Sample records for error correction fec

  1. Superdense coding interleaved with forward error correction

    DOE PAGES

    Humble, Travis S.; Sadlier, Ronald J.

    2016-05-12

    Superdense coding promises increased classical capacity and communication security but this advantage may be undermined by noise in the quantum channel. We present a numerical study of how forward error correction (FEC) applied to the encoded classical message can be used to mitigate against quantum channel noise. By studying the bit error rate under different FEC codes, we identify the unique role that burst errors play in superdense coding, and we show how these can be mitigated against by interleaving the FEC codewords prior to transmission. As a result, we conclude that classical FEC with interleaving is a useful methodmore » to improve the performance in near-term demonstrations of superdense coding.« less

  2. Observations on Polar Coding with CRC-Aided List Decoding

    DTIC Science & Technology

    2016-09-01

    9 v 1. INTRODUCTION Polar codes are a new type of forward error correction (FEC) codes, introduced by Arikan in [1], in which he...error correction (FEC) currently used and planned for use in Navy wireless communication systems. The project’s results from FY14 and FY15 are...good error- correction per- formance. We used the Tal/Vardy method of [5]. The polar encoder uses a row vector u of length N . Let uA be the subvector

  3. Impact of Feedback on Three Phases of Performance Monitoring

    PubMed Central

    Appelgren, Alva; Penny, William; Bengtsson, Sara L

    2013-01-01

    We investigated if certain phases of performance monitoring show differential sensitivity to external feedback and thus rely on distinct mechanisms. The phases of interest were: the error phase (FE), the phase of the correct response after errors (FEC), and the phase of correct responses following corrects (FCC). We tested accuracy and reaction time (RT) on 12 conditions of a continuous-choice-response task; the 2-back task. External feedback was either presented or not in FE and FEC, and delivered on 0%, 20%, or 100% of FCC trials. The FCC20 was matched to FE and FEC in the number of sounds received so that we could investigate when external feedback was most valuable to the participants. We found that external feedback led to a reduction in accuracy when presented on all the correct responses. Moreover, RT was significantly reduced for FCC100, which in turn correlated with the accuracy reduction. Interestingly, the correct response after an error was particularly sensitive to external feedback since accuracy was reduced when external feedback was presented during this phase but not for FCC20. Notably, error-monitoring was not influenced by feedback-type. The results are in line with models suggesting that the internal error-monitoring system is sufficient in cognitively demanding tasks where performance is ∼ 80%, as well as theories stipulating that external feedback directs attention away from the task. Our data highlight the first correct response after an error as particularly sensitive to external feedback, suggesting that important consolidation of response strategy takes place here. PMID:24217138

  4. Co-operation of digital nonlinear equalizers and soft-decision LDPC FEC in nonlinear transmission.

    PubMed

    Tanimura, Takahito; Oda, Shoichiro; Hoshida, Takeshi; Aoki, Yasuhiko; Tao, Zhenning; Rasmussen, Jens C

    2013-12-30

    We experimentally and numerically investigated the characteristics of 128 Gb/s dual polarization - quadrature phase shift keying signals received with two types of nonlinear equalizers (NLEs) followed by soft-decision (SD) low-density parity-check (LDPC) forward error correction (FEC). Successful co-operation among SD-FEC and NLEs over various nonlinear transmissions were demonstrated by optimization of parameters for NLEs.

  5. Introduction to Forward-Error-Correcting Coding

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.

    1996-01-01

    This reference publication introduces forward error correcting (FEC) and stresses definitions and basic calculations for use by engineers. The seven chapters include 41 example problems, worked in detail to illustrate points. A glossary of terms is included, as well as an appendix on the Q function. Block and convolutional codes are covered.

  6. Benefit of adaptive FEC in shared backup path protected elastic optical network.

    PubMed

    Guo, Hong; Dai, Hua; Wang, Chao; Li, Yongcheng; Bose, Sanjay K; Shen, Gangxiang

    2015-07-27

    We apply an adaptive forward error correction (FEC) allocation strategy to an Elastic Optical Network (EON) operated with shared backup path protection (SBPP). To maximize the protected network capacity that can be carried, an Integer Linear Programing (ILP) model and a spectrum window plane (SWP)-based heuristic algorithm are developed. Simulation results show that the FEC coding overhead required by the adaptive FEC scheme is significantly lower than that needed by a fixed FEC allocation strategy resulting in higher network capacity for the adaptive strategy. The adaptive FEC allocation strategy can also significantly outperform the fixed FEC allocation strategy both in terms of the spare capacity redundancy and the average FEC coding overhead needed per optical channel. The proposed heuristic algorithm is efficient and not only performs closer to the ILP model but also does much better than the shortest-path algorithm.

  7. An FEC Adaptive Multicast MAC Protocol for Providing Reliability in WLANs

    NASA Astrophysics Data System (ADS)

    Basalamah, Anas; Sato, Takuro

    For wireless multicast applications like multimedia conferencing, voice over IP and video/audio streaming, a reliable transmission of packets within short delivery delay is needed. Moreover, reliability is crucial to the performance of error intolerant applications like file transfer, distributed computing, chat and whiteboard sharing. Forward Error Correction (FEC) is frequently used in wireless multicast to enhance Packet Error Rate (PER) performance, but cannot assure full reliability unless coupled with Automatic Repeat Request forming what is knows as Hybrid-ARQ. While reliable FEC can be deployed at different levels of the protocol stack, it cannot be deployed on the MAC layer of the unreliable IEEE802.11 WLAN due to its inability to exchange ACKs with multiple recipients. In this paper, we propose a Multicast MAC protocol that enhances WLAN reliability by using Adaptive FEC and study it's performance through mathematical analysis and simulation. Our results show that our protocol can deliver high reliability and throughput performance.

  8. Analysis of soft-decision FEC on non-AWGN channels.

    PubMed

    Cho, Junho; Xie, Chongjin; Winzer, Peter J

    2012-03-26

    Soft-decision forward error correction (SD-FEC) schemes are typically designed for additive white Gaussian noise (AWGN) channels. In a fiber-optic communication system, noise may be neither circularly symmetric nor Gaussian, thus violating an important assumption underlying SD-FEC design. This paper quantifies the impact of non-AWGN noise on SD-FEC performance for such optical channels. We use a conditionally bivariate Gaussian noise model (CBGN) to analyze the impact of correlations among the signal's two quadrature components, and assess the effect of CBGN on SD-FEC performance using the density evolution of low-density parity-check (LDPC) codes. On a CBGN channel generating severely elliptic noise clouds, it is shown that more than 3 dB of coding gain are attainable by utilizing correlation information. Our analyses also give insights into potential improvements of the detection performance for fiber-optic transmission systems assisted by SD-FEC.

  9. FEC decoder design optimization for mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Roy, Ashim; Lewi, Leng

    1990-01-01

    A new telecommunications service for location determination via satellite is being proposed for the continental USA and Europe, which provides users with the capability to find the location of, and communicate from, a moving vehicle to a central hub and vice versa. This communications system is expected to operate in an extremely noisy channel in the presence of fading. In order to achieve high levels of data integrity, it is essential to employ forward error correcting (FEC) encoding and decoding techniques in such mobile satellite systems. A constraint length k = 7 FEC decoder has been implemented in a single chip for such systems. The single chip implementation of the maximum likelihood decoder helps to minimize the cost, size, and power consumption, and improves the bit error rate (BER) performance of the mobile earth terminal (MET).

  10. Performance Analysis of a JTIDS/Link-16-type Waveform Transmitted over Slow, Flat Nakagami Fading Channels in the Presence of Narrowband Interference

    DTIC Science & Technology

    2008-12-01

    The effective two-way tactical data rate is 3,060 bits per second. Note that there is no parity check or forward error correction (FEC) coding used in...of 1800 bits per second. With the use of FEC coding , the channel data rate is 2250 bits per second; however, the information data rate is still the...Link-11. If the parity bits are included, the channel data rate is 28,800 bps. If FEC coding is considered, the channel data rate is 59,520 bps

  11. Interactive Video Coding and Transmission over Heterogeneous Wired-to-Wireless IP Networks Using an Edge Proxy

    NASA Astrophysics Data System (ADS)

    Pei, Yong; Modestino, James W.

    2004-12-01

    Digital video delivered over wired-to-wireless networks is expected to suffer quality degradation from both packet loss and bit errors in the payload. In this paper, the quality degradation due to packet loss and bit errors in the payload are quantitatively evaluated and their effects are assessed. We propose the use of a concatenated forward error correction (FEC) coding scheme employing Reed-Solomon (RS) codes and rate-compatible punctured convolutional (RCPC) codes to protect the video data from packet loss and bit errors, respectively. Furthermore, the performance of a joint source-channel coding (JSCC) approach employing this concatenated FEC coding scheme for video transmission is studied. Finally, we describe an improved end-to-end architecture using an edge proxy in a mobile support station to implement differential error protection for the corresponding channel impairments expected on the two networks. Results indicate that with an appropriate JSCC approach and the use of an edge proxy, FEC-based error-control techniques together with passive error-recovery techniques can significantly improve the effective video throughput and lead to acceptable video delivery quality over time-varying heterogeneous wired-to-wireless IP networks.

  12. Self-Powered Forward Error-Correcting Biosensor Based on Integration of Paper-Based Microfluidics and Self-Assembled Quick Response Codes.

    PubMed

    Yuan, Mingquan; Liu, Keng-Ku; Singamaneni, Srikanth; Chakrabartty, Shantanu

    2016-10-01

    This paper extends our previous work on silver-enhancement based self-assembling structures for designing reliable, self-powered biosensors with forward error correcting (FEC) capability. At the core of the proposed approach is the integration of paper-based microfluidics with quick response (QR) codes that can be optically scanned using a smart-phone. The scanned information is first decoded to obtain the location of a web-server which further processes the self-assembled QR image to determine the concentration of target analytes. The integration substrate for the proposed FEC biosensor is polyethylene and the patterning of the QR code on the substrate has been achieved using a combination of low-cost ink-jet printing and a regular ballpoint dispensing pen. A paper-based microfluidics channel has been integrated underneath the substrate for acquiring, mixing and flowing the sample to areas on the substrate where different parts of the code can self-assemble in presence of immobilized gold nanorods. In this paper we demonstrate the proof-of-concept detection using prototypes of QR encoded FEC biosensors.

  13. Use of FEC coding to improve statistical multiplexing performance for video transport over ATM networks

    NASA Astrophysics Data System (ADS)

    Kurceren, Ragip; Modestino, James W.

    1998-12-01

    The use of forward error-control (FEC) coding, possibly in conjunction with ARQ techniques, has emerged as a promising approach for video transport over ATM networks for cell-loss recovery and/or bit error correction, such as might be required for wireless links. Although FEC provides cell-loss recovery capabilities it also introduces transmission overhead which can possibly cause additional cell losses. A methodology is described to maximize the number of video sources multiplexed at a given quality of service (QoS), measured in terms of decoded cell loss probability, using interlaced FEC codes. The transport channel is modelled as a block interference channel (BIC) and the multiplexer as single server, deterministic service, finite buffer supporting N users. Based upon an information-theoretic characterization of the BIC and large deviation bounds on the buffer overflow probability, the described methodology provides theoretically achievable upper limits on the number of sources multiplexed. Performance of specific coding techniques using interlaced nonbinary Reed-Solomon (RS) codes and binary rate-compatible punctured convolutional (RCPC) codes is illustrated.

  14. Iterative channel decoding of FEC-based multiple-description codes.

    PubMed

    Chang, Seok-Ho; Cosman, Pamela C; Milstein, Laurence B

    2012-03-01

    Multiple description coding has been receiving attention as a robust transmission framework for multimedia services. This paper studies the iterative decoding of FEC-based multiple description codes. The proposed decoding algorithms take advantage of the error detection capability of Reed-Solomon (RS) erasure codes. The information of correctly decoded RS codewords is exploited to enhance the error correction capability of the Viterbi algorithm at the next iteration of decoding. In the proposed algorithm, an intradescription interleaver is synergistically combined with the iterative decoder. The interleaver does not affect the performance of noniterative decoding but greatly enhances the performance when the system is iteratively decoded. We also address the optimal allocation of RS parity symbols for unequal error protection. For the optimal allocation in iterative decoding, we derive mathematical equations from which the probability distributions of description erasures can be generated in a simple way. The performance of the algorithm is evaluated over an orthogonal frequency-division multiplexing system. The results show that the performance of the multiple description codes is significantly enhanced.

  15. Evaluation of AL-FEC performance for IP television services QoS

    NASA Astrophysics Data System (ADS)

    Mammi, E.; Russo, G.; Neri, A.

    2010-01-01

    The IP television services quality is a critical issue because of the nature of transport infrastructure. Packet loss is the main cause of service degradation in such kind of network platforms. The use of forward error correction (FEC) techniques in the application layer (AL-FEC), between the source of TV service (video server) and the user terminal, seams to be an efficient strategy to counteract packet losses alternatively or in addiction to suitable traffic management policies (only feasible in "managed networks"). A number of AL-FEC techniques have been discussed in literature and proposed for inclusion in TV over IP international standards. In this paper a performance evaluation of the AL-FEC defined in SMPTE 2022-1 standard is presented. Different typical events occurring in IP networks causing different types (in terms of statistic distribution) of IP packet losses have been studied and AL-FEC performance to counteract these kind of losses have been evaluated. The performed analysis has been carried out in view of fulfilling the TV services QoS requirements that are usually very demanding. For managed networks, this paper envisages a strategy to combine the use of AL-FEC with the set-up of a transport quality based on FEC packets prioritization. Promising results regard this kind of strategy have been obtained.

  16. FEC combined burst-modem for business satellite communications use

    NASA Astrophysics Data System (ADS)

    Murakami, K.; Miyake, M.; Fuji, T.; Moritani, Y.; Fujino, T.

    The authors recently developed two types of FEC (forward error correction) combined modems both applicable to low-data-rate and intermediate-data-rate TDMA international satellite communications. Each FEC combined modem consists of a QPSK (quadrature phase-shift keyed) modem, a convolutional encoder, and a Viterbi decoder. Both modems are designed taking into consideration the fast acquisition of the carrier and bit timing and the low cycle slipping rate in the low-carrier-to-noise-ratio environment. Attention is paid to designing the Viterbi decoder to be operated in a situation in which successive bursts may have different coding rates according to the punctured coding scheme. The overall scheme of the FEC combined modems are presented, and some of the key technologies applied in developing them are outlined. The hardware implementation and experimentation are also discussed. The measured data are compared with results of theoretical analysis, and relatively good performances are obtained.

  17. An approach enabling adaptive FEC for OFDM in fiber-VLLC system

    NASA Astrophysics Data System (ADS)

    Wei, Yiran; He, Jing; Deng, Rui; Shi, Jin; Chen, Shenghai; Chen, Lin

    2017-12-01

    In this paper, we propose an orthogonal circulant matrix transform (OCT)-based adaptive frame-level-forward error correction (FEC) scheme for fiber-visible laser light communication (VLLC) system and experimentally demonstrate by Reed-Solomon (RS) Code. In this method, no extra bits are spent for adaptive message, except training sequence (TS), which is simultaneously used for synchronization and channel estimation. Therefore, RS-coding can be adaptively performed frames by frames via the last received codeword-error-rate (CER) feedback estimated by the TSs of the previous few OFDM frames. In addition, the experimental results exhibit that over 20 km standard single-mode fiber (SSMF) and 8 m visible light transmission, the costs of RS codewords are at most 14.12% lower than those of conventional adaptive subcarrier-RS-code based 16-QAM OFDM at bit error rate (BER) of 10-5.

  18. FPGA implementation of advanced FEC schemes for intelligent aggregation networks

    NASA Astrophysics Data System (ADS)

    Zou, Ding; Djordjevic, Ivan B.

    2016-02-01

    In state-of-the-art fiber-optics communication systems the fixed forward error correction (FEC) and constellation size are employed. While it is important to closely approach the Shannon limit by using turbo product codes (TPC) and low-density parity-check (LDPC) codes with soft-decision decoding (SDD) algorithm; rate-adaptive techniques, which enable increased information rates over short links and reliable transmission over long links, are likely to become more important with ever-increasing network traffic demands. In this invited paper, we describe a rate adaptive non-binary LDPC coding technique, and demonstrate its flexibility and good performance exhibiting no error floor at BER down to 10-15 in entire code rate range, by FPGA-based emulation, making it a viable solution in the next-generation high-speed intelligent aggregation networks.

  19. A low-power, high-throughput maximum-likelihood convolutional decoder chip for NASA's 30/20 GHz program

    NASA Technical Reports Server (NTRS)

    Mccallister, R. D.; Crawford, J. J.

    1981-01-01

    It is pointed out that the NASA 30/20 GHz program will place in geosynchronous orbit a technically advanced communication satellite which can process time-division multiple access (TDMA) information bursts with a data throughput in excess of 4 GBPS. To guarantee acceptable data quality during periods of signal attenuation it will be necessary to provide a significant forward error correction (FEC) capability. Convolutional decoding (utilizing the maximum-likelihood techniques) was identified as the most attractive FEC strategy. Design trade-offs regarding a maximum-likelihood convolutional decoder (MCD) in a single-chip CMOS implementation are discussed.

  20. H.264 Layered Coded Video over Wireless Networks: Channel Coding and Modulation Constraints

    NASA Astrophysics Data System (ADS)

    Ghandi, M. M.; Barmada, B.; Jones, E. V.; Ghanbari, M.

    2006-12-01

    This paper considers the prioritised transmission of H.264 layered coded video over wireless channels. For appropriate protection of video data, methods such as prioritised forward error correction coding (FEC) or hierarchical quadrature amplitude modulation (HQAM) can be employed, but each imposes system constraints. FEC provides good protection but at the price of a high overhead and complexity. HQAM is less complex and does not introduce any overhead, but permits only fixed data ratios between the priority layers. Such constraints are analysed and practical solutions are proposed for layered transmission of data-partitioned and SNR-scalable coded video where combinations of HQAM and FEC are used to exploit the advantages of both coding methods. Simulation results show that the flexibility of SNR scalability and absence of picture drift imply that SNR scalability as modelled is superior to data partitioning in such applications.

  1. Utilization of Forward Error Correction (FEC) Techniques With Extensible Markup Language (XML) Schema-Based Binary Compression (XSBC) Technology

    DTIC Science & Technology

    2004-12-01

    NY 7. Erik Chaum NUWC Newport, RI 8. David Bellino NPRI Newport, RI 9. Dick Nadolink NUWC Newport, RI 10. VADM Roger Bacon (Ret...Science Advisor Pearl Harbor, HI 16. LT Andrew Hurvitz, USN FNMOC Monterey, CA 17. ENS Darin Keeter, USN FNMOC Monterey, CA 18. CAPT David

  2. Fade-resistant forward error correction method for free-space optical communications systems

    DOEpatents

    Johnson, Gary W.; Dowla, Farid U.; Ruggiero, Anthony J.

    2007-10-02

    Free-space optical (FSO) laser communication systems offer exceptionally wide-bandwidth, secure connections between platforms that cannot other wise be connected via physical means such as optical fiber or cable. However, FSO links are subject to strong channel fading due to atmospheric turbulence and beam pointing errors, limiting practical performance and reliability. We have developed a fade-tolerant architecture based on forward error correcting codes (FECs) combined with delayed, redundant, sub-channels. This redundancy is made feasible though dense wavelength division multiplexing (WDM) and/or high-order M-ary modulation. Experiments and simulations show that error-free communications is feasible even when faced with fades that are tens of milliseconds long. We describe plans for practical implementation of a complete system operating at 2.5 Gbps.

  3. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formations of iron carbide (FeC) and its cation (FeC+).

    PubMed

    Lau, Kai-Chung; Chang, Yih-Chung; Lam, Chow-Shing; Ng, C Y

    2009-12-31

    The ionization energy (IE) of FeC and the 0 K bond dissociation energies (D(0)) and the heats of formation at 0 K (DeltaH(o)(f0)) and 298 K (DeltaH(o)(f298)) for FeC and FeC(+) are predicted by the single-reference wave function based CCSDTQ(Full)/CBS approach, which involves the approximation to the complete basis set (CBS) limit at the coupled cluster level up to full quadruple excitations. The zero-point vibrational energy (ZPVE) correction, the core-valence electronic corrections (up to CCSDT level), spin-orbit couplings, and relativistic effects (up to CCSDTQ level) are included in the calculations. The present calculations provide the correct symmetry predictions for the ground states of FeC and FeC(+) to be (3)Delta and (2)Delta, respectively. We have also examined the theoretical harmonic vibrational frequencies of FeC/FeC(+) at the ROHF-UCCSD(T) and UHF-UCCSD(T) levels. While the UHF-UCCSD(T) harmonic frequencies are in good agreement with the experimental measurements, the ROHF-UCCSD(T) yields significantly higher harmonic frequency predictions for FeC/FeC(+). The CCSDTQ(Full)/CBS IE(FeC) = 7.565 eV is found to compare favorably with the experimental IE value of 7.59318 +/- 0.00006 eV, suggesting that the single-reference-based coupled cluster theory is capable of providing reliable IE prediction for FeC, despite its multireference character. The CCSDTQ(Full)/CBS D(0)(Fe(+)-C) and D(0)(Fe-C) give the prediction of D(0)(Fe(+)-C) - D(0)(Fe-C) = 0.334 eV, which is consistent with the experimental determination of 0.3094 +/- 0.0001 eV. The D(0) calculations also support the experimental D(0)(Fe(+)-C) = 4.1 +/- 0.3 eV and D(0)(Fe-C) = 3.8 +/- 0.3 eV determined by the previous ion photodissociation study. The present calculations also provide the DeltaH(o)(f0)(DeltaH(o)(f298)) predictions for FeC/FeC(+). The analysis of the correction terms in these calculations shows that the core-valence and valence-valence electronic correlations beyond CCSD(T) wave function and the relativistic effects make significant contributions to the calculated thermochemical properties of FeC/FeC(+). For the experimental D(0) and DeltaH(o)(f0) values of FeC/FeC(+), which are not known to high precision, we recommend the CCSDTQ(Full)/CBS predictions [D(0)(Fe-C) = 3.778 eV, D(0)(Fe(+)-C) = 4.112 eV, DeltaH(o)(f0)(FeC) = 760.8 kJ/mol and DeltaH(o)(f0)(FeC(+)) = 1490.6 kJ/mol] based on the ZPVE corrections using the experimental vibrational frequencies of FeC and FeC(+).

  4. Optimal JPWL Forward Error Correction Rate Allocation for Robust JPEG 2000 Images and Video Streaming over Mobile Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Agueh, Max; Diouris, Jean-François; Diop, Magaye; Devaux, François-Olivier; De Vleeschouwer, Christophe; Macq, Benoit

    2008-12-01

    Based on the analysis of real mobile ad hoc network (MANET) traces, we derive in this paper an optimal wireless JPEG 2000 compliant forward error correction (FEC) rate allocation scheme for a robust streaming of images and videos over MANET. The packet-based proposed scheme has a low complexity and is compliant to JPWL, the 11th part of the JPEG 2000 standard. The effectiveness of the proposed method is evaluated using a wireless Motion JPEG 2000 client/server application; and the ability of the optimal scheme to guarantee quality of service (QoS) to wireless clients is demonstrated.

  5. RETRACTED — PMD mitigation through interleaving LDPC codes with polarization scramblers

    NASA Astrophysics Data System (ADS)

    Han, Dahai; Chen, Haoran; Xi, Lixia

    2012-11-01

    The combination of forward error correction (FEC) and distributed fast polarization scramblers (D-FPSs) is approved as an effective method to mitigate polarization mode dispersion (PMD) in high-speed optical fiber communication system. The low-density parity-check (LDPC) codes are newly introduced into the PMD mitigation scheme with D-FPSs in this paper as one of the promising FEC codes to achieve better performance. The scrambling speed of FPS for LDPC (2040, 1903) codes system is discussed, and the reasonable speed 10 MHz is obtained from the simulation results. For easy application in practical large scale integrated (LSI) circuit, the number of iterations in decoding LDPC codes is also investigated. The PMD tolerance and cut-off optical signal-to-noise ratio (OSNR) of LDPC codes are compared with Reed-Solomon (RS) codes in different conditions. In the simulation, the interleaving LDPC codes brings incremental performance of error correction, and the PMD tolerance is 10 ps at OSNR=11.4 dB. The results show that the meaning of the work is that LDPC codes are a substitute for traditional RS codes with D-FPSs and all of the executable code files are open for researchers who have practical LSI platform for PMD mitigation.

  6. PMD mitigation through interleaving LDPC codes with polarization scramblers

    NASA Astrophysics Data System (ADS)

    Han, Dahai; Chen, Haoran; Xi, Lixia

    2013-09-01

    The combination of forward error correction (FEC) and distributed fast polarization scramblers (D-FPSs) is approved an effective method to mitigate polarization mode dispersion (PMD) in high-speed optical fiber communication system. The low-density parity-check (LDPC) codes are newly introduced into the PMD mitigation scheme with D-FPSs in this article as one of the promising FEC codes to achieve better performance. The scrambling speed of FPS for LDPC (2040, 1903) codes system is discussed, and the reasonable speed 10MHz is obtained from the simulation results. For easy application in practical large scale integrated (LSI) circuit, the number of iterations in decoding LDPC codes is also investigated. The PMD tolerance and cut-off optical signal-to-noise ratio (OSNR) of LDPC codes are compared with Reed-Solomon (RS) codes in different conditions. In the simulation, the interleaving LDPC codes bring incremental performance of error correction, and the PMD tolerance is 10ps at OSNR=11.4dB. The results show the meaning of the work is that LDPC codes are a substitute for traditional RS codes with D-FPSs and all of the executable code files are open for researchers who have practical LSI platform for PMD mitigation.

  7. Prioritized packet video transmission over time-varying wireless channel using proactive FEC

    NASA Astrophysics Data System (ADS)

    Kumwilaisak, Wuttipong; Kim, JongWon; Kuo, C.-C. Jay

    2000-12-01

    Quality of video transmitted over time-varying wireless channels relies heavily on the coordinated effort to cope with both channel and source variations dynamically. Given the priority of each source packet and the estimated channel condition, an adaptive protection scheme based on joint source-channel criteria is investigated via proactive forward error correction (FEC). With proactive FEC in Reed Solomon (RS)/Rate-compatible punctured convolutional (RCPC) codes, we study a practical algorithm to match the relative priority of source packets and instantaneous channel conditions. The channel condition is estimated to capture the long-term fading effect in terms of the averaged SNR over a preset window. Proactive protection is performed for each packet based on the joint source-channel criteria with special attention to the accuracy, time-scale match, and feedback delay of channel status estimation. The overall gain of the proposed protection mechanism is demonstrated in terms of the end-to-end wireless video performance.

  8. An FPGA design of generalized low-density parity-check codes for rate-adaptive optical transport networks

    NASA Astrophysics Data System (ADS)

    Zou, Ding; Djordjevic, Ivan B.

    2016-02-01

    Forward error correction (FEC) is as one of the key technologies enabling the next-generation high-speed fiber optical communications. In this paper, we propose a rate-adaptive scheme using a class of generalized low-density parity-check (GLDPC) codes with a Hamming code as local code. We show that with the proposed unified GLDPC decoder architecture, a variable net coding gains (NCGs) can be achieved with no error floor at BER down to 10-15, making it a viable solution in the next-generation high-speed fiber optical communications.

  9. Random access to mobile networks with advanced error correction

    NASA Technical Reports Server (NTRS)

    Dippold, Michael

    1990-01-01

    A random access scheme for unreliable data channels is investigated in conjunction with an adaptive Hybrid-II Automatic Repeat Request (ARQ) scheme using Rate Compatible Punctured Codes (RCPC) Forward Error Correction (FEC). A simple scheme with fixed frame length and equal slot sizes is chosen and reservation is implicit by the first packet transmitted randomly in a free slot, similar to Reservation Aloha. This allows the further transmission of redundancy if the last decoding attempt failed. Results show that a high channel utilization and superior throughput can be achieved with this scheme that shows a quite low implementation complexity. For the example of an interleaved Rayleigh channel and soft decision utilization and mean delay are calculated. A utilization of 40 percent may be achieved for a frame with the number of slots being equal to half the station number under high traffic load. The effects of feedback channel errors and some countermeasures are discussed.

  10. Reducing sampling error in faecal egg counts from black rhinoceros (Diceros bicornis).

    PubMed

    Stringer, Andrew P; Smith, Diane; Kerley, Graham I H; Linklater, Wayne L

    2014-04-01

    Faecal egg counts (FECs) are commonly used for the non-invasive assessment of parasite load within hosts. Sources of error, however, have been identified in laboratory techniques and sample storage. Here we focus on sampling error. We test whether a delay in sample collection can affect FECs, and estimate the number of samples needed to reliably assess mean parasite abundance within a host population. Two commonly found parasite eggs in black rhinoceros (Diceros bicornis) dung, strongyle-type nematodes and Anoplocephala gigantea, were used. We find that collection of dung from the centre of faecal boluses up to six hours after defecation does not affect FECs. More than nine samples were needed to greatly improve confidence intervals of the estimated mean parasite abundance within a host population. These results should improve the cost-effectiveness and efficiency of sampling regimes, and support the usefulness of FECs when used for the non-invasive assessment of parasite abundance in black rhinoceros populations.

  11. Full Duplex, Spread Spectrum Radio System

    NASA Technical Reports Server (NTRS)

    Harvey, Bruce A.

    2000-01-01

    The goal of this project was to support the development of a full duplex, spread spectrum voice communications system. The assembly and testing of a prototype system consisting of a Harris PRISM spread spectrum radio, a TMS320C54x signal processing development board and a Zilog Z80180 microprocessor was underway at the start of this project. The efforts under this project were the development of multiple access schemes, analysis of full duplex voice feedback delays, and the development and analysis of forward error correction (FEC) algorithms. The multiple access analysis involved the selection between code division multiple access (CDMA), frequency division multiple access (FDMA) and time division multiple access (TDMA). Full duplex voice feedback analysis involved the analysis of packet size and delays associated with full loop voice feedback for confirmation of radio system performance. FEC analysis included studies of the performance under the expected burst error scenario with the relatively short packet lengths, and analysis of implementation in the TMS320C54x digital signal processor. When the capabilities and the limitations of the components used were considered, the multiple access scheme chosen was a combination TDMA/FDMA scheme that will provide up to eight users on each of three separate frequencies. Packets to and from each user will consist of 16 samples at a rate of 8,000 samples per second for a total of 2 ms of voice information. The resulting voice feedback delay will therefore be 4 - 6 ms. The most practical FEC algorithm for implementation was a convolutional code with a Viterbi decoder. Interleaving of the bits of each packet will be required to offset the effects of burst errors.

  12. Enhanced protocol for real-time transmission of echocardiograms over wireless channels.

    PubMed

    Cavero, Eva; Alesanco, Alvaro; García, Jose

    2012-11-01

    This paper presents a methodology to transmit clinical video over wireless networks in real-time. A 3-D set partitioning in hierarchical trees compression prior to transmission is proposed. In order to guarantee the clinical quality of the compressed video, a clinical evaluation specific to each video modality has to be made. This evaluation indicates the minimal transmission rate necessary for an accurate diagnosis. However, the channel conditions produce errors and distort the video. A reliable application protocol is therefore proposed using a hybrid solution in which either retransmission or retransmission combined with forward error correction (FEC) techniques are used, depending on the channel conditions. In order to analyze the proposed methodology, the 2-D mode of an echocardiogram has been assessed. A bandwidth of 200 kbps is necessary to guarantee its clinical quality. The transmission using the proposed solution and retransmission and FEC techniques working separately have been simulated and compared in high-speed uplink packet access (HSUPA) and worldwide interoperability for microwave access (WiMAX) networks. The proposed protocol achieves guaranteed clinical quality for bit error rates higher than with the other protocols, being for a mobile speed of 60 km/h up to 3.3 times higher for HSUPA and 10 times for WiMAX.

  13. Quantifying the sources of variability in equine faecal egg counts: implications for improving the utility of the method.

    PubMed

    Denwood, M J; Love, S; Innocent, G T; Matthews, L; McKendrick, I J; Hillary, N; Smith, A; Reid, S W J

    2012-08-13

    The faecal egg count (FEC) is the most widely used means of quantifying the nematode burden of horses, and is frequently used in clinical practice to inform treatment and prevention. The statistical process underlying the FEC is complex, comprising a Poisson counting error process for each sample, compounded with an underlying continuous distribution of means between samples. Being able to quantify the sources of variability contributing to this distribution of means is a necessary step towards providing estimates of statistical power for future FEC and FECRT studies, and may help to improve the usefulness of the FEC technique by identifying and minimising unwanted sources of variability. Obtaining such estimates require a hierarchical statistical model coupled with repeated FEC observations from a single animal over a short period of time. Here, we use this approach to provide the first comparative estimate of multiple sources of within-horse FEC variability. The results demonstrate that a substantial proportion of the observed variation in FEC between horses occurs as a result of variation in FEC within an animal, with the major sources being aggregation of eggs within faeces and variation in egg concentration between faecal piles. The McMaster procedure itself is associated with a comparatively small coefficient of variation, and is therefore highly repeatable when a sufficiently large number of eggs are observed to reduce the error associated with the counting process. We conclude that the variation between samples taken from the same animal is substantial, but can be reduced through the use of larger homogenised faecal samples. Estimates are provided for the coefficient of variation (cv) associated with each within animal source of variability in observed FEC, allowing the usefulness of individual FEC to be quantified, and providing a basis for future FEC and FECRT studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Optimization of lens layout for THz signal free-space delivery

    NASA Astrophysics Data System (ADS)

    Yu, Jimmy; Zhou, Wen

    2018-03-01

    We investigate how to extend the air-space distance for Terahertz (THz) signal by using optimized lens layout. After a delivery over 129.6 cm air-space we realize the BER of 10 Gb/s QPSK signal at 450 GHz smaller than 1 ×10-4 with this optimized lens layout. If only two lenses are employed, the BER is higher than forward error correction (FEC) threshold at the input power of 15 dBm into the photodiode.

  15. Phase-ambiguity resolution for QPSK modulation systems. Part 1: A review

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien Manh

    1989-01-01

    Part 1 reviews the current phase-ambiguity resolution techniques for QPSK coherent modulation systems. Here, those known and published methods of resolving phase ambiguity for QPSK with and without Forward-Error-Correcting (FEC) are discussed. The necessary background is provided for a complete understanding of the second part where a new technique will be discussed. An appropriate technique to the Consultative Committee for Space Data Systems (CCSDS) is recommended for consideration in future standards on phase-ambiguity resolution for QPSK coherent modulation systems.

  16. Rate-compatible punctured convolutional codes (RCPC codes) and their applications

    NASA Astrophysics Data System (ADS)

    Hagenauer, Joachim

    1988-04-01

    The concept of punctured convolutional codes is extended by punctuating a low-rate 1/N code periodically with period P to obtain a family of codes with rate P/(P + l), where l can be varied between 1 and (N - 1)P. A rate-compatibility restriction on the puncturing tables ensures that all code bits of high rate codes are used by the lower-rate codes. This allows transmission of incremental redundancy in ARQ/FEC (automatic repeat request/forward error correction) schemes and continuous rate variation to change from low to high error protection within a data frame. Families of RCPC codes with rates between 8/9 and 1/4 are given for memories M from 3 to 6 (8 to 64 trellis states) together with the relevant distance spectra. These codes are almost as good as the best known general convolutional codes of the respective rates. It is shown that the same Viterbi decoder can be used for all RCPC codes of the same M. The application of RCPC codes to hybrid ARQ/FEC schemes is discussed for Gaussian and Rayleigh fading channels using channel-state information to optimize throughput.

  17. 40-Gb/s PDM-QPSK signal transmission over 160-m wireless distance at W-band.

    PubMed

    Xiao, Jiangnan; Yu, Jianjun; Li, Xinying; Xu, Yuming; Zhang, Ziran; Chen, Long

    2015-03-15

    We experimentally demonstrate a W-band optical-wireless transmission system over 160-m wireless distance with a bit rate up to 40 Gb/s. The optical-wireless transmission system adopts optical polarization-division-multiplexing (PDM), multiple-input multiple-output (MIMO) reception and antenna polarization diversity. Using this system, we experimentally demonstrate the 2×2 MIMO wireless delivery of 20- and 40-Gb/s PDM quadrature-phase-shift-keying (PDM-QPSK) signals over 640- and 160-m wireless links, respectively. The bit-error ratios (BERs) of these transmission systems are both less than the forward-error-correction (FEC) threshold of 3.8×10-3.

  18. Fault tolerance in space-based digital signal processing and switching systems: Protecting up-link processing resources, demultiplexer, demodulator, and decoder

    NASA Technical Reports Server (NTRS)

    Redinbo, Robert

    1994-01-01

    Fault tolerance features in the first three major subsystems appearing in the next generation of communications satellites are described. These satellites will contain extensive but efficient high-speed processing and switching capabilities to support the low signal strengths associated with very small aperture terminals. The terminals' numerous data channels are combined through frequency division multiplexing (FDM) on the up-links and are protected individually by forward error-correcting (FEC) binary convolutional codes. The front-end processing resources, demultiplexer, demodulators, and FEC decoders extract all data channels which are then switched individually, multiplexed, and remodulated before retransmission to earth terminals through narrow beam spot antennas. Algorithm based fault tolerance (ABFT) techniques, which relate real number parity values with data flows and operations, are used to protect the data processing operations. The additional checking features utilize resources that can be substituted for normal processing elements when resource reconfiguration is required to replace a failed unit.

  19. Adaptive software-defined coded modulation for ultra-high-speed optical transport

    NASA Astrophysics Data System (ADS)

    Djordjevic, Ivan B.; Zhang, Yequn

    2013-10-01

    In optically-routed networks, different wavelength channels carrying the traffic to different destinations can have quite different optical signal-to-noise ratios (OSNRs) and signal is differently impacted by various channel impairments. Regardless of the data destination, an optical transport system (OTS) must provide the target bit-error rate (BER) performance. To provide target BER regardless of the data destination we adjust the forward error correction (FEC) strength. Depending on the information obtained from the monitoring channels, we select the appropriate code rate matching to the OSNR range that current channel OSNR falls into. To avoid frame synchronization issues, we keep the codeword length fixed independent of the FEC code being employed. The common denominator is the employment of quasi-cyclic (QC-) LDPC codes in FEC. For high-speed implementation, low-complexity LDPC decoding algorithms are needed, and some of them will be described in this invited paper. Instead of conventional QAM based modulation schemes, we employ the signal constellations obtained by optimum signal constellation design (OSCD) algorithm. To improve the spectral efficiency, we perform the simultaneous rate adaptation and signal constellation size selection so that the product of number of bits per symbol × code rate is closest to the channel capacity. Further, we describe the advantages of using 4D signaling instead of polarization-division multiplexed (PDM) QAM, by using the 4D MAP detection, combined with LDPC coding, in a turbo equalization fashion. Finally, to solve the problems related to the limited bandwidth of information infrastructure, high energy consumption, and heterogeneity of optical networks, we describe an adaptive energy-efficient hybrid coded-modulation scheme, which in addition to amplitude, phase, and polarization state employs the spatial modes as additional basis functions for multidimensional coded-modulation.

  20. Adaptive 84.44-190 Mbit/s phosphor-LED wireless communication utilizing no blue filter at practical transmission distance.

    PubMed

    Yeh, C H; Chow, C W; Chen, H Y; Chen, J; Liu, Y L

    2014-04-21

    We propose and experimentally demonstrate a white-light phosphor-LED visible light communication (VLC) system with an adaptive 84.44 to 190 Mbit/s 16 quadrature-amplitude-modulation (QAM) orthogonal-frequency-division-multiplexing (OFDM) signal utilizing bit-loading method. Here, the optimal analogy pre-equalization design is performed at LED transmitter (Tx) side and no blue filter is used at the Rx side. Hence, the ~1 MHz modulation bandwidth of phosphor-LED could be extended to 30 MHz. In addition, the measured bit error rates (BERs) of < 3.8 × 10(-3) [forward error correction (FEC) threshold] at different measured data rates can be achieved at practical transmission distances of 0.75 to 2 m.

  1. A burst-mode photon counting receiver with automatic channel estimation and bit rate detection

    NASA Astrophysics Data System (ADS)

    Rao, Hemonth G.; DeVoe, Catherine E.; Fletcher, Andrew S.; Gaschits, Igor D.; Hakimi, Farhad; Hamilton, Scott A.; Hardy, Nicholas D.; Ingwersen, John G.; Kaminsky, Richard D.; Moores, John D.; Scheinbart, Marvin S.; Yarnall, Timothy M.

    2016-04-01

    We demonstrate a multi-rate burst-mode photon-counting receiver for undersea communication at data rates up to 10.416 Mb/s over a 30-foot water channel. To the best of our knowledge, this is the first demonstration of burst-mode photon-counting communication. With added attenuation, the maximum link loss is 97.1 dB at λ=517 nm. In clear ocean water, this equates to link distances up to 148 meters. For λ=470 nm, the achievable link distance in clear ocean water is 450 meters. The receiver incorporates soft-decision forward error correction (FEC) based on a product code of an inner LDPC code and an outer BCH code. The FEC supports multiple code rates to achieve error-free performance. We have selected a burst-mode receiver architecture to provide robust performance with respect to unpredictable channel obstructions. The receiver is capable of on-the-fly data rate detection and adapts to changing levels of signal and background light. The receiver updates its phase alignment and channel estimates every 1.6 ms, allowing for rapid changes in water quality as well as motion between transmitter and receiver. We demonstrate on-the-fly rate detection, channel BER within 0.2 dB of theory across all data rates, and error-free performance within 1.82 dB of soft-decision capacity across all tested code rates. All signal processing is done in FPGAs and runs continuously in real time.

  2. Calibrated Link Budget of a Silicon Photonics WDM Transceiver with SOA and Semiconductor Mode-Locked Laser.

    PubMed

    Moscoso-Mártir, Alvaro; Müller, Juliana; Islamova, Elmira; Merget, Florian; Witzens, Jeremy

    2017-09-20

    Based on the single channel characterization of a Silicon Photonics (SiP) transceiver with Semiconductor Optical Amplifier (SOA) and semiconductor Mode-Locked Laser (MLL), we evaluate the optical power budget of a corresponding Wavelength Division Multiplexed (WDM) link in which penalties associated to multi-channel operation and the management of polarization diversity are introduced. In particular, channel cross-talk as well as Cross Gain Modulation (XGM) and Four Wave Mixing (FWM) inside the SOA are taken into account. Based on these link budget models, the technology is expected to support up to 12 multiplexed channels without channel pre-emphasis or equalization. Forward Error Correction (FEC) does not appear to be required at 14 Gbps if the SOA is maintained at 25 °C and MLL-to-SiP as well as SiP-to-SOA interface losses can be maintained below 3 dB. In semi-cooled operation with an SOA temperature below 55 °C, multi-channel operation is expected to be compatible with standard 802.3bj Reed-Solomon FEC at 14 Gbps provided interface losses are maintained below 4.5 dB. With these interface losses and some improvements to the Transmitter (Tx) and Receiver (Rx) electronics, 25 Gbps multi-channel operation is expected to be compatible with 7% overhead hard decision FEC.

  3. Protocol Processing for 100 Gbit/s and Beyond - A Soft Real-Time Approach in Hardware and Software

    NASA Astrophysics Data System (ADS)

    Büchner, Steffen; Lopacinski, Lukasz; Kraemer, Rolf; Nolte, Jörg

    2017-09-01

    100 Gbit/s wireless communication protocol processing stresses all parts of a communication system until the outermost. The efficient use of upcoming 100 Gbit/s and beyond transmission technology requires the rethinking of the way protocols are processed by the communication endpoints. This paper summarizes the achievements of the project End2End100. We will present a comprehensive soft real-time stream processing approach that allows the protocol designer to develop, analyze, and plan scalable protocols for ultra high data rates of 100 Gbit/s and beyond. Furthermore, we will present an ultra-low power, adaptable, and massively parallelized FEC (Forward Error Correction) scheme that detects and corrects bit errors at line rate with an energy consumption between 1 pJ/bit and 13 pJ/bit. The evaluation results discussed in this publication show that our comprehensive approach allows end-to-end communication with a very low protocol processing overhead.

  4. Feed-forward frequency offset estimation for 32-QAM optical coherent detection.

    PubMed

    Xiao, Fei; Lu, Jianing; Fu, Songnian; Xie, Chenhui; Tang, Ming; Tian, Jinwen; Liu, Deming

    2017-04-17

    Due to the non-rectangular distribution of the constellation points, traditional fast Fourier transform based frequency offset estimation (FFT-FOE) is no longer suitable for 32-QAM signal. Here, we report a modified FFT-FOE technique by selecting and digitally amplifying the inner QPSK ring of 32-QAM after the adaptive equalization, which is defined as QPSK-selection assisted FFT-FOE. Simulation results show that no FOE error occurs with a FFT size of only 512 symbols, when the signal-to-noise ratio (SNR) is above 17.5 dB using our proposed FOE technique. However, the error probability of traditional FFT-FOE scheme for 32-QAM is always intolerant. Finally, our proposed FOE scheme functions well for 10 Gbaud dual polarization (DP)-32-QAM signal to reach 20% forward error correction (FEC) threshold of BER=2×10-2, under the scenario of back-to-back (B2B) transmission.

  5. Transmission of 2 × 56 Gb/s PAM-4 signal over 100 km SSMF using 18 GHz DMLs.

    PubMed

    Zhou, Shiwei; Li, Xiang; Yi, Lilin; Yang, Qi; Fu, Songnian

    2016-04-15

    We experimentally demonstrate C-band 2 × 56 Gb/s pulse-amplitude modulation (PAM)-4 signal transmission over 100 km standard single-mode fiber (SSMF) using 18 GHz direct-modulated lasers (DMLs) and direct detection, without inline optical amplifier. A delay interferometer (DI) at the transmitter side is used to extend the transmission reach from 40 to 100 km. A digital Volterra filter at the receiver side is used to mitigate the nonlinear distortions. We obtain an average bit error ratio (BER) of 1.5 × 10(-3) for 2 × 56 Gb/s PAM-4 signal after 100 km SSMF transmission at the optimal input power, which is below the 7% forward error correction (FEC) threshold (3.8 × 10(-3)).

  6. 6.4 Tb/s (32 × 200 Gb/s) WDM direct-detection transmission with twin-SSB modulation and Kramers-Kronig receiver

    NASA Astrophysics Data System (ADS)

    Zhu, Yixiao; Jiang, Mingxuan; Ruan, Xiaoke; Chen, Zeyu; Li, Chenjia; Zhang, Fan

    2018-05-01

    We experimentally demonstrate 6.4 Tb/s wavelength division multiplexed (WDM) direct-detection transmission based on Nyquist twin-SSB modulation over 25 km SSMF with bit error rates (BERs) below the 20% hard-decision forward error correction (HD-FEC) threshold of 1.5 × 10-2. The two sidebands of each channel are separately detected using Kramers-Kronig receiver without MIMO equalization. We also carry out numerical simulations to evaluate the system robustness against I/Q amplitude imbalance, I/Q phase deviation and the extinction ratio of modulator, respectively. Furthermore, we show in simulation that the requirement of steep edge optical filter can be relaxed if multi-input-multi-output (MIMO) equalization between the two sidebands is used.

  7. Soft-Decision-Data Reshuffle to Mitigate Pulsed Radio Frequency Interference Impact on Low-Density-Parity-Check Code Performance

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun David

    2011-01-01

    This presentation briefly discusses a research effort on mitigation techniques of pulsed radio frequency interference (RFI) on a Low-Density-Parity-Check (LDPC) code. This problem is of considerable interest in the context of providing reliable communications to the space vehicle which might suffer severe degradation due to pulsed RFI sources such as large radars. The LDPC code is one of modern forward-error-correction (FEC) codes which have the decoding performance to approach the Shannon Limit. The LDPC code studied here is the AR4JA (2048, 1024) code recommended by the Consultative Committee for Space Data Systems (CCSDS) and it has been chosen for some spacecraft design. Even though this code is designed as a powerful FEC code in the additive white Gaussian noise channel, simulation data and test results show that the performance of this LDPC decoder is severely degraded when exposed to the pulsed RFI specified in the spacecraft s transponder specifications. An analysis work (through modeling and simulation) has been conducted to evaluate the impact of the pulsed RFI and a few implemental techniques have been investigated to mitigate the pulsed RFI impact by reshuffling the soft-decision-data available at the input of the LDPC decoder. The simulation results show that the LDPC decoding performance of codeword error rate (CWER) under pulsed RFI can be improved up to four orders of magnitude through a simple soft-decision-data reshuffle scheme. This study reveals that an error floor of LDPC decoding performance appears around CWER=1E-4 when the proposed technique is applied to mitigate the pulsed RFI impact. The mechanism causing this error floor remains unknown, further investigation is necessary.

  8. Nyquist WDM superchannel using offset-16QAM and receiver-side digital spectral shaping.

    PubMed

    Xiang, Meng; Fu, Songnian; Tang, Ming; Tang, Haoyuan; Shum, Perry; Liu, Deming

    2014-07-14

    The performance of Nyquist WDM superchannel using advanced modulation formats with coherent detection is degraded due to the existence of both inter-symbol interference (ISI) and inter-channel interference (ICI). Here, we propose and numerically investigate a Nyquist WDM superchannel using offset-16QAM and receiver-side digital spectral shaping (RS-DSS), achieving a spectral efficiency up to 7.44 bit/s/Hz with 7% hard-decision forward error correction (HD-FEC) overhead. Compared with Nyquist WDM superchannel using 16QAM and RS-DSS, the proposed system has 1.4 dB improvement of required OSNR at BER = 10(-3) in the case of back-to-back (B2B) transmission. Furthermore, the range of launched optical power allowed beyond HD-FEC threshold is drastically increased from -6 dBm to 1.2 dBm, after 960 km SSMF transmission with EDFA-only. In particular, no more than 1.8 dB required OSNR penalty at BER = 10(-3) is achieved for the proposed system even with the phase difference between channels varying from 0 to 360 degree.

  9. Information rates of probabilistically shaped coded modulation for a multi-span fiber-optic communication system with 64QAM

    NASA Astrophysics Data System (ADS)

    Fehenberger, Tobias

    2018-02-01

    This paper studies probabilistic shaping in a multi-span wavelength-division multiplexing optical fiber system with 64-ary quadrature amplitude modulation (QAM) input. In split-step fiber simulations and via an enhanced Gaussian noise model, three figures of merit are investigated, which are signal-to-noise ratio (SNR), achievable information rate (AIR) for capacity-achieving forward error correction (FEC) with bit-metric decoding, and the information rate achieved with low-density parity-check (LDPC) FEC. For the considered system parameters and different shaped input distributions, shaping is found to decrease the SNR by 0.3 dB yet simultaneously increases the AIR by up to 0.4 bit per 4D-symbol. The information rates of LDPC-coded modulation with shaped 64QAM input are improved by up to 0.74 bit per 4D-symbol, which is larger than the shaping gain when considering AIRs. This increase is attributed to the reduced coding gap of the higher-rate code that is used for decoding the nonuniform QAM input.

  10. A software reconfigurable optical multiband UWB system utilizing a bit-loading combined with adaptive LDPC code rate scheme

    NASA Astrophysics Data System (ADS)

    He, Jing; Dai, Min; Chen, Qinghui; Deng, Rui; Xiang, Changqing; Chen, Lin

    2017-07-01

    In this paper, an effective bit-loading combined with adaptive LDPC code rate algorithm is proposed and investigated in software reconfigurable multiband UWB over fiber system. To compensate the power fading and chromatic dispersion for the high frequency of multiband OFDM UWB signal transmission over standard single mode fiber (SSMF), a Mach-Zehnder modulator (MZM) with negative chirp parameter is utilized. In addition, the negative power penalty of -1 dB for 128 QAM multiband OFDM UWB signal are measured at the hard-decision forward error correction (HD-FEC) limitation of 3.8 × 10-3 after 50 km SSMF transmission. The experimental results show that, compared to the fixed coding scheme with the code rate of 75%, the signal-to-noise (SNR) is improved by 2.79 dB for 128 QAM multiband OFDM UWB system after 100 km SSMF transmission using ALCR algorithm. Moreover, by employing bit-loading combined with ALCR algorithm, the bit error rate (BER) performance of system can be further promoted effectively. The simulation results present that, at the HD-FEC limitation, the value of Q factor is improved by 3.93 dB at the SNR of 19.5 dB over 100 km SSMF transmission, compared to the fixed modulation with uncoded scheme at the same spectrum efficiency (SE).

  11. ACTS TDMA network control. [Advanced Communication Technology Satellite

    NASA Technical Reports Server (NTRS)

    Inukai, T.; Campanella, S. J.

    1984-01-01

    This paper presents basic network control concepts for the Advanced Communications Technology Satellite (ACTS) System. Two experimental systems, called the low-burst-rate and high-burst-rate systems, along with ACTS ground system features, are described. The network control issues addressed include frame structures, acquisition and synchronization procedures, coordinated station burst-time plan and satellite-time plan changes, on-board clock control based on ground drift measurements, rain fade control by means of adaptive forward-error-correction (FEC) coding and transmit power augmentation, and reassignment of channel capacities on demand. The NASA ground system, which includes a primary station, diversity station, and master control station, is also described.

  12. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate.

    PubMed

    Shen, Chao; Guo, Yujian; Oubei, Hassan M; Ng, Tien Khee; Liu, Guangyu; Park, Ki-Hong; Ho, Kang-Ting; Alouini, Mohamed-Slim; Ooi, Boon S

    2016-10-31

    The video streaming, data transmission, and remote control in underwater call for high speed (Gbps) communication link with a long channel length (~10 meters). We present a compact and low power consumption underwater wireless optical communication (UWOC) system utilizing a 450-nm laser diode (LD) and a Si avalanche photodetector. With the LD operating at a driving current of 80 mA with an optical power of 51.3 mW, we demonstrated a high-speed UWOC link offering a data rate up to 2 Gbps over a 12-meter-long, and 1.5 Gbps over a record 20-meter-long underwater channel. The measured bit-error rate (BER) are 2.8 × 10-5, and 3.0 × 10-3, respectively, which pass well the forward error correction (FEC) criterion.

  13. Combinatorial pulse position modulation for power-efficient free-space laser communications

    NASA Technical Reports Server (NTRS)

    Budinger, James M.; Vanderaar, M.; Wagner, P.; Bibyk, Steven

    1993-01-01

    A new modulation technique called combinatorial pulse position modulation (CPPM) is presented as a power-efficient alternative to quaternary pulse position modulation (QPPM) for direct-detection, free-space laser communications. The special case of 16C4PPM is compared to QPPM in terms of data throughput and bit error rate (BER) performance for similar laser power and pulse duty cycle requirements. The increased throughput from CPPM enables the use of forward error corrective (FEC) encoding for a net decrease in the amount of laser power required for a given data throughput compared to uncoded QPPM. A specific, practical case of coded CPPM is shown to reduce the amount of power required to transmit and receive a given data sequence by at least 4.7 dB. Hardware techniques for maximum likelihood detection and symbol timing recovery are presented.

  14. A full-duplex optical access system with hybrid 64/16/4QAM-OFDM downlink

    NASA Astrophysics Data System (ADS)

    He, Chao; Tan, Ze-fu; Shao, Yu-feng; Cai, Li; Pu, He-sheng; Zhu, Yun-le; Huang, Si-si; Liu, Yu

    2016-09-01

    A full-duplex optical passive access scheme is proposed and verified by simulation, in which hybrid 64/16/4-quadrature amplitude modulation (64/16/4QAM) orthogonal frequency division multiplexing (OFDM) optical signal is for downstream transmission and non-return-to-zero (NRZ) optical signal is for upstream transmission. In view of the transmitting and receiving process for downlink optical signal, in-phase/quadrature-phase (I/Q) modulation based on Mach-Zehnder modulator (MZM) and homodyne coherent detection technology are employed, respectively. The simulation results show that the bit error ratio ( BER) less than hardware decision forward error correction (HD-FEC) threshold is successfully obtained over transmission path with 20-km-long standard single mode fiber (SSMF) for hybrid downlink modulation OFDM optical signal. In addition, by dividing the system bandwidth into several subchannels consisting of some continuous subcarriers, it is convenient for users to select different channels depending on requirements of communication.

  15. IPTV multicast with peer-assisted lossy error control

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Zhu, Xiaoqing; Begen, Ali C.; Girod, Bernd

    2010-07-01

    Emerging IPTV technology uses source-specific IP multicast to deliver television programs to end-users. To provide reliable IPTV services over the error-prone DSL access networks, a combination of multicast forward error correction (FEC) and unicast retransmissions is employed to mitigate the impulse noises in DSL links. In existing systems, the retransmission function is provided by the Retransmission Servers sitting at the edge of the core network. In this work, we propose an alternative distributed solution where the burden of packet loss repair is partially shifted to the peer IP set-top boxes. Through Peer-Assisted Repair (PAR) protocol, we demonstrate how the packet repairs can be delivered in a timely, reliable and decentralized manner using the combination of server-peer coordination and redundancy of repairs. We also show that this distributed protocol can be seamlessly integrated with an application-layer source-aware error protection mechanism called forward and retransmitted Systematic Lossy Error Protection (SLEP/SLEPr). Simulations show that this joint PARSLEP/ SLEPr framework not only effectively mitigates the bottleneck experienced by the Retransmission Servers, thus greatly enhancing the scalability of the system, but also efficiently improves the resistance to the impulse noise.

  16. On-farm estimation of energy balance in dairy cows using only frequent body weight measurements and body condition score.

    PubMed

    Thorup, V M; Edwards, D; Friggens, N C

    2012-04-01

    Precise energy balance estimates for individual cows are of great importance to monitor health, reproduction, and feed management. Energy balance is usually calculated as energy input minus output (EB(inout)), requiring measurements of feed intake and energy output sources (milk, maintenance, activity, growth, and pregnancy). Except for milk yield, direct measurements of the other sources are difficult to obtain in practice, and estimates contain considerable error sources, limiting on-farm use. Alternatively, energy balance can be estimated from body reserve changes (EB(body)) using body weight (BW) and body condition score (BCS). Automated weighing systems exist and new technology performing semi-automated body condition scoring has emerged, so frequent automated BW and BCS measurements are feasible. We present a method to derive individual EB(body) estimates from frequently measured BW and BCS and evaluate the performance of the estimated EB(body) against the traditional EB(inout) method. From 76 Danish Holstein and Jersey cows, parity 1 or 2+, on a glycerol-rich or a whole grain-rich total mixed ration, BW was measured automatically at each milking. The BW was corrected for the weight of milk produced and for gutfill. Changes in BW and BCS were used to calculate changes in body protein, body lipid, and EB(body) during the first 150 d in milk. The EB(body) was compared with the traditional EB(inout) by isolating the term within EB(inout) associated with most uncertainty; that is, feed energy content (FEC); FEC=(EB(body)+EMilk+EMaintenance+Eactivity)/dry matter intake, where the energy requirements are for milk produced (EMilk), maintenance (EMaintenance), and activity (EActivity). Estimated FEC agreed well with FEC values derived from tables (the mean estimate was 0.21 MJ of effective energy/kg of dry matter or 2.2% higher than the mean table value). Further, the FEC profile did not suggest systematic bias in EB(body) with stage of lactation. The EB(body) estimated from daily BW, adjusted for milk and meal-related gutfill and combined with frequent BCS, can provide a successful tool. This offers a pragmatic solution to on-farm calculation of energy balance with the perspective of improved precision under commercial conditions. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Quantization of high dimensional Gaussian vector using permutation modulation with application to information reconciliation in continuous variable QKD

    NASA Astrophysics Data System (ADS)

    Daneshgaran, Fred; Mondin, Marina; Olia, Khashayar

    This paper is focused on the problem of Information Reconciliation (IR) for continuous variable Quantum Key Distribution (QKD). The main problem is quantization and assignment of labels to the samples of the Gaussian variables observed at Alice and Bob. Trouble is that most of the samples, assuming that the Gaussian variable is zero mean which is de-facto the case, tend to have small magnitudes and are easily disturbed by noise. Transmission over longer and longer distances increases the losses corresponding to a lower effective Signal-to-Noise Ratio (SNR) exasperating the problem. Quantization over higher dimensions is advantageous since it allows for fractional bit per sample accuracy which may be needed at very low SNR conditions whereby the achievable secret key rate is significantly less than one bit per sample. In this paper, we propose to use Permutation Modulation (PM) for quantization of Gaussian vectors potentially containing thousands of samples. PM is applied to the magnitudes of the Gaussian samples and we explore the dependence of the sign error probability on the magnitude of the samples. At very low SNR, we may transmit the entire label of the PM code from Bob to Alice in Reverse Reconciliation (RR) over public channel. The side information extracted from this label can then be used by Alice to characterize the sign error probability of her individual samples. Forward Error Correction (FEC) coding can be used by Bob on each subset of samples with similar sign error probability to aid Alice in error correction. This can be done for different subsets of samples with similar sign error probabilities leading to an Unequal Error Protection (UEP) coding paradigm.

  18. Hybrid optical CDMA-FSO communications network under spatially correlated gamma-gamma scintillation.

    PubMed

    Jurado-Navas, Antonio; Raddo, Thiago R; Garrido-Balsells, José María; Borges, Ben-Hur V; Olmos, Juan José Vegas; Monroy, Idelfonso Tafur

    2016-07-25

    In this paper, we propose a new hybrid network solution based on asynchronous optical code-division multiple-access (OCDMA) and free-space optical (FSO) technologies for last-mile access networks, where fiber deployment is impractical. The architecture of the proposed hybrid OCDMA-FSO network is thoroughly described. The users access the network in a fully asynchronous manner by means of assigned fast frequency hopping (FFH)-based codes. In the FSO receiver, an equal gain-combining technique is employed along with intensity modulation and direct detection. New analytical formalisms for evaluating the average bit error rate (ABER) performance are also proposed. These formalisms, based on the spatially correlated gamma-gamma statistical model, are derived considering three distinct scenarios, namely, uncorrelated, totally correlated, and partially correlated channels. Numerical results show that users can successfully achieve error-free ABER levels for the three scenarios considered as long as forward error correction (FEC) algorithms are employed. Therefore, OCDMA-FSO networks can be a prospective alternative to deliver high-speed communication services to access networks with deficient fiber infrastructure.

  19. 4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization.

    PubMed

    Wang, Yiguang; Huang, Xingxing; Tao, Li; Shi, Jianyang; Chi, Nan

    2015-05-18

    Inter-symbol interference (ISI) is one of the key problems that seriously limit transmission data rate in high-speed VLC systems. To eliminate ISI and further improve the system performance, series of equalization schemes have been widely investigated. As an adaptive algorithm commonly used in wireless communication, RLS is also suitable for visible light communication due to its quick convergence and better performance. In this paper, for the first time we experimentally demonstrate a high-speed RGB-LED based WDM VLC system employing carrier-less amplitude and phase (CAP) modulation and recursive least square (RLS) based adaptive equalization. An aggregate data rate of 4.5Gb/s is successfully achieved over 1.5-m indoor free space transmission with the bit error rate (BER) below the 7% forward error correction (FEC) limit of 3.8x10(-3). To the best of our knowledge, this is the highest data rate ever achieved in RGB-LED based VLC systems.

  20. Flattened optical frequency-locked multi-carrier generation by cascading one EML and one phase modulator driven by different RF clocks

    NASA Astrophysics Data System (ADS)

    Li, Xinying; Xiao, Jiangnan

    2015-06-01

    We propose a novel scheme for optical frequency-locked multi-carrier generation based on one electro-absorption modulated laser (EML) and one phase modulator (PM) in cascade driven by different sinusoidal radio-frequency (RF) clocks. The optimal operating zone for the cascaded EML and PM is found out based on theoretical analysis and numerical simulation. We experimentally demonstrate 25 optical subcarriers with frequency spacing of 12.5 GHz and power difference less than 5 dB can be generated based on the cascaded EML and PM operating in the optimal zone, which agrees well with the numerical simulation. We also experimentally demonstrate 28-Gbaud polarization division multiplexing quadrature phase shift keying (PDM-QPSK) modulated coherent optical transmission based on the cascaded EML and PM. The bit error ratio (BER) can be below the pre-forward-error-correction (pre-FEC) threshold of 3.8 × 10-3 after 80-km single-mode fiber-28 (SMF-28) transmission.

  1. High-speed phosphor-LED wireless communication system utilizing no blue filter

    NASA Astrophysics Data System (ADS)

    Yeh, C. H.; Chow, C. W.; Chen, H. Y.; Chen, J.; Liu, Y. L.; Wu, Y. F.

    2014-09-01

    In this paper, we propose and investigate an adaptively 84.44 to 190 Mb/s phosphor-LED visible light communication (VLC) system at a practical transmission distance. Here, we utilize the orthogonal-frequency-division-multiplexing quadrature-amplitude-modulation (OFDM-QAM) modulation with power/bit-loading algorithm in proposed VLC system. In the experiment, the optimal analogy pre-equalization design is also performed at LED-Tx side and no blue filter is used at the Rx side for extending the modulation bandwidth from 1 MHz to 30 MHz. In addition, the corresponding free space transmission lengths are between 75 cm and 2 m under various data rates of proposed VLC. And the measured bit error rates (BERs) of < 3.8×10-3 [forward error correction (FEC) limit] at different transmission lengths and measured data rates can be also obtained. Finally, we believe that our proposed scheme could be another alternative VLC implementation in practical distance, supporting < 100 Mb/s, using commercially available LED and PD (without optical blue filtering) and compact size.

  2. Simultaneous generation of 40, 80 and 120 GHz optical millimeter-wave from one Mach-Zehnder modulator and demonstration of millimeter-wave transmission and down-conversion

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Qin, Chaoyi

    2017-09-01

    We demonstrate multi-frequency QPSK millimeter-wave (mm-wave) vector signal generation enabled by MZM-based optical carrier suppression (OCS) modulation and in-phase/quadrature (I/Q) modulation. We numerically simulate the generation of 40-, 80- and 120-GHz vector signal. Here, the three different signals carry the same QPSK modulation information. We also experimentally realize 11Gbaud/s QPSK vector signal transmission over 20 km fiber, and the generation of the vector signals at 40-GHz, 80-GHz and 120-GHz. The experimental results show that the bit-error-rate (BER) for all the three different signals can reach the forward-error-correction (FEC) threshold of 3.8×10-3. The advantage of the proposed system is that provide high-speed, high-bandwidth and high-capacity seamless access of TDM and wireless network. These features indicate the important application prospect in wireless access networks for WiMax, Wi-Fi and 5G/LTE.

  3. Source-Adaptation-Based Wireless Video Transport: A Cross-Layer Approach

    NASA Astrophysics Data System (ADS)

    Qu, Qi; Pei, Yong; Modestino, James W.; Tian, Xusheng

    2006-12-01

    Real-time packet video transmission over wireless networks is expected to experience bursty packet losses that can cause substantial degradation to the transmitted video quality. In wireless networks, channel state information is hard to obtain in a reliable and timely manner due to the rapid change of wireless environments. However, the source motion information is always available and can be obtained easily and accurately from video sequences. Therefore, in this paper, we propose a novel cross-layer framework that exploits only the motion information inherent in video sequences and efficiently combines a packetization scheme, a cross-layer forward error correction (FEC)-based unequal error protection (UEP) scheme, an intracoding rate selection scheme as well as a novel intraframe interleaving scheme. Our objective and subjective results demonstrate that the proposed approach is very effective in dealing with the bursty packet losses occurring on wireless networks without incurring any additional implementation complexity or delay. Thus, the simplicity of our proposed system has important implications for the implementation of a practical real-time video transmission system.

  4. Apply network coding for H.264/SVC multicasting

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Kuo, C.-C. Jay

    2008-08-01

    In a packet erasure network environment, video streaming benefits from error control in two ways to achieve graceful degradation. The first approach is application-level (or the link-level) forward error-correction (FEC) to provide erasure protection. The second error control approach is error concealment at the decoder end to compensate lost packets. A large amount of research work has been done in the above two areas. More recently, network coding (NC) techniques have been proposed for efficient data multicast over networks. It was shown in our previous work that multicast video streaming benefits from NC for its throughput improvement. An algebraic model is given to analyze the performance in this work. By exploiting the linear combination of video packets along nodes in a network and the SVC video format, the system achieves path diversity automatically and enables efficient video delivery to heterogeneous receivers in packet erasure channels. The application of network coding can protect video packets against the erasure network environment. However, the rank defficiency problem of random linear network coding makes the error concealment inefficiently. It is shown by computer simulation that the proposed NC video multicast scheme enables heterogenous receiving according to their capacity constraints. But it needs special designing to improve the video transmission performance when applying network coding.

  5. Advanced time and wavelength division multiplexing for metropolitan area optical data communication networks

    NASA Astrophysics Data System (ADS)

    Watford, M.; DeCusatis, C.

    2005-09-01

    With the advent of new regulations governing the protection and recovery of sensitive business data, including the Sarbanes-Oxley Act, there has been a renewed interest in business continuity and disaster recovery applications for metropolitan area networks. Specifically, there has been a need for more efficient bandwidth utilization and lower cost per channel to facilitate mirroring of multi-terabit data bases. These applications have further blurred the boundary between metropolitan and wide area networks, with synchronous disaster recovery applications running up to 100 km and asynchronous solutions extending to 300 km or more. In this paper, we discuss recent enhancements in the Nortel Optical Metro 5200 Dense Wavelength Division Multiplexing (DWDM) platform, including features recently qualified for data communication applications such as Metro Mirror, Global Mirror, and Geographically Distributed Parallel Sysplex (GDPS). Using a 10 Gigabit/second (Gbit/s) backbone, this solution transports significantly more Fibre Channel protocol traffic with up to five times greater hardware density in the same physical package. This is also among the first platforms to utilize forward error correction (FEC) on the aggregate signals to improve bit error rate (BER) performance beyond industry standards. When combined with encapsulation into wide area network protocols, the use of FEC can compensate for impairments in BER across a service provider infrastructure without impacting application level performance. Design and implementation of these features will be discussed, including results from experimental test beds which validate these solutions for a number of applications. Future extensions of this environment will also be considered, including ways to provide configurable bandwidth on demand, mitigate Fibre Channel buffer credit management issues, and support for other GDPS protocols.

  6. Low-Cost Telemetry System for Small/Micro Satellites

    NASA Technical Reports Server (NTRS)

    Sims, William; Varnavas, Kosta

    2012-01-01

    A Software Defined Radio (SDR) concept uses a minimum amount of analog/radio frequency components to up/downconvert the RF signal to/from a digital format. Once in the digital domain, all other processing (filtering, modulation, demodulation, etc.) is done in software. The project will leverage existing designs and enhance capabilities in the commercial sector to provide a path to a radiation-hardened SDR transponder. The SDR transponder would incorporate baseline technologies dealing with improved Forward Error Correcting (FEC) codes to be deployed to all Near Earth Network (NEN) ground stations. By incorporating this FEC, at least a tenfold increase in data throughput can be achieved. A family of transponder products can be implemented using common platform architecture, allowing new products to be more quickly introduced into the market. Software can be reused across products, reducing software/hardware costs dramatically. New features and capabilities, such as encoding and decoding algorithms, filters, and bit synchronizers, can be added to the existing infrastructure without requiring major new capital expenditures, allowing implementation of advanced features in the communication systems. As new telecommunication technologies emerge, incorporating them into the SDR fabric will be easily accomplished with little or no requirements for new hardware. There are no preferred flight platforms for the SDR technology, so it can be used on any type of orbital or sub-orbital platform, all within a fully radiation hardened design.

  7. 1 λ × 1.44 Tb/s free-space IM-DD transmission employing OAM multiplexing and PDM.

