uses information from the IMU and GPS to estimate the aircraft's absolute velocity and attitude. These estimates are used as the measurement updates for the second filter where they are fused with the aircraft dynamics model to generate estimates of airspeed, angle of attack and sideslip. Methods for dealing with the time and inter-state correlation in the measurements coming from the first filter are discussed. Simulation and flight test results of the method are presented. Simulation results using high fidelity nonlinear model show that airspeed, angle of attack, and sideslip angle estimation errors are less than 0.5 m/s, 0.1 deg, and 0.2 deg RMS, respectively. Factors that affect the accuracy including the implication and impact of using a low fidelity aircraft model are discussed. It is shown using flight tests that a single linearized aircraft model can be used in lieu of a high-fidelity, non-linear model to provide reasonably accurate estimates of airspeed (less than 2 m/s error), angle of attack (less than 3 deg error), and sideslip angle (less than 5 deg error). This performance is shown to be relatively insensitive to off-trim attitudes but very sensitive to off-trim velocity.

  18. Parameter Estimation for GRACE-FO Geometric Ranging Errors

    NASA Astrophysics Data System (ADS)

    Wegener, H.; Mueller, V.; Darbeheshti, N.; Naeimi, M.; Heinzel, G.

    2017-12-01

    Onboard GRACE-FO, the novel Laser Ranging Instrument (LRI) serves as a technology demonstrator, but it is a fully functional instrument to provide an additional high-precision measurement of the primary mission observable: the biased range between the two spacecraft. Its (expectedly) two largest error sources are laser frequency noise and tilt-to-length (TTL) coupling. While not much can be done about laser frequency noise, the mechanics of the TTL error are widely understood. They depend, however, on unknown parameters. In order to improve the quality of the ranging data, it is hence essential to accurately estimate these parameters and remove the resulting TTL error from the data.Means to do so will be discussed. In particular, the possibility of using calibration maneuvers, the utility of the attitude information provided by the LRI via Differential Wavefront Sensing (DWS), and the benefit from combining ranging data from LRI with ranging data from the established microwave ranging, will be mentioned.

  19. The Hispanic Americans Baseline Alcohol Survey (HABLAS):Predictive invariance of Demographic Characteristics on Attitudes towards Alcohol across Hispanic National Groups#

    PubMed Central

    Mills, Britain A.; Caetano, Raul; Bernstein, Ira H.

    2011-01-01

    This study compares the demographic predictors of items assessing attitudes towards drinking across Hispanic national groups. Data were from the 2006 Hispanic Americans Baseline Alcohol Survey (HABLAS), which used a multistage cluster sample design to interview 5,224 individuals randomly selected from the household population in Miami, New York, Philadelphia, Houston, and Los Angeles. Predictive invariance of demographic predictors of alcohol attitudes over four Hispanic national groups (Puerto Rican, Cuban, Mexican, and South/Central Americans) was examined using multiple-group seemingly unrelated probit regression. The analyses examined whether the influence of various demographic predictors varied across the Hispanic national groups in their regression coefficients, item intercepts, and error correlations. The hypothesis of predictive invariance was supported. Hispanic groups did not differ in how demographic predictors related to individual attitudinal items (regression slopes were invariant). In addition, the groups did not differ in attitudinal endorsement rates once demographic covariates were taken into account (item intercepts were invariant). Although Hispanic groups have different attitudes about alcohol, the influence of multiple demographic characteristics on alcohol attitudes operates similarly across Hispanic groups. Future models of drinking behavior in adult Hispanics need not posit moderating effects of group on the relation between these background characteristics and attitudes. PMID:25379120

  20. Robust attitude control design for spacecraft under assigned velocity and control constraints.

    PubMed

    Hu, Qinglei; Li, Bo; Zhang, Youmin

    2013-07-01

    A novel robust nonlinear control design under the constraints of assigned velocity and actuator torque is investigated for attitude stabilization of a rigid spacecraft. More specifically, a nonlinear feedback control is firstly developed by explicitly taking into account the constraints on individual angular velocity components as well as external disturbances. Considering further the actuator misalignments and magnitude deviation, a modified robust least-squares based control allocator is employed to deal with the problem of distributing the previously designed three-axis moments over the available actuators, in which the focus of this control allocation is to find the optimal control vector of actuators by minimizing the worst-case residual error using programming algorithms. The attitude control performance using the controller structure is evaluated through a numerical example. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Spacecraft attitude control using neuro-fuzzy approximation of the optimal controllers

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Woo; Park, Sang-Young; Park, Chandeok

    2016-01-01

    In this study, a neuro-fuzzy controller (NFC) was developed for spacecraft attitude control to mitigate large computational load of the state-dependent Riccati equation (SDRE) controller. The NFC was developed by training a neuro-fuzzy network to approximate the SDRE controller. The stability of the NFC was numerically verified using a Lyapunov-based method, and the performance of the controller was analyzed in terms of approximation ability, steady-state error, cost, and execution time. The simulations and test results indicate that the developed NFC efficiently approximates the SDRE controller, with asymptotic stability in a bounded region of angular velocity encompassing the operational range of rapid-attitude maneuvers. In addition, it was shown that an approximated optimal feedback controller can be designed successfully through neuro-fuzzy approximation of the optimal open-loop controller.

  2. The Effectiveness of Various Attitude Indicator Display Sizes and Extended Horizon Lines on Attitude Maintenance in a Part-Task Simulation

    NASA Technical Reports Server (NTRS)

    Comstock, J. Raymond, Jr.; Jones, Leslie C.; Pope, Alan T.

    2003-01-01

    Spatial disorientation (SD) is a constant contributing factor to the rate of fatal aviation accidents. SD occurs as a result of perceptual errors that can be attributed in part to the inefficient presentation of synthetic orientation cues via the attitude indicator when external visual conditions are poor. Improvements in the design of the attitude indicator may help to eliminate instrumentation as a factor in the onset of SD. The goal of the present study was to explore several display concepts that may contribute to an improved attitude display. Specifically, the effectiveness of various display sizes, some that are used in current and some that are anticipated in future attitude displays that may incorporate Synthetic Vision Systems (SVS) concepts, was assessed. In addition, a concept known as an extended horizon line or Malcolm Horizon (MH) was applied and evaluated. Paired with the MH, the novel concept of a fixed reference line representing the central horizontal plane of the aircraft was also tested. Subjects performance on an attitude control task and secondary math workload task was measured across the various display sizes and conditions. The results, with regard to display size, confirmed the bigger is better concept, yielding better performance with the larger display sizes. A clear and significant improvement in attitude task performance was found with the addition of the extended horizon line. The extended or MH seemed to equalize attitude performance across display sizes, even for a central or foveal display as small as three inches in width.

  3. Development and Validation of the Human Papillomavirus Attitudes and Beliefs Scale in a National Canadian Sample.

    PubMed

    Perez, Samara; Shapiro, Gilla K; Tatar, Ovidiu; Joyal-Desmarais, Keven; Rosberger, Zeev

    2016-10-01

    Parents' human papillomavirus (HPV) vaccination decision-making is strongly influenced by their attitudes and beliefs toward vaccination. To date, psychometrically evaluated HPV vaccination attitudes scales have been narrow in their range of measured beliefs and often limited to attitudes surrounding female HPV vaccination. The study aimed to develop a comprehensive, validated and reliable HPV vaccination attitudes and beliefs scale among parents of boys. Data were collected from Canadian parents of 9- to 16-year-old boys using an online questionnaire completed in 2 waves with a 7-month interval. Based on existing vaccination attitudes scales, a set of 61 attitude and belief items were developed. Exploratory and confirmatory factor analyses were conducted. Internal consistency was evaluated with Cronbach's α and stability over time with intraclass correlations. The HPV Attitudes and Beliefs Scale (HABS) was informed by 3117 responses at time 1 and 1427 at time 2. The HABS contains 46 items organized in 9 factors: Benefits (10 items), Threat (3 items), Influence (8 items), Harms (6 items), Risk (3 items), Affordability (3 items), Communication (5 items), Accessibility (4 items), and General Vaccination Attitudes (4 items). Model fit at time 2 were: χ/df = 3.13, standardized root mean square residual = 0.056, root mean square error approximation (confidence interval) = 0.039 (0.037-0.04), comparative fit index = 0.962 and Tucker-Lewis index = 0.957. Cronbach's αs were greater than 0.8 and intraclass correlations of factors were greater than 0.6. The HABS is the first psychometrically-tested scale of HPV attitude and beliefs among parents of boys available for use in English and French. Further testing among parents of girls and young adults and assessing predictive validity are warranted.

