Transient Faults in Computer Systems
NASA Technical Reports Server (NTRS)
Masson, Gerald M.
1993-01-01
A powerful technique particularly appropriate for the detection of errors caused by transient faults in computer systems was developed. The technique can be implemented in either software or hardware; the research conducted thus far primarily considered software implementations. The error detection technique developed has the distinct advantage of having provably complete coverage of all errors caused by transient faults that affect the output produced by the execution of a program. In other words, the technique does not have to be tuned to a particular error model to enhance error coverage. Also, the correctness of the technique can be formally verified. The technique uses time and software redundancy. The foundation for an effective, low-overhead, software-based certification trail approach to real-time error detection resulting from transient fault phenomena was developed.
NASA Technical Reports Server (NTRS)
Buechler, W.; Tucker, A. G.
1981-01-01
Several methods were employed to detect both the occurrence and source of errors in the operational software of the AN/SLQ-32. A large embedded real time electronic warfare command and control system for the ROLM 1606 computer are presented. The ROLM computer provides information about invalid addressing, improper use of privileged instructions, stack overflows, and unimplemented instructions. Additionally, software techniques were developed to detect invalid jumps, indices out of range, infinte loops, stack underflows, and field size errors. Finally, data are saved to provide information about the status of the system when an error is detected. This information includes I/O buffers, interrupt counts, stack contents, and recently passed locations. The various errors detected, techniques to assist in debugging problems, and segment simulation on a nontarget computer are discussed. These error detection techniques were a major factor in the success of finding the primary cause of error in 98% of over 500 system dumps.
Clover: Compiler directed lightweight soft error resilience
Liu, Qingrui; Lee, Dongyoon; Jung, Changhee; ...
2015-05-01
This paper presents Clover, a compiler directed soft error detection and recovery scheme for lightweight soft error resilience. The compiler carefully generates soft error tolerant code based on idem-potent processing without explicit checkpoint. During program execution, Clover relies on a small number of acoustic wave detectors deployed in the processor to identify soft errors by sensing the wave made by a particle strike. To cope with DUE (detected unrecoverable errors) caused by the sensing latency of error detection, Clover leverages a novel selective instruction duplication technique called tail-DMR (dual modular redundancy). Once a soft error is detected by either themore » sensor or the tail-DMR, Clover takes care of the error as in the case of exception handling. To recover from the error, Clover simply redirects program control to the beginning of the code region where the error is detected. Lastly, the experiment results demonstrate that the average runtime overhead is only 26%, which is a 75% reduction compared to that of the state-of-the-art soft error resilience technique.« less
NASA Technical Reports Server (NTRS)
Bernacki, Bruce E.; Mansuripur, M.
1992-01-01
A commonly used tracking method on pre-grooved magneto-optical (MO) media is the push-pull technique, and the astigmatic method is a popular focus-error detection approach. These two methods are analyzed using DIFFRACT, a general-purpose scalar diffraction modeling program, to observe the effects on the error signals due to focusing lens misalignment, Seidel aberrations, and optical crosstalk (feedthrough) between the focusing and tracking servos. Using the results of the astigmatic/push-pull system as a basis for comparison, a novel focus/track-error detection technique that utilizes a ring toric lens is evaluated as well as the obscuration method (focus error detection only).
Coding for reliable satellite communications
NASA Technical Reports Server (NTRS)
Gaarder, N. T.; Lin, S.
1986-01-01
This research project was set up to study various kinds of coding techniques for error control in satellite and space communications for NASA Goddard Space Flight Center. During the project period, researchers investigated the following areas: (1) decoding of Reed-Solomon codes in terms of dual basis; (2) concatenated and cascaded error control coding schemes for satellite and space communications; (3) use of hybrid coding schemes (error correction and detection incorporated with retransmission) to improve system reliability and throughput in satellite communications; (4) good codes for simultaneous error correction and error detection, and (5) error control techniques for ring and star networks.
PRESAGE: Protecting Structured Address Generation against Soft Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vishal C.; Gopalakrishnan, Ganesh; Krishnamoorthy, Sriram
Modern computer scaling trends in pursuit of larger component counts and power efficiency have, unfortunately, lead to less reliable hardware and consequently soft errors escaping into application data ("silent data corruptions"). Techniques to enhance system resilience hinge on the availability of efficient error detectors that have high detection rates, low false positive rates, and lower computational overhead. Unfortunately, efficient detectors to detect faults during address generation (to index large arrays) have not been widely researched. We present a novel lightweight compiler-driven technique called PRESAGE for detecting bit-flips affecting structured address computations. A key insight underlying PRESAGE is that any addressmore » computation scheme that flows an already incurred error is better than a scheme that corrupts one particular array access but otherwise (falsely) appears to compute perfectly. Enabling the flow of errors allows one to situate detectors at loop exit points, and helps turn silent corruptions into easily detectable error situations. Our experiments using PolyBench benchmark suite indicate that PRESAGE-based error detectors have a high error-detection rate while incurring low overheads.« less
PRESAGE: Protecting Structured Address Generation against Soft Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vishal C.; Gopalakrishnan, Ganesh; Krishnamoorthy, Sriram
Modern computer scaling trends in pursuit of larger component counts and power efficiency have, unfortunately, lead to less reliable hardware and consequently soft errors escaping into application data ("silent data corruptions"). Techniques to enhance system resilience hinge on the availability of efficient error detectors that have high detection rates, low false positive rates, and lower computational overhead. Unfortunately, efficient detectors to detect faults during address generation have not been widely researched (especially in the context of indexing large arrays). We present a novel lightweight compiler-driven technique called PRESAGE for detecting bit-flips affecting structured address computations. A key insight underlying PRESAGEmore » is that any address computation scheme that propagates an already incurred error is better than a scheme that corrupts one particular array access but otherwise (falsely) appears to compute perfectly. Ensuring the propagation of errors allows one to place detectors at loop exit points and helps turn silent corruptions into easily detectable error situations. Our experiments using the PolyBench benchmark suite indicate that PRESAGE-based error detectors have a high error-detection rate while incurring low overheads.« less
Design of the Detector II: A CMOS Gate Array for the Study of Concurrent Error Detection Techniques.
1987-07-01
detection schemes and temporary failures. The circuit consists- or of six different adders with concurrent error detection schemes . The error detection... schemes are - simple duplication, duplication with functional dual implementation, duplication with different &I [] .6implementations, two-rail encoding...THE SYSTEM. .. .... ...... ...... ...... 5 7. DESIGN OF CED SCHEMES .. ... ...... ...... ........ 7 7.1 Simple Duplication
Periodic Application of Concurrent Error Detection in Processor Array Architectures. PhD. Thesis -
NASA Technical Reports Server (NTRS)
Chen, Paul Peichuan
1993-01-01
Processor arrays can provide an attractive architecture for some applications. Featuring modularity, regular interconnection and high parallelism, such arrays are well-suited for VLSI/WSI implementations, and applications with high computational requirements, such as real-time signal processing. Preserving the integrity of results can be of paramount importance for certain applications. In these cases, fault tolerance should be used to ensure reliable delivery of a system's service. One aspect of fault tolerance is the detection of errors caused by faults. Concurrent error detection (CED) techniques offer the advantage that transient and intermittent faults may be detected with greater probability than with off-line diagnostic tests. Applying time-redundant CED techniques can reduce hardware redundancy costs. However, most time-redundant CED techniques degrade a system's performance.
Local concurrent error detection and correction in data structures using virtual backpointers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C.C.J.; Chen, P.P.; Fuchs, W.K.
1989-11-01
A new technique, based on virtual backpointers, is presented in this paper for local concurrent error detection and correction in linked data structures. Two new data structures utilizing virtual backpointers, the Virtual Double-Linked List and the B-Tree and Virtual Backpointers, are described. For these structures, double errors within a fixed-size checking window can be detected in constant time and single errors detected during forward moves can be corrected in constant time.
Symbolic Analysis of Concurrent Programs with Polymorphism
NASA Technical Reports Server (NTRS)
Rungta, Neha Shyam
2010-01-01
The current trend of multi-core and multi-processor computing is causing a paradigm shift from inherently sequential to highly concurrent and parallel applications. Certain thread interleavings, data input values, or combinations of both often cause errors in the system. Systematic verification techniques such as explicit state model checking and symbolic execution are extensively used to detect errors in such systems [7, 9]. Explicit state model checking enumerates possible thread schedules and input data values of a program in order to check for errors [3, 9]. To partially mitigate the state space explosion from data input values, symbolic execution techniques substitute data input values with symbolic values [5, 7, 6]. Explicit state model checking and symbolic execution techniques used in conjunction with exhaustive search techniques such as depth-first search are unable to detect errors in medium to large-sized concurrent programs because the number of behaviors caused by data and thread non-determinism is extremely large. We present an overview of abstraction-guided symbolic execution for concurrent programs that detects errors manifested by a combination of thread schedules and data values [8]. The technique generates a set of key program locations relevant in testing the reachability of the target locations. The symbolic execution is then guided along these locations in an attempt to generate a feasible execution path to the error state. This allows the execution to focus in parts of the behavior space more likely to contain an error.
The Watchdog Task: Concurrent error detection using assertions
NASA Technical Reports Server (NTRS)
Ersoz, A.; Andrews, D. M.; Mccluskey, E. J.
1985-01-01
The Watchdog Task, a software abstraction of the Watchdog-processor, is shown to be a powerful error detection tool with a great deal of flexibility and the advantages of watchdog techniques. A Watchdog Task system in Ada is presented; issues of recovery, latency, efficiency (communication) and preprocessing are discussed. Different applications, one of which is error detection on a single processor, are examined.
Quantum-state anomaly detection for arbitrary errors using a machine-learning technique
NASA Astrophysics Data System (ADS)
Hara, Satoshi; Ono, Takafumi; Okamoto, Ryo; Washio, Takashi; Takeuchi, Shigeki
2016-10-01
The accurate detection of small deviations in given density matrice is important for quantum information processing, which is a difficult task because of the intrinsic fluctuation in density matrices reconstructed using a limited number of experiments. We previously proposed a method for decoherence error detection using a machine-learning technique [S. Hara, T. Ono, R. Okamoto, T. Washio, and S. Takeuchi, Phys. Rev. A 89, 022104 (2014), 10.1103/PhysRevA.89.022104]. However, the previous method is not valid when the errors are just changes in phase. Here, we propose a method that is valid for arbitrary errors in density matrices. The performance of the proposed method is verified using both numerical simulation data and real experimental data.
Decoding of DBEC-TBED Reed-Solomon codes. [Double-Byte-Error-Correcting, Triple-Byte-Error-Detecting
NASA Technical Reports Server (NTRS)
Deng, Robert H.; Costello, Daniel J., Jr.
1987-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256 K bit DRAM's are organized in 32 K x 8 bit-bytes. Byte-oriented codes such as Reed-Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. The paper presents a special decoding technique for double-byte-error-correcting, triple-byte-error-detecting RS codes which is capable of high-speed operation. This technique is designed to find the error locations and the error values directly from the syndrome without having to use the iterative algorithm to find the error locator polynomial.
Building Change Detection from LIDAR Point Cloud Data Based on Connected Component Analysis
NASA Astrophysics Data System (ADS)
Awrangjeb, M.; Fraser, C. S.; Lu, G.
2015-08-01
Building data are one of the important data types in a topographic database. Building change detection after a period of time is necessary for many applications, such as identification of informal settlements. Based on the detected changes, the database has to be updated to ensure its usefulness. This paper proposes an improved building detection technique, which is a prerequisite for many building change detection techniques. The improved technique examines the gap between neighbouring buildings in the building mask in order to avoid under segmentation errors. Then, a new building change detection technique from LIDAR point cloud data is proposed. Buildings which are totally new or demolished are directly added to the change detection output. However, for demolished or extended building parts, a connected component analysis algorithm is applied and for each connected component its area, width and height are estimated in order to ascertain if it can be considered as a demolished or new building part. Finally, a graphical user interface (GUI) has been developed to update detected changes to the existing building map. Experimental results show that the improved building detection technique can offer not only higher performance in terms of completeness and correctness, but also a lower number of undersegmentation errors as compared to its original counterpart. The proposed change detection technique produces no omission errors and thus it can be exploited for enhanced automated building information updating within a topographic database. Using the developed GUI, the user can quickly examine each suggested change and indicate his/her decision with a minimum number of mouse clicks.
System reliability and recovery.
DOT National Transportation Integrated Search
1971-06-01
The paper exhibits a variety of reliability techniques applicable to future ATC data processing systems. Presently envisioned schemes for error detection, error interrupt and error analysis are considered, along with methods of retry, reconfiguration...
Local concurrent error detection and correction in data structures using virtual backpointers
NASA Technical Reports Server (NTRS)
Li, C. C.; Chen, P. P.; Fuchs, W. K.
1987-01-01
A new technique, based on virtual backpointers, for local concurrent error detection and correction in linked data structures is presented. Two new data structures, the Virtual Double Linked List, and the B-tree with Virtual Backpointers, are described. For these structures, double errors can be detected in 0(1) time and errors detected during forward moves can be corrected in 0(1) time. The application of a concurrent auditor process to data structure error detection and correction is analyzed, and an implementation is described, to determine the effect on mean time to failure of a multi-user shared database system. The implementation utilizes a Sequent shared memory multiprocessor system operating on a shared databased of Virtual Double Linked Lists.
Local concurrent error detection and correction in data structures using virtual backpointers
NASA Technical Reports Server (NTRS)
Li, Chung-Chi Jim; Chen, Paul Peichuan; Fuchs, W. Kent
1989-01-01
A new technique, based on virtual backpointers, for local concurrent error detection and correction in linked data strutures is presented. Two new data structures, the Virtual Double Linked List, and the B-tree with Virtual Backpointers, are described. For these structures, double errors can be detected in 0(1) time and errors detected during forward moves can be corrected in 0(1) time. The application of a concurrent auditor process to data structure error detection and correction is analyzed, and an implementation is described, to determine the effect on mean time to failure of a multi-user shared database system. The implementation utilizes a Sequent shared memory multiprocessor system operating on a shared database of Virtual Double Linked Lists.
Magnetic-field sensing with quantum error detection under the effect of energy relaxation
NASA Astrophysics Data System (ADS)
Matsuzaki, Yuichiro; Benjamin, Simon
2017-03-01
A solid state spin is an attractive system with which to realize an ultrasensitive magnetic field sensor. A spin superposition state will acquire a phase induced by the target field, and we can estimate the field strength from this phase. Recent studies have aimed at improving sensitivity through the use of quantum error correction (QEC) to detect and correct any bit-flip errors that may occur during the sensing period. Here we investigate the performance of a two-qubit sensor employing QEC and under the effect of energy relaxation. Surprisingly, we find that the standard QEC technique to detect and recover from an error does not improve the sensitivity compared with the single-qubit sensors. This is a consequence of the fact that the energy relaxation induces both a phase-flip and a bit-flip noise where the former noise cannot be distinguished from the relative phase induced from the target fields. However, we have found that we can improve the sensitivity if we adopt postselection to discard the state when error is detected. Even when quantum error detection is moderately noisy, and allowing for the cost of the postselection technique, we find that this two-qubit system shows an advantage in sensing over a single qubit in the same conditions.
Error control for reliable digital data transmission and storage systems
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Deng, R. H.
1985-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. In this paper we present some special decoding techniques for extended single-and-double-error-correcting RS codes which are capable of high speed operation. These techniques are designed to find the error locations and the error values directly from the syndrome without having to use the iterative alorithm to find the error locator polynomial. Two codes are considered: (1) a d sub min = 4 single-byte-error-correcting (SBEC), double-byte-error-detecting (DBED) RS code; and (2) a d sub min = 6 double-byte-error-correcting (DBEC), triple-byte-error-detecting (TBED) RS code.
On-orbit observations of single event upset in Harris HM-6508 1K RAMs, reissue A
NASA Astrophysics Data System (ADS)
Blake, J. B.; Mandel, R.
1987-02-01
The Harris HM-6508 1K x 1 RAMs are part of a subsystem of a satellite in a low, polar orbit. The memory module, used in the subsystem containing the RAMs, consists of three printed circuit cards, with each card containing eight 2K byte memory hybrids, for a total of 48K bytes. Each memory hybrid contains 16 HM-6508 RAM chips. On a regular basis all but 256 bytes of the 48K bytes are examined for bit errors. Two different techniques were used for detecting bit errors. The first technique, a memory check sum, was capable of automatically detecting all single bit and some double bit errors which occurred within a page of memory. A memory page consists of 256 bytes. Memory check sum tests are performed approximately every 90 minutes. To detect a multiple error or to determine the exact location of the bit error within the page the entire contents of the memory is dumped and compared to the load file. Memory dumps are normally performed once a month, or immediately after the check sum routine detects an error. Once the exact location of the error is found, the correct value is reloaded into memory. After the memory is reloaded, the contents of the memory location in question is verified in order to determine if the error was a soft error generated by an SEU or a hard error generated by a part failure or cosmic-ray induced latchup.
A median filter approach for correcting errors in a vector field
NASA Technical Reports Server (NTRS)
Schultz, H.
1985-01-01
Techniques are presented for detecting and correcting errors in a vector field. These methods employ median filters which are frequently used in image processing to enhance edges and remove noise. A detailed example is given for wind field maps produced by a spaceborne scatterometer. The error detection and replacement algorithm was tested with simulation data from the NASA Scatterometer (NSCAT) project.
Self-checking self-repairing computer nodes using the mirror processor
NASA Technical Reports Server (NTRS)
Tamir, Yuval
1992-01-01
Circuitry added to fault-tolerant systems for concurrent error deduction usually reduces performance. Using a technique called micro rollback, it is possible to eliminate most of the performance penalty of concurrent error detection. Error detection is performed in parallel with intermodule communication, and erroneous state changes are later undone. The author reports on the design and implementation of a VLSI RISC microprocessor, called the Mirror Processor (MP), which is capable of micro rollback. In order to achieve concurrent error detection, two MP chips operate in lockstep, comparing external signals and a signature of internal signals every clock cycle. If a mismatch is detected, both processors roll back to the beginning of the cycle when the error occurred. In some cases the erroneous state is corrected by copying a value from the fault-free processor to the faulty processor. The architecture, microarchitecture, and VLSI implementation of the MP, emphasizing its error-detection, error-recovery, and self-diagnosis capabilities, are described.
Detecting Silent Data Corruption for Extreme-Scale Applications through Data Mining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bautista-Gomez, Leonardo; Cappello, Franck
Supercomputers allow scientists to study natural phenomena by means of computer simulations. Next-generation machines are expected to have more components and, at the same time, consume several times less energy per operation. These trends are pushing supercomputer construction to the limits of miniaturization and energy-saving strategies. Consequently, the number of soft errors is expected to increase dramatically in the coming years. While mechanisms are in place to correct or at least detect some soft errors, a significant percentage of those errors pass unnoticed by the hardware. Such silent errors are extremely damaging because they can make applications silently produce wrongmore » results. In this work we propose a technique that leverages certain properties of high-performance computing applications in order to detect silent errors at the application level. Our technique detects corruption solely based on the behavior of the application datasets and is completely application-agnostic. We propose multiple corruption detectors, and we couple them to work together in a fashion transparent to the user. We demonstrate that this strategy can detect the majority of the corruptions, while incurring negligible overhead. We show that with the help of these detectors, applications can have up to 80% of coverage against data corruption.« less
A framework for software fault tolerance in real-time systems
NASA Technical Reports Server (NTRS)
Anderson, T.; Knight, J. C.
1983-01-01
A classification scheme for errors and a technique for the provision of software fault tolerance in cyclic real-time systems is presented. The technique requires that the process structure of a system be represented by a synchronization graph which is used by an executive as a specification of the relative times at which they will communicate during execution. Communication between concurrent processes is severely limited and may only take place between processes engaged in an exchange. A history of error occurrences is maintained by an error handler. When an error is detected, the error handler classifies it using the error history information and then initiates appropriate recovery action.
Detecting and Characterizing Semantic Inconsistencies in Ported Code
NASA Technical Reports Server (NTRS)
Ray, Baishakhi; Kim, Miryung; Person,Suzette; Rungta, Neha
2013-01-01
Adding similar features and bug fixes often requires porting program patches from reference implementations and adapting them to target implementations. Porting errors may result from faulty adaptations or inconsistent updates. This paper investigates (1) the types of porting errors found in practice, and (2) how to detect and characterize potential porting errors. Analyzing version histories, we define five categories of porting errors, including incorrect control- and data-flow, code redundancy, inconsistent identifier renamings, etc. Leveraging this categorization, we design a static control- and data-dependence analysis technique, SPA, to detect and characterize porting inconsistencies. Our evaluation on code from four open-source projects shows that SPA can detect porting inconsistencies with 65% to 73% precision and 90% recall, and identify inconsistency types with 58% to 63% precision and 92% to 100% recall. In a comparison with two existing error detection tools, SPA improves precision by 14 to 17 percentage points.
Latent error detection: A golden two hours for detection.
Saward, Justin R E; Stanton, Neville A
2017-03-01
Undetected error in safety critical contexts generates a latent condition that can contribute to a future safety failure. The detection of latent errors post-task completion is observed in naval air engineers using a diary to record work-related latent error detection (LED) events. A systems view is combined with multi-process theories to explore sociotechnical factors associated with LED. Perception of cues in different environments facilitates successful LED, for which the deliberate review of past tasks within two hours of the error occurring and whilst remaining in the same or similar sociotechnical environment to that which the error occurred appears most effective. Identified ergonomic interventions offer potential mitigation for latent errors; particularly in simple everyday habitual tasks. It is thought safety critical organisations should look to engineer further resilience through the application of LED techniques that engage with system cues across the entire sociotechnical environment, rather than relying on consistent human performance. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Detecting Spatial Patterns in Biological Array Experiments
ROOT, DAVID E.; KELLEY, BRIAN P.; STOCKWELL, BRENT R.
2005-01-01
Chemical genetic screening and DNA and protein microarrays are among a number of increasingly important and widely used biological research tools that involve large numbers of parallel experiments arranged in a spatial array. It is often difficult to ensure that uniform experimental conditions are present throughout the entire array, and as a result, one often observes systematic spatially correlated errors, especially when array experiments are performed using robots. Here, the authors apply techniques based on the discrete Fourier transform to identify and quantify spatially correlated errors superimposed on a spatially random background. They demonstrate that these techniques are effective in identifying common spatially systematic errors in high-throughput 384-well microplate assay data. In addition, the authors employ a statistical test to allow for automatic detection of such errors. Software tools for using this approach are provided. PMID:14567791
Myint, S.W.; Yuan, M.; Cerveny, R.S.; Giri, C.P.
2008-01-01
Remote sensing techniques have been shown effective for large-scale damage surveys after a hazardous event in both near real-time or post-event analyses. The paper aims to compare accuracy of common imaging processing techniques to detect tornado damage tracks from Landsat TM data. We employed the direct change detection approach using two sets of images acquired before and after the tornado event to produce a principal component composite images and a set of image difference bands. Techniques in the comparison include supervised classification, unsupervised classification, and objectoriented classification approach with a nearest neighbor classifier. Accuracy assessment is based on Kappa coefficient calculated from error matrices which cross tabulate correctly identified cells on the TM image and commission and omission errors in the result. Overall, the Object-oriented Approach exhibits the highest degree of accuracy in tornado damage detection. PCA and Image Differencing methods show comparable outcomes. While selected PCs can improve detection accuracy 5 to 10%, the Object-oriented Approach performs significantly better with 15-20% higher accuracy than the other two techniques. ?? 2008 by MDPI.
Myint, Soe W.; Yuan, May; Cerveny, Randall S.; Giri, Chandra P.
2008-01-01
Remote sensing techniques have been shown effective for large-scale damage surveys after a hazardous event in both near real-time or post-event analyses. The paper aims to compare accuracy of common imaging processing techniques to detect tornado damage tracks from Landsat TM data. We employed the direct change detection approach using two sets of images acquired before and after the tornado event to produce a principal component composite images and a set of image difference bands. Techniques in the comparison include supervised classification, unsupervised classification, and object-oriented classification approach with a nearest neighbor classifier. Accuracy assessment is based on Kappa coefficient calculated from error matrices which cross tabulate correctly identified cells on the TM image and commission and omission errors in the result. Overall, the Object-oriented Approach exhibits the highest degree of accuracy in tornado damage detection. PCA and Image Differencing methods show comparable outcomes. While selected PCs can improve detection accuracy 5 to 10%, the Object-oriented Approach performs significantly better with 15-20% higher accuracy than the other two techniques. PMID:27879757
Integrated Data and Control Level Fault Tolerance Techniques for Signal Processing Computer Design
1990-09-01
TOLERANCE TECHNIQUES FOR SIGNAL PROCESSING COMPUTER DESIGN G. Robert Redinbo I. INTRODUCTION High-speed signal processing is an important application of...techniques and mathematical approaches will be expanded later to the situation where hardware errors and roundoff and quantization noise affect all...detect errors equal in number to the degree of g(X), the maximum permitted by the Singleton bound [13]. Real cyclic codes, primarily applicable to
Detecting and Characterizing Semantic Inconsistencies in Ported Code
NASA Technical Reports Server (NTRS)
Ray, Baishakhi; Kim, Miryung; Person, Suzette J.; Rungta, Neha
2013-01-01
Adding similar features and bug fixes often requires porting program patches from reference implementations and adapting them to target implementations. Porting errors may result from faulty adaptations or inconsistent updates. This paper investigates (I) the types of porting errors found in practice, and (2) how to detect and characterize potential porting errors. Analyzing version histories, we define five categories of porting errors, including incorrect control- and data-flow, code redundancy, inconsistent identifier renamings, etc. Leveraging this categorization, we design a static control- and data-dependence analysis technique, SPA, to detect and characterize porting inconsistencies. Our evaluation on code from four open-source projects shows thai SPA can dell-oct porting inconsistencies with 65% to 73% precision and 90% recall, and identify inconsistency types with 58% to 63% precision and 92% to 100% recall. In a comparison with two existing error detection tools, SPA improves precision by 14 to 17 percentage points
Comparison of algorithms for automatic border detection of melanoma in dermoscopy images
NASA Astrophysics Data System (ADS)
Srinivasa Raghavan, Sowmya; Kaur, Ravneet; LeAnder, Robert
2016-09-01
Melanoma is one of the most rapidly accelerating cancers in the world [1]. Early diagnosis is critical to an effective cure. We propose a new algorithm for more accurately detecting melanoma borders in dermoscopy images. Proper border detection requires eliminating occlusions like hair and bubbles by processing the original image. The preprocessing step involves transforming the RGB image to the CIE L*u*v* color space, in order to decouple brightness from color information, then increasing contrast, using contrast-limited adaptive histogram equalization (CLAHE), followed by artifacts removal using a Gaussian filter. After preprocessing, the Chen-Vese technique segments the preprocessed images to create a lesion mask which undergoes a morphological closing operation. Next, the largest central blob in the lesion is detected, after which, the blob is dilated to generate an image output mask. Finally, the automatically-generated mask is compared to the manual mask by calculating the XOR error [3]. Our border detection algorithm was developed using training and test sets of 30 and 20 images, respectively. This detection method was compared to the SRM method [4] by calculating the average XOR error for each of the two algorithms. Average error for test images was 0.10, using the new algorithm, and 0.99, using SRM method. In comparing the average error values produced by the two algorithms, it is evident that the average XOR error for our technique is lower than the SRM method, thereby implying that the new algorithm detects borders of melanomas more accurately than the SRM algorithm.
NASA Astrophysics Data System (ADS)
Lyu, Jiang-Tao; Zhou, Chen
2017-12-01
Ionospheric refraction is one of the principal error sources for limiting the accuracy of radar systems for space target detection. High-accuracy measurement of the ionospheric electron density along the propagation path of radar wave is the most important procedure for the ionospheric refraction correction. Traditionally, the ionospheric model and the ionospheric detection instruments, like ionosonde or GPS receivers, are employed for obtaining the electron density. However, both methods are not capable of satisfying the requirements of correction accuracy for the advanced space target radar system. In this study, we propose a novel technique for ionospheric refraction correction based on radar dual-frequency detection. Radar target range measurements at two adjacent frequencies are utilized for calculating the electron density integral exactly along the propagation path of the radar wave, which can generate accurate ionospheric range correction. The implementation of radar dual-frequency detection is validated by a P band radar located in midlatitude China. The experimental results present that the accuracy of this novel technique is more accurate than the traditional ionospheric model correction. The technique proposed in this study is very promising for the high-accuracy radar detection and tracking of objects in geospace.
Kreilinger, Alex; Hiebel, Hannah; Müller-Putz, Gernot R
2016-03-01
This work aimed to find and evaluate a new method for detecting errors in continuous brain-computer interface (BCI) applications. Instead of classifying errors on a single-trial basis, the new method was based on multiple events (MEs) analysis to increase the accuracy of error detection. In a BCI-driven car game, based on motor imagery (MI), discrete events were triggered whenever subjects collided with coins and/or barriers. Coins counted as correct events, whereas barriers were errors. This new method, termed ME method, combined and averaged the classification results of single events (SEs) and determined the correctness of MI trials, which consisted of event sequences instead of SEs. The benefit of this method was evaluated in an offline simulation. In an online experiment, the new method was used to detect erroneous MI trials. Such MI trials were discarded and could be repeated by the users. We found that, even with low SE error potential (ErrP) detection rates, feasible accuracies can be achieved when combining MEs to distinguish erroneous from correct MI trials. Online, all subjects reached higher scores with error detection than without, at the cost of longer times needed for completing the game. Findings suggest that ErrP detection may become a reliable tool for monitoring continuous states in BCI applications when combining MEs. This paper demonstrates a novel technique for detecting errors in online continuous BCI applications, which yields promising results even with low single-trial detection rates.
Error field detection in DIII-D by magnetic steering of locked modes
Shiraki, Daisuke; La Haye, Robert J.; Logan, Nikolas C.; ...
2014-02-20
Optimal correction coil currents for the n = 1 intrinsic error field of the DIII-D tokamak are inferred by applying a rotating external magnetic perturbation to steer the phase of a saturated locked mode with poloidal/toroidal mode number m/n = 2/1. The error field is detected non-disruptively in a single discharge, based on the toroidal torque balance of the resonant surface, which is assumed to be dominated by the balance of resonant electromagnetic torques. This is equivalent to the island being locked at all times to the resonant 2/1 component of the total of the applied and intrinsic error fields,more » such that the deviation of the locked mode phase from the applied field phase depends on the existing error field. The optimal set of correction coil currents is determined to be those currents which best cancels the torque from the error field, based on fitting of the torque balance model. The toroidal electromagnetic torques are calculated from experimental data using a simplified approach incorporating realistic DIII-D geometry, and including the effect of the plasma response on island torque balance based on the ideal plasma response to external fields. This method of error field detection is demonstrated in DIII-D discharges, and the results are compared with those based on the onset of low-density locked modes in ohmic plasmas. Furthermore, this magnetic steering technique presents an efficient approach to error field detection and is a promising method for ITER, particularly during initial operation when the lack of auxiliary heating systems makes established techniques based on rotation or plasma amplification unsuitable.« less
Using Block-local Atomicity to Detect Stale-value Concurrency Errors
NASA Technical Reports Server (NTRS)
Artho, Cyrille; Havelund, Klaus; Biere, Armin
2004-01-01
Data races do not cover all kinds of concurrency errors. This paper presents a data-flow-based technique to find stale-value errors, which are not found by low-level and high-level data race algorithms. Stale values denote copies of shared data where the copy is no longer synchronized. The algorithm to detect such values works as a consistency check that does not require any assumptions or annotations of the program. It has been implemented as a static analysis in JNuke. The analysis is sound and requires only a single execution trace if implemented as a run-time checking algorithm. Being based on an analysis of Java bytecode, it encompasses the full program semantics, including arbitrarily complex expressions. Related techniques are more complex and more prone to over-reporting.
A fault-tolerant information processing concept for space vehicles.
NASA Technical Reports Server (NTRS)
Hopkins, A. L., Jr.
1971-01-01
A distributed fault-tolerant information processing system is proposed, comprising a central multiprocessor, dedicated local processors, and multiplexed input-output buses connecting them together. The processors in the multiprocessor are duplicated for error detection, which is felt to be less expensive than using coded redundancy of comparable effectiveness. Error recovery is made possible by a triplicated scratchpad memory in each processor. The main multiprocessor memory uses replicated memory for error detection and correction. Local processors use any of three conventional redundancy techniques: voting, duplex pairs with backup, and duplex pairs in independent subsystems.
One-Class Classification-Based Real-Time Activity Error Detection in Smart Homes.
Das, Barnan; Cook, Diane J; Krishnan, Narayanan C; Schmitter-Edgecombe, Maureen
2016-08-01
Caring for individuals with dementia is frequently associated with extreme physical and emotional stress, which often leads to depression. Smart home technology and advances in machine learning techniques can provide innovative solutions to reduce caregiver burden. One key service that caregivers provide is prompting individuals with memory limitations to initiate and complete daily activities. We hypothesize that sensor technologies combined with machine learning techniques can automate the process of providing reminder-based interventions. The first step towards automated interventions is to detect when an individual faces difficulty with activities. We propose machine learning approaches based on one-class classification that learn normal activity patterns. When we apply these classifiers to activity patterns that were not seen before, the classifiers are able to detect activity errors, which represent potential prompt situations. We validate our approaches on smart home sensor data obtained from older adult participants, some of whom faced difficulties performing routine activities and thus committed errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passarge, M; Fix, M K; Manser, P
Purpose: To create and test an accurate EPID-frame-based VMAT QA metric to detect gross dose errors in real-time and to provide information about the source of error. Methods: A Swiss cheese model was created for an EPID-based real-time QA process. The system compares a treatmentplan- based reference set of EPID images with images acquired over each 2° gantry angle interval. The metric utilizes a sequence of independent consecutively executed error detection Methods: a masking technique that verifies infield radiation delivery and ensures no out-of-field radiation; output normalization checks at two different stages; global image alignment to quantify rotation, scaling andmore » translation; standard gamma evaluation (3%, 3 mm) and pixel intensity deviation checks including and excluding high dose gradient regions. Tolerances for each test were determined. For algorithm testing, twelve different types of errors were selected to modify the original plan. Corresponding predictions for each test case were generated, which included measurement-based noise. Each test case was run multiple times (with different noise per run) to assess the ability to detect introduced errors. Results: Averaged over five test runs, 99.1% of all plan variations that resulted in patient dose errors were detected within 2° and 100% within 4° (∼1% of patient dose delivery). Including cases that led to slightly modified but clinically equivalent plans, 91.5% were detected by the system within 2°. Based on the type of method that detected the error, determination of error sources was achieved. Conclusion: An EPID-based during-treatment error detection system for VMAT deliveries was successfully designed and tested. The system utilizes a sequence of methods to identify and prevent gross treatment delivery errors. The system was inspected for robustness with realistic noise variations, demonstrating that it has the potential to detect a large majority of errors in real-time and indicate the error source. J. V. Siebers receives funding support from Varian Medical Systems.« less
NASA Technical Reports Server (NTRS)
Noble, Viveca K.
1993-01-01
There are various elements such as radio frequency interference (RFI) which may induce errors in data being transmitted via a satellite communication link. When a transmission is affected by interference or other error-causing elements, the transmitted data becomes indecipherable. It becomes necessary to implement techniques to recover from these disturbances. The objective of this research is to develop software which simulates error control circuits and evaluate the performance of these modules in various bit error rate environments. The results of the evaluation provide the engineer with information which helps determine the optimal error control scheme. The Consultative Committee for Space Data Systems (CCSDS) recommends the use of Reed-Solomon (RS) and convolutional encoders and Viterbi and RS decoders for error correction. The use of forward error correction techniques greatly reduces the received signal to noise needed for a certain desired bit error rate. The use of concatenated coding, e.g. inner convolutional code and outer RS code, provides even greater coding gain. The 16-bit cyclic redundancy check (CRC) code is recommended by CCSDS for error detection.
Abu-Almaalie, Zina; Ghassemlooy, Zabih; Bhatnagar, Manav R; Le-Minh, Hoa; Aslam, Nauman; Liaw, Shien-Kuei; Lee, It Ee
2016-11-20
Physical layer network coding (PNC) improves the throughput in wireless networks by enabling two nodes to exchange information using a minimum number of time slots. The PNC technique is proposed for two-way relay channel free space optical (TWR-FSO) communications with the aim of maximizing the utilization of network resources. The multipair TWR-FSO is considered in this paper, where a single antenna on each pair seeks to communicate via a common receiver aperture at the relay. Therefore, chip interleaving is adopted as a technique to separate the different transmitted signals at the relay node to perform PNC mapping. Accordingly, this scheme relies on the iterative multiuser technique for detection of users at the receiver. The bit error rate (BER) performance of the proposed system is examined under the combined influences of atmospheric loss, turbulence-induced channel fading, and pointing errors (PEs). By adopting the joint PNC mapping with interleaving and multiuser detection techniques, the BER results show that the proposed scheme can achieve a significant performance improvement against the degrading effects of turbulences and PEs. It is also demonstrated that a larger number of simultaneous users can be supported with this new scheme in establishing a communication link between multiple pairs of nodes in two time slots, thereby improving the channel capacity.
Detecting Careless Responses to Self-Reported Questionnaires
ERIC Educational Resources Information Center
Kountur, Ronny
2016-01-01
Problem Statement: The use of self-report questionnaires may lead to biases such as careless responses that distort the research outcomes. Early detection of careless responses in self-report questionnaires may reduce error, but little guidance exists in the literature regarding techniques for detecting such careless or random responses in…
Feng, Jianyuan; Turksoy, Kamuran; Samadi, Sediqeh; Hajizadeh, Iman; Littlejohn, Elizabeth; Cinar, Ali
2017-12-01
Supervision and control systems rely on signals from sensors to receive information to monitor the operation of a system and adjust manipulated variables to achieve the control objective. However, sensor performance is often limited by their working conditions and sensors may also be subjected to interference by other devices. Many different types of sensor errors such as outliers, missing values, drifts and corruption with noise may occur during process operation. A hybrid online sensor error detection and functional redundancy system is developed to detect errors in online signals, and replace erroneous or missing values detected with model-based estimates. The proposed hybrid system relies on two techniques, an outlier-robust Kalman filter (ORKF) and a locally-weighted partial least squares (LW-PLS) regression model, which leverage the advantages of automatic measurement error elimination with ORKF and data-driven prediction with LW-PLS. The system includes a nominal angle analysis (NAA) method to distinguish between signal faults and large changes in sensor values caused by real dynamic changes in process operation. The performance of the system is illustrated with clinical data continuous glucose monitoring (CGM) sensors from people with type 1 diabetes. More than 50,000 CGM sensor errors were added to original CGM signals from 25 clinical experiments, then the performance of error detection and functional redundancy algorithms were analyzed. The results indicate that the proposed system can successfully detect most of the erroneous signals and substitute them with reasonable estimated values computed by functional redundancy system.
IMRT QA: Selecting gamma criteria based on error detection sensitivity.
Steers, Jennifer M; Fraass, Benedick A
2016-04-01
The gamma comparison is widely used to evaluate the agreement between measurements and treatment planning system calculations in patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA). However, recent publications have raised concerns about the lack of sensitivity when employing commonly used gamma criteria. Understanding the actual sensitivity of a wide range of different gamma criteria may allow the definition of more meaningful gamma criteria and tolerance limits in IMRT QA. We present a method that allows the quantitative determination of gamma criteria sensitivity to induced errors which can be applied to any unique combination of device, delivery technique, and software utilized in a specific clinic. A total of 21 DMLC IMRT QA measurements (ArcCHECK®, Sun Nuclear) were compared to QA plan calculations with induced errors. Three scenarios were studied: MU errors, multi-leaf collimator (MLC) errors, and the sensitivity of the gamma comparison to changes in penumbra width. Gamma comparisons were performed between measurements and error-induced calculations using a wide range of gamma criteria, resulting in a total of over 20 000 gamma comparisons. Gamma passing rates for each error class and case were graphed against error magnitude to create error curves in order to represent the range of missed errors in routine IMRT QA using 36 different gamma criteria. This study demonstrates that systematic errors and case-specific errors can be detected by the error curve analysis. Depending on the location of the error curve peak (e.g., not centered about zero), 3%/3 mm threshold = 10% at 90% pixels passing may miss errors as large as 15% MU errors and ±1 cm random MLC errors for some cases. As the dose threshold parameter was increased for a given %Diff/distance-to-agreement (DTA) setting, error sensitivity was increased by up to a factor of two for select cases. This increased sensitivity with increasing dose threshold was consistent across all studied combinations of %Diff/DTA. Criteria such as 2%/3 mm and 3%/2 mm with a 50% threshold at 90% pixels passing are shown to be more appropriately sensitive without being overly strict. However, a broadening of the penumbra by as much as 5 mm in the beam configuration was difficult to detect with commonly used criteria, as well as with the previously mentioned criteria utilizing a threshold of 50%. We have introduced the error curve method, an analysis technique which allows the quantitative determination of gamma criteria sensitivity to induced errors. The application of the error curve method using DMLC IMRT plans measured on the ArcCHECK® device demonstrated that large errors can potentially be missed in IMRT QA with commonly used gamma criteria (e.g., 3%/3 mm, threshold = 10%, 90% pixels passing). Additionally, increasing the dose threshold value can offer dramatic increases in error sensitivity. This approach may allow the selection of more meaningful gamma criteria for IMRT QA and is straightforward to apply to other combinations of devices and treatment techniques.
Estimating pixel variances in the scenes of staring sensors
Simonson, Katherine M [Cedar Crest, NM; Ma, Tian J [Albuquerque, NM
2012-01-24
A technique for detecting changes in a scene perceived by a staring sensor is disclosed. The technique includes acquiring a reference image frame and a current image frame of a scene with the staring sensor. A raw difference frame is generated based upon differences between the reference image frame and the current image frame. Pixel error estimates are generated for each pixel in the raw difference frame based at least in part upon spatial error estimates related to spatial intensity gradients in the scene. The pixel error estimates are used to mitigate effects of camera jitter in the scene between the current image frame and the reference image frame.
Validation Relaxation: A Quality Assurance Strategy for Electronic Data Collection
Gordon, Nicholas; Griffiths, Thomas; Kraemer, John D; Siedner, Mark J
2017-01-01
Background The use of mobile devices for data collection in developing world settings is becoming increasingly common and may offer advantages in data collection quality and efficiency relative to paper-based methods. However, mobile data collection systems can hamper many standard quality assurance techniques due to the lack of a hardcopy backup of data. Consequently, mobile health data collection platforms have the potential to generate datasets that appear valid, but are susceptible to unidentified database design flaws, areas of miscomprehension by enumerators, and data recording errors. Objective We describe the design and evaluation of a strategy for estimating data error rates and assessing enumerator performance during electronic data collection, which we term “validation relaxation.” Validation relaxation involves the intentional omission of data validation features for select questions to allow for data recording errors to be committed, detected, and monitored. Methods We analyzed data collected during a cluster sample population survey in rural Liberia using an electronic data collection system (Open Data Kit). We first developed a classification scheme for types of detectable errors and validation alterations required to detect them. We then implemented the following validation relaxation techniques to enable data error conduct and detection: intentional redundancy, removal of “required” constraint, and illogical response combinations. This allowed for up to 11 identifiable errors to be made per survey. The error rate was defined as the total number of errors committed divided by the number of potential errors. We summarized crude error rates and estimated changes in error rates over time for both individuals and the entire program using logistic regression. Results The aggregate error rate was 1.60% (125/7817). Error rates did not differ significantly between enumerators (P=.51), but decreased for the cohort with increasing days of application use, from 2.3% at survey start (95% CI 1.8%-2.8%) to 0.6% at day 45 (95% CI 0.3%-0.9%; OR=0.969; P<.001). The highest error rate (84/618, 13.6%) occurred for an intentional redundancy question for a birthdate field, which was repeated in separate sections of the survey. We found low error rates (0.0% to 3.1%) for all other possible errors. Conclusions A strategy of removing validation rules on electronic data capture platforms can be used to create a set of detectable data errors, which can subsequently be used to assess group and individual enumerator error rates, their trends over time, and categories of data collection that require further training or additional quality control measures. This strategy may be particularly useful for identifying individual enumerators or systematic data errors that are responsive to enumerator training and is best applied to questions for which errors cannot be prevented through training or software design alone. Validation relaxation should be considered as a component of a holistic data quality assurance strategy. PMID:28821474
Validation Relaxation: A Quality Assurance Strategy for Electronic Data Collection.
Kenny, Avi; Gordon, Nicholas; Griffiths, Thomas; Kraemer, John D; Siedner, Mark J
2017-08-18
The use of mobile devices for data collection in developing world settings is becoming increasingly common and may offer advantages in data collection quality and efficiency relative to paper-based methods. However, mobile data collection systems can hamper many standard quality assurance techniques due to the lack of a hardcopy backup of data. Consequently, mobile health data collection platforms have the potential to generate datasets that appear valid, but are susceptible to unidentified database design flaws, areas of miscomprehension by enumerators, and data recording errors. We describe the design and evaluation of a strategy for estimating data error rates and assessing enumerator performance during electronic data collection, which we term "validation relaxation." Validation relaxation involves the intentional omission of data validation features for select questions to allow for data recording errors to be committed, detected, and monitored. We analyzed data collected during a cluster sample population survey in rural Liberia using an electronic data collection system (Open Data Kit). We first developed a classification scheme for types of detectable errors and validation alterations required to detect them. We then implemented the following validation relaxation techniques to enable data error conduct and detection: intentional redundancy, removal of "required" constraint, and illogical response combinations. This allowed for up to 11 identifiable errors to be made per survey. The error rate was defined as the total number of errors committed divided by the number of potential errors. We summarized crude error rates and estimated changes in error rates over time for both individuals and the entire program using logistic regression. The aggregate error rate was 1.60% (125/7817). Error rates did not differ significantly between enumerators (P=.51), but decreased for the cohort with increasing days of application use, from 2.3% at survey start (95% CI 1.8%-2.8%) to 0.6% at day 45 (95% CI 0.3%-0.9%; OR=0.969; P<.001). The highest error rate (84/618, 13.6%) occurred for an intentional redundancy question for a birthdate field, which was repeated in separate sections of the survey. We found low error rates (0.0% to 3.1%) for all other possible errors. A strategy of removing validation rules on electronic data capture platforms can be used to create a set of detectable data errors, which can subsequently be used to assess group and individual enumerator error rates, their trends over time, and categories of data collection that require further training or additional quality control measures. This strategy may be particularly useful for identifying individual enumerators or systematic data errors that are responsive to enumerator training and is best applied to questions for which errors cannot be prevented through training or software design alone. Validation relaxation should be considered as a component of a holistic data quality assurance strategy. ©Avi Kenny, Nicholas Gordon, Thomas Griffiths, John D Kraemer, Mark J Siedner. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 18.08.2017.
Performance of the ICAO standard core service modulation and coding techniques
NASA Technical Reports Server (NTRS)
Lodge, John; Moher, Michael
1988-01-01
Aviation binary phase shift keying (A-BPSK) is described and simulated performance results are given that demonstrate robust performance in the presence of hardlimiting amplifiers. The performance of coherently-detected A-BPSK with rate 1/2 convolutional coding are given. The performance loss due to the Rician fading was shown to be less than 1 dB over the simulated range. A partially coherent detection scheme that does not require carrier phase recovery was described. This scheme exhibits similiar performance to coherent detection, at high bit error rates, while it is superior at lower bit error rates.
TU-G-BRD-08: In-Vivo EPID Dosimetry: Quantifying the Detectability of Four Classes of Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, E; Phillips, M; Bojechko, C
Purpose: EPID dosimetry is an emerging method for treatment verification and QA. Given that the in-vivo EPID technique is in clinical use at some centers, we investigate the sensitivity and specificity for detecting different classes of errors. We assess the impact of these errors using dose volume histogram endpoints. Though data exist for EPID dosimetry performed pre-treatment, this is the first study quantifying its effectiveness when used during patient treatment (in-vivo). Methods: We analyzed 17 patients; EPID images of the exit dose were acquired and used to reconstruct the planar dose at isocenter. This dose was compared to the TPSmore » dose using a 3%/3mm gamma criteria. To simulate errors, modifications were made to treatment plans using four possible classes of error: 1) patient misalignment, 2) changes in patient body habitus, 3) machine output changes and 4) MLC misalignments. Each error was applied with varying magnitudes. To assess the detectability of the error, the area under a ROC curve (AUC) was analyzed. The AUC was compared to changes in D99 of the PTV introduced by the simulated error. Results: For systematic changes in the MLC leaves, changes in the machine output and patient habitus, the AUC varied from 0.78–0.97 scaling with the magnitude of the error. The optimal gamma threshold as determined by the ROC curve varied between 84–92%. There was little diagnostic power in detecting random MLC leaf errors and patient shifts (AUC 0.52–0.74). Some errors with weak detectability had large changes in D99. Conclusion: These data demonstrate the ability of EPID-based in-vivo dosimetry in detecting variations in patient habitus and errors related to machine parameters such as systematic MLC misalignments and machine output changes. There was no correlation found between the detectability of the error using the gamma pass rate, ROC analysis and the impact on the dose volume histogram. Funded by grant R18HS022244 from AHRQ.« less
NASA Astrophysics Data System (ADS)
GonzáLez, Pablo J.; FernáNdez, José
2011-10-01
Interferometric Synthetic Aperture Radar (InSAR) is a reliable technique for measuring crustal deformation. However, despite its long application in geophysical problems, its error estimation has been largely overlooked. Currently, the largest problem with InSAR is still the atmospheric propagation errors, which is why multitemporal interferometric techniques have been successfully developed using a series of interferograms. However, none of the standard multitemporal interferometric techniques, namely PS or SB (Persistent Scatterers and Small Baselines, respectively) provide an estimate of their precision. Here, we present a method to compute reliable estimates of the precision of the deformation time series. We implement it for the SB multitemporal interferometric technique (a favorable technique for natural terrains, the most usual target of geophysical applications). We describe the method that uses a properly weighted scheme that allows us to compute estimates for all interferogram pixels, enhanced by a Montecarlo resampling technique that properly propagates the interferogram errors (variance-covariances) into the unknown parameters (estimated errors for the displacements). We apply the multitemporal error estimation method to Lanzarote Island (Canary Islands), where no active magmatic activity has been reported in the last decades. We detect deformation around Timanfaya volcano (lengthening of line-of-sight ˜ subsidence), where the last eruption in 1730-1736 occurred. Deformation closely follows the surface temperature anomalies indicating that magma crystallization (cooling and contraction) of the 300-year shallow magmatic body under Timanfaya volcano is still ongoing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, R; Kamima, T; Tachibana, H
2016-06-15
Purpose: To investigate the effect of the trajectory files from linear accelerator for Clarkson-based independent dose verification in IMRT and VMAT plans. Methods: A CT-based independent dose verification software (Simple MU Analysis: SMU, Triangle Products, Japan) with a Clarksonbased algorithm was modified to calculate dose using the trajectory log files. Eclipse with the three techniques of step and shoot (SS), sliding window (SW) and Rapid Arc (RA) was used as treatment planning system (TPS). In this study, clinically approved IMRT and VMAT plans for prostate and head and neck (HN) at two institutions were retrospectively analyzed to assess the dosemore » deviation between DICOM-RT plan (PL) and trajectory log file (TJ). An additional analysis was performed to evaluate MLC error detection capability of SMU when the trajectory log files was modified by adding systematic errors (0.2, 0.5, 1.0 mm) and random errors (5, 10, 30 mm) to actual MLC position. Results: The dose deviations for prostate and HN in the two sites were 0.0% and 0.0% in SS, 0.1±0.0%, 0.1±0.1% in SW and 0.6±0.5%, 0.7±0.9% in RA, respectively. The MLC error detection capability shows the plans for HN IMRT were the most sensitive and 0.2 mm of systematic error affected 0.7% dose deviation on average. Effect of the MLC random error did not affect dose error. Conclusion: The use of trajectory log files including actual information of MLC location, gantry angle, etc should be more effective for an independent verification. The tolerance level for the secondary check using the trajectory file may be similar to that of the verification using DICOM-RT plan file. From the view of the resolution of MLC positional error detection, the secondary check could detect the MLC position error corresponding to the treatment sites and techniques. This research is partially supported by Japan Agency for Medical Research and Development (AMED)« less
Mathias, Patrick C; Turner, Emily H; Scroggins, Sheena M; Salipante, Stephen J; Hoffman, Noah G; Pritchard, Colin C; Shirts, Brian H
2016-03-01
To apply techniques for ancestry and sex computation from next-generation sequencing (NGS) data as an approach to confirm sample identity and detect sample processing errors. We combined a principal component analysis method with k-nearest neighbors classification to compute the ancestry of patients undergoing NGS testing. By combining this calculation with X chromosome copy number data, we determined the sex and ancestry of patients for comparison with self-report. We also modeled the sensitivity of this technique in detecting sample processing errors. We applied this technique to 859 patient samples with reliable self-report data. Our k-nearest neighbors ancestry screen had an accuracy of 98.7% for patients reporting a single ancestry. Visual inspection of principal component plots was consistent with self-report in 99.6% of single-ancestry and mixed-ancestry patients. Our model demonstrates that approximately two-thirds of potential sample swaps could be detected in our patient population using this technique. Patient ancestry can be estimated from NGS data incidentally sequenced in targeted panels, enabling an inexpensive quality control method when coupled with patient self-report. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Bond, William Glenn
2012-01-01
In this paper, I propose to demonstrate a means of error estimation preprocessing in the assembly of overlapping aerial image mosaics. The mosaic program automatically assembles several hundred aerial images from a data set by aligning them, via image registration using a pattern search method, onto a GIS grid. The method presented first locates…
Monitoring robot actions for error detection and recovery
NASA Technical Reports Server (NTRS)
Gini, M.; Smith, R.
1987-01-01
Reliability is a serious problem in computer controlled robot systems. Although robots serve successfully in relatively simple applications such as painting and spot welding, their potential in areas such as automated assembly is hampered by programming problems. A program for assembling parts may be logically correct, execute correctly on a simulator, and even execute correctly on a robot most of the time, yet still fail unexpectedly in the face of real world uncertainties. Recovery from such errors is far more complicated than recovery from simple controller errors, since even expected errors can often manifest themselves in unexpected ways. Here, a novel approach is presented for improving robot reliability. Instead of anticipating errors, researchers use knowledge-based programming techniques so that the robot can autonomously exploit knowledge about its task and environment to detect and recover from failures. They describe preliminary experiment of a system that they designed and constructed.
Digital implementation of a laser frequency stabilisation technique in the telecommunications band
NASA Astrophysics Data System (ADS)
Jivan, Pritesh; van Brakel, Adriaan; Manuel, Rodolfo Martínez; Grobler, Michael
2016-02-01
Laser frequency stabilisation in the telecommunications band was realised using the Pound-Drever-Hall (PDH) error signal. The transmission spectrum of the Fabry-Perot cavity was used as opposed to the traditionally used reflected spectrum. A comparison was done using an analogue as well as a digitally implemented system. This study forms part of an initial step towards developing a portable optical time and frequency standard. The frequency discriminator used in the experimental setup was a fibre-based Fabry-Perot etalon. The phase sensitive system made use of the optical heterodyne technique to detect changes in the phase of the system. A lock-in amplifier was used to filter and mix the input signals to generate the error signal. This error signal may then be used to generate a control signal via a PID controller. An error signal was realised at a wavelength of 1556 nm which correlates to an optical frequency of 1.926 THz. An implementation of the analogue PDH technique yielded an error signal with a bandwidth of 6.134 GHz, while a digital implementation yielded a bandwidth of 5.774 GHz.
Study of fault tolerant software technology for dynamic systems
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Zacharias, G. L.
1985-01-01
The major aim of this study is to investigate the feasibility of using systems-based failure detection isolation and compensation (FDIC) techniques in building fault-tolerant software and extending them, whenever possible, to the domain of software fault tolerance. First, it is shown that systems-based FDIC methods can be extended to develop software error detection techniques by using system models for software modules. In particular, it is demonstrated that systems-based FDIC techniques can yield consistency checks that are easier to implement than acceptance tests based on software specifications. Next, it is shown that systems-based failure compensation techniques can be generalized to the domain of software fault tolerance in developing software error recovery procedures. Finally, the feasibility of using fault-tolerant software in flight software is investigated. In particular, possible system and version instabilities, and functional performance degradation that may occur in N-Version programming applications to flight software are illustrated. Finally, a comparative analysis of N-Version and recovery block techniques in the context of generic blocks in flight software is presented.
Modeling And Detecting Anomalies In Scada Systems
NASA Astrophysics Data System (ADS)
Svendsen, Nils; Wolthusen, Stephen
The detection of attacks and intrusions based on anomalies is hampered by the limits of specificity underlying the detection techniques. However, in the case of many critical infrastructure systems, domain-specific knowledge and models can impose constraints that potentially reduce error rates. At the same time, attackers can use their knowledge of system behavior to mask their manipulations, causing adverse effects to observed only after a significant period of time. This paper describes elementary statistical techniques that can be applied to detect anomalies in critical infrastructure networks. A SCADA system employed in liquefied natural gas (LNG) production is used as a case study.
IMRT QA: Selecting gamma criteria based on error detection sensitivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steers, Jennifer M.; Fraass, Benedick A., E-mail: benedick.fraass@cshs.org
Purpose: The gamma comparison is widely used to evaluate the agreement between measurements and treatment planning system calculations in patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA). However, recent publications have raised concerns about the lack of sensitivity when employing commonly used gamma criteria. Understanding the actual sensitivity of a wide range of different gamma criteria may allow the definition of more meaningful gamma criteria and tolerance limits in IMRT QA. We present a method that allows the quantitative determination of gamma criteria sensitivity to induced errors which can be applied to any unique combination of device, delivery technique,more » and software utilized in a specific clinic. Methods: A total of 21 DMLC IMRT QA measurements (ArcCHECK®, Sun Nuclear) were compared to QA plan calculations with induced errors. Three scenarios were studied: MU errors, multi-leaf collimator (MLC) errors, and the sensitivity of the gamma comparison to changes in penumbra width. Gamma comparisons were performed between measurements and error-induced calculations using a wide range of gamma criteria, resulting in a total of over 20 000 gamma comparisons. Gamma passing rates for each error class and case were graphed against error magnitude to create error curves in order to represent the range of missed errors in routine IMRT QA using 36 different gamma criteria. Results: This study demonstrates that systematic errors and case-specific errors can be detected by the error curve analysis. Depending on the location of the error curve peak (e.g., not centered about zero), 3%/3 mm threshold = 10% at 90% pixels passing may miss errors as large as 15% MU errors and ±1 cm random MLC errors for some cases. As the dose threshold parameter was increased for a given %Diff/distance-to-agreement (DTA) setting, error sensitivity was increased by up to a factor of two for select cases. This increased sensitivity with increasing dose threshold was consistent across all studied combinations of %Diff/DTA. Criteria such as 2%/3 mm and 3%/2 mm with a 50% threshold at 90% pixels passing are shown to be more appropriately sensitive without being overly strict. However, a broadening of the penumbra by as much as 5 mm in the beam configuration was difficult to detect with commonly used criteria, as well as with the previously mentioned criteria utilizing a threshold of 50%. Conclusions: We have introduced the error curve method, an analysis technique which allows the quantitative determination of gamma criteria sensitivity to induced errors. The application of the error curve method using DMLC IMRT plans measured on the ArcCHECK® device demonstrated that large errors can potentially be missed in IMRT QA with commonly used gamma criteria (e.g., 3%/3 mm, threshold = 10%, 90% pixels passing). Additionally, increasing the dose threshold value can offer dramatic increases in error sensitivity. This approach may allow the selection of more meaningful gamma criteria for IMRT QA and is straightforward to apply to other combinations of devices and treatment techniques.« less
NASA Technical Reports Server (NTRS)
Bundick, W. T.
1985-01-01
The application of the Generalized Likelihood Ratio technique to the detection and identification of aircraft control element failures has been evaluated in a linear digital simulation of the longitudinal dynamics of a B-737 aircraft. Simulation results show that the technique has potential but that the effects of wind turbulence and Kalman filter model errors are problems which must be overcome.
NASA Technical Reports Server (NTRS)
Heck, M. L.; Findlay, J. T.; Compton, H. R.
1983-01-01
The Aerodynamic Coefficient Identification Package (ACIP) is an instrument consisting of body mounted linear accelerometers, rate gyros, and angular accelerometers for measuring the Space Shuttle vehicular dynamics. The high rate recorded data are utilized for postflight aerodynamic coefficient extraction studies. Although consistent with pre-mission accuracies specified by the manufacturer, the ACIP data were found to contain detectable levels of systematic error, primarily bias, as well as scale factor, static misalignment, and temperature dependent errors. This paper summarizes the technique whereby the systematic ACIP error sources were detected, identified, and calibrated with the use of recorded dynamic data from the low rate, highly accurate Inertial Measurement Units.
A rigorous approach to self-checking programming
NASA Technical Reports Server (NTRS)
Hua, Kien A.; Abraham, Jacob A.
1986-01-01
Self-checking programming is shown to be an effective concurrent error detection technique. The reliability of a self-checking program however relies on the quality of its assertion statements. A self-checking program written without formal guidelines could provide a poor coverage of the errors. A constructive technique for self-checking programming is presented. A Structured Program Design Language (SPDL) suitable for self-checking software development is defined. A set of formal rules, was also developed, that allows the transfromation of SPDL designs into self-checking designs to be done in a systematic manner.
Nikolic, Mark I; Sarter, Nadine B
2007-08-01
To examine operator strategies for diagnosing and recovering from errors and disturbances as well as the impact of automation design and time pressure on these processes. Considerable efforts have been directed at error prevention through training and design. However, because errors cannot be eliminated completely, their detection, diagnosis, and recovery must also be supported. Research has focused almost exclusively on error detection. Little is known about error diagnosis and recovery, especially in the context of event-driven tasks and domains. With a confederate pilot, 12 airline pilots flew a 1-hr simulator scenario that involved three challenging automation-related tasks and events that were likely to produce erroneous actions or assessments. Behavioral data were compared with a canonical path to examine pilots' error and disturbance management strategies. Debriefings were conducted to probe pilots' system knowledge. Pilots seldom followed the canonical path to cope with the scenario events. Detection of a disturbance was often delayed. Diagnostic episodes were rare because of pilots' knowledge gaps and time criticality. In many cases, generic inefficient recovery strategies were observed, and pilots relied on high levels of automation to manage the consequences of an error. Our findings describe and explain the nature and shortcomings of pilots' error management activities. They highlight the need for improved automation training and design to achieve more timely detection, accurate explanation, and effective recovery from errors and disturbances. Our findings can inform the design of tools and techniques that support disturbance management in various complex, event-driven environments.
• LTV can be used to characterize free phase PCE architecture in 2-D flow chambers without using a dye. • Results to date suggest that error in PCE detection using LTV can be less than 10% if the imaging system is optimized. • Mass balance calculations show a maximum error of 9...
Throughput of Coded Optical CDMA Systems with AND Detectors
NASA Astrophysics Data System (ADS)
Memon, Kehkashan A.; Umrani, Fahim A.; Umrani, A. W.; Umrani, Naveed A.
2012-09-01
Conventional detection techniques used in optical code-division multiple access (OCDMA) systems are not optimal and result in poor bit error rate performance. This paper analyzes the coded performance of optical CDMA systems with AND detectors for enhanced throughput efficiencies and improved error rate performance. The results show that the use of AND detectors significantly improve the performance of an optical channel.
Passive quantum error correction of linear optics networks through error averaging
NASA Astrophysics Data System (ADS)
Marshman, Ryan J.; Lund, Austin P.; Rohde, Peter P.; Ralph, Timothy C.
2018-02-01
We propose and investigate a method of error detection and noise correction for bosonic linear networks using a method of unitary averaging. The proposed error averaging does not rely on ancillary photons or control and feedforward correction circuits, remaining entirely passive in its operation. We construct a general mathematical framework for this technique and then give a series of proof of principle examples including numerical analysis. Two methods for the construction of averaging are then compared to determine the most effective manner of implementation and probe the related error thresholds. Finally we discuss some of the potential uses of this scheme.
A Categorization of Dynamic Analyzers
NASA Technical Reports Server (NTRS)
Lujan, Michelle R.
1997-01-01
Program analysis techniques and tools are essential to the development process because of the support they provide in detecting errors and deficiencies at different phases of development. The types of information rendered through analysis includes the following: statistical measurements of code, type checks, dataflow analysis, consistency checks, test data,verification of code, and debugging information. Analyzers can be broken into two major categories: dynamic and static. Static analyzers examine programs with respect to syntax errors and structural properties., This includes gathering statistical information on program content, such as the number of lines of executable code, source lines. and cyclomatic complexity. In addition, static analyzers provide the ability to check for the consistency of programs with respect to variables. Dynamic analyzers in contrast are dependent on input and the execution of a program providing the ability to find errors that cannot be detected through the use of static analysis alone. Dynamic analysis provides information on the behavior of a program rather than on the syntax. Both types of analysis detect errors in a program, but dynamic analyzers accomplish this through run-time behavior. This paper focuses on the following broad classification of dynamic analyzers: 1) Metrics; 2) Models; and 3) Monitors. Metrics are those analyzers that provide measurement. The next category, models, captures those analyzers that present the state of the program to the user at specified points in time. The last category, monitors, checks specified code based on some criteria. The paper discusses each classification and the techniques that are included under them. In addition, the role of each technique in the software life cycle is discussed. Familiarization with the tools that measure, model and monitor programs provides a framework for understanding the program's dynamic behavior from different, perspectives through analysis of the input/output data.
Detection Angle Calibration of Pressure-Sensitive Paints
NASA Technical Reports Server (NTRS)
Bencic, Timothy J.
2000-01-01
Uses of the pressure-sensitive paint (PSP) techniques in areas other than external aerodynamics continue to expand. The NASA Glenn Research Center has become a leader in the application of the global technique to non-conventional aeropropulsion applications including turbomachinery testing. The use of the global PSP technique in turbomachinery applications often requires detection of the luminescent paint in confined areas. With the limited viewing usually available, highly oblique illumination and detection angles are common in the confined areas in these applications. This paper will describe the results of pressure, viewing and excitation angle dependence calibrations using three popular PSP formulations to get a better understanding of the errors associated with these non-traditional views.
Arduino-based noise robust online heart-rate detection.