    PubMed

    Zhu, Yixiao; Zou, Kaiheng; Zheng, Zhennan; Zhang, Fan

    2016-02-22

    We report the experimental demonstration of single wavelength terabit free-space intensity modulation direct detection (IM-DD) system employing both orbital angular momentum (OAM) multiplexing and polarization division multiplexing (PDM). In our experiment, 12 OAM modes with two orthogonal polarization states are used to generate 24 channels for transmission. Each channel carries 30 Gbaud Nyquist PAM-4 signal. Therefore an aggregate gross capacity record of 1.44 Tb/s (12 × 2 × 30 × 2 Gb/s) is acheived with a modulation efficiency of 48 bits/symbol. After 0.8m free-space transmission, the bit error rates (BERs) of all the channels are below the 20% hard-decision forward error correction (HD-FEC) threshold of 1.5 × 10(-2). After applying the decision directed recursive least square (DD-RLS) based filter and post filter, the BERs of two polarizations can be reduced from 5.3 × 10(-3) and 7.3 × 10(-3) to 2.2 × 10(-3) and 3.4 × 10(-3), respectively.

  8. Innovative Networking Concepts Tested on the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Friedman, Daniel; Gupta, Sonjai; Zhang, Chuanguo; Ephremides, Anthony

    1996-01-01

    This paper describes a program of experiments conducted over the advanced communications technology satellite (ACTS) and the associated TI-VSAT (very small aperture terminal). The experiments were motivated by the commercial potential of low-cost receive only satellite terminals that can operate in a hybrid network environment, and by the desire to demonstrate frame relay technology over satellite networks. The first experiment tested highly adaptive methods of satellite bandwidth allocation in an integrated voice-data service environment. The second involved comparison of forward error correction (FEC) and automatic repeat request (ARQ) methods of error control for satellite communication with emphasis on the advantage that a hybrid architecture provides, especially in the case of multicasts. Finally, the third experiment demonstrated hybrid access to databases and compared the performance of internetworking protocols for interconnecting local area networks (LANs) via satellite. A custom unit termed frame relay access switch (FRACS) was developed by COMSAT Laboratories for these experiments; the preparation and conduct of these experiments involved a total of 20 people from the University of Maryland, the University of Colorado and COMSAT Laboratories, from late 1992 until 1995.

  9. The possibility of applying spectral redundancy in DWDM systems on existing long-distance FOCLs for increasing the data transmission rate and decreasing nonlinear effects and double Rayleigh scattering without changes in the communication channel

    NASA Astrophysics Data System (ADS)

    Nekuchaev, A. O.; Shuteev, S. A.

    2014-04-01

    A new method of data transmission in DWDM systems along existing long-distance fiber-optic communication lines is proposed. The existing method, e.g., uses 32 wavelengths in the NRZ code with an average power of 16 conventional units (16 units and 16 zeros on the average) and transmission of 32 bits/cycle. In the new method, one of 124 wavelengths with a duration of one cycle each (at any time instant, no more than 16 obligatory different wavelengths) and capacity of 4 bits with an average power of 15 conventional units and rate of 64 bits/cycle is transmitted at every instant of a 1/16 cycle. The cross modulation and double Rayleigh scattering are significantly decreased owing to uniform distribution of power over time at different wavelengths. The time redundancy (forward error correction (FEC)) is about 7% and allows one to achieve a coding enhancement of about 6 dB by detecting and removing deletions and errors simultaneously.

  10. High-speed real-time OFDM transmission based on FPGA

    NASA Astrophysics Data System (ADS)

    Xiao, Xin; Li, Fan; Yu, Jianjun

    2016-02-01

    In this paper, we review our recent research progresses on real-time orthogonal frequency division multiplexing (OFDM) transmission based on FPGA. We successfully demonstrated four-channel wavelength-division multiplexing (WDM) 256.51Gb/s 16-ary quadrature amplitude modulation (16QAM)-OFDM signal transmission system for short-reach optical amplifier free inter-connection with real-time reception. Four optical carriers are modulated by four different 16QAM-OFDM signals via 10G-class direct modulation lasers (DMLs). We achieved highest capacity real-time reception optical OFDM signal transmission over 2.4-km SMF with the bit-error ratio (BER) under soft-decision forward error correction (SD-FEC) limitation of 2.4×10-2. In order to achieve higher spectrum efficiency (SE), we demonstrate 4-channel high level QAM-OFDM transmission over 20-km SMF-28 with real-time reception. 58.72-Gb/s 256QAM-OFDM and 56.4-Gb/s 128QAM-OFDM signal transmission within 25-GHz grid is achieved with the BER under 2.4×10-2 and real-time reception.

  11. Using pre-distorted PAM-4 signal and parallel resistance circuit to enhance the passive solar cell based visible light communication

    NASA Astrophysics Data System (ADS)

    Wang, Hao-Yu; Wu, Jhao-Ting; Chow, Chi-Wai; Liu, Yang; Yeh, Chien-Hung; Liao, Xin-Lan; Lin, Kun-Hsien; Wu, Wei-Liang; Chen, Yi-Yuan

    2018-01-01

    Using solar cell (or photovoltaic cell) for visible light communication (VLC) is attractive. Apart from acting as a VLC receiver (Rx), the solar cell can provide energy harvesting. This can be used in self-powered smart devices, particularly in the emerging ;Internet of Things (IoT); networks. Here, we propose and demonstrate for the first time using pre-distortion pulse-amplitude-modulation (PAM)-4 signal and parallel resistance circuit to enhance the transmission performance of solar cell Rx based VLC. Pre-distortion is a simple non-adaptive equalization technique that can significantly mitigate the slow charging and discharging of the solar cell. The equivalent circuit model of the solar cell and the operation of using parallel resistance to increase the bandwidth of the solar cell are discussed. By using the proposed schemes, the experimental results show that the data rate of the solar cell Rx based VLC can increase from 20 kbit/s to 1.25 Mbit/s (about 60 times) with the bit error-rate (BER) satisfying the 7% forward error correction (FEC) limit.

  12. Novel two-component transmembrane transcription control: regulation of iron dicitrate transport in Escherichia coli K-12.

    PubMed

    Van Hove, B; Staudenmaier, H; Braun, V

    1990-12-01

    Citrate and iron have to enter only the periplasmic space in order to induce the citrate-dependent iron(III) transport system of Escherichia coli. The five transport genes fecABCDE form an operon and are transcribed from fecA to fecE. Two genes, termed fecI and fecR, that mediate induction by iron(III) dicitrate have been identified upstream of fecA. The fecI gene encodes a protein of 173 amino acids (molecular weight, 19,478); the fecR gene encodes a protein of 317 amino acids (molecular weight, 35,529). Chromosomal fecI::Mu d1 mutants were unable to grow with iron(III) dicitrate as the sole iron source and synthesized no FecA outer membrane receptor protein. Growth was restored by transformation with plasmids encoding fecI or fecI and fecR. FecA and beta-galactosidase syntheses under transcription control of the fecB gene (fecB::Mu d1) were constitutive in fecI transformants and were regulated by iron(III) dicitrate in fecI fecR transformants. The amino acid sequence of the FecI protein contains a region close to the carboxy-terminal end for which a helix-turn-helix motif is predicted, which is typical for DNA-binding regulatory proteins. The FecI protein was found in the membrane, and the FecR protein was found in the periplasmic fraction. It is proposed that the FecR protein is the sensor that recognizes iron(III) dicitrate in the periplasm. The FecI protein activates fec gene expression by binding to the fec operator region. In the absence of citrate, FecR inactivates FecI. The lack of sequence homologies to other transmembrane signaling proteins and the location of the two proteins suggest a new type of transmembrane control mechanism.

  13. Integrated Performance of Next Generation High Data Rate Receiver and AR4JA LDPC Codec for Space Communications

    NASA Technical Reports Server (NTRS)

    Cheng, Michael K.; Lyubarev, Mark; Nakashima, Michael A.; Andrews, Kenneth S.; Lee, Dennis

    2008-01-01

    Low-density parity-check (LDPC) codes are the state-of-the-art in forward error correction (FEC) technology that exhibits capacity approaching performance. The Jet Propulsion Laboratory (JPL) has designed a family of LDPC codes that are similar in structure and therefore, leads to a single decoder implementation. The Accumulate-Repeat-by-4-Jagged- Accumulate (AR4JA) code design offers a family of codes with rates 1/2, 2/3, 4/5 and lengths 1024, 4096, 16384 information bits. Performance is less than one dB from capacity for all combinations.Integrating a stand-alone LDPC decoder with a commercial-off-the-shelf (COTS) receiver faces additional challenges than building a single receiver-decoder unit from scratch. In this work, we outline the issues and show that these additional challenges can be over-come by simple solutions. To demonstrate that an LDPC decoder can be made to work seamlessly with a COTS receiver, we interface an AR4JA LDPC decoder developed on a field-programmable gate array (FPGA) with a modern high data rate receiver and mea- sure the combined receiver-decoder performance. Through optimizations that include an improved frame synchronizer and different soft-symbol scaling algorithms, we show that a combined implementation loss of less than one dB is possible and therefore, most of the coding gain evidence in theory can also be obtained in practice. Our techniques can benefit any modem that utilizes an advanced FEC code.

  14. Nonlinear impairment compensation for DFT-S OFDM signal transmission with directly modulated laser and direct detection

    NASA Astrophysics Data System (ADS)

    Gou, Pengqi; Wang, Kaihui; Qin, Chaoyi; Yu, Jianjun

    2017-03-01

    We experimentally demonstrate a 16-ary quadrature amplitude modulation (16QAM) DFT-spread optical orthogonal frequency division multiplexing (OFDM) transmission system utilizing a cost-effective directly modulated laser (DML) and direct detection. For 20-Gbaud 16QAM-OFDM signal, with the aid of nonlinear equalization (NLE) algorithm, we respectively provide 6.2-dB and 5.2-dB receiver sensitivity improvement under the hard-decision forward-error-correction (HD-FEC) threshold of 3.8×10-3 for the back-to-back (BTB) case and after transmission over 10-km standard single mode fiber (SSMF) case, related to only adopt post-equalization scheme. To our knowledge, this is the first time to use dynamic nonlinear equalizer (NLE) based on the summation of the square of the difference between samples in one IM/DD OFDM system with DML to mitigate nonlinear distortion.

  15. 40-Gb/s PAM4 with low-complexity equalizers for next-generation PON systems

    NASA Astrophysics Data System (ADS)

    Tang, Xizi; Zhou, Ji; Guo, Mengqi; Qi, Jia; Hu, Fan; Qiao, Yaojun; Lu, Yueming

    2018-01-01

    In this paper, we demonstrate 40-Gb/s four-level pulse amplitude modulation (PAM4) transmission with 10 GHz devices and low-complexity equalizers for next-generation passive optical network (PON) systems. Simple feed-forward equalizer (FFE) and decision feedback equalizer (DFE) enable 20 km fiber transmission while high-complexity Volterra algorithm in combination with FFE and DFE can extend the transmission distance to 40 km. A simplified Volterra algorithm is proposed for reducing computational complexity. Simulation results show that the simplified Volterra algorithm reduces up to ∼75% computational complexity at a relatively low cost of only 0.4 dB power budget. At a forward error correction (FEC) threshold of 10-3 , we achieve 31.2 dB and 30.8 dB power budget over 40 km fiber transmission using traditional FFE-DFE-Volterra and our simplified FFE-DFE-Volterra, respectively.

  16. Digital chaos-masked optical encryption scheme enhanced by two-dimensional key space

    NASA Astrophysics Data System (ADS)

    Liu, Ling; Xiao, Shilin; Zhang, Lu; Bi, Meihua; Zhang, Yunhao; Fang, Jiafei; Hu, Weisheng

    2017-09-01

    A digital chaos-masked optical encryption scheme is proposed and demonstrated. The transmitted signal is completely masked by interference chaotic noise in both bandwidth and amplitude with analog method via dual-drive Mach-Zehnder modulator (DDMZM), making the encrypted signal analog, noise-like and unrecoverable by post-processing techniques. The decryption process requires precise matches of both the amplitude and phase between the cancellation and interference chaotic noises, which provide a large two-dimensional key space with the help of optical interference cancellation technology. For 10-Gb/s 16-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) signal over the maximum transmission distance of 80 km without dispersion compensation or inline amplifier, the tolerable mismatch ranges of amplitude and phase/delay at the forward error correction (FEC) threshold of 3.8×10-3 are 0.44 dB and 0.08 ns respectively.

  17. Close to 100 Gbps discrete multitone transmission over 100m of multimode fiber using a single transverse mode 850nm VCSEL

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Zhou, Xian; Ma, Yanan; Luo, Jun; Zhong, Kangping; Qiu, Shaofeng; Feng, Zhiyong; Luo, Yazhi; Agustin, Mikel; Ledentsov, Nikolay; Kropp, Joerg; Shchukin, Vitaly; Ledentsov, Nikolay N.; Eddie, Iain; Chao, Lu

    2016-03-01

    Discrete Multitone Transmission (DMT) transmission over standard multimode fiber (MMF) using high-speed single (SM) and multimode (MM) Vertical-Cavity Surface-Emitting Lasers (VCSELs) is studied. Transmission speed in the range of 72Gbps to 82Gbps over 300m -100m distances of OM4 fiber is realized, respectively, at Bit-Error-Ratio (BER) <5e-3 and the received optical power of only -5dBm. Such BER condition requires only 7% overhead for the conversion to error-free operation using single Bose-Chaudhuri-Hocquenghem forward error correction (BCH-FEC) coding and decoding. SM VCSEL is demonstrated to provide a much higher data transmission capacity over MMF. For 100m MMF transmission SM VCSEL allows 82Gbps as compared to MM VCSEL resulting in only 34Gbps at the same power (-5dBm). Furthermore, MM VCSEL link at 0dBm is still restricted at 100m distance by 63Gbps while SM VCSEL can exceed 100Gbps at such power levels. We believe that with further improvement in SM VCSELs and fiber coupling >100Gbps data transmission over >300m MMF distances at the BER levels matching the industry standards will become possible.

  18. Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats.

    PubMed

    Li, Borui; Feng, Zhenhua; Tang, Ming; Xu, Zhilin; Fu, Songnian; Wu, Qiong; Deng, Lei; Tong, Weijun; Liu, Shuang; Shum, Perry Ping

    2015-05-04

    Towards the next generation optical access network supporting large capacity data transmission to enormous number of users covering a wider area, we proposed a hybrid wavelength-space division multiplexing (WSDM) optical access network architecture utilizing multicore fibers with advanced modulation formats. As a proof of concept, we experimentally demonstrated a WSDM optical access network with duplex transmission using our developed and fabricated multicore (7-core) fibers with 58.7km distance. As a cost-effective modulation scheme for access network, the optical OFDM-QPSK signal has been intensity modulated on the downstream transmission in the optical line terminal (OLT) and it was directly detected in the optical network unit (ONU) after MCF transmission. 10 wavelengths with 25GHz channel spacing from an optical comb generator are employed and each wavelength is loaded with 5Gb/s OFDM-QPSK signal. After amplification, power splitting, and fan-in multiplexer, 10-wavelength downstream signal was injected into six outer layer cores simultaneously and the aggregation downstream capacity reaches 300 Gb/s. -16 dBm sensitivity has been achieved for 3.8 × 10-3 bit error ratio (BER) with 7% Forward Error Correction (FEC) limit for all wavelengths in every core. Upstream signal from ONU side has also been generated and the bidirectional transmission in the same core causes negligible performance degradation to the downstream signal. As a universal platform for wired/wireless data access, our proposed architecture provides additional dimension for high speed mobile signal transmission and we hence demonstrated an upstream delivery of 20Gb/s per wavelength with QPSK modulation formats using the inner core of MCF emulating a mobile backhaul service. The IQ modulated data was coherently detected in the OLT side. -19 dBm sensitivity has been achieved under the FEC limit and more than 18 dB power budget is guaranteed.

  19. 71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation.

    PubMed

    Sun, Xiaobin; Zhang, Zhenyu; Chaaban, Anas; Ng, Tien Khee; Shen, Chao; Chen, Rui; Yan, Jianchang; Sun, Haiding; Li, Xiaohang; Wang, Junxi; Li, Jinmin; Alouini, Mohamed-Slim; Ooi, Boon S

    2017-09-18

    A demonstration of ultraviolet-B (UVB) communication link is implemented utilizing quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM). The demonstration is based on a 294-nm UVB-light-emitting-diode (UVB-LED) with a full-width at half-maximum (FWHM) of 9 nm and light output power of 190 μW, at 7 V, with a special silica gel lens on top of it. A -3-dB bandwidth of 29 MHz was measured and a high-speed near-solar-blind communication link with a data rate of 71 Mbit/s was achieved using 8-QAM-OFDM at perfect alignment. 23.6 Mbit/s using 2-QAM-OFDM when the angle subtended by the pointing directions of the UVB-LED and photodetector (PD) is 12 degrees, thus establishing a diffuse-line-of-sight (LOS) link. The measured bit-error rate (BER) of 2.8 ×10 -4 and 2.4 ×10 -4 , respectively, are well below the forward error correction (FEC) criterion of 3.8 ×10 -3 . The demonstrated high data-rate OFDM-based UVB communication link paves the way for realizing high-speed non-line-of-sight free-space optical communications.

  20. 10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication.

    PubMed

    Kong, Meiwei; Lv, Weichao; Ali, Tariq; Sarwar, Rohail; Yu, Chuying; Qiu, Yang; Qu, Fengzhong; Xu, Zhiwei; Han, Jun; Xu, Jing

    2017-08-21

    The availability of the underwater wireless optical communication (UWOC) based on red (R), green (G) and blue (B) lights makes the realization of the RGB wavelength division multiplexing (WDM) UWOC system possible. By properly mixing RGB lights to form white light, the WDM UWOC system has prominent potentiality for simultaneous underwater illumination and high-speed communication. In this work, for the first time, we experimentally demonstrate a 9.51-Gb/s WDM UWOC system using a red-emitting laser diode (LD), a single-mode pigtailed green-emitting LD and a multi-mode pigtailed blue-emitting LD. By employing 32-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) modulation in the demonstration, the red-light, the green-light and the blue-light LDs successfully transmit signals with the data rates of 4.17 Gb/s, 4.17 Gb/s and 1.17 Gb/s, respectively, over a 10-m underwater channel. The corresponding bit error rates (BERs) are 2.2 × 10 -3 , 2.0 × 10 -3 and 2.3 × 10 -3 , respectively, which are below the forward error correction (FEC) threshold of 3.8 × 10 -3 .

  1. Signal transfer through three compartments: transcription initiation of the Escherichia coli ferric citrate transport system from the cell surface.

    PubMed

    Härle, C; Kim, I; Angerer, A; Braun, V

    1995-04-03

    Transport of ferric citrate into cells of Escherichia coli K-12 involves two energy-coupled transport systems, one across the outer membrane and one across the cytoplasmic membrane. Previously, we have shown that ferric citrate does not have to enter the cytoplasm of E. coli K-12 to induce transcription of the fec ferric citrate transport genes. Here we demonstrate that ferric citrate uptake into the periplasmic space between the outer and the cytoplasmic membranes is not required for fec gene induction. Rather, FecA and the TonB, ExbB and ExbD proteins are involved in induction of the fec transport genes independent of their role in ferric citrate transport across the outer membrane. The uptake of ferric citrate into the periplasmic space of fecA and tonB mutants via diffusion through the porin channels did not induce transcription of fec transport genes. Point mutants in FecA displayed the constitutive expression of fec transport genes in the absence of ferric citrate but still required TonB, with the exception of one FecA mutant which showed a TonB-independent induction. The phenotype of the FecA mutants suggests a signal transduction mechanism across three compartments: the outer membrane, the periplasmic space and the cytoplasmic membrane. The signal is triggered upon the interaction of ferric citrate with FecA protein. It is postulated that FecA, TonB, ExbB and ExbD transfer the signal across the outer membrane, while the regulatory protein FecR transmits the signal across the cytoplasmic membrane to FecI in the cytoplasm. FecI serves as a sigma factor which facilitates binding of the RNA polymerase to the fec transport gene promoter upstream of fecA.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Postgenomics Characterization of an Essential Genetic Determinant of Mammary Pathogenic Escherichia coli

    PubMed Central

    2018-01-01

    ABSTRACT Escherichia coli are major bacterial pathogens causing bovine mastitis, a disease of great economic impact on dairy production worldwide. This work aimed to study the virulence determinants of mammary pathogenic E. coli (MPEC). By whole-genome sequencing analysis of 40 MPEC and 22 environmental (“dairy-farm” E. coli [DFEC]) strains, we found that only the fec locus (fecIRABCDE) for ferric dicitrate uptake was present in the core genome of MPEC and that it was absent in DFEC genomes (P < 0.05). Expression of the FecA receptor in the outer membrane was shown to be citrate dependent by mass spectrometry. FecA was overexpressed when bacteria were grown in milk. Transcription of the fecA gene and of the inner membrane transport component fecB gene was upregulated in bacteria recovered from experimental intramammary infection. The presence of the fec system was shown to affect the ability of E. coli to grow in milk. While the rate of growth in milk of fec-positive (fec+) DFEC was similar to that of MPEC, it was significantly lower in DFEC lacking fec. Furthermore, deletion of fec reduced the rate of growth in milk of MPEC strain P4, whereas fec-transformed non-mammary gland-pathogenic DFEC strain K71 gained the phenotype of the level of growth in milk observed in MPEC. The role of fec in E. coli intramammary pathogenicity was investigated in vivo in cows, with results showing that an MPEC P4 mutant lacking fec lost its ability to induce mastitis, whereas the fec+ DFEC K71 mutant was able to trigger intramammary inflammation. For the first time, a single molecular locus was shown to be crucial in MPEC pathogenicity. PMID:29615502

  3. Throughput and Energy Efficiency of a Cooperative Hybrid ARQ Protocol for Underwater Acoustic Sensor Networks

    PubMed Central

    Ghosh, Arindam; Lee, Jae-Won; Cho, Ho-Shin

    2013-01-01

    Due to its efficiency, reliability and better channel and resource utilization, cooperative transmission technologies have been attractive options in underwater as well as terrestrial sensor networks. Their performance can be further improved if merged with forward error correction (FEC) techniques. In this paper, we propose and analyze a retransmission protocol named Cooperative-Hybrid Automatic Repeat reQuest (C-HARQ) for underwater acoustic sensor networks, which exploits both the reliability of cooperative ARQ (CARQ) and the efficiency of incremental redundancy-hybrid ARQ (IR-HARQ) using rate-compatible punctured convolution (RCPC) codes. Extensive Monte Carlo simulations are performed to investigate the performance of the protocol, in terms of both throughput and energy efficiency. The results clearly reveal the enhancement in performance achieved by the C-HARQ protocol, which outperforms both CARQ and conventional stop and wait ARQ (S&W ARQ). Further, using computer simulations, optimum values of various network parameters are estimated so as to extract the best performance out of the C-HARQ protocol. PMID:24217359

  4. Improving soft FEC performance for higher-order modulations via optimized bit channel mappings.

    PubMed

    Häger, Christian; Amat, Alexandre Graell I; Brännström, Fredrik; Alvarado, Alex; Agrell, Erik

    2014-06-16

    Soft forward error correction with higher-order modulations is often implemented in practice via the pragmatic bit-interleaved coded modulation paradigm, where a single binary code is mapped to a nonbinary modulation. In this paper, we study the optimization of the mapping of the coded bits to the modulation bits for a polarization-multiplexed fiber-optical system without optical inline dispersion compensation. Our focus is on protograph-based low-density parity-check (LDPC) codes which allow for an efficient hardware implementation, suitable for high-speed optical communications. The optimization is applied to the AR4JA protograph family, and further extended to protograph-based spatially coupled LDPC codes assuming a windowed decoder. Full field simulations via the split-step Fourier method are used to verify the analysis. The results show performance gains of up to 0.25 dB, which translate into a possible extension of the transmission reach by roughly up to 8%, without significantly increasing the system complexity.

  5. Multiple component codes based generalized LDPC codes for high-speed optical transport.

    PubMed

    Djordjevic, Ivan B; Wang, Ting

    2014-07-14

    A class of generalized low-density parity-check (GLDPC) codes suitable for optical communications is proposed, which consists of multiple local codes. It is shown that Hamming, BCH, and Reed-Muller codes can be used as local codes, and that the maximum a posteriori probability (MAP) decoding of these local codes by Ashikhmin-Lytsin algorithm is feasible in terms of complexity and performance. We demonstrate that record coding gains can be obtained from properly designed GLDPC codes, derived from multiple component codes. We then show that several recently proposed classes of LDPC codes such as convolutional and spatially-coupled codes can be described using the concept of GLDPC coding, which indicates that the GLDPC coding can be used as a unified platform for advanced FEC enabling ultra-high speed optical transport. The proposed class of GLDPC codes is also suitable for code-rate adaption, to adjust the error correction strength depending on the optical channel conditions.

  6. Correlation of hepatic fractional extracellular space using gadolinium enhanced MRI with liver stiffness using magnetic resonance elastography.

    PubMed

    Wells, Michael L; Moynagh, Michael R; Carter, Rickey E; Childs, Robert A; Leitch, Cameron E; Fletcher, Joel G; Yeh, Benjamin M; Venkatesh, Sudhakar K

    2017-01-01

    To compare MR hepatic fractional extracellular space (fECS) to liver stiffness (LS) with magnetic resonance elastography (MRE) for evaluation of liver fibrosis. 71 consecutive patients with suspected chronic liver disease underwent standard liver MRI with MR elastography and additional delayed Gd-DTPA-enhanced sequences at 5 and 10 min in order to calculate hepatic fECS (%) and LS (kilopascals, kPa). Two radiologists blinded to clinical history examined MR images and calculated fECS and LS in identical locations for every patient. Interobserver agreement was calculated using the intraclass correlation coefficient. Pearson's correlation was calculated for LS and fECS measures, as was the area under the receiver operatic curve (AUROC), sensitivity and specificity of fECS to predict liver stiffness ≥2.93 and ≥5 kPa. The sensitivity of fECS for detecting fibrosis was separately analyzed in the subgroup of patients without anatomic findings of cirrhosis. Substantial to excellent interobserver agreement for both LS and fECS measurements was seen with intraclass correlation of 0.88 (95% CI 0.81-0.92) for LS, 0.77 (95% CI 0.66-0.85) for fECS 5 and 0.76 (95% CI 0.64-0.84) for fECS 10 . A significant correlation was found between MRE and fECS 5 (r = 0.47, p < 0.0001) and fECS 10 (r = 0.44, p < 0.0001). The performance of fECS improved for detection of advanced fibrosis (≥5 kPa) with AUROC, sensitivity and specificity of 0.72, 38%, and 94% for fECS 5 and 0.72, 67%, and 66% for fECS 10 . fECS correlates modestly with MRE-determined LS. fECS at MRI is a simple calculation to perform and may represent a practical way to suggest the presence of fibrosis during routine liver evaluation.

  7. Investigation of Prolific Sheep from UK and Ireland for Evidence on Origin of the Mutations in BMP15 (FecXG, FecXB) and GDF9 (FecGH) in Belclare and Cambridge Sheep

    PubMed Central

    Mullen, Michael P.; Hanrahan, James P.; Howard, Dawn J.

    2013-01-01

    This paper concerns the likely origin of three mutations with large effects on ovulation rate identified in the Belclare and Cambridge sheep breeds; two in the BMP15 gene (FecXG and FecXB) and the third (FecGH) in GDF9. All three mutations segregate in Belclare sheep while one, FecXB, has not been found in the Cambridge. Both Belclare and Cambridge breeds are relatively recently developed composites that have common ancestry through the use of genetic material from the Finnish Landrace and Lleyn breeds. The development of both composites also involved major contributions from exceptionally prolific ewes screened from flocks in Ireland (Belclare) and Britain (Cambridge) during the 1960s. The objective of the current study was to establish the likely origin of the mutations (FecXG, FecXB and FecGH) through analysis of DNA from Finnish Landrace and Lleyn sheep, and Galway and Texel breeds which contributed to the development of the Belclare breed. Ewes with exceptionally high prolificacy (hyper-prolific ewes) in current flocks on Irish farms were identified to simulate the screening of ewes from Irish flocks in the 1960s. DNA was obtained from: prolific ewes in extant flocks of Lleyn sheep (n = 44) on the Lleyn peninsula in Wales; hyper-prolific ewes (n = 41); prolific Galway (n = 41) ewes; Finnish Landrace (n = 124) and Texel (n = 19) ewes. The FecXG mutation was identified in Lleyn but not in Finnish Landrace, Galway or Texel sheep; FecXB was only found among the hyper-prolific ewes. The FecGH mutation was identified in the sample of Lleyn sheep. It was concluded from these findings that the Lleyn breed was the most likely source of the FecXG and FecGH mutations in Belclare and Cambridge sheep and that the FecXB mutation came from the High Fertility line that was developed using prolific ewes selected from commercial flocks in Ireland in the 1960′s and subsequently used in the genesis of the Belclare. PMID:23301039

  8. THz photonic wireless links with 16-QAM modulation in the 375-450 GHz band.

    PubMed

    Jia, Shi; Yu, Xianbin; Hu, Hao; Yu, Jinlong; Guan, Pengyu; Da Ros, Francesco; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif K

    2016-10-17

    We propose and experimentally demonstrate THz photonic wireless communication systems with 16-QAM modulation in the 375-450 GHz band. The overall throughput reaches as high as 80 Gbit/s by exploiting four THz channels with 5 Gbaud 16-QAM baseband modulation per channel. We create a coherent optical frequency comb (OFC) for photonic generation of multiple THz carriers based on photo-mixing in a uni-travelling carrier photodiode (UTC-PD). The OFC configuration also allows us to generate reconfigurable THz carriers with low phase noise. The multiple-channel THz radiation is received by using a Schottky mixer based electrical receiver after 0.5 m free-space wireless propagation. 2-channel (40 Gbit/s) and 4-channel (80 Gbit/s) THz photonic wireless links with 16-QAM modulation are reported in this paper, and the bit error rate (BER) performance for all channels in both cases is below the hard decision forward error correction (HD-FEC) threshold of 3.8e-3 with 7% overhead. In addition, we also successfully demonstrate hybrid photonic wireless transmission of 40 Gbit/s 16-QAM signal at carrier frequencies of 400 GHz and 425 GHz over 30 km standard single mode fiber (SSMF) between the optical baseband signal transmitter and the THz wireless transmitter with negligible induced power penalty.

  9. Enhanced noise tolerance for 10 Gb/s Bi-directional cross-wavelength reuse colorless WDM-PON by using spectrally shaped OFDM signals

    NASA Astrophysics Data System (ADS)

    Choudhury, Pallab K.

    2018-05-01

    Spectrally shaped orthogonal frequency division multiplexing (OFDM) signal for symmetric 10 Gb/s cross-wavelength reuse reflective semiconductor optical amplifier (RSOA) based colorless wavelength division multiplexed passive optical network (WDM-PON) is proposed and further analyzed to support broadband services of next generation high speed optical access networks. The generated OFDM signal has subcarriers in separate frequency ranges for downstream and upstream, such that the re-modulation noise can be effectively minimized in upstream data receiver. Moreover, the cross wavelength reuse approach improves the tolerance against Rayleigh backscattering noise due to the propagation of different wavelengths in the same feeder fiber. The proposed WDM-PON is successfully demonstrated for 25 km fiber with 16-QAM (quadrature amplitude modulation) OFDM signal having bandwidth of 2.5 GHz for 10 Gb/s operation and subcarrier frequencies in 3-5.5 GHz and DC-2.5 GHz for downstream (DS) and upstream (US) transmission respectively. The result shows that the proposed scheme maintains a good bit error rate (BER) performance below the forward error correction (FEC) limit of 3.8 × 10-3 at acceptable receiver sensitivity and provides a high resilience against re-modulation and Rayleigh backscattering noises as well as chromatic dispersion.

  10. Coded throughput performance simulations for the time-varying satellite channel. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Han, LI

    1995-01-01

    The design of a reliable satellite communication link involving the data transfer from a small, low-orbit satellite to a ground station, but through a geostationary satellite, was examined. In such a scenario, the received signal power to noise density ratio increases as the transmitting low-orbit satellite comes into view, and then decreases as it then departs, resulting in a short-duration, time-varying communication link. The optimal values of the small satellite antenna beamwidth, signaling rate, modulation scheme and the theoretical link throughput (in bits per day) have been determined. The goal of this thesis is to choose a practical coding scheme which maximizes the daily link throughput while satisfying a prescribed probability of error requirement. We examine the throughput of both fixed rate and variable rate concatenated forward error correction (FEC) coding schemes for the additive white Gaussian noise (AWGN) channel, and then examine the effect of radio frequency interference (RFI) on the best coding scheme among them. Interleaving is used to mitigate degradation due to RFI. It was found that the variable rate concatenated coding scheme could achieve 74 percent of the theoretical throughput, equivalent to 1.11 Gbits/day based on the cutoff rate R(sub 0). For comparison, 87 percent is achievable for AWGN-only case.

  11. A 30 Gb/s full-duplex bi-directional transmission optical wireless-over fiber integration system at W-band.

    PubMed

    Tang, Chanjuan; Yu, Jianjun; Li, Xinying; Chi, Nan; Xiao, Jiangnan; Tian, Yumin; Zhang, Junwen

    2014-01-13

    We propose and experimentally demonstrate a full-duplex bi-directional transmission optical wireless-over fiber integration system at W-band (75-100 GHz) with the speed up to 15 Gb/s for both 95.4 GHz link and 88.6 GHz link for the first time. The generation of millimeter-wave (mm-wave) wireless signal is based on the photonic technique by heterodyne mixing of an optical quadrature-phase-shift-keying (QPSK) signal with a free-running light at different wavelength. After 20 km fiber transmission, up to 30 Gb/s mm-wave signal is delivered over 2 m wireless link, and then converted to the optical signal for another 20 km fiber transmission. At the wireless receiver, coherent detection and advanced digital signal processing (DSP) are introduced to improve receiver sensitivity and system performance. With the OSNR of 15 dB, the bit error ratios (BERs) for 10 Gb/s signal transmission at 95.4 GHz and 88.6 GHz are below the forward-error-correction (FEC) threshold of 3.8 × 10(-3) whether post filter is used or not, while the BER for 15 Gb/s QPSK signal employing post filter in the link of 95.4 GHz is 2.9 × 10(-3).

  12. All-optical wavelength conversion for mode division multiplexed superchannels.

    PubMed

    Gong, Jiaxin; Xu, Jing; Luo, Ming; Li, Xiang; Qiu, Ying; Yang, Qi; Zhang, Xinliang; Yu, Shaohua

    2016-04-18

    We report in this work the first all-optical wavelength conversion (AOWC) of a mode division multiplexed (MDM) superchannel consisting of 2N modes by dividing the superchannel into N single-mode (SM) tributaries, wavelength converting N SM signals using well developed SM-AOWC techniques, and finally combining the N SM tributaries back to an MDM superchannel at the converted wavelength, inspired by the idea of using SM filtering techniques to filter multimode signals in astronomy. The conversions between multimode and SM are realized by 3D laser-writing photonic lanterns and SM-AOWCs are realized based on polarization insensitive four wave mixing (FWM) configuration in N semiconductor optical amplifiers (SOAs). As a proof of concept demonstration, the conversion of a 6-mode MDM superchannel with each mode modulated with orthogonal frequency division multiplexed (OFDM) quadrature phase-shift keying (QPSK)/16 quadrature amplitude modulation (QAM) signals is demonstrated in this work, indicating that the scheme is transparent to data format, polarization and compatible with multi-carrier signals. Data integrity of the converted superchannel has been verified by using coherent detection and digital signal processing (DSP). Bit error rates (BERs) below the forward error correction (FEC) hard limit (3.8 × 10-3) have been obtained for QPSK modulation at a net bitrate of 104.2 Gbit/s and BERs below the soft decision FEC threshold (1.98 × 10-2) have been achieved for 16-QAM format, giving a total aggregate bit rate of 185.8 Gbit/s when taking 20% coding overhead into account. Add and drop functionalities that usually come along with wavelength conversion in flexible network nodes have also been demonstrated. The working conditions of the SOAs, especially the pump and signal power levels, are critical for the quality of the converted signal and have been thoroughly discussed. The impact of imbalanced FWM conversion efficiency among different SM tributaries has also been analyzed. This work illustrates a promising way to perform all-optical signal processing for MDM superchannels.

  13. Simultaneous polarization-insensitive phase-space trans-multiplexing and wavelength multicasting via cross-phase modulation in a photonic crystal fiber at 10 GBd

    NASA Astrophysics Data System (ADS)

    Cannon, Brice M.

    This thesis investigates the all-optical combination of amplitude and phase modulated signals into one unified multi-level phase modulated signal, utilizing the Kerr nonlinearity of cross-phase modulation (XPM). Predominantly, the first experimental demonstration of simultaneous polarization-insensitive phase-transmultiplexing and multicasting (PI-PTMM) will be discussed. The PI-PTMM operation combines the data of a single 10-Gbaud carrier-suppressed return-to-zero (CSRZ) on-off keyed (OOK) pump signal and 4x10-Gbaud return-to-zero (RZ) binary phase-shift keyed (BPSK) probe signals to generate 4x10-GBd RZ-quadrature phase-shift keyed (QPSK) signals utilizing a highly nonlinear, birefringent photonic crystal fiber (PCF). Since XPM is a highly polarization dependent nonlinearity, a polarization sensitivity reduction technique was used to alleviate the fluctuations due to the remotely generated signals' unpredictable states of polarization (SOP). The measured amplified spontaneous emission (ASE) limited receiver sensitivity optical signal-to-noise ratio (OSNR) penalty of the PI-PTMM signal relative to the field-programmable gate array (FPGA) pre-coded RZ-DQPSK baseline at a forward-error correction (FEC) limit of 10-3 BER was ≈ 0.3 dB. In addition, the OSNR of the remotely generated CSRZ-OOK signal could be degraded to ≈ 29 dB/0.1nm, before the bit error rate (BER) performance of the PI-PTMM operation began to exponentially degrade. A 138-km dispersion-managed recirculating loop system with a 100-GHz, 13-channel mixed-format dense-wavelength-division multiplexed (DWDM) transmitter was constructed to investigate the effect of metro/long-haul transmission impairments. The PI-PTMM DQPSK and the FPGA pre-coded RZ-DQPSK baseline signals were transmitted 1,900 km and 2,400 km in the nonlinearity-limited transmission regime before reaching the 10-3 BER FEC limit. The relative reduction in transmission distance for the PI-PTMM signal was due to the additional transmitter impairments in the PCF that interact negatively with the transmission fiber.

  14. Reliable Wireless Broadcast with Linear Network Coding for Multipoint-to-Multipoint Real-Time Communications

    NASA Astrophysics Data System (ADS)

    Kondo, Yoshihisa; Yomo, Hiroyuki; Yamaguchi, Shinji; Davis, Peter; Miura, Ryu; Obana, Sadao; Sampei, Seiichi

    This paper proposes multipoint-to-multipoint (MPtoMP) real-time broadcast transmission using network coding for ad-hoc networks like video game networks. We aim to achieve highly reliable MPtoMP broadcasting using IEEE 802.11 media access control (MAC) that does not include a retransmission mechanism. When each node detects packets from the other nodes in a sequence, the correctly detected packets are network-encoded, and the encoded packet is broadcasted in the next sequence as a piggy-back for its native packet. To prevent increase of overhead in each packet due to piggy-back packet transmission, network coding vector for each node is exchanged between all nodes in the negotiation phase. Each user keeps using the same coding vector generated in the negotiation phase, and only coding information that represents which user signal is included in the network coding process is transmitted along with the piggy-back packet. Our simulation results show that the proposed method can provide higher reliability than other schemes using multi point relay (MPR) or redundant transmissions such as forward error correction (FEC). We also implement the proposed method in a wireless testbed, and show that the proposed method achieves high reliability in a real-world environment with a practical degree of complexity when installed on current wireless devices.

  15. Investigation of prolific sheep from UK and Ireland for evidence on origin of the mutations in BMP15 (FecX(G), FecX(B)) and GDF9 (FecG(H)) in Belclare and Cambridge sheep.

    PubMed

    Mullen, Michael P; Hanrahan, James P; Howard, Dawn J; Powell, Richard

    2013-01-01

    This paper concerns the likely origin of three mutations with large effects on ovulation rate identified in the Belclare and Cambridge sheep breeds; two in the BMP15 gene (FecX(G) and FecX(B)) and the third (FecG(H)) in GDF9. All three mutations segregate in Belclare sheep while one, FecX(B), has not been found in the Cambridge. Both Belclare and Cambridge breeds are relatively recently developed composites that have common ancestry through the use of genetic material from the Finnish Landrace and Lleyn breeds. The development of both composites also involved major contributions from exceptionally prolific ewes screened from flocks in Ireland (Belclare) and Britain (Cambridge) during the 1960s. The objective of the current study was to establish the likely origin of the mutations (FecX(G), FecX(B) and FecG(H)) through analysis of DNA from Finnish Landrace and Lleyn sheep, and Galway and Texel breeds which contributed to the development of the Belclare breed. Ewes with exceptionally high prolificacy (hyper-prolific ewes) in current flocks on Irish farms were identified to simulate the screening of ewes from Irish flocks in the 1960s. DNA was obtained from: prolific ewes in extant flocks of Lleyn sheep (n = 44) on the Lleyn peninsula in Wales; hyper-prolific ewes (n = 41); prolific Galway (n = 41) ewes; Finnish Landrace (n = 124) and Texel (n = 19) ewes. The FecX(G) mutation was identified in Lleyn but not in Finnish Landrace, Galway or Texel sheep; FecX(B) was only found among the hyper-prolific ewes. The FecG(H) mutation was identified in the sample of Lleyn sheep. It was concluded from these findings that the Lleyn breed was the most likely source of the FecX(G) and FecG(H) mutations in Belclare and Cambridge sheep and that the FecX(B) mutation came from the High Fertility line that was developed using prolific ewes selected from commercial flocks in Ireland in the 1960's and subsequently used in the genesis of the Belclare.

  16. Genetic line comparisons and genetic parameters for endoparasite infections and test-day milk production traits.

    PubMed

    May, Katharina; Brügemann, Kerstin; Yin, Tong; Scheper, Carsten; Strube, Christina; König, Sven

    2017-09-01

    Keeping dairy cows in grassland systems relies on detailed analyses of genetic resistance against endoparasite infections, including between- and within-breed genetic evaluations. The objectives of this study were (1) to compare different Black and White dairy cattle selection lines for endoparasite infections and (2) the estimation of genetic (co)variance components for endoparasite and test-day milk production traits within the Black and White cattle population. A total of 2,006 fecal samples were taken during 2 farm visits in summer and autumn 2015 from 1,166 cows kept in 17 small- and medium-scale organic and conventional German grassland farms. Fecal egg counts were determined for gastrointestinal nematodes (FEC-GIN) and flukes (FEC-FLU), and fecal larvae counts for the bovine lungworm Dictyocaulus viviparus (FLC-DV). The lowest values for gastrointestinal nematode infections were identified for genetic lines adopted to pasture-based production systems, especially selection lines from New Zealand. Heritabilities were low for FEC-GIN (0.05-0.06 ± 0.04) and FLC-DV (0.05 ± 0.04), but moderate for FEC-FLU (0.33 ± 0.06). Almost identical heritabilities were estimated for different endoparasite trait transformations (log-transformation, square root). The genetic correlation between FEC-GIN and FLC-DV was 1.00 ± 0.60, slightly negative between FEC-GIN and FEC-FLU (-0.10 ± 0.27), and close to zero between FLC-DV and FEC-FLU (0.03 ± 0.30). Random regression test-day models on a continuous time scale [days in milk (DIM)] were applied to estimate genetic relationships between endoparasite and longitudinal test-day production traits. Genetic correlations were negative between FEC-GIN and milk yield (MY) until DIM 85, and between FEC-FLU and MY until DIM 215. Genetic correlations between FLC-DV and MY were negative throughout lactation, indicating improved disease resistance for high-productivity cows. Genetic relationships between FEC-GIN and FEC-FLU with milk protein content were negative for all DIM. Apart from the very early and very late lactation stage, genetic correlations between FEC-GIN and milk fat content were negative, whereas they were positive for FEC-FLU. Genetic correlations between FEC-GIN and somatic cell score were positive, indicating similar genetic mechanisms for susceptibility to udder and endoparasite infections. The moderate heritabilities for FEC-FLU suggest inclusion of FEC-FLU into overall organic dairy cattle breeding goals to achieve long-term selection response for disease resistance. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Genetic parameters and breeding strategies for high levels of iron and zinc in Phaseolus vulgaris L.

    PubMed

    Martins, S M; Melo, P G S; Faria, L C; Souza, T L P O; Melo, L C; Pereira, H S

    2016-06-10

    One of the current focus of common bean breeding programs in Brazil is to increase iron (FeC) and zinc content (ZnC) in grains. The objectives of this study were to estimate genetic parameters for FeC and ZnC in common bean, verify the need for conducting multi-site evaluation tests, identify elite lines that combine high FeC and ZnC with good adaptability, stability, and agronomic potential, and examine the genetic association between FeC and ZnC. Elite lines (140) were evaluated for important agronomic traits in multiple environments. In one trial, FeC and ZnC were evaluated and genetic parameters were estimated. Based on the high heritability estimates and significant selection gains obtained, the conditions for a successful selection was favorable. Of the 140 evaluated lines, 17 had higher FeC and ZnC, and were included in the validation test (2013, five environments), specifically for the evaluation of FeC and ZnC. The line by environment interaction for FeC and ZnC was detected, but it was predominantly simple. The environmental effect strongly influenced FeC and ZnC . The environment Brasília/rainy season was selected as the best evaluation site for preliminary tests for FeC and ZnC, because it resulted in similar conclusions as the mean of the five environments. The lines CNFP 15701 and CNFC 15865 had higher FeC and ZnC and were highly adaptable and stable, and are recommended for utilization in breeding programs. The lines CNFC 15833, CNFC 15703, and CNFP 15676 showed excellent combined agronomic and nutritional traits, and were selected for the development of biofortified cultivars. Additionally, the genetic association between FeC and ZnC was detected.

  18. Ethylene carbonate-free fluoroethylene carbonate-based electrolyte works better for freestanding Si-based composite paper anodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Yao, K.; Zheng, J. P.; Liang, R.

    2018-03-01

    Fluoroethylene carbonate (FEC)-based electrolytes using FEC as the co-solvent (50 wt%) are investigated and compared with the electrolyte using FEC as the additive (10 wt%) for freestanding Si-carbon nanotubes (CNTs) composite paper anodes for Li-ion batteries. The ethylene carbonate (EC)-free FEC-based electrolyte is found to achieve higher specific capacity and better capacity retention in terms of long-term cycling. After 500 cycles, the capacity retention of the cell using diethyl carbonate (DEC)-FEC (1:1 w/w) is increased by 88% and 60% compared to the cells using EC-DEC-FEC (45:45:10 w/w/w) and EC-FEC (1:1 w/w), respectively. Through SEM-EDX and XPS analyses, a possible reaction route of formation of fluorinated semicarbonates and polyolefins from FEC is proposed. The inferior cell performance related to the EC-containing electrolytes is likely due to the formation of more polyolefins, which do not favor Li ion migration.

  19. Formation of friable embryogenic callus in cassava is enhanced under conditions of reduced nitrate, potassium and phosphate

    PubMed Central

    Utsumi, Yoshinori; Utsumi, Chikako; Tanaka, Maho; Ha, Vu The; Matsui, Akihiro; Takahashi, Satoshi; Seki, Motoaki

    2017-01-01

    Agrobacterium-mediated transformation is an important research tool for the genetic improvement of cassava. The induction of friable embryogenic callus (FEC) is considered as a key step in cassava transformation. In the present study, the media composition was optimized for enhancing the FEC induction, and the effect of the optimized medium on gene expression was evaluated. In relative comparison to MS medium, results demonstrated that using a medium with reducing nutrition (a 10-fold less concentration of nitrogen, potassium, and phosphate), the increased amount of vitamin B1 (10 mg/L) and the use of picrolam led to reprogram non-FEC to FEC. Gene expression analyses revealed that FEC on modified media increased the expression of genes related to the regulation of polysaccharide biosynthesis and breakdown of cell wall components in comparison to FEC on normal CIM media, whereas the gene expression associated with energy flux was not dramatically altered. It is hypothesized that we reprogram non-FEC to FEC under low nitrogen, potassium and phosphate and high vitamin B1. These findings were more effective in inducing FEC formation than the previous protocol. It might contribute to development of an efficient transformation strategy in cassava. PMID:28806727

  20. 16QAM transmission with 5.2 bits/s/Hz spectral efficiency over transoceanic distance.

    PubMed

    Zhang, H; Cai, J-X; Batshon, H G; Davidson, C R; Sun, Y; Mazurczyk, M; Foursa, D G; Pilipetskii, A; Mohs, G; Bergano, Neal S

    2012-05-21

    We transmit 160 x 100 G PDM RZ 16 QAM channels with 5.2 bits/s/Hz spectral efficiency over 6,860 km. There are more than 3 billion 16 QAM symbols, i.e., 12 billion bits, processed in total. Using coded modulation and iterative decoding between a MAP decoder and an LDPC based FEC all channels are decoded with no remaining errors.

  1. FecB, a periplasmic ferric-citrate transporter from E. coli, can bind different forms of ferric-citrate as well as a wide variety of metal-free and metal-loaded tricarboxylic acids.

    PubMed

    Banerjee, Sambuddha; Paul, Subrata; Nguyen, Leonard T; Chu, Byron C H; Vogel, Hans J

    2016-01-01

    The Escherichia coli Fec system, consisting of an outer membrane receptor (FecA), a periplasmic substrate binding protein (FecB) and an inner membrane permease-ATPase type transporter (FecC/D), plays an important role in the uptake and transport of Fe(3+)-citrate. Although several FecB sequences from various organisms have been reported, there are no biophysical or structural data available for this protein to date. In this work, using isothermal titration calorimetry (ITC), we report for the first time the ability of FecB to bind different species of Fe(3+)-citrate as well as other citrate complexes with trivalent (Ga(3+), Al(3+), Sc(3+) and In(3+)) and a representative divalent metal ion (Mg(2+)) with low μM affinity. Interestingly, ITC experiments with various iron-free di- and tricarboxylic acids show that FecB can bind tricarboxylates with μM affinity but not biologically relevant dicarboxylates. The ability of FecB to bind with metal-free citrate is also observed in (1)H,(15)N HSQC-NMR titration experiments reported here at two different pH values. Further, differential scanning calorimetry (DSC) experiments indicate that the ligand-bound form of FecB has greater thermal stability than ligand-free FecB under all pH and ligand conditions tested, which is consistent with the idea of domain closure subsequent to ligand binding for this type of periplasmic binding proteins.

  2. FPGA implementation of concatenated non-binary QC-LDPC codes for high-speed optical transport.

    PubMed

    Zou, Ding; Djordjevic, Ivan B

    2015-06-01

    In this paper, we propose a soft-decision-based FEC scheme that is the concatenation of a non-binary LDPC code and hard-decision FEC code. The proposed NB-LDPC + RS with overhead of 27.06% provides a superior NCG of 11.9dB at a post-FEC BER of 10-15. As a result, the proposed NB-LDPC codes represent the strong FEC candidate of soft-decision FEC for beyond 100Gb/s optical transmission systems.

  3. Landsat Data Continuity Mission (LDCM) - Optimizing X-Band Usage

    NASA Technical Reports Server (NTRS)

    Garon, H. M.; Gal-Edd, J. S.; Dearth, K. W.; Sank, V. I.

    2010-01-01

    The NASA version of the low-density parity check (LDPC) 7/8-rate code, shortened to the dimensions of (8160, 7136), has been implemented as the forward error correction (FEC) schema for the Landsat Data Continuity Mission (LDCM). This is the first flight application of this code. In order to place a 440 Msps link within the 375 MHz wide X band we found it necessary to heavily bandpass filter the satellite transmitter output . Despite the significant amplitude and phase distortions that accompanied the spectral truncation, the mission required BER is maintained at < 10(exp -12) with less than 2 dB of implementation loss. We utilized a band-pass filter designed ostensibly to replicate the link distortions to demonstrate link design viability. The same filter was then used to optimize the adaptive equalizer in the receiver employed at the terminus of the downlink. The excellent results we obtained could be directly attributed to the implementation of the LDPC code and the amplitude and phase compensation provided in the receiver. Similar results were obtained with receivers from several vendors.

  4. FAST: a framework for simulation and analysis of large-scale protein-silicon biosensor circuits.

    PubMed

    Gu, Ming; Chakrabartty, Shantanu

    2013-08-01

    This paper presents a computer aided design (CAD) framework for verification and reliability analysis of protein-silicon hybrid circuits used in biosensors. It is envisioned that similar to integrated circuit (IC) CAD design tools, the proposed framework will be useful for system level optimization of biosensors and for discovery of new sensing modalities without resorting to laborious fabrication and experimental procedures. The framework referred to as FAST analyzes protein-based circuits by solving inverse problems involving stochastic functional elements that admit non-linear relationships between different circuit variables. In this regard, FAST uses a factor-graph netlist as a user interface and solving the inverse problem entails passing messages/signals between the internal nodes of the netlist. Stochastic analysis techniques like density evolution are used to understand the dynamics of the circuit and estimate the reliability of the solution. As an example, we present a complete design flow using FAST for synthesis, analysis and verification of our previously reported conductometric immunoassay that uses antibody-based circuits to implement forward error-correction (FEC).

  5. Postgenomics Characterization of an Essential Genetic Determinant of Mammary Pathogenic Escherichia coli.

    PubMed

    Blum, Shlomo E; Goldstone, Robert J; Connolly, James P R; Répérant-Ferter, Maryline; Germon, Pierre; Inglis, Neil F; Krifucks, Oleg; Mathur, Shubham; Manson, Erin; Mclean, Kevin; Rainard, Pascal; Roe, Andrew J; Leitner, Gabriel; Smith, David G E

    2018-04-03

    Escherichia coli are major bacterial pathogens causing bovine mastitis, a disease of great economic impact on dairy production worldwide. This work aimed to study the virulence determinants of mammary pathogenic E. coli (MPEC). By whole-genome sequencing analysis of 40 MPEC and 22 environmental ("dairy-farm" E. coli [DFEC]) strains, we found that only the fec locus ( fecIRABCDE ) for ferric dicitrate uptake was present in the core genome of MPEC and that it was absent in DFEC genomes ( P < 0.05). Expression of the FecA receptor in the outer membrane was shown to be citrate dependent by mass spectrometry. FecA was overexpressed when bacteria were grown in milk. Transcription of the fecA gene and of the inner membrane transport component fecB gene was upregulated in bacteria recovered from experimental intramammary infection. The presence of the fec system was shown to affect the ability of E. coli to grow in milk. While the rate of growth in milk of fec -positive ( fec + ) DFEC was similar to that of MPEC, it was significantly lower in DFEC lacking fec Furthermore, deletion of fec reduced the rate of growth in milk of MPEC strain P4, whereas fec -transformed non-mammary gland-pathogenic DFEC strain K71 gained the phenotype of the level of growth in milk observed in MPEC. The role of fec in E. coli intramammary pathogenicity was investigated in vivo in cows, with results showing that an MPEC P4 mutant lacking fec lost its ability to induce mastitis, whereas the fec + DFEC K71 mutant was able to trigger intramammary inflammation. For the first time, a single molecular locus was shown to be crucial in MPEC pathogenicity. IMPORTANCE Bovine mastitis is the major infectious disease in dairy cows and the leading cause of economic loss to the global dairy industry, directly contributing to the price of dairy products on supermarket shelves and the financial hardships suffered by dairy farmers. Mastitis is also the leading reason for the use of antibiotics in dairy farms. Good farm management practices in many countries have dramatically reduced the incidence of contagious mastitis; however, the problems associated with the incidence of environmental mastitis caused by bacteria such as Escherichia coli have proven intractable. E. coli bacteria cause acute mastitis, which affects the health and welfare of cows and in extreme cases may be fatal. Here we show for the first time that the pathogenicity of E. coli causing mastitis in cows is highly dependent on the fecIRABCDE ferric citrate uptake system that allows the bacterium to capture iron from citrate. The Fec system is highly expressed during infection in the bovine udder and is ubiquitous in and necessary for the E. coli bacteria that cause mammary infections in cattle. These results have far-reaching implications, raising the possibility that mastitis may be controllable by targeting this system. Copyright © 2018 Blum et al.

  6. The next generation in optical transport semiconductors: IC solutions at the system level

    NASA Astrophysics Data System (ADS)

    Gomatam, Badri N.

    2005-02-01

    In this tutorial overview, we survey some of the challenging problems facing Optical Transport and their solutions using new semiconductor-based technologies. Advances in 0.13um CMOS, SiGe/HBT and InP/HBT IC process technologies and mixed-signal design strategies are the fundamental breakthroughs that have made these solutions possible. In combination with innovative packaging and transponder/transceiver architectures IC approaches have clearly demonstrated enhanced optical link budgets with simultaneously lower (perhaps the lowest to date) cost and manufacturability tradeoffs. This paper will describe: *Electronic Dispersion Compensation broadly viewed as the overcoming of dispersion based limits to OC-192 links and extending link budgets, *Error Control/Coding also known as Forward Error Correction (FEC), *Adaptive Receivers for signal quality monitoring for real-time estimation of Q/OSNR, eye-pattern, signal BER and related temporal statistics (such as jitter). We will discuss the theoretical underpinnings of these receiver and transmitter architectures, provide examples of system performance and conclude with general market trends. These Physical layer IC solutions represent a fundamental new toolbox of options for equipment designers in addressing systems level problems. With unmatched cost and yield/performance tradeoffs, it is expected that IC approaches will provide significant flexibility in turn, for carriers and service providers who must ultimately manage the network and assure acceptable quality of service under stringent cost constraints.

  7. On the capacity of MIMO-OFDM based diversity and spatial multiplexing in Radio-over-Fiber system

    NASA Astrophysics Data System (ADS)

    El Yahyaoui, Moussa; El Moussati, Ali; El Zein, Ghaïs

    2017-11-01

    This paper proposes a realistic and global simulation to predict the behavior of a Radio over Fiber (RoF) system before its realization. In this work we consider a 2 × 2 Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) RoF system at 60 GHz. This system is based on Spatial Diversity (SD) which increases reliability (decreases probability of error) and Spatial Multiplexing (SMX) which increases data rate, but not necessarily reliability. The 60 GHz MIMO channel model employed in this work based on a lot of measured data and statistical analysis named Triple-S and Valenzuela (TSV) model. To the authors best knowledge; it is the first time that this type of TSV channel model has been employed for 60 GHz MIMO-RoF system. We have evaluated and compared the performance of this system according to the diversity technique, modulation schemes, and channel coding rate for Line-Of-Sight (LOS) desktop environment. The SMX coded is proposed as an intermediate system to improve the Signal to Noise Ratio (SNR) and the data rate. The resulting 2 × 2 MIMO-OFDM SMX system achieves a higher data rate up to 70 Gb/s with 64QAM and Forward Error Correction (FEC) limit of 10-3 over 25-km fiber transmission followed by 3-m wireless transmission using 7 GHz bandwidth of millimeter wave band.

  8. FPGA-based rate-adaptive LDPC-coded modulation for the next generation of optical communication systems.

    PubMed

    Zou, Ding; Djordjevic, Ivan B

    2016-09-05

    In this paper, we propose a rate-adaptive FEC scheme based on LDPC codes together with its software reconfigurable unified FPGA architecture. By FPGA emulation, we demonstrate that the proposed class of rate-adaptive LDPC codes based on shortening with an overhead from 25% to 42.9% provides a coding gain ranging from 13.08 dB to 14.28 dB at a post-FEC BER of 10-15 for BPSK transmission. In addition, the proposed rate-adaptive LDPC coding combined with higher-order modulations have been demonstrated including QPSK, 8-QAM, 16-QAM, 32-QAM, and 64-QAM, which covers a wide range of signal-to-noise ratios. Furthermore, we apply the unequal error protection by employing different LDPC codes on different bits in 16-QAM and 64-QAM, which results in additional 0.5dB gain compared to conventional LDPC coded modulation with the same code rate of corresponding LDPC code.

  9. Bluetooth and security

    NASA Astrophysics Data System (ADS)

    Ivo, Penn

    2004-04-01

    Bluetooth is the new emerging technology for wireless communication. It can be used to connect almost any device to another device. The traditional example is to link a Personal Digital Assistant (PDA) or a laptop to a mobile phone. That way you can easily take remote connections with your PDA or laptop without getting your mobile phone from your pocket or messing around with cables. A Class 3 Bluetooth device has range of 0,1 - 10 meters. The architecture of Bluetooth is formed by the radio, the base frequency part and the Link Manager. Bluetooth uses the radio range of 2.45 GHz. The theoretical maximum bandwidth is 1 Mb/s, which is slowed down a bit by Forward Error Correction (FEC). Bluetooth specification designates the frequency hopping to be implemented with Gaussian Frequency Shift Keying (GFSK). The base frequency part of the Bluetooth architecture uses a combination of circuit and packet switching technologies. Bluetooth can support either one asynchronous data channel and up to three simultaneous synchronous speech channels, or one channel that transfers asynchronous data and synchronous speech simultaneously. The Link Manager is an essential part of the Bluetooth architecture. It uses Link Manager Protocol (LMP) to configure, authenticate and handle the connections between Bluetooth devices. Several Bluetooth devices can form an ad hoc network. In these piconets, one of the Bluetooth devices will act as a master and the others are slaves. The master sets the frequency-hopping behavior of the piconet. It is also possible to connect up to 10 piconets to each other to form so-called scatternets. Bluetooth has been designed to operate in noisy radio frequency environments, and uses a fast acknowledgement and frequency-hopping scheme to make the link robust, communication-wise. Bluetooth radio modules avoid interference from other signals by hopping to a new frequency after transmitting or receiving a packet. Compared with other systems operating in the same frequency band, the Bluetooth radio typically hops faster and uses shorter packets. This is because short packages and fast hopping limit the impact of microwave ovens and other sources of disturbances. Use of Forward Error Correction (FEC) limits the impact of random noise on long-distance links. Bluetooth transmissions are secure in a business and home environment. Bluetooth has built in sufficient encryption and authentication and is thus very secure in any environment. In addition to this, a frequency-hopping scheme with 1600 hops/sec. is employed. This is far quicker than any other competing system. This, together with an automatic output power adaption to reduce the range exactly to requirement, makes the system extremely difficult to eavesdrop. Information Integrity in Bluetooth has these components: Random Number Generation, Encryption, Encryption Key Management and Authentication.

  10. Factors affecting fecal egg counts in periparturient Katahdin ewes and their lambs.

    PubMed

    Notter, D R; Burke, J M; Miller, J E; Morgan, J L M

    2017-01-01

    Selection for low fecal egg counts (FEC) can be used to genetically enhance resistance to gastrointestinal nematode parasites in growing lambs, thereby reducing the frequency of use of anthelmintics, facilitating marketing of organic lamb, and reducing the risk of development of anthelmintic resistance by the parasite. Recording of FEC in lambs has, therefore, been incorporated into several national sheep genetic evaluation programs. Ewes in late gestation and early lactation are also vulnerable to parasite infection and commonly experience a periparturient rise in FEC. This study was designed to assess factors associated with the periparturient rise in FEC in Katahdin ewes and associated changes in FEC in their lambs. Data came from 1,487 lambings by 931 Katahdin ewes from 11 farms in the Eastern United States. Fecal egg counts were measured in ewes at approximately 0, 30, and 60 d postpartum and in their lambs at approximately 60, 90, and 120 d of age. Approximately 1,400 lambs were evaluated at each measurement age. Data were analyzed separately for ewes and lambs and also initially analyzed separately for each measurement time. Repeated-measures analyses were then used to evaluate responses across measurement times. In ewes, FEC peaked at approximately 28 d postpartum, and we concluded that informative periparturient FEC could be obtained from 1 wk before until approximately 5 wk after lambing. Yearling ewes had higher FEC than adult ewes ( < 0.01), and ewes that nursed twin or triplet lambs had higher FEC than ewes that nursed single lambs ( < 0.01). In lambs, FEC increased through approximately 120 d of age. Lambs from yearling ewes and lambs nursed in larger litters were, like their dams, at greater risk of parasitism ( < 0.05). Ewes and lambs in these groups would benefit from enhanced monitoring of parasite loads at lambing and in early lactation. Correlations () between FEC in lambs at 90 d of age and FEC in ewes at 0, 30, and 60 d postpartum of 0.05 to 0.09 ( ≤ 0.05) support the presence of a genetic relationship between these 2 indicators of parasite resistance.

  11. Dynamics of faecal egg count in natural infection of Haemonchus spp. in Indian goats

    PubMed Central

    Agrawal, Nimisha; Sharma, Dinesh Kumar; Mandal, Ajoy; Rout, Pramod Kumar; Kushwah, Yogendra Kumar

    2015-01-01

    Aim: Dynamics of faecal egg count (FEC) in Haemonchus spp. infected goats of two Indian goat breeds, Jamunapari and Sirohi, in natural conditions was studied and effects of genetic and non-genetic factors were determined. Materials and Methods: A total of 1399 faecal samples of goats of Jamunapari and Sirohi breeds, maintained at CIRG, Makhdoom, Mathura, India and naturally infected with Haemonchus spp., were processed and FEC was performed. Raw data generated on FEC were transformed by loge (FEC+100) and transformed data (least squares mean of FEC [LFEC]) were analyzed using a mixed model least squares analysis for fitting constant. Fixed effects such as breed, physiological status, season and year of sampling and breed × physiological states interaction were used. Result: The incidence of Haemomchus spp. infection in Jamunapari and Sirohi does was 63.01 and 47.06%, respectively. The mean LFEC of both Jamunapari and Sirohi (does) at different physiological stages, namely dry, early pregnant, late pregnant early lactating and late lactating stages were compared. Breed, season and year of sampling had a significant effect on FEC in Haemomchus spp. infection. Effect of breed × physiological interaction was also significant. The late pregnant does of both breeds had higher FEC when compared to does in other stages. Conclusion: Breed difference in FEC was more pronounced at the time of post kidding (early lactation) when sharp change in FEC was observed. PMID:27046993

  12. Box–Cox Transformation and Random Regression Models for Fecal egg Count Data

    PubMed Central

    da Silva, Marcos Vinícius Gualberto Barbosa; Van Tassell, Curtis P.; Sonstegard, Tad S.; Cobuci, Jaime Araujo; Gasbarre, Louis C.

    2012-01-01

    Accurate genetic evaluation of livestock is based on appropriate modeling of phenotypic measurements. In ruminants, fecal egg count (FEC) is commonly used to measure resistance to nematodes. FEC values are not normally distributed and logarithmic transformations have been used in an effort to achieve normality before analysis. However, the transformed data are often still not normally distributed, especially when data are extremely skewed. A series of repeated FEC measurements may provide information about the population dynamics of a group or individual. A total of 6375 FEC measures were obtained for 410 animals between 1992 and 2003 from the Beltsville Agricultural Research Center Angus herd. Original data were transformed using an extension of the Box–Cox transformation to approach normality and to estimate (co)variance components. We also proposed using random regression models (RRM) for genetic and non-genetic studies of FEC. Phenotypes were analyzed using RRM and restricted maximum likelihood. Within the different orders of Legendre polynomials used, those with more parameters (order 4) adjusted FEC data best. Results indicated that the transformation of FEC data utilizing the Box–Cox transformation family was effective in reducing the skewness and kurtosis, and dramatically increased estimates of heritability, and measurements of FEC obtained in the period between 12 and 26 weeks in a 26-week experimental challenge period are genetically correlated. PMID:22303406

  13. Box-Cox Transformation and Random Regression Models for Fecal egg Count Data.

    PubMed

    da Silva, Marcos Vinícius Gualberto Barbosa; Van Tassell, Curtis P; Sonstegard, Tad S; Cobuci, Jaime Araujo; Gasbarre, Louis C

    2011-01-01

    Accurate genetic evaluation of livestock is based on appropriate modeling of phenotypic measurements. In ruminants, fecal egg count (FEC) is commonly used to measure resistance to nematodes. FEC values are not normally distributed and logarithmic transformations have been used in an effort to achieve normality before analysis. However, the transformed data are often still not normally distributed, especially when data are extremely skewed. A series of repeated FEC measurements may provide information about the population dynamics of a group or individual. A total of 6375 FEC measures were obtained for 410 animals between 1992 and 2003 from the Beltsville Agricultural Research Center Angus herd. Original data were transformed using an extension of the Box-Cox transformation to approach normality and to estimate (co)variance components. We also proposed using random regression models (RRM) for genetic and non-genetic studies of FEC. Phenotypes were analyzed using RRM and restricted maximum likelihood. Within the different orders of Legendre polynomials used, those with more parameters (order 4) adjusted FEC data best. Results indicated that the transformation of FEC data utilizing the Box-Cox transformation family was effective in reducing the skewness and kurtosis, and dramatically increased estimates of heritability, and measurements of FEC obtained in the period between 12 and 26 weeks in a 26-week experimental challenge period are genetically correlated.

  14. High-performing mesoporous iron oxalate anodes for lithium-ion batteries.

    PubMed

    Ang, Wei An; Gupta, Nutan; Prasanth, Raghavan; Madhavi, Srinivasan

    2012-12-01

    Mesoporous iron oxalate (FeC(2)O(4)) with two distinct morphologies, i.e., cocoon and rod, has been synthesized via a simple, scalable chimie douce precipitation method. The solvent plays a key role in determining the morphology and microstructure of iron oxalate, which are studied by field-emission scanning electron microscopy and high-resolution transmission electron microscopy. Crystallographic characterization of the materials has been carried out by X-ray diffraction and confirmed phase-pure FeC(2)O(4)·2H(2)O formation. The critical dehydration process of FeC(2)O(4)·2H(2)O resulted in anhydrous FeC(2)O(4), and its thermal properties are studied by thermogravimetric analysis. The electrochemical properties of anhydrous FeC(2)O(4) in Li/FeC(2)O(4) cells are evaluated by cyclic voltammetry, galvanostatic charge-discharge cycling, and electrochemical impedance spectroscopy. The studies showed that the initial discharge capacities of anhydrous FeC(2)O(4) cocoons and rods are 1288 and 1326 mA h g(-1), respectively, at 1C rate. Anhydrous FeC(2)O(4) cocoons exhibited stable capacity even at high C rates (11C). The electrochemical performance of anhydrous FeC(2)O(4) is found to be greatly influenced by the number of accessible reaction sites, morphology, and size effects.

  15. 75 FR 8190 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... soliciting comments concerning the Financial Education and Counseling (FEC) Pilot Program Application. DATES... Education and Counseling Pilot Program Application. OMB Number: 1559-0034. Abstract: The purpose of the FEC... financial education and counseling services to prospective homebuyers. The FEC Pilot Program was authorized...

  16. A Cluster of Five Genes Essential for the Utilization of Dihydroxamate Xenosiderophores in Synechocystis sp. PCC 6803.

    PubMed

    Obando S, Tobias A; Babykin, Michael M; Zinchenko, Vladislav V

    2018-05-21

    The unicellular freshwater cyanobacterium Synechocystis sp. PCC 6803 is capable of using dihydroxamate xenosiderophores, either ferric schizokinen (FeSK) or a siderophore of the filamentous cyanobacterium Anabaena variabilis ATCC 29413 (SAV), as the sole source of iron in the TonB-dependent manner. The fecCDEB1-schT gene cluster encoding a siderophore transport system that is involved in the utilization of FeSK and SAV in Synechocystis sp. PCC 6803 was identified. The gene schT encodes TonB-dependent outer membrane transporter, whereas the remaining four genes encode the ABC-type transporter FecB1CDE formed by the periplasmic binding protein FecB1, the transmembrane permease proteins FecC and FecD, and the ATPase FecE. Inactivation of any of these genes resulted in the inability of cells to utilize FeSK and SAV. Our data strongly suggest that Synechocystis sp. PCC 6803 can readily internalize Fe-siderophores via the classic TonB-dependent transport system.