  4. Staggering Inflation To Stabilize Attitude of a Solar Sail

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco; West, John

    2007-01-01

    A document presents computational-simulation studies of a concept for stabilizing the attitude of a spacecraft during deployment of such structures as a solar sail or other structures supported by inflatable booms. Specifically, the solar sail considered in this paper is a square sail with inflatable booms and attitude control vanes at the corners. The sail inflates from its stowed configuration into a square sail with four segments and four vanes at the tips. Basically, the concept is one of controlling the rates of inflation of the booms to utilize in mass-distribution properties to effect changes in the system s angular momentum. More specifically, what was studied were the effects of staggering inflation of each boom by holding it at constant length for specified intervals between intervals of increasing length until full length is reached. The studies included sensitivity analyses of effects of variations in mass properties, boom lengths, rates of increase in boom length, initial rates of rotation of the spacecraft, and several asymmetries that could arise during deployment. The studies led to the conclusion that the final attitude of the spacecraft could be modified by varying the parameters of staggered inflation. Computational studies also showed that by feeding back attitude and attitude-rate measurements so that corrective action is taken during the deployment, the final attitude can be maintained very closely to the initial attitude, thus mitigating the attitude changes incurred during deployment and caused by modeling errors. Moreover, it was found that by optimizing the ratio between the holding and length-increasing intervals in deployment of a boom, one could cause deployment to track a desired deployment profile to place the entire spacecraft in a desired attitude at the end of deployment.

  5. Understanding Technology and People Issues in Hospital Information System (HIS) Adoption: Case study of a tertiary hospital in Malaysia.

    PubMed

    Zakaria, Nasriah; Mohd Yusof, Shafiz Affendi

    Hospital Information Systems (HIS) can improve healthcare outcome quality, increase efficiency, and reduce errors. The government of Malaysia implemented HIS across the country to maximize the use of technology to improve healthcare delivery, however, little is known about the benefits and challenges of HIS adoption in each institution. This paper looks at the technology and people issues in adopting such systems. The study used a case study approach, using an in-depth interview with multidisciplinary medical team members who were using the system on a daily basis. A thematic analysis using Atlas.ti was employed to understand the complex relations among themes and sub-themes to discover the patterns in the data. . Users found the new system increased the efficiency of workflows and saved time. They reported less redundancy of work and improved communication among medical team members. Data retrieval and storage were also mentioned as positive results of the new HIS system. Healthcare workers showed positive attitudes during training and throughout the learning process. From a technological perspective, it was found that medical workers using HIS has better access and data management compared to the previously used manual system. The human issues analysis reveals positive attitudes toward using HIS among the users especially from the physicians' side. Copyright © 2016. Published by Elsevier Ltd.

  6. Acetaminophen attenuates error evaluation in cortex

    PubMed Central

    Kam, Julia W.Y.; Heine, Steven J.; Inzlicht, Michael; Handy, Todd C.

    2016-01-01

    Acetaminophen has recently been recognized as having impacts that extend into the affective domain. In particular, double blind placebo controlled trials have revealed that acetaminophen reduces the magnitude of reactivity to social rejection, frustration, dissonance and to both negatively and positively valenced attitude objects. Given this diversity of consequences, it has been proposed that the psychological effects of acetaminophen may reflect a widespread blunting of evaluative processing. We tested this hypothesis using event-related potentials (ERPs). Sixty-two participants received acetaminophen or a placebo in a double-blind protocol and completed the Go/NoGo task. Participants’ ERPs were observed following errors on the Go/NoGo task, in particular the error-related negativity (ERN; measured at FCz) and error-related positivity (Pe; measured at Pz and CPz). Results show that acetaminophen inhibits the Pe, but not the ERN, and the magnitude of an individual’s Pe correlates positively with omission errors, partially mediating the effects of acetaminophen on the error rate. These results suggest that recently documented affective blunting caused by acetaminophen may best be described as an inhibition of evaluative processing. They also contribute to the growing work suggesting that the Pe is more strongly associated with conscious awareness of errors relative to the ERN. PMID:26892161

  7. Do medical students like communication? Validation of the German CSAS (Communication Skills Attitude Scale).

    PubMed

    Busch, Anne-Kathrin; Rockenbauch, Katrin; Schmutzer, Gabriele; Brähler, Elmar

    2015-01-01

    Attitudes towards communication skills of medical undergraduates can be gathered using the Communication Skills Attitude Scale (CSAS). We aimed to develop a German version of the CSAS (CSAS-G) in order to explore attitudes towards communication skills in a German cohort. Additionally the potential influence of demographic factors was examined. We realized the CSAS-G and conducted a survey with 529 participants from 3 different years of study. We then carried out an explorative as well as confirmatory factor analysis and compared the attitudinal scores. Multiple regression analysis was performed. The confirmatory analysis confirmed the two-subscale system revealed by the explorative factor analysis. Students indicate low levels of negative attitudes and moderate levels of positive attitudes. Attitudinal scores differ significantly in relation to gender. The CSAS-G can be used in German cohorts to evaluate attitudes towards communication skills. Medical students in our study show basically a positive approach. Further investigation is necessary to explore and understand attitudes towards communication skills of German medical students.

  8. Model predictive and reallocation problem for CubeSat fault recovery and attitude control

    NASA Astrophysics Data System (ADS)

    Franchi, Loris; Feruglio, Lorenzo; Mozzillo, Raffaele; Corpino, Sabrina

    2018-01-01

    In recent years, thanks to the increase of the know-how on machine-learning techniques and the advance of the computational capabilities of on-board processing, expensive computing algorithms, such as Model Predictive Control, have begun to spread in space applications even on small on-board processor. The paper presents an algorithm for an optimal fault recovery of a 3U CubeSat, developed in MathWorks Matlab & Simulink environment. This algorithm involves optimization techniques aiming at obtaining the optimal recovery solution, and involves a Model Predictive Control approach for the attitude control. The simulated system is a CubeSat in Low Earth Orbit: the attitude control is performed with three magnetic torquers and a single reaction wheel. The simulation neglects the errors in the attitude determination of the satellite, and focuses on the recovery approach and control method. The optimal recovery approach takes advantage of the properties of magnetic actuation, which gives the possibility of the redistribution of the control action when a fault occurs on a single magnetic torquer, even in absence of redundant actuators. In addition, the paper presents the results of the implementation of Model Predictive approach to control the attitude of the satellite.

  9. Flight results of attitude matching between Space Shuttle and Inertial Upper Stage (IUS) navigation systems

    NASA Astrophysics Data System (ADS)

    Treder, Alfred J.; Meldahl, Keith L.

    The recorded histories of Shuttle/Orbiter attitude and Inertial Upper Stage (IUS) attitude have been analyzed for all joint flights of the IUS in the Orbiter. This database was studied to determine the behavior of relative alignment between the IUS and Shuttle navigation systems. It is found that the overall accuracy of physical alignment has a Shuttle Orbiter bias component less than 5 arcmin/axis and a short-term stability upper bound of 0.5 arcmin/axis, both at 1 sigma. Summaries of the experienced physical and inertial alginment offsets are shown in this paper, together with alignment variation data, illustrated with some flight histories. Also included is a table of candidate values for some error source groups in an Orbiter/IUS attitude errror model. Experience indicates that the Shuttle is much more accurate and stable as an orbiting launch platform than has so far been advertised. This information will be valuable for future Shuttle payloads, especially those (such as the Aeroassisted Flight Experiment) which carry their own inertial navigation systems, and which could update or initialize their attitude determination systems using the Shuttle as the reference.

  10. Solar and Magnetic Attitude Determination for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Woodham, Kurt; Blackman, Kathie; Sanneman, Paul

    1997-01-01

    During the Phase B development of the NASA New Millennium Program (NMP) Earth Orbiter-1 (EO-1) spacecraft, detailed analyses were performed for on-board attitude determination using the Sun and the Earth's magnetic field. This work utilized the TRMM 'Contingency Mode' as a starting point but concentrated on implementation for a small spacecraft without a high performance mechanical gyro package. The analyses and simulations performed demonstrate a geographic dependence due to diurnal variations in the Earth magnetic field with respect to the Sun synchronous, nearly polar orbit. Sensitivity to uncompensated residual magnetic fields of the spacecraft and field modeling errors is shown to be the most significant obstacle for maximizing performance. Performance has been evaluated with a number of inertial reference units and various mounting orientations for the two-axis Fine Sun Sensors. Attitude determination accuracy using the six state Kalman Filter executing at 2 Hz is approximately 0.2 deg, 3-sigma, per axis. Although EO-1 was subsequently driven to a stellar-based attitude determination system as a result of tighter pointing requirements, solar/magnetic attitude determination is demonstrated to be applicable to a range of small spacecraft with medium precision pointing requirements.