Das, Sangita; Pal, Saurabh; Mitra, Madhuchhanda
2017-04-01
This paper introduces a noise robust real time heart rate detection system from electrocardiogram (ECG) data. An online data acquisition system is developed to collect ECG signals from human subjects. Heart rate is detected using window-based autocorrelation peak localisation technique. A low-cost Arduino UNO board is used to implement the complete automated process. The performance of the system is compared with PC-based heart rate detection technique. Accuracy of the system is validated through simulated noisy ECG data with various levels of signal to noise ratio (SNR). The mean percentage error of detected heart rate is found to be 0.72% for the noisy database with five different noise levels.
Error analysis of filtering operations in pixel-duplicated images of diabetic retinopathy
NASA Astrophysics Data System (ADS)
Mehrubeoglu, Mehrube; McLauchlan, Lifford
2010-08-01
In this paper, diabetic retinopathy is chosen for a sample target image to demonstrate the effectiveness of image enlargement through pixel duplication in identifying regions of interest. Pixel duplication is presented as a simpler alternative to data interpolation techniques for detecting small structures in the images. A comparative analysis is performed on different image processing schemes applied to both original and pixel-duplicated images. Structures of interest are detected and and classification parameters optimized for minimum false positive detection in the original and enlarged retinal pictures. The error analysis demonstrates the advantages as well as shortcomings of pixel duplication in image enhancement when spatial averaging operations (smoothing filters) are also applied.
Pirsiavash, Ali; Broumandan, Ali; Lachapelle, Gérard
2017-07-05
The performance of Signal Quality Monitoring (SQM) techniques under different multipath scenarios is analyzed. First, SQM variation profiles are investigated as critical requirements in evaluating the theoretical performance of SQM metrics. The sensitivity and effectiveness of SQM approaches for multipath detection and mitigation are then defined and analyzed by comparing SQM profiles and multipath error envelopes for different discriminators. Analytical discussions includes two discriminator strategies, namely narrow and high resolution correlator techniques for BPSK(1), and BOC(1,1) signaling schemes. Data analysis is also carried out for static and kinematic scenarios to validate the SQM profiles and examine SQM performance in actual multipath environments. Results show that although SQM is sensitive to medium and long-delay multipath, its effectiveness in mitigating these ranges of multipath errors varies based on tracking strategy and signaling scheme. For short-delay multipath scenarios, the multipath effect on pseudorange measurements remains mostly undetected due to the low sensitivity of SQM metrics.
Mahrooghy, Majid; Yarahmadian, Shantia; Menon, Vineetha; Rezania, Vahid; Tuszynski, Jack A
2015-10-01
Microtubules (MTs) are intra-cellular cylindrical protein filaments. They exhibit a unique phenomenon of stochastic growth and shrinkage, called dynamic instability. In this paper, we introduce a theoretical framework for applying Compressive Sensing (CS) to the sampled data of the microtubule length in the process of dynamic instability. To reduce data density and reconstruct the original signal with relatively low sampling rates, we have applied CS to experimental MT lament length time series modeled as a Dichotomous Markov Noise (DMN). The results show that using CS along with the wavelet transform significantly reduces the recovery errors comparing in the absence of wavelet transform, especially in the low and the medium sampling rates. In a sampling rate ranging from 0.2 to 0.5, the Root-Mean-Squared Error (RMSE) decreases by approximately 3 times and between 0.5 and 1, RMSE is small. We also apply a peak detection technique to the wavelet coefficients to detect and closely approximate the growth and shrinkage of MTs for computing the essential dynamic instability parameters, i.e., transition frequencies and specially growth and shrinkage rates. The results show that using compressed sensing along with the peak detection technique and wavelet transform in sampling rates reduces the recovery errors for the parameters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Combinatorial pulse position modulation for power-efficient free-space laser communications
NASA Technical Reports Server (NTRS)
Budinger, James M.; Vanderaar, M.; Wagner, P.; Bibyk, Steven
1993-01-01
A new modulation technique called combinatorial pulse position modulation (CPPM) is presented as a power-efficient alternative to quaternary pulse position modulation (QPPM) for direct-detection, free-space laser communications. The special case of 16C4PPM is compared to QPPM in terms of data throughput and bit error rate (BER) performance for similar laser power and pulse duty cycle requirements. The increased throughput from CPPM enables the use of forward error corrective (FEC) encoding for a net decrease in the amount of laser power required for a given data throughput compared to uncoded QPPM. A specific, practical case of coded CPPM is shown to reduce the amount of power required to transmit and receive a given data sequence by at least 4.7 dB. Hardware techniques for maximum likelihood detection and symbol timing recovery are presented.
Tridandapani, Srini; Ramamurthy, Senthil; Provenzale, James; Obuchowski, Nancy A; Evanoff, Michael G; Bhatti, Pamela
2014-08-01
To evaluate whether the presence of facial photographs obtained at the point-of-care of portable radiography leads to increased detection of wrong-patient errors. In this institutional review board-approved study, 166 radiograph-photograph combinations were obtained from 30 patients. Consecutive radiographs from the same patients resulted in 83 unique pairs (ie, a new radiograph and prior, comparison radiograph) for interpretation. To simulate wrong-patient errors, mismatched pairs were generated by pairing radiographs from different patients chosen randomly from the sample. Ninety radiologists each interpreted a unique randomly chosen set of 10 radiographic pairs, containing up to 10% mismatches (ie, error pairs). Radiologists were randomly assigned to interpret radiographs with or without photographs. The number of mismatches was identified, and interpretation times were recorded. Ninety radiologists with 21 ± 10 (mean ± standard deviation) years of experience were recruited to participate in this observer study. With the introduction of photographs, the proportion of errors detected increased from 31% (9 of 29) to 77% (23 of 30; P = .006). The odds ratio for detection of error with photographs to detection without photographs was 7.3 (95% confidence interval: 2.29-23.18). Observer qualifications, training, or practice in cardiothoracic radiology did not influence sensitivity for error detection. There is no significant difference in interpretation time for studies without photographs and those with photographs (60 ± 22 vs. 61 ± 25 seconds; P = .77). In this observer study, facial photographs obtained simultaneously with portable chest radiographs increased the identification of any wrong-patient errors, without substantial increase in interpretation time. This technique offers a potential means to increase patient safety through correct patient identification. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.
Improved Calibration through SMAP RFI Change Detection
NASA Technical Reports Server (NTRS)
Piepmeier, Jeffrey; De Amici, Giovanni; Mohammed, Priscilla; Peng, Jinzheng
2017-01-01
Anthropogenic Radio-Frequency Interference (RFI) drove both the SMAP (Soil Moisture Active Passive) microwave radiometer hardware and Level 1 science algorithm designs to use new technology and techniques for the first time on a spaceflight project. Care was taken to provide special features allowing the detection and removal of harmful interference in order to meet the error budget. Nonetheless, the project accepted a risk that RFI and its mitigation would exceed the 1.3-K error budget. Thus, RFI will likely remain a challenge afterwards due to its changing and uncertain nature. To address the challenge, we seek to answer the following questions: How does RFI evolve over the SMAP lifetime? What calibration error does the changing RFI environment cause? Can time series information be exploited to reduce these errors and improve calibration for all science products reliant upon SMAP radiometer data? In this talk, we address the first question.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damato, Antonio L., E-mail: adamato@lroc.harvard.edu; Viswanathan, Akila N.; Don, Sarah M.
2014-10-15
Purpose: To investigate the use of a system using electromagnetic tracking (EMT), post-processing and an error-detection algorithm for detecting errors and resolving uncertainties in high-dose-rate brachytherapy catheter digitization for treatment planning. Methods: EMT was used to localize 15 catheters inserted into a phantom using a stepwise acquisition technique. Five distinct acquisition experiments were performed. Noise associated with the acquisition was calculated. The dwell location configuration was extracted from the EMT data. A CT scan of the phantom was performed, and five distinct catheter digitization sessions were performed. No a priori registration of the CT scan coordinate system with the EMTmore » coordinate system was performed. CT-based digitization was automatically extracted from the brachytherapy plan DICOM files (CT), and rigid registration was performed between EMT and CT dwell positions. EMT registration error was characterized in terms of the mean and maximum distance between corresponding EMT and CT dwell positions per catheter. An algorithm for error detection and identification was presented. Three types of errors were systematically simulated: swap of two catheter numbers, partial swap of catheter number identification for parts of the catheters (mix), and catheter-tip shift. Error-detection sensitivity (number of simulated scenarios correctly identified as containing an error/number of simulated scenarios containing an error) and specificity (number of scenarios correctly identified as not containing errors/number of correct scenarios) were calculated. Catheter identification sensitivity (number of catheters correctly identified as erroneous across all scenarios/number of erroneous catheters across all scenarios) and specificity (number of catheters correctly identified as correct across all scenarios/number of correct catheters across all scenarios) were calculated. The mean detected and identified shift was calculated. Results: The maximum noise ±1 standard deviation associated with the EMT acquisitions was 1.0 ± 0.1 mm, and the mean noise was 0.6 ± 0.1 mm. Registration of all the EMT and CT dwell positions was associated with a mean catheter error of 0.6 ± 0.2 mm, a maximum catheter error of 0.9 ± 0.4 mm, a mean dwell error of 1.0 ± 0.3 mm, and a maximum dwell error of 1.3 ± 0.7 mm. Error detection and catheter identification sensitivity and specificity of 100% were observed for swap, mix and shift (≥2.6 mm for error detection; ≥2.7 mm for catheter identification) errors. A mean detected shift of 1.8 ± 0.4 mm and a mean identified shift of 1.9 ± 0.4 mm were observed. Conclusions: Registration of the EMT dwell positions to the CT dwell positions was possible with a residual mean error per catheter of 0.6 ± 0.2 mm and a maximum error for any dwell of 1.3 ± 0.7 mm. These low residual registration errors show that quality assurance of the general characteristics of the catheters and of possible errors affecting one specific dwell position is possible. The sensitivity and specificity of the catheter digitization verification algorithm was 100% for swap and mix errors and for shifts ≥2.6 mm. On average, shifts ≥1.8 mm were detected, and shifts ≥1.9 mm were detected and identified.« less
MO-FG-202-06: Improving the Performance of Gamma Analysis QA with Radiomics- Based Image Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wootton, L; Nyflot, M; Ford, E
2016-06-15
Purpose: The use of gamma analysis for IMRT quality assurance has well-known limitations. Traditionally, a simple thresholding technique is used to evaluated passing criteria. However, like any image the gamma distribution is rich in information which thresholding mostly discards. We therefore propose a novel method of analyzing gamma images that uses quantitative image features borrowed from radiomics, with the goal of improving error detection. Methods: 368 gamma images were generated from 184 clinical IMRT beams. For each beam the dose to a phantom was measured with EPID dosimetry and compared to the TPS dose calculated with and without normally distributedmore » (2mm sigma) errors in MLC positions. The magnitude of 17 intensity histogram and size-zone radiomic features were derived from each image. The features that differed most significantly between image sets were determined with ROC analysis. A linear machine-learning model was trained on these features to classify images as with or without errors on 180 gamma images.The model was then applied to an independent validation set of 188 additional gamma distributions, half with and half without errors. Results: The most significant features for detecting errors were histogram kurtosis (p=0.007) and three size-zone metrics (p<1e-6 for each). The sizezone metrics detected clusters of high gamma-value pixels under mispositioned MLCs. The model applied to the validation set had an AUC of 0.8, compared to 0.56 for traditional gamma analysis with the decision threshold restricted to 98% or less. Conclusion: A radiomics-based image analysis method was developed that is more effective in detecting error than traditional gamma analysis. Though the pilot study here considers only MLC position errors, radiomics-based methods for other error types are being developed, which may provide better error detection and useful information on the source of detected errors. This work was partially supported by a grant from the Agency for Healthcare Research and Quality, grant number R18 HS022244-01.« less
DeLacy, Brendan G; Bandy, Alan R
2008-01-01
An atmospheric pressure ionization mass spectrometry/isotopically labeled standard (APIMS/ILS) method has been developed for the determination of carbon dioxide (CO(2)) concentration. Descriptions of the instrumental components, the ionization chemistry, and the statistics associated with the analytical method are provided. This method represents an alternative to the nondispersive infrared (NDIR) technique, which is currently used in the atmospheric community to determine atmospheric CO(2) concentrations. The APIMS/ILS and NDIR methods exhibit a decreased sensitivity for CO(2) in the presence of water vapor. Therefore, dryers such as a nafion dryer are used to remove water before detection. The APIMS/ILS method measures mixing ratios and demonstrates linearity and range in the presence or absence of a dryer. The NDIR technique, on the other hand, measures molar concentrations. The second half of this paper describes errors in molar concentration measurements that are caused by drying. An equation describing the errors was derived from the ideal gas law, the conservation of mass, and Dalton's Law. The purpose of this derivation was to quantify errors in the NDIR technique that are caused by drying. Laboratory experiments were conducted to verify the errors created solely by the dryer in CO(2) concentration measurements post-dryer. The laboratory experiments verified the theoretically predicted errors in the derived equations. There are numerous references in the literature that describe the use of a dryer in conjunction with the NDIR technique. However, these references do not address the errors that are caused by drying.
Narayan, Sreenath; Kalhan, Satish C.; Wilson, David L.
2012-01-01
I.Abstract Purpose To reduce swaps in fat-water separation methods, a particular issue on 7T small animal scanners due to field inhomogeneity, using image postprocessing innovations that detect and correct errors in the B0 field map. Materials and Methods Fat-water decompositions and B0 field maps were computed for images of mice acquired on a 7T Bruker BioSpec scanner, using a computationally efficient method for solving the Markov Random Field formulation of the multi-point Dixon model. The B0 field maps were processed with a novel hole-filling method, based on edge strength between regions, and a novel k-means method, based on field-map intensities, which were iteratively applied to automatically detect and reinitialize error regions in the B0 field maps. Errors were manually assessed in the B0 field maps and chemical parameter maps both before and after error correction. Results Partial swaps were found in 6% of images when processed with FLAWLESS. After REFINED correction, only 0.7% of images contained partial swaps, resulting in an 88% decrease in error rate. Complete swaps were not problematic. Conclusion Ex post facto error correction is a viable supplement to a priori techniques for producing globally smooth B0 field maps, without partial swaps. With our processing pipeline, it is possible to process image volumes rapidly, robustly, and almost automatically. PMID:23023815
Narayan, Sreenath; Kalhan, Satish C; Wilson, David L
2013-05-01
To reduce swaps in fat-water separation methods, a particular issue on 7 Tesla (T) small animal scanners due to field inhomogeneity, using image postprocessing innovations that detect and correct errors in the B0 field map. Fat-water decompositions and B0 field maps were computed for images of mice acquired on a 7T Bruker BioSpec scanner, using a computationally efficient method for solving the Markov Random Field formulation of the multi-point Dixon model. The B0 field maps were processed with a novel hole-filling method, based on edge strength between regions, and a novel k-means method, based on field-map intensities, which were iteratively applied to automatically detect and reinitialize error regions in the B0 field maps. Errors were manually assessed in the B0 field maps and chemical parameter maps both before and after error correction. Partial swaps were found in 6% of images when processed with FLAWLESS. After REFINED correction, only 0.7% of images contained partial swaps, resulting in an 88% decrease in error rate. Complete swaps were not problematic. Ex post facto error correction is a viable supplement to a priori techniques for producing globally smooth B0 field maps, without partial swaps. With our processing pipeline, it is possible to process image volumes rapidly, robustly, and almost automatically. Copyright © 2012 Wiley Periodicals, Inc.
Software-implemented fault insertion: An FTMP example
NASA Technical Reports Server (NTRS)
Czeck, Edward W.; Siewiorek, Daniel P.; Segall, Zary Z.
1987-01-01
This report presents a model for fault insertion through software; describes its implementation on a fault-tolerant computer, FTMP; presents a summary of fault detection, identification, and reconfiguration data collected with software-implemented fault insertion; and compares the results to hardware fault insertion data. Experimental results show detection time to be a function of time of insertion and system workload. For the fault detection time, there is no correlation between software-inserted faults and hardware-inserted faults; this is because hardware-inserted faults must manifest as errors before detection, whereas software-inserted faults immediately exercise the error detection mechanisms. In summary, the software-implemented fault insertion is able to be used as an evaluation technique for the fault-handling capabilities of a system in fault detection, identification and recovery. Although the software-inserted faults do not map directly to hardware-inserted faults, experiments show software-implemented fault insertion is capable of emulating hardware fault insertion, with greater ease and automation.
Image processing and analysis using neural networks for optometry area
NASA Astrophysics Data System (ADS)
Netto, Antonio V.; Ferreira de Oliveira, Maria C.
2002-11-01
In this work we describe the framework of a functional system for processing and analyzing images of the human eye acquired by the Hartmann-Shack technique (HS), in order to extract information to formulate a diagnosis of eye refractive errors (astigmatism, hypermetropia and myopia). The analysis is to be carried out using an Artificial Intelligence system based on Neural Nets, Fuzzy Logic and Classifier Combination. The major goal is to establish the basis of a new technology to effectively measure ocular refractive errors that is based on methods alternative those adopted in current patented systems. Moreover, analysis of images acquired with the Hartmann-Shack technique may enable the extraction of additional information on the health of an eye under exam from the same image used to detect refraction errors.
NASA Technical Reports Server (NTRS)
1982-01-01
An effective data collection methodology for evaluating software development methodologies was applied to four different software development projects. Goals of the data collection included characterizing changes and errors, characterizing projects and programmers, identifying effective error detection and correction techniques, and investigating ripple effects. The data collected consisted of changes (including error corrections) made to the software after code was written and baselined, but before testing began. Data collection and validation were concurrent with software development. Changes reported were verified by interviews with programmers.
Predictive monitoring of actions, EEG recordings in virtual reality.
Ozkan, Duru G; Pezzetta, Rachele
2018-04-01
Error-related negativity (ERN) is a signal that is associated with error detection. Joch and colleagues (Joch M, Hegele M, Maurer H, Müller H, Maurer LK. J Neurophysiol 118: 486-495, 2017) successfully separated the ERN as a response to online prediction error from feedback updates. We discuss the role of ERN in action and suggest insights from virtual reality techniques; we consider the potential benefit of self-evaluation in determining the mechanisms of ERN amplitude; finally, we review the oscillatory activity that has been claimed to accompany ERN.
An Acoustic-Based Method to Detect and Quantify the Effect of Exhalation into a Dry Powder Inhaler.
Holmes, Martin S; Seheult, Jansen N; O'Connell, Peter; D'Arcy, Shona; Ehrhardt, Carsten; Healy, Anne Marie; Costello, Richard W; Reilly, Richard B
2015-08-01
Dry powder inhaler (DPI) users frequently exhale into their inhaler mouthpiece before the inhalation step. This error in technique compromises the integrity of the drug and results in poor bronchodilation. This study investigated the effect of four exhalation factors (exhalation flow rate, distance from mouth to inhaler, exhalation duration, and relative air humidity) on dry powder dose delivery. Given that acoustic energy can be related to the factors associated with exhalation sounds, we then aimed to develop a method of identifying and quantifying this critical inhaler technique error using acoustic based methods. An in vitro test rig was developed to simulate this critical error. The effect of the four factors on subsequent drug delivery were investigated using multivariate regression models. In a further study we then used an acoustic monitoring device to unobtrusively record the sounds 22 asthmatic patients made whilst using a Diskus(™) DPI. Acoustic energy was employed to automatically detect and analyze exhalation events in the audio files. All exhalation factors had a statistically significant effect on drug delivery (p<0.05); distance from the inhaler mouthpiece had the largest effect size. Humid air exhalations were found to reduce the fine particle fraction (FPF) compared to dry air. In a dataset of 110 audio files from 22 asthmatic patients, the acoustic method detected exhalations with an accuracy of 89.1%. We were able to classify exhalations occurring 5 cm or less in the direction of the inhaler mouthpiece or recording device with a sensitivity of 72.2% and specificity of 85.7%. Exhaling into a DPI has a significant detrimental effect. Acoustic based methods can be employed to objectively detect and analyze exhalations during inhaler use, thus providing a method of remotely monitoring inhaler technique and providing personalized inhaler technique feedback.
Reliability issues in active control of large flexible space structures
NASA Technical Reports Server (NTRS)
Vandervelde, W. E.
1986-01-01
Efforts in this reporting period were centered on four research tasks: design of failure detection filters for robust performance in the presence of modeling errors, design of generalized parity relations for robust performance in the presence of modeling errors, design of failure sensitive observers using the geometric system theory of Wonham, and computational techniques for evaluation of the performance of control systems with fault tolerance and redundancy management
Updating Landsat-derived land-cover maps using change detection and masking techniques
NASA Technical Reports Server (NTRS)
Likens, W.; Maw, K.
1982-01-01
The California Integrated Remote Sensing System's San Bernardino County Project was devised to study the utilization of a data base at a number of jurisdictional levels. The present paper discusses the implementation of change-detection and masking techniques in the updating of Landsat-derived land-cover maps. A baseline landcover classification was first created from a 1976 image, then the adjusted 1976 image was compared with a 1979 scene by the techniques of (1) multidate image classification, (2) difference image-distribution tails thresholding, (3) difference image classification, and (4) multi-dimensional chi-square analysis of a difference image. The union of the results of methods 1, 3 and 4 was used to create a mask of possible change areas between 1976 and 1979, which served to limit analysis of the update image and reduce comparison errors in unchanged areas. The techniques of spatial smoothing of change-detection products, and of combining results of difference change-detection algorithms are also shown to improve Landsat change-detection accuracies.
High-density force myography: A possible alternative for upper-limb prosthetic control.
Radmand, Ashkan; Scheme, Erik; Englehart, Kevin
2016-01-01
Several multiple degree-of-freedom upper-limb prostheses that have the promise of highly dexterous control have recently been developed. Inadequate controllability, however, has limited adoption of these devices. Introducing more robust control methods will likely result in higher acceptance rates. This work investigates the suitability of using high-density force myography (HD-FMG) for prosthetic control. HD-FMG uses a high-density array of pressure sensors to detect changes in the pressure patterns between the residual limb and socket caused by the contraction of the forearm muscles. In this work, HD-FMG outperforms the standard electromyography (EMG)-based system in detecting different wrist and hand gestures. With the arm in a fixed, static position, eight hand and wrist motions were classified with 0.33% error using the HD-FMG technique. Comparatively, classification errors in the range of 2.2%-11.3% have been reported in the literature for multichannel EMG-based approaches. As with EMG, position variation in HD-FMG can introduce classification error, but incorporating position variation into the training protocol reduces this effect. Channel reduction was also applied to the HD-FMG technique to decrease the dimensionality of the problem as well as the size of the sensorized area. We found that with informed, symmetric channel reduction, classification error could be decreased to 0.02%.
New Developments in Error Detection and Correction Strategies for Critical Applications
NASA Technical Reports Server (NTRS)
Berg, Melanie; LaBel, Ken
2016-01-01
The presentation will cover a variety of mitigation strategies that were developed for critical applications. An emphasis is placed on strengths and weaknesses per mitigation technique as it pertains to different FPGA device types.
Leak Detection and Location of Water Pipes Using Vibration Sensors and Modified ML Prefilter.
Choi, Jihoon; Shin, Joonho; Song, Choonggeun; Han, Suyong; Park, Doo Il
2017-09-13
This paper proposes a new leak detection and location method based on vibration sensors and generalised cross-correlation techniques. Considering the estimation errors of the power spectral densities (PSDs) and the cross-spectral density (CSD), the proposed method employs a modified maximum-likelihood (ML) prefilter with a regularisation factor. We derive a theoretical variance of the time difference estimation error through summation in the discrete-frequency domain, and find the optimal regularisation factor that minimises the theoretical variance in practical water pipe channels. The proposed method is compared with conventional correlation-based techniques via numerical simulations using a water pipe channel model, and it is shown through field measurement that the proposed modified ML prefilter outperforms conventional prefilters for the generalised cross-correlation. In addition, we provide a formula to calculate the leak location using the time difference estimate when different types of pipes are connected.
Leak Detection and Location of Water Pipes Using Vibration Sensors and Modified ML Prefilter
Shin, Joonho; Song, Choonggeun; Han, Suyong; Park, Doo Il
2017-01-01
This paper proposes a new leak detection and location method based on vibration sensors and generalised cross-correlation techniques. Considering the estimation errors of the power spectral densities (PSDs) and the cross-spectral density (CSD), the proposed method employs a modified maximum-likelihood (ML) prefilter with a regularisation factor. We derive a theoretical variance of the time difference estimation error through summation in the discrete-frequency domain, and find the optimal regularisation factor that minimises the theoretical variance in practical water pipe channels. The proposed method is compared with conventional correlation-based techniques via numerical simulations using a water pipe channel model, and it is shown through field measurement that the proposed modified ML prefilter outperforms conventional prefilters for the generalised cross-correlation. In addition, we provide a formula to calculate the leak location using the time difference estimate when different types of pipes are connected. PMID:28902154
Objective Assessment of Patient Inhaler User Technique Using an Audio-Based Classification Approach.
Taylor, Terence E; Zigel, Yaniv; Egan, Clarice; Hughes, Fintan; Costello, Richard W; Reilly, Richard B
2018-02-01
Many patients make critical user technique errors when using pressurised metered dose inhalers (pMDIs) which reduce the clinical efficacy of respiratory medication. Such critical errors include poor actuation coordination (poor timing of medication release during inhalation) and inhaling too fast (peak inspiratory flow rate over 90 L/min). Here, we present a novel audio-based method that objectively assesses patient pMDI user technique. The Inhaler Compliance Assessment device was employed to record inhaler audio signals from 62 respiratory patients as they used a pMDI with an In-Check Flo-Tone device attached to the inhaler mouthpiece. Using a quadratic discriminant analysis approach, the audio-based method generated a total frame-by-frame accuracy of 88.2% in classifying sound events (actuation, inhalation and exhalation). The audio-based method estimated the peak inspiratory flow rate and volume of inhalations with an accuracy of 88.2% and 83.94% respectively. It was detected that 89% of patients made at least one critical user technique error even after tuition from an expert clinical reviewer. This method provides a more clinically accurate assessment of patient inhaler user technique than standard checklist methods.
Online Error Reporting for Managing Quality Control Within Radiology.
Golnari, Pedram; Forsberg, Daniel; Rosipko, Beverly; Sunshine, Jeffrey L
2016-06-01
Information technology systems within health care, such as picture archiving and communication system (PACS) in radiology, can have a positive impact on production but can also risk compromising quality. The widespread use of PACS has removed the previous feedback loop between radiologists and technologists. Instead of direct communication of quality discrepancies found for an examination, the radiologist submitted a paper-based quality-control report. A web-based issue-reporting tool can help restore some of the feedback loop and also provide possibilities for more detailed analysis of submitted errors. The purpose of this study was to evaluate the hypothesis that data from use of an online error reporting software for quality control can focus our efforts within our department. For the 372,258 radiologic examinations conducted during the 6-month period study, 930 errors (390 exam protocol, 390 exam validation, and 150 exam technique) were submitted, corresponding to an error rate of 0.25 %. Within the category exam protocol, technologist documentation had the highest number of submitted errors in ultrasonography (77 errors [44 %]), while imaging protocol errors were the highest subtype error for computed tomography modality (35 errors [18 %]). Positioning and incorrect accession had the highest errors in the exam technique and exam validation error category, respectively, for nearly all of the modalities. An error rate less than 1 % could signify a system with a very high quality; however, a more likely explanation is that not all errors were detected or reported. Furthermore, staff reception of the error reporting system could also affect the reporting rate.
ERIC Educational Resources Information Center
von Davier, Alina A.
2012-01-01
Maintaining comparability of test scores is a major challenge faced by testing programs that have almost continuous administrations. Among the potential problems are scale drift and rapid accumulation of errors. Many standard quality control techniques for testing programs, which can effectively detect and address scale drift for small numbers of…
1981-01-01
explanatory variable has been ommitted. Ramsey (1974) has developed a rather interesting test for detecting specification errors using estimates of the...Peter. (1979) A Guide to Econometrics , Cambridge, MA: The MIT Press. Ramsey , J.B. (1974), "Classical Model Selection Through Specification Error... Tests ," in P. Zarembka, Ed. Frontiers in Econometrics , New York: Academia Press. Theil, Henri. (1971), Principles of Econometrics , New York: John Wiley
Adaptive error correction codes for face identification
NASA Astrophysics Data System (ADS)
Hussein, Wafaa R.; Sellahewa, Harin; Jassim, Sabah A.
2012-06-01
Face recognition in uncontrolled environments is greatly affected by fuzziness of face feature vectors as a result of extreme variation in recording conditions (e.g. illumination, poses or expressions) in different sessions. Many techniques have been developed to deal with these variations, resulting in improved performances. This paper aims to model template fuzziness as errors and investigate the use of error detection/correction techniques for face recognition in uncontrolled environments. Error correction codes (ECC) have recently been used for biometric key generation but not on biometric templates. We have investigated error patterns in binary face feature vectors extracted from different image windows of differing sizes and for different recording conditions. By estimating statistical parameters for the intra-class and inter-class distributions of Hamming distances in each window, we encode with appropriate ECC's. The proposed approached is tested for binarised wavelet templates using two face databases: Extended Yale-B and Yale. We shall demonstrate that using different combinations of BCH-based ECC's for different blocks and different recording conditions leads to in different accuracy rates, and that using ECC's results in significantly improved recognition results.
The detection of faked identity using unexpected questions and mouse dynamics.
Monaro, Merylin; Gamberini, Luciano; Sartori, Giuseppe
2017-01-01
The detection of faked identities is a major problem in security. Current memory-detection techniques cannot be used as they require prior knowledge of the respondent's true identity. Here, we report a novel technique for detecting faked identities based on the use of unexpected questions that may be used to check the respondent identity without any prior autobiographical information. While truth-tellers respond automatically to unexpected questions, liars have to "build" and verify their responses. This lack of automaticity is reflected in the mouse movements used to record the responses as well as in the number of errors. Responses to unexpected questions are compared to responses to expected and control questions (i.e., questions to which a liar also must respond truthfully). Parameters that encode mouse movement were analyzed using machine learning classifiers and the results indicate that the mouse trajectories and errors on unexpected questions efficiently distinguish liars from truth-tellers. Furthermore, we showed that liars may be identified also when they are responding truthfully. Unexpected questions combined with the analysis of mouse movement may efficiently spot participants with faked identities without the need for any prior information on the examinee.
Resonant ultrasound spectroscopy and non-destructive testing
NASA Astrophysics Data System (ADS)
Migliori, A.; Darling, T. W.
The use of mechanical resonances to test properties of materials is perhaps older than the industrial revolution. Early documented cases of British railroad engineers tapping the wheels of a train and using the sound to detect cracks perhaps mark the first real use of resonances to test the integrity of high-performance alloys. Attempts were made in the following years to understand the resonances of solids mathematically, based on the shape and composition. But Nobel Laureate Lord Rayleigh best summarized the state of affairs in 1894, stating 'the problem has, for the most part, resisted attack'. More recently, modern computers and electronics have enabled Anderson and co-workers with their work on minerals, and our work at Los Alamos on new materials and manufactured components to advance the use of resonances to a precision non-destructive testing tool that makes anisotropic modulus measurements, defect detection and geometry error detection routine. The result is that resonances can achieve the highest absolute accuracy for any dynamic modulus measurement technique, can be used on the smallest samples, and can also enable detection of errors in certain classes of precision manufactured components faster and more accurately than any other technique.
Study of an automatic trajectory following control system
NASA Technical Reports Server (NTRS)
Vanlandingham, H. F.; Moose, R. L.; Zwicke, P. E.; Lucas, W. H.; Brinkley, J. D.
1983-01-01
It is shown that the estimator part of the Modified Partitioned Adaptive Controller, (MPAC) developed for nonlinear aircraft dynamics of a small jet transport can adapt to sensor failures. In addition, an investigation is made into the potential usefulness of the configuration detection technique used in the MPAC and the failure detection filter is developed that determines how a noise plant output is associated with a line or plane characteristic of a failure. It is shown by computer simulation that the estimator part and the configuration detection part of the MPAC can readily adapt to actuator and sensor failures and that the failure detection filter technique cannot detect actuator or sensor failures accurately for this type of system because of the plant modeling errors. In addition, it is shown that the decision technique, developed for the failure detection filter, can accurately determine that the plant output is related to the characteristic line or plane in the presence of sensor noise.
Passive Sensor Integration for Vehicle Self-Localization in Urban Traffic Environment †
Gu, Yanlei; Hsu, Li-Ta; Kamijo, Shunsuke
2015-01-01
This research proposes an accurate vehicular positioning system which can achieve lane-level performance in urban canyons. Multiple passive sensors, which include Global Navigation Satellite System (GNSS) receivers, onboard cameras and inertial sensors, are integrated in the proposed system. As the main source for the localization, the GNSS technique suffers from Non-Line-Of-Sight (NLOS) propagation and multipath effects in urban canyons. This paper proposes to employ a novel GNSS positioning technique in the integration. The employed GNSS technique reduces the multipath and NLOS effects by using the 3D building map. In addition, the inertial sensor can describe the vehicle motion, but has a drift problem as time increases. This paper develops vision-based lane detection, which is firstly used for controlling the drift of the inertial sensor. Moreover, the lane keeping and changing behaviors are extracted from the lane detection function, and further reduce the lateral positioning error in the proposed localization system. We evaluate the integrated localization system in the challenging city urban scenario. The experiments demonstrate the proposed method has sub-meter accuracy with respect to mean positioning error. PMID:26633420
Comments on "Failures in detecting volcanic ash from a satellite-based technique"
Prata, F.; Bluth, G.; Rose, B.; Schneider, D.; Tupper, A.
2001-01-01
The recent paper by Simpson et al. [Remote Sens. Environ. 72 (2000) 191.] on failures to detect volcanic ash using the 'reverse' absorption technique provides a timely reminder of the danger that volcanic ash presents to aviation and the urgent need for some form of effective remote detection. The paper unfortunately suffers from a fundamental flaw in its methodology and numerous errors of fact and interpretation. For the moment, the 'reverse' absorption technique provides the best means for discriminating volcanic ash clouds from meteorological clouds. The purpose of our comment is not to defend any particular algorithm; rather, we point out some problems with Simpson et al.'s analysis and re-state the conditions under which the 'reverse' absorption algorithm is likely to succeed. ?? 2001 Elsevier Science Inc. All rights reserved.
Jitter model and signal processing techniques for pulse width modulation optical recording
NASA Technical Reports Server (NTRS)
Liu, Max M.-K.
1991-01-01
A jitter model and signal processing techniques are discussed for data recovery in Pulse Width Modulation (PWM) optical recording. In PWM, information is stored through modulating sizes of sequential marks alternating in magnetic polarization or in material structure. Jitter, defined as the deviation from the original mark size in the time domain, will result in error detection if it is excessively large. A new approach is taken in data recovery by first using a high speed counter clock to convert time marks to amplitude marks, and signal processing techniques are used to minimize jitter according to the jitter model. The signal processing techniques include motor speed and intersymbol interference equalization, differential and additive detection, and differential and additive modulation.
NASA Technical Reports Server (NTRS)
Bueno, R. A.
1977-01-01
Results of the generalized likelihood ratio (GLR) technique for the detection of failures in aircraft application are presented, and its relationship to the properties of the Kalman-Bucy filter is examined. Under the assumption that the system is perfectly modeled, the detectability and distinguishability of four failure types are investigated by means of analysis and simulations. Detection of failures is found satisfactory, but problems in identifying correctly the mode of a failure may arise. These issues are closely examined as well as the sensitivity of GLR to modeling errors. The advantages and disadvantages of this technique are discussed, and various modifications are suggested to reduce its limitations in performance and computational complexity.
Walker, J.F.
1993-01-01
Selected statistical techniques were applied to three urban watersheds in Texas and Minnesota and three rural watersheds in Illinois. For the urban watersheds, single- and paired-site data-collection strategies were considered. The paired-site strategy was much more effective than the singlesite strategy for detecting changes. Analysis of storm load regression residuals demonstrated the potential utility of regressions for variability reduction. For the rural watersheds, none of the selected techniques were effective at identifying changes, primarily due to a small degree of management-practice implementation, potential errors introduced through the estimation of storm load, and small sample sizes. A Monte Carlo sensitivity analysis was used to determine the percent change in water chemistry that could be detected for each watershed. In most instances, the use of regressions improved the ability to detect changes.
Failure detection and isolation analysis of a redundant strapdown inertial measurement unit
NASA Technical Reports Server (NTRS)
Motyka, P.; Landey, M.; Mckern, R.
1981-01-01
The objective of this study was to define and develop techniques for failure detection and isolation (FDI) algorithms for a dual fail/operational redundant strapdown inertial navigation system are defined and developed. The FDI techniques chosen include provisions for hard and soft failure detection in the context of flight control and navigation. Analyses were done to determine error detection and switching levels for the inertial navigation system, which is intended for a conventional takeoff or landing (CTOL) operating environment. In addition, investigations of false alarms and missed alarms were included for the FDI techniques developed, along with the analyses of filters to be used in conjunction with FDI processing. Two specific FDI algorithms were compared: the generalized likelihood test and the edge vector test. A deterministic digital computer simulation was used to compare and evaluate the algorithms and FDI systems.
Pitch-Learning Algorithm For Speech Encoders
NASA Technical Reports Server (NTRS)
Bhaskar, B. R. Udaya
1988-01-01
Adaptive algorithm detects and corrects errors in sequence of estimates of pitch period of speech. Algorithm operates in conjunction with techniques used to estimate pitch period. Used in such parametric and hybrid speech coders as linear predictive coders and adaptive predictive coders.
New Developments in Error Detection and Correction Strategies for Critical Applications
NASA Technical Reports Server (NTRS)
Berg, Melanie; Label, Ken
2017-01-01
The presentation will cover a variety of mitigation strategies that were developed for critical applications. An emphasis is placed on strengths and weaknesses per mitigation technique as it pertains to different Field programmable gate array (FPGA) device types.
Improving Focal Depth Estimates: Studies of Depth Phase Detection at Regional Distances
NASA Astrophysics Data System (ADS)
Stroujkova, A.; Reiter, D. T.; Shumway, R. H.
2006-12-01
The accurate estimation of the depth of small, regionally recorded events continues to be an important and difficult explosion monitoring research problem. Depth phases (free surface reflections) are the primary tool that seismologists use to constrain the depth of a seismic event. When depth phases from an event are detected, an accurate source depth is easily found by using the delay times of the depth phases relative to the P wave and a velocity profile near the source. Cepstral techniques, including cepstral F-statistics, represent a class of methods designed for the depth-phase detection and identification; however, they offer only a moderate level of success at epicentral distances less than 15°. This is due to complexities in the Pn coda, which can lead to numerous false detections in addition to the true phase detection. Therefore, cepstral methods cannot be used independently to reliably identify depth phases. Other evidence, such as apparent velocities, amplitudes and frequency content, must be used to confirm whether the phase is truly a depth phase. In this study we used a variety of array methods to estimate apparent phase velocities and arrival azimuths, including beam-forming, semblance analysis, MUltiple SIgnal Classification (MUSIC) (e.g., Schmidt, 1979), and cross-correlation (e.g., Cansi, 1995; Tibuleac and Herrin, 1997). To facilitate the processing and comparison of results, we developed a MATLAB-based processing tool, which allows application of all of these techniques (i.e., augmented cepstral processing) in a single environment. The main objective of this research was to combine the results of three focal-depth estimation techniques and their associated standard errors into a statistically valid unified depth estimate. The three techniques include: 1. Direct focal depth estimate from the depth-phase arrival times picked via augmented cepstral processing. 2. Hypocenter location from direct and surface-reflected arrivals observed on sparse networks of regional stations using a Grid-search, Multiple-Event Location method (GMEL; Rodi and Toksöz, 2000; 2001). 3. Surface-wave dispersion inversion for event depth and focal mechanism (Herrmann and Ammon, 2002). To validate our approach and provide quality control for our solutions, we applied the techniques to moderated- sized events (mb between 4.5 and 6.0) with known focal mechanisms. We illustrate the techniques using events observed at regional distances from the KSAR (Wonju, South Korea) teleseismic array and other nearby broadband three-component stations. Our results indicate that the techniques can produce excellent agreement between the various depth estimates. In addition, combining the techniques into a "unified" estimate greatly reduced location errors and improved robustness of the solution, even if results from the individual methods yielded large standard errors.
Transient fault behavior in a microprocessor: A case study
NASA Technical Reports Server (NTRS)
Duba, Patrick
1989-01-01
An experimental analysis is described which studies the susceptibility of a microprocessor based jet engine controller to upsets caused by current and voltage transients. A design automation environment which allows the run time injection of transients and the tracing from their impact device to the pin level is described. The resulting error data are categorized by the charge levels of the injected transients by location and by their potential to cause logic upsets, latched errors, and pin errors. The results show a 3 picoCouloumb threshold, below which the transients have little impact. An Arithmetic and Logic Unit transient is most likely to result in logic upsets and pin errors (i.e., impact the external environment). The transients in the countdown unit are potentially serious since they can result in latched errors, thus causing latent faults. Suggestions to protect the processor against these errors, by incorporating internal error detection and transient suppression techniques, are also made.
Space-borne remote sensing of CO2 by IPDA lidar with heterodyne detection: random error estimation
NASA Astrophysics Data System (ADS)
Matvienko, G. G.; Sukhanov, A. Y.
2015-11-01
Possibilities of measuring the CO2 column concentration by spaceborne integrated path differential lidar (IPDA) signals in the near IR absorption bands are investigated. It is shown that coherent detection principles applied in the nearinfrared spectral region promise a high sensitivity for the measurement of the integrated dry air column mixing ratio of the CO2. The simulations indicate that for CO2 the target observational requirements (0.2%) for the relative random error can be met with telescope aperture 0.5 m, detector bandwidth 10 MHz, laser energy per impulse 0.3 mJ and averaging 7500 impulses. It should also be noted that heterodyne technique allows to significantly reduce laser power and receiver overall dimensions compared to direct detection.
High-speed reference-beam-angle control technique for holographic memory drive
NASA Astrophysics Data System (ADS)
Yamada, Ken-ichiro; Ogata, Takeshi; Hosaka, Makoto; Fujita, Koji; Okuyama, Atsushi
2016-09-01
We developed a holographic memory drive for next-generation optical memory. In this study, we present the key technology for achieving a high-speed transfer rate for reproduction, that is, a high-speed control technique for the reference beam angle. In reproduction in a holographic memory drive, there is the issue that the optimum reference beam angle during reproduction varies owing to distortion of the medium. The distortion is caused by, for example, temperature variation, beam irradiation, and moisture absorption. Therefore, a reference-beam-angle control technique to position the reference beam at the optimum angle is crucial. We developed a new optical system that generates an angle-error-signal to detect the optimum reference beam angle. To achieve the high-speed control technique using the new optical system, we developed a new control technique called adaptive final-state control (AFSC) that adds a second control input to the first one derived from conventional final-state control (FSC) at the time of angle-error-signal detection. We established an actual experimental system employing AFSC to achieve moving control between each page (Page Seek) within 300 µs. In sequential multiple Page Seeks, we were able to realize positioning to the optimum angles of the reference beam that maximize the diffracted beam intensity. We expect that applying the new control technique to the holographic memory drive will enable a giga-bit/s-class transfer rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hsin-Chen; Tan, Jun; Dolly, Steven
2015-02-15
Purpose: One of the most critical steps in radiation therapy treatment is accurate tumor and critical organ-at-risk (OAR) contouring. Both manual and automated contouring processes are prone to errors and to a large degree of inter- and intraobserver variability. These are often due to the limitations of imaging techniques in visualizing human anatomy as well as to inherent anatomical variability among individuals. Physicians/physicists have to reverify all the radiation therapy contours of every patient before using them for treatment planning, which is tedious, laborious, and still not an error-free process. In this study, the authors developed a general strategy basedmore » on novel geometric attribute distribution (GAD) models to automatically detect radiation therapy OAR contouring errors and facilitate the current clinical workflow. Methods: Considering the radiation therapy structures’ geometric attributes (centroid, volume, and shape), the spatial relationship of neighboring structures, as well as anatomical similarity of individual contours among patients, the authors established GAD models to characterize the interstructural centroid and volume variations, and the intrastructural shape variations of each individual structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations calculated from training sets with verified OAR contours. A new iterative weighted GAD model-fitting algorithm was developed for contouring error detection. Receiver operating characteristic (ROC) analysis was employed in a unique way to optimize the model parameters to satisfy clinical requirements. A total of forty-four head-and-neck patient cases, each of which includes nine critical OAR contours, were utilized to demonstrate the proposed strategy. Twenty-nine out of these forty-four patient cases were utilized to train the inter- and intrastructural GAD models. These training data and the remaining fifteen testing data sets were separately employed to test the effectiveness of the proposed contouring error detection strategy. Results: An evaluation tool was implemented to illustrate how the proposed strategy automatically detects the radiation therapy contouring errors for a given patient and provides 3D graphical visualization of error detection results as well. The contouring error detection results were achieved with an average sensitivity of 0.954/0.906 and an average specificity of 0.901/0.909 on the centroid/volume related contouring errors of all the tested samples. As for the detection results on structural shape related contouring errors, an average sensitivity of 0.816 and an average specificity of 0.94 on all the tested samples were obtained. The promising results indicated the feasibility of the proposed strategy for the detection of contouring errors with low false detection rate. Conclusions: The proposed strategy can reliably identify contouring errors based upon inter- and intrastructural constraints derived from clinically approved contours. It holds great potential for improving the radiation therapy workflow. ROC and box plot analyses allow for analytically tuning of the system parameters to satisfy clinical requirements. Future work will focus on the improvement of strategy reliability by utilizing more training sets and additional geometric attribute constraints.« less
Signal Detection and Frame Synchronization of Multiple Wireless Networking Waveforms
2007-09-01
punctured to obtain coding rates of 2 3 and 3 4 . Convolutional forward error correction coding is used to detect and correct bit...likely to be isolated and be correctable by the convolutional decoder. 44 Data rate (Mbps) Modulation Coding Rate Coded bits per subcarrier...binary convolutional code . A shortened Reed-Solomon technique is employed first. The code is shortened depending upon the data
ERIC Educational Resources Information Center
Demir, Ergul
2018-01-01
Purpose: The answer-copying tendency has the potential to detect suspicious answer patterns for prior distributions of statistical detection techniques. The aim of this study is to develop a valid and reliable measurement tool as a scale in order to observe the tendency of university students' copying of answers. Also, it is aimed to provide…
Investigation of advanced phase-shifting projected fringe profilometry techniques
NASA Astrophysics Data System (ADS)
Liu, Hongyu
1999-11-01
The phase-shifting projected fringe profilometry (PSPFP) technique is a powerful tool in the profile measurements of rough engineering surfaces. Compared with other competing techniques, this technique is notable for its full-field measurement capacity, system simplicity, high measurement speed, and low environmental vulnerability. The main purpose of this dissertation is to tackle three important problems, which severely limit the capability and the accuracy of the PSPFP technique, with some new approaches. Chapter 1 provides some background information of the PSPFP technique including the measurement principles, basic features, and related techniques is briefly introduced. The objectives and organization of the thesis are also outlined. Chapter 2 gives a theoretical treatment to the absolute PSPFP measurement. The mathematical formulations and basic requirements of the absolute PSPFP measurement and its supporting techniques are discussed in detail. Chapter 3 introduces the experimental verification of the proposed absolute PSPFP technique. Some design details of a prototype system are discussed as supplements to the previous theoretical analysis. Various fundamental experiments performed for concept verification and accuracy evaluation are introduced together with some brief comments. Chapter 4 presents the theoretical study of speckle- induced phase measurement errors. In this analysis, the expression for speckle-induced phase errors is first derived based on the multiplicative noise model of image- plane speckles. The statistics and the system dependence of speckle-induced phase errors are then thoroughly studied through numerical simulations and analytical derivations. Based on the analysis, some suggestions on the system design are given to improve measurement accuracy. Chapter 5 discusses a new technique combating surface reflectivity variations. The formula used for error compensation is first derived based on a simplified model of the detection process. The techniques coping with two major effects of surface reflectivity variations are then introduced. Some fundamental problems in the proposed technique are studied through simulations. Chapter 6 briefly summarizes the major contributions of the current work and provides some suggestions for the future research.
Feed-forward frequency offset estimation for 32-QAM optical coherent detection.
Xiao, Fei; Lu, Jianing; Fu, Songnian; Xie, Chenhui; Tang, Ming; Tian, Jinwen; Liu, Deming
2017-04-17
Due to the non-rectangular distribution of the constellation points, traditional fast Fourier transform based frequency offset estimation (FFT-FOE) is no longer suitable for 32-QAM signal. Here, we report a modified FFT-FOE technique by selecting and digitally amplifying the inner QPSK ring of 32-QAM after the adaptive equalization, which is defined as QPSK-selection assisted FFT-FOE. Simulation results show that no FOE error occurs with a FFT size of only 512 symbols, when the signal-to-noise ratio (SNR) is above 17.5 dB using our proposed FOE technique. However, the error probability of traditional FFT-FOE scheme for 32-QAM is always intolerant. Finally, our proposed FOE scheme functions well for 10 Gbaud dual polarization (DP)-32-QAM signal to reach 20% forward error correction (FEC) threshold of BER=2×10-2, under the scenario of back-to-back (B2B) transmission.
Logic-based assessment of the compatibility of UMLS ontology sources
2011-01-01
Background The UMLS Metathesaurus (UMLS-Meta) is currently the most comprehensive effort for integrating independently-developed medical thesauri and ontologies. UMLS-Meta is being used in many applications, including PubMed and ClinicalTrials.gov. The integration of new sources combines automatic techniques, expert assessment, and auditing protocols. The automatic techniques currently in use, however, are mostly based on lexical algorithms and often disregard the semantics of the sources being integrated. Results In this paper, we argue that UMLS-Meta’s current design and auditing methodologies could be significantly enhanced by taking into account the logic-based semantics of the ontology sources. We provide empirical evidence suggesting that UMLS-Meta in its 2009AA version contains a significant number of errors; these errors become immediately apparent if the rich semantics of the ontology sources is taken into account, manifesting themselves as unintended logical consequences that follow from the ontology sources together with the information in UMLS-Meta. We then propose general principles and specific logic-based techniques to effectively detect and repair such errors. Conclusions Our results suggest that the methodologies employed in the design of UMLS-Meta are not only very costly in terms of human effort, but also error-prone. The techniques presented here can be useful for both reducing human effort in the design and maintenance of UMLS-Meta and improving the quality of its contents. PMID:21388571
Computing in the presence of soft bit errors. [caused by single event upset on spacecraft
NASA Technical Reports Server (NTRS)
Rasmussen, R. D.
1984-01-01
It is shown that single-event-upsets (SEUs) due to cosmic rays are a significant source of single bit error in spacecraft computers. The physical mechanism of SEU, electron hole generation by means of Linear Energy Transfer (LET), it discussed with reference made to the results of a study of the environmental effects on computer systems of the Galileo spacecraft. Techniques for making software more tolerant of cosmic ray effects are considered, including: reducing the number of registers used by the software; continuity testing of variables; redundant execution of major procedures for error detection; and encoding state variables to detect single-bit changes. Attention is also given to design modifications which may reduce the cosmic ray exposure of on-board hardware. These modifications include: shielding components operating in LEO; removing low-power Schottky parts; and the use of CMOS diodes. The SEU parameters of different electronic components are listed in a table.
An Autonomous Self-Aware and Adaptive Fault Tolerant Routing Technique for Wireless Sensor Networks
Abba, Sani; Lee, Jeong-A
2015-01-01
We propose an autonomous self-aware and adaptive fault-tolerant routing technique (ASAART) for wireless sensor networks. We address the limitations of self-healing routing (SHR) and self-selective routing (SSR) techniques for routing sensor data. We also examine the integration of autonomic self-aware and adaptive fault detection and resiliency techniques for route formation and route repair to provide resilience to errors and failures. We achieved this by using a combined continuous and slotted prioritized transmission back-off delay to obtain local and global network state information, as well as multiple random functions for attaining faster routing convergence and reliable route repair despite transient and permanent node failure rates and efficient adaptation to instantaneous network topology changes. The results of simulations based on a comparison of the ASAART with the SHR and SSR protocols for five different simulated scenarios in the presence of transient and permanent node failure rates exhibit a greater resiliency to errors and failure and better routing performance in terms of the number of successfully delivered network packets, end-to-end delay, delivered MAC layer packets, packet error rate, as well as efficient energy conservation in a highly congested, faulty, and scalable sensor network. PMID:26295236
An Autonomous Self-Aware and Adaptive Fault Tolerant Routing Technique for Wireless Sensor Networks.
Abba, Sani; Lee, Jeong-A
2015-08-18
We propose an autonomous self-aware and adaptive fault-tolerant routing technique (ASAART) for wireless sensor networks. We address the limitations of self-healing routing (SHR) and self-selective routing (SSR) techniques for routing sensor data. We also examine the integration of autonomic self-aware and adaptive fault detection and resiliency techniques for route formation and route repair to provide resilience to errors and failures. We achieved this by using a combined continuous and slotted prioritized transmission back-off delay to obtain local and global network state information, as well as multiple random functions for attaining faster routing convergence and reliable route repair despite transient and permanent node failure rates and efficient adaptation to instantaneous network topology changes. The results of simulations based on a comparison of the ASAART with the SHR and SSR protocols for five different simulated scenarios in the presence of transient and permanent node failure rates exhibit a greater resiliency to errors and failure and better routing performance in terms of the number of successfully delivered network packets, end-to-end delay, delivered MAC layer packets, packet error rate, as well as efficient energy conservation in a highly congested, faulty, and scalable sensor network.
NASA Astrophysics Data System (ADS)
Yu, Le; Zhang, Dengrong; Holden, Eun-Jung
2008-07-01
Automatic registration of multi-source remote-sensing images is a difficult task as it must deal with the varying illuminations and resolutions of the images, different perspectives and the local deformations within the images. This paper proposes a fully automatic and fast non-rigid image registration technique that addresses those issues. The proposed technique performs a pre-registration process that coarsely aligns the input image to the reference image by automatically detecting their matching points by using the scale invariant feature transform (SIFT) method and an affine transformation model. Once the coarse registration is completed, it performs a fine-scale registration process based on a piecewise linear transformation technique using feature points that are detected by the Harris corner detector. The registration process firstly finds in succession, tie point pairs between the input and the reference image by detecting Harris corners and applying a cross-matching strategy based on a wavelet pyramid for a fast search speed. Tie point pairs with large errors are pruned by an error-checking step. The input image is then rectified by using triangulated irregular networks (TINs) to deal with irregular local deformations caused by the fluctuation of the terrain. For each triangular facet of the TIN, affine transformations are estimated and applied for rectification. Experiments with Quickbird, SPOT5, SPOT4, TM remote-sensing images of the Hangzhou area in China demonstrate the efficiency and the accuracy of the proposed technique for multi-source remote-sensing image registration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Able, CM; Baydush, AH; Nguyen, C
Purpose: To determine the effectiveness of SPC analysis for a model predictive maintenance process that uses accelerator generated parameter and performance data contained in trajectory log files. Methods: Each trajectory file is decoded and a total of 131 axes positions are recorded (collimator jaw position, gantry angle, each MLC, etc.). This raw data is processed and either axis positions are extracted at critical points during the delivery or positional change over time is used to determine axis velocity. The focus of our analysis is the accuracy, reproducibility and fidelity of each axis. A reference positional trace of the gantry andmore » each MLC is used as a motion baseline for cross correlation (CC) analysis. A total of 494 parameters (482 MLC related) were analyzed using Individual and Moving Range (I/MR) charts. The chart limits were calculated using a hybrid technique that included the use of the standard 3σ limits and parameter/system specifications. Synthetic errors/changes were introduced to determine the initial effectiveness of I/MR charts in detecting relevant changes in operating parameters. The magnitude of the synthetic errors/changes was based on: TG-142 and published analysis of VMAT delivery accuracy. Results: All errors introduced were detected. Synthetic positional errors of 2mm for collimator jaw and MLC carriage exceeded the chart limits. Gantry speed and each MLC speed are analyzed at two different points in the delivery. Simulated Gantry speed error (0.2 deg/sec) and MLC speed error (0.1 cm/sec) exceeded the speed chart limits. Gantry position error of 0.2 deg was detected by the CC maximum value charts. The MLC position error of 0.1 cm was detected by the CC maximum value location charts for every MLC. Conclusion: SPC I/MR evaluation of trajectory log file parameters may be effective in providing an early warning of performance degradation or component failure for medical accelerator systems.« less
Di, Huige; Zhang, Zhanfei; Hua, Hangbo; Zhang, Jiaqi; Hua, Dengxin; Wang, Yufeng; He, Tingyao
2017-03-06
Accurate aerosol optical properties could be obtained via the high spectral resolution lidar (HSRL) technique, which employs a narrow spectral filter to suppress the Rayleigh or Mie scattering in lidar return signals. The ability of the filter to suppress Rayleigh or Mie scattering is critical for HSRL. Meanwhile, it is impossible to increase the rejection of the filter without limitation. How to optimize the spectral discriminator and select the appropriate suppression rate of the signal is important to us. The HSRL technology was thoroughly studied based on error propagation. Error analyses and sensitivity studies were carried out on the transmittance characteristics of the spectral discriminator. Moreover, ratwo different spectroscopic methods for HSRL were described and compared: one is to suppress the Mie scattering; the other is to suppress the Rayleigh scattering. The corresponding HSRLs were simulated and analyzed. The results show that excessive suppression of Rayleigh scattering or Mie scattering in a high-spectral channel is not necessary if the transmittance of the spectral filter for molecular and aerosol scattering signals can be well characterized. When the ratio of transmittance of the spectral filter for aerosol scattering and molecular scattering is less than 0.1 or greater than 10, the detection error does not change much with its value. This conclusion implies that we have more choices for the high-spectral discriminator in HSRL. Moreover, the detection errors of HSRL regarding the two spectroscopic methods vary greatly with the atmospheric backscattering ratio. To reduce the detection error, it is necessary to choose a reasonable spectroscopic method. The detection method of suppressing the Rayleigh signal and extracting the Mie signal can achieve less error in a clear atmosphere, while the method of suppressing the Mie signal and extracting the Rayleigh signal can achieve less error in a polluted atmosphere.
Gutiérrez, Alfonso; Prieto, Iván; Cancela, José M.
2009-01-01
The purpose of this study is to provide a tool, based on the knowledge of technical errors, which helps to improve the teaching and learning process of the Uki Goshi technique. With this aim, we set out to determine the most frequent errors made by 44 students when performing this technique and how these mistakes relate. In order to do so, an observational analysis was carried out using the OSJUDO-UKG instrument and the data were registered using Match Vision Studio (Castellano, Perea, Alday and Hernández, 2008). The results, analyzed through descriptive statistics, show that the absence of a correct initial unbalancing movement (45,5%), the lack of proper right-arm pull (56,8%), not blocking the faller’s body (Uke) against the thrower’s hip -Tori- (54,5%) and throwing the Uke through the Tori’s side are the most usual mistakes (72,7%). Through the sequencial analysis of T-Patterns obtained with the THÈME program (Magnusson, 1996, 2000) we have concluded that not blocking the body with the Tori’s hip provokes the Uke’s throw through the Tori’s side during the final phase of the technique (95,8%), and positioning the right arm on the dorsal region of the Uke’s back during the Tsukuri entails the absence of a subsequent pull of the Uke’s body (73,3%). Key Points In this study, the most frequent errors in the performance of the Uki Goshi technique have been determined and the existing relations among these mistakes have been shown through T-Patterns. The SOBJUDO-UKG is an observation instrument for detecting mistakes in the aforementioned technique. The results show that those mistakes related to the initial imbalancing movement and the main driving action of the technique are the most frequent. The use of T-Patterns turns out to be effective in order to obtain the most important relations among the observed errors. PMID:24474885
AC orbit bump method of local impedance measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smaluk, Victor; Yang, Xi; Blednykh, Alexei
A fast and precise technique of local impedance measurement has been developed and tested at NSLS-II. This technique is based on in-phase sine-wave (AC) excitation of four fast correctors adjacent to the vacuum chamber section, impedance of which is measured. The beam position is measured using synchronous detection. Use of the narrow-band sine-wave signal allows us to improve significantly the accuracy of the orbit bump method. Beam excitation by fast correctors results in elimination of the systematic error caused by hysteresis effect. The systematic error caused by orbit drift is also eliminated because the measured signal is not affected bymore » the orbit motion outside the excitation frequency range. In this article, the measurement technique is described and the result of proof-of-principle experiment carried out at NSLS-II is presented.« less
AC orbit bump method of local impedance measurement
Smaluk, Victor; Yang, Xi; Blednykh, Alexei; ...
2017-08-04
A fast and precise technique of local impedance measurement has been developed and tested at NSLS-II. This technique is based on in-phase sine-wave (AC) excitation of four fast correctors adjacent to the vacuum chamber section, impedance of which is measured. The beam position is measured using synchronous detection. Use of the narrow-band sine-wave signal allows us to improve significantly the accuracy of the orbit bump method. Beam excitation by fast correctors results in elimination of the systematic error caused by hysteresis effect. The systematic error caused by orbit drift is also eliminated because the measured signal is not affected bymore » the orbit motion outside the excitation frequency range. In this article, the measurement technique is described and the result of proof-of-principle experiment carried out at NSLS-II is presented.« less
Spatial Support Vector Regression to Detect Silent Errors in the Exascale Era
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subasi, Omer; Di, Sheng; Bautista-Gomez, Leonardo
As the exascale era approaches, the increasing capacity of high-performance computing (HPC) systems with targeted power and energy budget goals introduces significant challenges in reliability. Silent data corruptions (SDCs) or silent errors are one of the major sources that corrupt the executionresults of HPC applications without being detected. In this work, we explore a low-memory-overhead SDC detector, by leveraging epsilon-insensitive support vector machine regression, to detect SDCs that occur in HPC applications that can be characterized by an impact error bound. The key contributions are three fold. (1) Our design takes spatialfeatures (i.e., neighbouring data values for each data pointmore » in a snapshot) into training data, such that little memory overhead (less than 1%) is introduced. (2) We provide an in-depth study on the detection ability and performance with different parameters, and we optimize the detection range carefully. (3) Experiments with eight real-world HPC applications show thatour detector can achieve the detection sensitivity (i.e., recall) up to 99% yet suffer a less than 1% of false positive rate for most cases. Our detector incurs low performance overhead, 5% on average, for all benchmarks studied in the paper. Compared with other state-of-the-art techniques, our detector exhibits the best tradeoff considering the detection ability and overheads.« less
A study of FM threshold extension techniques
NASA Technical Reports Server (NTRS)
Arndt, G. D.; Loch, F. J.
1972-01-01
The characteristics of three postdetection threshold extension techniques are evaluated with respect to the ability of such techniques to improve the performance of a phase lock loop demodulator. These techniques include impulse-noise elimination, signal correlation for the detection of impulse noise, and delta modulation signal processing. Experimental results from signal to noise ratio data and bit error rate data indicate that a 2- to 3-decibel threshold extension is readily achievable by using the various techniques. This threshold improvement is in addition to the threshold extension that is usually achieved through the use of a phase lock loop demodulator.
Planetary Transmission Diagnostics
NASA Technical Reports Server (NTRS)
Lewicki, David G. (Technical Monitor); Samuel, Paul D.; Conroy, Joseph K.; Pines, Darryll J.
2004-01-01
This report presents a methodology for detecting and diagnosing gear faults in the planetary stage of a helicopter transmission. This diagnostic technique is based on the constrained adaptive lifting algorithm. The lifting scheme, developed by Wim Sweldens of Bell Labs, is a time domain, prediction-error realization of the wavelet transform that allows for greater flexibility in the construction of wavelet bases. Classic lifting analyzes a given signal using wavelets derived from a single fundamental basis function. A number of researchers have proposed techniques for adding adaptivity to the lifting scheme, allowing the transform to choose from a set of fundamental bases the basis that best fits the signal. This characteristic is desirable for gear diagnostics as it allows the technique to tailor itself to a specific transmission by selecting a set of wavelets that best represent vibration signals obtained while the gearbox is operating under healthy-state conditions. However, constraints on certain basis characteristics are necessary to enhance the detection of local wave-form changes caused by certain types of gear damage. The proposed methodology analyzes individual tooth-mesh waveforms from a healthy-state gearbox vibration signal that was generated using the vibration separation (synchronous signal-averaging) algorithm. Each waveform is separated into analysis domains using zeros of its slope and curvature. The bases selected in each analysis domain are chosen to minimize the prediction error, and constrained to have the same-sign local slope and curvature as the original signal. The resulting set of bases is used to analyze future-state vibration signals and the lifting prediction error is inspected. The constraints allow the transform to effectively adapt to global amplitude changes, yielding small prediction errors. However, local wave-form changes associated with certain types of gear damage are poorly adapted, causing a significant change in the prediction error. The constrained adaptive lifting diagnostic algorithm is validated using data collected from the University of Maryland Transmission Test Rig and the results are discussed.
Díaz Candamio, M J; Jha, S; Martel Villagrán, J
2018-04-21
Overdiagnosis, more than an error regarding the diagnosis, is an error regarding the prognosis. We cannot know what consequences some lesions that we detect by imaging would have on our patients' lives if they were left untreated. As long as it is not possible for imaging techniques to differentiate between lesions that will have an indolent course from those that will have an aggressive course, there will be overdiagnosis. Advanced imaging techniques, radiomics, and radiogenomics, together with artificial intelligence, promise advances in this sense. In the meantime, it is important that radiologists be careful to ensure that only strictly necessary imaging tests are done. Moreover, we need to participate, together with patients, in making multidisciplinary decisions about diagnosis and clinical management. Finally, of course, we need to continue to contribute to the technological and scientific advance of our profession, so that we can continue to improve the diagnosis and early detection of abnormalities, especially those that require treatment. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
The use of automatic programming techniques for fault tolerant computing systems
NASA Technical Reports Server (NTRS)
Wild, C.
1985-01-01
It is conjectured that the production of software for ultra-reliable computing systems such as required by Space Station, aircraft, nuclear power plants and the like will require a high degree of automation as well as fault tolerance. In this paper, the relationship between automatic programming techniques and fault tolerant computing systems is explored. Initial efforts in the automatic synthesis of code from assertions to be used for error detection as well as the automatic generation of assertions and test cases from abstract data type specifications is outlined. Speculation on the ability to generate truly diverse designs capable of recovery from errors by exploring alternate paths in the program synthesis tree is discussed. Some initial thoughts on the use of knowledge based systems for the global detection of abnormal behavior using expectations and the goal-directed reconfiguration of resources to meet critical mission objectives are given. One of the sources of information for these systems would be the knowledge captured during the automatic programming process.