  17. Design comparison of single phase outer and inner-rotor hybrid excitation flux switching motor for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Mazlan, Mohamed Mubin Aizat; Sulaiman, Erwan; Husin, Zhafir Aizat; Othman, Syed Muhammad Naufal Syed; Khan, Faisal

    2015-05-01

    In hybrid excitation machines (HEMs), there are two main flux sources which are permanent magnet (PM) and field excitation coil (FEC). These HEMs have better features when compared with the interior permanent magnet synchronous machines (IPMSM) used in conventional hybrid electric vehicles (HEVs). Since all flux sources including PM, FEC and armature coils are located on the stator core, the rotor becomes a single piece structure similar with switch reluctance machine (SRM). The combined flux generated by PM and FEC established more excitation fluxes that are required to produce much higher torque of the motor. In addition, variable DC FEC can control the flux capabilities of the motor, thus the machine can be applied for high-speed motor drive system. In this paper, the comparisons of single-phase 8S-4P outer and inner rotor hybrid excitation flux switching machine (HEFSM) are presented. Initially, design procedures of the HEFSM including parts drawing, materials and conditions setting, and properties setting are explained. Flux comparisons analysis is performed to investigate the flux capabilities at various current densities. Then the flux linkages of PM with DC FEC of various DC FEC current densities are examined. Finally torque performances are analyzed at various armature and FEC current densities for both designs. As a result, the outer-rotor HEFSM has higher flux linkage of PM with DC FEC and higher average torque of approximately 10% when compared with inner-rotor HEFSM.

  18. All-optical VPN utilizing DSP-based digital orthogonal filters access for PONs

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoling; Zhang, Chongfu; Chen, Chen; Jin, Wei; Qiu, Kun

    2018-04-01

    Utilizing digital filtering-enabled signal multiplexing and de-multiplexing, a cost-effective all-optical virtual private network (VPN) system is proposed, for the first time to our best knowledge, in digital filter multiple access passive optical networks (DFMA-PONs). Based on the DFMA technology, the proposed system can be easily designed to meet the requirements of next generation network's flexibility, elasticity, adaptability and compatibility. Through dynamic digital filter allocation and recycling, the proposed all-optical VPN system can provide dynamic establishments and cancellations of multiple VPN communications with arbitrary traffic volumes. More importantly, due to the employment of DFMA technology, the system is not limited to a fixed signal format and different signal formats such as pulse amplitude modulation (PAM), quadrature amplitude modulation (QAM) and orthogonal frequency division multiplexing (OFDM) can be used. Moreover, one transceiver is sufficient to simultaneously transmit upstream (US)/VPN data to optical line terminal (OLT) or other VPN optical network units (ONUs), thus leading to great reduction in network constructions and operation expenditures. The proposed all-optical VPN system is demonstrated with the transceiver incorporating the formats of QAM and OFDM, which can be made transparent to downstream (DS), US and VPN communications. The bit error rates (BERs) of DS, US and VPN for OFDM signals are below the forward-error-correction (FEC) limit of 3 . 8 × 10-3 when the received optical powers are about -16.8 dBm, -14.5 dBm and -15.7 dBm, respectively.

  19. 50 Gb/s NRZ and 4-PAM data transmission over OM5 fiber in the SWDM wavelength range

    NASA Astrophysics Data System (ADS)

    Agustin, M.; Ledentsov, N.; Kropp, J.-R.; Shchukin, V. A.; Kalosha, V. P.; Chi, K. L.; Khan, Z.; Shi, J. W.; Ledentsov, N. N.

    2018-02-01

    The development of advanced OM5 wideband multimode fiber (WBMMF) allowing high modal bandwidth in the spectral range 840-950 nm motivates research in vertical-cavity-surface-emitting-lasers (VCSELs) at wavelengths beyond the previously accepted for short reach communications. Thus, short wavelength division multiplexing (SWDM) solutions can be implemented as a strategy to satisfy the increasing demand of data rate in datacenter environments. As an alternative solution to 850 nm parallel links, four wavelengths with 30 nm separation between 850 nm and 940 nm can be multiplexed on a single OM5-MMF, so the number of fibers deployed is reduced by a factor of four. In this paper high speed transmission is studied for VCSELs in the 850 nm - 950 nm range. The devices had a modulating bandwidth of 26-28 GHz. 50 Gb/s non-return-to-zero (NRZ) operation is demonstrated at each wavelength without preemphasis and equalization, with bit-error-rate (BER) below 7% forward error correction (FEC) threshold. Furthermore, the use of single-mode VCSELs (SM-VCSELs) as a way to mitigate the effects of chromatic dispersions in order to extend the maximum transmission distance over OM5 is explored. Analysis of loss as a function of wavelength in OM5 fiber is also performed. Significant decrease is observed, from 2.2 dB/km to less than 1.7 dB/km at 910 nm wavelength of the VCSEL.

  20. 450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM.

    PubMed

    Chi, Yu-Chieh; Hsieh, Dan-Hua; Tsai, Cheng-Ting; Chen, Hsiang-Yu; Kuo, Hao-Chung; Lin, Gong-Ru

    2015-05-18

    A TO-38-can packaged Gallium nitride (GaN) blue laser diode (LD) based free-space visible light communication (VLC) with 64-quadrature amplitude modulation (QAM) and 32-subcarrier orthogonal frequency division multiplexing (OFDM) transmission at 9 Gbps is preliminarily demonstrated over a 5-m free-space link. The 3-dB analog modulation bandwidth of the TO-38-can packaged GaN blue LD biased at 65 mA and controlled at 25°C is only 900 MHz, which can be extended to 1.5 GHz for OFDM encoding after throughput intensity optimization. When delivering the 4-Gbps 16-QAM OFDM data within 1-GHz bandwidth, the error vector magnitude (EVM), signal-to-noise ratio (SNR) and bit-error-rate (BER) of the received data are observed as 8.4%, 22.4 dB and 3.5 × 10(-8), respectively. By increasing the encoded bandwidth to 1.5 GHz, the TO-38-can packaged GaN blue LD enlarges its transmission capacity to 6 Gbps but degrades its transmitted BER to 1.7 × 10(-3). The same transmission capacity of 6 Gbps can also be achieved with a BER of 1 × 10(-6) by encoding 64-QAM OFDM data within 1-GHz bandwidth. Using the 1.5-GHz full bandwidth of the TO-38-can packaged GaN blue LD provides the 64-QAM OFDM transmission up to 9 Gbps, which successfully delivers data with an EVM of 5.1%, an SNR of 22 dB and a BER of 3.6 × 10(-3) passed the forward error correction (FEC) criterion.

  1. Feasibility and toxicity of docetaxel before or after fluorouracil, epirubicin and cyclophosphamide as adjuvant chemotherapy for early breast cancer.

    PubMed

    Abe, Hajime; Mori, Tsuyoshi; Kawai, Yuki; Cho, Hirotomi; Kubota, Yoshihiro; Umeda, Tomoko; Kurumi, Yoshimasa; Tani, Tohru

    2013-06-01

    The tolerance and safety associated with the administration order of the anthracycline and taxane drugs have not been evaluated. Breast cancer patients with node-positive or high-risk patients with node-negative were eligible. The feasibility and toxicity were evaluated in the following regimens--arm A, 3 courses of fluorouracil 500 mg/m(2), epirubicin 100 mg/m(2) and cyclophosphamide 500 mg/m(2) (FEC) followed by 3 courses of docetaxel 100 mg/m(2) (DOC); arm B, 3 courses of DOC followed by 3 courses of FEC. Forty-two patients were registered. The relative dose intensity was 94.2 % for FEC and 97.8 % for DOC in arm A, and 98.9 % for DOC and 95.2 % for FEC in arm B. In arm A, grade 3 or higher hematological toxicity was observed in nine patients, and febrile neutropenia developed in three patients with FEC. In arm B, grade 3 or higher hematological toxicity was observed in seven patients, but febrile neutropenia was not noted in any patient. The regimens in both arms A and B were safe regarding adjuvant chemotherapy for early breast cancer. However, DOC followed by FEC might be more tolerable. Further studies will maximize the results obtained with DOC followed by FEC.

  2. Cost-effectiveness of adjuvant docetaxel for node-positive breast cancer patients: results of the PACS 01 economic study.

    PubMed

    Marino, P; Siani, C; Roché, H; Protière, C; Fumoleau, P; Spielmann, M; Martin, A-L; Viens, P; Le Corroller Soriano, A-G

    2010-07-01

    Using data from the PACS 01 randomized trial, we evaluated the cost-effectiveness of anthracyclines plus docetaxel (Taxotere; FEC-D) versus anthracyclines alone (FEC100) in patients with node-positive breast cancer. Costs and outcomes were assessed in 1996 patients and the incremental cost-effectiveness ratios (ICERs) were estimated, using quality-adjusted life years (QALYs) as outcome. To deal with uncertainty due to sampling fluctuations, confidence regions around the ICERs were calculated and cost-effectiveness acceptability curves were drawn up. Sensitivity analyses were also carried out to assess the robustness of conclusions. The mean cost of treatment was 33% higher with strategy FEC-D, but this difference decreased to 18% at a 5-year horizon. The ICER of FEC-D versus FEC100 was estimated to be 9665euro per QALY gained (95% confidence interval euro2372-euro55 515). The estimated probability that FEC-D was cost-effective reached >96% for a threshold of euro50 000 per QALY gained. If the price of taxane decreased slightly, the ICER would reach some very reasonable levels and this strategy would therefore be much more cost-effective. The sequential use of FEC100 followed by docetaxel appears to be a cost-effective alternative, even when uncertainty is taken into account.

  3. Factors affecting prevalence and abundance of A.perfoliata infections in horses from south-eastern Poland.

    PubMed

    Tomczuk, Krzysztof; Grzybek, Maciej; Szczepaniak, Klaudiusz; Studzińska, Maria; Demkowska-Kutrzepa, Marta; Roczeń-Karczmarz, Monika; Abbass, Zahrai Abdulhammza; Kostro, Krzysztof; Junkuszew, Andrzej

    2017-11-15

    Equine Anoplocephalosis constitute a significant problem in horses worldwide. The aim of this study was to analyse intrinsic (host age and sex) and extrinsic (management type, pasture type and moisture) factors that influence the prevalence and FEC of A. perfoliata infections. Faecal samples were collected from 994 horses managed in studs or individually between 2012 and 2014. The Sedimentation-flotation method was applied for coproscopic analysis, and faecal egg counts were calculated. The overall prevalence was 25.1% (21.4-29.0) with the highest prevalence (36.1% [28.1-44.8]) found in horses 10-20 years old. The individuals kept in studs showed three times higher A. perfoliata prevalence compared to the ones managed individually. The prevalence significantly differed between pasture types, with individuals kept in studs (37.6% [34.3-40.9]) showing four times higher prevalence than horses kept individually (9.2% [4.8-16.5]). More horses kept on watery (42.0% [36.6-47.6]) and semi-watery (35.9% [31.3-40.7]) pastures were infected than those on dry (6.6% [4.6-9.2]) pastures. The overall A. perfoliata FEC in all examined individual was 2.67 and differed within sex, with mares showing 4.3 - times higher FEC of infection than stallions. Horses bred in studs (3.65±0.289) showed higher FEC than these bred individually (1.28±0.198). There was the effect of pasture type on A. perfoliata FEC, with horses kept on joint pastures (4.06±0.29) showing higher FEC than individuals kept individually (0.88±0.23). Pasture moisture significantly affected A. perfoliata FEC with the highest FECs in horses from watery pastures. Horses bred on dry pastures showed 16 times lower FEC than horses bred on watery pastures. Host age also significantly affected A. perfoliata FEC, with the oldest individuals showing the highest mean FEC. The presented analysis of intrinsic and extrinsic factors may help to overcome A. perfoliata infections in horses in different breeding systems. Understanding the role of management and pasture type risk factors that influence this parasitosis may benefit both breeders and veterinary surgeons. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Comparison of fecal egg counting methods in four livestock species.

    PubMed

    Paras, Kelsey L; George, Melissa M; Vidyashankar, Anand N; Kaplan, Ray M

    2018-06-15

    Gastrointestinal nematode parasites are important pathogens of all domesticated livestock species. Fecal egg counts (FEC) are routinely used for evaluating anthelmintic efficacy and for making targeted anthelmintic treatment decisions. Numerous FEC techniques exist and vary in precision and accuracy. These performance characteristics are especially important when performing fecal egg count reduction tests (FECRT). The objective of this study was to compare the accuracy and precision of three commonly used FEC methods and determine if differences existed among livestock species. In this study, we evaluated the modified-Wisconsin, 3-chamber (high-sensitivity) McMaster, and Mini-FLOTAC methods in cattle, sheep, horses, and llamas in three phases. In the first phase, we performed an egg-spiking study to assess the egg recovery rate and accuracy of the different FEC methods. In the second phase, we examined clinical samples from four different livestock species and completed multiple replicate FEC using each method. In the last phase, we assessed the cheesecloth straining step as a potential source of egg loss. In the egg-spiking study, the Mini-FLOTAC recovered 70.9% of the eggs, which was significantly higher than either the McMaster (P = 0.002) or Wisconsin (P = 0.002). In the clinical samples from ruminants, Mini-FLOTAC consistently yielded the highest EPG, revealing a significantly higher level of egg recovery (P < 0.0001). For horses and llamas, both McMaster and Mini-FLOTAC yielded significantly higher EPG than Wisconsin (P < 0.0001, P < 0.0001, P < 0.001, and P = 0.024). Mini-FLOTAC was the most accurate method and was the most precise test for both species of ruminants. The Wisconsin method was the most precise for horses and McMaster was more precise for llama samples. We compared the Wisconsin and Mini-FLOTAC methods using a modified technique where both methods were performed using either the Mini-FLOTAC sieve or cheesecloth. The differences in the estimated mean EPG on log scale between the Wisconsin and mini-FLOTAC methods when cheesecloth was used (P < 0.0001) and when cheesecloth was excluded (P < 0.0001) were significant, providing strong evidence that the straining step is an important source of error. The high accuracy and precision demonstrated in this study for the Mini-FLOTAC, suggest that this method can be recommended for routine use in all host species. The benefits of Mini-FLOTAC will be especially relevant when high accuracy is important, such as when performing FECRT. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Comparison of a single dose of moxidectin and a five-day course of fenbendazole to reduce and suppress cyathostomin fecal egg counts in a herd of embryo transfer-recipient mares.

    PubMed

    Mason, Maren E; Voris, Nathan D; Ortis, Hunter A; Geeding, Amy A; Kaplan, Ray M

    2014-10-15

    To compare larvicidal regimens of fenbendazole and moxidectin for reduction and suppression of cyathostomin fecal egg counts (FEC) in a transient herd of embryo transfer-recipient mares. Randomized, complete block, clinical trial. 120 mares from 21 states, residing on 1 farm. An initial fecal sample was collected from each mare; mares with an FEC ≥ 200 eggs/g were assigned to treatment groups. Eighty-two horses received fenbendazole (10.0 mg/kg [4.5 mg/lb], PO, q 24 h for 5 days) or moxidectin (0.4 mg/kg [0.18 mg/lb], PO, once); FEC data were analyzed 14, 45, and 90 days after treatment. Mean FEC reduction was 99.9% for moxidectin-treated mares and 41.9% for fenbendazole-treated mares 14 days after treatment. By 45 days, mean FEC of fenbendazole-treated mares exceeded pretreatment counts; however, FECs of moxidectin-treated mares remained suppressed below pretreatment values for the duration of the 90-day study. Fecal egg counts were significantly different between groups at 14, 45, and 90 days after treatment. Failure of the 5-day regimen of fenbendazole to adequately reduce or suppress FEC suggested inadequate adulticidal and larvicidal effects. In contrast, a single dose of moxidectin effectively reduced and suppressed FEC for an extended period. Given the diverse geographic origins of study mares, these results are likely representative of cyathostomin-infected mares in much of the United States, confirming previous findings indicating that fenbendazole resistance in cyathostomins is widespread and that moxidectin remains an effective treatment for control of these important parasites.

  6. Single metal catalysis: DFT and CAS modelling of species involved in the Fe cation assisted transformation of acetylene to benzene

    NASA Astrophysics Data System (ADS)

    Altun, Zikri; Bleda, Erdi; Trindle, Carl

    2017-09-01

    Gas phase conversion of acetylene to benzene, assisted by a single metal cation such as Fe(+), Ru(+) and Rh(+), offers an attractive prospect for application of computational modelling techniques to catalytic processes. Gas phase processes are not complicated by environmental effects and the participation of a single metal atom is a significant simplification. Still the process is complex, owing to the possibility of several low-energy spin states and the abundance of alternative structures. By density functional theory modelling using recently developed models with range and dispersion corrections, we locate and characterise a number of extreme points on the FeC6H6(+) surface, some of which have not been described previously. These include eta-1, eta-2 and eta-3 complexes of Fe(+) with the C4H4 ring. We identify new FeC6H6(+) structures as well, which may be landmarks for the Fe(+)-catalysed production of benzene from acetylene. The Fe(+) benzene complex is the most stable species on the FeC6H6 cation surface. With the abundant energy of complexation available in the isolated gas phase species, detachment of the Fe(+) and production of benzene can be efficient. We address the issue raised by other investigators whether multi-configurational self-consistent field methods are essential to the proper description of these systems. We find that the relative energy of intrinsically multi-determinant doublets is strongly affected, but judge that the density functional theory (DFT) description provides more accurate estimates of energetics and a more plausible reaction path.

  7. Multiconfiguration Pair-Density Functional Theory and Complete Active Space Second Order Perturbation Theory. Bond Dissociation Energies of FeC, NiC, FeS, NiS, FeSe, and NiSe.

    PubMed

    Sharkas, Kamal; Gagliardi, Laura; Truhlar, Donald G

    2017-12-07

    We investigate the performance of multiconfiguration pair-density functional theory (MC-PDFT) and complete active space second-order perturbation theory for computing the bond dissociation energies of the diatomic molecules FeC, NiC, FeS, NiS, FeSe, and NiSe, for which accurate experimental data have become recently available [Matthew, D. J.; Tieu, E.; Morse, M. D. J. Chem. Phys. 2017, 146, 144310-144320]. We use three correlated participating orbital (CPO) schemes (nominal, moderate, and extended) to define the active spaces, and we consider both the complete active space (CAS) and the separated-pair (SP) schemes to specify the configurations included for a given active space. We found that the moderate SP-PDFT scheme with the tPBE on-top density functional has the smallest mean unsigned error (MUE) of the methods considered. This level of theory provides a balanced treatment of the static and dynamic correlation energies for the studied systems. This is encouraging because the method is low in cost even for much more complicated systems.

  8. 75 FR 13223 - Funds Received in Response to Solicitations; Allocation of Expenses by Separate Segregated Funds...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... Appeals for the District of Columbia Circuit in EMILY's List v. FEC, 581 F.3d 1 (DC Cir. 2009). On... of the United States Constitution. See EMILY's List v. FEC, 581 F.3d 1 (DC Cir. 2009). The court also... vacated. See Final Order, EMILY's List v. FEC, No. 05-0049 (D.D.C. Nov. 30, 2009). The Commission...

  9. Incompatibility of Trellis-Based NonCoherent SOQPSK Demodulators for Use in FEC Applications

    DTIC Science & Technology

    2012-03-12

    AFFTC-PA-12071 Incompatibility Of Trellis-Based NonCoherent SOQPSK Demodulators For Use In FEC Applications Erik Perrins AIR FORCE FLIGHT...Feb 12 – Oct 12 4. TITLE AND SUBTITLE Incompatibility Of Trellis-Based NonCoherent SOQPSK Demodulators For Use In FEC Applications 5a...compatibility/incompatibility of trellis-based noncoherent shaped offset quadrature phase shift keying (SOQPSK) demodulators for use in forward

  10. Metabolic Effects of FecB Gene on Follicular Fluid and Ovarian Vein Serum in Sheep (Ovis aries)

    PubMed Central

    Guo, Xiaofei; Wang, Xiangyu; Di, Ran; Liu, Qiuyue; Hu, Wenping; He, Xiaoyun; Yu, Jiarui; Zhang, Xiaosheng; Zhang, Jinlong; Broniowska, Katarzyna; Chen, Wei; Wu, Changxin; Chu, Mingxing

    2018-01-01

    The FecB gene has been discovered as an important gene in sheep for its high relationship with the ovulation rate, but its regulatory mechanism remains unknown. In the present study, liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) techniques were adopted to detect the metabolic effects of FecB gene in follicular fluid (FF) and ovarian vein serum (OVS) in Small Tail Han (STH) sheep. ANOVA and random forest statistical methods were employed for the identification of important metabolic pathways and biomarkers. Changes in amino acid metabolism, redox environment, and energy metabolism were observed in FF from the three FecB genotype STH ewes. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) showed that metabolic effects of FecB gene are more pronounced in FF than in OVS. Therefore, the difference of the metabolic profile in FF is also affected by the FecB genotypes. In Spearman correlation analysis, key metabolites (e.g., glucose 6-phosphate, glucose 1-phosphate, aspartate, asparagine, glutathione oxidized (GSSG), cysteine-glutathione disulfide, γ-glutamylglutamine, and 2-hydrosybutyrate) in ovine FF samples showed a significant correlation with the ovulation rate. Our findings will help to explain the metabolic mechanism of high prolificacy ewes and benefit fertility identification. PMID:29439449

  11. Metformin synergizes 5-fluorouracil, epirubicin, and cyclophosphamide (FEC) combination therapy through impairing intracellular ATP production and DNA repair in breast cancer stem cells.

    PubMed

    Soo, Jaslyn Sian-Siu; Ng, Char-Hong; Tan, Si Hoey; Malik, Rozita Abdul; Teh, Yew-Ching; Tan, Boon-Shing; Ho, Gwo-Fuang; See, Mee-Hoong; Taib, Nur Aishah Mohd; Yip, Cheng-Har; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Teo, Soo-Hwang; Leong, Chee-Onn

    2015-10-01

    Metformin, an AMPK activator, has been reported to improve pathological response to chemotherapy in diabetic breast cancer patients. To date, its mechanism of action in cancer, especially in cancer stem cells (CSCs) have not been fully elucidated. In this study, we demonstrated that metformin, but not other AMPK activators (e.g. AICAR and A-769662), synergizes 5-fluouracil, epirubicin, and cyclophosphamide (FEC) combination chemotherapy in non-stem breast cancer cells and breast cancer stem cells. We show that this occurs through an AMPK-dependent mechanism in parental breast cancer cell lines. In contrast, the synergistic effects of metformin and FEC occurred in an AMPK-independent mechanism in breast CSCs. Further analyses revealed that metformin accelerated glucose consumption and lactate production more severely in the breast CSCs but the production of intracellular ATP was severely hampered, leading to a severe energy crisis and impairs the ability of CSCs to repair FEC-induced DNA damage. Indeed, addition of extracellular ATP completely abrogated the synergistic effects of metformin on FEC sensitivity in breast CSCs. In conclusion, our results suggest that metformin synergizes FEC sensitivity through distinct mechanism in parental breast cancer cell lines and CSCs, thus providing further evidence for the clinical relevance of metformin for the treatment of cancers.

  12. The genetic basis for the selection of dairy goats with enhanced resistance to gastrointestinal nematodes

    PubMed Central

    Heckendorn, Felix; Bieber, Anna; Werne, Steffen; Saratsis, Anastasios; Maurer, Veronika; Stricker, Chris

    2017-01-01

    Gastrointestinal nematodes (GIN) severely affect small ruminant production worldwide. Increasing problems of anthelmintic resistance have given strong impetus to the search for alternative strategies to control GIN. Selection of animals with an enhanced resistance to GIN has been shown to be successful in sheep. In goats, the corresponding information is comparatively poor. Therefore, the present study was designed to provide reliable data on heritabilities of and genetic correlations between phenotypic traits linked to GIN and milk yield in two major dairy goat breeds (Alpine and Saanen). In all, 20 herds totalling 1303 goats were enrolled in the study. All herds had (i) a history of gastrointestinal nematode infection, (ii) uniform GIN exposure on pasture and (iii) regular milk recordings. For all goats, individual recordings of faecal egg counts (FEC), FAMACHA© eye score, packed cell volume (PCV) and milk yield were performed twice a year with an anthelmintic treatment in between. The collected phenotypic data were multivariately modelled using animal as a random effect with its covariance structure inferred from the pedigree, enabling estimation of the heritabilities of the respective traits and the genetic correlation between them. The heritabilities of FEC, FAMACHA© and PCV were 0.07, 0.22 and 0.22, respectively. The genetic correlation between FEC and FAMACHA© was close to zero and −0.41 between FEC and PCV. The phenotypic correlation between FEC and milk yield was close to zero, whereas the genetic correlation was 0.49. Our data suggest low heritability of FEC in Saanen and Alpine goats and an unfavourable genetic correlation of FEC with milk yield. PMID:28792887

  13. Middle ear myoclonus associated with forced eyelid closure in children: diagnosis and treatment outcome.

    PubMed

    Lee, Guen-Ho; Bae, Seong-Cheon; Jin, Sang-Gyun; Park, Kyoung-Ho; Yeo, Sang-Won; Park, Shi-Nae

    2012-09-01

    Forceful eyelid closure syndrome (FECS) was first reported at the Proceedings of the Second International Tinnitus Seminar in 1983. The main symptom of this syndrome is a spontaneous muscular tinnitus related only to forced eye closure, specifically the voluntary contraction of the periorbital muscles. Although investigation of the syndrome was initiated >100 years ago, only four cases have been published in the past 20 years. We report six cases of middle ear myoclonus tinnitus diagnosed as FECS in children and discuss issues surrounding the diagnosis and treatment of this syndrome. Retrospective case series. From 2009 to 2011, six children complaining of clicking or crackling sounds in their ears presented at Seoul St. Mary's Hospital. Endoscopic examination and recording of the tympanic membrane were performed while the patients were asked to close their eyes forcefully. Audiologic studies including acoustic reflex decay and static compliance were performed for documentation of the movement of the tympanic membrane. Triggering factors of FECS in the children were carefully evaluated. Synchronous movement of the tympanic membrane in response to forced eye closure on endoscopic examination was the most reliable finding to diagnose FECS. Acoustic reflex decay and other impedance audiogram findings showed irregular perturbations during forced eye closure, which led to diagnosis of the tinnitus as middle ear myoclonus. Most of the patients had triggering factors for FECS. Reassurance and removal of the triggering or causal factors with or without medication improved clicking sounds coming from middle ear myoclonus. FECS is a rare clinical entity and can be easily missed in routine clinical examination. We suggest that patients, especially children, with clicking or crackling tinnitus should be evaluated for FECS using proper diagnostic tools. A possible mechanism of FECS in children postulated from our case review is suggested. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  14. Resistance to gastrointestinal nematodes in dairy sheep: Genetic variability and relevance of artificial infection of nucleus rams to select for resistant ewes on farms.

    PubMed

    Aguerre, S; Jacquiet, P; Brodier, H; Bournazel, J P; Grisez, C; Prévot, F; Michot, L; Fidelle, F; Astruc, J M; Moreno, C R

    2018-05-30

    Breeding sheep for enhanced resistance to gastrointestinal parasites is a promising strategy to limit the use of anthelmintics due to the now widespread resistance of parasites to these molecules. This paper reports the genetic parameters estimated for parasite resistance and resilience traits in the Blond-faced Manech dairy sheep breed and the putative impacts of the selection for resistance to gastrointestinal nematodes (GIN) on farms. Two datasets were used. First, the rams of the selection scheme were artificially infected twice with L3 Haemonchus contortus larvae. Faecal egg counts (FEC) and packed cell volume (PCV) loss were measured 30 days after each infection. Secondly, the FEC, PCV and body condition score (BCS) (1-6 measures per ewe) of naturally infected ewes on farms were measured in the spring, summer and autumn over a two-year period. Genetic parameters were estimated for each dataset independently but also globally based on the pedigree connections between the two datasets. For the experimentally infected sires, the FEC following the second infection was moderately heritable (heritability: 0.35) and strongly correlated with FEC after the first infection (genetic correlation: 0.92). For the naturally infected ewes, FEC was also heritable (0.18). Using the two datasets together, a genetic correlation of 0.56-0.71 was estimated between the FEC values of the experimentally infected rams and naturally infected ewes. Consequently, the genetic variability of parasite resistance is similar whatever the physiological status (males or milking/pregnant ewes) and the infection conditions (experimental infection with one parasite or natural infection with several parasites). In practice, when the sire population is divided into two groups based on their genetic value, the FEC of the ewes born to the 50% most resistant sires is half that of the ewes born to the 50% most susceptible sires. Our study shows the feasibility and efficiency of genetic selection for parasitism resistance based on the sires' FEC records to improve parasite resistance in naturally grazing ewes. For breed improvement, and to increase the selection pressure on parasite resistance, it seems more appropriate to measure FEC values on rams after experimental infection rather than on ewes in natural infection conditions because this limits the number and standardizes the conditions of FEC measurements. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Diazonium salt-mediated synthesis of new amino, hydroxy, propargyl, and maleinimido-containing superparamagnetic Fe@C nanoparticles as platforms for linking bio-entities or organocatalytic moieties

    NASA Astrophysics Data System (ADS)

    Bunge, Alexander; Magerusan, Lidia; Morjan, Ion; Turcu, Rodica; Borodi, Gheorghe; Liebscher, Jürgen

    2015-09-01

    New magnetic Fe@C nanoparticles in the size range of about 20-50 nm functionalized with amino, hydroxy, propargyl, or maleinimido groups were synthesized by reaction with aryl diazonium salts. Aryl diazonium salts wherein the functional groups are linked via a sulfonamide moiety turned out to be advantageous over those with direct linkage. The obtained Fe@C nanoparticles represent magnetic nanoplatforms for linking bio-entities and organocatalysts using amide formation, CuAAC, or thiol-ene click chemistry as exemplified by selected examples. The Fe@C nanoparticles obtained exhibit supramolecular behavior with high value of saturation magnetization rendering them attractive for practical applications in biomedicine and organocatalysis.

  16. Learning time-dependent noise to reduce logical errors: real time error rate estimation in quantum error correction

    NASA Astrophysics Data System (ADS)

    Huo, Ming-Xia; Li, Ying

    2017-12-01

    Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.

  17. An Experimental Study of a Micro-Projection Enabled Optical Terminal for Short-Range Bidirectional Multi-Wavelength Visible Light Communications

    PubMed Central

    Tsai, Cheng-Yu; Jiang, Jhih-Shan

    2018-01-01

    A micro-projection enabled short-range communication (SRC) approach using red-, green- and blue-based light-emitting diodes (RGB-LEDs) has experimentally demonstrated recently that micro-projection and high-speed data transmission can be performed simultaneously. In this research, a reconfigurable design of a polarization modulated image system based on the use of a Liquid Crystal on Silicon based Spatial Light Modulator (LCoS-based SLM) serving as a portable optical terminal capable of micro-projection and bidirectional multi-wavelength communications is proposed and experimentally demonstrated. For the proof of concept, the system performance was evaluated through a bidirectional communication link at a transmission distance over 0.65 m. In order to make the proposed communication system architecture compatible with the data modulation format of future possible wireless communication system, baseband modulation scheme, i.e., Non-Return-to-Zero On-Off-Keying (NRZ_OOK), M-ary Phase Shift Keying (M-PSK) and M-ary Quadrature Amplitude Modulation (M-QAM) were used to investigate the system transmission performance. The experimental results shown that an acceptable BER (satisfying the limitation of Forward Error Correction, FEC standard) and crosstalk can all be achieved in the bidirectional multi-wavelength communication scenario. PMID:29587457

  18. Improving P2P live-content delivery using SVC

    NASA Astrophysics Data System (ADS)

    Schierl, T.; Sánchez, Y.; Hellge, C.; Wiegand, T.

    2010-07-01

    P2P content delivery techniques for video transmission have become of high interest in the last years. With the involvement of client into the delivery process, P2P approaches can significantly reduce the load and cost on servers, especially for popular services. However, previous studies have already pointed out the unreliability of P2P-based live streaming approaches due to peer churn, where peers may ungracefully leave the P2P infrastructure, typically an overlay networks. Peers ungracefully leaving the system cause connection losses in the overlay, which require repair operations. During such repair operations, which typically take a few roundtrip times, no data is received from the lost connection. While taking low delay for fast-channel tune-in into account as a key feature for broadcast-like streaming applications, the P2P live streaming approach can only rely on a certain media pre-buffer during such repair operations. In this paper, multi-tree based Application Layer Multicast as a P2P overlay technique for live streaming is considered. The use of Flow Forwarding (FF), a.k.a. Retransmission, or Forward Error Correction (FEC) in combination with Scalable video Coding (SVC) for concealment during overlay repair operations is shown. Furthermore the benefits of using SVC over the use of AVC single layer transmission are presented.

  19. Selection of neural network structure for system error correction of electro-optical tracker system with horizontal gimbal

    NASA Astrophysics Data System (ADS)

    Liu, Xing-fa; Cen, Ming

    2007-12-01

    Neural Network system error correction method is more precise than lest square system error correction method and spheric harmonics function system error correction method. The accuracy of neural network system error correction method is mainly related to the frame of Neural Network. Analysis and simulation prove that both BP neural network system error correction method and RBF neural network system error correction method have high correction accuracy; it is better to use RBF Network system error correction method than BP Network system error correction method for little studying stylebook considering training rate and neural network scale.

  20. 25 Tb/s transmission over 5,530 km using 16QAM at 5.2 b/s/Hz spectral efficiency.

    PubMed

    Cai, J-X; Batshon, H G; Zhang, H; Davidson, C R; Sun, Y; Mazurczyk, M; Foursa, D G; Sinkin, O; Pilipetskii, A; Mohs, G; Bergano, Neal S

    2013-01-28

    We transmit 250x100G PDM RZ-16QAM channels with 5.2 b/s/Hz spectral efficiency over 5,530 km using single-stage C-band EDFAs equalized to 40 nm. We use single parity check coded modulation and all channels are decoded with no errors after iterative decoding between a MAP decoder and an LDPC based FEC algorithm. We also observe that the optimum power spectral density is nearly independent of SE, signal baud rate or modulation format in a dispersion uncompensated system.

  1. Thermal elastic properties of liquid Fe-C at high pressure

    NASA Astrophysics Data System (ADS)

    Shimoyama, Y.; Terasaki, H. G.; Urakawa, S.; Takubo, Y.; Watanuki, T.; Katayama, Y.; Kondo, T.

    2015-12-01

    Planetary outer core contains some light elements and these elements affect thermo-elastic parameters of pure iron. The effect of light elements on density and bulk modulus of liquid iron is necessary for estimating of these core compositions. Sound velocity of liquid iron alloys is also important for identifying light elements in the core by comparison with observed seismic data. We have measured sound velocity and density of liquid Fe-C simultaneously at high pressure. High pressure experiments were performed using a DIA-type cubic anvil press (SMAP-180) at BL22XU beamline, SPring-8 synchrotron in Japan. Sound velocity (VP) was measured using pulse-echo overlapping method (Higo et al., 2009). Density (ρ) was measured using X-ray absorption method (Katayama et al., 1993). We measured velocity and density of liquid Fe-C between 1.1-5.8 GPa and 1480-1700 K. Obtained density and velocity of Fe-C was found to increase with pressure. This study shows the VP of liquid Fe-C decreased with increasing temperature. Previous study of liquid Fe-S shows little change with increasing temperature at all pressure conditions (Nishida et al., 2013, Jing et al., 2014). We fit the relationship between VP and pressure using Murnaghan's equation of state. We obtained KS0 = 102.5(1.2) GPa, K'S = 5.2(0.4) at 1700 K. Comparison of the present data with previous study, KS is similar to liquid Fe but liquid Fe-S is small. We compared the relation between density and sound velocity of liquid Fe-C. We have found that the behavior of liquid Fe-C is similar to that of liquid Fe in the Birch's plot. The effect of carbon on liquid Fe is small on Birch's plot.

  2. Clinical Results After Prostatic Artery Embolization Using the PErFecTED Technique: A Single-Center Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amouyal, Gregory, E-mail: gregamouyal@hotmail.com; Thiounn, Nicolas, E-mail: nicolas.thiounn@aphp.fr; Pellerin, Olivier, E-mail: olivier.pellerin@aphp.fr

    BackgroundProstatic artery embolization (PAE) has been performed for a few years, but there is no report on PAE using the PErFecTED technique outside from the team that initiated this approach.ObjectiveThis single-center retrospective open label study reports our experience and clinical results on patients suffering from symptomatic BPH, who underwent PAE aiming at using the PErFecTED technique.Materials and MethodsWe treated 32 consecutive patients, mean age 65 (52–84 years old) between December 2013 and January 2015. Patients were referred for PAE after failure of medical treatment and refusal or contra-indication to surgery. They were treated using the PErFecTED technique, when feasible, with 300–500 µmmore » calibrated microspheres (two-night hospital stay or outpatient procedure). Follow-up was performed at 3, 6, and 12 months.ResultsWe had a 100 % immediate technical success of embolization (68 % of feasibility of the PErFecTED technique) with no immediate complications. After a mean follow-up of 7.7 months, we observed a 78 % rate of clinical success. Mean IPSS decreased from 15.3 to 4.2 (p = .03), mean QoL from 5.4 to 2 (p = .03), mean Qmax increased from 9.2 to 19.2 (p = .25), mean prostatic volume decreased from 91 to 62 (p = .009) mL. There was no retrograde ejaculation and no major complication.ConclusionPAE using the PErFecTED technique is a safe and efficient technique to treat bothersome LUTS related to BPH. It is of interest to note that the PErFecTED technique cannot be performed in some cases for anatomical reasons.« less

  3. The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes

    DOE PAGES

    Schroder, Kjell; Li, Juchuan; Dudney, Nancy J.; ...

    2015-08-03

    Fluoroethylene carbonate (FEC) has become a standard electrolyte additive for use with silicon negative electrodes, but how FEC affects solid electrolyte interphase (SEI) formation on the silicon anode’s surface is still not well understood. Herein, SEI formed from LiPF6-based carbonate electrolytes, with and without FEC, were investigated on 50 nm thick amorphous silicon thin film electrodes to understand the role of FEC on silicon electrode surface reactions. In contrast to previous work, anhydrous and anoxic techniques were used to prevent air and moisture contamination of prepared SEI films. This allowed for accurate characterization of the SEI structure and composition bymore » X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry depth profiling. These results show that FEC reduction leads to fluoride ion and LiF formation, consistent with previous computational and experimental results. Surprisingly, we also find that these species decrease lithium-ion solubility and increase the reactivity of the silicon surface. We conclude that the effectiveness of FEC at improving the Coulombic efficiency and capacity retention is due to fluoride ion formation from reduction of the electrolyte, which leads to the chemical attack of any silicon-oxide surface passivation layers and the formation of a kinetically stable SEI comprising predominately lithium fluoride and lithium oxide.« less

  4. Effect of Moxidectin Treatment at Peripartum on Gastrointestinal Parasite Infections in Ewes Raised under Tropical Andes High Altitude Conditions

    PubMed Central

    Vargas-Duarte, J. J.; Lozano-Márquez, H.; Grajales-Lombana, H. A.; Manrique-Perdomo, C.; Martínez-Bello, D. A.; Saegerman, C.; Raes, M.; Kirschvink, N.

    2015-01-01

    This study tested the impact of moxidectin at peripartum on nematode fecal egg count (FEC) and clinical parameters on ewes in the high altitude tropical Andes of Colombia. FEC and clinical evaluations were performed on 9 occasions in 43 naturally infected ewes before and during gestation and after lambing. Moxidectin (Mox, 200 µg kg−1) was applied at late pregnancy (T 1, n = 15) or 48 hours after parturition (T 2, n = 14). 14 untreated ewes served as controls (C). Suckling lambs (n = 58) remained untreated and underwent four clinical and parasitological evaluations until 8 weeks after birth. Mox efficacy equaled 99.3% (T 1) and 96.9% (T 2). Highest mean FEC value reflecting periparturient nematode egg rise (PPER) was recorded in C ewes at 4–6 weeks after lambing. Significant FEC reductions were found in T 1 (94.8%) and T 2 (96.7%) ewes (p < 0.05). All lambs showed a significant and ewes-group independent increase in FEC before weaning (p < 0.05). Clinical parameters (anemia and diarrhea) showed time- and treatment-related differences (p < 0.05). Monitoring of FEC and clinical parameters linked to gastrointestinal parasite infections allowed demonstrating that postpartum or preweaning are two critical periods to nematode infection for sheep raised under tropical Andes high altitude conditions. Use of Mox as anthelmintic treatment prevented PPER. PMID:26078913

  5. The anthelmintic effect of aqueous methanol extract of Combretum molle (R. Br. x. G. Don) (Combretaceae) in lambs experimentally infected with Haemonchus contortus.

    PubMed

    Simon, M K; Ajanusi, O J; Abubakar, M S; Idris, A L; Suleiman, M M

    2012-06-08

    The aqueous methanol extract from the stem-bark of Combretum molle was evaluated for anthelmintic activity in lambs infected with Haemonchus contortus using faecal egg count (FEC) reduction assay. The extract showed a dose-dependent reduction in FEC in infected animals. At doses of 500, 1000 and 2000 mg kg(-1), the extract caused FEC reduction of 63%, 69.25% and 96.23%, respectively. Similarly, the standard anthelmintic (albendazole) at a dose of 200 mg kg(-1) produced FEC reduction of 99.24%. FEC reduction produced by the extract at doses of 500 and 1000 mg kg(-1) is below the minimum standard of 90% FEC recommended by the World Association for the Advancement of Veterinary Parasitology (WAAVP). However, there was no significant (P>0.05) difference between the means of groups treated with 1000 mg kg(-1) and 2000 mg kg(-1) compared to that of albendazole. In this study, C. molle has shown a promising anthelmintic activity against experimental haemonchosis. Nonetheless, further studies to evaluate its detailed toxicity are required for the plant extract to be developed into a useful anthelmintic drug. There is also the need to evaluate other parts of the plant (root, leaves, fruits, etc.) for the same effect. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Adjuvant fluorouracil, epirubicin and cyclophosphamide in early breast cancer: is it cost-effective?

    PubMed

    Norum, Jan; Holtmon, Mari

    2005-01-01

    Adjuvant chemotherapy (ACT) in breast cancer exposes patients to morbidity, but improves survival. The FEC (fluorouracil, epirubicin, cyclophosphamide) regimen has taken over the prior role of CMF (cyclophosphamide, methotrexate, fluorouracil). In this model, efficacy, tolerability and quality of life (QoL) data from the literature were incorporated with Norwegian practice and cost data in a cost-effectiveness approach. The FEC efficacy was calculated 3-7% superior CMF. There was no difference in quality of life. An 80-100% dose intensity range was employed, one Euro was calculated NOK 8.78 and a 3% discount rate was used. The total cost of FEC employing the friction cost method on production loss, including amount spent on drugs, administration and travelling ranged between 3,278-3,850 Euros (human capital approach 12,143-12,715 Euros). Money spent on drugs alone constituted 15-48%, depending on method chosen. A cost-effectiveness analysis revealed a cost per life year (LY) saved replacing FEC by CMF of 3,575-15,125 Euros. Adjuvant FEC is cost effective in Norway.

  7. Mathematical inference on helminth egg counts in stool and its applications in mass drug administration programmes to control soil-transmitted helminthiasis in public health.

    PubMed

    Levecke, Bruno; Anderson, Roy M; Berkvens, Dirk; Charlier, Johannes; Devleesschauwer, Brecht; Speybroeck, Niko; Vercruysse, Jozef; Van Aelst, Stefan

    2015-03-01

    In the present study, we present a hierarchical model based on faecal egg counts (FECs; expressed in eggs per 1g of stool) in which we first describe the variation in FECs between individuals in a particular population, followed by describing the variance due to counting eggs under a microscope separately for each stool sample. From this general framework, we discuss how to calculate a sample size for assessing a population mean FEC and the impact of an intervention, measured as reduction in FECs, for any scenario of soil-transmitted helminth (STH) epidemiology (the intensity and aggregation of FECs within a population) and diagnostic strategy (amount of stool examined (∼sensitivity of the diagnostic technique) and examination of individual/pooled stool samples) and on how to estimate prevalence of STH in the absence of a gold standard. To give these applications the most wide relevance as possible, we illustrate each of them with hypothetical examples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The Parkes front-end controller and noise-adding radiometer

    NASA Technical Reports Server (NTRS)

    Brunzie, T. J.

    1990-01-01

    A new front-end controller (FEC) was installed on the 64-m antenna in Parkes, Australia, to support the 1989 Voyager 2 Neptune encounter. The FEC was added to automate operation of the front-end microwave hardware as part of the Deep Space Network's Parkes-Canberra Telemetry Array. Much of the front-end hardware was refurbished and reimplemented from a front-end system installed in 1985 by the European Space Agency for the Uranus encounter; however, the FEC and its associated noise-adding radiometer (NAR) were new Jet Propulsion Laboratory (JPL) designs. Project requirements and other factors led to the development of capabilities not found in standard Deep Space Network (DSN) controllers and radiometers. The Parkes FEC/NAR performed satisfactorily throughout the Neptune encounter and was removed in October 1989.

  9. Co-Inactivation of GlnR and CodY Regulators Impacts Pneumococcal Cell Wall Physiology.

    PubMed

    Johnston, Calum; Bootsma, Hester J; Aldridge, Christine; Manuse, Sylvie; Gisch, Nicolas; Schwudke, Dominik; Hermans, Peter W M; Grangeasse, Christophe; Polard, Patrice; Vollmer, Waldemar; Claverys, Jean-Pierre

    2015-01-01

    CodY, a nutritional regulator highly conserved in low G+C Gram-positive bacteria, is essential in Streptococcus pneumoniae (the pneumococcus). A published codY mutant possessed suppressing mutations inactivating the fatC and amiC genes, respectively belonging to iron (Fat/Fec) and oligopeptide (Ami) ABC permease operons, which are directly repressed by CodY. Here we analyzed two additional published codY mutants to further explore the essentiality of CodY. We show that one, in which the regulator of glutamine/glutamate metabolism glnR had been inactivated by design, had only a suppressor in fecE (a gene in the fat/fec operon), while the other possessed both fecE and amiC mutations. Independent isolation of three different fat/fec suppressors thus establishes that reduction of iron import is crucial for survival without CodY. We refer to these as primary suppressors, while inactivation of ami, which is not essential for survival of codY mutants and acquired after initial fat/fec inactivation, can be regarded as a secondary suppressor. The availability of codY- ami+ cells allowed us to establish that CodY activates competence for genetic transformation indirectly, presumably by repressing ami which is known to antagonize competence. The glnR codY fecE mutant was then found to be only partially viable on solid medium and hypersensitive to peptidoglycan (PG) targeting agents such as the antibiotic cefotaxime and the muramidase lysozyme. While analysis of PG and teichoic acid composition uncovered no alteration in the glnR codY fecE mutant compared to wildtype, electron microscopy revealed altered ultrastructure of the cell wall in the mutant, establishing that co-inactivation of GlnR and CodY regulators impacts pneumococcal cell wall physiology. In light of rising levels of resistance to PG-targeting antibiotics of natural pneumococcal isolates, GlnR and CodY constitute potential alternative therapeutic targets to combat this debilitating pathogen, as co-inactivation of these regulators renders pneumococci sensitive to iron and PG-targeting agents.

  10. System for delivery of broadcast digital video as an overlay to baseband switched services on a fiber-to-the-home access network

    NASA Astrophysics Data System (ADS)

    Chand, Naresh; Magill, Peter D.; Swaminathan, Venkat S.; Yadvish, R. D.

    1999-04-01

    For low cost fiber-to-the-home (FTTH) passive optical networks (PON), we have studied the delivery of broadcast digital video as an overlay to baseband switched digital services on the same fiber using a single transmitter and a single receiver. We have multiplexed the baseband data at 155.52 Mbps with digital video QPSK channels in the 270 - 1450 MHz range with minimal degradation. We used an additional 860 MHz carrier modulated with 8 Mbps QPSK as a test-signal. An optical to electrical (O/E) receiver using an APD satisfies the power budget needs of ITU-T document G983.x for both class B and C operations (i.e., receiver sensitivity less than -33 dBm for a 10-10 bit error rate) without any FEC for both data and video. The PIN diode O/E receiver nearly satisfies the need for class B operation (-30 dBm receiver sensitivity) of G983 with FEC in QPSK FDM video. For a 155.52 Mbps baseband data transmission and for a given bit error rate, there is approximately 6 dBo1 optical power penalty due to video overlay. Of this, 1 dBo penalty is due to biasing the laser with an extinction ratio reduced from 10 dBo to approximately 6 dBo, and approximately 5 dBo penalty is due to receiver bandwidth increasing from approximately 100 MHz to approximately 1 GHz. The penalty due to receiver is after optimizing the filter for baseband data, and is caused by the reduced value of feedback resistor of the first stage transimpedance amplifier. The optical power penalty for video transmission is about 2 dBo due to reduced optical modulation index.

  11. Performance evaluation of direct saline stool microscopy, Formol ether concentration and Kato Katz diagnostic methods for intestinal parasitosis in the absence of gold standard methods.

    PubMed

    Hailu, Tadesse; Abera, Bayeh

    2015-07-01

    The parasite load within the sample and the amount of sample taken during examination greatly compromise the sensitivity of direct saline stool microscopy. A cross-sectional study was conducted in March 2011 in Bahir Dar city among 778 fresh single stool samples to evaluate the performance of direct saline (DS), Kato Katz (KK) and Formol ether concentration (FEC) methods against the 'Gold' standard. Among 778 stool samples from school age children, the highest prevalence of intestinal parasites was recorded by FEC (55.1%). The sensitivity of DS, FEC and KK were 61.1%, 92.3% and 58.7%, respectively. FEC is more sensitive than DS and KK. Hence, use of the latter is preferred. © The Author(s) 2015.

  12. Engineering of air-stable Fe/C/Pd composite nanoparticles for environmental remediation applications

    NASA Astrophysics Data System (ADS)

    Haham, Hai; Grinblat, Judith; Sougrati, Moulay-Tahar; Stievano, Lorenzo; Margel, Shlomo

    2015-09-01

    The present manuscript presents a convenient method for the synthesis of iron/carbon (Fe/C) nanoparticles (NPs) coated with much smaller Pd NPs for the removal of halogenated organic pollutants. For this purpose, iron oxide/polyvinylpyrrolidone (IO/PVP) NPs were first prepared by the thermal decomposition of ferrocene mixed with PVP at 350 °C under an inert atmosphere. IO,Fe/C and Fe/C NPs coated with graphitic and amorphous carbon layers were then produced by annealing the IO/PVP NPs at 500 and 600 °C, respectively, under an inert atmosphere. The effect of the annealing temperature on the chemical composition, shape, crystallinity, surface area and magnetic properties of the IO/PVP, IO,Fe/C and Fe/C NPs has been elucidated. Air-stable Fe/C/Pd NPs were produced by mixing the precursor palladium acetate with the air-stable Fe/C NPs in ethanol. The obtained Fe/C/Pd NPs demonstrated significantly higher environmental activity than the Fe/C NPs on eosin Y, a model halogenated organic pollutant. The environmental activity of the Fe/C/Pd NPs also increased with their increasing Pd content.

  13. A novel unbalanced multiple description coder for robust video transmission over ad hoc wireless networks

    NASA Astrophysics Data System (ADS)

    Huang, Feng; Sun, Lifeng; Zhong, Yuzhuo

    2006-01-01

    Robust transmission of live video over ad hoc wireless networks presents new challenges: high bandwidth requirements are coupled with delay constraints; even a single packet loss causes error propagation until a complete video frame is coded in the intra-mode; ad hoc wireless networks suffer from bursty packet losses that drastically degrade the viewing experience. Accordingly, we propose a novel UMD coder capable of quickly recovering from losses and ensuring continuous playout. It uses 'peg' frames to prevent error propagation in the High-Resolution (HR) description and improve the robustness of key frames. The Low-Resolution (LR) coder works independent of the HR one, but they can also help each other recover from losses. Like many UMD coders, our UMD coder is drift-free, disruption-tolerant and able to make good use of the asymmetric available bandwidths of multiple paths. The simulation results under different conditions show that the proposed UMD coder has the highest decoded quality and lowest probability of pause when compared with concurrent UMDC techniques. The coder also has a comparable decoded quality, lower startup delay and lower probability of pause than a state-of-the-art FEC-based scheme. To provide robustness for video multicast applications, we propose non-end-to-end UMDC-based video distribution over a multi-tree multicast network. The multiplicity of parents decorrelates losses and the non-end-to-end feature increases the throughput of UMDC video data. We deploy an application-level service of LR description reconstruction in some intermediate nodes of the LR multicast tree. The principle behind this is to reconstruct the disrupted LR frames by the correctly received HR frames. As a result, the viewing experience at the downstream nodes benefits from the protection reconstruction at the upstream nodes.

  14. Novel Insights in the Fecal Egg Count Reduction Test for Monitoring Drug Efficacy against Soil-Transmitted Helminths in Large-Scale Treatment Programs

    PubMed Central

    Levecke, Bruno; Speybroeck, Niko; Dobson, Robert J.; Vercruysse, Jozef; Charlier, Johannes

    2011-01-01

    Background The fecal egg count reduction test (FECRT) is recommended to monitor drug efficacy against soil-transmitted helminths (STHs) in public health. However, the impact of factors inherent to study design (sample size and detection limit of the fecal egg count (FEC) method) and host-parasite interactions (mean baseline FEC and aggregation of FEC across host population) on the reliability of FECRT is poorly understood. Methodology/Principal Findings A simulation study was performed in which FECRT was assessed under varying conditions of the aforementioned factors. Classification trees were built to explore critical values for these factors required to obtain conclusive FECRT results. The outcome of this analysis was subsequently validated on five efficacy trials across Africa, Asia, and Latin America. Unsatisfactory (<85.0%) sensitivity and specificity results to detect reduced efficacy were found if sample sizes were small (<10) or if sample sizes were moderate (10–49) combined with highly aggregated FEC (k<0.25). FECRT remained inconclusive under any evaluated condition for drug efficacies ranging from 87.5% to 92.5% for a reduced-efficacy-threshold of 90% and from 92.5% to 97.5% for a threshold of 95%. The most discriminatory study design required 200 subjects independent of STH status (including subjects who are not excreting eggs). For this sample size, the detection limit of the FEC method and the level of aggregation of the FEC did not affect the interpretation of the FECRT. Only for a threshold of 90%, mean baseline FEC <150 eggs per gram of stool led to a reduced discriminatory power. Conclusions/Significance This study confirms that the interpretation of FECRT is affected by a complex interplay of factors inherent to both study design and host-parasite interactions. The results also highlight that revision of the current World Health Organization guidelines to monitor drug efficacy is indicated. We, therefore, propose novel guidelines to support future monitoring programs. PMID:22180801

  15. The accuracy of the FAMACHA-method in detecting anaemia and haemonchosis in goat flocks in Switzerland under field conditions.

    PubMed

    Scheuerle, Miriam; Mahling, Monia; Muntwyler, Jeannette; Pfister, Kurt

    2010-05-28

    In this study, goats from six farms in Central Switzerland were examined for the evaluation of the FAMACHA-method under middle European conditions. Individual faecal egg counts were determined at a 4-week interval for a period of 6 months and the gastrointestinal nematode (GIN) genera were differentiated using larval culture. Simultaneously, the goats were bled for packed cell volume (PCV) determination and scored for anaemia of the conjunctiva according to the FAMACHA-method. The three methods used for evaluating haemonchosis, namely FEC, PCV and FAMACHA-score, were compared to test the FAMACHA-method for its accuracy and efficacy in detecting haemonchosis in Switzerland. PCV and FAMACHA-score correlated significantly during the entire period of 6 months, whereas PCV and FEC correlated significantly in four study months. The FAMACHA-score and FEC correlated significantly in June only. PCV served as the gold standard for evaluating the accuracy of FAMACHA-method in detecting anaemic goats. The sensitivity of FAMACHA in detecting anaemic goats was 93%, using the anaemia criteria cut-offs FAMACHA-categories >or=3 and PCV <22%. The applicability of the method for detecting goats which needed treatment was tested with FEC >300 epg and >600 epg as cut-off values for treatment. The sensitivity of the method for detecting goats which needed a treatment was 76%, with regard to FEC of Haemonchus contortus (treatment cut-offs: FAMACHA >or=3 and FEC >300 epg). The percentage of false negatives (FEC-Hc-portion) was less than 11%. In addition, the use of FAMACHA categories >or=3, as a treatment indicator, revealed that 64% of the animals were recommended for treatment. These results indicate the suitability of FAMACHA as an additional part of an integrated anthelmintic control of goat flocks in Switzerland. (c) 2010 Elsevier B.V. All rights reserved.

  16. Transurethral Resection of the Prostate (TURP) Versus Original and PErFecTED Prostate Artery Embolization (PAE) Due to Benign Prostatic Hyperplasia (BPH): Preliminary Results of a Single Center, Prospective, Urodynamic-Controlled Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carnevale, Francisco C., E-mail: fcarnevale@uol.com.br; Iscaife, Alexandre, E-mail: iscaifeboni@yahoo.com.br; Yoshinaga, Eduardo M., E-mail: dumuracca@ig.com.br

    PurposeTo compare clinical and urodynamic results of transurethral resection of the prostate (TURP) to original and PErFecTED prostate artery embolization (PAE) methods for benign prostatic hyperplasia.MethodsWe prospectively randomized 30 patients to receive TURP or original PAE (oPAE) and compared them to a cohort of patients treated by PErFecTED PAE, with a minimum of 1-year follow-up. Patients were assessed for urodynamic parameters, prostate volume, international prostate symptom score (IPSS), and quality of life (QoL).ResultsAll groups were comparable for all pre-treatment parameters except bladder contractility and peak urine flow rate (Q{sub max}), both of which were significantly better in the TURP group,more » and IIEF score, which was significantly higher among PErFecTED PAE patients than TURP patients. All groups experienced significant improvement in IPSS, QoL, prostate volume, and Q{sub max}. TURP and PErFecTED PAE both resulted in significantly lower IPSS than oPAE but were not significantly different from one another. TURP resulted in significantly higher Q{sub max} and significantly smaller prostate volume than either original or PErFecTED PAE but required spinal anesthesia and hospitalization. Two patients in the oPAE group with hypocontractile bladders experienced recurrence of symptoms and were treated with TURP. In the TURP group, urinary incontinence occurred in 4/15 patients (26.7 %), rupture of the prostatic capsule in 1/15 (6.7 %), retrograde ejaculation in all patients (100 %), and one patient was readmitted for temporary bladder irrigation due to hematuria.ConclusionsTURP and PAE are both safe and effective treatments. TURP and PErFecTED PAE yield similar symptom improvement, but TURP is associated with both better urodynamic results and more adverse events.« less

  17. A randomised study of tailored toxicity-based dosage of fluorouracil-epirubicin-cyclophosphamide chemotherapy for early breast cancer (SBG 2000-1).

    PubMed

    Lindman, H; Andersson, M; Ahlgren, J; Balslev, E; Sverrisdottir, A; Holmberg, S B; Bengtsson, N O; Jacobsen, E H; Jensen, A B; Hansen, J; Tuxen, M K; Malmberg, L; Villman, K; Anderson, H; Ejlertsen, B; Bergh, J; Blomqvist, C

    2018-05-01

    Retrospective studies have demonstrated a worse outcome in breast cancer patients not developing leukopenia during adjuvant chemotherapy. The SBG 2000-1 is the first randomised trial designed to compare individually dosed chemotherapy without G-CSF support based on grade of toxicity to standard-dosed chemotherapy based on body surface area (BSA). Patients with early breast cancer were included and received the first cycle of standard FEC (fluorouracil 600 mg/m 2 , epirubicin 60 mg/m 2 , cyclophosphamide 600 mg/m 2 ). Patients with nadir leukopenia grade 0-2 after first cycle were randomised between either 6 additional courses of tailored FEC with increased doses (E 75-90 mg/m 2 , C 900-1200 mg/m 2 ) or fixed treatment with 6 standard FEC. Patients with grade 3-4 leukopenia were registered and treated with 6 standard FEC. Primary end-point was distant disease-free survival (DDFS). The study enrolled 1535 patients, of which 1052 patients were randomised to tailored FEC (N = 524) or standard FEC (N = 528), whereas 401 patients with leukopenia grade 3-4 continued standard FEC and formed the registered cohort. Dose escalation did not statistically significantly improve 10-year DDFS (79% and 77%, HR 0.87, CI 0.67-1.14, P = 0.32) or OS (82% and 78%, respectively, HR 0.89, CI 0.57-1.16, P = 0.38). Corresponding estimates for the registered group of patients were DDFS 79% and OS 82%, respectively. The SBG 2000-1 study failed to show a statistically significant improvement of escalated and tailored-dosed chemotherapy compared with standard BSA-based chemotherapy in patients with low haematological toxicity, although all efficacy parameters showed a numerical advantage for tailored treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. First-principle study of structural, electronic and magnetic properties of (FeC)n (n = 1-8) and (FeC)8TM (TM = V, Cr, Mn and Co) clusters.

    PubMed

    Li, Cheng-Gang; Zhang, Jie; Zhang, Wu-Qin; Tang, Ya-Nan; Ren, Bao-Zeng; Hu, Yan-Fei

    2017-12-13

    The structural, electronic and magnetic properties of the (FeC) n (n = 1-8) clusters are studied using the unbiased CALYPSO structure search method and density functional theory. A combination of the PBE functional and 6-311 + G* basis set is used for determining global minima on potential energy surfaces of (FeC) n clusters. Relatively stabilities are analyzed via computing their binding energies, second order difference and HOMO-LUMO gaps. In addition, the origin of magnetic properties, spin density and density of states are discussed in detail, respectively. At last, based on the same computational method, the structures, magnetic properties and density of states are systemically investigated for the 3d (V, Cr, Mn and Co) atom doped (FeC) 8 cluster.

  19. [Continuing education in ethics: from clinical ethics to institutional ethics].

    PubMed

    Brazeau-Lamontagne, Lucie

    2012-01-01

    The mandate of the Ethics Committee of the Conseil de médecins, dentistes et pharmaciens (CMDP) at the Centre hospitalier universitaire de Sherbrooke (CHUS), Sherbrooke, Quebec is three-fold: to guide the clinical decision; to address the institutional ethical function; to create the program for continuing education in ethics (Formation éthique continue or FEC). Might FEC be the means of bridging from individual ethics to institutional ethics at a hospital? To take the FEC perspectives considered appropriate for doctors and consider them for validation or disproving in the context of those of other professionals. Situate the proposed FEC mandate in a reference framework to evaluate (or triangulate) the clinical decision and the institutional ethic. CONVICTION: Sustainable professional development for doctors (DPD) includes ethics; it cannot be ignored. Without constant attention to upgrading one's abilities in professional ethics, these suffer the same fate as other professional aptitudes and competences (for example, techniques and scientific knowledge): decay.

  20. Preliminary Assessment of Operational Hazards and Safety Requirements for Airborne Trajectory Management (ABTM) Roadmap Applications

    NASA Technical Reports Server (NTRS)

    Cotton, William B.; Hilb, Robert; Koczo, Stefan, Jr.; Wing, David J.

    2016-01-01

    A set of five developmental steps building from the NASA TASAR (Traffic Aware Strategic Aircrew Requests) concept are described, each providing incrementally more efficiency and capacity benefits to airspace system users and service providers, culminating in a Full Airborne Trajectory Management capability. For each of these steps, the incremental Operational Hazards and Safety Requirements are identified for later use in future formal safety assessments intended to lead to certification and operational approval of the equipment and the associated procedures. Two established safety assessment methodologies that are compliant with the FAA's Safety Management System were used leading to Failure Effects Classifications (FEC) for each of the steps. The most likely FEC for the first three steps, Basic TASAR, Digital TASAR, and 4D TASAR, is "No effect". For step four, Strategic Airborne Trajectory Management, the likely FEC is "Minor". For Full Airborne Trajectory Management (Step 5), the most likely FEC is "Major".

  1. Regulation of the resistance to nematode parasites of single- and twin-bearing Merino ewes through nutrition and genetic selection.

    PubMed

    Kahn, L P; Knox, M R; Walkden-Brown, S W; Lea, J M

    2003-05-15

    Periparturient Merino ewes obtained from lines of sheep that had been selected either for increased resistance to Haemonchus contortus (R) or at random (C) were supplemented, while grazing at pasture, with either nil or 250 g/day cottonseed meal (CSM) for the 6 weeks prior to or the 6 weeks after the start of parturition. Ewes from both supplement groups had lower (mean 66% reduction) faecal egg counts (FECs) during the postpartum period and this coincided with a period of maternal body weight loss. Factors which increased the rate of maternal body weight loss, such as pregnancy and lactation status, also increased FEC. Evidence is presented that the magnitude of the periparturient rise (PPR) in FEC in grazing ewes will be greatest during periods of maternal weight loss and at these times supplementation to increase metabolisable protein (MP) supply will be most effective in increasing resistance to nematode parasites. The resistance of R ewes to nematode parasites was greater than that of C ewes throughout the experiment and was sufficiently low such that anthelmintic treatment in a commercial environment may not have been required. Irrespective of actual FEC, ewes from all treatment combinations exhibited a PPR in FEC. Reduced FEC of R ewes resulted in reduced apparent pasture larval contamination after 18 weeks of continuous grazing but supplementation was ineffective in this regard. It is suggested that integrated parasite management (IPM) programs for periparturient ewes should make use of both protein supplementation and genetic selection to increase worm resistance and reduce dependency on anthelmintics for worm control.

  2. Administration of copper oxide wire particles in a capsule or feed for gastrointestinal nematode control in goats.

    PubMed

    Burke, J M; Soli, F; Miller, J E; Terrill, T H; Wildeus, S; Shaik, S A; Getz, W R; Vanguru, M

    2010-03-25

    Widespread anthelmintic resistance in small ruminants has necessitated alternative means of gastrointestinal nematode (GIN) control. The objective was to determine the effectiveness of copper oxide wire particles (COWP) administered as a gelatin capsule or in a feed supplement to control GIN in goats. In four separate experiments, peri-parturient does (n=36), yearling does (n=25), weaned kids (n=72), and yearling bucks (n=16) were randomly assigned to remain untreated or administered 2g COWP in a capsule (in Experiments 1, 2, and 3) or feed supplement (all experiments). Feces and blood were collected every 7 days between Days 0 and 21 (older goats) or Day 42 (kids) for fecal egg counts (FEC) and blood packed cell volume (PCV) analyses. A peri-parturient rise in FEC was evident in the untreated does, but not the COWP-treated does (COWP x date, P<0.02). In yearling does, FEC of the COWP-treated does tended to be lower than the untreated (COWP, P<0.02). FEC of COWP-treated kids were reduced compared with untreated kids (COWP x date, P<0.001). FEC of treated and untreated bucks were similar, but Haemonchus contortus was not the predominant nematode in these goats. However, total worms were reduced in COWP-fed bucks (P<0.03). In summary, it appeared that COWP in the feed was as effective as COWP in a gelatin capsule to reduce FEC in goats. COWP administration may have a limited effect where H. contortus is not the predominant nematode.

  3. Beyond hypercorrection: remembering corrective feedback for low-confidence errors.

    PubMed

    Griffiths, Lauren; Higham, Philip A

    2018-02-01

    Correcting errors based on corrective feedback is essential to successful learning. Previous studies have found that corrections to high-confidence errors are better remembered than low-confidence errors (the hypercorrection effect). The aim of this study was to investigate whether corrections to low-confidence errors can also be successfully retained in some cases. Participants completed an initial multiple-choice test consisting of control, trick and easy general-knowledge questions, rated their confidence after answering each question, and then received immediate corrective feedback. After a short delay, they were given a cued-recall test consisting of the same questions. In two experiments, we found high-confidence errors to control questions were better corrected on the second test compared to low-confidence errors - the typical hypercorrection effect. However, low-confidence errors to trick questions were just as likely to be corrected as high-confidence errors. Most surprisingly, we found that memory for the feedback and original responses, not confidence or surprise, were significant predictors of error correction. We conclude that for some types of material, there is an effortful process of elaboration and problem solving prior to making low-confidence errors that facilitates memory of corrective feedback.

  4. Efficacy of neoadjuvant bevacizumab added to docetaxel followed by fluorouracil, epirubicin, and cyclophosphamide, for women with HER2-negative early breast cancer (ARTemis): an open-label, randomised, phase 3 trial.

    PubMed

    Earl, Helena M; Hiller, Louise; Dunn, Janet A; Blenkinsop, Clare; Grybowicz, Louise; Vallier, Anne-Laure; Abraham, Jean; Thomas, Jeremy; Provenzano, Elena; Hughes-Davies, Luke; Gounaris, Ioannis; McAdam, Karen; Chan, Stephen; Ahmad, Rizvana; Hickish, Tamas; Houston, Stephen; Rea, Daniel; Bartlett, John; Caldas, Carlos; Cameron, David A; Hayward, Larry

    2015-06-01

    The ARTemis trial was developed to assess the efficacy and safety of adding bevacizumab to standard neoadjuvant chemotherapy in HER2-negative early breast cancer. In this randomised, open-label, phase 3 trial, we enrolled women (≥18 years) with newly diagnosed HER2-negative early invasive breast cancer (radiological tumour size >20 mm, with or without axillary involvement), at 66 centres in the UK. Patients were randomly assigned via a central computerised minimisation procedure to three cycles of docetaxel (100 mg/m(2) once every 21 days) followed by three cycles of fluorouracil (500 mg/m(2)), epirubicin (100 mg/m(2)), and cyclophosphamide (500 mg/m(2)) once every 21 days (D-FEC), without or with four cycles of bevacizumab (15 mg/kg) (Bev+D-FEC). The primary endpoint was pathological complete response, defined as the absence of invasive disease in the breast and axillary lymph nodes, analysed by intention to treat. The trial has completed and follow-up is ongoing. This trial is registered with EudraCT (2008-002322-11), ISRCTN (68502941), and ClinicalTrials.gov (NCT01093235). Between May 7, 2009, and Jan 9, 2013, we randomly allocated 800 participants to D-FEC (n=401) and Bev+D-FEC (n=399). 781 patients were available for the primary endpoint analysis. Significantly more patients in the bevacizumab group achieved a pathological complete response compared with those treated with chemotherapy alone: 87 (22%, 95% CI 18-27) of 388 patients in the Bev+D-FEC group compared with 66 (17%, 13-21) of 393 patients in the D-FEC group (p=0·03). Grade 3 and 4 toxicities were reported at expected levels in both groups, although more patients had grade 4 neutropenia in the Bev+D-FEC group than in the D-FEC group (85 [22%] vs 68 [17%]). Addition of four cycles of bevacizumab to D-FEC in HER2-negative early breast cancer significantly improved pathological complete response. However, whether the improvement in pathological complete response will lead to improved disease-free and overall survival outcomes is unknown and will be reported after longer follow-up. Meta-analysis of available neoadjuvant trials is likely to be the only way to define subgroups of early breast cancer that would have clinically significant long-term benefit from bevacizumab treatment. Cancer Research UK, Roche, Sanofi-Aventis. Copyright © 2015 Earl et al. Open Access article distributed under the terms of CC BY-NC-ND. Published by Elsevier Ltd.. All rights reserved.