  11. Predictors of Osteopathic Medical Students' Readiness to Use Health Information Technology.

    PubMed

    Jacobs, Robin J; Iqbal, Hassan; Rana, Arif M; Rana, Zaid; Kane, Michael N

    2017-12-01

    The advent of health information technology (HIT) tools can affect the practice of modern medicine in many ways, ideally by improving quality of care and efficiency and reducing medical errors. Future physicians will play a key role in the successful implementation of HIT. However, osteopathic medical students' willingness to learn, adopt, and use technology in a health care setting is not well understood. To understand osteopathic medical students' knowledge, attitudes, and behaviors regarding HIT and to identify factors that may be related to their readiness to use HIT. Using a cross-sectional approach, quantitative surveys were collected from students attending a large osteopathic medical school. Multivariate regression modeling was used to determine whether knowledge, attitudes, behaviors, and personal characteristics were associated with students' readiness to use HIT in future clinical practice. Six hundred four students responded to at least 70% of the survey and were included in the analysis. Multivariate modeling successfully explained the 26% of variance in predicting students' readiness to use HIT (F8,506=22.6, P<.001, R2=0.263). Greater self-efficacy, openness to change (in academic/work settings), favorable attitudes toward HIT use, mobile technology use, younger age, being male, and prior exposure to technology were associated with readiness to use HIT. Understanding students' level of HIT readiness may help guide medical education intervention efforts to better prepare future osteopathic physicians for HIT engagement and use. Innovative approaches to HIT education in medical school curricula that include biomedical informatics may be necessary.

  12. [Analysis of the impact of job characteristics and organizational support for workplace violence].

    PubMed

    Li, M L; Chen, P; Zeng, F H; Cui, Q L; Zeng, J; Zhao, X S; Li, Z N

    2017-12-20

    Objective: To analyze the effect of job characteristics and organizational support for workplace violence, explore the influence path and the theoretical model, and provide a theoretical basis for reducing workplace violence. Methods: Stratified random sampling was used to select 813 medical staff, conductors and bus drivers in Chongqing with a self-made questionnaire to investigate job characteristics, organization attitude toward workplace violence, workplace violence, fear of violence, workplace violence, etc from February to October, 2014. Amos 21.0 was used to analyze the path and to establish a theoretical model of workplace violence. Results: The odds ratio of work characteristics and organizational attitude to workplace violence were 6.033 and 0.669, respectively, and the path coefficients were 0.41 and-0.14, respectively ( P <0.05). The Fitting indexes of the model: Chi-square (χ(2)) =67.835, The ratio of the chi-square to the degree of freedom (χ(2)/df) =5.112, Good-of-fit index (GFI) =0.970, Adjusted good-of-fit index (AGFI) =0.945, Normed fit index (NFI) =0.923, Root mean square error of approximation (RMSEA) =0.071, Fit criterion (Fmin) =0.092, so the model fit well with the data. Conclusion: The job characteristic is a risk factor for workplace violence while organizational attitude is a protective factor for workplace violence, so changing the job characteristics and improving the enthusiasm of the organization to deal with workplace violence are conducive to reduce workplace violence and increase loyalty to the unit.

  13. Error management for musicians: an interdisciplinary conceptual framework

    PubMed Central

    Kruse-Weber, Silke; Parncutt, Richard

    2014-01-01

    Musicians tend to strive for flawless performance and perfection, avoiding errors at all costs. Dealing with errors while practicing or performing is often frustrating and can lead to anger and despair, which can explain musicians’ generally negative attitude toward errors and the tendency to aim for flawless learning in instrumental music education. But even the best performances are rarely error-free, and research in general pedagogy and psychology has shown that errors provide useful information for the learning process. Research in instrumental pedagogy is still neglecting error issues; the benefits of risk management (before the error) and error management (during and after the error) are still underestimated. It follows that dealing with errors is a key aspect of music practice at home, teaching, and performance in public. And yet, to be innovative, or to make their performance extraordinary, musicians need to risk errors. Currently, most music students only acquire the ability to manage errors implicitly – or not at all. A more constructive, creative, and differentiated culture of errors would balance error tolerance and risk-taking against error prevention in ways that enhance music practice and music performance. The teaching environment should lay the foundation for the development of such an approach. In this contribution, we survey recent research in aviation, medicine, economics, psychology, and interdisciplinary decision theory that has demonstrated that specific error-management training can promote metacognitive skills that lead to better adaptive transfer and better performance skills. We summarize how this research can be applied to music, and survey-relevant research that is specifically tailored to the needs of musicians, including generic guidelines for risk and error management in music teaching and performance. On this basis, we develop a conceptual framework for risk management that can provide orientation for further music education and musicians at all levels. PMID:25120501

  14. Error management for musicians: an interdisciplinary conceptual framework.

    PubMed

    Kruse-Weber, Silke; Parncutt, Richard

    2014-01-01

    Musicians tend to strive for flawless performance and perfection, avoiding errors at all costs. Dealing with errors while practicing or performing is often frustrating and can lead to anger and despair, which can explain musicians' generally negative attitude toward errors and the tendency to aim for flawless learning in instrumental music education. But even the best performances are rarely error-free, and research in general pedagogy and psychology has shown that errors provide useful information for the learning process. Research in instrumental pedagogy is still neglecting error issues; the benefits of risk management (before the error) and error management (during and after the error) are still underestimated. It follows that dealing with errors is a key aspect of music practice at home, teaching, and performance in public. And yet, to be innovative, or to make their performance extraordinary, musicians need to risk errors. Currently, most music students only acquire the ability to manage errors implicitly - or not at all. A more constructive, creative, and differentiated culture of errors would balance error tolerance and risk-taking against error prevention in ways that enhance music practice and music performance. The teaching environment should lay the foundation for the development of such an approach. In this contribution, we survey recent research in aviation, medicine, economics, psychology, and interdisciplinary decision theory that has demonstrated that specific error-management training can promote metacognitive skills that lead to better adaptive transfer and better performance skills. We summarize how this research can be applied to music, and survey-relevant research that is specifically tailored to the needs of musicians, including generic guidelines for risk and error management in music teaching and performance. On this basis, we develop a conceptual framework for risk management that can provide orientation for further music education and musicians at all levels.

  15. Effects of dynamic aeroelasticity on handling qualities and pilot rating

    NASA Technical Reports Server (NTRS)

    Swaim, R. L.; Yen, W.-Y.

    1978-01-01

    Pilot performance parameters, such as pilot ratings, tracking errors, and pilot comments, were recorded and analyzed for a longitudinal pitch tracking task on a large, flexible aircraft. The tracking task was programmed on a fixed-base simulator with a CRT attitude director display of pitch angle command, pitch angle, and pitch angle error. Parametric variations in the undamped natural frequencies of the two lowest frequency symmetric elastic modes were made to induce varying degrees of rigid body and elastic mode interaction. The results indicate that such mode interaction can drastically affect the handling qualities and pilot ratings of the task.

  16. Neural network disturbance observer-based distributed finite-time formation tracking control for multiple unmanned helicopters.

    PubMed

    Wang, Dandan; Zong, Qun; Tian, Bailing; Shao, Shikai; Zhang, Xiuyun; Zhao, Xinyi

    2018-02-01

    The distributed finite-time formation tracking control problem for multiple unmanned helicopters is investigated in this paper. The control object is to maintain the positions of follower helicopters in formation with external interferences. The helicopter model is divided into a second order outer-loop subsystem and a second order inner-loop subsystem based on multiple-time scale features. Using radial basis function neural network (RBFNN) technique, we first propose a novel finite-time multivariable neural network disturbance observer (FMNNDO) to estimate the external disturbance and model uncertainty, where the neural network (NN) approximation errors can be dynamically compensated by adaptive law. Next, based on FMNNDO, a distributed finite-time formation tracking controller and a finite-time attitude tracking controller are designed using the nonsingular fast terminal sliding mode (NFTSM) method. In order to estimate the second derivative of the virtual desired attitude signal, a novel finite-time sliding mode integral filter is designed. Finally, Lyapunov analysis and multiple-time scale principle ensure the realization of control goal in finite-time. The effectiveness of the proposed FMNNDO and controllers are then verified by numerical simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Robust fault-tolerant tracking control design for spacecraft under control input saturation.

    PubMed

    Bustan, Danyal; Pariz, Naser; Sani, Seyyed Kamal Hosseini

    2014-07-01

    In this paper, a continuous globally stable tracking control algorithm is proposed for a spacecraft in the presence of unknown actuator failure, control input saturation, uncertainty in inertial matrix and external disturbances. The design method is based on variable structure control and has the following properties: (1) fast and accurate response in the presence of bounded disturbances; (2) robust to the partial loss of actuator effectiveness; (3) explicit consideration of control input saturation; and (4) robust to uncertainty in inertial matrix. In contrast to traditional fault-tolerant control methods, the proposed controller does not require knowledge of the actuator faults and is implemented without explicit fault detection and isolation processes. In the proposed controller a single parameter is adjusted dynamically in such a way that it is possible to prove that both attitude and angular velocity errors will tend to zero asymptotically. The stability proof is based on a Lyapunov analysis and the properties of the singularity free quaternion representation of spacecraft dynamics. Results of numerical simulations state that the proposed controller is successful in achieving high attitude performance in the presence of external disturbances, actuator failures, and control input saturation. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Forming Attitudes that Predict Future Behavior: A Meta-Analysis of the Attitude-Behavior Relation

    ERIC Educational Resources Information Center

    Glasman, Laura R.; Albarracin, Dolores

    2006-01-01

    A meta-analysis (k of conditions = 128; N = 4,598) examined the influence of factors present at the time an attitude is formed on the degree to which this attitude guides future behavior. The findings indicated that attitudes correlated with a future behavior more strongly when they were easy to recall (accessible) and stable over time. Because of…

  19. Adaptive quaternion tracking with nonlinear extended state observer

    NASA Astrophysics Data System (ADS)

    Bai, Yu-liang; Wang, Xiao-gang; Xu, Jiang-tao; Cui, Nai-gang

    2017-10-01

    This paper addresses the problem of attitude tracking for spacecraft in the presence of uncertainties in moments of inertia and environmental disturbances. An adaptive quaternion tracking control is combined with a nonlinear extended state observer and the disturbances compensated for in each sampling period. The tracking controller is proved to asymptotically track a prescribed motion in the presence of these uncertainties. Simulations of a nano-spacecraft demonstrate a significant improvement in pointing accuracy and tracking error when compared to a conventional attitude controller. The proposed tracking control is completely deterministic, simple to implement, does not require knowledge of the uncertainties and does not suffer from chattering.