LEA Detection and Tracking Method for Color-Independent Visual-MIMO
Kim, Jai-Eun; Kim, Ji-Won; Kim, Ki-Doo
2016-01-01
Communication performance in the color-independent visual-multiple input multiple output (visual-MIMO) technique is deteriorated by light emitting array (LEA) detection and tracking errors in the received image because the image sensor included in the camera must be used as the receiver in the visual-MIMO system. In this paper, in order to improve detection reliability, we first set up the color-space-based region of interest (ROI) in which an LEA is likely to be placed, and then use the Harris corner detection method. Next, we use Kalman filtering for robust tracking by predicting the most probable location of the LEA when the relative position between the camera and the LEA varies. In the last step of our proposed method, the perspective projection is used to correct the distorted image, which can improve the symbol decision accuracy. Finally, through numerical simulation, we show the possibility of robust detection and tracking of the LEA, which results in a symbol error rate (SER) performance improvement. PMID:27384563
LEA Detection and Tracking Method for Color-Independent Visual-MIMO.
Kim, Jai-Eun; Kim, Ji-Won; Kim, Ki-Doo
2016-07-02
Communication performance in the color-independent visual-multiple input multiple output (visual-MIMO) technique is deteriorated by light emitting array (LEA) detection and tracking errors in the received image because the image sensor included in the camera must be used as the receiver in the visual-MIMO system. In this paper, in order to improve detection reliability, we first set up the color-space-based region of interest (ROI) in which an LEA is likely to be placed, and then use the Harris corner detection method. Next, we use Kalman filtering for robust tracking by predicting the most probable location of the LEA when the relative position between the camera and the LEA varies. In the last step of our proposed method, the perspective projection is used to correct the distorted image, which can improve the symbol decision accuracy. Finally, through numerical simulation, we show the possibility of robust detection and tracking of the LEA, which results in a symbol error rate (SER) performance improvement.
Wei, Duo; Bodenreider, Olivier
2015-01-01
Objectives To investigate errors identified in SNOMED CT by human reviewers with help from the Abstraction Network methodology and examine why they had escaped detection by the Description Logic (DL) classifier. Case study; Two examples of errors are presented in detail (one missing IS-A relation and one duplicate concept). After correction, SNOMED CT is reclassified to ensure that no new inconsistency was introduced. Conclusions DL-based auditing techniques built in terminology development environments ensure the logical consistency of the terminology. However, complementary approaches are needed for identifying and addressing other types of errors. PMID:20841848
Wei, Duo; Bodenreider, Olivier
2010-01-01
To investigate errors identified in SNOMED CT by human reviewers with help from the Abstraction Network methodology and examine why they had escaped detection by the Description Logic (DL) classifier. Case study; Two examples of errors are presented in detail (one missing IS-A relation and one duplicate concept). After correction, SNOMED CT is reclassified to ensure that no new inconsistency was introduced. DL-based auditing techniques built in terminology development environments ensure the logical consistency of the terminology. However, complementary approaches are needed for identifying and addressing other types of errors.
Software Fault Tolerance: A Tutorial
NASA Technical Reports Server (NTRS)
Torres-Pomales, Wilfredo
2000-01-01
Because of our present inability to produce error-free software, software fault tolerance is and will continue to be an important consideration in software systems. The root cause of software design errors is the complexity of the systems. Compounding the problems in building correct software is the difficulty in assessing the correctness of software for highly complex systems. After a brief overview of the software development processes, we note how hard-to-detect design faults are likely to be introduced during development and how software faults tend to be state-dependent and activated by particular input sequences. Although component reliability is an important quality measure for system level analysis, software reliability is hard to characterize and the use of post-verification reliability estimates remains a controversial issue. For some applications software safety is more important than reliability, and fault tolerance techniques used in those applications are aimed at preventing catastrophes. Single version software fault tolerance techniques discussed include system structuring and closure, atomic actions, inline fault detection, exception handling, and others. Multiversion techniques are based on the assumption that software built differently should fail differently and thus, if one of the redundant versions fails, it is expected that at least one of the other versions will provide an acceptable output. Recovery blocks, N-version programming, and other multiversion techniques are reviewed.
Layout Slam with Model Based Loop Closure for 3d Indoor Corridor Reconstruction
NASA Astrophysics Data System (ADS)
Baligh Jahromi, A.; Sohn, G.; Jung, J.; Shahbazi, M.; Kang, J.
2018-05-01
In this paper, we extend a recently proposed visual Simultaneous Localization and Mapping (SLAM) techniques, known as Layout SLAM, to make it robust against error accumulations, abrupt changes of camera orientation and miss-association of newly visited parts of the scene to the previously visited landmarks. To do so, we present a novel technique of loop closing based on layout model matching; i.e., both model information (topology and geometry of reconstructed models) and image information (photometric features) are used to address a loop-closure detection. The advantages of using the layout-related information in the proposed loop-closing technique are twofold. First, it imposes a metric constraint on the global map consistency and, thus, adjusts the mapping scale drifts. Second, it can reduce matching ambiguity in the context of indoor corridors, where the scene is homogenously textured and extracting sufficient amount of distinguishable point features is a challenging task. To test the impact of the proposed technique on the performance of Layout SLAM, we have performed the experiments on wide-angle videos captured by a handheld camera. This dataset was collected from the indoor corridors of a building at York University. The obtained results demonstrate that the proposed method successfully detects the instances of loops while producing very limited trajectory errors.
Motion estimation accuracy for visible-light/gamma-ray imaging fusion for portable portal monitoring
NASA Astrophysics Data System (ADS)
Karnowski, Thomas P.; Cunningham, Mark F.; Goddard, James S.; Cheriyadat, Anil M.; Hornback, Donald E.; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Gee, Timothy F.
2010-01-01
The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Portable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest. We have constructed a prototype, rapid-deployment portal gamma-ray imaging portal monitor that uses machine vision and gamma-ray imaging to monitor multiple lanes of traffic. Vehicles are detected and tracked by using point detection and optical flow methods as implemented in the OpenCV software library. Points are clustered together but imperfections in the detected points and tracks cause errors in the accuracy of the vehicle position estimates. The resulting errors cause a "blurring" effect in the gamma image of the vehicle. To minimize these errors, we have compared a variety of motion estimation techniques including an estimate using the median of the clustered points, a "best-track" filtering algorithm, and a constant velocity motion estimation model. The accuracy of these methods are contrasted and compared to a manually verified ground-truth measurement by quantifying the rootmean- square differences in the times the vehicles cross the gamma-ray image pixel boundaries compared with a groundtruth manual measurement.
Detecting isotopic ratio outliers
NASA Astrophysics Data System (ADS)
Bayne, C. K.; Smith, D. H.
An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers.
Development and validation of techniques for improving software dependability
NASA Technical Reports Server (NTRS)
Knight, John C.
1992-01-01
A collection of document abstracts are presented on the topic of improving software dependability through NASA grant NAG-1-1123. Specific topics include: modeling of error detection; software inspection; test cases; Magnetic Stereotaxis System safety specifications and fault trees; and injection of synthetic faults into software.
NASA Technical Reports Server (NTRS)
Noble, Viveca K.
1994-01-01
When data is transmitted through a noisy channel, errors are produced within the data rendering it indecipherable. Through the use of error control coding techniques, the bit error rate can be reduced to any desired level without sacrificing the transmission data rate. The Astrionics Laboratory at Marshall Space Flight Center has decided to use a modular, end-to-end telemetry data simulator to simulate the transmission of data from flight to ground and various methods of error control. The simulator includes modules for random data generation, data compression, Consultative Committee for Space Data Systems (CCSDS) transfer frame formation, error correction/detection, error generation and error statistics. The simulator utilizes a concatenated coding scheme which includes CCSDS standard (255,223) Reed-Solomon (RS) code over GF(2(exp 8)) with interleave depth of 5 as the outermost code, (7, 1/2) convolutional code as an inner code and CCSDS recommended (n, n-16) cyclic redundancy check (CRC) code as the innermost code, where n is the number of information bits plus 16 parity bits. The received signal-to-noise for a desired bit error rate is greatly reduced through the use of forward error correction techniques. Even greater coding gain is provided through the use of a concatenated coding scheme. Interleaving/deinterleaving is necessary to randomize burst errors which may appear at the input of the RS decoder. The burst correction capability length is increased in proportion to the interleave depth. The modular nature of the simulator allows for inclusion or exclusion of modules as needed. This paper describes the development and operation of the simulator, the verification of a C-language Reed-Solomon code, and the possibility of using Comdisco SPW(tm) as a tool for determining optimal error control schemes.
Error Analysis of Deep Sequencing of Phage Libraries: Peptides Censored in Sequencing
Matochko, Wadim L.; Derda, Ratmir
2013-01-01
Next-generation sequencing techniques empower selection of ligands from phage-display libraries because they can detect low abundant clones and quantify changes in the copy numbers of clones without excessive selection rounds. Identification of errors in deep sequencing data is the most critical step in this process because these techniques have error rates >1%. Mechanisms that yield errors in Illumina and other techniques have been proposed, but no reports to date describe error analysis in phage libraries. Our paper focuses on error analysis of 7-mer peptide libraries sequenced by Illumina method. Low theoretical complexity of this phage library, as compared to complexity of long genetic reads and genomes, allowed us to describe this library using convenient linear vector and operator framework. We describe a phage library as N × 1 frequency vector n = ||ni||, where ni is the copy number of the ith sequence and N is the theoretical diversity, that is, the total number of all possible sequences. Any manipulation to the library is an operator acting on n. Selection, amplification, or sequencing could be described as a product of a N × N matrix and a stochastic sampling operator (S a). The latter is a random diagonal matrix that describes sampling of a library. In this paper, we focus on the properties of S a and use them to define the sequencing operator (S e q). Sequencing without any bias and errors is S e q = S a IN, where IN is a N × N unity matrix. Any bias in sequencing changes IN to a nonunity matrix. We identified a diagonal censorship matrix (C E N), which describes elimination or statistically significant downsampling, of specific reads during the sequencing process. PMID:24416071
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, M; Suh, T; Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul
2015-06-15
Purpose: To develop and validate an innovative method of using depth sensing cameras and 3D printing techniques for Total Body Irradiation (TBI) treatment planning and compensator fabrication. Methods: A tablet with motion tracking cameras and integrated depth sensing was used to scan a RANDOTM phantom arranged in a TBI treatment booth to detect and store the 3D surface in a point cloud (PC) format. The accuracy of the detected surface was evaluated by comparison to extracted measurements from CT scan images. The thickness, source to surface distance and off-axis distance of the phantom at different body section was measured formore » TBI treatment planning. A 2D map containing a detailed compensator design was calculated to achieve uniform dose distribution throughout the phantom. The compensator was fabricated using a 3D printer, silicone molding and tungsten powder. In vivo dosimetry measurements were performed using optically stimulated luminescent detectors (OSLDs). Results: The whole scan of the anthropomorphic phantom took approximately 30 seconds. The mean error for thickness measurements at each section of phantom compare to CT was 0.44 ± 0.268 cm. These errors resulted in approximately 2% dose error calculation and 0.4 mm tungsten thickness deviation for the compensator design. The accuracy of 3D compensator printing was within 0.2 mm. In vivo measurements for an end-to-end test showed the overall dose difference was within 3%. Conclusion: Motion cameras and depth sensing techniques proved to be an accurate and efficient tool for TBI patient measurement and treatment planning. 3D printing technique improved the efficiency and accuracy of the compensator production and ensured a more accurate treatment delivery.« less
Using Gaussian mixture models to detect and classify dolphin whistles and pulses.
Peso Parada, Pablo; Cardenal-López, Antonio
2014-06-01
In recent years, a number of automatic detection systems for free-ranging cetaceans have been proposed that aim to detect not just surfaced, but also submerged, individuals. These systems are typically based on pattern-recognition techniques applied to underwater acoustic recordings. Using a Gaussian mixture model, a classification system was developed that detects sounds in recordings and classifies them as one of four types: background noise, whistles, pulses, and combined whistles and pulses. The classifier was tested using a database of underwater recordings made off the Spanish coast during 2011. Using cepstral-coefficient-based parameterization, a sound detection rate of 87.5% was achieved for a 23.6% classification error rate. To improve these results, two parameters computed using the multiple signal classification algorithm and an unpredictability measure were included in the classifier. These parameters, which helped to classify the segments containing whistles, increased the detection rate to 90.3% and reduced the classification error rate to 18.1%. Finally, the potential of the multiple signal classification algorithm and unpredictability measure for estimating whistle contours and classifying cetacean species was also explored, with promising results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S; Suh, T; Park, S
2015-06-15
Purpose: The dose-related effects of patient setup errors on biophysical indices were evaluated for conventional wedge (CW) and field-in-field (FIF) whole breast irradiation techniques. Methods: The treatment plans for 10 patients receiving whole left breast irradiation were retrospectively selected. Radiobiological and physical effects caused by dose variations were evaluated by shifting the isocenters and gantry angles of the treatment plans. Dose-volume histograms of the planning target volume (PTV), heart, and lungs were generated, and conformity index (CI), homogeneity index (HI), tumor control probability (TCP), and normal tissue complication probability (NTCP) were determined. Results: For “isocenter shift plan” with posterior direction,more » the D95 of the PTV decreased by approximately 15% and the TCP of the PTV decreased by approximately 50% for the FIF technique and by 40% for the CW; however, the NTCPs of the lungs and heart increased by about 13% and 1%, respectively, for both techniques. Increasing the gantry angle decreased the TCPs of the PTV by 24.4% (CW) and by 34% (FIF). The NTCPs for the two techniques differed by only 3%. In case of CW, the CIs and HIs were much higher than that of the FIF in all cases. It had a significant difference between two techniques (p<0.01). According to our results, however, the FIF had more sensitive response by set up errors rather than CW in bio-physical aspects. Conclusions: The radiobiological-based analysis can detect significant dosimetric errors then, can provide a practical patient quality assurance method to guide the radiobiological and physical effects.« less
Eliminating ambiguity in digital signals
NASA Technical Reports Server (NTRS)
Weber, W. J., III
1979-01-01
Multiamplitude minimum shift keying (mamsk) transmission system, method of differential encoding overcomes problem of ambiguity associated with advanced digital-transmission techniques with little or no penalty in transmission rate, error rate, or system complexity. Principle of method states, if signal points are properly encoded and decoded, bits are detected correctly, regardless of phase ambiguities.
Teaching and Assessing Content Knowledge in Preservice Physical Education
ERIC Educational Resources Information Center
Ayvazo, Shiri; Ward, Phillip; Stuhr, Paul T.
2010-01-01
Most content knowledge (CK) courses in physical education teacher education focus mostly on knowledge of rules, etiquette, techniques, tactics, and performance of the activity. Much less emphasis is placed on error detection and instructional tasks. This article therefore presents teaching and assessment strategies that facilitate the acquisition…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batista, Antonio J. N.; Santos, Bruno; Fernandes, Ana
The data acquisition and control instrumentation cubicles room of the ITER tokamak will be irradiated with neutrons during the fusion reactor operation. A Virtex-6 FPGA from Xilinx (XC6VLX365T-1FFG1156C) is used on the ATCA-IO-PROCESSOR board, included in the ITER Catalog of I and C products - Fast Controllers. The Virtex-6 is a re-programmable logic device where the configuration is stored in Static RAM (SRAM), functional data stored in dedicated Block RAM (BRAM) and functional state logic in Flip-Flops. Single Event Upsets (SEU) due to the ionizing radiation of neutrons causes soft errors, unintended changes (bit-flips) to the values stored in statemore » elements of the FPGA. The SEU monitoring and soft errors repairing, when possible, were explored in this work. An FPGA built-in Soft Error Mitigation (SEM) controller detects and corrects soft errors in the FPGA configuration memory. Novel SEU sensors with Error Correction Code (ECC) detect and repair the BRAM memories. Proper management of SEU can increase reliability and availability of control instrumentation hardware for nuclear applications. The results of the tests performed using the SEM controller and the BRAM SEU sensors are presented for a Virtex-6 FPGA (XC6VLX240T-1FFG1156C) when irradiated with neutrons from the Portuguese Research Reactor (RPI), a 1 MW nuclear fission reactor operated by IST in the neighborhood of Lisbon. Results show that the proposed SEU mitigation technique is able to repair the majority of the detected SEU errors in the configuration and BRAM memories. (authors)« less
(Quickly) Testing the Tester via Path Coverage
NASA Technical Reports Server (NTRS)
Groce, Alex
2009-01-01
The configuration complexity and code size of an automated testing framework may grow to a point that the tester itself becomes a significant software artifact, prone to poor configuration and implementation errors. Unfortunately, testing the tester by using old versions of the software under test (SUT) may be impractical or impossible: test framework changes may have been motivated by interface changes in the tested system, or fault detection may become too expensive in terms of computing time to justify running until errors are detected on older versions of the software. We propose the use of path coverage measures as a "quick and dirty" method for detecting many faults in complex test frameworks. We also note the possibility of using techniques developed to diversify state-space searches in model checking to diversify test focus, and an associated classification of tester changes into focus-changing and non-focus-changing modifications.
Unal, Ozlem; Oztürk-Hişmi, Burcu; Coşkun, Turgay; Tokatlı, Ayşegül; Dursun, Ali; Sivri, Hatice Serap
2012-01-01
In many countries, neonatal screening programs have been unable to expand and have been limited to a few diseases. We highlight herein the opportunity available for the early detection of some inborn errors of metabolism (IEMs) in those countries in which newborn screening programs are limited. All the newborns that are referred to us for hyperphenylalaninemia are examined physically and their blood samples are checked by both high-performance liquid chromatography (HPLC) for blood phenylalanine levels and by amino acid analyzer for the measurement of blood amino acid concentrations. Seven patients who had been referred to our unit for hyperphenylalaninemia were eventually diagnosed with another IEM. A careful physical examination of the babies sent for positive screening test result combined with the utilization of low expense screening techniques at the experienced referring centers might facilitate otherwise missed opportunities for the early detection of some IEMs.
NASA Technical Reports Server (NTRS)
Johnson, Sandra
2001-01-01
The frequency bands being used for new satellite communication systems are constantly increasing to accommodate the requirements for additional capacity. At these higher frequencies, propagation impairments that did not significantly affect the signal at lower frequencies begin to have considerable impact. In Ka-band, the next logical commercial frequency band to be used for satellite communication, attenuation of the signal due to rain is a primary concern. An experimental satellite built by NASA, the Advanced Communication Technology Satellite (ACTS), launched in September 1993, is the first US communication satellite operating in the Ka-band. In addition to higher carrier frequencies, a number of other new technologies, including onboard baseband processing, multiple beam antennas, and rain fade detection and compensation techniques, were designed into the ACTS. Verification experiments have been conducted since the launch to characterize the new technologies. The focus of this thesis is to describe and validate the method used by the ACTS Very Small Aperture Terminal (VSAT) ground stations in detecting the presence of fade in the communication signal and to adaptively compensate for it by the addition of burst rate reduction and forward error correction. Measured data obtained from the ACTS program is used to validate the compensation technique. In this thesis, models in MATLAB are developed to statistically characterize the increased availability achieved by the compensation techniques in terms of the bit error rate time enhancement factor. Several improvements to the ACTS technique are discussed and possible implementations for future Ka-band systems are also presented.
On the performance of energy detection-based CR with SC diversity over IG channel
NASA Astrophysics Data System (ADS)
Verma, Pappu Kumar; Soni, Sanjay Kumar; Jain, Priyanka
2017-12-01
Cognitive radio (CR) is a viable 5G technology to address the scarcity of the spectrum. Energy detection-based sensing is known to be the simplest method as far as hardware complexity is concerned. In this paper, the performance of spectrum sensing-based energy detection technique in CR networks over inverse Gaussian channel for selection combining diversity technique is analysed. More specifically, accurate analytical expressions for the average detection probability under different detection scenarios such as single channel (no diversity) and with diversity reception are derived and evaluated. Further, the detection threshold parameter is optimised by minimising the probability of error over several diversity branches. The results clearly show the significant improvement in the probability of detection when optimised threshold parameter is applied. The impact of shadowing parameters on the performance of energy detector is studied in terms of complimentary receiver operating characteristic curve. To verify the correctness of our analysis, the derived analytical expressions are corroborated via exact result and Monte Carlo simulations.
An Ensemble Method for Spelling Correction in Consumer Health Questions
Kilicoglu, Halil; Fiszman, Marcelo; Roberts, Kirk; Demner-Fushman, Dina
2015-01-01
Orthographic and grammatical errors are a common feature of informal texts written by lay people. Health-related questions asked by consumers are a case in point. Automatic interpretation of consumer health questions is hampered by such errors. In this paper, we propose a method that combines techniques based on edit distance and frequency counts with a contextual similarity-based method for detecting and correcting orthographic errors, including misspellings, word breaks, and punctuation errors. We evaluate our method on a set of spell-corrected questions extracted from the NLM collection of consumer health questions. Our method achieves a F1 score of 0.61, compared to an informed baseline of 0.29, achieved using ESpell, a spelling correction system developed for biomedical queries. Our results show that orthographic similarity is most relevant in spelling error correction in consumer health questions and that frequency and contextual information are complementary to orthographic features. PMID:26958208
Anthropometric data error detecting and correction with a computer
NASA Technical Reports Server (NTRS)
Chesak, D. D.
1981-01-01
Data obtained with automated anthropometric data aquisition equipment was examined for short term errors. The least squares curve fitting technique was used to ascertain which data values were erroneous and to replace them, if possible, with corrected values. Errors were due to random reflections of light, masking of the light rays, and other types of optical and electrical interference. It was found that the signals were impossible to eliminate from the initial data produced by the television cameras, and that this was primarily a software problem requiring a digital computer to refine the data off line. The specific data of interest was related to the arm reach envelope of a human being.
Evaluating video digitizer errors
NASA Astrophysics Data System (ADS)
Peterson, C.
2016-01-01
Analog output video cameras remain popular for recording meteor data. Although these cameras uniformly employ electronic detectors with fixed pixel arrays, the digitization process requires resampling the horizontal lines as they are output in order to reconstruct the pixel data, usually resulting in a new data array of different horizontal dimensions than the native sensor. Pixel timing is not provided by the camera, and must be reconstructed based on line sync information embedded in the analog video signal. Using a technique based on hot pixels, I present evidence that jitter, sync detection, and other timing errors introduce both position and intensity errors which are not present in cameras which internally digitize their sensors and output the digital data directly.
Kazmierczak, Steven C; Leen, Todd K; Erdogmus, Deniz; Carreira-Perpinan, Miguel A
2007-01-01
The clinical laboratory generates large amounts of patient-specific data. Detection of errors that arise during pre-analytical, analytical, and post-analytical processes is difficult. We performed a pilot study, utilizing a multidimensional data reduction technique, to assess the utility of this method for identifying errors in laboratory data. We evaluated 13,670 individual patient records collected over a 2-month period from hospital inpatients and outpatients. We utilized those patient records that contained a complete set of 14 different biochemical analytes. We used two-dimensional generative topographic mapping to project the 14-dimensional record to a two-dimensional space. The use of a two-dimensional generative topographic mapping technique to plot multi-analyte patient data as a two-dimensional graph allows for the rapid identification of potentially anomalous data. Although we performed a retrospective analysis, this technique has the benefit of being able to assess laboratory-generated data in real time, allowing for the rapid identification and correction of anomalous data before they are released to the physician. In addition, serial laboratory multi-analyte data for an individual patient can also be plotted as a two-dimensional plot. This tool might also be useful for assessing patient wellbeing and prognosis.
Evaluating Application Resilience with XRay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Sui; Bronevetsky, Greg; Li, Bin
2015-05-07
The rising count and shrinking feature size of transistors within modern computers is making them increasingly vulnerable to various types of soft faults. This problem is especially acute in high-performance computing (HPC) systems used for scientific computing, because these systems include many thousands of compute cores and nodes, all of which may be utilized in a single large-scale run. The increasing vulnerability of HPC applications to errors induced by soft faults is motivating extensive work on techniques to make these applications more resiilent to such faults, ranging from generic techniques such as replication or checkpoint/restart to algorithmspecific error detection andmore » tolerance techniques. Effective use of such techniques requires a detailed understanding of how a given application is affected by soft faults to ensure that (i) efforts to improve application resilience are spent in the code regions most vulnerable to faults and (ii) the appropriate resilience technique is applied to each code region. This paper presents XRay, a tool to view the application vulnerability to soft errors, and illustrates how XRay can be used in the context of a representative application. In addition to providing actionable insights into application behavior XRay automatically selects the number of fault injection experiments required to provide an informative view of application behavior, ensuring that the information is statistically well-grounded without performing unnecessary experiments.« less
Comparison of methods for accurate end-point detection of potentiometric titrations
NASA Astrophysics Data System (ADS)
Villela, R. L. A.; Borges, P. P.; Vyskočil, L.
2015-01-01
Detection of the end point in potentiometric titrations has wide application on experiments that demand very low measurement uncertainties mainly for certifying reference materials. Simulations of experimental coulometric titration data and consequential error analysis of the end-point values were conducted using a programming code. These simulations revealed that the Levenberg-Marquardt method is in general more accurate than the traditional second derivative technique used currently as end-point detection for potentiometric titrations. Performance of the methods will be compared and presented in this paper.
Image reduction pipeline for the detection of variable sources in highly crowded fields
NASA Astrophysics Data System (ADS)
Gössl, C. A.; Riffeser, A.
2002-01-01
We present a reduction pipeline for CCD (charge-coupled device) images which was built to search for variable sources in highly crowded fields like the M 31 bulge and to handle extensive databases due to large time series. We describe all steps of the standard reduction in detail with emphasis on the realisation of per pixel error propagation: Bias correction, treatment of bad pixels, flatfielding, and filtering of cosmic rays. The problems of conservation of PSF (point spread function) and error propagation in our image alignment procedure as well as the detection algorithm for variable sources are discussed: we build difference images via image convolution with a technique called OIS (optimal image subtraction, Alard & Lupton \\cite{1998ApJ...503..325A}), proceed with an automatic detection of variable sources in noise dominated images and finally apply a PSF-fitting, relative photometry to the sources found. For the WeCAPP project (Riffeser et al. \\cite{2001A&A...0000..00R}) we achieve 3sigma detections for variable sources with an apparent brightness of e.g. m = 24.9;mag at their minimum and a variation of Delta m = 2.4;mag (or m = 21.9;mag brightness minimum and a variation of Delta m = 0.6;mag) on a background signal of 18.1;mag/arcsec2 based on a 500;s exposure with 1.5;arcsec seeing at a 1.2;m telescope. The complete per pixel error propagation allows us to give accurate errors for each measurement.
Effects of Listening Conditions, Error Types, and Ensemble Textures on Error Detection Skills
ERIC Educational Resources Information Center
Waggoner, Dori T.
2011-01-01
This study was designed with three main purposes: (a) to investigate the effects of two listening conditions on error detection accuracy, (b) to compare error detection responses for rhythm errors and pitch errors, and (c) to examine the influences of texture on error detection accuracy. Undergraduate music education students (N = 18) listened to…
FMEA: a model for reducing medical errors.
Chiozza, Maria Laura; Ponzetti, Clemente
2009-06-01
Patient safety is a management issue, in view of the fact that clinical risk management has become an important part of hospital management. Failure Mode and Effect Analysis (FMEA) is a proactive technique for error detection and reduction, firstly introduced within the aerospace industry in the 1960s. Early applications in the health care industry dating back to the 1990s included critical systems in the development and manufacture of drugs and in the prevention of medication errors in hospitals. In 2008, the Technical Committee of the International Organization for Standardization (ISO), licensed a technical specification for medical laboratories suggesting FMEA as a method for prospective risk analysis of high-risk processes. Here we describe the main steps of the FMEA process and review data available on the application of this technique to laboratory medicine. A significant reduction of the risk priority number (RPN) was obtained when applying FMEA to blood cross-matching, to clinical chemistry analytes, as well as to point-of-care testing (POCT).
Experimental study of digital image processing techniques for LANDSAT data
NASA Technical Reports Server (NTRS)
Rifman, S. S. (Principal Investigator); Allendoerfer, W. B.; Caron, R. H.; Pemberton, L. J.; Mckinnon, D. M.; Polanski, G.; Simon, K. W.
1976-01-01
The author has identified the following significant results. Results are reported for: (1) subscene registration, (2) full scene rectification and registration, (3) resampling techniques, (4) and ground control point (GCP) extraction. Subscenes (354 pixels x 234 lines) were registered to approximately 1/4 pixel accuracy and evaluated by change detection imagery for three cases: (1) bulk data registration, (2) precision correction of a reference subscene using GCP data, and (3) independently precision processed subscenes. Full scene rectification and registration results were evaluated by using a correlation technique to measure registration errors of 0.3 pixel rms thoughout the full scene. Resampling evaluations of nearest neighbor and TRW cubic convolution processed data included change detection imagery and feature classification. Resampled data were also evaluated for an MSS scene containing specular solar reflections.
Krug, R; Krastl, G; Jahreis, M
2017-03-01
The objectives of the study were to evaluate the radiographic technical quality of root canal treatment before and after the implementation of a nickel-titanium rotary (NiTiR) preparation followed by a matching-taper single-cone (mSC) obturation and to detect the procedural errors associated with this technique. A random sample of 535 patients received root canal treatment at the Department of Conservative Dentistry and Periodontology at the University of Würzburg: 254 teeth were treated in 2002-2003 by using stainless steel instruments (SSI) for preparation and a lateral compaction (LC) technique (classic group (CG)). Two hundred eighty-one teeth were root filled in 2012-2013 employing NiTiR instruments for the root canal shaping and a mSC technique (advanced group (AG)). The quality assessments were based on the radiographic criteria of the European Society of Endodontology. The presence of voids was recorded separately for the apical, central and cervical thirds of the root canals. Procedural errors, such as ledges, apical transportations, perforations and fractured instruments, were detected. The root canal fillings in the CG and AG were compared using chi-squared and Fisher's exact tests. Multivariable logistic regression was performed to investigate the association between the independent variables (patient age, tooth type and type of treatment) and the dependent variables (density and length). Adequate length was achieved significantly more often in the AG compared to the CG for molars (p = 0.017), mandibular teeth (p = 0.013) and primary root canal treatments (p = 0.024). No significant difference was detected between the AG and CG regarding adequate length in general (p = 0.051) or adequate overall quality of root canal filling (p = 0.1). In the AG, a significant decrease in procedural errors was evident (p = 0.019) and decreases in the densities of the root canal fillings in the cervical (p = 0.01) and central (p = 0.01) thirds of the root canals were also observed. Moreover, root canals in elderly patients exhibited fewer voids (p = 0.009). Rotary root canal preparation followed by a matching-taper single-cone filling technique provides a reliable shaping of the root canal, with fewer procedural errors and a more acceptable filling quality in terms of length and homogeneity in the apical third. Less favourable results were achieved in the central and cervical parts of the root canals. The matching-taper single-cone technique seems to effectively obturate well-tapered root canals after adequate rotary instrumentation. Irregularly shaped canals require additional lateral or warm vertical condensation to avoid voids.
Writing executable assertions to test flight software
NASA Technical Reports Server (NTRS)
Mahmood, A.; Andrews, D. M.; Mccluskey, E. J.
1984-01-01
An executable assertion is a logical statement about the variables or a block of code. If there is no error during execution, the assertion statement results in a true value. Executable assertions can be used for dynamic testing of software. They can be employed for validation during the design phase, and exception and error detection during the operation phase. The present investigation is concerned with the problem of writing executable assertions, taking into account the use of assertions for testing flight software. They can be employed for validation during the design phase, and for exception handling and error detection during the operation phase The digital flight control system and the flight control software are discussed. The considered system provides autopilot and flight director modes of operation for automatic and manual control of the aircraft during all phases of flight. Attention is given to techniques for writing and using assertions to test flight software, an experimental setup to test flight software, and language features to support efficient use of assertions.
Optimal dental age estimation practice in United Arab Emirates' children.
Altalie, Salem; Thevissen, Patrick; Fieuws, Steffen; Willems, Guy
2014-03-01
The aim of the study was to detect whether the Willems model, developed on a Belgian reference sample, can be used for age estimations in United Arab Emirates (UAE) children. Furthermore, it was verified that if added third molars development information in children provided more accurate age predictions. On 1900 panoramic radiographs, the development of left mandibular permanent teeth (PT) and third molars (TM) was registered according the Demirjian and the Kohler technique, respectively. The PT data were used to verify the Willems model and to develop a UAE model and to verify it. Multiple regression models with PT, TM, and PT + TM scores as independent and age as dependent factor were developed. Comparing the verified Willems- and the UAE model revealed differences in mean error of -0.01 year, mean absolute error of 0.01 year and root mean squared error of 0.90 year. Neglectable overall decrease in RMSE was detected combining PM and TM developmental information. © 2013 American Academy of Forensic Sciences.
Sequence-structure mapping errors in the PDB: OB-fold domains
Venclovas, Česlovas; Ginalski, Krzysztof; Kang, Chulhee
2004-01-01
The Protein Data Bank (PDB) is the single most important repository of structural data for proteins and other biologically relevant molecules. Therefore, it is critically important to keep the PDB data, as much as possible, error-free. In this study, we have analyzed PDB crystal structures possessing oligonucleotide/oligosaccharide binding (OB)-fold, one of the highly populated folds, for the presence of sequence-structure mapping errors. Using energy-based structure quality assessment coupled with sequence analyses, we have found that there are at least five OB-structures in the PDB that have regions where sequences have been incorrectly mapped onto the structure. We have demonstrated that the combination of these computation techniques is effective not only in detecting sequence-structure mapping errors, but also in providing guidance to correct them. Namely, we have used results of computational analysis to direct a revision of X-ray data for one of the PDB entries containing a fairly inconspicuous sequence-structure mapping error. The revised structure has been deposited with the PDB. We suggest use of computational energy assessment and sequence analysis techniques to facilitate structure determination when homologs having known structure are available to use as a reference. Such computational analysis may be useful in either guiding the sequence-structure assignment process or verifying the sequence mapping within poorly defined regions. PMID:15133161
Havens: Explicit Reliable Memory Regions for HPC Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hukerikar, Saurabh; Engelmann, Christian
2016-01-01
Supporting error resilience in future exascale-class supercomputing systems is a critical challenge. Due to transistor scaling trends and increasing memory density, scientific simulations are expected to experience more interruptions caused by transient errors in the system memory. Existing hardware-based detection and recovery techniques will be inadequate to manage the presence of high memory fault rates. In this paper we propose a partial memory protection scheme based on region-based memory management. We define the concept of regions called havens that provide fault protection for program objects. We provide reliability for the regions through a software-based parity protection mechanism. Our approach enablesmore » critical program objects to be placed in these havens. The fault coverage provided by our approach is application agnostic, unlike algorithm-based fault tolerance techniques.« less
A storage ring experiment to detect a proton electric dipole moment
Anastassopoulos, V.; Andrianov, S.; Baartman, R.; ...
2016-11-29
We describe a new experiment to detect a permanent electric dipole moment of the proton with a sensitivity of 10 $-$29e cm by using polarized “magic” momentum 0.7 GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the Standard Model at the scale of 3000 TeV.
A storage ring experiment to detect a proton electric dipole moment.
Anastassopoulos, V; Andrianov, S; Baartman, R; Baessler, S; Bai, M; Benante, J; Berz, M; Blaskiewicz, M; Bowcock, T; Brown, K; Casey, B; Conte, M; Crnkovic, J D; D'Imperio, N; Fanourakis, G; Fedotov, A; Fierlinger, P; Fischer, W; Gaisser, M O; Giomataris, Y; Grosse-Perdekamp, M; Guidoboni, G; Hacıömeroğlu, S; Hoffstaetter, G; Huang, H; Incagli, M; Ivanov, A; Kawall, D; Kim, Y I; King, B; Koop, I A; Lazarus, D M; Lebedev, V; Lee, M J; Lee, S; Lee, Y H; Lehrach, A; Lenisa, P; Levi Sandri, P; Luccio, A U; Lyapin, A; MacKay, W; Maier, R; Makino, K; Malitsky, N; Marciano, W J; Meng, W; Meot, F; Metodiev, E M; Miceli, L; Moricciani, D; Morse, W M; Nagaitsev, S; Nayak, S K; Orlov, Y F; Ozben, C S; Park, S T; Pesce, A; Petrakou, E; Pile, P; Podobedov, B; Polychronakos, V; Pretz, J; Ptitsyn, V; Ramberg, E; Raparia, D; Rathmann, F; Rescia, S; Roser, T; Kamal Sayed, H; Semertzidis, Y K; Senichev, Y; Sidorin, A; Silenko, A; Simos, N; Stahl, A; Stephenson, E J; Ströher, H; Syphers, M J; Talman, J; Talman, R M; Tishchenko, V; Touramanis, C; Tsoupas, N; Venanzoni, G; Vetter, K; Vlassis, S; Won, E; Zavattini, G; Zelenski, A; Zioutas, K
2016-11-01
A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of 10 -29 e ⋅ cm by using polarized "magic" momentum 0.7 GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the standard model at the scale of 3000 TeV.
A storage ring experiment to detect a proton electric dipole moment
NASA Astrophysics Data System (ADS)
Anastassopoulos, V.; Andrianov, S.; Baartman, R.; Baessler, S.; Bai, M.; Benante, J.; Berz, M.; Blaskiewicz, M.; Bowcock, T.; Brown, K.; Casey, B.; Conte, M.; Crnkovic, J. D.; D'Imperio, N.; Fanourakis, G.; Fedotov, A.; Fierlinger, P.; Fischer, W.; Gaisser, M. O.; Giomataris, Y.; Grosse-Perdekamp, M.; Guidoboni, G.; Hacıömeroǧlu, S.; Hoffstaetter, G.; Huang, H.; Incagli, M.; Ivanov, A.; Kawall, D.; Kim, Y. I.; King, B.; Koop, I. A.; Lazarus, D. M.; Lebedev, V.; Lee, M. J.; Lee, S.; Lee, Y. H.; Lehrach, A.; Lenisa, P.; Levi Sandri, P.; Luccio, A. U.; Lyapin, A.; MacKay, W.; Maier, R.; Makino, K.; Malitsky, N.; Marciano, W. J.; Meng, W.; Meot, F.; Metodiev, E. M.; Miceli, L.; Moricciani, D.; Morse, W. M.; Nagaitsev, S.; Nayak, S. K.; Orlov, Y. F.; Ozben, C. S.; Park, S. T.; Pesce, A.; Petrakou, E.; Pile, P.; Podobedov, B.; Polychronakos, V.; Pretz, J.; Ptitsyn, V.; Ramberg, E.; Raparia, D.; Rathmann, F.; Rescia, S.; Roser, T.; Kamal Sayed, H.; Semertzidis, Y. K.; Senichev, Y.; Sidorin, A.; Silenko, A.; Simos, N.; Stahl, A.; Stephenson, E. J.; Ströher, H.; Syphers, M. J.; Talman, J.; Talman, R. M.; Tishchenko, V.; Touramanis, C.; Tsoupas, N.; Venanzoni, G.; Vetter, K.; Vlassis, S.; Won, E.; Zavattini, G.; Zelenski, A.; Zioutas, K.
2016-11-01
A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of 10-29 e ṡ cm by using polarized "magic" momentum 0.7 GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the standard model at the scale of 3000 TeV.
Quantifying Biomass and Bare Earth Changes from the Hayman Fire Using Multi-temporal Lidar
NASA Astrophysics Data System (ADS)
Stoker, J. M.; Kaufmann, M. R.; Greenlee, S. K.
2007-12-01
Small-footprint multiple-return lidar data collected in the Cheesman Lake property prior to the 2002 Hayman fire in Colorado provided an excellent opportunity to evaluate Lidar as a tool to predict and analyze fire effects on both soil erosion and overstory structure. Re-measuring this area and applying change detection techniques allowed for analyses at a high level of detail. Our primary objectives focused on the use of change detection techniques using multi-temporal lidar data to: (1) evaluate the effectiveness of change detection to identify and quantify areas of erosion or deposition caused by post-fire rain events and rehab activities; (2) identify and quantify areas of biomass loss or forest structure change due to the Hayman fire; and (3) examine effects of pre-fire fuels and vegetation structure derived from lidar data on patterns of burn severity. While we were successful in identifying areas where changes occurred, the original error bounds on the variation in actual elevations made it difficult, if not misleading to quantify volumes of material changed on a per pixel basis. In order to minimize these variations in the two datasets, we investigated several correction and co-registration methodologies. The lessons learned from this project highlight the need for a high level of flight planning and understanding of errors in a lidar dataset in order to correctly estimate and report quantities of vertical change. Directly measuring vertical change using only lidar without ancillary information can provide errors that could make quantifications confusing, especially in areas with steep slopes.
A Discriminative Approach to EEG Seizure Detection
Johnson, Ashley N.; Sow, Daby; Biem, Alain
2011-01-01
Seizures are abnormal sudden discharges in the brain with signatures represented in electroencephalograms (EEG). The efficacy of the application of speech processing techniques to discriminate between seizure and non-seizure states in EEGs is reported. The approach accounts for the challenges of unbalanced datasets (seizure and non-seizure), while also showing a system capable of real-time seizure detection. The Minimum Classification Error (MCE) algorithm, which is a discriminative learning algorithm with wide-use in speech processing, is applied and compared with conventional classification techniques that have already been applied to the discrimination between seizure and non-seizure states in the literature. The system is evaluated on 22 pediatric patients multi-channel EEG recordings. Experimental results show that the application of speech processing techniques and MCE compare favorably with conventional classification techniques in terms of classification performance, while requiring less computational overhead. The results strongly suggests the possibility of deploying the designed system at the bedside. PMID:22195192
Method, apparatus and system to compensate for drift by physically unclonable function circuitry
Hamlet, Jason
2016-11-22
Techniques and mechanisms to detect and compensate for drift by a physically uncloneable function (PUF) circuit. In an embodiment, first state information is registered as reference information to be made available for subsequent evaluation of whether drift by PUF circuitry has occurred. The first state information is associated with a first error correction strength. The first state information is generated based on a first PUF value output by the PUF circuitry. In another embodiment, second state information is determined based on a second PUF value that is output by the PUF circuitry. An evaluation of whether drift has occurred is performed based on the first state information and the second state information, the evaluation including determining whether a threshold error correction strength is exceeded concurrent with a magnitude of error being less than the first error correction strength.
Milekovic, Tomislav; Ball, Tonio; Schulze-Bonhage, Andreas; Aertsen, Ad; Mehring, Carsten
2013-01-01
Background Brain-machine interfaces (BMIs) can translate the neuronal activity underlying a user’s movement intention into movements of an artificial effector. In spite of continuous improvements, errors in movement decoding are still a major problem of current BMI systems. If the difference between the decoded and intended movements becomes noticeable, it may lead to an execution error. Outcome errors, where subjects fail to reach a certain movement goal, are also present during online BMI operation. Detecting such errors can be beneficial for BMI operation: (i) errors can be corrected online after being detected and (ii) adaptive BMI decoding algorithm can be updated to make fewer errors in the future. Methodology/Principal Findings Here, we show that error events can be detected from human electrocorticography (ECoG) during a continuous task with high precision, given a temporal tolerance of 300–400 milliseconds. We quantified the error detection accuracy and showed that, using only a small subset of 2×2 ECoG electrodes, 82% of detection information for outcome error and 74% of detection information for execution error available from all ECoG electrodes could be retained. Conclusions/Significance The error detection method presented here could be used to correct errors made during BMI operation or to adapt a BMI algorithm to make fewer errors in the future. Furthermore, our results indicate that smaller ECoG implant could be used for error detection. Reducing the size of an ECoG electrode implant used for BMI decoding and error detection could significantly reduce the medical risk of implantation. PMID:23383315
Extreme Algal Bloom Detection with MERIS
NASA Astrophysics Data System (ADS)
Amin, R.; Gilerson, A.; Gould, R.; Arnone, R.; Ahmed, S.
2009-05-01
Harmful Algal Blooms (HAB's) are a major concern all over the world due to their negative impacts on the marine environment, human health, and the economy. Their detection from space still remains a challenge particularly in turbid coastal waters. In this study we propose a simple reflectance band difference approach for use with Medium Resolution Imaging Spectrometer (MERIS) data to detect intense plankton blooms. For convenience we label this approach as the Extreme Bloom Index (EBI) which is defined as EBI = Rrs (709) - Rrs (665). Our initial analysis shows that this band difference approach has some advantages over the band ratio approaches, particularly in reducing errors due to imperfect atmospheric corrections. We also do a comparison between the proposed EBI technique and the Maximum Chlorophyll Index (MCI) Gower technique. Our preliminary result shows that both the EBI and MCI indeces detect intense plankton blooms, however, MCI is more vulnerable in highly scattering waters, giving more positive false alarms than EBI.
Non-destructive investigation of thermoplastic reinforced composites
Hassen, Ahmed; Taheri, Hossein; Vaidya, Uday
2016-05-09
This paper studies various manufacturing defects in glass fiber/Polypropylene (PP) composite parts and their methods of detection. Foreign Object Inclusion (FOI) of different shapes, sizes, and materials were placed in a glass fiber/PP panel made by compression molding. The paper aims to characterize the fiber orientation and fiber related defects such as fiber waviness in the composite specimen. Comprehensive investigation for different Non Destructive Evaluation (NDE) techniques, namely X-ray radiography and Ultrasonic Testing (UT) techniques to trace and characterize the embedded defects and the composite texture are presented. Conventional X-ray radiography successfully identified the fiber orientation in two dimension (2-D)more » plane; however, information for the sample depth was not captured. The radiography techniques showed low relative errors for the defect size measurements (maximum error was below 9.5%) when compared to the ultrasonic techniques. Ultrasonic techniques were able to map all the embedded artificial defects. Phase Array (PA) ultrasonic technique was able to precisely locate the FOI in the glass fiber/PP specimen. Nerveless, the shape and size of the defects were not accurately determined due to the high signal attenuation and distortion characteristics of the E-glass fiber.« less
Vision based techniques for rotorcraft low altitude flight
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Suorsa, Ray; Smith, Philip
1991-01-01
An overview of research in obstacle detection at NASA Ames Research Center is presented. The research applies techniques from computer vision to automation of rotorcraft navigation. The development of a methodology for detecting the range to obstacles based on the maximum utilization of passive sensors is emphasized. The development of a flight and image data base for verification of vision-based algorithms, and a passive ranging methodology tailored to the needs of helicopter flight are discussed. Preliminary results indicate that it is possible to obtain adequate range estimates except at regions close to the FOE. Closer to the FOE, the error in range increases since the magnitude of the disparity gets smaller, resulting in a low SNR.
Fault Detection and Safety in Closed-Loop Artificial Pancreas Systems
2014-01-01
Continuous subcutaneous insulin infusion pumps and continuous glucose monitors enable individuals with type 1 diabetes to achieve tighter blood glucose control and are critical components in a closed-loop artificial pancreas. Insulin infusion sets can fail and continuous glucose monitor sensor signals can suffer from a variety of anomalies, including signal dropout and pressure-induced sensor attenuations. In addition to hardware-based failures, software and human-induced errors can cause safety-related problems. Techniques for fault detection, safety analyses, and remote monitoring techniques that have been applied in other industries and applications, such as chemical process plants and commercial aircraft, are discussed and placed in the context of a closed-loop artificial pancreas. PMID:25049365
Channel modeling, signal processing and coding for perpendicular magnetic recording
NASA Astrophysics Data System (ADS)
Wu, Zheng
With the increasing areal density in magnetic recording systems, perpendicular recording has replaced longitudinal recording to overcome the superparamagnetic limit. Studies on perpendicular recording channels including aspects of channel modeling, signal processing and coding techniques are presented in this dissertation. To optimize a high density perpendicular magnetic recording system, one needs to know the tradeoffs between various components of the system including the read/write transducers, the magnetic medium, and the read channel. We extend the work by Chaichanavong on the parameter optimization for systems via design curves. Different signal processing and coding techniques are studied. Information-theoretic tools are utilized to determine the acceptable region for the channel parameters when optimal detection and linear coding techniques are used. Our results show that a considerable gain can be achieved by the optimal detection and coding techniques. The read-write process in perpendicular magnetic recording channels includes a number of nonlinear effects. Nonlinear transition shift (NLTS) is one of them. The signal distortion induced by NLTS can be reduced by write precompensation during data recording. We numerically evaluate the effect of NLTS on the read-back signal and examine the effectiveness of several write precompensation schemes in combating NLTS in a channel characterized by both transition jitter noise and additive white Gaussian electronics noise. We also present an analytical method to estimate the bit-error-rate and use it to help determine the optimal write precompensation values in multi-level precompensation schemes. We propose a mean-adjusted pattern-dependent noise predictive (PDNP) detection algorithm for use on the channel with NLTS. We show that this detector can offer significant improvements in bit-error-rate (BER) compared to conventional Viterbi and PDNP detectors. Moreover, the system performance can be further improved by combining the new detector with a simple write precompensation scheme. Soft-decision decoding for algebraic codes can improve performance for magnetic recording systems. In this dissertation, we propose two soft-decision decoding methods for tensor-product parity codes. We also present a list decoding algorithm for generalized error locating codes.
Detection and quantification of adulteration in sandalwood oil through near infrared spectroscopy.
Kuriakose, Saji; Thankappan, Xavier; Joe, Hubert; Venkataraman, Venkateswaran
2010-10-01
The confirmation of authenticity of essential oils and the detection of adulteration are problems of increasing importance in the perfumes, pharmaceutical, flavor and fragrance industries. This is especially true for 'value added' products like sandalwood oil. A methodical study is conducted here to demonstrate the potential use of Near Infrared (NIR) spectroscopy along with multivariate calibration models like principal component regression (PCR) and partial least square regression (PLSR) as rapid analytical techniques for the qualitative and quantitative determination of adulterants in sandalwood oil. After suitable pre-processing of the NIR raw spectral data, the models are built-up by cross-validation. The lowest Root Mean Square Error of Cross-Validation and Calibration (RMSECV and RMSEC % v/v) are used as a decision supporting system to fix the optimal number of factors. The coefficient of determination (R(2)) and the Root Mean Square Error of Prediction (RMSEP % v/v) in the prediction sets are used as the evaluation parameters (R(2) = 0.9999 and RMSEP = 0.01355). The overall result leads to the conclusion that NIR spectroscopy with chemometric techniques could be successfully used as a rapid, simple, instant and non-destructive method for the detection of adulterants, even 1% of the low-grade oils, in the high quality form of sandalwood oil.
Trainor, Patrick J; DeFilippis, Andrew P; Rai, Shesh N
2017-06-21
Statistical classification is a critical component of utilizing metabolomics data for examining the molecular determinants of phenotypes. Despite this, a comprehensive and rigorous evaluation of the accuracy of classification techniques for phenotype discrimination given metabolomics data has not been conducted. We conducted such an evaluation using both simulated and real metabolomics datasets, comparing Partial Least Squares-Discriminant Analysis (PLS-DA), Sparse PLS-DA, Random Forests, Support Vector Machines (SVM), Artificial Neural Network, k -Nearest Neighbors ( k -NN), and Naïve Bayes classification techniques for discrimination. We evaluated the techniques on simulated data generated to mimic global untargeted metabolomics data by incorporating realistic block-wise correlation and partial correlation structures for mimicking the correlations and metabolite clustering generated by biological processes. Over the simulation studies, covariance structures, means, and effect sizes were stochastically varied to provide consistent estimates of classifier performance over a wide range of possible scenarios. The effects of the presence of non-normal error distributions, the introduction of biological and technical outliers, unbalanced phenotype allocation, missing values due to abundances below a limit of detection, and the effect of prior-significance filtering (dimension reduction) were evaluated via simulation. In each simulation, classifier parameters, such as the number of hidden nodes in a Neural Network, were optimized by cross-validation to minimize the probability of detecting spurious results due to poorly tuned classifiers. Classifier performance was then evaluated using real metabolomics datasets of varying sample medium, sample size, and experimental design. We report that in the most realistic simulation studies that incorporated non-normal error distributions, unbalanced phenotype allocation, outliers, missing values, and dimension reduction, classifier performance (least to greatest error) was ranked as follows: SVM, Random Forest, Naïve Bayes, sPLS-DA, Neural Networks, PLS-DA and k -NN classifiers. When non-normal error distributions were introduced, the performance of PLS-DA and k -NN classifiers deteriorated further relative to the remaining techniques. Over the real datasets, a trend of better performance of SVM and Random Forest classifier performance was observed.
Decision-directed detector for overlapping PCM/NRZ signals.
NASA Technical Reports Server (NTRS)
Wang, C. D.; Noack, T. L.
1973-01-01
A decision-directed (DD) technique for the detection of overlapping PCM/NRZ signals in the presence of white Gaussian noise is investigated. The performance of the DD detector is represented by probability of error Pe versus input signal-to-noise ratio (SNR). To examine how much improvement in performance can be achieved with this technique, Pe's with and without DD feedback are evaluated in parallel. Further, analytical results are compared with those found by Monte Carlo simulations. The results are in good agreement.
High-density digital recording
NASA Technical Reports Server (NTRS)
Kalil, F. (Editor); Buschman, A. (Editor)
1985-01-01
The problems associated with high-density digital recording (HDDR) are discussed. Five independent users of HDDR systems and their problems, solutions, and insights are provided as guidance for other users of HDDR systems. Various pulse code modulation coding techniques are reviewed. An introduction to error detection and correction head optimization theory and perpendicular recording are provided. Competitive tape recorder manufacturers apply all of the above theories and techniques and present their offerings. The methodology used by the HDDR Users Subcommittee of THIC to evaluate parallel HDDR systems is presented.
Warrick, J.A.; Rubin, D.M.; Ruggiero, P.; Harney, J.N.; Draut, A.E.; Buscombe, D.
2009-01-01
A new application of the autocorrelation grain size analysis technique for mixed to coarse sediment settings has been investigated. Photographs of sand- to boulder-sized sediment along the Elwha River delta beach were taken from approximately 1??2 m above the ground surface, and detailed grain size measurements were made from 32 of these sites for calibration and validation. Digital photographs were found to provide accurate estimates of the long and intermediate axes of the surface sediment (r2 > 0??98), but poor estimates of the short axes (r2 = 0??68), suggesting that these short axes were naturally oriented in the vertical dimension. The autocorrelation method was successfully applied resulting in total irreducible error of 14% over a range of mean grain sizes of 1 to 200 mm. Compared with reported edge and object-detection results, it is noted that the autocorrelation method presented here has lower error and can be applied to a much broader range of mean grain sizes without altering the physical set-up of the camera (~200-fold versus ~6-fold). The approach is considerably less sensitive to lighting conditions than object-detection methods, although autocorrelation estimates do improve when measures are taken to shade sediments from direct sunlight. The effects of wet and dry conditions are also evaluated and discussed. The technique provides an estimate of grain size sorting from the easily calculated autocorrelation standard error, which is correlated with the graphical standard deviation at an r2 of 0??69. The technique is transferable to other sites when calibrated with linear corrections based on photo-based measurements, as shown by excellent grain-size analysis results (r2 = 0??97, irreducible error = 16%) from samples from the mixed grain size beaches of Kachemak Bay, Alaska. Thus, a method has been developed to measure mean grain size and sorting properties of coarse sediments. ?? 2009 John Wiley & Sons, Ltd.
An intelligent detection method for high-field asymmetric waveform ion mobility spectrometry.
Li, Yue; Yu, Jianwen; Ruan, Zhiming; Chen, Chilai; Chen, Ran; Wang, Han; Liu, Youjiang; Wang, Xiaozhi; Li, Shan
2018-04-01
In conventional high-field asymmetric waveform ion mobility spectrometry signal acquisition, multi-cycle detection is time consuming and limits somewhat the technique's scope for rapid field detection. In this study, a novel intelligent detection approach has been developed in which a threshold was set on the relative error of α parameters, which can eliminate unnecessary time spent on detection. In this method, two full-spectrum scans were made in advance to obtain the estimated compensation voltage at different dispersion voltages, resulting in a narrowing down of the whole scan area to just the peak area(s) of interest. This intelligent detection method can reduce the detection time to 5-10% of that of the original full-spectrum scan in a single cycle.
Ni, Yizhao; Lingren, Todd; Hall, Eric S; Leonard, Matthew; Melton, Kristin; Kirkendall, Eric S
2018-05-01
Timely identification of medication administration errors (MAEs) promises great benefits for mitigating medication errors and associated harm. Despite previous efforts utilizing computerized methods to monitor medication errors, sustaining effective and accurate detection of MAEs remains challenging. In this study, we developed a real-time MAE detection system and evaluated its performance prior to system integration into institutional workflows. Our prospective observational study included automated MAE detection of 10 high-risk medications and fluids for patients admitted to the neonatal intensive care unit at Cincinnati Children's Hospital Medical Center during a 4-month period. The automated system extracted real-time medication use information from the institutional electronic health records and identified MAEs using logic-based rules and natural language processing techniques. The MAE summary was delivered via a real-time messaging platform to promote reduction of patient exposure to potential harm. System performance was validated using a physician-generated gold standard of MAE events, and results were compared with those of current practice (incident reporting and trigger tools). Physicians identified 116 MAEs from 10 104 medication administrations during the study period. Compared to current practice, the sensitivity with automated MAE detection was improved significantly from 4.3% to 85.3% (P = .009), with a positive predictive value of 78.0%. Furthermore, the system showed potential to reduce patient exposure to harm, from 256 min to 35 min (P < .001). The automated system demonstrated improved capacity for identifying MAEs while guarding against alert fatigue. It also showed promise for reducing patient exposure to potential harm following MAE events.
NASA Astrophysics Data System (ADS)
Yim, Keun Soo
This dissertation summarizes experimental validation and co-design studies conducted to optimize the fault detection capabilities and overheads in hybrid computer systems (e.g., using CPUs and Graphics Processing Units, or GPUs), and consequently to improve the scalability of parallel computer systems using computational accelerators. The experimental validation studies were conducted to help us understand the failure characteristics of CPU-GPU hybrid computer systems under various types of hardware faults. The main characterization targets were faults that are difficult to detect and/or recover from, e.g., faults that cause long latency failures (Ch. 3), faults in dynamically allocated resources (Ch. 4), faults in GPUs (Ch. 5), faults in MPI programs (Ch. 6), and microarchitecture-level faults with specific timing features (Ch. 7). The co-design studies were based on the characterization results. One of the co-designed systems has a set of source-to-source translators that customize and strategically place error detectors in the source code of target GPU programs (Ch. 5). Another co-designed system uses an extension card to learn the normal behavioral and semantic execution patterns of message-passing processes executing on CPUs, and to detect abnormal behaviors of those parallel processes (Ch. 6). The third co-designed system is a co-processor that has a set of new instructions in order to support software-implemented fault detection techniques (Ch. 7). The work described in this dissertation gains more importance because heterogeneous processors have become an essential component of state-of-the-art supercomputers. GPUs were used in three of the five fastest supercomputers that were operating in 2011. Our work included comprehensive fault characterization studies in CPU-GPU hybrid computers. In CPUs, we monitored the target systems for a long period of time after injecting faults (a temporally comprehensive experiment), and injected faults into various types of program states that included dynamically allocated memory (to be spatially comprehensive). In GPUs, we used fault injection studies to demonstrate the importance of detecting silent data corruption (SDC) errors that are mainly due to the lack of fine-grained protections and the massive use of fault-insensitive data. This dissertation also presents transparent fault tolerance frameworks and techniques that are directly applicable to hybrid computers built using only commercial off-the-shelf hardware components. This dissertation shows that by developing understanding of the failure characteristics and error propagation paths of target programs, we were able to create fault tolerance frameworks and techniques that can quickly detect and recover from hardware faults with low performance and hardware overheads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, S; Wu, Y; Chang, X
Purpose: A novel computer software system, namely APDV (Automatic Pre-Delivery Verification), has been developed for verifying patient treatment plan parameters right prior to treatment deliveries in order to automatically detect and prevent catastrophic errors. Methods: APDV is designed to continuously monitor new DICOM plan files on the TMS computer at the treatment console. When new plans to be delivered are detected, APDV checks the consistencies of plan parameters and high-level plan statistics using underlying rules and statistical properties based on given treatment site, technique and modality. These rules were quantitatively derived by retrospectively analyzing all the EBRT treatment plans ofmore » the past 8 years at authors’ institution. Therapists and physicists will be notified with a warning message displayed on the TMS computer if any critical errors are detected, and check results, confirmation, together with dismissal actions will be saved into database for further review. Results: APDV was implemented as a stand-alone program using C# to ensure required real time performance. Mean values and standard deviations were quantitatively derived for various plan parameters including MLC usage, MU/cGy radio, beam SSD, beam weighting, and the beam gantry angles (only for lateral targets) per treatment site, technique and modality. 2D-based rules of combined MU/cGy ratio and averaged SSD values were also derived using joint probabilities of confidence error ellipses. The statistics of these major treatment plan parameters quantitatively evaluate the consistency of any treatment plans which facilitates automatic APDV checking procedures. Conclusion: APDV could be useful in detecting and preventing catastrophic errors immediately before treatment deliveries. Future plan including automatic patient identify and patient setup checks after patient daily images are acquired by the machine and become available on the TMS computer. This project is supported by the Agency for Healthcare Research and Quality (AHRQ) under award 1R01HS0222888. The senior author received research grants from ViewRay Inc. and Varian Medical System.« less
Executable assertions and flight software
NASA Technical Reports Server (NTRS)
Mahmood, A.; Andrews, D. M.; Mccluskey, E. J.
1984-01-01
Executable assertions are used to test flight control software. The techniques used for testing flight software; however, are different from the techniques used to test other kinds of software. This is because of the redundant nature of flight software. An experimental setup for testing flight software using executable assertions is described. Techniques for writing and using executable assertions to test flight software are presented. The error detection capability of assertions is studied and many examples of assertions are given. The issues of placement and complexity of assertions and the language features to support efficient use of assertions are discussed.
Reflotron cholesterol measurement in general practice: accuracy and detection of errors.
Ball, M J; Robertson, I K; Woods, M
1994-11-01
Comparison of cholesterol determinations by nurses using a Reflotron analyser in a general practice setting showed a good correlation with plasma cholesterol determinations by wet chemistry in a clinical biochemistry laboratory. A limited number of comparisons did, however, give a much lower result on the Reflotron. In an experimental situation, small sample volumes (which could result from poor technique) were shown to produce falsely low readings. A simple method which may immediately detect falsely low Reflotron readings is discussed.
A storage ring experiment to detect a proton electric dipole moment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anastassopoulos, V.; Andrianov, S.; Baartman, R.
2016-11-01
A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity ofmore » $$10^{-29}e\\cdot$$cm by using polarized "magic" momentum $0.7$~GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the Standard Model at the scale of 3000~TeV.« less
Statistical Techniques for Assessing water‐quality effects of BMPs
Walker, John F.
1994-01-01
Little has been published on the effectiveness of various management practices in small rural lakes and streams at the watershed scale. In this study, statistical techniques were used to test for changes in water‐quality data from watersheds where best management practices (BMPs) were implemented. Reductions in data variability due to climate and seasonality were accomplished through the use of regression methods. This study discusses the merits of using storm‐mass‐transport data as a means of improving the ability to detect BMP effects on stream‐water quality. Statistical techniques were applied to suspended‐sediment records from three rural watersheds in Illinois for the period 1981–84. None of the techniques identified changes in suspended sediment, primarily because of the small degree of BMP implementation and because of potential errors introduced through the estimation of storm‐mass transport. A Monte Carlo sensitivity analysis was used to determine the level of discrete change that could be detected for each watershed. In all cases, the use of regressions improved the ability to detect trends.Read More: http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9437(1994)120:2(334)
Application of Lamendin's adult dental aging technique to a diverse skeletal sample.
Prince, Debra A; Ubelaker, Douglas H
2002-01-01
Lamendin et al. (1) proposed a technique to estimate age at death for adults by analyzing single-rooted teeth. They expressed age as a function of two factors: translucency of the tooth root and periodontosis (gingival regression). In their study, they analyzed 306 singled rooted teeth that were extracted at autopsy from 208 individuals of known age at death, all of whom were considered as having a French ancestry. Their sample consisted of 135 males, 73 females, 198 whites, and 10 blacks. The sample ranged in age from 22 to 90 years of age. By using a simple formulae (A = 0.18 x P + 0.42 x T + 25.53, where A = Age in years, P = Periodontosis height x 100/root height, and T = Transparency height x 100/root height), Lamendin et al. were able to estimate age at death with a mean error of +/- 10 years on their working sample and +/- 8.4 years on a forensic control sample. Lamendin found this technique to work well with a French population, but did not test it outside of that sample area. This study tests the accuracy of this adult aging technique on a more diverse skeletal population, the Terry Collection housed at the Smithsonian's National Museum of Natural History. Our sample consists of 400 teeth from 94 black females, 72 white females, 98 black males, and 95 white males, ranging from 25 to 99 years. Lamendin's technique was applied to this sample to test its applicability to a population not of French origin. Providing results from a diverse skeletal population will aid in establishing the validity of this method to be used in forensic cases, its ideal purpose. Our results suggest that Lamendin's method estimates age fairly accurately outside of the French sample yielding a mean error of 8.2 years, standard deviation 6.9 years, and standard error of the mean 0.34 years. In addition, when ancestry and sex are accounted for, the mean errors are reduced for each group (black females, white females, black males, and white males). Lamendin et al. reported an inter-observer error of 9+/-1.8 and 10+/-2 sears from two independent observers. Forty teeth were randomly remeasured from the Terry Collection in order to assess an intra-observer error. From this retest, an intra-observer error of 6.5 years was detected.
Leung, Ross Ka-Kit; Dong, Zhi Qiang; Sa, Fei; Chong, Cheong Meng; Lei, Si Wan; Tsui, Stephen Kwok-Wing; Lee, Simon Ming-Yuen
2014-02-01
Minor variants have significant implications in quasispecies evolution, early cancer detection and non-invasive fetal genotyping but their accurate detection by next-generation sequencing (NGS) is hampered by sequencing errors. We generated sequencing data from mixtures at predetermined ratios in order to provide insight into sequencing errors and variations that can arise for which simulation cannot be performed. The information also enables better parameterization in depth of coverage, read quality and heterogeneity, library preparation techniques, technical repeatability for mathematical modeling, theory development and simulation experimental design. We devised minor variant authentication rules that achieved 100% accuracy in both testing and validation experiments. The rules are free from tedious inspection of alignment accuracy, sequencing read quality or errors introduced by homopolymers. The authentication processes only require minor variants to: (1) have minimum depth of coverage larger than 30; (2) be reported by (a) four or more variant callers, or (b) DiBayes or LoFreq, plus SNVer (or BWA when no results are returned by SNVer), and with the interassay coefficient of variation (CV) no larger than 0.1. Quantification accuracy undermined by sequencing errors could neither be overcome by ultra-deep sequencing, nor recruiting more variant callers to reach a consensus, such that consistent underestimation and overestimation (i.e. low CV) were observed. To accommodate stochastic error and adjust the observed ratio within a specified accuracy, we presented a proof of concept for the use of a double calibration curve for quantification, which provides an important reference towards potential industrial-scale fabrication of calibrants for NGS.