  5. Insar Unwrapping Error Correction Based on Quasi-Accurate Detection of Gross Errors (quad)

    NASA Astrophysics Data System (ADS)

    Kang, Y.; Zhao, C. Y.; Zhang, Q.; Yang, C. S.

    2018-04-01

    Unwrapping error is a common error in the InSAR processing, which will seriously degrade the accuracy of the monitoring results. Based on a gross error correction method, Quasi-accurate detection (QUAD), the method for unwrapping errors automatic correction is established in this paper. This method identifies and corrects the unwrapping errors by establishing a functional model between the true errors and interferograms. The basic principle and processing steps are presented. Then this method is compared with the L1-norm method with simulated data. Results show that both methods can effectively suppress the unwrapping error when the ratio of the unwrapping errors is low, and the two methods can complement each other when the ratio of the unwrapping errors is relatively high. At last the real SAR data is tested for the phase unwrapping error correction. Results show that this new method can correct the phase unwrapping errors successfully in the practical application.

  6. Analysis of quantum error correction with symmetric hypergraph states

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Kampermann, H.; Bruß, D.

    2018-03-01

    Graph states have been used to construct quantum error correction codes for independent errors. Hypergraph states generalize graph states, and symmetric hypergraph states have been shown to allow for the correction of correlated errors. In this paper, it is shown that symmetric hypergraph states are not useful for the correction of independent errors, at least for up to 30 qubits. Furthermore, error correction for error models with protected qubits is explored. A class of known graph codes for this scenario is generalized to hypergraph codes.

  7. Federal Election Commission.

    ERIC Educational Resources Information Center

    Elliot, Lee Ann

    1996-01-01

    Presents a concise overview of the responsibilities, membership, structure, and requirements of the Federal Election Commission (FEC). Created in 1974, the FEC oversees the financial activities of candidates and political parties. Discusses corporate and union political action committees (PACs) as well as contribution limits and prohibitions. (MJP)

  8. The Rigors of Aligning Performance

    DTIC Science & Technology

    2015-06-01

    organization merged 6 its field activities into regional facilities engineering commands (FECs). Today, FECs provide one-stop shopping for NAVFAC clients...many are old and antiquated , sometimes the systems mesh together other times they do not. Training is lacking on the various systems.  Communication

  9. A phase II study of sequential 5-fluorouracil, epirubicin and cyclophosphamide (FEC) and paclitaxel in advanced breast cancer (Protocol PV BC 97/01)

    PubMed Central

    Riccardi, A; Pugliese, P; Danova, M; Brugnatelli, S; Grasso, D; Giordano, M; Bernardo, G; Giardina, G; Fava, S; Montanari, G; Pedrotti, C; Trotti, G; Rinaldi, E; Poli, M A; Tinelli, C

    2001-01-01

    Sequential administration of the association of 5-fluorouracil, epirubicin and cyclophosphamide (FEC) and paclitaxel could be better tolerated than the association of an anthracycline and paclitaxel while having a similar antitumour effect. 69 patients with advanced breast cancer previously untreated with anthracyclines or paclitaxel entered a phase II multicentre study in which FEC was followed by paclitaxel. Both regimens were administered 4 times every 21 days. The median follow-up is 20 months and 38/69 patients have died. Grade III–IV toxicity was acceptable. Leukopenia occurred in 26% of patients, thrombocytopenia in 2% and anaemia in 4%. One patient had reversible heart failure during FEC therapy. Peripheral neuropathy and arthralgia-myalgia occurred in 9% and 4% of patients, respectively and one patient had respiratory hypersensitivity during paclitaxel treatment. 9 patients did not complete therapy because of: treatment refusal (n= 1), cardiac toxicity (n= 1), early death during FEC chemotherapy (n= 1), major protocol violations (n= 4), hypersensitivity reaction (n= 1) and early death during paclitaxel chemotherapy (n= 1). The overall response rate was 65% (95% CI = 53–76), and 7% of patients had stable disease. Therapy was defined as having failed in 28% of patients because they were not evaluable (13%) or had progressive disease (15%). The median time to progression and survival are 13.2 and 23.5 months, respectively. Sequential FEC-paclitaxel is a suitable strategy for patients with metastatic breast cancer who have not been previously treated with anthracyclines and/or taxanes. In fact, it avoids major haematologic toxicity and has a good antitumour effect. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11461067

  10. Determination of the Solid Electrolyte Interphase Structure Grown on a Silicon Electrode Using a Fluoroethylene Carbonate Additive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veith, Gabriel M.; Doucet, Mathieu; Sacci, Robert L.

    2017-07-24

    In this work we explore how an electrolyte additive (fluorinated ethylene carbonate – FEC) mediates the thickness and composition of the solid electrolyte interphase formed over a silicon anode in situ as a function of state-of-charge and cycle. We show the FEC condenses on the surface at open circuit voltage then is reduced to C-O containing polymeric species around 0.9 V (vs. Li/Li +). The resulting film is about 50 Å thick. Upon lithiation the SEI thickens to 70 Å and becomes more organic-like. With delithiation the SEI thins by 13 Å and becomes more inorganic in nature, consistent withmore » the formation of LiF. This thickening/thinning is reversible with cycling and shows the SEI is a dynamic structure. We compare the SEI chemistry and thickness to 280 Å thick SEI layers produced without FEC and provide a mechanism for SEI formation using FEC additives.« less

  11. Can we use genetic and genomic approaches to identify candidate animals for targeted selective treatment.

    PubMed

    Laurenson, Yan C S M; Kyriazakis, Ilias; Bishop, Stephen C

    2013-10-18

    Estimated breeding values (EBV) for faecal egg count (FEC) and genetic markers for host resistance to nematodes may be used to identify resistant animals for selective breeding programmes. Similarly, targeted selective treatment (TST) requires the ability to identify the animals that will benefit most from anthelmintic treatment. A mathematical model was used to combine the concepts and evaluate the potential of using genetic-based methods to identify animals for a TST regime. EBVs obtained by genomic prediction were predicted to be the best determinant criterion for TST in terms of the impact on average empty body weight and average FEC, whereas pedigree-based EBVs for FEC were predicted to be marginally worse than using phenotypic FEC as a determinant criterion. Whilst each method has financial implications, if the identification of host resistance is incorporated into a wider genomic selection indices or selective breeding programmes, then genetic or genomic information may be plausibly included in TST regimes. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Effects of copper oxide wire particle bolus therapy on trichostrongyle fecal egg counts in exotic artiodactylids.

    PubMed

    Fontenot, Deidre K; Kinney-Moscona, Allyson; Kaplan, Ray M; Miller, James

    2008-12-01

    Four species of artiodactylids (scimitar-horned oryx [Oryx dama]), roan antelope [Hippotragus equinus], blackbuck [Antilope cervicapra]), and blesbok [Damaliscus pygargus phillipsi]) totaling 13 animals were treated with a one-time 12.5-g dose of copper oxide wire particles (COWPs) in a bolus form. Pretreatment, individual trichostrongyle fecal egg counts (FECs) were performed using the McMaster technique. Individual posttreatment FECs were performed every 7 days for 35 days beginning 7 days after bolus administration, and FEC reduction ratios (FECRRs) expressed as percentage reductions from pretreatment values were calculated every 7 days. Mean FECRRs for the 13 animals were 93% +/- 16%, 98% +/- 7%, 91% +/- 28%, 94% +/- 16%, and 90% +/- 13% at 7, 14, 21, 28, and 35 days posttreatment, respectively. These data demonstrate that COWPs in a bolus form were an effective method for reducing FEC in exotic artiodactylids. Based on this limited data, COWPs show promise as an anthelmintic alternative for exotic artiodactylids in zoologic collections.

  13. Accuracy Improvement of Multi-Axis Systems Based on Laser Correction of Volumetric Geometric Errors

    NASA Astrophysics Data System (ADS)

    Teleshevsky, V. I.; Sokolov, V. A.; Pimushkin, Ya I.

    2018-04-01

    The article describes a volumetric geometric errors correction method for CNC- controlled multi-axis systems (machine-tools, CMMs etc.). The Kalman’s concept of “Control and Observation” is used. A versatile multi-function laser interferometer is used as Observer in order to measure machine’s error functions. A systematic error map of machine’s workspace is produced based on error functions measurements. The error map results into error correction strategy. The article proposes a new method of error correction strategy forming. The method is based on error distribution within machine’s workspace and a CNC-program postprocessor. The postprocessor provides minimal error values within maximal workspace zone. The results are confirmed by error correction of precision CNC machine-tools.

  14. New double-byte error-correcting codes for memory systems

    NASA Technical Reports Server (NTRS)

    Feng, Gui-Liang; Wu, Xinen; Rao, T. R. N.

    1996-01-01

    Error-correcting or error-detecting codes have been used in the computer industry to increase reliability, reduce service costs, and maintain data integrity. The single-byte error-correcting and double-byte error-detecting (SbEC-DbED) codes have been successfully used in computer memory subsystems. There are many methods to construct double-byte error-correcting (DBEC) codes. In the present paper we construct a class of double-byte error-correcting codes, which are more efficient than those known to be optimum, and a decoding procedure for our codes is also considered.

  15. Pooling sheep faecal samples for the assessment of anthelmintic drug efficacy using McMaster and Mini-FLOTAC in gastrointestinal strongyle and Nematodirus infection.

    PubMed

    Kenyon, Fiona; Rinaldi, Laura; McBean, Dave; Pepe, Paola; Bosco, Antonio; Melville, Lynsey; Devin, Leigh; Mitchell, Gillian; Ianniello, Davide; Charlier, Johannes; Vercruysse, Jozef; Cringoli, Giuseppe; Levecke, Bruno

    2016-07-30

    In small ruminants, faecal egg counts (FECs) and reduction in FECs (FECR) are the most common methods for the assessment of intensity of gastrointestinal (GI) nematodes infections and anthelmintic drug efficacy, respectively. The main limitation of these methods is the time and cost to conduct FECs on a representative number of individual animals. A cost-saving alternative would be to examine pooled faecal samples, however little is known regarding whether pooling can give representative results. In the present study, we compared the FECR results obtained by both an individual and a pooled examination strategy across different pool sizes and analytical sensitivity of the FEC techniques. A survey was conducted on 5 sheep farms in Scotland, where anthelmintic resistance is known to be widespread. Lambs were treated with fenbendazole (4 groups), levamisole (3 groups), ivermectin (3 groups) or moxidectin (1 group). For each group, individual faecal samples were collected from 20 animals, at baseline (D0) and 14 days after (D14) anthelmintic administration. Faecal samples were analyzed as pools of 3-5, 6-10, and 14-20 individual samples. Both individual and pooled samples were screened for GI strongyle and Nematodirus eggs using two FEC techniques with three different levels of analytical sensitivity, including Mini-FLOTAC (analytical sensitivity of 10 eggs per gram of faeces (EPG)) and McMaster (analytical sensitivity of 15 or 50 EPG).For both Mini-FLOTAC and McMaster (analytical sensitivity of 15 EPG), there was a perfect agreement in classifying the efficacy of the anthelmintic as 'normal', 'doubtful' or 'reduced' regardless of pool size. When using the McMaster method (analytical sensitivity of 50 EPG) anthelmintic efficacy was often falsely classified as 'normal' or assessment was not possible due to zero FECs at D0, and this became more pronounced when the pool size increased. In conclusion, pooling ovine faecal samples holds promise as a cost-saving and efficient strategy for assessing GI nematode FECR. However, for the assessment FECR one will need to consider the baseline FEC, pool size and analytical sensitivity of the method. Copyright © 2016. Published by Elsevier B.V.

  16. Comparison of individual and pooled stool samples for the assessment of intensity of Schistosoma mansoni and soil-transmitted helminth infections using the Kato-Katz technique.

    PubMed

    Kure, Ashenafi; Mekonnen, Zeleke; Dana, Daniel; Bajiro, Mitiku; Ayana, Mio; Vercruysse, Jozef; Levecke, Bruno

    2015-09-24

    Our group has recently provided a proof-of-principle for the examination of pooled stool samples using McMaster technique as a strategy for the rapid assessment of intensity of soil-transmitted helminth infections (STH, Ascaris lumbricoides, Trichuris trichiura and hookworm). In the present study we evaluated this pooling strategy for the assessment of intensity of both STH and Schistosoma mansoni infections using the Kato-Katz technique. A cross-sectional survey was conducted in 360 children aged 5-18 years from six schools in Jimma Zone (southwest Ethiopia). We performed faecal egg counts (FECs) in both individual and pooled samples (pools sizes of 5, 10 and 20) to estimate the number of eggs per gram of stool (EPG) using the Kato-Katz technique. We also assessed the time to screen both individual and pooled samples. Except for hookworms, there was a significant correlation (correlation coefficient = 0.53-0.95) between the mean of individual FECs and the FECs of pooled samples for A. lumbricoides, T. trichiura and S. mansoni, regardless of the pool size. Mean FEC were 2,596 EPG, 125 EPG, 47 EPG, and 41 EPG for A. lumbricoides, T. trichiura, S. mansoni and hookworm, respectively. There was no significant difference in FECs between the examination of individual and pooled stool samples, except for hookworms. For this STH, pools of 10 resulted in a significant underestimation of infection intensity. The total time to obtain individual FECs was 65 h 5 min. For pooled FECs, this was 19 h 12 min for pools of 5, 14 h 39 min for pools of 10 and 12 h 42 min for pools of 20. The results indicate that pooling of stool sample holds also promise as a rapid assessment of infections intensity for STH and S. mansoni using the Kato-Katz technique. In this setting, the time in the laboratory was reduced by 70 % when pools of 5 instead of individual stool samples were screened.

  17. Effects of the Booroola (FecB) genotypes on growth performance, ewe's productivity efficiency and litter size in Garole x Malpura sheep.

    PubMed

    Kumar, S; Mishra, A K; Kolte, A P; Arora, A L; Singh, D; Singh, V K

    2008-05-01

    The present study was conducted to evaluate the effects of FecB genotypes on body weight, average daily gain (ADG), ewe's productivity efficiency (EPE) and litter size in FecB introgressed GarolexMalpura (GM) crossbred sheep. A total of 235 GM lambs were selected randomly and screened for FecB mutation using forced RFLP-PCR. The majority (69.8%) of GM individuals were carriers (BB and B+) for the FecB mutation and frequency of the FecB allele was about 0.40. The FecB genotypes were significantly (P<0.01) associated with the lamb's body weights from birth to 12 months of age. The generation wise (F(1), F(2) and F(3)), lamb's body weight did not differ significantly at birth, 6 and 12 months of the age, while it differed significantly (P<0.05) at 3 and 9 months of age. The ADG1 (0-3 months) was significantly associated (P<0.05), but not the ADG2 (3-6 months) and ADG3 (6-12 months) between genotypes. Type of birth and sex significantly (P<0.01) affected the body weight from birth to 12 months of age; and body weight of single born lambs was significantly higher (P<0.01) than that of twins and triplets from birth to 12 months of age. Type of birth significantly (P<0.01) affected the ADG1, but had no significant effect on ADG2 and ADG3. Year of birth did not affect the birth and weaning weights, but it significantly affected (P<0.01) the body weight and ADG's after weaning ages. The EPE was affected significantly (P<0.01) by the FecB genotypes at birth, 3 and 12 months of age. The EPE of B+ and BB ewes were 7.86 kg (36.9%) and 2.32 kg (10.9%) higher as compared to ++ ewes at 12 months of age, respectively. The mean litter size of BB ewes (2.17+/-0.24) was significantly higher (P<0.01) than that of B+ ewes (1.73+/-0.04) and ++ ewes (1.03+/-0.23). The present study indicated that the body weight and ADG of carrier lambs (BB and B+) was comparatively lower than that of non-carriers (++), while EPE of B+ ewes was comparatively higher than that of BB and ++ ewes. Further, it is interesting to note that heterozygous and homozygous state of individuals increased 0.70 and 1.14 extra lambs as compared to non-carriers (++), respectively.

  18. A pilot study comparing the use of Thiel- and formalin-embalmed cadavers in the teaching of human anatomy.

    PubMed

    Balta, Joy Y; Lamb, Clare; Soames, Roger W

    2015-01-01

    Formalin had traditionally been used to preserve human material to teach gross anatomy. In 2008 the Centre for Anatomy and Human Identification (CAHID) at the University of Dundee embarked on the use of the Thiel method of embalming. The aim of this pilot study was to assess the difference between formalin-embalmed cadavers (FEC) and Thiel-embalmed cadavers (TEC) used for teaching and surgical training. Three different questionnaires were prepared for data collection from undergraduate and postgraduate students and clinical staff. All undergraduate and postgraduate students as well as clinical staff commented on the appearance of the TEC. There was no overall consensus concerning the use of TEC, some respondents preferred TEC for the entire dissection, some only for certain areas such as the musculoskeletal system. On a technical level TEC were considered less hazardous then FEC by one-third of participants with fewer than 10% regarding TEC as more irritating than FEC. Psychologically, 32.7% of undergraduate students expressed the view that TEC made them feel more uncomfortable compared with FEC because of their life-like appearance. However, 57.1% of undergraduate students encountered the same uncomfortable feelings when viewing both TEC and FEC. The use of Thiel-embalmed cadavers to teach anatomy has an added value, though further research is required over longer periods of time to identify its best usage. © 2014 American Association of Anatomists.

  19. Effect of Vinylene Carbonate and Fluoroethylene Carbonate on SEI Formation on Graphitic Anodes in Li-Ion Batteries

    DOE PAGES

    Nie, Mengyun; Demeaux, Julien; Young, Benjamin T.; ...

    2015-07-23

    Binder free (BF) graphite electrodes were utilized to investigate the effect of electrolyte additives fluoroethylene carbonate (FEC) and vinylene carbonate (VC) on the structure of the solid electrolyte interface (SEI). The structure of the SEI has been investigated via ex-situ surface analysis including X-ray Photoelectron spectroscopy (XPS), Hard XPS (HAXPES), Infrared spectroscopy (IR) and transmission electron microscopy (TEM). The components of the SEI have been further investigated via nuclear magnetic resonance (NMR) spectroscopy of D2O extractions. The SEI generated on the BF-graphite anode with a standard electrolyte (1.2 M LiPF6 in ethylene carbonate (EC) / ethyl methyl carbonate (EMC), 3/7more » (v/v)) is composed primarily of lithium alkyl carbonates (LAC) and LiF. Incorporation of VC (3% wt) results in the generation of a thinner SEI composed of Li2CO3, poly(VC), LAC, and LiF. Incorporation of VC inhibits the generation of LAC and LiF. Incorporation of FEC (3% wt) also results in the generation of a thinner SEI composed of Li2CO3, poly(FEC), LAC, and LiF. The concentration of poly(FEC) is lower than the concentration of poly(VC) and the generation of LAC is inhibited in the presence of FEC. The SEI appears to be a homogeneous film for all electrolytes investigated.« less

  20. New decoding methods of interleaved burst error-correcting codes

    NASA Astrophysics Data System (ADS)

    Nakano, Y.; Kasahara, M.; Namekawa, T.

    1983-04-01

    A probabilistic method of single burst error correction, using the syndrome correlation of subcodes which constitute the interleaved code, is presented. This method makes it possible to realize a high capability of burst error correction with less decoding delay. By generalizing this method it is possible to obtain probabilistic method of multiple (m-fold) burst error correction. After estimating the burst error positions using syndrome correlation of subcodes which are interleaved m-fold burst error detecting codes, this second method corrects erasure errors in each subcode and m-fold burst errors. The performance of these two methods is analyzed via computer simulation, and their effectiveness is demonstrated.

  1. DPSK-3ASK transmission optimization by adapting modulation levels

    NASA Astrophysics Data System (ADS)

    Eiselt, Michael H.; Teipen, Brian T.

    2008-11-01

    For metro and regional 100-Gbps transmission, a transparent channel reach of 500-600 km is required and a 100-GHz channel grid is typically used. For these applications, a cost effective modulation format is introduced which can make use of electronic components designed for the already established 40-Gbps market, bypassing the requirements for novel electronic developments and therefore reducing the component cost. With this DPSK-3ASK modulation format, five information bits are transmitted in two consecutive symbols, leading to a symbol rate of 45 Gbaud, including overhead for framing and FEC. To minimize hardware requirements and to create a cost-effective solution, a single Mach-Zehnder modulator can be used to create the optical DPSK-3ASK signal after combining the phase and amplitude modulation signals into a 6-level modulator drive voltage. In this paper, it is demonstrated by numerical simulations that these voltage levels can be modified to adapt to varying signal distortions and thereby yield improved transmission performance. It is shown that by dynamically modifying the modulation levels based on the channel performance, dynamic signal impairments such as the non-linear effects from varying power levels, changes in chromatic dispersion, or varying PMD levels can be mitigated. Error-free performance (with FEC) can be obtained with 24 dB OSNR and 7ps DGD for a 112-Gbps (45-Gbaud) optical signal.

  2. 75 FR 30908 - Notice of Funds Availability for FY 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... for the FY 2010 funding round of the Financial Education and Counseling (FEC) Pilot Program... Counseling Services to Prospective Homebuyers. The goals of grants that are awarded through the FEC Pilot Program are to identify successful methods of Financial Education and Counseling Services that result in...

  3. Quantum error-correction failure distributions: Comparison of coherent and stochastic error models

    NASA Astrophysics Data System (ADS)

    Barnes, Jeff P.; Trout, Colin J.; Lucarelli, Dennis; Clader, B. D.

    2017-06-01

    We compare failure distributions of quantum error correction circuits for stochastic errors and coherent errors. We utilize a fully coherent simulation of a fault-tolerant quantum error correcting circuit for a d =3 Steane and surface code. We find that the output distributions are markedly different for the two error models, showing that no simple mapping between the two error models exists. Coherent errors create very broad and heavy-tailed failure distributions. This suggests that they are susceptible to outlier events and that mean statistics, such as pseudothreshold estimates, may not provide the key figure of merit. This provides further statistical insight into why coherent errors can be so harmful for quantum error correction. These output probability distributions may also provide a useful metric that can be utilized when optimizing quantum error correcting codes and decoding procedures for purely coherent errors.

  4. The Relevance of Second Language Acquisition Theory to the Written Error Correction Debate

    ERIC Educational Resources Information Center

    Polio, Charlene

    2012-01-01

    The controversies surrounding written error correction can be traced to Truscott (1996) in his polemic against written error correction. He claimed that empirical studies showed that error correction was ineffective and that this was to be expected "given the nature of the correction process and "the nature of language learning" (p. 328, emphasis…

  5. Correcting for sequencing error in maximum likelihood phylogeny inference.

    PubMed

    Kuhner, Mary K; McGill, James

    2014-11-04

    Accurate phylogenies are critical to taxonomy as well as studies of speciation processes and other evolutionary patterns. Accurate branch lengths in phylogenies are critical for dating and rate measurements. Such accuracy may be jeopardized by unacknowledged sequencing error. We use simulated data to test a correction for DNA sequencing error in maximum likelihood phylogeny inference. Over a wide range of data polymorphism and true error rate, we found that correcting for sequencing error improves recovery of the branch lengths, even if the assumed error rate is up to twice the true error rate. Low error rates have little effect on recovery of the topology. When error is high, correction improves topological inference; however, when error is extremely high, using an assumed error rate greater than the true error rate leads to poor recovery of both topology and branch lengths. The error correction approach tested here was proposed in 2004 but has not been widely used, perhaps because researchers do not want to commit to an estimate of the error rate. This study shows that correction with an approximate error rate is generally preferable to ignoring the issue. Copyright © 2014 Kuhner and McGill.

  6. Survey of Radar Refraction Error Corrections

    DTIC Science & Technology

    2016-11-01

    ELECTRONIC TRAJECTORY MEASUREMENTS GROUP RCC 266-16 SURVEY OF RADAR REFRACTION ERROR CORRECTIONS DISTRIBUTION A: Approved for...DOCUMENT 266-16 SURVEY OF RADAR REFRACTION ERROR CORRECTIONS November 2016 Prepared by Electronic...This page intentionally left blank. Survey of Radar Refraction Error Corrections, RCC 266-16 iii Table of Contents Preface

  7. Palatal botulinum toxin as a novel therapy for objective tinnitus in forced eyelid closure syndrome.

    PubMed

    Kaffenberger, Thomas M; Mandal, Rajarsi; Schaitkin, Barry M; Hirsch, Barry E

    2017-05-01

    Objective tinnitus associated with eyelid closure is a rare clinical entity with only a few reported cases. This association previously was identified as forced eyelid closure syndrome (FECS) and involves an aberrant neural reflex between cranial nerve VII (activating the orbicularis oculi muscle) and cranial nerve V (activating the tensor tympani muscle). We present a 52-year-old Caucasian female with a 2-month history of FECS who was successfully treated with intrapalatal botulinum toxin, with full resolution of her objective tinnitus symptoms. This is the first reported use of botulinum toxin in FECS. Laryngoscope, 127:1199-1201, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  8. What Difference Does It Make? Implicit, Explicit and Complex Social Cognition in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Schaller, Ulrich M.; Rauh, Reinhold

    2017-01-01

    We tested social cognition abilities of adolescents with autism spectrum disorders (ASD) and neurotypically developed peers (NTD). A multi-faceted test-battery including facial emotion categorization (FEC), classical false belief tasks (FBT), and complex social cognition (SC), yielded significantly lower accuracy rates for FEC and complex SC tasks…

  9. "Rallying" to the Cause: Colleges, Politics and Where to Draw the Line.

    ERIC Educational Resources Information Center

    Gould, Jonathan B.

    1993-01-01

    The Federal Election Commission (FEC) is considering a rule that would prohibit federal candidates from holding political events on private college campuses. Explains the proposal's origins and content, and argues against the measure, explaining both its redundancy and internal inconsistencies. Suggests a less intrusive method to accomplish FEC's…

  10. The accuracy of formol-ether concentration in diagnosing soiltransmitted helminths in elementary school 27 Peusangan in Bireuen

    NASA Astrophysics Data System (ADS)

    Fitriani, C. L.; Panggabean, M.; Pasaribu, A. P.

    2018-03-01

    Soil-transmitted helminths (STH) or a group of parasitic nematode worms causing human infection through contact with moist soil may contribute to anemia, nutritional disorders, physical and intellectual growth retardation. School-age children are at high risk of STH infection due to frequent contact with soil. Reliable, sensitive, and practical diagnostic are the test series for detecting STH. This study aimed to assess the sensitivity and specificity of the formol-ether concentration (FEC) in the diagnosis of STH when compared to the Kato-Katz technique. The study was designed at state elementary school 27 Peusangan, Bireuen. The FEC study on a total of 80 (100%) elementary students showed that 12 (15%) sample had the STH infection, while Kato-Katz technique (Gold standard) showed that 31 (38.75%) sample had the STH infection. The FEC technique has the sensitivity of (38.71%), specificity of (100%) and accuracy of (76.25%). The Kato-Katz technique is better than the FEC technique for assessing STH in Bireuen due to mild infection.

  11. Examination of efficacious, efficient, and socially valid error-correction procedures to teach sight words and prepositions to children with autism spectrum disorder.

    PubMed

    Kodak, Tiffany; Campbell, Vincent; Bergmann, Samantha; LeBlanc, Brittany; Kurtz-Nelson, Eva; Cariveau, Tom; Haq, Shaji; Zemantic, Patricia; Mahon, Jacob

    2016-09-01

    Prior research shows that learners have idiosyncratic responses to error-correction procedures during instruction. Thus, assessments that identify error-correction strategies to include in instruction can aid practitioners in selecting individualized, efficacious, and efficient interventions. The current investigation conducted an assessment to compare 5 error-correction procedures that have been evaluated in the extant literature and are common in instructional practice for children with autism spectrum disorder (ASD). Results showed that the assessment identified efficacious and efficient error-correction procedures for all participants, and 1 procedure was efficient for 4 of the 5 participants. To examine the social validity of error-correction procedures, participants selected among efficacious and efficient interventions in a concurrent-chains assessment. We discuss the results in relation to prior research on error-correction procedures and current instructional practices for learners with ASD. © 2016 Society for the Experimental Analysis of Behavior.

  12. Experimental Evaluation of a High Speed Flywheel for an Energy Cache System

    NASA Astrophysics Data System (ADS)

    Haruna, J.; Murai, K.; Itoh, J.; Yamada, N.; Hirano, Y.; Fujimori, T.; Homma, T.

    2011-03-01

    A flywheel energy cache system (FECS) is a mechanical battery that can charge/discharge electricity by converting it into the kinetic energy of a rotating flywheel, and vice versa. Compared to a chemical battery, a FECS has great advantages in durability and lifetime, especially in hot or cold environments. Design simulations of the FECS were carried out to clarify the effects of the composition and dimensions of the flywheel rotor on the charge/discharge performance. The rotation speed of a flywheel is limited by the strength of the materials from which it is constructed. Three materials, carbon fiber-reinforced polymer (CFRP), Cr-Mo steel, and a Mg alloy were examined with respect to the required weight and rotation speed for a 3 MJ (0.8 kWh) charging/discharging energy, which is suitable for an FECS operating with a 3-5 kW photovoltaic device in an ordinary home connected to a smart grid. The results demonstrate that, for a stationary 3 MJ FECS, Cr-Mo steel was the most cost-effective, but also the heaviest, Mg-alloy had a good balance of rotation speed and weight, which should result in reduced mechanical loss and enhanced durability and lifetime of the system, and CFRP should be used for applications requiring compactness and a higher energy density. Finally, a high-speed prototype FW was analyzed to evaluate its fundamental characteristics both under acceleration and in the steady state.

  13. Is It Important to Adapt Neoadjuvant Chemotherapy to the Visible Clinical Response? An Open Randomized Phase II Study Comparing Response-Guided and Standard Treatments in HER2-Negative Operable Breast Cancer

    PubMed Central

    Mouret-Reynier, Marie-Ange; Savoye, Aude-Marie; Abrial, Catherine; Kwiatkowski, Fabrice; Garbar, Christian; DuBray-Longeras, Pascale; Eymard, Jean-Christophe; Lebouedec, Guillaume; Vanpraagh, Isabelle; Penault-Llorca, Frederique; Chollet, Philippe; Cure, Hervé

    2015-01-01

    Background. Neoadjuvant treatment provides a unique opportunity to evaluate individual tumor sensitivity. This study evaluated whether a response-guided strategy could improve clinical outcome compared with a standard treatment. Methods. Overall, 264 previously untreated stage II–III operable breast cancer patients were randomized to receive either standard treatment (arm A, n = 131), consisting of fluorouracil, epirubicin, and cyclophosphamide (FEC100: 500, 100, and 500 mg/m2, respectively, for 3 cycles) followed by docetaxel (100 mg/m2 for 3 cycles), or adapted treatment (arm B, n = 133), beginning with 2 cycles of FEC100 and switching to docetaxel if tumor size decreased by <30% after 2 cycles or <50% after 4 cycles of FEC100 (ultrasound assessments according to World Health Organization criteria). Otherwise, FEC100 was given for six cycles before surgery. Intent-to-treat analysis was performed. Results. Similar results were observed for clinical response (objective response was 54% vs 56%, p = .18), breast conservation surgery (BCS; 67% vs 68%, p = .97), and pathological complete response rate (Chevallier classification: 14% vs 11%, p = .68; Statloff classification: 16% vs 13%, p = .82) between arms A and B. Similar toxicities were observed, even with unbalanced numbers of FEC100 and docetaxel courses. Conclusion. Adapted and standard treatments had similar results in terms of tumor response, BCS rate, and tolerability. Further survival outcome data are expected. PMID:25637380

  14. Comparing the Effectiveness of Error-Correction Strategies in Discrete Trial Training

    ERIC Educational Resources Information Center

    Turan, Michelle K.; Moroz, Lianne; Croteau, Natalie Paquet

    2012-01-01

    Error-correction strategies are essential considerations for behavior analysts implementing discrete trial training with children with autism. The research literature, however, is still lacking in the number of studies that compare and evaluate error-correction procedures. The purpose of this study was to compare two error-correction strategies:…

  15. Recurrence of Lower Urinary Tract Symptoms Following Prostate Artery Embolization for Benign Hyperplasia: Single Center Experience Comparing Two Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carnevale, Francisco Cesar, E-mail: francisco.carnevale@criep.com.br; Moreira, Airton Mota; Harward, Sardis Honoria

    PurposeTo compare recurrence of lower urinary tract symptoms (LUTS) recurrence at 12 months following original prostate artery embolization (oPAE) or “proximal embolization first, then embolize distal” (PErFecTED) PAE for benign prostatic hyperplasia (BPH).Materials and Methods105 consecutive patients older than 45 years, with prostate size greater than 30 cm{sup 3}, International Prostate Symptom Score (IPSS) ≥ 8, quality of life (QoL) index ≥ 3, and refractory status or intolerance of medical management were prospectively enrolled between June 2008 and August 2013. The study was IRB-approved, and all patients provided informed consent. Patients underwent oPAE or PErFecTED PAE and were followed for at least 12 months. Technical success was definedmore » as bilateral embolization and clinical success (non-recurrence) was defined as removal of the Foley catheter in patients with urinary retention, IPSS < 8 and QoL index < 3 at 12 months of follow-up. Nonparametric statistics were used to compare the study groups due to the size of the study population and distributions of clinical data.Results97 patients had 12-month data and were categorized as oPAE without recurrence (n = 46), oPAE with recurrence (n  = 13), PErFecTED without recurrence (n  = 36), or PErFecTED with recurrence (n  = 2). Recurrence was significantly more common in oPAE patients (χ{sup 2}, p = 0.026). Unilateral embolization was significantly associated with recurrence among patients who underwent oPAE (χ{sup 2}, p = 0.032).ConclusionsBoth oPAE and PErFecTED PAE are safe and effective methods for treatment of LUTS, but PErFecTED PAE is associated with a significantly lower rate of symptom recurrence.« less

  16. The bias, accuracy and precision of faecal egg count reduction test results in cattle using McMaster, Cornell-Wisconsin and FLOTAC egg counting methods.

    PubMed

    Levecke, B; Rinaldi, L; Charlier, J; Maurelli, M P; Bosco, A; Vercruysse, J; Cringoli, G

    2012-08-13

    The faecal egg count reduction test (FECRT) is the recommended method to monitor anthelmintic drug efficacy in cattle. There is a large variation in faecal egg count (FEC) methods applied to determine FECRT. However, it remains unclear whether FEC methods with an equal analytic sensitivity, but with different methodologies, result in equal FECRT results. We therefore, compared the bias, accuracy and precision of FECRT results for Cornell-Wisconsin (analytic sensitivity = 1 egg per gram faeces (EPG)), FLOTAC (analytic sensitivity = 1 EPG) and McMaster method (analytic sensitivity = 10 EPG) across four levels of egg excretion (1-49 EPG; 50-149 EPG; 150-299 EPG; 300-600 EPG). Finally, we assessed the sensitivity of the FEC methods to detect a truly reduced efficacy. To this end, two different criteria were used to define reduced efficacy based on FECR, including those described in the WAAVP guidelines (FECRT <95% and lower limit of 95%CI <90%) (Coles et al., 1992) and those proposed by El-Abdellati et al. (2010) (upper limit of 95%CI <95%). There was no significant difference in bias and accuracy of FECRT results across the three methods. FLOTAC provided the most precise FECRT results. Cornell-Wisconsin and McMaster gave similar imprecise results. FECRT were significantly underestimated when baseline FEC were low and drugs were more efficacious. For all FEC methods, precision and accuracy of the FECRT improved as egg excretion increased, this effect was greatest for McMaster and least for Cornell-Wisconsin. The sensitivity of the three methods to detect a truly reduced efficacy was high (>90%). Yet, the sensitivity of McMaster and Cornell-Wisconsin may drop when drugs only show sub-optimal efficacy. Overall, the study indicates that the precision of FECRT is affected by the methodology of FEC, and that the level of egg excretion should be considered in the final interpretation of the FECRT. However, more comprehensive studies are required to provide more insights into the complex interplay of factors inherent to study design (sample size and FEC method) and host-parasite interactions (level of egg excretion and aggregation across the host population). Copyright © 2012 Elsevier B.V. All rights reserved.

  17. An exploration of advanced X-divertor scenarios on ITER

    NASA Astrophysics Data System (ADS)

    Covele, B.; Valanju, P.; Kotschenreuther, M.; Mahajan, S.

    2014-07-01

    It is found that the X-divertor (XD) configuration (Kotschenreuther et al 2004 Proc. 20th Int. Conf. on Fusion Energy (Vilamoura, Portugal, 2004) (Vienna: IAEA) CD-ROM file [IC/P6-43] www-naweb.iaea.org/napc/physics/fec/fec2004/datasets/index.html, Kotschenreuther et al 2006 Proc. 21st Int. Conf. on Fusion Energy 2006 (Chengdu, China, 2006) (Vienna: IAEA), CD-ROM file [IC/P7-12] www-naweb.iaea.org/napc/physics/FEC/FEC2006/html/index.htm, Kotschenreuther et al 2007 Phys. Plasmas 14 072502) can be made with the conventional poloidal field (PF) coil set on ITER (Tomabechi et al and Team 1991 Nucl. Fusion 31 1135), where all PF coils are outside the TF coils. Starting from the standard divertor, a sequence of desirable XD configurations are possible where the PF currents are below the present maximum design limits on ITER, and where the baseline divertor cassette is used. This opens the possibility that the XD could be tested and used to assist in high-power operation on ITER, but some further issues need examination. Note that the increased major radius of the super-X-divertor (Kotschenreuther et al 2007 Bull. Am. Phys. Soc. 53 11, Valanju et al 2009 Phys. Plasmas 16 5, Kotschenreuther et al 2010 Nucl. Fusion 50 035003, Valanju et al 2010 Fusion Eng. Des. 85 46) is not a feature of the XD geometry. In addition, we present an XD configuration for K-DEMO (Kim et al 2013 Fusion Eng. Des. 88 123) to demonstrate that it is also possible to attain the XD configuration in advanced tokamak reactors with all PF coils outside the TF coils. The results given here for the XD are far more encouraging than recent calculations by Lackner and Zohm (2012 Fusion Sci. Technol. 63 43) for the Snowflake (Ryutov 2007 Phys. Plasmas 14 064502, Ryutov et al 2008 Phys. Plasmas 15 092501), where the required high PF currents represent a major technological challenge. The magnetic field structure in the outboard divertor SOL (Kotschenreuther 2013 Phys. Plasmas 20 102507) in the recently created XD configurations reproduces what was presented in the earlier XD papers (Kotschenreuther et al 2004 Proc. 20th Int. Conf. on Fusion Energy (Vilamoura, Portugal, 2004) (Vienna: IAEA) CD-ROM file [IC/P6-43] www-naweb.iaea.org/napc/physics/fec/fec2004/datasets/index.html, Kotschenreuther et al 2006 Proc. 21st Int. Conf. on Fusion Energy 2006 (Chengdu, China, 2006) (Vienna: IAEA) CD-ROM file [IC/P7-12] www-naweb.iaea.org/napc/physics/FEC/FEC2006/html/index.htm, Kotschenreuther et al 2007 Phys. Plasmas 14 072502). Consequently, the same advantages accrue, but no close-in PF coils are employed.

  18. Hardware-efficient bosonic quantum error-correcting codes based on symmetry operators

    NASA Astrophysics Data System (ADS)

    Niu, Murphy Yuezhen; Chuang, Isaac L.; Shapiro, Jeffrey H.

    2018-03-01

    We establish a symmetry-operator framework for designing quantum error-correcting (QEC) codes based on fundamental properties of the underlying system dynamics. Based on this framework, we propose three hardware-efficient bosonic QEC codes that are suitable for χ(2 )-interaction based quantum computation in multimode Fock bases: the χ(2 ) parity-check code, the χ(2 ) embedded error-correcting code, and the χ(2 ) binomial code. All of these QEC codes detect photon-loss or photon-gain errors by means of photon-number parity measurements, and then correct them via χ(2 ) Hamiltonian evolutions and linear-optics transformations. Our symmetry-operator framework provides a systematic procedure for finding QEC codes that are not stabilizer codes, and it enables convenient extension of a given encoding to higher-dimensional qudit bases. The χ(2 ) binomial code is of special interest because, with m ≤N identified from channel monitoring, it can correct m -photon-loss errors, or m -photon-gain errors, or (m -1 )th -order dephasing errors using logical qudits that are encoded in O (N ) photons. In comparison, other bosonic QEC codes require O (N2) photons to correct the same degree of bosonic errors. Such improved photon efficiency underscores the additional error-correction power that can be provided by channel monitoring. We develop quantum Hamming bounds for photon-loss errors in the code subspaces associated with the χ(2 ) parity-check code and the χ(2 ) embedded error-correcting code, and we prove that these codes saturate their respective bounds. Our χ(2 ) QEC codes exhibit hardware efficiency in that they address the principal error mechanisms and exploit the available physical interactions of the underlying hardware, thus reducing the physical resources required for implementing their encoding, decoding, and error-correction operations, and their universal encoded-basis gate sets.

  19. Subthreshold muscle twitches dissociate oscillatory neural signatures of conflicts from errors.

    PubMed

    Cohen, Michael X; van Gaal, Simon

    2014-02-01

    We investigated the neural systems underlying conflict detection and error monitoring during rapid online error correction/monitoring mechanisms. We combined data from four separate cognitive tasks and 64 subjects in which EEG and EMG (muscle activity from the thumb used to respond) were recorded. In typical neuroscience experiments, behavioral responses are classified as "error" or "correct"; however, closer inspection of our data revealed that correct responses were often accompanied by "partial errors" - a muscle twitch of the incorrect hand ("mixed correct trials," ~13% of the trials). We found that these muscle twitches dissociated conflicts from errors in time-frequency domain analyses of EEG data. In particular, both mixed-correct trials and full error trials were associated with enhanced theta-band power (4-9Hz) compared to correct trials. However, full errors were additionally associated with power and frontal-parietal synchrony in the delta band. Single-trial robust multiple regression analyses revealed a significant modulation of theta power as a function of partial error correction time, thus linking trial-to-trial fluctuations in power to conflict. Furthermore, single-trial correlation analyses revealed a qualitative dissociation between conflict and error processing, such that mixed correct trials were associated with positive theta-RT correlations whereas full error trials were associated with negative delta-RT correlations. These findings shed new light on the local and global network mechanisms of conflict monitoring and error detection, and their relationship to online action adjustment. © 2013.

  20. Integrated Quality Enhancement and Review of Higher Education in Further Education Colleges

    ERIC Educational Resources Information Center

    Davies, Philip; Simmons, Jonathan

    2012-01-01

    Integrated Quality Enhancement and Review (IQER) was introduced as quality assurance designed specifically for Higher Education (HE) in Further Education Colleges (FEC) in 2008. Following a historical account of the quality assurance systems applied to HE in FECs prior to this date, we analyse the first 64 IQER Summative Review reports produced…

  1. Time-dependent phase error correction using digital waveform synthesis

    DOEpatents

    Doerry, Armin W.; Buskirk, Stephen

    2017-10-10

    The various technologies presented herein relate to correcting a time-dependent phase error generated as part of the formation of a radar waveform. A waveform can be pre-distorted to facilitate correction of an error induced into the waveform by a downstream operation/component in a radar system. For example, amplifier power droop effect can engender a time-dependent phase error in a waveform as part of a radar signal generating operation. The error can be quantified and an according complimentary distortion can be applied to the waveform to facilitate negation of the error during the subsequent processing of the waveform. A time domain correction can be applied by a phase error correction look up table incorporated into a waveform phase generator.

  2. The Measurement and Correction of the Periodic Error of the LX200-16 Telescope Driving System

    NASA Astrophysics Data System (ADS)

    Jeong, Jang Hae; Lee, Young Sam; Lee, Chung Uk

    2000-06-01

    We examined and corrected the periodic error of the LX200-16 Telescope driving system of Chungbuk National University Campus Observatory. Before correcting, the standard deviation of the periodic error in the direction of East-West was = 7.''2. After correcting,we found that the periodic error was reduced to = 1.''2.

  3. Toward a more sophisticated response representation in theories of medial frontal performance monitoring: The effects of motor similarity and motor asymmetries.

    PubMed

    Hochman, Eldad Yitzhak; Orr, Joseph M; Gehring, William J

    2014-02-01

    Cognitive control in the posterior medial frontal cortex (pMFC) is formulated in models that emphasize adaptive behavior driven by a computation evaluating the degree of difference between 2 conflicting responses. These functions are manifested by an event-related brain potential component coined the error-related negativity (ERN). We hypothesized that the ERN represents a regulative rather than evaluative pMFC process, exerted over the error motor representation, expediting the execution of a corrective response. We manipulated the motor representations of the error and the correct response to varying degrees. The ERN was greater when 1) the error response was more potent than when the correct response was more potent, 2) more errors were committed, 3) fewer and slower corrections were observed, and 4) the error response shared fewer motor features with the correct response. In their current forms, several prominent models of the pMFC cannot be reconciled with these findings. We suggest that a prepotent, unintended error is prone to reach the manual motor processor responsible for response execution before a nonpotent, intended correct response. In this case, the correct response is a correction and its execution must wait until the error is aborted. The ERN may reflect pMFC activity that aimed to suppress the error.

  4. Correcting false memories: Errors must be noticed and replaced.

    PubMed

    Mullet, Hillary G; Marsh, Elizabeth J

    2016-04-01

    Memory can be unreliable. For example, after reading The new baby stayed awake all night, people often misremember that the new baby cried all night (Brewer, 1977); similarly, after hearing bed, rest, and tired, people often falsely remember that sleep was on the list (Roediger & McDermott, 1995). In general, such false memories are difficult to correct, persisting despite warnings and additional study opportunities. We argue that errors must first be detected to be corrected; consistent with this argument, two experiments showed that false memories were nearly eliminated when conditions facilitated comparisons between participants' errors and corrective feedback (e.g., immediate trial-by-trial feedback that allowed direct comparisons between their responses and the correct information). However, knowledge that they had made an error was insufficient; unless the feedback message also contained the correct answer, the rate of false memories remained relatively constant. On the one hand, there is nothing special about correcting false memories: simply labeling an error as "wrong" is also insufficient for correcting other memory errors, including misremembered facts or mistranslations. However, unlike these other types of errors--which often benefit from the spacing afforded by delayed feedback--false memories require a special consideration: Learners may fail to notice their errors unless the correction conditions specifically highlight them.

  5. Local Setup Reproducibility of the Spinal Column When Using Intensity-Modulated Radiation Therapy for Craniospinal Irradiation With Patient in Supine Position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoiber, Eva Maria, E-mail: eva.stoiber@med.uni-heidelberg.de; Department of Medical Physics, German Cancer Research Center, Heidelberg; Giske, Kristina

    Purpose: To evaluate local positioning errors of the lumbar spine during fractionated intensity-modulated radiotherapy of patients treated with craniospinal irradiation and to assess the impact of rotational error correction on these uncertainties for one patient setup correction strategy. Methods and Materials: 8 patients (6 adults, 2 children) treated with helical tomotherapy for craniospinal irradiation were retrospectively chosen for this analysis. Patients were immobilized with a deep-drawn Aquaplast head mask. Additionally to daily megavoltage control computed tomography scans of the skull, once-a-week positioning of the lumbar spine was assessed. Therefore, patient setup was corrected by a target point correction, derived frommore » a registration of the patient's skull. The residual positioning variations of the lumbar spine were evaluated applying a rigid-registration algorithm. The impact of different rotational error corrections was simulated. Results: After target point correction, residual local positioning errors of the lumbar spine varied considerably. Craniocaudal axis rotational error correction did not improve or deteriorate these translational errors, whereas simulation of a rotational error correction of the right-left and anterior-posterior axis increased these errors by a factor of 2 to 3. Conclusion: The patient fixation used allows for deformations between the patient's skull and spine. Therefore, for the setup correction strategy evaluated in this study, generous margins for the lumbar spinal target volume are needed to prevent a local geographic miss. With any applied correction strategy, it needs to be evaluated whether or not a rotational error correction is beneficial.« less

  6. 5 CFR 1601.34 - Error correction.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Error correction. 1601.34 Section 1601.34 Administrative Personnel FEDERAL RETIREMENT THRIFT INVESTMENT BOARD PARTICIPANTS' CHOICES OF TSP FUNDS... in the wrong investment fund, will be corrected in accordance with the error correction regulations...

  7. 5 CFR 1601.34 - Error correction.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Error correction. 1601.34 Section 1601.34 Administrative Personnel FEDERAL RETIREMENT THRIFT INVESTMENT BOARD PARTICIPANTS' CHOICES OF TSP FUNDS... in the wrong investment fund, will be corrected in accordance with the error correction regulations...

  8. Estimate of higher order ionospheric errors in GNSS positioning

    NASA Astrophysics Data System (ADS)

    Hoque, M. Mainul; Jakowski, N.

    2008-10-01

    Precise navigation and positioning using GPS/GLONASS/Galileo require the ionospheric propagation errors to be accurately determined and corrected for. Current dual-frequency method of ionospheric correction ignores higher order ionospheric errors such as the second and third order ionospheric terms in the refractive index formula and errors due to bending of the signal. The total electron content (TEC) is assumed to be same at two GPS frequencies. All these assumptions lead to erroneous estimations and corrections of the ionospheric errors. In this paper a rigorous treatment of these problems is presented. Different approximation formulas have been proposed to correct errors due to excess path length in addition to the free space path length, TEC difference at two GNSS frequencies, and third-order ionospheric term. The GPS dual-frequency residual range errors can be corrected within millimeter level accuracy using the proposed correction formulas.

  9. Violet Laser Diode Enables Lighting Communication.

    PubMed

    Chi, Yu-Chieh; Huang, Yu-Fang; Wu, Tsai-Chen; Tsai, Cheng-Ting; Chen, Li-Yin; Kuo, Hao-Chung; Lin, Gong-Ru

    2017-09-05

    Violet laser diode (VLD) based white-light source with high color rendering index (CRI) for lighting communication is implemented by covering with Y 3 Al 5 O 12 :Ce 3+ (YAG:Ce) or Lu 3 Al 5 O 12 :Ce 3+ /CaAlSiN 3 :Eu 2+ (LuAG:Ce/CASN:Eu) phosphorous diffuser plates. After passing the beam of VLD biased at 70 mA (~2I th ) through the YAG:Ce phosphorous diffuser, a daylight with a correlated color temperature (CCT) of 5068 K and a CRI of 65 is acquired to provide a forward error correction (FEC) certified data rate of 4.4 Gbit/s. By using the VLD biased at 122 mA (~3.5I th ) to excite the LuAG:Ce/CASN:Eu phosphorous diffuser with 0.85-mm thickness, a warm white-light source with a CCT of 2700 K and a CRI of 87.9 is obtained at a cost of decreasing transmission capacity to 2.4 Gbit/s. Thinning the phosphor thickness to 0.75 mm effectively reduces the required bias current by 32 mA to achieve the same CCT for the delivered white light, which offers an enlarged CRI of 89.1 and an increased data rate of 4.4 Gbit/s. Further enlarging the bias current to 105 mA remains the white-light transmission capacity at 4.4 Gbit/s but reveals an increased CCT of 3023 K and an upgraded CRI of 91.5.

  10. Special cascade LMS equalization scheme suitable for 60-GHz RoF transmission system.

    PubMed

    Liu, Siming; Shen, Guansheng; Kou, Yanbin; Tian, Huiping

    2016-05-16

    We design a specific cascade least mean square (LMS) equalizer and to the best of our knowledge, it is the first time this kind of equalizer has been employed for 60-GHz millimeter-wave (mm-wave) radio over fiber (RoF) system. The proposed cascade LMS equalizer consists of two sub-equalizers which are designated for optical and wireless channel compensations, respectively. We control the linear and nonlinear factors originated from optical link and wireless link separately. The cascade equalization scheme can keep the nonlinear distortions of the RoF system in a low degree. We theoretically and experimentally investigate the parameters of the two sub-equalizers to reach their best performances. The experiment results show that the cascade equalization scheme has a faster convergence speed. It needs a training sequence with a length of 10000 to reach its stable status, which is only half as long as the traditional LMS equalizer needs. With the utility of a proposed equalizer, the 60-GHz RoF system can successfully transmit 5-Gbps BPSK signal over 10-km fiber and 1.2-m wireless link under forward error correction (FEC) limit 10-3. An improvement of 4dBm and 1dBm in power sensitivity at BER 10-3 over traditional LMS equalizer can be observed when the signals are transmitted through Back-to-Back (BTB) and 10-km fiber 1.2-m wireless links, respectively.

  11. Advanced and flexible multi-carrier receiver architecture for high-count multi-core fiber based space division multiplexed applications

    PubMed Central

    Asif, Rameez

    2016-01-01

    Space division multiplexing (SDM), incorporating multi-core fibers (MCFs), has been demonstrated for effectively maximizing the data capacity in an impending capacity crunch. To achieve high spectral-density through multi-carrier encoding while simultaneously maintaining transmission reach, benefits from inter-core crosstalk (XT) and non-linear compensation must be utilized. In this report, we propose a proof-of-concept unified receiver architecture that jointly compensates optical Kerr effects, intra- and inter-core XT in MCFs. The architecture is analysed in multi-channel 512 Gbit/s dual-carrier DP-16QAM system over 800 km 19-core MCF to validate the digital compensation of inter-core XT. Through this architecture: (a) we efficiently compensates the inter-core XT improving Q-factor by 4.82 dB and (b) achieve a momentous gain in transmission reach, increasing the maximum achievable distance from 480 km to 1208 km, via analytical analysis. Simulation results confirm that inter-core XT distortions are more relentless for cores fabricated around the central axis of cladding. Predominantly, XT induced Q-penalty can be suppressed to be less than 1 dB up-to −11.56 dB of inter-core XT over 800 km MCF, offering flexibility to fabricate dense core structures with same cladding diameter. Moreover, this report outlines the relationship between core pitch and forward-error correction (FEC). PMID:27270381

  12. Automated error correction in IBM quantum computer and explicit generalization

    NASA Astrophysics Data System (ADS)

    Ghosh, Debjit; Agarwal, Pratik; Pandey, Pratyush; Behera, Bikash K.; Panigrahi, Prasanta K.

    2018-06-01

    Construction of a fault-tolerant quantum computer remains a challenging problem due to unavoidable noise and fragile quantum states. However, this goal can be achieved by introducing quantum error-correcting codes. Here, we experimentally realize an automated error correction code and demonstrate the nondestructive discrimination of GHZ states in IBM 5-qubit quantum computer. After performing quantum state tomography, we obtain the experimental results with a high fidelity. Finally, we generalize the investigated code for maximally entangled n-qudit case, which could both detect and automatically correct any arbitrary phase-change error, or any phase-flip error, or any bit-flip error, or combined error of all types of error.

  13. Error Correcting Optical Mapping Data.

    PubMed

    Mukherjee, Kingshuk; Washimkar, Darshan; Muggli, Martin D; Salmela, Leena; Boucher, Christina

    2018-05-26

    Optical mapping is a unique system that is capable of producing high-resolution, high-throughput genomic map data that gives information about the structure of a genome [21]. Recently it has been used for scaffolding contigs and assembly validation for large-scale sequencing projects, including the maize [32], goat [6], and amborella [4] genomes. However, a major impediment in the use of this data is the variety and quantity of errors in the raw optical mapping data, which are called Rmaps. The challenges associated with using Rmap data are analogous to dealing with insertions and deletions in the alignment of long reads. Moreover, they are arguably harder to tackle since the data is numerical and susceptible to inaccuracy. We develop cOMET to error correct Rmap data, which to the best of our knowledge is the only optical mapping error correction method. Our experimental results demonstrate that cOMET has high prevision and corrects 82.49% of insertion errors and 77.38% of deletion errors in Rmap data generated from the E. coli K-12 reference genome. Out of the deletion errors corrected, 98.26% are true errors. Similarly, out of the insertion errors corrected, 82.19% are true errors. It also successfully scales to large genomes, improving the quality of 78% and 99% of the Rmaps in the plum and goat genomes, respectively. Lastly, we show the utility of error correction by demonstrating how it improves the assembly of Rmap data. Error corrected Rmap data results in an assembly that is more contiguous, and covers a larger fraction of the genome.

  14. Detection of a quantitative trait locus associated with resistance to infection with Trichuris suis in pigs.

    PubMed

    Skallerup, P; Thamsborg, S M; Jørgensen, C B; Mejer, H; Göring, H H H; Archibald, A L; Fredholm, M; Nejsum, P

    2015-06-15

    Whipworms (Trichuris spp.) infect a variety of hosts, including domestic animals and humans. Of considerable interest is the porcine whipworm, T. suis, which is particularly prevalent in outdoor production systems. High infection levels may cause growth retardation, anaemia and haemorrhagic diarrhoea. A significant proportion of the variation in Trichuris faecal egg count (FEC) has been attributed to the host's genetic make-up. The aim of the present study was to identify genetic loci associated with resistance to T. suis in pigs. We used single nucleotide polymorphism (SNP) markers to perform a whole-genome scan of an F1 resource population (n = 195) trickle-infected with T. suis. A measured genotype analysis revealed a putative quantitative trait locus (QTL) for T. suis FEC on chromosome 13 covering ∼ 4.5 Mbp, although none of the SNPs reached genome-wide significance. We tested the hypothesis that this region of SSC13 harboured genes with effects on T. suis burden by genotyping three SNPs within the putative QTL in unrelated pigs exposed to either experimental or natural T. suis infections and from which we had FEC (n = 113) or worm counts (n = 178). In these studies, two of the SNPs (rs55618716, ST) were associated with FEC (P < 0.01), thus confirming our initial findings. However, we did not find any of the SNPs to be associated with T. suis worm burden. In conclusion, our study demonstrates that genetic markers for resistance to T. suis as indicated by low FEC can be identified in pigs. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The Application of Social Characteristic and L1 Optimization in the Error Correction for Network Coding in Wireless Sensor Networks

    PubMed Central

    Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue

    2018-01-01

    One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C/2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C/2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi’s model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments. PMID:29401668

  16. The Application of Social Characteristic and L1 Optimization in the Error Correction for Network Coding in Wireless Sensor Networks.

    PubMed

    Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue

    2018-02-03

    One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C /2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C /2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi's model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments.

  17. Hurricane Preparedness and Control Plan

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This plan establishes policy and sets forth guidance, responsibilities and procedures utilized by Federal Electric Corp., communications department in support of the KSC Emergency Preparedness Plan, Annex A, Hurricane Control Plan (GP-355) dated 27 May 1971. This plan covers all FEC communications department personnel, facilities, and equipment situated at the Kennedy Space Center that are the responsibility of FEC contract NAS 10-4967.

  18. Polar Coding with CRC-Aided List Decoding

    DTIC Science & Technology

    2015-08-01

    TECHNICAL REPORT 2087 August 2015 Polar Coding with CRC-Aided List Decoding David Wasserman Approved...list decoding . RESULTS Our simulation results show that polar coding can produce results very similar to the FEC used in the Digital Video...standard. RECOMMENDATIONS In any application for which the DVB-S2 FEC is considered, polar coding with CRC-aided list decod - ing with N = 65536

  19. Degradation of trichloroethene with a noval ball milled Fe-C nanocomposite

    DOE PAGES

    Gao, Jie; Wang, Wei; Rondinone, Adam Justin; ...

    2015-07-18

    Nanoscale zero-valent iron (NZVI) is effective in reductively degrading dense non-aqueous phase liquids (DNAPLs), such as trichloroethene (TCE), in groundwater (i.e., dechlorination) although the NZVI technology itself still suffers from high material costs and inability to target hydrophobic contaminants in source zones. To address these problems, we developed a novel, inexpensive iron-carbon (Fe-C) nanocomposite material by simultaneously milling micron-size iron and activated carbon powder. Microscopic and X-ray diffraction (XRD) characterization of the composite material revealed that nanoparticles of Fe were dispersed in activated carbon and a new iron carbide phase was formed. Bench-scale studies showed that this material instantaneously sorbedmore » >90% of TCE from aqueous solutions and subsequently decomposed TCE into non-chlorinated products. Compared to milled Fe, Fe-C nanocomposite dechlorinated TCE at a slightly slower rate and favored the production of ethene over other TCE degradation products such as C 3-C 6 compounds. When placed in hexane-water mixture, the Fe-C nanocomposite materials are preferentially partitioned into the organic phase, indicating the ability of the composite materials to target DNAPL during remediation.« less

  20. The effect of different adjuvants on immune parameters and protection following vaccination of sheep with a larval-specific antigen of the gastrointestinal nematode, Haemonchus contortus.

    PubMed

    Piedrafita, David; Preston, Sarah; Kemp, Joanna; de Veer, Michael; Sherrard, Jayne; Kraska, Troy; Elhay, Martin; Meeusen, Els

    2013-01-01

    It has recently been recognised that vaccine adjuvants play a critical role in directing the nature of a vaccine induced effector response. In the present study, several adjuvants were evaluated for their ability to protect sheep after field vaccination with the larval-specific Haemonchus contortus antigen, HcsL3. Using a suboptimal antigen dose, aluminium adjuvant was shown to reduce the cumulative faecal egg counts (cFEC) and worm burden by 23% and 25% respectively, in agreement with a previous study. The addition of Quil A to the aluminium-adjuvanted vaccine brought cFEC back to control levels. Vaccination with the adjuvant DEAE-dextran almost doubled the protection compared to the aluminium-adjuvanted vaccine resulting in 40% and 41% reduction in cFEC and worm counts compared to controls. Examination of skin responses following i.d. injection of exsheathed L3, revealed that cFEC was negatively correlated with wheal size and tissue eosinophils for the DEAE-dextran and aluminium-adjuvanted groups respectively. These studies have for the first time shown the potential of DEAE-dextran adjuvant for helminth vaccines, and discovered significant cellular correlates of vaccine-induced protection.

  1. Diagnostic performance of direct wet mount microscopy in detecting intestinal helminths among pregnant women attending ante-natal care (ANC) in East Wollega, Oromia, Ethiopia.

    PubMed

    Mengist, Hylemariam Mihiretie; Demeke, Gebreselassie; Zewdie, Olifan; Belew, Adugna

    2018-05-04

    The aim of this study was to evaluate the diagnostic performance of direct wet mount microscopy compared to formalin ether concentration (FEC) technique in detecting intestinal helminths in pregnant women. The total prevalence of intestinal helminths was 18.8% (70/372) by direct wet mount microscopy and 24.7% (92/372) by FEC technique (P < 0.001). The sensitivity, negative predictive value (NPV) and test efficiency (TE) of direct wet mount microscopy in diagnosing intestinal helminths was 76, 92.7 and 94%, respectively. The sensitivity of direct w et mount microscopy was very low in detecting ova of Hymenolepis nana. The two methods showed excellent agreement in detecting ova of Hook worm and Ascaris lumbricoides (Kappa > 0.81) but they fairly agreed in detecting ova of Hymenolepis nana (Kappa = 0.39). Intestinal helminths were underdiagnosed and the total diagnostic performance of direct wet mount microscopy was significantly poor in detecting intestinal helminths as compared to FEC technique. Routine use of FEC method is recommended for the diagnosis of intestinal helminths in pregnant women.

  2. Effects of Error Correction during Assessment Probes on the Acquisition of Sight Words for Students with Moderate Intellectual Disabilities

    ERIC Educational Resources Information Center

    Waugh, Rebecca E.

    2010-01-01

    Simultaneous prompting is an errorless learning strategy designed to reduce the number of errors students make; however, research has shown a disparity in the number of errors students make during instructional versus probe trials. This study directly examined the effects of error correction versus no error correction during probe trials on the…

  3. Effects of Error Correction during Assessment Probes on the Acquisition of Sight Words for Students with Moderate Intellectual Disabilities

    ERIC Educational Resources Information Center

    Waugh, Rebecca E.; Alberto, Paul A.; Fredrick, Laura D.

    2011-01-01

    Simultaneous prompting is an errorless learning strategy designed to reduce the number of errors students make; however, research has shown a disparity in the number of errors students make during instructional versus probe trials. This study directly examined the effects of error correction versus no error correction during probe trials on the…

  4. Processor register error correction management

    DOEpatents

    Bose, Pradip; Cher, Chen-Yong; Gupta, Meeta S.

    2016-12-27

    Processor register protection management is disclosed. In embodiments, a method of processor register protection management can include determining a sensitive logical register for executable code generated by a compiler, generating an error-correction table identifying the sensitive logical register, and storing the error-correction table in a memory accessible by a processor. The processor can be configured to generate a duplicate register of the sensitive logical register identified by the error-correction table.

  5. A graph edit dictionary for correcting errors in roof topology graphs reconstructed from point clouds

    NASA Astrophysics Data System (ADS)

    Xiong, B.; Oude Elberink, S.; Vosselman, G.

    2014-07-01

    In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.

  6. Identification of effective treatment criteria for use in targeted selective treatment programs to control haemonchosis in periparturient ewes in Ontario, Canada.

    PubMed

    Westers, T; Jones-Bitton, A; Menzies, P; VanLeeuwen, J; Poljak, Z; Peregrine, A S

    2016-11-01

    Haemonchosis is often associated with late gestation and parturition in ewes in Canada. Due to widespread concerns about development of anthelmintic resistance (AR), targeted selective treatment (TST), where individual animals are treated with an anthelmintic rather than the entire flock, is a possible strategy to control clinical signs in recently lambed ewes while still maintaining parasite refugia. Performing fecal egg counts (FEC) on individual animals is often cost-prohibitive, so indicators that identify ewes with high FEC are essential for TST programs. The study objectives were to: a) evaluate the ability of four TST indicators to identify periparturient ewes with high Haemonchus sp. FEC and b) determine appropriate treatment thresholds for statistically-significant indicators. A field study was conducted during the 2013 and 2014 lambing seasons (February-May) on three client-owned farms in Ontario with documented AR and problems with haemonchosis in ewes. Ewes were examined within three days of lambing and selected for treatment with oral closantel (10mg/kg body weight), a novel anthelmintic to Canada, if they met at least one of four criteria: a) the last grazing season was their first grazing season; b) body condition score ≤2; c) Faffa Malan Chart (FAMACHA © ) score ≥3; and/or d) three or more nursing lambs. Fecal samples were collected per rectum on the treatment day from each of 20 randomly selected treated and untreated ewes on each farm. Haemonchus sp. percentages on each farm, as determined by coproculture, ranged from 53% to 92% of total fecal trichostrongyle-type egg counts. Mean Haemonchus sp. FECs were significantly higher in treated ewes (n=136) than in untreated ewes (n=103) on the day of treatment in both years (p=0.001), suggesting the indicators were suitable for identifying animals with high Haemonchus sp. FEC. A linear mixed model was fit with logarithmic-transformed Haemonchus sp. FEC as the outcome variable, the four indicators and year as fixed effects, and farm as a random effect. FAMACHA © score was the sole indicator to remain significantly associated with FEC (p=0.002). A receiver-operator curve determined that test sensitivity was maximized (92.4%) with FAMACHA © score ≥3 as the sole indicator. FAMACHA © score should therefore be included in TST programs to identify ewes requiring treatment at lambing due to Haemonchus sp. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Efficacy of closantel against ivermectin- and fenbendazole-resistant Haemonchus sp. in sheep in Ontario, Canada.

    PubMed

    Westers, T; Jones-Bitton, A; Menzies, P; Van Leeuwen, J; Poljak, Z; Peregrine, A S

    2016-09-15

    In Ontario, Canada, widespread resistance to ivermectin and fenbendazole, the only readily available ovine anthelmintics, has been documented, primarily in Haemonchus sp. In other parts of the world, closantel has been used to control such infections; however, the drug was not currently licensed for use in Canada and the USA. A randomized controlled trial was conducted on six client-owned farms in Ontario in 2013 and 2014 to determine the efficacy of closantel (Flukiver ® 5% Oral Suspension, Elanco Animal Health, 10mg/kg bodyweight) against ivermectin- and fenbendazole-resistant Haemonchus sp. infections in periparturient ewes and grazing lambs. Three farms were randomly assigned to treat all ewes, and three farms were randomly assigned to selectively treat individual ewes at lambing, using predetermined criteria. Fecal samples were collected from a minimum of 15 randomly selected ewes and 13 lambs per group on each farm at the time of treatment and approximately 14days later. Trichostrongyle-type fecal egg counts (FEC) were performed using a modified McMaster technique with a lower detection limit of 8.3 eggs per gram of feces (epg). Haemonchus-specific FECs were determined by multiplying FECs by the proportion of Haemonchus sp. identified from coproculture for each farm; Haemonchus-specific FEC reductions were calculated for each farm. Twenty grazing lambs had FECs conducted monthly, and when mean monthly FECs surpassed 200 epg, all lambs were randomly allocated to either closantel, positive control (ivermectin, fenbendazole, or levamisole) or negative control groups. Pre-treatment Haemonchus-specific mean FECs ranged from 27 to 3359 epg in ewes and 0-5698 epg in lambs. Efficacy of closantel against Haemonchus sp. ranged from 99% (95% CI: 97%-99%) to 100% in recently lambed ewes on all farms in both years (total n=274 ewes), and from 99% (95% CI: 98%-99%) to 100% in grazing lambs in both years on all but one farm (total n=171 lambs). On the latter farm, a whole flock treated farm, closantel efficacy in grazing lambs was 84% (95%CI: 81%-88%) in the first year, but 100% in the second year. Levamisole was effective against overall GIN in lambs on only two farms. Ivermectin and fenbendazole resistance continued to be present, particularly in Haemonchus sp. Closantel had excellent efficacy against Haemonchus sp. over the two year study period, regardless of treatment group, and therefore should be considered one viable component of sustainable integrated parasite control programs for farms with documented anthelmintic resistance and problems with haemonchosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Coherent optical WDM systems for 1.6 Tb/s Ethernet over 40 km of single-mode fiber

    NASA Astrophysics Data System (ADS)

    Torres-Ferrera, P.; García-Yáñez, M. A.; Gutiérrez-Castrejón, R.; Tomkos, I.

    2018-07-01

    Two 1.6 Tb/s coherent optical wavelength division multiplexed (WDM) systems targeting inter-data center links of up to 40-km reach over conventional single-mode fiber (CSMF) on C-band are proposed and numerically analyzed: a DP-QPSK-based 16 × 112 Gb/s system and a DP-16-QAM-based 8 × 224 Gb/s system. To satisfy the metro access space, noise and power transceiver characteristics are optimized, avoiding the use of any type of optical amplification or forward-error correction (FEC) scheme. Accordingly to the current Ethernet standard, feasibility of both 28 GBd architectures is hence numerically demonstrated at a very low bit-error-ratio (BER) threshold of 1 × 10-13, uncovering power sensitivities of -26.0 and -13.5 dBm and optical signal-to-noise ratio (OSNR) sensitivities of 35 and 40 dB for the first and second architectures, respectively. Negligible transmission OSNR and power penalties with respect to the back-to-back (BtB) case are calculated, thus demonstrating the effectiveness of the utilized DSP algorithms. Our simulation work also confirms that the 16-QAM-based scheme is more demanding in terms of OSNR and transmission power specifications than the 16-channel one, requiring approximately 12 dB more power and 5 dB more OSNR level at the transmitter laser outputs, with similar requirements at the receiver end. It is also demonstrated that laser linewidths of at most 1 MHz should be specified in both architectures, that the transmitter laser characteristics play a more appreciable role than those of the receiver laser, and that the frequency offset between these two lasers should be kept below 3 GHz. Our research work leverages the use of optical coherent technology at metro network level and claims for a necessary technological upgrade to such schemes for a forthcoming 1.6 Tb/s Ethernet standard to be feasible.

  9. The role of the cerebellum in sub- and supraliminal error correction during sensorimotor synchronization: evidence from fMRI and TMS.