  20. Patients and families as teachers: a mixed methods assessment of a collaborative learning model for medical error disclosure and prevention.

    PubMed

    Langer, Thorsten; Martinez, William; Browning, David M; Varrin, Pamela; Sarnoff Lee, Barbara; Bell, Sigall K

    2016-08-01

    Despite growing interest in engaging patients and families (P/F) in patient safety education, little is known about how P/F can best contribute. We assessed the feasibility and acceptability of a patient-teacher medical error disclosure and prevention training model. We developed an educational intervention bringing together interprofessional clinicians with P/F from hospital advisory councils to discuss error disclosure and prevention. Patient focus groups and orientation sessions informed curriculum and assessment design. A pre-post survey with qualitative and quantitative questions was used to assess P/F and clinician experiences and attitudes about collaborative safety education including participant hopes, fears, perceived value of learning experience and challenges. Responses to open-ended questions were coded according to principles of content analysis. P/F and clinicians hoped to learn about each other's perspectives, communication skills and patient empowerment strategies. Before the intervention, both groups worried about power dynamics dampening effective interaction. Clinicians worried that P/F would learn about their fallibility, while P/F were concerned about clinicians' jargon and defensive posturing. Following workshops, clinicians valued patients' direct feedback, communication strategies for error disclosure and a 'real' learning experience. P/F appreciated clinicians' accountability, and insights into how medical errors affect clinicians. Half of participants found nothing challenging, the remainder clinicians cited emotions and enormity of 'culture change', while P/F commented on medical jargon and desire for more time. Patients and clinicians found the experience valuable. Recommendations about how to develop a patient-teacher programme in patient safety are provided. An educational paradigm that includes patients as teachers and collaborative learners with clinicians in patient safety is feasible, valued by clinicians and P/F and promising for P/F-centred medical error disclosure and prevention training. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. Written Corrective Feedback: The Perception of Korean EFL Learners

    ERIC Educational Resources Information Center

    Chung, Bohyon

    2015-01-01

    This paper reports on the perception of Korean EFL learners toward feedback types on their written errors. The survey was administered using an adopted questionnaire from previous studies (Ishii 2011; Leki, 1991). This further allows a comparison of Korean EFL learners' attitudes with the responses to an identical questionnaire by Japanese EFL…

  2. Development of the functional simulator for the Galileo attitude and articulation control system

    NASA Technical Reports Server (NTRS)

    Namiri, M. K.

    1983-01-01

    A simulation program for verifying and checking the performance of the Galileo Spacecraft's Attitude and Articulation Control Subsystem's (AACS) flight software is discussed. The program, which is called Functional Simulator (FUNSIM), provides a simple method of interfacing user-supplied mathematical models coded in FORTRAN which describes spacecraft dynamics, sensors, and actuators; this is done with the AACS flight software, coded in HAL/S (High-level Advanced Language/Shuttle). It is thus able to simulate the AACS flight software accurately to the HAL/S statement level in the environment of a mainframe computer system. FUNSIM also has a command and data subsystem (CDS) simulator. It is noted that the input/output data and timing are simulated with the same precision as the flight microprocessor. FUNSIM uses a variable stepsize numerical integration algorithm complete with individual error bound control on the state variable to solve the equations of motion. The program has been designed to provide both line printer and matrix dot plotting of the variables requested in the run section and to provide error diagnostics.

  3. Human factors of advanced technology (glass cockpit) transport aircraft

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1989-01-01

    A three-year study of airline crews at two U.S. airlines who were flying an advanced technology aircraft, the Boeing 757 is discussed. The opinions and experiences of these pilots as they view the advanced, automated features of this aircraft, and contrast them with previous models they have flown are discussed. Training for advanced automation; (2) cockpit errors and error reduction; (3) management of cockpit workload; and (4) general attitudes toward cockpit automation are emphasized. The limitations of the air traffic control (ATC) system on the ability to utilize the advanced features of the new aircraft are discussed. In general the pilots are enthusiastic about flying an advanced technology aircraft, but they express mixed feelings about the impact of automation on workload, crew errors, and ability to manage the flight.

  4. Forming Attitudes That Predict Future Behavior: A Meta-Analysis of the Attitude–Behavior Relation

    PubMed Central

    Glasman, Laura R.; Albarracín, Dolores

    2016-01-01

    A meta-analysis (k of conditions = 128; N = 4,598) examined the influence of factors present at the time an attitude is formed on the degree to which this attitude guides future behavior. The findings indicated that attitudes correlated with a future behavior more strongly when they were easy to recall (accessible) and stable over time. Because of increased accessibility, attitudes more strongly predicted future behavior when participants had direct experience with the attitude object and reported their attitudes frequently. Because of the resulting attitude stability, the attitude–behavior association was strongest when attitudes were confident, when participants formed their attitude on the basis of behavior-relevant information, and when they received or were induced to think about one- rather than two-sided information about the attitude object. PMID:16910754

  5. Cross-cultural differences in psychiatric nurses' attitudes to inpatient aggression.

    PubMed

    Jansen, Gerard J; Middel, Berry; Dassen, Theo W N; Reijneveld, Menno S A

    2006-04-01

    Little is currently known about the attitudes of psychiatric nurses toward patient aggression, particularly from an international perspective. Attitudes toward patient aggression of psychiatric nurses from five European countries were investigated using a recently developed and tested attitude scale. Data were collected from a convenience sample of 1,769 student nurses and psychiatric nurses. Regression analysis was performed to identify personal and occupational characteristics of the respondents able to predict their attitude toward aggression. Analysis of variance was used to identify significant differences in attitudes between and among countries. Attitude was predicted by sex, contractual status (full vs. part time), and the type of ward on which subjects worked. With one exception (communicative attitude), attitudes differed across countries. More research on attitude formation is needed to determine which factors account for these differences.

  6. Exploring Different Patterns of Love Attitudes among Chinese College Students.

    PubMed

    Zeng, Xianglong; Pan, Yiqin; Zhou, Han; Yu, Shi; Liu, Xiangping

    2016-01-01

    Individual differences in love attitudes and the relationship between love attitudes and other variables in Asian culture lack in-depth exploration. This study conducted cluster analysis with data regarding love attitudes obtained from 389 college students in mainland China. The result of cluster analysis based on love-attitude scales distinguished four types of students: game players, rational lovers, emotional lovers, and absence lovers. These four groups of students showed significant differences in sexual attitudes and personality traits of deliberation and dutifulness but not self-discipline. The study's implications for future studies on love attitudes in certain cultural groups were also discussed.

  7. The knowledge and attitudes of midwives regarding legal and religious commandments on induced abortion and their relationship with some demographic characteristics.

    PubMed

    Afhami, Narges; Bahadoran, Parvin; Taleghani, Hamid Reza; Nekuei, Nafisehsadat

    2016-01-01

    Induced abortion is an important medical issue. Knowledge and attitude of midwives regarding legal and religious commandments on induced abortion can be useful in confronting this issue. The aim of this study was to assess the knowledge and attitudes of midwives of Isfahan regarding these rules and to find their relationship with demographic characteristics. This was a cross-sectional, descriptive, and analytical study. The study participants consisted of 189 midwives working in hospitals, health centers, private gynecology clinics, and university. Random quota sampling method was used. Data were collected using a researcher-made questionnaire. Data were analyzed using mean, frequency distribution tables, Pearson correlation, and Spearman's coefficient. For all tests, an error of less than 0.05 was considered. The majority of the participants had extremely low to moderate (73%) knowledge about the subject of the study. Their attitudes toward effective implementation of these rules were mostly extremely weak to moderate (68.72%). No correlation was observed between knowledge, age, work experience, and education. However, there was a relationship between the level of knowledge about these rules and the location of service. There was no significant correlation between attitude and demographic characteristics. Due to less knowledge of the midwives and their low attitude score in this regard, training them, improving their attitude toward these issues, and effective implementation of these laws are necessary. Therefore, by identifying the factors affecting the formation of attitudes and the level of knowledge, more constructive proceedings can be taken to promote them.