Quantitative measurement of MLC leaf displacements using an electronic portal image device
NASA Astrophysics Data System (ADS)
Yang, Yong; Xing, Lei
2004-04-01
The success of an IMRT treatment relies on the positioning accuracy of the MLC (multileaf collimator) leaves for both step-and-shoot and dynamic deliveries. In practice, however, there exists no effective and quantitative means for routine MLC QA and this has become one of the bottleneck problems in IMRT implementation. In this work we present an electronic portal image device (EPID) based method for fast and accurate measurement of MLC leaf positions at arbitrary locations within the 40 cm × 40 cm radiation field. The new technique utilizes the fact that the integral signal in a small region of interest (ROI) is a sensitive and reliable indicator of the leaf displacement. In this approach, the integral signal at a ROI was expressed as a weighted sum of the contributions from the displacements of the leaf above the point and the adjacent leaves. The weighting factors or linear coefficients of the system equations were determined by fitting the integral signal data for a group of pre-designed MLC leaf sequences to the known leaf displacements that were intentionally introduced during the creation of the leaf sequences. Once the calibration is done, the system can be used for routine MLC leaf positioning QA to detect possible leaf errors. A series of tests was carried out to examine the functionality and accuracy of the technique. Our results show that the proposed technique is potentially superior to the conventional edge-detecting approach in two aspects: (i) it deals with the problem in a systematic approach and allows us to take into account the influence of the adjacent MLC leaves effectively; and (ii) it may improve the signal-to-noise ratio and is thus capable of quantitatively measuring extremely small leaf positional displacements. Our results indicate that the technique can detect a leaf positional error as small as 0.1 mm at an arbitrary point within the field in the absence of EPID set-up error and 0.3 mm when the uncertainty is considered. Given its simplicity, efficiency and accuracy, we believe that the technique is ideally suitable for routine MLC leaf positioning QA. This work was presented at the 45th Annual Meeting of American Society of Therapeutic Radiology and Oncology (ASTRO), Salt Lake City, UT, 2003. A US Patent is pending (application no. 10/197,232).
NASA Technical Reports Server (NTRS)
Morrell, Frederick R.; Bailey, Melvin L.
1987-01-01
A vector-based failure detection and isolation technique for a skewed array of two degree-of-freedom inertial sensors is developed. Failure detection is based on comparison of parity equations with a threshold, and isolation is based on comparison of logic variables which are keyed to pass/fail results of the parity test. A multi-level approach to failure detection is used to ensure adequate coverage for the flight control, display, and navigation avionics functions. Sensor error models are introduced to expose the susceptibility of the parity equations to sensor errors and physical separation effects. The algorithm is evaluated in a simulation of a commercial transport operating in a range of light to severe turbulence environments. A bias-jump failure level of 0.2 deg/hr was detected and isolated properly in the light and moderate turbulence environments, but not detected in the extreme turbulence environment. An accelerometer bias-jump failure level of 1.5 milli-g was detected over all turbulence environments. For both types of inertial sensor, hard-over, and null type failures were detected in all environments without incident. The algorithm functioned without false alarm or isolation over all turbulence environments for the runs tested.
Production and detection of atomic hexadecapole at Earth's magnetic field.
Acosta, V M; Auzinsh, M; Gawlik, W; Grisins, P; Higbie, J M; Jackson Kimball, D F; Krzemien, L; Ledbetter, M P; Pustelny, S; Rochester, S M; Yashchuk, V V; Budker, D
2008-07-21
Optical magnetometers measure magnetic fields with extremely high precision and without cryogenics. However, at geomagnetic fields, important for applications from landmine removal to archaeology, they suffer from nonlinear Zeeman splitting, leading to systematic dependence on sensor orientation. We present experimental results on a method of eliminating this systematic error, using the hexadecapole atomic polarization moment. In particular, we demonstrate selective production of the atomic hexadecapole moment at Earth's magnetic field and verify its immunity to nonlinear Zeeman splitting. This technique promises to eliminate directional errors in all-optical atomic magnetometers, potentially improving their measurement accuracy by several orders of magnitude.
Semi-Tomographic Gamma Scanning Technique for Non-Destructive Assay of Radioactive Waste Drums
NASA Astrophysics Data System (ADS)
Gu, Weiguo; Rao, Kaiyuan; Wang, Dezhong; Xiong, Jiemei
2016-12-01
Segmented gamma scanning (SGS) and tomographic gamma scanning (TGS) are two traditional detection techniques for low and intermediate level radioactive waste drum. This paper proposes one detection method named semi-tomographic gamma scanning (STGS) to avoid the poor detection accuracy of SGS and shorten detection time of TGS. This method and its algorithm synthesize the principles of SGS and TGS. In this method, each segment is divided into annual voxels and tomography is used in the radiation reconstruction. The accuracy of STGS is verified by experiments and simulations simultaneously for the 208 liter standard waste drums which contains three types of nuclides. The cases of point source or multi-point sources, uniform or nonuniform materials are employed for comparison. The results show that STGS exhibits a large improvement in the detection performance, and the reconstruction error and statistical bias are reduced by one quarter to one third or less for most cases if compared with SGS.
NASA Technical Reports Server (NTRS)
Morris, A. Terry
1999-01-01
This paper examines various sources of error in MIT's improved top oil temperature rise over ambient temperature model and estimation process. The sources of error are the current parameter estimation technique, quantization noise, and post-processing of the transformer data. Results from this paper will show that an output error parameter estimation technique should be selected to replace the current least squares estimation technique. The output error technique obtained accurate predictions of transformer behavior, revealed the best error covariance, obtained consistent parameter estimates, and provided for valid and sensible parameters. This paper will also show that the output error technique should be used to minimize errors attributed to post-processing (decimation) of the transformer data. Models used in this paper are validated using data from a large transformer in service.
Infrared/microwave (IR/MW) micromirror array beam combiner design and analysis.
Tian, Yi; Lv, Lijun; Jiang, Liwei; Wang, Xin; Li, Yanhong; Yu, Haiming; Feng, Xiaochen; Li, Qi; Zhang, Li; Li, Zhuo
2013-08-01
We investigated the design method of an infrared (IR)/microwave (MW) micromirror array type of beam combiner. The size of micromirror is in microscopic levels and comparable to MW wavelengths, so that the MW will not react in these dimensions, whereas the much shorter optical wavelengths will be reflected by them. Hence, the MW multilayered substrate was simplified and designed using transmission line theory. The beam combiner used an IR wavefront-division imaging technique to reflect the IR radiation image to the unit under test (UUT)'s pupil in a parallel light path. In addition, the boresight error detected by phase monopulse radar was analyzed using a moment-of method (MoM) and multilevel fast multipole method (MLFMM) acceleration technique. The boresight error introduced by the finite size of the beam combiner was less than 1°. Finally, in order to verify the wavefront-division imaging technique, a prototype of a micromirror array was fabricated, and IR images were tested. The IR images obtained by the thermal imager verified the correctness of the wavefront-division imaging technique.
Clustering and Recurring Anomaly Identification: Recurring Anomaly Detection System (ReADS)
NASA Technical Reports Server (NTRS)
McIntosh, Dawn
2006-01-01
This viewgraph presentation reviews the Recurring Anomaly Detection System (ReADS). The Recurring Anomaly Detection System is a tool to analyze text reports, such as aviation reports and maintenance records: (1) Text clustering algorithms group large quantities of reports and documents; Reduces human error and fatigue (2) Identifies interconnected reports; Automates the discovery of possible recurring anomalies; (3) Provides a visualization of the clusters and recurring anomalies We have illustrated our techniques on data from Shuttle and ISS discrepancy reports, as well as ASRS data. ReADS has been integrated with a secure online search
Nozari, Nazbanou; Dell, Gary S.; Schwartz, Myrna F.
2011-01-01
Despite the existence of speech errors, verbal communication is successful because speakers can detect (and correct) their errors. The standard theory of speech-error detection, the perceptual-loop account, posits that the comprehension system monitors production output for errors. Such a comprehension-based monitor, however, cannot explain the double dissociation between comprehension and error-detection ability observed in the aphasic patients. We propose a new theory of speech-error detection which is instead based on the production process itself. The theory borrows from studies of forced-choice-response tasks the notion that error detection is accomplished by monitoring response conflict via a frontal brain structure, such as the anterior cingulate cortex. We adapt this idea to the two-step model of word production, and test the model-derived predictions on a sample of aphasic patients. Our results show a strong correlation between patients’ error-detection ability and the model’s characterization of their production skills, and no significant correlation between error detection and comprehension measures, thus supporting a production-based monitor, generally, and the implemented conflict-based monitor in particular. The successful application of the conflict-based theory to error-detection in linguistic, as well as non-linguistic domains points to a domain-general monitoring system. PMID:21652015
Optical diffraction for measurements of nano-mechanical bending
NASA Astrophysics Data System (ADS)
Hermans, Rodolfo I.; Dueck, Benjamin; Ndieyira, Joseph Wafula; McKendry, Rachel A.; Aeppli, Gabriel
2016-06-01
We explore and exploit diffraction effects that have been previously neglected when modelling optical measurement techniques for the bending of micro-mechanical transducers such as cantilevers for atomic force microscopy. The illumination of a cantilever edge causes an asymmetric diffraction pattern at the photo-detector affecting the calibration of the measured signal in the popular optical beam deflection technique (OBDT). The conditions that avoid such detection artefacts conflict with the use of smaller cantilevers. Embracing diffraction patterns as data yields a potent detection technique that decouples tilt and curvature and simultaneously relaxes the requirements on the illumination alignment and detector position through a measurable which is invariant to translation and rotation. We show analytical results, numerical simulations and physiologically relevant experimental data demonstrating the utility of the diffraction patterns. We offer experimental design guidelines and quantify possible sources of systematic error in OBDT. We demonstrate a new nanometre resolution detection method that can replace OBDT, where diffraction effects from finite sized or patterned cantilevers are exploited. Such effects are readily generalized to cantilever arrays, and allow transmission detection of mechanical curvature, enabling instrumentation with simpler geometry. We highlight the comparative advantages over OBDT by detecting molecular activity of antibiotic Vancomycin.
ERIC Educational Resources Information Center
Hallin, Anna Eva; Reuterskiöld, Christina
2017-01-01
Purpose: The first aim of this study was to investigate if Swedish-speaking school-age children with language impairment (LI) show specific morphosyntactic vulnerabilities in error detection. The second aim was to investigate the effects of lexical frequency on error detection, an overlooked aspect of previous error detection studies. Method:…
NASA Astrophysics Data System (ADS)
Ewan, B. C. R.; Ireland, S. N.
2000-12-01
Acoustic pyrometry uses the temperature dependence of sound speed in materials to measure temperature. This is normally achieved by measuring the transit time for a sound signal over a known path length and applying the material relation between temperature and velocity to extract an "average" temperature. Sources of error associated with the measurement of mean transit time are discussed in implementing the technique in gases, one of the principal causes being background noise in typical industrial environments. A number of transmitted signal and processing strategies which can be used in the area are examined and the expected error in mean transit time associated with each technique is quantified. Transmitted signals included pulses, pure frequencies, chirps, and pseudorandom binary sequences (prbs), while processing involves edge detection and correlation. Errors arise through the misinterpretation of the positions of edge arrival or correlation peaks due to instantaneous deviations associated with background noise and these become more severe as signal to noise amplitude ratios decrease. Population errors in the mean transit time are estimated for the different measurement strategies and it is concluded that PRBS combined with correlation can provide the lowest errors when operating in high noise environments. The operation of an instrument based on PRBS transmitted signals is described and test results under controlled noise conditions are presented. These confirm the value of the strategy and demonstrate that measurements can be made with signal to noise amplitude ratios down to 0.5.
Analysis of the impact of error detection on computer performance
NASA Technical Reports Server (NTRS)
Shin, K. C.; Lee, Y. H.
1983-01-01
Conventionally, reliability analyses either assume that a fault/error is detected immediately following its occurrence, or neglect damages caused by latent errors. Though unrealistic, this assumption was imposed in order to avoid the difficulty of determining the respective probabilities that a fault induces an error and the error is then detected in a random amount of time after its occurrence. As a remedy for this problem a model is proposed to analyze the impact of error detection on computer performance under moderate assumptions. Error latency, the time interval between occurrence and the moment of detection, is used to measure the effectiveness of a detection mechanism. This model is used to: (1) predict the probability of producing an unreliable result, and (2) estimate the loss of computation due to fault and/or error.
Automatic-repeat-request error control schemes
NASA Technical Reports Server (NTRS)
Lin, S.; Costello, D. J., Jr.; Miller, M. J.
1983-01-01
Error detection incorporated with automatic-repeat-request (ARQ) is widely used for error control in data communication systems. This method of error control is simple and provides high system reliability. If a properly chosen code is used for error detection, virtually error-free data transmission can be attained. Various types of ARQ and hybrid ARQ schemes, and error detection using linear block codes are surveyed.
Measurement-based analysis of error latency. [in computer operating system
NASA Technical Reports Server (NTRS)
Chillarege, Ram; Iyer, Ravishankar K.
1987-01-01
This paper demonstrates a practical methodology for the study of error latency under a real workload. The method is illustrated with sampled data on the physical memory activity, gathered by hardware instrumentation on a VAX 11/780 during the normal workload cycle of the installation. These data are used to simulate fault occurrence and to reconstruct the error discovery process in the system. The technique provides a means to study the system under different workloads and for multiple days. An approach to determine the percentage of undiscovered errors is also developed and a verification of the entire methodology is performed. This study finds that the mean error latency, in the memory containing the operating system, varies by a factor of 10 to 1 (in hours) between the low and high workloads. It is found that of all errors occurring within a day, 70 percent are detected in the same day, 82 percent within the following day, and 91 percent within the third day. The increase in failure rate due to latency is not so much a function of remaining errors but is dependent on whether or not there is a latent error.
Optically powered oil tank multichannel detection system with optical fiber link
NASA Astrophysics Data System (ADS)
Yu, Zhijing
1998-08-01
A novel oil tanks integrative parameters measuring system with optically powered are presented. To realize optical powered and micro-power consumption multiple channels and parameters detection, the system has taken the PWM/PPM modulation, ratio measurement, time division multiplexing and pulse width division multiplexing techniques. Moreover, the system also used special pulse width discriminator and single-chip microcomputer to accomplish signal pulse separation, PPM/PWM signal demodulation, the error correction of overlapping pulse and data processing. This new transducer has provided with high characteristics: experimental transmitting distance is 500m; total consumption of the probes is less than 150 (mu) W; measurement error: +/- 0.5 degrees C and +/- 0.2 percent FS. The measurement accuracy of the liquid level and reserves is mainly determined by the pressure accuracy. Finally, some points of the experiment are given.
What errors do peer reviewers detect, and does training improve their ability to detect them?
Schroter, Sara; Black, Nick; Evans, Stephen; Godlee, Fiona; Osorio, Lyda; Smith, Richard
2008-10-01
To analyse data from a trial and report the frequencies with which major and minor errors are detected at a general medical journal, the types of errors missed and the impact of training on error detection. 607 peer reviewers at the BMJ were randomized to two intervention groups receiving different types of training (face-to-face training or a self-taught package) and a control group. Each reviewer was sent the same three test papers over the study period, each of which had nine major and five minor methodological errors inserted. BMJ peer reviewers. The quality of review, assessed using a validated instrument, and the number and type of errors detected before and after training. The number of major errors detected varied over the three papers. The interventions had small effects. At baseline (Paper 1) reviewers found an average of 2.58 of the nine major errors, with no notable difference between the groups. The mean number of errors reported was similar for the second and third papers, 2.71 and 3.0, respectively. Biased randomization was the error detected most frequently in all three papers, with over 60% of reviewers rejecting the papers identifying this error. Reviewers who did not reject the papers found fewer errors and the proportion finding biased randomization was less than 40% for each paper. Editors should not assume that reviewers will detect most major errors, particularly those concerned with the context of study. Short training packages have only a slight impact on improving error detection.
Evaluation and error apportionment of an ensemble of ...
Through the comparison of several regional-scale chemistry transport modelling systems that simulate meteorology and air quality over the European and American continents, this study aims at i) apportioning the error to the responsible processes using time-scale analysis, ii) helping to detect causes of models error, and iii) identifying the processes and scales most urgently requiring dedicated investigations. The analysis is conducted within the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII) and tackles model performance gauging through measurement-to-model comparison, error decomposition and time series analysis of the models biases for several fields (ozone, CO, SO2, NO, NO2, PM10, PM2.5, wind speed, and temperature). The operational metrics (magnitude of the error, sign of the bias, associativity) provide an overall sense of model strengths and deficiencies, while apportioning the error to its constituent parts (bias, variance and covariance) can help to assess the nature and quality of the error. Each of the error components is analysed independently and apportioned to specific processes based on the corresponding timescale (long scale, synoptic, diurnal, and intra-day) using the error apportionment technique devised in the former phases of AQMEII.The application of the error apportionment method to the AQMEII Phase 3 simulations provides several key insights. In addition to reaffirming the strong impact
Improved segmentation of occluded and adjoining vehicles in traffic surveillance videos
NASA Astrophysics Data System (ADS)
Juneja, Medha; Grover, Priyanka
2013-12-01
Occlusion in image processing refers to concealment of any part of the object or the whole object from view of an observer. Real time videos captured by static cameras on roads often encounter overlapping and hence, occlusion of vehicles. Occlusion in traffic surveillance videos usually occurs when an object which is being tracked is hidden by another object. This makes it difficult for the object detection algorithms to distinguish all the vehicles efficiently. Also morphological operations tend to join the close proximity vehicles resulting in formation of a single bounding box around more than one vehicle. Such problems lead to errors in further video processing, like counting of vehicles in a video. The proposed system brings forward efficient moving object detection and tracking approach to reduce such errors. The paper uses successive frame subtraction technique for detection of moving objects. Further, this paper implements the watershed algorithm to segment the overlapped and adjoining vehicles. The segmentation results have been improved by the use of noise and morphological operations.
Fast Coherent Differential Imaging for Exoplanet Imaging
NASA Astrophysics Data System (ADS)
Gerard, Benjamin; Marois, Christian; Galicher, Raphael; Veran, Jean-Pierre; Macintosh, B.; Guyon, O.; Lozi, J.; Pathak, P.; Sahoo, A.
2018-06-01
Direct detection and detailed characterization of exoplanets using extreme adaptive optics (ExAO) is a key science goal of future extremely large telescopes and space observatories. However, quasi-static wavefront errors will limit the sensitivity of this endeavor. Additional limitations for ground-based telescopes arise from residual AO-corrected atmospheric wavefront errors, generating short-lived aberrations that will average into a halo over a long exposure, also limiting the sensitivity of exoplanet detection. We develop the framework for a solution to both of these problems using the self-coherent camera (SCC), to be applied to ground-based telescopes, called Fast Atmospheric SCC Technique (FAST). Simulations show that for typical ExAO targets the FAST approach can reach ~100 times better in raw contrast than what is currently achieved with ExAO instruments if we extrapolate for an hour of observing time, illustrating that the sensitivity improvement from this method could play an essential role in the future ground-based detection and characterization of lower mass/colder exoplanets.
Shivanandan, Arun; Unnikrishnan, Jayakrishnan; Radenovic, Aleksandra
2015-01-01
Single Molecule Localization Microscopy techniques like PhotoActivated Localization Microscopy, with their sub-diffraction limit spatial resolution, have been popularly used to characterize the spatial organization of membrane proteins, by means of quantitative cluster analysis. However, such quantitative studies remain challenged by the techniques’ inherent sources of errors such as a limited detection efficiency of less than 60%, due to incomplete photo-conversion, and a limited localization precision in the range of 10 – 30nm, varying across the detected molecules, mainly depending on the number of photons collected from each. We provide analytical methods to estimate the effect of these errors in cluster analysis and to correct for them. These methods, based on the Ripley’s L(r) – r or Pair Correlation Function popularly used by the community, can facilitate potentially breakthrough results in quantitative biology by providing a more accurate and precise quantification of protein spatial organization. PMID:25794150
Boubchir, Larbi; Touati, Youcef; Daachi, Boubaker; Chérif, Arab Ali
2015-08-01
In thought-based steering of robots, error potentials (ErrP) can appear when the action resulting from the brain-machine interface (BMI) classifier/controller does not correspond to the user's thought. Using the Steady State Visual Evoked Potentials (SSVEP) techniques, ErrP, which appear when a classification error occurs, are not easily recognizable by only examining the temporal or frequency characteristics of EEG signals. A supplementary classification process is therefore needed to identify them in order to stop the course of the action and back up to a recovery state. This paper presents a set of time-frequency (t-f) features for the detection and classification of EEG ErrP in extra-brain activities due to misclassification observed by a user exploiting non-invasive BMI and robot control in the task space. The proposed features are able to characterize and detect ErrP activities in the t-f domain. These features are derived from the information embedded in the t-f representation of EEG signals, and include the Instantaneous Frequency (IF), t-f information complexity, SVD information, energy concentration and sub-bands' energies. The experiment results on real EEG data show that the use of the proposed t-f features for detecting and classifying EEG ErrP achieved an overall classification accuracy up to 97% for 50 EEG segments using 2-class SVM classifier.
Automatic detection and decoding of honey bee waggle dances.
Wario, Fernando; Wild, Benjamin; Rojas, Raúl; Landgraf, Tim
2017-01-01
The waggle dance is one of the most popular examples of animal communication. Forager bees direct their nestmates to profitable resources via a complex motor display. Essentially, the dance encodes the polar coordinates to the resource in the field. Unemployed foragers follow the dancer's movements and then search for the advertised spots in the field. Throughout the last decades, biologists have employed different techniques to measure key characteristics of the waggle dance and decode the information it conveys. Early techniques involved the use of protractors and stopwatches to measure the dance orientation and duration directly from the observation hive. Recent approaches employ digital video recordings and manual measurements on screen. However, manual approaches are very time-consuming. Most studies, therefore, regard only small numbers of animals in short periods of time. We have developed a system capable of automatically detecting, decoding and mapping communication dances in real-time. In this paper, we describe our recording setup, the image processing steps performed for dance detection and decoding and an algorithm to map dances to the field. The proposed system performs with a detection accuracy of 90.07%. The decoded waggle orientation has an average error of -2.92° (± 7.37°), well within the range of human error. To evaluate and exemplify the system's performance, a group of bees was trained to an artificial feeder, and all dances in the colony were automatically detected, decoded and mapped. The system presented here is the first of this kind made publicly available, including source code and hardware specifications. We hope this will foster quantitative analyses of the honey bee waggle dance.
Rödig, T; Reicherts, P; Konietschke, F; Dullin, C; Hahn, W; Hülsmann, M
2014-10-01
To compare the efficacy of reciprocating and rotary NiTi-instruments in removing filling material from curved root canals using micro-computed tomography. Sixty curved root canals were prepared and filled with gutta-percha and sealer. After determination of root canal curvatures and radii in two directions as well as volumes of filling material, the teeth were assigned to three comparable groups (n = 20). Retreatment was performed using Reciproc, ProTaper Universal Retreatment or Hedström files. Percentages of residual filling material and dentine removal were assessed using micro-CT imaging. Working time and procedural errors were recorded. Statistical analysis was performed by variance procedures. No significant differences amongst the three retreatment techniques concerning residual filling material were detected (P > 0.05). Hedström files removed significantly more dentine than ProTaper Universal Retreatment (P < 0.05), but the difference concerning dentine removal between both NiTi systems was not significant (P > 0.05). Reciproc and ProTaper Universal Retreatment were significantly faster than Hedström files (P = 0.0001). No procedural errors such as instrument fracture, blockage, ledging or perforation were detected for Hedström files. Three perforations were recorded for ProTaper Universal Retreatment, and in both NiTi groups, one instrument fracture occured. Remnants of filling material were observed in all samples with no significant differences between the three techniques. Hedström files removed significantly more dentine than ProTaper Universal Retreatment, but no significant differences between both NiTi systems were detected. Procedural errors were observed with ProTaper Universal Retreatment and Reciproc. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Shahidi, Shoaleh; Bahrampour, Ehsan; Soltanimehr, Elham; Zamani, Ali; Oshagh, Morteza; Moattari, Marzieh; Mehdizadeh, Alireza
2014-09-16
Two-dimensional projection radiographs have been traditionally considered the modality of choice for cephalometric analysis. To overcome the shortcomings of two-dimensional images, three-dimensional computed tomography (CT) has been used to evaluate craniofacial structures. However, manual landmark detection depends on medical expertise, and the process is time-consuming. The present study was designed to produce software capable of automated localization of craniofacial landmarks on cone beam (CB) CT images based on image registration and to evaluate its accuracy. The software was designed using MATLAB programming language. The technique was a combination of feature-based (principal axes registration) and voxel similarity-based methods for image registration. A total of 8 CBCT images were selected as our reference images for creating a head atlas. Then, 20 CBCT images were randomly selected as the test images for evaluating the method. Three experts twice located 14 landmarks in all 28 CBCT images during two examinations set 6 weeks apart. The differences in the distances of coordinates of each landmark on each image between manual and automated detection methods were calculated and reported as mean errors. The combined intraclass correlation coefficient for intraobserver reliability was 0.89 and for interobserver reliability 0.87 (95% confidence interval, 0.82 to 0.93). The mean errors of all 14 landmarks were <4 mm. Additionally, 63.57% of landmarks had a mean error of <3 mm compared with manual detection (gold standard method). The accuracy of our approach for automated localization of craniofacial landmarks, which was based on combining feature-based and voxel similarity-based methods for image registration, was acceptable. Nevertheless we recommend repetition of this study using other techniques, such as intensity-based methods.
Obstacle Detection in Indoor Environment for Visually Impaired Using Mobile Camera
NASA Astrophysics Data System (ADS)
Rahman, Samiur; Ullah, Sana; Ullah, Sehat
2018-01-01
Obstacle detection can improve the mobility as well as the safety of visually impaired people. In this paper, we present a system using mobile camera for visually impaired people. The proposed algorithm works in indoor environment and it uses a very simple technique of using few pre-stored floor images. In indoor environment all unique floor types are considered and a single image is stored for each unique floor type. These floor images are considered as reference images. The algorithm acquires an input image frame and then a region of interest is selected and is scanned for obstacle using pre-stored floor images. The algorithm compares the present frame and the next frame and compute mean square error of the two frames. If mean square error is less than a threshold value α then it means that there is no obstacle in the next frame. If mean square error is greater than α then there are two possibilities; either there is an obstacle or the floor type is changed. In order to check if the floor is changed, the algorithm computes mean square error of next frame and all stored floor types. If minimum of mean square error is less than a threshold value α then flour is changed otherwise there exist an obstacle. The proposed algorithm works in real-time and 96% accuracy has been achieved.
Laboratory and airborne techniques for measuring fluoresence of natural surfaces
NASA Technical Reports Server (NTRS)
Stoertz, G. E.; Hemphill, W. R.
1972-01-01
Techniques are described for obtaining fluorescence spectra from samples of natural surfaces that can be used to predict spectral regions in which these surfaces would emit solar-stimulated or laser-stimulated fluorescence detectable by remote sensor. Scattered or reflected stray light caused large errors in spectrofluorometer analysis or natural sample surfaces. Most spurious light components can be eliminated by recording successive fluorescence spectra for each sample, using identical instrument settings, first with an appropriate glass or gelatin filter on the excitation side of the sample, and subsequently with the same filter on the emission side of the sample. This technique appears more accurate than any alternative technique for testing the fluorescence of natural surfaces.
Detecting and Locating Seismic Events Without Phase Picks or Velocity Models
NASA Astrophysics Data System (ADS)
Arrowsmith, S.; Young, C. J.; Ballard, S.; Slinkard, M.
2015-12-01
The standard paradigm for seismic event monitoring is to scan waveforms from a network of stations and identify the arrival time of various seismic phases. A signal association algorithm then groups the picks to form events, which are subsequently located by minimizing residuals between measured travel times and travel times predicted by an Earth model. Many of these steps are prone to significant errors which can lead to erroneous arrival associations and event locations. Here, we revisit a concept for event detection that does not require phase picks or travel time curves and fuses detection, association and location into a single algorithm. Our pickless event detector exploits existing catalog and waveform data to build an empirical stack of the full regional seismic wavefield, which is subsequently used to detect and locate events at a network level using correlation techniques. Because the technique uses more of the information content of the original waveforms, the concept is particularly powerful for detecting weak events that would be missed by conventional methods. We apply our detector to seismic data from the University of Utah Seismograph Stations network and compare our results with the earthquake catalog published by the University of Utah. We demonstrate that the pickless detector can detect and locate significant numbers of events previously missed by standard data processing techniques.
NASA Astrophysics Data System (ADS)
Schulz, Hans Martin; Thies, Boris; Chang, Shih-Chieh; Bendix, Jörg
2016-03-01
The mountain cloud forest of Taiwan can be delimited from other forest types using a map of the ground fog frequency. In order to create such a frequency map from remotely sensed data, an algorithm able to detect ground fog is necessary. Common techniques for ground fog detection based on weather satellite data cannot be applied to fog occurrences in Taiwan as they rely on several assumptions regarding cloud properties. Therefore a new statistical method for the detection of ground fog in mountainous terrain from MODIS Collection 051 data is presented. Due to the sharpening of input data using MODIS bands 1 and 2, the method provides fog masks in a resolution of 250 m per pixel. The new technique is based on negative correlations between optical thickness and terrain height that can be observed if a cloud that is relatively plane-parallel is truncated by the terrain. A validation of the new technique using camera data has shown that the quality of fog detection is comparable to that of another modern fog detection scheme developed and validated for the temperate zones. The method is particularly applicable to optically thinner water clouds. Beyond a cloud optical thickness of ≈ 40, classification errors significantly increase.
Córcoles, A.D.; Magesan, Easwar; Srinivasan, Srikanth J.; Cross, Andrew W.; Steffen, M.; Gambetta, Jay M.; Chow, Jerry M.
2015-01-01
The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code. PMID:25923200
Córcoles, A D; Magesan, Easwar; Srinivasan, Srikanth J; Cross, Andrew W; Steffen, M; Gambetta, Jay M; Chow, Jerry M
2015-04-29
The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code.
Multistage morphological segmentation of bright-field and fluorescent microscopy images
NASA Astrophysics Data System (ADS)
Korzyńska, A.; Iwanowski, M.
2012-06-01
This paper describes the multistage morphological segmentation method (MSMA) for microscopic cell images. The proposed method enables us to study the cell behaviour by using a sequence of two types of microscopic images: bright field images and/or fluorescent images. The proposed method is based on two types of information: the cell texture coming from the bright field images and intensity of light emission, done by fluorescent markers. The method is dedicated to the image sequences segmentation and it is based on mathematical morphology methods supported by other image processing techniques. The method allows for detecting cells in image independently from a degree of their flattening and from presenting structures which produce the texture. It makes use of some synergic information from the fluorescent light emission image as the support information. The MSMA method has been applied to images acquired during the experiments on neural stem cells as well as to artificial images. In order to validate the method, two types of errors have been considered: the error of cell area detection and the error of cell position using artificial images as the "gold standard".
Integrated analysis of error detection and recovery
NASA Technical Reports Server (NTRS)
Shin, K. G.; Lee, Y. H.
1985-01-01
An integrated modeling and analysis of error detection and recovery is presented. When fault latency and/or error latency exist, the system may suffer from multiple faults or error propagations which seriously deteriorate the fault-tolerant capability. Several detection models that enable analysis of the effect of detection mechanisms on the subsequent error handling operations and the overall system reliability were developed. Following detection of the faulty unit and reconfiguration of the system, the contaminated processes or tasks have to be recovered. The strategies of error recovery employed depend on the detection mechanisms and the available redundancy. Several recovery methods including the rollback recovery are considered. The recovery overhead is evaluated as an index of the capabilities of the detection and reconfiguration mechanisms.
High-Accuracy Ultrasound Contrast Agent Detection Method for Diagnostic Ultrasound Imaging Systems.
Ito, Koichi; Noro, Kazumasa; Yanagisawa, Yukari; Sakamoto, Maya; Mori, Shiro; Shiga, Kiyoto; Kodama, Tetsuya; Aoki, Takafumi
2015-12-01
An accurate method for detecting contrast agents using diagnostic ultrasound imaging systems is proposed. Contrast agents, such as microbubbles, passing through a blood vessel during ultrasound imaging are detected as blinking signals in the temporal axis, because their intensity value is constantly in motion. Ultrasound contrast agents are detected by evaluating the intensity variation of a pixel in the temporal axis. Conventional methods are based on simple subtraction of ultrasound images to detect ultrasound contrast agents. Even if the subject moves only slightly, a conventional detection method will introduce significant error. In contrast, the proposed technique employs spatiotemporal analysis of the pixel intensity variation over several frames. Experiments visualizing blood vessels in the mouse tail illustrated that the proposed method performs efficiently compared with conventional approaches. We also report that the new technique is useful for observing temporal changes in microvessel density in subiliac lymph nodes containing tumors. The results are compared with those of contrast-enhanced computed tomography. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Klaus, Christian A; Carrasco, Luis E; Goldberg, Daniel W; Henry, Kevin A; Sherman, Recinda L
2015-09-15
The utility of patient attributes associated with the spatiotemporal analysis of medical records lies not just in their values but also the strength of association between them. Estimating the extent to which a hierarchy of conditional probability exists between patient attribute associations such as patient identifying fields, patient and date of diagnosis, and patient and address at diagnosis is fundamental to estimating the strength of association between patient and geocode, and patient and enumeration area. We propose a hierarchy for the attribute associations within medical records that enable spatiotemporal relationships. We also present a set of metrics that store attribute association error probability (AAEP), to estimate error probability for all attribute associations upon which certainty in a patient geocode depends. A series of experiments were undertaken to understand how error estimation could be operationalized within health data and what levels of AAEP in real data reveal themselves using these methods. Specifically, the goals of this evaluation were to (1) assess if the concept of our error assessment techniques could be implemented by a population-based cancer registry; (2) apply the techniques to real data from a large health data agency and characterize the observed levels of AAEP; and (3) demonstrate how detected AAEP might impact spatiotemporal health research. We present an evaluation of AAEP metrics generated for cancer cases in a North Carolina county. We show examples of how we estimated AAEP for selected attribute associations and circumstances. We demonstrate the distribution of AAEP in our case sample across attribute associations, and demonstrate ways in which disease registry specific operations influence the prevalence of AAEP estimates for specific attribute associations. The effort to detect and store estimates of AAEP is worthwhile because of the increase in confidence fostered by the attribute association level approach to the assessment of uncertainty in patient geocodes, relative to existing geocoding related uncertainty metrics.
NASA Astrophysics Data System (ADS)
Kireev, S. V.; Kondrashov, A. A.; Shnyrev, S. L.; Safagaraev, A. P.
2018-03-01
This paper reports that the use of a lock-in detection technique, when the pump current modulation of a diode laser is operating near the wavelength of 2 µm, allows the improvement of the sensitivity of the online detection of 13СO2 in expired air by more than three orders of magnitude. The sensitivity of the 13СO2 detected in the paper is 60 ppb with an error of 13СO2 concentration measured in the exhaled breath at the level of 2.9% for an optical path length of 60 cm.
Non-Destructive Evaluation of Depth of Surface Cracks Using Ultrasonic Frequency Analysis
Her, Shiuh-Chuan; Lin, Sheng-Tung
2014-01-01
Ultrasonic is one of the most common uses of a non-destructive evaluation method for crack detection and characterization. The effectiveness of the acoustic-ultrasound Structural Health Monitoring (SHM) technique for the determination of the depth of the surface crack was presented. A method for ultrasonic sizing of surface cracks combined with the time domain and frequency spectrum was adopted. The ultrasonic frequency spectrum was obtained by Fourier transform technique. A series of test specimens with various depths of surface crack ranging from 1 mm to 8 mm was fabricated. The depth of the surface crack was evaluated using the pulse-echo technique. In this work, three different longitudinal waves with frequencies of 2.25 MHz, 5 MHz and 10 MHz were employed to investigate the effect of frequency on the sizing detection of surface cracks. Reasonable accuracies were achieved with measurement errors less than 7%. PMID:25225875
Joint forensics and watermarking approach for video authentication
NASA Astrophysics Data System (ADS)
Thiemert, Stefan; Liu, Huajian; Steinebach, Martin; Croce-Ferri, Lucilla
2007-02-01
In our paper we discuss and compare the possibilities and shortcomings of both content-fragile watermarking and digital forensics and analyze if the combination of both techniques allows the identification of more than the sum of all manipulations identified by both techniques on their own due to synergetic effects. The first part of the paper discusses the theoretical possibilities offered by a combined approach, in which forensics and watermarking are considered as complementary tools for data authentication or deeply combined together, in order to reduce their error rate and to enhance the detection efficiency. After this conceptual discussion the paper proposes some concrete examples in which the joint approach is applied to video authentication. Some specific forensics techniques are analyzed and expanded to handle efficiently video data. The examples show possible extensions of passive-blind image forgery detection to video data, where the motion and time related characteristics of video are efficiently exploited.
Bandwidth controller for phase-locked-loop
NASA Technical Reports Server (NTRS)
Brockman, Milton H. (Inventor)
1992-01-01
A phase locked loop utilizing digital techniques to control the closed loop bandwidth of the RF carrier phase locked loop in a receiver provides high sensitivity and a wide dynamic range for signal reception. After analog to digital conversion, a digital phase locked loop bandwidth controller provides phase error detection with automatic RF carrier closed loop tracking bandwidth control to accommodate several modes of transmission.
2012-03-22
shapes tested , when the objective parameter set was confined to a dictionary’s de - fined parameter space. These physical characteristics included...8 2.3 Hypothesis Testing and Detection Theory . . . . . . . . . . . . . . . 8 2.4 3-D SAR Scattering Models...basis pursuit de -noising (BPDN) algorithm is chosen to perform extraction due to inherent efficiency and error tolerance. Multiple shape dictionaries
Sensitivity in error detection of patient specific QA tools for IMRT plans
NASA Astrophysics Data System (ADS)
Lat, S. Z.; Suriyapee, S.; Sanghangthum, T.
2016-03-01
The high complexity of dose calculation in treatment planning and accurate delivery of IMRT plan need high precision of verification method. The purpose of this study is to investigate error detection capability of patient specific QA tools for IMRT plans. The two H&N and two prostate IMRT plans with MapCHECK2 and portal dosimetry QA tools were studied. Measurements were undertaken for original and modified plans with errors introduced. The intentional errors composed of prescribed dose (±2 to ±6%) and position shifting in X-axis and Y-axis (±1 to ±5mm). After measurement, gamma pass between original and modified plans were compared. The average gamma pass for original H&N and prostate plans were 98.3% and 100% for MapCHECK2 and 95.9% and 99.8% for portal dosimetry, respectively. In H&N plan, MapCHECK2 can detect position shift errors starting from 3mm while portal dosimetry can detect errors started from 2mm. Both devices showed similar sensitivity in detection of position shift error in prostate plan. For H&N plan, MapCHECK2 can detect dose errors starting at ±4%, whereas portal dosimetry can detect from ±2%. For prostate plan, both devices can identify dose errors starting from ±4%. Sensitivity of error detection depends on type of errors and plan complexity.
Cheng, Ching-Min; Hwang, Sheue-Ling
2015-03-01
This paper outlines the human error identification (HEI) techniques that currently exist to assess latent human errors. Many formal error identification techniques have existed for years, but few have been validated to cover latent human error analysis in different domains. This study considers many possible error modes and influential factors, including external error modes, internal error modes, psychological error mechanisms, and performance shaping factors, and integrates several execution procedures and frameworks of HEI techniques. The case study in this research was the operational process of changing chemical cylinders in a factory. In addition, the integrated HEI method was used to assess the operational processes and the system's reliability. It was concluded that the integrated method is a valuable aid to develop much safer operational processes and can be used to predict human error rates on critical tasks in the plant. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Optimum decoding and detection of a multiplicative amplitude-encoded watermark
NASA Astrophysics Data System (ADS)
Barni, Mauro; Bartolini, Franco; De Rosa, Alessia; Piva, Alessandro
2002-04-01
The aim of this paper is to present a novel approach to the decoding and the detection of multibit, multiplicative, watermarks embedded in the frequency domain. Watermark payload is conveyed by amplitude modulating a pseudo-random sequence, thus resembling conventional DS spread spectrum techniques. As opposed to conventional communication systems, though, the watermark is embedded within the host DFT coefficients by using a multiplicative rule. The watermark decoding technique presented in the paper is an optimum one, in that it minimizes the bit error probability. The problem of watermark presence assessment, which is often underestimated by state-of-the-art research on multibit watermarking, is addressed too, and the optimum detection rule derived according to the Neyman-Pearson criterion. Experimental results are shown both to demonstrate the validity of the theoretical analysis and to highlight the good performance of the proposed system.
Microwave quantum illumination.
Barzanjeh, Shabir; Guha, Saikat; Weedbrook, Christian; Vitali, David; Shapiro, Jeffrey H; Pirandola, Stefano
2015-02-27
Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here, we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally occurring bright thermal background in the microwave regime. We use an electro-optomechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection quantum measurement. The error probability of this microwave quantum-illumination system, or quantum radar, is shown to be superior to that of any classical microwave radar of equal transmitted energy.
Applications of optical sensing for laser cutting and drilling.
Fox, Mahlen D T; French, Paul; Peters, Chris; Hand, Duncan P; Jones, Julian D C
2002-08-20
Any reliable automated production system must include process control and monitoring techniques. Two laser processing techniques potentially lending themselves to automation are percussion drilling and cutting. For drilling we investigate the performance of a modification of a nonintrusive optical focus control system we previously developed for laser welding, which exploits the chromatic aberrations of the processing optics to determine focal error. We further developed this focus control system for closed-loop control of laser cutting. We show that an extension of the technique can detect deterioration in cut quality, and we describe practical trials carried out on different materials using both oxygen and nitrogen assist gas. We base our techniques on monitoring the light generated by the process, captured nonintrusively by the effector optics and processed remotely from the workpiece. We describe the relationship between the temporal and the chromatic modulation of the detected light and process quality and show how the information can be used as the basis of a process control system.
A Mechanism for Error Detection in Speeded Response Time Tasks
ERIC Educational Resources Information Center
Holroyd, Clay B.; Yeung, Nick; Coles, Michael G. H.; Cohen, Jonathan D.
2005-01-01
The concept of error detection plays a central role in theories of executive control. In this article, the authors present a mechanism that can rapidly detect errors in speeded response time tasks. This error monitor assigns values to the output of cognitive processes involved in stimulus categorization and response generation and detects errors…
Procedural error monitoring and smart checklists
NASA Technical Reports Server (NTRS)
Palmer, Everett
1990-01-01
Human beings make and usually detect errors routinely. The same mental processes that allow humans to cope with novel problems can also lead to error. Bill Rouse has argued that errors are not inherently bad but their consequences may be. He proposes the development of error-tolerant systems that detect errors and take steps to prevent the consequences of the error from occurring. Research should be done on self and automatic detection of random and unanticipated errors. For self detection, displays should be developed that make the consequences of errors immediately apparent. For example, electronic map displays graphically show the consequences of horizontal flight plan entry errors. Vertical profile displays should be developed to make apparent vertical flight planning errors. Other concepts such as energy circles could also help the crew detect gross flight planning errors. For automatic detection, systems should be developed that can track pilot activity, infer pilot intent and inform the crew of potential errors before their consequences are realized. Systems that perform a reasonableness check on flight plan modifications by checking route length and magnitude of course changes are simple examples. Another example would be a system that checked the aircraft's planned altitude against a data base of world terrain elevations. Information is given in viewgraph form.
ERIC Educational Resources Information Center
Nozari, Nazbanou; Dell, Gary S.; Schwartz, Myrna F.
2011-01-01
Despite the existence of speech errors, verbal communication is successful because speakers can detect (and correct) their errors. The standard theory of speech-error detection, the perceptual-loop account, posits that the comprehension system monitors production output for errors. Such a comprehension-based monitor, however, cannot explain the…
An efficient system for reliably transmitting image and video data over low bit rate noisy channels
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.; Huang, Y. F.; Stevenson, Robert L.
1994-01-01
This research project is intended to develop an efficient system for reliably transmitting image and video data over low bit rate noisy channels. The basic ideas behind the proposed approach are the following: employ statistical-based image modeling to facilitate pre- and post-processing and error detection, use spare redundancy that the source compression did not remove to add robustness, and implement coded modulation to improve bandwidth efficiency and noise rejection. Over the last six months, progress has been made on various aspects of the project. Through our studies of the integrated system, a list-based iterative Trellis decoder has been developed. The decoder accepts feedback from a post-processor which can detect channel errors in the reconstructed image. The error detection is based on the Huber Markov random field image model for the compressed image. The compression scheme used here is that of JPEG (Joint Photographic Experts Group). Experiments were performed and the results are quite encouraging. The principal ideas here are extendable to other compression techniques. In addition, research was also performed on unequal error protection channel coding, subband vector quantization as a means of source coding, and post processing for reducing coding artifacts. Our studies on unequal error protection (UEP) coding for image transmission focused on examining the properties of the UEP capabilities of convolutional codes. The investigation of subband vector quantization employed a wavelet transform with special emphasis on exploiting interband redundancy. The outcome of this investigation included the development of three algorithms for subband vector quantization. The reduction of transform coding artifacts was studied with the aid of a non-Gaussian Markov random field model. This results in improved image decompression. These studies are summarized and the technical papers included in the appendices.
Reproducibility of 3D kinematics and surface electromyography measurements of mastication.
Remijn, Lianne; Groen, Brenda E; Speyer, Renée; van Limbeek, Jacques; Nijhuis-van der Sanden, Maria W G
2016-03-01
The aim of this study was to determine the measurement reproducibility for a procedure evaluating the mastication process and to estimate the smallest detectable differences of 3D kinematic and surface electromyography (sEMG) variables. Kinematics of mandible movements and sEMG activity of the masticatory muscles were obtained over two sessions with four conditions: two food textures (biscuit and bread) of two sizes (small and large). Twelve healthy adults (mean age 29.1 years) completed the study. The second to the fifth chewing cycle of 5 bites were used for analyses. The reproducibility per outcome variable was calculated with an intraclass correlation coefficient (ICC) and a Bland-Altman analysis was applied to determine the standard error of measurement relative error of measurement and smallest detectable differences of all variables. ICCs ranged from 0.71 to 0.98 for all outcome variables. The outcome variables consisted of four bite and fourteen chewing cycle variables. The relative standard error of measurement of the bite variables was up to 17.3% for 'time-to-swallow', 'time-to-transport' and 'number of chewing cycles', but ranged from 31.5% to 57.0% for 'change of chewing side'. The relative standard error of measurement ranged from 4.1% to 24.7% for chewing cycle variables and was smaller for kinematic variables than sEMG variables. In general, measurements obtained with 3D kinematics and sEMG are reproducible techniques to assess the mastication process. The duration of the chewing cycle and frequency of chewing were the best reproducible measurements. Change of chewing side could not be reproduced. The published measurement error and smallest detectable differences will aid the interpretation of the results of future clinical studies using the same study variables. Copyright © 2015 Elsevier Inc. All rights reserved.
MS-READ: Quantitative measurement of amino acid incorporation.
Mohler, Kyle; Aerni, Hans-Rudolf; Gassaway, Brandon; Ling, Jiqiang; Ibba, Michael; Rinehart, Jesse
2017-11-01
Ribosomal protein synthesis results in the genetically programmed incorporation of amino acids into a growing polypeptide chain. Faithful amino acid incorporation that accurately reflects the genetic code is critical to the structure and function of proteins as well as overall proteome integrity. Errors in protein synthesis are generally detrimental to cellular processes yet emerging evidence suggest that proteome diversity generated through mistranslation may be beneficial under certain conditions. Cumulative translational error rates have been determined at the organismal level, however codon specific error rates and the spectrum of misincorporation errors from system to system remain largely unexplored. In particular, until recently technical challenges have limited the ability to detect and quantify comparatively rare amino acid misincorporation events, which occur orders of magnitude less frequently than canonical amino acid incorporation events. We now describe a technique for the quantitative analysis of amino acid incorporation that provides the sensitivity necessary to detect mistranslation events during translation of a single codon at frequencies as low as 1 in 10,000 for all 20 proteinogenic amino acids, as well as non-proteinogenic and modified amino acids. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.
Robust pupil center detection using a curvature algorithm
NASA Technical Reports Server (NTRS)
Zhu, D.; Moore, S. T.; Raphan, T.; Wall, C. C. (Principal Investigator)
1999-01-01
Determining the pupil center is fundamental for calculating eye orientation in video-based systems. Existing techniques are error prone and not robust because eyelids, eyelashes, corneal reflections or shadows in many instances occlude the pupil. We have developed a new algorithm which utilizes curvature characteristics of the pupil boundary to eliminate these artifacts. Pupil center is computed based solely on points related to the pupil boundary. For each boundary point, a curvature value is computed. Occlusion of the boundary induces characteristic peaks in the curvature function. Curvature values for normal pupil sizes were determined and a threshold was found which together with heuristics discriminated normal from abnormal curvature. Remaining boundary points were fit with an ellipse using a least squares error criterion. The center of the ellipse is an estimate of the pupil center. This technique is robust and accurately estimates pupil center with less than 40% of the pupil boundary points visible.
Integrated Data Analysis for Fusion: A Bayesian Tutorial for Fusion Diagnosticians
NASA Astrophysics Data System (ADS)
Dinklage, Andreas; Dreier, Heiko; Fischer, Rainer; Gori, Silvio; Preuss, Roland; Toussaint, Udo von
2008-03-01
Integrated Data Analysis (IDA) offers a unified way of combining information relevant to fusion experiments. Thereby, IDA meets with typical issues arising in fusion data analysis. In IDA, all information is consistently formulated as probability density functions quantifying uncertainties in the analysis within the Bayesian probability theory. For a single diagnostic, IDA allows the identification of faulty measurements and improvements in the setup. For a set of diagnostics, IDA gives joint error distributions allowing the comparison and integration of different diagnostics results. Validation of physics models can be performed by model comparison techniques. Typical data analysis applications benefit from IDA capabilities of nonlinear error propagation, the inclusion of systematic effects and the comparison of different physics models. Applications range from outlier detection, background discrimination, model assessment and design of diagnostics. In order to cope with next step fusion device requirements, appropriate techniques are explored for fast analysis applications.
Design and Evaluation of Perceptual-based Object Group Selection Techniques
NASA Astrophysics Data System (ADS)
Dehmeshki, Hoda
Selecting groups of objects is a frequent task in graphical user interfaces. It is required prior to many standard operations such as deletion, movement, or modification. Conventional selection techniques are lasso, rectangle selection, and the selection and de-selection of items through the use of modifier keys. These techniques may become time-consuming and error-prone when target objects are densely distributed or when the distances between target objects are large. Perceptual-based selection techniques can considerably improve selection tasks when targets have a perceptual structure, for example when arranged along a line. Current methods to detect such groups use ad hoc grouping algorithms that are not based on results from perception science. Moreover, these techniques do not allow selecting groups with arbitrary arrangements or permit modifying a selection. This dissertation presents two domain-independent perceptual-based systems that address these issues. Based on established group detection models from perception research, the proposed systems detect perceptual groups formed by the Gestalt principles of good continuation and proximity. The new systems provide gesture-based or click-based interaction techniques for selecting groups with curvilinear or arbitrary structures as well as clusters. Moreover, the gesture-based system is adapted for the graph domain to facilitate path selection. This dissertation includes several user studies that show the proposed systems outperform conventional selection techniques when targets form salient perceptual groups and are still competitive when targets are semi-structured.
A hyper-spherical adaptive sparse-grid method for high-dimensional discontinuity detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.
This work proposes and analyzes a hyper-spherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces is proposed. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hyper-surface of an N-dimensional dis- continuous quantity of interest, by virtue of a hyper-spherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyper-spherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of themore » hyper-surface, the new technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. Moreover, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous error estimates and complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.« less
Image sensor for testing refractive error of eyes
NASA Astrophysics Data System (ADS)
Li, Xiangning; Chen, Jiabi; Xu, Longyun
2000-05-01
It is difficult to detect ametropia and anisometropia for children. Image sensor for testing refractive error of eyes does not need the cooperation of children and can be used to do the general survey of ametropia and anisometropia for children. In our study, photographs are recorded by a CCD element in a digital form which can be directly processed by a computer. In order to process the image accurately by digital technique, formula considering the effect of extended light source and the size of lens aperture has been deduced, which is more reliable in practice. Computer simulation of the image sensing is made to verify the fineness of the results.
NASA Technical Reports Server (NTRS)
Olorenshaw, Lex; Trawick, David
1991-01-01
The purpose was to develop a speech recognition system to be able to detect speech which is pronounced incorrectly, given that the text of the spoken speech is known to the recognizer. Better mechanisms are provided for using speech recognition in a literacy tutor application. Using a combination of scoring normalization techniques and cheater-mode decoding, a reasonable acceptance/rejection threshold was provided. In continuous speech, the system was tested to be able to provide above 80 pct. correct acceptance of words, while correctly rejecting over 80 pct. of incorrectly pronounced words.
Selecting a software development methodology. [of digital flight control systems
NASA Technical Reports Server (NTRS)
Jones, R. E.
1981-01-01
The state of the art analytical techniques for the development and verification of digital flight control software is studied and a practical designer oriented development and verification methodology is produced. The effectiveness of the analytic techniques chosen for the development and verification methodology are assessed both technically and financially. Technical assessments analyze the error preventing and detecting capabilities of the chosen technique in all of the pertinent software development phases. Financial assessments describe the cost impact of using the techniques, specifically, the cost of implementing and applying the techniques as well as the relizable cost savings. Both the technical and financial assessment are quantitative where possible. In the case of techniques which cannot be quantitatively assessed, qualitative judgements are expressed about the effectiveness and cost of the techniques. The reasons why quantitative assessments are not possible will be documented.
NASA Astrophysics Data System (ADS)
Behnabian, Behzad; Mashhadi Hossainali, Masoud; Malekzadeh, Ahad
2018-02-01
The cross-validation technique is a popular method to assess and improve the quality of prediction by least squares collocation (LSC). We present a formula for direct estimation of the vector of cross-validation errors (CVEs) in LSC which is much faster than element-wise CVE computation. We show that a quadratic form of CVEs follows Chi-squared distribution. Furthermore, a posteriori noise variance factor is derived by the quadratic form of CVEs. In order to detect blunders in the observations, estimated standardized CVE is proposed as the test statistic which can be applied when noise variances are known or unknown. We use LSC together with the methods proposed in this research for interpolation of crustal subsidence in the northern coast of the Gulf of Mexico. The results show that after detection and removing outliers, the root mean square (RMS) of CVEs and estimated noise standard deviation are reduced about 51 and 59%, respectively. In addition, RMS of LSC prediction error at data points and RMS of estimated noise of observations are decreased by 39 and 67%, respectively. However, RMS of LSC prediction error on a regular grid of interpolation points covering the area is only reduced about 4% which is a consequence of sparse distribution of data points for this case study. The influence of gross errors on LSC prediction results is also investigated by lower cutoff CVEs. It is indicated that after elimination of outliers, RMS of this type of errors is also reduced by 19.5% for a 5 km radius of vicinity. We propose a method using standardized CVEs for classification of dataset into three groups with presumed different noise variances. The noise variance components for each of the groups are estimated using restricted maximum-likelihood method via Fisher scoring technique. Finally, LSC assessment measures were computed for the estimated heterogeneous noise variance model and compared with those of the homogeneous model. The advantage of the proposed method is the reduction in estimated noise levels for those groups with the fewer number of noisy data points.
Heart rate detection from an electronic weighing scale.
González-Landaeta, R; Casas, O; Pallàs-Areny, R
2007-01-01
We propose a novel technique for heart rate detection on a subject that stands on a common electronic weighing scale. The detection relies on sensing force variations related to the blood acceleration in the aorta, works even if wearing footwear, and does not require any sensors attached to the body. We have applied our method to three different weighing scales, and estimated whether their sensitivity and frequency response suited heart rate detection. Scale sensitivities were from 490 nV/V/N to 1670 nV/V/N, all had an underdamped transient response and their dynamic gain error was below 19% at 10 Hz, which are acceptable values for heart rate estimation. We also designed a pulse detection system based on off-the-shelf integrated circuits, whose gain was about 70x10(3) and able to sense force variations about 240 mN. The signal-to-noise ratio (SNR) of the main peaks of the pulse signal detected was higher than 48 dB, which is large enough to estimate the heart rate by simple signal processing methods. To validate the method, the ECG and the force signal were simultaneously recorded on 12 volunteers. The maximal error obtained from heart rates determined from these two signals was +/-0.6 beats/minute.
Pediatric vision screening using binocular retinal birefringencr scanning
NASA Astrophysics Data System (ADS)
Nassif, Deborah S.; Gramatikov, Boris; Guyton, David L.; Hunter, David G.
2003-07-01
Amblyopia, a leading cause of vision loss in childhood, is responsive to treatment if detected early in life. Risk factors for amblyopia, such as refractive error and strabismus, may be difficult to identify clinically in young children. Our laboratory has developed retinal birefringence scanning (RBS), in which a small spot of polarized light is scanned in a circle on the retina, and the returning light is measured for changes in polarization caused by the pattern of birefringent fibers that comprise the fovea. Binocular RBS (BRBS) detects the fixation of both eyes simultaneously and thus screens for strabismus, one of the risk factors of amblyopia. We have also developed a technique to automatically detect when the eye is in focus without measuring refractive error. This focus detection system utilizes a bull's eye photodetector optically conjugate to a point fixation source. Reflected light is focused back to the point source by the optical system of the eye, and if the subject focuses on the fixation source, the returning light will be focused on the detector. We have constructed a hand-held prototype combining BRBS and focus detection measurements in one quick (< 0.5 second) and accurate (theoretically detecting +/-1 of misalignment) measurement. This approach has the potential to reliably identify children at risk for amblyopia.
Aerodynamic coefficient identification package dynamic data accuracy determinations: Lessons learned
NASA Technical Reports Server (NTRS)
Heck, M. L.; Findlay, J. T.; Compton, H. R.
1983-01-01
The errors in the dynamic data output from the Aerodynamic Coefficient Identification Packages (ACIP) flown on Shuttle flights 1, 3, 4, and 5 were determined using the output from the Inertial Measurement Units (IMU). A weighted least-squares batch algorithm was empolyed. Using an averaging technique, signal detection was enhanced; this allowed improved calibration solutions. Global errors as large as 0.04 deg/sec for the ACIP gyros, 30 mg for linear accelerometers, and 0.5 deg/sec squared in the angular accelerometer channels were detected and removed with a combination is bias, scale factor, misalignment, and g-sensitive calibration constants. No attempt was made to minimize local ACIP dynamic data deviations representing sensed high-frequency vibration or instrument noise. Resulting 1sigma calibrated ACIP global accuracies were within 0.003 eg/sec, 1.0 mg, and 0.05 deg/sec squared for the gyros, linear accelerometers, and angular accelerometers, respectively.
Impact of Measurement Error on Synchrophasor Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yilu; Gracia, Jose R.; Ewing, Paul D.
2015-07-01
Phasor measurement units (PMUs), a type of synchrophasor, are powerful diagnostic tools that can help avert catastrophic failures in the power grid. Because of this, PMU measurement errors are particularly worrisome. This report examines the internal and external factors contributing to PMU phase angle and frequency measurement errors and gives a reasonable explanation for them. It also analyzes the impact of those measurement errors on several synchrophasor applications: event location detection, oscillation detection, islanding detection, and dynamic line rating. The primary finding is that dynamic line rating is more likely to be influenced by measurement error. Other findings include themore » possibility of reporting nonoscillatory activity as an oscillation as the result of error, failing to detect oscillations submerged by error, and the unlikely impact of error on event location and islanding detection.« less
Post-coronagraphic tip-tilt sensing for vortex phase masks: The QACITS technique
NASA Astrophysics Data System (ADS)
Huby, E.; Baudoz, P.; Mawet, D.; Absil, O.
2015-12-01
Context. Small inner working angle coronagraphs, such as the vortex phase mask, are essential to exploit the full potential of ground-based telescopes in the context of exoplanet detection and characterization. However, the drawback of this attractive feature is a high sensitivity to pointing errors, which degrades the performance of the coronagraph. Aims: We propose a tip-tilt retrieval technique based on the analysis of the final coronagraphic image, hereafter called Quadrant Analysis of Coronagraphic Images for Tip-tilt Sensing (QACITS). Methods: Under the assumption of small phase aberrations, we show that the behavior of the vortex phase mask can be simply described from the entrance pupil to the Lyot stop plane with Zernike polynomials. This convenient formalism is used to establish the theoretical basis of the QACITS technique. We performed simulations to demonstrate the validity and limits of the technique, including the case of a centrally obstructed pupil. Results: The QACITS technique principle is validated with experimental results in the case of an unobstructed circular aperture, as well as simulations in presence of a central obstruction. The typical configuration of the Keck telescope (24% central obstruction) has been simulated with additional high order aberrations. In these conditions, our simulations show that the QACITS technique is still adapted to centrally obstructed pupils and performs tip-tilt retrieval with a precision of 5 × 10-2λ/D when wavefront errors amount to λ/ 14 rms and 10-2λ/D for λ/ 70 rms errors (with λ the wavelength and D the pupil diameter). Conclusions: We have developed and demonstrated a tip-tilt sensing technique for vortex coronagraphs. The implementation of the QACITS technique is based on the analysis of the scientific image and does not require any modification of the original setup. Current facilities equipped with a vortex phase mask can thus directly benefit from this technique to improve the contrast performance close to the axis.
NASA Astrophysics Data System (ADS)
Woodford, Curtis; Yartsev, Slav; Van Dyk, Jake
2007-08-01
This study aims to investigate the settings that provide optimum registration accuracy when registering megavoltage CT (MVCT) studies acquired on tomotherapy with planning kilovoltage CT (kVCT) studies of patients with lung cancer. For each experiment, the systematic difference between the actual and planned positions of the thorax phantom was determined by setting the phantom up at the planning isocenter, generating and registering an MVCT study. The phantom was translated by 5 or 10 mm, MVCT scanned, and registration was performed again. A root-mean-square equation that calculated the residual error of the registration based on the known shift and systematic difference was used to assess the accuracy of the registration process. The phantom study results for 18 combinations of different MVCT/kVCT registration options are presented and compared to clinical registration data from 17 lung cancer patients. MVCT studies acquired with coarse (6 mm), normal (4 mm) and fine (2 mm) slice spacings could all be registered with similar residual errors. No specific combination of resolution and fusion selection technique resulted in a lower residual error. A scan length of 6 cm with any slice spacing registered with the full image fusion selection technique and fine resolution will result in a low residual error most of the time. On average, large corrections made manually by clinicians to the automatic registration values are infrequent. Small manual corrections within the residual error averages of the registration process occur, but their impact on the average patient position is small. Registrations using the full image fusion selection technique and fine resolution of 6 cm MVCT scans with coarse slices have a low residual error, and this strategy can be clinically used for lung cancer patients treated on tomotherapy. Automatic registration values are accurate on average, and a quick verification on a sagittal MVCT slice should be enough to detect registration outliers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almasi, Gheorghe; Blumrich, Matthias Augustin; Chen, Dong
Methods and apparatus perform fault isolation in multiple node computing systems using commutative error detection values for--example, checksums--to identify and to isolate faulty nodes. When information associated with a reproducible portion of a computer program is injected into a network by a node, a commutative error detection value is calculated. At intervals, node fault detection apparatus associated with the multiple node computer system retrieve commutative error detection values associated with the node and stores them in memory. When the computer program is executed again by the multiple node computer system, new commutative error detection values are created and stored inmore » memory. The node fault detection apparatus identifies faulty nodes by comparing commutative error detection values associated with reproducible portions of the application program generated by a particular node from different runs of the application program. Differences in values indicate a possible faulty node.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopan, O; Kalet, A; Smith, W
2016-06-15
Purpose: A standard tool for ensuring the quality of radiation therapy treatments is the initial physics plan review. However, little is known about its performance in practice. The goal of this study is to measure the effectiveness of physics plan review by introducing simulated errors into “mock” treatment plans and measuring the performance of plan review by physicists. Methods: We generated six mock treatment plans containing multiple errors. These errors were based on incident learning system data both within the department and internationally (SAFRON). These errors were scored for severity and frequency. Those with the highest scores were included inmore » the simulations (13 errors total). Observer bias was minimized using a multiple co-correlated distractor approach. Eight physicists reviewed these plans for errors, with each physicist reviewing, on average, 3/6 plans. The confidence interval for the proportion of errors detected was computed using the Wilson score interval. Results: Simulated errors were detected in 65% of reviews [51–75%] (95% confidence interval [CI] in brackets). The following error scenarios had the highest detection rates: incorrect isocenter in DRRs/CBCT (91% [73–98%]) and a planned dose different from the prescribed dose (100% [61–100%]). Errors with low detection rates involved incorrect field parameters in record and verify system (38%, [18–61%]) and incorrect isocenter localization in planning system (29% [8–64%]). Though pre-treatment QA failure was reliably identified (100%), less than 20% of participants reported the error that caused the failure. Conclusion: This is one of the first quantitative studies of error detection. Although physics plan review is a key safety measure and can identify some errors with high fidelity, others errors are more challenging to detect. This data will guide future work on standardization and automation. Creating new checks or improving existing ones (i.e., via automation) will help in detecting those errors with low detection rates.« less
Reliability of System Identification Techniques to Assess Standing Balance in Healthy Elderly
Maier, Andrea B.; Aarts, Ronald G. K. M.; van Gerven, Joop M. A.; Arendzen, J. Hans; Schouten, Alfred C.; Meskers, Carel G. M.; van der Kooij, Herman
2016-01-01
Objectives System identification techniques have the potential to assess the contribution of the underlying systems involved in standing balance by applying well-known disturbances. We investigated the reliability of standing balance parameters obtained with multivariate closed loop system identification techniques. Methods In twelve healthy elderly balance tests were performed twice a day during three days. Body sway was measured during two minutes of standing with eyes closed and the Balance test Room (BalRoom) was used to apply four disturbances simultaneously: two sensory disturbances, to the proprioceptive and the visual system, and two mechanical disturbances applied at the leg and trunk segment. Using system identification techniques, sensitivity functions of the sensory disturbances and the neuromuscular controller were estimated. Based on the generalizability theory (G theory), systematic errors and sources of variability were assessed using linear mixed models and reliability was assessed by computing indexes of dependability (ID), standard error of measurement (SEM) and minimal detectable change (MDC). Results A systematic error was found between the first and second trial in the sensitivity functions. No systematic error was found in the neuromuscular controller and body sway. The reliability of 15 of 25 parameters and body sway were moderate to excellent when the results of two trials on three days were averaged. To reach an excellent reliability on one day in 7 out of 25 parameters, it was predicted that at least seven trials must be averaged. Conclusion This study shows that system identification techniques are a promising method to assess the underlying systems involved in standing balance in elderly. However, most of the parameters do not appear to be reliable unless a large number of trials are collected across multiple days. To reach an excellent reliability in one third of the parameters, a training session for participants is needed and at least seven trials of two minutes must be performed on one day. PMID:26953694
AQMEII3: the EU and NA regional scale program of the ...