    PubMed

    Bijsterbosch, Janine D; Lee, Kwang-Hyuk; Hunter, Michael D; Tsoi, Daniel T; Lankappa, Sudheer; Wilkinson, Iain D; Barker, Anthony T; Woodruff, Peter W R

    2011-05-01

    Our ability to interact physically with objects in the external world critically depends on temporal coupling between perception and movement (sensorimotor timing) and swift behavioral adjustment to changes in the environment (error correction). In this study, we investigated the neural correlates of the correction of subliminal and supraliminal phase shifts during a sensorimotor synchronization task. In particular, we focused on the role of the cerebellum because this structure has been shown to play a role in both motor timing and error correction. Experiment 1 used fMRI to show that the right cerebellar dentate nucleus and primary motor and sensory cortices were activated during regular timing and during the correction of subliminal errors. The correction of supraliminal phase shifts led to additional activations in the left cerebellum and right inferior parietal and frontal areas. Furthermore, a psychophysiological interaction analysis revealed that supraliminal error correction was associated with enhanced connectivity of the left cerebellum with frontal, auditory, and sensory cortices and with the right cerebellum. Experiment 2 showed that suppression of the left but not the right cerebellum with theta burst TMS significantly affected supraliminal error correction. These findings provide evidence that the left lateral cerebellum is essential for supraliminal error correction during sensorimotor synchronization.

  10. Error Detection/Correction in Collaborative Writing

    ERIC Educational Resources Information Center

    Pilotti, Maura; Chodorow, Martin

    2009-01-01

    In the present study, we examined error detection/correction during collaborative writing. Subjects were asked to identify and correct errors in two contexts: a passage written by the subject (familiar text) and a passage written by a person other than the subject (unfamiliar text). A computer program inserted errors in function words prior to the…

  11. Joint Schemes for Physical Layer Security and Error Correction

    ERIC Educational Resources Information Center

    Adamo, Oluwayomi

    2011-01-01

    The major challenges facing resource constraint wireless devices are error resilience, security and speed. Three joint schemes are presented in this research which could be broadly divided into error correction based and cipher based. The error correction based ciphers take advantage of the properties of LDPC codes and Nordstrom Robinson code. A…

  12. Error correcting coding-theory for structured light illumination systems

    NASA Astrophysics Data System (ADS)

    Porras-Aguilar, Rosario; Falaggis, Konstantinos; Ramos-Garcia, Ruben

    2017-06-01

    Intensity discrete structured light illumination systems project a series of projection patterns for the estimation of the absolute fringe order using only the temporal grey-level sequence at each pixel. This work proposes the use of error-correcting codes for pixel-wise correction of measurement errors. The use of an error correcting code is advantageous in many ways: it allows reducing the effect of random intensity noise, it corrects outliners near the border of the fringe commonly present when using intensity discrete patterns, and it provides a robustness in case of severe measurement errors (even for burst errors where whole frames are lost). The latter aspect is particular interesting in environments with varying ambient light as well as in critical safety applications as e.g. monitoring of deformations of components in nuclear power plants, where a high reliability is ensured even in case of short measurement disruptions. A special form of burst errors is the so-called salt and pepper noise, which can largely be removed with error correcting codes using only the information of a given pixel. The performance of this technique is evaluated using both simulations and experiments.

  13. [Therapeutic effect of rebamipide for oral mucositis associated with FEC therapy for breast cancer].

    PubMed

    Enami, Akiko; Masuda, Norikazu; Yamamura, Jun; Mizutani, Makiko; Yasojima, Hiroyuki; Shikata, Ayako; Masaoka, Miyuki; Takada, Seiko; Bamba, Nao; Yamamoto, Mie; Abe, Megumi; Makihara, Katsuya

    2014-11-01

    No guidelines for supportive drug therapy have been established for oral mucositis occurring during cancer chemotherapy. We retrospectively examined the progression of oral mucositis in 91 patients with breast cancer who received the 5-fluorouracil, epirubicin, and cyclophosphamide (FEC)-100 regimen between September 2007 and August 2008. Daily rebamipide was administered to patients with oral mucositis as per hospital protocol to evaluate the hypothesized preventive and mucosal protective effects of rebamipide(Mucosta®). Oral mucositis was observed in 43 patients (47%)during 4 courses of FEC. The median age of the patients was 55 years(range, 32-76 years). Of the 91 patients, 49 patients who did not receive rebamipide during the 4 FEC courses were classified as group A, 14 patients who received rebamipide before the start of FEC were classified as group B, and 28 patients who received rebamipide after developing oral mucositis were classified as group C. The incidence of oral mucositis at the start of FEC with or without rebamipide administration was observed in 5 patients in group B (36%) and 38 patients in groups A and C (49%) (p=0.3472). The mucositis grade was G1 in 4 patients and G2 in 1 patient in group B, and G1 in 20 patients and G2 plus G3 in 18 patients in groups A and C (p=0.2467). In group C, the grade decreased in 25 patients (89%) and did not occur (G0) in 17 patients (61%) during the next course, and 15 patients (54%) continued to the final course without any occurrence of mucositis. These results suggest that rebamipide is effective for the treatment of oral mucositis. Although significant differences were not observed in the groups, rebamipide has the potential to prevent development of oral mucositis and alleviate its symptoms, and seems promising as a new supportive drug therapy. We hope to verify the preventive and protective effects of rebamipide by conducting a prospective, randomized trial while treating oral mucositis with basic oral care and appropriate interventions provided by a multidisciplinary team.

  14. Association between variation in faecal egg count for a mixed field-challenge of nematode parasites and ovine MHC-DQA2 polymorphism.

    PubMed

    Hickford, J G H; Forrest, R H J; Zhou, H; Fang, Q; Frampton, C M

    2011-12-15

    The selection of sheep that are resistant to gastrointestinal parasites and have lower faecal egg counts (FECs) has been the subject of extensive research. This has led to the speculation that the Major Histocompatibility Complex (MHC) genes could be used as markers to reduce FEC. In this study, associations between variation in ovine MHC-DQA2 and various measures of FEC recorded at two times (approximately 4 and 9 months of age) were investigated in a large group of New Zealand lambs (n=4676), derived from 185 different sire-lines, of a variety of breeds and raised on 25 separate farms. Pair-sample t-tests revealed that FEC for Nematodirus spp., Strongyle spp. and total FEC differed significantly between the two assessments. A total of twenty one DQA2 alleles or DQA2-DQA2-like haplotypes were identified, with allele/haplotype presence and frequency varying significantly between farms. For example, allele *0103 was observed on all farms, ranging in frequency from 0.2 to 60.9%, while haplotype *0101-*1601 was only present on one farm, in two lambs. A number of associations between the presence/absence of these alleles and egg counts were observed, but nearly all the allelic/haplotypic associations were age and parasite specific, suggesting that immune response is both age and challenge (parasite species mix) dependent. The exception was allele *1201 which was associated with increased total FECs at both 4 and 9 months of age; with it either being, or tending toward being, significantly associated with both increased Strongyle spp. and Nematodirus spp. counts as well. However, the observed increases in egg counts were small and ranged between 5 and 32 eggs per gram. In conclusion, we believe that the MHC plays an important role in parasite resistance, but that the MHC-nematode interaction is complex and thus the development of a single gene-marker based on the "MHC effect" is unlikely. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Reed-Solomon error-correction as a software patch mechanism.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pendley, Kevin D.

    This report explores how error-correction data generated by a Reed-Solomon code may be used as a mechanism to apply changes to an existing installed codebase. Using the Reed-Solomon code to generate error-correction data for a changed or updated codebase will allow the error-correction data to be applied to an existing codebase to both validate and introduce changes or updates from some upstream source to the existing installed codebase.

  16. 76 FR 44010 - Medicare Program; Hospice Wage Index for Fiscal Year 2012; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    .... 93.774, Medicare-- Supplementary Medical Insurance Program) Dated: July 15, 2011. Dawn L. Smalls... corrects technical errors that appeared in the notice of CMS ruling published in the Federal Register on... FR 26731), there were technical errors that are identified and corrected in the Correction of Errors...

  17. Frequency of under-corrected refractive errors in elderly Chinese in Beijing.

    PubMed

    Xu, Liang; Li, Jianjun; Cui, Tongtong; Tong, Zhongbiao; Fan, Guizhi; Yang, Hua; Sun, Baochen; Zheng, Yuanyuan; Jonas, Jost B

    2006-07-01

    The aim of the study was to evaluate the prevalence of under-corrected refractive error among elderly Chinese in the Beijing area. The population-based, cross-sectional, cohort study comprised 4,439 subjects out of 5,324 subjects asked to participate (response rate 83.4%) with an age of 40+ years. It was divided into a rural part [1,973 (44.4%) subjects] and an urban part [2,466 (55.6%) subjects]. Habitual and best-corrected visual acuity was measured. Under-corrected refractive error was defined as an improvement in visual acuity of the better eye of at least two lines with best possible refractive correction. The rate of under-corrected refractive error was 19.4% (95% confidence interval, 18.2, 20.6). In a multiple regression analysis, prevalence and size of under-corrected refractive error in the better eye was significantly associated with lower level of education (P<0.001), female gender (P<0.001), and age (P=0.001). Under-correction of refractive error is relatively common among elderly Chinese in the Beijing area when compared with data from other populations.

  18. Augmented burst-error correction for UNICON laser memory. [digital memory

    NASA Technical Reports Server (NTRS)

    Lim, R. S.

    1974-01-01

    A single-burst-error correction system is described for data stored in the UNICON laser memory. In the proposed system, a long fire code with code length n greater than 16,768 bits was used as an outer code to augment an existing inner shorter fire code for burst error corrections. The inner fire code is a (80,64) code shortened from the (630,614) code, and it is used to correct a single-burst-error on a per-word basis with burst length b less than or equal to 6. The outer code, with b less than or equal to 12, would be used to correct a single-burst-error on a per-page basis, where a page consists of 512 32-bit words. In the proposed system, the encoding and error detection processes are implemented by hardware. A minicomputer, currently used as a UNICON memory management processor, is used on a time-demanding basis for error correction. Based upon existing error statistics, this combination of an inner code and an outer code would enable the UNICON system to obtain a very low error rate in spite of flaws affecting the recorded data.

  19. Differences among four meat goat breeds for doe fitness indicator traits in the southeastern United States.

    PubMed

    Wang, L; Nguluma, A; Leite-Browning, M L; Browning, R

    2017-04-01

    Sustainable meat goat production begins with the identification and use of maternal breeds that demonstrate relatively enhanced levels of fitness under less-than-optimal conditions. The Myotonic goat is a heritage breed that is lacking in comparative assessment for female fitness. In this study, Boer ( = 73), Kiko ( = 115), Myotonic ( = 80), and Spanish ( = 114) meat goat does were compared for traits associated with health and reproduction. The herd was semi-intensively managed on humid subtropical pasture for 6 yr. The study included 838 doe-year matings and over 2,000 records for BW, fecal egg count (FEC), and packed cell volume (PCV). Body weights of Boer and Kiko does were heavier ( < 0.05) than for Spanish does, which, in turn, were heavier ( < 0.05) than for Myotonic does. In production does, FEC were lower ( < 0.05) for Myotonic does than for Boer does, whereas Kiko and Spanish does had intermediate FEC that differed ( < 0.05) from Myotonic and Boer does. Kiko, Myotonic, and Spanish does had greater ( < 0.05) PCV than Boer does. Doe age and physiological status also affected ( < 0.05) BW, FEC, and PCV. Annual kidding rates, weaning rates, doe retention rates, and kid crop weaned were greater ( < 0.05) for Kiko and Spanish does than for Boer does, whereas Myotonic does were intermediate and differed ( < 0.05) from the other 3 breeds. The results suggest that Kiko and Spanish does should be preferred over Boer and Myotonic does for sustainable meat goat doe performance under limited-input management conditions. Myotonic does maintained the lowest FEC among all doe breeds and warrant further evaluation as a genetic resource for controlling gastrointestinal parasitism.

  20. Effects of iron electrovalence and species on growth and astaxanthin production of Haematococcus pluvialis

    NASA Astrophysics Data System (ADS)

    Cai, Minggang; Li, Zhe; Qi, Anxiang

    2009-05-01

    To increase the cell concentration and the accumulation of astaxanthin in the cultivation of Haematococcus pluvialis, effects of different iron electrovalencies (Fe2+-EDTA and Fe3+-EDTA) and species (Fe-EDTA, Fe(OH){x/32x} and FeC6H5O7) addition on cell growth and accumulation of astaxanthin were studied. Results show that different iron electrovalencies have various effects on cell growth and astaxanthin accumulation of H. pluvialis. Compared with Fe3+-EDTA, Fe2+-EDTA stimulate more effectively the formation of astaxanthin. The maximum astaxanthin content (30.70 mg/g biomass cell) was obtained under conditions of 18 μmol/L Fe2+-EDTA, despite the lower cell density (2.3×105 cell/ml) in such condition. Fe3+-EDTA is more effective than Fe2+-EDTA in improving the cell growth. Especially, the maximal steady-state cell density, 2.9×105 cell/ml was obtained at 18 μmol/L Fe3+-EDTA addition. On the other hand, all the various species of iron (EDTA-Fe, Fe(OH){x/32x}, FeC6H5O7) are capable to improve the growth of the algae and astaxanthin production. Among the three iron species, FeC6H5O7 performed the best. Under the condition of a higher concentration (36 μmol/L) of FeC6H5O7, the cell density and astaxanthin production is 2 and 7 times higher than those of iron-limited group, respectively. The present study demonstrates that the effects of the stimulation with different iron species increased in the order of FeC6H5O7, Fe(OH){x/32x} and EDTA-Fe.

  1. Fluoroethylene Carbonate as a Directing Agent in Amorphous Silicon Anodes: Electrolyte Interface Structure Probed by Sum Frequency Vibrational Spectroscopy and Ab Initio Molecular Dynamics.

    PubMed

    Horowitz, Yonatan; Han, Hui-Ling; Soto, Fernando A; Ralston, Walter T; Balbuena, Perla B; Somorjai, Gabor A

    2018-02-14

    Fluorinated compounds are added to carbonate-based electrolyte solutions in an effort to create a stable solid electrolyte interphase (SEI). The SEI mitigates detrimental electrolyte redox reactions taking place on the anode's surface upon applying a potential in order to charge (discharge) the lithium (Li) ion battery. The need for a stable SEI is dire when the anode material is silicon as silicon cracks due to its expansion and contraction upon lithiation and delithiation (charge-discharge) cycles, consequently limiting the cyclability of a silicon-based battery. Here we show the molecular structures for ethylene carbonate (EC): fluoroethylene carbonate (FEC) solutions on silicon surfaces by sum frequency generation (SFG) vibrational spectroscopy, which yields vibrational spectra of molecules at interfaces and by ab initio molecular dynamics (AIMD) simulations at open circuit potential. Our AIMD simulations and SFG spectra indicate that both EC and FEC adsorb to the amorphous silicon (a-Si) through their carbonyl group (C═O) oxygen atom with no further desorption. We show that FEC additives induce the reorientation of EC molecules to create an ordered, up-right orientation of the electrolytes on the Si surface. We suggest that this might be helpful for Li diffusion under applied potential. Furthermore, FEC becomes the dominant species at the a-Si surface as the FEC concentration increases above 20 wt %. Our finding at open circuit potential can now initiate additive design to not only act as a sacrificial compound but also to produce a better suited SEI for the use of silicon anodes in the Li-ion vehicular industry.

  2. Monohalogenated ferrocenes C5H5FeC5H4 X (X = Cl, Br and I) and a second polymorph of C5H5FeC5H4I

    PubMed Central

    Romanov, Alexander S.; Mulroy, Joseph M.; Khrustalev, Victor N.; Antipin, Mikhail Yu.; Timofeeva, Tatiana V.

    2009-01-01

    The structures of the three title monosubstituted ferrocenes, namely 1-chloro­ferrocene, [Fe(C5H5)(C5H4Cl)], (I), 1-bromo­ferrocene, [Fe(C5H5)(C5H4Br)], (II), and 1-iodo­ferrocene, [Fe(C5H5)(C5H4I)], (III), were determined at 100 K. The chloro- and bromo­ferrocenes are isomorphous crystals. The new triclinic polymorph [space group P , Z = 4, T = 100 K, V = 943.8 (4) Å3] of iodo­ferrocene, (III), and the previously reported monoclinic polymorph of (III) [Laus, Wurst & Schottenberger (2005 ▶). Z. Kristallogr. New Cryst. Struct. 220, 229–230; space group Pc, Z = 4, T = 100 K, V = 924.9 Å3] were obtained by crystallization from ethanolic solutions at 253 and 303 K, respectively. All four phases contain two independent mol­ecules in the unit cell. The relative orientations of the cyclo­penta­dienyl (Cp) rings are eclipsed and staggered in the independent mol­ecules of (I) and (II), while (III) demonstrates only an eclipsed conformation. The triclinic and monoclinic polymorphs of (III) contain nonbonded inter­molecular I⋯I contacts, causing different packing modes. In the triclinic form of (III), the mol­ecules are arranged in zigzag tetra­mers, while in the monoclinic form the mol­ecules are arranged in zigzag chains along the a axis. Crystallographic data for (III), along with the computed lattice energies of the two polymorphs, suggest that the monoclinic form is more stable. PMID:19893225

  3. Spatially coupled low-density parity-check error correction for holographic data storage

    NASA Astrophysics Data System (ADS)

    Ishii, Norihiko; Katano, Yutaro; Muroi, Tetsuhiko; Kinoshita, Nobuhiro

    2017-09-01

    The spatially coupled low-density parity-check (SC-LDPC) was considered for holographic data storage. The superiority of SC-LDPC was studied by simulation. The simulations show that the performance of SC-LDPC depends on the lifting number, and when the lifting number is over 100, SC-LDPC shows better error correctability compared with irregular LDPC. SC-LDPC is applied to the 5:9 modulation code, which is one of the differential codes. The error-free point is near 2.8 dB and over 10-1 can be corrected in simulation. From these simulation results, this error correction code can be applied to actual holographic data storage test equipment. Results showed that 8 × 10-2 can be corrected, furthermore it works effectively and shows good error correctability.

  4. Adaptive control for accelerators

    DOEpatents

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  5. A systematic comparison of error correction enzymes by next-generation sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lubock, Nathan B.; Zhang, Di; Sidore, Angus M.

    Gene synthesis, the process of assembling genelength fragments from shorter groups of oligonucleotides (oligos), is becoming an increasingly important tool in molecular and synthetic biology. The length, quality and cost of gene synthesis are limited by errors produced during oligo synthesis and subsequent assembly. Enzymatic error correction methods are cost-effective means to ameliorate errors in gene synthesis. Previous analyses of these methods relied on cloning and Sanger sequencing to evaluate their efficiencies, limiting quantitative assessment. Here, we develop a method to quantify errors in synthetic DNA by next-generation sequencing. We analyzed errors in model gene assemblies and systematically compared sixmore » different error correction enzymes across 11 conditions. We find that ErrASE and T7 Endonuclease I are the most effective at decreasing average error rates (up to 5.8-fold relative to the input), whereas MutS is the best for increasing the number of perfect assemblies (up to 25.2-fold). We are able to quantify differential specificities such as ErrASE preferentially corrects C/G transversions whereas T7 Endonuclease I preferentially corrects A/T transversions. More generally, this experimental and computational pipeline is a fast, scalable and extensible way to analyze errors in gene assemblies, to profile error correction methods, and to benchmark DNA synthesis methods.« less

  6. A systematic comparison of error correction enzymes by next-generation sequencing

    DOE PAGES

    Lubock, Nathan B.; Zhang, Di; Sidore, Angus M.; ...

    2017-08-01

    Gene synthesis, the process of assembling genelength fragments from shorter groups of oligonucleotides (oligos), is becoming an increasingly important tool in molecular and synthetic biology. The length, quality and cost of gene synthesis are limited by errors produced during oligo synthesis and subsequent assembly. Enzymatic error correction methods are cost-effective means to ameliorate errors in gene synthesis. Previous analyses of these methods relied on cloning and Sanger sequencing to evaluate their efficiencies, limiting quantitative assessment. Here, we develop a method to quantify errors in synthetic DNA by next-generation sequencing. We analyzed errors in model gene assemblies and systematically compared sixmore » different error correction enzymes across 11 conditions. We find that ErrASE and T7 Endonuclease I are the most effective at decreasing average error rates (up to 5.8-fold relative to the input), whereas MutS is the best for increasing the number of perfect assemblies (up to 25.2-fold). We are able to quantify differential specificities such as ErrASE preferentially corrects C/G transversions whereas T7 Endonuclease I preferentially corrects A/T transversions. More generally, this experimental and computational pipeline is a fast, scalable and extensible way to analyze errors in gene assemblies, to profile error correction methods, and to benchmark DNA synthesis methods.« less

  7. Error detection and correction unit with built-in self-test capability for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Timoc, Constantin

    1990-01-01

    The objective of this project was to research and develop a 32-bit single chip Error Detection and Correction unit capable of correcting all single bit errors and detecting all double bit errors in the memory systems of a spacecraft. We designed the 32-bit EDAC (Error Detection and Correction unit) based on a modified Hamming code and according to the design specifications and performance requirements. We constructed a laboratory prototype (breadboard) which was converted into a fault simulator. The correctness of the design was verified on the breadboard using an exhaustive set of test cases. A logic diagram of the EDAC was delivered to JPL Section 514 on 4 Oct. 1988.

  8. How EFL Students Can Use Google to Correct Their "Untreatable" Written Errors

    ERIC Educational Resources Information Center

    Geiller, Luc

    2014-01-01

    This paper presents the findings of an experiment in which a group of 17 French post-secondary EFL learners used Google to self-correct several "untreatable" written errors. Whether or not error correction leads to improved writing has been much debated, some researchers dismissing it is as useless and others arguing that error feedback…

  9. Critical Neural Substrates for Correcting Unexpected Trajectory Errors and Learning from Them

    ERIC Educational Resources Information Center

    Mutha, Pratik K.; Sainburg, Robert L.; Haaland, Kathleen Y.

    2011-01-01

    Our proficiency at any skill is critically dependent on the ability to monitor our performance, correct errors and adapt subsequent movements so that errors are avoided in the future. In this study, we aimed to dissociate the neural substrates critical for correcting unexpected trajectory errors and learning to adapt future movements based on…

  10. Modifying Spearman's Attenuation Equation to Yield Partial Corrections for Measurement Error--With Application to Sample Size Calculations

    ERIC Educational Resources Information Center

    Nicewander, W. Alan

    2018-01-01

    Spearman's correction for attenuation (measurement error) corrects a correlation coefficient for measurement errors in either-or-both of two variables, and follows from the assumptions of classical test theory. Spearman's equation removes all measurement error from a correlation coefficient which translates into "increasing the reliability of…

  11. Efficacy and workload analysis of a fixed vertical couch position technique and a fixed‐action–level protocol in whole‐breast radiotherapy

    PubMed Central

    Verhoeven, Karolien; Weltens, Caroline; Van den Heuvel, Frank

    2015-01-01

    Quantification of the setup errors is vital to define appropriate setup margins preventing geographical misses. The no‐action–level (NAL) correction protocol reduces the systematic setup errors and, hence, the setup margins. The manual entry of the setup corrections in the record‐and‐verify software, however, increases the susceptibility of the NAL protocol to human errors. Moreover, the impact of the skin mobility on the anteroposterior patient setup reproducibility in whole‐breast radiotherapy (WBRT) is unknown. In this study, we therefore investigated the potential of fixed vertical couch position‐based patient setup in WBRT. The possibility to introduce a threshold for correction of the systematic setup errors was also explored. We measured the anteroposterior, mediolateral, and superior–inferior setup errors during fractions 1–12 and weekly thereafter with tangential angled single modality paired imaging. These setup data were used to simulate the residual setup errors of the NAL protocol, the fixed vertical couch position protocol, and the fixed‐action–level protocol with different correction thresholds. Population statistics of the setup errors of 20 breast cancer patients and 20 breast cancer patients with additional regional lymph node (LN) irradiation were calculated to determine the setup margins of each off‐line correction protocol. Our data showed the potential of the fixed vertical couch position protocol to restrict the systematic and random anteroposterior residual setup errors to 1.8 mm and 2.2 mm, respectively. Compared to the NAL protocol, a correction threshold of 2.5 mm reduced the frequency of mediolateral and superior–inferior setup corrections with 40% and 63%, respectively. The implementation of the correction threshold did not deteriorate the accuracy of the off‐line setup correction compared to the NAL protocol. The combination of the fixed vertical couch position protocol, for correction of the anteroposterior setup error, and the fixed‐action–level protocol with 2.5 mm correction threshold, for correction of the mediolateral and the superior–inferior setup errors, was proved to provide adequate and comparable patient setup accuracy in WBRT and WBRT with additional LN irradiation. PACS numbers: 87.53.Kn, 87.57.‐s

  12. Genetic parameters for ewe reproductive performance and peri-parturient fecal egg counts and their genetic relationships with lamb body weights and fecal egg counts in Katahdin sheep

    USDA-ARS?s Scientific Manuscript database

    This study estimated genetic parameters for ewe reproductive traits [number of lambs born (NLB) and weaned (NLW) per ewe lambing] and peri-parturient (PPR) fecal egg counts (FEC) at lambing (PPR0) and 30 d postpartum (PPR30), and their genetic relationships with lamb BW and FEC in Katahdin sheep. Th...

  13. The Effect of Different Adjuvants on Immune Parameters and Protection following Vaccination of Sheep with a Larval-Specific Antigen of the Gastrointestinal Nematode, Haemonchus contortus

    PubMed Central

    Piedrafita, David; Preston, Sarah; Kemp, Joanna; de Veer, Michael; Sherrard, Jayne; Kraska, Troy; Elhay, Martin; Meeusen, Els

    2013-01-01

    It has recently been recognised that vaccine adjuvants play a critical role in directing the nature of a vaccine induced effector response. In the present study, several adjuvants were evaluated for their ability to protect sheep after field vaccination with the larval-specific Haemonchus contortus antigen, HcsL3. Using a suboptimal antigen dose, aluminium adjuvant was shown to reduce the cumulative faecal egg counts (cFEC) and worm burden by 23% and 25% respectively, in agreement with a previous study. The addition of Quil A to the aluminium-adjuvanted vaccine brought cFEC back to control levels. Vaccination with the adjuvant DEAE-dextran almost doubled the protection compared to the aluminium-adjuvanted vaccine resulting in 40% and 41% reduction in cFEC and worm counts compared to controls. Examination of skin responses following i.d. injection of exsheathed L3, revealed that cFEC was negatively correlated with wheal size and tissue eosinophils for the DEAE-dextran and aluminium-adjuvanted groups respectively. These studies have for the first time shown the potential of DEAE-dextran adjuvant for helminth vaccines, and discovered significant cellular correlates of vaccine-induced protection. PMID:24205209

  14. A modified adjoint-based grid adaptation and error correction method for unstructured grid

    NASA Astrophysics Data System (ADS)

    Cui, Pengcheng; Li, Bin; Tang, Jing; Chen, Jiangtao; Deng, Youqi

    2018-05-01

    Grid adaptation is an important strategy to improve the accuracy of output functions (e.g. drag, lift, etc.) in computational fluid dynamics (CFD) analysis and design applications. This paper presents a modified robust grid adaptation and error correction method for reducing simulation errors in integral outputs. The procedure is based on discrete adjoint optimization theory in which the estimated global error of output functions can be directly related to the local residual error. According to this relationship, local residual error contribution can be used as an indicator in a grid adaptation strategy designed to generate refined grids for accurately estimating the output functions. This grid adaptation and error correction method is applied to subsonic and supersonic simulations around three-dimensional configurations. Numerical results demonstrate that the sensitive grids to output functions are detected and refined after grid adaptation, and the accuracy of output functions is obviously improved after error correction. The proposed grid adaptation and error correction method is shown to compare very favorably in terms of output accuracy and computational efficiency relative to the traditional featured-based grid adaptation.

  15. Cognitive Control Functions of Anterior Cingulate Cortex in Macaque Monkeys Performing a Wisconsin Card Sorting Test Analog

    PubMed Central

    Kuwabara, Masaru; Mansouri, Farshad A.; Buckley, Mark J.

    2014-01-01

    Monkeys were trained to select one of three targets by matching in color or matching in shape to a sample. Because the matching rule frequently changed and there were no cues for the currently relevant rule, monkeys had to maintain the relevant rule in working memory to select the correct target. We found that monkeys' error commission was not limited to the period after the rule change and occasionally occurred even after several consecutive correct trials, indicating that the task was cognitively demanding. In trials immediately after such error trials, monkeys' speed of selecting targets was slower. Additionally, in trials following consecutive correct trials, the monkeys' target selections for erroneous responses were slower than those for correct responses. We further found evidence for the involvement of the cortex in the anterior cingulate sulcus (ACCs) in these error-related behavioral modulations. First, ACCs cell activity differed between after-error and after-correct trials. In another group of ACCs cells, the activity differed depending on whether the monkeys were making a correct or erroneous decision in target selection. Second, bilateral ACCs lesions significantly abolished the response slowing both in after-error trials and in error trials. The error likelihood in after-error trials could be inferred by the error feedback in the previous trial, whereas the likelihood of erroneous responses after consecutive correct trials could be monitored only internally. These results suggest that ACCs represent both context-dependent and internally detected error likelihoods and promote modes of response selections in situations that involve these two types of error likelihood. PMID:24872558

  16. Efficient error correction for next-generation sequencing of viral amplicons

    PubMed Central

    2012-01-01

    Background Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing. Results In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones. Conclusions Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses. The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm PMID:22759430

  17. Efficient error correction for next-generation sequencing of viral amplicons.

    PubMed

    Skums, Pavel; Dimitrova, Zoya; Campo, David S; Vaughan, Gilberto; Rossi, Livia; Forbi, Joseph C; Yokosawa, Jonny; Zelikovsky, Alex; Khudyakov, Yury

    2012-06-25

    Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing. In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones. Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses.The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm.

  18. Correcting AUC for Measurement Error.

    PubMed

    Rosner, Bernard; Tworoger, Shelley; Qiu, Weiliang

    2015-12-01

    Diagnostic biomarkers are used frequently in epidemiologic and clinical work. The ability of a diagnostic biomarker to discriminate between subjects who develop disease (cases) and subjects who do not (controls) is often measured by the area under the receiver operating characteristic curve (AUC). The diagnostic biomarkers are usually measured with error. Ignoring measurement error can cause biased estimation of AUC, which results in misleading interpretation of the efficacy of a diagnostic biomarker. Several methods have been proposed to correct AUC for measurement error, most of which required the normality assumption for the distributions of diagnostic biomarkers. In this article, we propose a new method to correct AUC for measurement error and derive approximate confidence limits for the corrected AUC. The proposed method does not require the normality assumption. Both real data analyses and simulation studies show good performance of the proposed measurement error correction method.

  19. DNA assembly with error correction on a droplet digital microfluidics platform.

    PubMed

    Khilko, Yuliya; Weyman, Philip D; Glass, John I; Adams, Mark D; McNeil, Melanie A; Griffin, Peter B

    2018-06-01

    Custom synthesized DNA is in high demand for synthetic biology applications. However, current technologies to produce these sequences using assembly from DNA oligonucleotides are costly and labor-intensive. The automation and reduced sample volumes afforded by microfluidic technologies could significantly decrease materials and labor costs associated with DNA synthesis. The purpose of this study was to develop a gene assembly protocol utilizing a digital microfluidic device. Toward this goal, we adapted bench-scale oligonucleotide assembly methods followed by enzymatic error correction to the Mondrian™ digital microfluidic platform. We optimized Gibson assembly, polymerase chain reaction (PCR), and enzymatic error correction reactions in a single protocol to assemble 12 oligonucleotides into a 339-bp double- stranded DNA sequence encoding part of the human influenza virus hemagglutinin (HA) gene. The reactions were scaled down to 0.6-1.2 μL. Initial microfluidic assembly methods were successful and had an error frequency of approximately 4 errors/kb with errors originating from the original oligonucleotide synthesis. Relative to conventional benchtop procedures, PCR optimization required additional amounts of MgCl 2 , Phusion polymerase, and PEG 8000 to achieve amplification of the assembly and error correction products. After one round of error correction, error frequency was reduced to an average of 1.8 errors kb - 1 . We demonstrated that DNA assembly from oligonucleotides and error correction could be completely automated on a digital microfluidic (DMF) platform. The results demonstrate that enzymatic reactions in droplets show a strong dependence on surface interactions, and successful on-chip implementation required supplementation with surfactants, molecular crowding agents, and an excess of enzyme. Enzymatic error correction of assembled fragments improved sequence fidelity by 2-fold, which was a significant improvement but somewhat lower than expected compared to bench-top assays, suggesting an additional capacity for optimization.

  20. Quantum Error Correction

    NASA Astrophysics Data System (ADS)

    Lidar, Daniel A.; Brun, Todd A.

    2013-09-01

    Prologue; Preface; Part I. Background: 1. Introduction to decoherence and noise in open quantum systems Daniel Lidar and Todd Brun; 2. Introduction to quantum error correction Dave Bacon; 3. Introduction to decoherence-free subspaces and noiseless subsystems Daniel Lidar; 4. Introduction to quantum dynamical decoupling Lorenza Viola; 5. Introduction to quantum fault tolerance Panos Aliferis; Part II. Generalized Approaches to Quantum Error Correction: 6. Operator quantum error correction David Kribs and David Poulin; 7. Entanglement-assisted quantum error-correcting codes Todd Brun and Min-Hsiu Hsieh; 8. Continuous-time quantum error correction Ognyan Oreshkov; Part III. Advanced Quantum Codes: 9. Quantum convolutional codes Mark Wilde; 10. Non-additive quantum codes Markus Grassl and Martin Rötteler; 11. Iterative quantum coding systems David Poulin; 12. Algebraic quantum coding theory Andreas Klappenecker; 13. Optimization-based quantum error correction Andrew Fletcher; Part IV. Advanced Dynamical Decoupling: 14. High order dynamical decoupling Zhen-Yu Wang and Ren-Bao Liu; 15. Combinatorial approaches to dynamical decoupling Martin Rötteler and Pawel Wocjan; Part V. Alternative Quantum Computation Approaches: 16. Holonomic quantum computation Paolo Zanardi; 17. Fault tolerance for holonomic quantum computation Ognyan Oreshkov, Todd Brun and Daniel Lidar; 18. Fault tolerant measurement-based quantum computing Debbie Leung; Part VI. Topological Methods: 19. Topological codes Héctor Bombín; 20. Fault tolerant topological cluster state quantum computing Austin Fowler and Kovid Goyal; Part VII. Applications and Implementations: 21. Experimental quantum error correction Dave Bacon; 22. Experimental dynamical decoupling Lorenza Viola; 23. Architectures Jacob Taylor; 24. Error correction in quantum communication Mark Wilde; Part VIII. Critical Evaluation of Fault Tolerance: 25. Hamiltonian methods in QEC and fault tolerance Eduardo Novais, Eduardo Mucciolo and Harold Baranger; 26. Critique of fault-tolerant quantum information processing Robert Alicki; References; Index.

  1. New class of photonic quantum error correction codes

    NASA Astrophysics Data System (ADS)

    Silveri, Matti; Michael, Marios; Brierley, R. T.; Salmilehto, Juha; Albert, Victor V.; Jiang, Liang; Girvin, S. M.

    We present a new class of quantum error correction codes for applications in quantum memories, communication and scalable computation. These codes are constructed from a finite superposition of Fock states and can exactly correct errors that are polynomial up to a specified degree in creation and destruction operators. Equivalently, they can perform approximate quantum error correction to any given order in time step for the continuous-time dissipative evolution under these errors. The codes are related to two-mode photonic codes but offer the advantage of requiring only a single photon mode to correct loss (amplitude damping), as well as the ability to correct other errors, e.g. dephasing. Our codes are also similar in spirit to photonic ''cat codes'' but have several advantages including smaller mean occupation number and exact rather than approximate orthogonality of the code words. We analyze how the rate of uncorrectable errors scales with the code complexity and discuss the unitary control for the recovery process. These codes are realizable with current superconducting qubit technology and can increase the fidelity of photonic quantum communication and memories.

  2. Fixing Stellarator Magnetic Surfaces

    NASA Astrophysics Data System (ADS)

    Hanson, James D.

    1999-11-01

    Magnetic surfaces are a perennial issue for stellarators. The design heuristic of finding a magnetic field with zero perpendicular component on a specified outer surface often yields inner magnetic surfaces with very small resonant islands. However, magnetic fields in the laboratory are not design fields. Island-causing errors can arise from coil placement errors, stray external fields, and design inadequacies such as ignoring coil leads and incomplete characterization of current distributions within the coil pack. The problem addressed is how to eliminate such error-caused islands. I take a perturbation approach, where the zero order field is assumed to have good magnetic surfaces, and comes from a VMEC equilibrium. The perturbation field consists of error and correction pieces. The error correction method is to determine the correction field so that the sum of the error and correction fields gives zero island size at specified rational surfaces. It is particularly important to correctly calculate the island size for a given perturbation field. The method works well with many correction knobs, and a Singular Value Decomposition (SVD) technique is used to determine minimal corrections necessary to eliminate islands.

  3. On the Limitations of Variational Bias Correction

    NASA Technical Reports Server (NTRS)

    Moradi, Isaac; Mccarty, Will; Gelaro, Ronald

    2018-01-01

    Satellite radiances are the largest dataset assimilated into Numerical Weather Prediction (NWP) models, however the data are subject to errors and uncertainties that need to be accounted for before assimilating into the NWP models. Variational bias correction uses the time series of observation minus background to estimate the observations bias. This technique does not distinguish between the background error, forward operator error, and observations error so that all these errors are summed up together and counted as observation error. We identify some sources of observations errors (e.g., antenna emissivity, non-linearity in the calibration, and antenna pattern) and show the limitations of variational bias corrections on estimating these errors.

  4. "Coded and Uncoded Error Feedback: Effects on Error Frequencies in Adult Colombian EFL Learners' Writing"

    ERIC Educational Resources Information Center

    Sampson, Andrew

    2012-01-01

    This paper reports on a small-scale study into the effects of uncoded correction (writing the correct forms above each error) and coded annotations (writing symbols that encourage learners to self-correct) on Colombian university-level EFL learners' written work. The study finds that while both coded annotations and uncoded correction appear to…

  5. Experimental research of adaptive OFDM and OCT precoding with a high SE for VLLC system

    NASA Astrophysics Data System (ADS)

    Liu, Shuang-ao; He, Jing; Chen, Qinghui; Deng, Rui; Zhou, Zhihua; Chen, Shenghai; Chen, Lin

    2017-09-01

    In this paper, an adaptive orthogonal frequency division multiplexing (OFDM) modulation scheme with 128/64/32/16-quadrature amplitude modulation (QAM) and orthogonal circulant matrix transform (OCT) precoding is proposed and experimentally demonstrated for a visible laser light communication (VLLC) system with a cost-effective 450-nm blue-light laser diode (LD). The performance of OCT precoding is compared with conventional the adaptive Discrete Fourier Transform-spread (DFT-spread) OFDM scheme, 32 QAM OCT precoding OFDM scheme, 64 QAM OCT precoding OFDM scheme and adaptive OCT precoding OFDM scheme. The experimental results show that OCT precoding can achieve a relatively flat signal-to-noise ratio (SNR) curve, and it can provide performance improvement in bit error rate (BER). Furthermore, the BER of the proposed OFDM signal with a raw bit rate 5.04 Gb/s after 5-m free space transmission is less than 20% of soft-decision forward error correlation (SD-FEC) threshold of 2.4 × 10-2, and the spectral efficiency (SE) of 4.2 bit/s/Hz can be successfully achieved.

  6. Bulk locality and quantum error correction in AdS/CFT

    NASA Astrophysics Data System (ADS)

    Almheiri, Ahmed; Dong, Xi; Harlow, Daniel

    2015-04-01

    We point out a connection between the emergence of bulk locality in AdS/CFT and the theory of quantum error correction. Bulk notions such as Bogoliubov transformations, location in the radial direction, and the holographic entropy bound all have natural CFT interpretations in the language of quantum error correction. We also show that the question of whether bulk operator reconstruction works only in the causal wedge or all the way to the extremal surface is related to the question of whether or not the quantum error correcting code realized by AdS/CFT is also a "quantum secret sharing scheme", and suggest a tensor network calculation that may settle the issue. Interestingly, the version of quantum error correction which is best suited to our analysis is the somewhat nonstandard "operator algebra quantum error correction" of Beny, Kempf, and Kribs. Our proposal gives a precise formulation of the idea of "subregion-subregion" duality in AdS/CFT, and clarifies the limits of its validity.

  7. Reliable Channel-Adapted Error Correction: Bacon-Shor Code Recovery from Amplitude Damping

    NASA Astrophysics Data System (ADS)

    Piedrafita, Álvaro; Renes, Joseph M.

    2017-12-01

    We construct two simple error correction schemes adapted to amplitude damping noise for Bacon-Shor codes and investigate their prospects for fault-tolerant implementation. Both consist solely of Clifford gates and require far fewer qubits, relative to the standard method, to achieve exact correction to a desired order in the damping rate. The first, employing one-bit teleportation and single-qubit measurements, needs only one-fourth as many physical qubits, while the second, using just stabilizer measurements and Pauli corrections, needs only half. The improvements stem from the fact that damping events need only be detected, not corrected, and that effective phase errors arising due to undamped qubits occur at a lower rate than damping errors. For error correction that is itself subject to damping noise, we show that existing fault-tolerance methods can be employed for the latter scheme, while the former can be made to avoid potential catastrophic errors and can easily cope with damping faults in ancilla qubits.

  8. Modeling coherent errors in quantum error correction

    NASA Astrophysics Data System (ADS)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.

  9. A 2 × 2 taxonomy of multilevel latent contextual models: accuracy-bias trade-offs in full and partial error correction models.

    PubMed

    Lüdtke, Oliver; Marsh, Herbert W; Robitzsch, Alexander; Trautwein, Ulrich

    2011-12-01

    In multilevel modeling, group-level variables (L2) for assessing contextual effects are frequently generated by aggregating variables from a lower level (L1). A major problem of contextual analyses in the social sciences is that there is no error-free measurement of constructs. In the present article, 2 types of error occurring in multilevel data when estimating contextual effects are distinguished: unreliability that is due to measurement error and unreliability that is due to sampling error. The fact that studies may or may not correct for these 2 types of error can be translated into a 2 × 2 taxonomy of multilevel latent contextual models comprising 4 approaches: an uncorrected approach, partial correction approaches correcting for either measurement or sampling error (but not both), and a full correction approach that adjusts for both sources of error. It is shown mathematically and with simulated data that the uncorrected and partial correction approaches can result in substantially biased estimates of contextual effects, depending on the number of L1 individuals per group, the number of groups, the intraclass correlation, the number of indicators, and the size of the factor loadings. However, the simulation study also shows that partial correction approaches can outperform full correction approaches when the data provide only limited information in terms of the L2 construct (i.e., small number of groups, low intraclass correlation). A real-data application from educational psychology is used to illustrate the different approaches.

  10. Alteration of a motor learning rule under mirror-reversal transformation does not depend on the amplitude of visual error.

    PubMed

    Kasuga, Shoko; Kurata, Makiko; Liu, Meigen; Ushiba, Junichi

    2015-05-01

    Human's sophisticated motor learning system paradoxically interferes with motor performance when visual information is mirror-reversed (MR), because normal movement error correction further aggravates the error. This error-increasing mechanism makes performing even a simple reaching task difficult, but is overcome by alterations in the error correction rule during the trials. To isolate factors that trigger learners to change the error correction rule, we manipulated the gain of visual angular errors when participants made arm-reaching movements with mirror-reversed visual feedback, and compared the rule alteration timing between groups with normal or reduced gain. Trial-by-trial changes in the visual angular error was tracked to explain the timing of the change in the error correction rule. Under both gain conditions, visual angular errors increased under the MR transformation, and suddenly decreased after 3-5 trials with increase. The increase became degressive at different amplitude between the two groups, nearly proportional to the visual gain. The findings suggest that the alteration of the error-correction rule is not dependent on the amplitude of visual angular errors, and possibly determined by the number of trials over which the errors increased or statistical property of the environment. The current results encourage future intensive studies focusing on the exact rule-change mechanism. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  11. Asymmetric soft-error resistant memory

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Perlman, Marvin (Inventor)

    1991-01-01

    A memory system is provided, of the type that includes an error-correcting circuit that detects and corrects, that more efficiently utilizes the capacity of a memory formed of groups of binary cells whose states can be inadvertently switched by ionizing radiation. Each memory cell has an asymmetric geometry, so that ionizing radiation causes a significantly greater probability of errors in one state than in the opposite state (e.g., an erroneous switch from '1' to '0' is far more likely than a switch from '0' to'1'. An asymmetric error correcting coding circuit can be used with the asymmetric memory cells, which requires fewer bits than an efficient symmetric error correcting code.

  12. A Simulation Testbed for Adaptive Modulation and Coding in Airborne Telemetry

    DTIC Science & Technology

    2014-05-29

    its modulation waveforms and LDPC for the FEC codes . It also uses several sets of published telemetry channel sounding data as its channel models...waveforms and LDPC for the FEC codes . It also uses several sets of published telemetry channel sounding data as its channel models. Within the context...check ( LDPC ) codes with tunable code rates, and both static and dynamic telemetry channel models are included. In an effort to maximize the

  13. Genetic parameters for ewe reproductive performance and peri-parturient fecal egg counts and their genetic relationships with lamb body weights and fecal egg counts in Katahdin sheep

    USDA-ARS?s Scientific Manuscript database

    Genetic parameters for ewe reproductive traits [number of lambs born (NLB) and number of lambs weaned (NLW)] and ewe peri-parturient rise (PPR) fecal egg counts (FEC) at lambing (PPR0) and at 30-d post lambing (PPR30), and their genetic relationships with lamb BW and FEC in Katahdin sheep were estim...

  14. Phosphonate removal from discharged circulating cooling water using iron-carbon micro-electrolysis.

    PubMed

    Zhou, Zhen; Qiao, Weimin; Lin, Yangbo; Shen, Xuelian; Hu, Dalong; Zhang, Jianqiao; Jiang, Lu-Man; Wang, Luochun

    2014-01-01

    Phosphonate is a commonly used corrosion and scale inhibitor for a circulating cooling water (CCW) system. Its discharge could cause eutrophication of receiving waters. The iron-carbon (Fe/C) micro-electrolysis technology was used to degrade and remove phosphonate from discharged CCW. The influences of initial pH, Fe/C ratio (FCR) and temperature on phosphonate removal were investigated in a series of batch tests and optimized by response surface methodology. The quadratic model of phosphonate removal was obtained with satisfactory degrees of fitness. The optimum conditions with total phosphorus removal efficiency of 95% were obtained at pH 7.0, FCR of 1.25, and temperature of 45 °C. The phosphonate removal mechanisms were also studied. Phosphonate removal occurred predominantly via two consecutive reactive phases: the degradation of phosphonate complexes (Ca-phosphonate) and the precipitation of Fe/C micro-electrolysis products (PO₄(3-), Ca²⁺ and Fe³⁺).

  15. Stereochemical Alignment in Triphospha[3]ferrocenophanes

    PubMed Central

    Borucki, Stefan; Kelemen, Zsolt; Maurer, Martin; Bruhn, Clemens

    2017-01-01

    Abstract A series of triphospha[3]ferrocenophanes of the type Fe(C5H4‐PtBu)2PX with X=H, F, Cl, Br, I, NEt2, tBu has been prepared and characterized by heteronuclear NMR spectroscopy and X‐ray crystallography. Despite having three stereogenic centers, the selective formation of a reduced number of diastereomers (either one or two) has been observed for these ferrocenophanes. Theoretical calculations revealed that the inversion of the central stereogenic center inverts the frontier orbital sequence leading to either an iron or a phosphorus centered HOMO depending on the respective diastereomer. CV measurements supported these results. For the all‐tert‐butyl substituted [3]ferrocenophane Fe(C5H4)2(PtBu)3 a chiral staggered conformation has been found in the solid state which differs substantially from the only other all‐organo substituted [3]ferrocenophane, Fe(C5H4)2(PPh)3. PMID:28557205

  16. A neutral molecular-based layered magnet [Fe(C2O4)(CH3OH)]n exhibiting magnetic ordering at TN approximately 23 K.

    PubMed

    Zhang, Bin; Zhang, Yan; Zhang, Jinbiao; Li, Junchao; Zhu, Daoben

    2008-10-07

    Solvothermal synthesis of FeCl(2).4H2O and H2C2O(4).2H2O in methanol at 120 degrees C yielded yellow plate-like crystals of [Fe(C2O4)(CH3OH)]n. Each iron atom is in a distorted octahedral environment, being bonded to four oxygen atoms from two bisbidentate oxalate anions, one O atom of a chelating oxalate anion and one O atom from a methanol molecule as an oxalate group bridging ligand in a five-coordination mode. The neutral layer of [Fe(C2O4)(CH3OH)]n with a [4,4] net along the ac plane. There is no interaction between layers. A long range magnetic ordering with spin canting at TN approximately 23 K was observed and confirmed by AC susceptibility measurements.

  17. Evaluate error correction ability of magnetorheological finishing by smoothing spectral function

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Fan, Bin; Wan, Yongjian; Shi, Chunyan; Zhuo, Bin

    2014-08-01

    Power Spectral Density (PSD) has been entrenched in optics design and manufacturing as a characterization of mid-high spatial frequency (MHSF) errors. Smoothing Spectral Function (SSF) is a newly proposed parameter that based on PSD to evaluate error correction ability of computer controlled optical surfacing (CCOS) technologies. As a typical deterministic and sub-aperture finishing technology based on CCOS, magnetorheological finishing (MRF) leads to MHSF errors inevitably. SSF is employed to research different spatial frequency error correction ability of MRF process. The surface figures and PSD curves of work-piece machined by MRF are presented. By calculating SSF curve, the correction ability of MRF for different spatial frequency errors will be indicated as a normalized numerical value.

  18. Dissipative quantum error correction and application to quantum sensing with trapped ions.

    PubMed

    Reiter, F; Sørensen, A S; Zoller, P; Muschik, C A

    2017-11-28

    Quantum-enhanced measurements hold the promise to improve high-precision sensing ranging from the definition of time standards to the determination of fundamental constants of nature. However, quantum sensors lose their sensitivity in the presence of noise. To protect them, the use of quantum error-correcting codes has been proposed. Trapped ions are an excellent technological platform for both quantum sensing and quantum error correction. Here we present a quantum error correction scheme that harnesses dissipation to stabilize a trapped-ion qubit. In our approach, always-on couplings to an engineered environment protect the qubit against spin-flips or phase-flips. Our dissipative error correction scheme operates in a continuous manner without the need to perform measurements or feedback operations. We show that the resulting enhanced coherence time translates into a significantly enhanced precision for quantum measurements. Our work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.

  19. The Effects of Two Methods of Error Correction on L2 Writing: The Case of Acquisition of the Spanish Preterite and Imperfect

    ERIC Educational Resources Information Center

    Munoz, Carlos A.

    2011-01-01

    Very often, second language (L2) writers commit the same type of errors repeatedly, despite being corrected directly or indirectly by teachers or peers (Semke, 1984; Truscott, 1996). Apart from discouraging teachers from providing error correction feedback, this also makes them hesitant as to what form of corrective feedback to adopt. Ferris…

  20. Continuous quantum error correction for non-Markovian decoherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oreshkov, Ognyan; Brun, Todd A.; Communication Sciences Institute, University of Southern California, Los Angeles, California 90089

    2007-08-15

    We study the effect of continuous quantum error correction in the case where each qubit in a codeword is subject to a general Hamiltonian interaction with an independent bath. We first consider the scheme in the case of a trivial single-qubit code, which provides useful insights into the workings of continuous error correction and the difference between Markovian and non-Markovian decoherence. We then study the model of a bit-flip code with each qubit coupled to an independent bath qubit and subject to continuous correction, and find its solution. We show that for sufficiently large error-correction rates, the encoded state approximatelymore » follows an evolution of the type of a single decohering qubit, but with an effectively decreased coupling constant. The factor by which the coupling constant is decreased scales quadratically with the error-correction rate. This is compared to the case of Markovian noise, where the decoherence rate is effectively decreased by a factor which scales only linearly with the rate of error correction. The quadratic enhancement depends on the existence of a Zeno regime in the Hamiltonian evolution which is absent in purely Markovian dynamics. We analyze the range of validity of this result and identify two relevant time scales. Finally, we extend the result to more general codes and argue that the performance of continuous error correction will exhibit the same qualitative characteristics.« less

  1. Contingent negative variation (CNV) associated with sensorimotor timing error correction.

    PubMed

    Jang, Joonyong; Jones, Myles; Milne, Elizabeth; Wilson, Daniel; Lee, Kwang-Hyuk

    2016-02-15

    Detection and subsequent correction of sensorimotor timing errors are fundamental to adaptive behavior. Using scalp-recorded event-related potentials (ERPs), we sought to find ERP components that are predictive of error correction performance during rhythmic movements. Healthy right-handed participants were asked to synchronize their finger taps to a regular tone sequence (every 600 ms), while EEG data were continuously recorded. Data from 15 participants were analyzed. Occasional irregularities were built into stimulus presentation timing: 90 ms before (advances: negative shift) or after (delays: positive shift) the expected time point. A tapping condition alternated with a listening condition in which identical stimulus sequence was presented but participants did not tap. Behavioral error correction was observed immediately following a shift, with a degree of over-correction with positive shifts. Our stimulus-locked ERP data analysis revealed, 1) increased auditory N1 amplitude for the positive shift condition and decreased auditory N1 modulation for the negative shift condition; and 2) a second enhanced negativity (N2) in the tapping positive condition, compared with the tapping negative condition. In response-locked epochs, we observed a CNV (contingent negative variation)-like negativity with earlier latency in the tapping negative condition compared with the tapping positive condition. This CNV-like negativity peaked at around the onset of subsequent tapping, with the earlier the peak, the better the error correction performance with the negative shifts while the later the peak, the better the error correction performance with the positive shifts. This study showed that the CNV-like negativity was associated with the error correction performance during our sensorimotor synchronization study. Auditory N1 and N2 were differentially involved in negative vs. positive error correction. However, we did not find evidence for their involvement in behavioral error correction. Overall, our study provides the basis from which further research on the role of the CNV in perceptual and motor timing can be developed. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Refraction error correction for deformation measurement by digital image correlation at elevated temperature

    NASA Astrophysics Data System (ADS)

    Su, Yunquan; Yao, Xuefeng; Wang, Shen; Ma, Yinji

    2017-03-01

    An effective correction model is proposed to eliminate the refraction error effect caused by an optical window of a furnace in digital image correlation (DIC) deformation measurement under high-temperature environment. First, a theoretical correction model with the corresponding error correction factor is established to eliminate the refraction error induced by double-deck optical glass in DIC deformation measurement. Second, a high-temperature DIC experiment using a chromium-nickel austenite stainless steel specimen is performed to verify the effectiveness of the correction model by the correlation calculation results under two different conditions (with and without the optical glass). Finally, both the full-field and the divisional displacement results with refraction influence are corrected by the theoretical model and then compared to the displacement results extracted from the images without refraction influence. The experimental results demonstrate that the proposed theoretical correction model can effectively improve the measurement accuracy of DIC method by decreasing the refraction errors from measured full-field displacements under high-temperature environment.

  3. Simulation of co-phase error correction of optical multi-aperture imaging system based on stochastic parallel gradient decent algorithm

    NASA Astrophysics Data System (ADS)

    He, Xiaojun; Ma, Haotong; Luo, Chuanxin

    2016-10-01

    The optical multi-aperture imaging system is an effective way to magnify the aperture and increase the resolution of telescope optical system, the difficulty of which lies in detecting and correcting of co-phase error. This paper presents a method based on stochastic parallel gradient decent algorithm (SPGD) to correct the co-phase error. Compared with the current method, SPGD method can avoid detecting the co-phase error. This paper analyzed the influence of piston error and tilt error on image quality based on double-aperture imaging system, introduced the basic principle of SPGD algorithm, and discuss the influence of SPGD algorithm's key parameters (the gain coefficient and the disturbance amplitude) on error control performance. The results show that SPGD can efficiently correct the co-phase error. The convergence speed of the SPGD algorithm is improved with the increase of gain coefficient and disturbance amplitude, but the stability of the algorithm reduced. The adaptive gain coefficient can solve this problem appropriately. This paper's results can provide the theoretical reference for the co-phase error correction of the multi-aperture imaging system.

  4. Fe-C and Fe-H systems at pressures of the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Bazhanova, Zulfiya G.; Oganov, Artem R.; Gianola, Omar

    2012-05-01

    The solid inner core of Earth is predominantly composed of iron alloyed with several percent Ni and some lighter elements, Si, S, O, H, and C being the prime candidates. To establish the chemical composition of the inner core, it is necessary to find the range of compositions that can explain its observed characteristics. Recently, there have been a growing number of papers investigating C and H as possible light elements in the core, but the results were contradictory. Here, using ab initio simulations, we study the Fe-C and Fe-H systems at inner core pressures (330-364 GPa). Based on the evolutionary structure prediction algorithm USPEX, we have determined the lowest-enthalpy structures of all possible carbides (FeC, Fe2C, Fe3C, Fe4C, FeC2, FeC3, FeC4, Fe7C3) and hydrides (Fe4H, Fe3H, Fe2H, FeH, FeH2, FeH3, FeH4) and have found that Fe2C (space group Pnma) is the most stable iron carbide at pressures of the inner core, while FeH, FeH3, and FeH4 are the most stable iron hydrides at these conditions. For Fe3C, the cementite structure (space group Pnma) and the Cmcm structure recently found by random sampling are less stable than the I-4 and C2/m structures predicted here. We have found that FeH3 and FeH4 adopt chemically interesting thermodynamically stable crystal structures, containing trivalent iron in both compounds. We find that the density of the inner core can be matched with a reasonable concentration of carbon, 11-15 mol.% (2.6-3.7 wt.%) at relevant pressures and temperatures, yielding the upper bound to the C content in the inner core. This concentration matches that in CI carbonaceous chondrites and corresponds to the average atomic mass in the range 49.3-51.0, in close agreement with inferences from Birch's law for the inner core. Similarly made estimates for the maximum hydrogen content are unrealistically high: 17-22 mol.% (0.4-0.5 wt.%), which corresponds to the average atomic mass of the core in the range 43.8-46.5. We conclude that carbon is a better candidate light alloying element than hydrogen.

  5. Can the amount of digestible undegraded protein offered to ewes in late pregnancy affect the periparturient change in resistance to gastrointestinal nematodes?

    PubMed

    Sebastiano, Rocco S; Sweeney, Torres; Keady, Timothy W J; Hanrahan, James P; Good, Barbara

    2017-02-15

    Ewes experience a temporary decline in resistance to gastrointestinal nematodes (GIN) during the periparturient period, characterised by a rise in faecal egg count (FEC) that represents a major source of pasture contamination for naïve progeny. The aim of this study was to assess the effect of level of supplementation with digestible undegraded protein (DUP) during the last 6 weeks of pregnancy on periparturient FEC and the performance of ewes with a naturally acquired parasite infection. Eighty-five Belclare and Belclare x Scottish Blackface twin/triplet-bearing ewes were allocated to 1 of 4 dietary groups representing the combination of 2 concentrates (DUP concentration 29 and 94g/kg dry matter) with 2 levels of concentrate during the final 6 weeks of gestation (18 and 30kg in total for ewes with twins; 24 and 35kg for ewes with triplets). All ewes were housed during the pre-partum feeding period and offered grass silage ad libitum; food intake was recorded daily. The intake of DUP varied from 26 to 72g/d among treatments and was reflected in variation of 0.76 to 1.20 in metabolizable protein supply as a proportion of requirements. After lambing, ewes and lambs grazed on permanent sheep pasture, without concentrate supplementation, until weaning (14 weeks post lambing). The variables studied, from week 6 pre-lambing up to week 10 post-lambing, included: FEC, serum pepsinogen concentration, body weight (BW) and body condition score (BCS). The effect of week (relative to lambing date) on FEC was highly significant (P<0.001). However, diet did not influence FEC (P>0.05) at any stage either pre- or post-partum. Pepsinogen concentration also varied with time but was not influenced by dietary treatment (P>0.05). The changes in BW and BCS from 6 weeks before lambing to weaning were not affected by the concentration of DUP in the supplement but ewes on treatments involving the higher level of supplementation lost less BW and BCS (P<0.001). The results of this study indicate that the level of DUP supplementation during the last 6 weeks of pregnancy does not affect FEC, BW or BCS of housed ewes with a naturally acquired GIN infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Use of copper oxide wire particles to control gastrointestinal nematodes in goats.

    PubMed

    Burke, J M; Terrill, T H; Kallu, R R; Miller, J E; Mosjidis, J

    2007-10-01

    The objectives of these experiments were to determine the optimal dose of copper oxide wire particles (COWP) necessary to reduce gastrointestinal nematode (GIN) infection in young and mature goats naturally infected with Haemonchus contortus or a mixed infection and to determine whether the effectiveness could be enhanced through feeding management. Two experiments were conducted during cooler months in Georgia, and 4 experiments were conducted during warmer spring or summer months in Arkansas. Meat goats received 0 up to 10 g of COWP under a variety of management conditions. In all experiments, blood and feces were collected every 3 or 7 d from 6 to 42 d to determine blood packed cell volume (PCV) and fecal egg counts (FEC) to estimate the degree of GIN infection. In mature goats grazing fall pasture, mean FEC of 0 g of COWP-treated goats increased, and those of 4 g of COWP-treated goats remained low on d 0, 7, and 14 (COWP x d, P < 0.03), and FEC decreased on these days (P < 0.001). In 5 and 10 g of COWP-treated goats, PCV increased (P < 0.001), but FEC and PCV remained unchanged over time in control goats. Fecal egg counts were similar among all low doses (0.5, 1, 2, 4 g) of COWP administered to weaned kids for all dates examined (P > 0.10), which were lower on d 7 through 21 (COWP x date, P < 0.05) but similar by d 28, compared with FEC of 0 g of COWP-treated kids. Packed cell volume was lower in 0 g compared with all COWP-treated kids by d 14 (COWP x date, P < 0.05). Feeding management in combination with COWP for GIN control had little effect compared with COWP alone for these short-term studies. In conclusion, a dose of COWP as low as 0.5 g, which was considered optimal to reduce the risk of copper toxicity, was effective in reducing FEC in young goats, and 5 g of COWP was effective in older goats. Copper oxide does not appear to be effective in controlling newly acquired L4 stage (preadult) larvae, which also feed on blood, leading to decreased PCV in newly infected goats.

  7. Reduction mechanisms of additives on Si anodes of Li-ion batteries.

    PubMed

    Martínez de la Hoz, Julibeth M; Balbuena, Perla B

    2014-08-28

    Solid-electrolyte interphase (SEI) layers are films deposited on the surface of Li-ion battery electrodes during battery charge and discharge processes. They are due to electrochemical instability of the electrolyte which causes electron transfer from (to) the anode (cathode) surfaces. The films could have a protective passivating role and therefore understanding the detailed reduction (oxidation) processes is essential. Here density functional theory and ab initio molecular dynamics simulations are used to investigate the reduction mechanisms of vinylene carbonate (VC) and fluoroethylene carbonate (FEC) on lithiated silicon surfaces. These species are frequently used as "additives" to improve the SEI properties. It is found that on lithiated Si anodes (with low to intermediate degrees of lithiation) VC may be reduced via a 2e(-) mechanism yielding an opened VC(2-) anion. At higher degrees of lithiation, such a species receives two extra electrons from the surface resulting in an adsorbed CO(2-)(ads) anion and a radical anion ˙OC2H2O(2-). Additionally, in agreement with experimental observations, it is shown that CO2 can be generated from reaction of VC with the CO3(2-)anion, a product of the reduction of the main solvent, ethylene carbonate (EC). On the other hand, FEC reduction on LixSiy surfaces is found to be independent of the degree of lithiation, and occurs through three mechanisms. One of them leads to an adsorbed VC(2-) anion upon release from the FEC molecule and adsorption on the surface of F(-) and one H atom. Thus in some cases, the reduction of FEC may lead to the exact same reduction products as that of VC, which explains similarities in SEI layers formed in the presence of these additives. However, FEC may be reduced via two other multi-electron transfer mechanisms that result in formation of either CO2(2-), F(-), and ˙CH2CHO(-) or CO(2-), F(-), and ˙OCH2CHO(-). These alternative reduction products may oligomerize and form SEI layers with different components than those formed in the presence of VC. In all cases, FEC reduction also leads to formation of LiF moieties on the anode surface, in agreement with reported experimental data. The crucial role of the surface in each of these mechanisms is thoroughly explained.

  8. Association between variation in faecal egg count for a natural mixed field-challenge of nematode parasites and TLR4 variation.

    PubMed

    Lin, Y-S; Zhou, H; Forrest, R H J; Frampton, C M; Burrows, L E R; Hickford, J G H

    2016-03-15

    Research has shown that Toll-like receptor 4 (TLR4) is important in immune responses to some helminth parasites. In sheep, variation in the PAMP region of TLR4 may result in structurally and thus functionally different TLR4 molecules, and this may consequently lead to variation in the TLR4 response to parasite infections. This study involved three separate, but related sheep breeds (Merino, Polwarth and Corriedale sheep) and a total of 885 lambs from five New Zealand farms that underwent a mixed field-challenge from gastro-intestinal parasites. Faecal samples were collected at approximately 4 and 9 months of age and faecal egg counts (FECs) for Nematodirus spp. and Strongyle species determined, along with the total number of eggs per gram (EPG). Analysis of the five farms collectively revealed an association (P=0.023) between the presence of TLR4 variant *02 (mean 24 EPG) and the absence of the variant (mean 32 EPG) at 9 months of age. Conversely the presence of *03 had a significantly (P=0.047) higher mean Nematodirus spp. FEC (mean 42 EPG) compared to the absence (mean 28 EPG) at 9 months of age. More associations were revealed when the data were split according to the dominant faecal parasite species. With a predominantly Trichostrongylus spp. FEC group of lambs at 9 months of age, the presence of TLR4 variant *02 was found to have significantly (P=0.003) lower Nematodirus spp. FEC (mean 4 EPG), and also significantly (P=0.033) lower total FEC (mean 312 EPG) when compared to sheep without the variant (mean 15 EPG and 449 EPG, respectively). The presence of TLR4 variant *03 and *04 were associated or tended to be associated (P=0.010 and P=0.088, respectively) with higher Nematodirus spp. FEC (mean 25 EPG and 22 EPG, respectively) when compared to lambs without the variant (mean 10 EPG and 11 EPG, respectively). These results suggest that TLR4 variation may be affecting the immune response to gastro-intestinal parasites in sheep, although principally to Nematodirus spp. infections and not Strongyle species infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Co-expression analysis and identification of fecundity-related long non-coding RNAs in sheep ovaries.

    PubMed

    Miao, Xiangyang; Luo, Qingmiao; Zhao, Huijing; Qin, Xiaoyu

    2016-12-16

    Small Tail Han sheep, including the FecB B FecB B (Han BB) and FecB + FecB + (Han++) genotypes, and Dorset sheep exhibit different fecundities. To identify novel long non-coding RNAs (lncRNAs) associated with sheep fecundity to better understand their molecular mechanisms, a genome-wide analysis of mRNAs and lncRNAs from Han BB, Han++ and Dorset sheep was performed. After the identification of differentially expressed mRNAs and lncRNAs, 16 significant modules were explored by using weighted gene coexpression network analysis (WGCNA) followed by functional enrichment analysis of the genes and lncRNAs in significant modules. Among these selected modules, the yellow and brown modules were significantly related to sheep fecundity. lncRNAs (e.g., NR0B1, XLOC_041882, and MYH15) in the yellow module were mainly involved in the TGF-β signalling pathway, and NYAP1 and BCORL1 were significantly associated with the oxytocin signalling pathway, which regulates several genes in the coexpression network of the brown module. Overall, we identified several gene modules associated with sheep fecundity, as well as networks consisting of hub genes and lncRNAs that may contribute to sheep prolificacy by regulating the target mRNAs related to the TGF-β and oxytocin signalling pathways. This study provides an alternative strategy for the identification of potential candidate regulatory lncRNAs.

  10. Permanent scalp alopecia related to breast cancer chemotherapy by sequential fluorouracil/epirubicin/cyclophosphamide (FEC) and docetaxel: a prospective study of 20 patients.

    PubMed

    Kluger, N; Jacot, W; Frouin, E; Rigau, V; Poujol, S; Dereure, O; Guillot, B; Romieu, G; Bessis, D

    2012-11-01

    To analyze the clinical and histological features of permanent alopecia following a sequential fluorouracil/epirubicin/cyclophosphamide (FEC) and docetaxel regimen for adjuvant breast cancer treatment. Women treated for breast cancer by a sequential adjuvant FEC and docetaxel regimen who developed permanent alopecia diagnosed between 2007 and 2011 were identified from the Department of Dermatology (Saint-Eloi Hospital, Montpellier, France) and the Department of Medical Oncology (CRLC Val d'Aurelle, Montpellier, France). Data were collected regarding demographics, type of cancer, delay of onset after chemotherapy, Dermatology Life Quality Index (DLQI), clinical description of the lesions, scalp biopsies, laboratory explorations investigating steroid hormonal, iron, zinc and thyroid status, therapy and outcome. Twenty white Caucasian females were included. Hair loss presented with a moderate or intense androgenetic-like pattern of scalp alopecia. Biopsy specimen examinations were normal or displayed the androgenetic-like pattern. Laboratory explorations ruled out iron or zinc deficiency and thyroid disorders and confirmed hormonal menopause without hyperandrogenism. The overall mean DLQI score reflected the distressing psychological consequences in the patients' lives. No spontaneous regrowth of the scalp hair was noted. Treatment including vitamins, minoxidil, psoralen and ultraviolet A therapy and spironolactone proved to be ineffective. Permanent and severe alopecia is a newly reported complication of the FEC 100-docetaxel breast cancer regimen.

  11. Evaluation performance of diagnostic methods of intestinal parasitosis in school age children in Ethiopia.

    PubMed

    Yimer, Mulat; Hailu, Tadesse; Mulu, Wondemagegn; Abera, Bayeh

    2015-12-26

    Although the sensitivity of Wet mount technique is questionable, it is the major diagnostic technique for routine diagnosis of intestinal parasitosis in Ethiopia. Therefore, the aim of this study was the evaluation performance of diagnostic methods of intestinal parasitosis in school age children in Ethiopia. A cross sectional study was conducted from May to June 2013. Single stool sample was processed for direct, Formol ether concentration (FEC) and Kato Katz methods. The sensitivity and negative predictive value (NPV) of diagnostic tests were calculated in terms of the "Gold" standard method (the combined result of the three methods altogether). A total of 422 school age children were participated in this study. The prevalence of intestinal parasites was high (74.6%) with Kato Katz technique. The sensitivity of Wet mount, FEC and Kato Katz tests against the Gold standard test was 48.9, 63.1 and 93.7%, respectively. Kato Katz technique revealed a better NPV 80.4 (80.1-80.6) as compared to the Wet mount (33.7%) and FEC techniques (41.3%). In this study, the Kato Katz technique outperformed the other two methods but the true values for sensitivity, specificity and diagnostic values are not known. Moreover, it is labor intensive and not easily accessible. Hence, it is preferable to use FEC technique to complement the Wet mount test.

  12. Determination of magnetic domain state of carbon coated iron nanoparticles via 57Fe zero-external-field NMR

    NASA Astrophysics Data System (ADS)

    Manjunatha, M.; Kumar, Rajeev; Sahoo, Balaram; Damle, Ramakrishna; Ramesh, K. P.