  8. Voyager 2 Saturn encounter attitude and articulation control experience

    NASA Technical Reports Server (NTRS)

    Hill, M.

    1982-01-01

    A description is given of the Voyager Attitude and Articulation Control System (AACS). The complex series of maneuvers required for Voyager 2 during the near encounter period to obtain fields and particle data, track the limb of Saturn during the earth occultation period, and reflect the RF beam off the Saturnian ring system are discussed. It is noted that some of these maneuvers involved rotating the spacecraft simultaneously about multiple axes while maintaining accurate pointing of the scan platform, a first for interplanetary missions. Also described are two anomalies experienced by the AACS during the near encounter period. The first was the significant roll attitude error that occurred shortly after all axis inertial control and that continued to grow until celestial reacquisition. The second was that the scan platform slewing in the azimuth axis stopped midway through the near encounter. These anomalies are analyzed, and their effect on future missions is assessed.

  9. Inclusion in the East: Chinese Students' Attitudes towards Inclusive Education

    ERIC Educational Resources Information Center

    Malinen, Olli-Pekka; Savolainen, Hannu

    2008-01-01

    A sample of 523 Chinese university students was given a questionnaire on their attitudes towards the inclusion of children with disabilities into regular classrooms. Factor analysis, analysis of variance, t-test and correlations were used to assess the respondents' general attitude towards inclusion, the factor structure of the attitudes, the…

  10. Do medical students like communication? Validation of the German CSAS (Communication Skills Attitude Scale)

    PubMed Central

    Busch, Anne-Kathrin; Rockenbauch, Katrin; Schmutzer, Gabriele; Brähler, Elmar

    2015-01-01

    Objectives: Attitudes towards communication skills of medical undergraduates can be gathered using the Communication Skills Attitude Scale (CSAS). We aimed to develop a German version of the CSAS (CSAS-G) in order to explore attitudes towards communication skills in a German cohort. Additionally the potential influence of demographic factors was examined. Methods: We realized the CSAS-G and conducted a survey with 529 participants from 3 different years of study. We then carried out an explorative as well as confirmatory factor analysis and compared the attitudinal scores. Multiple regression analysis was performed. Results: The confirmatory analysis confirmed the two-subscale system revealed by the explorative factor analysis. Students indicate low levels of negative attitudes and moderate levels of positive attitudes. Attitudinal scores differ significantly in relation to gender. Conclusion: The CSAS-G can be used in German cohorts to evaluate attitudes towards communication skills. Medical students in our study show basically a positive approach. Further investigation is necessary to explore and understand attitudes towards communication skills of German medical students. PMID:25699103

  11. Six Degrees-of-Freedom Ascent Control for Small-Body Touch and Go

    NASA Technical Reports Server (NTRS)

    Blackmore, Lars James C.

    2011-01-01

    A document discusses a method of controlling touch and go (TAG) of a spacecraft to correct attitude, while ensuring a safe ascent. TAG is a concept whereby a spacecraft is in contact with the surface of a small body, such as a comet or asteroid, for a few seconds or less before ascending to a safe location away from the small body. The report describes a controller that corrects attitude and ensures that the spacecraft ascends to a safe state as quickly as possible. The approach allocates a certain amount of control authority to attitude control, and uses the rest to accelerate the spacecraft as quickly as possible in the ascent direction. The relative allocation to attitude and position is a parameter whose optimal value is determined using a ground software tool. This new approach makes use of the full control authority of the spacecraft to correct the errors imparted by the contact, and ascend as quickly as possible. This is in contrast to prior approaches, which do not optimize the ascent acceleration.

  12. A pilot test of a self-guided, home-based intervention to improve condom-related sexual experiences, attitudes, and behaviors among young women.

    PubMed

    Yarber, William L; Milhausen, Robin R; Beavers, Karly A; Ryan, Rebecca; Sullivan, Margaret J; Vanterpool, Karen B; Sanders, Stephanie A; Graham, Cynthia A; Crosby, Richard A

    2018-07-01

    To conduct a pilot test of a brief, self-guided, home-based program designed to improve male condom use attitudes and behaviors among young women. Women aged 18-24 years from a large Midwestern University reporting having had penile-vaginal sex with two or more partners in the past 3 months. Sixty-seven enrolled; 91.0% completed the study. A repeated measures design was used, with assessments occurring at baseline, immediately  post intervention (T2), and 30 days subsequent (T3). Condom use errors and problems decreased, condom-related attitudes and self-efficacy improved, and experiences of condom-protected sex were rated more positively when comparing baseline with T2 and T3 scores. Further, the proportion of condom-protected episodes more than doubled between T1 and T3 for those in the lowest quartile for condom use at baseline. This low-resource, home-based program improved condom-related attitudes and promoted the correct and consistent use of condoms.

  13. Hardware Simulations of Spacecraft Attitude Synchronization Using Lyapunov-Based Controllers

    NASA Astrophysics Data System (ADS)

    Jung, Juno; Park, Sang-Young; Eun, Youngho; Kim, Sung-Woo; Park, Chandeok

    2018-04-01

    In the near future, space missions with multiple spacecraft are expected to replace traditional missions with a single large spacecraft. These spacecraft formation flying missions generally require precise knowledge of relative position and attitude between neighboring agents. In this study, among the several challenging issues, we focus on the technique to control spacecraft attitude synchronization in formation. We develop a number of nonlinear control schemes based on the Lyapunov stability theorem and considering special situations: full-state feedback control, full-state feedback control with unknown inertia parameters, and output feedback control without angular velocity measurements. All the proposed controllers offer absolute and relative control using reaction wheel assembly for both regulator and tracking problems. In addition to the numerical simulations, an air-bearing-based hardware-in-the-loop (HIL) system is used to verify the proposed control laws in real-time hardware environments. The pointing errors converge to 0.5{°} with numerical simulations and to 2{°} using the HIL system. Consequently, both numerical and hardware simulations confirm the performance of the spacecraft attitude synchronization algorithms developed in this study.

  14. Fixed-head star tracker attitude updates on the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Nadelman, Matthew S.; Karl, Jeffrey B.; Hallock, Lou

    1994-01-01

    The Hubble Space Telescope (HST) was launched in April 1990 to begin observing celestial space to the edge of the universe. National Aeronautics and Space Administration (NASA) standard fixed-head star trackers (FHST's) are used operationally onboard the HST to regularly adjust ('update') the spacecraft attitude before the acquisition of guide stars for science observations. During the first 3 months of the mission, the FHST's updated the spacecraft attitude successfully only 85 percent of the time. During the other periods, the trackers were unable to find the selected stars -- either they failed to find any star, or worse, they selected incorrect stars and produced erroneous attitude updates. In July 1990, the HST project office at Goddard Space Flight Center (GSFC) requested that Computer Sciences Corporation (CSC) form an investigative 'tiger' team to examine these FHST update failures. This paper discusses the work of the FHST tiger team, describes the investigations that led the team to identify the sources of the errors, and defines the solutions that were subsequently developed, which ultimately increased the success rate of FHST updates to approximately 98 percent.

  15. Polarization Rotation and the Third Stokes Parameter: The Effects of Spacecraft Attitude and Faraday Rotation

    NASA Technical Reports Server (NTRS)

    Meissner, Thomas; Wentz, Frank J.

    2006-01-01

    The third Stokes parameter of ocean surface brightness temperatures measured by the WindSat instrument is sensitive to the rotation angle between the polarization vectors at the ocean surface and the instrument. This rotation angle depends on the spacecraft attitude (roll, pitch, yaw) as well as the Faraday rotation of the electromagnetic radiation passing through the Earth's ionosphere. Analyzing the WindSat antenna temperatures, we find biases in the third Stokes parameter as function of the along-scan position of up to 1.5 K in all feedhorns. This points to a misspecification of the reported spacecraft attitude. A single attitude correction of -0.16deg roll and 0.18deg pitch for the whole instrument eliminates all the biases. We also study the effect of Faraday rotation at 10.7 GHz on the accuracy of the third Stokes parameter and the sea surface wind direction retrieval and demonstrate how this error can be corrected using values from the International Reference Ionosphere for the total electron content when computing Faraday rotation.

  16. Multi-rate cubature Kalman filter based data fusion method with residual compensation to adapt to sampling rate discrepancy in attitude measurement system.