The presentation builds on the work presented last year at the 14th CMAS meeting and it is applied to the work performed in the context of the AQMEII-HTAP collaboration. The analysis is conducted within the framework of the third phase of AQMEII (Air Quality Model Evaluation International Initiative) and encompasses the gauging of model performance through measurement-to-model comparison, error decomposition and time series analysis of the models biases. Through the comparison of several regional-scale chemistry transport modelling systems applied to simulate meteorology and air quality over two continental areas, this study aims at i) apportioning the error to the responsible processes through time-scale analysis, and ii) help detecting causes of models error, and iii) identify the processes and scales most urgently requiring dedicated investigations. The operational metrics (magnitude of the error, sign of the bias, associativity) provide an overall sense of model strengths and deficiencies, while the apportioning of the error into its constituent parts (bias, variance and covariance) can help assess the nature and quality of the error. Each of the error components is analysed independently and apportioned to specific processes based on the corresponding timescale (long scale, synoptic, diurnal, and intra-day) using the error apportionment technique devised in the previous phases of AQMEII. The National Exposure Research Laboratory (NERL) Computational Exposur
Results and Error Estimates from GRACE Forward Modeling over Antarctica
NASA Astrophysics Data System (ADS)
Bonin, Jennifer; Chambers, Don
2013-04-01
Forward modeling using a weighted least squares technique allows GRACE information to be projected onto a pre-determined collection of local basins. This decreases the impact of spatial leakage, allowing estimates of mass change to be better localized. The technique is especially valuable where models of current-day mass change are poor, such as over Antarctica. However when tested previously, the least squares technique has required constraints in the form of added process noise in order to be reliable. Poor choice of local basin layout has also adversely affected results, as has the choice of spatial smoothing used with GRACE. To develop design parameters which will result in correct high-resolution mass detection and to estimate the systematic errors of the method over Antarctica, we use a "truth" simulation of the Antarctic signal. We apply the optimal parameters found from the simulation to RL05 GRACE data across Antarctica and the surrounding ocean. We particularly focus on separating the Antarctic peninsula's mass signal from that of the rest of western Antarctica. Additionally, we characterize how well the technique works for removing land leakage signal from the nearby ocean, particularly that near the Drake Passage.
Topological Interference Management for K-User Downlink Massive MIMO Relay Network Channel.
Selvaprabhu, Poongundran; Chinnadurai, Sunil; Li, Jun; Lee, Moon Ho
2017-08-17
In this paper, we study the emergence of topological interference alignment and the characterizing features of a multi-user broadcast interference relay channel. We propose an alternative transmission strategy named the relay space-time interference alignment (R-STIA) technique, in which a K -user multiple-input-multiple-output (MIMO) interference channel has massive antennas at the transmitter and relay. Severe interference from unknown transmitters affects the downlink relay network channel and degrades the system performance. An additional (unintended) receiver is introduced in the proposed R-STIA technique to overcome the above problem, since it has the ability to decode the desired signals for the intended receiver by considering cooperation between the receivers. The additional receiver also helps in recovering and reconstructing the interference signals with limited channel state information at the relay (CSIR). The Alamouti space-time transmission technique and minimum mean square error (MMSE) linear precoder are also used in the proposed scheme to detect the presence of interference signals. Numerical results show that the proposed R-STIA technique achieves a better performance in terms of the bit error rate (BER) and sum-rate compared to the existing broadcast channel schemes.
Topological Interference Management for K-User Downlink Massive MIMO Relay Network Channel
Li, Jun; Lee, Moon Ho
2017-01-01
In this paper, we study the emergence of topological interference alignment and the characterizing features of a multi-user broadcast interference relay channel. We propose an alternative transmission strategy named the relay space-time interference alignment (R-STIA) technique, in which a K-user multiple-input-multiple-output (MIMO) interference channel has massive antennas at the transmitter and relay. Severe interference from unknown transmitters affects the downlink relay network channel and degrades the system performance. An additional (unintended) receiver is introduced in the proposed R-STIA technique to overcome the above problem, since it has the ability to decode the desired signals for the intended receiver by considering cooperation between the receivers. The additional receiver also helps in recovering and reconstructing the interference signals with limited channel state information at the relay (CSIR). The Alamouti space-time transmission technique and minimum mean square error (MMSE) linear precoder are also used in the proposed scheme to detect the presence of interference signals. Numerical results show that the proposed R-STIA technique achieves a better performance in terms of the bit error rate (BER) and sum-rate compared to the existing broadcast channel schemes. PMID:28817071
Permanence analysis of a concatenated coding scheme for error control
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Lin, S.; Kasami, T.
1983-01-01
A concatenated coding scheme for error control in data communications is analyzed. In this scheme, the inner code is used for both error correction and detection, however, the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. Probability of undetected error is derived and bounded. A particular example, proposed for the planetary program, is analyzed.
Probability of undetected error after decoding for a concatenated coding scheme
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Lin, S.
1984-01-01
A concatenated coding scheme for error control in data communications is analyzed. In this scheme, the inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. Probability of undetected error is derived and bounded. A particular example, proposed for NASA telecommand system is analyzed.
Blackout detection as a multiobjective optimization problem.
Chaudhary, A M; Trachtenberg, E A
1991-01-01
We study new fast computational procedures for a pilot blackout (total loss of vision) detection in real time. Their validity is demonstrated by data acquired during experiments with volunteer pilots on a human centrifuge. A new systematic class of very fast suboptimal group filters is employed. The utilization of various inherent group invariancies of signals involved allows us to solve the detection problem via estimation with respect to many performance criteria. The complexity of the procedures in terms of the number of computer operations required for their implementation is investigated. Various classes of such prediction procedures are investigated, analyzed and trade offs are established. Also we investigated the validity of suboptimal filtering using different group filters for different performance criteria, namely: the number of false detections, the number of missed detections, the accuracy of detection and the closeness of all procedures to a certain bench mark technique in terms of dispersion squared (mean square error). The results are compared to recent studies of detection of evoked potentials using estimation. The group filters compare favorably with conventional techniques in many cases with respect to the above mentioned criteria. Their main advantage is the fast computational processing.
Automatic detection and decoding of honey bee waggle dances
Wild, Benjamin; Rojas, Raúl; Landgraf, Tim
2017-01-01
The waggle dance is one of the most popular examples of animal communication. Forager bees direct their nestmates to profitable resources via a complex motor display. Essentially, the dance encodes the polar coordinates to the resource in the field. Unemployed foragers follow the dancer’s movements and then search for the advertised spots in the field. Throughout the last decades, biologists have employed different techniques to measure key characteristics of the waggle dance and decode the information it conveys. Early techniques involved the use of protractors and stopwatches to measure the dance orientation and duration directly from the observation hive. Recent approaches employ digital video recordings and manual measurements on screen. However, manual approaches are very time-consuming. Most studies, therefore, regard only small numbers of animals in short periods of time. We have developed a system capable of automatically detecting, decoding and mapping communication dances in real-time. In this paper, we describe our recording setup, the image processing steps performed for dance detection and decoding and an algorithm to map dances to the field. The proposed system performs with a detection accuracy of 90.07%. The decoded waggle orientation has an average error of -2.92° (± 7.37°), well within the range of human error. To evaluate and exemplify the system’s performance, a group of bees was trained to an artificial feeder, and all dances in the colony were automatically detected, decoded and mapped. The system presented here is the first of this kind made publicly available, including source code and hardware specifications. We hope this will foster quantitative analyses of the honey bee waggle dance. PMID:29236712
Confusion—specimen mix-up in dermatopathology and measures to prevent and detect it
Weyers, Wolfgang
2014-01-01
Maintaining patient identity throughout the biopsy pathway is critical for the practice of dermatology and dermatopathology. From the biopsy procedure to the acquisition of the pathology report, a specimen may pass through the hands of more than twenty individuals in several workplaces. The risk of a mix-up is considerable and may account for more serious mistakes than diagnostic errors. To prevent specimen mix-up, work processes should be standardized and automated wherever possible, e.g., by strict order in the operating room and in the laboratory and by adoption of a bar code system to identify specimens and corresponding request forms. Mutual control of clinicians, technicians, histopathologists, and secretaries, both simultaneously and downstream, is essential to detect errors. The most vulnerable steps of the biopsy pathway, namely, labeling of specimens and request forms and accessioning of biopsy specimens in the laboratory, should be carried out by two persons simultaneously. In preceding work steps, clues must be provided that allow a mix-up to be detected later on, such as information about clinical diagnosis, biopsy technique, and biopsy site by the clinician, and a sketch of the specimen by the technician grossing it. Awareness of the danger of specimen mix-up is essential for preventing and detecting it. The awareness can be heightened by documentation of any error in the biopsy pathway. In case of suspicion, a mix-up of specimens from different patients can be confirmed by DNA analysis. PMID:24520511
Confusion-specimen mix-up in dermatopathology and measures to prevent and detect it.
Weyers, Wolfgang
2014-01-01
Maintaining patient identity throughout the biopsy pathway is critical for the practice of dermatology and dermatopathology. From the biopsy procedure to the acquisition of the pathology report, a specimen may pass through the hands of more than twenty individuals in several workplaces. The risk of a mix-up is considerable and may account for more serious mistakes than diagnostic errors. To prevent specimen mix-up, work processes should be standardized and automated wherever possible, e.g., by strict order in the operating room and in the laboratory and by adoption of a bar code system to identify specimens and corresponding request forms. Mutual control of clinicians, technicians, histopathologists, and secretaries, both simultaneously and downstream, is essential to detect errors. The most vulnerable steps of the biopsy pathway, namely, labeling of specimens and request forms and accessioning of biopsy specimens in the laboratory, should be carried out by two persons simultaneously. In preceding work steps, clues must be provided that allow a mix-up to be detected later on, such as information about clinical diagnosis, biopsy technique, and biopsy site by the clinician, and a sketch of the specimen by the technician grossing it. Awareness of the danger of specimen mix-up is essential for preventing and detecting it. The awareness can be heightened by documentation of any error in the biopsy pathway. In case of suspicion, a mix-up of specimens from different patients can be confirmed by DNA analysis.
The Brera Multiscale Wavelet ROSAT HRI Source Catalog. I. The Algorithm
NASA Astrophysics Data System (ADS)
Lazzati, Davide; Campana, Sergio; Rosati, Piero; Panzera, Maria Rosa; Tagliaferri, Gianpiero
1999-10-01
We present a new detection algorithm based on the wavelet transform for the analysis of high-energy astronomical images. The wavelet transform, because of its multiscale structure, is suited to the optimal detection of pointlike as well as extended sources, regardless of any loss of resolution with the off-axis angle. Sources are detected as significant enhancements in the wavelet space, after the subtraction of the nonflat components of the background. Detection thresholds are computed through Monte Carlo simulations in order to establish the expected number of spurious sources per field. The source characterization is performed through a multisource fitting in the wavelet space. The procedure is designed to correctly deal with very crowded fields, allowing for the simultaneous characterization of nearby sources. To obtain a fast and reliable estimate of the source parameters and related errors, we apply a novel decimation technique that, taking into account the correlation properties of the wavelet transform, extracts a subset of almost independent coefficients. We test the performance of this algorithm on synthetic fields, analyzing with particular care the characterization of sources in poor background situations, where the assumption of Gaussian statistics does not hold. In these cases, for which standard wavelet algorithms generally provide underestimated errors, we infer errors through a procedure that relies on robust basic statistics. Our algorithm is well suited to the analysis of images taken with the new generation of X-ray instruments equipped with CCD technology, which will produce images with very low background and/or high source density.
Fault Injection Techniques and Tools
NASA Technical Reports Server (NTRS)
Hsueh, Mei-Chen; Tsai, Timothy K.; Iyer, Ravishankar K.
1997-01-01
Dependability evaluation involves the study of failures and errors. The destructive nature of a crash and long error latency make it difficult to identify the causes of failures in the operational environment. It is particularly hard to recreate a failure scenario for a large, complex system. To identify and understand potential failures, we use an experiment-based approach for studying the dependability of a system. Such an approach is applied not only during the conception and design phases, but also during the prototype and operational phases. To take an experiment-based approach, we must first understand a system's architecture, structure, and behavior. Specifically, we need to know its tolerance for faults and failures, including its built-in detection and recovery mechanisms, and we need specific instruments and tools to inject faults, create failures or errors, and monitor their effects.
Evaluation of drug administration errors in a teaching hospital
2012-01-01
Background Medication errors can occur at any of the three steps of the medication use process: prescribing, dispensing and administration. We aimed to determine the incidence, type and clinical importance of drug administration errors and to identify risk factors. Methods Prospective study based on disguised observation technique in four wards in a teaching hospital in Paris, France (800 beds). A pharmacist accompanied nurses and witnessed the preparation and administration of drugs to all patients during the three drug rounds on each of six days per ward. Main outcomes were number, type and clinical importance of errors and associated risk factors. Drug administration error rate was calculated with and without wrong time errors. Relationship between the occurrence of errors and potential risk factors were investigated using logistic regression models with random effects. Results Twenty-eight nurses caring for 108 patients were observed. Among 1501 opportunities for error, 415 administrations (430 errors) with one or more errors were detected (27.6%). There were 312 wrong time errors, ten simultaneously with another type of error, resulting in an error rate without wrong time error of 7.5% (113/1501). The most frequently administered drugs were the cardiovascular drugs (425/1501, 28.3%). The highest risks of error in a drug administration were for dermatological drugs. No potentially life-threatening errors were witnessed and 6% of errors were classified as having a serious or significant impact on patients (mainly omission). In multivariate analysis, the occurrence of errors was associated with drug administration route, drug classification (ATC) and the number of patient under the nurse's care. Conclusion Medication administration errors are frequent. The identification of its determinants helps to undertake designed interventions. PMID:22409837
Evaluation of drug administration errors in a teaching hospital.
Berdot, Sarah; Sabatier, Brigitte; Gillaizeau, Florence; Caruba, Thibaut; Prognon, Patrice; Durieux, Pierre
2012-03-12
Medication errors can occur at any of the three steps of the medication use process: prescribing, dispensing and administration. We aimed to determine the incidence, type and clinical importance of drug administration errors and to identify risk factors. Prospective study based on disguised observation technique in four wards in a teaching hospital in Paris, France (800 beds). A pharmacist accompanied nurses and witnessed the preparation and administration of drugs to all patients during the three drug rounds on each of six days per ward. Main outcomes were number, type and clinical importance of errors and associated risk factors. Drug administration error rate was calculated with and without wrong time errors. Relationship between the occurrence of errors and potential risk factors were investigated using logistic regression models with random effects. Twenty-eight nurses caring for 108 patients were observed. Among 1501 opportunities for error, 415 administrations (430 errors) with one or more errors were detected (27.6%). There were 312 wrong time errors, ten simultaneously with another type of error, resulting in an error rate without wrong time error of 7.5% (113/1501). The most frequently administered drugs were the cardiovascular drugs (425/1501, 28.3%). The highest risks of error in a drug administration were for dermatological drugs. No potentially life-threatening errors were witnessed and 6% of errors were classified as having a serious or significant impact on patients (mainly omission). In multivariate analysis, the occurrence of errors was associated with drug administration route, drug classification (ATC) and the number of patient under the nurse's care. Medication administration errors are frequent. The identification of its determinants helps to undertake designed interventions.
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe
1992-01-01
This paper presents a strategy for dynamically monitoring digital controllers in the laboratory for susceptibility to electromagnetic disturbances that compromise control integrity. The integrity of digital control systems operating in harsh electromagnetic environments can be compromised by upsets caused by induced transient electrical signals. Digital system upset is a functional error mode that involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. The motivation for this work is the need to develop tools and techniques that can be used in the laboratory to validate and/or certify critical aircraft controllers operating in electromagnetically adverse environments that result from lightning, high-intensity radiated fields (HIRF), and nuclear electromagnetic pulses (NEMP). The detection strategy presented in this paper provides dynamic monitoring of a given control computer for degraded functional integrity resulting from redundancy management errors, control calculation errors, and control correctness/effectiveness errors. In particular, this paper discusses the use of Kalman filtering, data fusion, and statistical decision theory in monitoring a given digital controller for control calculation errors.
Sirgo, Gonzalo; Esteban, Federico; Gómez, Josep; Moreno, Gerard; Rodríguez, Alejandro; Blanch, Lluis; Guardiola, Juan José; Gracia, Rafael; De Haro, Lluis; Bodí, María
2018-04-01
Big data analytics promise insights into healthcare processes and management, improving outcomes while reducing costs. However, data quality is a major challenge for reliable results. Business process discovery techniques and an associated data model were used to develop data management tool, ICU-DaMa, for extracting variables essential for overseeing the quality of care in the intensive care unit (ICU). To determine the feasibility of using ICU-DaMa to automatically extract variables for the minimum dataset and ICU quality indicators from the clinical information system (CIS). The Wilcoxon signed-rank test and Fisher's exact test were used to compare the values extracted from the CIS with ICU-DaMa for 25 variables from all patients attended in a polyvalent ICU during a two-month period against the gold standard of values manually extracted by two trained physicians. Discrepancies with the gold standard were classified into plausibility, conformance, and completeness errors. Data from 149 patients were included. Although there were no significant differences between the automatic method and the manual method, we detected differences in values for five variables, including one plausibility error and two conformance and completeness errors. Plausibility: 1) Sex, ICU-DaMa incorrectly classified one male patient as female (error generated by the Hospital's Admissions Department). Conformance: 2) Reason for isolation, ICU-DaMa failed to detect a human error in which a professional misclassified a patient's isolation. 3) Brain death, ICU-DaMa failed to detect another human error in which a professional likely entered two mutually exclusive values related to the death of the patient (brain death and controlled donation after circulatory death). Completeness: 4) Destination at ICU discharge, ICU-DaMa incorrectly classified two patients due to a professional failing to fill out the patient discharge form when thepatients died. 5) Length of continuous renal replacement therapy, data were missing for one patient because the CRRT device was not connected to the CIS. Automatic generation of minimum dataset and ICU quality indicators using ICU-DaMa is feasible. The discrepancies were identified and can be corrected by improving CIS ergonomics, training healthcare professionals in the culture of the quality of information, and using tools for detecting and correcting data errors. Copyright © 2018 Elsevier B.V. All rights reserved.
Coherent Doppler Lidar for Boundary Layer Studies and Wind Energy
NASA Astrophysics Data System (ADS)
Choukulkar, Aditya
This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified technique results in significant improvement in velocity retrieval accuracy. These modifications include changes to innovation covariance portioning, covariance binning, and analysis increment calculation. It is observed that the modified technique is able to make retrievals with better accuracy, preserves local information better, and compares well with tower measurements. In order to study the error of representativeness and vector retrieval error, a lidar simulator was constructed. Using the lidar simulator a thorough sensitivity analysis of the lidar measurement process and vector retrieval is carried out. The error of representativeness as a function of scales of motion and sensitivity of vector retrieval to look angle is quantified. Using the modified OI technique, study of nocturnal flow in Owens' Valley, CA was carried out to identify and understand uncharacteristic events on the night of March 27th 2006. Observations from 1030 UTC to 1230 UTC (0230 hr local time to 0430 hr local time) on March 27 2006 are presented. Lidar observations show complex and uncharacteristic flows such as sudden bursts of westerly cross-valley wind mixing with the dominant up-valley wind. Model results from Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS RTM) and other in-situ instrumentations are used to corroborate and complement these observations. The modified OI technique is used to identify uncharacteristic and extreme flow events at a wind development site. Estimates of turbulence and shear from this technique are compared to tower measurements. A formulation for equivalent wind speed in the presence of variations in wind speed and direction, combined with shear is developed and used to determine wind energy content in presence of turbulence.
A soft kinetic data structure for lesion border detection.
Kockara, Sinan; Mete, Mutlu; Yip, Vincent; Lee, Brendan; Aydin, Kemal
2010-06-15
The medical imaging and image processing techniques, ranging from microscopic to macroscopic, has become one of the main components of diagnostic procedures to assist dermatologists in their medical decision-making processes. Computer-aided segmentation and border detection on dermoscopic images is one of the core components of diagnostic procedures and therapeutic interventions for skin cancer. Automated assessment tools for dermoscopic images have become an important research field mainly because of inter- and intra-observer variations in human interpretations. In this study, a novel approach-graph spanner-for automatic border detection in dermoscopic images is proposed. In this approach, a proximity graph representation of dermoscopic images in order to detect regions and borders in skin lesion is presented. Graph spanner approach is examined on a set of 100 dermoscopic images whose manually drawn borders by a dermatologist are used as the ground truth. Error rates, false positives and false negatives along with true positives and true negatives are quantified by digitally comparing results with manually determined borders from a dermatologist. The results show that the highest precision and recall rates obtained to determine lesion boundaries are 100%. However, accuracy of assessment averages out at 97.72% and borders errors' mean is 2.28% for whole dataset.
ECG Signal Analysis and Arrhythmia Detection using Wavelet Transform
NASA Astrophysics Data System (ADS)
Kaur, Inderbir; Rajni, Rajni; Marwaha, Anupma
2016-12-01
Electrocardiogram (ECG) is used to record the electrical activity of the heart. The ECG signal being non-stationary in nature, makes the analysis and interpretation of the signal very difficult. Hence accurate analysis of ECG signal with a powerful tool like discrete wavelet transform (DWT) becomes imperative. In this paper, ECG signal is denoised to remove the artifacts and analyzed using Wavelet Transform to detect the QRS complex and arrhythmia. This work is implemented in MATLAB software for MIT/BIH Arrhythmia database and yields the sensitivity of 99.85 %, positive predictivity of 99.92 % and detection error rate of 0.221 % with wavelet transform. It is also inferred that DWT outperforms principle component analysis technique in detection of ECG signal.
Passarge, Michelle; Fix, Michael K; Manser, Peter; Stampanoni, Marco F M; Siebers, Jeffrey V
2017-04-01
To develop a robust and efficient process that detects relevant dose errors (dose errors of ≥5%) in external beam radiation therapy and directly indicates the origin of the error. The process is illustrated in the context of electronic portal imaging device (EPID)-based angle-resolved volumetric-modulated arc therapy (VMAT) quality assurance (QA), particularly as would be implemented in a real-time monitoring program. A Swiss cheese error detection (SCED) method was created as a paradigm for a cine EPID-based during-treatment QA. For VMAT, the method compares a treatment plan-based reference set of EPID images with images acquired over each 2° gantry angle interval. The process utilizes a sequence of independent consecutively executed error detection tests: an aperture check that verifies in-field radiation delivery and ensures no out-of-field radiation; output normalization checks at two different stages; global image alignment check to examine if rotation, scaling, and translation are within tolerances; pixel intensity check containing the standard gamma evaluation (3%, 3 mm) and pixel intensity deviation checks including and excluding high dose gradient regions. Tolerances for each check were determined. To test the SCED method, 12 different types of errors were selected to modify the original plan. A series of angle-resolved predicted EPID images were artificially generated for each test case, resulting in a sequence of precalculated frames for each modified treatment plan. The SCED method was applied multiple times for each test case to assess the ability to detect introduced plan variations. To compare the performance of the SCED process with that of a standard gamma analysis, both error detection methods were applied to the generated test cases with realistic noise variations. Averaged over ten test runs, 95.1% of all plan variations that resulted in relevant patient dose errors were detected within 2° and 100% within 14° (<4% of patient dose delivery). Including cases that led to slightly modified but clinically equivalent plans, 89.1% were detected by the SCED method within 2°. Based on the type of check that detected the error, determination of error sources was achieved. With noise ranging from no random noise to four times the established noise value, the averaged relevant dose error detection rate of the SCED method was between 94.0% and 95.8% and that of gamma between 82.8% and 89.8%. An EPID-frame-based error detection process for VMAT deliveries was successfully designed and tested via simulations. The SCED method was inspected for robustness with realistic noise variations, demonstrating that it has the potential to detect a large majority of relevant dose errors. Compared to a typical (3%, 3 mm) gamma analysis, the SCED method produced a higher detection rate for all introduced dose errors, identified errors in an earlier stage, displayed a higher robustness to noise variations, and indicated the error source. © 2017 American Association of Physicists in Medicine.
Use of total electron content data to analyze ionosphere electron density gradients
NASA Astrophysics Data System (ADS)
Nava, B.; Radicella, S. M.; Leitinger, R.; Coïsson, P.
In the presence of electron density gradients the thin shell approximation for the ionosphere, used together with a simple mapping function to convert slant total electron content (TEC) to vertical TEC, could lead to TEC conversion errors. These "mapping function errors" can therefore be used to detect the electron density gradients in the ionosphere. In the present work GPS derived slant TEC data have been used to investigate the effects of the electron density gradients in the middle and low latitude ionosphere under geomagnetic quiet and disturbed conditions. In particular the data corresponding to the geographic area of the American Sector for the days 5-7 April 2000 have been used to perform a complete analysis of mapping function errors based on the "coinciding pierce point technique". The results clearly illustrate the electron density gradient effects according to the locations considered and to the actual levels of disturbance of the ionosphere. In addition, the possibility to assess an ionospheric shell height able to minimize the mapping function errors has been verified.
A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment.
Fuangrod, Todsaporn; Woodruff, Henry C; van Uytven, Eric; McCurdy, Boyd M C; Kuncic, Zdenka; O'Connor, Daryl J; Greer, Peter B
2013-09-01
To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient. The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance. The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s). A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.
Extracting harmonic signal from a chaotic background with local linear model
NASA Astrophysics Data System (ADS)
Li, Chenlong; Su, Liyun
2017-02-01
In this paper, the problems of blind detection and estimation of harmonic signal in strong chaotic background are analyzed, and new methods by using local linear (LL) model are put forward. The LL model has been exhaustively researched and successfully applied for fitting and forecasting chaotic signal in many chaotic fields. We enlarge the modeling capacity substantially. Firstly, we can predict the short-term chaotic signal and obtain the fitting error based on the LL model. Then we detect the frequencies from the fitting error by periodogram, a property on the fitting error is proposed which has not been addressed before, and this property ensures that the detected frequencies are similar to that of harmonic signal. Secondly, we establish a two-layer LL model to estimate the determinate harmonic signal in strong chaotic background. To estimate this simply and effectively, we develop an efficient backfitting algorithm to select and optimize the parameters that are hard to be exhaustively searched for. In the method, based on sensitivity to initial value of chaos motion, the minimum fitting error criterion is used as the objective function to get the estimation of the parameters of the two-layer LL model. Simulation shows that the two-layer LL model and its estimation technique have appreciable flexibility to model the determinate harmonic signal in different chaotic backgrounds (Lorenz, Henon and Mackey-Glass (M-G) equations). Specifically, the harmonic signal can be extracted well with low SNR and the developed background algorithm satisfies the condition of convergence in repeated 3-5 times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, D; Dyer, B; Kumaran Nair, C
Purpose: The Integral Quality Monitor (IQM), developed by iRT Systems GmbH (Koblenz, Germany) is a large-area, linac-mounted ion chamber used to monitor photon fluence during patient treatment. Our previous work evaluated the change of the ion chamber’s response to deviations from static 1×1 cm2 and 10×10 cm2 photon beams and other characteristics integral to use in external beam detection. The aim of this work is to simulate two external beam radiation delivery errors, quantify the detection of simulated errors and evaluate the reduction in patient harm resulting from detection. Methods: Two well documented radiation oncology delivery errors were selected formore » simulation. The first error was recreated by modifying a wedged whole breast treatment, removing the physical wedge and calculating the planned dose with Pinnacle TPS (Philips Radiation Oncology Systems, Fitchburg, WI). The second error was recreated by modifying a static-gantry IMRT pharyngeal tonsil plan to be delivered in 3 unmodulated fractions. A radiation oncologist evaluated the dose for simulated errors and predicted morbidity and mortality commiserate with the original reported toxicity, indicating that reported errors were approximately simulated. The ion chamber signal of unmodified treatments was compared to the simulated error signal and evaluated in Pinnacle TPS again with radiation oncologist prediction of simulated patient harm. Results: Previous work established that transmission detector system measurements are stable within 0.5% standard deviation (SD). Errors causing signal change greater than 20 SD (10%) were considered detected. The whole breast and pharyngeal tonsil IMRT simulated error increased signal by 215% and 969%, respectively, indicating error detection after the first fraction and IMRT segment, respectively. Conclusion: The transmission detector system demonstrated utility in detecting clinically significant errors and reducing patient toxicity/harm in simulated external beam delivery. Future work will evaluate detection of other smaller magnitude delivery errors.« less
Automated quantification of the synchrogram by recurrence plot analysis.
Nguyen, Chinh Duc; Wilson, Stephen James; Crozier, Stuart
2012-04-01
Recently, the concept of phase synchronization of two weakly coupled oscillators has raised a great research interest and has been applied to characterize synchronization phenomenon in physiological data. Phase synchronization of cardiorespiratory coupling is often studied by a synchrogram analysis, a graphical tool investigating the relationship between instantaneous phases of two signals. Although several techniques have been proposed to automatically quantify the synchrogram, most of them require a preselection of a phase-locking ratio by trial and error. One technique does not require this information; however, it is based on the power spectrum of phase's distribution in the synchrogram, which is vulnerable to noise. This study aims to introduce a new technique to automatically quantify the synchrogram by studying its dynamic structure. Our technique exploits recurrence plot analysis, which is a well-established tool for characterizing recurring patterns and nonstationarities in experiments. We applied our technique to detect synchronization in simulated and measured infants' cardiorespiratory data. Our results suggest that the proposed technique is able to systematically detect synchronization in noisy and chaotic data without preselecting the phase-locking ratio. By embedding phase information of the synchrogram into phase space, the phase-locking ratio is automatically unveiled as the number of attractors.
Finding Feasible Abstract Counter-Examples
NASA Technical Reports Server (NTRS)
Pasareanu, Corina S.; Dwyer, Matthew B.; Visser, Willem; Clancy, Daniel (Technical Monitor)
2002-01-01
A strength of model checking is its ability to automate the detection of subtle system errors and produce traces that exhibit those errors. Given the high computational cost of model checking most researchers advocate the use of aggressive property-preserving abstractions. Unfortunately, the more aggressively a system is abstracted the more infeasible behavior it will have. Thus, while abstraction enables efficient model checking it also threatens the usefulness of model checking as a defect detection tool, since it may be difficult to determine whether a counter-example is feasible and hence worth developer time to analyze. We have explored several strategies for addressing this problem by extending an explicit-state model checker, Java PathFinder (JPF), to search for and analyze counter-examples in the presence of abstractions. We demonstrate that these techniques effectively preserve the defect detection ability of model checking in the presence of aggressive abstraction by applying them to check properties of several abstracted multi-threaded Java programs. These new capabilities are not specific to JPF and can be easily adapted to other model checking frameworks; we describe how this was done for the Bandera toolset.
AQMEII3 evaluation of regional NA/EU simulations and ...
Through the comparison of several regional-scale chemistry transport modelling systems that simulate meteorology and air quality over the European and American continents, this study aims at i) apportioning the error to the responsible processes using time-scale analysis, ii) helping to detect causes of models error, and iii) identifying the processes and scales most urgently requiring dedicated investigations. The analysis is conducted within the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII) and tackles model performance gauging through measurement-to-model comparison, error decomposition and time series analysis of the models biases for several fields (ozone, CO, SO2, NO, NO2, PM10, PM2.5, wind speed, and temperature). The operational metrics (magnitude of the error, sign of the bias, associativity) provide an overall sense of model strengths and deficiencies, while apportioning the error to its constituent parts (bias, variance and covariance) can help to assess the nature and quality of the error. Each of the error components is analysed independently and apportioned to specific processes based on the corresponding timescale (long scale, synoptic, diurnal, and intra-day) using the error apportionment technique devised in the former phases of AQMEII. The application of the error apportionment method to the AQMEII Phase 3 simulations provides several key insights. In addition to reaffirming the strong impac
Inui, Hiroshi; Taketomi, Shuji; Tahara, Keitarou; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae
2017-03-01
Bone cutting errors can cause malalignment of unicompartmental knee arthroplasties (UKA). Although the extent of tibial malalignment due to horizontal cutting errors has been well reported, there is a lack of studies evaluating malalignment as a consequence of keel cutting errors, particularly in the Oxford UKA. The purpose of this study was to examine keel cutting errors during Oxford UKA placement using a navigation system and to clarify whether two different tibial keel cutting techniques would have different error rates. The alignment of the tibial cut surface after a horizontal osteotomy and the surface of the tibial trial component was measured with a navigation system. Cutting error was defined as the angular difference between these measurements. The following two techniques were used: the standard "pushing" technique in 83 patients (group P) and a modified "dolphin" technique in 41 patients (group D). In all 123 patients studied, the mean absolute keel cutting error was 1.7° and 1.4° in the coronal and sagittal planes, respectively. In group P, there were 22 outlier patients (27 %) in the coronal plane and 13 (16 %) in the sagittal plane. Group D had three outlier patients (8 %) in the coronal plane and none (0 %) in the sagittal plane. Significant differences were observed in the outlier ratio of these techniques in both the sagittal (P = 0.014) and coronal (P = 0.008) planes. Our study demonstrated overall keel cutting errors of 1.7° in the coronal plane and 1.4° in the sagittal plane. The "dolphin" technique was found to significantly reduce keel cutting errors on the tibial side. This technique will be useful for accurate component positioning and therefore improve the longevity of Oxford UKAs. Retrospective comparative study, Level III.
Take a byte out of MEEF: VAMPIRE: Vehicle for Advanced Mask Pattern Inspection Readiness Evaluations
NASA Astrophysics Data System (ADS)
Badger, Karen D.; Rankin, Jed; Turley, Christina; Seki, Kazunori; Dechene, Dan J.; Abdelghany, Hesham
2016-09-01
MEEF, or Mask Error Enhancement Factor, is simply defined as the ratio of the change in printed wafer feature width to the change in mask feature width scaled to wafer level. It is important in chip manufacturing that leads to the amplification of mask errors, creating challenges with both achieving dimensional control tolerances and ensuring defect free masks, as measured by on-wafer image quality. As lithographic imaging continues to be stressed, using lower and lower k1 factor resolution enhancement techniques, the high MEEF areas present on advanced optical masks creates an environment where the need for increased mask defect sensitivity in high-MEEF areas becomes more and more critical. There are multiple approaches to mask inspection that may or may not provide enough sensitivity to detect all wafer-printable defects; the challenge in the application of these techniques is simultaneously maintaining an acceptable level of mask inspectability. The higher the MEEF, the harder the challenge will be to achieve and appropriate level of sensitivity while maintaining inspectability…and to do so on the geometries that matter. The predominant photomask fabrication inspection approach in use today compares the features on the reticle directly with the design database using high-NA optics. This approach has the ability to detect small defects, however, when inspecting aggressive OPC, it can lead to the over-detection of inconsequential, or nuisance defects. To minimize these nuisance detections, changing the sensitivity of the inspection can improve the inspectability of a mask inspected in high-NA mode, however, it leads to the inability to detect subtle, yet wafer-printable defects in High-MEEF geometry, due to the fact that this `desense' must be applied globally. There are also `lithography-emulating' approaches to inspection that use various means to provide high defect sensitivity and the ability to tolerate inconsequential, non-printing defects by using scanner-like conditions to determine which defects are wafer printable. This inspection technique is commonly referred to as being `lithography plane' or `litho plane,' since it's assessing the mask quality based on how the mask appears to the imaging optics during use, as proposed to traditional `reticle plane' inspection which is comparing the mask only with its target design. Regardless of how the defects are detected, the real question is when should they be detected? For larger technology nodes, defects are considered `statistical risks'…i.e., first they have to occur, and then they have to fall in high-MEEF areas in order to be of concern, and be below the detection limits of traditional reticle-plane inspection. In short, the `perfect storm' has to happen in order to miss printable defects using well-optimized traditional inspection approaches. The introduction of lithographic inspection techniques has revealed this statistical game is a much higher risk than originally estimated, in that very subtle waferprintable CD errors typically fall into the desense band for traditional reticle plane inspection. Because printability is largely influenced by MEEF, designs with high-MEEF values are at greater risk of traditional inspection missing printable CD errors. The question is… how high is high… and at what MEEF is optical inspection at the reticle plane sufficient? This paper will provide evaluation results for both reticle-plane and litho-plane inspections as they pertain to varying degrees of MEEF. A newly designed high-MEEF programmed defect test mask, named VAMPIRE, will be introduced. This test mask is based on 7 nm node technology and contains intentionally varying degrees of MEEF as well as a variety of programmed defects in high-MEEF environments…all of which have been verified for defect lithographic significance on a Zeiss AIMS system.
Camouflaged target detection based on polarized spectral features
NASA Astrophysics Data System (ADS)
Tan, Jian; Zhang, Junping; Zou, Bin
2016-05-01
The polarized hyperspectral images (PHSI) include polarization, spectral, spatial and radiant features, which provide more information about objects and scenes than traditional intensity or spectrum ones. And polarization can suppress the background and highlight the object, leading to the high potential to improve camouflaged target detection. So polarized hyperspectral imaging technique has aroused extensive concern in the last few years. Nowadays, the detection methods are still not very mature, most of which are rooted in the detection of hyperspectral image. And before using these algorithms, Stokes vector is used to process the original four-dimensional polarized hyperspectral data firstly. However, when the data is large and complex, the amount of calculation and error will increase. In this paper, tensor is applied to reconstruct the original four-dimensional data into new three-dimensional data, then, the constraint energy minimization (CEM) is used to process the new data, which adds the polarization information to construct the polarized spectral filter operator and takes full advantages of spectral and polarized information. This way deals with the original data without extracting the Stokes vector, so as to reduce the computation and error greatly. The experimental results also show that the proposed method in this paper is more suitable for the target detection of the PHSI.
Adaptive Quadrature Detection for Multicarrier Continuous-Variable Quantum Key Distribution
NASA Astrophysics Data System (ADS)
Gyongyosi, Laszlo; Imre, Sandor
2015-03-01
We propose the adaptive quadrature detection for multicarrier continuous-variable quantum key distribution (CVQKD). A multicarrier CVQKD scheme uses Gaussian subcarrier continuous variables for the information conveying and Gaussian sub-channels for the transmission. The proposed multicarrier detection scheme dynamically adapts to the sub-channel conditions using a corresponding statistics which is provided by our sophisticated sub-channel estimation procedure. The sub-channel estimation phase determines the transmittance coefficients of the sub-channels, which information are used further in the adaptive quadrature decoding process. We define the technique called subcarrier spreading to estimate the transmittance conditions of the sub-channels with a theoretical error-minimum in the presence of a Gaussian noise. We introduce the terms of single and collective adaptive quadrature detection. We also extend the results for a multiuser multicarrier CVQKD scenario. We prove the achievable error probabilities, the signal-to-noise ratios, and quantify the attributes of the framework. The adaptive detection scheme allows to utilize the extra resources of multicarrier CVQKD and to maximize the amount of transmittable information. This work was partially supported by the GOP-1.1.1-11-2012-0092 (Secure quantum key distribution between two units on optical fiber network) project sponsored by the EU and European Structural Fund, and by the COST Action MP1006.
Effects of Contextual Sight-Singing and Aural Skills Training on Error-Detection Abilities.
ERIC Educational Resources Information Center
Sheldon, Deborah A.
1998-01-01
Examines the effects of contextual sight-singing and ear training on pitch and rhythm error detection abilities among undergraduate instrumental music education majors. Shows that additional training produced better error detection, particularly with rhythm errors and in one-part examples. Maintains that differences attributable to texture were…
On the detection of other planetary systems by astrometric techniques
NASA Technical Reports Server (NTRS)
Black, D. C.; Scargle, J. D.
1982-01-01
A quantitative method for astrometrically detecting perturbations induced in a star's motion by the presence of a planetary object is described. A periodogram is defined, wherein signals observed from a star show exactly periodic variations, which can be extracted from observational data using purely statistical methods. A detection threshold is defined for the frequency of occurrence of some detectable signal, e.g., the Nyquist frequency. Possible effects of a stellar orbital eccentricity and multiple companions are discussed, noting that assumption of a circular orbit assures the spectral purity of the signal described. The periodogram technique was applied to 12 yr of astrometric data from the U.S. Naval Observatory for three stars with low mass stellar companions. Periodic perturbations were confirmed. A comparison of the accuracy of different astrometric systems shows that the detection accuracy of a system is determined by the measurement accuracy and the number of observations, although the detection efficiency can be maximized by minimizing the number of data points for the case when observational errors are proportional to the square root of the number of data points. It is suggested that a space-based astrometric telescope is best suited to take advantage of the method.
NASA Technical Reports Server (NTRS)
1981-01-01
Presentations of a conference on the use of ruggedized minicomputers are summarized. The following topics are discussed: (1) the role of minicomputers in the development and/or certification of commercial or military airplanes in both the United States and Europe; (2) generalized software error detection techniques; (3) real time software development tools; (4) a redundancy management research tool for aircraft navigation/flight control sensors; (5) extended memory management techniques using a high order language; and (6) some comments on establishing a system maintenance scheme. Copies of presentation slides are also included.
Trinh, Tony W; Glazer, Daniel I; Sadow, Cheryl A; Sahni, V Anik; Geller, Nina L; Silverman, Stuart G
2018-03-01
To determine test characteristics of CT urography for detecting bladder cancer in patients with hematuria and those undergoing surveillance, and to analyze reasons for false-positive and false-negative results. A HIPAA-compliant, IRB-approved retrospective review of reports from 1623 CT urograms between 10/2010 and 12/31/2013 was performed. 710 examinations for hematuria or bladder cancer history were compared to cystoscopy performed within 6 months. Reference standard was surgical pathology or 1-year minimum clinical follow-up. False-positive and false-negative examinations were reviewed to determine reasons for errors. Ninety-five bladder cancers were detected. CT urography accuracy: was 91.5% (650/710), sensitivity 86.3% (82/95), specificity 92.4% (568/615), positive predictive value 63.6% (82/129), and negative predictive value was 97.8% (568/581). Of 43 false positives, the majority of interpretation errors were due to benign prostatic hyperplasia (n = 12), trabeculated bladder (n = 9), and treatment changes (n = 8). Other causes include blood clots, mistaken normal anatomy, infectious/inflammatory changes, or had no cystoscopic correlate. Of 13 false negatives, 11 were due to technique, one to a large urinary residual, one to artifact. There were no errors in perception. CT urography is an accurate test for diagnosing bladder cancer; however, in protocols relying predominantly on excretory phase images, overall sensitivity remains insufficient to obviate cystoscopy. Awareness of bladder cancer mimics may reduce false-positive results. Improvements in CTU technique may reduce false-negative results.
Bledsoe, Sarah; Van Buskirk, Alex; Falconer, R James; Hollon, Andrew; Hoebing, Wendy; Jokic, Sladan
2018-02-01
The effectiveness of barcode-assisted medication preparation (BCMP) technology on detecting oral liquid dose preparation errors. From June 1, 2013, through May 31, 2014, a total of 178,344 oral doses were processed at Children's Mercy, a 301-bed pediatric hospital, through an automated workflow management system. Doses containing errors detected by the system's barcode scanning system or classified as rejected by the pharmacist were further reviewed. Errors intercepted by the barcode-scanning system were classified as (1) expired product, (2) incorrect drug, (3) incorrect concentration, and (4) technological error. Pharmacist-rejected doses were categorized into 6 categories based on the root cause of the preparation error: (1) expired product, (2) incorrect concentration, (3) incorrect drug, (4) incorrect volume, (5) preparation error, and (6) other. Of the 178,344 doses examined, 3,812 (2.1%) errors were detected by either the barcode-assisted scanning system (1.8%, n = 3,291) or a pharmacist (0.3%, n = 521). The 3,291 errors prevented by the barcode-assisted system were classified most commonly as technological error and incorrect drug, followed by incorrect concentration and expired product. Errors detected by pharmacists were also analyzed. These 521 errors were most often classified as incorrect volume, preparation error, expired product, other, incorrect drug, and incorrect concentration. BCMP technology detected errors in 1.8% of pediatric oral liquid medication doses prepared in an automated workflow management system, with errors being most commonly attributed to technological problems or incorrect drugs. Pharmacists rejected an additional 0.3% of studied doses. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Survey of Anomaly Detection Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, B
This survey defines the problem of anomaly detection and provides an overview of existing methods. The methods are categorized into two general classes: generative and discriminative. A generative approach involves building a model that represents the joint distribution of the input features and the output labels of system behavior (e.g., normal or anomalous) then applies the model to formulate a decision rule for detecting anomalies. On the other hand, a discriminative approach aims directly to find the decision rule, with the smallest error rate, that distinguishes between normal and anomalous behavior. For each approach, we will give an overview ofmore » popular techniques and provide references to state-of-the-art applications.« less
Thresholding Based on Maximum Weighted Object Correlation for Rail Defect Detection
NASA Astrophysics Data System (ADS)
Li, Qingyong; Huang, Yaping; Liang, Zhengping; Luo, Siwei
Automatic thresholding is an important technique for rail defect detection, but traditional methods are not competent enough to fit the characteristics of this application. This paper proposes the Maximum Weighted Object Correlation (MWOC) thresholding method, fitting the features that rail images are unimodal and defect proportion is small. MWOC selects a threshold by optimizing the product of object correlation and the weight term that expresses the proportion of thresholded defects. Our experimental results demonstrate that MWOC achieves misclassification error of 0.85%, and outperforms the other well-established thresholding methods, including Otsu, maximum correlation thresholding, maximum entropy thresholding and valley-emphasis method, for the application of rail defect detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somayaji, Anil B.; Amai, Wendy A.; Walther, Eleanor A.
This reports describes the successful extension of artificial immune systems from the domain of computer security to the domain of real time control systems for robotic vehicles. A biologically-inspired computer immune system was added to the control system of two different mobile robots. As an additional layer in a multi-layered approach, the immune system is complementary to traditional error detection and error handling techniques. This can be thought of as biologically-inspired defense in depth. We demonstrated an immune system can be added with very little application developer effort, resulting in little to no performance impact. The methods described here aremore » extensible to any system that processes a sequence of data through a software interface.« less
Douglas, Julie A.; Skol, Andrew D.; Boehnke, Michael
2002-01-01
Gene-mapping studies routinely rely on checking for Mendelian transmission of marker alleles in a pedigree, as a means of screening for genotyping errors and mutations, with the implicit assumption that, if a pedigree is consistent with Mendel’s laws of inheritance, then there are no genotyping errors. However, the occurrence of inheritance inconsistencies alone is an inadequate measure of the number of genotyping errors, since the rate of occurrence depends on the number and relationships of genotyped pedigree members, the type of errors, and the distribution of marker-allele frequencies. In this article, we calculate the expected probability of detection of a genotyping error or mutation as an inheritance inconsistency in nuclear-family data, as a function of both the number of genotyped parents and offspring and the marker-allele frequency distribution. Through computer simulation, we explore the sensitivity of our analytic calculations to the underlying error model. Under a random-allele–error model, we find that detection rates are 51%–77% for multiallelic markers and 13%–75% for biallelic markers; detection rates are generally lower when the error occurs in a parent than in an offspring, unless a large number of offspring are genotyped. Errors are especially difficult to detect for biallelic markers with equally frequent alleles, even when both parents are genotyped; in this case, the maximum detection rate is 34% for four-person nuclear families. Error detection in families in which parents are not genotyped is limited, even with multiallelic markers. Given these results, we recommend that additional error checking (e.g., on the basis of multipoint analysis) be performed, beyond routine checking for Mendelian consistency. Furthermore, our results permit assessment of the plausibility of an observed number of inheritance inconsistencies for a family, allowing the detection of likely pedigree—rather than genotyping—errors in the early stages of a genome scan. Such early assessments are valuable in either the targeting of families for resampling or discontinued genotyping. PMID:11791214
A concatenated coding scheme for error control
NASA Technical Reports Server (NTRS)
Lin, S.
1985-01-01
A concatenated coding scheme for error contol in data communications was analyzed. The inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughout efficiency of the proposed error control scheme incorporated with a selective repeat ARQ retransmission strategy is analyzed.
Form Overrides Meaning When Bilinguals Monitor for Errors
Ivanova, Iva; Ferreira, Victor S.; Gollan, Tamar H.
2016-01-01
Bilinguals rarely produce unintended language switches, which may in part be because switches are detected and corrected by an internal monitor. But are language switches easier or harder to detect than within-language semantic errors? To approximate internal monitoring, bilinguals listened (Experiment 1) or read aloud (Experiment 2) stories, and detected language switches (translation equivalents or semantically unrelated to expected words) and within-language errors (semantically related or unrelated to expected words). Bilinguals detected semantically related within-language errors most slowly and least accurately, language switches more quickly and accurately than within-language errors, and (in Experiment 2), translation equivalents as quickly and accurately as unrelated language switches. These results suggest that internal monitoring of form (which can detect mismatches in language membership) completes earlier than, and is independent of, monitoring of meaning. However, analysis of reading times prior to error detection revealed meaning violations to be more disruptive for processing than language violations. PMID:28649169
Data acquisition and path selection decision making for an autonomous roving vehicle
NASA Technical Reports Server (NTRS)
Frederick, D. K.; Shen, C. N.; Yerazunis, S. W.
1976-01-01
Problems related to the guidance of an autonomous rover for unmanned planetary exploration were investigated. Topics included in these studies were: simulation on an interactive graphics computer system of the Rapid Estimation Technique for detection of discrete obstacles; incorporation of a simultaneous Bayesian estimate of states and inputs in the Rapid Estimation Scheme; development of methods for estimating actual laser rangefinder errors and their application to date provided by Jet Propulsion Laboratory; and modification of a path selection system simulation computer code for evaluation of a hazard detection system based on laser rangefinder data.
Brandmaier, Andreas M.; von Oertzen, Timo; Ghisletta, Paolo; Lindenberger, Ulman; Hertzog, Christopher
2018-01-01
Latent Growth Curve Models (LGCM) have become a standard technique to model change over time. Prediction and explanation of inter-individual differences in change are major goals in lifespan research. The major determinants of statistical power to detect individual differences in change are the magnitude of true inter-individual differences in linear change (LGCM slope variance), design precision, alpha level, and sample size. Here, we show that design precision can be expressed as the inverse of effective error. Effective error is determined by instrument reliability and the temporal arrangement of measurement occasions. However, it also depends on another central LGCM component, the variance of the latent intercept and its covariance with the latent slope. We derive a new reliability index for LGCM slope variance—effective curve reliability (ECR)—by scaling slope variance against effective error. ECR is interpretable as a standardized effect size index. We demonstrate how effective error, ECR, and statistical power for a likelihood ratio test of zero slope variance formally relate to each other and how they function as indices of statistical power. We also provide a computational approach to derive ECR for arbitrary intercept-slope covariance. With practical use cases, we argue for the complementary utility of the proposed indices of a study's sensitivity to detect slope variance when making a priori longitudinal design decisions or communicating study designs. PMID:29755377
Structural Damage Detection Using Changes in Natural Frequencies: Theory and Applications
NASA Astrophysics Data System (ADS)
He, K.; Zhu, W. D.
2011-07-01
A vibration-based method that uses changes in natural frequencies of a structure to detect damage has advantages over conventional nondestructive tests in detecting various types of damage, including loosening of bolted joints, using minimum measurement data. Two major challenges associated with applications of the vibration-based damage detection method to engineering structures are addressed: accurate modeling of structures and the development of a robust inverse algorithm to detect damage, which are defined as the forward and inverse problems, respectively. To resolve the forward problem, new physics-based finite element modeling techniques are developed for fillets in thin-walled beams and for bolted joints, so that complex structures can be accurately modeled with a reasonable model size. To resolve the inverse problem, a logistical function transformation is introduced to convert the constrained optimization problem to an unconstrained one, and a robust iterative algorithm using a trust-region method, called the Levenberg-Marquardt method, is developed to accurately detect the locations and extent of damage. The new methodology can ensure global convergence of the iterative algorithm in solving under-determined system equations and deal with damage detection problems with relatively large modeling error and measurement noise. The vibration-based damage detection method is applied to various structures including lightning masts, a space frame structure and one of its components, and a pipeline. The exact locations and extent of damage can be detected in the numerical simulation where there is no modeling error and measurement noise. The locations and extent of damage can be successfully detected in experimental damage detection.
Colorimetric Topography of Atherosclerotic Lesions by Television Image Processing
1979-06-15
image. Indeed, the system is capable of detecting such fine dynamics that epidemiologic factors effecting those changes can not be measured...different occurance patterns and development of clinical atherosclerosis (30). Numerous risk factors have been determined by group comparison and some...techniques and scanners today are much more uniform, and these errors are no longer limiting factors . Since the films were "black and white," and scanned as
Applications of optical measurement technology in pollution gas monitoring at thermal power plants
NASA Astrophysics Data System (ADS)
Wang, Jian; Yu, Dahai; Ye, Huajun; Yang, Jianhu; Ke, Liang; Han, Shuanglai; Gu, Haitao; Chen, Yingbin
2011-11-01
This paper presents the work of using advanced optical measurement techniques to implement stack gas emission monitoring and process control. A system is designed to conduct online measurement of SO2/NOX and mercury emission from stacks and slipping NH3 of de-nitrification process. The system is consisted of SO2/NOX monitoring subsystem, mercury monitoring subsystem, and NH3 monitoring subsystem. The SO2/NOX monitoring subsystem is developed based on the ultraviolet differential optical absorption spectroscopy (UV-DOAS) technique. By using this technique, a linearity error less than +/-1% F.S. is achieved, and the measurement errors resulting from optical path contamination and light fluctuation are removed. Moreover, this subsystem employs in situ extraction and hot-wet line sampling technique to significantly reduce SO2 loss due to condensation and protect gas pipeline from corrosion. The mercury monitoring subsystem is used to measure the concentration of element mercury (Hg0), oxidized mercury (Hg2+), and total gaseous mercury (HgT) in the flue gas exhaust. The measurement of Hg with a low detection limit (0.1μg/m3) and a high sensitivity is realized by using cold vapor atom fluorescence spectroscopy (CVAFS) technique. This subsystem is also equipped with an inertial separation type sampling technique to prevent gas pipeline from being clogged and to reduce speciation mercury measurement error. The NH3 monitoring subsystem is developed to measure the concentration of slipping NH3 and then to help improving the efficiency of de-nitrification. The NH3 concentration as low as 0.1ppm is able to be measured by using the off-axis integrated cavity output spectroscopy (ICOS) and the tunable diode laser absorption spectroscopy (TDLAS) techniques. The problem of trace NH3 sampling loss is solved by applying heating the gas pipelines when the measurement is running.
Automatic QRS complex detection using two-level convolutional neural network.
Xiang, Yande; Lin, Zhitao; Meng, Jianyi
2018-01-29
The QRS complex is the most noticeable feature in the electrocardiogram (ECG) signal, therefore, its detection is critical for ECG signal analysis. The existing detection methods largely depend on hand-crafted manual features and parameters, which may introduce significant computational complexity, especially in the transform domains. In addition, fixed features and parameters are not suitable for detecting various kinds of QRS complexes under different circumstances. In this study, based on 1-D convolutional neural network (CNN), an accurate method for QRS complex detection is proposed. The CNN consists of object-level and part-level CNNs for extracting different grained ECG morphological features automatically. All the extracted morphological features are used by multi-layer perceptron (MLP) for QRS complex detection. Additionally, a simple ECG signal preprocessing technique which only contains difference operation in temporal domain is adopted. Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed detection method achieves overall sensitivity Sen = 99.77%, positive predictivity rate PPR = 99.91%, and detection error rate DER = 0.32%. In addition, the performance variation is performed according to different signal-to-noise ratio (SNR) values. An automatic QRS detection method using two-level 1-D CNN and simple signal preprocessing technique is proposed for QRS complex detection. Compared with the state-of-the-art QRS complex detection approaches, experimental results show that the proposed method acquires comparable accuracy.
A survey of camera error sources in machine vision systems
NASA Astrophysics Data System (ADS)
Jatko, W. B.
In machine vision applications, such as an automated inspection line, television cameras are commonly used to record scene intensity in a computer memory or frame buffer. Scene data from the image sensor can then be analyzed with a wide variety of feature-detection techniques. Many algorithms found in textbooks on image processing make the implicit simplifying assumption of an ideal input image with clearly defined edges and uniform illumination. The ideal image model is helpful to aid the student in understanding the principles of operation, but when these algorithms are blindly applied to real-world images the results can be unsatisfactory. This paper examines some common measurement errors found in camera sensors and their underlying causes, and possible methods of error compensation. The role of the camera in a typical image-processing system is discussed, with emphasis on the origination of signal distortions. The effects of such things as lighting, optics, and sensor characteristics are considered.
NASA Technical Reports Server (NTRS)
Whiteman, David N.
2003-01-01
In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman and Rayleigh-Mie lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here those results are used to derive the temperature dependent forms of the equations for the water vapor mixing ratio, aerosol scattering ratio, aerosol backscatter coefficient, and extinction to backscatter ratio (Sa). The error equations are developed, the influence of differential transmission is studied and different laser sources are considered in the analysis. The results indicate that the temperature functions become significant when using narrowband detection. Errors of 5% and more can be introduced in the water vapor mixing ratio calculation at high altitudes and errors larger than 10% are possible for calculations of aerosol scattering ratio and thus aerosol backscatter coefficient and extinction to backscatter ratio.
Westbrook, Johanna I.; Li, Ling; Lehnbom, Elin C.; Baysari, Melissa T.; Braithwaite, Jeffrey; Burke, Rosemary; Conn, Chris; Day, Richard O.
2015-01-01
Objectives To (i) compare medication errors identified at audit and observation with medication incident reports; (ii) identify differences between two hospitals in incident report frequency and medication error rates; (iii) identify prescribing error detection rates by staff. Design Audit of 3291patient records at two hospitals to identify prescribing errors and evidence of their detection by staff. Medication administration errors were identified from a direct observational study of 180 nurses administering 7451 medications. Severity of errors was classified. Those likely to lead to patient harm were categorized as ‘clinically important’. Setting Two major academic teaching hospitals in Sydney, Australia. Main Outcome Measures Rates of medication errors identified from audit and from direct observation were compared with reported medication incident reports. Results A total of 12 567 prescribing errors were identified at audit. Of these 1.2/1000 errors (95% CI: 0.6–1.8) had incident reports. Clinically important prescribing errors (n = 539) were detected by staff at a rate of 218.9/1000 (95% CI: 184.0–253.8), but only 13.0/1000 (95% CI: 3.4–22.5) were reported. 78.1% (n = 421) of clinically important prescribing errors were not detected. A total of 2043 drug administrations (27.4%; 95% CI: 26.4–28.4%) contained ≥1 errors; none had an incident report. Hospital A had a higher frequency of incident reports than Hospital B, but a lower rate of errors at audit. Conclusions Prescribing errors with the potential to cause harm frequently go undetected. Reported incidents do not reflect the profile of medication errors which occur in hospitals or the underlying rates. This demonstrates the inaccuracy of using incident frequency to compare patient risk or quality performance within or across hospitals. New approaches including data mining of electronic clinical information systems are required to support more effective medication error detection and mitigation. PMID:25583702
Peng, Hsiao-Chun; Lu, Hai-Han; Li, Chung-Yi; Su, Heng-Sheng; Hsu, Chin-Tai
2011-03-28
An integration of fiber-to-the-home (FTTH) and graded-index plastic optical fiber (GI-POF) in-house networks based on injection-locked vertical cavity surface emitting lasers (VCSELs) and direct-detection technique is proposed and experimentally demonstrated. Sufficient low bit error rate (BER) values were obtained over a combination of 20-km single-mode fiber (SMF) and 50-m GI-POF links. Signal qualities satisfy the worldwide interoperability for microwave access (WiMAX) requirement with data signals of 20 Mbps/5.8 GHz and 70 Mbps/10 GHz, respectively. Since our proposed network does not use sophisticated and expensive RF devices in premises, it reveals a prominent one with simpler and more economic advantages. Our proposed architecture is suitable for the SMF-based primary and GI-POF-based in-house networks.
Comparisons of neural networks to standard techniques for image classification and correlation
NASA Technical Reports Server (NTRS)
Paola, Justin D.; Schowengerdt, Robert A.
1994-01-01
Neural network techniques for multispectral image classification and spatial pattern detection are compared to the standard techniques of maximum-likelihood classification and spatial correlation. The neural network produced a more accurate classification than maximum-likelihood of a Landsat scene of Tucson, Arizona. Some of the errors in the maximum-likelihood classification are illustrated using decision region and class probability density plots. As expected, the main drawback to the neural network method is the long time required for the training stage. The network was trained using several different hidden layer sizes to optimize both the classification accuracy and training speed, and it was found that one node per class was optimal. The performance improved when 3x3 local windows of image data were entered into the net. This modification introduces texture into the classification without explicit calculation of a texture measure. Larger windows were successfully used for the detection of spatial features in Landsat and Magellan synthetic aperture radar imagery.
NASA Astrophysics Data System (ADS)
Imtiaz, Waqas A.; Ilyas, M.; Khan, Yousaf
2016-11-01
This paper propose a new code to optimize the performance of spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system. The unique two-matrix structure of the proposed enhanced multi diagonal (EMD) code and effective correlation properties, between intended and interfering subscribers, significantly elevates the performance of SAC-OCDMA system by negating multiple access interference (MAI) and associated phase induce intensity noise (PIIN). Performance of SAC-OCDMA system based on the proposed code is thoroughly analyzed for two detection techniques through analytic and simulation analysis by referring to bit error rate (BER), signal to noise ratio (SNR) and eye patterns at the receiving end. It is shown that EMD code while using SDD technique provides high transmission capacity, reduces the receiver complexity, and provides better performance as compared to complementary subtraction detection (CSD) technique. Furthermore, analysis shows that, for a minimum acceptable BER of 10-9 , the proposed system supports 64 subscribers at data rates of up to 2 Gbps for both up-down link transmission.
Mental representation of symbols as revealed by vocabulary errors in two bonobos (Pan paniscus).
Lyn, Heidi
2007-10-01
Error analysis has been used in humans to detect implicit representations and categories in language use. The present study utilizes the same technique to report on mental representations and categories in symbol use from two bonobos (Pan paniscus). These bonobos have been shown in published reports to comprehend English at the level of a two-and-a-half year old child and to use a keyboard with over 200 visuographic symbols (lexigrams). In this study, vocabulary test errors from over 10 years of data revealed auditory, visual, and spatio-temporal generalizations (errors were more likely items that looked like sounded like, or were frequently associated with the sample item in space or in time), as well as hierarchical and conceptual categorizations. These error data, like those of humans, are a result of spontaneous responding rather than specific training and do not solely depend upon the sample mode (e.g. auditory similarity errors are not universally more frequent with an English sample, nor were visual similarity errors universally more frequent with a photograph sample). However, unlike humans, these bonobos do not make errors based on syntactical confusions (e.g. confusing semantically unrelated nouns), suggesting that they may not separate syntactical and semantic information. These data suggest that apes spontaneously create a complex, hierarchical, web of representations when exposed to a symbol system.
NASA Astrophysics Data System (ADS)
Partsinevelos, Panagiotis; Kallimani, Christina; Tripolitsiotis, Achilleas
2015-06-01
Rockfall incidents affect civil security and hamper the sustainable growth of hard to access mountainous areas due to casualties, injuries and infrastructure loss. Rockfall occurrences cannot be easily prevented, whereas previous studies for rockfall multiple sensor early detection systems have focused on large scale incidents. However, even a single rock may cause the loss of a human life along transportation routes thus, it is highly important to establish methods for the early detection of small-scale rockfall incidents. Terrestrial photogrammetric techniques are prone to a series of errors leading to false alarm incidents, including vegetation, wind, and non relevant change in the scene under consideration. In this study, photogrammetric monitoring of rockfall prone slopes is established and the resulting multi-temporal change imagery is processed in order to minimize false alarm incidents. Integration of remote sensing imagery analysis techniques is hereby applied to enhance early detection of a rockfall. Experimental data demonstrated that an operational system able to identify a 10-cm rock movement within a 10% false alarm rate is technically feasible.
An Empirical State Error Covariance Matrix for the Weighted Least Squares Estimation Method
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2011-01-01
State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the un-certainty in the estimated states. By a reinterpretation of the equations involved in the weighted least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. This proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. Results based on the proposed technique will be presented for a simple, two observer, measurement error only problem.
Spectroscopic planetary detection
NASA Technical Reports Server (NTRS)
Deming, D.; Espenak, F.; Hillman, J. J.; Kostiuk, T.; Mumma, M. J.; Jennings, D. E.
1986-01-01
The Sun-as-a-star was monitored using the McMath Fourier transform spectometer (FTS) on Kitt Peak in 1983. In 1985 the first measurement was made using the laser heterodyne technique. The FTS measurements now extend for three years, with errors of order 3 meters/sec at a given epoch. Over this 3 year period, a 33 meter/sec change was measured in the apparent velocity of integrated sunlight. The sense of the effect is that a greater blueshift is seen near solar minimum, which is consistent with expectations based on considering the changing morphology of solar granular convection. Presuming this effect is solar-cycle-related, it will mimic the Doppler reflex produced by a planetary companion of approximately two Jupiter masses, with an 11 year orbital period. Thus, Jupiter itself is below the threshold for detection by spectroscopic means, without an additional technique for discrimination. However, for planetary companions in shorter period orbits (P approx. 3 years) the threshold for unambiguous detection is well below one Jupiter mass.
Critical Analysis of Dual-Probe Heat-Pulse Technique Applied to Measuring Thermal Diffusivity
NASA Astrophysics Data System (ADS)
Bovesecchi, G.; Coppa, P.; Corasaniti, S.; Potenza, M.