    2018-05-01

    The magnetic domain state of carbon coated iron nanopowder (Fe@C) was studied by the internal field nuclear magnetic resonance (IFNMR) at 77 K using the spin echo technique. The structure and magnetic properties of the sample were further characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Mössbauer spectroscopy, vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA) and Raman Spectroscopy. The obtained IFNMR results of Fe@C powder were compared with that of micron sized carbonyl iron (CI) and electrolytic iron (EI) powders. The calculated critical size of the single domain iron particles in Fe@C is ∼ 16 nm. A higher enhancement in echo amplitude was observed due to better response of the domain walls of multidomain particles in comparison to the single domain particles. The echo signal of CI and EI particles exhibit a single narrow intense peak corresponding to the domain walls, whereas Fe@C exhibits two low amplitude peaks at two different frequencies: a low frequency (46.6 MHz) peak corresponds to the response of the domain walls of the multidomain particles and the other high frequency (47.2 MHz) signal (a shoulder) corresponding to the response of the magnetic nuclei inside the domain. Our results help in determining the domain state of iron-based magnetic particles using 57Fe-IFNMR.

  13. Designing, optimization and validation of tetra-primer ARMS PCR protocol for genotyping mutations in caprine Fec genes

    PubMed Central

    Ahlawat, Sonika; Sharma, Rekha; Maitra, A.; Roy, Manoranjan; Tantia, M.S.

    2014-01-01

    New, quick, and inexpensive methods for genotyping novel caprine Fec gene polymorphisms through tetra-primer ARMS PCR were developed in the present investigation. Single nucleotide polymorphism (SNP) genotyping needs to be attempted to establish association between the identified mutations and traits of economic importance. In the current study, we have successfully genotyped three new SNPs identified in caprine fecundity genes viz. T(-242)C (BMPR1B), G1189A (GDF9) and G735A (BMP15). Tetra-primer ARMS PCR protocol was optimized and validated for these SNPs with short turn-around time and costs. The optimized techniques were tested on 158 random samples of Black Bengal goat breed. Samples with known genotypes for the described genes, previously tested in duplicate using the sequencing methods, were employed for validation of the assay. Upon validation, complete concordance was observed between the tetra-primer ARMS PCR assays and the sequencing results. These results highlight the ability of tetra-primer ARMS PCR in genotyping of mutations in Fec genes. Any associated SNP could be used to accelerate the improvement of goat reproductive traits by identifying high prolific animals at an early stage of life. Our results provide direct evidence that tetra-primer ARMS-PCR is a rapid, reliable, and cost-effective method for SNP genotyping of mutations in caprine Fec genes. PMID:25606428

  14. Supporting Dictation Speech Recognition Error Correction: The Impact of External Information

    ERIC Educational Resources Information Center

    Shi, Yongmei; Zhou, Lina

    2011-01-01

    Although speech recognition technology has made remarkable progress, its wide adoption is still restricted by notable effort made and frustration experienced by users while correcting speech recognition errors. One of the promising ways to improve error correction is by providing user support. Although support mechanisms have been proposed for…

  15. A Hybrid Approach for Correcting Grammatical Errors

    ERIC Educational Resources Information Center

    Lee, Kiyoung; Kwon, Oh-Woog; Kim, Young-Kil; Lee, Yunkeun

    2015-01-01

    This paper presents a hybrid approach for correcting grammatical errors in the sentences uttered by Korean learners of English. The error correction system plays an important role in GenieTutor, which is a dialogue-based English learning system designed to teach English to Korean students. During the talk with GenieTutor, grammatical error…

  16. A Comparison of Error-Correction Procedures on Skill Acquisition during Discrete-Trial Instruction

    ERIC Educational Resources Information Center

    Carroll, Regina A.; Joachim, Brad T.; St. Peter, Claire C.; Robinson, Nicole

    2015-01-01

    Previous research supports the use of a variety of error-correction procedures to facilitate skill acquisition during discrete-trial instruction. We used an adapted alternating treatments design to compare the effects of 4 commonly used error-correction procedures on skill acquisition for 2 children with attention deficit hyperactivity disorder…

  17. The Effect of Error Correction Feedback on the Collocation Competence of Iranian EFL Learners

    ERIC Educational Resources Information Center

    Jafarpour, Ali Akbar; Sharifi, Abolghasem

    2012-01-01

    Collocations are one of the most important elements in language proficiency but the effect of error correction feedback of collocations has not been thoroughly examined. Some researchers report the usefulness and importance of error correction (Hyland, 1990; Bartram & Walton, 1991; Ferris, 1999; Chandler, 2003), while others showed that error…

  18. A Support System for Error Correction Questions in Programming Education

    ERIC Educational Resources Information Center

    Hachisu, Yoshinari; Yoshida, Atsushi

    2014-01-01

    For supporting the education of debugging skills, we propose a system for generating error correction questions of programs and checking the correctness. The system generates HTML files for answering questions and CGI programs for checking answers. Learners read and answer questions on Web browsers. For management of error injection, we have…

  19. 78 FR 39730 - Medicare Program; Notification of Closure of Teaching Hospitals and Opportunity To Apply for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ..., Medicare--Hospital Insurance; and Program No. 93.774, Medicare-- Supplementary Medical Insurance Program.... SUMMARY: This document corrects a typographical error that appeared in the notice published in the Federal... typographical error that is identified and corrected in the Correction of Errors section below. II. Summary of...

  20. Tropospheric Correction for InSAR Using Interpolated ECMWF Data and GPS Zenith Total Delay

    NASA Technical Reports Server (NTRS)

    Webb, Frank H.; Fishbein, Evan F.; Moore, Angelyn W.; Owen, Susan E.; Fielding, Eric J.; Granger, Stephanie L.; Bjorndahl, Fredrik; Lofgren Johan

    2011-01-01

    To mitigate atmospheric errors caused by the troposphere, which is a limiting error source for spaceborne interferometric synthetic aperture radar (InSAR) imaging, a tropospheric correction method has been developed using data from the European Centre for Medium- Range Weather Forecasts (ECMWF) and the Global Positioning System (GPS). The ECMWF data was interpolated using a Stretched Boundary Layer Model (SBLM), and ground-based GPS estimates of the tropospheric delay from the Southern California Integrated GPS Network were interpolated using modified Gaussian and inverse distance weighted interpolations. The resulting Zenith Total Delay (ZTD) correction maps have been evaluated, both separately and using a combination of the two data sets, for three short-interval InSAR pairs from Envisat during 2006 on an area stretching from northeast from the Los Angeles basin towards Death Valley. Results show that the root mean square (rms) in the InSAR images was greatly reduced, meaning a significant reduction in the atmospheric noise of up to 32 percent. However, for some of the images, the rms increased and large errors remained after applying the tropospheric correction. The residuals showed a constant gradient over the area, suggesting that a remaining orbit error from Envisat was present. The orbit reprocessing in ROI_pac and the plane fitting both require that the only remaining error in the InSAR image be the orbit error. If this is not fulfilled, the correction can be made anyway, but it will be done using all remaining errors assuming them to be orbit errors. By correcting for tropospheric noise, the biggest error source is removed, and the orbit error becomes apparent and can be corrected for

  1. Counteracting structural errors in ensemble forecast of influenza outbreaks.

    PubMed

    Pei, Sen; Shaman, Jeffrey

    2017-10-13

    For influenza forecasts generated using dynamical models, forecast inaccuracy is partly attributable to the nonlinear growth of error. As a consequence, quantification of the nonlinear error structure in current forecast models is needed so that this growth can be corrected and forecast skill improved. Here, we inspect the error growth of a compartmental influenza model and find that a robust error structure arises naturally from the nonlinear model dynamics. By counteracting these structural errors, diagnosed using error breeding, we develop a new forecast approach that combines dynamical error correction and statistical filtering techniques. In retrospective forecasts of historical influenza outbreaks for 95 US cities from 2003 to 2014, overall forecast accuracy for outbreak peak timing, peak intensity and attack rate, are substantially improved for predicted lead times up to 10 weeks. This error growth correction method can be generalized to improve the forecast accuracy of other infectious disease dynamical models.Inaccuracy of influenza forecasts based on dynamical models is partly due to nonlinear error growth. Here the authors address the error structure of a compartmental influenza model, and develop a new improved forecast approach combining dynamical error correction and statistical filtering techniques.

  2. On-board error correction improves IR earth sensor accuracy

    NASA Astrophysics Data System (ADS)

    Alex, T. K.; Kasturirangan, K.; Shrivastava, S. K.

    1989-10-01

    Infra-red earth sensors are used in satellites for attitude sensing. Their accuracy is limited by systematic and random errors. The sources of errors in a scanning infra-red earth sensor are analyzed in this paper. The systematic errors arising from seasonal variation of infra-red radiation, oblate shape of the earth, ambient temperature of sensor, changes in scan/spin rates have been analyzed. Simple relations are derived using least square curve fitting for on-board correction of these errors. Random errors arising out of noise from detector and amplifiers, instability of alignment and localized radiance anomalies are analyzed and possible correction methods are suggested. Sun and Moon interference on earth sensor performance has seriously affected a number of missions. The on-board processor detects Sun/Moon interference and corrects the errors on-board. It is possible to obtain eight times improvement in sensing accuracy, which will be comparable with ground based post facto attitude refinement.

  3. Peeling Away Timing Error in NetFlow Data

    NASA Astrophysics Data System (ADS)

    Trammell, Brian; Tellenbach, Bernhard; Schatzmann, Dominik; Burkhart, Martin

    In this paper, we characterize, quantify, and correct timing errors introduced into network flow data by collection and export via Cisco NetFlow version 9. We find that while some of these sources of error (clock skew, export delay) are generally implementation-dependent and known in the literature, there is an additional cyclic error of up to one second that is inherent to the design of the export protocol. We present a method for correcting this cyclic error in the presence of clock skew and export delay. In an evaluation using traffic with known timing collected from a national-scale network, we show that this method can successfully correct the cyclic error. However, there can also be other implementation-specific errors for which insufficient information remains for correction. On the routers we have deployed in our network, this limits the accuracy to about 70ms, reinforcing the point that implementation matters when conducting research on network measurement data.

  4. Automatic Recognition of Phonemes Using a Syntactic Processor for Error Correction.

    DTIC Science & Technology

    1980-12-01

    OF PHONEMES USING A SYNTACTIC PROCESSOR FOR ERROR CORRECTION THESIS AFIT/GE/EE/8D-45 Robert B. ’Taylor 2Lt USAF Approved for public release...distribution unlimilted. AbP AFIT/GE/EE/ 80D-45 AUTOMATIC RECOGNITION OF PHONEMES USING A SYNTACTIC PROCESSOR FOR ERROR CORRECTION THESIS Presented to the...Testing ..................... 37 Bayes Decision Rule for Minimum Error ........... 37 Bayes Decision Rule for Minimum Risk ............ 39 Mini Max Test

  5. Correction of motion measurement errors beyond the range resolution of a synthetic aperture radar

    DOEpatents

    Doerry, Armin W [Albuquerque, NM; Heard, Freddie E [Albuquerque, NM; Cordaro, J Thomas [Albuquerque, NM

    2008-06-24

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  6. Error correcting circuit design with carbon nanotube field effect transistors

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqiang; Cai, Li; Yang, Xiaokuo; Liu, Baojun; Liu, Zhongyong

    2018-03-01

    In this work, a parallel error correcting circuit based on (7, 4) Hamming code is designed and implemented with carbon nanotube field effect transistors, and its function is validated by simulation in HSpice with the Stanford model. A grouping method which is able to correct multiple bit errors in 16-bit and 32-bit application is proposed, and its error correction capability is analyzed. Performance of circuits implemented with CNTFETs and traditional MOSFETs respectively is also compared, and the former shows a 34.4% decrement of layout area and a 56.9% decrement of power consumption.

  7. Incorporating Measurement Error from Modeled Air Pollution Exposures into Epidemiological Analyses.

    PubMed

    Samoli, Evangelia; Butland, Barbara K

    2017-12-01

    Outdoor air pollution exposures used in epidemiological studies are commonly predicted from spatiotemporal models incorporating limited measurements, temporal factors, geographic information system variables, and/or satellite data. Measurement error in these exposure estimates leads to imprecise estimation of health effects and their standard errors. We reviewed methods for measurement error correction that have been applied in epidemiological studies that use model-derived air pollution data. We identified seven cohort studies and one panel study that have employed measurement error correction methods. These methods included regression calibration, risk set regression calibration, regression calibration with instrumental variables, the simulation extrapolation approach (SIMEX), and methods under the non-parametric or parameter bootstrap. Corrections resulted in small increases in the absolute magnitude of the health effect estimate and its standard error under most scenarios. Limited application of measurement error correction methods in air pollution studies may be attributed to the absence of exposure validation data and the methodological complexity of the proposed methods. Future epidemiological studies should consider in their design phase the requirements for the measurement error correction method to be later applied, while methodological advances are needed under the multi-pollutants setting.

  8. On codes with multi-level error-correction capabilities

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1987-01-01

    In conventional coding for error control, all the information symbols of a message are regarded equally significant, and hence codes are devised to provide equal protection for each information symbol against channel errors. However, in some occasions, some information symbols in a message are more significant than the other symbols. As a result, it is desired to devise codes with multilevel error-correcting capabilities. Another situation where codes with multi-level error-correcting capabilities are desired is in broadcast communication systems. An m-user broadcast channel has one input and m outputs. The single input and each output form a component channel. The component channels may have different noise levels, and hence the messages transmitted over the component channels require different levels of protection against errors. Block codes with multi-level error-correcting capabilities are also known as unequal error protection (UEP) codes. Structural properties of these codes are derived. Based on these structural properties, two classes of UEP codes are constructed.

  9. The influence of different error estimates in the detection of postoperative cognitive dysfunction using reliable change indices with correction for practice effects.

    PubMed

    Lewis, Matthew S; Maruff, Paul; Silbert, Brendan S; Evered, Lis A; Scott, David A

    2007-02-01

    The reliable change index (RCI) expresses change relative to its associated error, and is useful in the identification of postoperative cognitive dysfunction (POCD). This paper examines four common RCIs that each account for error in different ways. Three rules incorporate a constant correction for practice effects and are contrasted with the standard RCI that had no correction for practice. These rules are applied to 160 patients undergoing coronary artery bypass graft (CABG) surgery who completed neuropsychological assessments preoperatively and 1 week postoperatively using error and reliability data from a comparable healthy nonsurgical control group. The rules all identify POCD in a similar proportion of patients, but the use of the within-subject standard deviation (WSD), expressing the effects of random error, as an error estimate is a theoretically appropriate denominator when a constant error correction, removing the effects of systematic error, is deducted from the numerator in a RCI.

  10. Differences in sensory reweighting due to loss of visual and proprioceptive cues in postural stability support among sleep-deprived cadet pilots.

    PubMed

    Cheng, Shan; Ma, Jin; Sun, Jicheng; Wang, Jian; Xiao, Xiao; Wang, Yihan; Hu, Wendong

    2018-04-26

    Sleep deprivation is known to diminish postural control. We investigated whether sleep deprivation affects sensory reweighting for postural control due to loss of visual and proprioceptive cues. Two cohorts of cadet pilots were deprived of sleep for 40 h. Variabilty in force-platform center of pressure was analyzed based on the whole path length (WPL); circumference area (CA); mean of displacement along x and y axes and corresponding standard deviations (SDx, SDy); and frequency of body-sway intensity, all of which were recorded while the cadets stood with eyes open (NEO), eyes closed (NEC), and eyes closed on a foam platform base (FEC) A sleepiness index (SUBI) based on principal component analysis of selected Cohort 1 data (n = 37) was used to compare Cohort 2 data (n = 29) with scores for the Stanford Sleepiness Scale (SSS) and Pittsburg Sleep Quality Index (PSQI). Balance began to deteriorate at 16 h for NEO and at 28 h for NEC and FEC (p < 0.05). At 40 h, WPL, CA, and SDy of COP for NEO indicated balance deteriorated further while WPL and SDy for NEC and WPL, CA, SDx, and SDy for FEC indicated balance incrementally improved. Frequency bias of body-sway differed between NEO, NEC, and FEC. In Cohort 2, the SUBI correlated significantly with SSS (p < 0.05), but not with PSQI. Effects of sleep deprivation were mitigated over time, suggesting that compensatory mechanisms influenced sensory reweighting for NEC and FEC between 28 and 40 h of sleep deprivation, but not for NEO. Frequency bias of body-sway suggested that sensory reweighting in the absence of visual cues differed from that in the absence of both visual and proprioceptive cues. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Between-breed variations in resistance/resilience to gastrointestinal nematodes among indigenous goat breeds in Uganda.

    PubMed

    Onzima, R B; Mukiibi, R; Ampaire, A; Benda, K K; Kanis, E

    2017-12-01

    Gastrointestinal nematodes (GINs), Haemonchus contortus, are a major health problem in goat production. Resistance to H. contortus, the most prevalent GIN in Uganda, was studied among three indigenous goat breeds to assess their differences. Twelve male goats of each breed approximately 7 months old of small East African (SEA), Mubende, and Kigezi goats from smallholder farmers in Arua, Mubende, and Kabale were assembled for the study. At the station, they were dewormed with a combination therapy of the broad-spectrum dewormers closantel and albendazole to free the goats of gastrointestinal parasites. During experimentation, the goats were kept indoors and ad libitum fed on clean banana peels and napier grass. On attainment of zero-worm-egg status, the goats were artificially infected with 18,000 third-stage (L3) larvae of H. contortus prepared according to Baermann's procedure. Data were collected on fecal egg count (FEC), packed cell volume (PCV), and body weight (BW) on a 2-week basis until 12 weeks post infection and carcass weight and total worm count (WC) in the abomasum at termination of the experiment. The data on FEC, PCV, and BW were subjected to repeated-measure analysis of variance and the others by one-way analysis of variance. FEC between breeds was only significantly different at 12 weeks post infection (p = 0.04). Generally, higher FEC was recorded in Kigezi compared to SEA and Mubende goats. Carcass weight was significantly different among breeds (p < 0.05), with Mubende having the highest carcass weight, followed by Kigezi and SEA. PCV and daily weight gains were significantly different between breeds (p < 0.05). WC was not significantly different between the breeds. FEC and PCV were weakly significant at later stages of the experiment with higher parasite burden suggesting potential variation in resistance to H. contortus. These differences could be exploited in designing breeding programs with disease resistance in indigenous goat breeds.

  12. PCDD/F adsorption and destruction in the flue gas streams of MWI and MSP via Cu and Fe catalysts supported on carbon.

    PubMed

    Chang, Shu Hao; Yeh, Jhy Wei; Chein, Hung Min; Hsu, Li Yeh; Chi, Kai Hsien; Chang, Moo Been

    2008-08-01

    Catalytic destruction has been applied to control polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs) emissions from different facilities. The cost of carbon-based catalysts is considerably lower than that of the metal oxide or zeolite-based catalysts used in the selective catalytic reduction (SCR) system. In this study, destruction and adsorption efficiencies of PCDD/Fs achieved with Cu/C and Fe/C catalysts from flue gas streams of a metal smelting plant (MSP) and a large-scale municipal waste incinerator (MWI), respectively, are evaluated via the pilot-scale catalytic reactor system (PCRS). The results indicate that Cu and Fe catalysts supported on carbon surface are capable of decomposing and adsorbing PCDD/ Fs from gas streams. In the testing sources of MSP and MWI, the PCDD/F removal efficiencies achieved with Cu/C catalyst at 250 degrees C reach 96%, however, the destruction efficiencies are negative (-1,390% and -112%, respectively) due to significant PCDD/F formation on catalyst promoted by copper. In addition, Fe/C catalyst is of higher removal and destruction efficiencies compared with Cu/C catalyst in both testing sources. The removal efficiencies of PCDD/Fs achieved with Fe/C catalyst are 97 and 94% for MSP and MWI, respectively, whereas the destruction efficiencies are both higher than 70%. Decrease of PCDD/F destruction efficiency and increase of adsorption efficiency with increasing chlorination of dioxin congeners is also observed in the test via three-layer Fe/C catalyst. Furthermore, the mass of 2,3,7,8-PCDD/Fs retained on catalyst decreases on the order of first to third layer of catalyst. Each gram Fe/C catalyst in first layer adsorbs 10.9, 6.91, and 3.04 ng 2,3,7,8-PCDD/Fs in 100 min testing duration as the operating temperature is controlled at 150, 200, and 250 degrees C, respectively.

  13. Decomposition of the fluoroethylene carbonate additive and the glue effect of lithium fluoride products for the solid electrolyte interphase: an ab initio study.

    PubMed

    Okuno, Yukihiro; Ushirogata, Keisuke; Sodeyama, Keitaro; Tateyama, Yoshitaka

    2016-03-28

    Additives in the electrolyte solution of lithium-ion batteries (LIBs) have a large impact on the performance of the solid electrolyte interphase (SEI) that forms on the anode and is a key to the stability and durability of LIBs. We theoretically investigated effects of fluoroethylene carbonate (FEC), a representative additive, that has recently attracted considerable attention for the enhancement of cycling stability of silicon electrodes and the improvement of reversibility of sodium-ion batteries. First, we intensively examined the reductive decompositions by ring-opening, hydrogen fluoride (HF) elimination to form a vinylene carbonate (VC) additive and intermolecular chemical reactions of FEC in the ethylene carbonate (EC) electrolyte, by using density functional theory (DFT) based molecular dynamics and the blue-moon ensemble technique for the free energy profile. The results show that the most plausible product of the FEC reductive decomposition is lithium fluoride (LiF), and that the reactivity of FEC to anion radicals is found to be inert compared to the VC additive. We also investigated the effects of the generated LiF on the SEI by using two model systems; (1) LiF molecules distributed in a model aggregate of organic SEI film components (SFCs) and (2) a LiF aggregate interfaced with the SFC aggregate. DFT calculations of the former system show that F atoms form strong bindings with the Li atoms of multiple organic SFC molecules and play as a joint connecting them. In the latter interface system, the LiF aggregate adsorbs the organic SFCs through the F-Li bindings. These results suggest that LiF moieties play the role of glue in the organic SFC within the SEI film. We also examined the interface structure between a LiF aggregate and a lithiated silicon anode, and found that they are strongly bound. This strong binding is likely to be related to the effectiveness of the FEC additive in the electrolyte for the silicon anode.

  14. Combinatorial neural codes from a mathematical coding theory perspective.

    PubMed

    Curto, Carina; Itskov, Vladimir; Morrison, Katherine; Roth, Zachary; Walker, Judy L

    2013-07-01

    Shannon's seminal 1948 work gave rise to two distinct areas of research: information theory and mathematical coding theory. While information theory has had a strong influence on theoretical neuroscience, ideas from mathematical coding theory have received considerably less attention. Here we take a new look at combinatorial neural codes from a mathematical coding theory perspective, examining the error correction capabilities of familiar receptive field codes (RF codes). We find, perhaps surprisingly, that the high levels of redundancy present in these codes do not support accurate error correction, although the error-correcting performance of receptive field codes catches up to that of random comparison codes when a small tolerance to error is introduced. However, receptive field codes are good at reflecting distances between represented stimuli, while the random comparison codes are not. We suggest that a compromise in error-correcting capability may be a necessary price to pay for a neural code whose structure serves not only error correction, but must also reflect relationships between stimuli.

  15. 42 CFR 412.278 - Administrator's review.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... or computational errors, or to correct the decision if the evidence that was considered in making the... discretion, may amend the decision to correct mathematical or computational errors, or to correct the...

  16. 42 CFR 412.278 - Administrator's review.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... or computational errors, or to correct the decision if the evidence that was considered in making the... discretion, may amend the decision to correct mathematical or computational errors, or to correct the...

  17. 42 CFR 412.278 - Administrator's review.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... or computational errors, or to correct the decision if the evidence that was considered in making the... discretion, may amend the decision to correct mathematical or computational errors, or to correct the...

  18. 42 CFR 412.278 - Administrator's review.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... or computational errors, or to correct the decision if the evidence that was considered in making the... discretion, may amend the decision to correct mathematical or computational errors, or to correct the...

  19. How to Correct a Task Error: Task-Switch Effects Following Different Types of Error Correction

    ERIC Educational Resources Information Center

    Steinhauser, Marco

    2010-01-01

    It has been proposed that switch costs in task switching reflect the strengthening of task-related associations and that strengthening is triggered by response execution. The present study tested the hypothesis that only task-related responses are able to trigger strengthening. Effects of task strengthening caused by error corrections were…

  20. Analysis on the misalignment errors between Hartmann-Shack sensor and 45-element deformable mirror

    NASA Astrophysics Data System (ADS)

    Liu, Lihui; Zhang, Yi; Tao, Jianjun; Cao, Fen; Long, Yin; Tian, Pingchuan; Chen, Shangwu

    2017-02-01

    Aiming at 45-element adaptive optics system, the model of 45-element deformable mirror is truly built by COMSOL Multiphysics, and every actuator's influence function is acquired by finite element method. The process of this system correcting optical aberration is simulated by making use of procedure, and aiming for Strehl ratio of corrected diffraction facula, in the condition of existing different translation and rotation error between Hartmann-Shack sensor and deformable mirror, the system's correction ability for 3-20 Zernike polynomial wave aberration is analyzed. The computed result shows: the system's correction ability for 3-9 Zernike polynomial wave aberration is higher than that of 10-20 Zernike polynomial wave aberration. The correction ability for 3-20 Zernike polynomial wave aberration does not change with misalignment error changing. With rotation error between Hartmann-Shack sensor and deformable mirror increasing, the correction ability for 3-20 Zernike polynomial wave aberration gradually goes down, and with translation error increasing, the correction ability for 3-9 Zernike polynomial wave aberration gradually goes down, but the correction ability for 10-20 Zernike polynomial wave aberration behave up-and-down depression.

  1. Local concurrent error detection and correction in data structures using virtual backpointers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C.C.J.; Chen, P.P.; Fuchs, W.K.

    1989-11-01

    A new technique, based on virtual backpointers, is presented in this paper for local concurrent error detection and correction in linked data structures. Two new data structures utilizing virtual backpointers, the Virtual Double-Linked List and the B-Tree and Virtual Backpointers, are described. For these structures, double errors within a fixed-size checking window can be detected in constant time and single errors detected during forward moves can be corrected in constant time.

  2. Local concurrent error detection and correction in data structures using virtual backpointers

    NASA Technical Reports Server (NTRS)

    Li, C. C.; Chen, P. P.; Fuchs, W. K.

    1987-01-01

    A new technique, based on virtual backpointers, for local concurrent error detection and correction in linked data structures is presented. Two new data structures, the Virtual Double Linked List, and the B-tree with Virtual Backpointers, are described. For these structures, double errors can be detected in 0(1) time and errors detected during forward moves can be corrected in 0(1) time. The application of a concurrent auditor process to data structure error detection and correction is analyzed, and an implementation is described, to determine the effect on mean time to failure of a multi-user shared database system. The implementation utilizes a Sequent shared memory multiprocessor system operating on a shared databased of Virtual Double Linked Lists.

  3. Local concurrent error detection and correction in data structures using virtual backpointers

    NASA Technical Reports Server (NTRS)

    Li, Chung-Chi Jim; Chen, Paul Peichuan; Fuchs, W. Kent

    1989-01-01

    A new technique, based on virtual backpointers, for local concurrent error detection and correction in linked data strutures is presented. Two new data structures, the Virtual Double Linked List, and the B-tree with Virtual Backpointers, are described. For these structures, double errors can be detected in 0(1) time and errors detected during forward moves can be corrected in 0(1) time. The application of a concurrent auditor process to data structure error detection and correction is analyzed, and an implementation is described, to determine the effect on mean time to failure of a multi-user shared database system. The implementation utilizes a Sequent shared memory multiprocessor system operating on a shared database of Virtual Double Linked Lists.

  4. Negative-Electrode Catalysts for Fe/Cr Redox Cells

    NASA Technical Reports Server (NTRS)

    Gahn, R. F.; Hagedorn, N.

    1987-01-01

    Electrodes perform more consistently and less expensive. Surfaces catalyzed by bismuth and bismuth/lead developed for application on chromium electrode in iron/chromium redox electrochemical energy storage system. NASA Fe/Cr storage system incorporates two soluble electrodes consisting of acidified solutions of iron chloride (FeC13 and FeC12) and chromium chloride (CrC13 and CrC12) oxidized and reduced in power-conversion unit to store and produce electricity. Electrolytes circulated with pumps and stored in external tanks.

  5. Deliberate modification of the solid electrolyte interphase (SEI) during lithiation of magnetite, Fe 3O 4: impact on electrochemistry

    DOE PAGES

    Bock, David C.; Marschilok, Amy C.; Takeuchi, Kenneth J.; ...

    2017-11-20

    Here, magnetite is a conversion anode material displaying multi-electron transfer during lithiation and delithiation. The solid electrolyte interphase (SEI) on magnetite, Fe 3O 4, electrodes for lithium ion batteries was deliberately modified through the use of fluoroethylene carbonate (FEC) electrolyte additive, improving both capacity retention and rate capability. Analysis showed reduction of FEC at higher voltage compared to non-fluorinated solvents with formation of a modified lithium flouride containing electrode surface.

  6. Asymmetric Memory Circuit Would Resist Soft Errors

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Perlman, Marvin

    1990-01-01

    Some nonlinear error-correcting codes more efficient in presence of asymmetry. Combination of circuit-design and coding concepts expected to make integrated-circuit random-access memories more resistant to "soft" errors (temporary bit errors, also called "single-event upsets" due to ionizing radiation). Integrated circuit of new type made deliberately more susceptible to one kind of bit error than to other, and associated error-correcting code adapted to exploit this asymmetry in error probabilities.

  7. Detection and correction of prescription errors by an emergency department pharmacy service.

    PubMed

    Stasiak, Philip; Afilalo, Marc; Castelino, Tanya; Xue, Xiaoqing; Colacone, Antoinette; Soucy, Nathalie; Dankoff, Jerrald

    2014-05-01

    Emergency departments (EDs) are recognized as a high-risk setting for prescription errors. Pharmacist involvement may be important in reviewing prescriptions to identify and correct errors. The objectives of this study were to describe the frequency and type of prescription errors detected by pharmacists in EDs, determine the proportion of errors that could be corrected, and identify factors associated with prescription errors. This prospective observational study was conducted in a tertiary care teaching ED on 25 consecutive weekdays. Pharmacists reviewed all documented prescriptions and flagged and corrected errors for patients in the ED. We collected information on patient demographics, details on prescription errors, and the pharmacists' recommendations. A total of 3,136 ED prescriptions were reviewed. The proportion of prescriptions in which a pharmacist identified an error was 3.2% (99 of 3,136; 95% confidence interval [CI] 2.5-3.8). The types of identified errors were wrong dose (28 of 99, 28.3%), incomplete prescription (27 of 99, 27.3%), wrong frequency (15 of 99, 15.2%), wrong drug (11 of 99, 11.1%), wrong route (1 of 99, 1.0%), and other (17 of 99, 17.2%). The pharmacy service intervened and corrected 78 (78 of 99, 78.8%) errors. Factors associated with prescription errors were patient age over 65 (odds ratio [OR] 2.34; 95% CI 1.32-4.13), prescriptions with more than one medication (OR 5.03; 95% CI 2.54-9.96), and those written by emergency medicine residents compared to attending emergency physicians (OR 2.21, 95% CI 1.18-4.14). Pharmacists in a tertiary ED are able to correct the majority of prescriptions in which they find errors. Errors are more likely to be identified in prescriptions written for older patients, those containing multiple medication orders, and those prescribed by emergency residents.

  8. Analyzing the errors of DFT approximations for compressed water systems

    NASA Astrophysics Data System (ADS)

    Alfè, D.; Bartók, A. P.; Csányi, G.; Gillan, M. J.

    2014-07-01

    We report an extensive study of the errors of density functional theory (DFT) approximations for compressed water systems. The approximations studied are based on the widely used PBE and BLYP exchange-correlation functionals, and we characterize their errors before and after correction for 1- and 2-body errors, the corrections being performed using the methods of Gaussian approximation potentials. The errors of the uncorrected and corrected approximations are investigated for two related types of water system: first, the compressed liquid at temperature 420 K and density 1.245 g/cm3 where the experimental pressure is 15 kilobars; second, thermal samples of compressed water clusters from the trimer to the 27-mer. For the liquid, we report four first-principles molecular dynamics simulations, two generated with the uncorrected PBE and BLYP approximations and a further two with their 1- and 2-body corrected counterparts. The errors of the simulations are characterized by comparing with experimental data for the pressure, with neutron-diffraction data for the three radial distribution functions, and with quantum Monte Carlo (QMC) benchmarks for the energies of sets of configurations of the liquid in periodic boundary conditions. The DFT errors of the configuration samples of compressed water clusters are computed using QMC benchmarks. We find that the 2-body and beyond-2-body errors in the liquid are closely related to similar errors exhibited by the clusters. For both the liquid and the clusters, beyond-2-body errors of DFT make a substantial contribution to the overall errors, so that correction for 1- and 2-body errors does not suffice to give a satisfactory description. For BLYP, a recent representation of 3-body energies due to Medders, Babin, and Paesani [J. Chem. Theory Comput. 9, 1103 (2013)] gives a reasonably good way of correcting for beyond-2-body errors, after which the remaining errors are typically 0.5 mEh ≃ 15 meV/monomer for the liquid and the clusters.

  9. Analyzing the errors of DFT approximations for compressed water systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfè, D.; London Centre for Nanotechnology, UCL, London WC1H 0AH; Thomas Young Centre, UCL, London WC1H 0AH

    We report an extensive study of the errors of density functional theory (DFT) approximations for compressed water systems. The approximations studied are based on the widely used PBE and BLYP exchange-correlation functionals, and we characterize their errors before and after correction for 1- and 2-body errors, the corrections being performed using the methods of Gaussian approximation potentials. The errors of the uncorrected and corrected approximations are investigated for two related types of water system: first, the compressed liquid at temperature 420 K and density 1.245 g/cm{sup 3} where the experimental pressure is 15 kilobars; second, thermal samples of compressed watermore » clusters from the trimer to the 27-mer. For the liquid, we report four first-principles molecular dynamics simulations, two generated with the uncorrected PBE and BLYP approximations and a further two with their 1- and 2-body corrected counterparts. The errors of the simulations are characterized by comparing with experimental data for the pressure, with neutron-diffraction data for the three radial distribution functions, and with quantum Monte Carlo (QMC) benchmarks for the energies of sets of configurations of the liquid in periodic boundary conditions. The DFT errors of the configuration samples of compressed water clusters are computed using QMC benchmarks. We find that the 2-body and beyond-2-body errors in the liquid are closely related to similar errors exhibited by the clusters. For both the liquid and the clusters, beyond-2-body errors of DFT make a substantial contribution to the overall errors, so that correction for 1- and 2-body errors does not suffice to give a satisfactory description. For BLYP, a recent representation of 3-body energies due to Medders, Babin, and Paesani [J. Chem. Theory Comput. 9, 1103 (2013)] gives a reasonably good way of correcting for beyond-2-body errors, after which the remaining errors are typically 0.5 mE{sub h} ≃ 15 meV/monomer for the liquid and the clusters.« less

  10. Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Brun, Todd; Quantum Research Team

    Quasi-cyclic LDPC codes can approach the Shannon capacity and have efficient decoders. Manabu Hagiwara et al., 2007 presented a method to calculate parity check matrices with high girth. Two distinct, orthogonal matrices Hc and Hd are used. Using submatrices obtained from Hc and Hd by deleting rows, we can alter the code rate. The submatrix of Hc is used to correct Pauli X errors, and the submatrix of Hd to correct Pauli Z errors. We simulated this system for depolarizing noise on USC's High Performance Computing Cluster, and obtained the block error rate (BER) as a function of the error weight and code rate. From the rates of uncorrectable errors under different error weights we can extrapolate the BER to any small error probability. Our results show that this code family can perform reasonably well even at high code rates, thus considerably reducing the overhead compared to concatenated and surface codes. This makes these codes promising as storage blocks in fault-tolerant quantum computation. Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes.

  11. An Ensemble Method for Spelling Correction in Consumer Health Questions

    PubMed Central

    Kilicoglu, Halil; Fiszman, Marcelo; Roberts, Kirk; Demner-Fushman, Dina

    2015-01-01

    Orthographic and grammatical errors are a common feature of informal texts written by lay people. Health-related questions asked by consumers are a case in point. Automatic interpretation of consumer health questions is hampered by such errors. In this paper, we propose a method that combines techniques based on edit distance and frequency counts with a contextual similarity-based method for detecting and correcting orthographic errors, including misspellings, word breaks, and punctuation errors. We evaluate our method on a set of spell-corrected questions extracted from the NLM collection of consumer health questions. Our method achieves a F1 score of 0.61, compared to an informed baseline of 0.29, achieved using ESpell, a spelling correction system developed for biomedical queries. Our results show that orthographic similarity is most relevant in spelling error correction in consumer health questions and that frequency and contextual information are complementary to orthographic features. PMID:26958208

  12. Effect of single vision soft contact lenses on peripheral refraction.

    PubMed

    Kang, Pauline; Fan, Yvonne; Oh, Kelly; Trac, Kevin; Zhang, Frank; Swarbrick, Helen

    2012-07-01

    To investigate changes in peripheral refraction with under-, full, and over-correction of central refraction with commercially available single vision soft contact lenses (SCLs) in young myopic adults. Thirty-four myopic adult subjects were fitted with Proclear Sphere SCLs to under-correct (+0.75 DS), fully correct, and over-correct (-0.75 DS) their manifest central refractive error. Central and peripheral refraction were measured with no lens wear and subsequently with different levels of SCL central refractive error correction. The uncorrected refractive error was myopic at all locations along the horizontal meridian. Peripheral refraction was relatively hyperopic compared to center at 30 and 35° in the temporal visual field (VF) in low myopes and at 30 and 35° in the temporal VF and 10, 30, and 35° in the nasal VF in moderate myopes. All levels of SCL correction caused a hyperopic shift in refraction at all locations in the horizontal VF. The smallest hyperopic shift was demonstrated with under-correction followed by full correction and then by over-correction of central refractive error. An increase in relative peripheral hyperopia was measured with full correction SCLs compared with no correction in both low and moderate myopes. However, no difference in relative peripheral refraction profiles were found between under-, full, and over-correction. Under-, full, and over-correction of central refractive error with single vision SCLs caused a hyperopic shift in both central and peripheral refraction at all positions in the horizontal meridian. All levels of SCL correction caused the peripheral retina, which initially experienced absolute myopic defocus at baseline with no correction, to experience absolute hyperopic defocus. This peripheral hyperopia may be a possible cause of myopia progression reported with different types and levels of myopia correction.

  13. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits

    PubMed Central

    Córcoles, A.D.; Magesan, Easwar; Srinivasan, Srikanth J.; Cross, Andrew W.; Steffen, M.; Gambetta, Jay M.; Chow, Jerry M.

    2015-01-01

    The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code. PMID:25923200

  14. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits.

    PubMed

    Córcoles, A D; Magesan, Easwar; Srinivasan, Srikanth J; Cross, Andrew W; Steffen, M; Gambetta, Jay M; Chow, Jerry M

    2015-04-29

    The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code.

  15. Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods

    PubMed Central

    Cao, Huiliang; Li, Hongsheng; Kou, Zhiwei; Shi, Yunbo; Tang, Jun; Ma, Zongmin; Shen, Chong; Liu, Jun

    2016-01-01

    This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses’ quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC), Quadrature Force Correction (QFC) and Coupling Stiffness Correction (CSC) methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW) value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups’ output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability. PMID:26751455

  16. Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods.

    PubMed

    Cao, Huiliang; Li, Hongsheng; Kou, Zhiwei; Shi, Yunbo; Tang, Jun; Ma, Zongmin; Shen, Chong; Liu, Jun

    2016-01-07

    This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses' quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC), Quadrature Force Correction (QFC) and Coupling Stiffness Correction (CSC) methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW) value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups' output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability.

  17. Optimization of automated large-scale production of [(18)F]fluoroethylcholine for PET prostate cancer imaging.

    PubMed

    Pascali, Giancarlo; D'Antonio, Luca; Bovone, Paola; Gerundini, Paolo; August, Thorsten

    2009-07-01

    PET tumor imaging is gaining importance in current clinical practice. FDG-PET is the most utilized approach but suffers from inflammation influences and is not utilizable in prostate cancer detection. Recently, (11)C-choline analogues have been employed successfully in this field of imaging, leading to a growing interest in the utilization of (18)F-labeled analogues: [(18)F]fluoroethylcholine (FEC) has been demonstrated to be promising, especially in prostate cancer imaging. In this work we report an automatic radiosynthesis of this tracer with high yields, short synthesis time and ease of performance, potentially utilizable in routine production sites. We used a Modular Lab system to automatically perform the two-step/one-pot synthesis. In the first step, we labeled ethyleneglycolditosylate obtaining [(18)F]fluoroethyltosylate; in the second step, we performed the coupling of the latter intermediate with neat dimethylethanolamine. The final mixture was purified by means of solid phase extraction; in particular, the product was trapped into a cation-exchange resin and eluted with isotonic saline. The optimized procedure resulted in a non decay corrected yield of 36% and produced a range of 30-45 GBq of product already in injectable form. The product was analyzed for quality control and resulted as pure and sterile; in addition, residual solvents were under the required threshold. In this work, we present an automatic FEC radiosynthesis that has been optimized for routine production. This findings should foster the interest for a wider utilization of this radiomolecule for imaging of prostate cancer with PET, a field for which no gold-standard tracer has yet been validated.

  18. An Analysis of College Students' Attitudes towards Error Correction in EFL Context

    ERIC Educational Resources Information Center

    Zhu, Honglin

    2010-01-01

    This article is based on a survey on the attitudes towards the error correction by their teachers in the process of teaching and learning and it is intended to improve the language teachers' understanding of the nature of error correction. Based on the analysis, the article expounds some principles and techniques that can be applied in the process…

  19. 27 CFR 46.119 - Errors disclosed by taxpayers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... that the name and address are correctly stated; if not, the taxpayer must return the stamp to the TTB officer who issued it, with a statement showing the nature of the error and the correct name or address... stamp with that of the Form 5630.5t in TTB files, correct the error if made in the TTB office, and...

  20. Students' Preferences and Attitude toward Oral Error Correction Techniques at Yanbu University College, Saudi Arabia

    ERIC Educational Resources Information Center

    Alamri, Bushra; Fawzi, Hala Hassan

    2016-01-01

    Error correction has been one of the core areas in the field of English language teaching. It is "seen as a form of feedback given to learners on their language use" (Amara, 2015). Many studies investigated the use of different techniques to correct students' oral errors. However, only a few focused on students' preferences and attitude…

  1. Virtex-5QV Self Scrubber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojahn, Christopher K.

    2015-10-20

    This HDL code (hereafter referred to as "software") implements circuitry in Xilinx Virtex-5QV Field Programmable Gate Array (FPGA) hardware. This software allows the device to self-check the consistency of its own configuration memory for radiation-induced errors. The software then provides the capability to correct any single-bit errors detected in the memory using the device's inherent circuitry, or reload corrupted memory frames when larger errors occur that cannot be corrected with the device's built-in error correction and detection scheme.

  2. Decreasing range resolution of a SAR image to permit correction of motion measurement errors beyond the SAR range resolution

    DOEpatents

    Doerry, Armin W.; Heard, Freddie E.; Cordaro, J. Thomas

    2010-07-20

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  3. Comparing range data across the slow-time dimension to correct motion measurement errors beyond the range resolution of a synthetic aperture radar

    DOEpatents

    Doerry, Armin W.; Heard, Freddie E.; Cordaro, J. Thomas

    2010-08-17

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  4. Using Analysis Increments (AI) to Estimate and Correct Systematic Errors in the Global Forecast System (GFS) Online

    NASA Astrophysics Data System (ADS)

    Bhargava, K.; Kalnay, E.; Carton, J.; Yang, F.

    2017-12-01

    Systematic forecast errors, arising from model deficiencies, form a significant portion of the total forecast error in weather prediction models like the Global Forecast System (GFS). While much effort has been expended to improve models, substantial model error remains. The aim here is to (i) estimate the model deficiencies in the GFS that lead to systematic forecast errors, (ii) implement an online correction (i.e., within the model) scheme to correct GFS following the methodology of Danforth et al. [2007] and Danforth and Kalnay [2008, GRL]. Analysis Increments represent the corrections that new observations make on, in this case, the 6-hr forecast in the analysis cycle. Model bias corrections are estimated from the time average of the analysis increments divided by 6-hr, assuming that initial model errors grow linearly and first ignoring the impact of observation bias. During 2012-2016, seasonal means of the 6-hr model bias are generally robust despite changes in model resolution and data assimilation systems, and their broad continental scales explain their insensitivity to model resolution. The daily bias dominates the sub-monthly analysis increments and consists primarily of diurnal and semidiurnal components, also requiring a low dimensional correction. Analysis increments in 2015 and 2016 are reduced over oceans, which is attributed to improvements in the specification of the SSTs. These results encourage application of online correction, as suggested by Danforth and Kalnay, for mean, seasonal and diurnal and semidiurnal model biases in GFS to reduce both systematic and random errors. As the error growth in the short-term is still linear, estimated model bias corrections can be added as a forcing term in the model tendency equation to correct online. Preliminary experiments with GFS, correcting temperature and specific humidity online show reduction in model bias in 6-hr forecast. This approach can then be used to guide and optimize the design of sub-grid scale physical parameterizations, more accurate discretization of the model dynamics, boundary conditions, radiative transfer codes, and other potential model improvements which can then replace the empirical correction scheme. The analysis increments also provide guidance in testing new physical parameterizations.

  5. The Effect of Error Correction vs. Error Detection on Iranian Pre-Intermediate EFL Learners' Writing Achievement

    ERIC Educational Resources Information Center

    Abedi, Razie; Latifi, Mehdi; Moinzadeh, Ahmad

    2010-01-01

    This study tries to answer some ever-existent questions in writing fields regarding approaching the most effective ways to give feedback to students' errors in writing by comparing the effect of error correction and error detection on the improvement of students' writing ability. In order to achieve this goal, 60 pre-intermediate English learners…

  6. A Systematic Error Correction Method for TOVS Radiances

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Rokke, Laurie; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Treatment of systematic errors is crucial for the successful use of satellite data in a data assimilation system. Systematic errors in TOVS radiance measurements and radiative transfer calculations can be as large or larger than random instrument errors. The usual assumption in data assimilation is that observational errors are unbiased. If biases are not effectively removed prior to assimilation, the impact of satellite data will be lessened and can even be detrimental. Treatment of systematic errors is important for short-term forecast skill as well as the creation of climate data sets. A systematic error correction algorithm has been developed as part of a 1D radiance assimilation. This scheme corrects for spectroscopic errors, errors in the instrument response function, and other biases in the forward radiance calculation for TOVS. Such algorithms are often referred to as tuning of the radiances. The scheme is able to account for the complex, air-mass dependent biases that are seen in the differences between TOVS radiance observations and forward model calculations. We will show results of systematic error correction applied to the NOAA 15 Advanced TOVS as well as its predecessors. We will also discuss the ramifications of inter-instrument bias with a focus on stratospheric measurements.

  7. Three new enantiomerically pure ferrocenylphosphole compounds.

    PubMed

    López Cortés, José Guadalupe; Vincendeau, Sandrine; Daran, Jean Claude; Manoury, Eric; Gouygou, Maryse

    2006-05-01

    The absolute configurations of three new enantiomerically pure ferrocenylphosphole compounds, namely (2S,4S,S(Fc))-4-methoxymethyl-2-[2-(9-thioxo-9lambda5-phosphafluoren-9-yl)ferrocenyl]-1,3-dioxane, [Fe(C5H5)(C23H22O3PS)], (III), (S(Fc))-[2-(9-thioxo-9lambda5-phosphafluoren-9-yl)ferrocenyl]methanol, [Fe(C5H5)(C18H14OPS)], (V), and (S(Fc))-diphenyl[2-(9-thioxo-9lambda5-phosphafluoren-9-yl]ferrocenylmethyl]phosphine, [Fe(C5H5)(C30H23P2)], (VIII), have been unambiguously established. All three ligands contain a planar chiral ferrocene group, bearing a dibenzophosphole and either a dioxane, a methanol or a diphenylphosphinomethane group on the same cyclopentadienyl. In compound (V), the occurrence of O-H...S and C-H...S hydrogen bonds results in the formation of a two-dimensional network parallel to (001). The geometry of the ferrocene frameworks agrees with related reported structures.

  8. Quantum steganography and quantum error-correction

    NASA Astrophysics Data System (ADS)

    Shaw, Bilal A.

    Quantum error-correcting codes have been the cornerstone of research in quantum information science (QIS) for more than a decade. Without their conception, quantum computers would be a footnote in the history of science. When researchers embraced the idea that we live in a world where the effects of a noisy environment cannot completely be stripped away from the operations of a quantum computer, the natural way forward was to think about importing classical coding theory into the quantum arena to give birth to quantum error-correcting codes which could help in mitigating the debilitating effects of decoherence on quantum data. We first talk about the six-qubit quantum error-correcting code and show its connections to entanglement-assisted error-correcting coding theory and then to subsystem codes. This code bridges the gap between the five-qubit (perfect) and Steane codes. We discuss two methods to encode one qubit into six physical qubits. Each of the two examples corrects an arbitrary single-qubit error. The first example is a degenerate six-qubit quantum error-correcting code. We explicitly provide the stabilizer generators, encoding circuits, codewords, logical Pauli operators, and logical CNOT operator for this code. We also show how to convert this code into a non-trivial subsystem code that saturates the subsystem Singleton bound. We then prove that a six-qubit code without entanglement assistance cannot simultaneously possess a Calderbank-Shor-Steane (CSS) stabilizer and correct an arbitrary single-qubit error. A corollary of this result is that the Steane seven-qubit code is the smallest single-error correcting CSS code. Our second example is the construction of a non-degenerate six-qubit CSS entanglement-assisted code. This code uses one bit of entanglement (an ebit) shared between the sender (Alice) and the receiver (Bob) and corrects an arbitrary single-qubit error. The code we obtain is globally equivalent to the Steane seven-qubit code and thus corrects an arbitrary error on the receiver's half of the ebit as well. We prove that this code is the smallest code with a CSS structure that uses only one ebit and corrects an arbitrary single-qubit error on the sender's side. We discuss the advantages and disadvantages for each of the two codes. In the second half of this thesis we explore the yet uncharted and relatively undiscovered area of quantum steganography. Steganography is the process of hiding secret information by embedding it in an "innocent" message. We present protocols for hiding quantum information in a codeword of a quantum error-correcting code passing through a channel. Using either a shared classical secret key or shared entanglement Alice disguises her information as errors in the channel. Bob can retrieve the hidden information, but an eavesdropper (Eve) with the power to monitor the channel, but without the secret key, cannot distinguish the message from channel noise. We analyze how difficult it is for Eve to detect the presence of secret messages, and estimate rates of steganographic communication and secret key consumption for certain protocols. We also provide an example of how Alice hides quantum information in the perfect code when the underlying channel between Bob and her is the depolarizing channel. Using this scheme Alice can hide up to four stego-qubits.

  9. Five-wave-packet quantum error correction based on continuous-variable cluster entanglement

    PubMed Central

    Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi

    2015-01-01

    Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit. PMID:26498395

  10. Error Correction for the JLEIC Ion Collider Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Guohui; Morozov, Vasiliy; Lin, Fanglei

    2016-05-01

    The sensitivity to misalignment, magnet strength error, and BPM noise is investigated in order to specify design tolerances for the ion collider ring of the Jefferson Lab Electron Ion Collider (JLEIC) project. Those errors, including horizontal, vertical, longitudinal displacement, roll error in transverse plane, strength error of main magnets (dipole, quadrupole, and sextupole), BPM noise, and strength jitter of correctors, cause closed orbit distortion, tune change, beta-beat, coupling, chromaticity problem, etc. These problems generally reduce the dynamic aperture at the Interaction Point (IP). According to real commissioning experiences in other machines, closed orbit correction, tune matching, beta-beat correction, decoupling, andmore » chromaticity correction have been done in the study. Finally, we find that the dynamic aperture at the IP is restored. This paper describes that work.« less

  11. High-Performance Cells Containing Lithium Metal Anodes, LiNi0.6Co0.2Mn0.2O2 (NCM 622) Cathodes, and Fluoroethylene Carbonate-Based Electrolyte Solution with Practical Loading.

    PubMed

    Salitra, Gregory; Markevich, Elena; Afri, Michal; Talyosef, Yosef; Hartmann, Pascal; Kulisch, Joern; Sun, Yang-Kook; Aurbach, Doron

    2018-06-13

    We report on the highly stable lithium metal|LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM 622) cells with practical electrodes' loading of 3.3 mA h g -1 , which can undergo many hundreds of stable cycles, demonstrating high rate capability. A key issue was the use of fluoroethylene carbonate (FEC)-based electrolyte solutions (1 M LiPF 6 in FEC/dimethyl carbonate). Li|NCM 622 cells can be cycled at 1.5 mA cm -2 for more than 600 cycles, whereas symmetric Li|Li cells demonstrate stable performance for more than 1000 cycles even at higher areal capacity and current density. We attribute the excellent performance of both Li|NCM and Li|Li cells to the formation of a stable and efficient solid electrolyte interphase (SEI) on the surface of the Li metal electrodes cycled in FEC-based electrolyte solutions. The composition of the SEI on the Li and the NCM electrodes is analyzed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. A drastic capacity fading of Li|NCM cells is observed, followed by spontaneous capacity recovery during prolonged cycling. This phenomenon depends on the current density and the amount of the electrolyte solution and relates to kinetic limitations because of SEI formation on the Li anodes in the FEC-based electrolyte solution.

  12. New Class of Quantum Error-Correcting Codes for a Bosonic Mode

    NASA Astrophysics Data System (ADS)

    Michael, Marios H.; Silveri, Matti; Brierley, R. T.; Albert, Victor V.; Salmilehto, Juha; Jiang, Liang; Girvin, S. M.

    2016-07-01

    We construct a new class of quantum error-correcting codes for a bosonic mode, which are advantageous for applications in quantum memories, communication, and scalable computation. These "binomial quantum codes" are formed from a finite superposition of Fock states weighted with binomial coefficients. The binomial codes can exactly correct errors that are polynomial up to a specific degree in bosonic creation and annihilation operators, including amplitude damping and displacement noise as well as boson addition and dephasing errors. For realistic continuous-time dissipative evolution, the codes can perform approximate quantum error correction to any given order in the time step between error detection measurements. We present an explicit approximate quantum error recovery operation based on projective measurements and unitary operations. The binomial codes are tailored for detecting boson loss and gain errors by means of measurements of the generalized number parity. We discuss optimization of the binomial codes and demonstrate that by relaxing the parity structure, codes with even lower unrecoverable error rates can be achieved. The binomial codes are related to existing two-mode bosonic codes, but offer the advantage of requiring only a single bosonic mode to correct amplitude damping as well as the ability to correct other errors. Our codes are similar in spirit to "cat codes" based on superpositions of the coherent states but offer several advantages such as smaller mean boson number, exact rather than approximate orthonormality of the code words, and an explicit unitary operation for repumping energy into the bosonic mode. The binomial quantum codes are realizable with current superconducting circuit technology, and they should prove useful in other quantum technologies, including bosonic quantum memories, photonic quantum communication, and optical-to-microwave up- and down-conversion.

  13. Target Uncertainty Mediates Sensorimotor Error Correction

    PubMed Central

    Vijayakumar, Sethu; Wolpert, Daniel M.

    2017-01-01

    Human movements are prone to errors that arise from inaccuracies in both our perceptual processing and execution of motor commands. We can reduce such errors by both improving our estimates of the state of the world and through online error correction of the ongoing action. Two prominent frameworks that explain how humans solve these problems are Bayesian estimation and stochastic optimal feedback control. Here we examine the interaction between estimation and control by asking if uncertainty in estimates affects how subjects correct for errors that may arise during the movement. Unbeknownst to participants, we randomly shifted the visual feedback of their finger position as they reached to indicate the center of mass of an object. Even though participants were given ample time to compensate for this perturbation, they only fully corrected for the induced error on trials with low uncertainty about center of mass, with correction only partial in trials involving more uncertainty. The analysis of subjects’ scores revealed that participants corrected for errors just enough to avoid significant decrease in their overall scores, in agreement with the minimal intervention principle of optimal feedback control. We explain this behavior with a term in the loss function that accounts for the additional effort of adjusting one’s response. By suggesting that subjects’ decision uncertainty, as reflected in their posterior distribution, is a major factor in determining how their sensorimotor system responds to error, our findings support theoretical models in which the decision making and control processes are fully integrated. PMID:28129323

  14. Target Uncertainty Mediates Sensorimotor Error Correction.

    PubMed

    Acerbi, Luigi; Vijayakumar, Sethu; Wolpert, Daniel M

    2017-01-01

    Human movements are prone to errors that arise from inaccuracies in both our perceptual processing and execution of motor commands. We can reduce such errors by both improving our estimates of the state of the world and through online error correction of the ongoing action. Two prominent frameworks that explain how humans solve these problems are Bayesian estimation and stochastic optimal feedback control. Here we examine the interaction between estimation and control by asking if uncertainty in estimates affects how subjects correct for errors that may arise during the movement. Unbeknownst to participants, we randomly shifted the visual feedback of their finger position as they reached to indicate the center of mass of an object. Even though participants were given ample time to compensate for this perturbation, they only fully corrected for the induced error on trials with low uncertainty about center of mass, with correction only partial in trials involving more uncertainty. The analysis of subjects' scores revealed that participants corrected for errors just enough to avoid significant decrease in their overall scores, in agreement with the minimal intervention principle of optimal feedback control. We explain this behavior with a term in the loss function that accounts for the additional effort of adjusting one's response. By suggesting that subjects' decision uncertainty, as reflected in their posterior distribution, is a major factor in determining how their sensorimotor system responds to error, our findings support theoretical models in which the decision making and control processes are fully integrated.

  15. Refractive error and presbyopia among adults in Fiji.

    PubMed

    Brian, Garry; Pearce, Matthew G; Ramke, Jacqueline

    2011-04-01

    To characterize refractive error, presbyopia and their correction among adults aged ≥ 40 years in Fiji, and contribute to a regional overview of these conditions. A population-based cross-sectional survey using multistage cluster random sampling. Presenting distance and near vision were measured and dilated slitlamp examination performed. The survey achieved 73.0% participation (n=1381). Presenting binocular distance vision ≥ 6/18 was achieved by 1223 participants. Another 79 had vision impaired by refractive error. Three of these were blind. At threshold 6/18, 204 participants had refractive error. Among these, 125 had spectacle-corrected presenting vision ≥ 6/18 ("met refractive error need"); 79 presented wearing no (n=74) or under-correcting (n=5) distance spectacles ("unmet refractive error need"). Presenting binocular near vision ≥ N8 was achieved by 833 participants. At threshold N8, 811 participants had presbyopia. Among these, 336 attained N8 with presenting near spectacles ("met presbyopia need"); 475 presented with no (n=402) or under-correcting (n=73) near spectacles ("unmet presbyopia need"). Rural residence was predictive of unmet refractive error (p=0.040) and presbyopia (p=0.016) need. Gender and household income source were not. Ethnicity-gender-age-domicile-adjusted to the Fiji population aged ≥ 40 years, "met refractive error need" was 10.3% (95% confidence interval [CI] 8.7-11.9%), "unmet refractive error need" was 4.8% (95%CI 3.6-5.9%), "refractive error correction coverage" was 68.3% (95%CI 54.4-82.2%),"met presbyopia need" was 24.6% (95%CI 22.4-26.9%), "unmet presbyopia need" was 33.8% (95%CI 31.3-36.3%), and "presbyopia correction coverage" was 42.2% (95%CI 37.6-46.8%). Fiji refraction and dispensing services should encourage uptake by rural dwellers and promote presbyopia correction. Lack of comparable data from neighbouring countries prevents a regional overview.

  16. Coherent errors in quantum error correction

    NASA Astrophysics Data System (ADS)

    Greenbaum, Daniel; Dutton, Zachary

    Analysis of quantum error correcting (QEC) codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. We present analytic results for the logical error as a function of concatenation level and code distance for coherent errors under the repetition code. For data-only coherent errors, we find that the logical error is partially coherent and therefore non-Pauli. However, the coherent part of the error is negligible after two or more concatenation levels or at fewer than ɛ - (d - 1) error correction cycles. Here ɛ << 1 is the rotation angle error per cycle for a single physical qubit and d is the code distance. These results support the validity of modeling coherent errors using a Pauli channel under some minimum requirements for code distance and/or concatenation. We discuss extensions to imperfect syndrome extraction and implications for general QEC.

  17. Quantum Error Correction with a Globally-Coupled Array of Neutral Atom Qubits

    DTIC Science & Technology

    2013-02-01

    magneto - optical trap ) located at the center of the science cell. Fluorescence...Bottle beam trap GBA Gaussian beam array EMCCD electron multiplying charge coupled device microsec. microsecond MOT Magneto - optical trap QEC quantum error correction qubit quantum bit ...developed and implemented an array of neutral atom qubits in optical traps for studies of quantum error correction. At the end of the three year

  18. Using Effective Strategies for Errors Correction in EFL Classes: a Case Study of Secondary Public Schools in Benin

    ERIC Educational Resources Information Center

    Teba, Sourou Corneille

    2017-01-01

    The aim of this paper is firstly, to make teachers correct thoroughly students' errors with effective strategies. Secondly, it is an attempt to find out if teachers are interested themselves in errors correction in Beninese secondary schools. Finally, I would like to point out the effective strategies that an EFL teacher can use for errors…

  19. Errors, error detection, error correction and hippocampal-region damage: data and theories.

    PubMed

    MacKay, Donald G; Johnson, Laura W

    2013-11-01

    This review and perspective article outlines 15 observational constraints on theories of errors, error detection, and error correction, and their relation to hippocampal-region (HR) damage. The core observations come from 10 studies with H.M., an amnesic with cerebellar and HR damage but virtually no neocortical damage. Three studies examined the detection of errors planted in visual scenes (e.g., a bird flying in a fish bowl in a school classroom) and sentences (e.g., I helped themselves to the birthday cake). In all three experiments, H.M. detected reliably fewer errors than carefully matched memory-normal controls. Other studies examined the detection and correction of self-produced errors, with controls for comprehension of the instructions, impaired visual acuity, temporal factors, motoric slowing, forgetting, excessive memory load, lack of motivation, and deficits in visual scanning or attention. In these studies, H.M. corrected reliably fewer errors than memory-normal and cerebellar controls, and his uncorrected errors in speech, object naming, and reading aloud exhibited two consistent features: omission and anomaly. For example, in sentence production tasks, H.M. omitted one or more words in uncorrected encoding errors that rendered his sentences anomalous (incoherent, incomplete, or ungrammatical) reliably more often than controls. Besides explaining these core findings, the theoretical principles discussed here explain H.M.'s retrograde amnesia for once familiar episodic and semantic information; his anterograde amnesia for novel information; his deficits in visual cognition, sentence comprehension, sentence production, sentence reading, and object naming; and effects of aging on his ability to read isolated low frequency words aloud. These theoretical principles also explain a wide range of other data on error detection and correction and generate new predictions for future test. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A Parallel Decoding Algorithm for Short Polar Codes Based on Error Checking and Correcting

    PubMed Central

    Pan, Xiaofei; Pan, Kegang; Ye, Zhan; Gong, Chao

    2014-01-01

    We propose a parallel decoding algorithm based on error checking and correcting to improve the performance of the short polar codes. In order to enhance the error-correcting capacity of the decoding algorithm, we first derive the error-checking equations generated on the basis of the frozen nodes, and then we introduce the method to check the errors in the input nodes of the decoder by the solutions of these equations. In order to further correct those checked errors, we adopt the method of modifying the probability messages of the error nodes with constant values according to the maximization principle. Due to the existence of multiple solutions of the error-checking equations, we formulate a CRC-aided optimization problem of finding the optimal solution with three different target functions, so as to improve the accuracy of error checking. Besides, in order to increase the throughput of decoding, we use a parallel method based on the decoding tree to calculate probability messages of all the nodes in the decoder. Numerical results show that the proposed decoding algorithm achieves better performance than that of some existing decoding algorithms with the same code length. PMID:25540813

  1. Cone beam CT-based set-up strategies with and without rotational correction for stereotactic body radiation therapy in the liver.

    PubMed

    Bertholet, Jenny; Worm, Esben; Høyer, Morten; Poulsen, Per

    2017-06-01

    Accurate patient positioning is crucial in stereotactic body radiation therapy (SBRT) due to a high dose regimen. Cone-beam computed tomography (CBCT) is often used for patient positioning based on radio-opaque markers. We compared six CBCT-based set-up strategies with or without rotational correction. Twenty-nine patients with three implanted markers received 3-6 fraction liver SBRT. The markers were delineated on the mid-ventilation phase of a 4D-planning-CT. One pretreatment CBCT was acquired per fraction. Set-up strategy 1 used only translational correction based on manual marker match between the CBCT and planning CT. Set-up strategy 2 used automatic 6 degrees-of-freedom registration of the vertebrae closest to the target. The 3D marker trajectories were also extracted from the projections and the mean position of each marker was calculated and used for set-up strategies 3-6. Translational correction only was used for strategy 3. Translational and rotational corrections were used for strategies 4-6 with the rotation being either vertebrae based (strategy 4), or marker based and constrained to ±3° (strategy 5) or unconstrained (strategy 6). The resulting set-up error was calculated as the 3D root-mean-square set-up error of the three markers. The set-up error of the spinal cord was calculated for all strategies. The bony anatomy set-up (2) had the largest set-up error (5.8 mm). The marker-based set-up with unconstrained rotations (6) had the smallest set-up error (0.8 mm) but the largest spinal cord set-up error (12.1 mm). The marker-based set-up with translational correction only (3) or with bony anatomy rotational correction (4) had equivalent set-up error (1.3 mm) but rotational correction reduced the spinal cord set-up error from 4.1 mm to 3.5 mm. Marker-based set-up was substantially better than bony-anatomy set-up. Rotational correction may improve the set-up, but further investigations are required to determine the optimal correction strategy.

  2. "Ser" and "Estar": Corrective Input to Children's Errors of the Spanish Copula Verbs

    ERIC Educational Resources Information Center

    Holtheuer, Carolina; Rendle-Short, Johanna

    2013-01-01

    Evidence for the role of corrective input as a facilitator of language acquisition is inconclusive. Studies show links between corrective input and grammatical use of some, but not other, language structures. The present study examined relationships between corrective parental input and children's errors in the acquisition of the Spanish copula…

  3. Exposed and Embedded Corrections in Aphasia Therapy: Issues of Voice and Identity

    ERIC Educational Resources Information Center

    Simmons-Mackie, Nina; Damico, Jack S.

    2008-01-01

    Background: Because communication after the onset of aphasia can be fraught with errors, therapist corrections are pervasive in therapy for aphasia. Although corrections are designed to improve the accuracy of communication, some corrections can have social and emotional consequences during interactions. That is, exposure of errors can potentially…

  4. Error-correcting codes on scale-free networks

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hoon; Ko, Young-Jo

    2004-06-01

    We investigate the potential of scale-free networks as error-correcting codes. We find that irregular low-density parity-check codes with the highest performance known to date have degree distributions well fitted by a power-law function p (k) ˜ k-γ with γ close to 2, which suggests that codes built on scale-free networks with appropriate power exponents can be good error-correcting codes, with a performance possibly approaching the Shannon limit. We demonstrate for an erasure channel that codes with a power-law degree distribution of the form p (k) = C (k+α)-γ , with k⩾2 and suitable selection of the parameters α and γ , indeed have very good error-correction capabilities.

  5. Passive quantum error correction of linear optics networks through error averaging

    NASA Astrophysics Data System (ADS)

    Marshman, Ryan J.; Lund, Austin P.; Rohde, Peter P.; Ralph, Timothy C.

    2018-02-01

    We propose and investigate a method of error detection and noise correction for bosonic linear networks using a method of unitary averaging. The proposed error averaging does not rely on ancillary photons or control and feedforward correction circuits, remaining entirely passive in its operation. We construct a general mathematical framework for this technique and then give a series of proof of principle examples including numerical analysis. Two methods for the construction of averaging are then compared to determine the most effective manner of implementation and probe the related error thresholds. Finally we discuss some of the potential uses of this scheme.

  6. Errata report on Herbert Goldstein's Classical Mechanics: Second edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unseren, M.A.; Hoffman, F.M.

    This report describes errors in Herbert Goldstein's textbook Classical Mechanics, Second Edition (Copyright 1980, ISBN 0-201-02918-9). Some of the errors in current printings of the text were corrected in the second printing; however, after communicating with Addison Wesley, the publisher for Classical Mechanics, it was discovered that the corrected galley proofs had been lost by the printer and that no one had complained of any errors in the eleven years since the second printing. The errata sheet corrects errors from all printings of the second edition.

  7. Entanglement renormalization, quantum error correction, and bulk causality

    NASA Astrophysics Data System (ADS)

    Kim, Isaac H.; Kastoryano, Michael J.

    2017-04-01

    Entanglement renormalization can be viewed as an encoding circuit for a family of approximate quantum error correcting codes. The logical information becomes progres-sively more well-protected against erasure errors at larger length scales. In particular, an approximate variant of holographic quantum error correcting code emerges at low energy for critical systems. This implies that two operators that are largely separated in scales behave as if they are spatially separated operators, in the sense that they obey a Lieb-Robinson type locality bound under a time evolution generated by a local Hamiltonian.

  8. A novel method to correct for pitch and yaw patient setup errors in helical tomotherapy.

    PubMed

    Boswell, Sarah A; Jeraj, Robert; Ruchala, Kenneth J; Olivera, Gustavo H; Jaradat, Hazim A; James, Joshua A; Gutierrez, Alonso; Pearson, Dave; Frank, Gary; Mackie, T Rock

    2005-06-01

    An accurate means of determining and correcting for daily patient setup errors is important to the cancer outcome in radiotherapy. While many tools have been developed to detect setup errors, difficulty may arise in accurately adjusting the patient to account for the rotational error components. A novel, automated method to correct for rotational patient setup errors in helical tomotherapy is proposed for a treatment couch that is restricted to motion along translational axes. In tomotherapy, only a narrow superior/inferior section of the target receives a dose at any instant, thus rotations in the sagittal and coronal planes may be approximately corrected for by very slow continuous couch motion in a direction perpendicular to the scanning direction. Results from proof-of-principle tests indicate that the method improves the accuracy of treatment delivery, especially for long and narrow targets. Rotational corrections about an axis perpendicular to the transverse plane continue to be implemented easily in tomotherapy by adjustment of the initial gantry angle.

  9. A service evaluation of on-line image-guided radiotherapy to lower extremity sarcoma: Investigating the workload implications of a 3 mm action level for image assessment and correction prior to delivery.