    PubMed

    Guo, Xiaoting; Sun, Changku; Wang, Peng

    2017-08-01

    This paper investigates the multi-rate inertial and vision data fusion problem in nonlinear attitude measurement systems, where the sampling rate of the inertial sensor is much faster than that of the vision sensor. To fully exploit the high frequency inertial data and obtain favorable fusion results, a multi-rate CKF (Cubature Kalman Filter) algorithm with estimated residual compensation is proposed in order to adapt to the problem of sampling rate discrepancy. During inter-sampling of slow observation data, observation noise can be regarded as infinite. The Kalman gain is unknown and approaches zero. The residual is also unknown. Therefore, the filter estimated state cannot be compensated. To obtain compensation at these moments, state error and residual formulas are modified when compared with the observation data available moments. Self-propagation equation of the state error is established to propagate the quantity from the moments with observation to the moments without observation. Besides, a multiplicative adjustment factor is introduced as Kalman gain, which acts on the residual. Then the filter estimated state can be compensated even when there are no visual observation data. The proposed method is tested and verified in a practical setup. Compared with multi-rate CKF without residual compensation and single-rate CKF, a significant improvement is obtained on attitude measurement by using the proposed multi-rate CKF with inter-sampling residual compensation. The experiment results with superior precision and reliability show the effectiveness of the proposed method.

  17. Two Axis Pointing System (TAPS) attitude acquisition, determination, and control

    NASA Technical Reports Server (NTRS)

    Azzolini, John D.; Mcglew, David E.

    1990-01-01

    The Two Axis Pointing System (TAPS) is a 2 axis gimbal system designed to provide fine pointing of Space Transportation System (STS) borne instruments. It features center-of-mass instrument mounting and will accommodate instruments of up to 1134 kg (2500 pounds) which fit within a 1.0 by 1.0 by 4.2 meter (40 by 40 by 166 inch) envelope. The TAPS system is controlled by a microcomputer based Control Electronics Assembly (CEA), a Power Distribution Unit (PDU), and a Servo Control Unit (SCU). A DRIRU-II inertial reference unit is used to provide incremental angles for attitude propagation. A Ball Brothers STRAP star tracker is used for attitude acquisition and update. The theory of the TAPS attitude determination and error computation for the Broad Band X-ray Telescope (BBXRT) are described. The attitude acquisition is based upon a 2 star geometric solution. The acquisition theory and quaternion algebra are presented. The attitude control combines classical position, integral and derivative (PID) control with techniques to compensate for coulomb friction (bias torque) and the cable harness crossing the gimbals (spring torque). Also presented is a technique for an adaptive bias torque compensation which adjusts to an ever changing frictional torque environment. The control stability margins are detailed, with the predicted pointing performance, based upon simulation studies. The TAPS user interface, which provides high level operations commands to facilitate science observations, is outlined.

  18. Dynamic modeling and ascent flight control of Ares-I Crew Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Du, Wei

    This research focuses on dynamic modeling and ascent flight control of large flexible launch vehicles such as the Ares-I Crew Launch Vehicle (CLV). A complete set of six-degrees-of-freedom dynamic models of the Ares-I, incorporating its propulsion, aerodynamics, guidance and control, and structural flexibility, is developed. NASA's Ares-I reference model and the SAVANT Simulink-based program are utilized to develop a Matlab-based simulation and linearization tool for an independent validation of the performance and stability of the ascent flight control system of large flexible launch vehicles. A linearized state-space model as well as a non-minimum-phase transfer function model (which is typical for flexible vehicles with non-collocated actuators and sensors) are validated for ascent flight control design and analysis. This research also investigates fundamental principles of flight control analysis and design for launch vehicles, in particular the classical "drift-minimum" and "load-minimum" control principles. It is shown that an additional feedback of angle-of-attack can significantly improve overall performance and stability, especially in the presence of unexpected large wind disturbances. For a typical "non-collocated actuator and sensor" control problem for large flexible launch vehicles, non-minimum-phase filtering of "unstably interacting" bending modes is also shown to be effective. The uncertainty model of a flexible launch vehicle is derived. The robust stability of an ascent flight control system design, which directly controls the inertial attitude-error quaternion and also employs the non-minimum-phase filters, is verified by the framework of structured singular value (mu) analysis. Furthermore, nonlinear coupled dynamic simulation results are presented for a reference model of the Ares-I CLV as another validation of the feasibility of the ascent flight control system design. Another important issue for a single main engine launch vehicle is stability under mal-function of the roll control system. The roll motion of the Ares-I Crew Launch Vehicle under nominal flight conditions is actively stabilized by its roll control system employing thrusters. This dissertation describes the ascent flight control design problem of Ares-I in the event of disabled or failed roll control. A simple pitch/yaw control logic is developed for such a technically challenging problem by exploiting the inherent versatility of a quaternion-based attitude control system. The proposed scheme requires only the desired inertial attitude quaternion to be re-computed using the actual uncontrolled roll angle information to achieve an ascent flight trajectory identical to the nominal flight case with active roll control. Another approach that utilizes a simple adjustment of the proportional-derivative gains of the quaternion-based flight control system without active roll control is also presented. This approach doesn't require the re-computation of desired inertial attitude quaternion. A linear stability criterion is developed for proper adjustments of attitude and rate gains. The linear stability analysis results are validated by nonlinear simulations of the ascent flight phase. However, the first approach, requiring a simple modification of the desired attitude quaternion, is recommended for the Ares-I as well as other launch vehicles in the event of no active roll control. Finally, the method derived to stabilize a large flexible launch vehicle in the event of uncontrolled roll drift is generalized as a modified attitude quaternion feedback law. It is used to stabilize an axisymmetric rigid body by two independent control torques.

  19. Adaptive Jacobian Fuzzy Attitude Control for Flexible Spacecraft Combined Attitude and Sun Tracking System

    NASA Astrophysics Data System (ADS)

    Chak, Yew-Chung; Varatharajoo, Renuganth

    2016-07-01

    Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to the actual angular velocity. Numerical results are presented to demonstrate the effectiveness of the proposed scheme in tracking the desired attitude, as well as suppressing the elastic deflection effects of solar arrays during maneuver.

  20. Safe Practices for Copy and Paste in the EHR

    PubMed Central

    Lehmann, Christoph U.; Michel, Jeremy; Solomon, Ronni; Possanza, Lorraine; Gandhi, Tejal

    2017-01-01

    Summary Background Copy and paste functionality can support efficiency during clinical documentation, but may promote inaccurate documentation with risks for patient safety. The Partnership for Health IT Patient Safety was formed to gather data, conduct analysis, educate, and disseminate safe practices for safer care using health information technology (IT). Objective To characterize copy and paste events in clinical care, identify safety risks, describe existing evidence, and develop implementable practice recommendations for safe reuse of information via copy and paste. Methods The Partnership 1) reviewed 12 reported safety events, 2) solicited expert input, and 3) performed a systematic literature review (2010 to January 2015) to identify publications addressing frequency, perceptions/attitudes, patient safety risks, existing guidance, and potential interventions and mitigation practices. Results The literature review identified 51 publications that were included. Overall, 66% to 90% of clinicians routinely use copy and paste. One study of diagnostic errors found that copy and paste led to 2.6% of errors in which a missed diagnosis required patients to seek additional unplanned care. Copy and paste can promote note bloat, internal inconsistencies, error propagation, and documentation in the wrong patient chart. Existing guidance identified specific responsibilities for authors, organizations, and electronic health record (EHR) developers. Analysis of 12 reported copy and paste safety events was congruent with problems identified from the literature review. Conclusion Despite regular copy and paste use, evidence regarding direct risk to patient safety remains sparse, with significant study limitations. Drawing on existing evidence, the Partnership developed four safe practice recommendations: 1) Provide a mechanism to make copy and paste material easily identifiable; 2) Ensure the provenance of copy and paste material is readily available; 3) Ensure adequate staff training and education; 4) Ensure copy and paste practices are regularly monitored, measured, and assessed. PMID:28074211

  1. Safe Practices for Copy and Paste in the EHR. Systematic Review, Recommendations, and Novel Model for Health IT Collaboration.

    PubMed

    Tsou, Amy Y; Lehmann, Christoph U; Michel, Jeremy; Solomon, Ronni; Possanza, Lorraine; Gandhi, Tejal

    2017-01-11

    Copy and paste functionality can support efficiency during clinical documentation, but may promote inaccurate documentation with risks for patient safety. The Partnership for Health IT Patient Safety was formed to gather data, conduct analysis, educate, and disseminate safe practices for safer care using health information technology (IT). To characterize copy and paste events in clinical care, identify safety risks, describe existing evidence, and develop implementable practice recommendations for safe reuse of information via copy and paste. The Partnership 1) reviewed 12 reported safety events, 2) solicited expert input, and 3) performed a systematic literature review (2010 to January 2015) to identify publications addressing frequency, perceptions/attitudes, patient safety risks, existing guidance, and potential interventions and mitigation practices. The literature review identified 51 publications that were included. Overall, 66% to 90% of clinicians routinely use copy and paste. One study of diagnostic errors found that copy and paste led to 2.6% of errors in which a missed diagnosis required patients to seek additional unplanned care. Copy and paste can promote note bloat, internal inconsistencies, error propagation, and documentation in the wrong patient chart. Existing guidance identified specific responsibilities for authors, organizations, and electronic health record (EHR) developers. Analysis of 12 reported copy and paste safety events was congruent with problems identified from the literature review. Despite regular copy and paste use, evidence regarding direct risk to patient safety remains sparse, with significant study limitations. Drawing on existing evidence, the Partnership developed four safe practice recommendations: 1) Provide a mechanism to make copy and paste material easily identifiable; 2) Ensure the provenance of copy and paste material is readily available; 3) Ensure adequate staff training and education; 4) Ensure copy and paste practices are regularly monitored, measured, and assessed.