2018-07-01
The paper presents an analysis of the experimental parameters involved in application of the dual-probe heat pulse technique, followed by a critical review of methods for processing thermal response data (e.g., maximum detection and nonlinear least square regression) and the consequent obtainable uncertainty. Glycerol was selected as testing liquid, and its thermal diffusivity was evaluated over the temperature range from - 20 °C to 60 °C. In addition, Monte Carlo simulation was used to assess the uncertainty propagation for maximum detection. It was concluded that maximum detection approach to process thermal response data gives the closest results to the reference data inasmuch nonlinear regression results are affected by major uncertainties due to partial correlation between the evaluated parameters. Besides, the interpolation of temperature data with a polynomial to find the maximum leads to a systematic difference between measured and reference data, as put into evidence by the Monte Carlo simulations; through its correction, this systematic error can be reduced to a negligible value, about 0.8 %.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damato, AL; Bhagwat, MS; Buzurovic, I
Purpose: To investigate the use of a system using EM tracking, postprocessing and error-detection algorithms for measuring brachytherapy catheter locations and for detecting errors and resolving uncertainties in treatment-planning catheter digitization. Methods: An EM tracker was used to localize 13 catheters in a clinical surface applicator (A) and 15 catheters inserted into a phantom (B). Two pairs of catheters in (B) crossed paths at a distance <2 mm, producing an undistinguishable catheter artifact in that location. EM data was post-processed for noise reduction and reformatted to provide the dwell location configuration. CT-based digitization was automatically extracted from the brachytherapy planmore » DICOM files (CT). EM dwell digitization error was characterized in terms of the average and maximum distance between corresponding EM and CT dwells per catheter. The error detection rate (detected errors / all errors) was calculated for 3 types of errors: swap of two catheter numbers; incorrect catheter number identification superior to the closest position between two catheters (mix); and catheter-tip shift. Results: The averages ± 1 standard deviation of the average and maximum registration error per catheter were 1.9±0.7 mm and 3.0±1.1 mm for (A) and 1.6±0.6 mm and 2.7±0.8 mm for (B). The error detection rate was 100% (A and B) for swap errors, mix errors, and shift >4.5 mm (A) and >5.5 mm (B); errors were detected for shifts on average >2.0 mm (A) and >2.4 mm (B). Both mix errors associated with undistinguishable catheter artifacts were detected and at least one of the involved catheters was identified. Conclusion: We demonstrated the use of an EM tracking system for localization of brachytherapy catheters, detection of digitization errors and resolution of undistinguishable catheter artifacts. Automatic digitization may be possible with a registration between the imaging and the EM frame of reference. Research funded by the Kaye Family Award 2012.« less
Soda, Paolo; Mazzoleni, Stefano; Cavallo, Giuseppe; Guglielmelli, Eugenio; Iannello, Giulio
2010-09-01
Recent research has successfully introduced the application of robotics and mechatronics to functional assessment and motor therapy. Measurements of movement initiation in isometric conditions are widely used in clinical rehabilitation and their importance in functional assessment has been demonstrated for specific parts of the human body. The determination of the voluntary movement initiation time, also referred to as onset time, represents a challenging issue since the time window characterizing the movement onset is of particular relevance for the understanding of recovery mechanisms after a neurological damage. Establishing it manually as well as a troublesome task may also introduce oversight errors and loss of information. The most commonly used methods for automatic onset time detection compare the raw signal, or some extracted measures such as its derivatives (i.e., velocity and acceleration) with a chosen threshold. However, they suffer from high variability and systematic errors because of the weakness of the signal, the abnormality of response profiles as well as the variability of movement initiation times among patients. In this paper, we introduce a technique to optimise onset detection according to each input signal. It is based on a classification system that enables us to establish which deterministic method provides the most accurate onset time on the basis of information directly derived from the raw signal. The approach was tested on annotated force and torque datasets. Each dataset is constituted by 768 signals acquired from eight anatomical districts in 96 patients who carried out six tasks related to common daily activities. The results show that the proposed technique improves not only on the performance achieved by each of the deterministic methods, but also on that attained by a group of clinical experts. The paper describes a classification system detecting the voluntary movement initiation time and adaptable to different signals. By using a set of features directly derived from raw data, we obtained promising results. Furthermore, although the technique has been developed within the scope of isometric force and torque signal analysis, it can be applied to other detection problems where several simple detectors are available. Copyright (c) 2010 Elsevier B.V. All rights reserved.
On-Error Training (Book Excerpt).
ERIC Educational Resources Information Center
Fukuda, Ryuji
1985-01-01
This excerpt from "Managerial Engineering: Techniques for Improving Quality and Productivity in the Workplace" describes the development, objectives, and use of On-Error Training (OET), a method which trains workers to learn from their errors. Also described is New Joharry's Window, a performance-error data analysis technique used in…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teo, P; Guo, K; Alayoubi, N
Purpose: Accounting for tumor motion during radiation therapy is important to ensure that the tumor receives the prescribed dose. Increasing the field size to account for this motion exposes the surrounding healthy tissues to unnecessary radiation. In contrast to using motion-encompassing techniques to treat moving tumors, conformal radiation therapy (RT) uses a smaller field to track the tumor and adapts the beam aperture according to the motion detected. This work investigates and compares the performance of three markerless, EPID based, optical flow methods to track tumor motion with conformal RT. Methods: Three techniques were used to track the motions ofmore » a 3D printed lung tumor programmed to move according to the tumor of seven lung cancer patients. These techniques utilized a multi-resolution optical flow algorithm as the core computation for image registration. The first method (DIR) registers the incoming images with an initial reference frame, while the second method (RFSF) uses an adaptive reference frame and the third method (CU) uses preceding image frames for registration. The patient traces and errors were evaluated for the seven patients. Results: The average position errors for all patient traces were 0.12 ± 0.33 mm, −0.05 ± 0.04 mm and −0.28 ± 0.44 mm for CU, DIR and RFSF method respectively. The position errors distributed within 1 standard deviation are 0.74 mm, 0.37 mm and 0.96 mm respectively. The CU and RFSF algorithms are sensitive to the characteristics of the patient trace and produce a wider distribution of errors amongst patients. Although the mean error for the DIR method is negatively biased (−0.05 mm) for all patients, it has the narrowest distribution of position error, which can be corrected using an offset calibration. Conclusion: Three techniques of image registration and position update were studied. Using direct comparison with an initial frame yields the best performance. The authors would like to thank Dr.YeLin Suh for making the Cyberknife dataset available to us. Scholarship funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) and CancerCare Manitoba Foundation is acknowledged.« less
Automated brainstem co-registration (ABC) for MRI.
Napadow, Vitaly; Dhond, Rupali; Kennedy, David; Hui, Kathleen K S; Makris, Nikos
2006-09-01
Group data analysis in brainstem neuroimaging is predicated on accurate co-registration of anatomy. As the brainstem is comprised of many functionally heterogeneous nuclei densely situated adjacent to one another, relatively small errors in co-registration can manifest in increased variance or decreased sensitivity (or significance) in detecting activations. We have devised a 2-stage automated, reference mask guided registration technique (Automated Brainstem Co-registration, or ABC) for improved brainstem co-registration. Our approach utilized a brainstem mask dataset to weight an automated co-registration cost function. Our method was validated through measurement of RMS error at 12 manually defined landmarks. These landmarks were also used as guides for a secondary manual co-registration option, intended for outlier individuals that may not adequately co-register with our automated method. Our methodology was tested on 10 healthy human subjects and compared to traditional co-registration techniques (Talairach transform and automated affine transform to the MNI-152 template). We found that ABC had a significantly lower mean RMS error (1.22 +/- 0.39 mm) than Talairach transform (2.88 +/- 1.22 mm, mu +/- sigma) and the global affine (3.26 +/- 0.81 mm) method. Improved accuracy was also found for our manual-landmark-guided option (1.51 +/- 0.43 mm). Visualizing individual brainstem borders demonstrated more consistent and uniform overlap for ABC compared to traditional global co-registration techniques. Improved robustness (lower susceptibility to outliers) was demonstrated with ABC through lower inter-subject RMS error variance compared with traditional co-registration methods. The use of easily available and validated tools (AFNI and FSL) for this method should ease adoption by other investigators interested in brainstem data group analysis.
Errors, error detection, error correction and hippocampal-region damage: data and theories.
MacKay, Donald G; Johnson, Laura W
2013-11-01
This review and perspective article outlines 15 observational constraints on theories of errors, error detection, and error correction, and their relation to hippocampal-region (HR) damage. The core observations come from 10 studies with H.M., an amnesic with cerebellar and HR damage but virtually no neocortical damage. Three studies examined the detection of errors planted in visual scenes (e.g., a bird flying in a fish bowl in a school classroom) and sentences (e.g., I helped themselves to the birthday cake). In all three experiments, H.M. detected reliably fewer errors than carefully matched memory-normal controls. Other studies examined the detection and correction of self-produced errors, with controls for comprehension of the instructions, impaired visual acuity, temporal factors, motoric slowing, forgetting, excessive memory load, lack of motivation, and deficits in visual scanning or attention. In these studies, H.M. corrected reliably fewer errors than memory-normal and cerebellar controls, and his uncorrected errors in speech, object naming, and reading aloud exhibited two consistent features: omission and anomaly. For example, in sentence production tasks, H.M. omitted one or more words in uncorrected encoding errors that rendered his sentences anomalous (incoherent, incomplete, or ungrammatical) reliably more often than controls. Besides explaining these core findings, the theoretical principles discussed here explain H.M.'s retrograde amnesia for once familiar episodic and semantic information; his anterograde amnesia for novel information; his deficits in visual cognition, sentence comprehension, sentence production, sentence reading, and object naming; and effects of aging on his ability to read isolated low frequency words aloud. These theoretical principles also explain a wide range of other data on error detection and correction and generate new predictions for future test. Copyright © 2013 Elsevier Ltd. All rights reserved.
Correction of Dual-PRF Doppler Velocity Outliers in the Presence of Aliasing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altube, Patricia; Bech, Joan; Argemí, Oriol
In Doppler weather radars, the presence of unfolding errors or outliers is a well-known quality issue for radial velocity fields estimated using the dual–pulse repetition frequency (PRF) technique. Postprocessing methods have been developed to correct dual-PRF outliers, but these need prior application of a dealiasing algorithm for an adequate correction. Our paper presents an alternative procedure based on circular statistics that corrects dual-PRF errors in the presence of extended Nyquist aliasing. The correction potential of the proposed method is quantitatively tested by means of velocity field simulations and is exemplified in the application to real cases, including severe storm events.more » The comparison with two other existing correction methods indicates an improved performance in the correction of clustered outliers. The technique we propose is well suited for real-time applications requiring high-quality Doppler radar velocity fields, such as wind shear and mesocyclone detection algorithms, or assimilation in numerical weather prediction models.« less
Correction of Dual-PRF Doppler Velocity Outliers in the Presence of Aliasing
Altube, Patricia; Bech, Joan; Argemí, Oriol; ...
2017-07-18
In Doppler weather radars, the presence of unfolding errors or outliers is a well-known quality issue for radial velocity fields estimated using the dual–pulse repetition frequency (PRF) technique. Postprocessing methods have been developed to correct dual-PRF outliers, but these need prior application of a dealiasing algorithm for an adequate correction. Our paper presents an alternative procedure based on circular statistics that corrects dual-PRF errors in the presence of extended Nyquist aliasing. The correction potential of the proposed method is quantitatively tested by means of velocity field simulations and is exemplified in the application to real cases, including severe storm events.more » The comparison with two other existing correction methods indicates an improved performance in the correction of clustered outliers. The technique we propose is well suited for real-time applications requiring high-quality Doppler radar velocity fields, such as wind shear and mesocyclone detection algorithms, or assimilation in numerical weather prediction models.« less
Empirical State Error Covariance Matrix for Batch Estimation
NASA Technical Reports Server (NTRS)
Frisbee, Joe
2015-01-01
State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the uncertainty in the estimated states. By a reinterpretation of the equations involved in the weighted batch least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. The proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. This empirical error covariance matrix may be calculated as a side computation for each unique batch solution. Results based on the proposed technique will be presented for a simple, two observer and measurement error only problem.
Fast decoding techniques for extended single-and-double-error-correcting Reed Solomon codes
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Deng, H.; Lin, S.
1984-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. For example, some 256K-bit dynamic random access memories are organized as 32K x 8 bit-bytes. Byte-oriented codes such as Reed Solomon (RS) codes provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. Some special high speed decoding techniques for extended single and double error correcting RS codes. These techniques are designed to find the error locations and the error values directly from the syndrome without having to form the error locator polynomial and solve for its roots.
McClintock, Brett T.; Bailey, Larissa L.; Pollock, Kenneth H.; Simons, Theodore R.
2010-01-01
The recent surge in the development and application of species occurrence models has been associated with an acknowledgment among ecologists that species are detected imperfectly due to observation error. Standard models now allow unbiased estimation of occupancy probability when false negative detections occur, but this is conditional on no false positive detections and sufficient incorporation of explanatory variables for the false negative detection process. These assumptions are likely reasonable in many circumstances, but there is mounting evidence that false positive errors and detection probability heterogeneity may be much more prevalent in studies relying on auditory cues for species detection (e.g., songbird or calling amphibian surveys). We used field survey data from a simulated calling anuran system of known occupancy state to investigate the biases induced by these errors in dynamic models of species occurrence. Despite the participation of expert observers in simplified field conditions, both false positive errors and site detection probability heterogeneity were extensive for most species in the survey. We found that even low levels of false positive errors, constituting as little as 1% of all detections, can cause severe overestimation of site occupancy, colonization, and local extinction probabilities. Further, unmodeled detection probability heterogeneity induced substantial underestimation of occupancy and overestimation of colonization and local extinction probabilities. Completely spurious relationships between species occurrence and explanatory variables were also found. Such misleading inferences would likely have deleterious implications for conservation and management programs. We contend that all forms of observation error, including false positive errors and heterogeneous detection probabilities, must be incorporated into the estimation framework to facilitate reliable inferences about occupancy and its associated vital rate parameters.
A Dual Frequency Carrier Phase Error Difference Checking Algorithm for the GNSS Compass.
Liu, Shuo; Zhang, Lei; Li, Jian
2016-11-24
The performance of the Global Navigation Satellite System (GNSS) compass is related to the quality of carrier phase measurement. How to process the carrier phase error properly is important to improve the GNSS compass accuracy. In this work, we propose a dual frequency carrier phase error difference checking algorithm for the GNSS compass. The algorithm aims at eliminating large carrier phase error in dual frequency double differenced carrier phase measurement according to the error difference between two frequencies. The advantage of the proposed algorithm is that it does not need additional environment information and has a good performance on multiple large errors compared with previous research. The core of the proposed algorithm is removing the geographical distance from the dual frequency carrier phase measurement, then the carrier phase error is separated and detectable. We generate the Double Differenced Geometry-Free (DDGF) measurement according to the characteristic that the different frequency carrier phase measurements contain the same geometrical distance. Then, we propose the DDGF detection to detect the large carrier phase error difference between two frequencies. The theoretical performance of the proposed DDGF detection is analyzed. An open sky test, a manmade multipath test and an urban vehicle test were carried out to evaluate the performance of the proposed algorithm. The result shows that the proposed DDGF detection is able to detect large error in dual frequency carrier phase measurement by checking the error difference between two frequencies. After the DDGF detection, the accuracy of the baseline vector is improved in the GNSS compass.
Lane Level Localization; Using Images and HD Maps to Mitigate the Lateral Error
NASA Astrophysics Data System (ADS)
Hosseinyalamdary, S.; Peter, M.
2017-05-01
In urban canyon where the GNSS signals are blocked by buildings, the accuracy of measured position significantly deteriorates. GIS databases have been frequently utilized to improve the accuracy of measured position using map matching approaches. In map matching, the measured position is projected to the road links (centerlines) in this approach and the lateral error of measured position is reduced. By the advancement in data acquision approaches, high definition maps which contain extra information, such as road lanes are generated. These road lanes can be utilized to mitigate the positional error and improve the accuracy in position. In this paper, the image content of a camera mounted on the platform is utilized to detect the road boundaries in the image. We apply color masks to detect the road marks, apply the Hough transform to fit lines to the left and right road boundaries, find the corresponding road segment in GIS database, estimate the homography transformation between the global and image coordinates of the road boundaries, and estimate the camera pose with respect to the global coordinate system. The proposed approach is evaluated on a benchmark. The position is measured by a smartphone's GPS receiver, images are taken from smartphone's camera and the ground truth is provided by using Real-Time Kinematic (RTK) technique. Results show the proposed approach significantly improves the accuracy of measured GPS position. The error in measured GPS position with average and standard deviation of 11.323 and 11.418 meters is reduced to the error in estimated postion with average and standard deviation of 6.725 and 5.899 meters.
A concatenated coding scheme for error control
NASA Technical Reports Server (NTRS)
Kasami, T.; Fujiwara, T.; Lin, S.
1986-01-01
In this paper, a concatenated coding scheme for error control in data communications is presented and analyzed. In this scheme, the inner code is used for both error correction and detection; however, the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error (or decoding error) of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughput efficiency of the proposed error control scheme incorporated with a selective-repeat ARQ retransmission strategy is also analyzed. Three specific examples are presented. One of the examples is proposed for error control in the NASA Telecommand System.
Differential detection in quadrature-quadrature phase shift keying (Q2PSK) systems
NASA Astrophysics Data System (ADS)
El-Ghandour, Osama M.; Saha, Debabrata
1991-05-01
A generalized quadrature-quadrature phase shift keying (Q2PSK) signaling format is considered for differential encoding and differential detection. Performance in the presence of additive white Gaussian noise (AWGN) is analyzed. Symbol error rate is found to be approximately twice the symbol error rate in a quaternary DPSK system operating at the same Eb/N0. However, the bandwidth efficiency of differential Q2PSK is substantially higher than that of quaternary DPSK. When the error is due to AWGN, the ratio of double error rate to single error rate can be very high, and the ratio may approach zero at high SNR. To improve error rate, differential detection through maximum-likelihood decoding based on multiple or N symbol observations is considered. If N and SNR are large this decoding gives a 3-dB advantage in error rate over conventional N = 2 differential detection, fully recovering the energy loss (as compared to coherent detection) if the observation is extended to a large number of symbol durations.
Sampling Technique for Robust Odorant Detection Based on MIT RealNose Data
NASA Technical Reports Server (NTRS)
Duong, Tuan A.
2012-01-01
This technique enhances the detection capability of the autonomous Real-Nose system from MIT to detect odorants and their concentrations in noisy and transient environments. The lowcost, portable system with low power consumption will operate at high speed and is suited for unmanned and remotely operated long-life applications. A deterministic mathematical model was developed to detect odorants and calculate their concentration in noisy environments. Real data from MIT's NanoNose was examined, from which a signal conditioning technique was proposed to enable robust odorant detection for the RealNose system. Its sensitivity can reach to sub-part-per-billion (sub-ppb). A Space Invariant Independent Component Analysis (SPICA) algorithm was developed to deal with non-linear mixing that is an over-complete case, and it is used as a preprocessing step to recover the original odorant sources for detection. This approach, combined with the Cascade Error Projection (CEP) Neural Network algorithm, was used to perform odorant identification. Signal conditioning is used to identify potential processing windows to enable robust detection for autonomous systems. So far, the software has been developed and evaluated with current data sets provided by the MIT team. However, continuous data streams are made available where even the occurrence of a new odorant is unannounced and needs to be noticed by the system autonomously before its unambiguous detection. The challenge for the software is to be able to separate the potential valid signal from the odorant and from the noisy transition region when the odorant is just introduced.
Chen, Yen-Lin; Liang, Wen-Yew; Chiang, Chuan-Yen; Hsieh, Tung-Ju; Lee, Da-Cheng; Yuan, Shyan-Ming; Chang, Yang-Lang
2011-01-01
This study presents efficient vision-based finger detection, tracking, and event identification techniques and a low-cost hardware framework for multi-touch sensing and display applications. The proposed approach uses a fast bright-blob segmentation process based on automatic multilevel histogram thresholding to extract the pixels of touch blobs obtained from scattered infrared lights captured by a video camera. The advantage of this automatic multilevel thresholding approach is its robustness and adaptability when dealing with various ambient lighting conditions and spurious infrared noises. To extract the connected components of these touch blobs, a connected-component analysis procedure is applied to the bright pixels acquired by the previous stage. After extracting the touch blobs from each of the captured image frames, a blob tracking and event recognition process analyzes the spatial and temporal information of these touch blobs from consecutive frames to determine the possible touch events and actions performed by users. This process also refines the detection results and corrects for errors and occlusions caused by noise and errors during the blob extraction process. The proposed blob tracking and touch event recognition process includes two phases. First, the phase of blob tracking associates the motion correspondence of blobs in succeeding frames by analyzing their spatial and temporal features. The touch event recognition process can identify meaningful touch events based on the motion information of touch blobs, such as finger moving, rotating, pressing, hovering, and clicking actions. Experimental results demonstrate that the proposed vision-based finger detection, tracking, and event identification system is feasible and effective for multi-touch sensing applications in various operational environments and conditions. PMID:22163990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novak, A; Nyflot, M; Sponseller, P
2014-06-01
Purpose: Radiation treatment planning involves a complex workflow that can make safety improvement efforts challenging. This study utilizes an incident reporting system to identify detection points of near-miss errors, in order to guide our departmental safety improvement efforts. Previous studies have examined where errors arise, but not where they are detected or their patterns. Methods: 1377 incidents were analyzed from a departmental nearmiss error reporting system from 3/2012–10/2013. All incidents were prospectively reviewed weekly by a multi-disciplinary team, and assigned a near-miss severity score ranging from 0–4 reflecting potential harm (no harm to critical). A 98-step consensus workflow was usedmore » to determine origination and detection points of near-miss errors, categorized into 7 major steps (patient assessment/orders, simulation, contouring/treatment planning, pre-treatment plan checks, therapist/on-treatment review, post-treatment checks, and equipment issues). Categories were compared using ANOVA. Results: In the 7-step workflow, 23% of near-miss errors were detected within the same step in the workflow, while an additional 37% were detected by the next step in the workflow, and 23% were detected two steps downstream. Errors detected further from origination were more severe (p<.001; Figure 1). The most common source of near-miss errors was treatment planning/contouring, with 476 near misses (35%). Of those 476, only 72(15%) were found before leaving treatment planning, 213(45%) were found at physics plan checks, and 191(40%) were caught at the therapist pre-treatment chart review or on portal imaging. Errors that passed through physics plan checks and were detected by therapists were more severe than other errors originating in contouring/treatment planning (1.81 vs 1.33, p<0.001). Conclusion: Errors caught by radiation treatment therapists tend to be more severe than errors caught earlier in the workflow, highlighting the importance of safety checks in dosimetry and physics. We are utilizing our findings to improve manual and automated checklists for dosimetry and physics.« less
NASA Astrophysics Data System (ADS)
Rasta, Seyed Hossein; Manivannan, Ayyakkannu; Sharp, Peter F.
2012-11-01
To evaluate retinal perfusion in the human eye, a dual-wavelength confocal scanning laser ophthalmoscope (cSLO) was developed that provides spectral imaging of the fundus using a combination of red (670 nm) and near-infrared (810 nm) wavelengths. The image of the ocular fundus was analyzed to find out if quantitative measurements of the reflectivity of tissue permit assessment of the oxygen perfusion of tissue. We explored problems that affect the reproducibility of patient measurements such as non-uniformity errors on the image. For the first time, an image processing technique was designed and used to minimize the errors of oxygen saturation measurements by illumination correction in retina wide field by increasing SNR. Retinal images were taken from healthy and diabetic retinopathy eyes using the cSLO with a confocal aperture of 100 μm. The ratio image (RI) of red/IR, as oxygen saturation (SO2) index, was calculated for normal eyes. The image correction technique improved the reproducibility of the measurements. Average RI intensity variation of healthy retina tissue was determined within a range of about 5.5%. The capability of the new technique to discriminate oxygenation levels of retinal artery and vein was successfully demonstrated and showed good promise in the diagnosis of the perfused retina.
Error-Related Psychophysiology and Negative Affect
ERIC Educational Resources Information Center
Hajcak, G.; McDonald, N.; Simons, R.F.
2004-01-01
The error-related negativity (ERN/Ne) and error positivity (Pe) have been associated with error detection and response monitoring. More recently, heart rate (HR) and skin conductance (SC) have also been shown to be sensitive to the internal detection of errors. An enhanced ERN has consistently been observed in anxious subjects and there is some…
Simulating and Detecting Radiation-Induced Errors for Onboard Machine Learning
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri L.; Bornstein, Benjamin; Granat, Robert; Tang, Benyang; Turmon, Michael
2009-01-01
Spacecraft processors and memory are subjected to high radiation doses and therefore employ radiation-hardened components. However, these components are orders of magnitude more expensive than typical desktop components, and they lag years behind in terms of speed and size. We have integrated algorithm-based fault tolerance (ABFT) methods into onboard data analysis algorithms to detect radiation-induced errors, which ultimately may permit the use of spacecraft memory that need not be fully hardened, reducing cost and increasing capability at the same time. We have also developed a lightweight software radiation simulator, BITFLIPS, that permits evaluation of error detection strategies in a controlled fashion, including the specification of the radiation rate and selective exposure of individual data structures. Using BITFLIPS, we evaluated our error detection methods when using a support vector machine to analyze data collected by the Mars Odyssey spacecraft. We found ABFT error detection for matrix multiplication is very successful, while error detection for Gaussian kernel computation still has room for improvement.
Optoelectronic scanning system upgrade by energy center localization methods
NASA Astrophysics Data System (ADS)
Flores-Fuentes, W.; Sergiyenko, O.; Rodriguez-Quiñonez, J. C.; Rivas-López, M.; Hernández-Balbuena, D.; Básaca-Preciado, L. C.; Lindner, L.; González-Navarro, F. F.
2016-11-01
A problem of upgrading an optoelectronic scanning system with digital post-processing of the signal based on adequate methods of energy center localization is considered. An improved dynamic triangulation analysis technique is proposed by an example of industrial infrastructure damage detection. A modification of our previously published method aimed at searching for the energy center of an optoelectronic signal is described. Application of the artificial intelligence algorithm of compensation for the error of determining the angular coordinate in calculating the spatial coordinate through dynamic triangulation is demonstrated. Five energy center localization methods are developed and tested to select the best method. After implementation of these methods, digital compensation for the measurement error, and statistical data analysis, a non-parametric behavior of the data is identified. The Wilcoxon signed rank test is applied to improve the result further. For optical scanning systems, it is necessary to detect a light emitter mounted on the infrastructure being investigated to calculate its spatial coordinate by the energy center localization method.
Chaos-on-a-chip secures data transmission in optical fiber links.
Argyris, Apostolos; Grivas, Evangellos; Hamacher, Michael; Bogris, Adonis; Syvridis, Dimitris
2010-03-01
Security in information exchange plays a central role in the deployment of modern communication systems. Besides algorithms, chaos is exploited as a real-time high-speed data encryption technique which enhances the security at the hardware level of optical networks. In this work, compact, fully controllable and stably operating monolithic photonic integrated circuits (PICs) that generate broadband chaotic optical signals are incorporated in chaos-encoded optical transmission systems. Data sequences with rates up to 2.5 Gb/s with small amplitudes are completely encrypted within these chaotic carriers. Only authorized counterparts, supplied with identical chaos generating PICs that are able to synchronize and reproduce the same carriers, can benefit from data exchange with bit-rates up to 2.5Gb/s with error rates below 10(-12). Eavesdroppers with access to the communication link experience a 0.5 probability to detect correctly each bit by direct signal detection, while eavesdroppers supplied with even slightly unmatched hardware receivers are restricted to data extraction error rates well above 10(-3).
An advanced SEU tolerant latch based on error detection
NASA Astrophysics Data System (ADS)
Xu, Hui; Zhu, Jianwei; Lu, Xiaoping; Li, Jingzhao
2018-05-01
This paper proposes a latch that can mitigate SEUs via an error detection circuit. The error detection circuit is hardened by a C-element and a stacked PMOS. In the hold state, a particle strikes the latch or the error detection circuit may cause a fault logic state of the circuit. The error detection circuit can detect the upset node in the latch and the fault output will be corrected. The upset node in the error detection circuit can be corrected by the C-element. The power dissipation and propagation delay of the proposed latch are analyzed by HSPICE simulations. The proposed latch consumes about 77.5% less energy and 33.1% less propagation delay than the triple modular redundancy (TMR) latch. Simulation results demonstrate that the proposed latch can mitigate SEU effectively. Project supported by the National Natural Science Foundation of China (Nos. 61404001, 61306046), the Anhui Province University Natural Science Research Major Project (No. KJ2014ZD12), the Huainan Science and Technology Program (No. 2013A4011), and the National Natural Science Foundation of China (No. 61371025).
A novel time of arrival estimation algorithm using an energy detector receiver in MMW systems
NASA Astrophysics Data System (ADS)
Liang, Xiaolin; Zhang, Hao; Lyu, Tingting; Xiao, Han; Gulliver, T. Aaron
2017-12-01
This paper presents a new time of arrival (TOA) estimation technique using an improved energy detection (ED) receiver based on the empirical mode decomposition (EMD) in an impulse radio (IR) 60 GHz millimeter wave (MMW) system. A threshold is employed via analyzing the characteristics of the received energy values with an extreme learning machine (ELM). The effect of the channel and integration period on the TOA estimation is evaluated. Several well-known ED-based TOA algorithms are used to compare with the proposed technique. It is shown that this ELM-based technique has lower TOA estimation error compared to other approaches and provides robust performance with the IEEE 802.15.3c channel models.
[Detection and classification of medication errors at Joan XXIII University Hospital].
Jornet Montaña, S; Canadell Vilarrasa, L; Calabuig Mũoz, M; Riera Sendra, G; Vuelta Arce, M; Bardají Ruiz, A; Gallart Mora, M J
2004-01-01
Medication errors are multifactorial and multidisciplinary, and may originate in processes such as drug prescription, transcription, dispensation, preparation and administration. The goal of this work was to measure the incidence of detectable medication errors that arise within a unit dose drug distribution and control system, from drug prescription to drug administration, by means of an observational method confined to the Pharmacy Department, as well as a voluntary, anonymous report system. The acceptance of this voluntary report system's implementation was also assessed. A prospective descriptive study was conducted. Data collection was performed at the Pharmacy Department from a review of prescribed medical orders, a review of pharmaceutical transcriptions, a review of dispensed medication and a review of medication returned in unit dose medication carts. A voluntary, anonymous report system centralized in the Pharmacy Department was also set up to detect medication errors. Prescription errors were the most frequent (1.12%), closely followed by dispensation errors (1.04%). Transcription errors (0.42%) and administration errors (0.69%) had the lowest overall incidence. Voluntary report involved only 4.25% of all detected errors, whereas unit dose medication cart review contributed the most to error detection. Recognizing the incidence and types of medication errors that occur in a health-care setting allows us to analyze their causes and effect changes in different stages of the process in order to ensure maximal patient safety.
Development and application of the maximum entropy method and other spectral estimation techniques
NASA Astrophysics Data System (ADS)
King, W. R.
1980-09-01
This summary report is a collection of four separate progress reports prepared under three contracts, which are all sponsored by the Office of Naval Research in Arlington, Virginia. This report contains the results of investigations into the application of the maximum entropy method (MEM), a high resolution, frequency and wavenumber estimation technique. The report also contains a description of two, new, stable, high resolution spectral estimation techniques that is provided in the final report section. Many examples of wavenumber spectral patterns for all investigated techniques are included throughout the report. The maximum entropy method is also known as the maximum entropy spectral analysis (MESA) technique, and both names are used in the report. Many MEM wavenumber spectral patterns are demonstrated using both simulated and measured radar signal and noise data. Methods for obtaining stable MEM wavenumber spectra are discussed, broadband signal detection using the MEM prediction error transform (PET) is discussed, and Doppler radar narrowband signal detection is demonstrated using the MEM technique. It is also shown that MEM cannot be applied to randomly sampled data. The two new, stable, high resolution, spectral estimation techniques discussed in the final report section, are named the Wiener-King and the Fourier spectral estimation techniques. The two new techniques have a similar derivation based upon the Wiener prediction filter, but the two techniques are otherwise quite different. Further development of the techniques and measurement of the technique spectral characteristics is recommended for subsequent investigation.
Ariyama, Kaoru; Kadokura, Masashi; Suzuki, Tadanao
2008-01-01
Techniques to determine the geographic origin of foods have been developed for various agricultural and fishery products, and they have used various principles. Some of these techniques are already in use for checking the authenticity of the labeling. Many are based on multielement analysis and chemometrics. We have developed such a technique to determine the geographic origin of onions (Allium cepa L.). This technique, which determines whether an onion is from outside Japan, is designed for onions labeled as having a geographic origin of Hokkaido, Hyogo, or Saga, the main onion production areas in Japan. However, estimations of discrimination errors for this technique have not been fully conducted; they have been limited to those for discrimination models and do not include analytical errors. Interlaboratory studies were conducted to estimate the analytical errors of the technique. Four collaborators each determined 11 elements (Na, Mg, P, Mn, Zn, Rb, Sr, Mo, Cd, Cs, and Ba) in 4 test materials of fresh and dried onions. Discrimination errors in this technique were estimated by summing (1) individual differences within lots, (2) variations between lots from the same production area, and (3) analytical errors. The discrimination errors for onions from Hokkaido, Hyogo, and Saga were estimated to be 2.3, 9.5, and 8.0%, respectively. Those for onions from abroad in determinations targeting Hokkaido, Hyogo, and Saga were estimated to be 28.2, 21.6, and 21.9%, respectively.
Built-Up Area Feature Extraction: Second Year Technical Progress Report
1990-02-01
Contract DACA 72-87-C-001. During this year we have built on previous research, in road network extraction and in the detection and delineation of buildings...methods to perform stereo analysis using loosely coupled techniques where comparison is deferred until each method has performed a complete estimate...or missing information. A course of action may be suggested to the user depending on the error. Although the checks do not guarantee the correctness
SIRU utilization. Volume 1: Theory, development and test evaluation
NASA Technical Reports Server (NTRS)
Musoff, H.
1974-01-01
The theory, development, and test evaluations of the Strapdown Inertial Reference Unit (SIRU) are discussed. The statistical failure detection and isolation, single position calibration, and self alignment techniques are emphasized. Circuit diagrams of the system components are provided. Mathematical models are developed to show the performance characteristics of the subsystems. Specific areas of the utilization program are identified as: (1) error source propagation characteristics and (2) local level navigation performance demonstrations.
Fault-tolerant quantum error detection.
Linke, Norbert M; Gutierrez, Mauricio; Landsman, Kevin A; Figgatt, Caroline; Debnath, Shantanu; Brown, Kenneth R; Monroe, Christopher
2017-10-01
Quantum computers will eventually reach a size at which quantum error correction becomes imperative. Quantum information can be protected from qubit imperfections and flawed control operations by encoding a single logical qubit in multiple physical qubits. This redundancy allows the extraction of error syndromes and the subsequent detection or correction of errors without destroying the logical state itself through direct measurement. We show the encoding and syndrome measurement of a fault-tolerantly prepared logical qubit via an error detection protocol on four physical qubits, represented by trapped atomic ions. This demonstrates the robustness of a logical qubit to imperfections in the very operations used to encode it. The advantage persists in the face of large added error rates and experimental calibration errors.
Thevissen, Patrick W; Fieuws, Steffen; Willems, Guy
2013-03-01
Multiple third molar development registration techniques exist. Therefore the aim of this study was to detect which third molar development registration technique was most promising to use as a tool for subadult age estimation. On a collection of 1199 panoramic radiographs the development of all present third molars was registered following nine different registration techniques [Gleiser, Hunt (GH); Haavikko (HV); Demirjian (DM); Raungpaka (RA); Gustafson, Koch (GK); Harris, Nortje (HN); Kullman (KU); Moorrees (MO); Cameriere (CA)]. Regression models with age as response and the third molar registration as predictor were developed for each registration technique separately. The MO technique disclosed highest R(2) (F 51%, M 45%) and lowest root mean squared error (F 3.42 years; M 3.67 years) values, but differences with other techniques were small in magnitude. The amount of stages utilized in the explored staging techniques slightly influenced the age predictions. © 2013 American Academy of Forensic Sciences.
Horowitz-Kraus, Tzipi
2016-05-01
The error-detection mechanism aids in preventing error repetition during a given task. Electroencephalography demonstrates that error detection involves two event-related potential components: error-related and correct-response negativities (ERN and CRN, respectively). Dyslexia is characterized by slow, inaccurate reading. In particular, individuals with dyslexia have a less active error-detection mechanism during reading than typical readers. In the current study, we examined whether a reading training programme could improve the ability to recognize words automatically (lexical representations) in adults with dyslexia, thereby resulting in more efficient error detection during reading. Behavioural and electrophysiological measures were obtained using a lexical decision task before and after participants trained with the reading acceleration programme. ERN amplitudes were smaller in individuals with dyslexia than in typical readers before training but increased following training, as did behavioural reading scores. Differences between the pre-training and post-training ERN and CRN components were larger in individuals with dyslexia than in typical readers. Also, the error-detection mechanism as represented by the ERN/CRN complex might serve as a biomarker for dyslexia and be used to evaluate the effectiveness of reading intervention programmes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Missed lung cancer: when, where, and why?
del Ciello, Annemilia; Franchi, Paola; Contegiacomo, Andrea; Cicchetti, Giuseppe; Bonomo, Lorenzo; Larici, Anna Rita
2017-01-01
Missed lung cancer is a source of concern among radiologists and an important medicolegal challenge. In 90% of the cases, errors in diagnosis of lung cancer occur on chest radiographs. It may be challenging for radiologists to distinguish a lung lesion from bones, pulmonary vessels, mediastinal structures, and other complex anatomical structures on chest radiographs. Nevertheless, lung cancer can also be overlooked on computed tomography (CT) scans, regardless of the context, either if a clinical or radiologic suspect exists or for other reasons. Awareness of the possible causes of overlooking a pulmonary lesion can give radiologists a chance to reduce the occurrence of this eventuality. Various factors contribute to a misdiagnosis of lung cancer on chest radiographs and on CT, often very similar in nature to each other. Observer error is the most significant one and comprises scanning error, recognition error, decision-making error, and satisfaction of search. Tumor characteristics such as lesion size, conspicuity, and location are also crucial in this context. Even technical aspects can contribute to the probability of skipping lung cancer, including image quality and patient positioning and movement. Albeit it is hard to remove missed lung cancer completely, strategies to reduce observer error and methods to improve technique and automated detection may be valuable in reducing its likelihood. PMID:28206951
Olson, Eric J.
2013-06-11
An apparatus, program product, and method that run an algorithm on a hardware based processor, generate a hardware error as a result of running the algorithm, generate an algorithm output for the algorithm, compare the algorithm output to another output for the algorithm, and detect the hardware error from the comparison. The algorithm is designed to cause the hardware based processor to heat to a degree that increases the likelihood of hardware errors to manifest, and the hardware error is observable in the algorithm output. As such, electronic components may be sufficiently heated and/or sufficiently stressed to create better conditions for generating hardware errors, and the output of the algorithm may be compared at the end of the run to detect a hardware error that occurred anywhere during the run that may otherwise not be detected by traditional methodologies (e.g., due to cooling, insufficient heat and/or stress, etc.).
Steinheimer, T.R.; Brooks, M.G.
1984-01-01
A multi-residue method is described for the determination of triazine herbicides in natural water samples. The technique uses solvent extraction followed by gas chromatographic separation and detection employing nitrogen-selective devices. Seven compounds can be determined simultaneously at a nominal detection limit of 0.1 ??g/L in a 1-litre sample. Three different natural water samples were used for error analysis via evaluation of recovery efficiencies and estimation of overall method precision. As an alternative to liquid-liquid partition (solvent extraction) for removal of compounds of interest from water, solid-phase extraction (SPE) techniques employing chromatographic grade silicas with chemically modified surfaces have been examined. SPE is found to provide rapid and efficient concentration with quantitative recovery of some triazine herbicides from natural water samples. Concentration factors of 500 to 1000 times are obtained readily by the SPE technique.A multi-residue method is described for the determination of triazine herbicides in natural water samples. The technique uses solvent extraction followed by gas chromatographic separation and detection employing nitrogen-selective devices. Seven compounds can be determined simultaneously at a nominal detection limit of 0. 1 mu g/L in a 1-litre sample. As an alternative to liquid-liquid partition (solvent extraction) for removal of compounds of interest from water, solid-phase extraction (SPE) techniques employing chromatographic grade silicas with chemically modified surfaces have been examined. SPE is found to provide rapid and efficient concentration with quantitative recovery of some triazine herbicides from natural water samples. Concentration factors of 500 to 1000 times are obtained readily by the SPE technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MAGEE,GLEN I.
Computers transfer data in a number of different ways. Whether through a serial port, a parallel port, over a modem, over an ethernet cable, or internally from a hard disk to memory, some data will be lost. To compensate for that loss, numerous error detection and correction algorithms have been developed. One of the most common error correction codes is the Reed-Solomon code, which is a special subset of BCH (Bose-Chaudhuri-Hocquenghem) linear cyclic block codes. In the AURA project, an unmanned aircraft sends the data it collects back to earth so it can be analyzed during flight and possible flightmore » modifications made. To counter possible data corruption during transmission, the data is encoded using a multi-block Reed-Solomon implementation with a possibly shortened final block. In order to maximize the amount of data transmitted, it was necessary to reduce the computation time of a Reed-Solomon encoding to three percent of the processor's time. To achieve such a reduction, many code optimization techniques were employed. This paper outlines the steps taken to reduce the processing time of a Reed-Solomon encoding and the insight into modern optimization techniques gained from the experience.« less
NASA Astrophysics Data System (ADS)
Li, Xi-Bing; Wang, Ze-Wei; Dong, Long-Jun
2016-01-01
Microseismic monitoring systems using local location techniques tend to be timely, automatic and stable. One basic requirement of these systems is the automatic picking of arrival times. However, arrival times generated by automated techniques always contain large picking errors (LPEs), which may make the location solution unreliable and cause the integrated system to be unstable. To overcome the LPE issue, we propose the virtual field optimization method (VFOM) for locating single-point sources. In contrast to existing approaches, the VFOM optimizes a continuous and virtually established objective function to search the space for the common intersection of the hyperboloids, which is determined by sensor pairs other than the least residual between the model-calculated and measured arrivals. The results of numerical examples and in-site blasts show that the VFOM can obtain more precise and stable solutions than traditional methods when the input data contain LPEs. Furthermore, we discuss the impact of LPEs on objective functions to determine the LPE-tolerant mechanism, velocity sensitivity and stopping criteria of the VFOM. The proposed method is also capable of locating acoustic sources using passive techniques such as passive sonar detection and acoustic emission.
Triki Fourati, Hela; Bouaziz, Moncef; Benzina, Mourad; Bouaziz, Samir
2017-04-01
Traditional surveying methods of soil properties over landscapes are dramatically cost and time-consuming. Thus, remote sensing is a proper choice for monitoring environmental problem. This research aims to study the effect of environmental factors on soil salinity and to map the spatial distribution of this salinity over the southern east part of Tunisia by means of remote sensing and geostatistical techniques. For this purpose, we used Advanced Spaceborne Thermal Emission and Reflection Radiometer data to depict geomorphological parameters: elevation, slope, plan curvature (PLC), profile curvature (PRC), and aspect. Pearson correlation between these parameters and soil electrical conductivity (EC soil ) showed that mainly slope and elevation affect the concentration of salt in soil. Moreover, spectral analysis illustrated the high potential of short-wave infrared (SWIR) bands to identify saline soils. To map soil salinity in southern Tunisia, ordinary kriging (OK), minimum distance (MD) classification, and simple regression (SR) were used. The findings showed that ordinary kriging technique provides the most reliable performances to identify and classify saline soils over the study area with a root mean square error of 1.83 and mean error of 0.018.
Preliminary design of the redundant software experiment
NASA Technical Reports Server (NTRS)
Campbell, Roy; Deimel, Lionel; Eckhardt, Dave, Jr.; Kelly, John; Knight, John; Lauterbach, Linda; Lee, Larry; Mcallister, Dave; Mchugh, John
1985-01-01
The goal of the present experiment is to characterize the fault distributions of highly reliable software replicates, constructed using techniques and environments which are similar to those used in comtemporary industrial software facilities. The fault distributions and their effect on the reliability of fault tolerant configurations of the software will be determined through extensive life testing of the replicates against carefully constructed randomly generated test data. Each detected error will be carefully analyzed to provide insight in to their nature and cause. A direct objective is to develop techniques for reducing the intensity of coincident errors, thus increasing the reliability gain which can be achieved with fault tolerance. Data on the reliability gains realized, and the cost of the fault tolerant configurations can be used to design a companion experiment to determine the cost effectiveness of the fault tolerant strategy. Finally, the data and analysis produced by this experiment will be valuable to the software engineering community as a whole because it will provide a useful insight into the nature and cause of hard to find, subtle faults which escape standard software engineering validation techniques and thus persist far into the software life cycle.
Dual-Phase Lock-In Amplifier Based on FPGA for Low-Frequencies Experiments
Macias-Bobadilla, Gonzalo; Rodríguez-Reséndiz, Juvenal; Mota-Valtierra, Georgina; Soto-Zarazúa, Genaro; Méndez-Loyola, Maurino; Garduño-Aparicio, Mariano
2016-01-01
Photothermal techniques allow the detection of characteristics of material without invading it. Researchers have developed hardware for some specific Phase and Amplitude detection (Lock-In Function) applications, eliminating space and unnecessary electronic functions, among others. This work shows the development of a Digital Lock-In Amplifier based on a Field Programmable Gate Array (FPGA) for low-frequency applications. This system allows selecting and generating the appropriated frequency depending on the kind of experiment or material studied. The results show good frequency stability in the order of 1.0 × 10−9 Hz, which is considered good linearity and repeatability response for the most common Laboratory Amplitude and Phase Shift detection devices, with a low error and standard deviation. PMID:26999138
Oral precancerous lesions: Problems of early detection and oral cancer prevention
NASA Astrophysics Data System (ADS)
Gileva, Olga S.; Libik, Tatiana V.; Danilov, Konstantin V.
2016-08-01
The study presents the results of the research in the structure, local and systemic risk factors, peculiarities of the clinical manifestation, and quality of primary diagnosis of precancerous oral mucosa lesions (OMLs). In the study a wide range of OMLs and high (25.4%) proportion of oral precancerous lesions (OPLs) in their structure was indicated. The high percentage of different diagnostic errors and the lack of oncological awareness of dental practitioners, as well as the sharp necessity of inclusion of precancer/cancer early detection techniques into their daily practice were noted. The effectiveness of chemilumenescence system of early OPLs and oral cancer detection was demonstrated, the prospects of infrared thermography as a diagnostic tool were also discussed.
Dual-Phase Lock-In Amplifier Based on FPGA for Low-Frequencies Experiments.
Macias-Bobadilla, Gonzalo; Rodríguez-Reséndiz, Juvenal; Mota-Valtierra, Georgina; Soto-Zarazúa, Genaro; Méndez-Loyola, Maurino; Garduño-Aparicio, Mariano
2016-03-16
Photothermal techniques allow the detection of characteristics of material without invading it. Researchers have developed hardware for some specific Phase and Amplitude detection (Lock-In Function) applications, eliminating space and unnecessary electronic functions, among others. This work shows the development of a Digital Lock-In Amplifier based on a Field Programmable Gate Array (FPGA) for low-frequency applications. This system allows selecting and generating the appropriated frequency depending on the kind of experiment or material studied. The results show good frequency stability in the order of 1.0 × 10(-9) Hz, which is considered good linearity and repeatability response for the most common Laboratory Amplitude and Phase Shift detection devices, with a low error and standard deviation.
NASA Technical Reports Server (NTRS)
1975-01-01
A system is presented which processes FORTRAN based software systems to surface potential problems before they become execution malfunctions. The system complements the diagnostic capabilities of compilers, loaders, and execution monitors rather than duplicating these functions. Also, it emphasizes frequent sources of FORTRAN problems which require inordinate manual effort to identify. The principle value of the system is extracting small sections of unusual code from the bulk of normal sequences. Code structures likely to cause immediate or future problems are brought to the user's attention. These messages stimulate timely corrective action of solid errors and promote identification of 'tricky' code. Corrective action may require recoding or simply extending software documentation to explain the unusual technique.
Generation of dark hollow beam via coherent combination based on adaptive optics.
Zheng, Yi; Wang, Xiaohua; Shen, Feng; Li, Xinyang
2010-12-20
A novel method for generating a dark hollow beam (DHB) is proposed and studied both theoretically and experimentally. A coherent combination technique for laser arrays is implemented based on adaptive optics (AO). A beam arraying structure and an active segmented mirror are designed and described. Piston errors are extracted by a zero-order interference detection system with the help of a custom-made photo-detectors array. An algorithm called the extremum approach is adopted to calculate feedback control signals. A dynamic piston error is imported by LiNbO3 to test the capability of the AO servo. In a closed loop the stable and clear DHB is obtained. The experimental results confirm the feasibility of the concept.
Sliceable transponders for metro-access transmission links
NASA Astrophysics Data System (ADS)
Wagner, C.; Madsen, P.; Spolitis, S.; Vegas Olmos, J. J.; Tafur Monroy, I.
2015-01-01
This paper presents a solution for upgrading optical access networks by reusing existing electronics or optical equipment: sliceable transponders using signal spectrum slicing and stitching back method after direct detection. This technique allows transmission of wide bandwidth signals from the service provider (OLT - optical line terminal) to the end user (ONU - optical network unit) over an optical distribution network (ODN) via low bandwidth equipment. We show simulation and experimental results for duobinary signaling of 1 Gbit/s and 10 Gbit/s waveforms. The number of slices is adjusted to match the lowest analog bandwidth of used electrical devices and scale from 2 slices to 10 slices. Results of experimental transmission show error free signal recovery by using post forward error correction with 7% overhead.
Westbrook, Johanna I; Li, Ling; Lehnbom, Elin C; Baysari, Melissa T; Braithwaite, Jeffrey; Burke, Rosemary; Conn, Chris; Day, Richard O
2015-02-01
To (i) compare medication errors identified at audit and observation with medication incident reports; (ii) identify differences between two hospitals in incident report frequency and medication error rates; (iii) identify prescribing error detection rates by staff. Audit of 3291 patient records at two hospitals to identify prescribing errors and evidence of their detection by staff. Medication administration errors were identified from a direct observational study of 180 nurses administering 7451 medications. Severity of errors was classified. Those likely to lead to patient harm were categorized as 'clinically important'. Two major academic teaching hospitals in Sydney, Australia. Rates of medication errors identified from audit and from direct observation were compared with reported medication incident reports. A total of 12 567 prescribing errors were identified at audit. Of these 1.2/1000 errors (95% CI: 0.6-1.8) had incident reports. Clinically important prescribing errors (n = 539) were detected by staff at a rate of 218.9/1000 (95% CI: 184.0-253.8), but only 13.0/1000 (95% CI: 3.4-22.5) were reported. 78.1% (n = 421) of clinically important prescribing errors were not detected. A total of 2043 drug administrations (27.4%; 95% CI: 26.4-28.4%) contained ≥ 1 errors; none had an incident report. Hospital A had a higher frequency of incident reports than Hospital B, but a lower rate of errors at audit. Prescribing errors with the potential to cause harm frequently go undetected. Reported incidents do not reflect the profile of medication errors which occur in hospitals or the underlying rates. This demonstrates the inaccuracy of using incident frequency to compare patient risk or quality performance within or across hospitals. New approaches including data mining of electronic clinical information systems are required to support more effective medication error detection and mitigation. © The Author 2015. Published by Oxford University Press in association with the International Society for Quality in Health Care.
NASA Astrophysics Data System (ADS)
Zvietcovich, Fernando; Yao, Jianing; Chu, Ying-Ju; Meemon, Panomsak; Rolland, Jannick P.; Parker, Kevin J.
2016-03-01
Optical Coherence Elastography (OCE) is a widely investigated noninvasive technique for estimating the mechanical properties of tissue. In particular, vibrational OCE methods aim to estimate the shear wave velocity generated by an external stimulus in order to calculate the elastic modulus of tissue. In this study, we compare the performance of five acquisition and processing techniques for estimating the shear wave speed in simulations and experiments using tissue-mimicking phantoms. Accuracy, contrast-to-noise ratio, and resolution are measured for all cases. The first two techniques make the use of one piezoelectric actuator for generating a continuous shear wave propagation (SWP) and a tone-burst propagation (TBP) of 400 Hz over the gelatin phantom. The other techniques make use of one additional actuator located on the opposite side of the region of interest in order to create an interference pattern. When both actuators have the same frequency, a standing wave (SW) pattern is generated. Otherwise, when there is a frequency difference df between both actuators, a crawling wave (CrW) pattern is generated and propagates with less speed than a shear wave, which makes it suitable for being detected by the 2D cross-sectional OCE imaging. If df is not small compared to the operational frequency, the CrW travels faster and a sampled version of it (SCrW) is acquired by the system. Preliminary results suggest that TBP (error < 4.1%) and SWP (error < 6%) techniques are more accurate when compared to mechanical measurement test results.
Clausner, Tommy; Dalal, Sarang S; Crespo-García, Maité
2017-01-01
The performance of EEG source reconstruction has benefited from the increasing use of advanced head modeling techniques that take advantage of MRI together with the precise positions of the recording electrodes. The prevailing technique for registering EEG electrode coordinates involves electromagnetic digitization. However, the procedure adds several minutes to experiment preparation and typical digitizers may not be accurate enough for optimal source reconstruction performance (Dalal et al., 2014). Here, we present a rapid, accurate, and cost-effective alternative method to register EEG electrode positions, using a single digital SLR camera, photogrammetry software, and computer vision techniques implemented in our open-source toolbox, janus3D . Our approach uses photogrammetry to construct 3D models from multiple photographs of the participant's head wearing the EEG electrode cap. Electrodes are detected automatically or semi-automatically using a template. The rigid facial features from these photo-based models are then surface-matched to MRI-based head reconstructions to facilitate coregistration to MRI space. This method yields a final electrode coregistration error of 0.8 mm, while a standard technique using an electromagnetic digitizer yielded an error of 6.1 mm. The technique furthermore reduces preparation time, and could be extended to a multi-camera array, which would make the procedure virtually instantaneous. In addition to EEG, the technique could likewise capture the position of the fiducial markers used in magnetoencephalography systems to register head position.
Clausner, Tommy; Dalal, Sarang S.; Crespo-García, Maité
2017-01-01
The performance of EEG source reconstruction has benefited from the increasing use of advanced head modeling techniques that take advantage of MRI together with the precise positions of the recording electrodes. The prevailing technique for registering EEG electrode coordinates involves electromagnetic digitization. However, the procedure adds several minutes to experiment preparation and typical digitizers may not be accurate enough for optimal source reconstruction performance (Dalal et al., 2014). Here, we present a rapid, accurate, and cost-effective alternative method to register EEG electrode positions, using a single digital SLR camera, photogrammetry software, and computer vision techniques implemented in our open-source toolbox, janus3D. Our approach uses photogrammetry to construct 3D models from multiple photographs of the participant's head wearing the EEG electrode cap. Electrodes are detected automatically or semi-automatically using a template. The rigid facial features from these photo-based models are then surface-matched to MRI-based head reconstructions to facilitate coregistration to MRI space. This method yields a final electrode coregistration error of 0.8 mm, while a standard technique using an electromagnetic digitizer yielded an error of 6.1 mm. The technique furthermore reduces preparation time, and could be extended to a multi-camera array, which would make the procedure virtually instantaneous. In addition to EEG, the technique could likewise capture the position of the fiducial markers used in magnetoencephalography systems to register head position. PMID:28559791
Spotlight-Mode Synthetic Aperture Radar Processing for High-Resolution Lunar Mapping
NASA Technical Reports Server (NTRS)
Harcke, Leif; Weintraub, Lawrence; Yun, Sang-Ho; Dickinson, Richard; Gurrola, Eric; Hensley, Scott; Marechal, Nicholas
2010-01-01
During the 2008-2009 year, the Goldstone Solar System Radar was upgraded to support radar mapping of the lunar poles at 4 m resolution. The finer resolution of the new system and the accompanying migration through resolution cells called for spotlight, rather than delay-Doppler, imaging techniques. A new pre-processing system supports fast-time Doppler removal and motion compensation to a point. Two spotlight imaging techniques which compensate for phase errors due to i) out of focus-plane motion of the radar and ii) local topography, have been implemented and tested. One is based on the polar format algorithm followed by a unique autofocus technique, the other is a full bistatic time-domain backprojection technique. The processing system yields imagery of the specified resolution. Products enabled by this new system include topographic mapping through radar interferometry, and change detection techniques (amplitude and coherent change) for geolocation of the NASA LCROSS mission impact site.
Double ErrP Detection for Automatic Error Correction in an ERP-Based BCI Speller.
Cruz, Aniana; Pires, Gabriel; Nunes, Urbano J
2018-01-01
Brain-computer interface (BCI) is a useful device for people with severe motor disabilities. However, due to its low speed and low reliability, BCI still has a very limited application in daily real-world tasks. This paper proposes a P300-based BCI speller combined with a double error-related potential (ErrP) detection to automatically correct erroneous decisions. This novel approach introduces a second error detection to infer whether wrong automatic correction also elicits a second ErrP. Thus, two single-trial responses, instead of one, contribute to the final selection, improving the reliability of error detection. Moreover, to increase error detection, the evoked potential detected as target by the P300 classifier is combined with the evoked error potential at a feature-level. Discriminable error and positive potentials (response to correct feedback) were clearly identified. The proposed approach was tested on nine healthy participants and one tetraplegic participant. The online average accuracy for the first and second ErrPs were 88.4% and 84.8%, respectively. With automatic correction, we achieved an improvement around 5% achieving 89.9% in spelling accuracy for an effective 2.92 symbols/min. The proposed approach revealed that double ErrP detection can improve the reliability and speed of BCI systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng Guoyan
2010-04-15
Purpose: The aim of this article is to investigate the feasibility of using a statistical shape model (SSM)-based reconstruction technique to derive a scaled, patient-specific surface model of the pelvis from a single standard anteroposterior (AP) x-ray radiograph and the feasibility of estimating the scale of the reconstructed surface model by performing a surface-based 3D/3D matching. Methods: Data sets of 14 pelvises (one plastic bone, 12 cadavers, and one patient) were used to validate the single-image based reconstruction technique. This reconstruction technique is based on a hybrid 2D/3D deformable registration process combining a landmark-to-ray registration with a SSM-based 2D/3D reconstruction.more » The landmark-to-ray registration was used to find an initial scale and an initial rigid transformation between the x-ray image and the SSM. The estimated scale and rigid transformation were used to initialize the SSM-based 2D/3D reconstruction. The optimal reconstruction was then achieved in three stages by iteratively matching the projections of the apparent contours extracted from a 3D model derived from the SSM to the image contours extracted from the x-ray radiograph: Iterative affine registration, statistical instantiation, and iterative regularized shape deformation. The image contours are first detected by using a semiautomatic segmentation tool based on the Livewire algorithm and then approximated by a set of sparse dominant points that are adaptively sampled from the detected contours. The unknown scales of the reconstructed models were estimated by performing a surface-based 3D/3D matching between the reconstructed models and the associated ground truth models that were derived from a CT-based reconstruction method. Such a matching also allowed for computing the errors between the reconstructed models and the associated ground truth models. Results: The technique could reconstruct the surface models of all 14 pelvises directly from the landmark-based initialization. Depending on the surface-based matching techniques, the reconstruction errors were slightly different. When a surface-based iterative affine registration was used, an average reconstruction error of 1.6 mm was observed. This error was increased to 1.9 mm, when a surface-based iterative scaled rigid registration was used. Conclusions: It is feasible to reconstruct a scaled, patient-specific surface model of the pelvis from single standard AP x-ray radiograph using the present approach. The unknown scale of the reconstructed model can be estimated by performing a surface-based 3D/3D matching.« less
A Solution Adaptive Technique Using Tetrahedral Unstructured Grids
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2000-01-01
An adaptive unstructured grid refinement technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The method is based on a combination of surface mesh subdivision and local remeshing of the volume grid Simple functions of flow quantities are employed to detect dominant features of the flowfield The method is designed for modular coupling with various error/feature analyzers and flow solvers. Several steady-state, inviscid flow test cases are presented to demonstrate the applicability of the method for solving practical three-dimensional problems. In all cases, accurate solutions featuring complex, nonlinear flow phenomena such as shock waves and vortices have been generated automatically and efficiently.
Standard-M mobile satellite terminal employing electronic beam squint tracking
NASA Technical Reports Server (NTRS)
Hawkins, G. J.; Beach, M. A.; Hilton, G. S.
1990-01-01
In recent years, extensive experience has been built up at the University of Bristol in the use of the Electronic Beam Squint (EBS) tracking technique, applied to large earth station facilities. The current interest in land mobile satellite terminals, using small tracking antennas, has prompted the investigation of the applicability of the EBS technique to this environment. The development of an L-band mechanically steered vehicle antenna is presented. A description of the antenna is followed by a detailed investigation of the tracking environment and its implications on the error detection capability of the system. Finally, the overall hardware configuration is described along with plans for future work.
Conversion and matched filter approximations for serial minimum-shift keyed modulation
NASA Technical Reports Server (NTRS)
Ziemer, R. E.; Ryan, C. R.; Stilwell, J. H.
1982-01-01
Serial minimum-shift keyed (MSK) modulation, a technique for generating and detecting MSK using series filtering, is ideally suited for high data rate applications provided the required conversion and matched filters can be closely approximated. Low-pass implementations of these filters as parallel inphase- and quadrature-mixer structures are characterized in this paper in terms of signal-to-noise ratio (SNR) degradation from ideal and envelope deviation. Several hardware implementation techniques utilizing microwave devices or lumped elements are presented. Optimization of parameter values results in realizations whose SNR degradation is less than 0.5 dB at error probabilities of .000001.
A polarization-division multiplexing SSB-OFDM system with beat interference cancellation receivers
NASA Astrophysics Data System (ADS)
Yang, Peiling; Ma, Jianxin; Zhang, Junyi
2018-06-01
In this paper, we have proposed a polarization-division multiplexing (PDM) single-sideband optical orthogonal frequency division multiplexing (SSB-OOFDM) scheme with signal-signal beat interference cancellation receivers with balanced detection (ICRBD). This system can double channel capacity and improve spectrum efficiency (SE) with the reduced guard band (GB) due to the PDM. Multiple input multiple output (MIMO) technique is used to solve polarization mode dispersion (PMD) associated with channel estimation and equalization. By simulation, we demonstrate the efficacy of the proposed technique for a 2 ×40 Gbit/s 16-QAM SSB-PDM-OOFDM system according to the error vector magnitude (EVM) and the constellation diagrams.
All-digital precision processing of ERTS images
NASA Technical Reports Server (NTRS)
Bernstein, R. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Digital techniques have been developed and used to apply precision-grade radiometric and geometric corrections to ERTS MSS and RBV scenes. Geometric accuracies sufficient for mapping at 1:250,000 scale have been demonstrated. Radiometric quality has been superior to ERTS NDPF precision products. A configuration analysis has shown that feasible, cost-effective all-digital systems for correcting ERTS data are easily obtainable. This report contains a summary of all results obtained during this study and includes: (1) radiometric and geometric correction techniques, (2) reseau detection, (3) GCP location, (4) resampling, (5) alternative configuration evaluations, and (6) error analysis.
NASA Astrophysics Data System (ADS)
Berger, Lukas; Kleinheinz, Konstantin; Attili, Antonio; Bisetti, Fabrizio; Pitsch, Heinz; Mueller, Michael E.
2018-05-01
Modelling unclosed terms in partial differential equations typically involves two steps: First, a set of known quantities needs to be specified as input parameters for a model, and second, a specific functional form needs to be defined to model the unclosed terms by the input parameters. Both steps involve a certain modelling error, with the former known as the irreducible error and the latter referred to as the functional error. Typically, only the total modelling error, which is the sum of functional and irreducible error, is assessed, but the concept of the optimal estimator enables the separate analysis of the total and the irreducible errors, yielding a systematic modelling error decomposition. In this work, attention is paid to the techniques themselves required for the practical computation of irreducible errors. Typically, histograms are used for optimal estimator analyses, but this technique is found to add a non-negligible spurious contribution to the irreducible error if models with multiple input parameters are assessed. Thus, the error decomposition of an optimal estimator analysis becomes inaccurate, and misleading conclusions concerning modelling errors may be drawn. In this work, numerically accurate techniques for optimal estimator analyses are identified and a suitable evaluation of irreducible errors is presented. Four different computational techniques are considered: a histogram technique, artificial neural networks, multivariate adaptive regression splines, and an additive model based on a kernel method. For multiple input parameter models, only artificial neural networks and multivariate adaptive regression splines are found to yield satisfactorily accurate results. Beyond a certain number of input parameters, the assessment of models in an optimal estimator analysis even becomes practically infeasible if histograms are used. The optimal estimator analysis in this paper is applied to modelling the filtered soot intermittency in large eddy simulations using a dataset of a direct numerical simulation of a non-premixed sooting turbulent flame.
Experimental investigation of observation error in anuran call surveys
McClintock, B.T.; Bailey, L.L.; Pollock, K.H.; Simons, T.R.
2010-01-01
Occupancy models that account for imperfect detection are often used to monitor anuran and songbird species occurrence. However, presenceabsence data arising from auditory detections may be more prone to observation error (e.g., false-positive detections) than are sampling approaches utilizing physical captures or sightings of individuals. We conducted realistic, replicated field experiments using a remote broadcasting system to simulate simple anuran call surveys and to investigate potential factors affecting observation error in these studies. Distance, time, ambient noise, and observer abilities were the most important factors explaining false-negative detections. Distance and observer ability were the best overall predictors of false-positive errors, but ambient noise and competing species also affected error rates for some species. False-positive errors made up 5 of all positive detections, with individual observers exhibiting false-positive rates between 0.5 and 14. Previous research suggests false-positive errors of these magnitudes would induce substantial positive biases in standard estimators of species occurrence, and we recommend practices to mitigate for false positives when developing occupancy monitoring protocols that rely on auditory detections. These recommendations include additional observer training, limiting the number of target species, and establishing distance and ambient noise thresholds during surveys. ?? 2010 The Wildlife Society.