    PubMed

    Taylor, C; Parker, J; Stratford, J; Warren, M

    2018-05-01

    Although all systematic and random positional setup errors can be corrected for in entirety during on-line image-guided radiotherapy, the use of a specified action level, below which no correction occurs, is also an option. The following service evaluation aimed to investigate the use of this 3 mm action level for on-line image assessment and correction (online, systematic set-up error and weekly evaluation) for lower extremity sarcoma, and understand the impact on imaging frequency and patient positioning error within one cancer centre. All patients were immobilised using a thermoplastic shell attached to a plastic base and an individual moulded footrest. A retrospective analysis of 30 patients was performed. Patient setup and correctional data derived from cone beam CT analysis was retrieved. The timing, frequency and magnitude of corrections were evaluated. The population systematic and random error was derived. 20% of patients had no systematic corrections over the duration of treatment, and 47% had one. The maximum number of systematic corrections per course of radiotherapy was 4, which occurred for 2 patients. 34% of episodes occurred within the first 5 fractions. All patients had at least one observed translational error during their treatment greater than 0.3 cm, and 80% of patients had at least one observed translational error during their treatment greater than 0.5 cm. The population systematic error was 0.14 cm, 0.10 cm, 0.14 cm and random error was 0.27 cm, 0.22 cm, 0.23 cm in the lateral, caudocranial and anteroposterial directions. The required Planning Target Volume margin for the study population was 0.55 cm, 0.41 cm and 0.50 cm in the lateral, caudocranial and anteroposterial directions. The 3 mm action level for image assessment and correction prior to delivery reduced the imaging burden and focussed intervention on patients that exhibited greater positional variability. This strategy could be an efficient deployment of departmental resources if full daily correction of positional setup error is not possible. Copyright © 2017. Published by Elsevier Ltd.

  10. A solar rechargeable flow battery based on photoregeneration of two soluble redox couples.

    PubMed

    Liu, Ping; Cao, Yu-liang; Li, Guo-Ran; Gao, Xue-Ping; Ai, Xin-Ping; Yang, Han-Xi

    2013-05-01

    Storable sunshine, reusable rays: A solar rechargeable redox flow battery is proposed based on the photoregeneration of I(3)(-)/I(-) and [Fe(C(10)H(15))(2)](+)/Fe(C(10)H(15))(2) soluble redox couples, which can be regenerated by flowing from a discharged redox flow battery (RFB) into a dye-sensitized solar cell (DSSC) and then stored in tanks for subsequent RFB applications This technology enables effective solar-to-chemical energy conversion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Development of a 3-D Pen Input Device

    DTIC Science & Technology

    2008-09-01

    of a unistroke which can be written on any surface or in the air while correcting integration errors from the...navigation frame of a unistroke, which can be written on any surface or in the air while correcting integration errors from the measurements of the IMU... be written on any surface or in the air while correcting integration errors from the measurements of the IMU (Inertial Measurement Unit) of the

  12. Error Correcting Codes I. Applications of Elementary Algebra to Information Theory. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Unit 346.

    ERIC Educational Resources Information Center

    Rice, Bart F.; Wilde, Carroll O.

    It is noted that with the prominence of computers in today's technological society, digital communication systems have become widely used in a variety of applications. Some of the problems that arise in digital communications systems are described. This unit presents the problem of correcting errors in such systems. Error correcting codes are…

  13. Quantum cryptography: individual eavesdropping with the knowledge of the error-correcting protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horoshko, D B

    2007-12-31

    The quantum key distribution protocol BB84 combined with the repetition protocol for error correction is analysed from the point of view of its security against individual eavesdropping relying on quantum memory. It is shown that the mere knowledge of the error-correcting protocol changes the optimal attack and provides the eavesdropper with additional information on the distributed key. (fifth seminar in memory of d.n. klyshko)

  14. Autonomous Quantum Error Correction with Application to Quantum Metrology

    NASA Astrophysics Data System (ADS)

    Reiter, Florentin; Sorensen, Anders S.; Zoller, Peter; Muschik, Christine A.

    2017-04-01

    We present a quantum error correction scheme that stabilizes a qubit by coupling it to an engineered environment which protects it against spin- or phase flips. Our scheme uses always-on couplings that run continuously in time and operates in a fully autonomous fashion without the need to perform measurements or feedback operations on the system. The correction of errors takes place entirely at the microscopic level through a build-in feedback mechanism. Our dissipative error correction scheme can be implemented in a system of trapped ions and can be used for improving high precision sensing. We show that the enhanced coherence time that results from the coupling to the engineered environment translates into a significantly enhanced precision for measuring weak fields. In a broader context, this work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.

  15. A New Correction Technique for Strain-Gage Measurements Acquired in Transient-Temperature Environments

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance

    1996-01-01

    Significant strain-gage errors may exist in measurements acquired in transient-temperature environments if conventional correction methods are applied. As heating or cooling rates increase, temperature gradients between the strain-gage sensor and substrate surface increase proportionally. These temperature gradients introduce strain-measurement errors that are currently neglected in both conventional strain-correction theory and practice. Therefore, the conventional correction theory has been modified to account for these errors. A new experimental method has been developed to correct strain-gage measurements acquired in environments experiencing significant temperature transients. The new correction technique has been demonstrated through a series of tests in which strain measurements were acquired for temperature-rise rates ranging from 1 to greater than 100 degrees F/sec. Strain-gage data from these tests have been corrected with both the new and conventional methods and then compared with an analysis. Results show that, for temperature-rise rates greater than 10 degrees F/sec, the strain measurements corrected with the conventional technique produced strain errors that deviated from analysis by as much as 45 percent, whereas results corrected with the new technique were in good agreement with analytical results.

  16. Hypothesis Testing Using Factor Score Regression

    PubMed Central

    Devlieger, Ines; Mayer, Axel; Rosseel, Yves

    2015-01-01

    In this article, an overview is given of four methods to perform factor score regression (FSR), namely regression FSR, Bartlett FSR, the bias avoiding method of Skrondal and Laake, and the bias correcting method of Croon. The bias correcting method is extended to include a reliable standard error. The four methods are compared with each other and with structural equation modeling (SEM) by using analytic calculations and two Monte Carlo simulation studies to examine their finite sample characteristics. Several performance criteria are used, such as the bias using the unstandardized and standardized parameterization, efficiency, mean square error, standard error bias, type I error rate, and power. The results show that the bias correcting method, with the newly developed standard error, is the only suitable alternative for SEM. While it has a higher standard error bias than SEM, it has a comparable bias, efficiency, mean square error, power, and type I error rate. PMID:29795886

  17. Small refractive errors--their correction and practical importance.

    PubMed

    Skrbek, Matej; Petrová, Sylvie

    2013-04-01

    Small refractive errors present a group of specifc far-sighted refractive dispositions that are compensated by enhanced accommodative exertion and aren't exhibited by loss of the visual acuity. This paper should answer a few questions about their correction, flowing from theoretical presumptions and expectations of this dilemma. The main goal of this research was to (dis)confirm the hypothesis about convenience, efficiency and frequency of the correction that do not raise the visual acuity (or if the improvement isn't noticeable). The next goal was to examine the connection between this correction and other factors (age, size of the refractive error, etc.). The last aim was to describe the subjective personal rating of the correction of these small refractive errors, and to determine the minimal improvement of the visual acuity, that is attractive enough for the client to purchase the correction (glasses, contact lenses). It was confirmed, that there's an indispensable group of subjects with good visual acuity, where the correction is applicable, although it doesn't improve the visual acuity much. The main importance is to eliminate the asthenopia. The prime reason for acceptance of the correction is typically changing during the life, so as the accommodation is declining. Young people prefer the correction on the ground of the asthenopia, caused by small refractive error or latent strabismus; elderly people acquire the correction because of improvement of the visual acuity. Generally the correction was found useful in more than 30%, if the gain of the visual acuity was at least 0,3 of the decimal row.

  18. Improve homology search sensitivity of PacBio data by correcting frameshifts.

    PubMed

    Du, Nan; Sun, Yanni

    2016-09-01

    Single-molecule, real-time sequencing (SMRT) developed by Pacific BioSciences produces longer reads than secondary generation sequencing technologies such as Illumina. The long read length enables PacBio sequencing to close gaps in genome assembly, reveal structural variations, and identify gene isoforms with higher accuracy in transcriptomic sequencing. However, PacBio data has high sequencing error rate and most of the errors are insertion or deletion errors. During alignment-based homology search, insertion or deletion errors in genes will cause frameshifts and may only lead to marginal alignment scores and short alignments. As a result, it is hard to distinguish true alignments from random alignments and the ambiguity will incur errors in structural and functional annotation. Existing frameshift correction tools are designed for data with much lower error rate and are not optimized for PacBio data. As an increasing number of groups are using SMRT, there is an urgent need for dedicated homology search tools for PacBio data. In this work, we introduce Frame-Pro, a profile homology search tool for PacBio reads. Our tool corrects sequencing errors and also outputs the profile alignments of the corrected sequences against characterized protein families. We applied our tool to both simulated and real PacBio data. The results showed that our method enables more sensitive homology search, especially for PacBio data sets of low sequencing coverage. In addition, we can correct more errors when comparing with a popular error correction tool that does not rely on hybrid sequencing. The source code is freely available at https://sourceforge.net/projects/frame-pro/ yannisun@msu.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Repeat-aware modeling and correction of short read errors.

    PubMed

    Yang, Xiao; Aluru, Srinivas; Dorman, Karin S

    2011-02-15

    High-throughput short read sequencing is revolutionizing genomics and systems biology research by enabling cost-effective deep coverage sequencing of genomes and transcriptomes. Error detection and correction are crucial to many short read sequencing applications including de novo genome sequencing, genome resequencing, and digital gene expression analysis. Short read error detection is typically carried out by counting the observed frequencies of kmers in reads and validating those with frequencies exceeding a threshold. In case of genomes with high repeat content, an erroneous kmer may be frequently observed if it has few nucleotide differences with valid kmers with multiple occurrences in the genome. Error detection and correction were mostly applied to genomes with low repeat content and this remains a challenging problem for genomes with high repeat content. We develop a statistical model and a computational method for error detection and correction in the presence of genomic repeats. We propose a method to infer genomic frequencies of kmers from their observed frequencies by analyzing the misread relationships among observed kmers. We also propose a method to estimate the threshold useful for validating kmers whose estimated genomic frequency exceeds the threshold. We demonstrate that superior error detection is achieved using these methods. Furthermore, we break away from the common assumption of uniformly distributed errors within a read, and provide a framework to model position-dependent error occurrence frequencies common to many short read platforms. Lastly, we achieve better error correction in genomes with high repeat content. The software is implemented in C++ and is freely available under GNU GPL3 license and Boost Software V1.0 license at "http://aluru-sun.ece.iastate.edu/doku.php?id = redeem". We introduce a statistical framework to model sequencing errors in next-generation reads, which led to promising results in detecting and correcting errors for genomes with high repeat content.

  20. Double ErrP Detection for Automatic Error Correction in an ERP-Based BCI Speller.

    PubMed

    Cruz, Aniana; Pires, Gabriel; Nunes, Urbano J

    2018-01-01

    Brain-computer interface (BCI) is a useful device for people with severe motor disabilities. However, due to its low speed and low reliability, BCI still has a very limited application in daily real-world tasks. This paper proposes a P300-based BCI speller combined with a double error-related potential (ErrP) detection to automatically correct erroneous decisions. This novel approach introduces a second error detection to infer whether wrong automatic correction also elicits a second ErrP. Thus, two single-trial responses, instead of one, contribute to the final selection, improving the reliability of error detection. Moreover, to increase error detection, the evoked potential detected as target by the P300 classifier is combined with the evoked error potential at a feature-level. Discriminable error and positive potentials (response to correct feedback) were clearly identified. The proposed approach was tested on nine healthy participants and one tetraplegic participant. The online average accuracy for the first and second ErrPs were 88.4% and 84.8%, respectively. With automatic correction, we achieved an improvement around 5% achieving 89.9% in spelling accuracy for an effective 2.92 symbols/min. The proposed approach revealed that double ErrP detection can improve the reliability and speed of BCI systems.

  1. Local blur analysis and phase error correction method for fringe projection profilometry systems.

    PubMed

    Rao, Li; Da, Feipeng

    2018-05-20

    We introduce a flexible error correction method for fringe projection profilometry (FPP) systems in the presence of local blur phenomenon. Local blur caused by global light transport such as camera defocus, projector defocus, and subsurface scattering will cause significant systematic errors in FPP systems. Previous methods, which adopt high-frequency patterns to separate the direct and global components, fail when the global light phenomenon occurs locally. In this paper, the influence of local blur on phase quality is thoroughly analyzed, and a concise error correction method is proposed to compensate the phase errors. For defocus phenomenon, this method can be directly applied. With the aid of spatially varying point spread functions and local frontal plane assumption, experiments show that the proposed method can effectively alleviate the system errors and improve the final reconstruction accuracy in various scenes. For a subsurface scattering scenario, if the translucent object is dominated by multiple scattering, the proposed method can also be applied to correct systematic errors once the bidirectional scattering-surface reflectance distribution function of the object material is measured.

  2. Intelligent OCR Processing.

    ERIC Educational Resources Information Center

    Sun, Wei; And Others

    1992-01-01

    Identifies types and distributions of errors in text produced by optical character recognition (OCR) and proposes a process using machine learning techniques to recognize and correct errors in OCR texts. Results of experiments indicating that this strategy can reduce human interaction required for error correction are reported. (25 references)…

  3. A simplified procedure for correcting both errors and erasures of a Reed-Solomon code using the Euclidean algorithm

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Hsu, I. S.; Eastman, W. L.; Reed, I. S.

    1987-01-01

    It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial and the error evaluator polynomial in Berlekamp's key equation needed to decode a Reed-Solomon (RS) code. A simplified procedure is developed and proved to correct erasures as well as errors by replacing the initial condition of the Euclidean algorithm by the erasure locator polynomial and the Forney syndrome polynomial. By this means, the errata locator polynomial and the errata evaluator polynomial can be obtained, simultaneously and simply, by the Euclidean algorithm only. With this improved technique the complexity of time domain RS decoders for correcting both errors and erasures is reduced substantially from previous approaches. As a consequence, decoders for correcting both errors and erasures of RS codes can be made more modular, regular, simple, and naturally suitable for both VLSI and software implementation. An example illustrating this modified decoding procedure is given for a (15, 9) RS code.

  4. Analysis of error-correction constraints in an optical disk.

    PubMed

    Roberts, J D; Ryley, A; Jones, D M; Burke, D

    1996-07-10

    The compact disk read-only memory (CD-ROM) is a mature storage medium with complex error control. It comprises four levels of Reed Solomon codes allied to a sequence of sophisticated interleaving strategies and 8:14 modulation coding. New storage media are being developed and introduced that place still further demands on signal processing for error correction. It is therefore appropriate to explore thoroughly the limit of existing strategies to assess future requirements. We describe a simulation of all stages of the CD-ROM coding, modulation, and decoding. The results of decoding the burst error of a prescribed number of modulation bits are discussed in detail. Measures of residual uncorrected error within a sector are displayed by C1, C2, P, and Q error counts and by the status of the final cyclic redundancy check (CRC). Where each data sector is encoded separately, it is shown that error-correction performance against burst errors depends critically on the position of the burst within a sector. The C1 error measures the burst length, whereas C2 errors reflect the burst position. The performance of Reed Solomon product codes is shown by the P and Q statistics. It is shown that synchronization loss is critical near the limits of error correction. An example is given of miscorrection that is identified by the CRC check.

  5. Analysis of error-correction constraints in an optical disk

    NASA Astrophysics Data System (ADS)

    Roberts, Jonathan D.; Ryley, Alan; Jones, David M.; Burke, David

    1996-07-01

    The compact disk read-only memory (CD-ROM) is a mature storage medium with complex error control. It comprises four levels of Reed Solomon codes allied to a sequence of sophisticated interleaving strategies and 8:14 modulation coding. New storage media are being developed and introduced that place still further demands on signal processing for error correction. It is therefore appropriate to explore thoroughly the limit of existing strategies to assess future requirements. We describe a simulation of all stages of the CD-ROM coding, modulation, and decoding. The results of decoding the burst error of a prescribed number of modulation bits are discussed in detail. Measures of residual uncorrected error within a sector are displayed by C1, C2, P, and Q error counts and by the status of the final cyclic redundancy check (CRC). Where each data sector is encoded separately, it is shown that error-correction performance against burst errors depends critically on the position of the burst within a sector. The C1 error measures the burst length, whereas C2 errors reflect the burst position. The performance of Reed Solomon product codes is shown by the P and Q statistics. It is shown that synchronization loss is critical near the limits of error correction. An example is given of miscorrection that is identified by the CRC check.

  6. A Comparison of the Sensitivity and Fecal Egg Counts of the McMaster Egg Counting and Kato-Katz Thick Smear Methods for Soil-Transmitted Helminths

    PubMed Central

    Levecke, Bruno; Behnke, Jerzy M.; Ajjampur, Sitara S. R.; Albonico, Marco; Ame, Shaali M.; Charlier, Johannes; Geiger, Stefan M.; Hoa, Nguyen T. V.; Kamwa Ngassam, Romuald I.; Kotze, Andrew C.; McCarthy, James S.; Montresor, Antonio; Periago, Maria V.; Roy, Sheela; Tchuem Tchuenté, Louis-Albert; Thach, D. T. C.; Vercruysse, Jozef

    2011-01-01

    Background The Kato-Katz thick smear (Kato-Katz) is the diagnostic method recommended for monitoring large-scale treatment programs implemented for the control of soil-transmitted helminths (STH) in public health, yet it is difficult to standardize. A promising alternative is the McMaster egg counting method (McMaster), commonly used in veterinary parasitology, but rarely so for the detection of STH in human stool. Methodology/Principal Findings The Kato-Katz and McMaster methods were compared for the detection of STH in 1,543 subjects resident in five countries across Africa, Asia and South America. The consistency of the performance of both methods in different trials, the validity of the fixed multiplication factor employed in the Kato-Katz method and the accuracy of these methods for estimating ‘true’ drug efficacies were assessed. The Kato-Katz method detected significantly more Ascaris lumbricoides infections (88.1% vs. 75.6%, p<0.001), whereas the difference in sensitivity between the two methods was non-significant for hookworm (78.3% vs. 72.4%) and Trichuris trichiura (82.6% vs. 80.3%). The sensitivity of the methods varied significantly across trials and magnitude of fecal egg counts (FEC). Quantitative comparison revealed a significant correlation (Rs >0.32) in FEC between both methods, and indicated no significant difference in FEC, except for A. lumbricoides, where the Kato-Katz resulted in significantly higher FEC (14,197 eggs per gram of stool (EPG) vs. 5,982 EPG). For the Kato-Katz, the fixed multiplication factor resulted in significantly higher FEC than the multiplication factor adjusted for mass of feces examined for A. lumbricoides (16,538 EPG vs. 15,396 EPG) and T. trichiura (1,490 EPG vs. 1,363 EPG), but not for hookworm. The McMaster provided more accurate efficacy results (absolute difference to ‘true’ drug efficacy: 1.7% vs. 4.5%). Conclusions/Significance The McMaster is an alternative method for monitoring large-scale treatment programs. It is a robust (accurate multiplication factor) and accurate (reliable efficacy results) method, which can be easily standardized. PMID:21695104

  7. Shortened strongyle-type egg reappearance periods in naturally infected horses treated with moxidectin and failure of a larvicidal dose of fenbendazole to reduce fecal egg counts.

    PubMed

    Rossano, M G; Smith, A R; Lyons, E T

    2010-10-29

    Deworming horses with anthelmintics that have activity against encysted small strongyle larvae (L(3) and L(4)) is a common practice in parasite control programs. The two drugs currently available for this use are moxidectin (MOX) administered in a single dose of 0.4 mg/kg and fenbendazole (FBZ) given at the larvicidal dose (10mg/kg for 5 days). Here, we report the efficacy of MOX and the larvicidal dose of FBZ for reducing counts of strongyle-type eggs per gram of feces in naturally infected horses. Fecal egg counts (FECs) of 15 yearlings were observed following deworming. On day 0, 6 of the 15 yearlings were administered a larvicidal dose of FBZ; 14 days later, all 15 yearlings received MOX at a single dose of 0.4 mg/kg. Feces were collected on day 0 for pre-treatment egg counts. Feces were collected at weekly intervals thereafter during FEC observation periods. FECs of FBZ-treated horses were compared at day 0 and 14 days post-treatment. The difference in means pre- and post-treatment with FBZ was not statistically significant (p=0.65). On days 0 and 42 of the MOX treatment observation period the mean FEC of the yearlings that had not received the FBZ treatment did not differ significantly from that of the FBZ-treated yearlings. MOX was effective in reducing fecal egg counts to 0 EPG for 21 days. At day 35 all but 2 of the yearlings had some eggs present (range=4-361 EPG) and at day 42 all but 1 yearling had eggs present (range=3-432 EPG). At day 42 the group mean FEC reduction had fallen from 100% to 67%. Results of this study do not support the use of the larvicidal dose of FBZ for small strongyle control. Larger field studies will be needed to investigate whether egg reappearance periods are shortening for MOX-treated horses. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Single vs. double dose of copper oxide wire particles (COWP) for treatment of anthelmintic resistant Haemonchus contortus in weanling lambs.

    PubMed

    Schweizer, Nikki M; Foster, Derek M; Knox, William B; Sylvester, Hannah J; Anderson, Kevin L

    2016-10-15

    Haemonchus contortus parasitism is a major disease of sheep, with these parasites frequently demonstrating multi-drug class anthelmintic resistance. Copper oxide wire particles (COWP) have shown potential as adjuncts or alternatives to anthelmintics in resistant flocks. The purpose of this study was to compare the efficacy of two different COWP treatment regimens or placebo in the control of H. contortus in weaned lambs within a flock historically shown to have multi-drug resistant H. contortus using the DrenchRite ® assay. Data from 43 lambs within 3 treatment groups in a double blind study were included in the experiment. Treatments were administered as a total of 2 boluses, each given on separate occasions (day 0 and day 42), so that each lamb received either 2 placebos, a single dose of 2g COWP followed by placebo, or two doses of 1g COWP. Strongyle-type fecal egg counts (FEC) were performed at initial treatment (day 0), on day 10, at second treatment (day 42), on day 52, and at study end (day 84). At the start of the trial, mean±standard deviation FEC were 1634.4±825.2, 2241.7±1496.8, and 2013.3±1194.2epg for the 2g, 1g×2, and control groups, respectively. At the end of the trial, FEC were 757.1±825.3, 483.4±557.2, and 1660.0±1345.3epg for the 2g, 1g×2, and control groups, respectively. Lambs given a 2g single dose of COWP or a 1g dose of COWP twice had reductions in strongyle-type FEC (p≤0.01) from trial start to trial end, whereas lambs given placebo did not. Average daily gains did not differ significantly among groups. Although copper is potentially toxic to sheep, no signs of toxicity were observed during this trial, which was consistent with similar studies at this treatment dose. The study indicated that administering COWP to lambs at weaning reduced FEC. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Error analysis and correction of discrete solutions from finite element codes

    NASA Technical Reports Server (NTRS)

    Thurston, G. A.; Stein, P. A.; Knight, N. F., Jr.; Reissner, J. E.

    1984-01-01

    Many structures are an assembly of individual shell components. Therefore, results for stresses and deflections from finite element solutions for each shell component should agree with the equations of shell theory. This paper examines the problem of applying shell theory to the error analysis and the correction of finite element results. The general approach to error analysis and correction is discussed first. Relaxation methods are suggested as one approach to correcting finite element results for all or parts of shell structures. Next, the problem of error analysis of plate structures is examined in more detail. The method of successive approximations is adapted to take discrete finite element solutions and to generate continuous approximate solutions for postbuckled plates. Preliminary numerical results are included.

  10. Neurometaplasticity: Glucoallostasis control of plasticity of the neural networks of error commission, detection, and correction modulates neuroplasticity to influence task precision

    NASA Astrophysics Data System (ADS)

    Welcome, Menizibeya O.; Dane, Şenol; Mastorakis, Nikos E.; Pereverzev, Vladimir A.

    2017-12-01

    The term "metaplasticity" is a recent one, which means plasticity of synaptic plasticity. Correspondingly, neurometaplasticity simply means plasticity of neuroplasticity, indicating that a previous plastic event determines the current plasticity of neurons. Emerging studies suggest that neurometaplasticity underlie many neural activities and neurobehavioral disorders. In our previous work, we indicated that glucoallostasis is essential for the control of plasticity of the neural network that control error commission, detection and correction. Here we review recent works, which suggest that task precision depends on the modulatory effects of neuroplasticity on the neural networks of error commission, detection, and correction. Furthermore, we discuss neurometaplasticity and its role in error commission, detection, and correction.

  11. Phase Error Correction in Time-Averaged 3D Phase Contrast Magnetic Resonance Imaging of the Cerebral Vasculature

    PubMed Central

    MacDonald, M. Ethan; Forkert, Nils D.; Pike, G. Bruce; Frayne, Richard

    2016-01-01

    Purpose Volume flow rate (VFR) measurements based on phase contrast (PC)-magnetic resonance (MR) imaging datasets have spatially varying bias due to eddy current induced phase errors. The purpose of this study was to assess the impact of phase errors in time averaged PC-MR imaging of the cerebral vasculature and explore the effects of three common correction schemes (local bias correction (LBC), local polynomial correction (LPC), and whole brain polynomial correction (WBPC)). Methods Measurements of the eddy current induced phase error from a static phantom were first obtained. In thirty healthy human subjects, the methods were then assessed in background tissue to determine if local phase offsets could be removed. Finally, the techniques were used to correct VFR measurements in cerebral vessels and compared statistically. Results In the phantom, phase error was measured to be <2.1 ml/s per pixel and the bias was reduced with the correction schemes. In background tissue, the bias was significantly reduced, by 65.6% (LBC), 58.4% (LPC) and 47.7% (WBPC) (p < 0.001 across all schemes). Correction did not lead to significantly different VFR measurements in the vessels (p = 0.997). In the vessel measurements, the three correction schemes led to flow measurement differences of -0.04 ± 0.05 ml/s, 0.09 ± 0.16 ml/s, and -0.02 ± 0.06 ml/s. Although there was an improvement in background measurements with correction, there was no statistical difference between the three correction schemes (p = 0.242 in background and p = 0.738 in vessels). Conclusions While eddy current induced phase errors can vary between hardware and sequence configurations, our results showed that the impact is small in a typical brain PC-MR protocol and does not have a significant effect on VFR measurements in cerebral vessels. PMID:26910600

  12. Experimental investigation of extended Kalman Filter combined with carrier phase recovery for 16-QAM system

    NASA Astrophysics Data System (ADS)

    Shu, Tong; Li, Yan; Yu, Miao; Zhang, Yifan; Zhou, Honghang; Qiu, Jifang; Guo, Hongxiang; Hong, Xiaobin; Wu, Jian

    2018-02-01

    Performance of Extended Kalman Filter combined with the Viterbi-Viterbi phase estimation (VVPE-EKF) for joint phase noise mitigation and amplitude noise equalization is experimental demonstrated. Experimental results show that, for 11.2 Gbaud SP-16-QAM, the proposed VVPE-EKF achieves 0.9 dB required OSNR reduction at bit error ratio (BER) of 3.8e-3 compared to the VVPE. The result of maximum likelihood combined with VVPE (VVPE-ML) is only 0.3 dB. For 28 GBaud SP-16-QAM signal, VVPE-EKF achieves 3 dB required OSNR reduction at BER=3.8e-3 (7% HD-FEC threshold) compared to VVPE. And VVPE-ML can reduce the required OSNR for 1.7 dB compared to the VVPE. VVPE-EKF outperforms DD-EKF 3.7 dB and 0.7 dB for 11.2 GBaud and 28 GBaud system, respectively.

  13. Mitigate the impact of transmitter finite extinction ratio using K-means clustering algorithm for 16QAM signal

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Li, Yan; Shu, Tong; Zhang, Yifan; Hong, Xiaobin; Qiu, Jifang; Zuo, Yong; Guo, Hongxiang; Li, Wei; Wu, Jian

    2018-02-01

    A method of recognizing 16QAM signal based on k-means clustering algorithm is proposed to mitigate the impact of transmitter finite extinction ratio. There are pilot symbols with 0.39% overhead assigned to be regarded as initial centroids of k-means clustering algorithm. Simulation result in 10 GBaud 16QAM system shows that the proposed method obtains higher precision of identification compared with traditional decision method for finite ER and IQ mismatch. Specially, the proposed method improves the required OSNR by 5.5 dB, 4.5 dB, 4 dB and 3 dB at FEC limit with ER= 12 dB, 16 dB, 20 dB and 24 dB, respectively, and the acceptable bias error and IQ mismatch range is widened by 767% and 360% with ER =16 dB, respectively.

  14. Antiretroviral medication prescribing errors are common with hospitalization of HIV-infected patients.

    PubMed

    Commers, Tessa; Swindells, Susan; Sayles, Harlan; Gross, Alan E; Devetten, Marcel; Sandkovsky, Uriel

    2014-01-01

    Errors in prescribing antiretroviral therapy (ART) often occur with the hospitalization of HIV-infected patients. The rapid identification and prevention of errors may reduce patient harm and healthcare-associated costs. A retrospective review of hospitalized HIV-infected patients was carried out between 1 January 2009 and 31 December 2011. Errors were documented as omission, underdose, overdose, duplicate therapy, incorrect scheduling and/or incorrect therapy. The time to error correction was recorded. Relative risks (RRs) were computed to evaluate patient characteristics and error rates. A total of 289 medication errors were identified in 146/416 admissions (35%). The most common was drug omission (69%). At an error rate of 31%, nucleoside reverse transcriptase inhibitors were associated with an increased risk of error when compared with protease inhibitors (RR 1.32; 95% CI 1.04-1.69) and co-formulated drugs (RR 1.59; 95% CI 1.19-2.09). Of the errors, 31% were corrected within the first 24 h, but over half (55%) were never remedied. Admissions with an omission error were 7.4 times more likely to have all errors corrected within 24 h than were admissions without an omission. Drug interactions with ART were detected on 51 occasions. For the study population (n = 177), an increased risk of admission error was observed for black (43%) compared with white (28%) individuals (RR 1.53; 95% CI 1.16-2.03) but no significant differences were observed between white patients and other minorities or between men and women. Errors in inpatient ART were common, and the majority were never detected. The most common errors involved omission of medication, and nucleoside reverse transcriptase inhibitors had the highest rate of prescribing error. Interventions to prevent and correct errors are urgently needed.

  15. ChromatoGate: A Tool for Detecting Base Mis-Calls in Multiple Sequence Alignments by Semi-Automatic Chromatogram Inspection

    PubMed Central

    Alachiotis, Nikolaos; Vogiatzi, Emmanouella; Pavlidis, Pavlos; Stamatakis, Alexandros

    2013-01-01

    Automated DNA sequencers generate chromatograms that contain raw sequencing data. They also generate data that translates the chromatograms into molecular sequences of A, C, G, T, or N (undetermined) characters. Since chromatogram translation programs frequently introduce errors, a manual inspection of the generated sequence data is required. As sequence numbers and lengths increase, visual inspection and manual correction of chromatograms and corresponding sequences on a per-peak and per-nucleotide basis becomes an error-prone, time-consuming, and tedious process. Here, we introduce ChromatoGate (CG), an open-source software that accelerates and partially automates the inspection of chromatograms and the detection of sequencing errors for bidirectional sequencing runs. To provide users full control over the error correction process, a fully automated error correction algorithm has not been implemented. Initially, the program scans a given multiple sequence alignment (MSA) for potential sequencing errors, assuming that each polymorphic site in the alignment may be attributed to a sequencing error with a certain probability. The guided MSA assembly procedure in ChromatoGate detects chromatogram peaks of all characters in an alignment that lead to polymorphic sites, given a user-defined threshold. The threshold value represents the sensitivity of the sequencing error detection mechanism. After this pre-filtering, the user only needs to inspect a small number of peaks in every chromatogram to correct sequencing errors. Finally, we show that correcting sequencing errors is important, because population genetic and phylogenetic inferences can be misled by MSAs with uncorrected mis-calls. Our experiments indicate that estimates of population mutation rates can be affected two- to three-fold by uncorrected errors. PMID:24688709

  16. ChromatoGate: A Tool for Detecting Base Mis-Calls in Multiple Sequence Alignments by Semi-Automatic Chromatogram Inspection.

    PubMed

    Alachiotis, Nikolaos; Vogiatzi, Emmanouella; Pavlidis, Pavlos; Stamatakis, Alexandros

    2013-01-01

    Automated DNA sequencers generate chromatograms that contain raw sequencing data. They also generate data that translates the chromatograms into molecular sequences of A, C, G, T, or N (undetermined) characters. Since chromatogram translation programs frequently introduce errors, a manual inspection of the generated sequence data is required. As sequence numbers and lengths increase, visual inspection and manual correction of chromatograms and corresponding sequences on a per-peak and per-nucleotide basis becomes an error-prone, time-consuming, and tedious process. Here, we introduce ChromatoGate (CG), an open-source software that accelerates and partially automates the inspection of chromatograms and the detection of sequencing errors for bidirectional sequencing runs. To provide users full control over the error correction process, a fully automated error correction algorithm has not been implemented. Initially, the program scans a given multiple sequence alignment (MSA) for potential sequencing errors, assuming that each polymorphic site in the alignment may be attributed to a sequencing error with a certain probability. The guided MSA assembly procedure in ChromatoGate detects chromatogram peaks of all characters in an alignment that lead to polymorphic sites, given a user-defined threshold. The threshold value represents the sensitivity of the sequencing error detection mechanism. After this pre-filtering, the user only needs to inspect a small number of peaks in every chromatogram to correct sequencing errors. Finally, we show that correcting sequencing errors is important, because population genetic and phylogenetic inferences can be misled by MSAs with uncorrected mis-calls. Our experiments indicate that estimates of population mutation rates can be affected two- to three-fold by uncorrected errors.

  17. Erreurs grammaticales: Comment s'entrainer a les depister (Grammatical Errors: Learning How to Track Them Down).

    ERIC Educational Resources Information Center

    Straalen-Sanderse, Wilma van; And Others

    1986-01-01

    Following an experiment which revealed that production of grammatically correct sentences and correction of grammatically problematic sentences in French are essentially different skills, a progressive training method for finding and correcting grammatical errors was developed. (MSE)

  18. Genome-wide association and regional heritability mapping to identify loci underlying variation in nematode resistance and body weight in Scottish Blackface lambs.

    PubMed

    Riggio, V; Matika, O; Pong-Wong, R; Stear, M J; Bishop, S C

    2013-05-01

    The genetic architecture underlying nematode resistance and body weight in Blackface lambs was evaluated comparing genome-wide association (GWA) and regional heritability mapping (RHM) approaches. The traits analysed were faecal egg count (FEC) and immunoglobulin A activity against third-stage larvae from Teladorsagia circumcincta, as indicators of nematode resistance, and body weight in a population of 752 Scottish Blackface lambs, genotyped with the 50k single-nucleotide polymorphism (SNP) chip. FEC for both Nematodirus and Strongyles nematodes (excluding Nematodirus), as well as body weight were collected at approximately 16, 20 and 24 weeks of age. In addition, a weighted average animal effect was estimated for both FEC and body weight traits. After quality control, 44 388 SNPs were available for the GWA analysis and 42 841 for the RHM, which utilises only mapped SNPs. The same fixed effects were used in both analyses: sex, year, management group, litter size and age of dam, with day of birth as covariate. Some genomic regions of interest for both nematode resistance and body weight traits were identified, using both GWA and RHM approaches. For both methods, strong evidence for association was found on chromosome 14 for Nematodirus average animal effect, chromosome 6 for Strongyles FEC at 16 weeks and chromosome 6 for body weight at 16 weeks. Across the entire data set, RHM identified more regions reaching the suggestive level than GWA, suggesting that RHM is capable of capturing some of the variation not detected by GWA analyses.

  19. Genome-wide association and regional heritability mapping to identify loci underlying variation in nematode resistance and body weight in Scottish Blackface lambs

    PubMed Central

    Riggio, V; Matika, O; Pong-Wong, R; Stear, M J; Bishop, S C

    2013-01-01

    The genetic architecture underlying nematode resistance and body weight in Blackface lambs was evaluated comparing genome-wide association (GWA) and regional heritability mapping (RHM) approaches. The traits analysed were faecal egg count (FEC) and immunoglobulin A activity against third-stage larvae from Teladorsagia circumcincta, as indicators of nematode resistance, and body weight in a population of 752 Scottish Blackface lambs, genotyped with the 50k single-nucleotide polymorphism (SNP) chip. FEC for both Nematodirus and Strongyles nematodes (excluding Nematodirus), as well as body weight were collected at approximately 16, 20 and 24 weeks of age. In addition, a weighted average animal effect was estimated for both FEC and body weight traits. After quality control, 44 388 SNPs were available for the GWA analysis and 42 841 for the RHM, which utilises only mapped SNPs. The same fixed effects were used in both analyses: sex, year, management group, litter size and age of dam, with day of birth as covariate. Some genomic regions of interest for both nematode resistance and body weight traits were identified, using both GWA and RHM approaches. For both methods, strong evidence for association was found on chromosome 14 for Nematodirus average animal effect, chromosome 6 for Strongyles FEC at 16 weeks and chromosome 6 for body weight at 16 weeks. Across the entire data set, RHM identified more regions reaching the suggestive level than GWA, suggesting that RHM is capable of capturing some of the variation not detected by GWA analyses. PMID:23512009

  20. Enhanced degradation of 2,4-dichlorophenoxyacetic acid by pre-magnetization Fe-C activated persulfate: Influential factors, mechanism and degradation pathway.

    PubMed

    Li, Xiang; Zhou, Minghua; Pan, Yuwei

    2018-07-05

    2,4-dichlorophenoxyacetic acid (2,4-D) is one of the most applicable herbicides in the world, its residue in aquatic environment threatens the human health and ecosystems. In this study, for the first time, inexpensive Fe-C after pre-magnetization (Pre-Fe-C) was used as the heterogeneous catalyst to activate persulfate (PS) for 2,4-D degradation, proving that Pre-Fe-C could significantly improve the degradation and dechlorination. The results indicated the stability and reusability of Pre-Fe-C were much better than pre-magnetization Fe 0 (Pre-Fe 0 ), while the leaching iron ion was lower, indicating that using Pre-Fe-C not only reduced the post-treatment cost, but also enhanced the removal and dechlorination efficiency of 2,4-D. Several important parameters including initial pH, Fe-C dosage, PS concentration affecting 2,4-D degradation and dechlorination by Pre-Fe-C/PS were investigated and compared with that of Fe-C/PS, observing a 1.2-2.7 fold enhancement in the degradation rate of 2,4-D. The Fe-C and Pre-Fe-C were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and SEM-EDX-mapping, suggesting that the content of Fe and O changed more obviously after magnetization. The degradation intermediates, such as chloroquinol, 2-chlorophenol, were identified by a gas chromatography mass spectrometry (GC/MS) and an ion chromatography (IC), and a possible degradation pathway was proposed. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Fringe order correction for the absolute phase recovered by two selected spatial frequency fringe projections in fringe projection profilometry.

    PubMed

    Ding, Yi; Peng, Kai; Yu, Miao; Lu, Lei; Zhao, Kun

    2017-08-01

    The performance of the two selected spatial frequency phase unwrapping methods is limited by a phase error bound beyond which errors will occur in the fringe order leading to a significant error in the recovered absolute phase map. In this paper, we propose a method to detect and correct the wrong fringe orders. Two constraints are introduced during the fringe order determination of two selected spatial frequency phase unwrapping methods. A strategy to detect and correct the wrong fringe orders is also described. Compared with the existing methods, we do not need to estimate the threshold associated with absolute phase values to determine the fringe order error, thus making it more reliable and avoiding the procedure of search in detecting and correcting successive fringe order errors. The effectiveness of the proposed method is validated by the experimental results.

  2. Motion-induced phase error estimation and correction in 3D diffusion tensor imaging.

    PubMed

    Van, Anh T; Hernando, Diego; Sutton, Bradley P

    2011-11-01

    A multishot data acquisition strategy is one way to mitigate B0 distortion and T2∗ blurring for high-resolution diffusion-weighted magnetic resonance imaging experiments. However, different object motions that take place during different shots cause phase inconsistencies in the data, leading to significant image artifacts. This work proposes a maximum likelihood estimation and k-space correction of motion-induced phase errors in 3D multishot diffusion tensor imaging. The proposed error estimation is robust, unbiased, and approaches the Cramer-Rao lower bound. For rigid body motion, the proposed correction effectively removes motion-induced phase errors regardless of the k-space trajectory used and gives comparable performance to the more computationally expensive 3D iterative nonlinear phase error correction method. The method has been extended to handle multichannel data collected using phased-array coils. Simulation and in vivo data are shown to demonstrate the performance of the method.

  3. Classical simulation of quantum error correction in a Fibonacci anyon code

    NASA Astrophysics Data System (ADS)

    Burton, Simon; Brell, Courtney G.; Flammia, Steven T.

    2017-02-01

    Classically simulating the dynamics of anyonic excitations in two-dimensional quantum systems is likely intractable in general because such dynamics are sufficient to implement universal quantum computation. However, processes of interest for the study of quantum error correction in anyon systems are typically drawn from a restricted class that displays significant structure over a wide range of system parameters. We exploit this structure to classically simulate, and thereby demonstrate the success of, an error-correction protocol for a quantum memory based on the universal Fibonacci anyon model. We numerically simulate a phenomenological model of the system and noise processes on lattice sizes of up to 128 ×128 sites, and find a lower bound on the error-correction threshold of approximately 0.125 errors per edge, which is comparable to those previously known for Abelian and (nonuniversal) non-Abelian anyon models.

  4. Adaptive optics system performance approximations for atmospheric turbulence correction

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    1990-10-01

    Analysis of adaptive optics system behavior often can be reduced to a few approximations and scaling laws. For atmospheric turbulence correction, the deformable mirror (DM) fitting error is most often used to determine a priori the interactuator spacing and the total number of correction zones required. This paper examines the mirror fitting error in terms of its most commonly used exponential form. The explicit constant in the error term is dependent on deformable mirror influence function shape and actuator geometry. The method of least squares fitting of discrete influence functions to the turbulent wavefront is compared to the linear spatial filtering approximation of system performance. It is found that the spatial filtering method overstimates the correctability of the adaptive optics system by a small amount. By evaluating fitting error for a number of DM configurations, actuator geometries, and influence functions, fitting error constants verify some earlier investigations.

  5. Error control for reliable digital data transmission and storage systems

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.; Deng, R. H.

    1985-01-01

    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. In this paper we present some special decoding techniques for extended single-and-double-error-correcting RS codes which are capable of high speed operation. These techniques are designed to find the error locations and the error values directly from the syndrome without having to use the iterative alorithm to find the error locator polynomial. Two codes are considered: (1) a d sub min = 4 single-byte-error-correcting (SBEC), double-byte-error-detecting (DBED) RS code; and (2) a d sub min = 6 double-byte-error-correcting (DBEC), triple-byte-error-detecting (TBED) RS code.

  6. Expert system for automatically correcting OCR output

    NASA Astrophysics Data System (ADS)

    Taghva, Kazem; Borsack, Julie; Condit, Allen

    1994-03-01

    This paper describes a new expert system for automatically correcting errors made by optical character recognition (OCR) devices. The system, which we call the post-processing system, is designed to improve the quality of text produced by an OCR device in preparation for subsequent retrieval from an information system. The system is composed of numerous parts: an information retrieval system, an English dictionary, a domain-specific dictionary, and a collection of algorithms and heuristics designed to correct as many OCR errors as possible. For the remaining errors that cannot be corrected, the system passes them on to a user-level editing program. This post-processing system can be viewed as part of a larger system that would streamline the steps of taking a document from its hard copy form to its usable electronic form, or it can be considered a stand alone system for OCR error correction. An earlier version of this system has been used to process approximately 10,000 pages of OCR generated text. Among the OCR errors discovered by this version, about 87% were corrected. We implement numerous new parts of the system, test this new version, and present the results.

  7. Preface

    NASA Astrophysics Data System (ADS)

    Zhuge, Qunbi; Chen, Xi

    2018-02-01

    Global IP traffic is predicted to increase nearly threefold over the next 5 years, driven by emerging high-bandwidth-demanding applications, such as cloud computing, 5G wireless, high-definition video streaming, and virtual reality. This results in a continuously increasing demand on the capacity of backbone optical networks. During the past decade, advanced digital signal processing (DSP), modulation formats, and forward error correction (FEC) were commercially realized to exploit the capacity potential of long-haul fiber channels, and have increased per channel data rate from 10 Gb/s to 400 Gb/s. DSP has played a crucial role in coherent transceivers to accommodate channel impairments including chromatic dispersion (CD), polarization mode dispersion (PMD), laser phase noise, fiber nonlinearities, clock jitter, and so forth. The advance of DSP has also enabled innovations in modulation formats to increase spectral efficiency, improve linear/nonlinear noise tolerance, and realize flexible bandwidth. Moving forward to next generation 1 Tb/s systems on conventional single mode fiber (SMF) platform, more innovations in DSP techniques are needed to further reduce cost per bit, increase network efficiency, and close the gap to the Shannon limit. To further increase capacity per fiber, spatial-division multiplexing (SDM) systems can be used. DSP techniques such as advanced channel equalization methods and distortion compensation can help SDM systems to achieve higher system capacity. In the area of short-reach transmission, the rapid increase of data center network traffic has driven the development of optical technologies for both intra- and inter-data center interconnects (DCI). In particular, DSP has been exploited in intensity-modulation direct detection (IM/DD) systems to realize 400 Gb/s pluggable optical transceivers. In addition, multi-dimensional direct detection modulation schemes are being investigated to increase the data rate per wavelength targeting 1 Tb/s interface.

  8. Advanced digital signal processing for short-haul and access network

    NASA Astrophysics Data System (ADS)

    Zhang, Junwen; Yu, Jianjun; Chi, Nan

    2016-02-01

    Digital signal processing (DSP) has been proved to be a successful technology recently in high speed and high spectrum-efficiency optical short-haul and access network, which enables high performances based on digital equalizations and compensations. In this paper, we investigate advanced DSP at the transmitter and receiver side for signal pre-equalization and post-equalization in an optical access network. A novel DSP-based digital and optical pre-equalization scheme has been proposed for bandwidth-limited high speed short-distance communication system, which is based on the feedback of receiver-side adaptive equalizers, such as least-mean-squares (LMS) algorithm and constant or multi-modulus algorithms (CMA, MMA). Based on this scheme, we experimentally demonstrate 400GE on a single optical carrier based on the highest ETDM 120-GBaud PDM-PAM-4 signal, using one external modulator and coherent detection. A line rate of 480-Gb/s is achieved, which enables 20% forward-error correction (FEC) overhead to keep the 400-Gb/s net information rate. The performance after fiber transmission shows large margin for both short range and metro/regional networks. We also extend the advanced DSP for short haul optical access networks by using high order QAMs. We propose and demonstrate a high speed multi-band CAP-WDM-PON system on intensity modulation, direct detection and digital equalizations. A hybrid modified cascaded MMA post-equalization schemes are used to equalize the multi-band CAP-mQAM signals. Using this scheme, we successfully demonstrates 550Gb/s high capacity WDMPON system with 11 WDM channels, 55 sub-bands, and 10-Gb/s per user in the downstream over 40-km SMF.

  9. Treatment of oilfield produced water using Fe/C micro-electrolysis assisted by zero-valent copper and zero-valent aluminium.

    PubMed

    Zhang, Qi

    2015-01-01

    In this study, the Fe/Cu/C and Fe/Al/C inner micro-electrolysis systems were used to treat actual oilfield produced water to evaluate the feasibility of the technology. Effects of reaction time, pH value, the dosage of metals and activated carbon, and Fe:C mass ratio on the treatment efficiency of wastewater were studied. The results showed that the optimum conditions were reaction time 120 min, initial solution pH 4.0, Fe dosage 13.3 g/L, activated carbon dosage 6.7 g/L, Cu dosage 2.0 g/L or Al dosage 1.0 g/L. Under the optimum conditions, the removal efficiencies of chemical oxygen demand (COD) were 39.3%, 49.7% and 52.6% in the Fe/C, Fe/Cu/C and Fe/Al/C processes, respectively. Meanwhile, the ratio of five-day biochemical oxygen demand to COD was raised from 0.18 to above 0.35, which created favourable conditions for the subsequent biological treatment. All these led to an easy maintenance and low operational cost.

  10. Density of Fe-3.5 wt% C liquid at high pressure and temperature and the effect of carbon on the density of the molten iron

    NASA Astrophysics Data System (ADS)

    Shimoyama, Yuta; Terasaki, Hidenori; Ohtani, Eiji; Urakawa, Satoru; Takubo, Yusaku; Nishida, Keisuke; Suzuki, Akio; Katayama, Yoshinori

    2013-11-01

    Carbon is a plausible light element candidate in the Earth’s outer core. We measured the density of liquid Fe-3.5 wt% C up to 6.8 GPa and 2200 K using an X-ray absorption method. The compression curve of liquid Fe-C was fitted using the third-order Birch-Murnaghan equation of state. The bulk modulus and its pressure derivative are K0,1500K = 55.3 ± 2.5 GPa and (dK0/dP)T = 5.2 ± 1.5, and the thermal expansion coefficient is α = 0.86 ± 0.04 × 10-4 K-1. The Fe-C density abruptly increases at pressures between 4.3 and 5.5 GPa in the range of present temperatures. Compared with the results of previous density measurements of liquid Fe-C, the effect of carbon on the density of liquid Fe shows a nonideal mixing behavior. The abrupt density increase and nonideal mixing behavior are important factors in determining the light element content in the Earth’s core.

  11. A NEW GUI FOR GLOBAL ORBIT CORRECTION AT THE ALS USING MATLAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pachikara, J.; Portmann, G.

    2007-01-01

    Orbit correction is a vital procedure at particle accelerators around the world. The orbit correction routine currently used at the Advanced Light Source (ALS) is a bit cumbersome and a new Graphical User Interface (GUI) has been developed using MATLAB. The correction algorithm uses a singular value decomposition method for calculating the required corrector magnet changes for correcting the orbit. The application has been successfully tested at the ALS. The GUI display provided important information regarding the orbit including the orbit errors before and after correction, the amount of corrector magnet strength change, and the standard deviation of the orbitmore » error with respect to the number of singular values used. The use of more singular values resulted in better correction of the orbit error but at the expense of enormous corrector magnet strength changes. The results showed an inverse relationship between the peak-to-peak values of the orbit error and the number of singular values used. The GUI interface helps the ALS physicists and operators understand the specifi c behavior of the orbit. The application is convenient to use and is a substantial improvement over the previous orbit correction routine in terms of user friendliness and compactness.« less

  12. MeCorS: Metagenome-enabled error correction of single cell sequencing reads

    DOE PAGES

    Bremges, Andreas; Singer, Esther; Woyke, Tanja; ...

    2016-03-15

    Here we present a new tool, MeCorS, to correct chimeric reads and sequencing errors in Illumina data generated from single amplified genomes (SAGs). It uses sequence information derived from accompanying metagenome sequencing to accurately correct errors in SAG reads, even from ultra-low coverage regions. In evaluations on real data, we show that MeCorS outperforms BayesHammer, the most widely used state-of-the-art approach. MeCorS performs particularly well in correcting chimeric reads, which greatly improves both accuracy and contiguity of de novo SAG assemblies.

  13. Digital Mirror Device Application in Reduction of Wave-front Phase Errors

    PubMed Central

    Zhang, Yaping; Liu, Yan; Wang, Shuxue

    2009-01-01

    In order to correct the image distortion created by the mixing/shear layer, creative and effectual correction methods are necessary. First, a method combining adaptive optics (AO) correction with a digital micro-mirror device (DMD) is presented. Second, performance of an AO system using the Phase Diverse Speckle (PDS) principle is characterized in detail. Through combining the DMD method with PDS, a significant reduction in wavefront phase error is achieved in simulations and experiments. This kind of complex correction principle can be used to recovery the degraded images caused by unforeseen error sources. PMID:22574016

  14. Corrections of clinical chemistry test results in a laboratory information system.

    PubMed

    Wang, Sihe; Ho, Virginia

    2004-08-01

    The recently released reports by the Institute of Medicine, To Err Is Human and Patient Safety, have received national attention because of their focus on the problem of medical errors. Although a small number of studies have reported on errors in general clinical laboratories, there are, to our knowledge, no reported studies that focus on errors in pediatric clinical laboratory testing. To characterize the errors that have caused corrections to have to be made in pediatric clinical chemistry results in the laboratory information system, Misys. To provide initial data on the errors detected in pediatric clinical chemistry laboratories in order to improve patient safety in pediatric health care. All clinical chemistry staff members were informed of the study and were requested to report in writing when a correction was made in the laboratory information system, Misys. Errors were detected either by the clinicians (the results did not fit the patients' clinical conditions) or by the laboratory technologists (the results were double-checked, and the worksheets were carefully examined twice a day). No incident that was discovered before or during the final validation was included. On each Monday of the study, we generated a report from Misys that listed all of the corrections made during the previous week. We then categorized the corrections according to the types and stages of the incidents that led to the corrections. A total of 187 incidents were detected during the 10-month study, representing a 0.26% error detection rate per requisition. The distribution of the detected incidents included 31 (17%) preanalytic incidents, 46 (25%) analytic incidents, and 110 (59%) postanalytic incidents. The errors related to noninterfaced tests accounted for 50% of the total incidents and for 37% of the affected tests and orderable panels, while the noninterfaced tests and panels accounted for 17% of the total test volume in our laboratory. This pilot study provided the rate and categories of errors detected in a pediatric clinical chemistry laboratory based on the corrections of results in the laboratory information system. A direct interface of the instruments to the laboratory information system showed that it had favorable effects on reducing laboratory errors.

  15. Error correcting mechanisms during antisaccades: contribution of online control during primary saccades and offline control via secondary saccades.

    PubMed

    Bedi, Harleen; Goltz, Herbert C; Wong, Agnes M F; Chandrakumar, Manokaraananthan; Niechwiej-Szwedo, Ewa

    2013-01-01

    Errors in eye movements can be corrected during the ongoing saccade through in-flight modifications (i.e., online control), or by programming a secondary eye movement (i.e., offline control). In a reflexive saccade task, the oculomotor system can use extraretinal information (i.e., efference copy) online to correct errors in the primary saccade, and offline retinal information to generate a secondary corrective saccade. The purpose of this study was to examine the error correction mechanisms in the antisaccade task. The roles of extraretinal and retinal feedback in maintaining eye movement accuracy were investigated by presenting visual feedback at the spatial goal of the antisaccade. We found that online control for antisaccade is not affected by the presence of visual feedback; that is whether visual feedback is present or not, the duration of the deceleration interval was extended and significantly correlated with reduced antisaccade endpoint error. We postulate that the extended duration of deceleration is a feature of online control during volitional saccades to improve their endpoint accuracy. We found that secondary saccades were generated more frequently in the antisaccade task compared to the reflexive saccade task. Furthermore, we found evidence for a greater contribution from extraretinal sources of feedback in programming the secondary "corrective" saccades in the antisaccade task. Nonetheless, secondary saccades were more corrective for the remaining antisaccade amplitude error in the presence of visual feedback of the target. Taken together, our results reveal a distinctive online error control strategy through an extension of the deceleration interval in the antisaccade task. Target feedback does not improve online control, rather it improves the accuracy of secondary saccades in the antisaccade task.

  16. Station Correction Uncertainty in Multiple Event Location Algorithms and the Effect on Error Ellipses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Jason P.; Carlson, Deborah K.; Ortiz, Anne

    Accurate location of seismic events is crucial for nuclear explosion monitoring. There are several sources of error in seismic location that must be taken into account to obtain high confidence results. Most location techniques account for uncertainties in the phase arrival times (measurement error) and the bias of the velocity model (model error), but they do not account for the uncertainty of the velocity model bias. By determining and incorporating this uncertainty in the location algorithm we seek to improve the accuracy of the calculated locations and uncertainty ellipses. In order to correct for deficiencies in the velocity model, itmore » is necessary to apply station specific corrections to the predicted arrival times. Both master event and multiple event location techniques assume that the station corrections are known perfectly, when in reality there is an uncertainty associated with these corrections. For multiple event location algorithms that calculate station corrections as part of the inversion, it is possible to determine the variance of the corrections. The variance can then be used to weight the arrivals associated with each station, thereby giving more influence to stations with consistent corrections. We have modified an existing multiple event location program (based on PMEL, Pavlis and Booker, 1983). We are exploring weighting arrivals with the inverse of the station correction standard deviation as well using the conditional probability of the calculated station corrections. This is in addition to the weighting already given to the measurement and modeling error terms. We re-locate a group of mining explosions that occurred at Black Thunder, Wyoming, and compare the results to those generated without accounting for station correction uncertainty.« less

  17. Creating illusions of knowledge: learning errors that contradict prior knowledge.

    PubMed

    Fazio, Lisa K; Barber, Sarah J; Rajaram, Suparna; Ornstein, Peter A; Marsh, Elizabeth J

    2013-02-01

    Most people know that the Pacific is the largest ocean on Earth and that Edison invented the light bulb. Our question is whether this knowledge is stable, or if people will incorporate errors into their knowledge bases, even if they have the correct knowledge stored in memory. To test this, we asked participants general-knowledge questions 2 weeks before they read stories that contained errors (e.g., "Franklin invented the light bulb"). On a later general-knowledge test, participants reproduced story errors despite previously answering the questions correctly. This misinformation effect was found even for questions that were answered correctly on the initial test with the highest level of confidence. Furthermore, prior knowledge offered no protection against errors entering the knowledge base; the misinformation effect was equivalent for previously known and unknown facts. Errors can enter the knowledge base even when learners have the knowledge necessary to catch the errors. 2013 APA, all rights reserved

  18. Physical fault tolerance of nanoelectronics.

    PubMed

    Szkopek, Thomas; Roychowdhury, Vwani P; Antoniadis, Dimitri A; Damoulakis, John N

    2011-04-29

    The error rate in complementary transistor circuits is suppressed exponentially in electron number, arising from an intrinsic physical implementation of fault-tolerant error correction. Contrariwise, explicit assembly of gates into the most efficient known fault-tolerant architecture is characterized by a subexponential suppression of error rate with electron number, and incurs significant overhead in wiring and complexity. We conclude that it is more efficient to prevent logical errors with physical fault tolerance than to correct logical errors with fault-tolerant architecture.

  19. Loss Tolerance in One-Way Quantum Computation via Counterfactual Error Correction

    NASA Astrophysics Data System (ADS)

    Varnava, Michael; Browne, Daniel E.; Rudolph, Terry

    2006-09-01

    We introduce a scheme for fault tolerantly dealing with losses (or other “leakage” errors) in cluster state computation that can tolerate up to 50% qubit loss. This is achieved passively using an adaptive strategy of measurement—no coherent measurements or coherent correction is required. Since the scheme relies on inferring information about what would have been the outcome of a measurement had one been able to carry it out, we call this counterfactual error correction.

  20. Publisher Correction: Nanoplasmonic electron acceleration by attosecond-controlled forward rescattering in silver clusters.

    PubMed

    Passig, Johannes; Zherebtsov, Sergey; Irsig, Robert; Arbeiter, Mathias; Peltz, Christian; Göde, Sebastian; Skruszewicz, Slawomir; Meiwes-Broer, Karl-Heinz; Tiggesbäumker, Josef; Kling, Matthias F; Fennel, Thomas

    2018-02-07

    The original PDF version of this Article contained an error in Equation 1. The original HTML version of this Article contained errors in Equation 2 and Equation 4. These errors have now been corrected in both the PDF and the HTML versions of the Article.

  1. Cryosat-2 and Sentinel-3 tropospheric corrections: their evaluation over rivers and lakes

    NASA Astrophysics Data System (ADS)

    Fernandes, Joana; Lázaro, Clara; Vieira, Telmo; Restano, Marco; Ambrózio, Américo; Benveniste, Jérôme

    2017-04-01

    In the scope of the Sentinel-3 Hydrologic Altimetry PrototypE (SHAPE) project, errors that presently affect the tropospheric corrections i.e. dry and wet tropospheric corrections (DTC and WTC, respectively) given in satellite altimetry products are evaluated over inland water regions. These errors arise because both corrections, function of altitude, are usually computed with respect to an incorrect altitude reference. Several regions of interest (ROI) where CryoSat-2 (CS-2) is operating in SAR/SAR-In modes were selected for this evaluation. In this study, results for Danube River, Amazon Basin, Vanern and Titicaca lakes, and Caspian Sea, using Level 1B CS-2 data, are shown. DTC and WTC have been compared to those derived from ECMWF Operational model and computed at different altitude references: i) ECMWF orography; ii) ACE2 (Altimeter Corrected Elevations 2) and GWD-LR (Global Width Database for Large Rivers) global digital elevation models; iii) mean lake level, derived from Envisat mission data, or river profile derived in the scope of SHAPE project by AlongTrack (ATK) using Jason-2 data. Whenever GNSS data are available in the ROI, a GNSS-derived WTC was also generated and used for comparison. Overall, results show that the tropospheric corrections present in CS-2 L1B products are provided at the level of ECMWF orography, which can depart from the mean lake level or river profile by hundreds of metres. Therefore, the use of the model orography originates errors in the corrections. To mitigate these errors, both DTC and WTC should be provided at the mean river profile/lake level. For example, for the Caspian Sea with a mean level of -27 m, the tropospheric corrections provided in CS-2 products were computed at mean sea level (zero level), leading therefore to a systematic error in the corrections. In case a mean lake level is not available, it can be easily determined from satellite altimetry. In the absence of a mean river profile, both mentioned DEM, considered better altimetric surfaces when compared to the ECMWF orography, can be used. When using the model orography, systematic errors up to 3-5 cm are found in the DTC for most of the selected regions, which can induce significant errors in e.g. the determination of mean river profiles or lake level time series. For the Danube River, larger DTC errors up to 10 cm, due to terrain characteristics, can appear. For the WTC, with higher spatial variability, model errors of magnitude 1-3 cm are expected over inland waters. In the Danube region, the comparison of GNSS- and ECMWF-derived WTC has shown that the error in the WTC computed at orography level can be up to 3 cm. WTC errors with this magnitude have been found for all ROI. Although globally small, these errors are systematic and must be corrected prior to the generation of CS-2 Level 2 products. Once computed at the mean profile and mean lake level, the results show that tropospheric corrections have accuracy better than 1 cm. This analysis is currently being extended to S3 data and the first results are shown.

  2. Response to Request for Correction 12002

    EPA Pesticide Factsheets

    Response to Artisan EHS Consulting's Request for Correction 12002 regarding notification requirements for hazardous substances, notifying that the error in question was a typographical error and has been fixed.

  3. Radiological reporting that combine continuous speech recognition with error correction by transcriptionists.

    PubMed

    Ichikawa, Tamaki; Kitanosono, Takashi; Koizumi, Jun; Ogushi, Yoichi; Tanaka, Osamu; Endo, Jun; Hashimoto, Takeshi; Kawada, Shuichi; Saito, Midori; Kobayashi, Makiko; Imai, Yutaka

    2007-12-20

    We evaluated the usefulness of radiological reporting that combines continuous speech recognition (CSR) and error correction by transcriptionists. Four transcriptionists (two with more than 10 years' and two with less than 3 months' transcription experience) listened to the same 100 dictation files and created radiological reports using conventional transcription and a method that combined CSR with manual error correction by the transcriptionists. We compared the 2 groups using the 2 methods for accuracy and report creation time and evaluated the transcriptionists' inter-personal dependence on accuracy rate and report creation time. We used a CSR system that did not require the training of the system to recognize the user's voice. We observed no significant difference in accuracy between the 2 groups and 2 methods that we tested, though transcriptionists with greater experience transcribed faster than those with less experience using conventional transcription. Using the combined method, error correction speed was not significantly different between two groups of transcriptionists with different levels of experience. Combining CSR and manual error correction by transcriptionists enabled convenient and accurate radiological reporting.

  4. Ciliates learn to diagnose and correct classical error syndromes in mating strategies

    PubMed Central

    Clark, Kevin B.

    2013-01-01

    Preconjugal ciliates learn classical repetition error-correction codes to safeguard mating messages and replies from corruption by “rivals” and local ambient noise. Because individual cells behave as memory channels with Szilárd engine attributes, these coding schemes also might be used to limit, diagnose, and correct mating-signal errors due to noisy intracellular information processing. The present study, therefore, assessed whether heterotrich ciliates effect fault-tolerant signal planning and execution by modifying engine performance, and consequently entropy content of codes, during mock cell–cell communication. Socially meaningful serial vibrations emitted from an ambiguous artificial source initiated ciliate behavioral signaling performances known to advertise mating fitness with varying courtship strategies. Microbes, employing calcium-dependent Hebbian-like decision making, learned to diagnose then correct error syndromes by recursively matching Boltzmann entropies between signal planning and execution stages via “power” or “refrigeration” cycles. All eight serial contraction and reversal strategies incurred errors in entropy magnitude by the execution stage of processing. Absolute errors, however, subtended expected threshold values for single bit-flip errors in three-bit replies, indicating coding schemes protected information content throughout signal production. Ciliate preparedness for vibrations selectively and significantly affected the magnitude and valence of Szilárd engine performance during modal and non-modal strategy corrective cycles. But entropy fidelity for all replies mainly improved across learning trials as refinements in engine efficiency. Fidelity neared maximum levels for only modal signals coded in resilient three-bit repetition error-correction sequences. Together, these findings demonstrate microbes can elevate survival/reproductive success by learning to implement classical fault-tolerant information processing in social contexts. PMID:23966987

  5. Quantum error correction for continuously detected errors with any number of error channels per qubit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Charlene; Wiseman, Howard; Jacobs, Kurt

    2004-08-01

    It was shown by Ahn, Wiseman, and Milburn [Phys. Rev. A 67, 052310 (2003)] that feedback control could be used as a quantum error correction process for errors induced by weak continuous measurement, given one perfectly measured error channel per qubit. Here we point out that this method can be easily extended to an arbitrary number of error channels per qubit. We show that the feedback protocols generated by our method encode n-2 logical qubits in n physical qubits, thus requiring just one more physical qubit than in the previous case.

  6. Identification of quantitative trait loci affecting resistance to gastrointestinal parasites in a double backcross population of Red Maasai and Dorper sheep.

    PubMed

    Silva, M V B; Sonstegard, T S; Hanotte, O; Mugambi, J M; Garcia, J F; Nagda, S; Gibson, J P; Iraqi, F A; McClintock, A E; Kemp, S J; Boettcher, P J; Malek, M; Van Tassell, C P; Baker, R L

    2012-02-01

    A genome-wide scan for quantitative trait loci (QTL) affecting gastrointestinal nematode resistance in sheep was completed using a double backcross population derived from Red Maasai and Dorper ewes bred to F(1) rams. This design provided an opportunity to map potentially unique genetic variation associated with a parasite-tolerant breed like Red Maasai, a breed developed to survive East African grazing conditions. Parasite indicator phenotypes (blood packed cell volume - PCV and faecal egg count - FEC) were collected on a weekly basis from 1064 lambs during a single 3-month post-weaning grazing challenge on infected pastures. The averages of last measurements for FEC (AVFEC) and PCV (AVPCV), along with decline in PCV from challenge start to end (PCVD), were used to select lambs (N = 371) for genotyping that represented the tails (10% threshold) of the phenotypic distributions. Marker genotypes for 172 microsatellite loci covering 25 of 26 autosomes (1560.7 cm) were scored and corrected by Genoprob prior to qxpak analysis that included Box-Cox transformed AVFEC and arcsine transformed PCV statistics. Significant QTL for AVFEC and AVPCV were detected on four chromosomes, and this included a novel AVFEC QTL on chromosome 6 that would have remained undetected without Box-Cox transformation methods. The most significant P-values for AVFEC, AVPCV and PCVD overlapped the same marker interval on chromosome 22, suggesting the potential for a single causative mutation, which remains unknown. In all cases, the favourable QTL allele was always contributed from Red Maasai, providing support for the idea that future marker-assisted selection for genetic improvement of production in East Africa will rely on markers in linkage disequilibrium with these QTL. © 2011 The Authors, Animal Genetics © 2011 Stichting International Foundation for Animal Genetics.

  7. Evaluating software development characteristics: A comparison of software errors in different environments

    NASA Technical Reports Server (NTRS)

    Weiss, D. M.

    1981-01-01

    Error data obtained from two different software development environments are compared. To obtain data that was complete, accurate, and meaningful, a goal-directed data collection methodology was used. Changes made to software were monitored concurrently with its development. Similarities common to both environments are included: (1) the principal error was in the design and implementation of single routines; (2) few errors were the result of changes, required more than one attempt to correct, and resulted in other errors; (3) relatively few errors took more than a day to correct.

  8. Quantum error correction assisted by two-way noisy communication

    PubMed Central

    Wang, Zhuo; Yu, Sixia; Fan, Heng; Oh, C. H.

    2014-01-01

    Pre-shared non-local entanglement dramatically simplifies and improves the performance of quantum error correction via entanglement-assisted quantum error-correcting codes (EAQECCs). However, even considering the noise in quantum communication only, the non-local sharing of a perfectly entangled pair is technically impossible unless additional resources are consumed, such as entanglement distillation, which actually compromises the efficiency of the codes. Here we propose an error-correcting protocol assisted by two-way noisy communication that is more easily realisable: all quantum communication is subjected to general noise and all entanglement is created locally without additional resources consumed. In our protocol the pre-shared noisy entangled pairs are purified simultaneously by the decoding process. For demonstration, we first present an easier implementation of the well-known EAQECC [[4, 1, 3; 1

  9. Quantum error correction assisted by two-way noisy communication.

    PubMed

    Wang, Zhuo; Yu, Sixia; Fan, Heng; Oh, C H

    2014-11-26

    Pre-shared non-local entanglement dramatically simplifies and improves the performance of quantum error correction via entanglement-assisted quantum error-correcting codes (EAQECCs). However, even considering the noise in quantum communication only, the non-local sharing of a perfectly entangled pair is technically impossible unless additional resources are consumed, such as entanglement distillation, which actually compromises the efficiency of the codes. Here we propose an error-correcting protocol assisted by two-way noisy communication that is more easily realisable: all quantum communication is subjected to general noise and all entanglement is created locally without additional resources consumed. In our protocol the pre-shared noisy entangled pairs are purified simultaneously by the decoding process. For demonstration, we first present an easier implementation of the well-known EAQECC [[4, 1, 3; 1

  10. Correcting the Standard Errors of 2-Stage Residual Inclusion Estimators for Mendelian Randomization Studies

    PubMed Central

    Palmer, Tom M; Holmes, Michael V; Keating, Brendan J; Sheehan, Nuala A

    2017-01-01

    Abstract Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estimates. We compared several different forms of the standard error for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza, bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of coverage and type I error. In the real-data examples, the Newey standard errors were 0.5% and 2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors. PMID:29106476

  11. Advanced Silicon Photonic Transceivers - the Case of a Wavelength Division and Polarization Multiplexed Quadrature Phase Shift Keying Receiver for Terabit/s Optical Transmission

    DTIC Science & Technology

    2017-03-10

    formats by the co- integration of a passive 90 degree optical hybrid, highspeed balanced Ge photodetectors and a high-speed two-channel transimpedance...40 Gbaud and can handle advanced modulation formats by the co-integration of a passive 90 degree optical hybrid, high- speed balanced Ge...reached at an OSNR of 12.4 dB. The hard -decision FEC (HD-FEC) threshold (BER of 3.8 × 10-3 for 7% overhead) requires 14 dB OSNR. For 16-QAM this requires

  12. Accelerated decarburization of Fe-C metal alloys

    DOEpatents

    Pal, Uday B.; Sadoway, Donald R.

    1997-01-01

    A process for improving the rate of metal production and FeO utilization in a steelmaking process or a process combining iron-making and steelmaking in a single reactor that uses or generates Fe-C metal alloy droplets submerged in an FeO-containing slag. The process involves discharging a charge build-up (electron accumulation) in the slag at the slag-metal alloy interface by means of an electron conductor connected between the metal alloy droplets and a gas at a gas-slag interface, said gas having an oxygen partial pressure of at least about 0.01 atmosphere.