  2. Personal and psychosocial predictors of doping use in physical activity settings: a meta-analysis.

    PubMed

    Ntoumanis, Nikos; Ng, Johan Y Y; Barkoukis, Vassilis; Backhouse, Susan

    2014-11-01

    There is a growing body of empirical evidence on demographic and psychosocial predictors of doping intentions and behaviors utilizing a variety of variables and conceptual models. However, to date there has been no attempt to quantitatively synthesize the available evidence and identify the strongest predictors of doping. Using meta-analysis, we aimed to (i) determine effect sizes of psychological (e.g. attitudes) and social-contextual factors (e.g. social norms), and demographic (e.g. sex and age) variables on doping intentions and use; (ii) examine variables that moderate such effect sizes; and (iii) test a path analysis model, using the meta-analyzed effect sizes, based on variables from the theory of planned behavior (TPB). Articles were identified from online databases, by contacting experts in the field, and searching the World Anti-Doping Agency website. Studies that measured doping behaviors and/or doping intentions, and at least one other demographic, psychological, or social-contextual variable were included. We identified 63 independent datasets. Study information was extracted by using predefined data fields and taking into account study quality indicators. A random effects meta-analysis was carried out, correcting for sampling and measurement error, and identifying moderator variables. Path analysis was conducted on a subset of studies that utilized the TPB. Use of legal supplements, perceived social norms, and positive attitudes towards doping were the strongest positive correlates of doping intentions and behaviors. In contrast, morality and self-efficacy to refrain from doping had the strongest negative association with doping intentions and behaviors. Furthermore, path analysis suggested that attitudes, perceived norms, and self-efficacy to refrain from doping predicted intentions to dope and, indirectly, doping behaviors. Various meta-analyzed effect sizes were based on a small number of studies, which were correlational in nature. This is a limitation of the extant literature. This review identifies a number of important correlates of doping intention and behavior, many of which were measured via self-reports and were drawn from an extended TPB framework. Future research might benefit from embracing other conceptual models of doping behavior and adopting experimental methodologies that will test some of the identified correlates in an effort to develop targeted anti-doping policies and programs.

  3. Instrument Pointing Capabilities: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Blackmore, Lars; Murray, Emmanuell; Scharf, Daniel P.; Aung, Mimi; Bayard, David; Brugarolas, Paul; Hadaegh, Fred; Lee, Allan; Milman, Mark; Sirlin, Sam; hide

    2011-01-01

    This paper surveys the instrument pointing capabilities of past, present and future space telescopes and interferometers. As an important aspect of this survey, we present a taxonomy for "apples-to-apples" comparisons of pointing performances. First, pointing errors are defined relative to either an inertial frame or a celestial target. Pointing error can then be further sub-divided into DC, that is, steady state, and AC components. We refer to the magnitude of the DC error relative to the inertial frame as absolute pointing accuracy, and we refer to the magnitude of the DC error relative to a celestial target as relative pointing accuracy. The magnitude of the AC error is referred to as pointing stability. While an AC/DC partition is not new, we leverage previous work by some of the authors to quantitatively clarify and compare varying definitions of jitter and time window averages. With this taxonomy and for sixteen past, present, and future missions, pointing accuracies and stabilities, both required and achieved, are presented. In addition, we describe the attitude control technologies used to and, for future missions, planned to achieve these pointing performances.

  4. Exploring Different Patterns of Love Attitudes among Chinese College Students

    PubMed Central

    Zeng, Xianglong; Pan, Yiqin; Zhou, Han; Yu, Shi; Liu, Xiangping

    2016-01-01

    Individual differences in love attitudes and the relationship between love attitudes and other variables in Asian culture lack in-depth exploration. This study conducted cluster analysis with data regarding love attitudes obtained from 389 college students in mainland China. The result of cluster analysis based on love-attitude scales distinguished four types of students: game players, rational lovers, emotional lovers, and absence lovers. These four groups of students showed significant differences in sexual attitudes and personality traits of deliberation and dutifulness but not self-discipline. The study’s implications for future studies on love attitudes in certain cultural groups were also discussed. PMID:27851784

  5. How Trainees Would Disclose Medical Errors: Educational Implications for Training Programs

    PubMed Central

    White, Andrew A.; Bell, Sigall K.; Krauss, Melissa J; Garbutt, Jane; Dunagan, W. Claiborne; Fraser, Victoria J.; Levinson, Wendy; Larson, Eric B.; Gallagher, Thomas H.

    2012-01-01

    Background Disclosing harmful errors to patients is recommended, but appears to be uncommon. Understanding how trainees disclose errors and how those practices evolve during training could help educators design programs to address this gap. Purpose To determine how trainees would disclose medical errors. Methods A survey of 758 trainees (488 students and 270 residents) in internal medicine at two academic medical centers. Surveys depicted one of two harmful error scenarios that varied by how apparent the error would be to the patient. We measured attitudes and disclosure content using scripted responses. Results Trainees reported their intent to disclose the error as “definitely” (43%) “probably” (47%) “only if asked by patient” (9%), and “definitely not” (1%). Trainees were more likely to disclose obvious errors in comparison with ones patients were unlikely to recognize (55% vs. 30%, P<0.01). Respondents varied widely in what information they would disclose. Fifty percent of trainees chose statements explicitly stating an error occurred rather than only an adverse event. Regarding apologies, trainees were split between a general expression of regret (52%) and an explicit apology (46%). Respondents at higher levels of training were less likely to use explicit apologies (Trend P<0.01). Prior disclosure training was associated with increased willingness to disclose errors (OR 1.40, P=0.03). Conclusions Trainees may not be prepared to disclose medical errors to patients, and worrisome trends in trainee apology practices were observed across levels of training. Medical educators should intensify efforts to enhance trainees’ skills at meeting patients’ expectations for open disclosure of harmful medical errors. PMID:21401685

  6. Risk managers, physicians, and disclosure of harmful medical errors.

    PubMed

    Loren, David J; Garbutt, Jane; Dunagan, W Claiborne; Bommarito, Kerry M; Ebers, Alison G; Levinson, Wendy; Waterman, Amy D; Fraser, Victoria J; Summy, Elizabeth A; Gallagher, Thomas H

    2010-03-01

    Physicians are encouraged to disclose medical errors to patients, which often requires close collaboration between physicians and risk managers. An anonymous national survey of 2,988 healthcare facility-based risk managers was conducted between November 2004 and March 2005, and results were compared with those of a previous survey (conducted between July 2003 and March 2004) of 1,311 medical physicians in Washington and Missouri. Both surveys included an error-disclosure scenario for an obvious and a less obvious error with scripted response options. More risk managers than physicians were aware that an error-reporting system was present at their hospital (81% versus 39%, p < .001) and believed that mechanisms to inform physicians about errors in their hospital were adequate (51% versus 17%, p < .001). More risk managers than physicians strongly agreed that serious errors should be disclosed to patients (70% versus 49%, p < .001). Across both error scenario, risk managers were more likely than physicians to definitely recommend that the error be disclosed (76% versus 50%, p < .001) and to provide full details about how the error would be prevented in the future (62% versus 51%, p < .001). However, physicians were more likely than risk managers to provide a full apology recognizing the harm caused by the error (39% versus 21%, p < .001). Risk managers have more favorable attitudes about disclosing errors to patients compared with physicians but are less supportive of providing a full apology. These differences may create conflicts between risk managers and physicians regarding disclosure. Health care institutions should promote greater collaboration between these two key participants in disclosure conversations.

  7. Detection and avoidance of errors in computer software

    NASA Technical Reports Server (NTRS)

    Kinsler, Les

    1989-01-01

    The acceptance test errors of a computer software project to determine if the errors could be detected or avoided in earlier phases of development. GROAGSS (Gamma Ray Observatory Attitude Ground Support System) was selected as the software project to be examined. The development of the software followed the standard Flight Dynamics Software Development methods. GROAGSS was developed between August 1985 and April 1989. The project is approximately 250,000 lines of code of which approximately 43,000 lines are reused from previous projects. GROAGSS had a total of 1715 Change Report Forms (CRFs) submitted during the entire development and testing. These changes contained 936 errors. Of these 936 errors, 374 were found during the acceptance testing. These acceptance test errors were first categorized into methods of avoidance including: more clearly written requirements; detail review; code reading; structural unit testing; and functional system integration testing. The errors were later broken down in terms of effort to detect and correct, class of error, and probability that the prescribed detection method would be successful. These determinations were based on Software Engineering Laboratory (SEL) documents and interviews with the project programmers. A summary of the results of the categorizations is presented. The number of programming errors at the beginning of acceptance testing can be significantly reduced. The results of the existing development methodology are examined for ways of improvements. A basis is provided for the definition is a new development/testing paradigm. Monitoring of the new scheme will objectively determine its effectiveness on avoiding and detecting errors.