Data fusion for QRS complex detection in multi-lead electrocardiogram recordings
NASA Astrophysics Data System (ADS)
Ledezma, Carlos A.; Perpiñan, Gilberto; Severeyn, Erika; Altuve, Miguel
2015-12-01
Heart diseases are the main cause of death worldwide. The first step in the diagnose of these diseases is the analysis of the electrocardiographic (ECG) signal. In turn, the ECG analysis begins with the detection of the QRS complex, which is the one with the most energy in the cardiac cycle. Numerous methods have been proposed in the bibliography for QRS complex detection, but few authors have analyzed the possibility of taking advantage of the information redundancy present in multiple ECG leads (simultaneously acquired) to produce accurate QRS detection. In our previous work we presented such an approach, proposing various data fusion techniques to combine the detections made by an algorithm on multiple ECG leads. In this paper we present further studies that show the advantages of this multi-lead detection approach, analyzing how many leads are necessary in order to observe an improvement in the detection performance. A well known QRS detection algorithm was used to test the fusion techniques on the St. Petersburg Institute of Cardiological Technics database. Results show improvement in the detection performance with as little as three leads, but the reliability of these results becomes interesting only after using seven or more leads. Results were evaluated using the detection error rate (DER). The multi-lead detection approach allows an improvement from DER = 3:04% to DER = 1:88%. Further works are to be made in order to improve the detection performance by implementing further fusion steps.
Register file soft error recovery
Fleischer, Bruce M.; Fox, Thomas W.; Wait, Charles D.; Muff, Adam J.; Watson, III, Alfred T.
2013-10-15
Register file soft error recovery including a system that includes a first register file and a second register file that mirrors the first register file. The system also includes an arithmetic pipeline for receiving data read from the first register file, and error detection circuitry to detect whether the data read from the first register file includes corrupted data. The system further includes error recovery circuitry to insert an error recovery instruction into the arithmetic pipeline in response to detecting the corrupted data. The inserted error recovery instruction replaces the corrupted data in the first register file with a copy of the data from the second register file.
Measurement error in environmental epidemiology and the shape of exposure-response curves.
Rhomberg, Lorenz R; Chandalia, Juhi K; Long, Christopher M; Goodman, Julie E
2011-09-01
Both classical and Berkson exposure measurement errors as encountered in environmental epidemiology data can result in biases in fitted exposure-response relationships that are large enough to affect the interpretation and use of the apparent exposure-response shapes in risk assessment applications. A variety of sources of potential measurement error exist in the process of estimating individual exposures to environmental contaminants, and the authors review the evaluation in the literature of the magnitudes and patterns of exposure measurement errors that prevail in actual practice. It is well known among statisticians that random errors in the values of independent variables (such as exposure in exposure-response curves) may tend to bias regression results. For increasing curves, this effect tends to flatten and apparently linearize what is in truth a steeper and perhaps more curvilinear or even threshold-bearing relationship. The degree of bias is tied to the magnitude of the measurement error in the independent variables. It has been shown that the degree of bias known to apply to actual studies is sufficient to produce a false linear result, and that although nonparametric smoothing and other error-mitigating techniques may assist in identifying a threshold, they do not guarantee detection of a threshold. The consequences of this could be great, as it could lead to a misallocation of resources towards regulations that do not offer any benefit to public health.
System identification for modeling for control of flexible structures
NASA Technical Reports Server (NTRS)
Mettler, Edward; Milman, Mark
1986-01-01
The major components of a design and operational flight strategy for flexible structure control systems are presented. In this strategy an initial distributed parameter control design is developed and implemented from available ground test data and on-orbit identification using sophisticated modeling and synthesis techniques. The reliability of this high performance controller is directly linked to the accuracy of the parameters on which the design is based. Because uncertainties inevitably grow without system monitoring, maintaining the control system requires an active on-line system identification function to supply parameter updates and covariance information. Control laws can then be modified to improve performance when the error envelopes are decreased. In terms of system safety and stability the covariance information is of equal importance as the parameter values themselves. If the on-line system ID function detects an increase in parameter error covariances, then corresponding adjustments must be made in the control laws to increase robustness. If the error covariances exceed some threshold, an autonomous calibration sequence could be initiated to restore the error enveloped to an acceptable level.
Error detection and correction unit with built-in self-test capability for spacecraft applications
NASA Technical Reports Server (NTRS)
Timoc, Constantin
1990-01-01
The objective of this project was to research and develop a 32-bit single chip Error Detection and Correction unit capable of correcting all single bit errors and detecting all double bit errors in the memory systems of a spacecraft. We designed the 32-bit EDAC (Error Detection and Correction unit) based on a modified Hamming code and according to the design specifications and performance requirements. We constructed a laboratory prototype (breadboard) which was converted into a fault simulator. The correctness of the design was verified on the breadboard using an exhaustive set of test cases. A logic diagram of the EDAC was delivered to JPL Section 514 on 4 Oct. 1988.
Radiant Temperature Nulling Radiometer
NASA Technical Reports Server (NTRS)
Ryan, Robert (Inventor)
2003-01-01
A self-calibrating nulling radiometer for non-contact temperature measurement of an object, such as a body of water, employs a black body source as a temperature reference, an optomechanical mechanism, e.g., a chopper, to switch back and forth between measuring the temperature of the black body source and that of a test source, and an infrared detection technique. The radiometer functions by measuring radiance of both the test and the reference black body sources; adjusting the temperature of the reference black body so that its radiance is equivalent to the test source; and, measuring the temperature of the reference black body at this point using a precision contact-type temperature sensor, to determine the radiative temperature of the test source. The radiation from both sources is detected by an infrared detector that converts the detected radiation to an electrical signal that is fed with a chopper reference signal to an error signal generator, such as a synchronous detector, that creates a precision rectified signal that is approximately proportional to the difference between the temperature of the reference black body and that of the test infrared source. This error signal is then used in a feedback loop to adjust the reference black body temperature until it equals that of the test source, at which point the error signal is nulled to zero. The chopper mechanism operates at one or more Hertz allowing minimization of l/f noise. It also provides pure chopping between the black body and the test source and allows continuous measurements.
NASA Astrophysics Data System (ADS)
Szuflitowska, B.; Orlowski, P.
2017-08-01
Automated detection system consists of two key steps: extraction of features from EEG signals and classification for detection of pathology activity. The EEG sequences were analyzed using Short-Time Fourier Transform and the classification was performed using Linear Discriminant Analysis. The accuracy of the technique was tested on three sets of EEG signals: epilepsy, healthy and Alzheimer's Disease. The classification error below 10% has been considered a success. The higher accuracy are obtained for new data of unknown classes than testing data. The methodology can be helpful in differentiation epilepsy seizure and disturbances in the EEG signal in Alzheimer's Disease.
Roon, David A.; Waits, L.P.; Kendall, K.C.
2005-01-01
Non-invasive genetic sampling (NGS) is becoming a popular tool for population estimation. However, multiple NGS studies have demonstrated that polymerase chain reaction (PCR) genotyping errors can bias demographic estimates. These errors can be detected by comprehensive data filters such as the multiple-tubes approach, but this approach is expensive and time consuming as it requires three to eight PCR replicates per locus. Thus, researchers have attempted to correct PCR errors in NGS datasets using non-comprehensive error checking methods, but these approaches have not been evaluated for reliability. We simulated NGS studies with and without PCR error and 'filtered' datasets using non-comprehensive approaches derived from published studies and calculated mark-recapture estimates using CAPTURE. In the absence of data-filtering, simulated error resulted in serious inflations in CAPTURE estimates; some estimates exceeded N by ??? 200%. When data filters were used, CAPTURE estimate reliability varied with per-locus error (E??). At E?? = 0.01, CAPTURE estimates from filtered data displayed < 5% deviance from error-free estimates. When E?? was 0.05 or 0.09, some CAPTURE estimates from filtered data displayed biases in excess of 10%. Biases were positive at high sampling intensities; negative biases were observed at low sampling intensities. We caution researchers against using non-comprehensive data filters in NGS studies, unless they can achieve baseline per-locus error rates below 0.05 and, ideally, near 0.01. However, we suggest that data filters can be combined with careful technique and thoughtful NGS study design to yield accurate demographic information. ?? 2005 The Zoological Society of London.
Teleportation-based continuous variable quantum cryptography
NASA Astrophysics Data System (ADS)
Luiz, F. S.; Rigolin, Gustavo
2017-03-01
We present a continuous variable (CV) quantum key distribution (QKD) scheme based on the CV quantum teleportation of coherent states that yields a raw secret key made up of discrete variables for both Alice and Bob. This protocol preserves the efficient detection schemes of current CV technology (no single-photon detection techniques) and, at the same time, has efficient error correction and privacy amplification schemes due to the binary modulation of the key. We show that for a certain type of incoherent attack, it is secure for almost any value of the transmittance of the optical line used by Alice to share entangled two-mode squeezed states with Bob (no 3 dB or 50% loss limitation characteristic of beam splitting attacks). The present CVQKD protocol works deterministically (no postselection needed) with efficient direct reconciliation techniques (no reverse reconciliation) in order to generate a secure key and beyond the 50% loss case at the incoherent attack level.
Semi-supervised anomaly detection - towards model-independent searches of new physics
NASA Astrophysics Data System (ADS)
Kuusela, Mikael; Vatanen, Tommi; Malmi, Eric; Raiko, Tapani; Aaltonen, Timo; Nagai, Yoshikazu
2012-06-01
Most classification algorithms used in high energy physics fall under the category of supervised machine learning. Such methods require a training set containing both signal and background events and are prone to classification errors should this training data be systematically inaccurate for example due to the assumed MC model. To complement such model-dependent searches, we propose an algorithm based on semi-supervised anomaly detection techniques, which does not require a MC training sample for the signal data. We first model the background using a multivariate Gaussian mixture model. We then search for deviations from this model by fitting to the observations a mixture of the background model and a number of additional Gaussians. This allows us to perform pattern recognition of any anomalous excess over the background. We show by a comparison to neural network classifiers that such an approach is a lot more robust against misspecification of the signal MC than supervised classification. In cases where there is an unexpected signal, a neural network might fail to correctly identify it, while anomaly detection does not suffer from such a limitation. On the other hand, when there are no systematic errors in the training data, both methods perform comparably.
NASA Astrophysics Data System (ADS)
Jiang, Ching-Fen; Wang, Chih-Yu; Chiang, Chun-Ping
2011-07-01
Optoelectronics techniques to induce protoporphyrin IX fluorescence with topically applied 5-aminolevulinic acid on the oral mucosa have been developed to noninvasively detect oral cancer. Fluorescence imaging enables wide-area screening for oral premalignancy, but the lack of an adequate fluorescence enhancement method restricts the clinical imaging application of these techniques. This study aimed to develop a reliable fluorescence enhancement method to improve PpIX fluorescence imaging systems for oral cancer detection. Three contrast features, red-green-blue reflectance difference, R/B ratio, and R/G ratio, were developed first based on the optical properties of the fluorescence images. A comparative study was then carried out with one negative control and four biopsy confirmed clinical cases to validate the optimal image processing method for the detection of the distribution of malignancy. The results showed the superiority of the R/G ratio in terms of yielding a better contrast between normal and neoplastic tissue, and this method was less prone to errors in detection. Quantitative comparison with the clinical diagnoses in the four neoplastic cases showed that the regions of premalignancy obtained using the proposed method accorded with the expert's determination, suggesting the potential clinical application of this method for the detection of oral cancer.
Heart rate detection from an electronic weighing scale.
González-Landaeta, R; Casas, O; Pallàs-Areny, R
2008-08-01
We propose a novel technique for beat-to-beat heart rate detection based on the ballistocardiographic (BCG) force signal from a subject standing on a common electronic weighing scale. The detection relies on sensing force variations related to the blood acceleration in the aorta, works even if wearing footwear and does not require any sensors attached to the body because it uses the load cells in the scale. We have devised an approach to estimate the sensitivity and frequency response of three commercial weighing scales to assess their capability to detect the BCG force signal. Static sensitivities ranged from 490 nV V(-1) N(-1) to 1670 nV V(-1) N(-1). The frequency response depended on the subject's mass but it was broad enough for heart rate estimation. We have designed an electronic pulse detection system based on off-the-shelf integrated circuits to sense heart-beat-related force variations of about 0.24 N. The signal-to-noise ratio of the main peaks of the force signal detected was higher than 30 dB. A Bland-Altman plot was used to compare the RR time intervals estimated from the ECG and BCG force signals for 17 volunteers. The error was +/-21 ms, which makes the proposed technique suitable for short-term monitoring of the heart rate.
Error assessment of local tie vectors in space geodesy
NASA Astrophysics Data System (ADS)
Falkenberg, Jana; Heinkelmann, Robert; Schuh, Harald
2014-05-01
For the computation of the ITRF, the data of the geometric space-geodetic techniques on co-location sites are combined. The combination increases the redundancy and offers the possibility to utilize the strengths of each technique while mitigating their weaknesses. To enable the combination of co-located techniques each technique needs to have a well-defined geometric reference point. The linking of the geometric reference points enables the combination of the technique-specific coordinate to a multi-technique site coordinate. The vectors between these reference points are called "local ties". The realization of local ties is usually reached by local surveys of the distances and or angles between the reference points. Identified temporal variations of the reference points are considered in the local tie determination only indirectly by assuming a mean position. Finally, the local ties measured in the local surveying network are to be transformed into the ITRF, the global geocentric equatorial coordinate system of the space-geodetic techniques. The current IERS procedure for the combination of the space-geodetic techniques includes the local tie vectors with an error floor of three millimeters plus a distance dependent component. This error floor, however, significantly underestimates the real accuracy of local tie determination. To fullfill the GGOS goals of 1 mm position and 0.1 mm/yr velocity accuracy, an accuracy of the local tie will be mandatory at the sub-mm level, which is currently not achievable. To assess the local tie effects on ITRF computations, investigations of the error sources will be done to realistically assess and consider them. Hence, a reasonable estimate of all the included errors of the various local ties is needed. An appropriate estimate could also improve the separation of local tie error and technique-specific error contributions to uncertainties and thus access the accuracy of space-geodetic techniques. Our investigations concern the simulation of the error contribution of each component of the local tie definition and determination. A closer look into the models of reference point definition, of accessibility, of measurement, and of transformation is necessary to properly model the error of the local tie. The effect of temporal variations on the local ties will be studied as well. The transformation of the local survey into the ITRF can be assumed to be the largest error contributor, in particular the orientation of the local surveying network to the ITRF.
ERIC Educational Resources Information Center
Abedi, Razie; Latifi, Mehdi; Moinzadeh, Ahmad
2010-01-01
This study tries to answer some ever-existent questions in writing fields regarding approaching the most effective ways to give feedback to students' errors in writing by comparing the effect of error correction and error detection on the improvement of students' writing ability. In order to achieve this goal, 60 pre-intermediate English learners…
Fault-tolerant quantum error detection
Linke, Norbert M.; Gutierrez, Mauricio; Landsman, Kevin A.; Figgatt, Caroline; Debnath, Shantanu; Brown, Kenneth R.; Monroe, Christopher
2017-01-01
Quantum computers will eventually reach a size at which quantum error correction becomes imperative. Quantum information can be protected from qubit imperfections and flawed control operations by encoding a single logical qubit in multiple physical qubits. This redundancy allows the extraction of error syndromes and the subsequent detection or correction of errors without destroying the logical state itself through direct measurement. We show the encoding and syndrome measurement of a fault-tolerantly prepared logical qubit via an error detection protocol on four physical qubits, represented by trapped atomic ions. This demonstrates the robustness of a logical qubit to imperfections in the very operations used to encode it. The advantage persists in the face of large added error rates and experimental calibration errors. PMID:29062889
Lee, Min-Young; Han, Bin; Jenkins, Cesare; Xing, Lei; Suh, Tae-Suk
2016-01-01
Purpose: The purpose of total body irradiation (TBI) techniques is to deliver a uniform radiation dose to the entire volume of a patient’s body. Due to variations in the thickness of the patient, it is difficult to produce such a uniform dose distribution throughout the body. In many techniques, a compensator is used to adjust the dose delivered to various sections of the patient. The current study aims to develop and validate an innovative method of using depth-sensing cameras and 3D printing techniques for TBI treatment planning and compensator fabrication. Methods: A tablet with an integrated depth-sensing camera and motion tracking sensors was used to scan a RANDO™ phantom positioned in a TBI treatment booth to detect and store the 3D surface in a point cloud format. The accuracy of the detected surface was evaluated by comparing extracted body thickness measurements with corresponding measurements from computed tomography (CT) scan images. The thickness, source to surface distance, and off-axis distance of the phantom at different body section were measured for TBI treatment planning. A detailed compensator design was calculated to achieve a uniform dose distribution throughout the phantom. The compensator was fabricated using a 3D printer, silicone molding, and a mixture of wax and tungsten powder. In vivo dosimetry measurements were performed using optically stimulated luminescent detectors. Results: The scan of the phantom took approximately 30 s. The mean error for thickness measurements at each section of phantom relative to CT was 0.48 ± 0.27 cm. The average fabrication error for the 3D-printed compensator was 0.16 ± 0.15 mm. In vivo measurements for an end-to-end test showed that overall dose differences were within 5%. Conclusions: A technique for planning and fabricating a compensator for TBI treatment using a depth camera equipped tablet and a 3D printer was demonstrated to be sufficiently accurate to be considered for further investigation. PMID:27806603
NASA Astrophysics Data System (ADS)
Lu, Yuzhen; Lu, Renfu
2017-05-01
Three-dimensional (3-D) shape information is valuable for fruit quality evaluation. This study was aimed at developing phase analysis techniques for reconstruction of the 3-D surface of fruit from the pattern images acquired by a structuredillumination reflectance imaging (SIRI) system. Phase-shifted sinusoidal patterns, distorted by the fruit geometry, were acquired and processed through phase demodulation, phase unwrapping and other post-processing procedures to obtain phase difference maps relative to the phase of a reference plane. The phase maps were then transformed into height profiles and 3-D shapes in a world coordinate system based on phase-to-height and in-plane calibrations. A reference plane-based approach, coupled with the curve fitting technique using polynomials of order 3 or higher, was utilized for phase-to-height calibrations, which achieved superior accuracies with the root-mean-squared errors (RMSEs) of 0.027- 0.033 mm for a height measurement range of 0-91 mm. The 3rd-order polynomial curve fitting technique was further tested on two reference blocks with known heights, resulting in relative errors of 3.75% and 4.16%. In-plane calibrations were performed by solving a linear system formed by a number of control points in a calibration object, which yielded a RMSE of 0.311 mm. Tests of the calibrated system for reconstructing the surface of apple samples showed that surface concavities (i.e., stem/calyx regions) could be easily discriminated from bruises from the phase difference maps, reconstructed height profiles and the 3-D shape of apples. This study has laid a foundation for using SIRI for 3-D shape measurement, and thus expanded the capability of the technique for quality evaluation of horticultural products. Further research is needed to utilize the phase analysis techniques for stem/calyx detection of apples, and optimize the phase demodulation and unwrapping algorithms for faster and more reliable detection.
Particle Streak Anemometry: A New Method for Proximal Flow Sensing from Aircraft
NASA Astrophysics Data System (ADS)
Nichols, T. W.
Accurate sensing of relative air flow direction from fixed-wing small unmanned aircraft (sUAS) is challenging with existing multi-hole pitot-static and vane systems. Sub-degree direction accuracy is generally not available on such systems and disturbances to the local flow field, induced by the airframe, introduce an additional error source. An optical imaging approach to make a relative air velocity measurement with high-directional accuracy is presented. Optical methods offer the capability to make a proximal measurement in undisturbed air outside of the local flow field without the need to place sensors on vulnerable probes extended ahead of the aircraft. Current imaging flow analysis techniques for laboratory use rely on relatively thin imaged volumes and sophisticated hardware and intensity thresholding in low-background conditions. A new method is derived and assessed using a particle streak imaging technique that can be implemented with low-cost commercial cameras and illumination systems, and can function in imaged volumes of arbitrary depth with complex background signal. The new technique, referred to as particle streak anemometry (PSA) (to differentiate from particle streak velocimetry which makes a field measurement rather than a single bulk flow measurement) utilizes a modified Canny Edge detection algorithm with a connected component analysis and principle component analysis to detect streak ends in complex imaging conditions. A linear solution for the air velocity direction is then implemented with a random sample consensus (RANSAC) solution approach. A single DOF non-linear, non-convex optimization problem is then solved for the air speed through an iterative approach. The technique was tested through simulation and wind tunnel tests yielding angular accuracies under 0.2 degrees, superior to the performance of existing commercial systems. Air speed error standard deviations varied from 1.6 to 2.2 m/s depending on the techniques of implementation. While air speed sensing is secondary to accurate flow direction measurement, the air speed results were in line with commercial pitot static systems at low speeds.
Automatic Estimation of Verified Floating-Point Round-Off Errors via Static Analysis
NASA Technical Reports Server (NTRS)
Moscato, Mariano; Titolo, Laura; Dutle, Aaron; Munoz, Cesar A.
2017-01-01
This paper introduces a static analysis technique for computing formally verified round-off error bounds of floating-point functional expressions. The technique is based on a denotational semantics that computes a symbolic estimation of floating-point round-o errors along with a proof certificate that ensures its correctness. The symbolic estimation can be evaluated on concrete inputs using rigorous enclosure methods to produce formally verified numerical error bounds. The proposed technique is implemented in the prototype research tool PRECiSA (Program Round-o Error Certifier via Static Analysis) and used in the verification of floating-point programs of interest to NASA.
Error-Analysis for Correctness, Effectiveness, and Composing Procedure.
ERIC Educational Resources Information Center
Ewald, Helen Rothschild
The assumptions underpinning grammatical mistakes can often be detected by looking for patterns of errors in a student's work. Assumptions that negatively influence rhetorical effectiveness can similarly be detected through error analysis. On a smaller scale, error analysis can also reveal assumptions affecting rhetorical choice. Snags in the…
Spatial regression test for ensuring temperature data quality in southern Spain
NASA Astrophysics Data System (ADS)
Estévez, J.; Gavilán, P.; García-Marín, A. P.
2018-01-01
Quality assurance of meteorological data is crucial for ensuring the reliability of applications and models that use such data as input variables, especially in the field of environmental sciences. Spatial validation of meteorological data is based on the application of quality control procedures using data from neighbouring stations to assess the validity of data from a candidate station (the station of interest). These kinds of tests, which are referred to in the literature as spatial consistency tests, take data from neighbouring stations in order to estimate the corresponding measurement at the candidate station. These estimations can be made by weighting values according to the distance between the stations or to the coefficient of correlation, among other methods. The test applied in this study relies on statistical decision-making and uses a weighting based on the standard error of the estimate. This paper summarizes the results of the application of this test to maximum, minimum and mean temperature data from the Agroclimatic Information Network of Andalusia (southern Spain). This quality control procedure includes a decision based on a factor f, the fraction of potential outliers for each station across the region. Using GIS techniques, the geographic distribution of the errors detected has been also analysed. Finally, the performance of the test was assessed by evaluating its effectiveness in detecting known errors.
Amoah, Isaac Dennis; Singh, Gulshan; Stenström, Thor Axel; Reddy, Poovendhree
2017-05-01
It is estimated that over a billion people are infected with soil-transmitted helminths (STHs) globally with majority occurring in tropical and subtropical regions of the world. The roundworm (Ascaris lumbricoides), whipworm (Trichuris trichiura), and hookworms (Ancylostoma duodenale and Necator americanus) are the main species infecting people. These infections are mostly gained through exposure to faecally contaminated water, soil or contaminated food and with an increase in the risk of infections due to wastewater and sludge reuse in agriculture. Different methods have been developed for the detection and quantification of STHs eggs in environmental samples. However, there is a lack of a universally accepted technique which creates a challenge for comparative assessments of helminths egg concentrations both in different samples matrices as well as between locations. This review presents a comparison of reported methodologies for the detection of STHs eggs, an assessment of the relative performance of available detection methods and a discussion of new emerging techniques that could be applied for detection and quantification. It is based on a literature search using PubMed and Science Direct considering all geographical locations. Original research articles were selected based on their methodology and results sections. Methods reported in these articles were grouped into conventional, molecular and emerging techniques, the main steps in each method were then compared and discussed. The inclusion of a dissociation step aimed at detaching helminth eggs from particulate matter was found to improve the recovery of eggs. Additionally the selection and application of flotation solutions that take into account the relative densities of the eggs of different species of STHs also results in higher egg recovery. Generally the use of conventional methods was shown to be laborious and time consuming and prone to human error. The alternate use of nucleic acid-based techniques has improved the sensitivity of detection and made species specific identification possible. However, these nucleic acid based methods are expensive and less suitable in regions with limited resources and skill. The loop mediated isothermal amplification method shows promise for application in these settings due to its simplicity and use of basic equipment. In addition, the development of imaging soft-ware for the detection and quantification of STHs shows promise to further reduce human error associated with the analysis of environmental samples. It may be concluded that there is a need to comparatively assess the performance of different methods to determine their applicability in different settings as well as for use with different sample matrices (wastewater, sludge, compost, soil, vegetables etc.). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, YoungJae; Sepulveda, Francisco
2017-02-01
Objective. Self-paced EEG-based BCIs (SP-BCIs) have traditionally been avoided due to two sources of uncertainty: (1) precisely when an intentional command is sent by the brain, i.e., the command onset detection problem, and (2) how different the intentional command is when compared to non-specific (or idle) states. Performance evaluation is also a problem and there are no suitable standard metrics available. In this paper we attempted to tackle these issues. Approach. Self-paced covert sound-production cognitive tasks (i.e., high pitch and siren-like sounds) were used to distinguish between intentional commands (IC) and idle states. The IC states were chosen for their ease of execution and negligible overlap with common cognitive states. Band power and a digital wavelet transform were used for feature extraction, and the Davies-Bouldin index was used for feature selection. Classification was performed using linear discriminant analysis. Main results. Performance was evaluated under offline and simulated-online conditions. For the latter, a performance score called true-false-positive (TFP) rate, ranging from 0 (poor) to 100 (perfect), was created to take into account both classification performance and onset timing errors. Averaging the results from the best performing IC task for all seven participants, an 77.7% true-positive (TP) rate was achieved in offline testing. For simulated-online analysis the best IC average TFP score was 76.67% (87.61% TP rate, 4.05% false-positive rate). Significance. Results were promising when compared to previous IC onset detection studies using motor imagery, in which best TP rates were reported as 72.0% and 79.7%, and which, crucially, did not take timing errors into account. Moreover, based on our literature review, there is no previous covert sound-production onset detection system for spBCIs. Results showed that the proposed onset detection technique and TFP performance metric have good potential for use in SP-BCIs.
Automated detection and labeling of high-density EEG electrodes from structural MR images.
Marino, Marco; Liu, Quanying; Brem, Silvia; Wenderoth, Nicole; Mantini, Dante
2016-10-01
Accurate knowledge about the positions of electrodes in electroencephalography (EEG) is very important for precise source localizations. Direct detection of electrodes from magnetic resonance (MR) images is particularly interesting, as it is possible to avoid errors of co-registration between electrode and head coordinate systems. In this study, we propose an automated MR-based method for electrode detection and labeling, particularly tailored to high-density montages. Anatomical MR images were processed to create an electrode-enhanced image in individual space. Image processing included intensity non-uniformity correction, background noise and goggles artifact removal. Next, we defined a search volume around the head where electrode positions were detected. Electrodes were identified as local maxima in the search volume and registered to the Montreal Neurological Institute standard space using an affine transformation. This allowed the matching of the detected points with the specific EEG montage template, as well as their labeling. Matching and labeling were performed by the coherent point drift method. Our method was assessed on 8 MR images collected in subjects wearing a 256-channel EEG net, using the displacement with respect to manually selected electrodes as performance metric. Average displacement achieved by our method was significantly lower compared to alternative techniques, such as the photogrammetry technique. The maximum displacement was for more than 99% of the electrodes lower than 1 cm, which is typically considered an acceptable upper limit for errors in electrode positioning. Our method showed robustness and reliability, even in suboptimal conditions, such as in the case of net rotation, imprecisely gathered wires, electrode detachment from the head, and MR image ghosting. We showed that our method provides objective, repeatable and precise estimates of EEG electrode coordinates. We hope our work will contribute to a more widespread use of high-density EEG as a brain-imaging tool.
Automated detection and labeling of high-density EEG electrodes from structural MR images
NASA Astrophysics Data System (ADS)
Marino, Marco; Liu, Quanying; Brem, Silvia; Wenderoth, Nicole; Mantini, Dante
2016-10-01
Objective. Accurate knowledge about the positions of electrodes in electroencephalography (EEG) is very important for precise source localizations. Direct detection of electrodes from magnetic resonance (MR) images is particularly interesting, as it is possible to avoid errors of co-registration between electrode and head coordinate systems. In this study, we propose an automated MR-based method for electrode detection and labeling, particularly tailored to high-density montages. Approach. Anatomical MR images were processed to create an electrode-enhanced image in individual space. Image processing included intensity non-uniformity correction, background noise and goggles artifact removal. Next, we defined a search volume around the head where electrode positions were detected. Electrodes were identified as local maxima in the search volume and registered to the Montreal Neurological Institute standard space using an affine transformation. This allowed the matching of the detected points with the specific EEG montage template, as well as their labeling. Matching and labeling were performed by the coherent point drift method. Our method was assessed on 8 MR images collected in subjects wearing a 256-channel EEG net, using the displacement with respect to manually selected electrodes as performance metric. Main results. Average displacement achieved by our method was significantly lower compared to alternative techniques, such as the photogrammetry technique. The maximum displacement was for more than 99% of the electrodes lower than 1 cm, which is typically considered an acceptable upper limit for errors in electrode positioning. Our method showed robustness and reliability, even in suboptimal conditions, such as in the case of net rotation, imprecisely gathered wires, electrode detachment from the head, and MR image ghosting. Significance. We showed that our method provides objective, repeatable and precise estimates of EEG electrode coordinates. We hope our work will contribute to a more widespread use of high-density EEG as a brain-imaging tool.
2012-08-01
techniques and STEAM imager. It couples the high-speed capability of the STEAM imager and differential phase contrast imaging of DIC / Nomarski microscopy...On 10 TPE chips, we obtained 9 homogenous and strong bonds, the failed bond being due to operator error and presence of air bubbles in the TPE...instruments, structural dynamics, and microelectromechanical systems (MEMS) via laser-scanning surface vibrometry , and observation of biomechanical motility
Certification of computational results
NASA Technical Reports Server (NTRS)
Sullivan, Gregory F.; Wilson, Dwight S.; Masson, Gerald M.
1993-01-01
A conceptually novel and powerful technique to achieve fault detection and fault tolerance in hardware and software systems is described. When used for software fault detection, this new technique uses time and software redundancy and can be outlined as follows. In the initial phase, a program is run to solve a problem and store the result. In addition, this program leaves behind a trail of data called a certification trail. In the second phase, another program is run which solves the original problem again. This program, however, has access to the certification trail left by the first program. Because of the availability of the certification trail, the second phase can be performed by a less complex program and can execute more quickly. In the final phase, the two results are compared and if they agree the results are accepted as correct; otherwise an error is indicated. An essential aspect of this approach is that the second program must always generate either an error indication or a correct output even when the certification trail it receives from the first program is incorrect. The certification trail approach to fault tolerance is formalized and realizations of it are illustrated by considering algorithms for the following problems: convex hull, sorting, and shortest path. Cases in which the second phase can be run concurrently with the first and act as a monitor are discussed. The certification trail approach are compared to other approaches to fault tolerance.
High-speed linear optics quantum computing using active feed-forward.
Prevedel, Robert; Walther, Philip; Tiefenbacher, Felix; Böhi, Pascal; Kaltenbaek, Rainer; Jennewein, Thomas; Zeilinger, Anton
2007-01-04
As information carriers in quantum computing, photonic qubits have the advantage of undergoing negligible decoherence. However, the absence of any significant photon-photon interaction is problematic for the realization of non-trivial two-qubit gates. One solution is to introduce an effective nonlinearity by measurements resulting in probabilistic gate operations. In one-way quantum computation, the random quantum measurement error can be overcome by applying a feed-forward technique, such that the future measurement basis depends on earlier measurement results. This technique is crucial for achieving deterministic quantum computation once a cluster state (the highly entangled multiparticle state on which one-way quantum computation is based) is prepared. Here we realize a concatenated scheme of measurement and active feed-forward in a one-way quantum computing experiment. We demonstrate that, for a perfect cluster state and no photon loss, our quantum computation scheme would operate with good fidelity and that our feed-forward components function with very high speed and low error for detected photons. With present technology, the individual computational step (in our case the individual feed-forward cycle) can be operated in less than 150 ns using electro-optical modulators. This is an important result for the future development of one-way quantum computers, whose large-scale implementation will depend on advances in the production and detection of the required highly entangled cluster states.
Tan, Kok Chooi; Lim, Hwee San; Matjafri, Mohd Zubir; Abdullah, Khiruddin
2012-06-01
Atmospheric corrections for multi-temporal optical satellite images are necessary, especially in change detection analyses, such as normalized difference vegetation index (NDVI) rationing. Abrupt change detection analysis using remote-sensing techniques requires radiometric congruity and atmospheric correction to monitor terrestrial surfaces over time. Two atmospheric correction methods were used for this study: relative radiometric normalization and the simplified method for atmospheric correction (SMAC) in the solar spectrum. A multi-temporal data set consisting of two sets of Landsat images from the period between 1991 and 2002 of Penang Island, Malaysia, was used to compare NDVI maps, which were generated using the proposed atmospheric correction methods. Land surface temperature (LST) was retrieved using ATCOR3_T in PCI Geomatica 10.1 image processing software. Linear regression analysis was utilized to analyze the relationship between NDVI and LST. This study reveals that both of the proposed atmospheric correction methods yielded high accuracy through examination of the linear correlation coefficients. To check for the accuracy of the equation obtained through linear regression analysis for every single satellite image, 20 points were randomly chosen. The results showed that the SMAC method yielded a constant value (in terms of error) to predict the NDVI value from linear regression analysis-derived equation. The errors (average) from both proposed atmospheric correction methods were less than 10%.
NASA Astrophysics Data System (ADS)
Feng, L.; Vaulin, R.; Hewitt, J. N.; Remillard, R.; Kaplan, D. L.; Murphy, Tara; Kudryavtseva, N.; Hancock, P.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Gaensler, B. M.; Greenhill, L. J.; Hazelton, B. J.; Johnston-Hollitt, M.; Lonsdale, C. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.
2017-03-01
Many astronomical sources produce transient phenomena at radio frequencies, but the transient sky at low frequencies (<300 MHz) remains relatively unexplored. Blind surveys with new wide-field radio instruments are setting increasingly stringent limits on the transient surface density on various timescales. Although many of these instruments are limited by classical confusion noise from an ensemble of faint, unresolved sources, one can in principle detect transients below the classical confusion limit to the extent that the classical confusion noise is independent of time. We develop a technique for detecting radio transients that is based on temporal matched filters applied directly to time series of images, rather than relying on source-finding algorithms applied to individual images. This technique has well-defined statistical properties and is applicable to variable and transient searches for both confusion-limited and non-confusion-limited instruments. Using the Murchison Widefield Array as an example, we demonstrate that the technique works well on real data despite the presence of classical confusion noise, sidelobe confusion noise, and other systematic errors. We searched for transients lasting between 2 minutes and 3 months. We found no transients and set improved upper limits on the transient surface density at 182 MHz for flux densities between ˜20 and 200 mJy, providing the best limits to date for hour- and month-long transients.
Optimizing focal plane electric field estimation for detecting exoplanets
NASA Astrophysics Data System (ADS)
Groff, T.; Kasdin, N. J.; Riggs, A. J. E.
Detecting extrasolar planets with angular separations and contrast levels similar to Earth requires a large space-based observatory and advanced starlight suppression techniques. This paper focuses on techniques employing an internal coronagraph, which is highly sensitive to optical errors and must rely on focal plane wavefront control techniques to achieve the necessary contrast levels. To maximize the available science time for a coronagraphic mission we demonstrate an estimation scheme using a discrete time Kalman filter. The state estimate feedback inherent to the filter allows us to minimize the number of exposures required to estimate the electric field. We also show progress including a bias estimate into the Kalman filter to eliminate incoherent light from the estimate. Since the exoplanets themselves are incoherent to the star, this has the added benefit of using the control history to gain certainty in the location of exoplanet candidates as the signal-to-noise between the planets and speckles improves. Having established a purely focal plane based wavefront estimation technique, we discuss a sensor fusion concept where alternate wavefront sensors feedforward a time update to the focal plane estimate to improve robustness to time varying speckle. The overall goal of this work is to reduce the time required for wavefront control on a target, thereby improving the observatory's planet detection performance by increasing the number of targets reachable during the lifespan of the mission.
Intravenous Chemotherapy Compounding Errors in a Follow-Up Pan-Canadian Observational Study.
Gilbert, Rachel E; Kozak, Melissa C; Dobish, Roxanne B; Bourrier, Venetia C; Koke, Paul M; Kukreti, Vishal; Logan, Heather A; Easty, Anthony C; Trbovich, Patricia L
2018-05-01
Intravenous (IV) compounding safety has garnered recent attention as a result of high-profile incidents, awareness efforts from the safety community, and increasingly stringent practice standards. New research with more-sensitive error detection techniques continues to reinforce that error rates with manual IV compounding are unacceptably high. In 2014, our team published an observational study that described three types of previously unrecognized and potentially catastrophic latent chemotherapy preparation errors in Canadian oncology pharmacies that would otherwise be undetectable. We expand on this research and explore whether additional potential human failures are yet to be addressed by practice standards. Field observations were conducted in four cancer center pharmacies in four Canadian provinces from January 2013 to February 2015. Human factors specialists observed and interviewed pharmacy managers, oncology pharmacists, pharmacy technicians, and pharmacy assistants as they carried out their work. Emphasis was on latent errors (potential human failures) that could lead to outcomes such as wrong drug, dose, or diluent. Given the relatively short observational period, no active failures or actual errors were observed. However, 11 latent errors in chemotherapy compounding were identified. In terms of severity, all 11 errors create the potential for a patient to receive the wrong drug or dose, which in the context of cancer care, could lead to death or permanent loss of function. Three of the 11 practices were observed in our previous study, but eight were new. Applicable Canadian and international standards and guidelines do not explicitly address many of the potentially error-prone practices observed. We observed a significant degree of risk for error in manual mixing practice. These latent errors may exist in other regions where manual compounding of IV chemotherapy takes place. Continued efforts to advance standards, guidelines, technological innovation, and chemical quality testing are needed.
Yandayan, T; Geckeler, R D; Aksulu, M; Akgoz, S A; Ozgur, B
2016-05-01
The application of advanced error-separating shearing techniques to the precise calibration of autocollimators with Small Angle Generators (SAGs) was carried out for the first time. The experimental realization was achieved using the High Precision Small Angle Generator (HPSAG) of TUBITAK UME under classical dimensional metrology laboratory environmental conditions. The standard uncertainty value of 5 mas (24.2 nrad) reached by classical calibration method was improved to the level of 1.38 mas (6.7 nrad). Shearing techniques, which offer a unique opportunity to separate the errors of devices without recourse to any external standard, were first adapted by Physikalisch-Technische Bundesanstalt (PTB) to the calibration of autocollimators with angle encoders. It has been demonstrated experimentally in a clean room environment using the primary angle standard of PTB (WMT 220). The application of the technique to a different type of angle measurement system extends the range of the shearing technique further and reveals other advantages. For example, the angular scales of the SAGs are based on linear measurement systems (e.g., capacitive nanosensors for the HPSAG). Therefore, SAGs show different systematic errors when compared to angle encoders. In addition to the error-separation of HPSAG and the autocollimator, detailed investigations on error sources were carried out. Apart from determination of the systematic errors of the capacitive sensor used in the HPSAG, it was also demonstrated that the shearing method enables the unique opportunity to characterize other error sources such as errors due to temperature drift in long term measurements. This proves that the shearing technique is a very powerful method for investigating angle measuring systems, for their improvement, and for specifying precautions to be taken during the measurements.
Error Detection/Correction in Collaborative Writing
ERIC Educational Resources Information Center
Pilotti, Maura; Chodorow, Martin
2009-01-01
In the present study, we examined error detection/correction during collaborative writing. Subjects were asked to identify and correct errors in two contexts: a passage written by the subject (familiar text) and a passage written by a person other than the subject (unfamiliar text). A computer program inserted errors in function words prior to the…
ERIC Educational Resources Information Center
Lu, Hui-Chuan; Chu, Yu-Hsin; Chang, Cheng-Yu
2013-01-01
Compared with English learners, Spanish learners have fewer resources for automatic error detection and revision and following the current integrative Computer Assisted Language Learning (CALL), we combined corpus-based approach and CALL to create the System of Error Detection and Revision Suggestion (SEDRS) for learning Spanish. Through…
Computer-Assisted Detection of 90% of EFL Student Errors
ERIC Educational Resources Information Center
Harvey-Scholes, Calum
2018-01-01
Software can facilitate English as a Foreign Language (EFL) students' self-correction of their free-form writing by detecting errors; this article examines the proportion of errors which software can detect. A corpus of 13,644 words of written English was created, comprising 90 compositions written by Spanish-speaking students at levels A2-B2…
Doppler imaging with dual-detection full-range frequency domain optical coherence tomography
Meemon, Panomsak; Lee, Kye-Sung; Rolland, Jannick P.
2010-01-01
Most of full-range techniques for Frequency Domain Optical Coherence Tomography (FD-OCT) reported to date utilize the phase relation between consecutive axial lines to reconstruct a complex interference signal and hence may exhibit degradation in either mirror image suppression performance or detectable velocity dynamic range or both when monitoring a moving sample such as flow activity. We have previously reported a technique of mirror image removal by simultaneous detection of the quadrature components of a complex spectral interference called a Dual-Detection Frequency Domain OCT (DD-FD-OCT) [Opt. Lett. 35, 1058-1060 (2010)]. The technique enables full range imaging without any loss of acquisition speed and is intrinsically less sensitive to phase errors generated by involuntary movements of the subject. In this paper, we demonstrate the application of the DD-FD-OCT to a phase-resolved Doppler imaging without degradation in either mirror image suppression performance or detectable velocity dynamic range that were observed in other full-range Doppler methods. In order to accommodate for Doppler imaging, we have developed a fiber-based DD-FD-OCT that more efficiently utilizes the source power compared with the previous free-space DD-FD-OCT. In addition, the velocity sensitivity of the phase-resolved DD-FD-OCT was investigated, and the relation between the measured Doppler phase shift and set flow velocity of a flow phantom was verified. Finally, we demonstrate the Doppler imaging using the DD-FD-OCT in a biological sample. PMID:21258488
Analysis technique for controlling system wavefront error with active/adaptive optics
NASA Astrophysics Data System (ADS)
Genberg, Victor L.; Michels, Gregory J.
2017-08-01
The ultimate goal of an active mirror system is to control system level wavefront error (WFE). In the past, the use of this technique was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for controlling system level WFE using a linear optics model is presented. An error estimate is included in the analysis output for both surface error disturbance fitting and actuator influence function fitting. To control adaptive optics, the technique has been extended to write system WFE in state space matrix form. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.
A Comparative Study of Anomaly Detection Techniques for Smart City Wireless Sensor Networks.
Garcia-Font, Victor; Garrigues, Carles; Rifà-Pous, Helena
2016-06-13
In many countries around the world, smart cities are becoming a reality. These cities contribute to improving citizens' quality of life by providing services that are normally based on data extracted from wireless sensor networks (WSN) and other elements of the Internet of Things. Additionally, public administration uses these smart city data to increase its efficiency, to reduce costs and to provide additional services. However, the information received at smart city data centers is not always accurate, because WSNs are sometimes prone to error and are exposed to physical and computer attacks. In this article, we use real data from the smart city of Barcelona to simulate WSNs and implement typical attacks. Then, we compare frequently used anomaly detection techniques to disclose these attacks. We evaluate the algorithms under different requirements on the available network status information. As a result of this study, we conclude that one-class Support Vector Machines is the most appropriate technique. We achieve a true positive rate at least 56% higher than the rates achieved with the other compared techniques in a scenario with a maximum false positive rate of 5% and a 26% higher in a scenario with a false positive rate of 15%.
Sarkalkan, Nazli; Loeve, Arjo J; van Dongen, Koen W A; Tuijthof, Gabrielle J M; Zadpoor, Amir A
2014-12-24
(Osteo)chondral defects (OCDs) in the ankle are currently diagnosed with modalities that are not convenient to use in long-term follow-ups. Ultrasound (US) imaging, which is a cost-effective and non-invasive alternative, has limited ability to discriminate OCDs. We aim to develop a new diagnostic technique based on US wave propagation through the ankle joint. The presence of OCDs is identified when a US signal deviates from a reference signal associated with the healthy joint. The feasibility of the proposed technique is studied using experimentally-validated 2D finite-difference time-domain models of the ankle joint. The normalized maximum cross correlation of experiments and simulation was 0.97. Effects of variables relevant to the ankle joint, US transducers and OCDs were evaluated. Variations in joint space width and transducer orientation made noticeable alterations to the reference signal: normalized root mean square error ranged from 6.29% to 65.25% and from 19.59% to 8064.2%, respectively. The results suggest that the new technique could be used for detection of OCDs, if the effects of other parameters (i.e., parameters related to the ankle joint and US transducers) can be reduced.
A Comparative Study of Anomaly Detection Techniques for Smart City Wireless Sensor Networks
Garcia-Font, Victor; Garrigues, Carles; Rifà-Pous, Helena
2016-01-01
In many countries around the world, smart cities are becoming a reality. These cities contribute to improving citizens’ quality of life by providing services that are normally based on data extracted from wireless sensor networks (WSN) and other elements of the Internet of Things. Additionally, public administration uses these smart city data to increase its efficiency, to reduce costs and to provide additional services. However, the information received at smart city data centers is not always accurate, because WSNs are sometimes prone to error and are exposed to physical and computer attacks. In this article, we use real data from the smart city of Barcelona to simulate WSNs and implement typical attacks. Then, we compare frequently used anomaly detection techniques to disclose these attacks. We evaluate the algorithms under different requirements on the available network status information. As a result of this study, we conclude that one-class Support Vector Machines is the most appropriate technique. We achieve a true positive rate at least 56% higher than the rates achieved with the other compared techniques in a scenario with a maximum false positive rate of 5% and a 26% higher in a scenario with a false positive rate of 15%. PMID:27304957
Detection and avoidance of errors in computer software
NASA Technical Reports Server (NTRS)
Kinsler, Les
1989-01-01
The acceptance test errors of a computer software project to determine if the errors could be detected or avoided in earlier phases of development. GROAGSS (Gamma Ray Observatory Attitude Ground Support System) was selected as the software project to be examined. The development of the software followed the standard Flight Dynamics Software Development methods. GROAGSS was developed between August 1985 and April 1989. The project is approximately 250,000 lines of code of which approximately 43,000 lines are reused from previous projects. GROAGSS had a total of 1715 Change Report Forms (CRFs) submitted during the entire development and testing. These changes contained 936 errors. Of these 936 errors, 374 were found during the acceptance testing. These acceptance test errors were first categorized into methods of avoidance including: more clearly written requirements; detail review; code reading; structural unit testing; and functional system integration testing. The errors were later broken down in terms of effort to detect and correct, class of error, and probability that the prescribed detection method would be successful. These determinations were based on Software Engineering Laboratory (SEL) documents and interviews with the project programmers. A summary of the results of the categorizations is presented. The number of programming errors at the beginning of acceptance testing can be significantly reduced. The results of the existing development methodology are examined for ways of improvements. A basis is provided for the definition is a new development/testing paradigm. Monitoring of the new scheme will objectively determine its effectiveness on avoiding and detecting errors.
Feuerstein, Marco; Reichl, Tobias; Vogel, Jakob; Traub, Joerg; Navab, Nassir
2009-06-01
Electromagnetic tracking is currently one of the most promising means of localizing flexible endoscopic instruments such as flexible laparoscopic ultrasound transducers. However, electromagnetic tracking is also susceptible to interference from ferromagnetic material, which distorts the magnetic field and leads to tracking errors. This paper presents new methods for real-time online detection and reduction of dynamic electromagnetic tracking errors when localizing a flexible laparoscopic ultrasound transducer. We use a hybrid tracking setup to combine optical tracking of the transducer shaft and electromagnetic tracking of the flexible transducer tip. A novel approach of modeling the poses of the transducer tip in relation to the transducer shaft allows us to reliably detect and significantly reduce electromagnetic tracking errors. For detecting errors of more than 5 mm, we achieved a sensitivity and specificity of 91% and 93%, respectively. Initial 3-D rms error of 6.91 mm were reduced to 3.15 mm.
Automatic interface measurement and analysis. [shoreline length of Alabama using LANDSAT imagery
NASA Technical Reports Server (NTRS)
Faller, K. H.
1975-01-01
A technique for detecting and measuring the interface between two categories in classified scanner data is described together with two application demonstrations. Measurements were found to be accurate to 1.5% root mean square error on features of known length while comparison of measurements made using the technique on LANDSAT data to opisometer measurements on 1:24,000 scale maps shows excellent agreement. Application of the technique to two frames of LANDSAT data classified using a two channel, two class classifier resulted in a computation of 64 km annual decrease in shoreline length. The tidal shoreline of a portion of Alabama was measured using LANDSAT data. Based on the measurement of this portion, the total tidal shoreline length of Alabama is estimated to be 1313 kilometers.
New double-byte error-correcting codes for memory systems
NASA Technical Reports Server (NTRS)
Feng, Gui-Liang; Wu, Xinen; Rao, T. R. N.
1996-01-01
Error-correcting or error-detecting codes have been used in the computer industry to increase reliability, reduce service costs, and maintain data integrity. The single-byte error-correcting and double-byte error-detecting (SbEC-DbED) codes have been successfully used in computer memory subsystems. There are many methods to construct double-byte error-correcting (DBEC) codes. In the present paper we construct a class of double-byte error-correcting codes, which are more efficient than those known to be optimum, and a decoding procedure for our codes is also considered.
Sokolenko, Stanislav; Aucoin, Marc G
2015-09-04
The growing ubiquity of metabolomic techniques has facilitated high frequency time-course data collection for an increasing number of applications. While the concentration trends of individual metabolites can be modeled with common curve fitting techniques, a more accurate representation of the data needs to consider effects that act on more than one metabolite in a given sample. To this end, we present a simple algorithm that uses nonparametric smoothing carried out on all observed metabolites at once to identify and correct systematic error from dilution effects. In addition, we develop a simulation of metabolite concentration time-course trends to supplement available data and explore algorithm performance. Although we focus on nuclear magnetic resonance (NMR) analysis in the context of cell culture, a number of possible extensions are discussed. Realistic metabolic data was successfully simulated using a 4-step process. Starting with a set of metabolite concentration time-courses from a metabolomic experiment, each time-course was classified as either increasing, decreasing, concave, or approximately constant. Trend shapes were simulated from generic functions corresponding to each classification. The resulting shapes were then scaled to simulated compound concentrations. Finally, the scaled trends were perturbed using a combination of random and systematic errors. To detect systematic errors, a nonparametric fit was applied to each trend and percent deviations calculated at every timepoint. Systematic errors could be identified at time-points where the median percent deviation exceeded a threshold value, determined by the choice of smoothing model and the number of observed trends. Regardless of model, increasing the number of observations over a time-course resulted in more accurate error estimates, although the improvement was not particularly large between 10 and 20 samples per trend. The presented algorithm was able to identify systematic errors as small as 2.5 % under a wide range of conditions. Both the simulation framework and error correction method represent examples of time-course analysis that can be applied to further developments in (1)H-NMR methodology and the more general application of quantitative metabolomics.
NASA Astrophysics Data System (ADS)
Lin, Tsungpo
Performance engineers face the major challenge in modeling and simulation for the after-market power system due to system degradation and measurement errors. Currently, the majority in power generation industries utilizes the deterministic data matching method to calibrate the model and cascade system degradation, which causes significant calibration uncertainty and also the risk of providing performance guarantees. In this research work, a maximum-likelihood based simultaneous data reconciliation and model calibration (SDRMC) is used for power system modeling and simulation. By replacing the current deterministic data matching with SDRMC one can reduce the calibration uncertainty and mitigate the error propagation to the performance simulation. A modeling and simulation environment for a complex power system with certain degradation has been developed. In this environment multiple data sets are imported when carrying out simultaneous data reconciliation and model calibration. Calibration uncertainties are estimated through error analyses and populated to performance simulation by using principle of error propagation. System degradation is then quantified by performance comparison between the calibrated model and its expected new & clean status. To mitigate smearing effects caused by gross errors, gross error detection (GED) is carried out in two stages. The first stage is a screening stage, in which serious gross errors are eliminated in advance. The GED techniques used in the screening stage are based on multivariate data analysis (MDA), including multivariate data visualization and principal component analysis (PCA). Subtle gross errors are treated at the second stage, in which the serial bias compensation or robust M-estimator is engaged. To achieve a better efficiency in the combined scheme of the least squares based data reconciliation and the GED technique based on hypotheses testing, the Levenberg-Marquardt (LM) algorithm is utilized as the optimizer. To reduce the computation time and stabilize the problem solving for a complex power system such as a combined cycle power plant, meta-modeling using the response surface equation (RSE) and system/process decomposition are incorporated with the simultaneous scheme of SDRMC. The goal of this research work is to reduce the calibration uncertainties and, thus, the risks of providing performance guarantees arisen from uncertainties in performance simulation.
An artificial neural network method for lumen and media-adventitia border detection in IVUS.
Su, Shengran; Hu, Zhenghui; Lin, Qiang; Hau, William Kongto; Gao, Zhifan; Zhang, Heye
2017-04-01
Intravascular ultrasound (IVUS) has been well recognized as one powerful imaging technique to evaluate the stenosis inside the coronary arteries. The detection of lumen border and media-adventitia (MA) border in IVUS images is the key procedure to determine the plaque burden inside the coronary arteries, but this detection could be burdensome to the doctor because of large volume of the IVUS images. In this paper, we use the artificial neural network (ANN) method as the feature learning algorithm for the detection of the lumen and MA borders in IVUS images. Two types of imaging information including spatial, neighboring features were used as the input data to the ANN method, and then the different vascular layers were distinguished accordingly through two sparse auto-encoders and one softmax classifier. Another ANN was used to optimize the result of the first network. In the end, the active contour model was applied to smooth the lumen and MA borders detected by the ANN method. The performance of our approach was compared with the manual drawing method performed by two IVUS experts on 461 IVUS images from four subjects. Results showed that our approach had a high correlation and good agreement with the manual drawing results. The detection error of the ANN method close to the error between two groups of manual drawing result. All these results indicated that our proposed approach could efficiently and accurately handle the detection of lumen and MA borders in the IVUS images. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gordon, J. J.; Gardner, J. K.; Wang, S.; Siebers, J. V.
2012-01-01
Purpose: This work uses repeat images of intensity modulated radiation therapy (IMRT) fields to quantify fluence anomalies (i.e., delivery errors) that can be reliably detected in electronic portal images used for IMRT pretreatment quality assurance. Methods: Repeat images of 11 clinical IMRT fields are acquired on a Varian Trilogy linear accelerator at energies of 6 MV and 18 MV. Acquired images are corrected for output variations and registered to minimize the impact of linear accelerator and electronic portal imaging device (EPID) positioning deviations. Detection studies are performed in which rectangular anomalies of various sizes are inserted into the images. The performance of detection strategies based on pixel intensity deviations (PIDs) and gamma indices is evaluated using receiver operating characteristic analysis. Results: Residual differences between registered images are due to interfraction positional deviations of jaws and multileaf collimator leaves, plus imager noise. Positional deviations produce large intensity differences that degrade anomaly detection. Gradient effects are suppressed in PIDs using gradient scaling. Background noise is suppressed using median filtering. In the majority of images, PID-based detection strategies can reliably detect fluence anomalies of ≥5% in ∼1 mm2 areas and ≥2% in ∼20 mm2 areas. Conclusions: The ability to detect small dose differences (≤2%) depends strongly on the level of background noise. This in turn depends on the accuracy of image registration, the quality of the reference image, and field properties. The longer term aim of this work is to develop accurate and reliable methods of detecting IMRT delivery errors and variations. The ability to resolve small anomalies will allow the accuracy of advanced treatment techniques, such as image guided, adaptive, and arc therapies, to be quantified. PMID:22894421
NASA Astrophysics Data System (ADS)
Mansouri, Nabila; Watelain, Eric; Ben Jemaa, Yousra; Motamed, Cina
2018-03-01
Computer-vision techniques for pedestrian detection and tracking have progressed considerably and become widely used in several applications. However, a quick glance at the literature shows a minimal use of these techniques in pedestrian behavior and safety analysis, which might be due to the technical complexities facing the processing of pedestrian videos. To extract pedestrian trajectories from a video automatically, all road users must be detected and tracked during sequences, which is a challenging task, especially in a congested open-outdoor urban space. A multipedestrian tracker based on an interframe-detection-association process was proposed and evaluated. The tracker results are used to implement an automatic tool for pedestrians data collection when crossing the street based on video processing. The variations in the instantaneous speed allowed the detection of the street crossing phases (approach, waiting, and crossing). These were addressed for the first time in the pedestrian road security analysis to illustrate the causal relationship between pedestrian behaviors in the different phases. A comparison with a manual data collection method, by computing the root mean square error and the Pearson correlation coefficient, confirmed that the procedures proposed have significant potential to automate the data collection process.
NASA Astrophysics Data System (ADS)
Sharma, K.; Abdul Khudus, M. I. M.; Alam, S. U.; Bhattacharya, S.; Venkitesh, D.; Brambilla, G.
2018-01-01
Relative performance and detection limit of conventional, amplified, and gain-clamped cavity ring-down techniques (CRDT) in all-fiber configurations are compared experimentally for the first time. Refractive index measurement using evanescent field in tapered fibers is used as a benchmark for the comparison. The systematic optimization of a nested-loop configuration in gain-clamped CRDT is also discussed, which is crucial for achieving a constant gain in a CRDT experiment. It is found that even though conventional CRDT has the lowest standard error in ring-down time (Δτ), the value of ring-down time (τ) is very small, thus leading to poor detection limit. Amplified CRDT provides an improvement in τ, albeit with two orders of magnitude higher Δτ due to amplifier noise. The nested-loop configuration in gain-clamped CRDT helps in reducing Δτ by an order of magnitude as compared to amplified CRDT whilst retaining the improvement in τ. A detection limit of 1 . 03 × 10-4 RIU at refractive index of 1.322 with a 3 mm long and 4.5 μm diameter tapered fiber is demonstrated with the gain-clamped CRDT.
Xu, Yuan; Ding, Kun; Huo, Chunlei; Zhong, Zisha; Li, Haichang; Pan, Chunhong
2015-01-01
Very high resolution (VHR) image change detection is challenging due to the low discriminative ability of change feature and the difficulty of change decision in utilizing the multilevel contextual information. Most change feature extraction techniques put emphasis on the change degree description (i.e., in what degree the changes have happened), while they ignore the change pattern description (i.e., how the changes changed), which is of equal importance in characterizing the change signatures. Moreover, the simultaneous consideration of the classification robust to the registration noise and the multiscale region-consistent fusion is often neglected in change decision. To overcome such drawbacks, in this paper, a novel VHR image change detection method is proposed based on sparse change descriptor and robust discriminative dictionary learning. Sparse change descriptor combines the change degree component and the change pattern component, which are encoded by the sparse representation error and the morphological profile feature, respectively. Robust change decision is conducted by multiscale region-consistent fusion, which is implemented by the superpixel-level cosparse representation with robust discriminative dictionary and the conditional random field model. Experimental results confirm the effectiveness of the proposed change detection technique. PMID:25918748
Variance-reduction normalization technique for a compton camera system
NASA Astrophysics Data System (ADS)
Kim, S. M.; Lee, J. S.; Kim, J. H.; Seo, H.; Kim, C. H.; Lee, C. S.; Lee, S. J.; Lee, M. C.; Lee, D. S.
2011-01-01
For an artifact-free dataset, pre-processing (known as normalization) is needed to correct inherent non-uniformity of detection property in the Compton camera which consists of scattering and absorbing detectors. The detection efficiency depends on the non-uniform detection efficiency of the scattering and absorbing detectors, different incidence angles onto the detector surfaces, and the geometry of the two detectors. The correction factor for each detected position pair which is referred to as the normalization coefficient, is expressed as a product of factors representing the various variations. The variance-reduction technique (VRT) for a Compton camera (a normalization method) was studied. For the VRT, the Compton list-mode data of a planar uniform source of 140 keV was generated from a GATE simulation tool. The projection data of a cylindrical software phantom were normalized with normalization coefficients determined from the non-uniformity map, and then reconstructed by an ordered subset expectation maximization algorithm. The coefficient of variations and percent errors of the 3-D reconstructed images showed that the VRT applied to the Compton camera provides an enhanced image quality and the increased recovery rate of uniformity in the reconstructed image.
A-posteriori error estimation for second order mechanical systems
NASA Astrophysics Data System (ADS)
Ruiner, Thomas; Fehr, Jörg; Haasdonk, Bernard; Eberhard, Peter
2012-06-01
One important issue for the simulation of flexible multibody systems is the reduction of the flexible bodies degrees of freedom. As far as safety questions are concerned knowledge about the error introduced by the reduction of the flexible degrees of freedom is helpful and very important. In this work, an a-posteriori error estimator for linear first order systems is extended for error estimation of mechanical second order systems. Due to the special second order structure of mechanical systems, an improvement of the a-posteriori error estimator is achieved. A major advantage of the a-posteriori error estimator is that the estimator is independent of the used reduction technique. Therefore, it can be used for moment-matching based, Gramian matrices based or modal based model reduction techniques. The capability of the proposed technique is demonstrated by the a-posteriori error estimation of a mechanical system, and a sensitivity analysis of the parameters involved in the error estimation process is conducted.
Choosing a DIVA: a comparison of emerging digital imagery vegetation analysis techniques
Jorgensen, Christopher F.; Stutzman, Ryan J.; Anderson, Lars C.; Decker, Suzanne E.; Powell, Larkin A.; Schacht, Walter H.; Fontaine, Joseph J.
2013-01-01
Question: What is the precision of five methods of measuring vegetation structure using ground-based digital imagery and processing techniques? Location: Lincoln, Nebraska, USA Methods: Vertical herbaceous cover was recorded using digital imagery techniques at two distinct locations in a mixed-grass prairie. The precision of five ground-based digital imagery vegetation analysis (DIVA) methods for measuring vegetation structure was tested using a split-split plot analysis of covariance. Variability within each DIVA technique was estimated using coefficient of variation of mean percentage cover. Results: Vertical herbaceous cover estimates differed among DIVA techniques. Additionally, environmental conditions affected the vertical vegetation obstruction estimates for certain digital imagery methods, while other techniques were more adept at handling various conditions. Overall, percentage vegetation cover values differed among techniques, but the precision of four of the five techniques was consistently high. Conclusions: DIVA procedures are sufficient for measuring various heights and densities of standing herbaceous cover. Moreover, digital imagery techniques can reduce measurement error associated with multiple observers' standing herbaceous cover estimates, allowing greater opportunity to detect patterns associated with vegetation structure.
Techniques For Measuring Absorption Coefficients In Crystalline Materials
NASA Astrophysics Data System (ADS)
Klein, Philipp H.
1981-10-01
Absorption coefficients smaller than 0.001 cm-1 can, with more or less difficulty, be measured by several techniques. With diligence, all methods can be refined to permit measurement of absorption coefficients as small as 0.00001 cm-1. Spectral data are most readily obtained by transmission (spectrophotometric) methods, using multiple internal reflection to increase effective sample length. Emissivity measurements, requiring extreme care in the elimination of detector noise and stray light, nevertheless afford the most accessible spectral data in the 0.0001 to 0.00001 cm-1 range. Single-wavelength informa-tion is most readily obtained with modifications of laser calorimetry. Thermo-couple detection of energy absorbed from a laser beam is convenient, but involves dc amplification techniques and is susceptible to stray-light problems. Photoacoustic detection, using ac methods, tends to diminish errors of these types, but at some expense in experimental complexity. Laser calorimetry has been used for measurements of absorption coefficients as small as 0.000003 cm-1. Both transmission and calorimetric data, taken as functions of intensity, have been used for measurement of nonlinear absorption coefficients.
A post-processing algorithm for time domain pitch trackers
NASA Astrophysics Data System (ADS)
Specker, P.
1983-01-01
This paper describes a powerful post-processing algorithm for time-domain pitch trackers. On two successive passes, the post-processing algorithm eliminates errors produced during a first pass by a time-domain pitch tracker. During the second pass, incorrect pitch values are detected as outliers by computing the distribution of values over a sliding 80 msec window. During the third pass (based on artificial intelligence techniques), remaining pitch pulses are used as anchor points to reconstruct the pitch train from the original waveform. The algorithm produced a decrease in the error rate from 21% obtained with the original time domain pitch tracker to 2% for isolated words and sentences produced in an office environment by 3 male and 3 female talkers. In a noisy computer room errors decreased from 52% to 2.9% for the same stimuli produced by 2 male talkers. The algorithm is efficient, accurate, and resistant to noise. The fundamental frequency micro-structure is tracked sufficiently well to be used in extracting phonetic features in a feature-based recognition system.
Mitchell, W G; Chavez, J M; Baker, S A; Guzman, B L; Azen, S P
1990-07-01
Maturation of sustained attention was studied in a group of 52 hyperactive elementary school children and 152 controls using a microcomputer-based test formatted to resemble a video game. In nonhyperactive children, both simple and complex reaction time decreased with age, as did variability of response time. Omission errors were extremely infrequent on simple reaction time and decreased with age on the more complex tasks. Commission errors had an inconsistent relationship with age. Hyperactive children were slower, more variable, and made more errors on all segments of the game than did controls. Both motor speed and calculated mental speed were slower in hyperactive children, with greater discrepancy for responses directed to the nondominant hand, suggesting that a selective right hemisphere deficit may be present in hyperactives. A summary score (number of individual game scores above the 95th percentile) of 4 or more detected 60% of hyperactive subjects with a false positive rate of 5%. Agreement with the Matching Familiar Figures Test was 75% in the hyperactive group.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuangrod, T; Simpson, J; Greer, P
Purpose: A real-time patient treatment delivery verification system using EPID (Watchdog) has been developed as an advanced patient safety tool. In a pilot study data was acquired for 119 prostate and head and neck (HN) IMRT patient deliveries to generate body-site specific action limits using statistical process control. The purpose of this study is to determine the sensitivity of Watchdog to detect clinically significant errors during treatment delivery. Methods: Watchdog utilizes a physics-based model to generate a series of predicted transit cine EPID images as a reference data set, and compares these in real-time to measured transit cine-EPID images acquiredmore » during treatment using chi comparison (4%, 4mm criteria) after the initial 2s of treatment to allow for dose ramp-up. Four study cases were used; dosimetric (monitor unit) errors in prostate (7 fields) and HN (9 fields) IMRT treatments of (5%, 7%, 10%) and positioning (systematic displacement) errors in the same treatments of (5mm, 7mm, 10mm). These errors were introduced by modifying the patient CT scan and re-calculating the predicted EPID data set. The error embedded predicted EPID data sets were compared to the measured EPID data acquired during patient treatment. The treatment delivery percentage (measured from 2s) where Watchdog detected the error was determined. Results: Watchdog detected all simulated errors for all fields during delivery. The dosimetric errors were detected at average treatment delivery percentage of (4%, 0%, 0%) and (7%, 0%, 0%) for prostate and HN respectively. For patient positional errors, the average treatment delivery percentage was (52%, 43%, 25%) and (39%, 16%, 6%). Conclusion: These results suggest that Watchdog can detect significant dosimetric and positioning errors in prostate and HN IMRT treatments in real-time allowing for treatment interruption. Displacements of the patient require longer to detect however incorrect body site or very large geographic misses will be detected rapidly.« less
Efficient RPG detection in noisy 3D image data
NASA Astrophysics Data System (ADS)
Pipitone, Frank
2011-06-01
We address the automatic detection of Ambush weapons such as rocket propelled grenades (RPGs) from range data which might be derived from multiple camera stereo with textured illumination or by other means. We describe our initial work in a new project involving the efficient acquisition of 3D scene data as well as discrete point invariant techniques to perform real time search for threats to a convoy. The shapes of the jump boundaries in the scene are exploited in this paper, rather than on-surface points, due to the large error typical of depth measurement at long range and the relatively high resolution obtainable in the transverse direction. We describe examples of the generation of a novel range-scaled chain code for detecting and matching jump boundaries.