  13. Accelerated decarburization of Fe-C metal alloys

    DOEpatents

    Pal, U.B.; Sadoway, D.R.

    1997-05-27

    A process is described for improving the rate of metal production and FeO utilization in a steelmaking process or a process combining iron-making and steelmaking in a single reactor that uses or generates Fe-C metal alloy droplets submerged in an FeO-containing slag. The process involves discharging a charge build-up (electron accumulation) in the slag at the slag-metal alloy interface by means of an electron conductor connected between the metal alloy droplets and a gas at a gas-slag interface, said gas having an oxygen partial pressure of at least about 0.01 atmosphere. 2 figs.

  14. Lock-in amplifier error prediction and correction in frequency sweep measurements.

    PubMed

    Sonnaillon, Maximiliano Osvaldo; Bonetto, Fabian Jose

    2007-01-01

    This article proposes an analytical algorithm for predicting errors in lock-in amplifiers (LIAs) working with time-varying reference frequency. Furthermore, a simple method for correcting such errors is presented. The reference frequency can be swept in order to measure the frequency response of a system within a given spectrum. The continuous variation of the reference frequency produces a measurement error that depends on three factors: the sweep speed, the LIA low-pass filters, and the frequency response of the measured system. The proposed error prediction algorithm is based on the final value theorem of the Laplace transform. The correction method uses a double-sweep measurement. A mathematical analysis is presented and validated with computational simulations and experimental measurements.

  15. The Differential Effect of Two Types of Direct Written Corrective Feedback on Noticing and Uptake: Reformulation vs. Error Correction

    ERIC Educational Resources Information Center

    Santos, Maria; Lopez-Serrano, Sonia; Manchon, Rosa M.

    2010-01-01

    Framed in a cognitively-oriented strand of research on corrective feedback (CF) in SLA, the controlled three-stage (composition/comparison-noticing/revision) study reported in this paper investigated the effects of two forms of direct CF (error correction and reformulation) on noticing and uptake, as evidenced in the written output produced by a…

  16. Hydraulic correction method (HCM) to enhance the efficiency of SRTM DEM in flood modeling

    NASA Astrophysics Data System (ADS)

    Chen, Huili; Liang, Qiuhua; Liu, Yong; Xie, Shuguang

    2018-04-01

    Digital Elevation Model (DEM) is one of the most important controlling factors determining the simulation accuracy of hydraulic models. However, the currently available global topographic data is confronted with limitations for application in 2-D hydraulic modeling, mainly due to the existence of vegetation bias, random errors and insufficient spatial resolution. A hydraulic correction method (HCM) for the SRTM DEM is proposed in this study to improve modeling accuracy. Firstly, we employ the global vegetation corrected DEM (i.e. Bare-Earth DEM), developed from the SRTM DEM to include both vegetation height and SRTM vegetation signal. Then, a newly released DEM, removing both vegetation bias and random errors (i.e. Multi-Error Removed DEM), is employed to overcome the limitation of height errors. Last, an approach to correct the Multi-Error Removed DEM is presented to account for the insufficiency of spatial resolution, ensuring flow connectivity of the river networks. The approach involves: (a) extracting river networks from the Multi-Error Removed DEM using an automated algorithm in ArcGIS; (b) correcting the location and layout of extracted streams with the aid of Google Earth platform and Remote Sensing imagery; and (c) removing the positive biases of the raised segment in the river networks based on bed slope to generate the hydraulically corrected DEM. The proposed HCM utilizes easily available data and tools to improve the flow connectivity of river networks without manual adjustment. To demonstrate the advantages of HCM, an extreme flood event in Huifa River Basin (China) is simulated on the original DEM, Bare-Earth DEM, Multi-Error removed DEM, and hydraulically corrected DEM using an integrated hydrologic-hydraulic model. A comparative analysis is subsequently performed to assess the simulation accuracy and performance of four different DEMs and favorable results have been obtained on the corrected DEM.

  17. How do Stability Corrections Perform in the Stable Boundary Layer Over Snow?

    NASA Astrophysics Data System (ADS)

    Schlögl, Sebastian; Lehning, Michael; Nishimura, Kouichi; Huwald, Hendrik; Cullen, Nicolas J.; Mott, Rebecca

    2017-10-01

    We assess sensible heat-flux parametrizations in stable conditions over snow surfaces by testing and developing stability correction functions for two alpine and two polar test sites. Five turbulence datasets are analyzed with respect to, (a) the validity of the Monin-Obukhov similarity theory, (b) the model performance of well-established stability corrections, and (c) the development of new univariate and multivariate stability corrections. Using a wide range of stability corrections reveals an overestimation of the turbulent sensible heat flux for high wind speeds and a generally poor performance of all investigated functions for large temperature differences between snow and the atmosphere above (>10 K). Applying the Monin-Obukhov bulk formulation introduces a mean absolute error in the sensible heat flux of 6 W m^{-2} (compared with heat fluxes calculated directly from eddy covariance). The stability corrections produce an additional error between 1 and 5 W m^{-2}, with the smallest error for published stability corrections found for the Holtslag scheme. We confirm from previous studies that stability corrections need improvements for large temperature differences and wind speeds, where sensible heat fluxes are distinctly overestimated. Under these atmospheric conditions our newly developed stability corrections slightly improve the model performance. However, the differences between stability corrections are typically small when compared to the residual error, which stems from the Monin-Obukhov bulk formulation.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omkar, S.; Srikanth, R., E-mail: srik@poornaprajna.org; Banerjee, Subhashish

    A protocol based on quantum error correction based characterization of quantum dynamics (QECCD) is developed for quantum process tomography on a two-qubit system interacting dissipatively with a vacuum bath. The method uses a 5-qubit quantum error correcting code that corrects arbitrary errors on the first two qubits, and also saturates the quantum Hamming bound. The dissipative interaction with a vacuum bath allows for both correlated and independent noise on the two-qubit system. We study the dependence of the degree of the correlation of the noise on evolution time and inter-qubit separation.

  19. Investigation of Primary Mirror Segment's Residual Errors for the Thirty Meter Telescope

    NASA Technical Reports Server (NTRS)

    Seo, Byoung-Joon; Nissly, Carl; Angeli, George; MacMynowski, Doug; Sigrist, Norbert; Troy, Mitchell; Williams, Eric

    2009-01-01

    The primary mirror segment aberrations after shape corrections with warping harness have been identified as the single largest error term in the Thirty Meter Telescope (TMT) image quality error budget. In order to better understand the likely errors and how they will impact the telescope performance we have performed detailed simulations. We first generated unwarped primary mirror segment surface shapes that met TMT specifications. Then we used the predicted warping harness influence functions and a Shack-Hartmann wavefront sensor model to determine estimates for the 492 corrected segment surfaces that make up the TMT primary mirror. Surface and control parameters, as well as the number of subapertures were varied to explore the parameter space. The corrected segment shapes were then passed to an optical TMT model built using the Jet Propulsion Laboratory (JPL) developed Modeling and Analysis for Controlled Optical Systems (MACOS) ray-trace simulator. The generated exit pupil wavefront error maps provided RMS wavefront error and image-plane characteristics like the Normalized Point Source Sensitivity (PSSN). The results have been used to optimize the segment shape correction and wavefront sensor designs as well as provide input to the TMT systems engineering error budgets.

  20. The Relationship of Error and Correction of Error in Oral Reading to Visual-Form Perception and Word Attack Skills.

    ERIC Educational Resources Information Center

    Clayman, Deborah P. Goldweber

    The ability of 100 second-grade boys and girls to self-correct oral reading errors was studied in relationship to visual-form perception, phonic skills, response speed, and reading level. Each child was tested individually with the Bender-Error Test, the Gray Oral Paragraphs, and the Roswell-Chall Diagnostic Reading Test and placed into a group of…

  1. Noise Estimation and Adaptive Encoding for Asymmetric Quantum Error Correcting Codes

    NASA Astrophysics Data System (ADS)

    Florjanczyk, Jan; Brun, Todd; CenterQuantum Information Science; Technology Team

    We present a technique that improves the performance of asymmetric quantum error correcting codes in the presence of biased qubit noise channels. Our study is motivated by considering what useful information can be learned from the statistics of syndrome measurements in stabilizer quantum error correcting codes (QECC). We consider the case of a qubit dephasing channel where the dephasing axis is unknown and time-varying. We are able to estimate the dephasing angle from the statistics of the standard syndrome measurements used in stabilizer QECC's. We use this estimate to rotate the computational basis of the code in such a way that the most likely type of error is covered by the highest distance of the asymmetric code. In particular, we use the [ [ 15 , 1 , 3 ] ] shortened Reed-Muller code which can correct one phase-flip error but up to three bit-flip errors. In our simulations, we tune the computational basis to match the estimated dephasing axis which in turn leads to a decrease in the probability of a phase-flip error. With a sufficiently accurate estimate of the dephasing axis, our memory's effective error is dominated by the much lower probability of four bit-flips. Aro MURI Grant No. W911NF-11-1-0268.

  2. Multi-photon self-error-correction hyperentanglement distribution over arbitrary collective-noise channels

    NASA Astrophysics Data System (ADS)

    Gao, Cheng-Yan; Wang, Guan-Yu; Zhang, Hao; Deng, Fu-Guo

    2017-01-01

    We present a self-error-correction spatial-polarization hyperentanglement distribution scheme for N-photon systems in a hyperentangled Greenberger-Horne-Zeilinger state over arbitrary collective-noise channels. In our scheme, the errors of spatial entanglement can be first averted by encoding the spatial-polarization hyperentanglement into the time-bin entanglement with identical polarization and defined spatial modes before it is transmitted over the fiber channels. After transmission over the noisy channels, the polarization errors introduced by the depolarizing noise can be corrected resorting to the time-bin entanglement. Finally, the parties in quantum communication can in principle share maximally hyperentangled states with a success probability of 100%.

  3. Reversal of photon-scattering errors in atomic qubits.

    PubMed

    Akerman, N; Kotler, S; Glickman, Y; Ozeri, R

    2012-09-07

    Spontaneous photon scattering by an atomic qubit is a notable example of environment-induced error and is a fundamental limit to the fidelity of quantum operations. In the scattering process, the qubit loses its distinctive and coherent character owing to its entanglement with the photon. Using a single trapped ion, we show that by utilizing the information carried by the photon, we are able to coherently reverse this process and correct for the scattering error. We further used quantum process tomography to characterize the photon-scattering error and its correction scheme and demonstrate a correction fidelity greater than 85% whenever a photon was measured.

  4. Strain gage measurement errors in the transient heating of structural components

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance

    1993-01-01

    Significant strain-gage errors may exist in measurements acquired in transient thermal environments if conventional correction methods are applied. Conventional correction theory was modified and a new experimental method was developed to correct indicated strain data for errors created in radiant heating environments ranging from 0.6 C/sec (1 F/sec) to over 56 C/sec (100 F/sec). In some cases the new and conventional methods differed by as much as 30 percent. Experimental and analytical results were compared to demonstrate the new technique. For heating conditions greater than 6 C/sec (10 F/sec), the indicated strain data corrected with the developed technique compared much better to analysis than the same data corrected with the conventional technique.

  5. Automatic Correction of Adverb Placement Errors for CALL

    ERIC Educational Resources Information Center

    Garnier, Marie

    2012-01-01

    According to recent studies, there is a persistence of adverb placement errors in the written productions of francophone learners and users of English at an intermediate to advanced level. In this paper, we present strategies for the automatic detection and correction of errors in the placement of manner adverbs, using linguistic-based natural…

  6. Controlling qubit drift by recycling error correction syndromes

    NASA Astrophysics Data System (ADS)

    Blume-Kohout, Robin

    2015-03-01

    Physical qubits are susceptible to systematic drift, above and beyond the stochastic Markovian noise that motivates quantum error correction. This parameter drift must be compensated - if it is ignored, error rates will rise to intolerable levels - but compensation requires knowing the parameters' current value, which appears to require halting experimental work to recalibrate (e.g. via quantum tomography). Fortunately, this is untrue. I show how to perform on-the-fly recalibration on the physical qubits in an error correcting code, using only information from the error correction syndromes. The algorithm for detecting and compensating drift is very simple - yet, remarkably, when used to compensate Brownian drift in the qubit Hamiltonian, it achieves a stabilized error rate very close to the theoretical lower bound. Against 1/f noise, it is less effective only because 1/f noise is (like white noise) dominated by high-frequency fluctuations that are uncompensatable. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  7. On the robustness of bucket brigade quantum RAM

    NASA Astrophysics Data System (ADS)

    Arunachalam, Srinivasan; Gheorghiu, Vlad; Jochym-O'Connor, Tomas; Mosca, Michele; Varshinee Srinivasan, Priyaa

    2015-12-01

    We study the robustness of the bucket brigade quantum random access memory model introduced by Giovannetti et al (2008 Phys. Rev. Lett.100 160501). Due to a result of Regev and Schiff (ICALP ’08 733), we show that for a class of error models the error rate per gate in the bucket brigade quantum memory has to be of order o({2}-n/2) (where N={2}n is the size of the memory) whenever the memory is used as an oracle for the quantum searching problem. We conjecture that this is the case for any realistic error model that will be encountered in practice, and that for algorithms with super-polynomially many oracle queries the error rate must be super-polynomially small, which further motivates the need for quantum error correction. By contrast, for algorithms such as matrix inversion Harrow et al (2009 Phys. Rev. Lett.103 150502) or quantum machine learning Rebentrost et al (2014 Phys. Rev. Lett.113 130503) that only require a polynomial number of queries, the error rate only needs to be polynomially small and quantum error correction may not be required. We introduce a circuit model for the quantum bucket brigade architecture and argue that quantum error correction for the circuit causes the quantum bucket brigade architecture to lose its primary advantage of a small number of ‘active’ gates, since all components have to be actively error corrected.

  8. Learning a visuomotor rotation: simultaneous visual and proprioceptive information is crucial for visuomotor remapping.

    PubMed

    Shabbott, Britne A; Sainburg, Robert L

    2010-05-01

    Visuomotor adaptation is mediated by errors between intended and sensory-detected arm positions. However, it is not clear whether visual-based errors that are shown during the course of motion lead to qualitatively different or more efficient adaptation than errors shown after movement. For instance, continuous visual feedback mediates online error corrections, which may facilitate or inhibit the adaptation process. We addressed this question by manipulating the timing of visual error information and task instructions during a visuomotor adaptation task. Subjects were exposed to a visuomotor rotation, during which they received continuous visual feedback (CF) of hand position with instructions to correct or not correct online errors, or knowledge-of-results (KR), provided as a static hand-path at the end of each trial. Our results showed that all groups improved performance with practice, and that online error corrections were inconsequential to the adaptation process. However, in contrast to the CF groups, the KR group showed relatively small reductions in mean error with practice, increased inter-trial variability during rotation exposure, and more limited generalization across target distances and workspace. Further, although the KR group showed improved performance with practice, after-effects were minimal when the rotation was removed. These findings suggest that simultaneous visual and proprioceptive information is critical in altering neural representations of visuomotor maps, although delayed error information may elicit compensatory strategies to offset perturbations.

  9. The Influence of Radiosonde 'Age' on TRMM Field Campaign Soundings Humidity Correction

    NASA Technical Reports Server (NTRS)

    Roy, Biswadev; Halverson, Jeffrey B.; Wang, Jun-Hong

    2002-01-01

    Hundreds of Vaisala sondes with a RS80-H Humicap thin-film capacitor humidity sensor were launched during the Tropical Rainfall Measuring Mission (TRMM) field campaigns in Large Scale Biosphere-Atmosphere held in Brazil (LBA) and in Kwajalein experiment (KWAJEX) held in the Republic of Marshall Islands. Using Six humidity error correction algorithms by Wang et al., these sondes were corrected for significant dry bias in the RS80-H data. It is further shown that sonde surface temperature error must be corrected for a better representation of the relative humidity. This error becomes prominent due to sensor arm-heating in the first 50-s data.

  10. Iterative Correction of Reference Nucleotides (iCORN) using second generation sequencing technology.

    PubMed

    Otto, Thomas D; Sanders, Mandy; Berriman, Matthew; Newbold, Chris

    2010-07-15

    The accuracy of reference genomes is important for downstream analysis but a low error rate requires expensive manual interrogation of the sequence. Here, we describe a novel algorithm (Iterative Correction of Reference Nucleotides) that iteratively aligns deep coverage of short sequencing reads to correct errors in reference genome sequences and evaluate their accuracy. Using Plasmodium falciparum (81% A + T content) as an extreme example, we show that the algorithm is highly accurate and corrects over 2000 errors in the reference sequence. We give examples of its application to numerous other eukaryotic and prokaryotic genomes and suggest additional applications. The software is available at http://icorn.sourceforge.net

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, JY; Hong, DL

    Purpose: The purpose of this study is to investigate the patient set-up error and interfraction target coverage in cervical cancer using image-guided adaptive radiotherapy (IGART) with cone-beam computed tomography (CBCT). Methods: Twenty cervical cancer patients undergoing intensity modulated radiotherapy (IMRT) were randomly selected. All patients were matched to the isocenter using laser with the skin markers. Three dimensional CBCT projections were acquired by the Varian Truebeam treatment system. Set-up errors were evaluated by radiation oncologists, after CBCT correction. The clinical target volume (CTV) was delineated on each CBCT, and the planning target volume (PTV) coverage of each CBCT-CTVs was analyzed.more » Results: A total of 152 CBCT scans were acquired from twenty cervical cancer patients, the mean set-up errors in the longitudinal, vertical, and lateral direction were 3.57, 2.74 and 2.5mm respectively, without CBCT corrections. After corrections, these were decreased to 1.83, 1.44 and 0.97mm. For the target coverage, CBCT-CTV coverage without CBCT correction was 94% (143/152), and 98% (149/152) with correction. Conclusion: Use of CBCT verfication to measure patient setup errors could be applied to improve the treatment accuracy. In addition, the set-up error corrections significantly improve the CTV coverage for cervical cancer patients.« less

  12. Error suppression and correction for quantum annealing

    NASA Astrophysics Data System (ADS)

    Lidar, Daniel

    While adiabatic quantum computing and quantum annealing enjoy a certain degree of inherent robustness against excitations and control errors, there is no escaping the need for error correction or suppression. In this talk I will give an overview of our work on the development of such error correction and suppression methods. We have experimentally tested one such method combining encoding, energy penalties and decoding, on a D-Wave Two processor, with encouraging results. Mean field theory shows that this can be explained in terms of a softening of the closing of the gap due to the energy penalty, resulting in protection against excitations that occur near the quantum critical point. Decoding recovers population from excited states and enhances the success probability of quantum annealing. Moreover, we have demonstrated that using repetition codes with increasing code distance can lower the effective temperature of the annealer. References: K.L. Pudenz, T. Albash, D.A. Lidar, ``Error corrected quantum annealing with hundreds of qubits'', Nature Commun. 5, 3243 (2014). K.L. Pudenz, T. Albash, D.A. Lidar, ``Quantum annealing correction for random Ising problems'', Phys. Rev. A. 91, 042302 (2015). S. Matsuura, H. Nishimori, T. Albash, D.A. Lidar, ``Mean Field Analysis of Quantum Annealing Correction''. arXiv:1510.07709. W. Vinci et al., in preparation.

  13. APC-PC Combined Scheme in Gilbert Two State Model: Proposal and Study

    NASA Astrophysics Data System (ADS)

    Bulo, Yaka; Saring, Yang; Bhunia, Chandan Tilak

    2017-04-01

    In an automatic repeat request (ARQ) scheme, a packet is retransmitted if it gets corrupted due to transmission errors caused by the channel. However, an erroneous packet may contain both erroneous bits and correct bits and hence it may still contain useful information. The receiver may be able to combine this information from multiple erroneous copies to recover the correct packet. Packet combining (PC) is a simple and elegant scheme of error correction in transmitted packet, in which two received copies are XORed to obtain the bit location of erroneous bits. Thereafter, the packet is corrected by bit inversion of bit located as erroneous. Aggressive packet combining (APC) is a logic extension of PC primarily designed for wireless communication with objective of correcting error with low latency. PC offers higher throughput than APC, but PC does not correct double bit errors if occur in same bit location of erroneous copies of the packet. A hybrid technique is proposed to utilize the advantages of both APC and PC while attempting to remove the limitation of both. In the proposed technique, applications of APC-PC on Gilbert two state model has been studied. The simulation results show that the proposed technique offers better throughput than the conventional APC and lesser packet error rate than PC scheme.

  14. Reading Center Characterization of Central Retinal Vein Occlusion Using Optical Coherence Tomography During the COPERNICUS Trial.

    PubMed

    Decroos, Francis Char; Stinnett, Sandra S; Heydary, Cynthia S; Burns, Russell E; Jaffe, Glenn J

    2013-11-01

    To determine the impact of segmentation error correction and precision of standardized grading of time domain optical coherence tomography (OCT) scans obtained during an interventional study for macular edema secondary to central retinal vein occlusion (CRVO). A reading center team of two readers and a senior reader evaluated 1199 OCT scans. Manual segmentation error correction (SEC) was performed. The frequency of SEC, resulting change in central retinal thickness after SEC, and reproducibility of SEC were quantified. Optical coherence tomography characteristics associated with the need for SECs were determined. Reading center teams graded all scans, and the reproducibility of this evaluation for scan quality at the fovea and cystoid macular edema was determined on 97 scans. Segmentation errors were observed in 360 (30.0%) scans, of which 312 were interpretable. On these 312 scans, the mean machine-generated central subfield thickness (CST) was 507.4 ± 208.5 μm compared to 583.0 ± 266.2 μm after SEC. Segmentation error correction resulted in a mean absolute CST correction of 81.3 ± 162.0 μm from baseline uncorrected CST. Segmentation error correction was highly reproducible (intraclass correlation coefficient [ICC] = 0.99-1.00). Epiretinal membrane (odds ratio [OR] = 2.3, P < 0.0001), subretinal fluid (OR = 2.1, P = 0.0005), and increasing CST (OR = 1.6 per 100-μm increase, P < 0.001) were associated with need for SEC. Reading center teams reproducibly graded scan quality at the fovea (87% agreement, kappa = 0.64, 95% confidence interval [CI] 0.45-0.82) and cystoid macular edema (92% agreement, kappa = 0.84, 95% CI 0.74-0.94). Optical coherence tomography images obtained during an interventional CRVO treatment trial can be reproducibly graded. Segmentation errors can cause clinically meaningful deviation in central retinal thickness measurements; however, these errors can be corrected reproducibly in a reading center setting. Segmentation errors are common on these images, can cause clinically meaningful errors in central retinal thickness measurement, and can be corrected reproducibly in a reading center setting.

  15. Older, Not Younger, Children Learn More False Facts from Stories

    ERIC Educational Resources Information Center

    Fazio, Lisa K.; Marsh, Elizabeth J.

    2008-01-01

    Early school-aged children listened to stories that contained correct and incorrect facts. All ages answered more questions correctly after having heard the correct fact in the story. Only the older children, however, produced story errors on a later general knowledge test. Source errors did not drive the increased suggestibility in older…

  16. 5 CFR 839.213 - May I make a retirement coverage election if I withdrew all or part of my TSP account after I was...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) CORRECTION OF RETIREMENT COVERAGE ERRORS UNDER THE FEDERAL ERRONEOUS RETIREMENT COVERAGE CORRECTIONS ACT... if your qualifying retirement coverage error was previously corrected to FERS, and you later received...

  17. 75 FR 70013 - Medicare Program; Inpatient Rehabilitation Facility Prospective Payment System for Federal Fiscal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... Insurance; and Program No. 93.774, Medicare-- Supplementary Medical Insurance Program) Dated: November 9...: Correction notice. SUMMARY: This document corrects a technical error that appeared in the notice published in... of July 22, 2010 (75 FR 42836), there was a technical error that we are identifying and correcting in...

  18. Quantum error correction of continuous-variable states against Gaussian noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralph, T. C.

    2011-08-15

    We describe a continuous-variable error correction protocol that can correct the Gaussian noise induced by linear loss on Gaussian states. The protocol can be implemented using linear optics and photon counting. We explore the theoretical bounds of the protocol as well as the expected performance given current knowledge and technology.

  19. Artificial Intelligence and Second Language Learning: An Efficient Approach to Error Remediation

    ERIC Educational Resources Information Center

    Dodigovic, Marina

    2007-01-01

    While theoretical approaches to error correction vary in the second language acquisition (SLA) literature, most sources agree that such correction is useful and leads to learning. While some point out the relevance of the communicative context in which the correction takes place, others stress the value of consciousness-raising. Trying to…

  20. A Case for Soft Error Detection and Correction in Computational Chemistry.

    PubMed

    van Dam, Hubertus J J; Vishnu, Abhinav; de Jong, Wibe A

    2013-09-10

    High performance computing platforms are expected to deliver 10(18) floating operations per second by the year 2022 through the deployment of millions of cores. Even if every core is highly reliable the sheer number of them will mean that the mean time between failures will become so short that most application runs will suffer at least one fault. In particular soft errors caused by intermittent incorrect behavior of the hardware are a concern as they lead to silent data corruption. In this paper we investigate the impact of soft errors on optimization algorithms using Hartree-Fock as a particular example. Optimization algorithms iteratively reduce the error in the initial guess to reach the intended solution. Therefore they may intuitively appear to be resilient to soft errors. Our results show that this is true for soft errors of small magnitudes but not for large errors. We suggest error detection and correction mechanisms for different classes of data structures. The results obtained with these mechanisms indicate that we can correct more than 95% of the soft errors at moderate increases in the computational cost.

  1. Beam hardening correction in CT myocardial perfusion measurement

    NASA Astrophysics Data System (ADS)

    So, Aaron; Hsieh, Jiang; Li, Jian-Ying; Lee, Ting-Yim

    2009-05-01

    This paper presents a method for correcting beam hardening (BH) in cardiac CT perfusion imaging. The proposed algorithm works with reconstructed images instead of projection data. It applies thresholds to separate low (soft tissue) and high (bone and contrast) attenuating material in a CT image. The BH error in each projection is estimated by a polynomial function of the forward projection of the segmented image. The error image is reconstructed by back-projection of the estimated errors. A BH-corrected image is then obtained by subtracting a scaled error image from the original image. Phantoms were designed to simulate the BH artifacts encountered in cardiac CT perfusion studies of humans and animals that are most commonly used in cardiac research. These phantoms were used to investigate whether BH artifacts can be reduced with our approach and to determine the optimal settings, which depend upon the anatomy of the scanned subject, of the correction algorithm for patient and animal studies. The correction algorithm was also applied to correct BH in a clinical study to further demonstrate the effectiveness of our technique.

  2. Computational fluid dynamics analysis and experimental study of a low measurement error temperature sensor used in climate observation.

    PubMed

    Yang, Jie; Liu, Qingquan; Dai, Wei

    2017-02-01

    To improve the air temperature observation accuracy, a low measurement error temperature sensor is proposed. A computational fluid dynamics (CFD) method is implemented to obtain temperature errors under various environmental conditions. Then, a temperature error correction equation is obtained by fitting the CFD results using a genetic algorithm method. The low measurement error temperature sensor, a naturally ventilated radiation shield, a thermometer screen, and an aspirated temperature measurement platform are characterized in the same environment to conduct the intercomparison. The aspirated platform served as an air temperature reference. The mean temperature errors of the naturally ventilated radiation shield and the thermometer screen are 0.74 °C and 0.37 °C, respectively. In contrast, the mean temperature error of the low measurement error temperature sensor is 0.11 °C. The mean absolute error and the root mean square error between the corrected results and the measured results are 0.008 °C and 0.01 °C, respectively. The correction equation allows the temperature error of the low measurement error temperature sensor to be reduced by approximately 93.8%. The low measurement error temperature sensor proposed in this research may be helpful to provide a relatively accurate air temperature result.

  3. Helicobacter pylori genetic diversification in the Mongolian gerbil model.

    PubMed

    Beckett, Amber C; Loh, John T; Chopra, Abha; Leary, Shay; Lin, Aung Soe; McDonnell, Wyatt J; Dixon, Beverly R E A; Noto, Jennifer M; Israel, Dawn A; Peek, Richard M; Mallal, Simon; Algood, Holly M Scott; Cover, Timothy L

    2018-01-01

    Helicobacter pylori requires genetic agility to infect new hosts and establish long-term colonization of changing gastric environments. In this study, we analyzed H. pylori genetic adaptation in the Mongolian gerbil model. This model is of particular interest because H. pylori -infected gerbils develop a high level of gastric inflammation and often develop gastric adenocarcinoma or gastric ulceration. We analyzed the whole genome sequences of H. pylori strains cultured from experimentally infected gerbils, in comparison to the genome sequence of the input strain. The mean annualized single nucleotide polymorphism (SNP) rate per site was 1.5e -5 , which is similar to the rates detected previously in H. pylori- infected humans. Many of the mutations occurred within or upstream of genes associated with iron-related functions ( fur , tonB1 , fecA2 , fecA3 , and frpB3 ) or encoding outer membrane proteins ( alpA, oipA, fecA2, fecA3, frpB3 and cagY ). Most of the SNPs within coding regions (86%) were non-synonymous mutations. Several deletion or insertion mutations led to disruption of open reading frames, suggesting that the corresponding gene products are not required or are deleterious during chronic H. pylori colonization of the gerbil stomach. Five variants (three SNPs and two deletions) were detected in isolates from multiple animals, which suggests that these mutations conferred a selective advantage. One of the mutations (FurR88H) detected in isolates from multiple animals was previously shown to confer increased resistance to oxidative stress, and we now show that this SNP also confers a survival advantage when H. pylori is co-cultured with neutrophils. Collectively, these analyses allow the identification of mutations that are positively selected during H. pylori colonization of the gerbil model.

  4. Epirubicin versus mitoxantrone in combination chemotherapy for metastatic breast cancer.

    PubMed

    Pavesi, L; Preti, P; Da Prada, G; Pedrazzoli, P; Poggi, G; Robustelli della Cuna, G

    1995-01-01

    As valid therapeutic alternatives to adriamycin, with a more favourable safety profile, epirubicin (E) and novantrone (N) were compared in combination with fluorouracil (F) and cyclophosphamide (C) in a prospective randomized clinical trial as first-line treatment for metastatic breast cancer (mbc). 158 women with mbc were randomly allocated to receive FEC or FNC regimen; the dosage in mg/m2 was as follows: 500 for C and F, 75 for E and 10 for N. All drugs were administered iv. on day 1 and recycled on day 21. In 141 evaluable patients the response rate (CR+PR) was better in the FEC (43.6%) than in the FNC regimen (30.3%) (95% C.I. of 32% to 55% versus 14% to 34%), without any statistically significant difference. Differences in response rate were significantly in favour of FEC group in previously untreated patients (57.6% versus 25%, p = .02), and in postmenopausal women (46.1% versus 23.6%, p = .01). No significant differences between the two treatment arms were observed in terms of either time to progression or duration of response and survival. The most important dose-limiting toxicity was hematological (leuko-and thrombocytopenia were significantly higher in FNC-treated patients). This difference in hematological toxicity sustained a significantly different incidence of delays in administering chemotherapy courses, which precluded the administration of comparable doses of all drugs in both groups. The incidence of complete alopecia was significantly higher in FEC-treated patients, while no clinical or instrumental evidence of CHF was observed with either regimen. Due to its more favourable therapeutic profile, the E-containing regimen seems a suitable first-line treatment for previously untreated patients with mbc, while the FNC combination should be offered to women refusing hair loss.

  5. Thermoelastic properties of liquid Fe-C revealed by sound velocity and density measurements at high pressure

    NASA Astrophysics Data System (ADS)

    Shimoyama, Yuta; Terasaki, Hidenori; Urakawa, Satoru; Takubo, Yusaku; Kuwabara, Soma; Kishimoto, Shunpachi; Watanuki, Tetsu; Machida, Akihiko; Katayama, Yoshinori; Kondo, Tadashi

    2016-11-01

    Carbon is one of the possible light elements in the cores of the terrestrial planets. The P wave velocity (VP) and density (ρ) are important factors for estimating the chemical composition and physical properties of the core. We simultaneously measured the VP and ρ of Fe-3.5 wt % C up to 3.4 GPa and 1850 K by using ultrasonic pulse-echo method and X-ray absorption methods. The VP of liquid Fe-3.5 wt % C decreased linearly with increasing temperature at constant pressure. The addition of carbon decreased the VP of liquid Fe by about 2% at 3 GPa and 1700 K and decreased the Fe density by about 2% at 2 GPa and 1700 K. The bulk modulus of liquid Fe-C and its pressure (P) and temperature (T) effects were precisely determined from directly measured ρ and VP data to be K0,1700 K = 83.9 GPa, dKT/dP = 5.9(2), and dKT/dT = -0.063 GPa/K. The addition of carbon did not affect the isothermal bulk modulus (KT) of liquid Fe, but it decreased the dK/dT of liquid Fe. In the ρ-VP relationship, VP increases linearly with ρ and can be approximated as VP (m/s) = -6786(506) + 1537(71) × ρ (g/cm3), suggesting that Birch's law is valid for liquid Fe-C at the present P-T conditions. Our results imply that at the conditions of the lunar core, the elastic properties of an Fe-C core are more affected by temperature than those of Fe-S core.

  6. An optical fiber-based flexible readout system for micro-pattern gas detectors

    NASA Astrophysics Data System (ADS)

    Li, C.; Feng, C. Q.; Zhu, D. Y.; Liu, S. B.; An, Q.

    2018-04-01

    This paper presents an optical fiber-based readout system that is intended to provide a general purpose multi-channel readout solution for various Micro-Pattern Gas Detectors (MPGDs). The proposed readout system is composed of several front-end cards (FECs) and a data collection module (DCM). The FEC exploits the capability of an existing 64-channel generic TPC readout ASIC chip, named AGET, to implement 256 channels readout. AGET offers FEC a large flexibility in gain range (4 options from 120 fC to 10 pC), peaking time (16 options from 50 ns to 1 us) and sampling freqency (100 MHz max.). The DCM contains multiple 1 Gbps optical fiber serial link interfaces that allow the system scaling up to 1536 channels with 6 FECs and 1 DCM. Further scaling up is possible through cascading of multiple DCMs, by configuring one DCM as a master while other DCMs in slave mode. This design offers a rapid readout solution for different application senario. Tests indicate that the nonlinearity of each channel is less than 1%, and the equivalent input noise charge is typically around 0.7 fC in RMS (root mean square), with a noise slope of about 0.01 fC/pF. The system level trigger rate limit is about 700 Hz in all channel readout mode. When in hit channel readout mode, supposing that typically 10 percent of channels are fired, trigger rate can go up to about 7 kHz. This system has been tested with Micromegas detector and GEM detector, confirming its capability in MPGD readout. Details of hardware and FPGA firmware design, as well as system performances, are described in the paper.

  7. Interferometric correction system for a numerically controlled machine

    DOEpatents

    Burleson, Robert R.

    1978-01-01

    An interferometric correction system for a numerically controlled machine is provided to improve the positioning accuracy of a machine tool, for example, for a high-precision numerically controlled machine. A laser interferometer feedback system is used to monitor the positioning of the machine tool which is being moved by command pulses to a positioning system to position the tool. The correction system compares the commanded position as indicated by a command pulse train applied to the positioning system with the actual position of the tool as monitored by the laser interferometer. If the tool position lags the commanded position by a preselected error, additional pulses are added to the pulse train applied to the positioning system to advance the tool closer to the commanded position, thereby reducing the lag error. If the actual tool position is leading in comparison to the commanded position, pulses are deleted from the pulse train where the advance error exceeds the preselected error magnitude to correct the position error of the tool relative to the commanded position.

  8. Headache and refractive errors in children.

    PubMed

    Roth, Zachary; Pandolfo, Katie R; Simon, John; Zobal-Ratner, Jitka

    2014-01-01

    To investigate the association between uncorrected or miscorrected refractive errors in children and headache, and to determine whether correction of refractive errors contributes to headache resolution. Results of ophthalmic examination, including refractive error, were recorded at initial visit for headache. If resolution of headache on subsequent visits was not documented, a telephone call was placed to their caregivers to inquire whether headache had resolved. Of the 158 patients, 75.3% had normal or unchanged eye examinations, including refractions.Follow-up data were available for 110 patients. Among those, 32 received new or changed spectacle correction and 78 did not require a change in refraction.Headaches improved in 76.4% of all patients, whether with (71.9%) or without (78.2%) a change in refractive correction. The difference between these two groups was not statistically significant (P = .38). Headaches in children usually do not appear to be caused by ophthalmic disease, including refractive error. The prognosis for improvement is favorable, regardless of whether refractive correction is required. Copyright 2014, SLACK Incorporated.

  9. Measurement-free implementations of small-scale surface codes for quantum-dot qubits

    NASA Astrophysics Data System (ADS)

    Ercan, H. Ekmel; Ghosh, Joydip; Crow, Daniel; Premakumar, Vickram N.; Joynt, Robert; Friesen, Mark; Coppersmith, S. N.

    2018-01-01

    The performance of quantum-error-correction schemes depends sensitively on the physical realizations of the qubits and the implementations of various operations. For example, in quantum-dot spin qubits, readout is typically much slower than gate operations, and conventional surface-code implementations that rely heavily on syndrome measurements could therefore be challenging. However, fast and accurate reset of quantum-dot qubits, without readout, can be achieved via tunneling to a reservoir. Here we propose small-scale surface-code implementations for which syndrome measurements are replaced by a combination of Toffoli gates and qubit reset. For quantum-dot qubits, this enables much faster error correction than measurement-based schemes, but requires additional ancilla qubits and non-nearest-neighbor interactions. We have performed numerical simulations of two different coding schemes, obtaining error thresholds on the orders of 10-2 for a one-dimensional architecture that only corrects bit-flip errors and 10-4 for a two-dimensional architecture that corrects bit- and phase-flip errors.

  10. Research and application of a novel hybrid decomposition-ensemble learning paradigm with error correction for daily PM10 forecasting

    NASA Astrophysics Data System (ADS)

    Luo, Hongyuan; Wang, Deyun; Yue, Chenqiang; Liu, Yanling; Guo, Haixiang

    2018-03-01

    In this paper, a hybrid decomposition-ensemble learning paradigm combining error correction is proposed for improving the forecast accuracy of daily PM10 concentration. The proposed learning paradigm is consisted of the following two sub-models: (1) PM10 concentration forecasting model; (2) error correction model. In the proposed model, fast ensemble empirical mode decomposition (FEEMD) and variational mode decomposition (VMD) are applied to disassemble original PM10 concentration series and error sequence, respectively. The extreme learning machine (ELM) model optimized by cuckoo search (CS) algorithm is utilized to forecast the components generated by FEEMD and VMD. In order to prove the effectiveness and accuracy of the proposed model, two real-world PM10 concentration series respectively collected from Beijing and Harbin located in China are adopted to conduct the empirical study. The results show that the proposed model performs remarkably better than all other considered models without error correction, which indicates the superior performance of the proposed model.

  11. Clinical outcomes of Transepithelial photorefractive keratectomy to treat low to moderate myopic astigmatism.

    PubMed

    Xi, Lei; Zhang, Chen; He, Yanling

    2018-05-09

    To evaluate the refractive and visual outcomes of Transepithelial photorefractive keratectomy (TransPRK) in the treatment of low to moderate myopic astigmatism. This retrospective study enrolled a total of 47 eyes that had undergone Transepithelial photorefractive keratectomy. Preoperative cylinder diopters ranged from - 0.75D to - 2.25D (mean - 1.11 ± 0.40D), and the sphere was between - 1.50D to - 5.75D. Visual outcomes and vector analysis of astigmatism that included error ratio (ER), correction ratio (CR), error of magnitude (EM) and error of angle (EA) were evaluated. At 6 months after TransPRK, all eyes had an uncorrected distance visual acuity of 20/20 or better, no eyes lost ≥2 lines of corrected distant visual acuity (CDVA), and 93.6% had residual refractive cylinder within ±0.50D of intended correction. On vector analysis, the mean correction ratio for refractive cylinder was 1.03 ± 0.30. The mean error magnitude was - 0.04 ± 0.36. The mean error of angle was 0.44° ± 7.42°and 80.9% of eyes had axis shift within ±10°. The absolute astigmatic error of magnitude was statistically significantly correlated with the intended cylinder correction (r = 0.48, P < 0.01). TransPRK showed safe, effective and predictable results in the correction of low to moderate astigmatism and myopia.

  12. ECHO: A reference-free short-read error correction algorithm

    PubMed Central

    Kao, Wei-Chun; Chan, Andrew H.; Song, Yun S.

    2011-01-01

    Developing accurate, scalable algorithms to improve data quality is an important computational challenge associated with recent advances in high-throughput sequencing technology. In this study, a novel error-correction algorithm, called ECHO, is introduced for correcting base-call errors in short-reads, without the need of a reference genome. Unlike most previous methods, ECHO does not require the user to specify parameters of which optimal values are typically unknown a priori. ECHO automatically sets the parameters in the assumed model and estimates error characteristics specific to each sequencing run, while maintaining a running time that is within the range of practical use. ECHO is based on a probabilistic model and is able to assign a quality score to each corrected base. Furthermore, it explicitly models heterozygosity in diploid genomes and provides a reference-free method for detecting bases that originated from heterozygous sites. On both real and simulated data, ECHO is able to improve the accuracy of previous error-correction methods by several folds to an order of magnitude, depending on the sequence coverage depth and the position in the read. The improvement is most pronounced toward the end of the read, where previous methods become noticeably less effective. Using a whole-genome yeast data set, it is demonstrated here that ECHO is capable of coping with nonuniform coverage. Also, it is shown that using ECHO to perform error correction as a preprocessing step considerably facilitates de novo assembly, particularly in the case of low-to-moderate sequence coverage depth. PMID:21482625

  13. Vector velocity volume flow estimation: Sources of error and corrections applied for arteriovenous fistulas.

    PubMed

    Jensen, Jonas; Olesen, Jacob Bjerring; Stuart, Matthias Bo; Hansen, Peter Møller; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt

    2016-08-01

    A method for vector velocity volume flow estimation is presented, along with an investigation of its sources of error and correction of actual volume flow measurements. Volume flow errors are quantified theoretically by numerical modeling, through flow phantom measurements, and studied in vivo. This paper investigates errors from estimating volumetric flow using a commercial ultrasound scanner and the common assumptions made in the literature. The theoretical model shows, e.g. that volume flow is underestimated by 15%, when the scan plane is off-axis with the vessel center by 28% of the vessel radius. The error sources were also studied in vivo under realistic clinical conditions, and the theoretical results were applied for correcting the volume flow errors. Twenty dialysis patients with arteriovenous fistulas were scanned to obtain vector flow maps of fistulas. When fitting an ellipsis to cross-sectional scans of the fistulas, the major axis was on average 10.2mm, which is 8.6% larger than the minor axis. The ultrasound beam was on average 1.5mm from the vessel center, corresponding to 28% of the semi-major axis in an average fistula. Estimating volume flow with an elliptical, rather than circular, vessel area and correcting the ultrasound beam for being off-axis, gave a significant (p=0.008) reduction in error from 31.2% to 24.3%. The error is relative to the Ultrasound Dilution Technique, which is considered the gold standard for volume flow estimation for dialysis patients. The study shows the importance of correcting for volume flow errors, which are often made in clinical practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Open quantum systems and error correction

    NASA Astrophysics Data System (ADS)

    Shabani Barzegar, Alireza

    Quantum effects can be harnessed to manipulate information in a desired way. Quantum systems which are designed for this purpose are suffering from harming interaction with their surrounding environment or inaccuracy in control forces. Engineering different methods to combat errors in quantum devices are highly demanding. In this thesis, I focus on realistic formulations of quantum error correction methods. A realistic formulation is the one that incorporates experimental challenges. This thesis is presented in two sections of open quantum system and quantum error correction. Chapters 2 and 3 cover the material on open quantum system theory. It is essential to first study a noise process then to contemplate methods to cancel its effect. In the second chapter, I present the non-completely positive formulation of quantum maps. Most of these results are published in [Shabani and Lidar, 2009b,a], except a subsection on geometric characterization of positivity domain of a quantum map. The real-time formulation of the dynamics is the topic of the third chapter. After introducing the concept of Markovian regime, A new post-Markovian quantum master equation is derived, published in [Shabani and Lidar, 2005a]. The section of quantum error correction is presented in three chapters of 4, 5, 6 and 7. In chapter 4, we introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization (published in [Shabani and Lidar, 2005b]). In Chapter 5, we present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity (see [Kosut et al., 2008] for a published version). Chapter 6 is devoted to a theory of quantum error correction (QEC) that applies to any linear map, in particular maps that are not completely positive (CP). This is a complementary to the second chapter which is published in [Shabani and Lidar, 2007]. In the last chapter 7 before the conclusion, a formulation for evaluating the performance of quantum error correcting codes for a general error model is presented, also published in [Shabani, 2005]. In this formulation, the correlation between errors is quantified by a Hamiltonian description of the noise process. In particular, we consider Calderbank-Shor-Steane codes and observe a better performance in the presence of correlated errors depending on the timing of the error recovery.

  15. Dealing with Common Mistakes Using an Error Corpus for EFL Students to Increase Their Autonomy in Error Recognition and Correction in Every Day Class Tasks

    ERIC Educational Resources Information Center

    Terreros Lazo, Oscar

    2012-01-01

    In this article, you will find how autonomous students of EFL in Lima, Peru can be when they recognize and correct their errors based on the teachers' guidance about what to look for and how to do it in a process that I called "Error Hunting" during regular class activities without interfering with these activities.

  16. An investigation of error correcting techniques for OMV and AXAF

    NASA Technical Reports Server (NTRS)

    Ingels, Frank; Fryer, John

    1991-01-01

    The original objectives of this project were to build a test system for the NASA 255/223 Reed/Solomon encoding/decoding chip set and circuit board. This test system was then to be interfaced with a convolutional system at MSFC to examine the performance of the concantinated codes. After considerable work, it was discovered that the convolutional system could not function as needed. This report documents the design, construction, and testing of the test apparatus for the R/S chip set. The approach taken was to verify the error correcting behavior of the chip set by injecting known error patterns onto data and observing the results. Error sequences were generated using pseudo-random number generator programs, with Poisson time distribution between errors and Gaussian burst lengths. Sample means, variances, and number of un-correctable errors were calculated for each data set before testing.

  17. Coding for reliable satellite communications

    NASA Technical Reports Server (NTRS)

    Gaarder, N. T.; Lin, S.

    1986-01-01

    This research project was set up to study various kinds of coding techniques for error control in satellite and space communications for NASA Goddard Space Flight Center. During the project period, researchers investigated the following areas: (1) decoding of Reed-Solomon codes in terms of dual basis; (2) concatenated and cascaded error control coding schemes for satellite and space communications; (3) use of hybrid coding schemes (error correction and detection incorporated with retransmission) to improve system reliability and throughput in satellite communications; (4) good codes for simultaneous error correction and error detection, and (5) error control techniques for ring and star networks.

  18. Applying the intention-to-treat principle in practice: Guidance on handling randomisation errors

    PubMed Central

    Sullivan, Thomas R; Voysey, Merryn; Lee, Katherine J; Cook, Jonathan A; Forbes, Andrew B

    2015-01-01

    Background: The intention-to-treat principle states that all randomised participants should be analysed in their randomised group. The implications of this principle are widely discussed in relation to the analysis, but have received limited attention in the context of handling errors that occur during the randomisation process. The aims of this article are to (1) demonstrate the potential pitfalls of attempting to correct randomisation errors and (2) provide guidance on handling common randomisation errors when they are discovered that maintains the goals of the intention-to-treat principle. Methods: The potential pitfalls of attempting to correct randomisation errors are demonstrated and guidance on handling common errors is provided, using examples from our own experiences. Results: We illustrate the problems that can occur when attempts are made to correct randomisation errors and argue that documenting, rather than correcting these errors, is most consistent with the intention-to-treat principle. When a participant is randomised using incorrect baseline information, we recommend accepting the randomisation but recording the correct baseline data. If ineligible participants are inadvertently randomised, we advocate keeping them in the trial and collecting all relevant data but seeking clinical input to determine their appropriate course of management, unless they can be excluded in an objective and unbiased manner. When multiple randomisations are performed in error for the same participant, we suggest retaining the initial randomisation and either disregarding the second randomisation if only one set of data will be obtained for the participant, or retaining the second randomisation otherwise. When participants are issued the incorrect treatment at the time of randomisation, we propose documenting the treatment received and seeking clinical input regarding the ongoing treatment of the participant. Conclusion: Randomisation errors are almost inevitable and should be reported in trial publications. The intention-to-treat principle is useful for guiding responses to randomisation errors when they are discovered. PMID:26033877

  19. Applying the intention-to-treat principle in practice: Guidance on handling randomisation errors.

    PubMed

    Yelland, Lisa N; Sullivan, Thomas R; Voysey, Merryn; Lee, Katherine J; Cook, Jonathan A; Forbes, Andrew B

    2015-08-01

    The intention-to-treat principle states that all randomised participants should be analysed in their randomised group. The implications of this principle are widely discussed in relation to the analysis, but have received limited attention in the context of handling errors that occur during the randomisation process. The aims of this article are to (1) demonstrate the potential pitfalls of attempting to correct randomisation errors and (2) provide guidance on handling common randomisation errors when they are discovered that maintains the goals of the intention-to-treat principle. The potential pitfalls of attempting to correct randomisation errors are demonstrated and guidance on handling common errors is provided, using examples from our own experiences. We illustrate the problems that can occur when attempts are made to correct randomisation errors and argue that documenting, rather than correcting these errors, is most consistent with the intention-to-treat principle. When a participant is randomised using incorrect baseline information, we recommend accepting the randomisation but recording the correct baseline data. If ineligible participants are inadvertently randomised, we advocate keeping them in the trial and collecting all relevant data but seeking clinical input to determine their appropriate course of management, unless they can be excluded in an objective and unbiased manner. When multiple randomisations are performed in error for the same participant, we suggest retaining the initial randomisation and either disregarding the second randomisation if only one set of data will be obtained for the participant, or retaining the second randomisation otherwise. When participants are issued the incorrect treatment at the time of randomisation, we propose documenting the treatment received and seeking clinical input regarding the ongoing treatment of the participant. Randomisation errors are almost inevitable and should be reported in trial publications. The intention-to-treat principle is useful for guiding responses to randomisation errors when they are discovered. © The Author(s) 2015.

  20. Quantum Error Correction with Biased Noise

    NASA Astrophysics Data System (ADS)

    Brooks, Peter

    Quantum computing offers powerful new techniques for speeding up the calculation of many classically intractable problems. Quantum algorithms can allow for the efficient simulation of physical systems, with applications to basic research, chemical modeling, and drug discovery; other algorithms have important implications for cryptography and internet security. At the same time, building a quantum computer is a daunting task, requiring the coherent manipulation of systems with many quantum degrees of freedom while preventing environmental noise from interacting too strongly with the system. Fortunately, we know that, under reasonable assumptions, we can use the techniques of quantum error correction and fault tolerance to achieve an arbitrary reduction in the noise level. In this thesis, we look at how additional information about the structure of noise, or "noise bias," can improve or alter the performance of techniques in quantum error correction and fault tolerance. In Chapter 2, we explore the possibility of designing certain quantum gates to be extremely robust with respect to errors in their operation. This naturally leads to structured noise where certain gates can be implemented in a protected manner, allowing the user to focus their protection on the noisier unprotected operations. In Chapter 3, we examine how to tailor error-correcting codes and fault-tolerant quantum circuits in the presence of dephasing biased noise, where dephasing errors are far more common than bit-flip errors. By using an appropriately asymmetric code, we demonstrate the ability to improve the amount of error reduction and decrease the physical resources required for error correction. In Chapter 4, we analyze a variety of protocols for distilling magic states, which enable universal quantum computation, in the presence of faulty Clifford operations. Here again there is a hierarchy of noise levels, with a fixed error rate for faulty gates, and a second rate for errors in the distilled states which decreases as the states are distilled to better quality. The interplay of of these different rates sets limits on the achievable distillation and how quickly states converge to that limit.

  1. Comparing Error Correction Procedures for Children Diagnosed with Autism

    ERIC Educational Resources Information Center

    Townley-Cochran, Donna; Leaf, Justin B.; Leaf, Ronald; Taubman, Mitchell; McEachin, John

    2017-01-01

    The purpose of this study was to examine the effectiveness of two error correction (EC) procedures: modeling alone and the use of an error statement plus modeling. Utilizing an alternating treatments design nested into a multiple baseline design across participants, we sought to evaluate and compare the effects of these two EC procedures used to…

  2. Correction to: Antibiotic resistance pattern and virulence genes content in avian pathogenic Escherichia coli (APEC) from broiler chickens in Chitwan, Nepal.

    PubMed

    Subedi, Manita; Bhattarai, Rebanta Kumar; Devkota, Bhuminand; Phuyal, Sarita; Luitel, Himal

    2018-05-22

    The original article [1] contains errors in author panels and their contributions, errors in both the Methodology and the Results sections, and errors with respect to funding sources. The affected sections of the manuscript and their respective regions of corrected text can be viewed ahead.

  3. 5 CFR 1605.22 - Claims for correction of Board or TSP record keeper errors; time limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... record keeper errors; time limitations. 1605.22 Section 1605.22 Administrative Personnel FEDERAL... § 1605.22 Claims for correction of Board or TSP record keeper errors; time limitations. (a) Filing claims... after that time, the Board or TSP record keeper may use its sound discretion in deciding whether to...

  4. A toolkit for measurement error correction, with a focus on nutritional epidemiology

    PubMed Central

    Keogh, Ruth H; White, Ian R

    2014-01-01

    Exposure measurement error is a problem in many epidemiological studies, including those using biomarkers and measures of dietary intake. Measurement error typically results in biased estimates of exposure-disease associations, the severity and nature of the bias depending on the form of the error. To correct for the effects of measurement error, information additional to the main study data is required. Ideally, this is a validation sample in which the true exposure is observed. However, in many situations, it is not feasible to observe the true exposure, but there may be available one or more repeated exposure measurements, for example, blood pressure or dietary intake recorded at two time points. The aim of this paper is to provide a toolkit for measurement error correction using repeated measurements. We bring together methods covering classical measurement error and several departures from classical error: systematic, heteroscedastic and differential error. The correction methods considered are regression calibration, which is already widely used in the classical error setting, and moment reconstruction and multiple imputation, which are newer approaches with the ability to handle differential error. We emphasize practical application of the methods in nutritional epidemiology and other fields. We primarily consider continuous exposures in the exposure-outcome model, but we also outline methods for use when continuous exposures are categorized. The methods are illustrated using the data from a study of the association between fibre intake and colorectal cancer, where fibre intake is measured using a diet diary and repeated measures are available for a subset. © 2014 The Authors. PMID:24497385

  5. Clinical Outcomes of an Optimized Prolate Ablation Procedure for Correcting Residual Refractive Errors Following Laser Surgery.

    PubMed

    Chung, Byunghoon; Lee, Hun; Choi, Bong Joon; Seo, Kyung Ryul; Kim, Eung Kwon; Kim, Dae Yune; Kim, Tae-Im

    2017-02-01

    The purpose of this study was to investigate the clinical efficacy of an optimized prolate ablation procedure for correcting residual refractive errors following laser surgery. We analyzed 24 eyes of 15 patients who underwent an optimized prolate ablation procedure for the correction of residual refractive errors following laser in situ keratomileusis, laser-assisted subepithelial keratectomy, or photorefractive keratectomy surgeries. Preoperative ophthalmic examinations were performed, and uncorrected distance visual acuity, corrected distance visual acuity, manifest refraction values (sphere, cylinder, and spherical equivalent), point spread function, modulation transfer function, corneal asphericity (Q value), ocular aberrations, and corneal haze measurements were obtained postoperatively at 1, 3, and 6 months. Uncorrected distance visual acuity improved and refractive errors decreased significantly at 1, 3, and 6 months postoperatively. Total coma aberration increased at 3 and 6 months postoperatively, while changes in all other aberrations were not statistically significant. Similarly, no significant changes in point spread function were detected, but modulation transfer function increased significantly at the postoperative time points measured. The optimized prolate ablation procedure was effective in terms of improving visual acuity and objective visual performance for the correction of persistent refractive errors following laser surgery.

  6. Diagnostic Error in Correctional Mental Health: Prevalence, Causes, and Consequences.

    PubMed

    Martin, Michael S; Hynes, Katie; Hatcher, Simon; Colman, Ian

    2016-04-01

    While they have important implications for inmates and resourcing of correctional institutions, diagnostic errors are rarely discussed in correctional mental health research. This review seeks to estimate the prevalence of diagnostic errors in prisons and jails and explores potential causes and consequences. Diagnostic errors are defined as discrepancies in an inmate's diagnostic status depending on who is responsible for conducting the assessment and/or the methods used. It is estimated that at least 10% to 15% of all inmates may be incorrectly classified in terms of the presence or absence of a mental illness. Inmate characteristics, relationships with staff, and cognitive errors stemming from the use of heuristics when faced with time constraints are discussed as possible sources of error. A policy example of screening for mental illness at intake to prison is used to illustrate when the risk of diagnostic error might be increased and to explore strategies to mitigate this risk. © The Author(s) 2016.

  7. Measurement-based quantum communication with resource states generated by entanglement purification

    NASA Astrophysics Data System (ADS)

    Wallnöfer, J.; Dür, W.

    2017-01-01

    We investigate measurement-based quantum communication with noisy resource states that are generated by entanglement purification. We consider the transmission of encoded information via noisy quantum channels using a measurement-based implementation of encoding, error correction, and decoding. We show that such an approach offers advantages over direct transmission, gate-based error correction, and measurement-based schemes with direct generation of resource states. We analyze the noise structure of resource states generated by entanglement purification and show that a local error model, i.e., noise acting independently on all qubits of the resource state, is a good approximation in general, and provides an exact description for Greenberger-Horne-Zeilinger states. The latter are resources for a measurement-based implementation of error-correction codes for bit-flip or phase-flip errors. This provides an approach to link the recently found very high thresholds for fault-tolerant measurement-based quantum information processing based on local error models for resource states with error thresholds for gate-based computational models.

  8. Bias correction of bounded location errors in presence-only data

    USGS Publications Warehouse

    Hefley, Trevor J.; Brost, Brian M.; Hooten, Mevin B.

    2017-01-01

    Location error occurs when the true location is different than the reported location. Because habitat characteristics at the true location may be different than those at the reported location, ignoring location error may lead to unreliable inference concerning species–habitat relationships.We explain how a transformation known in the spatial statistics literature as a change of support (COS) can be used to correct for location errors when the true locations are points with unknown coordinates contained within arbitrary shaped polygons.We illustrate the flexibility of the COS by modelling the resource selection of Whooping Cranes (Grus americana) using citizen contributed records with locations that were reported with error. We also illustrate the COS with a simulation experiment.In our analysis of Whooping Crane resource selection, we found that location error can result in up to a five-fold change in coefficient estimates. Our simulation study shows that location error can result in coefficient estimates that have the wrong sign, but a COS can efficiently correct for the bias.

  9. Correcting the Standard Errors of 2-Stage Residual Inclusion Estimators for Mendelian Randomization Studies.

    PubMed

    Palmer, Tom M; Holmes, Michael V; Keating, Brendan J; Sheehan, Nuala A

    2017-11-01

    Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estimates. We compared several different forms of the standard error for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza, bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of coverage and type I error. In the real-data examples, the Newey standard errors were 0.5% and 2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.

  10. On basis set superposition error corrected stabilization energies for large n-body clusters.

    PubMed

    Walczak, Katarzyna; Friedrich, Joachim; Dolg, Michael

    2011-10-07

    In this contribution, we propose an approximate basis set superposition error (BSSE) correction scheme for the site-site function counterpoise and for the Valiron-Mayer function counterpoise correction of second order to account for the basis set superposition error in clusters with a large number of subunits. The accuracy of the proposed scheme has been investigated for a water cluster series at the CCSD(T), CCSD, MP2, and self-consistent field levels of theory using Dunning's correlation consistent basis sets. The BSSE corrected stabilization energies for a series of water clusters are presented. A study regarding the possible savings with respect to computational resources has been carried out as well as a monitoring of the basis set dependence of the approximate BSSE corrections. © 2011 American Institute of Physics

  11. Error Correcting Mechanisms during Antisaccades: Contribution of Online Control during Primary Saccades and Offline Control via Secondary Saccades

    PubMed Central

    Bedi, Harleen; Goltz, Herbert C.; Wong, Agnes M. F.; Chandrakumar, Manokaraananthan; Niechwiej-Szwedo, Ewa

    2013-01-01

    Errors in eye movements can be corrected during the ongoing saccade through in-flight modifications (i.e., online control), or by programming a secondary eye movement (i.e., offline control). In a reflexive saccade task, the oculomotor system can use extraretinal information (i.e., efference copy) online to correct errors in the primary saccade, and offline retinal information to generate a secondary corrective saccade. The purpose of this study was to examine the error correction mechanisms in the antisaccade task. The roles of extraretinal and retinal feedback in maintaining eye movement accuracy were investigated by presenting visual feedback at the spatial goal of the antisaccade. We found that online control for antisaccade is not affected by the presence of visual feedback; that is whether visual feedback is present or not, the duration of the deceleration interval was extended and significantly correlated with reduced antisaccade endpoint error. We postulate that the extended duration of deceleration is a feature of online control during volitional saccades to improve their endpoint accuracy. We found that secondary saccades were generated more frequently in the antisaccade task compared to the reflexive saccade task. Furthermore, we found evidence for a greater contribution from extraretinal sources of feedback in programming the secondary “corrective” saccades in the antisaccade task. Nonetheless, secondary saccades were more corrective for the remaining antisaccade amplitude error in the presence of visual feedback of the target. Taken together, our results reveal a distinctive online error control strategy through an extension of the deceleration interval in the antisaccade task. Target feedback does not improve online control, rather it improves the accuracy of secondary saccades in the antisaccade task. PMID:23936308

  12. Detection and Correction of Silent Data Corruption for Large-Scale High-Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiala, David J; Mueller, Frank; Engelmann, Christian

    Faults have become the norm rather than the exception for high-end computing on clusters with 10s/100s of thousands of cores. Exacerbating this situation, some of these faults remain undetected, manifesting themselves as silent errors that corrupt memory while applications continue to operate and report incorrect results. This paper studies the potential for redundancy to both detect and correct soft errors in MPI message-passing applications. Our study investigates the challenges inherent to detecting soft errors within MPI application while providing transparent MPI redundancy. By assuming a model wherein corruption in application data manifests itself by producing differing MPI message data betweenmore » replicas, we study the best suited protocols for detecting and correcting MPI data that is the result of corruption. To experimentally validate our proposed detection and correction protocols, we introduce RedMPI, an MPI library which resides in the MPI profiling layer. RedMPI is capable of both online detection and correction of soft errors that occur in MPI applications without requiring any modifications to the application source by utilizing either double or triple redundancy. Our results indicate that our most efficient consistency protocol can successfully protect applications experiencing even high rates of silent data corruption with runtime overheads between 0% and 30% as compared to unprotected applications without redundancy. Using our fault injector within RedMPI, we observe that even a single soft error can have profound effects on running applications, causing a cascading pattern of corruption in most cases causes that spreads to all other processes. RedMPI's protection has been shown to successfully mitigate the effects of soft errors while allowing applications to complete with correct results even in the face of errors.« less

  13. Using Statistical Techniques and Web Search to Correct ESL Errors

    ERIC Educational Resources Information Center

    Gamon, Michael; Leacock, Claudia; Brockett, Chris; Dolan, William B.; Gao, Jianfeng; Belenko, Dmitriy; Klementiev, Alexandre

    2009-01-01

    In this paper we present a system for automatic correction of errors made by learners of English. The system has two novel aspects. First, machine-learned classifiers trained on large amounts of native data and a very large language model are combined to optimize the precision of suggested corrections. Second, the user can access real-life web…

  14. Detecting and correcting hard errors in a memory array

    DOEpatents

    Kalamatianos, John; John, Johnsy Kanjirapallil; Gelinas, Robert; Sridharan, Vilas K.; Nevius, Phillip E.

    2015-11-19

    Hard errors in the memory array can be detected and corrected in real-time using reusable entries in an error status buffer. Data may be rewritten to a portion of a memory array and a register in response to a first error in data read from the portion of the memory array. The rewritten data may then be written from the register to an entry of an error status buffer in response to the rewritten data read from the register differing from the rewritten data read from the portion of the memory array.

  15. Implementation of an experimental fault-tolerant memory system

    NASA Technical Reports Server (NTRS)

    Carter, W. C.; Mccarthy, C. E.

    1976-01-01

    The experimental fault-tolerant memory system described in this paper has been designed to enable the modular addition of spares, to validate the theoretical fault-secure and self-testing properties of the translator/corrector, to provide a basis for experiments using the new testing and correction processes for recovery, and to determine the practicality of such systems. The hardware design and implementation are described, together with methods of fault insertion. The hardware/software interface, including a restricted single error correction/double error detection (SEC/DED) code, is specified. Procedures are carefully described which, (1) test for specified physical faults, (2) ensure that single error corrections are not miscorrections due to triple faults, and (3) enable recovery from double errors.

  16. An optimized method to calculate error correction capability of tool influence function in frequency domain

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Hou, Xi; Wan, Yongjian; Shi, Chunyan

    2017-10-01

    An optimized method to calculate error correction capability of tool influence function (TIF) in certain polishing conditions will be proposed based on smoothing spectral function. The basic mathematical model for this method will be established in theory. A set of polishing experimental data with rigid conformal tool is used to validate the optimized method. The calculated results can quantitatively indicate error correction capability of TIF for different spatial frequency errors in certain polishing conditions. The comparative analysis with previous method shows that the optimized method is simpler in form and can get the same accuracy results with less calculating time in contrast to previous method.

  17. HyDEn: A Hybrid Steganocryptographic Approach for Data Encryption Using Randomized Error-Correcting DNA Codes

    PubMed Central

    Regoui, Chaouki; Durand, Guillaume; Belliveau, Luc; Léger, Serge

    2013-01-01

    This paper presents a novel hybrid DNA encryption (HyDEn) approach that uses randomized assignments of unique error-correcting DNA Hamming code words for single characters in the extended ASCII set. HyDEn relies on custom-built quaternary codes and a private key used in the randomized assignment of code words and the cyclic permutations applied on the encoded message. Along with its ability to detect and correct errors, HyDEn equals or outperforms existing cryptographic methods and represents a promising in silico DNA steganographic approach. PMID:23984392

  18. A system to use electromagnetic tracking for the quality assurance of brachytherapy catheter digitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damato, Antonio L., E-mail: adamato@lroc.harvard.edu; Viswanathan, Akila N.; Don, Sarah M.

    2014-10-15

    Purpose: To investigate the use of a system using electromagnetic tracking (EMT), post-processing and an error-detection algorithm for detecting errors and resolving uncertainties in high-dose-rate brachytherapy catheter digitization for treatment planning. Methods: EMT was used to localize 15 catheters inserted into a phantom using a stepwise acquisition technique. Five distinct acquisition experiments were performed. Noise associated with the acquisition was calculated. The dwell location configuration was extracted from the EMT data. A CT scan of the phantom was performed, and five distinct catheter digitization sessions were performed. No a priori registration of the CT scan coordinate system with the EMTmore » coordinate system was performed. CT-based digitization was automatically extracted from the brachytherapy plan DICOM files (CT), and rigid registration was performed between EMT and CT dwell positions. EMT registration error was characterized in terms of the mean and maximum distance between corresponding EMT and CT dwell positions per catheter. An algorithm for error detection and identification was presented. Three types of errors were systematically simulated: swap of two catheter numbers, partial swap of catheter number identification for parts of the catheters (mix), and catheter-tip shift. Error-detection sensitivity (number of simulated scenarios correctly identified as containing an error/number of simulated scenarios containing an error) and specificity (number of scenarios correctly identified as not containing errors/number of correct scenarios) were calculated. Catheter identification sensitivity (number of catheters correctly identified as erroneous across all scenarios/number of erroneous catheters across all scenarios) and specificity (number of catheters correctly identified as correct across all scenarios/number of correct catheters across all scenarios) were calculated. The mean detected and identified shift was calculated. Results: The maximum noise ±1 standard deviation associated with the EMT acquisitions was 1.0 ± 0.1 mm, and the mean noise was 0.6 ± 0.1 mm. Registration of all the EMT and CT dwell positions was associated with a mean catheter error of 0.6 ± 0.2 mm, a maximum catheter error of 0.9 ± 0.4 mm, a mean dwell error of 1.0 ± 0.3 mm, and a maximum dwell error of 1.3 ± 0.7 mm. Error detection and catheter identification sensitivity and specificity of 100% were observed for swap, mix and shift (≥2.6 mm for error detection; ≥2.7 mm for catheter identification) errors. A mean detected shift of 1.8 ± 0.4 mm and a mean identified shift of 1.9 ± 0.4 mm were observed. Conclusions: Registration of the EMT dwell positions to the CT dwell positions was possible with a residual mean error per catheter of 0.6 ± 0.2 mm and a maximum error for any dwell of 1.3 ± 0.7 mm. These low residual registration errors show that quality assurance of the general characteristics of the catheters and of possible errors affecting one specific dwell position is possible. The sensitivity and specificity of the catheter digitization verification algorithm was 100% for swap and mix errors and for shifts ≥2.6 mm. On average, shifts ≥1.8 mm were detected, and shifts ≥1.9 mm were detected and identified.« less

  19. Incorporating active learning in psychiatry education.

    PubMed

    Kumar, Sonia; McLean, Loyola; Nash, Louise; Trigwell, Keith

    2017-06-01

    We aim to summarise the active learning literature in higher education and consider its relevance for postgraduate psychiatry trainees, to inform the development of a new Formal Education Course (FEC): the Master of Medicine (Psychiatry) at the University of Sydney. We undertook a literature search on 'active learning', 'flipped classroom', 'problem-based learning' and 'psychiatry education'. The effectiveness of active learning pedagogy in higher education is well supported by evidence; however, there have been few psychiatry-specific studies. A new 'flipped classroom' format was developed for the Master of Medicine (Psychiatry). Postgraduate psychiatry training is an active learning environment; the pedagogical approach to FECs requires further evaluation.

  20. Morbidity Parameters Associated with Gastrointestinal Tract Nematodes in Sheep in Dabat District, Northwest Ethiopia

    PubMed Central

    Getnet, Kalkidan; Chanie, Mersha; Derso, Samuel; Fentahun, Shumye

    2018-01-01

    Gastrointestinal nematode (GIN) infections of sheep and their interaction with selected morbidity parameters were studied in smallholder farms. 120 faecal samples were collected and examined using faecal flotation to determine nematode infection in sheep. Thus, the study demonstrated overall prevalence of 57.5% GIN infections, while the mean faecal egg count (FEC) was 517.5 EPG. The severity of GIN infection was determined based on EPG as a mild infection (EPG <500), 55.1%, moderate infection (EPG = 500–1500), 30.4%, and heavy infection (EPG >1500), 14.6%. Five genera of nematodes were identified using coproculture: Haemonchus (33.3%), Trichostrongylus (26.7%), Bunostomum (20%), Oesophagostomum (13.3%), and Cooperia (6.7%). A significant difference was observed in the mean FEC among the FC (P < 0.001), FAMACHA© score (P < 0.01), and the BCS of the animals (P < 0.001). FEC was positively correlated with the FAMACHA© score (FS), while FC and BCS were negatively correlated. Thus, FAMACHA© chart can suggest well the severity of nematode infections and can serve as a suitable on-farm tool to identify nematode-infected sheep and gives a guide to identify sheep that need to be treated with an anthelmintic. PMID:29670911

Top