  8. A Reconceptualised Translation-Based Task as a Viable Teaching Tool in EFL Class to Avoid Calque Errors

    ERIC Educational Resources Information Center

    Mateo, Roberto Martínez

    2015-01-01

    The negative attitude towards translation as another pedagogical means in Foreign Language Teaching (FLT) has prevailed for much time (Cook, 2010). Nonetheless, currently, many theorists and linguistics agree on the importance of using translation activities in foreign language teaching and underline its beneficial effects to expand vocabulary, to…

  9. Saudi EFL Preparatory Year Students' Perception about Corrective Feedback in Oral Communication

    ERIC Educational Resources Information Center

    Alhaysony, Maha

    2016-01-01

    This study sought to investigate the attitudes of Saudi EFL students towards corrective feedback (henceforth CF) on classroom oral errors. The subjects were 3200 (1223 male and 1977 female) students enrolled in an intensive English language programme in the preparatory year at the University of Ha'il. A questionnaire was the main instrument. This…

  10. Reading Aloud in High Schools: Students and Teachers across the Curriculum

    ERIC Educational Resources Information Center

    Warner, Lionel; Crolla, Caroline; Goodwyn, Andy; Hyder, Eileen; Richards, Brian

    2016-01-01

    Reading aloud is apparently an indispensible part of teaching. Nevertheless, little is known about reading aloud across the curriculum by students and teachers in high schools. Nor do we understand teachers' attitudes towards issues such as error correction, rehearsal time, and selecting students to read. A survey of 360 teachers in England shows…

  11. Acetaminophen attenuates error evaluation in cortex.

    PubMed

    Randles, Daniel; Kam, Julia W Y; Heine, Steven J; Inzlicht, Michael; Handy, Todd C

    2016-06-01

    Acetaminophen has recently been recognized as having impacts that extend into the affective domain. In particular, double blind placebo controlled trials have revealed that acetaminophen reduces the magnitude of reactivity to social rejection, frustration, dissonance and to both negatively and positively valenced attitude objects. Given this diversity of consequences, it has been proposed that the psychological effects of acetaminophen may reflect a widespread blunting of evaluative processing. We tested this hypothesis using event-related potentials (ERPs). Sixty-two participants received acetaminophen or a placebo in a double-blind protocol and completed the Go/NoGo task. Participants' ERPs were observed following errors on the Go/NoGo task, in particular the error-related negativity (ERN; measured at FCz) and error-related positivity (Pe; measured at Pz and CPz). Results show that acetaminophen inhibits the Pe, but not the ERN, and the magnitude of an individual's Pe correlates positively with omission errors, partially mediating the effects of acetaminophen on the error rate. These results suggest that recently documented affective blunting caused by acetaminophen may best be described as an inhibition of evaluative processing. They also contribute to the growing work suggesting that the Pe is more strongly associated with conscious awareness of errors relative to the ERN. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Network Analysis on Attitudes: A Brief Tutorial.

    PubMed

    Dalege, Jonas; Borsboom, Denny; van Harreveld, Frenk; van der Maas, Han L J

    2017-07-01

    In this article, we provide a brief tutorial on the estimation, analysis, and simulation on attitude networks using the programming language R. We first discuss what a network is and subsequently show how one can estimate a regularized network on typical attitude data. For this, we use open-access data on the attitudes toward Barack Obama during the 2012 American presidential election. Second, we show how one can calculate standard network measures such as community structure, centrality, and connectivity on this estimated attitude network. Third, we show how one can simulate from an estimated attitude network to derive predictions from attitude networks. By this, we highlight that network theory provides a framework for both testing and developing formalized hypotheses on attitudes and related core social psychological constructs.

  13. Network Analysis on Attitudes

    PubMed Central

    Borsboom, Denny; van Harreveld, Frenk; van der Maas, Han L. J.

    2017-01-01

    In this article, we provide a brief tutorial on the estimation, analysis, and simulation on attitude networks using the programming language R. We first discuss what a network is and subsequently show how one can estimate a regularized network on typical attitude data. For this, we use open-access data on the attitudes toward Barack Obama during the 2012 American presidential election. Second, we show how one can calculate standard network measures such as community structure, centrality, and connectivity on this estimated attitude network. Third, we show how one can simulate from an estimated attitude network to derive predictions from attitude networks. By this, we highlight that network theory provides a framework for both testing and developing formalized hypotheses on attitudes and related core social psychological constructs. PMID:28919944

  14. If You're House Is Still Available, Send Me an Email: Personality Influences Reactions to Written Errors in Email Messages.

    PubMed

    Boland, Julie E; Queen, Robin

    2016-01-01

    The increasing prevalence of social media means that we often encounter written language characterized by both stylistic variation and outright errors. How does the personality of the reader modulate reactions to non-standard text? Experimental participants read 'email responses' to an ad for a housemate that either contained no errors or had been altered to include either typos (e.g., teh) or homophonous grammar errors (grammos, e.g., to/too, it's/its). Participants completed a 10-item evaluation scale for each message, which measured their impressions of the writer. In addition participants completed a Big Five personality assessment and answered demographic and language attitude questions. Both typos and grammos had a negative impact on the evaluation scale. This negative impact was not modulated by age, education, electronic communication frequency, or pleasure reading time. In contrast, personality traits did modulate assessments, and did so in distinct ways for grammos and typos.

  15. If You’re House Is Still Available, Send Me an Email: Personality Influences Reactions to Written Errors in Email Messages

    PubMed Central

    2016-01-01

    The increasing prevalence of social media means that we often encounter written language characterized by both stylistic variation and outright errors. How does the personality of the reader modulate reactions to non-standard text? Experimental participants read ‘email responses’ to an ad for a housemate that either contained no errors or had been altered to include either typos (e.g., teh) or homophonous grammar errors (grammos, e.g., to/too, it’s/its). Participants completed a 10-item evaluation scale for each message, which measured their impressions of the writer. In addition participants completed a Big Five personality assessment and answered demographic and language attitude questions. Both typos and grammos had a negative impact on the evaluation scale. This negative impact was not modulated by age, education, electronic communication frequency, or pleasure reading time. In contrast, personality traits did modulate assessments, and did so in distinct ways for grammos and typos. PMID:26959823

  16. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering

    PubMed Central

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-01-01

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level. PMID:27223293

  17. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering.

    PubMed

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-05-23

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level.

  18. A Novel Sensor for Attitude Determination Using Global Positioning System Signals

    NASA Technical Reports Server (NTRS)

    Crassidis, John L.; Quinn, David A.; Markley, F. Landis; McCullough, Jon D.

    1998-01-01

    An entirely new sensor approach for attitude determination using Global Positioning System (GPS) signals is developed. The concept involves the use of multiple GPS antenna elements arrayed on a single sensor head to provide maximum GPS space vehicle availability. A number of sensor element configurations are discussed. In addition to the navigation function, the array is used to find which GPS space vehicles are within the field-of-view of each antenna element. Attitude determination is performed by considering the sightline vectors of the found GPS space vehicles together with the fixed boresight vectors of the individual antenna elements. This approach has clear advantages over the standard differential carrier-phase approach. First, errors induced by multipath effects can be significantly reduced or eliminated altogether. Also, integer ambiguity resolution is not required, nor do line biases need to be determined through costly and cumbersome self-surveys. Furthermore, the new sensor does not require individual antennas to be physically separated to form interferometric baselines to determine attitude. Finally, development potential of the new sensor is limited only by antenna and receiver technology development unlike the physical limitations of the current interferometric attitude determination scheme. Simulation results indicate that accuracies of about 1 degree (3 omega) are possible.

  19. An adaptive filter method for spacecraft using gravity assist

    NASA Astrophysics Data System (ADS)

    Ning, Xiaolin; Huang, Panpan; Fang, Jiancheng; Liu, Gang; Ge, Shuzhi Sam

    2015-04-01

    Celestial navigation (CeleNav) has been successfully used during gravity assist (GA) flyby for orbit determination in many deep space missions. Due to spacecraft attitude errors, ephemeris errors, the camera center-finding bias, and the frequency of the images before and after the GA flyby, the statistics of measurement noise cannot be accurately determined, and yet have time-varying characteristics, which may introduce large estimation error and even cause filter divergence. In this paper, an unscented Kalman filter (UKF) with adaptive measurement noise covariance, called ARUKF, is proposed to deal with this problem. ARUKF scales the measurement noise covariance according to the changes in innovation and residual sequences. Simulations demonstrate that ARUKF is robust to the inaccurate initial measurement noise covariance matrix and time-varying measurement noise. The impact factors in the ARUKF are also investigated.

  20. An accuracy measurement method for star trackers based on direct astronomic observation

    PubMed Central

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-01-01

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers. PMID:26948412

Top