A Review of Research on Error Detection. Technical Report No. 540.
ERIC Educational Resources Information Center
Meyer, Linda A.
A review was conducted of the research on error detection studies completed with children, adolescents, and young adults to determine at what age children begin to detect errors in texts. The studies were grouped according to the subjects' ages. The focus of the review was on the following aspects of each study: the hypothesis that guided the…
Huff, Mark J; Umanath, Sharda
2018-06-01
In 2 experiments, we assessed age-related suggestibility to additive and contradictory misinformation (i.e., remembering of false details from an external source). After reading a fictional story, participants answered questions containing misleading details that were either additive (misleading details that supplemented an original event) or contradictory (errors that changed original details). On a final test, suggestibility was greater for additive than contradictory misinformation, and older adults endorsed fewer false contradictory details than younger adults. To mitigate suggestibility in Experiment 2, participants were warned about potential errors, instructed to detect errors, or instructed to detect errors after exposure to examples of additive and contradictory details. Again, suggestibility to additive misinformation was greater than contradictory, and older adults endorsed less contradictory misinformation. Only after detection instructions with misinformation examples were younger adults able to reduce contradictory misinformation effects and reduced these effects to the level of older adults. Additive misinformation however, was immune to all warning and detection instructions. Thus, older adults were less susceptible to contradictory misinformation errors, and younger adults could match this misinformation rate when warning/detection instructions were strong. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Automated Point Cloud Correspondence Detection for Underwater Mapping Using AUVs
NASA Technical Reports Server (NTRS)
Hammond, Marcus; Clark, Ashley; Mahajan, Aditya; Sharma, Sumant; Rock, Stephen
2015-01-01
An algorithm for automating correspondence detection between point clouds composed of multibeam sonar data is presented. This allows accurate initialization for point cloud alignment techniques even in cases where accurate inertial navigation is not available, such as iceberg profiling or vehicles with low-grade inertial navigation systems. Techniques from computer vision literature are used to extract, label, and match keypoints between "pseudo-images" generated from these point clouds. Image matches are refined using RANSAC and information about the vehicle trajectory. The resulting correspondences can be used to initialize an iterative closest point (ICP) registration algorithm to estimate accumulated navigation error and aid in the creation of accurate, self-consistent maps. The results presented use multibeam sonar data obtained from multiple overlapping passes of an underwater canyon in Monterey Bay, California. Using strict matching criteria, the method detects 23 between-swath correspondence events in a set of 155 pseudo-images with zero false positives. Using less conservative matching criteria doubles the number of matches but introduces several false positive matches as well. Heuristics based on known vehicle trajectory information are used to eliminate these.
Development of Yellow Sand Image Products Using Infrared Brightness Temperature Difference Method
NASA Astrophysics Data System (ADS)
Ha, J.; Kim, J.; Kwak, M.; Ha, K.
2007-12-01
A technique for detection of airborne yellow sand dust using meteorological satellite has been developed from various bands from ultraviolet to infrared channels. Among them, Infrared (IR) channels have an advantage of detecting aerosols over high reflecting surface as well as during nighttime. There had been suggestion of using brightness temperature difference (BTD) between 11 and 12¥ìm. We have found that the technique is highly depends on surface temperature, emissivity, and zenith angle, which results in changing the threshold of BTD. In order to overcome these problems, we have constructed the background brightness temperature threshold of BTD and then aerosol index (AI) has been determined from subtracting the background threshold from BTD of our interested scene. Along with this, we utilized high temporal coverage of geostationary satellite, MTSAT, to improve the reliability of the determined AI signal. The products have been evaluated by comparing the forecasted wind field with the movement fiend of AI. The statistical score test illustrates that this newly developed algorithm produces a promising result for detecting mineral dust by reducing the errors with respect to the current BTD method.
Understanding overlay signatures using machine learning on non-lithography context information
NASA Astrophysics Data System (ADS)
Overcast, Marshall; Mellegaard, Corey; Daniel, David; Habets, Boris; Erley, Georg; Guhlemann, Steffen; Thrun, Xaver; Buhl, Stefan; Tottewitz, Steven
2018-03-01
Overlay errors between two layers can be caused by non-lithography processes. While these errors can be compensated by the run-to-run system, such process and tool signatures are not always stable. In order to monitor the impact of non-lithography context on overlay at regular intervals, a systematic approach is needed. Using various machine learning techniques, significant context parameters that relate to deviating overlay signatures are automatically identified. Once the most influential context parameters are found, a run-to-run simulation is performed to see how much improvement can be obtained. The resulting analysis shows good potential for reducing the influence of hidden context parameters on overlay performance. Non-lithographic contexts are significant contributors, and their automatic detection and classification will enable the overlay roadmap, given the corresponding control capabilities.
Technological Advancements and Error Rates in Radiation Therapy Delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margalit, Danielle N., E-mail: dmargalit@partners.org; Harvard Cancer Consortium and Brigham and Women's Hospital/Dana Farber Cancer Institute, Boston, MA; Chen, Yu-Hui
2011-11-15
Purpose: Technological advances in radiation therapy (RT) delivery have the potential to reduce errors via increased automation and built-in quality assurance (QA) safeguards, yet may also introduce new types of errors. Intensity-modulated RT (IMRT) is an increasingly used technology that is more technically complex than three-dimensional (3D)-conformal RT and conventional RT. We determined the rate of reported errors in RT delivery among IMRT and 3D/conventional RT treatments and characterized the errors associated with the respective techniques to improve existing QA processes. Methods and Materials: All errors in external beam RT delivery were prospectively recorded via a nonpunitive error-reporting system atmore » Brigham and Women's Hospital/Dana Farber Cancer Institute. Errors are defined as any unplanned deviation from the intended RT treatment and are reviewed during monthly departmental quality improvement meetings. We analyzed all reported errors since the routine use of IMRT in our department, from January 2004 to July 2009. Fisher's exact test was used to determine the association between treatment technique (IMRT vs. 3D/conventional) and specific error types. Effect estimates were computed using logistic regression. Results: There were 155 errors in RT delivery among 241,546 fractions (0.06%), and none were clinically significant. IMRT was commonly associated with errors in machine parameters (nine of 19 errors) and data entry and interpretation (six of 19 errors). IMRT was associated with a lower rate of reported errors compared with 3D/conventional RT (0.03% vs. 0.07%, p = 0.001) and specifically fewer accessory errors (odds ratio, 0.11; 95% confidence interval, 0.01-0.78) and setup errors (odds ratio, 0.24; 95% confidence interval, 0.08-0.79). Conclusions: The rate of errors in RT delivery is low. The types of errors differ significantly between IMRT and 3D/conventional RT, suggesting that QA processes must be uniquely adapted for each technique. There was a lower error rate with IMRT compared with 3D/conventional RT, highlighting the need for sustained vigilance against errors common to more traditional treatment techniques.« less
A new method for ultrasound detection of interfacial position in gas-liquid two-phase flow.
Coutinho, Fábio Rizental; Ofuchi, César Yutaka; de Arruda, Lúcia Valéria Ramos; Neves, Flávio; Morales, Rigoberto E M
2014-05-22
Ultrasonic measurement techniques for velocity estimation are currently widely used in fluid flow studies and applications. An accurate determination of interfacial position in gas-liquid two-phase flows is still an open problem. The quality of this information directly reflects on the accuracy of void fraction measurement, and it provides a means of discriminating velocity information of both phases. The algorithm known as Velocity Matched Spectrum (VM Spectrum) is a velocity estimator that stands out from other methods by returning a spectrum of velocities for each interrogated volume sample. Interface detection of free-rising bubbles in quiescent liquid presents some difficulties for interface detection due to abrupt changes in interface inclination. In this work a method based on velocity spectrum curve shape is used to generate a spatial-temporal mapping, which, after spatial filtering, yields an accurate contour of the air-water interface. It is shown that the proposed technique yields a RMS error between 1.71 and 3.39 and a probability of detection failure and false detection between 0.89% and 11.9% in determining the spatial-temporal gas-liquid interface position in the flow of free rising bubbles in stagnant liquid. This result is valid for both free path and with transducer emitting through a metallic plate or a Plexiglas pipe.
A New Method for Ultrasound Detection of Interfacial Position in Gas-Liquid Two-Phase Flow
Coutinho, Fábio Rizental; Ofuchi, César Yutaka; de Arruda, Lúcia Valéria Ramos; Jr., Flávio Neves; Morales, Rigoberto E. M.
2014-01-01
Ultrasonic measurement techniques for velocity estimation are currently widely used in fluid flow studies and applications. An accurate determination of interfacial position in gas-liquid two-phase flows is still an open problem. The quality of this information directly reflects on the accuracy of void fraction measurement, and it provides a means of discriminating velocity information of both phases. The algorithm known as Velocity Matched Spectrum (VM Spectrum) is a velocity estimator that stands out from other methods by returning a spectrum of velocities for each interrogated volume sample. Interface detection of free-rising bubbles in quiescent liquid presents some difficulties for interface detection due to abrupt changes in interface inclination. In this work a method based on velocity spectrum curve shape is used to generate a spatial-temporal mapping, which, after spatial filtering, yields an accurate contour of the air-water interface. It is shown that the proposed technique yields a RMS error between 1.71 and 3.39 and a probability of detection failure and false detection between 0.89% and 11.9% in determining the spatial-temporal gas-liquid interface position in the flow of free rising bubbles in stagnant liquid. This result is valid for both free path and with transducer emitting through a metallic plate or a Plexiglas pipe. PMID:24858961
[A new method of processing quantitative PCR data].
Ke, Bing-Shen; Li, Guang-Yun; Chen, Shi-Min; Huang, Xiang-Yan; Chen, Ying-Jian; Xu, Jun
2003-05-01
Today standard PCR can't satisfy the need of biotechnique development and clinical research any more. After numerous dynamic research, PE company found there is a linear relation between initial template number and cycling time when the accumulating fluorescent product is detectable.Therefore,they developed a quantitative PCR technique to be used in PE7700 and PE5700. But the error of this technique is too great to satisfy the need of biotechnique development and clinical research. A better quantitative PCR technique is needed. The mathematical model submitted here is combined with the achievement of relative science,and based on the PCR principle and careful analysis of molecular relationship of main members in PCR reaction system. This model describes the function relation between product quantity or fluorescence intensity and initial template number and other reaction conditions, and can reflect the accumulating rule of PCR product molecule accurately. Accurate quantitative PCR analysis can be made use this function relation. Accumulated PCR product quantity can be obtained from initial template number. Using this model to do quantitative PCR analysis,result error is only related to the accuracy of fluorescence intensity or the instrument used. For an example, when the fluorescence intensity is accurate to 6 digits and the template size is between 100 to 1,000,000, the quantitative result accuracy will be more than 99%. The difference of result error is distinct using same condition,same instrument but different analysis method. Moreover,if the PCR quantitative analysis system is used to process data, it will get result 80 times of accuracy than using CT method.
NASA Astrophysics Data System (ADS)
Gao, Xiangdong; Chen, Yuquan; You, Deyong; Xiao, Zhenlin; Chen, Xiaohui
2017-02-01
An approach for seam tracking of micro gap weld whose width is less than 0.1 mm based on magneto optical (MO) imaging technique during butt-joint laser welding of steel plates is investigated. Kalman filtering(KF) technology with radial basis function(RBF) neural network for weld detection by an MO sensor was applied to track the weld center position. Because the laser welding system process noises and the MO sensor measurement noises were colored noises, the estimation accuracy of traditional KF for seam tracking was degraded by the system model with extreme nonlinearities and could not be solved by the linear state-space model. Also, the statistics characteristics of noises could not be accurately obtained in actual welding. Thus, a RBF neural network was applied to the KF technique to compensate for the weld tracking errors. The neural network can restrain divergence filter and improve the system robustness. In comparison of traditional KF algorithm, the RBF with KF was not only more effectively in improving the weld tracking accuracy but also reduced noise disturbance. Experimental results showed that magneto optical imaging technique could be applied to detect micro gap weld accurately, which provides a novel approach for micro gap seam tracking.
Hierro, Núria; Esteve-Zarzoso, Braulio; González, Ángel; Mas, Albert; Guillamón, Jose M.
2006-01-01
Real-time PCR, or quantitative PCR (QPCR), has been developed to rapidly detect and quantify the total number of yeasts in wine without culturing. Universal yeast primers were designed from the variable D1/D2 domains of the 26S rRNA gene. These primers showed good specificity with all the wine yeasts tested, and they did not amplify the most representative wine species of acetic acid bacteria and lactic acid bacteria. Numerous standard curves were constructed with different strains and species grown in yeast extract-peptone-dextrose medium or incubated in wine. The small standard errors with these replicas proved that the assay is reproducible and highly robust. This technique was validated with artificially contaminated and natural wine samples. We also performed a reverse transcription-QPCR (RT-QPCR) assay from rRNA for total viable yeast quantification. This technique had a low detection limit and was more accurate than QPCR because the dead cells were not quantified. As far as we know, this is the first time that RT-QPCR has been performed to quantify viable yeasts from rRNA. RT-QPCR is a rapid and accurate technique for enumerating yeasts during industrial wine fermentation and controlling the risk of wine spoilage. PMID:17088381
Hepiegne, P; Dall'ava, D; Clement, R; Degros, J P
1995-06-01
A chemical separation method has been developed for the determination of (99)Tc in various types of radioactive wastes. Such a method includes (i) fusion with NaOH, (ii) extraction in a column containing methyltrioctylammonium chloride, (iii) extraction by solvent with N-benzoyl-N-phenylhydroxylamine and, (iv) measurement by inductively-coupled plasma mass spectrometry (ICP-MS). From the performance standpoint, the recovery of (99)Tc, using (99m)Tc as a yield tracer, is higher than 70%. This analytical method, as developed, ensures effective decontamination with respect to the radionuclides, insofar the decontamination factors are greater than 10(+5), whenever the residual activity may be measured. Taking into account a 3sigma counting error, the detection limit obtained with the ICP-MS technique is 1.9 mBq/ml; the method enabling hence to detect activities as low as 0.3 Bq/g, with analysed samples of 0.2 g and a radiochemical yield of 70%. Studies have been dedicated to the (99)Tc measurement, using the electrothermal vaporization ICP-MS technique, which lowers the detection limit by a factor 10, with the standard solution (0.3 pg/ml), compared with the previous ICP-MS technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di, Sheng; Berrocal, Eduardo; Cappello, Franck
The silent data corruption (SDC) problem is attracting more and more attentions because it is expected to have a great impact on exascale HPC applications. SDC faults are hazardous in that they pass unnoticed by hardware and can lead to wrong computation results. In this work, we formulate SDC detection as a runtime one-step-ahead prediction method, leveraging multiple linear prediction methods in order to improve the detection results. The contributions are twofold: (1) we propose an error feedback control model that can reduce the prediction errors for different linear prediction methods, and (2) we propose a spatial-data-based even-sampling method tomore » minimize the detection overheads (including memory and computation cost). We implement our algorithms in the fault tolerance interface, a fault tolerance library with multiple checkpoint levels, such that users can conveniently protect their HPC applications against both SDC errors and fail-stop errors. We evaluate our approach by using large-scale traces from well-known, large-scale HPC applications, as well as by running those HPC applications on a real cluster environment. Experiments show that our error feedback control model can improve detection sensitivity by 34-189% for bit-flip memory errors injected with the bit positions in the range [20,30], without any degradation on detection accuracy. Furthermore, memory size can be reduced by 33% with our spatial-data even-sampling method, with only a slight and graceful degradation in the detection sensitivity.« less
Phase-based motion magnification video for monitoring of vital signals using the Hermite transform
NASA Astrophysics Data System (ADS)
Brieva, Jorge; Moya-Albor, Ernesto
2017-11-01
In this paper we present a new Eulerian phase-based motion magnification technique using the Hermite Transform (HT) decomposition that is inspired in the Human Vision System (HVS). We test our method in one sequence of the breathing of a newborn baby and on a video sequence that shows the heartbeat on the wrist. We detect and magnify the heart pulse applying our technique. Our motion magnification approach is compared to the Laplacian phase based approach by means of quantitative metrics (based on the RMS error and the Fourier transform) to measure the quality of both reconstruction and magnification. In addition a noise robustness analysis is performed for the two methods.
Verification and Validation of Autonomy Software at NASA
NASA Technical Reports Server (NTRS)
Pecheur, Charles
2000-01-01
Autonomous software holds the promise of new operation possibilities, easier design and development and lower operating costs. However, as those system close control loops and arbitrate resources on board with specialized reasoning, the range of possible situations becomes very large and uncontrollable from the outside, making conventional scenario-based testing very inefficient. Analytic verification and validation (V&V) techniques, and model checking in particular, can provide significant help for designing autonomous systems in a more efficient and reliable manner, by providing a better coverage and allowing early error detection. This article discusses the general issue of V&V of autonomy software, with an emphasis towards model-based autonomy, model-checking techniques and concrete experiments at NASA.
Verification and Validation of Autonomy Software at NASA
NASA Technical Reports Server (NTRS)
Pecheur, Charles
2000-01-01
Autonomous software holds the promise of new operation possibilities, easier design and development, and lower operating costs. However, as those system close control loops and arbitrate resources on-board with specialized reasoning, the range of possible situations becomes very large and uncontrollable from the outside, making conventional scenario-based testing very inefficient. Analytic verification and validation (V&V) techniques, and model checking in particular, can provide significant help for designing autonomous systems in a more efficient and reliable manner, by providing a better coverage and allowing early error detection. This article discusses the general issue of V&V of autonomy software, with an emphasis towards model-based autonomy, model-checking techniques, and concrete experiments at NASA.
Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei
2017-09-01
The laser induced breakdown spectroscopy (LIBS) technique is an effective method to detect material composition by obtaining the plasma emission spectrum. The overlapping peaks in the spectrum are a fundamental problem in the qualitative and quantitative analysis of LIBS. Based on a curve fitting method, this paper studies an error compensation method to achieve the decomposition and correction of overlapping peaks. The vital step is that the fitting residual is fed back to the overlapping peaks and performs multiple curve fitting processes to obtain a lower residual result. For the quantitative experiments of Cu, the Cu-Fe overlapping peaks in the range of 321-327 nm obtained from the LIBS spectrum of five different concentrations of CuSO 4 ·5H 2 O solution were decomposed and corrected using curve fitting and error compensation methods. Compared with the curve fitting method, the error compensation reduced the fitting residual about 18.12-32.64% and improved the correlation about 0.86-1.82%. Then, the calibration curve between the intensity and concentration of the Cu was established. It can be seen that the error compensation method exhibits a higher linear correlation between the intensity and concentration of Cu, which can be applied to the decomposition and correction of overlapping peaks in the LIBS spectrum.
1981-03-01
lots. A single store of partially processed devices may serve as a source for several different product lines. Because the manufacture of microwave...matrix, or react chem- ically with some of the semiconductor materials. In some cases these element impurities may migrate to an interface inducing... different viscosity, the background intensity varied independently of the signal, a significant error could be introduced. A more effec- tive method
On the prompt identification of traces of explosives
NASA Astrophysics Data System (ADS)
Trobajo, M. T.; López-Cabeceira, M. M.; Carriegos, M. V.; Díez-Machío, H.
2014-12-01
Some recent results in the use of Raman spectroscopy for recognition of explosives are reviewed. Experimental study using spectra data base has been developed. In order to simulate a more real situation, both blank substances and explosives substances have been considered in this research. Statistic classification techniques have been performed. Estimations of prediction errors were obtained by cross-validation methods. These results can be applied in airport security systems in order to prevent terror acts (by the detection of explosive/flammable substances).
NASA Astrophysics Data System (ADS)
Jun, An Won
2006-01-01
We implement a first practical holographic security system using electrical biometrics that combines optical encryption and digital holographic memory technologies. Optical information for identification includes a picture of face, a name, and a fingerprint, which has been spatially multiplexed by random phase mask used for a decryption key. For decryption in our biometric security system, a bit-error-detection method that compares the digital bit of live fingerprint with of fingerprint information extracted from hologram is used.
Use-related risk analysis for medical devices based on improved FMEA.
Liu, Long; Shuai, Ma; Wang, Zhu; Li, Ping
2012-01-01
In order to effectively analyze and control use-related risk of medical devices, quantitative methodologies must be applied. Failure Mode and Effects Analysis (FMEA) is a proactive technique for error detection and risk reduction. In this article, an improved FMEA based on Fuzzy Mathematics and Grey Relational Theory is developed to better carry out user-related risk analysis for medical devices. As an example, the analysis process using this improved FMEA method for a certain medical device (C-arm X-ray machine) is described.
Intrinsic coincident linear polarimetry using stacked organic photovoltaics.
Roy, S Gupta; Awartani, O M; Sen, P; O'Connor, B T; Kudenov, M W
2016-06-27
Polarimetry has widespread applications within atmospheric sensing, telecommunications, biomedical imaging, and target detection. Several existing methods of imaging polarimetry trade off the sensor's spatial resolution for polarimetric resolution, and often have some form of spatial registration error. To mitigate these issues, we have developed a system using oriented polymer-based organic photovoltaics (OPVs) that can preferentially absorb linearly polarized light. Additionally, the OPV cells can be made semitransparent, enabling multiple detectors to be cascaded along the same optical axis. Since each device performs a partial polarization measurement of the same incident beam, high temporal resolution is maintained with the potential for inherent spatial registration. In this paper, a Mueller matrix model of the stacked OPV design is provided. Based on this model, a calibration technique is developed and presented. This calibration technique and model are validated with experimental data, taken with a cascaded three cell OPV Stokes polarimeter, capable of measuring incident linear polarization states. Our results indicate polarization measurement error of 1.2% RMS and an average absolute radiometric accuracy of 2.2% for the demonstrated polarimeter.
A Foot-Mounted Inertial Measurement Unit (IMU) Positioning Algorithm Based on Magnetic Constraint
Zou, Jiaheng
2018-01-01
With the development of related applications, indoor positioning techniques have been more and more widely developed. Based on Wi-Fi, Bluetooth low energy (BLE) and geomagnetism, indoor positioning techniques often rely on the physical location of fingerprint information. The focus and difficulty of establishing the fingerprint database are in obtaining a relatively accurate physical location with as little given information as possible. This paper presents a foot-mounted inertial measurement unit (IMU) positioning algorithm under the loop closure constraint based on magnetic information. It can provide relatively reliable position information without maps and geomagnetic information and provides a relatively accurate coordinate for the collection of a fingerprint database. In the experiment, the features extracted by the multi-level Fourier transform method proposed in this paper are validated and the validity of loop closure matching is tested with a RANSAC-based method. Moreover, the loop closure detection results show that the cumulative error of the trajectory processed by the graph optimization algorithm is significantly suppressed, presenting a good accuracy. The average error of the trajectory under loop closure constraint is controlled below 2.15 m. PMID:29494542
A Foot-Mounted Inertial Measurement Unit (IMU) Positioning Algorithm Based on Magnetic Constraint.
Wang, Yan; Li, Xin; Zou, Jiaheng
2018-03-01
With the development of related applications, indoor positioning techniques have been more and more widely developed. Based on Wi-Fi, Bluetooth low energy (BLE) and geomagnetism, indoor positioning techniques often rely on the physical location of fingerprint information. The focus and difficulty of establishing the fingerprint database are in obtaining a relatively accurate physical location with as little given information as possible. This paper presents a foot-mounted inertial measurement unit (IMU) positioning algorithm under the loop closure constraint based on magnetic information. It can provide relatively reliable position information without maps and geomagnetic information and provides a relatively accurate coordinate for the collection of a fingerprint database. In the experiment, the features extracted by the multi-level Fourier transform method proposed in this paper are validated and the validity of loop closure matching is tested with a RANSAC-based method. Moreover, the loop closure detection results show that the cumulative error of the trajectory processed by the graph optimization algorithm is significantly suppressed, presenting a good accuracy. The average error of the trajectory under loop closure constraint is controlled below 2.15 m.
Telecommunications end-to-end systems monitoring on TOPEX/Poseidon: Tools and techniques
NASA Technical Reports Server (NTRS)
Calanche, Bruno J.
1994-01-01
The TOPEX/Poseidon Project Satellite Performance Analysis Team's (SPAT) roles and responsibilities have grown to include functions that are typically performed by other teams on JPL Flight Projects. In particular, SPAT Telecommunication's role has expanded beyond the nominal function of monitoring, assessing, characterizing, and trending the spacecraft (S/C) RF/Telecom subsystem to one of End-to-End Information Systems (EEIS) monitoring. This has been accomplished by taking advantage of the spacecraft and ground data system structures and protocols. By processing both the received spacecraft telemetry minor frame ground generated CRC flags and NASCOM block poly error flags, bit error rates (BER) for each link segment can be determined. This provides the capability to characterize the separate link segments, determine science data recovery, and perform fault/anomaly detection and isolation. By monitoring and managing the links, TOPEX has successfully recovered approximately 99.9 percent of the science data with an integrity (BER) of better than 1 x 10(exp 8). This paper presents the algorithms used to process the above flags and the techniques used for EEIS monitoring.
QR images: optimized image embedding in QR codes.
Garateguy, Gonzalo J; Arce, Gonzalo R; Lau, Daniel L; Villarreal, Ofelia P
2014-07-01
This paper introduces the concept of QR images, an automatic method to embed QR codes into color images with bounded probability of detection error. These embeddings are compatible with standard decoding applications and can be applied to any color image with full area coverage. The QR information bits are encoded into the luminance values of the image, taking advantage of the immunity of QR readers against local luminance disturbances. To mitigate the visual distortion of the QR image, the algorithm utilizes halftoning masks for the selection of modified pixels and nonlinear programming techniques to locally optimize luminance levels. A tractable model for the probability of error is developed and models of the human visual system are considered in the quality metric used to optimize the luminance levels of the QR image. To minimize the processing time, the optimization techniques proposed to consider the mechanics of a common binarization method and are designed to be amenable for parallel implementations. Experimental results show the graceful degradation of the decoding rate and the perceptual quality as a function the embedding parameters. A visual comparison between the proposed and existing methods is presented.
Repeat-aware modeling and correction of short read errors.
Yang, Xiao; Aluru, Srinivas; Dorman, Karin S
2011-02-15
High-throughput short read sequencing is revolutionizing genomics and systems biology research by enabling cost-effective deep coverage sequencing of genomes and transcriptomes. Error detection and correction are crucial to many short read sequencing applications including de novo genome sequencing, genome resequencing, and digital gene expression analysis. Short read error detection is typically carried out by counting the observed frequencies of kmers in reads and validating those with frequencies exceeding a threshold. In case of genomes with high repeat content, an erroneous kmer may be frequently observed if it has few nucleotide differences with valid kmers with multiple occurrences in the genome. Error detection and correction were mostly applied to genomes with low repeat content and this remains a challenging problem for genomes with high repeat content. We develop a statistical model and a computational method for error detection and correction in the presence of genomic repeats. We propose a method to infer genomic frequencies of kmers from their observed frequencies by analyzing the misread relationships among observed kmers. We also propose a method to estimate the threshold useful for validating kmers whose estimated genomic frequency exceeds the threshold. We demonstrate that superior error detection is achieved using these methods. Furthermore, we break away from the common assumption of uniformly distributed errors within a read, and provide a framework to model position-dependent error occurrence frequencies common to many short read platforms. Lastly, we achieve better error correction in genomes with high repeat content. The software is implemented in C++ and is freely available under GNU GPL3 license and Boost Software V1.0 license at "http://aluru-sun.ece.iastate.edu/doku.php?id = redeem". We introduce a statistical framework to model sequencing errors in next-generation reads, which led to promising results in detecting and correcting errors for genomes with high repeat content.
Feng, Hanzhou; Bondi, Robert W; Anderson, Carl A; Drennen, James K; Igne, Benoît
2017-08-01
Polymorph detection is critical for ensuring pharmaceutical product quality in drug substances exhibiting polymorphism. Conventional analytical techniques such as X-ray powder diffraction and solid-state nuclear magnetic resonance are utilized primarily for characterizing the presence and identity of specific polymorphs in a sample. These techniques have encountered challenges in analyzing the constitution of polymorphs in the presence of other components commonly found in pharmaceutical dosage forms. Laborious sample preparation procedures are usually required to achieve satisfactory data interpretability. There is a need for alternative techniques capable of probing pharmaceutical dosage forms rapidly and nondestructively, which is dictated by the practical requirements of applications such as quality monitoring on production lines or when quantifying product shelf lifetime. The sensitivity of transmission Raman spectroscopy for detecting polymorphs in final tablet cores was investigated in this work. Carbamazepine was chosen as a model drug, polymorph form III is the commercial form, whereas form I is an undesired polymorph that requires effective detection. The concentration of form I in a direct compression tablet formulation containing 20% w/w of carbamazepine, 74.00% w/w of fillers (mannitol and microcrystalline cellulose), and 6% w/w of croscarmellose sodium, silicon dioxide, and magnesium stearate was estimated using transmission Raman spectroscopy. Quantitative models were generated and optimized using multivariate regression and data preprocessing. Prediction uncertainty was estimated for each validation sample by accounting for all the main variables contributing to the prediction. Multivariate detection limits were calculated based on statistical hypothesis testing. The transmission Raman spectroscopic model had an absolute prediction error of 0.241% w/w for the independent validation set. The method detection limit was estimated at 1.31% w/w. The results demonstrated that transmission Raman spectroscopy is a sensitive tool for polymorphs detection in pharmaceutical tablets.
Using video recording to identify management errors in pediatric trauma resuscitation.
Oakley, Ed; Stocker, Sergio; Staubli, Georg; Young, Simon
2006-03-01
To determine the ability of video recording to identify management errors in trauma resuscitation and to compare this method with medical record review. The resuscitation of children who presented to the emergency department of the Royal Children's Hospital between February 19, 2001, and August 18, 2002, for whom the trauma team was activated was video recorded. The tapes were analyzed, and management was compared with Advanced Trauma Life Support guidelines. Deviations from these guidelines were recorded as errors. Fifty video recordings were analyzed independently by 2 reviewers. Medical record review was undertaken for a cohort of the most seriously injured patients, and errors were identified. The errors detected with the 2 methods were compared. Ninety resuscitations were video recorded and analyzed. An average of 5.9 errors per resuscitation was identified with this method (range: 1-12 errors). Twenty-five children (28%) had an injury severity score of >11; there was an average of 2.16 errors per patient in this group. Only 10 (20%) of these errors were detected in the medical record review. Medical record review detected an additional 8 errors that were not evident on the video recordings. Concordance between independent reviewers was high, with 93% agreement. Video recording is more effective than medical record review in detecting management errors in pediatric trauma resuscitation. Management errors in pediatric trauma resuscitation are common and often involve basic resuscitation principles. Resuscitation of the most seriously injured children was associated with fewer errors. Video recording is a useful adjunct to trauma resuscitation auditing.
Development of a Plastic-Based Microfluidic Immunosensor Chip for Detection of H1N1 Influenza
Lee, Kyoung G.; Lee, Tae Jae; Jeong, Soon Woo; Choi, Ho Woon; Heo, Nam Su; Park, Jung Youn; Park, Tae Jung; Lee, Seok Jae
2012-01-01
Lab-on-a-chip can provide convenient and accurate diagnosis tools. In this paper, a plastic-based microfluidic immunosensor chip for the diagnosis of swine flu (H1N1) was developed by immobilizing hemagglutinin antigen on a gold surface using a genetically engineered polypeptide. A fluorescent dye-labeled antibody (Ab) was used for quantifying the concentration of Ab in the immunosensor chip using a fluorescent technique. For increasing the detection efficiency and reducing the errors, three chambers and three microchannels were designed in one microfluidic chip. This protocol could be applied to the diagnosis of other infectious diseases in a microfluidic device. PMID:23112630
Laser diagnostics of welding plasma by polarization spectroscopy.
Lucas, Owen; Alwahabi, Zeyad T; Linton, Valerie; Meeuwissen, Karel
2007-05-01
The application of polarization spectroscopy (PS) to detect atomic species in an atmospheric pressure welding plasma has been demonstrated. PS spectra of Na atoms, seeded in the shielding gas flow of a gas tungsten arc welding (GTAW) plasma, are presented at different pump beam energies. The nature of the PS technique was found to be very efficient in suppressing the high background emission associated with the welding plasma. The PS spectral profiles appear to be Lorentzian and Lorentzian cubed for high and low pump beam energy, respectively. The effect of beam steering, due to the thermal gradient in the interaction plasma zone, was addressed. It was found that there is 2% unavoidable error in the detectable PS signal.
Improved Fake-State Attack to the Quantum Key Distribution Systems
NASA Astrophysics Data System (ADS)
Zhang, Sheng; Wang, Jian; Tang, Chao-jing
2012-09-01
It has been showed that most commercial quantum cryptosystems are vulnerable to the fake-state attacks, which employ the loophole that the avalanche photodiodes as single photon detectors still produce detection events in the linear mode. However, previous fake-state attacks may be easily prevented by either installing a watch dog or reconfiguring the dead-time assigning component. In this paper, we present a new technique to counteract the after-pulse effect ever enhanced by the fake-state attacks, in order to lower the quantum bit error rate. Obviously, it is more difficult to detect the presented attack scheme. Indeed, it contributes to promoting of implementing a secure quantum cryptosystem in real life.
Sidelobe-modulated optical vortices for free-space communication.
Jia, P; Yang, Y; Min, C J; Fang, H; Yuan, X-C
2013-02-15
We propose and experimentally demonstrate a new method for free-space optical (FSO) communication, where the transmitter encodes data into a composite computer-generated hologram and the receiver decodes through a retrieved array of sidelobe-modulated optical vortices (SMOVs). By employing the SMOV generation and detection technique, the usual stringent alignment and phase-matching requirement of the detection of optical vortices is released. In transmitting a gray-scale picture with 180×180 pixels, a bit error rate as low as 3.01×10(-3) has been achieved. Due to the orbital angular momentum multiplexing and spatial paralleling, this FSO communication method possesses the ability to greatly increase the capacity of data transmission.
Anomaly Detection for Beam Loss Maps in the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Valentino, Gianluca; Bruce, Roderik; Redaelli, Stefano; Rossi, Roberto; Theodoropoulos, Panagiotis; Jaster-Merz, Sonja
2017-07-01
In the LHC, beam loss maps are used to validate collimator settings for cleaning and machine protection. This is done by monitoring the loss distribution in the ring during infrequent controlled loss map campaigns, as well as in standard operation. Due to the complexity of the system, consisting of more than 50 collimators per beam, it is difficult to identify small changes in the collimation hierarchy, which may be due to setting errors or beam orbit drifts with such methods. A technique based on Principal Component Analysis and Local Outlier Factor is presented to detect anomalies in the loss maps and therefore provide an automatic check of the collimation hierarchy.
Bayesian analysis of energy and count rate data for detection of low count rate radioactive sources.
Klumpp, John; Brandl, Alexander
2015-03-01
A particle counting and detection system is proposed that searches for elevated count rates in multiple energy regions simultaneously. The system analyzes time-interval data (e.g., time between counts), as this was shown to be a more sensitive technique for detecting low count rate sources compared to analyzing counts per unit interval (Luo et al. 2013). Two distinct versions of the detection system are developed. The first is intended for situations in which the sample is fixed and can be measured for an unlimited amount of time. The second version is intended to detect sources that are physically moving relative to the detector, such as a truck moving past a fixed roadside detector or a waste storage facility under an airplane. In both cases, the detection system is expected to be active indefinitely; i.e., it is an online detection system. Both versions of the multi-energy detection systems are compared to their respective gross count rate detection systems in terms of Type I and Type II error rates and sensitivity.
Simultaneous message framing and error detection
NASA Technical Reports Server (NTRS)
Frey, A. H., Jr.
1968-01-01
Circuitry simultaneously inserts message framing information and detects noise errors in binary code data transmissions. Separate message groups are framed without requiring both framing bits and error-checking bits, and predetermined message sequence are separated from other message sequences without being hampered by intervening noise.
Multi-bits error detection and fast recovery in RISC cores
NASA Astrophysics Data System (ADS)
Jing, Wang; Xing, Yang; Yuanfu, Zhao; Weigong, Zhang; Jiao, Shen; Keni, Qiu
2015-11-01
The particles-induced soft errors are a major threat to the reliability of microprocessors. Even worse, multi-bits upsets (MBUs) are ever-increased due to the rapidly shrinking feature size of the IC on a chip. Several architecture-level mechanisms have been proposed to protect microprocessors from soft errors, such as dual and triple modular redundancies (DMR and TMR). However, most of them are inefficient to combat the growing multi-bits errors or cannot well balance the critical paths delay, area and power penalty. This paper proposes a novel architecture, self-recovery dual-pipeline (SRDP), to effectively provide soft error detection and recovery with low cost for general RISC structures. We focus on the following three aspects. First, an advanced DMR pipeline is devised to detect soft error, especially MBU. Second, SEU/MBU errors can be located by enhancing self-checking logic into pipelines stage registers. Third, a recovery scheme is proposed with a recovery cost of 1 or 5 clock cycles. Our evaluation of a prototype implementation exhibits that the SRDP can successfully detect particle-induced soft errors up to 100% and recovery is nearly 95%, the other 5% will inter a specific trap.
NASA Astrophysics Data System (ADS)
Rao, Xiong; Tang, Yunwei
2014-11-01
Land surface deformation evidently exists in a newly-built high-speed railway in the southeast of China. In this study, we utilize the Small BAseline Subsets (SBAS)-Differential Synthetic Aperture Radar Interferometry (DInSAR) technique to detect land surface deformation along the railway. In this work, 40 Cosmo-SkyMed satellite images were selected to analyze the spatial distribution and velocity of the deformation in study area. 88 pairs of image with high coherence were firstly chosen with an appropriate threshold. These images were used to deduce the deformation velocity map and the variation in time series. This result can provide information for orbit correctness and ground control point (GCP) selection in the following steps. Then, more pairs of image were selected to tighten the constraint in time dimension, and to improve the final result by decreasing the phase unwrapping error. 171 combinations of SAR pairs were ultimately selected. Reliable GCPs were re-selected according to the previously derived deformation velocity map. Orbital residuals error was rectified using these GCPs, and nonlinear deformation components were estimated. Therefore, a more accurate surface deformation velocity map was produced. Precise geodetic leveling work was implemented in the meantime. We compared the leveling result with the geocoding SBAS product using the nearest neighbour method. The mean error and standard deviation of the error were respectively 0.82 mm and 4.17 mm. This result demonstrates the effectiveness of DInSAR technique for monitoring land surface deformation, which can serve as a reliable decision for supporting highspeed railway project design, construction, operation and maintenance.
NASA Astrophysics Data System (ADS)
Hammi, A.; Placidi, L.; Weber, D. C.; Lomax, A. J.
2018-01-01
To exploit the full potential of proton therapy, accurate and on-line methods to verify the patient positioning and the proton range during the treatment are desirable. Here we propose and validate an innovative technique for determining patient misalignment uncertainties through the use of a small number of low dose, carefully selected proton pencil beams (‘range probes’) (RP) with sufficient energy that their residual Bragg peak (BP) position and shape can be measured on exit. Since any change of the patient orientation in relation to these beams will result in changes of the density heterogeneities through which they pass, our hypothesis is that patient misalignments can be deduced from measured changes in Bragg curve (BC) shape and range. As such, a simple and robust methodology has been developed that estimates average proton range and range dilution of the detected residual BC, in order to locate range probe positions with optimal prediction power for detecting misalignments. The validation of this RP based approach has been split into two phases. First we retrospectively investigate its potential to detect translational patient misalignments under real clinical conditions. Second, we test it for determining rotational errors of an anthropomorphic phantom that was systematically rotated using an in-house developed high precision motion stage. Simulations of RPs in these two scenarios show that this approach could potentially predict translational errors to lower than1.5 mm and rotational errors to smaller than 1° using only three or five RPs positions respectively.
Spotting East African mammals in open savannah from space.
Yang, Zheng; Wang, Tiejun; Skidmore, Andrew K; de Leeuw, Jan; Said, Mohammed Y; Freer, Jim
2014-01-01
Knowledge of population dynamics is essential for managing and conserving wildlife. Traditional methods of counting wild animals such as aerial survey or ground counts not only disturb animals, but also can be labour intensive and costly. New, commercially available very high-resolution satellite images offer great potential for accurate estimates of animal abundance over large open areas. However, little research has been conducted in the area of satellite-aided wildlife census, although computer processing speeds and image analysis algorithms have vastly improved. This paper explores the possibility of detecting large animals in the open savannah of Maasai Mara National Reserve, Kenya from very high-resolution GeoEye-1 satellite images. A hybrid image classification method was employed for this specific purpose by incorporating the advantages of both pixel-based and object-based image classification approaches. This was performed in two steps: firstly, a pixel-based image classification method, i.e., artificial neural network was applied to classify potential targets with similar spectral reflectance at pixel level; and then an object-based image classification method was used to further differentiate animal targets from the surrounding landscapes through the applications of expert knowledge. As a result, the large animals in two pilot study areas were successfully detected with an average count error of 8.2%, omission error of 6.6% and commission error of 13.7%. The results of the study show for the first time that it is feasible to perform automated detection and counting of large wild animals in open savannahs from space, and therefore provide a complementary and alternative approach to the conventional wildlife survey techniques.
A technique for evaluating the application of the pin-level stuck-at fault model to VLSI circuits
NASA Technical Reports Server (NTRS)
Palumbo, Daniel L.; Finelli, George B.
1987-01-01
Accurate fault models are required to conduct the experiments defined in validation methodologies for highly reliable fault-tolerant computers (e.g., computers with a probability of failure of 10 to the -9 for a 10-hour mission). Described is a technique by which a researcher can evaluate the capability of the pin-level stuck-at fault model to simulate true error behavior symptoms in very large scale integrated (VLSI) digital circuits. The technique is based on a statistical comparison of the error behavior resulting from faults applied at the pin-level of and internal to a VLSI circuit. As an example of an application of the technique, the error behavior of a microprocessor simulation subjected to internal stuck-at faults is compared with the error behavior which results from pin-level stuck-at faults. The error behavior is characterized by the time between errors and the duration of errors. Based on this example data, the pin-level stuck-at fault model is found to deliver less than ideal performance. However, with respect to the class of faults which cause a system crash, the pin-level, stuck-at fault model is found to provide a good modeling capability.
Detecting dominant motion patterns in crowds of pedestrians
NASA Astrophysics Data System (ADS)
Saqib, Muhammad; Khan, Sultan Daud; Blumenstein, Michael
2017-02-01
As the population of the world increases, urbanization generates crowding situations which poses challenges to public safety and security. Manual analysis of crowded situations is a tedious job and usually prone to errors. In this paper, we propose a novel technique of crowd analysis, the aim of which is to detect different dominant motion patterns in real-time videos. A motion field is generated by computing the dense optical flow. The motion field is then divided into blocks. For each block, we adopt an Intra-clustering algorithm for detecting different flows within the block. Later on, we employ Inter-clustering for clustering the flow vectors among different blocks. We evaluate the performance of our approach on different real-time videos. The experimental results show that our proposed method is capable of detecting distinct motion patterns in crowded videos. Moreover, our algorithm outperforms state-of-the-art methods.
Observer detection of image degradation caused by irreversible data compression processes
NASA Astrophysics Data System (ADS)
Chen, Ji; Flynn, Michael J.; Gross, Barry; Spizarny, David
1991-05-01
Irreversible data compression methods have been proposed to reduce the data storage and communication requirements of digital imaging systems. In general, the error produced by compression increases as an algorithm''s compression ratio is increased. We have studied the relationship between compression ratios and the detection of induced error using radiologic observers. The nature of the errors was characterized by calculating the power spectrum of the difference image. In contrast with studies designed to test whether detected errors alter diagnostic decisions, this study was designed to test whether observers could detect the induced error. A paired-film observer study was designed to test whether induced errors were detected. The study was conducted with chest radiographs selected and ranked for subtle evidence of interstitial disease, pulmonary nodules, or pneumothoraces. Images were digitized at 86 microns (4K X 5K) and 2K X 2K regions were extracted. A full-frame discrete cosine transform method was used to compress images at ratios varying between 6:1 and 60:1. The decompressed images were reprinted next to the original images in a randomized order with a laser film printer. The use of a film digitizer and a film printer which can reproduce all of the contrast and detail in the original radiograph makes the results of this study insensitive to instrument performance and primarily dependent on radiographic image quality. The results of this study define conditions for which errors associated with irreversible compression cannot be detected by radiologic observers. The results indicate that an observer can detect the errors introduced by this compression algorithm for compression ratios of 10:1 (1.2 bits/pixel) or higher.
Zhang, Zhi-Hui; Yang, Guang-Hong
2017-05-01
This paper provides a novel event-triggered fault detection (FD) scheme for discrete-time linear systems. First, an event-triggered interval observer is proposed to generate the upper and lower residuals by taking into account the influence of the disturbances and the event error. Second, the robustness of the residual interval against the disturbances and the fault sensitivity are improved by introducing l 1 and H ∞ performances. Third, dilated linear matrix inequalities are used to decouple the Lyapunov matrices from the system matrices. The nonnegative conditions for the estimation error variables are presented with the aid of the slack matrix variables. This technique allows considering a more general Lyapunov function. Furthermore, the FD decision scheme is proposed by monitoring whether the zero value belongs to the residual interval. It is shown that the information communication burden is reduced by designing the event-triggering mechanism, while the FD performance can still be guaranteed. Finally, simulation results demonstrate the effectiveness of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haase, G.M.; Sfakianakis, G.N.; Lobe, T.E.
1981-06-01
The ability of external imaging to demonstrate intestinal infarction in neonatal necrotizing enterocolitis (NEC) was prospectively evaluated. The radiopharmaceutical technetium--99m diphosphonate was injected intravenously and the patients subsequently underwent abdominal scanning. Clinical patient care and interpretation of the images were entirely independent throughout the study. Of 33 studies, 7 were positive, 4 were suspicious, and 22 were negative. One false positive study detected ischemia without transmural infarction. The second false positive scan occurred postoperatively and was due to misinterpretation of the hyperactivity along the surgical incision. None of the suspicious cases had damaged bowel. The two false negative studies clearlymore » failed to demonstrate frank intestinal necrosis. The presence of very small areas of infarction, errors in technical settings, subjective interpretation of scans and delayed clearance of the radionuclide in a critically ill neonate may all limit the accuracy of external abdominal scanning. However, in spite of an error rate of 12%, it is likely that this technique will enhance the present clinical, laboratory, and radiologic parameters of patient management in NEC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Racine, E; Hautvast, G; Binnekamp, D
Purpose: To report on preliminary results validating the performance of a specially designed LDR brachytherapy needle prototype possessing both electromagnetic (EM) tracking and seed drop detection abilities. Methods: An EM hollow needle prototype has been designed and constructed in collaboration with research partner Philips Healthcare. The needle possesses conventional 3D tracking capabilities, along with a novel seed drop detection mechanism exploiting local changes of electromagnetic properties generated by the passage of seeds in the needle's embedded sensor coils. These two capabilities are exploited by proprietary engineering and signal processing techniques to generate seed drop position estimates in real-time treatment delivery.more » The electromagnetic tracking system (EMTS) used for the experiment is the NDI Aurora Planar Field Generator. The experiment consisted of dropping a total of 35 seeds in a prismatic agarose phantom, and comparing the 3D seed drop positions of the EMTS to those obtained by an image analysis of subsequent micro-CT scans. Drop position error computations and statistical analysis were performed after a 3D registration of the two seed distributions. Results: Of the 35 seeds dropped in the phantom, 32 were properly detected by the needle prototype. Absolute drop position errors among the detected seeds ranged from 0.5 to 4.8 mm with mean and standard deviation values of 1.6 and 0.9 mm, respectively. Error measurements also include undesirable and uncontrollable effects such as seed motion upon deposition. The true accuracy performance of the needle prototype is therefore underestimated. Conclusion: This preliminary study demonstrates the potential benefits of EM technologies in detecting the passage of seeds in a hollow needle as a means of generating drop position estimates in real-time treatment delivery. Such tools could therefore represent a potentially interesting addition to existing brachytherapy protocols for rapid dosimetry validation. Equipments and fundings for this project were provided by Philips Medical.« less
Error detection and reduction in blood banking.
Motschman, T L; Moore, S B
1996-12-01
Error management plays a major role in facility process improvement efforts. By detecting and reducing errors, quality and, therefore, patient care improve. It begins with a strong organizational foundation of management attitude with clear, consistent employee direction and appropriate physical facilities. Clearly defined critical processes, critical activities, and SOPs act as the framework for operations as well as active quality monitoring. To assure that personnel can detect an report errors they must be trained in both operational duties and error management practices. Use of simulated/intentional errors and incorporation of error detection into competency assessment keeps employees practiced, confident, and diminishes fear of the unknown. Personnel can clearly see that errors are indeed used as opportunities for process improvement and not for punishment. The facility must have a clearly defined and consistently used definition for reportable errors. Reportable errors should include those errors with potentially harmful outcomes as well as those errors that are "upstream," and thus further away from the outcome. A well-written error report consists of who, what, when, where, why/how, and follow-up to the error. Before correction can occur, an investigation to determine the underlying cause of the error should be undertaken. Obviously, the best corrective action is prevention. Correction can occur at five different levels; however, only three of these levels are directed at prevention. Prevention requires a method to collect and analyze data concerning errors. In the authors' facility a functional error classification method and a quality system-based classification have been useful. An active method to search for problems uncovers them further upstream, before they can have disastrous outcomes. In the continual quest for improving processes, an error management program is itself a process that needs improvement, and we must strive to always close the circle of quality assurance. Ultimately, the goal of better patient care will be the reward.
Vuk, Tomislav; Barišić, Marijan; Očić, Tihomir; Mihaljević, Ivanka; Šarlija, Dorotea; Jukić, Irena
2012-01-01
Background. Continuous and efficient error management, including procedures from error detection to their resolution and prevention, is an important part of quality management in blood establishments. At the Croatian Institute of Transfusion Medicine (CITM), error management has been systematically performed since 2003. Materials and methods. Data derived from error management at the CITM during an 8-year period (2003–2010) formed the basis of this study. Throughout the study period, errors were reported to the Department of Quality Assurance. In addition to surveys and the necessary corrective activities, errors were analysed and classified according to the Medical Event Reporting System for Transfusion Medicine (MERS-TM). Results. During the study period, a total of 2,068 errors were recorded, including 1,778 (86.0%) in blood bank activities and 290 (14.0%) in blood transfusion services. As many as 1,744 (84.3%) errors were detected before issue of the product or service. Among the 324 errors identified upon release from the CITM, 163 (50.3%) errors were detected by customers and reported as complaints. In only five cases was an error detected after blood product transfusion however without any harmful consequences for the patients. All errors were, therefore, evaluated as “near miss” and “no harm” events. Fifty-two (2.5%) errors were evaluated as high-risk events. With regards to blood bank activities, the highest proportion of errors occurred in the processes of labelling (27.1%) and blood collection (23.7%). With regards to blood transfusion services, errors related to blood product issuing prevailed (24.5%). Conclusion. This study shows that comprehensive management of errors, including near miss errors, can generate data on the functioning of transfusion services, which is a precondition for implementation of efficient corrective and preventive actions that will ensure further improvement of the quality and safety of transfusion treatment. PMID:22395352
Immunofluorescence-based methods to monitor DNA end resection
Mukherjee, Bipasha; Tomimatsu, Nozomi; Burma, Sandeep
2017-01-01
Summary Double-strand breaks (DSBs) are the most deleterious amongst all types of DNA damage that can occur in the cell. These breaks arise from both endogenous (for example, DNA replication stress) as well as exogenous insults (for example, ionizing radiation). DSBs are principally repaired by one of two major pathways: non-homologous end joining (NHEJ) or homologous recombination (HR). NHEJ is an error-prone process that can occur in all phases of the cell cycle, while HR is limited to the S and G2 phases of the cell cycle when a sister chromatid is available as a template for error-free repair. The first step in HR is “DNA end resection”, a process during which the broken DNA end is converted into a long stretch of 3′-ended single-stranded DNA (ssDNA). In recent years, DNA end resection has been identified as a pivotal step that controls “repair pathway choice” i.e., the appropriate choice between NHEJ and HR for DSB repair. Therefore, methods to quantitatively or semi-quantitatively assess DNA end resection have gained importance in laboratories working on DNA repair. In this chapter, we describe two simple immunofluorescence-based techniques to monitor DNA end resection in mammalian cells. The first technique involves immuno-detection of Replication Protein A (RPA), a ssDNA-binding protein that binds to resected DNA. The second technique involves labeling of genomic DNA with 5-bromo-2′-deoxyuridine (BrdU) that can be detected by anti-BrdU antibody only after the DNA becomes single stranded due to resection. These methods are not complicated, do not involve sophisticated instrumentation or reporter constructs, and can be applied to most mammalian cell lines, and therefore, should be of broad utility as simple ways of monitoring DNA end resection in vivo. PMID:25804748
Local measurement of error field using naturally rotating tearing mode dynamics in EXTRAP T2R
NASA Astrophysics Data System (ADS)
Sweeney, R. M.; Frassinetti, L.; Brunsell, P.; Fridström, R.; Volpe, F. A.
2016-12-01
An error field (EF) detection technique using the amplitude modulation of a naturally rotating tearing mode (TM) is developed and validated in the EXTRAP T2R reversed field pinch. The technique was used to identify intrinsic EFs of m/n = 1/-12, where m and n are the poloidal and toroidal mode numbers. The effect of the EF and of a resonant magnetic perturbation (RMP) on the TM, in particular on amplitude modulation, is modeled with a first-order solution of the modified Rutherford equation. In the experiment, the TM amplitude is measured as a function of the toroidal angle as the TM rotates rapidly in the presence of an unknown EF and a known, deliberately applied RMP. The RMP amplitude is fixed while the toroidal phase is varied from one discharge to the other, completing a full toroidal scan. Using three such scans with different RMP amplitudes, the EF amplitude and phase are inferred from the phases at which the TM amplitude maximizes. The estimated EF amplitude is consistent with other estimates (e.g. based on the best EF-cancelling RMP, resulting in the fastest TM rotation). A passive variant of this technique is also presented, where no RMPs are applied, and the EF phase is deduced.
Technique for Radiometer and Antenna Array Calibration - TRAAC
NASA Technical Reports Server (NTRS)
Meyer, Paul; Sims, William; Varnavas, Kosta; McCracken, Jeff; Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Richeson. James
2012-01-01
Highly sensitive receivers are used to detect minute amounts of emitted electromagnetic energy. Calibration of these receivers is vital to the accuracy of the measurements. Traditional calibration techniques depend on calibration reference internal to the receivers as reference for the calibration of the observed electromagnetic energy. Such methods can only calibrate errors in measurement introduced by the receiver only. The disadvantage of these existing methods is that they cannot account for errors introduced by devices, such as antennas, used for capturing electromagnetic radiation. This severely limits the types of antennas that can be used to make measurements with a high degree of accuracy. Complex antenna systems, such as electronically steerable antennas (also known as phased arrays), while offering potentially significant advantages, suffer from a lack of a reliable and accurate calibration technique. The proximity of antenna elements in an array results in interaction between the electromagnetic fields radiated (or received) by the individual elements. This phenomenon is called mutual coupling. The new calibration method uses a known noise source as a calibration load to determine the instantaneous characteristics of the antenna. The noise source is emitted from one element of the antenna array and received by all the other elements due to mutual coupling. This received noise is used as a calibration standard to monitor the stability of the antenna electronics.
Cecconi, Maurizio; Rhodes, Andrew; Poloniecki, Jan; Della Rocca, Giorgio; Grounds, R Michael
2009-01-01
Bland-Altman analysis is used for assessing agreement between two measurements of the same clinical variable. In the field of cardiac output monitoring, its results, in terms of bias and limits of agreement, are often difficult to interpret, leading clinicians to use a cutoff of 30% in the percentage error in order to decide whether a new technique may be considered a good alternative. This percentage error of +/- 30% arises from the assumption that the commonly used reference technique, intermittent thermodilution, has a precision of +/- 20% or less. The combination of two precisions of +/- 20% equates to a total error of +/- 28.3%, which is commonly rounded up to +/- 30%. Thus, finding a percentage error of less than +/- 30% should equate to the new tested technique having an error similar to the reference, which therefore should be acceptable. In a worked example in this paper, we discuss the limitations of this approach, in particular in regard to the situation in which the reference technique may be either more or less precise than would normally be expected. This can lead to inappropriate conclusions being drawn from data acquired in validation studies of new monitoring technologies. We conclude that it is not acceptable to present comparison studies quoting percentage error as an acceptability criteria without reporting the precision of the reference technique.
Spatial Assessment of Model Errors from Four Regression Techniques
Lianjun Zhang; Jeffrey H. Gove; Jeffrey H. Gove
2005-01-01
Fomst modelers have attempted to account for the spatial autocorrelations among trees in growth and yield models by applying alternative regression techniques such as linear mixed models (LMM), generalized additive models (GAM), and geographicalIy weighted regression (GWR). However, the model errors are commonly assessed using average errors across the entire study...
Development of image processing method to detect noise in geostationary imagery
NASA Astrophysics Data System (ADS)
Khlopenkov, Konstantin V.; Doelling, David R.
2016-10-01
The Clouds and the Earth's Radiant Energy System (CERES) has incorporated imagery from 16 individual geostationary (GEO) satellites across five contiguous domains since March 2000. In order to derive broadband fluxes uniform across satellite platforms it is important to ensure a good quality of the input raw count data. GEO data obtained by older GOES imagers (such as MTSAT-1, Meteosat-5, Meteosat-7, GMS-5, and GOES-9) are known to frequently contain various types of noise caused by transmission errors, sync errors, stray light contamination, and others. This work presents an image processing methodology designed to detect most kinds of noise and corrupt data in all bands of raw imagery from modern and historic GEO satellites. The algorithm is based on a set of different approaches to detect abnormal image patterns, including inter-line and inter-pixel differences within a scanline, correlation between scanlines, analysis of spatial variance, and also a 2D Fourier analysis of the image spatial frequencies. In spite of computational complexity, the described method is highly optimized for performance to facilitate volume processing of multi-year data and runs in fully automated mode. Reliability of this noise detection technique has been assessed by human supervision for each GEO dataset obtained during selected time periods in 2005 and 2006. This assessment has demonstrated the overall detection accuracy of over 99.5% and the false alarm rate of under 0.3%. The described noise detection routine is currently used in volume processing of historical GEO imagery for subsequent production of global gridded data products and for cross-platform calibration.
NASA Astrophysics Data System (ADS)
Rizvi, Syed S.; Shah, Dipali; Riasat, Aasia
The Time Wrap algorithm [3] offers a run time recovery mechanism that deals with the causality errors. These run time recovery mechanisms consists of rollback, anti-message, and Global Virtual Time (GVT) techniques. For rollback, there is a need to compute GVT which is used in discrete-event simulation to reclaim the memory, commit the output, detect the termination, and handle the errors. However, the computation of GVT requires dealing with transient message problem and the simultaneous reporting problem. These problems can be dealt in an efficient manner by the Samadi's algorithm [8] which works fine in the presence of causality errors. However, the performance of both Time Wrap and Samadi's algorithms depends on the latency involve in GVT computation. Both algorithms give poor latency for large simulation systems especially in the presence of causality errors. To improve the latency and reduce the processor ideal time, we implement tree and butterflies barriers with the optimistic algorithm. Our analysis shows that the use of synchronous barriers such as tree and butterfly with the optimistic algorithm not only minimizes the GVT latency but also minimizes the processor idle time.
The Neural-fuzzy Thermal Error Compensation Controller on CNC Machining Center
NASA Astrophysics Data System (ADS)
Tseng, Pai-Chung; Chen, Shen-Len
The geometric errors and structural thermal deformation are factors that influence the machining accuracy of Computer Numerical Control (CNC) machining center. Therefore, researchers pay attention to thermal error compensation technologies on CNC machine tools. Some real-time error compensation techniques have been successfully demonstrated in both laboratories and industrial sites. The compensation results still need to be enhanced. In this research, the neural-fuzzy theory has been conducted to derive a thermal prediction model. An IC-type thermometer has been used to detect the heat sources temperature variation. The thermal drifts are online measured by a touch-triggered probe with a standard bar. A thermal prediction model is then derived by neural-fuzzy theory based on the temperature variation and the thermal drifts. A Graphic User Interface (GUI) system is also built to conduct the user friendly operation interface with Insprise C++ Builder. The experimental results show that the thermal prediction model developed by neural-fuzzy theory methodology can improve machining accuracy from 80µm to 3µm. Comparison with the multi-variable linear regression analysis the compensation accuracy is increased from ±10µm to ±3µm.
Insar Unwrapping Error Correction Based on Quasi-Accurate Detection of Gross Errors (quad)
NASA Astrophysics Data System (ADS)
Kang, Y.; Zhao, C. Y.; Zhang, Q.; Yang, C. S.
2018-04-01
Unwrapping error is a common error in the InSAR processing, which will seriously degrade the accuracy of the monitoring results. Based on a gross error correction method, Quasi-accurate detection (QUAD), the method for unwrapping errors automatic correction is established in this paper. This method identifies and corrects the unwrapping errors by establishing a functional model between the true errors and interferograms. The basic principle and processing steps are presented. Then this method is compared with the L1-norm method with simulated data. Results show that both methods can effectively suppress the unwrapping error when the ratio of the unwrapping errors is low, and the two methods can complement each other when the ratio of the unwrapping errors is relatively high. At last the real SAR data is tested for the phase unwrapping error correction. Results show that this new method can correct the phase unwrapping errors successfully in the practical application.
Syndromic surveillance for health information system failures: a feasibility study.
Ong, Mei-Sing; Magrabi, Farah; Coiera, Enrico
2013-05-01
To explore the applicability of a syndromic surveillance method to the early detection of health information technology (HIT) system failures. A syndromic surveillance system was developed to monitor a laboratory information system at a tertiary hospital. Four indices were monitored: (1) total laboratory records being created; (2) total records with missing results; (3) average serum potassium results; and (4) total duplicated tests on a patient. The goal was to detect HIT system failures causing: data loss at the record level; data loss at the field level; erroneous data; and unintended duplication of data. Time-series models of the indices were constructed, and statistical process control charts were used to detect unexpected behaviors. The ability of the models to detect HIT system failures was evaluated using simulated failures, each lasting for 24 h, with error rates ranging from 1% to 35%. In detecting data loss at the record level, the model achieved a sensitivity of 0.26 when the simulated error rate was 1%, while maintaining a specificity of 0.98. Detection performance improved with increasing error rates, achieving a perfect sensitivity when the error rate was 35%. In the detection of missing results, erroneous serum potassium results and unintended repetition of tests, perfect sensitivity was attained when the error rate was as small as 5%. Decreasing the error rate to 1% resulted in a drop in sensitivity to 0.65-0.85. Syndromic surveillance methods can potentially be applied to monitor HIT systems, to facilitate the early detection of failures.
Is there any electrophysiological evidence for subliminal error processing?
Shalgi, Shani; Deouell, Leon Y
2013-08-29
The role of error awareness in executive control and modification of behavior is not fully understood. In line with many recent studies showing that conscious awareness is unnecessary for numerous high-level processes such as strategic adjustments and decision making, it was suggested that error detection can also take place unconsciously. The Error Negativity (Ne) component, long established as a robust error-related component that differentiates between correct responses and errors, was a fine candidate to test this notion: if an Ne is elicited also by errors which are not consciously detected, it would imply a subliminal process involved in error monitoring that does not necessarily lead to conscious awareness of the error. Indeed, for the past decade, the repeated finding of a similar Ne for errors which became aware and errors that did not achieve awareness, compared to the smaller negativity elicited by correct responses (Correct Response Negativity; CRN), has lent the Ne the prestigious status of an index of subliminal error processing. However, there were several notable exceptions to these findings. The study in the focus of this review (Shalgi and Deouell, 2012) sheds new light on both types of previous results. We found that error detection as reflected by the Ne is correlated with subjective awareness: when awareness (or more importantly lack thereof) is more strictly determined using the wagering paradigm, no Ne is elicited without awareness. This result effectively resolves the issue of why there are many conflicting findings regarding the Ne and error awareness. The average Ne amplitude appears to be influenced by individual criteria for error reporting and therefore, studies containing different mixtures of participants who are more confident of their own performance or less confident, or paradigms that either encourage or don't encourage reporting low confidence errors will show different results. Based on this evidence, it is no longer possible to unquestioningly uphold the notion that the amplitude of the Ne is unrelated to subjective awareness, and therefore, that errors are detected without conscious awareness.
Activity Tracking for Pilot Error Detection from Flight Data
NASA Technical Reports Server (NTRS)
Callantine, Todd J.; Ashford, Rose (Technical Monitor)
2002-01-01
This report presents an application of activity tracking for pilot error detection from flight data, and describes issues surrounding such an application. It first describes the Crew Activity Tracking System (CATS), in-flight data collected from the NASA Langley Boeing 757 Airborne Research Integrated Experiment System aircraft, and a model of B757 flight crew activities. It then presents an example of CATS detecting actual in-flight crew errors.